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ABSTRACT

A DATA MODEL AND DESIGN PRINCIPLES FOR TEMPORAL DATABASES

WITH HOMOGENEOUS AND NON-HOMOGENEOUS DATA

By

Jaruloj Eamsiri Chongstitvatana

Existing data models and design principles for temporal databases are based on the

assumption that a temporal data is associated with an interval as well as its sub-intervals.

This type of temporal data is called homogeneous data. A temporal data which is

associated with an interval, but not its sub-intervals, is called a non-homogeneous data.

Existing data models cannot capture non-homogeneous data accurately, and the existing

design principles are not applicable in temporal databases that contain non-homogeneous

data. In this dissertation, the relational data model is extended to support both

homogeneous and non-homogeneous data. A design principle which avoids

inconsistency in temporal databases, that contain homogeneous data as well as non-

homogeneous data, is studied.

In the proposed extension of the relational data model, temporal relations are classified

into two types; property relations and representative relations. A tuple in a property



relation is associated with the valid time and its sub-intervals, while a tuple in a

representative relation is associated with only the whole interval of its valid time. Thus,

the valid time in a property relation is decomposable, but the valid time in a

representative relation is not. Based on this characteristics, the valid time in a property

relation and that in a representative relation cannot be used in the same manner. In the

extension of relational algebra for temporal relations, the calculation of the valid time in a

relation, created by relational operators, is determined by the types of the temporal

relations. Thus, it guarantees proper use of the valid time.

A type of inconsistency, called P-inconsistency, can occur in temporal databases with

homogeneous and non-homogeneous data. A normal form, called P-consistency Normal

Form (PCNF), which avoids P—inconsistency, is proposed in this dissertation. PCNF is

based on types of attributes, functional dependencies, and property dependencies (P-

dependencies), in temporal relations. A normalization algorithm for PCNF is presented.

However, it does not always give the minimum number of normalized relations. We

prove that finding a decomposition that gives the minimum number of normalized

relations is an NP-complete problem. We have also proven that the problem of finding

equivalent sets of attributes under a set of dependencies is an NP-complete problem. This

problem is a more general problem, and is the basis of the proof that finding a

decomposition that gives the minimum number of normalized relations is an NP-

complete problem. Finally, a heuristic that gives a minimum number of normalized

relations is provided.
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Chapter 1

INTRODUCTION

1.1 Temporal Databases

The importance of temporal aspects of information in databases has been recognized in

many research [11, 13, 26, 28]. A database that supports a temporal aspect of information

is called a temporal database. Temporal aspects of information have been studied in

many areas, such as linguistics [14, 45, 57, 61, 87], logic [66, 67], and artificial

intelligence [3, 16, 58, 73]. Most of the work on temporal databases is based on the

relational model [27, 28]. Extensions of deductive databases to support temporal data

have also been studied [1, 7, 19, 20, 21, 22, 63]. Temporal databases in object-oriented

data model have recently been addressed [12, 18, 30, 34, 37, 65, 69, 84, 86].

Temporal aspect of information is classified into valid time, transaction time, and user-

defined time [76]. The valid time indicates when a data is true in the real world. For

example, the valid time of the temporal data, “John is a manager”, is the interval

beginning when John takes the position as a manager and ending when John leaves the

position. The transaction time of a temporal data is the time between the insertion and

the deletion of the data. The transaction time indicates when a data is considered to be
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true in the database, which is not necessarily the same as the time when it is actually true

in the real world. For example, the transaction time of the fact “John is a manager” is the

interval beginning when the fact is inserted in the database, and ending when the data it is

removed from the database. The data is not necessarily inserted exactly when John takes

the position, nor removed exactly when John leaves the position. The user-defined time

is any arbitrary time whose semantics is defined by users. For example, an employee’s

birthday is a user-defined time. A valid-time database supports valid time, a transaction-

time database supports transaction time, and a bi-temporal database supports both valid

time and transaction time [46]. Most of the research on temporal databases focus on valid

time [5, 18, 19, 21, 23, 24, 26, 30, 39, 40, 41, 52, 53, 54, 62, 70, 71, 72, 73, 79, 83, 84,

86]. A few works address both valid time and transaction time [11, 40, 59, 74, 75].

Research issues in temporal databases include:

1. The extension of a data model to support time [5, 6, 12, 18, 19, 23, 30, 37, 39, 41, 40,

50, 53, 65, 69, 79, 86],

2. Query languages for temporal databases [5, 7, 34, 39, 40, 55, 62, 70, 74],

3. Design principles for temporal databases [48, 52, 62, 71, 82, 83, 84],

4. Imprecise information in temporal databases [15, 32, 33].

Some of these issues are discussed briefly in this section. They are also examined further

in Chapter 2.
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1.1.1 DATA MODELS FOR TEMPORAL DATA

The extensions of various data models to support time have been studied. For the

extensions of the relational data model, there are two approaches to incorporate time. One

of these approaches is to attach time to each tuple, which is called tuple-timestamping.

This approach has been used in many data models [11, 47, 49, 53, 59, 62, 70, 72, 74, 75].

The other approach is to- attach time to each attribute, which is called attribute-

timestamping. This approach is adopted in some data models [23, 24, 39, 41, 79]. In the

attribute-timestamping models, values of attributes associated with the same key are

grouped in the same tuple. Therefore, a data model with attribute-timestamping is

sometimes called a temporally-grouped data model, while a data model with tuple-

timestamping is sometimes called a temporally-ungrouped data model. Examples of

temporal relations in a temporally-grouped data model and a temporally-ungrouped data

model are shown in Figure 1.1 (a) and (b), respectively. The difference between these

two approaches is addressed [25]. An advantage of a temporally-ungrouped model is

simplicity. A temporal relation in a temporally-ungrouped model can be represented in a

1NF relation. On the other hand, a temporal relation in a temporally-grouped data model

cannot be represented in a first normal form (1NF) relation. However, some queries are

meaningful in a temporally-grouped data model, but not in a temporally-ungrouped data

model. Consider the query for the history of all employee’s address, disregarding the

employee’s names. This query on the temporally-grouped relation in Figure 1.1 (a)

results in two tuples; <[[1980, I987]: 123 Oak St., Lansing, MI], [[1988, 1995]: 45 Shore

Rd., Chicago, IL], [[1996, I997]: 67 5th St., New York, N'Y]> and <[[1988, I990]: 123
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Oak St., Lansing, MI], [[1991.1997]: 90 Palm Rd, Miami, FL]>. Each of these tuples is

the history of each employee’s address. However, the same query on the temporally-

ungrouped relation Address in Figure 1.1 (b) is not meaningful because the relationship

among addresses of one employee is lost. Furthermore, John’s address during 1980-1987

and Mary’s address during 1988-1990, which are both “123 Oak St. Lansing MI”, are

combined as <123 Oak St. Lansing MI, 1980-1990>.

 

Name Address

[[1980, 1997]: John] [[1980, 1987]: 123 Oak St., Lansing, MI],

[[1988, 1995]: 45 Share Rd., Chicago, IL],

[[1996, 1997]: 675th St., New York. NY]

[[1980, 1997]: Mary] [[1988, 1990]: 123 Oak St., Lansing, MI],

[[1991, 1997]: 90 Palm Rd,. Miami, FL]

 

 

    
(a) A relation Address in a temporally-grouped data model.

 

Name Address Time

John 123 Oak St., Lansing, MI [1980, 1981

John 45 Shore Rd, Chicago, IL [1988, 1995]

John 67 5th St., New York, NY [1996, 199A

Mary 123 Oak St., Lansing, MI [1988, 1990]

Mary 90 Palm Rd., Miami, FL [1991, 1997]

 

 

 

 

 

     
(b) A relation Address in a temporally-ungrouped data model.

Figure 1.1: A relation Address in a temporally-grouped and a temporally-ungrouped data

models.

TEWLOG [1, 7], Datalog“ [19, 20, 21, 22], and Temporal DATALOG [63] are extensions

of a deductive database Datalog to support time. In Datalog“, time is added as another

explicit argument in each predicate, and the next operator (+1) is provided for time. In

TEMPLOG and Temporal DATALOG, time is not an explicit argument, but time is referred
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to by temporal operators. Extensions of the object-oriented data model are also studied

[12, 18, 30, 34, 37, 65, 69, 86].

1.1.2 QUERY LANGUAGES FOR TEMPORAL DATABASES

Many query languages proposed for temporal databases are based on SQL [17] and Quel

[78]. SQL is extended to support temporally-ungrouped models [62, 70, 75], and a

temporally-grouped model [5]. Quel is also extended to support a temporally-ungrouped

model [74]. The completeness of query languages are defined by Clifford, Croker and

Tuzhilin [25]. The completeness for temporally-grouped and temporally-ungrouped

models are different because some queries are meaningful in temporally-grouped models,

but not in temporally-ungrouped models.

