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ABSTRACT

MULTICAST COMMUNICATION: FROM PLATFORM-INDEPENDENT

MODELING TO PLATFORM-DEPENDENT TUNING

By

Natawut Nupairoj

Multicast is an important system-level one-to-many collective communication service.

Several collective communication services such as broadcast and scatter are a subset or a

derivation of multicast. Due to the importance of multicast, many standard communication

libraries have included a multicast service as their standard communication primitive. In

addition, several parallel systems and high-speed switches provide special hardware sup-

port for multicast. T

This thesis investigates several aspects of software-based multicast. To study how to

efficiently implement a multicast service, the performance model for multicast is needed.

Although multicast has been extensively studied, its performance metrics and benchmark-

ing techniques have not been through-roughly examined. This research discusses the per-

formance model of multicast which includes both metrics and how to measure them accu-

rately.

A key issue in designing software multicast algorithms is to consider the trade-off be-



tween performance and portability. For most portable software multicast algorithms, they

sacrifice their performance in order to achieve the portability. Thus, the performance of

a portable algorithm is varied significantly from one platform to another. This thesis pro-

poses the platform-independent multicast algorithm. The algorithm is portable, but still

performs well on various platforms.

Without considering the underlying network architecture, the platform-independent

multicast algorithm may not achieve truly optimal performance when implement in real

networks. Some platform-dependent information such as the topology of the underlying

network can be very useful to a multicast algorithm. This thesis addresses the platform-

dependent tuning techniques to further optimize our platform-independent multicast algo-

rithm.

Most multicast-related studies have been done in the ideal condition where other net-

work traffic are not considered. However, in real networks, these network traffic may have

significant impacts on multicast behavior. We investigate the performance of several multi-

cast algorithms when other network traffic exist. We also study how to further improve our

multicast algorithm when additional local network information is available.
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Chapter 1

Introduction

Scalable parallel computers (SPCs) have become the primary computing architecture to

solve science and engineering problems, especially the so-called grand-challenge prob-

lems. Such systems are usually characterized by the distribution of memories among an

ensemble of computing nodes. The nodes, each of which has its own processor, local

memory, and other supporting devices, are typically interconnected by dedicated high-

speed networks. Systems with hundreds or thousands of dedicated nodes connected by

a dedicated network are usually called massiver parallel computers (MPCs). These ma-

chines are among the most powerful SPCs currently available and have been reported to

achieve the teraflops performance recently [1, 2]. The examples of MPCs are the TMC

CM-S [3], the NEC Cenju-3 [4], and the Cray-T3D [5]. Another promising computing

platform to support the parallel processing is network of workstations (NOWs) [6]. Using

the high-speed networks, such as ATM [7] and Myrinet [8], NOWs can deliver high per-

formance with a fraction of-MPCs cost. Even though the performance of NOWs are not

comparable tothe more powerful MPCs, NOWs are gaining more popularity because of its
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excellent price-performance-ratio and its drastic performance improvement during the last

few years.

1.1 Communication Services in SPCs

A common feature of those distributed-memory computing is to use explicitly or implic-

itly message passing to communicate and coordinate a group of participating processes.

In shared-memory paradigm, users do not have to be concerned with message passing as

systems implicitly use message passing mechanism to support shared-memory paradigm.

Many parallel systems, however, support message-passing paradigm. In this case, users

have to explicitly use communication services to communicate among processes. To sup-

port this paradigm, many communication libraries such as PVM [9], Chimp [10], and LAM

[l l], have been developed. Among them, PVM has received much attention and has been

proven useful in prograrrnning many parallel applications. Although these communica-

tion libraries are widely used, the user interface for each library is quite different. To

overcome this problem, MPI (Message Passing Interface) [12] has emerged as a standard

communication library. The objective of MP1 standardization effort is to enforce program

portability and to achieve good performance across different distributed-memory comput-

ing platforms. While it is easy to support program portability, the program performance is

still greatly dependent on the internal implementation of communication library, the under-

lying network protocols, and the network architecture.

Parallel programs usually facilitate two types of communication services: point-to-

point and collective. A point-to-point communication, or known as unicast, involves two

2



communicating processes in the form of send and receive operations. This type of commu-

nication service is very fundamental to all communication subsystems, and its performance

measurement techniques have been well-studied [13, 14, 15, 16]. Benchmark programs

used to measure point-to-point communication performance include ping and ping-pong,

where ping is mainly used to measure network throughput and ping-pong is mainly used to

measure communication latency.

Collective communication which involves a group of processes is another frequently

used communication pattern in parallel programs. This communication class is particu-

larly useful to scientific applications which often require global data movement and global

control in order to exchange data and synchronize the execution among processes. Pro—

viding such services can greatly simplify the programming effort and facilitate efficient

implementation. For example, an iterative method can be used to approximate the solution

for heat-transfered problem. The global reduction operation is useful to consider when the

algorithm converges to the correct solution. Another example is segmented scan operation

which can be used to perform prefix computation. Many of these collective communication

services are defined in HPF [l7] and MP1 [12].

In general, collective operations are defined within a context called process group or

communication group which specifies the domain or scope of participating processes in

a communication operation. Collective operations can be classified into three subclasses:

one-to-all, all-to—one, and all-to-all. The following describes each collective operation type

and provides example operation based on MP1 specification [12].

3



One-to-All

In one-to-all communication, one of the processes in the group becomes the sender sending

messages to all other processes in the group (receiver). The sender can send same message

to all receivers (broadcast) or distinct messages to each receiver (scatter or personalized

communication. Figure 1.1(a) and 1.1(b) demonstrate the conceptual diagrams and the

information flow diagrams of broadcast and scatter respectively. In each figure, each row

of boxes represents data locations in one process. For example, in the broadcast, initially,

Po contains data A0. After the broadcast, all processes have it.

(a) an —9

  

 

(b)
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Figure 1.1: The one-to-all communication: (a) broadcast, (b) scatter.

 

All-to-One

All-to-one communication can be considered as an inverse of one-to-all operation. One

process in the group is a receiver and all other processes are senders. An example of this

communication is gather which allows the receiver to gather information from all other
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processes. In addition, different messages from different senders may combine together to

form a single message for the receiver. This operation is called reduce. The combining op-

erator is usually commutative and associative such as addition, multiplication, maximum,

etc. Figure 1.2(a) and 1.2(b) demonstrate the conceptual diagrams and the information flow

diagrams of gather and reduce respectively.
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Figure 1.2: The all-to—one communication: (a) gather, (b) reduce.

 

All-to-All

In all-to-all communication, all processes in the group are both senders and receivers. Sev-

eral operations are belong to this group such as allgather which is similar to gather but all

processes in the group receive the result, alltoall which all processes perform scatter first

and then gather results, a combined reduction and scatter operation (reduce_scatter), and

scan operation which performs prefix computation across all members of the group. Figure

1.3(a) and 1.3(b) demonstrate the conceptual diagrams and the information flow diagrams

of allgather and alltoall respectively.
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Figure 1.4: An example of a process group of 4 processes in 3 x 3 mesh (a) system’s

viewpoint, (b) process group’s viewpoint.

It is important to distinguish between the process view and the system view of a col-

6

lective operation. In a SPC, each individual application is usually allocated with a subset

of processors in order to achieve the best performance and increase the system throughput.

From the viewpoint of system or processors, a process group only involves a subset of pro-

cessors. Consider an example of a process group of 4 processes in 3 x 3 mesh system as

shown in Figure 1.4. From the process group’s viewpoint, all processes in the group are

fully connected. However, from the system’s viewpoint, these processes are only allocated



in a subset of processors. When process 0 sends a broadcast message to all processes in

the group, it performs multicast to a subset of processors. Thus, one—to—all operation in

a process group is actually one-to—many operation from the system’s point of view. For

the purpose of system-level network performance evaluation, this study focuses on system-

level multicast communication which is equivalent to an application-level broadcast within

a process group. Furthermore, this study consider one process per processor. Therefore,

the terms process, processor, and node will be used interchangeably.

1.2 Multicast Communication

Among those collective communication services, multicast communication is a frequently

used communication pattern in many parallel applications. This operation can be invoked to

deliver a message from a source (called root) to multiple destinations. Although users may

call multiple sends to obtain similar functionality, providing such service can ease program-

ming tasks and allow users to exploit hardware support and multicast algorithms fine-tuned

specifically for the systems. In addition, multicast is a basic construct of several other col-

lective communication services, including broadcast, scatter, and barrier synchronization

[18]. Using efficient implementation of multicast service also improves the performance of

the aforementioned services.

Multicast communication plays an important role not only in parallel applications, but

also in other areas such as system protocols. For example, broadcast is used in write-

invalidation for cache coherence protocol [19] and address resolution mechanism for TCP/IP

[20]. Furthermore, new high-speed switches such as Myricom’s Myrinet switch use broad-

7



cast to perform network topology mapping [8].

Recently, the multicast-related research has extended the usage of multicast service

beyond scientific applications. Multimedia and wide area networks are among many ap-

plications which have received attention recently. Kompella et al. [21] recommend to

use multicast routing to support high-bandwidth delay-sensitive applications such as video

communication over computer networks. With development of IP multicast [22, 23, 24]

and MBone [25], multimedia information can be delivered efficiently across the Internet

as experimented in IEEE GLOBECOM’96 [26, 27]. It also creates several new research

areas such as video-on-demand on the network [28], archive servers query [29], secure

multicasting [30], and efficient world-wide-web information delivery [31].

1.2.1 Performance Evaluation

As multicast service has been used in a broad range of applications, comparing two mul-

ticast implementations can be a very difficult task. Some applications such as parallel

programs require multicast implementations with low latency. In contrast, multimedia ap-

plications usually run on the system with limited resources such as wide area networks.

To evaluate multicast implementations for this type of applications, we must also consider

bandwidth consumption. Thus, there are two major criteria to evaluate multicast algo-

rithms, trafi‘ic cost and latency cost.

Latency Cost

There are two popular approaches to evaluate the latency of a multicast algorithm. The first

approach is to count the number ofcommunication steps required to complete multicasting.
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The communication step or multicast step is defined as a single send from the source to one

destination. Consider an example of four-node multicast presented in Figure 1.5(a). In this

example, node 0 is the root and three other nodes are the destinations. In the first step, node

0 sends a message to node 1. In the second step, node 0 sends a message to node 2 and

node 1 sends a message to node 3. Note that since both node 0 and node 1 can distribute

the message simultaneously, we consider both sends as one step. Thus, the cost of this

multicast operation is 2 steps.

(a) (b)

 

    
Figure 1.5: An example of how to evaluate multicast latency costs for a four-node binomial

tree: (a) multicast steps, (b) multicast latency.

The other approach is to use the multicast latency to evaluate multicast implementa-

tions. The multicast latency is defined as the elapsed time between the root starts sending

the message to the first node until the last node receives the message. Consider an example

in Figure 1.5(b). Suppose a source has to wait for 2 time units after it sends a message to

a destination before it can start sending to another destination. And let suppose it takes 5

time units to deliver a message. Obviously, node 0 starts sending to node 2 before node

1 finishes receiving which is quite contradicted to the evaluation based on multicast steps.

Node 3 is the last node to finish receiving. Therefore, the multicast latency in this example
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is 10 time units.

'ITaffic Cost

In the systems with limited resources such as wide area networks, bandwidth consumption

of a multicast tree must be taken into consideration. Typically, each communication link in

the network is associated with link bandwidth cost and link delay. Given a multicast tree in

a network, its total bandwidth consumption is the sum of the bandwidth costs on the links

in the multicast tree and its delay is the maximum delay from source to each destination.

The least cost tree is called a Steiner tree and the problem of finding a Steiner tree is known

to be NP-complete [32]. Thus, researchers use heuristic algorithms to construct low-cost

multicast routes [33].

Optimizing the bandwidth consumption alone may not be sufficient to satisfy appli-

cations’ requirements. For new applications such as multimedia, they are both delay and

bandwidth sensitive. Thus, an efficient multicast tree must consume low bandwidth con-

sumption and has bounded delay [33]. In addition, traffic concentration is also another

metric needed to be considered since highly traffic concentration in some links due to mul-

ticast can create bottleneck to the system [34].

1.2.2 Implementations

One of the main focuses of multicast research is to find efficient implementations of mul-

ticast communication. Generally, we can categorize multicast implementations into two

groups based on the hardware support requirements. The first group is multicast imple-

mentation with hardware support. In this group, there is a special hardware to support
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efficient multicast communication. This support can be either a dedicated network or just

additional support in data network. The second group is software-based implementation. In

this group, a multicast service is implemented atop point-to-point reliable communication

services. Both implementations have their pros and cons which are discussed next.

Hardware Implementations

Obviously, implementing multicast in hardware is much more efficient than software-based

implementations As performance of multicast communication is quite critical to parallel

applications, several MPC vendors have provided efficient multicast services in their hard-

ware such as the TMC CM-5 [3] and the NEC Cenju-3 [4]. CM-S uses the dedicated control

network to perform multicast and other collective communication services. Unlike CM-S,

the NEC Cenju-3 provides hardware-support for multicast in its MIN data network. How-

ever, these implementations have some serious limitations. For example, the deadlock due

to multiple multicast is possible [35]. One possible solution used in CM-S is to allow only

one multicast at a time. However, the dedicated multicast network can be underutilized.

Due to its attractive price-per-performance ratio, Network of Workstations (NOWs)

have been popular as replacements of MPCs to run parallel applications. The basic prin-

cipal of NOWs is to provide low-latency interconnection by using high-speed switches.

Thus, new high-speed switches such as DEC’s Autonet, DEC’s Gigaswitch, Myrinet, and

ATM provide efficient multicast services in their switches. However, multicast services

provided in most implementations are unreliable. Several works have addressed the solu-

tion of reliable software multicast on top of unreliable hardware multicast [36, 37, 38].
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Software Implementations

Although hardware multicast can provide excellent performance, many MPCs and NOWs

do not have special hardware support for multicast services. Without the hardware support,

these systems adopt software-based approaches to implement multicast services atop ex-

isting point-to—point communication services. This approach has been widely use in new

communication libraries such as MP1 and PVM. In this approach, processes form a tree

structure which is called a multicast tree where the sender is the root node and destinations

are internal nodes and leaves nodes of the tree. Based on the multicast tree structure, mes-

sages are forwarded from the root nodes using point-to-point communication. Multicast

trees can be simple such as a sequential tree and a binomial tree and more sophisticated

such as parameterized tree [39] and A-tree [40] whose structures are adjusted based on the

underlying network parameters.

When designing a software multicast algorithm, the key issue is to consider the trade-off

between performance and portability. To optimize performance, researchers usually design

multicast algorithms to utilize some features of the underlying network. One popular op-

timization technique is to design multicast algorithm to efficiently utilize communication

channels based on the underlying network topology. Sullivan and Bashkow propose the

well-known spanning binomial tree (SBT) algorithm [41] for the first-generation hyper-

cube which used store-and-forward switching. Johnsson and Ho propose the edgetdisjoint

spanning tree (EDST) algorithm [42] which utilized communication channels more effi-

cient than SBT. Barnett et al. [43] study broadcast problem in one-port wormhole-switched

mesh networks and propose the recursive-splitting broadcast algorithm, the edge disjoint

l2



fences (EDF) algorithm, and the scatter—collect algorithm. In addition, several topology-

based optimization researches also focus on eliminating internal network contention of

messages in multicast trees. In most real networks, network contention is likely to occur if

concurrent message transmissions are not scheduled properly. In this case, the actual mul-

ticast latency can be longer than expected since the contention can prolong the multicast

operation. McKinley et al. [44] address the contention-free multicast problem for network

with dimension-ordered routing. The proposed algorithms, U-cube and U-mesh, are based

on the recursive doubling technique used in SBT. Using dimension ordering of a source and

destinations, multicast trees generated by U—cube and U-mesh algorithms are guaranteed

to be contention-free on hypercube and mesh topologies respectively. Based on the same

technique, Xu and Ni proposed U-min which is a contention-free multicast algorithm on

bidirectional multistage interconnection networks (BMINs) with tum-around routing [45].

Their technique is based on lexicographical ordering to construct a contention-free multi-

cast tree. Another popular optimization technique is to exploit the multi-port capability of

the underlying network architecture. McKinley and Trefftz [46] propose the Double Tree

(DT) algorithm for all-port wonnhole-switched hypercubes. Ho and Kao [47] propose a

heuristic algorithm which performed better than the DT algorithm. Robinson et al. [48]

generalize the problem and studied multicast algorithms for all-port wormhole-switched

hypercube. Tsai and McKinley [49] propose the extended dominating node (EDN) model

to support multicast on multi-port wormhole-switched mesh network. McKinley et al. [50]

provide an excellent survey of efficient multicast implementation on wonnhole-switched

MPCs.

Traditional models for message-passing systems assume a telephone-like communica-
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tion medium between processors [51]. Under this assumption, the source always waits

until the destination completes receiving the sending message before the source resumes

its execution. In this case, multicast algorithms based on the recursive doubling technique

requires the least amount of time to complete. However, several new communication mod-

els such as the Postal model [51] and the LogP model [52] indicate that by using techniques

such as sending buffer and DMA, the source usually can resume its execution before the

message is actually delivered. Thus, most multicast algorithms mentioned earlier which

are based on the recursive doubling technique are not always optimal in practice. As a

result, many recent studies have been focused on portable multicast algorithms. A portable

multicast algorithm is usually based on a generic communication model which carries a

sufficient number of critical system parameters to characterize the important features of

different parallel architectures. The basic idea of the portable multicast algorithm is to gen-

erate a multicast tree based on the pre-determined parameters during the runtime. Since the

parameters are measured from the real parallel systems, multicast algorithms based on this

approach can generate a suitable multicast tree for the underlying system. Thus, the algo-

rithms are both portable and efficient. Karp et al. [53] study optimal broadcast and other

collective algorithms for the LogP model. Their algorithm is quite fast and simple and can

guarantee the optimality when network parameters are fixed. Due to its simplicity, it is

quite difficult to apply their algorithm to other complicated scenario such as when the other

network traffics are taken into consideration. Bar-Noy and Kipnis propose multicast algo-

rithms based on the postal model [51]. However, there are some limitations in the postal

model such as the critical parameter /\ is assumed to be an integer which is not practical.

Bruck et al. [40] study several practical issues to implement broadcast and global com-
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bine using the postal model. Although their works provide useful suggestions to overcome

several limitations in the postal model, the proposed A-tree broadcast algorithm is still too

complicated to implement.

1.3 Motivation and Problem Definition

There are several open issues related to multicast service. First, to evaluate the perfor-

mance of multicast communication accurately, we need to address two important issues.

The first issue is to identify the most representative metrics. The chosen metrics must be

able to characterize the actual overhead of the multicast service when it is invoked in ap~

plications. Moreover, the definition must be well-defined. The other important issue is to

use correct measurement techniques. One common mistakes in performance evaluation is

using incorrect measurement techniques. The results from incorrect techniques can be very

misleading. Thus, it is necessary to verify that the techniques are actually measuring the

desirable metrics.

Second, most of the current multicast implementations suffer several drawbacks. Gen-

erally, the design may not be scalable to large-scale systems. Many designs are platform-

dependent and thus not portable to other platforms. For those platform-independent de—

signs, the perforrnance varies significantly from platform to another. To address these

drawbacks, we focus on the efficient implementations of multicast communication based

on an abstract parallel platform called the parameterized communication model which is

the extension of the LogP model [52]. On one hand, our implementation is portable since

it is based on the parameterized model which is an abstract model. On the other hand, our
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implementation can perform well on a wide range of platforms since an optimal multicast

tree is constructed based on a small set of easily measurable parameters which can be con-

sidered during the compilation phase. To further improve the performance of the multicast

communication, the research is further extended to study the fine-tuning of the multicast

algorithms by considering the architecture-dependent characteristics of the systems.

