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ABSTRACT

POLYHEDRAL HOMOTOPY AND ITS APPLICATIONS TO

POLYNOMIAL SYSTEM SOLVING

By

Hwee Hoon Chung

In this dissertation, we use the polyhedral homotopy to solve polynomial systems.

Polyhedral homotopy is based on Bernshtein’s Theory, which states that for a poly-

nomial system with generic coefficients, the number of isolated zeros in the algebraic

torus (0‘)", counting multiplicities, is equal to the mixed volume of its supports. In

the past, the construction of the start system of the homotopy continuation method

is always based on the total degree of the original system. For polyhedral homotopy,

cells of the right type provide a binomial start system which can be used to solve a

polynomial system with the same monomials as the given polynomial system but with

randomly chosen coefficients. This system is then used as the start system to solve

the original polynomial system. This homotopy is particularly efficient for solving

systems with no special structure.

An important merit of this work is its practical application in solving algebraic

systems in robot kinematics, chemical reactions, engineering, economic modelling,



neural network, computer vision and many others.

Our solver finds all isolated solutions to satisfactory accuracy and speed; further-

more, its generality should establish itself as the method of choice for systems of

moderate size.
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CHAPTER 1

Introduction

Let P(x) = (p1(a:), . . . ,pn(:1:)) = O with a: = (121, ...,a:,,) be a system of n polyno-

mial equations in n unknowns. We want to find all isolated solutions of the system

p1(x1,...,:r,,) = 0

pn(:z:1,...,a:,,) = 0.

In order to approximate all isolated solutions of P(:z:) = 0, we look for a homotopy

H : C" x [0,1] —> C" that starts with a trivial (i.e., easily solved) set of polynomial

equations

q1(x1,--.,xn) = 0

qn(:c1,...,a:n) = 0.



Let Q(a:) denote (q1(:1:), . . . ,q,,(:z:)). We then follow the curves in the real variable t

which make up the solution set of

(1.1) H(:r:,t) = (1 — t)Q(:1:) + tP(:1:) = 0.

Note that H(.’L‘,0) = Q(:z:) and H(:1:, 1) = P(a:).

If Q(:I:) = 0 is chosen appropriately, then the following three pr0perties should

hold:

(1) Triviality: The solutions of Q(r) = O are known.

(2) Smoothness: The solution set of H(1:,t) : 0 for 0 S t < 1 consists of a finite

number of smooth paths, each parameterized by t in [0,1).

(3) Accessibility: Every isolated solution of H(a:, 1) = P(:1:) = 0 can be reached by

some path originating from t = 0. It follows that this path starts at a solution of

H(:z:, 0) = 62(5) = 0.

If the three properties hold, the solution paths can be followed from the initial

points at t = 0 to all solutions of the original problem P(m) = 0 at t = 1 using

standard numerical techniques [1, 2].

Drexler [9], Garcia and Zangwill [15] independently and almost simultaneously

started to solve polynomial systems by the Homotopy Continuation Method. A few

years later, their homotopies were superseded by that constructed by T. Y. Li [25]. It

was shown (via the use of generalized Sard’s Theorem and implicit function theorem)

that with the following choice of 62(23):

(11(33) 2 anvil—b1



(1.2)

where d1, ...,d,, are the degrees of p1(x), ...,pn(:r) respectively and a,, b,- are random

complex numbers, that the three properties hold. Rewrite the homotopy (1.1) as

(1.3) H(:r(t),t) : 0.

Differentiating (1.3) with respect to t, we have

do:

Hx— H = 0

dt+ ‘

and

da:

1.4 —— = —H‘1H

where Hz, Ht are partial derivatives of H with respect to :1: and t respectively. The

curves 32(t) are the integral solutions of the initial value problems of the ordinary

differential equation (1.4) with (6(0) 2 11:0. The total number of curves of H’1(O)

produced by the choice of Q(:c) in (1.2) is equal to d = all - - -d,,, the total degree of

the system P(a:). The curves emanating from t = 1 must merge with one of those

that start from t = 0. Thus, by following all the curves of H“1(0), we obtain all the

isolated zeros of P(:I:), the polynomial system that we want to solve.

Polynomial systems arise in diverse areas such as robot kinematics, chemical re-

actions, engineering, economic modelling, neural network, computer vision and many



others. Very often, we encounter deficient polynomial systems with the actual root

count being less than the total degree d 2 d1 « - -d,, of the system. In fact, a great

majority of the systems in application have only a small fraction of the total degree

number of solutions. The following examples illustrate the point.

Example 1.0.1 Consider the generalized eigenvalue problem: Ax : Ax, where A 6

CM". We wish to compute the eigenvalues A and eigenvectors a: = (3:1, . . . ,xn).

This reduces to solving a system of n + 1 equations in n + 1 variables (A, 1121, . . . , :6"):

EJ— aijxj — Ax,- = 0; Z,- x, = 1 for z' = 1, . . . , n. There are at most n isolated solutions

to this system, with total degree 2". Homotopy method, using Q(:1:) in (1.2) as the

start system, requires the tracing of 2" curves but at most n of them will converge to

the target solutions when t —> 1.

Example 1.0.2 The Cassou-Nogues System

15b4col2 + 6b403 + 21b4c2d — 144b2c — 8bzc2e —

28b2cde - 648b2d + 365242.: + 9b4d3 - 120 = 0

3054c3d — 32cde2 — 72052cd — 24b2c3e — 4326262 + 5766c —

576de + 16b2cd2e + 16d262 + 166262 + 9546’ + 39648.12 +

18b4cd3 - 4325242 + 24b2d3e — 16b262de — 240a + 5184 = 0

216526d — 1625262 -— 816%2 + 1008ce — 1008de +

15528.1(; — 15b2c3e — socale2 + 406%2 + 400282 + 5184 = 0

46% — 3b2d2 - 4b262 + 22ce — 22de + 261 = 0

The total degree of this system is 7 x 8 x 6 x 4 = 1344. This means that if we were



to use the system Q(:1:) in (1.2) as the start system, we need to trace 1344 curves.

However, this system only has 16 isolated solutions. Thus sending 1344 curves out in

search for the 16 solutions represents wasted computations.

The existence of extraneous paths, i.e., those paths that diverge to infinity as

t —> 1, represents wasted computations and substantially limits the power of the

method in most occasions. The choice of Q(:z:) in (1.2) to solve the system P($) = 0

requires an amount of computational effort proportional to d = all - - -d,, and roughly,

proportional to the size of the system. We would like to derive methods for solving

deficient systems for which the computational effort is instead proportional to the

actual number of solutions.

In this dissertation, we propose to use the polyhedral homotopy, where the choice

of the start system Q(x) is based on the Bernshtein’s theory [3] and the number of

homotopy curves that needed to be traced is greatly reduced in the case of deficient

systems. This homotopy is particularly efficient for solving polynomial systems with

no special structures.



CHAPTER 2

Polyhedral Homotopy

2.1 Notations

For a system of polynomials P(.’L‘) = (p1(:r),...,p,,(;r)) with :6 = (3:1,...,:z:,,),

write

p,(:r) = 2 6,3056“, t=1,...,n,

0644'

where a = (a1,...,a,,) E Z", cm 6 C = C\{0} and :13“ = :r‘1"---;rf,". Here A,

a finite subset of Z", is called the support of p,(1:) and its convex hull, denoted by

Q,- = conv(A), is called the Newton polytope of p,(a:). We call A = (A1, . . . , An) the

support of P(at)

The Minkowskz' sum of polytopes Q1, . . . , Q" is defined by

Ql+'°'+Qn={al+"’+anla1€Q11---aan€Qn}-



The n-dimensional Euclidean volume of the polytope A1Q1 + - - - + An Q" with non-

negative variables A1, . . . , An is a homogeneous polynomial in A1, . . . , A" of degree n

[48]. The mixed volume of .A = (A1, . . . ,An), denoted by M(.A1, . . . ,An), is defined

to be the coefficient of A1 . - - An in this polynomial. Equivalently, using the principle

of inclusion and exclusion, the mixed volume can be formulated as

(2.1) M(A1,A2, ...,.A,,) = (—1)"“1 Zvol(Q,-) + (—1)"‘2 Zvougi + QJ.) + . ..

+ vol(Q1+---+ Q"),

The polyhedral homotOpy is based on the following theorem:

Theorem 2.1.1 (Bernshtein) The number of isolated zeros in (0‘)", counting mul-

tiplicities, of a polynomial system P(:1:) = (p1(a:), . ..,pn(a:)) is bounded above by

the mixed volume M(A1, . . .,An). For a generic choice of coefl‘icients, the system

P(:r) = 0 has exactly M(A1, . . . ,An) isolated zeros in (0‘)".

The root count in the above theorem was discovered by Bernshtein [3], Khovanskii

[20] and Kushnirenko [21] and is sometimes referred to as the BKK bound. While

this bound is, in general, significantly sharper than the variant Bézout numbers, its

apparent limitation is that it only counts the zeros of P(a:) in the algebraic torus

(0‘)". Root count in C" via mixed volumes was first attempted in [47] and an upper

bound was derived by introducing the notion of a shadowed set. Later, a significantly

much tighter bound was given in the following theorem:

Theorem 2.1.2 [29] The number of isolated zeros in C", counting multiplicities, of

a polynomial system P(:r) = (p1(:r), . . . ,pn(a:)) with supports A1, . . . ,An is bounded

above by the mixed volume M(A1 U {0}, . . . ,An U {0}).



Let A = (A1, . . . , A) be a sequence of finite subsets of Z" whose union affinely

spans R". By a cell of A we mean a tuple C = (Cm, . . . , CW) of subsets C“) C A,

for i = 1,. . .,n. For a cell C = (0(1),. . .,C(")), define

t)’pe(C) : (dim(conv(C(1))), . . . , dim(conv(C(")))),

COIMO) = conv(C“>) + . - . + conv(C(")),

and vol(C) = vol(conv(C)).

A face of C is a subcell F = (F‘1),...,F(")) of C where F“) C C“) and some

linear functional (1 6 (R")" attains its minimum over C“) at F“), for i = 1,. . .,n.

We call such an a an inner normal of F. If F is a face of C, then conv(F(‘)) is a face

of the polytope conv(C(i)) for i = 1,. . . , n.

Definition 2.1.3 A fine mixed subdivision ofA = (A1, . . . ,An) is a collection S =

{C1, ..., Cm} of cells such that

(a) dim(conv(C,-)) = n for all i = 1, . . . ,m,

(b) conv(C,-) flconv(Cj) is a proper common face of both conv(C,-) and conv(Cj),

whenever the intersection is nonempty for i 75 j,

(c) U221 conv(C,-) = conv(.A).

For i = 1,. ..,m, we write C,- = (Cim, ...,Ci")), and

(d) dim(conv(C,-(1))) + - - - + dim(conv(C,-("))) = n,

(e) (#(Cl‘l) — 1) + - - - + (#(c§'”) - 1) = n.



A fine mixed subdivision ofA = (A1, ..., An) can be found by the following process:

Choose a real-valued function w,- : A,- —> R for each i = 1, . ..,n. We call the

n—tuple w = (w1,...,w,,) a lifting function on A and w, lifts A,- to its graph A,- =

{(a,w,-(a)) : a 6 A,} C Rn“. This notation is extended in the obvious way: A =

(A1, . . .,An), Q,- = conv(A,-), Q = Q1+...+ Q", etc.

Let S... = {C1, . . . , Cm} be the set of cells of A which satisfy for 1 S j S m,

(a) dim(conv(Cj)) = n,

(b) conv(Cj) is a facet, i.e., an n—dimensional face, of Q = conv(A) whose inner

normal oz 6 (R"+1)* has positive last coordinate. In other words, conv(CJ-) is a

facet in the lower hull of Q.

If the lifting function 6) is chosen generically, then 8,, is a fine mixed subdivision

of A = (A1, . . .,An) induced by w [13, 22].

Let S = {C1,...,Cm} be a fine mixed subdivision of A = (A1,...,A,,), then

the cell Cj of type (1,...,1) is a sequence of subsets (C;”,...,CJ(-")) where each

C1“) = {a,0,a,:1} is a 2-element subset of A,- for 1 S i g n. Let V(Cj) be the n x n—

matrix whose rows are ail — am, 1 g i g n. It can be shown that

V01(Cj) = ldethlell-

The following is a special case of Theorem 2.4 of [16].

Theorem 2.1.4 Let S = {C1,...,Cm} be a fine mired subdivision of A =

(A1,...,A.,). Then

M(A1, . . . , An) 2 :VOKCi) = Z ] d€t(V(C;))],
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where the summation is taken over all cells C,- of type (1, . . . , 1) in S.

2.2 Algebraic deformations

In order to find all isolated zeros of a given polynomial system P(a:) :2

(191(2), ...,pn(:r)) in C”, we apply the following procedure: According to Theorem

2.1.2, if all p,’s have constant terms, then the mixed volume is in fact, an upper bound

for the number of isolated zeros of P(.r) in C"; otherwise we augment the monomial

x0 to those p,’s that do not have constant terms. We assign generic coefficients to all

the monomials in P(a:). Denote the new system by Q(a:) = (q1(:r), . . . , qn (113)) and let

A’ = ( ’1,...,A;,) be its support, so

(1,-(2:) = Z quasar, i: 1,...,n,

a’EA’i

where a' = (a’1,. . . , a;,) and 2:“, =2 $311 - - afi’n. Consider the linear homotopy

H(:c, t) = (1 —- t)Q(a:) + tP(a:) = 0.

We wish to obtain zeros of P(:r) in C" at t = 1 by following the solution curves of

H(II), t) = 0 emanating from the zeros of Q(a:) in C" at t = 0. By the following lemma,

the zeros of Q(:I:) in C" are isolated, nonsingular and are contained in (0)".

Lemma 2.2.1 [29] Given a polynomial system P(a:) = (p1(:r),...,p,,(;t:)) in the

variables a: = (2:1,...,a:,,), there exist an open dense subset V of C" such that if
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€=(el,...,e,,) EV, then tee Vfor allt9£0 ian, and inyC" isasolution of

q1:p1($la°-',$n)+€
1 : 0

qn :pn($la--°axn)+€n : 0,

then

 

3(qi.---.qn) _ ..,
ranka(xl’...,$n)(y)—n and yE(C),

where C“ = (C\{0}.