1.1.3 DESIGN PRINCIPLES FOR TEMPORAL DATABASES

Design principles proposed for temporal databases can be classified into two types. One

is the extension of traditional design principles, such as the third normal form (3NF), for

the temporal relational data model [48]. The other type of design principle focuses on

redundancy in temporal data [11, 52, 62, 72, 82, 83]. The elimination Of redundancy is

based on the assumption of the characteristics of temporal data.

1.2 Types of Temporal Data

The assumption about the characteristic of temporal data adopted in most temporal data

models is very simple. A temporal data which is applied to an interval is assumed to be
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applied to any sub-interval. However, this assumption is not applicable for many

temporal data. There are many studies on other characteristics of temporal data in

linguistics [14, 45, 57, 87], philosophy [61], and artificial intelligence (AI) [3, 58, 73].

In McDermott’s study [58], facts, events, and fluents are defined. A fact or an event is

true over an interval, and a fluent’s value changes over time. In Allen’s temporal logic

[3], temporal data are classified into properties, events, and processes. If a property is

true for an interval, it is true for any sub-intervals. An event is true for the whole interval

in which it occurs but not for its sub-intervals. {A process is true for some sub-intervals in

which it occurs. These two classifications are used in automatic planning, and, thus, they

are also influenced by types of temporal data which are of interest for planning. Shoham

proposed a temporal logic system as a basis for general classification of temporal data

[73].

These complex characteristics of temporal data addressed in these works are also present

in temporal databases. However, these types of temporal data have not been addressed in

temporal databases. This problem is addressed in the next section.

1.3 Problem Description

1.3.1 MOTIVATION

In existing temporal data models, it is assumed that a temporal data is associated with

every point in an interval. For example, in Clifford and Warren’s historical database



7

(HDB) [26], a temporal data is associated with a state, which is a point of reference in

time. A data is associated with a set of states if and only if it is associated with each state

in the set. In Gadia’s data model [39], time is represented by a finite union of intervals.

Thus, an interval of time is equivalent to a union of its sub-intervals. The implication of

this representation is that a temporal data associated with an interval is associated with its

sub-intervals, as well. Similar assumptions are made in many temporal data models [5],

[23], [41], [54]. This type Of temporal data is called homogeneous data [68]. For

example, “John is married", is a homogeneous data. Data in transaction-time databases

are always homogeneous. If a data is in a transaction-time database during an interval, it

is in the database during any sub-intervals. However, the assumption is not always true

for valid-time intervals. As mentioned earlier, in many studies of temporal data, there are

temporal data which do not comply with this assumption. For example, “Mary walks

from home to school”, is an event which is true for an interval [t1, t2], where t; is the time

Mary leaves home and t; is the time she arrives at school. However, it is not true for an

interval {I}, t3], where t1<t3<t2, because Mary does not yet arrive at school at t3, Data

which are created by aggregation over time do not satisfy the assumption. For example,

the total precipitation and the highest temperature over an interval are created by the

aggregation sum and maximum, respectively. Both the total precipitation and the highest

temperature are applied for the whole interval, but not its sub-intervals. We call this type

of temporal data non-homogeneous data.

Non-homogeneous data cannot be represented accurately in existing temporal data

models. Consider the representation of the highest temperature in the data model in
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HDB. Suppose the highest temperature in Washington DC. is 98°F for 1997, and is 50°F

for January 1997. Let a state represent a month. The year 1997 is represented by a set S

of states, which represent the months in 1997. Since the highest temperature, 98°F, is

associated with S in this data model, it is associated with each state in S. That is, it is also

associated with the month of January 1997. However, the highest temperature in

Washington DC. during January 1997 is 50°F, not 98°F. Therefore, the highest

temperature is not represented correctly in this data model.

1.3.2 STATEMENT OF THE PROBLEM

In existing temporal data models, temporal data are assumed to be homogeneous.

However, it is essential to capture non-homogeneous data in temporal databases. In this

dissertation, we address the following problems:

1. Extend the relational data model to support both homogeneous and non-homogeneous

data.

2. Develop a design principle that avoids inconsistency in temporal databases containing

homogeneous and non-homogeneous data.

In this work, we focus only on valid-time databases. Tuple-timestamping is adopted in

the extension of the relational data model. Relational operators are extended for temporal

relations. These operators on temporal relations are defined, based on characteristics of

the temporal relations.
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Furthermore, inconsistency in temporal relations is identified. A normal form that avoids

the inconsistency is defined. The normal form is based on characteristics of temporal data

and two types of data dependencies in temporal relations.

1.4 Organization of Dissertation

This dissertation is composed of 8 chapters. Previous works on temporal data models,

query languages, and design principles for temporal databases are presented in Chapter 2.

In Chapter 3, characteristics of temporal data are studied. Attributes and relations in

temporal databases are classified according to their characteristics. Based on types of

temporal relations defined in Chapter 3, an extension of the relational data model is

presented in Chapter 4. An extension of Datalog, a deductive database, is presented in

Chapter 5. In Chapter 6, inconsistency in a temporal database with homogeneous and

non-homogeneous data is identified. Two types of data dependencies on temporal data are

discussed. Based on types of temporal data and types of data dependencies, a design

principle which avoids the anomaly is proposed. In Chapter 7, the algebra presented in

Chapter 4 is extended to handle imprecise valid time. Finally, concluding remarks are

presented in Chapter 8.



Chapter 2

BACKGROUND

In this chapter, related works which are the background for this dissertation, are

examined. In Section 2.1, existing temporal databases are discussed, and we examine why

these temporal databases cannot capture non-homogeneous data In Section 2.2, design

principles for temporal databases are discussed. We also show why these design

principles are not applicable for a temporal database which contains non-homogeneous

data. Finally, in Section 2.3, we show that non-homogeneous data are an essential part of

temporal data, and are studied in other areas, such as AI.

2.1 Data Models and Query Languages for Homogeneous Data

The majority of the works on temporal databases are based on the relational data model.

In this section, temporal relational data models and query languages, and temporal

deductive databases are examined.

2.1.1 TEMPORAL RELATIONAL DATABASES

There are two approaches for extending the relational data model to support temporal

10
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data. Time can be associated with each attribute, or each tuple. This is a major difference

among these data models. As a result of different timestamping, operations on temporal

relations are defined differently in these data models. A similarin among many temporal

data models is the assumption that temporal data is homogeneous. These data models

cannot capture non-homogeneous data accurately. A few temporal data models are

discussed here. A more comprehensive survey can be found in Jensen, Snodgrass, and

800’s work [47].

. Clifford and Warren’s Historical Database

Clifford and Warren aim to define the semantics of time in temporal databases [26]. A

data model for temporal databases, called historical database (HDB), is proposed. The

importance of the incorporation of temporal semantics in a temporal data model is

recognized. A temporal data is assumed to be true at any point in its valid time. STATE is

an attribute which represents a point of time. STATE is associated with each tuple, which

represents a temporal data. This representation of temporal data cannot capture non-

homogeneous data. If a non-homogeneous data is true for an interval, which contains

more than one STATE, it is not necessarily true for each STATE. However, in HDB, a

temporal data is associated with a STATE. As a result, temporal data cannot be associated

with an interval, and not with each STATE in the interval.

Ariav’s Tem l riented Data Model

Ariav proposes a temporally oriented data model (TODM) [5], which addresses the

transaction time (called a recording time in [5]). TOSQL, which is an extension of SQL,
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is defined for TODM. Clauses, such as WHILE, AT, etc., are included in TOSQL, and

they specify the time of relations which can be involved in a SELECT statement. Since

the temporal aspect of data in this work is the transaction time, non-homogeneous data

have not been addressed in this work.

Qadia’s Homogeneous Relational Model

Homogeneous relational model (HRM) [39] is an attribute-timestamping model. The

value of an attribute is a function from its temporal domain to values. The temporal

domain of an attribute in a tuple is the time during which the value of the attribute is

defined in the tuple. The temporal domains of all attributes in a tuple must be the same

(hence, homogeneous). This restriction aims to avoid null value for an attribute at a time.

Later, this restriction is relaxed [41]. Relational operators u, n, —, 1'1, 0’, and t><I on

temporal relations are defined similar to traditional relational operators.

In HRM, a temporal data associated with an interval is equivalent to the temporal data

associated with the union of its sub-intervals. This implies that a temporal data is

associated with an interval and its sub-intervals. Thus, non-homogeneous data cannot be

captured in HRM.

Clifford and Croker’s Historig Relational Data Model

Similar to Gadia’s HRM, historical relational data model (HRDM) [23, 24] is an

attribute-timestamping model. The difference between these two models is the concept

of mergable tuples. Two tuples with the same scheme are mergable if their valid times
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overlap and the values of all attributes in the overlapping lifespans are equal. Based on

mergable tuples, operators uo, no, and --0, which are the extension of U, n, and —, are

defined. The concept of mergable tuples is based on the assumption that a temporal data

is true for all sub-intervals of its valid time, i.e. homogeneous. Therefore, the operators

U0, no and -o are not applicable for non-homogeneous data.