Third, most studies mentioned earlier have been done in the ideal condition where the

effects of network traffic from other nodes are negligible. Although some studies mea-

sured results in the actual network, the results might not actually include the effect from

the background network traffic. During the measurement, the processor-allocation schemes

might guarantee contention-free or the measuring technique might focus only on the per-

_ formance of multicast with no interference from other network traffics. For example, the

effect of other network traffic can be eliminated by measuring performance of a multicast

tree several times and choosing the minimum value. Thus, the performance of so—called

optimal multicast algorithms when perform in the actual network may not be better or even

worse than other conventional multicast algorithms such as binomial and sequential mul-

ticast trees. To address this problem, we study the effect of other network traffic on the

multicast behavior.

1.4 Objectives and Thesis Outline

The primary objective of this research is to study the efficient software—based implemen-

tations of multicast communication for SPCs. As we intend to optimize our multicast

algorithms for parallel programs, our main focus is to reduce the overhead of a multicast
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service. In addition, our multicast algorithms must be flexible such that it is portable and

also achieve good performance at the same time. Our algorithms must be tunable to ex-

ploit some characteristics of the underlying network. Finally, our algorithms must perform

reasonably well when there are more than one application sharing the system.

SPCs usually have different configurations and features. To simplify our work, the

platforms under investigation are assumed to have some common features. We assume

that there is only one user process running on each processor and the workload on each

processor follows the SPMD programming model. In addition, we assume that the under-

lying platforrn provides only reliable point-to-point communication services. We assume

no special hardware support designed specifically for multicast. Although it is obvious that

hardware support for multicast can greatly enhance multicast performance, these hardware

support are not available in most platforms. We believe that software-based approach is

quite flexible and scalable to large-scale systems.

In Chapter 2, we introduce a point-to-point communication model called the parame-

terized model which serves as the basic model throughout this study. Unlike other generic

models, the parameterized model is designed specifically to model the one-to-many com-

municatidn pattern and, hence, it contains only necessary parameters to model the one-to-

many communication. Therefore, constructing an optimal multicast algorithm based on

this model is practical since it is not too complicated We also state our assumptions, dis-

cuss how to measure the network parameters, and present benchmarking results from the

IBM/SP1.

In Chapter 3, we discuss our multicast communication model. We explain our collective

communication flow model which is the basic model for our multicast benchmark. We

17



then discuss the pitfalls of very-popular ping—based benchmarking. Then we present our

approach and measurement results from the IBM/SP1.

In Chapter 4, we introduce techniques to find optimal multicast trees based on the pa—

rameterized model. We first explain the basic concept of constructing an Optimal multicast

tree which is based on the dynamic-programming approach. Although this approach can

guarantee to find an optimal tree, its running time which is 0(k2) (where k is the size of

multicast tree) is not practical to use in a real implementation. With a simple observation,

we can improve the running time to 0(k). This leads to our main algorithm, the OPT-

Tree multicast algorithm. We present and compare experimental results of running three

different multicast trees on the IBM/SP1.

In Chapter 5, we investigate architecture-dependent tuning of the OPT-Tree multicast

algorithm. We propose two multicast algorithms, OPT-Mesh and OPT-Min which are opti-

mized for worrnhole-switched mesh networks and BMIN networks. Using flit-level simu-

lators, we compare the performance of both algorithms and two other well-known network-

dependent algorithms based on the binomial tree.

In Chapter 6, we use simulators to study the multicast behavior in various environ-

ments. The parameters include background traffic, topology, software overhead, and grain

size. Based on the results, we introduce a new class of multicast algorithm called the dy-

namic multicast algorithm. This class of multicast tries to improve the performance by

dynamically adjusting its structure based on the current network workload. In Chapter 7,

we briefly review some related works and discuss the difference between our work and

theirs. Finally, the concluding remarks as well as some possible future research directions

are discussed in Chapter 8.
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Chapter 2

Point-To-Point Communication Model

Point-to-point communication is an essential component in a message-passing system. This

type of communication services usually involves two communicating processes in the form

of sending and receiving primitives. As these primitives are available on most message-

passing systems, they are typically facilitated as building blocks to construct more compli-

cated communication services such as a software-based multicast service. Thus, the key for

modeling software-based multicast service is to understand the cost of these point-to-point

communication primitives.

Recent models of parallel architecture such as the postal model [51] and the LogP

model [52] emphasize the importance of communication overhead. Still, these models are

not quite suitable to model a multicast communication. The postal model uses /\ as the

only parameter to characterize the underlying network. )1 is assumed to be constant for

each system. This is not realistic since )I, in fact, depends on message size. The LogP

model uses four parameters to identify a parallel system. This model works particular well

for short messages but insufficient to model long messages. Later, the LogGP model [54]
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has been proposed to address this limitation. Since this is a general-purpose model, it

contains some parameters which is not necessary to model a multicast communication.

In this study, we introduce the parameterized model which is derived from the LogP

model. This model is specifically aimed to be a basis for multicast communication model-

ing. It is simple and carries sufficient number of parameters to characterize the underlying

parallel architecture. As it focuses on the communication at the application level, it in-

cludes all software communication overheads. Note that this model can also be used to

model other one-to-many communication services such as scatter.

2.1 Assumptions

To simplify our model, we make a few assumptions regarding to the underlying parallel

platform. As demonstrated in Figure 2.1, we assume that the platform being modeled

consists of processors or nodes connecting to interconnection network. The underlying

network topology is not specific. However, based on a node’s viewpoint, the topology

is assumed to be logically fully connected. In other words, the underlying topology is

assumed to be similar to crossbar-switched. Thus, there is no contention when several

nodes send messages to distinct destinations at the same time. '

We also assume that there is one application process running on each processor. This

assumption eliminates the need to worry about context switching overhead when several

user processes share the same processor. In fact, some communication libraries such as

MPI-F [55] employ this strategy in order to implement the entire communication stack in

 

1We address the problem when this assumption is not true in Chapter 5.
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Figure 2.1: The abstract communication model.

user space and also avoid additional overhead due to security checking and packets mul-

tiplexing among different processes. Furthermore, we assume that the underlying com-

munication subsystem provides only reliable blocking send and blocking receive point-

to-point communication primitives. These two primitives are equivalent to MPI’s standard

mode send/receive functions (MPLSend and MPLRecv). According to MPI’s specification,

MPI..Send is considered complete when user’s sending buffer can be reused and MPI_Recv

is considered complete when the whole message has been moved to user’s receiving buffer.

Thus, when MPI_Send is returned, it does not guarantee that the destination has already

received the message.

2.2 The Parameterized Model

The overhead of sending a message between two nodes involves three parameters including

sending latency (tsend), receiving latency (tray), and network latency (tnet), as illustrated

in Figure 2.2. tsend is the software latency in processing the sending message at the sender

which includes the overhead of protocol processing, checksum computing, and, possibly,
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memory copying. tmv, similar to tsend, is the software overhead at the receiver. tnet is the

time required to transmit the message across the network. In general, several significant

factors contribute to tn“, including network bandwidth, underlying switching mechanism,

and blocking time which is mainly due to network contention. In order to measure the

network latency accurately, benchmarking must be conducted in a controlled environment

such that the effect of network contention due to other unrelated messages can be avoided.

.....................................................
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Figure 2.2: The basic point-to-point communication model.

Measuring the values of these three parameters are rather difficult since they are not

application-level parameters. To get the accurate measurement, some special techniques,

such as using hardware monitor [16] and software probe [15], are required. In addition,

it is impractical to use these three parameters to model a multicast service. In multicast

communication, there is only one sender (root node) and the other nodes in the group

are receivers. Intuitively, after a receiver completely receives a multicast message, it can

help the root node propagate the message to other receivers. To make the propagation

efficient, all participants usually form a tree-like structure to dictate the ordering of the

communication. Based on the multicast tree structure, each node uses the point-to-point
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communication service to forward a message to each of its children in turn. We can make

some observations from this implementation technique.

0 A node may send to several nodes consecutively.

o A node, except the root node, receives from its parent first before sending to other

nodes.

0 A node, except the root node, has only one parent and receives a message from its

parent only.

The first observation indicates that the model must include the latency between two con-

secutive sends. The second observation indicates that the model must include the end-to-

end latency. And the last observation tells us that the model does not have to include the

overhead due to the contention at a receiver. Based on these observations and the afore-

mentioned assumptions, the basic model for multicast communication needs at most two

parameters, the holding latency (thaw) and the end-to-end latency (tend). thold is the mini-

mum time interval between two consecutive send or receive operations. tend is the elapsed

time between the time the sender starts sending a message and the time the receiver finishes

receiving. Obviously:

tend = tsend + tnet '1' trecv

Figure 2.3 illustrates the relationship of the application-level parameters “hold and tend)

and system-level parameters (tuna, tact, and tree”). Note that the value of thold depends

on how blocking send is implemented. Based on MPI’s specification, a blocking send is

returned when the user’s sending buffer can be reused. Some implementations use tech-
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Figure 2.3: The point-to-point communication model.

niques, such as separate buffering, DMA, and dedicated communication processor, to hide

some sending overhead from the sending processor. In this case, thou is less than tuna.

In some implementations, however, a blocking send is returned when the receiver has re-

ceived the message. This implementation still conforms to MPI’s definition of standard

mode sending operation (MPLSEND) as it is guaranteed that, upon returning, user’s send-

ing buffer can be reused. In this case, thold can be greater than tum; + tnet since thold may

include the overhead of the acknowledgment from the receiver.

For a given network architecture, both application-level and system-level parameters

usually depend on the size of sending/receiving message. Theoretically, when sending a

message size m, all parameters can be decomposed into two components, startup latency

and delay latency [44]. The startup latency is a fixed overhead of sending/receiving the

first byte of the message. For example, it can be the cost of resolving destination’s address,

DMA setup, and buffer allocation. We use the delay latency to represent the per-byte cost
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of sending/receiving the rest of the message. Thus:

tsend(m) = is, + m.t,d

tnct(m) = tn, + m-tnd

trecv(m) = t.s + m.trd

thold(m) = ths + m-thd

tend(m) = ta, + m.th

: (tss + tns + trs) + m'(tSd + tnd + trd)

Note that tn, is a fixed delay incurred at the sender when it prepares to transmit a message

across the network. And tnd is the cost of transmitting one byte over the network.

2.3 Benchmarking

Measuring the application-level parameters (thold and tend) are quite easy and can be done

at the application level. We use Ping and PingPong benchmarks to evaluate thold and tend

respectively. Unlike the application-level parameters, we cannot measure the system-level

parameters accurately without special devices. However, their values can be estimated and

will be used when we study more realistic model with simulation. The estimation technique

will be discussed later.
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2.3.1 Ping

The purpose of Ping benchmark is to measure (thaw) by sending messages from one node

to another. In this benchmark, the sender always tried to send as soon as it can and contin-

uously sends messages to the receiver. In other words, when the current send is done, the

next send is issued immediately. The communication model is shown in Figure 2.4.

 
 

 

 
 

Figure 2.4: The Ping communication benchmark: (a) the model, (b) the timing diagram

Where tsend = 4, tnet = 1, trecv = 3: and thold = 6-

The algorithm for Ping is rather straightforward. At the sender, each send is considered

to be one iteration of the Ping communication. In practice, we may not be able to measure

the elapsed time of a single iteration because the system clock resolution may not be fine

enough. One solution is to measure the elapsed time of k iterations, and compute the aver-

age delay accordingly. The algorithm of the Ping benchmark is shown in Algorithm 2.3.1.

Figure 2.4(b) shows the timing diagram of running a Ping benchmark on a hypothetical

system, where tsend = 4, tnet = 1, tree, 2 3, and thaw = 6.
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Algorithm 2.3.1 Ping

Sender(P0):

begin .

tum := GetTime();

forz’ := l tokdo

Send(message);

endfor;

thold = (GetTime() - tstartyk;

end.

Receiver(P1):

begin

for i := 1 to I: do

Recv(message);

endfor;

end.   
 

Note that the presence of other applications in the system may effect the results from

the benchmarks. To eliminate this problem, we repeat the benchmarks several times and

use the minimum values.

2.3.2 PingPong

The PingPong benchmark is aimed at measuring tend by sending a message back and forth

between two nodes. Unlike Ping, each node takes turn to become a sender and there is only

one sender at a time.

Figure 2.5(a) shows the communication mode] of PingPong. Initially, P1 sends a mes-

sage to P2 and waits for a returned message from P2. When P2 receives a message, it replies

back to P1. This is one iteration of PingPong communication. Similar to Ping, we measure

the elapsed time of the k-iteration of PingPong communication and then find the average
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Figure 2.5: The PingPong communication benchmark: (a) model (b) timing where tsend =

41 tnet = 1: trecv = 3a and thold = 6

of the delay. The algorithm of the PingPong benchmark is shown in Algorithm 2.3.2. Fig-

ure 2.5(b) demonstrates the timing diagram of the PingPong benchmark. Obviously, the

measured latency represents 2 x tend.

 

Algorithm 2.3.2 PingPong

Po:

begin

tam” I: GCITImC();

forz' := l tokdo

Send(message);

Recv(message);

endfor;

tend = (GetTimCO ' tstart)/(2 X k);

end.

P1 3

begin

foriz=1tokdo

Recv(message);

Send(message);

endfor;

end.   
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2.3.3 Estimating System-Level Parameters

As mentioned earlier, measuring the system-level parameters is quite difficult. However,

since these parameters are used in our simulation studies, estimated values can be used.

The technique presented here is quite similar to the technique used by Culler et al. in [56].

Although their techniques are designed for quantifying the LogP parameters on the Active

Messages communication layer, we can apply their techniques to evaluate our system-level

parameters.

 

 

Figure 2.6: The idle periods in the PingPong benchmark.

To simplify the estimation process, we assume that the values of tho“ and tum, are the

same. This is based on the fact that their values are quite close in most platforms. To

estimate tact, we consider the timing diagram of our PingPong benchmark in Figure 2.6.

For each PingPong iteration, node Po idles after sending a message before receiving a reply

from its peer (P1). The idle period (twe) is tn“ + tend. Thus, if we can estimate tune. we

can estimate tnet as tend can be measured by using the PingPong benchmark. To estimate

tidlea we modify our PingPong benchmark by inserting a dummy loop of some harmless

computations after Po sends a message as shown in Algorithm 2.3.3. Let tdummy be the

delay due to the dummy loop. Note that the relationship between the number of iterations
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Figure 2.7: The effect of the dummy loop in the system-level parameters estimation algo-
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in the dummy loop and tdummy can be easily predetermined. As demonstrated in Figure 2.7,

there are three possible cases: tdummy < tidlea tdummy > time, and tdummy = tune. In the

first case, the time measured (test) by this benchmark is still tend. As we increase tdummy,

test remains unchanged since the delay due to the dummy loop is still shorter than the idle

period. When tdummy > tidle as shown in the second case, test increases. If we can find

the maximum tdummy before test increases as shown in the last cases, we can estimate tune.

Thus, tnet = tidle — tend. Since we know tsend, that, and tend:

trecv = tend "' (tsend ‘1' tnet)

 

Algorithm 2.3.3 System-Level Parameters Estimation

Po:

begin

tum := GetTime();

for i := 1 to k do

Send(message);

Dummy loop(tdummy);

Recv(message);

endfor;

test = (GetTimCO " tstart)/(2 X k);

end.

P1:

begin

for i := l to I: do

Recv(message);

Send(message);

endfor;

end.   
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2.4 Experiments

We conducted the experiments on the 128-node IBM/SP at Argonne National Laboratory.

Each node has an IBM/RS6000 processor (62.5 MHz) with 128 MB memory and 1 GB

local disk. The peak performance is 125 MFlops per node. The communication library is

MPI-F library version 1.41 [55]. Each data point in our results is the minimal value of 1000

measurements to reduce the overhead due to network contention from other programs. 2

However, if the sustained performance is desirable, the average values can be used instead.
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Figure 2.8: The results from Ping and PingPong benchmarks.

Figure 2.8 presents the results from Ping and PingPong benchmarks from our testbed

system. The results indicate that for a message size m, tho“ and tend of IBM/SP is 19.150 +

 

th is difficult to reserve the whole machine for our measurement.
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0.02 * m and 53.295 + 0.07 * m respectively. As expected, these two parameters are

dependent to the message size. This is mainly due to memory copying and checksum

computing overheads.
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Figure 2.9: The relationship of tdummy and tat.

To measure the system-level parameters, we first determine tnet by estimating tune. As

explained in Algorithm 2.3.3, we vary the value of tdummy and observe where the value of

tm begins to rise. Figure 2.9 shows the results when testing with l-byte messages. When

tdummy is small, tat remains almost approximately 53.3 usecs. Once we increase tdummy

to be more than 67.2 usecs, test begins increasing proportionally. Thus, tne¢(l-byte) is

approximately 67.2 — 53.3 = 13.9 psecs. Note that this value is just an estimated value

since we cannot precisely control the value of tdummy. However, we project the value when

the value of test increases. Based on this technique, tnet for IBM/SP is 13.900 + 0.02 a: m.
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Figure 2.10: The results of estimating the system-level parameters.

Thus, we can calculate two, which is 20.245 + 0.03 * m. The results for system-level

parameters are shown in Figure 2.10.

2.5 Conclusion

Understanding the cost of point-to-point communication services is very crucial in model-

ing software-based multicast communication. In this chapter, we have discussed the model

for point—to-point communication which will be used as a basis throughout this work. Un-

like other models, the parameterized communication model are designed specifically for

modeling multicast. The main goal of this model is to include only necessary and suffi-

cient parameters to characterize the underlying network architecture. There are two types
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of parameters: application-level parameters and system-level parameters. The application-

level parameters are used in modeling multicast and system-level parameters are used in

our simulation studies.

In addition, we have presented how to evaluate the network parameters. The application-

level parameters are quite easy to measure and can be done at the user level. On the other

hand, the system-level parameters are slightly more difficult to evaluate, especially when

accuracy is desirable. However, in our work, it is sufficient to just estimate their values.

We have presented the estimation techniques for the system-level parameters. To demon-

strate our benchmarking techniques, we conducted experiments on the IBM/SP at Argonne

National Lab and the results are summarized in Table 2.5.

 

 

 

Parameters Latency

thold 19.150 ‘1" 0.02 * m

tend 53.295 + 0.07 s m

tum, 19.150 + 0.02 a: m

tact 13.900 -i- 0.02 at m

tree, 20.245 + 0.03 * m    
Table 2.1: The communication parameters of the IBM/SP at Argonne National Lab.
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Chapter 3

Multicast Communication Model

Multicast involves the communication of a group of nodes. One of the nodes, identified as

the root node, is the sender. The other nodes in the group receive a message from the root

node. Theoretically, all participants (including the root node) are assumed to complete a

multicast operation at the same time. However, this is not always true. In this study, the

definition of multicast is based on the MP1 specification. A node in the group is consid-

ered to start participating a multicast communication service when it calls the multicast

communication subroutine (MPLBcast). When the call is returned, that node has received

the message and is considered tofinish participating the multicast operation. The multicast

operation is considered complete when all nodes have received the messages and returned

from the subroutine. Based on this definition, all nodes may not finish participating at the

same time. Moreover, some nodes might not have started participating yet. This makes

multicast benchmarking even more difficult.