In Section 2.2.1, we will employ the polydedral homotopy to find these isolated

zeros of Q(a:) in (0‘)". We will see in Section 2.2.2 that every isolated zero of P(a‘)

in C", at t = 1, can be reached by a solution curve of H(as, t) = 0 emanating from an

isolated zero of 62(13) in (0‘)", at t = 0, obtained in Section 2.2.1.

2.2.1 The nonlinear homotopy

We solve Q(a:) = (q1(a:), . . .,qn(;r)) = 0 by lifting its support A’ = ( '1, . . . ,A;,)

by a generically chosen lifting function a) = ((121, . . . ,wn) where w,- : A: -—> R for

i = 1, . . . ,n.

Consider the polynomial system C(x, t) 2: ((1‘1 (1:, t), . . . , 6,,(at, t)) in the n + 1 vari—
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ables 3:1,. . .,xmt where

(2.2) q,(x,t)= Z 5,,,,x°'t“’i(°'), i=1,...,n.

a’EAfi

For i = 1,.. ,,n we write A’--—- (all), .. "ak()z)—1’O} and 221161: N, N E Z. Let

b 2 (b1, . . . , b,,) where b,- represents the constant term of q,-(:r) for i 2 1,. . .,n, and

= = “ b ...c n ’ n b Nbeallth
C (Cl) aCN) (CLagn’ Cl0:181) 1, la 9 n a] )3 ’cn,a£(3‘)_1’ n) e C 6

corresponding coefficients of Q(:r, t).

Q(:r,t) provides a homotopy with t as the parameter and Q(a:, 1) = Q(:z:). The

lifting function 6) 2: (w1,...,w,,) induces a fine mixed subdivision S“, of A’ =

( ’1, . . . , Ag). By projecting the facets in the lower hull of Q down, we obtain cells of

type (1, . . . , 1) in the fine mixed subdivision 5“,. By Theorem 2.1.4, the mixed volume

M( ’1, ..., Ag) is equal to the sum of the volumes of these cells.

Proposition 2.2.2 For almost every choice of constant terms of Q(£L‘), 0 is a regular

value of Q(:r,t) on (0‘)" x (0,1].

PROOF: Consider Q(b, 2:, t) : C" x (C‘ )" x (0, 1] —> (C‘ )" where b here is also regarded

as a variable of Q. The Jacobian matrix of Q with respect to b (the constant terms

of Q(:c)), denoted by DbQ, is of rank n in (0‘)" for t E (0, 1]. This implies that 0 is a

regular value of Q on C" x (0‘)" x (0, 1] . It follows from generalized Sard’s Theorem

that for almost every choice of constant terms b, 0 is a regular value of Q(b, -, -) on

(0‘)" x (0,1]. [:1

As a consequence of Proposition 2.2.2, for t 6 (0,1], all isolated zeros of Q(:z:, t)

are nonsingular.
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The system Q(:r:) is said to be in general position if its coefficients c satisfy C(c) aé

0. for C(31) = (91(y).--..gm(y)). where {91(y).-~.gm(y)} is a set of polynomals

determined by the monomials of Q(:1:).

Proposition 2.2.3 For allt 6 (0,1], the system Q(:c, t) is in general position.

PROOF: Let C(y) = (g1(y), . .., gm(y)) be the polynomial system determined by

the monomials of Q(1:) in the definition of Q(:c) being in general position, and Z =

{y E C” | C(y) = 0}. The Lebesgue measure of Z is zero and C” \Z is open and

dense. Since the coefficients of Q(.’L‘) are randomly chosen, c ¢ Z and thus the system

Q(:r,1) = Q(:r) is in general position. Forj = 1,...,N, let *7,- be the power oft

associated with the term in Q(:1:, t) = (41(z,t), . ..,(jn(ac,t)) with c,- as coefficient.

Write 7 2 (71, . . .,yN).

For each fixed t 75 0, the support of Q(:I:,t) is the same as that of Q(a:). Since

C(c) 75 0, there exists in such that g,-0(c) 94 0, which implies g,-O(ct7) $5 0 where ctl

represents (c1t71,. . .,cNth). If ’y E Z", then g,0(ctl) is a nontrivial polynomial in

t. Thus, there are only finitely many t such that g,0(ct7) = 0. This implies that

C(ctl) has only finitely many zeros. If ’y E Q” , then factor out the reciprocal of the

least common multiple of the denominator of the 7,38 from the polynomials in C(ct").

This results in a set of nontrivial polynomials in t and we again conclude that C(ctl),

considered as a system of polynomials in t, can only have finitely many zeros.

Let {t1, . . . ,t,;} be the set of values oft in (C such that C(ct") = 0. Write t, =

rsew’ (1 g s g 6). For t = t3, C(ct") becomes

'71 i710 ’YN i7v0 _
gl(c1r3 e ‘,...,chs e ‘ ) — 0
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’71 i719 7N i7N0 _
gm(c1rse ‘,...,ch8 e i) — 0.

Thus as long as 0 ¢ 6,, V 1 g s S 6, then G(c(e“’t)l) = C((c(e‘9)7)t7) 75 0, \7’ t E

(0, 1]. Hence, with the coefficients of Q(a:) being randomly chosen, the system Q(a:, t)

is in general position for all t E (0, 1]. D

By Proposition 2.2.3 and Theorem 2.1.1, for each fixed t 6 (0,1], Q(a:, t) has

M( ’1,. . .,A;,) number of isolated zeros in (0‘)". Thus there are M( ’1,...,A;,)

number of solution curves of Q(:r,t) : 0 in (0')" x (0,1]. These curves can only

diverge to infinity when t —+ 0.

Let 5,, = {C1, . . . ,Cm} and Cj : (03(1), ...,le")) be a cell of type (1, . . . , 1) in 5,0.

For i = 1, ...,n, let Cy) = {aimafil} C A[-. Since Sw is a fine mixed subdivision, the

vectors a’11 —— a’lo, . . . ,alu — 6;, are linearly independent. Thus

I I

all — “10

vol(Cj)) = det

   
I I

[ anl — a’nO
.l

and conv(Cj) is a facet of Q’ = (Q’l, . . . , Qil) whose inner normal 6! E (R"+1)* has

positive last coordinate. Let (i = (a, 1) = (a1,...,oz.,, 1) be the inner normal of

conv(CJ-) = conv({a’10,&'11},...,{a;,0,a;,1}) where 612, = (a;,,w,~(a§,)) for i = 1,...,n

and l = 0,1. Let a:(t) represent the general solution curves of Q(:r,t) :2 0. With

:z:(t) = (161(t),...,:r:,,(t)), let

551“) = tall/1m
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$71“) = tan yn(t)r

or, simply, x(t) = t°y(t). Substituting this into (2.2) yields, for i = 1, ..., n,

(Mat) = Z 5,-‘a,ya't<a.a’)tw.~(a
')

a’EA;

: Z a" a’ya't<(asl)r(a, vwi(a’)))

a'EAfi

(23) 2 Z: Ei,a’yalt<é’dl>,

a’EAfi

Let 6,- = minareA;(d, 5'). Since conv(Cj) is a facet of Q’ = ( "1,. . . , Q;) with inner

normal 0?, conv(CJ(-i)) = conv({a;0,a;1}) is a face of Q; and Ci 2 (a, 1) also serves as an

inner normal of conv(C,(-i)) for each i = 1, ..., n. It follows that ((31,620) = ((1,621) = fl,-

and (6,6’) > B,- for a’ E A: \ Cf). Hence, factoring out tfii in (2.3), we have

(Mt/at) = ”1515:0901” + 54,51,310“ + Z §,ary°'t<é’°’)‘fi‘), i = 1, . . .,n.

a’EAfi\C§’)

Consider the homotopy R(y, t) = (r1(y, t), . . . , r,,(y, t)) = 0 where

(2.4) r,(y,t) = 5,103,010 + away/“11 + Z 6,,alya't<évi’>-5', 2': 1...,.n

a’EA’,\C,(-i)

(2.5) (j,(y,t) =tfi‘r,(y,t), 2:1,...,n.

Since (d,d’) > B,- for a’ E A;- \ Cf), i = 1,. . ..n, R(y,0) = 0 is the binomial system
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with generic coefficients:

‘ “i0 ‘ “i1 0
01,530?! + 01,631?! —

(2.6)

I I

— a — a

Cn,a'noy 710 I 671.0212] "I — 0

From (2.5), the zeros of R(y,t) coincides with those of Q(y,t) for t 75 0 and since

.r(t) .—. t°y(t), R(y, 1) = Q(z, 1) = Q(at), and zeros of R(y,t) at t = 1 are precisely

the zeros of Q(x). The system (2.6) has

det 3 (= vol(C,—))

     

solutions in (0‘)". Thus by following the solution curves (y(t),t) of R(y,t) = 0

starting from the solutions of R(y, 0) = 0 in (2.6), we can obtain the vol(CJ-) number

of solutions of Q(r) = 0 in (0‘)” at t = 1. According to Theorem 2.1.4, we can obtain

all M( ’1,...,A;,) number of isolated zeros of Q(at) in (0‘)" if we repeat the same

procedure for each cell of type (1,. . . ,1) in Sw.

2.2.2 The linear homotopy

Consider the linear homotopy

(2.7) H(:I:,t) = (1 —- t)Q(a:) + tP(.7;) = 0.
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We wish to obtain zeros of P(x) = (p1(x), . . . , pn(x)) in C" at t = 1 by following the

solution curves of H(x, t) = 0 emanating from the zeros of Q(x) = (q1 (x), . . . , qn(x))

in C" , which by Lemma 2.2.1, are contained in (O )”, at t = 0. Recall that the system

Q(x) is constructed from P(x), with generic coefficients assigned to all monomials in

P(x), and have the monomial x0 augmented to those p,’s that do not have constant

terms. Thus, the linear homotopy (2.7) is essentially a special case of the Cheater’s

homotopy [27].

Theorem 2.2.4 [27] (The Cheater’s homotopy) Let c = (Cl, . . . ,cm) E C"1 and d be

the total degree of P(x) = (p1(x), . . . ,pn(x)) with x = (x1, . . . ,xn). There exists an

open, dense, full-measure subset U of Cm"m such that for (b1, . .,b;,c‘{,. .., 0:") E U,

the following holds:

(a) The set X“ of solutions x = (x1, . . .,xn) of

(11(131w-w33n)=p1(Cl.-.-.c;.xl,...,x..)+b‘f=0

qn(.’131,...,113n) :pn(C:,...,C:n,fL'1,...,(13n)+1);:0

consists of do isolated points, for some do 3 d.

(b) The smoothness and accessibility properties hold for the homotopy

H(x,t) = P((I—t)c'1‘+tc1,...,(1—t)c:n +tcm,x1,...,xn)+(1——t)b*

where b“ = (b'f, . . . , b',‘,). It follows that every solution of P(x) = O is reached by

a path beginning at a point of X“.
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To apply Theorem 2.2.4 to our situation, let m = $21 k(i) — n, b; = b,, 1 S

i g n and (of, . . . ,c;,) be the coefficients of Q(x) excluding the constant terms. By

construction, the coefficients (b'f,...,b;“,,c’{, . . .,c,‘,,) of Q(x) are in U. By part (b)

of Theorem 2.2.4, every zero of P(x) can be reached at t = 1, by a solution curve

of H(x, t) = 0 emanating from a zero of Q(x) at t = 0. Thus, by following all the

solution curves of H(x,t) = 0 starting from the isolated zeros of Q(x) in (0‘)" at

t = 0, we can obtain all the isolated zeros of P(x) in C" at t = 1.



CHAPTER 3

Algorithms

In chapter 2, we have seen that by following the homotopy paths of

H(x,t) = (1 - t)Q($) + tP(SE) = 0.

starting from the zeros of Q(x) = ((11 (x), . . . , qn(x)) in C" at t = 0, which by Lemma

2.2.1 are contained in (0‘)", we may obtain the zeros of P(x) = (p1(x), . . . ,p,,(x)),

the polynomial system that we want to solve, in C", at t = 1. To do so, we must

first find the zeros of Q(x) in (0‘)". The method outlined in chapter 2 uses a generic

lifting w 2 (£01,. . . ,wn), and then projects the lower hull(i.e. union of facets whose

inner normal (1 has positive last coordinate) of the lifted Newton polytope Q’ =

( -,1, . . . , Q;) of the polynomial system Q(x, t), defined by (2.2), down to obtain cells

of type (1, . . . , 1) in the induced fine mixed subdivision Sm. In this chapter, we first of

all discuss the details of the implementation of the procedure to obtain cells of type

(1, . . . , 1) in the induced fine mixed subdivision SW, and secondly, solve the binomial

system that corresponds to each such cell, and thirdly, give an outline of the homotopy

19
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curve tracing procedure.

3.1 Vertex-set algorithm

From the formula given by (2.1), the non-vertex points of the Newton polytope

Q; = conv(A§), 1 S i g n, do not contribute to the mixed volume M(A’1,. . . , Ag) of

the system Q(x). To make our method more efficient, we intend to exclude those non-

vertex points in the supports from further considerations in the first place. Deciding

whether a point is a vertex of Q; reduces to a linear programming problem:

'Let A; = {a[i),... ,a]:(),)}, 1 S i g n and 2?:1160') = N. To test if a?) (1 S l g

k(i)) is a vertex of Q2, we solve the following problem:

minimize ,u

i 251:)1. #lA-a“) +,aa,)=a,(‘)

2:3",,HA +u=1

vnzo

(3.1) subject to i

 #20.

If (3.1) has an optimal solution with u = 0, then ali) is not a vertex of Q, or

a)” ¢ vert(Q§), where vert(Q;) denotes the vertex set of Q. We can obtain vert(Q;)

by repetitive applications of (3.1) as described in the following algorithm.

Algorithm VERTEX_SET

Input: A’-—— {a('),...,a]:()i)},1 S i g n

81 Seti= 1.
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52 Set vert(Q;) = {a]i), . . -,a]:(),)}-

S3 Let j range from 1 to k(i). If a?) 9! vert(Q;), then vertQ; = vertQ§\{a§-i)}.