Tansel’s Model

Tansel presents an attribute-timestamping model, which allows set values for attributes

[24, 79]. This data model allows nested relations. Thus, relations in this data model are

clearly not in 1NF. Relational algebra for temporal relations are defined. Operators Pack,

Unpack, Decomposition, and Formation are used to transform these non-1NF relations

into 1NF relations. An operator Slice restricts the valid time of one attribute in each tuple

by the valid time of another attribute. This Operator is based on the assumption that the

value of an attribute is associated with an interval as well as its sub-intervals. Therefore,

the algebra is not applied to non-homogeneous data.

nod ’ T uel

TQuel [74] is an extension of Quel, which addresses both valid time and transaction time.

Valid time and transaction time are associated with each tuple. However, the difference

between homogeneous and non-homogeneous data is not addressed in TQuel.
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Navathe and Ahmed’s TSQL

TOSQL [62] is an extension of SQL, for a tuple-timestamping temporal data model. The

valid time is represented by two end points, T5 and TE. Additional features in the SELECT

statement include the WHEN clause, which specifies the valid time of relations in the

statement, and the TIME SLICE clause, which restricts temporal data involved in the

query by the valid time. Similar to the operator Slice [24], the TIME SLICE clause is not

applicable to non-homogeneous data. Thus, TSQL is not applicable for temporal

databases that contain non-homogeneous data.

Lorentzos’s Model

Lorentzos presents a tuple-timestamping data model for temporal databases [52, 53]. The

Fold operator and the Unfold operator are defined for temporal relations. The Fold

operator transforms a temporal relation in which the valid time is a point into a temporal

relation in which the valid time is an interval. The Unfold operator transforms a temporal

relation in which the valid time is an interval into a temporal relation in which the valid

time is a point. These operators are based on the assumption that a temporal data is

associated with each point in its valid time. Thus, they are not applicable for non-

homogeneous data.

The data model for temporal data is extended to support interval data, and a query

language, IXSQL, is defined for interval data [54, 55]. Time is considered a one-

dimensional interval. Spatial objects, such as area, are considered two-dimensional

intervals.
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Jensen. Sea and Snodm’s Bi-temmral Conceptual Data Model

The bi-temporal conceptual data model (BCDM) is proposed as a conceptual model

which unifies different temporal data models [49, 50]. A tuple is associated with a set of

bi-temporal chronons. The domain of bi-temporal chronons is the Cartesian product of

the domains of valid time and transaction time. The domains of valid time and

transaction time are sets of time points. From the data model, it is implied that a temporal

data is associated with each point in its valid time. Thus, non-homogeneous data cannot

be captured in BCDM.

IIEQLZ

TSQL2 [75] is an extension of SQL-92 [29, 60] to support both valid time and transaction

time. It is a proposed standard query language for temporal databases. TSQL2 supports

multiple granularities of time, multiple calendars, temporal aggregates and imprecise

valid time. However, the difference between homogeneous and non-homogeneous data is

not addressed here.

2.1.2 TEMPORAL DEDUCTIVE DATABASES

Similar to a deductive database, a temporal deductive database is composed of an

extensional database (EDB) and an intensional database (IDB). Temporal operators O

(next) for TEMPLOG, +1 for Datalog“, and next for Temporal DATALOG are allowed in

IDB rules. These operators in IDB rules can recursively define infinite relations.

Therefore, infinite relations can be captured in these temporal deductive databases. On
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the other hand, relations in a temporal relational data model are always finite. In this

respect, these temporal deductive databases can capture relations which cannot be

captured in temporal relational databases [7, 8].

In TEMPLOG, Datalog“, and Temporal DATALOG, a point of time is associated with a

temporal data. A temporal data is, therefore, associated with each point in an interval.

As a result, non-homogeneous data cannot be captured in these temporal databases.

Following, various design principles for temporal relational databases are examined.

2.2 Design Principles for Temporal Databases with Homogeneous

Data

Design principles for temporal relational databases have been investigated in many

studies. Some of these design principles aim to avoid redundancies caused by the nature

of temporal data. Examples of these design principles are first temporal normal form

[72], time normal form [62], P and Q normal forms [52], and two different T3NF’s [82,

83]. Others aim to avoid the same type of anomaly addressed in traditional relational

databases. An example of this type of design principle is the temporal third normal form

(T3NF) [48]. These normal forms are based on the characteristic of homogeneous data,

and they are not applicable for temporal databases that contain both homogeneous and

non-homogeneous data. Here, normal forms for temporal relational databases are

examined.
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2.2.1 FIRST TEMPORAL NORMAL FORM

The fust temporal normal form (lTNF) aims to avoid redundancy in temporal relations.

lTNF does not allow two tuples with the same key and overlapping valid time. It is

assumed that such tuples can be combined into one tuple. For example, consider a

relation EmpDept(Name, Dept, 7), which contains the tuples <Mary, Advertising, [1990,

1994]> and <Mary, Advertising, [1993, 1996]>. These two tuples are redundant because

they can be combined as <Mary, Advertising, [1990, 1996]>. Redundancy addressed in

lTNF is based on the characteristic of homogeneous data. Thus, it is not applicable when

a database contains non-homogeneous data.

2.2.2 TIME NORMAL FORM

The time normal form (TNF) avoids redundancy caused by two attributes in a relation,

which do not change values at the same time. For example, in the relation

EmpRecord(Name, Addr, Dept, T) shown in Figure 21 (a), the values Of Addr and Dept

are not necessarily changed at the same time. When the value of Dept for an employee is

changed and the value of Addr remains the same, the value of Dept is duplicated in

another tuple. Thus, it is redundant. In Figure 2.1 (a), John’s address, “123 Oak St.,

Lansing, MI”, is duplicated. To avoid the redundancy, the relation can be decomposed

into TNF relations, EmpAddr(Name, Addr, T) and EmpDepdName, Dept, T), as shown in

Figure 2.1(b) and (c).

TNF does not always avoid redundancy when a relation contains non-homogeneous data.
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If the same value of a non-homogeneous data is associated with adjacent intervals, it does

not imply that the same value is associated with the union of the intervals.

2.2.3 P AND Q NORMAL FORMS

The P normal form (PNF) avoids redundancy by preventing tuples with overlapping or

adjacent valid time. A relation is in Q normal form (QNF) if it is in PNF and there is only

one non-prime attribute in the relation. This also avoids duplicate values when non-

prime attributes do not change values at the same time. However, a relation can be

decomposed unnecessarily.

 

I Name Addr Dept T I

| John 123 Oak St., Lansing, MI Marketifl [1993, 1995] 1

I John 123 Oak St., Lansing, MI Purchasing [1996, 1997] I

 

 

    

 

 

   

 

(a) The relation EmpRecord.

I Name Addr T I

| John 123 Oak St., Lansing, MI [1993, 1997] l

(b) The relation EmpAddr.

I Name Dept T I
 

| John Marketing [1993, 19951 |

| John Purchasing [1996,1997] |

 

   

(c) The relation EmpDept.

Figure 2.1: The decomposition of a relation EmpRecord into relations in TNF.

2.2.4 TEMPORAL 3NF

The temporal 3NF (T3NF) [48] is an extension of 3NF, which is based on temporal

functional dependencies. The temporal functional dependency is an extension of the
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traditional functional dependency. Similar to 3NF, T3NF avoids the anomaly caused by

transitive dependencies. In this work, temporal data is assumed to be associated with

every point in its valid time. Thus, temporal functional dependency and T3NF are not

applicable when non-homogeneous data are involved.

2.2.5 WUSEN’S T3NF

Dynamic and temporal functional dependencies (DFD and TFD) are defined by Wijsen

[83]. A TFD X G Y means, at any time, the value ofX determines the value of Y. A DFD

X N Y means the value change of X implies the value change of Y. T3NF is based on

DFD, TFD, and traditional functional dependencies. Similar to 3NF, T3NF avoids

transitive dependencies.

TFD and DFD are defined on data which are true at each point of time. For non-

homogeneous data, it is not possible to derive data which are true at each point of time

from data which are true for an interval. Thus, TFD and DFD cannot capture

dependencies involving non-homogeneous data.

2.2.6 WANG ET AL’S T3NF

A temporal functional dependency is defined based on the granularity of time in the

dependency [82]. The values of attributes in a dependency do not change within a unit of

time, which is defined by the granularity. T3NF is an extension of 3NF and thus avoids

transitive dependency. Furthermore, it avoids redundancy by preventing two temporal

functional dependencies such that the time unit in one dependency contains more than



one time unit in another dependency. For example, consider a relation Payroll(Employee,

Position, Dept, 7) shown in Figure 2.2 (a). Employee determines Position and the value

of Position does not change with in a month. Employee determines Dept and the value of

Department does not change within a year. That is, the granularity of the dependency

Employee -) Position is a month, and the granularity of the dependency Employee —>

Dept is a year. Dept in the second tuple is redundant because, for each employee, Dept

remains the same for every month in a year. The relation can be decomposed into

20

relations in T3NF, as shown in Figure 2.2 (b) and (c).