To evaluate the performance of multicast communication accurately, we need to ad-

dress two important issues. The first issue is to identify the most representative metrics.
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The chosen metrics must be able to characterize the actual overhead of the multicast ser-

vice when it is invoked in applications. Moreover, the definition must be well-defined. The

other important issue is to use correct measurement techniques. One common mistakes in

performance evaluation is using incorrect measurement techniques. The results from incor-

rect techniques can be very misleading. Thus, it is necessary to verify that the techniques

are actually measuring the desirable metrics.

To understand our performance evaluation techniques, it is important to understand the

basic behavior and implementation techniques of multicast communication. As mentioned

in Chapter 2, most software-based multicast implementations are based on the concept of

multicast trees which is discussed in the next section.

3.1 Multicast Trees

Most of the multicast communication are implemented in software in which the nodes in

the communication group form a tree-like structure to dictate the ordering of the com-

munication. Based on the multicast tree structure (or multicast tree), each node uses the

point-to-point communication service to forward a message to each of its children in turn.

Each turn, when a node sends a message, is usually referred to as a multicast step.

Let consider examples shown in Figure 3.1. The first example is a sequential tree or

known as separate addressing. In this approach, the root node (Po) sends a separate mes-

sage to each of the three nodes in turn. This approach was used to implement the multicast

function, Xmsend, in the Symult 2010 [57]. Figure 3.1(b) is a well-known binomial tree

based on the recursive-doubling technique [41]. In this approach, the number of nodes that
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(a) (b)

  
Figure 3.1: Three basic multicast tree structures: (a) the sequential tree, (b) the binomial

tree, and (c) the chain tree

have already received the message increases by a factor of two after each multicast step. In

Figure 3.1(b), the root node (Po) sends a message to its first child (P1) in the first step. In

the second step, both Po and P1 send messages to the other two nodes, P2 and P3. The last

example is a chain tree. As shown in Figure 3.1(c), the root node (Po) sends a message to

its first child (P1) in the first multicast step. In the second step, P1 forwards the message

to its successor, P2, in the chain. The multicast operation is done when the message is

completely forwarded to the last node in the chain, which is B, in this example.

3.2 Performance Metrics

The multicast step had been widely used as a metric for multicast communication for a long

time because it is quite easy to evaluate. Theoretically, the performance of a multicast tree

is dependent on the number of multicast steps required which is a function of the group

size. For a group size of k, the sequential tree and the chain tree require k — 1 multicast

steps, and the binomial tree requires ”092,131 multicast steps. According to the number of

multicast steps required, the binomial tree is always the best.

38



In practice, the multicast step is not a good metric. This is because the multicast step can

truly represent the performance of multicast when the communication is done in a lockstep

fashion or a rendezvous strategy [58]. In other words, the sender waits until the receiver

finishes receiving the message before it resumes execution. In this case, thold must equal

to tend. However, as discussed in Chapter 2, using communication buffer and intelligent

network interface allows the sender to resume execution without having to wait for the

message to be completely delivered. Thus, a tree which requires fewer multicast steps may

actually perform worse than a tree which requires more steps. Consider the examples in

Figure 3.1,. Suppose we assume tsend = 2, tnet = 1, tree, = 2, and thold = tum]. By

taking into account the sending and receiving latencies, the sequential tree shows the best

performance. Therefore, in this study, the elapsed time between the multicast is issued

until the last node receives the message is used as the performance metric for a multicast

communication service. We refer this elapsed time as the multicast latency (tmmt). In

Figure 3.1, tmmt of the sequential tree, the binomial tree, and the chain tree are 9, 10, and

15, respectively. Obviously, the sequential tree is the best.

One may argue that the metric should not consider the completion time of the last node

because as soon as a node finishes participating, it can continue execution immediately.

However, this is true only when the load can be dynamically balanced during the runtime.

In typical data parallel programs, such as HPF, the workload is evenly-distributed among

nodes using data distribution directives, such as Block and Cyclic [17]. Consider the case

where the multicast is invoked, followed by some computation, and then a barrier synchro-

nization, as illustrated in Figure 3.3. The nodes that finish earlier in the multicast tree (P1

and P2 in the example) have to wait until the last node (P3) reaches the barrier. Thus, tmcast
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Figure 3.2: The timing diagrams of three basic multicast tree structures: (a) the sequential

tree, (b) the binomial tree, and (c) the chain tree

is a fair metric to evaluate different multicast implementations.

3.3 Benchmarking Technique

In performance evaluation, using correct measurement techniques is as important as defin-

ing the most representative metrics. Unfortunately, without standard multicast benchmarks,

one common mistake in multicast-related studies is using incorrect measurement tech-
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Figure 3.3: The importance of the multicast latency.

niques. The results from incorrect techniques can be very misleading. To explain this prob-

lem, we examine a ping-based benchmarking which has been used by some researchers.

Algorithm 3.3.1 shows a ping-based multicast benchmarking code which measures the av-

erage latency at the root node (tract) and the maximum latency among all participating

nodes (tmax)- The results can be a big misleading when comparing different multicast im-

plementations since neither tract nor tmaI reflects the actual performance of a multicast

tree. As shown in Figure 3.4, the results mislead us to conclude that the performance of the

chain multicast tree is better than the binomial multicast tree in term of both latency and

scalability, which is obviously wrong.
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Algorithm 3.3.1 The ping-based multicast benchmark.

begin

tum := GetTime();

forz’ := l toNdo

MPI_Bcast(message);

endfor;

tlocal Z: (GetTimeO ’ tstartyN;

two, := tum; from the root node;

tum := maximum reduce (howl);  
 

 

 

 

  

 

end.

120 7: i---0--- BinomiaiE

i i—U—Chain i .9 --------- ‘0......... .,..e

100 I r -

l O -----."‘--------- .Qo“

g 80 ‘4

9.4.4.4:
: . .

>. 60 I
o I

E ! pus

3 4o
? o"

20 ~. we 4 H I .

i

0 1+ I , .

0 4 8 12 16 20 24

Numberot Nodes   
 

Figure 3.4: The ping-based measurement results of multicast (tract) on the IBM/SP.

There are two major problems with the ping-based benchmark, pipelined effect and

cross-iteration contention. If we roll out the loop in Algorithm 3.3.1, this algorithm mea-

sures the average latency of N consecutive multicast operations. Based on MP1 definition,
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the return from MPLBcast call does not guarantee that the whole operation is actually fin-

ished. Thus, some nodes may start the next call to MPI.Bcast routine even before all nodes

finish the current MPLBcast operation. This creates a pipelined effect, and hence, the mea-

sured latency is less than the actual MPI_Bcast latency. The other problem is the contention

between MPI_Bcast executed on different iterations. As mention earlier, some nodes may

start the next call to MPI_Bcast routine while the current MPI_Bcast operation is not fin-

ished. The overlap of MPLBcast from different iterations may create network contention

which can further skew the measurement results.

3.3.1 Collective Communication Flow Model

In this study, we use the collective communication flow model [59] to provide a framework

for our multicast benchmark. We also provide the formal definition of multicast latency

which is used as a metric. Although the definition of the multicast latency is very simple,

it still contains some ambiguities. In SPMD environment, each node executes at its own

speed. Some nodes may start participating a multicast operation late such that the multicast

latency may be longer than expected. To eliminate these ambiguities, we redefine the

multicast latency as follows:

Definition 1 Let all nodes simultaneously call the multicast communication routine at time

to. The multicast latency (tmmt) is the elapsed time between to and the earliest time when

all nodesfinish the call. Let -D be the set ofall destinations in the group and let the set of

critical destinations (Dc) be a set ofdestinations thatfinish the call last.
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The main problem of this definition is that it is very difficult, if possible, to make all nodes

call the multicast routine at the same time without using a special hardware. To make the

multicast latency measurable, the measurement techniques are based on the communication

flow model.

Definition 2 A communication flow f (r, d) is a chain of unicast operations propagating

messagesfrom the root node T to the destination (1.

Definition 3 The flow latency tf (1*, d) is the elapsed time between the root node 1' calls the

multicast communication routine and the destination (1 returnsfrom the call.

P0 calls the routine.

 

   
0123456789.”

Figure 3.5: An example of the multicast communication service for 4 nodes. P0, P1, P2,

and P3 call the multicast routine at time instance 0, 2, 5, and 3, respectively.

Figure 3.5 demonstrates an example of the multicast communication service for 4 nodes

where node P0 is the root node. In this example, there is only one critical destination.

Thus, D = P1, P2, P3 and Dc = P3. In addition, there are 3 flows including f(P0, P1),

f(P0, P2), and f(P0, P3). The flow latencies are 7, 7, and 10, respectively. Based on the

flow latency, we can derive the following lemmas.
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Definition 4 . Let r be the root node of the multicast operation. Let t’f(r, d) be the flow

latency off (r, d) where all nodes simultaneously call the routine.

Lemma 1 Let r be the root node ofthe multicast operation.

tmcast : Idleanhf} (T, (1)}

= t}(r, dc) Vdc 6 DC

Lemma 2 If the root node 1‘ is the last node to call the multicast communication routine,

for all destination d E D:

tf(’l‘, d) = Ila-(7‘, d)

Proof: The proof for Lemma 1 is quite straight forward since it is derived from Definition 1

and Definition 4. For Lemma 2, we consider the fact that in multicast operation, the root

node is the only source node and all other nodes are the destinations. All nodes, except the

root node, have to receive a message before forwarding the message to other nodes. Thus,

even though all nodes participate the multicast operation, the operation does not take place

until the root node calls the multicast subroutine. Therefore, the flow latencies when the

root node is the last one to call the multicast routine are equal to the flow latencies when

all nodes call the routine at the same time.

Theorem 1 If the root node 1‘ is the last one to call the multicast subroutine, for a critical

destination dc E Dc andfor any destination d E D:

tmcast = tf(Tadc)
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tf(7’, d) S tf(T, dc)

Proof: See Lemma 1 and Lemma 2.

3.3.2 Multicast Benchmarking

Based on Theorem 1, there are three keys when measuring the multicast latency:

0 Make the root node to be the last one to call the multicast routine.

0 Measure the flow latencies of the root node and all destinations.

0 Identify a critical destination. Its flow latency is the multicast latency.

It is quite simple to solve the first problem. Using a reduction operation before measure-

ment, we can guarantee that the root node is always the last node to call the multicast

operation. To solve the second problem, however, is more complicated. To measure a flow

latency tf(T, d), we must know the time the root node 1' calls the multicast routine and the

time a destination d returns from the call. Without a global clock, finding the elapsed time

from two nodes is not straight forward. To overcome this difficulty, we use a technique

similar to our PingPong benchmark. In our technique, the root node issues a multicast

operation and wait for an ack message (1 byte) which is sent from node d after node d

finishes participating the multicast operation. This is considered one iteration of our mul-

ticast benchmark. Then the root node computes the elapsed time of one iteration (tm(d)).

During the iteration, all other nodes only participate the multicast operation. To distinguish

the destination d (whose flow latency is being measured) from other destinations, the des-

tination d is referred to as the responder. By varying a responder, we can measure the flow
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latency from r to each destination. The destinations whose flow latency are the longest are

critical destinations.

To clearly explain the idea, let consider examples in Figure 3.6. There are four possible

cases when the flow latencies are measured from different responders:

e the responder is not a critical destination and an ack arrives at the root node before

the root node finishes participating.

o the responder is not a critical destination and an ack arrives at the root node after the

root node finishes participating but before the multicast is actually ended.

o the responder is not a critical destination and an ack arrives at the root node after the

multicast is ended.

e the responder is a critical destination.

For all but except the first case, we can find the flow latency tf (r, responder) by subtracting

the latency of a l-byte ack from tm (responder). Although we can not find the actual flow

latency of the first case, we can ignore this case as this responder is not a critical destination.

In the last case, the responder (P4) has the longest flow latency. Thus, P4 is the critical

destination and its flow latency tf(P0, P4) is the multicast latency.
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Figure 3.6: Four possible cases when measures the flow latency from the root node P0 to

P,- which is a responder.

48



 

Algorithm 3.3.2 Measuring multicast communication.

begin

{Synchronize}

Reduce(root); {The root node finishes the last}

{Measurement}

if node.id = root then

tstart := GetTime();

endif;

foriz=1toNdo

Multicast_Routine();

if node.id == root then

Wait for an ack from responder;

else if node.id == responder then

{Dummy loop goes here.}

Send a one_byte ack to the root;

endif;

endfor;

if node.id = root then

tm(responder) := (GetTimeO - t,,,,.,)/N;

tf(root, responder) := tm(responder) - tack(one-byte);

endif;

end.   
 

Similar to Ping and PingPong benchmarks, it is quite difficult to measure a single iter-

ation of multicast benchmark. This is because the system clock resolution is usually not

fine enough. Thus, we measure the elapsed time of k iterations and compute the average

delay. The algorithm to measure tf(T00t, responder) is shown in Algorithm 3.3.2. Since

this algorithm measures a flow latency of a single responder, it has to run k — 1 times if the

group size is k. The value of responder changes from P1 to Pk_1 for each run, where P0 is

the root node.
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One flaw of this algorithm is that t,(root, responder) computed in the algorithm may

not be equal to the actual flow latency. This is because the root node may start the next

iteration while some nodes do not finish the current iteration yet. Hence, it cannot be

guaranteed that the root node is always the last node to call the routine all the time. In

addition, the overlap of the multicast communication from different iterations may create

network contention which will further skew the result.

To solve this problem, each responder has to wait tdummy time before sending the ack

message back. (The placement of the dummy loop in the code is shown in Algorithm 3.3.2.)

Let the worst case measured latency in Algorithm 3.3.2 be twmt. By choosing tdummy Z

tum“, it can guarantee that by the time the root node receives the ack message, all nodes

have already started the next iteration. Thus, Theorem 1 holds. The responders that have

the longest tm(responder) are the critical destinations. Therefore, the multicast latency

can be measured by using one of the critical destinations as the responder and performing

one more measurement without the dummy loop.

3.4 Experiments

We conducted the experiments on the 128-node IBM/SP at Argonne National Laboratory.

Each node has an IBM/RS6000 processor (62.5 MHz) with 128 MB memory and 1 GB

local disk. The peak performance is 125 MFlops per node.

Our benchmark is implemented using MPI-F library version 1.41 [55]. In order to

fully utilize the high-performance switch, the library euilib with option us is used.

Each data point in our results is the minimal value of 1000 measurements to reduce the
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overhead due to network contention from other programs'. Note that the latency of the

l-byte acknowledgment message has been deducted from all data points.

3.4.1 Results Interpretation

The fundamental concept of our benchmark is to select the last node by determining the

time measured from different responders. To demonstrate how to interpret the results,

we benchmark MPI_Bcast of MPI-F library, which is based on the block-based binomial

tree. This tree is a combination of the binomial and sequential trees. The parameter

blocks 1 ze determines the size of each block. First, some members of the process group

are partitioned into fixed-size blocks, where the number of blocks must be a power of 2.

Thus, some nodes may not belong to any block. Then, the root node multicasts a message

to the first node in each block using the binomial tree. The first node in each block then

sends the message to other members in the block using the sequential tree. Finally, the

remaining nodes, say m of them, not belonging to any block are taken care by P0 to Pm_1.

The parameter blocksize determines the shape of the tree. If blocksize is one, the

tree is a binomial tree. If blocksi ze equals to the group size, the tree is equivalent to a

sequential tree.

Figure 3.7 shows the tree used in MPI-F for a group size of 9, where blocksize is 3.

In this figure, there are two blocks: P0, P1, P2 and P3, P4, P5, where Po and P3 are the first

node of each block, and the two blocks form a two-node binomial tree. After Po sends the

message to P3, both processors send messages to other processors in their blocks. Then P0,

 

1It is difficult to reserve the whole machine for our benchmarking.
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P1, and P2 send messages to the remaining nodes which are P5, P7, and P3. Figure 3.7 also

shows the measured latency for each processor when the processor is the responder. From

the timing diagram, P8 is the last node. Thus, it is the critical destination. Its flow latency

is the multicast latency.

 

 

   

   
 
 

 
 

 
 

 
 
 

 
  

Figure 3.7: The flow latency of MPLBcast of MPI-F library on the IBM/SP with message

size being 1 byte.
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3.4.2 Comparison of Three Multicast Trees

We compare the performance of three different multicast trees with respect to two differ-

ent message sizes. we consider the sequential tree, the binomial tree, and the block-based

binomial (MPI-F) tree. Figure 3.8 illustrates the multicast latency (tmcast) when the mes-

sage size is 1 byte. When the size of tree is small, all trees exhibit the same performance.

As the tree size become larger, the multicast latency of all trees increases. When the tree

size is very large, the sequential tree performs the worst and both binomial and MPI-F tree

perform considerably the same.
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Figure 3.8: The multicast latency (tmcast) of three multicast trees with message size being

1 byte.

When the message size is 1024 bytes, the results from three multicast. trees are shown

in Figure 3.9. With this message size, the difference of the performance of the binomial
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tree and MPI-F tree is noticeable. This is due to the fact that the MPI-F tree is customized

 

  

 

to perform well on the IBM/SP.
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Figure 3.9: The multicast latency (tmmt) of three multicast trees with message size being

1024 bytes.

3.4.3 Scatter Communication

The proposed benchmarking technique can be extended to other one-to-all collective com-

munication services. The key idea of measuring the latency of this communication class

is to identify the last node in the tree and measure the elapsed time. Figure 3.10 demon-

strates the result of applying the proposed benchmarking technique to MPI-Scatter in MP1-

F library. Since the latency increase of MPI_Scatter is linear, it is quite obvious that this

function is based on a sequential tree approach, which was confirmed by checking the
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source code [60]. Its performance is comparable to the sequential tree with slightly higher

software latency.
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Figure 3.10: The communication latency of MPI.Scatter with message size being 1 byte.

3.5 Conclusion

In this chapter, we have discussed the model and benchmarking technique for multicast

communication. Measuring the multicast latency is a challenging problem. We have shOwn

that the popular ping-based benchmarking technique can be quite misleading. The pro-

posed benchmarking technique can accurately measure the actual multicast latency with-

out requiring a global clock and without having to know the detailed implementation of the

multicast algorithm. To demonstrate and validate our technique, we conducted experiments
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on the [BM/SP at Argonne National Laboratory and compared the empirical results with

the results based on the multicast model. We also discussed the extension of our bench-

marking technique to measure another one-to-all collective communication service, scatter.

Note that this benchmark is used to evaluate multicast algorithms throughout this work.
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Chapter 4

Platform-Independent Multicast

A key issue in designing a software multicast algorithm is to consider the trade-off be-

tween performance and portability. To achieve nearly optimal performance, some algo-

rithms utilize the underlying network characteristics, for example EDN approach [49] and

Scatter-Collect [43]. However, those algorithms are applicable to the intended architec—

tures only and cannot be ported to other architectures. The other approach is to use stan-

dard communication services, send and receive, to propagate messages based on some

standard multicast trees such as the sequential tree and the binomial tree. This platform-

independent approach is simple and highly portable. Due to its simplicity and portability,

the platform-independent multicast has been adopted by many implementations of standard

communication libraries.

The main drawback of platform-independent multicast is that its scalability is usually

poor and its performance typically varies significantly from one platform to another. Let

consider Table 4 which demonstrates the performance of two multicast trees (8 nodes and

l-Kbyte) on two hypothetic systems. On S1, the sequential tree performs better than the
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binomial tree. However, the performance of both trees are totally different on S2. The

binomial tree obviously out-performs the sequential tree.