S4 Seti=i+1. Ifign,gotoS2.

3.2 Edge-set algorithm

To find cells of type (1, . . . , 1) in the fine mixed subdivision 5,, of A’ =

( ’1,...,A;,) induced by the lifting 62, let Cj «2 (C30), . . . , C307) be such a cell. Then

for each i, conv(C?) is an edge (one-dimensional face) in the. lower hull of the lifted

polytope Q; of (j,(x, t) (1 g i g n). For a random lifting w = (621,. . . ,wn), we begin

by constructing edge sets to contain edges that lie in the lower hull of Q2 (1 g i g n).

After applying Algorithm VERTEX_SET, each polytope Q; (1 S i S n) can be

[7, . ii) are the vertices of Q;-represented as conv({v “,ng ), where for 1 _<_ l g m,, v

and m,- is the cardinality of the vertex set of 9;. As an illustration, for the polytope

’1, to test if the edge connecting 6]” and by) lies in the lower hull of Q’l, we have

the following constraints:

65% = 65%.

(3.2)

D]1)C¥ S USPO, 21 — 3, ,ml

where 61 = (a1, . . . ,ozn, 1) and a1, . . . , an are the unknowns.

We use the equation in (3.2) to solve for one of the afs. Upon substituting the

value of that a,- into the rest of the inequalities in (3.2), we obtain inequalities of the
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form

(3-3) Ad |
/
\

9
-

where the number of variables(i.e., the number of components of a) is now one less

than before. The solvability of the problem (3.2) is then equivalent to the feasibility

of (3.3) which can be tested by solving the following linear programming problem:

minimize e

(3.4) subject to Ad — 66 g b, e > 0, where e = (1,...,1).

If 60 = min 6 is equal to zero, then (3.3) is feasible. Thus the edge connecting 13]”

and 6%” lies in the lower hull of lifted polytope Q’l. We repeat the above procedure

for all other possible forming of edges among vertices in Q’1 and subsequently those

in Newton polytopes Q]c (2 S k S n).

Algorithm EDGE_SET

Input: vert(Q§) = {v]i), . . .,vféli}, 1 S i g n

51 Set i = 1.

82 Let 81 range from 1 to m,- —1 and 32 from 31 +1 to m,. If 31 < 32, then for each

edge connecting 13g? and 13g) (vertices from Q), conduct the feasibility test on

the corresponding problem of the form (3.3). If the problem is feasible, then

store the pair (12g), vi?) in edge set E,.

S3 Seti=i+1. Ifign,thengotoSZ.
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3.3 Algorithm for finding cells of type (1, . . . ,1)

We construct cells of type (1, . . . , 1) by starting with an edge e1 from Q’l and

adding one edge ek from Q]c (2 g k g n) at a time. As each edge is added, the k-

tuples (el, . . . ,ek) is tested on whether é1+- . ~+é,c lies in the lower hull of Q’1+ - -+ Q1,

(3.2) is modified to have [6 equations and more inequalities:

23(1) (llé

jiia : U112

-(2) - _ -(2) .

0.12101 ‘7 t))-22a

.(k) . -(k) -
'U- CY : 'U- a

31:1 31:2

(3.5) 4 .1. .1.
. .v(- )0: < villa, 13 r13 m1, T1¢J111J12

Jli —

v a<v(2)d1<r<m 9f '' __ 3,2 3 _ 2 _ 2. 7‘2 J21,J22

 . k . . k - . .

(”5130’ S i'ka’ IS Tk S mka TIC # .Iklaij

where d = (a1, . . .,an, 1) with unknowns 011,. . .,a/n, é,- is the edge connecting the

vertices fig] and 13):: of Q2, and m,- is the cardinality of the vertex set of Q} We use

the [6 equations in (3.5) to solve for k of the ai’s. Upon substituting those 16 values

of the a,’s into the rest of the inequalities in (3.5), we obtain inequalities of the form

(3.6) Ad 3 b,

where the number of variables(i.e., the number of components of a) is now 16 less

than before. We conduct the feasibility test on (3.6) by solving the following linear
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programming problem:

minimize e

(3.7) subject to Ad - 68 g b, 6 > 0, where e = (1,...,1).

If 60 = min 6 is equal to zero, then (3.6) is feasible. Thus él + + ék lies in the

lower hull of Q’1 + - ° '+ Q],. We repeat the above procedure for all other possible edge

combinations from Q’1 + - - - + Q],. Only those edges that pass the feasibility test are

eligible to be augmented.

Algorithm LOWER_HULL

Input: edge sets E1, . . . , E, from Algorithm EDGE_SET

81 Set k = 1 and set the current k-tuples to contain edges in E1. Set k = k + 1.

82 V e), E E,c and each (k — 1)-tuple (e1, . . .,ek_1) of edges stored, if e), is found

such that 229;] e} + e“), lies in the lower hull of :3 Q; + Q],, then add that

edge 6,, to the current (It — 1)-tuple and store as a k-tuple.

S3 If k = n, then each n-tuple of edges stored corresponds to a type (1, . . . , 1) cell.

S4 Setk=k+1. Ifkgn,thengot082.

3.4 Finding zeros of R(y, 0)

From Algorithm LOWER_HULL, we obtain a set of n-tuples of edges, each mem-

ber corresponding to a type (1, . . . , 1) cell, along with its inner normal (1. For each
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such cell Cj and its inner normal a, recall that by making the change of variables

x(t) = t"y(t) and factoring out the minimal power of t, we obtain the homotopy

R(y, t) given by (2.4). When t = 0, R(y, 0) = 0 is a binomial system given by (2.6):

— a’ — a’ _

01,6309 1° + 01,611?! “ — 0

— a’ — a’ _

Cn,a’noy n0 + Cn,a’nly "1 " 0

To solve this system in (0‘)", we rewrite it as

  Un

For abbreviation, we write yv = (yv1,...,yv") and b = (b1,...,bn), then (3.8)

becomes

(3.9) y" = b.
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With this notation, it can be verified that for an n x n integer matrix U, the following

holds:

(yU)V ___ y(VU).

If V is a lower triangular matrix, namely,

U11 0 O

021 ”022 0

V :

vnl U712 ' ' ° vnn J  

where vij’s are all integers and v,,~ ¢ 0 for all i = 1, ..., n, then since det V # 0, (3.9)

becomes

Eli)” = 1)1

ytll'ztyg'zz : b2

(3.10)

1)} v 2 ‘U _yln y2n . . .ynnn _ b".

By forward substitution, (3.10) has |v11| x x |v,,,,[ = |detV| = vol(C,-) solutions.

In general, we may lower triangularize V by multiplying on the right by an integer

matrix U with Idet U | = 1. This matrix U can be found by the following procedure:

The greatest common divisor d of two integers a and b is given by

dzgcd(a,b)=ka+lb, k,l€Z
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where the integers k and l are obtained by the Euclidean algorithm. In matrix

notation, this can be formulated as

a d

U =

b 0

where

k l

U :

_ Q 9.

d d

and det(U) = 1.

In the multivariate case, let U(a, b) be the identity matrix except for the entries

(U(a, b))ii : k? (U(a, b))ij : l,

a

wavn=—§(w4ws=g

A product of a series of matrices of the form U(a, b) can be chosen to upper trian-

gularize a matrix from the left. To lower triangularize V, let U be an integer matrix

with |det U] =2 1 such that UTVT is upper triangular. Thus VU is lower triangular.

Now, let 2” = y and substitute it into (3.9), we have

(3.11) yv = (2U)V = em] = b.

Since VU is lower triangular, z = (2:1, ..., 2") in (3.11) can be solved and the number

of solutions equals |det(VU)| = |det(V)| - |det(U)] = |det(V)|. Consequently, we

have as many solutions of y = (y1,...,y,,) as in (3.9).
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3.5 Numerical curve tracing

The central part of the solver is the tracing of the solution curves of the nonlinear

homotopy R(y, t) = 0 given by (2.4), and the linear homotopy H(x, t) = 0 given by

(2.7). The curve tracing process of both the nonlinear and linear homotopy involves

the following predictor—corrector method.

Algorithm TRACE_PATH

input: starting point (x..,t..)

SI

82

S3

S4

(Evaluate) From (x..., t.) on the solution curve (x(t), t) of H(x, t) = 0, evaluate

the tangent vector (%(t,),1), where H,(x,,t,)‘f,—f(t..) + Ht(x..,t..) = 0.

(Predictor) Along the tangent vector (%§(t,),1) with stepsize 6, predict

(mete) = (x..t.) + 6(%§-(t.).1)-

(Corrector) From the predicted point (x0, to), use Newton’s method to find a

sequence (x,, to), i = 0, 1, . . . that converge to the point (x*, to) on the solution

curve, as a step forward from (x..., t.). If the correction is unsucccessful (i.e., the

sequence does not converge), then cut the stepsize 6 by half and return to $2

for a finer prediction.

(Update) If to = 1, stop and output x“ as the target solution; otherwise, replace

(x.,t..) with (x*, to), adjust the stepsize if necessary, and go to S1 for further

forward tracing.
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Correction

    Prediction

  
Figure 3.1. The prediction-correction process

Remark 3.5.1 From Hx(x, 13% + H, = 0, we have Hx(x,t)%% = —H,. Here, the

matrix H,,(x,t) is of full rank. We solve for the tangent vector fi—f by the use of

Gaussian elimination on the matrix Hx(x,t).

Remark 3.5.2 The algorithm in fixed-t correction is Newton’s iterations:

Tj = IL'J'_1— H,($j_1,t0)—1H(£L‘j_1,t0), j: 1, 2, 3, . . .

Upon rearranging, we have H’(x,-_1,t0)(x,-_1 — x,-) = H(x,--1, to), j = 1, 2, 3,. . .. The

Gaussian elimination method is used to solve for xJ-_1 — xj.

For the first part of the curve tracing process with the homotopy R(y, t), discussed

in Section 2.2.1, the solutions of the binomial system (2.6) serve as starting points at
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t = 0. The total number of curves to trace is equal to the sum of volumes of cells

of type (1, . . . , 1) which equals the mixed volume M( ’1, . . . ,A;). By Theorem 2.1.1

and Proposition 2.2.3, we obtain all the M( ’1,. . . , Ag) number of isolated zeros of

Q(x) in (0‘)" at t = 1, at the end of the execution of Algorithm TRACE_PATH for

the homotopy R(y, t) = 0 given by (2.4).

The second part of the curve tracing process with the homotopy H(x, t) discussed

in Section 2.2.2 takes all the isolated zeros of Q(x) in (0‘)" as starting points at t = 0.

The total number of curves to trace is equal to M( ’1,...,A;,). We obtain all the

isolated zeros of P(x) in C" at t = 1, upon execution of Algorithm TRACE_PATH

for the homotopy H(x, t) = 0 given by (2.7).



CHAPTER 4

Minimal Bézout number

Polynomial systems that arise in applications are very often deficient in the num-

ber of roots, i.e., the actual root count is less than the total degree of the system. The

choice of the start system is important for solving polynomial systems by the homo-

topy continuation method because it ultimately determines the number of homotopy

paths to trace in the process. In the past, the classical way of constructing the start

system is based on variant Bézout numbers of the given system. The natural approach

is to find among all possible homogenizations of the given system by grouping the

variables in different ways the one that corresponds to the minimal Bézout number.

A smaller Bézout number translates into less homotopy paths that need to be traced.

Many papers on the topic have addressed reductions in the number of solution curves

to trace in the homotopy continuation method [8, 24, 38, 39].

This chapter describes the procedure for finding the minimal Bézout number over

all possible homogenizations of a given polynomial system. We wish to make a com-

parision of this traditional approach with the use of the polyhedral homotopy where

31
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the total number of curves that need to be traced in the continuation process is equal

to the mixed volume of the support of the given system. The computational results

of which are presented in the next chapter.

4.1 Notations and definitions

The complex n-space C" can be naturally embedded in the complex projective

space I?" = {(x0, . . . , x,,) E C"+1\(0,...,0)}/ ~ where the equivalence relation ~ is

given by x ~ y if x 2 cy for nonzero c E C. Similarly, the space C’“ x - . . x (Chm can

be naturally embedded in 11”“ x - - - x P“. A point (yl, . . . , ym) in (C’cl x - - - x Ck” with

y,- = (y]j), . . . ,yg)), j = 1,...,m, corresponds toapoint (z1,...,zm) in 11”"1 x- - -><lP”‘"*

with z, = (zé’),...,zg’) and zéj’ = 1, j = 1,...,m.

For a polynomial system P(x) = (p1(x),...,p,,(x)) with x = (x1,...,x,,),

if we partition the variables x1,...,x,, into m groups y1 = (x(ll),...,x)cll)),y2 =

(x]2),...,x£:)),...,ym = (x]m),...,x]::)) with 161 + + km 2 n and let d,, be

the degree of p,- with respect to y], j z 1,. . .,m, then the m-homogenization of

171(132'3 n) is defined as

~ 1 . m - l

p.31. . . .,zm) = (4‘. ’r” x x (4‘. Wen/25. % . . .,ym/zém’).

p,- is homogeneous with respect to each 2.,- = (zéj), . . . , 2,9), j = 1,. . . , m. Here zy) =

xgi), for j # 0. The polynomial p,- is said to be m-homogeneous, and (C111,. . .,d,m) is

the m—homogeneous degree of 15,.

~

For the m-homogeneous system P(z) 2 (131(3), . . . ,p.,,(z)) with z = (21,. . .,zm),
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the m-homogeneous Bézout number 8 [38] of the system with respect to z is given

km

m
by the coefficient of 0’,“ - - -a in the product

(d11a1+ ' ° ' + dlmam)(d2101+ ' ' ' + d2mam) ' ' ' (dnlal + ’ ° ' + dnmam).

The system P(z) has no more than B isolated solutions, counting multiplicities, in

11”":1 x ~ - - x P” [49]. However, direct application of this definition (i.e., expanding the

product and finding the appropriate coefficient) does not lead to an efficient computer

algorithm. In Section 4.2, we describe an efficient algorithm for computing the Bézout

number by forming degree products, and in Section 4.4, we discuss how to find the

minimal Bézout number among all the possible homogenizations by exhaustive search.