This temporal functional dependency cannot capture functional dependencies involving

non-homogeneous data. Thus, T3NF is not applicable in temporal databases that contain

non-homogeneous data.

 

I Employee Position Dept T J
 

 

   
 

 

 

 

   

 

 

   

| Smith sales toys 1/96-6/96 |

I Smith supervisor toys 7/96-12/96 I

(a) a relation Payroll.

IEmployee Position T I

| Smith sales 1/96-6/96 |

I Smith supervisor 7/96-12/96 I

(b) A relation EPosition.

I Employee Dept T J

| Smith toys 1/96-12/96 J

(c) A relation EDept.

Figure 2.2: The decomposition of a relation Payroll into T3NF.
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2.3 Homogeneous and Non-homogeneous Data in Artificial

Intelligence

In this section, two frameworks for the classification of temporal data in A1 are discussed.

The first one is Allen’s temporal logic [3], which is intended for the reasoning about

actions. The second one is Shoham’s interval logic [73], which is a general framework

for classifications of temporal data. We will show that both homogeneous and non-

homogeneous data are an important foundation in reasoning about temporal data.

Therefore, non-homogeneous data also needs to be addressed in temporal databases.

2.3.1 ALLEN’S TEMPORAL LOGIC

Allen proposes a temporal logic for reasoning about action and time [3]. This work

addresses non-activity actions (e.g. standing, sleeping), actions that are not easily

decomposed (e.g. hiding), and simultaneous actions. These types of actions cannot be

captured in prior work, such as case grammar [38] and situation calculus [56]. In Allen’s

temporal logic, static and dynamic aspects of the world are described in temporally-

qualified assertions or temporal facts. Temporal facts are classified into properties and

occurrences, which are further classified into events and processes. A property (e.g.,

John is a manager) is true for an interval and its sub-intervals. An event (e.g., John ran 10

miles) is true for the whole interval, but not during any sub-interval. If a process (e.g.,

John was building a boat) is true for an interval, it is true for some sub—interval. Non-

activity actions are captured by events which do not cause any change. Actions that are
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not easily decomposed and simultaneous actions are captured through the relationships

between temporal facts, such as, causality, belief, and intention, which are pre-defined in

this logic.

In this classification, properties are homogeneous data while events and processes are

non-homogeneous data. All three types of temporal data are essential in the reasoning

process.

2.3.2 SHOHAM’S INTERVAL LOGIC

It is argued [73] that a fixed classification of temporal facts [3, 58] is not appropriate for

all applications. Interval logic is proposed as a framework for classifications. of temporal

facts. Different types of temporal facts can be defined through interval logic. A

proposition is downward-hereditary if the proposition which is true for an interval is true

for its sub-intervals. For example, the proposition, “John is married”, is downward-

hereditary. If John is married for an interval, he is married for any of its sub-intervals. A

proposition is upward-hereditary if the proposition which is true for all sub-intervals is

also true for the interval. For example, the proposition, “the average speed of a plane is

3,000 miles/hour”, is upward-hereditary. If the average speed of a plane is 3,000

miles/hour for two intervals, the average speed for the union of the intervals is also 3,000

miles/hour. Different classifications can also be created based on the interval logic.

Properties, events, and processes can also be captured in interval logic.

In this framework, a temporal data can be neither upward-hereditary nor downward-
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hereditary. This type of temporal data is non-homogeneous, and needs to be addressed in

the classification.

2.4 Conclusions

In this chapter, three areas of related work are discussed. First, extensions of the relational

databases and deductive databases to support temporal data are discussed in Section 2.1.

In these temporal databases, temporal data are assumed to be homogeneous data, and

non-homogeneous data cannot be captured accurately. In Section 2.2, normal forms

defined for temporal relations are examined. Most of these normal forms aim to avoid

redundancy caused by the characteristic of homogeneous data. In these works, a temporal

data is assumed to be associated with every sub-interval of its valid time. These normal

forms are not applicable when non-homogeneous data are involved. Finally, in Section

2.3, characteristics of temporal data which are addressed in artificial intelligence are

examined. Some of these temporal data are non-homogeneous data, and they also need to

be considered in temporal databases.



Chapter 3

CHARACTERISTICS OF TEMPORAL DATA IN DATABASES

3.1 Introduction

Characteristics of temporal data is an important basis for temporal data models, queries,

and design principles. Many research on temporal databases [5, 22, 23, 24, 26, 39, 41, 46,

53, 62, 74] are based on the assumption that, if a temporal data is true for an interval, it is

true at any point within the interval. For example, if John is single during 1970-1997, he

is single on January 1, 1996. However, this assumption is not applicable for some

temporal data. For example, if the total precipitation at the White House in January 1997

is 4 inches, the total precipitation at the White House on January 1, 1997 is not 4 inches.

Existing temporal data models cannot capture this type of temporal data accurately.

When a temporal database contains this type of temporal data, an additional complication

is present. Similar queries on different types of temporal data cannot be expressed by the

same expression. For example, the queries for employee’s marital status and total

precipitation in 1997 are different. If the marital status is valid for an interval t which

intersects the year 1997, it is also valid for a sub-interval of 1997. Thus, the marital

status whose valid time intersects with the interval 1997 are selected. On the other hand,

24
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if the total precipitation is valid for an interval t which intersects the year 1997, it is not

valid for a sub-interval of 1997. Thus, only tuples in which valid time is contained in or

is equal to the interval 1997 are selected. The difference between these two queries is the

result of the difference between the characteristics of the marital status and the total

precipitation.

Furthermore, existing normal forms for temporal relations [11, 48, 52, 62, 72, 83] are also

based on the assumption that a temporal data is associated with every point in an interval.

They are not applicable when a temporal database contains temporal data that violate this

assumption.

Characteristics of temporal data are studied in many areas, such as philosophy,

linguistics, and AI. Some are examined in Section 2.3. Some of these characteristics are

uSeful in database applications. In this chapter, characteristics of temporal data are

studied. First, at the attribute level, the characteristics of different types of time-varying

attributes, i.e. homogeneous and non-homogeneous attributes, are studied in Section 3.2.

Then, the concept of hereditary [73] is extended in Section 3.3. Based on hereditary, two

types of temporal relations, i.e. property and representative relations, are defined in

Section 3.4. The difference between these two types of temporal relations is an important

basis of this work. Moreover, these characteristics are also present in the spatial domain,

and are discussed in Section 3.5. Section 3.6 provides the conclusion.
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3.2 Homogeneous and Non-homogeneous Attributes

In temporal relations, the relationship between time-varying attributes and the valid time

can be different. For example, consider the attributes InterestRate and MinimumBalance,

which represent the interest rate and the lowest balance for an account during an interval,

respectively. If the interest rate during the whole year of 1996 is 4%, the interest rate for

any sub~interva1 of 1996 is also 4%. That is, the value of the attribute InterestRate is

associated with an interval and its sub-intervals. On the other hand, if the lowest balance

for 1996 is $500, the lowest balance for a sub-interval of 1996 is not necessarily $500.

That is, the value of the attribute MinimumBalance is associated with the whole interval

but not its sub-intervals. Based on this difference, time-varying attributes can be

classified into two categories: homogeneous and non-homogeneous. A time-varying

attribute is homogeneous if the value of the attribute is associated with an interval as well

as its sub-intervals. A time-varying attribute is non-homogeneous if the value of the

attribute is associated with the whole interval but not its sub—intervals. InterestRate is a

homogeneous attribute, and MinimumBalance is a non-homogeneous attribute. The same

concept also applies to sets of attributes. Homogeneous and non-homogeneous sets of

attributes are defined in Definition 3.1 and Definition 3.2, respectively.

Definition 3.1: Homogeneous sets ofattributes

A set of time-varying attributes X is homogeneous if the value of X is associated with an

interval as well as its sub-intervals.
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Definition 3.2: Non-homogeneous sets ofattributes

A set of time-varying attributes X is non-homogeneous if the value of X is associated with

an interval, but not with its sub-intervals.

The set of attributes {Acc#, InterestRate} is homogeneous because the same values of

both Acc# and InterestRate are associated with an interval as well as its sub-intervals.

For the set {Acc#, MinimumBalance}, the value of MinimumBalance is associated with

an interval, but not necessarily with its sub-intervals. Thus, the value of {Acc#,

MinimumBalance} associated with each sub-interval is not necessarily equal to the value

associated with the interval. Therefore, {Acc#, MinimumBalance} is non-homogeneous.