 

System Sequential Binomial

5'1 (thold = 20 + 0.02m, tend = 55 + 0.07m) 19631 21669

S2 (thaw = 25 + 0.03m, tend = 40 + 0.04m) 22718 12408

 

    
 

Table 4.1: The performance of the sequential tree and the binomial tree on two hypothetic

systems. The multicast tree is 8 nodes with l-Kbyte message.

To overcome this problem, we propose the parameterized multicast algorithm which is

portable, but still performs well on various platforms. The main concept of our proposed

algorithm is to characterize the underlying network using the parameterized communica-

tion model presented in Chapter 2 and then construct an optimal multicast tree based on

two network parameters, thorax and tend- First, we measure network parameters, thold and

tend, during the compilation phase. When an application calls the multicast routine during

the runtime, our multicast algorithm uses the predetermined network parameters to gener-

ate a multicast tree which yields the best performance. With this approach, our multicast

algorithm is portable and does take into account network parameters. Consequently, the

performance achievable, although may not be optimal, will be close to optimal.

4.1 Multicast Tree and Network Parameters

A previous example clearly shows that different multicast trees exhibit different perfor-

mance. In fact, performance of a multicast tree, when run on different platforms, can be

entirely different. Before we can construct an optimal multicast tree based on network

parameters, we must first understand the relationship of multicast tree’s shape and the un-
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derlying network parameters.

(a) (b)

  
Figure 4.1: Three basic multicast tree structures: (a) the sequential tree, (b) the binomial

tree, and (c) the chain tree

Let consider the aforementioned basic multicast trees, (a) the sequential tree, (b) the bi-

nomial tree, and (c) the chain tree. The structures of these trees are presented in Figure 4.1.

The major differences among these trees are their depths and the out-degrees of the internal

nodes. The sequential tree is not deep, but its out-degree of the root node is very high. On

the contrary, the chain tree is very deep, but the out-degree at the root node and all internal

nodes are one. Based on the concept of recursive-doubling, the binomial tree is deeper

than the sequential tree but not as deep as the chain tree and its internal nodes have higher

out-degree than the chain tree’s but not as high as the sequential tree’s.

We further study the effect of network parameters by examining the estimation of mul-

ticast trees’ performance based on timid and tend. Table 4.1 contains the estimated perfor-

mance of three basic trees. Obviously, thold is very significant for the sequential tree. This

is because the sequential tree is not deep and quite flat. Thus, in a system whose thold is

much less than tend, it is more efficient to allow the root node sending to all receivers. For

the chain tree, tend dominates since the tree is very deep. Thus, it is quite suitable for a

system with thold greater than tend. Since the binomial tree is quite complicated, it is very
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Multicast Tree Multicast Latency
 

sequential (k - 2) X thozd + tend

chain (k — 1) X tend

binomial case: thold S tend

log2 k x tend if log2 k is an integer

maa:{ [log2 kj x tend,

(Llog2 k] - y + 1) x thold + y x tend} otherwise

where y = [log2(k — 2Llogz "JM + 1

C386: thold > tend

[log2(k - 1)] X thold + tend     
Table 4.2: The performance of the sequential tree, the chain tree, and the binomial tree

where k is number of nodes in the tree.

difficult to estimate its performance. However, its estimation and its structure suggest that

this tree is the best in a system whose than: is approximately tend. Figure 4.2 summarizes

the relationship of them. tend, and the structure of an optimal multicast tree. Note that for a

system with thold less than tend, an optimal multicast tree is a combination of the sequen-

tial tree and the binomial tree which implies that the tree is deeper than the depth of the

sequential tree and each internal node of the tree sends to more receivers (more flat) than

the binomial tree. In a system with thold greater than tend, an optimal multicast tree is a

combination of the binomial tree and te chain tree.
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Figure 4.2: The relationship of thaw. tend, and the structure of an optimal multicast tree

4.2 Optimal Multicast 'Irees

Consider the construction of an optimal multicast tree with k nodes, (P0, P1, . . . , Pk_1),

where P0 is the root node. In the first step, Po sends a message to Pj. Before P,- is receives

the message completely, Po may be able to send the same message to other nodes in the

tree depending on the values of thold and tend. When P,- is ready to send messages, basically

there are two multicast sub-trees: one is a j-node tree (P0, P1, . . . , PJ-_1) rooted at P0 and

the other is a (k — j)-node tree (Pj, 131-+1, . . . , Pk_1) rooted at P,- as shown in Figure 4.3.

The issue now becomes which node should belong to which subtree.

In order to construct an optimal multicast tree, two requirements must be satisfied. First,

the node P,- must be chosen such that the generated multicast tree is optimal. Second, the
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......

Figure 4.3: An optimal multicast tree with k nodes consists of two optimal multicast sub-

trees.

two subtrees (P0, P1, . . . , Pj-1) and (Pj,PJ-+1, . . . , Pk_1) must themselves be optimal. The

same procedure is then recursively applied to each of the multicast sub-trees. Thus, this

optimization problem exhibits two properties: optimal substructure and overlapping sub-

problems. With the presence of these two properties, the dynamic programming technique

is applicable to find an optimal solution [61].

Let t[z'] (for each i, 1 _<_ 2' 5 k) be the minimum latency required to multicast a mes-

sage among z' nodes Pa,Pa+1, . . . ,Pa+,-_1 (for an a, 0 5 a _<_ k — 2') with node Pa as the

root node. We then recursively define t[z'] as follows. If z' = 1, there is only one node

in the tree, thus t[z'] = 0. When 2' > 1, Pa sends the message to some node Pa+j for

1 S j S 2' — 1. After thold units, Pa can continue to transmit to nodes in its subtree of

(Pa,Pa+1,. . . , Pa+j_1), and after tend time units, Pa+j has received the message and can
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start the transmission to the nodes in its subtree of (Pain, P,1+H 1, . . . , Pa+,-1). Therefore,

the multicast latency among 2’ nodes is in its subtree. This suggests the following recurrence

for t[z']. Thus, the multicast latency is the maximum latency between the multicast latency

of the subtree of (Pa,Pa+1,. . . , Pa+j-1) plus thold and the multicast latency of the subtree

of (PM), Paw-+1, . . . , Pa+,_1) plus tend. Note that thold is needed in the former because Pa

must send a message to PM]- before it sends messages to other nodes in its subtree, and

tend is needed in the latter because P“,- has to receive the message from P0 before it can

multicast the message to other nodes in its subtree. Therefore, we have

t[Z] = max(t[j] + thold, t[Z — J] + tend)

To ensure the optimality, we must choose the node Pa+j such that the multicast latency is

minimal. Thus, we have the following recurrence for t[z‘].

0 ifi = 1

ti = ‘ '
I l £31513 l{max(t[_7] + thaw,

l

t[i _ j] + tend)} if’l. >1

The optimal multicast latency of a k-node tree is t[k] and this can be computed in 0(k2)

time by the dynamic programming. In particular, we compute values in the order t[1], t[2], - - - , t[k]

and store them in an array. In order to compute t[z’] (for 1 < i _<_ k), we consider each value

ofj from 1 to 2' — 1, and determine the value ofj for which max (t[j] + thold, t[z' —j] + tend)

is minimized. Thus the total running time is 2:“: i = 0(k2).
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4.3 The 0(k) Algorithm

The overhead of 0(k2) complexity of the dynamic-programming algorithm in the previous

section is still too high to be used in the real world. However, it is possible to improve

the running time to 0(k) by limiting the choices of j that need to be considered at each

iteration. This is based on the observation about the nature of t[i] which is described in the

following lemma.

Lemma 3 Let j,- denote the value ofj for which the recursive definition of t[i] achieves its

minimum value (i. e., the best way to split a tree with 1' nodes is into subtrees ofsizes 3', and

i—j,). Then,j2=1and,f0r2$iSk-l,j,-+1=ji+10rji+1=j,-.

Proof: Without the loss of generality, for an optimal tree with 2' nodes, let the right subtree

has j,- nodes and the left subtree has j: = i — j.- nodes, as shown in Figure 4.4.

j'lzi-jlnodes :' '2

Figure 4.4: An optimal multicast tree with 2' nodes consists of two optimal multicast sub-

trees.

Suppose the lemma does not hold. Let to be such that for any optimal multicast tree

with 2'0 nodes, either:



1' jio Z jio-l + 2

OI" 2 jio S jio-l ’1

Choose such an optimal multicast tree T0 with 2'0 nodes (T0 has subtrees with 3,0 and

jfo nodes) with the minimum value of A(T°) where

A(TO) = ”to - jio—ll + Ugo — jig—1|

case 1: Suppose jio 2 j,~0_1 + 2. This implies that

J70 S Lia—1 - 1 (4-1)

By deleting one node from the right subtree and adding one node to the left subtree, the

multicast latency of the right subtree is

t[jio — 1] + thold S t[jio] + thold

g t[z’o], from the definition of t[z'o]

and the multicast latency of the left subtree is

t[j,‘0 + 1] + tend S t[jfo_1] + tend from Equation (4.1)

g t[z'o — 1] from the definition of t[z'o — 1]

S Wu]

The multicast latency of this new tree T1 is still optimal (i.e., t[z'o]) and A(T1) < A(T°).

This is a contradiction to the choice of To.
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cast 2: Suppose 3,0 g j,0_1 - 1. This also implies that

1:, 2 1:04 + 2 (4.2)

By deleting one node from the left subtree and adding one node to the right subtree, the

multicast latency of the left subtree is

t[jio _ 1] + tend S t[jfo] + tend

< t[z’o] from the definition of t[z'o].

and the multicast latency of the right subtree is

t[jio + 1] + thold _<_ t[jgo_1] + thold from Equation (4.2)

S t[io - 1] from the definition of t[z'o — 1]

S tile]-

The multicast latency of this new tree T2 is also optimal and A(T2) < A(T°). It is a

contradiction to the choice of To. This completes the proof of the lemma.

Based on Lemma 3, we can revise our dynamic programming algorithm to become an

0(k) algorithm as follows:
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vvhere_fi2== 1.

t[z'] = 4

 

tend

ifi=1

ifz'=2

min{ max{ t[j,_1] + thou, t[i “ji—1]+tend}i

max{ t[ji—l + 1] + tholda

t[z' — 1 — j,_1] + tend}}
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Algorithm 4.3.1 OPT-TREE

Input: rootid: nodeid of the root node.

nodeid: nodeid of the current node.

k: number of nodes.

3”,: the size of the right subtree.

begin

{Adjust node-id such that root-node has index = 0.}

base := rootid;

myz'd := nodeid - rootid;

if myz’d < 0 then

myid := myz'd + 1:;

endif;

while k > 1 do

if myz’d < jk then

{I belong to the right subtree}

if myz'd = 0 then

{I am the root node}

Send a message to node (base + 3),);

endif;

k 3: lie;

else

{I belong to the left subtree}

if myid = jk then

{I receive a message from the root node}

Receive a message to node base;

endif;

{Node jk becomes the root node of this subtree.}

base := base + 3),;

{Adjust node-id. and the size of the tree}

myid := myz'd — jk;

16 2= [(7 - jk;

endif;

endwhile;

end.    
Based on the revised algorithm, we develop the parameterized multicast algorithm

(OPT-Tree) shown in Algorithm 4.3.1. In this algorithm, when we construct an optimal
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multicast tree with k nodes, we first compute t[z’] where 1 S i S k. Then, we recursively

construct a tree based on the t[z’] table. Table 4.3 shows an example of calculating t[k] for

k = 9, thaw = 20, and tend = 55. An optimal multicast tree corresponding to Table 4.3 is

shown in Figure 4.5. Note that if the node-id of the root node is not 0, we need to adjust

the node-id for all node as shown in Algorithm 4.3. 1. In summary, we obtain the following

theorem.

Theorem 2 The optimal multicast latency ofa k-node tree can be computed in 0(k) time.

Table 4.3. k = 9, thgld = 20, and tend = 55.
 

 
 

 
 

 

 

 

 

 

 

       

i 11' i - ji t[ji] + thaw t[i - ji] + tend t[1i]

l - - - - 0

2 l 1 20 55 55

3 2 l 75 55 75

4 3 l 95 55 95

5 3 2 95 110 110

6 4 2 115 110 115

7 5 2 130 110 130

8 5 3 130 130 130

9 6 3 135 130 135 
 

4.4 Experiments

We conducted the experiments on the 128-node IBM/SP at Argonne National Laboratory.

Our implementation uses MPI-F library version 1.41 [55]. In order to fully utilize the

high-performance switch, the library euilib with option us is used. Each data point

in our results is the minimal value of 1,000 measurements to reduce the overhead due to

network contention from other programs. We use the benchmarking technique presented

in Chapter 3.
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Figure 4.5: An optimal multicast tree with 9 nodes thold = 20, and tend = 55.

In this Section, we discuss the results from our experiments by measuring the perfor-

mance of three multicast tree: the popular binomial tree used by many researchers, the

block-based binomial tree used in MPI-F, and the OPT-Tree tree, with respect to two dif-

ferent message sizes. The sequential tree and chain tree are not considered as they were

known to perform poorly on the IBM/SP [62].

We compare the performance of three different multicast trees with respect to two dif-

ferent message sizes: 1 byte and 1K bytes. Figure 4.6 illustrates the multicast latency

70



 

   

1000 ‘_ :J-nBinomiahb) flPT-F (1b) _ —-l--Optimal (1b)

900 _ j...:>§...BinomiaI(1Kb) v-....-=......MPI-F(1Kb) -...-Optimal(1Kb) ' i8
!

 

b
e

700 a! ”y" ”"7"“—

600 4 '

500 a;

400 J

 

 

300

M
u
l
t
i
c
a
s
t
L
a
t
e
n
c
y
(
u
s
e
c
s
)

_
_
_
.
.
-
L
-

200 .

l

100]

Or

0

 
8 16 24 32 4O 48 56 84

Number of Nodes   
 

Figure 4.6: The multicast latency (tmmt) of three multicast trees with message sizes being

1 byte and l Kbytes, respectively.

(tmmt) of the three trees. For the case of the binomial tree, we were unable to measure the

performance for group size greater than 24 due to the heavy use of the IBM SP at Argonne

recently (we will complete the measurements in the final paper). However, it is clear that

the performance of the binomial tree is the worst among the three trees. As the number

of processors in a group increases, the multicast latency of all three trees increases. All

three trees exhibit very close performance when the number of processors is small. In all

cases, the OPT-Tree tree does provide the best performance. When the message is 1 byte,

the MPI-F tree has slightly higher latency than the optimal tree. When the message size

is 1024 (bytes, the performance improvement of the OPT-Tree tree over the MPI—F tree is

noticeable, which indicated that [the proposed optimal multicast tree, even not considering
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the underlying network topology, performs well on the IBM/SP.

4.5 Extension to the a-Port Architecture

Our previous discussion was based on the popular l-port communication architecture. In

some parallel machines, such as the TMC CM-S and Intel/CMU iWARP, each processor

has multiple communication ports. This section generalizes the construction of optimal

multicast trees based on the a-port communication model.

As we defined earlier, thold is the time interval between two consecutive send operations

through a single port. Let tint denote the time interval that a processor can initiate another

send operation from a different port. Obviously, we have tmt < thou; otherwise, multiple

ports do not benefit. Given tint and thou. the maximum number of ports, am, must satisfy

the following inequality

(amaz — 1)tint < thold S amaxtint-

The proposed a-port optimal multicast algorithm can be applied to any value of a S am”.

Consider the construction of a multicast tree with lc nodes (P0, P1, - - ~ , Pk_1). The 0(k)

time dynamic programming algorithm discussed in Section 4.3 for a = 1 will be general-

ized to develop an 0(ak) time algorithm for an arbitrary value of a 3 am“.

Let t[z'] (for each 2', 1 g 2' g k) denote the minimum latency required to multicast

a message among 2' nodes. We have t[1] = 0 and t[2] = tend. For 2' 2 3, t[z'] can be

recursively defined as follows. Consider a multicast tree with i nodes. The source node P0
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sends the message to (1 nodes using a different ports. Here we assume that node Po sends

the message to node Pg, for r = 1, 2, - - . , a in this order. That is, if node Po transmits

to node Pq1 at time T, then node Po can transmit to node Pq, (2 g r S a) after time

T + (r — 1)t,,,t. Thus, the multicast tree with 2' nodes has a + 1 subtrees rooted at nodes

P0, Pm, PW, - - - , an. Suppose the subtree rooted at node Pg, has j: nodes for 1 S r g a,

and the subtree rooted at node Po has j,- nodes. (Throughout this section, the subtree with

j: (or j.) nodes will denote the subtree rooted at node Pg, (respectively, Po) without any

confusion.) This assumption implies that

Z J}, = i - .7} (4.3)

 
j‘“i nodes j’i nodes j'i nodes

Figure 4.7: An optimal multicast tree using a -ports.

From the above discussion, we note the multicast latency of the subtree rooted at node
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Pg, (1 S r S a) is at least

t[]:] + tend + (7' — 1)tint (4.4)

and the multicast latency of the subtree rooted at node P0 is at least

t[ji] + thold- (4.5)

To ensure the optimality, we must choose values for j,’ for each r, 1 S r g a, such that

the resulting multicast latency is minimal. Thus, we have the following recurrence for t[z'].

0 ifz'zl

[z] o<j‘;’m;?3i_l{maX{ [311+ hold,

1?%{t[jn+tend + (r — 1)t,-,,t}}} ifz' > 1

It is observed that all a ports may not be used when computing t[z’] for some values of

2'. For example, suppose the multicast tree with 2' nodes has a’ + 1 subtrees (i.e., the root of

the tree has used only a’ ports) for a’ < a. In this case, j,’ will denote 0 for a’ < r g a.

The optimal multicast latency t[k] of a k-node tree is then computed in 0(ak°+1) time

using the above recurrence. To verify this running time, we observe that there are at most

k“ possible values of j}, « - - , jf’, and for any given fixed values of j}, - . - , jf‘, t[z'] can be

computed using a comparisons. As 1 S i g k, it implies that t[k] can be computed in

0(ak°+l) time.

Based on the following lemma, we improve the running time of our dynamic program-

ming algorithm to 0(ak) limiting the choices of j}, - - ~ , j? at each iteration.
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Lemma 4 Let j}, - . - , 3'? denote the valuesfor which the recursive definition oft[i] achieves

its minimum value (i.e., the best way to split a tree on 2' nodes is into subtrees of sizes

j,1,-~,j,-° andi— flej'). Then, j; = land]; = 0for2 S r S a;andfor2 S i S k—l,
i

(i)ji+l =ji07jt+1 =j,-+1and(ii)j,-'+1=jf0rjf+1 =jir+1f0r1 S 7' S a.

Proof. The proof is similar to the proof of Lemma 3. Suppose the lemma does not hold for

some value of a, say do, for 1 _<_ a 3 am”. Let 2'0 be such that for any optimal multicast

orl

tree with 2'0 nodes, either jio Z j,-0_1+2 or jfo‘ 2 ],0_1+2 for some r1, 1 5 r1 g 00. Choose

such an optimal multicast tree T0 with 2'0 nodes (T0 has subtrees with jio, j,-10,- ~31}?

nodes) with the minimum value of A(T°), where

A(T°)=lj:.-j.-._1l+:{lj{,-J'Io_1|}- (4.6)

Suppose 3,0 2 3,-0-1 + 2. Then, there exists r0 such that

if,” s 1.23.. — 1. (4.7)

By deleting one node from the subtree with jio nodes and adding one node to the subtree

with 3}? nodes, the multicast latency of the decreased subtree is

t[jio — 1] + thold

S t[jio] + thold

g t[z'o], from the definition of t[z’o]

75



and the multicast latency of the increased subtree is

t[jf: + 1] +16... + (m — at...

g t[j{:_1] + tend + (r0 — 1)t,~,,t from Equation (4.7)

S t[z’o — 1] from the definition of t[z'o — 1]

g t[z'o]

The multicast latency of this new tree T1 is still optimal (i.e., t[z'o]) and A(T1) < .A(T°).