4.2 Bézout number calculations

Let D denote the n x m degree matrix of the polynomial system P(x), for a given

partition of its n variables into m groups, each group with cardinality 16,-, 1 g j g m,

where 2;":1 19,- = n. The elements of D are d,,-, 1 g i S n, 1 g j S m. Let

K be the vector [19,, . . . , km]. The Bézout number is the sum of degree products of

the form Hilda“ where among integers l1, . . .,ln, integer j (l S j g m) appears

exactly k,- times, i.e., we sum degree products over all possible ways to choose each

row once while choosing kj entries from each column j. The row expansion algorithm

in Section 4.2.1 forms degree products using a method resembling the evaluation of

a determinant via expansion by minors.
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4.2.1 Row expansion algorithm

Form the degree products starting with the element d1,- in row 1 of D. Choose

one element from each of the remaining rows while including only 16,- — 1 elements

from the jth column. We form a minor D’ corresponding to d1,- by deleting row 1 of

D. The row expansion algorithm computes the Bézout number as the sum along the

first row of each d1j(kj > 0) times the Bézout number of the corresponding minor.

The Bézout number of each minor is then computed recursively by the same row

expansion procedure. Let K’ be the vector K 2 [k1, . . .,km] with k,- replaced by

19,- — 1. With the following recurrence relation:

b(D,K,i) = Z 4,,- b(D’, K’,i+ 1),

j=l, ICj¢0

the Bézout number is given by

B = b(D, K, 1).

If the degree matrix D is sparse, we may skip over computations where d,,- = 0 and

avoid expanding the recursion below that branch. We expand along the row with the

most zero elements, by exchanging rows if necessary.

4.3 Multi-homogenizations

The number of possible multi-homogenizations of an n-variable system is essen-
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tially the same as the number of ways to partition 71 distinct objects into m iden-

tical boxes, m : 1, . ..,n. Denote these numbers as p(n,m),m = 1,...,n. Then

p(n, 1) = 1, since there is only one way to place all 71 objects into one box. Also,

p(n,n) = 1 corresponds to putting 1 object in each of the 71 boxes. We have the

following relation:

p(n,m) =m*p(n—1,m)+p(n—1,m—1)

since for each of the p(n — 1, m) partitionings of n — 1 items, we may add the nth

item into any one of the 771 boxes; also, for each of the p(n — 1, m — 1) partitionings

of n - 1 things into 711 — 1 boxes, we can put the nth item in the mth box by itself.

Values of p(n,m) are listed in the following table, along with the total number

of partitions ”P(n) for 71 objects: ’P(n) = "m=, p(n,m). The numbers p(n, m) are

known as Stirling numbers of the second kind [50]. Each of the ’P(n) partitions yields

a distinct multi-homogenization of the n-variable system.

 

 

n p(n.1) P(n.2) p(n.3) p(n.4) p(n.5) p(n.6) p(n.7) p(n.8) p(n19) p(n.10) 7P(n)

1 1 1

2 1 1 2

3 1 3 1 5

4 1 7 6 1 15

5 1 15 25 10 1 52

6 1 31 90 65 15 1 203

7 1 63 301 350 140 21 1 877

8 1 127 966 1701 1050 266 28 1 4140

9 1 255 3025 7770 6951 2646 462 36 1 21147

10 1 511 9330 34105 42525 22827 5880 750 45 1 115975

11 678570

12 4213597

13 27644437
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Example 4.3.1 Consider the following system which arises from a test for numerical

bifurcation:

5x? — 6x]x§ + .1212; + 2x1x3 = 0

—2x?x2 + 2xfx3 + 2x2x3 = 0

x¥+x§—0.265625 = 0

There are ”P(3) = 5 ways to multi-homogenize this system. For each partition of the

variables, we form the corresponding degree matrix D and apply the row expansion

          

algorithm:

{331,172,333} {$1,$2},{$3} {$1,$3},{$2} {$1},{$2,$3} {$1},{$2},{$3}

K = [3] K = [2,1] K: [2,1] K: [1,2] K: [1,1,1]

’9] -91 [94- 94- —941-

D=7 0:710:63 0:63 0:631

_2] _20‘ _22J 22] _220‘

82126 8:32 8:210 8:126 8244

Thus, the minimal Bézout number is 32, which corresponds to the partition

{$11332I1lx3}'

4.4 Efficiency measures

For each partitioning of the variables, we form the corresponding degree matrix.

We do not actually form the homogenized polynomials, but rather, we scan through
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the terms for each group of variables, find the term with the largest degree with respect

to that group. Since the degrees are all nonnegative, the Bézout number is the sum

of nonnegative degree products. As we test homogenizations in search of minimal

Bézout numbers, we may abort the calculation if the running subtotal exceeds the

current minimal Bézout number. When applying the row expansion algorithm, it

is helpful to skip over any degree that is zero. This not only avoids unnecessary

computation, but it also assures that any subterm we compute at any level of the

tree of partitionings has a string of strictly positive degrees above it. When any of

the subterms at the leaves of the tree exceeds the current minimum, we are safe in

aborting the Bézout number calculations for the corresponding partitions.



CHAPTER 5

Numerical experiments

The techniques discussed so far find their natural application in polynomial sys-

tems arising in a variety of fields and modelling geometric and kinematic constraints.

As mentioned in the previous chapter, for those systems, the traditional approach

is to find among all possible homogenizations of the given system the one that cor-

responds to the minimal Bézout number. A smaller Bézout number translates into

proportionately less computer time when we intend to find all isolated solutions of the

given polynomial system using the homotopy continuation method. In this chapter,

we make a comparision of this traditional approach with the use of the polyhedral

homotopy where the total number of curves that need to be traced in the continuation

process is equal to the mixed volume of the support of the given system. We present

the numerical results of applying our algorithm to an extensive list of polynomial

systems that arise in applications.

38
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5. 1 Problem statements

5.1.1 Robot manipulator PUMA

This is the inverse position problem of a PUMA robot. To find the relative joint

Zi+l (Joint i+ 1)

 

    

 
Link i

Figure 5.1. The basic notation

displacements given the hand position and orientation of the arm of the robot [37]

(a,, d,- and 07,- are constants while 0,- is a variable), we have the following system:

z§+x§—1 = 0

x§+xZ—1 = 0
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x2 + x2 -— 1 = 0

x3 + 23% — 1 = 0

0.004731x1x3 — 03578232223 — 0.1238x1 — 0001637232 — 0.9338x4 + x7 — 0.3571 = 0

0.2238x1x3 + 0.7623x2x3 + 0.2638151 — 0.07745x2 — 0.6734x4 — 0.6022 2 0

xsxg + 0.3578231 + 0.004731x2 = 0

—0.7623x1 + 0.2238332 + 0.3461 2 0.

Here x,- (i = 1,. . .,8) represent the sine and cosine functions of the robot’s joint

angles 6,. The number of variables of this system is 8 with total degree 27 = 128.

The optimal Bézout number is 16 with the partition {x1, x2}, {x3, x4, x7, x8}, {2:5, x6}.

The mixed volume is 16 and there are 16 isolated zeros.

5.1.2 Robot manipulator ROMIN

This is the inverse position problem of the robot manipulator Romin [14]. Let l2, l3

represent the length of the two arms of the robot, and 61, 62, 03 represent the joint

angles placing the robot at a given position P = (a, b, c).

Denote s, = sin 6,- and c, = cos 0,, i = 1,2,3. We obtain the following system

(once [2 and I3 are fixed):

—sl(l2c2 + Z303) = a

c1(12c2 + l3c3) = b

1282 + [383 =5 C

s?+c? = 1, i=1,2,3.
l



 

P (a,b,c)

 

Figure 5.2. The ROMIN manipulator

The number of variables of this system is 6 with total degree 25 = 32. The Optimal

Bézout number is 16, with the partition {31, c1}, {62, c3, 82, 33}. The mixed volume is

4. For 12 = 718mm, l3 2 600mm and the point (500, 500,0), the number of isolated

zeros is 4.

5.1.3 Neural network — adaptive Lotka-Volterra System

A neural network can be thought of as a network of interconnectred cells in which

activity levels at each cell are inhibited or excited by the activity of the other cells. The

Lotka-Volterra model(the oldest predator-prey model), with interaction coefficients

dependent on time, (allowing the weights of the connections between cells to vary)

is one such network. The model to be analyzed consists of n interconnected cells.

The rate of change of activity level at the ith cell is the nonconstant Lotka-Volterra
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equations [46]:

Xi“) = X,(t)[1— 0X10) + i51injithj(t)la 1 S i S n.

i=1

An interior critical point of the Lotka-Volterra system is any positive vector

(x1, ..., xn) satisfying

fl.

1—cx,~+Zd,-,x,x§=0,1§i5n

F1

where the connection matrix A; = (6,,-) is given by

0 ifi==j

2f=tl 6132147 isian

 \

where p is a given integer between 0 and n.

We solve the following system in order to find the interior critical points of the

Lotka-Volterra system for n = p = 4:

2:14;; + 2.53 + x1233 — cxl +1 2 0

x223? + x2233 + x223 — cxg + 1 = 0

x3x]2 + x3x§ + x3x2 — cx3 + 1 = 0

x423? + x4x§ + x4x§ — cx4 + 1 = 0.

The number of variables of this system is 4 with total degree 34 = 81. The optimal

Bézout number is 81 with the partition {x1, x2, x3, 2:4}. The mixed volume is 73 and
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for a generic choice of c, there are 73 isolated zeros.

5.1.4 Symmetrized four-bar mechanism

This is the problem of synthesizing a four-bar with two given fixed pivots (0,0) and

a = (1,0), to generate a path through five precision points d,- = (d,1,d,-2), j = 0, . . . ,4

[41]. The following system is set up to determine all sets of lengths r1, . . . ,r5 that

allow the coupler point to pass through all the precision points:

couplerpoint _, d

’1]
\

 (0.0) C

Figure 5.3. Four-bar linkage at the jth position

2 2 2 2 2 2 2
anxlx3 + a12x1x3x4 + azgxlxg + al.1211517,, + a15x1x4

2 2 2
+a16x1 + az7x1x2x3 + a18x1x2x3x4 + 0191315132133 + a110x1x2x4

2 2

+0111$11172$4 + (11121131333 + (11131715133134 + (111411311133 + 011511311134

2 2 2 2 2 2
+041611315L‘4 + amx2x3 + 0113£E2IE3IE4 + (1119152133 + (1120132114

2 2 2

470121172334 + (1122332 + 0123372563 + (11245132333334 + (1125332173
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2 2 2 _ _
+0125$2$4 + 012811221174 + (1123.733 + 0.1293134 — 0, l — 1, 4.

The number of variables of this system is 4 with total degree 44 = 256. The optimal

Bézout number is 96 with the partition {x1,x2}, {x3,x4}. The mixed volume is 80.

For generic choice of coefficients, there are 36 isolated zeros.

5.1.5 The nine-point problem

This is the problem of finding all four-bar linkages whose coupler curve passes through

nine precision points [58].

   
Figure 5.4. Four-bar ABCD with coupler triangle CPOD at the initial precision point

P0 (left); Displacement of the four-bar to a new precision point P, (right)

The 8 variables are a, 5,2,3, b, b, 31,3; and there are a set of constants 6,, (i,- (j =

1, . . . ,8). After expunging the lower order terms, we have for j = 1, . . . , 8 the following
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systems of equations:

A A

(511614))[039 —- 111205101 - i?) + 51(0 - 93)) +0153 - &$)(5j(b - 3?) + 57(1) - 9))1 = 0-

The number of variables of this system is 8 with total degree 78 = 5764801. The

optimal Bézout number is 645120 with the partition (a, [1}, {b, b}, {x, 2}, {y, g}. The

mixed volume is 83977. There are 4326 isolated zeros [58].

5.1.6 Chemical equilibrium

This is the problem of combustion of propane(C3H8) in air(02 and N2) [33] to form

the ten products listed in table 5.1 :

3111/2 + 91 — 33/5 = 0

2913/2 + 3123/3 + 211 + R7y2y3 + R892 + 1293/294 + 21310312 _ R95 = 0

2923/3 + 213593 + R693 + 1271/2313 — 895 = 0

293 + R93121914 — 4Rys = 0

91112 + 921/3 + 93 + 91 + R593 + R693 + 12792113 + R892 + 1299294 + R1093 - 1 = 0

where the variables are y1,y2,y3, y4, y5.

The number of variables of this system is 5 with total degree 2 x 3 x 3 x 2 x 3 = 108.

The optimal Bézout number is 56 with the partition {yl}, {y2, y4, y5}, {313}. The mixed

volume is 16. With p = 40 and R = 10, there are 16 isolated zeros.
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Table 5.1. Products of Propane Combustion

 

 

 

Product Subscript Description

C02 1 carbon dioxide

H20 2 water

N2 3 nitrogen

CO 4 carbon monoxide

H2 5 hydrogen

H 6 hydrogen atom

OH 7 hydroxyl radical

O 8 oxygen atom

NO 9 nitric oxide

02 10 oxygen   
 

Table 5.2. Definitons of constants

 

 

Constant Definiton

R5 K5

Rs K613.”2

R7 K717_1’2

R8 K819—1

R9 K919 ”2

R10 K1019—1    

Table 5.3. Equilibrium Constants

 

Constant Value

K5 1.930 x 10-1

K6 2.597 X 10_3

K7 3.448 x 10‘3

K8 1.799 x 10‘5

K9 2.155 x 10‘4

K10 3.846 x 10‘5
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5.1.7 Lumped-parameter chemically reacting system

The following system arises as a result of the isothermal catalytic reaction sequence

between two adsorbed species [5, 28]:

—a1x1(1— x3 — x4) + a2x3 — (x1 — a6) = 0

—a3x2(1 — x3 — x4) + a4x4 — (x2 — a7) = 0

a1x1(1 — x3 — x4) — 0.2133 — a5x3x4 = 0

a3x2(1 — x3 — x4) — a4x4 — a5x3x4 = 0.

The number of variables of this system is 4 with total degree 24 = 16. The optimal

Bézout number is 8 with the partition {x1}, {x2}, {x3}, {x4}. The mixed volume is 7

and there are 4 isolated zeros.