Obviously, a set of attributes X is homogeneous if all the attributes in X are homogeneous,

and X is non-homogeneous if at least one of the attributes in X is non-homogeneous.

Similar to the relationship between an attribute and the valid time, the relationship

between the set of time-varying attributes and the valid time can be different in different

temporal relations. This relationship depends on the meaning of temporal data. Next,

characteristics of temporal relations are examined.

3.3 Characteristics of Temporal Relations

One of the interesting features of temporal data is the relationship between data

associated with an interval and its sub-intervals. Homogeneous and non-homogeneous

attributes are defined on this type of relationship. Properties, processes, and events [3]

and upward- and downward-hereditary [73] are also based on this type of relationship.
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For example, a temporal relation Status(Name MaritalStatus T) is downward-hereditary

because the value of (Name MaritalStatus) for an interval is also applied to its sub-

intervals. It is also upward-hereditary. If the value of (Name MaritalStatus) for all sub-

intervals of an interval is the same, the value of (Name MaritalStatus) for an interval is

the same as the value for its sub-intervals. Here, a classification of temporal relations,

based on this relationship, is proposed. These characteristics, temporal aggregation and

temporal decomposition, are the generalization of upward- and downward-hereditary.

In a temporal aggregation, a temporal data associated with a interval is derived from

temporal data associated with its sub-intervals. A temporal-aggregatable relation is

defined as follows:

Definition 3.3: Temporal-aggregatable relations

Let R be a set of time-varying attributes, T be the valid time, r(R T) be a temporal

relation, and fa be the aggregate function. r(R T) is temporal-aggregatable if any tuples

1'], T2,..., 1,, in r implies 1:: fan), 12,..., ’1'"), where r(T) = 71(Dutz(7)u...ur,.(7).

Temporal aggregation is the generalization of upward-hereditary. In other words, an

upward-hereditary relatiOn is a temporal-aggregatable relation with an identity aggregate

function. The following example shows temporal aggregatable relations.

Example 3.1: Consider the relation Balance(Acc#, MinimumBalance, T) representing the

lowest balance in bank accounts over an interval. The lowest balance over an interval is

the minimum of the lowest balance over its sub-intervals. Thus, the relation Balance is
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temporal-aggregatable with the following aggregate functionf,:

fa(12, 12,..., 1,.) = <11(Acc#), min(11(MinimumBalance), 12(MinimurnBalance),

..., 1,.(MinimumBalance)), 11(7) U 12(7) U U 1,.(7)>, where 11(Acc#) =

12(Acc#) = = 1,.(Acc#).

The relation Apartrnent(Location Size Rent T) represents the apartment rent. The rent for

an apartment is determined by the length of the period of occupancy. Thus, the relation

Apartment is temporal-aggregatable with the following aggregate function ga:

ga(12, 12,..., 1,.) = <12(Location), 12(Size), 12(Rent)+12(Rent)+...+1,.(Rent),

12(7)U12(7)U ...U1,,(7)>, where 11(7), 12(7), and 1,.(7) are disjoint,

12(Location) = 12(Location) = = 1,,(Location) and 12(Size) = 12(Size) = =

1,,(Size).

Consider a relation TempRecord(State HighestTemperature T) which contains the highest

temperature for each state over an interval. The highest temperature for a state over an

interval is the maximum of the highest temperature for the state over its sub-intervals.

Thus, the relation TempRecord(State HighestTemperature T) is temporal-aggregatable

with the following aggregate function ha:

ha(12, 12,. . ., 1,.) = <12(State), 11(HighestTemperature) + 12(HighestTemperature)

+ + 1,.(HighestTemperature), 12(7) U 12(7) U U 1,.(7)>, where 12(State) =

12(State) = = 1,,(State).
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In a temporal decomposition, a temporal data associated with a sub-interval is derived

from a temporal data associated with an interval. A temporal-decomposable relation can

be defined as follows:

Definition 3.4: Temporal-decomposable relations

Let R be a set of time-varying attributes, T be the valid time, r(R 7) be a temporal

relation, andf4 be the decomposition function. r(R 7) is temporal-decomposable if a tuple

1in r implies 1: f4(1, t), where t is in 1(7).

Similar to temporal aggregation, temporal decomposition is the generalization of

downward-hereditary. A downward-hereditary ‘ relation is a temporal-decomposable

relation with an identity decomposition function. The following example shows temporal-

decomposable relations.

Example 3.2: Consider the relation Apartment(Location Size Rent 7) in Example 3.1.

The rent for an apartment is determined by the length of the period of occupancy. Thus,

the relation Apartment is temporal-decomposable with the following decomposition

function f4:

, t>, where lil is the length of the

fM’ t) = (“mafia"), 115m). 1(Rent)><|1lt7|')

interval I and t is a sub—interval of 1(7).

Another example of temporal decomposable relations is the relation Status (Name

MaritalStatus 7) representing employee’s marital status. An employee’s marital status
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during a sub-interval is the same as the marital status during the interval. Thus, the

relation Status is temporal-decomposable with the identity decomposition function gd:

gd(1, t) = <1(Name), 1(MaritalStatus), t>, where t is a sub-interval Of 1(7).

Temporal aggregation and temporal decomposition are useful in temporal databases

because, given the aggregate function and the decomposition function, more redundancy

can be avoided. Temporal data associated with an interval can be derived from temporal

data associated with its sub-intervals, or vice versa. Aggregate and decomposition

functions can be used to infer temporal data. However, aggregation and decomposition

require computation. Thus, both the storage cost and the computation cost must be

considered. However, this is not the principle issue here and will not be further examined.

Based on the concept of temporal-decomposition, two types of temporal relations are

defined in the next section. These two types of relations are an important basis for

temporal database design.

3.4 Property and Representative Relations

The focus in this section is temporal-decomposable relations whose decomposition

functions are identity functions. If a temporal relation has an identity decomposition

function, the values Of time-varying attributes are associated with all sub-intervals of its

valid time. In other words, the valid time can be decomposed and the same values of

time-varying attributes are applied to the sub-intervals. As mentioned earlier, it is

assumed in many temporal databases that all temporal data have this characteristic. It is
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called a property relation.

Definition 3.5: Property relation

Let R be a set of time-varying attributes and T be the valid time. A temporal relation r(R

7) is a property relation if, for any tuple 1 in r, 1(R) is associated with any sub-interval of

1(7)-

The following example shows a property relation.

Example 3.3: Consider a relation Status(Name MaritalStatus 7). A tuple <John,

married, [1994, 1997]> in the relation Status implies <John, married, [1994, 1995]) and

<John, married, [1996, 1997]>. Thus, the relation Status is a property relation.

On the other hand, for some temporal relation, there is no decomposition function or its

decomposition function is not an identity function. In this type of temporal relation, the

values of time-varying attributes are associated with the whole interval, but not its sub-

intervals. In other words, the valid time in this type of relation cannot be decomposed.

This type of relation is called a representative relation.

Definition 3.6: Representative relation

Let R be a set of time-varying attributes and T be the valid time. A temporal relation r(R

7) is a representative relation if there is a tuple 1 in r such that r(R) is not associated with

some sub-interval of 1(7).

The following example shows a representative relation.
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Example 3.4: Consider the relation TempRecord(State HighestTemperature 7) in

Example 3.2. In the relation TempRecord, a tuple <MI, 99°F, [1/1/96, 12/31/96]> does

not imply <MI, 99°F, [1/1/96, 9/30/96]> or <MI, 99 °F, [10/1/96, 12/31/96]>. Thus, the

relation TempRecord is a representative relation.

The difference between a property relation and a representative relation is the

decomposability of the valid time. In a property relation, the valid time can be

decomposed, and the same value of the time-varying attributes is associated with the sub-

intervals. On the other hand, in a representative relation, the valid time cannot be

decomposed because the same value of the time-varying attributes is not associated with

the sub-intervals.

The decomposability of the valid time in a temporal relation is an important basis for the

interpretation of the semantics of queries, which will be discussed in Chapter 4. This

characteristic is also present in spatial domain, and will be discussed next.

3.5 Property and Representative Relations in Spatial Databases

The similarity between temporal and spatial data has been indicated in many works [54,

55, 64]. There are many research on the extension of the relational data model for spatial

databases [36, 44]. Characterisch of temporal data discussed earlier are also present in

spatial data. The following example shows a property relation and a representative

relation in spatial databases.
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Example 3.5: The spatial relation Soil(Type Area) that contains the area and the soil type

in the area is a property relation because the type of soil in any sub-area is the same as the

type of soil in the area. On the other hand, the spatial relation Population(Animal

Number Area) that contains the area, the type of animal, and its population in the area is a

representative relation because the population for a sub-area is not the same as the

population for the whole area.