This is a contradiction to the choice of To.

7'1

Next, assume that jfo‘ 2 j,o_l + 2 for some r1, 1 5 r1 5 (10. By deleting one node

from the subtree with jfo‘ nodes, the multicast latency of the resulting subtree is

t[jfol — 1] + tend + (T1 — 1)tint

S t[jgrol] + tend + (71 — 1)tint

S t[io] from the definition of t[z'o].

We also note that as jfol _>__ J"1 + 2, either
io—l

jio S jio—l — 1 (4.3)

or for some r0, 1 5 r0 _<_ do,

if: S iii—1 - 1- (4-9)

When Equation (4.8) holds, by adding the node deleted from the subtree with jfol nodes to
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the subtree with j,0 nodes, the multicast latency of the increased subtree is

t[jio + 1] + thold

g t[j,0_1] + them from Equation (4.8)

g t[z'o — 1] from the definition of t[z'o — 1]

g t[io].

Hence, the resulting multicast tree, say T2, is still optimal.

When Equation (4.9) holds, by adding the node deleted from the subtree with jfol nodes

to the subtree with jf: nodes, the multicast latency of the increased subtree is

t[ji: + 1] + tend + (TO — l)tint

_<_ t[jfng] + tend + (r0 — 1)t,-,,t from Equation (4.9)

g t[io — 1] from the definition of t[io — 1]

S t[iol-

Again, the resulting multicast tree, say T3, is optimal. Finally, we note that A(T2) <

A(T°) for the former case and A(T3) < A(T°) for the latter case. Either case is a contra-

diction to the choice of To. This completes the proof of the lemma. I

Note that Lemma 4 implies t[z'] = min{A, B} forz' > 1, where

A = max{t[z — 1], t[ji_1 + 1] + thold} (4.10)
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and

B = 1211i? {max{t[i — 1], t[jf_1+1]+tend + (r —1)t,~m}}. (4.11)

As Equation (4.11) implies

B = max{tli - 1], 3513300054 +1] +tend + (r - 1)t:..t}},

this together with the fact that t[z'] = min{A, B} gives

t[z] = max{t[i — 1], min{tLj,_1 + th0‘d’1§i£a{tUi-l + 1]

He... + (r — 1)t,,,,}}}. (4.12)

We now revise our dynamic programming algorithm based on Equation (4.12) which runs

in 0(ak) time in the following.

'

0 ifi = I

tend ifi = 2

t[z'] = ] max {t[z‘ — 1], min {t[jg_1 + 1] + tholda

minls,sa{t[j{_1 + 1] + tend

+(r —1)t.-,,,}}} ifz' 2 3 
wherej21=1andj§=0for2gr§a

Theorem 3 The optimal multicast latency ofa k-node tree can be computed in 0(ak) time

when each node has a communication ports.
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Table 4.4: The optimal multicast tree of a 3-port communication architecture with k = 12, tm =

10, thold = 22, and tend = 55. Columns 01 - C4 denote t[j,‘_1 + 1] + timid, t[j,-1__1 + 1] + tendo

t[j,2_1 + 1] + tend + tint, and t[j?_1 + ] + tend + 2th“, respectively.

 

 

 

 

 

 

 

 

  
 

 

 

      

l1 Ji 3:1 J}? j? 01 02 Ca 04 ill]

1 - - - - - - - - O

2 l 1 O O - - - - 55

3 1 1 1 0 77 110 65 75 65

4 1 1 1 1 77 110 120 75 75

5 2 1 1 1 77 110 120 130 77

6 3 1 1 1 87 110 120 130 87

7 4 1 1 1 97 110 120 130 97

8 5 1 1 l 99 110 120 130 99

9 6 ' 1 l 1 109 110 120 130 109

10 6 2 1 1 119 110 120 130 110

ll 7 2 1 1 119 120 120 130 119

12 7 3 1 1 121 120 120 130 120       
 

Table 4 shows an example for k = 12, tmt = 10, thold = 22, tend = 55, and a = 3.

4.6 Conclusion

Designing a portable algorithm to achieve good performance on different parallel platforms

is highly demanded. Based on the proposed parameterized communication model, efficient

methods to construct optimal multicast trees are proposed for both l-port and a-port com-

munication architectures. Here the term “optimal” applies on the basis of the parameterized

communication model, not on any specific parallel machine. The proposed communication

model is more suitable for those machines supporting cut-through switching and having a

rich interconnection topology (i.e., the network is able to support many simultaneous trans-

missions without much contention). For such parallel machine, we claim that the proposed

architecture-independent multicast algorithm is near-optimal as it is obviously that the per-
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formance of an algorithm can be improved by considering some machine-specific features,

such as the network topology and routing algorithm, which cannot be captured as a generic

system parameter.

The proposed parameterized communication model is useful in the design of portable

communication libraries. Many techniques used in this paper can be extended to implement

some other collective communication services, such as scatter. When a system changes

or upgrades its critical component, such as new processors, new host interface, or new

communication protocols, the system has to run some benchmark programs to obtain the

new measure of system parameters. The corresponding communication library has to be

recompiled to take effect of those new system parameters.
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Chapter 5

Platform-Dependent Tuning Multicast

In Chapter 4, we proposed a multicast algorithm called OPT-tree which is truly portable

and still provides good performance. We proved that the OPT-tree algorithm generates

an optimal multicast tree. The optimality is based on the assumption that the underlying

networks has no communication contention. In other words, the two network parameters,

holding latency and end-to-end latency, of a point-to-point communication between any

two nodes must remain constant, for a given message size, regardless of the location of

the nodes. This assumption is justifiable if the network is logically fully connected. For

systems using worrnhole-switching and carrying small messages, the proposed multicast

algorithm does provide near optimal performance.

To achieve a truly optimal performance, it is necessary to consider the architecture-

dependent characteristics of a system, such as network topology and switching mecha-

nism. In most real networks, network contention is likely to occur if concurrent message

transmissions are not scheduled properly. In this case, the actual multicast latency of a mu]-

ticast tree can be longer than expected. Several works have been done in order to construct
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contention-free multicast trees for various network topologies, for example the U-mesh al-

gorithm [44] for mesh network and the U—min algorithm [45] for bi-directional multistage

interconnection networks (BMINs). However, most algorithms are based on the binomial

tree which is efficient only on the networks with some restricted network parameters.

In this chapter, we study the architecture-dependent tuning of the parameterized mul-

ticast algorithm such that it can achieve truly optimal performance. We examine how to

order nodes in the multicast tree to avoid the contention based on the underlying network

topology. We consider wormhole-switched mesh networks and BMle which are popular

in the market, such as the Intel Paragon and the IBM/SP series.

5.1 The Problems

Given thold and tend, the OPT-tree algorithm has been proved to construct the optimal

architecture-independent multicast trees. This optimality bases on the assumption that thold

and tend remain constant for a given message size regardless of the ordering of the nodes

in the multicast tree. This assumption is true on some specific networks such as fully-

connected network. However, this may not be the case for all other networks, especially for

the network that employs wormhole-switching as the switching mechanism. Although the

communication latency in wormhole-switching network is distance-insensitive, one draw—

back of the wormhole-switching network is that the contention, when occurs, can prolong

tend. As the software-based multicast involves several point-to-point communications, the

contention is possible which could increase the multicast latency of the tree, and hence,

prevent the tree from becoming optimal. The following example is used to illustrate issues
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and difficulties involved in implementing optimal multicast communication in wonnhole-

switching network.

Figure 5.1 shows an optimal multicast tree of 7 nodes when implemented in the 16-

port BMIN network with thold = 20 and tend = 55. Suppose a multicast message is sent

from source 0011 to six destinations 0001,01 10,0111,1010,1100,1101. Let us consider the

contention in term of the multicast step defined to be a sending step in a multicast tree. At

step 2, the channel collision is possible since the message from node 0011 to node 01 1 1 and

from node 0001 to node 0110 use a common channel. When the channel collision occurs

between two messages transmitted simultaneously within the same step in a multicast tree

is known as stepwise contention [44]. If we consider the latency of the multicast tree, we

found that the stepwise contention at step 2 does occurs. Both messages use the same

channel at the same time as the sender node 0011 and node 0001 start sending at time 20

and 55 respectively. The other type of the contention is based on the fact that the send may

not start at the same time since sending in a multicast tree is not synchronous. This type of

contention is called depth contention. In the example in Figure 5.1, the depth contention

occurs between the message from node 0111 to node 1100 and from node 0011 to node

1101.

The best solution for avoiding the contention problem is to prevent a common channel

used by two different senders at any time. This can be done by ordering the node so that the

contention can be avoided. Let consider an example in Figure 5.2. Suppose the multicast

tree in Figure 5.2(a) is optimal. However, the contention occurred when node 0 sends

to node 2 and node 5 sends to node 6 can prevent the multicast tree to achieve its truly

optimal performance. By reordering nodes in the multicast tree based on the underlying
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Figure 5.1: An optimal multicast tree which channel contention are possible.
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network characteristics, the contention can be eliminated as shown in Figure 5.2(b). Thus,

we can reorder multicast nodes in Figure 5.1 such that the multicast tree is contention—free.

Figure 5.3 shows the same tree as in Figure 5.1 with a new ordering scheme. Obviously,

no channel is shared by more than one message at any time. Thus, no contention occurs.

  

 

(a) 0»

source : l destination t" ‘: area of contention

Figure 5.2: (a) Contention is possible. (b) Contention-free multicast.

5.2 Optimal Multicast in Mesh Networks

Constructing contention-free multicast trees on wormhole-routing mesh network was stud-

ied in [44]. Based on the dimension-ordered chain and recursive-doubling technique, U-

mesh algorithm can construct an efficient contention-free multicast tree for a mesh network.

Observe that U-mesh trees are binomial trees, and binomial trees are optimal only if they

are implemented on networks with thold = tend. In this section, we propose a new algorithm

called OPT-Mesh which is the minimum time implementation of the parameterized mul-

ticast tree on a mesh network. Based on the dimension-ordered chain and parameterized

multicast tree, OPT-Mesh tree can construct a contention-free optimal multicast tree that

matches network parameters: We base our proof on some notations and results discussed

in [44].
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‘Figure 5.3: A contention-free ordering scheme of the multicast tree.
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The address of a node a: in a finite n-dimensional mesh with radix m is represented by

0,,_1(:z:)o,,_.2(a:) - - ~oo(:c), where 0,-(r) e {0, 1, - - - , m — 1}. The path from node a to node

b resulting from dimension-ordered routing is denoted by p(a, b) = (a; $1,“, - - o,:rk; b),

where the x25 are the sequence of intermediate routers constituting the routing path. The

binary relation dimension order, denoted by <4, is defined between two nodes a and b as

follows: a <4 b if and only if either a = b or there exists a j such that oJ-(a) < oJ-(b)

and 0,-(a) = 0,-(b) for all i,j + 1 g z’ s n — 1. A sequence ofnodes {$1,1r2, - --,zm} is

a dimension-ordered chain if and only if all the elements are distinct and the sequence is

dimension-ordered, that is, if x,- <d$j for all z' and j, 1 g 2' < j S m.

Theorem 4 [44] Ifu <d v <d :1: <1 y, then (i) p(u,v) and p(rc,y) are arc-disjoint, (ii)

p(y, x) and p(v, u) are arc-disjoint, and (iii) p(v, u) and p(x, y) are arc-disjoint.

Let j,- for 1 _<_ z' _<_ k be the output value computed by the OPT-tree algorithm shown in

Algorithm 4.3.1. (The parameterized multicast tree with 1' nodes has two subtrees, where

the size of the subtree containing the root is j,- and the size of the other subtree is i-j,.) The

OPT-mesh algorithm is given in Algorithm 5.2.1. The source and destination addresses are

sorted into a dimension ordered chain denoted <1>. The source node successively divides <I>

of size 2' into two parts of sizes j,- and 2' — ji. If the source node is in the lower part, then it

sends a copy of the message to the lowest node (with respect to <4) in the upper part. This

node will be responsible for delivering the message to the other nodes in the upper part,

using the same OPT-mesh algorithm. If the source node is in the upper part, then it sends

a copy of the message to the highest node (with respect to <d) in the lower part. Again,

this node will be responsible for delivering the message to the other nodes in the lower
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part using the same OPT-mesh algorithm. In addition to the data, each message carries the

addresses of the destinations for which the receiving node is responsible. At each step, the

source deletes from (I) the receiving node and those nodes in the part not containing the

source. The source continues this process until <I> contains only its own address.

 

Algorithm 5.2.1 OPT-MESH

Input: (I): dimension-ordered chain {2:1, x¢+1,- . - , x,} for source and destinations.

17,: the address of source node.

J}: the size of the subtree containing the source, where 2' = r - l + 1.

Procedure

Whilel < r do

ifs < l + ji then

rec = l + j;;

D = {xrem $rec+11' ' ' 1331'};

r = rec - 1;

else

rec = r — ji;

D = {311314-11 - - °1$rec};

l = rec + 1;

endif

Send a message to node mm with the address field D;

endwhile   
 

A multicast implementation using the OPT-mesh algorithm is shown in Figure 5.4. A

multicast with 7 destination nodes is considered in a 6 x 6 2-D mesh where thold = 20

and tend = 55. Table 1 shows each value j,- for 1 g 2' g 8 computed by the OPT-

tree algorithm. Node (3, 2) is the source of a multicast message destined for 7 nodes

{(1, 5), (2, 1), (3,4), (4,3), (4,4), (5, 1), (5,4)}. As shown in Figure 5.4, the 8 nodes are

initially sorted into the dimension ordered chain. The source (3,2) first sends to node
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(a) ' 15

Figure 5.4: An example of using the OPT-mesh algorithm

(4, 4), the node with the lowest address in the upper 8 —- jg nodes of Q, where jg =

5. The upper 3 nodes are deleted from Q, and therefore the nodes remaining in Q are

{(1, 5), (2, 1), (3, 2), (3,4), (4,3)}. Source (3,2) next sends to (3,4), the node with the

lowest address in the upper 5 — 3'5 nodes of Q, where 33 = 3. Each of receiving nodes is

like wise responsible for delivering the message to the nodes in its subtree using the same

algorithm. The optimal multicast tree obtained by the OPT-mesh algorithm is shown in

Figure 5.5(a). Figure 5.5(b) shows a multicast tree obtained by the U-mesh algorithm [44]

based on the binomial tree construction. The multicast latency when implementing the tree

in Figure 5.5(a) is at least 130 and the multicast latency when implementing the tree in Fig-

ure 5.5(b) is at least 165. As the U-mesh algorithm guarantees contention-free paths at each

step, the lower bound 165 is achieved. In the following, we discuss that the OPT-mesh algo-

rithm also guarantees contention-free paths during any time of multicasting process, which
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shows that the lower bound 130 of the multicast latency can also be achieved. Figure 5.6

shows unicast paths obtained by the OPT-mesh algorithm for the above example.

as n es 11s 55 n 05

3.4 1.5 2,1 4.3 2.1 3.4

"l 1 s. 1
in J has... n l llI-SJ...
I!) I”

 
   

(i) (b)

Figure 5.5: Comparison of two multicast trees in mesh network

An inspection of Figure 5.6 shows that there may exist a collision on link ((4, 4), (5, 4))

or((3,2), (2,2). Path p((4, 4), (5, 4)) and path p((4, 4), (5, 1)) have a commonlink ((4,4), (5,4)).

However, link ((4, 4), (5,4)) used in path p((4, 4), (5,4)) will be available from time to +

thou. where to is the time when node (4,4) starts to send the message to node (5,4) (i.e.,

link ((4,4), (5,4)) will be available at time 75). Hence, this link can be used in path

p((4,4),(5,1)) without any contention. Similarly, link ((3, 2), (2,2)) is commonly used

in paths p((3, 2), (1,5)) and p((3,2), (2,1)). But link ((3,2), (2,2)) will become available

from time 60 for path p((3, 2), (2, 1)) after being used in path p((3, 2), (1,5)). The follow-

ing theorem proves that the dimension ordered routes produced by the OPT-mesh algorithm

are contention-free.

Theorem 5 The implementation ofparameterized multicast trees in meshes using the OPT-

mesh algorithm is optimal.

Proof: Let u, v, x, and y be four distinct nodes. For any two paths p(u, v) and p(x, y) used

by the OPT-mesh algorithm, there are only six possible orderings of u, v, 3:, and y. These
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Figure 5.6: Multicast for 7 destinations in 2D mesh

areu<dv<d$<dy,v<du<dx<dy,v<du<dy<d:c,.r<dy<du<dv,

y <4 :1: <1 22 <d v,and y <1 :2 <1 22 <1 22. Ineach case, p(u,v) and p($,y) are

arc-disjoint by Theorem 4.

Assume that some of u, v, 2:, and y may be an identical node. We then observe that if

there exist two paths p(u, v) and p(z, y) used in the OPT-mesh algorithm such that p(u, v)

and p(x, y) share an arc (or arcs), then u and a: must be an identical node. Thus, if 22 sends

a copy of the message to 2) starting at time to and to y starting at time t1 with to < t1,

then t1 2 to + thou. As the output port at u will become available at time to + thold after

sending the message to v, arcs in the path p(u, 2)) become successively available starting

from the are close to 22. Therefore, there exists no collision between two unicast routes

p(u, v) and p(u, y). This proves that the OPT-mesh algorithm produces a minimum-time
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implementation.

5.3 Optimal Multicast in BMIN Networks

The issue of contentions using the software multicast in multistage interconnection net-

work with turnaround routing was discussed by Xu and Ni[45]. They proposed the U-min

algorithm which can construct a binomial multicast tree without stepwise and depth con-

tention. As mentioned earlier, the binomial tree is guaranteed to be optimal only if it is

implemented on the network with thold = tend. Thus, the U-min tree is only a special case

of parameterized multicast tree. To eliminate the overhead due to contentions, we pro-

pose an algorithm called OPT-min algorithm which tunes the parameterized multicast tree

specifically for BMIN networks. The basic concept of OPT-min algorithm is based on the

framework in [45].

Let each node :1: also denote its n-bit binary address. The 2th bit of address a: is denoted

by 0,-(1), 0 S 2' S n — 1, where 00(23) represents the least significant address bit; hence,

address :1: can be written as on_1(:r)a,,_2(:r) - - ~ao(:r). The binary relation lexicographic

order, denoted by a < b, is defined between two nodes a and b such that a < b if and only

of the binary value of a is less than the binary value of b.

Theorem 6 [45I In a multistage cube network with turnaround routing, ifu < v < a: < y,

then (i) p(u, v) and p(z, y) are arc-disjoint, (ii) p(y, :c) and p(v, u) are arc-disjoint, and

(iii) p(v, u) and p(x, y) are arc-disjoint.

This section describes an optimal implementation of parameterized multicast trees in

multistage cube networks supporting turnaround routing. The OPT-min algorithm is given
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in Algorithm 5.3.1. The source and destination addresses are first sorted into a lexico-

graphic ordered chain. A lexicographic-ordered chain {db d1“, - - - , d,} is denoted as Q,

at the time when multicast is initiated by calling the OPT-min algorithm. The source suc-

cessively divides Q into two groups with j,- nodes and 2' - j,- nodes, where 2' = r — l + 1.