5.1 .8 Heart-dipole

A system of eight nonlinear equations in eight unknowns is derived for the determi-

nation of the magnitudes, directions, and locations of two independent dipoles in a

two-dimensional conducting region from boundary potential measurements [45]. It

has biomedical significance in electrocardiographic applications:

x1 + x2 — 0.6325 = 0

$3 + $4 + 1.34534 2 0

mm, + :13ng — x3x7 — 154233 + 0.8365348 = 0

$1227 + $21138 + $31115 + 11741136 — 1.7345334 = 0
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:1;le — 2:12;? — 2x3x5x7 + .2222 — 222,2, — 2x4x6x3 — 1.352352 = 0

x3x§ — x3153 + 2x1x5x7 + 244:3, — x4233 + 2x2x5x3 + 0.843453 = 0

3 2 3 2 3 2 3 2 _
x1x5 - 3x1x5x7 + x3x7 — 3x3x7x5 + x2x6 — 3x2x5x8 + x4x8 — 3x4x8x6 + 0.9563453 — 0

x32; — 3x3x5x$ — xlx‘; + 3x1x7x§ + $41172 - 315411761133 - $2133 + 393233835 — 12342523 = 0-

The number of variables of this system is 8 with total degree 22 x 32 x 42 = 576.

The optimal Bézout number is 193 with the partition {x1, x2, x3, x4}, {x5, x6, x7, x8}.

The mixed volume is 121 and there are 4 isolated zeros.

5.1.9 Conformal analysis of cyclic molecules

This problem arises in computational biology. The molecule has a cyclic backbone of

 

 
Figure 5.5. The cyclic molecule
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6 atoms, typically of carbon. The bond lengths and angles provide the constraints

while the six dihedral angles are allowed to vary. In kinematic terms, atoms and

bonds are analogous to links and joints of a serial mechanism in which each pair of

consecutive axes intersects at a link. In Figure 5.5, backbone atoms are regarded as

points p1, ...,p6 E R3 ; the unknown dihedrals are the angles w1,...,w6 about axes

(p6,p1) and (1),-4,191) for z' = 2, ...,6.

The following system is set up to compute all conformations of the cyclic molecule

[10]:

f1 = 511 + 51213 + 31315: + fl14t§t§ + fl15t2t3 = 0

f2 = [321 + [322% + [323% + fl24t§ti + fizststi = 0

f3 = fl31 + 332152124" flggtg + 334t¥t§ + 335t1t2 = 0

where [3,5 is the (2', j)-th entry of the matrix

" '1

—9—1—138

—9—1—138

  —9—1—138

The number of variables of this system is 3 with total degree 43 = 64. The optimal

Bézout number is 16 with the partition {2:1}, {2:2}, {1:3}. The mixed volume is 16 and

there are 16 isolated zeros.
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5.1.10 Camera motion from point matches

This is the problem of computing the displacement of a camera between two positions

in a static environment [10], given the coordinates of certain points in the two views,

under perspective projection on calibrated cameras. Using quaternions formulation

 

 

   

Figure 5.6. Single point seen by two camera positions

and scaling the coordinates of the given frames(dividing all the components by 1000),

the following system is obtained:

—d1q1 - d2612 - d343 +1 = 0

—3.6d1q1 + 4.1d1q2 + 2.0d — 1q3 + 0.1d1 + 4.1d2q1 + 1.8d2q2 + 3.7d — 2q — 3 — 0.2012

+2.0d3Q1 +3.7d3q2 -— 4.0d3q3 + 0.3d3 + 0.1q1 — 0.2q2 + 0.3q3 + 5.8 = 0

0.3464d — 1q1 + 0.1732d1q2 — 5.999648d1q3 — 0.1732d1 + 0.1732d2q1 — 5.999648d2q2

—0.1732d2q3 + 0.3464(12 — 5.999648d3q1 - 0.1732d3q2 — 0.3464d3Q3 — 0.1732d3

—0.1732q1 + 0.3464q2 — 0.1732q3 + 5.999648 2 0
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Table 5.4. Coordinates of the two frames

 

point first frame second frame

1 (1000,2000,1000) (1100,1900,900)

(1414,-1414,1414) (1314,-1514,1314)

(-1732,0,1732) (—1832,100,1632)

(2000,1000,3000) (-1100,-900,1900)

(—1000,-1000,2000) (2100,1100,2900)

 

W
A
G
O
N

     

—5701.3d1q1 — 2.9d1qz + 3796.7d1q3 — 1902.7d1 -- 2.9d2q1 — 5698.7d2q2

+1897.3d2q3 + 3803.3d2 + 3796.7d3q1 + 1897.3d3q2 + 5703.1d3q3 + 0.7d3

—1902.7q1 + 3803.3q2 + 0.7q3 + 5696.6 = 0

—6.8d1q1 — 3.2d1qQ + 1.3d1q3 + 5.1d1 — 3.2d2q1 — 4.8d2q2 — 0.7d2q3 -— 7.1d2

+1.3d3q1 — 0.7d3q2 + 9.0d3q3 — £13 + 5.1q1 — 7.1q2 — Q3 + 2.6 = 0

-—2.140796d1q1 — 3.998792d1q2 + 3.715992d1q3 — 3.998792d3q2 — 2.140796d3q3

+0.2828d3 — 0.2828q1 + 0.2828(13 + 5.856788 = 0.

The number of variables of this system is 6 with total degree 26 = 64. The optimal

Bézout number is 20 with the partition {d1, d2, d3}, {q1, (12, q3}. The mixed volume is

20 and there are 20 isolated zeros.

5.1.11 Electrical network

The following are the steady-state equations for the load flow in an electrical network

[26]:

333(611171 + 012332 + (313) — C14 = 0
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$4(C21$1+C22$2+C23)—C24 = 0

$1(631$1+$32$2+C33)—C34 = 0

$2(C41$1+$42$2+C43)—C44 = 0

{1—3z' —4—2i —3+8z' 1+z' \

4+2' 2—32' —4—32' —3+5z'

C=(c,-,-)—

1+3i —4+2i —3—8z' l—z'

\4—2' 2+32‘ —4+3z‘ —3—5z‘) 

The number of variables of this system is 4 with total degree 24 = 16. The optimal

Bézout number is 6 with the partition {1:1, 2:2}, {3:3, 2:4}. The mixed volume is 6 and

there are 6 isolated zeros.

5.1.12 Vibrating systems

The following represent equations of motion for the vibrating system formulated by

means of the Lagrangian method [26, 23]:

 

P(A).r = 0

$1+$2+$3+$4+$5+1 = 0

where

P0.) = A2)? + AA + A0
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and

[—10 2 —1 1 3‘ r1 2 1 2 1‘ _ 10 2 —1 2 -2-

2 —11 2 —2 1 2 1 2 1 3 2 9 3 —1 —2

A2: —1 2 —12 —1 1 A1: 1 2 o —2 —2 .Ao= —1 3 10 2 —1

1 —2 —1 —10 2 2 1 —2 2 3 2 —1 2 12 1

1 3 1 1 2 ’11. _1 3 —2 3 3_ _—2 —2 1 1 10‘ 

The number of variables of this system is 6 with total degree 35 = 243. The optimal

Bézout number is 10 with the partition {331, $2, $3,124,235}, {A}. The mixed volume is

10 and 10 real eigenvalues along with its corresponding eigenvectors are found.

5.1.13 6R inverse position problem

This is the inverse kinematics of the 6R manipulator problem in 8 equations in 8

unknowns [40, 53]:

xi,_, + 3:3, — 1 = 0, l: 1, ...,4

anzlxg + (112231.114 + (1135132333 + 014$2$4+

0151351137 + 01611351138 + (117176137 + 018$6$8+

0191131 + 0110372 + 0111173 + 0112174 + 01135554“

(11141125 ‘1' 01151177 ‘1' (1.1161133 + (1117 = 0, (=1, ..., 4.

In the equations, 2,-(2' = 1, ..., 8) represents the sine and cosine functions of the robot’s

joint angles. The number of variables of this system is 8 with total degree 28 = 256.

The optimal Bézout number is 96 with the partition {$1,22, $5,236}, {23,24,177, 2:8}.

The mixed volume is 64. With the coefficients in [53], there are 32 isolated zeros.
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5.1.14 6R2 inverse position problem

The following is the inverse kinematics of the 6R manipulator problem in 11 equations

in 11 unknowns [57]:

c¥+z§1+z§2-l = 0

z§I+z§2+z§3—l = 0

231+222+z§3—1 = 0

z§1+z§2+z§3—1 = 0

01233 — C2 + 221231 + 222232 = 0

-Cs + 231241 + 232242 + 233243 = 0

—C4 + 241251 + Z42252 + 243253 = 0

—Cl + Z51361 + 252262 + 253263 = 0

—C1€2232 + (12221 + 613231 + 014241 + (15251 - 61222 + 62222233 + 83232243

-€3233Z42 + 84242253 — 64243252 + 65252263 - 65253262 - P61 = 0

C162231 + 612222 + 613232 + (14242 + 615252 + 81221 — 62221233 — 63231243

+63233Z41 — 64241253 + 84243251 - 66251263 + 85253361 - P62 = 0

C1612 + (13233 + (14243 + (15353 + 62221232 - 62222231 + 63231242

—€3Z32Z41 + 64241252 — 84242251 + 65251262 - 65252361 '- P63 = 0.

The number of variables of this system is 11 with total degree 211 = 1024.

The optimal Bézout number is 320 with the partition {221,223,Z41,Z42,Z43},

{231, 232, 233, 251, Z52, 253}. The mixed volume is 288 and there are 16 isolated zeros.
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5.1.15 An interpolating quadrature formula over a grid

The following system occurred in the context of wavelet functions [52]. To introduce

wavelets, we introduce the notion of multi-resolution analysis: A multi-resolution

analysis of L2(R) is defined as a sequence of closed subspaces V} C L2(R), j E N,

with the following properties:

1- Vj C Vj+1,

2. 21(2) 6 V]- 41) v(2:r) E Vj+1,

3. 12(2) 6 V0 4:) 11(a:+1)€ Vb,

4. Uffiioolg is dense in L2(R) and (1,-+ng = {0},

5. A scaling function cp 6 V0, with a non-vanishing integral, exists so that the

collection {90(27 — l)|l E Z} is a Riesz basis of V0.

We assume that the scaling function (p has compact support [0,L] and satisfies a

refinement equation

WC) = 2 2 111.9092: - k)
k

with L + 1 non-zero coefficients hk. To construct an n-point interpolating quadrature

formula (with degree of precision 77.) with points 56,, = g + 7' for integrating a function

defined on a grid, the polynomial system F(w) = 0, with the jth equation given as

n—l k .7

f(w)=Zwk<§+T) —Mj=0, j=0,1,...,n

k:0
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has to be solved. Here the constants M, are the pth moments of the scaling function

(,0. The unknowns are 6) 2 (too, ...,wn._1) where 62,-, 0 _<_ i S n — 1, are the weights of

the quadrature formula and T is the range of the shift. For n = 4, the system becomes

w0+w1+w2+w3— 1 = 0

1 3

6207' + 6117 + wgr + 6237 + ital + wg + 5603 — 0.63397459621556 = 0

1

62072 + (1)172 + c0272 + (12372 + wl'r + 26127 + 3W3’T + Zwl + L02 +

9

5003 —0.40192378864668 = 0

3 9 3

(1)073 —+— (1)173 + 61273 + (.037'3 + §w172 + 3w2'r2 + §w372 + 4wlT +

27 1 27

3WQT + 74—w37' + 3601 + £02 + "8—(423 —' 0.131091535679036 = 0

3

61074 + 0117'4 + (.0274 + (4)374 + 261173 + 462273 + 6112373 + '2-(4117'2 +

2 27 2 1 27 1

6w27' + 311137 + 56117 + 40127" + 3mg + 1—6w1 +

81

622 + E623 + 0.30219332850656 = 0.

The number of variables of this system is 5 with total degree 5 x 4 x 3 x 2 x 1 = 120.

The optimal Bézout number is 10 with the partition {7'}, {620, w1,w2,w3}. The mixed

volume is 5 and there are 5 isolated zeros.

5.1.16 Optimizing the Wood function

The following system is derived from optimizing the Wood function [35]:

2002:;3 — 2002:1222 + 2:, — 1 = 0

—100x¥+ 110.12:2 + 9.91:4 — 20 = 0
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180:1:3— 180.633;4 + $3 — 1 = 0

—90:1:§+ 9.92:2 + 100.13:4 — 20 = 0.

The number of variables of this system is 4 with total degree 32 x 22 == 36. The optimal

Bézout number is 25 with the partition {:61}, {2:2, 2:4}, {2:3}. The mixed volume is 9

and there are 9 isolated zeros.

5.1.17 An application in electrochemistry

The following system is derived from an application in the field of electrochemistry

[60]:

6 5 4 2 3 2 _ 0
611132 + 621172 + 63272 + 642311113 + 652:2 + 66172 + c722 + c3 —

5 4 2 2 3 2 _ 0
69:62 + 010122 + 6111131582 + 612331233 + 6131132 + c1421$2 + 61522 + 016562 + 617 —

2
6133131 '1' 019:31333 + C20$2 ‘1' C21 = 0.

The number of variables of this system is 4 with total degree 60. The optimal Bézout

number is 52 with the partition {2:1, 2:2}, {2:3}. The mixed volume is 18 and there are

15 isolated zeros.



58

5.1.18 Benchmark i1 from the interval arithmetics bench-

marks

The following system is derived from the standard benchmarks in interval arithmetic

papers [17, 34]:

2:1 — 0.25428722 —- 0.1832475723423329 = 0

11:2 — 0.37842197 — 0.1627544923111101‘6 : 0

2:3 — 0.27162577 — 0.1695507121223310 = 0

.274 — 0.19807914 — 0.155853161271131376 : 0

3:5 — 0.44166728 — 0.19950920137226583 = 0

:66 — 0.14654113 — 0.189227932335655610 = 0

$7 — 0.42937161 — 0.2118048423225568 = 0

:58 — 0.07056438 — 0.1708120821567276 2 0

2:9 — 0.34504906 — 0.1931274033102524 2 0

11:10 — 0.42651102 — 0.2146654423433317] 2 0.