In spatio-temporal databases, the characteristics of a spatio-temporal relation with respect

to the spatial domain and the temporal domain are independent. A spatio-temporal

relation can be a property relation with respect to one domain and a representative

relation with respect to another. For example, consider a spatio-temporal relation

Vegetation(Plant Area 7) which contains types of the majority of the vegetation in an area

during a time interval. The relation Vegetation is a representative relation with respect to

the spatial domain because, for any interval, the majority of the vegetation in a sub-area is

not neceSsarily the same as that in the whole area. On the other hand, the relation

Vegetation is a property relation with respect to the temporal domain because, for a

specific area, the majority of the vegetation during an interval is also the majority of the

vegetation during its sub-interval.

3.6 Conclusions

In this chapter, characteristics of temporal data are studied. Time—varying attributes are

classified into homogeneous and non-homogeneous attributes. Temporal relations are

characterized by their decomposability and aggregatability, which are the generalization
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of downward-hereditary and upward-hereditary. A temporal data associated with a sub-

interval can be derived by a decomposition function, and a temporal data associated with

the union of intervals can be derived by a aggregation function. This characterization of

temporal data can be used for inferring data in temporal databases.

Based on the decomposability of the valid time, temporal relations are classified into

property and representative relations. Research on temporal databases assume temporal

data is associated with every point in an interval. As a result, representative relations

cannot be represented correctly in these temporal databases. The difference between a

property relation and a representative relation is an important basis of this work. Finally,

the characteristics of temporal data are also present in spatial data. Thus, the

characterization can also be applied to spatial data.



Chapter 4

EXTENSION OF RELATIONAL ALGEBRA FOR PROPERTY AND

REPRESENTATIVE RELATIONS

4.1 Introduction

Capturing relationships between data is a major task in database design. Representing

relationships between data through data is fundamental to database development.

However, certain types of relationships are not normally stored in the databases because

they are not clearly identified in databases. Often these relationships are encoded into the

query processing programs, thus resulting in undue complexity of the application

development. On the other hand, capturing these relationships provides an opportunity

for explicit representation and development of abstract operations based on these

relationships.

The focus of this section is to capture two types of relationships between time-varying

data and the valid time in temporal relations, i.e. property and representative relations, in

relational algebra. As mentioned in Section 3.3, values of time-varying attributes in a

property relation are associated with every point in the valid time (i.e., the valid time in a

property relation is decomposable) while values of time-varying attributes in a

36
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representative relation are associated with the whole interval (i.e., the valid time in a

representative relation is not decomposable.) These characteristics can be captured in

temporal databases and incorporated in queries. These characteristics can be utilized in

two aspects of queries; temporal predicates, such as before and after, and relational

operators. Interpretations of temporal predicates, based on characteristics of property and

representative relations, are examined in Section 4.2. In Section 4.3, the extension of

relational operators based on these characteristics is Studied. Since property and

representative relations are also present in spatial databases, relational algebra can be

extended, in a Similar manner, to incorporate the characteristics of the relations in spatial

databases. In Section 4.4, the extension of relational algebra for Spatial databases is

discussed.

4.2 Interpretations of Temporal Predicates for Valid Time in Property

and Representative Relations

Allen [2] presents thirteen temporal predicates that represent the relationships between

two intervals, e.g. BEFORE, DURING, OVERLAP, etc. In his work, characteristics of temporal

data associated with the intervals are considered. The meaning of each temporal predicate

is independent of the characteristics of the temporal data associated with the intervals.

However, in temporal databases, these temporal predicates are applied to the valid time in

temporal relations. Therefore, the characteristics of the temporal relations need to be

considered. For example, consider the interpretations of before in the following two

queries:
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Q2: Find all employees who paid more than $1000 income tax before working

in project A.

Q2: Find all employees who worked in project B before working in project A.

The interpretation applied to before in Q1 applies to the whole interval when an employee

paid more than $1,000 income tax before the interval when the same employee worked in

project A. However, this interpretation is not applicable to before in Q2. If an employee

works in project B during t3, he/She works in project B during sub-intervals of t3,

Therefore, before in Q2 means “there is a sub-interval of t; which is before the whole

interval that the employee works in project A”. The first interpretation is named before v.

and the second is named before; These two interpretations can be defined in terms of

Allen’s temporal predicates, which is denoted by italic capital letters, as follows:

Let A and B be sets of time-varying attributes, TA and TB be the valid time, RA(A

TA) and RB(B T3) be two temporal relations, and t, ;, t2 denote t, is a sub-interval

Of 12.

beforev (TA, T3) = V t. lAQ TA BEFOREOA, T3)

= BEFORE(TA, TB).

before3(TA, T3) = 3 IA JAG] TA BEFOREUA, T3)

= BEFORE(TA,TB) v MEEI'(TA,T3) v OVERIAKTA,TB) v

FINISHED_BY(TA,T3) v CONTAIN(T413).

Types of temporal relations in queries determine which interpretation of a temporal

relationship is applicable. The interpretation before3 is not applicable in Q2 because the



39

income tax relation is a representative relation and its valid time is not decomposable.

Thus, beforev is used in Q1, On the other hand, in Q2, the relation which contains the

project which each employee is in is a property relation and the valid time in this relation

is decomposable. Therefore, before3 iS applicable in Q2. If beforev is used in Q2, not all

employees who worked in project B before working in project A are selected. For

example, given Mary worked in project A and B during 1993-1997 and 1990-1995

respectively, Mary is not selected in Q2 if beforev is used. However, “Mary worked in

project B during 1990-1995” implies that she worked in project B during 1990-1992,

which is before 1993—1997, and Should be selected in Q2. Therefore, beforev is not

applicable in Q2.

The interpretations of predicates after, during, contain, and equal can be defined

similarly, as Shown in Table 4.1. The predicates meet, start, finish, overlap, and their

inverses compare the beginning and/or the ending points of the intervals, not the intervals

themselves. Thus, they do not depend on types of temporal relations, and there is only

one interpretation for each of them, which is the same as the relationship between

intervals defined by Allen [2].

An argument in a temporal predicate can also be a time-interval constant. A time-interval

constant behaves like the valid time of a representative relation because it refers to the

whole interval, not its sub-intervals. Thus, the interpretations of temporal predicates with

time-interval constants are the same as the interpretations of the temporal predicates with

valid time of representative relations.
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Table 4.1: Temporal predicates for valid time in temporal relations.

Let A and B he sets of time-varying attributes, TA and T3 be valid time and RA(A TA) and

R3(B T3) be temporal relations. The column Predicate contains names of temporal

relationship between T3 and T3 The columns R3 and R3 are types of RA and R3, where P

and R denote property and representative relations respectively. The column

Interpretation contains the interpretation of the corresponding predicate and the column

Definition contains the definitions of interpretation of the predicates.

 

 

 

 

 

 

Predicate R3 R3 Interpretation Definition

before(TA, T3) R P/R before 3(TA, T3) BEFORE(T3, T3)

before(T3, T3) P P/R before3(T3, T3) BEFORE(T3_ T3) v MEEI(T3, T3) v

OVERIAP(T3, 13) v C0NTA1N(TAL T3)

after(TA, T3) R P/R afterVin, T!) AFTER(TA, T3)

after(Tg, TB) P P/R afterg(T4, T3) AFTER(TA, T3) V MET__BKTA, T3) V '

OVERLAPPED_BY(TA, T3) v DURING(T3,

T5)

during(TA, T3) R P/R duringKTA, T52 DURING(TA. TB)

 

dun’ng(Tg, 73) P P/R during3(TA, T3) OVERIAP(TA, T3) v OVERLAPPEDJKTA,

T3) v CONTA1N(TA, 73) v DURING(TA, T3)

V STARKTA, T3) V STARTED_BY(TA, T3) V

FINISH(TA, T3) v FINISHED_BY(TA, T3) v

5&1“). To)

contain(TA, T3) P/R R contain 3(7), T2) CONTAIN(T3, T3)

contain(TA, T3) P/R P contain3(TA, T3) OVERLAP(T3, T3) v OVERMPPEDJKTA,

T3) V CONTAIN(TA, TB) V DURING(TA, T5)

v STARKT4, T3) v STARTED_BT(TA, T3) v

FINISH(TA, T3) v FINISHED_BY(TA, T3) v

EQkUAMTAJ T9)

equalMTA, T!) EQUAMTA, T3)

equalv3( TA, TB) DURING(TA, TB) V STA/"(T4, T3) V

FINISH(TA, 13) v 1590.41.03, T3)

equal(T,4, T3) P R equalgvag, T3) CONTAIN(TA, T3) v STARTED_BY(TA, T3) v

FINISHED_BY(TA. T3) v EQUAL(TA, TL

equal(Tg, T3) P P equa133(TA, T3) OVERIAP(TA, T3) v OVERLAPPEDJKTA,

T3) v CONTAJN(T3, T3) v DURING(TA, T3)

V STARKTA, T3) V STARTEDJKTA, T3) V

FlNISI-I(TA, T3) v FINISHED_BY(TA, T3) v

mugT3 T3)

 

 

 

equal(T,t, T3) R

equal( T3, T3) R

 

"
U
W
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4.3 Relational Operators Based on Types of Temporal Relations

In this section, the extension of relational operators, based on types of temporal relations,

is discussed. The operators select, join, union, and difference are extended so that the

manipulation of the valid time in the temporal relations involved in the operators is

implied from types of the relations. On the other hand, the project operator does not

depend on types of temporal relations because it does not involve the valid time. Next,

the extension of the relational operators is presented.