The source should be in the group with j,- nodes. If the source is in the lower group, then it

sends a copy of the message to the smallest destination (with respect to the lexicographic

order) in the upper group. That destination will be responsible for delivering the message to

the other destinations in the upper group, using the same OPT-min algorithm. If the source

is'in the upper group, then it sends a copy of the message to the largest destination in the

lower group. The source continues this procedure until Q contains only its own address.

 

Algorithm 5.3.1 OPT-MIN ALGORITHM

Input: Q: lexicographic-ordered chain {1:1, n+1, - - ' ,$,} for source and destinations.

3,: the address of source node.

j,: the size of the subtree containing the source, where 2' = r — l + 1.

Procedure

Whilel < 2' do

ifs < l '1' ji then

rec = l + 3};

D ={xrec1 $rec+l1 ° ' ‘1$r};

r = rec — 1;

else

rec = r - j,;

D = {$11 $l+11 ° ° °1xrec};

l = rec + 1;

endif

Send a message to node mm with the address field D;

endwhile   
 

A multicast implementation using the OPT-min algorithm is shown in Figure 5.7. A
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multicast with 6 destination nodes is considered in a 16-node bidirectional butterfly mul-

tistage interconnection network with turnaround routing. Let tho“ 2 20 and tend = 55.

The source begins with a lexicographic-ordered chain Q = {0001, 0011, 0110, 0111, 1010,

1100, 1101}. As shown in Figure 5.7, the set of nodes is partitioned into two parts of sizes

3'7 and 2' — 3'7, where 2' = 7 and j7 = 5 (see Table l). The source 0011 first sends to node

1100, the node with the lowest address in the upper partition of Q. The upper part is deleted

from Q, and therefore the nodes remaining in Q are {0001, 0011, 0110, 0111, 1010}. After

thold time, the source 0011 can initiate another send operation to node 0111 since there are

5 nodes in this lower partition and these 5 nodes are further partitioned into two groups of

sizes 3'5 and 5 — 33 where j5 = 3 (see Table 1). In the meanwhile, after tend time, node 1100

sends the message to the node 1101. Each of the receiving nodes is likewise responsible

for delivering the message to the nodes in its subtree using the same algorithm. This multi-

cast implementation in Figure 5.7 requires max{thou + 2tend, 3th,,“ + tend}, which is 130.

Figure 5.8 (a) shows a parameterized multicast tree obtained from the OPT-min algorithm

and a tree with the same number of nodes obtained from U-min algorithm is shown in (b).

Figure 5.3 shows unicast routes obtained by the OPT-min algorithm.

Theorem 7 The implementation ofparameterized multicast trees in multistage intercon-

nection networks supporting turnaround routing using OPT-min algorithm is optimal.

Based on Theorem 6, similar arguments in Theorem 5 can be applied to prove this

theorem.

94



(a)

(b)

(c)

(d)

 

l°ml [Ml L"°°l

Loxioography-ordored chain

 

 

  

 

    

   
Figure 5.7: An example of using the Opt-min algorithm
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Figure 5.8: Comparison of two multicast trees in BMIN networks

5.4 Simulation Results

In order to evaluate our proposed algorithms, we implement a flit-level simulator for both

wormhole-switched mesh and wormhole-switched BMIN t0pologies. The mesh network is

based on a 16x16 topology supporting XY routing with one-port architecture. The BMIN

network has 128 nodes based on 2 x 2 bidirectional switches. The network parameters of

both simulators are th, = 2000, thd = 2, tn, = 1000, tnd = 2, t,, = 2500, and tn; = 3

which are similar to the network parameters of IBM/SP. As the locations of processors

involving in the multicast service affect the probability of contention, we perform 16 in-

dependent experiments with the same input parameters, but different processor locations

(randomly picked). Each data point presented in our results is the average of the multicast

latency from all 16 experiments.

5.4.1 The Performance of the OPT-Mesh Algorithm

In Figure 5.9, we measure the multicast latency of the three multicast trees with 32 nodes

on our mesh simulator. The OPT-mesh tree provides the best performance while the U-

mesh tree performs the worst. Based on the fact that thold does not always equal to tend, the
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Figure 5.9: Comparison of 32-node multicast trees on a 16x16 mesh.

OPT-mesh algorithm and the OPT-tree algorithm can generate trees that are more suitable

to the underlying network, than the binomial tree generated by the U-mesh algorithm. Al-

though the OPT-mesh tree and the OPT-tree tree have the same tree structure, the proper

node ordering in the OPT-mesh algorithm eliminates the contention overhead which allows

the OPT-mesh tree to achieve their theoretical lower bound. Figure 5 . 10 presents a sim-

ilar experiment using 128-node multicast trees. The results are quite similar to the first

experiment. However, the contention overhead of the OPT-tree tree is much higher since a

large optimal multicast tree is deeper than a smaller optimal multicast tree. The deeper the

multicast tree is, the more contention overhead occurs.

In both experiments, all multicast trees exhibit linear performance with respect to the

message size. We can explain this phenomenon by considering the fact that the multicast

latency of any tree is always dependent on the depth of the trees, the contention overhead,
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Figure 5.10: Comparison of 128-node multicast trees on a 16x16 mesh.

and the end-to-end latency of the underlying network. For a fixed multicast tree size, the

U-mesh always generates a binomial tree with the same depth, regardless of the network

parameters. As the U-mesh tree is contention-free, the multicast latency of the U-mesh tree

depends on the end-to-end latency which also depends on the message size. Therefore, the

multicast latency of the U-mesh tree is linear with respect to the message size. This is also

true for both OPT-mesh tree and OPT-tree tree when the message size is large. For a large

message size, the startup costs of thold and tend are insignificant. In this case, the ratio of

5:2:- which dictates the shape and depth of the OPT-mesh and OPT-tree trees is constant.

Hence, the depth of both trees remains fixed. Thus, the performance of both trees are linear

with respect to the message size.

Figure 5.11 and 5.12 demonstrate the performance of the multicast trees when the mes-

sage size is 4 Kbytes and 64 Kbytes, respectively. The results confirm that the OPT-mesh
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Figure 5.11: Comparison of 4-Kbyte multicast trees on a 16x16 mesh.

is more efficient than both OPT-tree and U-mesh. As the number of nodes in the multicast

tree increases, the depth of the U-mesh tree increases faster than the depth of OPT-mesh

and OPT-tree trees. Thus, the U-mesh tree gives the worst performance. For the OPT-tree

tree, the increasing of number of nodes in the multicast tree means more messages are sent

during the multicasting process. Hence, the contention probability also increases which

leads to the increasing contention overhead. Moreover, the contention overhead increases

quite noticeable when the depth of the multicast tree increases, for example, when the size

of the multicast tree is 96 nodes in Figure 5.12.

5.4.2 Performance of the OPT-min Algorithm

We perform experiments on our BMIN simulator using the same network parameters used

in the mesh experiments. The results are presented in Figure 5.13 and 5.14. As expected,
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Figure 5.12: Comparison of 64-Kbyte multicast trees on a 16x16 mesh.

the multicast trees generated by OPT-min are more efficient than multicast trees generated

by the other two algorithms. As message size become larger, the OPT-min tree performs

much better. This is also true when the number of nodes increases. Note that the contention

overhead in the OPT-tree tree is less sever. This implies that the OPT-tree tree in the BMIN

network has less contention overhead than the similar trees in the mesh network, given that

both networks have the same network parameters.

In order to support this claim, we define multicast contention rate as a metric to compare

the effect of the contention overhead among different network topologies. Given a multicast

algorithm A, the multicast contention rate (tcA) is the proportion of the overhead of the

contention to the multicast latency of the multicast algorithm A. It is defined as:

(15.4 - t2)

tA

tCA —
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Figure 5.13: Comparison of 128-node multicast trees on 128-node BMIN.

where tA is the multicast latency of algorithm A when contentions occur and t’A is the

theoretical lower bound of the multicast latency of algorithm A when no contention occurs.

Figure 5.15 shows the comparison of multicast contention rate of OPT-tree algorithm

implemented in mesh and BMIN topologies. The results indicate that, under the same

circumstances, multicasting in the BMIN network will suffer less contention overhead than

the mesh network. This is because the BMIN network with turnaround routing has more

communication paths between any pairs of nodes than the mesh network with X—Y routing

which has only one path. These extra paths allow the BMIN network to reduce the effect

of the contention.
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Figure 5.14: Comparison of 64-Kbyte multicast trees on 128-node BMIN.

5.5 Conclusion

In this chapter, we studied architecture-dependent tuning of the architecture-independent

multicast algorithm. We have demonstrated that the effect due to network contention can

prevent a parameterized multicast tree from achieving its optimal performance. We have

proposed two algorithms, OPT-mesh and OPT-min, which generate contention-free pa-

rameterized multicast on wormhole-switched mesh and BMIN networks. However, our

contention-avoidance technique is not restricted to these two networks. This concept can

be applied to any network as long as the underlying networks can be partitioned into

contention-free processor clusters.
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Figure 5.15: The effectiveness of topology against contention
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Chapter 6

The Effect of Network Traffic on

Multicast Behavior

Most multicast-related research, including our studies in the last two chapters, have been

done under the ideal condition. Under this condition, it is commonly assumed that there is

no other network traffic in the network, except the multicast traffic. Although some studies

measured results in the actual network, the results may not actually include the effect from

other network traffic. This is because, during the measurement, the processor-allocation

schemes may guarantee contention-free or the measuring technique may focus only on the

performance of multicast with no interference from other network traffics. For example, the

effect of other network traffic can be eliminated by measuring performance of a multicast

tree several times and choosing the minimum value. Thus, the performance of so-called

optimal multicast algorithms when perform in the actual network may not be better or

even worse than other conventional multicast algorithms such as the binomial multicast

algorithm.
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Typically, the actual network condition is not ideal. Besides the multicast traffic, other

nodes outside the multicast group usually generate some network traffic as well. We called

this kind of traffic the background traffic. Although sources and destinations of the back-

ground traffic do not belong to the multicast group, when the background traffic exists,

they can interfere the progress of multicast operations. In addition to the background traf-

fic, there are several factors that can effect the performance of a multicast service. During

a multicast operation is taken place, nodes in the multicast group may generate more than

just the multicast traffic. We called this traffic the local traffic. This traffic can also con-

tent with the multicast traffic. Another factor that must be taken into consideration is the

inter-injection time of two consecutive multicasts at the same root node. If multicasts are

injected too fast, the contention among these multicasts, even originated from the same root

node, is highly possible which can result to performance degradation. This inter-injection

time is often determined by the grain size at the root node.

The main focus of this study is to answer two important questions:

0 How useful is an optimal multicast when the background traffic exists ?

a Can we possibly propose an algorithm to handle the dynamic environment due to the

background traffic ? And how much improvement should we expect ?

6.1 Study Model

To obtain our goals, it is important to be able to control several system parameters, includ-

ing the pattern of the background traffic, applied workload, etc. Obviously, this is very

difficult to achieve if we perform our study on a real system. Thus, we use our flit-level
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simulators to study the effects of all aforementioned factors. To make our work manage-

able, but not too far from realistic, our simulators are based on three models: the system

model, the communication model, and the workload model.

6.1.1 System Model

In this study, we implement two simulators. Both simulators have 256 nodes connected to

a wormhole-switched Bidirectional MIN-based network with tum-around routing (BMIN)

and 16x16 mesh network respectively. Both systems are based on a single-port architec-

ture which implies that each node has one incoming channel and one outgoing channel.

In addition, we assume the communication subsystem to provide only basic point-to-point

communication services, send and receive operations. These services are assumed to be re-

liable. There is no hardware support for either multicast or other collective communication

services.

Actual parallel systems may implement some processor scheduling and allocation poli-

cies such as contention-free allocation, fragmentation-free allocation, and gang-scheduling

in order to maintain high utilization by supporting multiple independent applications simul-

taneously. To simplify our study model, we assume nodes in the system are partitioned into

two groups, multicast group and background group. Members of each group communicate

to the others in the same group only. In other words, there is no traffic between groups.

For the multicast group, all members in the multicast group participate in the multicast

operation. Among them, one member in the multicast group is selected as a root node to

send multicast messages to all other nodes in the group. Other nodes in the group, upon re-
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' ceiving a multicast message, forward the message to others based on the multicast structure

being studied. Most experiments in this study assume that the root node is the only sender

in the group. In some experiments, however, all members in the multicast group, except

the root node, are allowed to send point-to—point messages to other members in the group

in order to study behavior of multicast when the local traffic is presented. The remaining

nodes in the system form the background group. All members in this group communicate

, to the others via point-to-point communication services only. The main purpose of this

group is to generate the background traffic.

6.1.2 Communication Model

We assume that the communication subsystem supports only two point-to—point commu-

nication service: send and receive. Both send and receive operations are assumed to be

blocking operations. Our semantic of blocking operation is similar to MPI’s definition

which specifies that a blocking operation returns when user’s buffer can be reused. How-

ever, upon returning, the sending message may not be completely delivered to the destina-

tion.

In general, most parallel systems allocate kernel memory as communication buffers to

guarantee the reliable delivery and improve the CPU utilization. Recent studies suggest to

move communication buffers to network interface which can significantly reduce the soft-

ware overhead [63]. Regardless of its location, the communication buffer usually causes a

problem called head-of-line blocking (HOL). A message encounters a HOL blocking when

it is sent while another message is occupying the out-going channel. In this case, it will be
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placed in the sending buffer (output contention) and have to wait until all preceding mes-

sages in the buffer are sent. The delay due to this problem is quite high, especially when

the network load is heavy. To emulate this system characteristic, we assume that each node

has two communication buffers, sending and receiving buffers. When an incoming channel

is not available, outgoing message will be placed in the sending. If the sender tries to issue

a send operation and the sending buffer is full, the sender will be blocked. The sender

resumes its execution when there is enough space available in the sending buffer. On the

receiving side, an incoming message will be put in the incoming buffer and wait for the

receiver to pick it up. The receiver is blocked if it tries to receive and there is no message

available in the receiving buffer.

The communication latency model used in this study is based on the Parameterized

Communication Model presented in Chapter 2. Basically, this model consists of five pa-

rameters as follow:

0 holding latency (thold) : minimum interval between two consecutive send operations

0 end-to—end latency (tend) : interval between the sender starts sending a message until

the receiver finishes receiving.

sending latency (tsend) : software latency at the sender

network latency (tact) : time required to transmit a message across the network

receiving latency (tmv) : software latency at the receiver

Theoretically, when sending a message size m, all parameters can be decomposed into two
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components, startup latency and delay latency. Thus:

tsend = t,, + m.t,d

tnet = tns + m-tnd

trecv = trs + m-trd

thold = ths + m-thd

tend = ta, + m.ted

: (tss + tns + tn) + m'(t3d + tnd + trd)

Based on techniques in Chapter 2, we can measure all five parameters and their compo-

nents. Note that tn, is the fixed delay incurred at the sender when it prepares to transmit a

messagefrom its sending buffer to its out-going channel. Moreover, we assume that tad is

the delay incurred in a channel when transmitting a flit (one byte) over the channel. This

includes the delay in the channels connecting a node to a switch and a switch to a switch.

In reality, user’s program may not be the only application running in the system. It may

have to share some resources such as processor, storage, especially network, with other

applications. Thus, the network contention among different applications is possible. We

define team to be the delay due to network contention. Furthermore, since we assume that

each node has sending and receiving buffers, we define tsq and t", to be the waiting time of

a message at the sending buffer and receiving buffer respectively.

When a message occupies the out-going channel of the sender, it may causes blocking

to subsequence messages. We define to", to be the interval that a message occupies the out-
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going channel. In addition, a message, which is either occupying the out-going channel

or waiting in the sending buffer, may cause HOL blocking to subsequence messages. We

define that to be the interval that a message causes HOL blocking delay to subsequence

messages which is tsq + tout. We can summarize the relationship of these parameters as I

follows:

tsend = tss + m-tsd + tsq

tnet = tns + m-tnd + tconf

trecv = trs + m-trd + trq

tend = tsend + tnet + trecv

tout = tns + m-tnd + tcont

thol = tsq + tout

Figure 6.1 demonstrates the timing diagram of sending a message from P0 to P1. Let

thold = tum, = 20, to,“ = 15, tnet = 20, tum, = 20 when there is no contention. Let Co

represent the out-going channel occupation at P0. Let assume that the out-going channel

from P0 is not available until t = 50 and there is no other message in the sending queue.

Assume there is no message in the receiving buffer at P1 and P1 is ready to receive. Suppose

the contention in the network (tam) causes a delay for 15 time units. In this example,

network parameters of this message become t,,, = 30, trq = 0, team = 15, tout = 30,

that = 60, tsend = 50, tne, = 35, trm = 20, thold = 20, and tend = 105
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Figure 6.1: The timing diagram of sending a message from P0 to P1 (thold = 20, to,“ = 15,

tm = 20, trm = 20, team = 15, the out-going channel is available at t = 50)

6.1.3 Workload and Traffic Models

Throughout this study, we assume that the system implements only space-sharing policy

which means there is only one application process per each node. To consider a more re-

alistic workload, we further assume that each process generates messages to the network

based on the SPMD programming model which is widely used in the development of par-

allel programs. Although many message-passing libraries, such as PVM and MP1, can

support generic parallel programming model, most programs are still implemented based

on the SPMD programming model.
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Algorithm 6.1.1 SPMD MODEL

Loop forever

Randomly choose t, d, and m;

Compute for t time units;

Send a m-byte messages to node d;

EndLoop   
 

The SPMD-based workload composed of computation part and communication part

which interleave through the lifetime of the program. This workload is more realistic be-

cause, in the actual parallel programs, nodes do not only send messages, but also perform

some computation. The algorithm of our workload model is shown in Algorithm 6.1.1. In

this figure, we assume that the computation time t is a Poisson process which is exponentially-

distributed with mean teamp time units. After computation, each node randomly selects a

destination d and sends a message of which length m is also randomly chosen. In our study,

the destination can be either uniformly-distributed or hot—spot where a special node in the

group receives substantially more traffic than the others. We also assume that message

size of background traffic is uniformly distributed. The following criteria will be used to

determine the distribution of destination and message size:

I If the node is a designated root node, the node sends fixed-size multicast messages to

other nodes in the multicast group. In most our experiments, the root node does not

issue a new multicast until the previous one is completed.

I If the node is a member of the multicast group (except the root node), the distributions

of destination and message size are uniform.

I If the node belongs to the background group, the distribution of the destination can
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be either uniform or hot-spot and the distribution of message size is uniform.

We use multicast latency defined in Chapter 3 as a performance metric. To study the

effect of background network traffic, we vary the applied load of the background traffic by

changing the mean of computation team. As we decrease temp, the applied load of the

background traffic increases. When we further decrease team, there are two cases:

I Destinations may not be fast enough. The incoming messages are placed in the re-

ceiving buffers.

I The network may not have enough bandwidth to handle the traffic. The contention

rate in the network increases.

For both cases, the back-pressured mechanism in the network eventually causes!new mes-

sages to be placed in the sending buffers. When the sending buffer is full, the sender will

be blocked. In this case, the applied load decreases.

6.2 The Effect of the Network Contention

Network contention is generally considered to be a major factor in performance degradation

of the network. As a collective communication service such as a multicast usually involves

several point-to-point communication services, its performance can be greatly effected by

the network contention. To have clear understanding of the impact of the network con-

tention, we classify multicast-related contention into three groups, the internal contention,

the external contention, and the source contention.
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The internal contention is the contention between two multicast traffic from the same

multicast operation. This kind of contention is quite simple and can be easily avoided by

using algorithms proposed in Chapter 5. The contention between the multicast traffic and

the local/background traffic is called the external contention. Without using the contention-

free processor allocation scheme, this type of contention cannot be avoided. Note that,

under the same network condition, different multicast trees can usually tolerate different

levels of the external contention.