The number of variables of this system is 10 with total degree 310 = 59049. The

optimal Bézout number is 452 with the partition {2:1}, {2:2}, {:63}, {2:4}, {3:5, 2:7}, {2:6},

{3:8}, {2:9}, {11:10}. The mixed volume is 66 and there are 50 isolated zeros.
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5.1.19 Optimal multi-dimensional integration formula

The following system arises in the derivation of optimal multi-dimensional integration

formula [36, 18]:

$1+$3+$5+2$7—1 Z 0

131.732 + $31134 + 21:51.6 ‘1” 251371118 ‘1' 2137.739 — '3' = 0

2

231233 + $327: + 21:5:rg + 223723 + 2:177:63 — g = 0

2

271:1); + $3273 + 22:52:: + 2:37:12: + 227233 — 7 = 0

2

221563 + $317: + 2.13533: + 22:71:; + 2.737.133 — 9 = 0

2 1

235.26 + 2337233339 — 5 = 0

1

$5513; + 2137138133 — 53 = 0

1

$5272 + 2372:8233 + 237273.14, — B = 0

3 3 1
5175.226 + 1371178139 + 2372:8279 — 2T 2 0.

The number of variables of this system is 9 with total degree 1 x 2 x 3 x 4 x 5 x

3 X 5 x 4 x 5 = 36000. The optimal Bézout number is 8852 with the partition

{2:1, 2:3, 2:5, 2:7}, {1:2, 2:4, 1:6, 2:8, 2:9}. The mixed volume is 136 and there are 16 isolated

ZGI‘OS.

5.1.20 The system of A. H. Wright

The following system is presented in [61]:
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IL‘¥—.’E1+.’E2+$3+£E4+III5—10 = 0

z§+xl—zg+zg+x4+x5—10 = 0

z§+$1+$2-$3+x4+335—10 = 0

$i+$1+$2+$3—IL‘4+$5—10 = 0

x§+$1+zg+233+$4—275—10 = 0.

The number of variables of this system is 5 with total degree 25 = 32. The optimal

Bézout number is 32 with the partition {2171,22, $3,274,335}. The mixed volume is 32

and there are 32 isolated zeros.

5.1.21 The Reimer5 System

The following system is available at the PoSSo test suite:

2x2—2y2+222—2t2+2u2—1 = 0

2233—2y3+2z3—2t3+2u3—1 = 0

2x4—2y4+2z4—2t4+2u4—1 = 0

2:35—2y5+225—2t5+2u5—1 = 0

23:6—2y6+2z6—2t6+2u6—1 = 0.

The number of variables of this system is 5 with total degree 2 x 3 x 4 x 5 = 720. The

optimal Bézout number is 720 with the partition {27, y, z, t, u}. The mixed volume is

720 and there are 144 isolated zeros.
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5.1.22 Butcher’s problem

The following system is available at the PoSSo test suite:

1 1

233235 + 232236 + 23427 — 2:17, — 52:7 — 5 = 0

2332:; + 2722:: — 2:423; + 2:? + 2:? — E234 + 5237 = 0

2 3 2 1 2
2:123:65 — 274237 + 2:7 — 524237 + 2:7 —— 62:4 + 3237 = 0

1 1

232% + 272233 + 2342:? — 23‘; —- 52:? + $427 — 523$ - Z567 — 4 = 0

3 4 2 3 3 2 3 1
$1IE3$5$6 + 23427 — 237 + 5234237 — 52:7 + 51134137 — 12:7 — §$7 — g = 0

2 7 1 1

(1315133172 ‘1' (1:423; — 113%‘1‘ 11745133— 5517; + §$4$7 — 613$ — 155137 — 1—2' 1: 0

3 1 13 7 1

—2:42:'?, + 23$ — 2:423; + 52; —— 323427 + 12$; + 51:67 + 51 = 0.

The number of variables of this system is 7 with total degree 2 x 3 X 3 x 4 x

4 x 4 x 4 = 4608. The optimal Bézout number is 1361 with the partition

{2:1}, {222,223,221}, {275,236}, {2:7}. The mixed volume is 24 and there are 5 isolated

ZCI‘OS.

5.1.23 Construction of Virasoro algebras

The following system can be found in [51]:

822% + 821(232 + :63) — 823223 + 22:1(x4 + 235 + 2:6 + 237) — 2234227 — 2235236 — 2:1 = 0

82:3 + 8232(2:1 + 233) — 823123 + 22:2(224 + $5 + 236 + $7) — 22:42.15 — 2225267 —- $2 = 0

822% + 82:3(271 + 232) — 821212 + 22:3(214 + $5 + 206 + $7) — 22:42:53 — 2226237 — 273 = 0

8212+ 2231(254 — 2:7) + 2252(24 — 2:6) + 2(233 + 32:3)(274 — $5) + 22:4(4235 + 276 + 237) — $4 = 0

821% + 2221(205 — 2:6) + 2222(205 — 2:7) + 2(223 + 32:8)(2:5 — :64) + 235(424 + $5 + 227) — 275 = 0
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82:2 + 221(235 — 2:5) + 22:2(26 — 234) + 2(233 + 32:3)(225 — 227) + 22:4(427 + 2:4 + m5) —- 2:6 = 0

817% + 2321(1127 — $4) + 2232(JI7 — $5) + 2(233 + 3$3)($7 — 1176) + 234(4136 + $4 + $5) — $7 = 0

816% + 6(24 + :65 + 235 + x7)$3 — 6224125 — 6235277 — 2:8 = 0.

The number of variables of this system is 8 with total degree 28 = 256. The optimal

Bézout number is 256 with the partition {2:1,22,23,24,m5,2:6,$7,$8}. The mixed

volume is 200 and there are 200 isolated zeros.

5.1.24 The cyclic n-roots problem

The following system [4, 11] arises from the problem of finding all bi-equz'modular

vectors 2: E C", i.e., all 2: with coordinates of constant absolute value such that the

Fourier transform of 2: is a vector with coordinates of constant absolute value. This is

equivalent to the problem of finding all solutions (20, 21, ..., zn_1) of An(the alternating

group) with all |2j|=12 (The relation between 2: and z is z,- = 2:111 /2:J)

20+Zl +...+Zn_1 = 0

zoz1+ 2:122 + + zn_lzn_1+ zn_lzo = 0

202122 + 212223 + + zn_lzozl = 0

2021...z,,_2 + + zn_1zo...zn_3 = 0

2021...Zn_1 = 1.
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n totdeg mdeg M(Q) N(Q)

5 120 120 70 70

6 720 720 156 156

7 5040 5040 924 924
  

For n = 7, we have the following system:

Zo+Zl +22+Z3+Z4+Z5+25 =0

2021 + 2122 + .2223 + z3z4 + z4z5 + 2:526 + 26.20 = 0

202122 "‘1' 212223 + 222324 '1' 232425 + 242526 ‘1' 252520 ‘1' 2520251 = 0

20212223 + 21222324 + 22232425 + 2324.25.25 + 24252620 + z5zsz021 + z6z02122 = 0

20212225324 + z122z3z425 + 2223242526 + 23242552620 + 2425252021 +

z5z5202122 + 2520212223 2 0

zoz1z223z4z5 + z122z3z4z5z6 + z22324z5z6z0 + z3z4z526z021 + z4z5z6z02122 +

252620212223 '1' 262021222334 = 0

20212233242526 — 1 = 0.

The number of variables of this system is 7 with total degree 7! = 5040. The Optimal

Bézout number is 5040 with the partition {20, 21, 22, .23, 24, 25, 2:6}. The mixed volume

is 924 and there are 924 isolated zeros.

For other values of n, the results are summarized in Table 5.5. Here totdeg denotes

the total degree of the system, mdeg the optimal multi-homogeneous Bézout number,

M(Q) its mixed volume and N(Q) the total number of isolated zeros.
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5.1.25 Combustion chemistry

The following is a combustion chemistry problem [42, 43]:

$2 +2236 +$9+2$10 “-10-5 = 0

II o$3 + 238 — 3.10—5

2:1+2:3 + 2235 + 22:8 + 2:9 +2310 — 5.10"5 = 0

$4 + 237 —10-5 = 0

061404371041:5 — z? = 0

0.1006932.10"62:6 — :33 = 0

0.7816278.10‘15:r7 — 2:3 = 0

(1149623610451:8 — 3133 = 0

0619441110431:9 — 313:2 = 0

0.2089296.10"142:10—2:12:§ = 0.

Due to the range of the coefficients, the scaling routine as described in [42] is applied.

The scaled system:

1.0181548330166910—1222 + 9.8961010050642210—1236 + 1.34637048100730m9 +

3.46970317210432310 — 2.12454115933396 = 0

5.7673979535713510—1163 + 7.8994975430157710—133 — 2.19492968782850 = 0

7.19621954936988.10_1$9 + 9.2726133519085.10—12:10 + 8.95128807036246.10—12:3 +

2.4520825054171428 + 8.73159766974099.10_2£E1 + 1.3772225917620235 —

5.67773314994310 = 0
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2.50030218520604.10’324+1.999879136874381027 -—1.99987913687440.10 = 0

—1.37722259176203x¥ +7.26099038733160.10‘12:5 = 0

—9.89610100506425.10‘1x§+1.01049898287039226 = 0

—1.99987913687438.102:Z+5.00030217607503JO‘227 = 0

—1.93702197268146232:1+5.162564O4988361.10‘128 = 0

—9.68877757611935.10‘12:221+1.03212194948595229 = 0

—3.2173215960814lz§zl+3.108175450094771o-lxm = 0.

The number of variables of this system is 10 with total degree 25 x3 = 96. The optimal

Bézout number is 44 with the partition {2:1, .24, 2:7}, {1132,ZE3,IE5,£L'5}, {2:8, 2:9, $10}. The

mixed volume is 16 and there are 16 finite solutions.

5.1.26 Economic modelling

The following system arises in the field of economic modelling [42]:

(2:1 + 231232 + 232233 + 233224 + 234235 + 2:526 + 2:61:37)“ — 1 = 0

(2:2 + 212:3 + 2:224 + 23235 + 242:6 + 235227)223 — 2 = 0

($3 + 271234 + 232235 + 2:32:6- + 2:4237)2:3 — 3 = 0

(23.; + 21235 + 232236 + 233237)2:8 — 4 = 0

(2:5 + 271276 + $2$7)£E3 — 5 = 0

(£136 + $1$7)$8 — 6 = O

$71138—7 = 0

$1+$2+$3+$4+$5+$5+$7 = 0.
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n totdeg mdeg M(Q) N(Q)

5 54 20 8 8

6 162 48 16 16

7 486 112 32 32

8 1458 256 64 64
  

The number of variables of this system is 8 with total degree 36 x 2 x 1 = 1458. The

optimal Bézout number is 256 with the partition {$1,562, $3,174,$5,.’E5}, {5137,1138}. The

mixed volume is 64 and there are 64 isolated zeros.

For other values of n, the results are summarized in Table 5.6. Here totdeg denotes

the total degree of the system, mdeg the optimal multi-homogeneous Bézout number,

M(Q) its mixed volume and N(Q) the total number of isolated zeros.

5.1.27 An application from neurophysiology

The following system is obtained from the newsgroup sci.math.num-analysis and

sci.math.symbolic:

at? + 2:3 — 1 = 0

2:3 + $3 — 1 = 0

$5333 '1' $6333 — C] = 0

2:52:31‘ + 2352:; — c2 = 0

2 2 _ 0

11355831111 ‘1' $6$4£E2 — C3 ——

{11511333}? + 11361134133 — C4 = 0.
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The number of variables of this system is 6 with total degree 22 x 44 = 1024. The

optimal Bézout number = 216 with the partition {2:1, 2:2, 2:3, 2:4}, {2:5, 2:6}. The mixed

volume is 20 and there are 8 isolated zeros.

5.1.28 The system of E. R. Speer

The following system is given in [54]:

4,6(71 + 201— 8$1)(a2 — (13) — $2$3$4 + $2 + $4 ——- 0

4,8(71 + 201— 82:2)(22 - 23) — $1$3$4 '1' (131+ $3 = 0

43(71 + 221— 82:3)(22 — 23) — 2312:2234 + 272 + 2:4 2 0

4,3(72 + 201— 82:4)(22 — 0.3) — $1$2$3 + $1 + $3 = 0

where 21 2 221+ 2:2 + $3 + 234, 22 2 21232273234, a3 = 2:122 + $223 + $322.; + 24231 and fl

and n are parameters to the system.

The number of variables of this system is 4 with total degree 54 = 625. The optimal

Bézout number is 384 with the partition {2:1}, {2:2}, {2:3}, {2:4}. The mixed volume is

96. With 46 = 0.657958984375000 -— 0.1876525878906252, n = 0.937683105468750 —

0.2882995605468751', there are 43 isolated zeros.
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5. 1.29 Solotarev system

The following system is available at the Frisco test suite:

32:¥—22:1—:63 = 0

3 2 2 2 — 02:1—21—21233+2:3— 2:4- —

322—22: — — 0

23—25—2223—x3+2 = 0.

The number of variables of this system is 4 with total degree 2 x 3 x 2 x 3 = 36.

The optimal Bézout number is 10 with the partition {2:1, 2:3}, {.22}, {2:4}. The mixed

volume is 6 and there are 6 isolated zeros.

5.1.30 Trinks system

This system arises in Number Theory and is available at the Frisco test suite:

45272 + 352:5 — 165236 — 36 = 0

352:2 + 2523 + 402:4 — 272:5 = 0

25:32:35 — 165.22% + 15:1;1 — 182:3 + 301134 = 0

15232233 + 2051:4235 — 92:1 = 0

—112:(33 + 212:2 + 2233234 2 0

—112:525 + 323% + 99201 = 0.

The number of variables of this system is 6 with total degree 23 x 3 = 24. The optimal

Bézout number is 24 with the partition {2:1, 2:2, 2:3, 2:4, $5,176}. The mixed volume is
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10 and there are 10 isolated zeros.