4.3.1 SELECT

The select operator selects tuples that satisfy a predicate on the values of time-varying

attributes or the valid time. The select operator on time-varying attributes does not

depend on the type of the temporal relation. On the contrary, the select operator on the

valid time depends on the type of the temporal relation. In the select operator on the valid

time, temporal predicates on the valid time are used to select tuples from a relation. The

interpretations of the temporal predicates are determined by types of temporal relations,

as shown in Table 4.1. Furthermore, the valid time in the selected tuple is not necessarily

the same as that in the original tuple. 1f the valid time in a relation is decomposable and a

sub-interval of the valid time in a tuple satisfies the temporal predicate, the tuple can be

selected. However, the valid time in the tuple needs to be modified so that the valid time

of the selected tuple is the sub-interval that satisfies the temporal predicate. The valid

time in a relation created by the select operator on different temporal predicates is Shown

in Table 4.2. This calculation of the valid time is also applied for the join operator
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because join is based on select.

Table 4.2: The valid time in relations created by the operators select orjoin.

Let A and B be sets of time-varying attributes, TA and T3 be valid time and R3(A T3) and

R3(B T3) be temporal relations. The column Predicate contains names of temporal

predicates between TA and T3 used in the operators select or join. The columns R4 and

R3 are types of RA and R3, where P and R denote property and representative relations

respectively. The column Time contains the valid time in the relation created by the

operator.
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The following example shows the select operator on the valid time.

Example 4.1: Consider the following queries:

Q3: Find the positions ofall employees before 1990.

Q4: Find the commissionfor employees before 1990.

Let Employee(Name Position 7) be a property relation, Commission(Name Amount 7) be

a representative relation, and Tbe the valid time. Q3 and Q4 can be expressed as Shown in

Figure 4.1 (c) and (d). According to Table 4.1, the interpretation before; is applied in Q3

and beforev is applied in Q4, According to Table 4.2, the valid time of the relation created
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by Q3 is [begin(Employee.7), min(end(Employee.7), 1990)]. The tuple <Susan, manager,

[1985, 1989]> is the result of Q3 is created from the tuple <Susan, manager, [1985,

1993]) in the relation Position because the sub-interval [1985, 1989] of [1985, 1993]

satisfies the predicate before(Employee. T, 1990). The valid time of the relation created

by Q4 is Commission.T because Commission.C is not decomposable. Figure 4.1 Shows

the relations Employee and Commission and the results of the queries Q3 and Q4.

 

 

 

 

    

 

 

 

 

 

 

  
 

 

Name Position T Name Amount 1’

John 1 1 10h" $40,000 [1980,1988]

Susan r 1985 199 SuSan $30,000 [1985,1993

M sales 1 1 Mary $10,000 [1992,19

(a) The relation Employee
(b) The relation Commission

I Name Position 7‘ I : Name Amount T i

| John president [1980,1988jj . 10"" $40,000 [19801988]

I Susan manager [1985,1989] I oIbefore(1’S,1990)COInlnlSSlOfl

  
 

Obefore (TE, I990)E’"P10)’€€
(d) The result of the query Q4.

(c) The result of the query Q3.

Figure 4.1: The results of the queries Q3 and Q4.

4.3.2 JOIN

The join operator is the combination of the select operator and the cross product.

Therefore, the extension ofjoin is based on the extension of select. Similar to the select

operator, the join operator on time-varying attributes does not depend on types of

temporal relations. The join operator on the valid time, however, depends on types of

temporal relations. The interpretation of the temporal predicate in join is determined by
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the types of relations, as shown in Table 4.1. The valid time in the relation created by join

is calculated according to Table 4.2. The following example shows the join operator on

different types of relations.

Example 4.2: Consider the following queries:

Q5: Find position ofall employees after John was the president.

Q5: Find commission ofall employees after John was the president.

The relational expressions of Q5 and Q5 are Shown in Figure 4.2 (a) and (b). The

interpretation aftera is applied in Q5 and the interpretation afterv in Q6. The valid time in

the relation created from Q5 is [max(end(Employee2.7), begin(Employee1.7)),

end(Employee1.7)], and the valid time in the relation created from Q5 is Comission. T.

Figure 4.2 shows the results of the queries Q5 and Q5.

 

 

 

  

| Name Position T |

| Susan manager [1989, 1993L|

| Mary sales [1992,1996] |
 

“(Employeeuvam EmployeeI.Position) Employee MafteKEmplayeelJ'. Employee2.7)

o.(l'ImployeeZ.Position= ‘President’A Employed.Name: ’John ’) Employee.

 

 

(a) The result of the query Q5.

I Name Amount T I

| Mary $10,000 [19921996] |
   

mamsionName Amount) (COMi-Iflon NafleKComussimT, EmployeeJ)

0(Position='rresitieni' A Employee.Name=’John ') Employee).

(b) The result of the query Q5.

Figure 4.2: The results of the queries Q5 and Q5.
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4.3.3 UNION

The union operator for temporal relations is Similar to the union operator for non-

temporal relations. The difference between the union operator on non-temporal relations

and that on temporal relations is in the definition of “union-compatible”. Non-temporal

relations are union-compatible if their schemes are the same. For non-temporal relations,

types of temporal relations must also be considered. Temporal relations are union-

compatible when their schemes are the same and they are of the same type. When

relations are of different types, the temporal data in the relations have different semantics

and it does not make sense to combine them. Thus, the union operator cannot be

performed on different types of relations.

4.3.4 DIFFERENCE

Similar to the union operator, the difference operator cannot be performed on different

types of relations. If both relations are representative relations, the set difference can be

performed directly on two relations. However, if both relationships are property

relations, the difference between the valid time must be calculated for tuples with the

same values of time-varying attributes and overlapping valid time. The following

example shows the difference of two property relations.

Example 4.3: Consider the following query:

Q7: Find employees who are not Michigan residents.

The relation Resident is Shown in Figure 4.3 (a). The tuple <Susan, [1985, 1993]>
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projected from the relation Employee is not equal to <Susan, [1980, 1986]> projected

from the relation Resident. However, in these two tuples, the values of time-varying

attribute are equal and the values of the valid time overlap. During the difference of the

two intervals, i.e. [1987, 1990], Susan is an employee who is not a Michigan resident.

Thus, <Susan, [1987, 1990]> is in the result of Q7. as shown in Figure 4.3 (b).

 

 

Name Residence T

John M I 1

Susan Mic 1 1

M Mic 1981 1

(a) The relation Resident

I Name T I
 

| Susan [1987, 19901 |

| Mary [1992,1996] |

 

 

11mm 1) Employee - “(Name 1) firearm“:um») Resident

(b) The result of the query Q7.

Figure 4.3: The difference between Employee and Resident.

Types of temporal relations in relational operators determine the manipulation of valid

time. Furthermore, they are used to determine the interpretations of temporal predicates,

as shown in Section 4.2. Therefore, types of temporal relations must also be stored in the

database.

The characteristics of property and representative relations are also present in spatial

databases. Characteristics of Spatial relations can also be incorporated in the relational

operators for spatial databases. Similar extension of predicates and relational operators

can be applied in the spatial domain. In the next section, the extension of the relational
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algebra for spatial relational databases are discussed.

4.4 Extension of Relational Algebra for Spatial Databases

AS shown earlier in Section 3.5, the characteristics of property and representative

relations are also present in the Spatial domain. In this section, the extensions of

relational algebra for spatial databases are examined. First, the extension of spatial

predicates are studied. The relational operators for spatial databases are Similar to those

defined in Section 4.3.

There are many works on the spatial predicates [35, 64]. In this section, the predicates

disjoint, meet, covers and, others [64] are adopted. Similar to the temporal predicates, the

interpretations of these spatial predicates depend on types of Spatial relations. For

example, the predicate covered_by can be interpreted as covered_by; (AP,AQ), meaning

some part of the area AP is covered by AQ, or covered_byKAP,AQ), meaning the whole

area AP is covered by AQ. The interpretation covered_bya (AP,AQ) is applicable ifAP is

the spatial attribute in a property relation. The interpretation covered_byKAPAQ) is

applicable if AP is the spatial attribute in a representative relation. The following

example Shows the queries that use the predicate covered_by on a property relation and a

representative relation.