The source contention is more subtle than the other types since it is caused by the HOL

blocking. Let consider the following example. Figure 6.2 demonstrates the relationship

of three network parameters, holding latency, end-to-end latency, and normalized network

load. When network load is heavy, the end-to-end latency increases drastically. This is

because messages are delayed longer due to the contention in the network as the network

load increases. When we consider the holding latency, the existence of the sending buffer

keeps the holding latency constant as the sender can resume execution as soon as a message

being sent is placed in the sending buffer. Figure 4.2 and Figure 6.2 lead to the conclusion

that the sequential tree should perform very well when the network load is high. In contrast

to our belief, Figure 6.3 shows that our conclusion is not quite correct. The sequential tree

performs much worse than expected when the network load is high.

To explain this phenomenon, we have to observe the nature of software-based multicast.

Consider an example of a 4-node sequential multicast tree presented in Figure 6.4. Let

thaw = 20, tout = 15, tnet = 20, tram, = 20 when there is no contention in the network.

Let CO present activities at the out-going channel of P0. Based on these parameters, the

multicast latency is 100 time units. Let assume that the out-going channel from P0 is free
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Figure 6.2: The relationship of thaw. tend and normalized network load

and there is no message in the sending queue. Suppose the contention in the network (twat)

delays all messages for 15 time units. Thus, tnet becomes 35 time units. The latency of

a message occupying the out-going channel (tout) also increases to 30 time units. Thus, a

message from P0 to P1 occupies the out-going channel of P0 until t = 50. Although Po

starts sending to P2 and P3 at t = 20 and t = 40 respectively, both messages encounter the

HOL blocking and have to wait for the out-going channel. Therefore, the latency of this

multicast is actually 135 time units.

As shown in the example, when the root node performs multicast, it sends duplicated

unicast messages to its immediate children in the multicast tree. Thus, we can consider

the root node injects a burst of unicast messages and the injection rate is limited by the

holding latency at the root node. When the network load is light, the network has enough
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Figure 6.3: The comparison of 64-node binomial and sequential multicast trees under uni-

form traffic

bandwidth to consume all messages. When the network load is heavy, however, the network

contention can delay messages being sent from the root node. This does not cause delay

only to messages in the network, but also other messages in the sending buffer at the root

node. Thus, the performance of the sequential tree which injects a large burst of unicast

messages at the same time will suffer greatly due to the delay in the sending buffer. On the

other hand, this delay is much smaller for a multicast tree which injects a smaller burst of

unicast messages such as the binomial tree. Figure 6.5 confirms this conclusion.
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6.3 Dynamic Multicast

All software-based multicast algorithms discussed earlier are based on either fixed mul-

ticast tree structures such as the binomial and sequential trees or predetermined network

parameters. Although the parameterized multicast algorithms discussed in Chapter 4 and 5

can adjust their trees to match the underlying network, these trees are still fixed with respect

to the network condition. We consider multicast trees generated by these algorithms static

multicast trees. As the nature of network load is very dynamic, these network parameters

are constantly changed. Static multicast trees based on predetermined network parameters

may not perform well as expected. This leads to an interesting question: can we develop

an algorithm to generate a multicast tree based on both predetermined network parameters

and current network condition? This section discusses a new class of multicast tree called

the dynamic multicast tree which adapts its structure to fit the current network condition.

The basic idea of constructing a dynamic multicast tree is based on two observations.

First, the effect of the external contention is quite great for a deep multicast tree such as the

binomial multicast tree since more depth means more direct contention and hence more de-

lay. Second, when contention occurs, it can also cause the source contention which means
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multicast trees under uniform traffic

messages in the sending buffer have to wait due to the HOL blocking. As shown in the ex-

ample in the previous section, this type of contention has a great impact on a multicast tree

with high out-degree at the root node and the internal nodes. Based on these observations,

we can construct a dynamic multicast tree using the DYN-Tree algorithm. The DYN-Tree

is derived from the OPT-Tree algorithm with an assumption that communication library

provides the estimation of the time-at-sender latency (tas) which is an interval between the

sender invokes the send operation until the whole message leaves the sender. Thus, if we

measure ta, after sending a message size n:

ta, = thold + that

: (ths + nuthd) + (tsq + tns + n’tnd + tcont)
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The basic idea of DYN-Tree is to adjust the burst size of unicast messages injected by the

root and all internal nodes with respect to the current network load. When the network load

is low, the root node can inject many unicast messages without suffering large delay at the

sending buffer. In this case, thold and tend are used in the OPT-Tree algorithm to generate

a multicast tree. When the network load is high, the root and internal nodes should not

inject too many unicast messages. We use the estimated HOL blocking latency (tfiol) and

the estimated tgnd as parameters for the OPT-Tree algorithm to generate a multicast tree.

The assumption that ta, can be estimated allows the sender to derive both tin, and tind.

Suppose a message size n has been sent and its time-at-sender latency is t“. We have

to consider the fact that a node may send messages with different sizes. Thus, after the

message is sent, two parameters, tjm, and t’end, are calculated.

tlwz = tas _ (the + n-thd) — n-tnd

= tns + tsq + tcont

t’ = ta, — n.t,,d — mm, + t,,
end

= ths + tns + trs + taq + tcont

Suppose a multicast size 177. is sent next. DYN—Tree algorithm then computes tfm, and tind:

e I

hot that + m.tnd

: tsq + tns + m-tnd + tcont

119



:nd = ténd + m.(thd + tnd + trd)

= ths + m-thd + tsq + tns + m-tnd + tcont + trs + m-trd

To construct a multicast tree, we develop the DYN-Tree algorithm which is very similar to

the OPT-Tree algorithm. The difference is that the DYN-Tree uses max(th, + m.thd, tial)

and tgm, as parameters while the OPT-Tree uses thold and tend. The combination of the

DYN-Tree and the contention-avoidance techniques presented in Chapter 5 results to the

DYN-Min algorithm (for BMIN) and the DYN-Mesh algorithm (for Mesh).

6.4 Experimental Results

We evaluate four types of multicast algorithms: the binomial-based multicast algorithms

(Binomial, U-Mesh, and U~Min), the parameterized multicast algorithms (OPT-Tree, OPT-

Mesh, and OPT-Min), the sequential multicast algorithm (Sequential), and the dynamic

multicast algorithm (DYN-Mesh and DYN-Min). The underlying architectures of our flit-

level simulators are a 16 x 16 node wormhole-switched mesh with X-first-Y-next routing

and a 256-node wormhole-switched BMIN with tum-around routing. Each node has 64-

KByte sending and receiving buffers. A mesh router does not support multi-port capability

nor virtual channel. The BMIN network is based on 2 x 2 bidirectional switches. Both

networks have the following parameters: th, = 1915, thd = 2, t” = 1915, t“, = 2,

tn, = 1390, tnd = 2, t,, = 2025, and trd = 3. These values are based on the IBM/SP

machine at Argonne National Lab.

The simulator will be run until 95% confidence interval on the average multicast latency
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has been reached and the standard error is less than 2.5% of average multicast latency. For

each run, we perform 8 independent experiments in which the locations of the multicast

group are randomly chosen. This is because the locations of members of the multicast

group can affect the probability of contention. In each experiment, we vary temp to vary

the applied load. For each temp, the accepted background traffic and the multicast latency

are measured. We define the accepted background traffic as the total number of bytes re-

ceived at the nodes in the background group per time unit. The accepted background traffic

is normalized by the maximum network throughput which is fi- for a network with N pro-

cessors. Each data point presented in our results is the average of the multicast latency from

all 8 experiments. To eliminate the start-up transient effect, all data are measured after the

first 50 multicasts are completed. Unless explicitly stated otherwise, all multicast latencies

are measured from 64-node multicast trees with no local traffic in the multicast commu-

nication group. Each multicast message is a fixed size of l KByte. The destination and

message size 0f background traffic are uniformly distributed. The average of the message

size is l KByte. The root node issues a new multicast when the previous one is done.

6.4.1 Performance under Uniform BackgroundWe

The performances of multicast algorithms for 64-node multicast trees on the mesh network

are shown in Figure 6.6. Obviously, the sequential algorithm performs very bad at any

background load traffic as expected. For other algorithms, when the background traffic

is low, the multicast algorithms with contention (Binomial and OPT-Tree) perform quite

close to the contention-free multicast algorithms (U-Mesh and OPT-Mesh) However, as
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Figure 6.6: Comparison of 64-node l-KByte multicast trees under uniform background

traffic on the mesh network.

the background traffic increases, their performance degrade rapidly. This is because the

external contention with the background traffic further increases the effect of the internal

contention of the multicast algorithms with contention.

Figure 6.7 shows the details of Figure 6.6. Clearly, the OPT-Mesh perform much better

than the U-Mesh algorithm when the network load is low. This is because the OPT-Mesh

algorithm is based on an optimal multicast tree generated specifically for the underlying

network given that there is no network contention. However, as the network load increases,

the performance of OPT-Mesh degrades quickly. Similar to the sequential algorithm, the

OPT-Mesh algorithm generates a multicast tree which have more out-degree at the‘root and

internal nodes than the trees generated by the U—Mesh algorithm. Thus, the root node and

the internal nodes inject more unicast messages each time a multicast message is sent. The

increasing network contention causes longer HOL blocking latency (source contention) at
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Figure 6.7: The detail comparison of 64-node l—KByte multicast trees under uniform back-

ground traffic on the mesh network.

the root node and the internal nodes. As the results, the multicast latency of the OPT-

Mesh algorithm dramatically increase and eventually it performs worse than the U-Mesh

algorithm. The DYN-Mesh algorithm generates a multicast tree with respect to the current

network load. When the network load is low, its tree structure is similar to the tree structure

generated by the OPT-Mesh algorithm. When the network load increases, both blocking

latency and end-to-end latency increase. The DYN-Mesh algorithm adjusts to the changes

by decreasing out-degree at the root and internal nodes and increasing the depth of its

multicast tree. Eventually, its tree will be similar to the binomial tree.

In Figure 6.7, we also notice that the performance of OPT-Mesh, U-Mesh, and DYN-

Mesh remain unchanged when the normalized accepted background traffic is approxi-

mately 0.095. At that point, the senders in the background group become saturated and,

hence, cannot generate more traffic. As the members of the background group and the
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multicast groups reside in different nodes, the effects of the network contention from the

uniform background traffic are limited, even though the allocation policy is not contention-
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Figure 6.8: Comparison of 32-node l-KByte multicast trees under uniform background

traffic on the mesh network.

The results of multicast trees with 32 nodes on the mesh network are shown in Fig-

ure 6.8. Note that we present only the results of the OPT-Mesh algorithm, the U-Mesh

algorithm, and the DYN-Mesh algorithm since the results of other algorithms are quite sim-

ilar to the results in Figure 6.6. In Figure 6.8, the performance of all three algorithms are

quite similar to the results in Figure 6.7. However, the DYN-Mesh algorithm perform bet-

ter than the OPT-Mesh even when the traffic is less than 0.06. When we consider multicast

trees with 128 nodes as shown in Figure 6.9, the improvement of the DYN-Mesh algorithm

over the OPT-Mesh is insignificant even at the high background traffic load. When the size

of the multicast tree is large, the binomial tree is quite deep. In this case, the effects of
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Figure 6.9: Comparison of 128-node l-KByte multicast trees under uniform background

traffic on the mesh network.

the external contention become more significant than the effects of the source contention.

Thus, the U-Mesh algorithm does not perform well when the size of the multicast tree is

large.

The performance of multicast algorithms for 64-node multicast trees on the BMIN net-

work are shown in Figure 6.10. The results look very similar to Figure 6.6. However, as

we study in more details, as shown in Figure 6.11, the parameterized multicast algorithms

perform better than the binomial multicast tree even when the background traffic load is

high. This is because our BMIN simulator uses the tum-around routing scheme, which

is an adaptive-routing scheme. Thus, the impact of the network contention is not signifi-

cant. Based on the same reason, the multicast algorithms with contention (OPT-Tree and

binomial) also perform reasonably well in this network. We present the performance of

128-node multicast trees in Figure 6.12. The results from 64-node and 128-node multi-
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Figure 6.10: Comparison of 64-node l-KByte multicast trees under uniform background

traffic on the BMIN network.
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Figure 6.11: The detail comparison of 64-node l-KByte multicast trees under uniform

background traffic on the BMIN network.
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cast trees clearly show that the dynamic multicast algorithm does not provide significant

improvement on the BMIN network.
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Figure 6.12: Comparison of 128—node l-KByte multicast trees under uniform background

traffic on the BMIN network.

6.4.2 The Effect of Hot-Spot fiaffic

In general, the destination of the background traffic is rarely uniform. Some communi-

cation patterns such as bit-reversal and perfect-shuffle and most collective communication

patterns create a problem called the hot-spot traffic. This problem, similar to the hot-spot

memory problem, occurs when one or more nodes receive more traffic than the others. In

our study, we assume there is only one hot-spot node in the background group.

Figure 6.13 shows the performance of multicast algorithms under hot-spot traffic on

the mesh network. In this figure, 1% of the background traffic are sent to a hot-spot node

in the background group. Comparing to the uniform traffic, the 1% hot-spot background
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Figure 6.13: Comparison of 64-node l-KByte multicast trees under 1% hot—spot back-

ground traffic on the mesh network.

traffic have very little impact to all algorithms. However, the DYN-Mesh algorithm clearly

performs better than the OPT-Mesh when the traffic load is high. We further increase

the hot-spot traffic to 2% as presented in Figure 6.14. The network congestion causes all

multicast algorithms to perform very bad. In Figure 6.15, we study the effect of 1% hot-

spot background traffic on the BMIN network. Comparing to the uniform traffic, the 1%

hot-spot background traffic have quite serious impacts, especially when the traffic load is

slightly more than 0.15.

When the hot-spot problem occurs, the receiver cannot consume fast enough and all

traffic to this node is blocked. In the case of the BMIN network, due to the tum-around rout-

ing scheme, messages, whose destination is the hot-spot node, will use alternative routes.

This can increase the external contention rate to the multicast traffic. Thus, the network

bandwidth available for the multicast traffic gradually decreases. When there is not enough
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Figure 6.14: Comparison of 64-node l-KByte multicast trees under 2% hot-spot back-

ground traffic on the mesh network.

bandwidth available, the multicast latency increases rapidly. In the case of the mesh net-

work, messages cannot use alternative routes when the congestion occurs. Although the

bandwidth available for the multicast traffic decreases, the background traffic do not use up

all the bandwidth. Thus, for the 1% hot-spot traffic, all algorithms still perform reasonably

well. However, for the 2% hot-spot traffic, much more traffic are sent to the same desti-

nation. The congestion is much worse. Thus, the performance of the multicast algorithms

degrade severely.

6.4.3 The Effect of Inter-Injection Time

In some applications, the root node may issue a new multicast before the previous one is

actually completed. If multicasts are injected too fast, the contention among these multi-

casts, even originated from the same root node, is highly possible. Figure 6.16 shows the
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Figure 6.15: Comparison of 64-node l-KByte multicast trees under 1% hot-spot back-

ground traffic on the BMIN network.

performance of multicast algorithms on the mesh network when the inter-injection time of

multicast messages at the root node is 100,000 time units. This is about twice the multicast

latency when there is no contention. Even at this injection rate, the OPT-Mesh algorithm

does not perform well. In this case, the source contention degrades the performance of the

OPT-Mesh algorithm. As the DYN-Mesh algorithm considers the effect of this contention,

it adjusts its the tree structure. Thus, the DYN-Mesh algorithm performs very well.

In Figure 6.17, we study the performance of all algorithms on the BMIN network when

the inter-injection time is 50,000 time units. At even the higher injection rate, all algorithms

still perform very well. The turn-around routing, which is adaptive, reduces the contention

rate between two consecutive multicasts. As the results, the source contention is low. Thus,

the performance of the OPT-Min algorithm is better than the previous experiment.

130



 

160000-
 

7...— cm... £66159; F-

140000 - 1 - J; — U-Mesh ....... Ideal J

120000

100000

 

M
u
l
fl
c
a
a
t
L
a
t
e
n
c
y

  0 r I I T If I

0 0.02 0.04 0.06 0.08 0.1 0.12

Normalized Accepted Background Traffic   
 

Figure 6.16: Comparison of 64-node l-KByte multicast trees on the mesh network when

the inter-injection time of multicast messages at the root node is 100,000 time units.
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Figure 6.17: Comparison of 64-node l-KByte multicast trees on the BMIN network when

the inter-injection time of multicast messages at the root node is 50,000 time units.
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6.4.4 The Effect of Local Traffic

In SPMD model, each node executes at its own pace. Some nodes in the communication

group may perform computation while others perform communication. Thus, when the

root node starts sending a multicast message, some nodes in the multicast group may still

communicate with others. Therefore, multicast traffic may content with other traffic gen-

erated by nodes in the same communication group. We call traffic which are not multicast

traffic and generated by nodes in the multicast group the local traffic.

To study the effect of the local traffic, all nodes follow the SPMD workload model

presented in Algorithm 6.1.1. Besides participating in multicasting by forwarding multi-

cast messages, all nodes in the multicast group, except the root node, are allowed to send

point-to-point messages to other nodes in the multicast group. Similar to nodes in the

background group, both message size m and destination d are uniformly distributed and

the computational time t is exponentially distributed.

Figure 6.18 presents the performance of multicast algorithms on the mesh network

when the average inter-injection time of the local traffic is 50,000 time units. Obviously,

all algorithms perform worse than the experiment without local traffic. The presence of the

local traffic creates contention in the network and at the receiving nodes in the multicast

group. In contrast to the results from the mesh network, as shown in Figure 6.19, the results

of the same experiment on the BMIN network are entirely different. Again, the tum-around

routing allows all algorithms to perform well even with the presence of the local traffic.
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Figure 6.18: Comparison of 64-node l-KByte multicast trees on the mesh network with

local traffic. The average of inter-injection time of the local traffic is 50,000 time units.
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Figure 6.19: Comparison of 64-node l—KByte multicast trees on the BMIN network with

local traffic. The average of inter-injection time of the local traffic is 50,000 time units.
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6.4.5 Multiple Multicasts

The traffic outside the multicast group may not always be point-to-point messages. It is

possible that other communication groups may also perform multicasting as well. In Fig-

ure 6.20, we study the behavior of multicast on the mesh network when there are two groups

performing multicast at the same time. We divide nodes into three groups: two 64—node

groups are the multicast groups and one 128-node group is the background group. The root

nodes of both multicast groups inject l-KByte multicast messages and wait until the mul-

ticast messages are completely delivered before they inject new multicast messages. The

background traffic is uniform. Note that the multicast latencies of both multicast groups

are about the same.
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Figure 6.20: The performance of two 64-node l-KByte multicast trees running at the same

time on the mesh network.

The results in Figure 6.20 show that when there are more than one group performing

multicast at the same time, the OPT-Mesh algorithm does not perform well. Each time a
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Figure 6.21: The performance of two 64-node 1-KByte multicast trees running at the same

time on the BMIN network.
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multicast message is sent, the root node and the internal nodes send multiple duplicated

unicast messages. Thus, the injection rate of these messages at the root node and the

internal nodes is quite high. When compared to background nodes, the injection rate at

the node in the multicast group is much higher. This can cause much more contention in

the network. Hence, the OPT-Mesh algorithm performs poorly. Although the tree structure

generated by the DYN-Mesh algorithm is quite similar to the binomial tree when the traffic

load is high, this structure is adjusted at every internal nodes. Thus, it can perform better

than the U-Mesh. Similar results can be obtained when we perform the experiment on the

BMIN network, as shown in Figure 6.21.