5.1.31 A small system from constructive Galois theory: 391

This system is obtained from the Frisco test suite:

—2:12:2 — 22:32.21 = 0

92:1 + 42:5 2 0

—4$4$5 — 2231237 ~— 3232273 2 0

—72:5 + 92:8 — 82:7 2 0

—42:32:7 — 5.22235 — 62:4 — 3231 = 0

—52:3 — 62:3237 — 72:2 + 92:5 2 0

92:3 + 62:8 — 52:5 2 0

9$5—7$3+8 = 0.

The number of variables of this system is 8 with total degree 24 : 16. The optimal

Bézout number is 10 with the partition {21,22,213,:1:4,2:5},{2627,28}. The mixed

volume is 10 and there are 10 isolated zeros.

5.1.32 n-dimensional reaction-diffusion problem

For a general 11, the following system has 2" solutions:

330 Z$n+l : 0

xk_1—— 223,;c + 23k+1+ axk(1— 27k) = 0, k = 1,2, ...,n.
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For n = 3, the system becomes:

—2231 + 232 + 0835634534210 — 2:1) 2 0

2:1 — 22:2 + 233 + 08356345342720 — 2:2) = 0

2:2 — 2233 + 0.835634534233(1 — 2:3) = 0.

with total degree 23 :2 8. The Optimal Bézout number is 8 with the partition

{$1,112,583}. The mixed volume is 7 and there are 7 isolated zeros.

5.1.33 4-dimensional Lorentz attractor

The equilibrium points of a chaotic attractor in 4-dimension [31] is given by:

231(252—233)—2:4+c = 0

$2($3—$4)—$1+C = 0

233(234—231)-—2:2+c = 0

274(231—2:2)—2:3+c = 0

where c is a given constant. The number of variables of this system is 4 with total

degree 24 = 16. The optimal Bézout number is 14 with the partition {2:1, 2:2}, {2:3, 2:4}.

The mixed volume is 12 and there are 11 isolated zeros.
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5.1.34 A bifurcation problem

The following system arises from a test for numerical bifurcation [19]:

52:? — 62:?233 + 2:123; + 223123 2 0

—22:[522 + 223122;; + 222233 2 0

x§+x§—0.265625 = 0.

The number of variables of this system is 3 with total degree 9 x 7 x 2 = 126. The

optimal Bézout number is 32 with the partition {2:1, :32}, {$3}. The mixed volume is

16 and there are 16 isolated zeros.

5.1.35 Benchmark D1 from the interval arithmetics bench-

marks

This system is derived from the standard benchmarks in interval arithmetics papers

[17, 34] and is available at the Frisco Test Suite:

x¥+x§—1 = 0

2:3+2:§—1 = 0

x§+2:g—1 = 0

2:?,+2:§—1 = 0

x§+x§0—1 = 0

23¥1+23f2—1 = 0

3$3 + 2$5 + $7 — 3.9701 2 0
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3221234 + 231% + $11138 -— 1.7172 = 0

3332174 + 231321136 + (1321133 — 4.0616 2 0

1133.739 + 125239 + 337279 — 1.9791 = 0

{1722341139 + 11321135339 + $2IE8IL'9 + $111310 — 1.9115 = 0

—£L‘3.’E10£E11 — 1151171051311 — 2371131011711 + $411312 + (176.7312 + $811312 — 0.4077 2 O.

The number of variables of this system is 12 with total degree 212 = 4068. The

optimal Bézout number is 320 with the partition {$1,172},{x3,$4,:r5,:1:6,:r7,x8},

{2:9, 51:10}, {11:11, 1512}. The mixed volume is 192 and there are 48 isolated zeros.

 

5.1.36 Caprasse’s system

The following system is available at the Frisco test suite:

$35133 + 2231x2334 — 2:131 — x3 = 0

22723331134 + 2313:: — x1 — 2x3 2 0

—:1:‘?:c3 + 4331233173 + 427%:132234 + 2:133:34 + 42:? — 105133 + 433-1233 — 10232224 + 2 = 0

—:r1:1:§ + 4132173334 + 4271x3232 + 23321132 + 4x113 + 42:; — 102:3 + 2 = 0.

The number of variables of this system is 4 with total degree 32 x 42 = 144. The

optimal Bézout number is 62 with the partition {3:1, 1:2}, {$3, $4}. The mixed volume

is 48 and there are 48 isolated zeros.
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5.1 .37 Arnborg7 system

The following system is obtained from the Frisco test suite:

2223/2 + 27sz + :L‘yz2 + xyz + mg + 2:2 + yz = 0

2723/22 + 2331222 + nyz + :ryz + yz + 2: + z = 0

2231222 + 2:2sz + :mfz + atyz + $2 + z + 1 = 0.

The number of variables of this system is 3 with total degree 4 x 5 x 6 = 120. The

optimal Bézout number is 48 with the partition {23,y, z}. The mixed volume is 20

and there are 20 isolated zeros.

5.1.38 Rose system

The following represents a general economic equilibrium model and is available at the

PoSSo test suite:

   

   

20
y4— 72:2 = 0

7 7 50 35 49
2 4 4 4 2_ _ _ __ _ _ _ __ = 0

‘T Z +10“ +482 27$ 27$ 216

3 . 3 7 7 3
3263/22 + x°y3 + $253122 + g$4y3 - fifty; — if?

60933 6332 7732 2133

+1000$ y + 2001’ y z 125‘" W 50:” Z

49 2 3 147 2 2 23863 2 2

+1250$ y + 2000‘” y z 60000:15 W

_21:223 _ 27391 “3+ 4137 x 22 _ 1078a; 22 _ 5887 m3

400 800000 J 800000 y 9375 y 200000

_ 1029 3 24353 ”2 343 Z3 _ 0

160000y 1920000’ 128000 _ '
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The number of variables of this system is 3 with total degree 4 x 6 x 9 = 216. The

optimal Bézout number is 144 with the partition {2:}, {y, z}. The mixed volume is

136 and there are 136 isolated zeros.

5.1.39 Moeller4 System

The following system is available at the PoSSo test suite:

y+u+v—1 = O

z+t+2u—3 = 0

y+t+2v~1 = 0

 

:r—y—z—t-u—v = 0

1569 3 2

— t = 0

312503” +37 “

15625y

The number of variables of this system is 6 with total degree 4 x 2 = 8. The optimal

Bézout number is 8 with the partition {22, y, z,t,u, v}. The mixed volume is 7 and

there are 7 isolated solutions.

5.1.40 KatsuraN System

This is a problem of magnetism in physics and is available at the PoSSo test suite:

2fi+2f+2£+2fi+2fl+m?—v==0

xy+yz+2zt+2tu+2uv—u = 0

2xz+2yt+28u+u2+2tv—t = 0
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2$t+2yu+2tu+2zv—z = 0

t2+2rrv+2yv+2zv—y = O

2x+2y+22+2t+2u+v—1 = 0.

The number of variables of this system is 6 with total degree 25 = 32. The Optimal

Bézout number is 32 with the partition {:17, y, z,t,u}. The mixed volume is 32 and

there are 32 isolated zeros.

5.1.41 Cohn—2 system

The following system is available at the PoSSo test suite:

23312 + 4223/2 — 1323/22 + 2885823;2 + 2072:2312 + 1152223122 + 1569:3122 +

$23 — 34562323; + 207362312 + 19008zryz + 82944sz + 432:1:z2 —

497664123] + 6220822 + 29859849: = 0

3,313 + 43132:? — 3,2th + 43,213 — 48y2t2 — 5yzt2 +108yzt+ 22t+144zt— 17282 = 0

—a:222t + 49:22t2 + 83152 + $3t2 + 11:32 +156$2zt+ 207:1:z2t +

1152$zt2 + 28822t2 + 432.2322 + 19008xzt -— 3456221: + 829442.22 +

207362t2 + 622081;}: —- 497664zt + 29859842 = 0

y3t3 —- $3,212 + 4y3t2 + 431213 — 5:1:y2t — 48y2t2 + 2323/ + 108m + 144mg — 17282: = 0.

The number of variables of this system 4 with total degree 5 x 6 x 5 x 6 = 900. The

optimal Bézout number is 450 with the partition {23, y, z}, {t}. The mixed volume is

124 and there are 18 isolated zeros.
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5.1.42 Cassou-Nogues

The following system is available at the Frisco test suite:

5b4cd2 + 612403 + 21b4c2d —— 144020 — 8b2cze — 28b2cde —

648b2d + 3602d2e + 95433 — 120 = 0

30b4c3d — 32cde2 — 72Ob2cd — 24122038 — 432528 + 57606 — 5764.2 +

1852532.: + 16.12.22 + 168.22 + 9547;“ + 395%de + 18b4cd3 — 4325252 +

24b2d3e — 16b2c2de — 2400 + 5184 = 0

 

21602ch — 162b2d2 — 815%2 + 1008ce — 1008de + 155288.: —

15b2c3e — 80cd82 + 4042.:2 + 4Oc2e2 + 5184 = 0

4b2cd - 352.12 — 4b262 + 22ce — 22de + 261 = 0.

The number of variables of this system is 4 with total degree 7 x 8 x 6 x 4 = 1344. The

optimal Bézout number is 368 with the partition {b}, {c, d, e}. The mixed volume is

24 and there are 16 isolated zeros.

5.1.43 A “dessin d’enfant” I system

The following system is available at the Frisco test suite:

6033010020 + 10022010031 + 8032010021 — 1620¥0021 +

16021030 + 14031020 + 48010030 = 0

15033010021 — 1620?0022 — 312010020 + 24010030 +

27031021 + 24032020 + 18022010032 + 30022030 + 84031010 2 0
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—240a10 + 420a33 — 64a22 + 112a32 = 0

180533510 — 284a22a10 — 162af0 + 60a22032 +

50a32a10 + 70a30 + 55a33a21 + 260a31 — 112a20 = 0

66a33a10 + 336(132 + 90a31 + 78a22a33 — 1056a10 — 90am 2 0

136a33 — 136 = 0

4022010030 + 2032(110020 + 6a20a30 — 162a¥0a20 + 3a31a21a10 = 0

28a22a10033 + 1920130 + 128032010 + 360310.20 —

300010021 + 40032021 — 6480?0 + 44022031 = 0

where the variables are 010,020, am, (122, 030, a31,a32, (133.

The number of variables of this system is 8 with total degree 34 x 22 = 324. The

optimal Bézout number is 108 with the partition {(133, am, 020, (222, (131, £732, (121}, {0.30}.

The mixed volume is 46 and there are 46 isolated zeros.

5.1.44 A “dessin d’enfant” II system

The following system is available at the Frisco test suite:

16a20a32 + 182210.31 + 20a22a30 = 0

—80a23 + 180a34 + 855a35 = 0

7a21a31 + 8021030 = 0

210a35 — 210 = 0

40020034 + 44a21a33 + 48a22a32 + 52a23a31 + 280a30 = 0

27020033 + 30021032 + 33022031 + 36023030 2 0
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55020035 + 60021034 + 65022033 + 70023032 + 80030 + 375031 = 0

78021035 ‘1‘ 84022034 + 90023033 — 170020 + 102031 + 480032 = 0

136223a35 — 114a22 + 152233 + 720234 = 0

105022035 + 112023034 — 144021 + 1.26032 + 595033 2 0

where the variables are: 020, 021, 022, 023, 030, 031, 032, 033, 034, 035.

The number of variables of this system is 10 with total degree 28 =

256. The optimal Bézout number is 126 with the partition {220,a32,a21,231},

{222, 230, 0.23, (134, 0.35, 233}. The mixed volume is 42 and there are 42 isolated zeros.

5.1.45 Sendra system

The following system is available at the Frisco test suite:

—270z4y3 — 3141294 — 6892:1113 + 1428 = 0

362:7 + 417sz — 42255;,2 — 2702:4313 + 1428223114 — 147522325 + 51045;,6 — 200:1:4 — 1742:5y

—9662:4y2 + 52953313 + 269262314 + 49.4315 — 2671/6 + 52954;; + 1303x2313 — 3142:y4 + 262y5

+362:4 — 788:r2y2 — 68923113 + 1773/4 = 0.

The number of variables of this system is 2 with total degree 72 = 49. The optimal

Bézout number is 49 with the partition {23, y}. The mixed volume is 46 and there are

46 isolated zeros.
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5.1.46 Parallel robot (left-arm robot)

The following system is available at the Frisco test suite. The problem is to find all

the possible positions of the upper platform, given the length of the arms(between

the ground and the platform) of the parallel robot. Using quaternions, with the given

matrix X of base points and the matrix Y of points of the platform

F r -

01/2 3/23/21/32 01010—1

X: 0 —1/2 —1/21/21/2 0 ,Y= 0 0 —1 11 0

    0—1—1—1—10 L010111

and the length lg = [1, 1, 0.8, 2, 2, 2], the following system is obtained:

u2+v2+w2—1=0

—12b — 42 + 4c+ 455+ 4ac+ 4bc+ a2 + 5b62 + 13c2 + 810 +

2n + 9 + 82022 + 82010 + 8bav + 8bcv + 22122 — 6ub2 — 6uc2 +

21222 + 212122 + 221C2 + 811202 + 8bu + 801) — 8av — 8bw + 22) = 0

8.86 — 6b + 22 + 4abu + 6 — 62b — 6ac + 606 + 2.8622 + 4.86b2 +

6.8602 + 410 — 3n + 4bcw + 4211) — 4011 + 4acu + 4bcv — 32122 —

3ub2 — 3uc2 — va2 + Bub2 — vc2 + 421262 + 4bu — 422) + 32) = 0

—2b + 22 + 2c + 22b —10ac — 2bc + 3.522 — 2.502 + 1.5c2 + 410 —

5n + 7.5 + 42011 — 42010 + 4bcv - 511.22 — ub2 — uc2 —

vaz—vb2—vc2+4wc2+4bu—4cv—4av+4bw—v=0

—4a — 4abu — 13333333330 + 1.333333333ab — 4bc — 163888888922 +

0.36111111b2 — 163888888902 + 210 — 066666666714 — 4bcw — 40.21) +
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0351111111 + 211152 + 4021 -— 0666666667002 — 06666666671102 —

06666666671162 + 2122 — 3552 + vc2 + 2m2 — 35 = 0

—8b+4abu+8c—8ab—8czc+802+8c2+2w— 2u+4bcw+

42w — 2111b2 — 221202 — 4011 + 4acu + 40610 + 4bav + 4bcv —

22122 — 61102 — 6uc2 — 21222 + 22102 — 2vc2 + 211202 + 4011 +

4cv—4av—4bw+2v=0

where the variables are 21,12, 10, a, b,c.