6.4.6 The Performance of Multicast on Different Architecture

The network parameters of the underlying architecture of all experiments we have dis-

cussed so far are based on the actual measurement from the IBM/SP at Argonne National

Laboratory. Let call this architecture the baseline architecture. In reality, other architec-

tures have different network parameters.

Suppose that we enhance the baseline architecture by doubling the bandwidth of all

physical channels in the network and the network start-up cost is reduced by half. Thus, the

network parameters become: th, = 1915, thd = 2, tn, = 695, tnd = 1, t,, = 2025, trd = 3.

Figure 6.22 presents the performance of all multicast algorithms on the mesh network using

the new network parameters. The results indicate that the effect of the background traffic is

not significant. In this case, the software overhead dominates. Thus, the external contention

due to the background traffic causes lesser delay to the multicast latency comparing to its
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Figure 6.22: Comparison of 64-node l-KByte multicast trees on the mesh network with:

t)” = 1915, thd = 2, tn, = 695, tnd = 1, in = 2025, and trd = 3.

large software overhead.

Suppose we improve the baseline architecture by reducing the software overhead such

that the network parameters become: th, = 957, thd = 2, tn, = 1390, tnd = 2, t,, = 1012,

trd = 3. Figure 6.23 presents the performance of all multicast algorithms on this archi-

tecture. Although the network overhead becomes more significant, the results from this

architecture are quite comparable to the results from the baseline architecture (Figure 6.6).

However, the DYN-Mesh algorithm performs slightly better in this experiment than in the

baseline experiment. This is because its ability to adjust its own structure allows the DYN-

Mesh algorithm to adjust to the changes.

137



 

120000 "

100000“

 

 

,. 80000 '4

2

i
§ 60000 "

3 40000 "

l —e—DYN-Meeh +OPT-Mesh '

20000 '1 i _..._U-Mosh ....... Ideal

 

  
0 0.02 0.04 0.06 0.08 0.1 0.12

NONI-“20¢ Accepted Beckground Loed   
 

Figure 6.23: Comparison of 64-node l-KByte multicast trees on the mesh network with:

th, = 957, thd = 2, tn, = 1390, tad = 2, t,, = 1012, and t", = 3.

6.5 Conclusion

Software-based multicast has been studied extensively as it is heavily used in many parallel

applications. Most studies have been done in the ideal condition where the effects of net-

work traffic from other node are not included. In this chapter, we study the effect of network

traffic on multicast behavior. Several parameters such as the type ofbackground traffic, the

size of the multicast group, and the network parameters are considered. We focus our study

on four multicast groups including the binomial-based multicast algorithms (Binomial, U-

Mesh, and U-Min), the parameterized multicast algorithms (OPT-Tree, OPT-Mesh, and

OPT-Min), the sequential multicast algorithm, and the dynamic multicast algorithm (DYN-

Mesh and DYN-Min).

Based on the results, the parameterized multicast algorithms perform very well when

the background traffic load is not too high. They also perform well when the underlying
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network is based on the adaptive routing scheme, such as the tum-around routing. In addi-

tion, when the software overhead dominates, the effect from the background traffic is not

significant.

Under heavy load, the binomial-based multicast algorithm performs better than the pa-

rameterized multicast algorithm. However, this can happen if the load is very high which

is usually unacceptable in the real working system. Moreover, the difference of the per-

formance of the parameterized multicast algorithm and the binomial-based multicast algo-

rithm is noticeable when the load is light. Thus, the parameterized multicast algorithm is

very useful in most working conditions.

The understanding of the effects of external and source contention allows us to intro-

duced the dynamic multicast algorithm. Although we cannot predict the future network

condition, we can still adjust the multicast tree structure based on the current network

condition. To avoid high overhead, the dynamic multicast algorithms use only the local

network information which are assumed to be provided by the system. Based on these 10-

cal network information, the dynamic multicast algorithms adjust the network parameters,

thold and tend, with some simple calculation. Then they use the parameterized multicast

algorithm, such as OPT-Mesh and OPT-Min, to construct a multicast tree based on the new

parameters. The results from the experiments indicate that, in spite of theiunavailability

of global network information, the dynamic multicast algorithm still performs reasonably

well, especially when the network load is high and when there is more than one multicast

group performing multicast simultaneously.
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Chapter 7

Related Works

As mentioned earlier, multicast communication is a frequently used communication pattern

in many parallel applications. Thus, it is quite common to see special hardware supports

for efficient multicast communication in many parallel systems, such as the TMC CM-S

[3] and the NEC Cenju-3 [4], as well as several high-speed switches, such as DEC GI-

GAswitch [64] and Myricom’s Myrinet [8]. In addition, new message-passing libraries,

such as MP1 [12] and PVM [9], specify a multicast service as one of their standard collec-

tive communication primitives.

Our works have focused on several aspects of efficient software-based multicast com-

munication. The topics include modeling, benchmarking, and fine-tuning. In this chapter,

we concentrate on those works related to our topics.
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7.1 Communication Models

Recent parallel models such as the BSP model [65], the postal model [51], and the LogP

model [52] emphasize the importance of communication overhead. By taking the cost of

communication into consideration, these models can address the limitation of other simple

models, notable the PRAM model [66]. Although all three models are intended to address

similar problems, they are based different communication approaches. The BSP model

uses synchronous-based communication while the other two models use asynchronous-

based communication. As our model also uses asynchronous-based communication, we

discuss only the postal model and the LogP model.

The Postal Model

The postal model was proposed by Bar-Noy and Kipnis [51]. The model is based on the

postal service system where a source can send-and-forget its message and eventually the

message is delivered at the destination. Since the postal model is asynchronous-based, it is

quite suitable for recent parallel machines whose networks are based on packet switching

techniques.

The postal model has only one parameter, A. A is defined to be the ratio between the

time it takes to deliver a message from a source to its destination and the time it takes a

source to send a message. In the parameterized model:

 

ten
A = d (7.1)

them
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Although the postal model is quite simple, it suffers from several drawbacks. First, A

is assumed to be an integer and its value is fixed for each system. As shown in Chapter 2,

these are not true. As both thold and tend depend on the message size, Equation 7.1 suggests

that A may not be an integer and it is not fixed for each system. Second, the original model

does not discuss how to measure A. Bruck et al. [37] address solutions for these drawbacks.

The LogP Model

The LogP model, proposed by Culler et al. [52], has recently become a widely used parallel

model. Based on a reasonable abstract machine, the LogP model is flexible, realistic, and

yet simple at the same time. In this model, a system can be characterized by four parameters

including:

L the latency or delay incurred in communicating a message containing a single unit (or

a word) from its source to its destination.

0 the overhead when a processor is sending or receiving a message. The processor cannot

perform other operations during this time.

g the gap between consecutive sends or receives at a processor. This parameter defines the

available per-processor communication bandwidth.

P the number of processor/memory modules in the system.

Figure 7.1(a) shows the timing diagram of sending a message from P0 to P1 based on the

LogP model. Obviously, this diagram is very similar to the timing diagram of the param-

eterized model since the parameterized model is derived from the LogP model (thold = g
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and tend = L + 20). In addition, the postal model is a special case of the Log? model

where g = 1, o = O, and L = A. Note that the Log? model works particular well for

short messages. However, it is not adequate to model long messages. To overcome this

limitation, Alexandrov et al. [54] propose the LogGP model. The LogGP model has one

additional parameter, G, which represents the gap per byte for long messages. The diagram

of the LogGP model is shown in Figure 7.1(b).
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Figure 7.1: The timing diagram of (a) the LogP model, (b) the LogGP model.

Culler et al. [56] address several problems of the Log? model. They propose some

small changes to the Log? model in order to increase its effectiveness in model a system.

They distinguish between the send overhead and the receive overhead. To model large

messages, they assume parameters L, o, and g to depend on message size. In addition,

they propose a set of communication microbenchmarks to measure latency, overhead, and

bandwidth. These microbenchmarks are based on Active Messages paradigm.

7.2 Multicast Benchmarks

There are several approaches to measure the latency of multicast communication. In a

system which has a global clock, we can measure the multicast latency by using time-
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stamp. Before the root node performs multicasting, it records the starting time. Upon

receiving, all receivers record the time. Based on these records, we can find the starting

time and the time that the last node receives the message. However, this approach is not

applicable if there is no global clock or if the clock resolution is not fine enough.

Another approach is based on the knowledge of the multicast algorithm [60]. In this

approach, an arbitrary node is picked as the root node. Given the root node, the last node

can be predicted based on the multicast algorithm and the communication overheads. After

the first multicast is completed, the last node becomes the root node and the whole process

repeats again. Since the last node of the current multicast operation is always the root node

of the next multicast, it can be guaranteed that the next multicast always starts immediately

after the previous one is completed. The average time of this benchmark is the multicast

latency. The main drawback of this approach is that the multicast algorithm must be known.

Bal et al. [67] propose a benchmark to evaluate a multicast operation on high-speed net-

works in clusters of workstations. To measure the multicast latency, they pick two arbitrary

nodes to be senders. Each sender sends a multicast message when it receives a multicast

message from the other sender. Note that during the measurement, the remain nodes only

receive messages. The average multicast latency over all combinations of two nodes in the

cluster is used as the multicast latency. This approach suffers from two problems. First,

the multicast messages from both senders may create network contention since a new mul-

ticast may be issued before the previous one ended. If the network contention happens, the

results can be skewed. Second, it is possible that, for some multicast algorithms, given any

combinations of two nodes in the system, one node is not the last node in the multicast tree

when the other node is the root node and vice versa. In this case, the latency is not the

144



multicast latency.

7.3 Platform-Independent Multicast

A platform-independent multicast algorithm is a software-based algorithm which uses only

point-to-point communication services. To achieve both portability and high performance,

the algorithm is usually based on an abstract parallel architecture model, such as the postal

model and the LogP model. Typically, these abstract models use a small set of parameters

to characterize the underlying network architecture. Based on these network parameters,

the platform-independent algorithm can construct a multicast tree which matches the un-

derlying network.

Bar-Noy and Kipnis [51] propose an optimal multicast algorithm for the postal model.

To construct an optimal multicast tree, their algorithm use the Fibonacci numbers and

divide-and-conquer method. Since A is assumed to be an integer, their algorithm may not

generate an optimal multicast tree when used in the real system. Bruck et al. [37] address

this problem and propose the A-tree algorithm. However, their algorithm is too complicated

to implement. Furthermore, the shortcomings of the postal model discussed earlier limit

the applications of the optimal multicast algorithms based on this model.

As the LogP model is a general-purpose model and its parameters are well-defined,

constructing an optimal multicast tree based on this model is not difficult. Karp et al. [53] '

propose an efficient 0(k) algorithm based on the special labeling scheme. The algorithm

starts from the root node whose label is O and adds mOre nodes until all nodes are added.

When added, each node is labeled based on the time it expected to receive the multicast
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message from its parent. By selecting the location to add a new node such that the new

label is the smallest, it can be proven that a multicast tree constructed based on this criteria

is Optimal. Figure 7.2 shows an optimal multicast tree with its timing diagram for P = 8,

L=6,g=4,ando=2.
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Figure 7.2: (a) An optimal multicast tree for P = 8, L = 6, g = 4, and o = 2. (b) The

timing diagram.

In [54], Alexandrov et al. discuss the problem of modeling long messages with the

LogP model. They also address the problem of optimal algorithms for multicast and seat-

ter. Using the dynamic programming technique similar to our approach discussed in Chap-

ter 4, their algorithm can construct a optimal multicast tree in 0(k2) time. To improve its

performance, they propose an approximate algorithm which can construct a nearly-optimal

multicast tree in 0(k) time.

7.4 Platform-Dependent Multicast

The design of multicast communication based on the system characteristics, or platform-

dependent multicast, have been quite well-studied. One popular technique is to design a

multicast algorithm to efficient utilize communication channels based on the underlying
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network topology. Research based on this technique include the spanning binomial tree

(SBT) algorithm [41], the edge-disjoint spanning tree (EDST) algorithm [42], and the edge

disjoint fences (EDF) algorithm [43]. Based on the network topology, we can also construct

a contention-free multicast algorithm to further improve its performance. The examples are

U-cube, U-mesh [44], and U-Min [45]. The details of these works have been discussed in

Chapter 5.

In some systems, each node may have multiple channels, or multi-port interfaces, con-

necting to the network. With this multi-port capability, a node can send/receive several

messages simultaneously. As multicast involves multiple receivers, utilizing the multi-port

feature can greatly improve its performance. To demonstrate this technique, let consider

Figure 7.3 which presents the EDN broadcast in a 16 x 16 mesh [49]. For 16 x 16 mesh,

nodes are classified into four levels, including level-3 EDN, level-2 EDN, level-l EDN, and

level-0 node. When a broadcast is issued, the root node sends the broadcasting message to

the highest level, level-3 EDN, nodes. Then the message is propagated to the lower level

until it reaches all nodes. Based on the concept of extended dominating nodes, the EDN

algorithm is contention-free. Other multi-port algorithms include the Double Tree (DT)

algorithm [46], Ho and Kao’s algorithm [47], and the W-sort algorithm [48].

7.5 Conclusion

In this chapter, we have reviewed several related works and presented the difference be-

tween our work and theirs. Modeling multicast based on the postal model can be quite

difficult because the model has several drawbacks. The generic model such as the Log?
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Figure 7.3: EDN broadcast in a 16 x 16 mesh.

model is very powerful. However, having many parameters makes multicast modeling to

be quite complicated. Besides choosing a suitable basic communication model, evaluat-

ing multicast is also very crucial when modeling a multicast. Although there are several

works addressing this issue, they fail to either define their metrics clearly or use correct

measurement techniques.

Both platform-independent and platform-dependent multicast algorithms have been ex-

tensively investigated, Based on different models, these algorithms have their own limita-

tions. In addition, these works have been done under the ideal condition where there is no

other traffic in the network. As discussed in Chapter 6, the presence of other traffic can

effect the performance of a multicast.
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Chapter 8

Conclusion and Future Work

Efficient multicast communication is critical to the performance of parallel programs on

scalable parallel computers. This thesis studies each several aspects of implementing effi-

cient software-based multicast communication. In this chapter, we summarize the contribu-

tions made by this research and present interesting issues for possible future investigation.

8.1 Research Contributions

Software-based multicast usually facilitates point-to—point communication services to prop-

agate a message from the root node to all destinations. Understanding the cost of these

point-to-point communication services is very crucial in modeling software-based multi-

cast communication. Although the point-to-point communication is very simple, there are

several parameters which can be used to describe its cost. We discuss the assumptions and

the criteria when choosing only necessary and sufficient parameters for modeling multicast.

Based on our criteria, we propose the parameterized communication model derived from
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the LogP model. The thesis also discusses how to measure each parameter in the model.

To fairly compare two multicast implementations, two issues are needed to be ad-

dressed. The first issue is to identify the most representative metrics. The chosen metrics

must be well-defined and must be able to characterized the actual overhead of a multicast

service. The other important issue is to use correct measurement techniques. Most measur-

ing techniques are either inaccurate or having some limitations. We choose the multicast

latency as the most representative metric for a multicast communication service. We pro-

vide its formal definition and propose its measuring technique. Our proposed technique is

quite simple, more accurate, and have less limitation than other techniques. This thesis also

discusses how to verify the correctness of our technique.

A key issue in designing a software-based multicast algorithm is to consider the trade-

off between performance and portability. The main drawback of a platform-independent

multicast algorithm is that its performance is typically varied significantly from one plat-

form to another. To overcome this problem, this thesis proposes the parameterized multi-

cast algorithm. Our algorithm is portable, but still performs well on various platforms. The

main concept of our algorithm is to characterize the underlying network using the param-

eterized model. Based on the model, our algorithm constructs an optimal multicast tree.

The original algorithm is based on the dynamic programming technique which is not effi-

cient enough. We further discuss how to improve its runtime to be 0(n). The results from

the IBM/SP indicate that our algorithm is significantly better than other well-known algo-

rithms, including the implementation provided by the underlying communication library.

The optimality of the parameterized algorithm is based on the assumption that the un-

derlying network has no communication contention. For a real network, this assumption
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is not practical. The contention in the network can prevent our algorithm from achieving

its optimal performance. Therefore, it is necessary to consider the architecture-dependent

characteristics of a system, such as network topology and switching mechanism. We study

the platform-dependent tuning of the parameterized algorithm based on two contention-free

multicast algorithms, U-Mesh and U-Min. We propose two algorithms which can gener-

ate contention-free parameterized multicast trees on wormhole-switched mesh and BMIN

networks.

Most multicast-related research have been done under the ideal condition in which the

effect of other traffic in the network is ignored. Typically, the actual network condition

is not ideal. Based on the simulation studies, we investigate the performance of several

multicast algorithms on two different networks which are the wormhole-switched mesh

network with the X—first-Y-next routing, and the wormhole-switched BMIN network with

the tum-around routing. The main focus of our study is to examine how useful is the

parameterized multicast algorithm when the background traffic exists. The results indicate

that our algorithm performs reasonably well in most traffic conditions on both networks.

We also propose a new class of multicast algorithm called the dynamic multicast algorithm.

Our dynamic multicast algorithm handles the dynamic environment due to the background

traffic by adjusting its own structure dynamically based on the local network information.

The results from the simulation studies show that the dynamic multicast algorithm performs

as well as the parameterized multicast algorithm in most cases and performs better when

the network load is high or the irregular traffic, such as multiple multicast, exists.
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8.2 Directions for Future Research

In this thesis, we have concentrated our effort on the software-based multicast implemen-

tation. The framework presented in this work establish the foundation for future study but

need to be extended in several ways.

The communication flow model is proposed to be a basis for our multicast benchmark-

ing technique and can be applied to evaluate other one-to-all communication services as

well. However, most parallel applications also utilize other collective communication ser-

vices, such as reduce and barrier synchronization. More research can be done to extend

the communication flow model to be a framework for evaluating all-to-one and all-tooall

communication services.

The concept of platform-dependent tuning can be applied to any network as long as the

underlying networks can be partitioned into contention-free processor clusters. In some

networks, such as a butterfly unidirectional MIN, this partitioning may not be possible.

In this case, the best one can do is minimizing the internal contention as much as possi-

ble. Instead of preventing a common communication channel used by different senders at

any time, some channels are allowed to be shared. However, the senders who share the

same communication channels are ordered such that they are unlikely to send at the same

time. More research is needed for such networks. In addition, other system characteristics,

such as multi-port capability, are also good candidates for fine-tuning our parameterized

multicast algorithm.

Finally, a particularly challenging direction is to further study the multicast behavior in

the real network. There are several challenges. The first one is to improve the study model
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to be as close as the actual condition in the real network. The current study is based on the

steady-state of the network. However, in the real network, its condition does not remain at

one particular state all the time. Thus, the multicast behavior can be varied. The second one

is to study the multicast behavior on other networks such as irregular network. In addition,

the proposed dynamic multicast algorithm is still based on simple network information.

Some additional network information, such as the estimated latency from the root node to

other nodes, may be useful to determine not only the structure of the multicast tree, but also

the order of the send at the root node. Utilizing additional network information effectively

becomes another challenging issue. However, out-of-date information and poor prediction

can result to constructing a multicast tree with bad performance.
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