The number of variables of this system is 6 with total degree 2 x 35 = 486.

The optimal Bézout number is 160 with the partition {11,11,212}, {a,b,c}. The mixed

volume is 160 and there are 40 isolated zeros.

5.1.47 Parallel robot with 24 real roots

The following system can be found in [44] and is obtained from the Frisco test suite:

625002;? + 625003;? + 62500zf — 74529 = 0

625203 + 625y§ + 6252.3 — 12505:2 — 2624 = 0

1250083 +12500y§ + 12500z§ + 2500453 —- 44975313 — 10982 = 0

40000022132 + 400000371312 + 4000002122 — 400000.52 + 178837 = 0

1000000151,.1:3 + 10000017193 + 1000007212., + 1000001:3 — 1799000313 — 805427 = 0

20000001122163 + 2000000312113 + 20000002223 — 200000052 +

20000053 - 3598000y3 - 1403 = 0

1138000000000002311221 — 11380000000000022 31321 — 113800000000000 *

$331122 + 11380000000000020112322 + 11380000000000022 =1:
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3113/3 — 113800000000000213/223 -— 206888400000000232y1 +

206888400000000x3y1 + 20688840000000021312 - 206888400000000 *

273m - 206888400000000221y3 + 20688840000000022y3 — 20142600000000 4

5221 + 20142600000002-321 — 61907200000000y221 + 61907200000000 4

3,3,2. + 20140000000005122 — 20142600000002322 + 61907200000000 4

3,122 — 61907200000000y322 — 201426000000021z3 + 2014260000000 at

$223 — 61907200000000y123 + 61907200000000y223 - 36290716800000 =1:

2: 1 + 38025201600000222 + 29254884960000023 + 11809567440000y1 +

14759782200003,2 — 825269402280000y3 — 121298268960000021 —

15160047480000022 + 82585995120000023 — 19295432410527 = 0

—7776000000002:3 y221 + 777600000000$2y321 + 777600000000 =1

$31,122 — 777600000000213/322 — 77760000000052.1323 +

777600000000213/223 — 1409011200000x2y1 +140901120000053 *

y. + 1409011200000$1y2 -— 1409011200000:1:3y2 — 1409011200000 4

231313 + 14090112000001;le3 — 1065120000002221 + 1065312000000 *

2:321 — 8055936000003/221 + 805593600000y321 + 1065312000000 ..

4:122 — 10653120000002322 + 805593600000y1 22 — 805593600000 =1:

y322 — 10653120000002123 + 10653120000002223 — 805593600000 >1:

9123 + 805593600000ygz3 + 23585027200231 + 39841751040022 +

15862691520023 — 31166842400030 -— 2680903680000.) + 72704002800 .1

93 + 4122213024002:1 + 35458375680022 + 30708543840023 + 282499646407 = 0

320022 + 1271 = 0.
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Note that the coefficients need to be scaled. The number of variables of this system

is 9 with total degree 26 x 32 = 576. The optimal Bézout number is 80 with the

partition {201,311, 21}, {202,yg, 22}, {23,103, 23}. The mixed volume is 80 and there are

40 isolated zeros.

5.1.48 3 Torus system

The following system is available at the Frisco test suite:

2:4 + 22:2y2 + 22:222 + y4 + 231222 + 24 — 22:3 — 2222/2 —

25:22 + :52 + 133333333333,2 + 1333333333352 2 0

2:4 + 22‘2y2 + 22:22:2 + y4 + 23/222 + 24 — 22:3 — 22:22 — 22:3;2 — 22:22 — 2y22 —

223 + 2960784314222 + 5.921568627er + 3921568627312 + 296078431422 —

39215686272: — 39215686272: + 1.960784314 = 0

2:4 + 22:2y2 + 227222 + y4 + 23/222 + Z4 —— 22:22 — 23/22 — 223 +

5263157895222+5.263157895y2+22 = 0.

The number of variables of this system is 3 with total degree 43 = 64. The optimal

Bézout number is 64 with the partition {22, y, z}. The mixed volume is 64 and there

are 16 isolated zeros.

5 . 1 .49 Emulsion chemistry

The variables of the following system are 11,72,713, 74:

T1(7‘2+T3+7‘4) = A
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7‘2(T1+7‘3+T4) = B

T3(T1+T2+T4) =

T4(T1 +7'2 +T3) = D.

The number of variables of this system is 4 with total degree 24 = 16. The optimal

Bézout number is 16 with the partition {71, 72,73, 74}. The mixed volume is 8 and

there are 8 isolated zeros.

5.1.50 Commodities market

The variables of the following system are 8, t, u, v, w, x, y, z:

u+s—2A = 0

v+t—ZB = 0

v—u—t-l-s = 0

vz—ty—u23+sw = 0

vz+ty+u23+8w—2ce == 0

—vz—ty+u2:+sw—2cd = 0

—su(z+y)+st(z+2:)+uv(y+w) —tv(20+w) —2p0(u—t)(v—s) = 0

u(z—w)+t(w—z)+s(y—2:)+v(2:—y)—ro(u—t)(v—s) = 0.

The number of variables of this system is 8 with total degree 24 x 3 = 48. The optimal

Bézout number is 7 with the partition {8, t, u, v}, {10, x, y, z}. The mixed volume s 7.

There are 6 isolated zeros.

1
n
.
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5. 1.51 Raksanyi system

The following system arises from Systems theory with rational function coefficients

and is available at the Frisco test suite:

t+(v—a.) = 0

23+y+z+t—(u+w+a) = 0

2:z+2:t+yz+zt—(uw—ua—wa) = 0

:rzt—uwa = 0

where the variables are 2:, y, z, t.

The number of variables of this system is 4 with total degree 3 x 2 = 6. The

optimal Bézout number is 3 with the partition {26, y}, {z}, {t}. The mixed volume is

3 and there are 3 isolated zeros.

5. 1.52 Runge-Kunga

This system arises in an application of the Runge—Kutta space. The problem is to

construct a modified version of an explicit 3 stage Runge-Kutta method with order 4

[611

b1+b2+b3—(a—,B)=0

1 l

b262+b3C3—(§+§,B+,B2—afi)=0

b2c%+b3c§— (mg-+02) — $73-42 —fl3) :5

5303262 - (04% + $6 + 62) — 36 — 62 — H3) = 0

1 l 5 3

b2c3+b3c§—(Z+Zfl+502+§03+04—a(0+03)) =0
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1 3 7 3 1 1

b30303262 - (g + g3 + 162 + 563 + ,6“ — a(§fi + 5162 + ’83)) = 0

1 1 7 3 2
2_ _2 _3 4_ _ 2 3 =

12343292 (12+129+69+20 +9 0(3/3+fl +fi)) 0

i l 22 Es _ 1 2 3_
24+24fl+129 +20 +04 a(30+0 +0)_0

where the variables are b1,b2,b3,C2,C3,032,C¥, 6.

The number of variables of this system is 8 with total degree 44 x 32 x 2 = 4608. The

optimal Bézout number is 1361 with the partition {b1}, {02, b3, (1}, {[3}, {c2, c3}, {232}.

The mixed volume is 24 and there are 5 isolated zeros.

5.1.53 Solubility of silver chloride in water

The problem is to find the concentrations of all species in a saturated silver chloride

solution [32]. After reduction, the following system is generated:

4 3 3
01221-1- (12:51.13 '1' (131:1 + 041:1 + 05 = 0

311171153 + ,6ng + 33 = 0.

The number of variables of this system is 2 with total degree 4 x 3 = 12. The

optimal Bézout number is 9 with the partition {2:1}, {2:3}. The mixed volume is 9.

With the given coefficients, there are 9 isolated zeros.
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Table 5.7. Coefficients for the butler’s problem

 

 

coefficients

a1 1.069D-04

£72 21304

03 1.000

634 -1.8D-10

a5 -1.283D-24

61 2D16

,82 1D14

[1‘3 -1.000    

5.1.54 Enumerative geometry(Hypersurface schubert condi-

tions)

This system is available at the Frisco test suite. The problem is to find those p—plane

which intersect m * p given m—planes in 0"” which osculate the rational normal

curve. For m = 2,19 = 3,

F(S1)= =F(86)=0

where 31, . . . , 85 are six distinct real numbers, and

1 0 a b c

s 1 e f

F(s)=det 32 23 1 0

O
O
Q
Q

33 3s2 01

  34433001
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Table 5.8. Characteristics of systems that arise in the Schubert Calculus

 

 

     

m p totdeg mdeg M(Q) N(Q)

2 2 16 6 4 2

2 3 64 20 17 5

2 4 256 70 66 14

2 5 1024 252 247 42   

The first two columns of the matrix give the 2-planes in R5 which osculate the rational

normal curve. The last three columns are local coordinates on the Grassmanian of

3—planes in R5. The system F(s) = 0 is given by:

1 — 23,6 — 3sff — 48,39 + sfa + 23150 + 3836 + sfaf — sfeb +

23fag — 2sf’ec+s?bg — sfcf = 0, i=1,...,6

where the variables are a, b, c, d, e, f.

The number of variables of this system is 6 with total degree 26 = 64. The optimal

Bézout number is 20 with the partition {0, b, c}, {(1, e, f}. The mixed volume is 17

and there are 5 isolated zeros.

Table 5.8 summarizes the results for different values of m and p. Here totdeg

denotes the total degree of the system, mdeg its optimal Bézout number M(Q) its

mixed volume and N(Q) the total number of isolated zeros.
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5.2 Summary

Table 5.9 and Table 5.10 summarize the various characteristics of the 54 polyno-

mial systems presented: For each system, n denotes the number of variables, totdeg

the total degree, mdeg the optimal multi-homogeneous Bézout number, M(Q) the

mixed volume and N(Q), the total number of isolated zeros.

5.3 Conclusions

Our solver finds all isolated zeros of the above polynomial systems to satisfactory

accuracy and speed. As an observation, these systems are characterized by substan-

tially low mixed volume M(Q), compared to totdeg, their total degree. By Theorem

2.1.2, the mixed volume M(Q) of a given polynomial system is an upper bound on

N(Q), the total number of isolated zeros in C". A great majority of the polynomial

systems presented here actually have M(Q) number of isolated zeros. Of both theo-

retical as well as practical interest is the fact that the numbers M(Q) are either less

than or equal to the optimal multi-homogeneous Bézout number, mdeg. We would

like to work towards a possible theoretical explanation in the future. For those sys-

tems with a discrepancy between M(Q) and N(Q), we wish to study and explore the

structure of the systems. We hope to derive a method that respect these structures

and requires computational efforts proportional to the actual number of isolated zeros

of these systems. Overall, the generality of the current solver should establish itself

as the method of choice for systems of moderate size.
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Table 5.9. Characteristics of the polynomial systems I

 

 

        

no. name description 77. totdeg mdeg M(Q) N(Q)

1 puma robot manipulator PUMA 8 128 16 16 16

2 romin robot manipulator ROMIN 6 32 16 4 4

3 LV Lotka—Volterra System 4 81 81 73 73

4 sym4 symmetrized four-bar 4 256 96 80 36

5 ninept nine-point problem 8 78 645120 83977 4326

6 chemeqm chemical equilibrium 5 108 56 16 16

7 lumped lumped-parameter 4 16 8 7 4

8 heart heart-dipole 8 576 193 121 4

9 cycmol cyclic molecules 3 64 16 16 16

10 camera camera motion 6 64 20 20 20

11 elect electrical network 4 16 6 6 6

12 vib vibrating systems 6 243 10 10 10

13 6R 6R inverse position 8 256 96 64 32

14 6R2 6R inverse position 11 1024 320 288 16

15 quad quadrature formula 5 120 10 10 5

16 wood the wood function 4 36 25 9 9

17 ec electrochemistry problem 4 60 52 18 15

18 i1 benchmark i1 10 59049 452 66 50

19 mdi integration formula 9 36000 8852 136 16

20 AHW The system of A. H. Wright 5 32 32 32 32

21 R5 The system called Reimer5 5 720 720 720 144

22 butcher Butcher’s problem 7 4608 1361 24 5

23 viralg Virasoro algebras 8 256 256 200 200

24 cycn the cyclic n-roots problem 7 5040 5040 924 924

25 comb combustion chemistry 10 96 44 16 16

26 econ economic modelling 8 1458 256 64 64

27 men neurophysiology 6 1024 216 20 8
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Table 5.10. Characteristics of the polynomial systems II

 

 

 

no. name description 72 totdeg mdeg M(Q) N(Q)

28 Speer the system of E. R. Speer 4 625 384 96 43

29 sol solotarev 4 36 10 6 6

30 trinks number theory 6 24 24 10 10

31 galois 391 from Galois theory 8 16 10 10 10

32 rediff3 reaction-diffusion problem 3 8 8 7 7

33 lorentz lorentz attractor 4 16 14 12 11

34 bif a bifurcation problem 3 126 32 16 16

35 D1 benchmark D1 12 4068 320 192 48

36 capr caprasse’s system 4 144 62 48 48

37 am arnborg7 3 120 48 20 20

38 rose economic equilibrium model 3 216 144 136 136

39 moe Moeller4 6 8 8 7 7

40 kat Katsura 6 32 32 32 32

41 cohn2 cohn2 4 900 450 124 18

42 CN Cassou—Noggues 4 1344 368 24 16

43 dessinI dessin d’enfant I 8 324 108 46 46

44 dessinII dessin d’enfant II 10 256 126 42 42

45 sendra sendra 2 49 49 46 46

46 rbp1 parallel robot(left-arm) 6 486 160 160 40

47 rbpl24 parallel robot 9 576 80 80 40

48 3torus torus 3 64 64 64 16

49 emulchem emulsion chemistry 4 16 16 8 8

50 commod commodities market 8 48 7 7 6

51 raksanyi systems theory 4 6 3 3 3

52 RK runge-kutta 8 4608 1361 24 5

53 butler solubility 2 12 9 9 9

54 schubert Schubert conditions 10 1024 252 247 42        
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