Example 4.4: Consider the predicate covered_by (i.e. inside) in the following queries:

Q3: Find area inside a national park where soil type is sandy.
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Q9: Find area inside a national park where deer population <100 per sq. mile.

AS shown in Example 3.5, the relation Soil is a property relation and the relation

Population is a representative relation. Therefore, the interpretation covered_byv is

applicable for the deer population, and the interpretation covered_by; is applicable for the

soil data.

The extension of relational operators for temporal databases is mostly applicable for

spatial databases. However, the calculation of the spatial attribute in the Operators select

andjoin, which depends on Spatial predicates, must be defined. For example, the value of

the Spatial attribute in the relation created by using the predicate covered_by3(AP, AQ) is

AP, and that using the predicate covered_by3(AP, AQ) is APnAQ, where AP and AQ are

spatial attributes. The calculation of the spatial attribute can be derived by using the same

concept as the calculation of the valid time, and will not be presented here.

4.5 Conclusions

In this chapter, the relational algebra is extended to incorporate characteristics of property

and representative relations. The valid time of a relation created from a relational

operator is handled according to the types of the input relations. Furthermore, the

interpretations of temporal predicates depend on the types of the temporal relations whose

valid times are in the temporal predicates. Since the characteristics of property and

representative relations are also present in spatial databases, the interpretations of spatial

predicates also depend on types of Spatial relations. Furthermore, the extension of the
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relational operators for temporal databases is also applicable to Spatial databases.

In conclusion, it is Shown that characteristics of property and representative relations can

be incorporated in relational algebra. The extension of relational algebra discussed in this

chapter can be used as a basis for other temporal databases, such as a temporal deductive

database presented in Chapter 6.

When the characteristics of property and representative relations are considered,

inconsistency in temporal databases can be identified. It is crucial to avoid inconsistency

in temporal databases. In the next chapter, a design principle for temporal relational

databases, which avoids the inconsistency, is studied.



Chapter 5

DESIGN PRINCIPLES FOR TEMPORAL DATABASES WITH HOMOGENEOUS

AND NON-HOMOGENEOUS DATA

5.1 Introduction

Normal forms discussed in Section 2.2 are not applicable when non-homogeneous data

are present in temporal databases. In temporal databases with homogeneous and non-

homogeneous data, inconsistency can occur. Consider the relation TaxRecord, in Figure

5.1, which contains homogeneous attributes, Name and MaritalStatus, and a non-

homogeneous attribute, IncomeTax. Inconsistency occurs if John ’3 income tax for

[1/1/96, 12/31/96] is inserted into the relation TaxRecord. This is because the valid time,

[1/1/96, 12/31/96], which is associated with a non-homogeneous attribute IncomeTax, are

not decomposable. We cannot assign either “single” or “married” as the value of

MaritalStatus during [1/1/96, 12/31/96]. If we assign “single” as the value of

MaritalStatus during [1/1/96, 12/31/96], it is contradicted to the second tuple. If we

assign “married” as the value of MaritalStatus during [Ill/96, 12131/96], it is

contradicted to the first tuple. If the value of MaritalStatus is left as null, it also causes

inconsistency. This null value may mean that John’s marital status during 1996 is

50
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unknown, but this contradicts to the first and the second tuples. We call this type of

inconsistency P-inconsistency.

 

 

 

I Name MaritalStatus IncomeTax T j

| John single J. [1/1/96. 8/9/96] |

| John married 1 [8/9/96, 12/31/96]I    

Figure 5.1: P-inconsistency in the relation TaxRecord.

The goal in this section is to provide a design principle that avoids P-inconsistency. This

principle is based on both the types of attributes and data dependencies in temporal

databases. In Section 5.2, we define two types of data dependencies. Inference rules for

the dependencies are presented in Section 5.3. We prove that the inference rules are both

sound and complete. In Section 5.4, a normal form that avoids P—inconsistency is

presented. In Section 5.5, equivalent sets of attributes and minimal covers, which are the

basis for the normalization, are defined. For two given sets of attributes, determining if

they are equivalent can be done in polynomial-time [9]. For our problem, however, we

need to find equivalent sets of attributes for a given set of attributes. This problem has

not been addressed previously in other works. We prove that this problem is NP-

complete. In Section 5.6, we Show that finding an optimal decomposition is NP-

complete, and present a polynomial-time heuristic for the decomposition.

5.2 Functional Dependencies and P-Dependencies in Temporal

Relations

In this section, we define a type of data dependency in temporal relations that is a basis of



52

the design principle proposed here. First, we define basic temporal normal form (BTNF).

Similar to 1NF for non-temporal relations and lTNF for temporal relations, BTNF is the

basic requirement for temporal relations. However, lTNF is not applicable when non-

homogeneous attributes are present. BTNF is defined as follows:

Definition 5.1: Basic Temporal Normal Form

A temporal relation scheme R is in basic temporal normalform (BTNF) if the domain of

each time-varying attribute in R is a set of atomic values and the domain of the valid time

is a set of time intervals.

The relation TaxRecord in Figure 5.1 is in BTNF because the values of the attributes

Name, MaritalStatus, and IncomeTax, are atomic and the values of the valid time are

intervals. Throughout this chapter, we assume that all temporal relations are in BTNF.

Note also that when we use the terms “relation” and “attribute”, they mean “temporal

relation” and “time-varying attribute” unless stated otherwise.

Functional dependencies can be used to describe data dependencies in temporal relations

when the valid time is considered atomic in the dependencies. For example, the valid

time T iS considered atomic in the functional dependency State T -> HighestTemperature.

If the valid time of two tuples are exactly the same, there is only one value of the highest

temperature for each state and each time interval. Nothing can be said about the highest

temperature for sub—intervals of the valid time. However, functional dependencies cannot

capture some dependencies in temporal data. Consider the dependency of the attribute

MaritalStatus on the attribute Name, where MaritalStatus and Name represent the marital



53

status and a person, respectively. A person has only one marital status at any time.

Therefore, if the values of Name in two tuples are the same and the values of the valid

time overlap, the values of MaritalStatus during the overlapping time must be the same.

Thus, the values of MaritalStatus in two tuples are also the same. This dependency

cannot be captured by a functional dependency.

A temporal functional dependency [48] captures this type of data dependency in temporal

data. A set of attributes Y is temporally functional dependent on X if, at any time, there is

one value of Y for each value of X. The dependency of MaritalStatus on Name can be

captured by the temporal functional dependency. However, when non-homogeneous

attributes are involved, temporal functional dependencies are not applicable because the

values of non-homogeneous attributes for sub-intervals are not necessarily the same as the

values for the whole interval. Consider a non-homogeneous attribute MinimumBalance

and a homogeneous attribute InterestRate in the relation Rate in Figure 5.2.

MinimumBalance represents the level of the lowest balance in a bank account during an

interval, and InterestRate represents the interest rate for an interval. We assume if the

balance in an account is kept within a certain level for a month interval, an interest rate is

applied to the account for the whole month. That is, the level of the lowest balance over a

month interval determines the interest rate for that month. In two tuples, if the values of

MinimumBalance are the same and the values of the valid time overlap, the values of

InterestRate are equal, as shown. in the relation Rate. The dependency of InterestRate on

MinimumBalance is similar to, but not exactly the same as, temporal functional

dependency. This dependency cannot be captured by temporal functional dependency
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because the values of MinimumBalance for sub-intervals are not necessarily equal to the

value for the whole interval. However, the value of InterestRate for any sub-interval is

determined by the value of MinimumBalance for the whole interval. For example, from

the first tuple in relation Rate, the interest rate for an account with $500 lowest balance

during [1/ 15/96, 1/31/96] is 4%. Even though the lowest balance for a subcinterval, say

[1/16/96, 1/31/96], is $1,000, the interest rate for the sub-interval is still 4%, not 5%.

 

 

 

 

 

    

MinimumBalance InterestRate T

$500 4% [1/1/96, 1/31/96]

$500 4% [1/16/96, 2/15/96]

$1,000 5% [1/1/96, 1/31/96

$500 5% [2/16/96, 3/15/96]
 

Figure 5.2: The relation Rate.

We modify the definition of temporal functional dependencies to capture this type of

dependency, and call it property dependency. The semantics of property dependency is

the same as a temporal functional dependency when all time-varying attributes in the

dependency are homogeneous. However, they are different when non-homogeneous

attributes are present. In Definition 5.2, the property dependency of Y on X and T holds if

any two tuples with the same value of X and overlapping valid time T has the same value

of Y.

Definition 5.2: Property dependency or P-dependency

Let r(R) be a temporal relation, and X and Y be sets of attributes in R. Let 1,, for i = 1 or 2,

be a tuple in r, 13(X) denote the value of X in 13, and 1(7) denote the value of the valid

time T in 13. r(R) satisfies a property dependency or P—dependencyX T= Y or X and T P-
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determines Y in r(R) if, for any two tuples 11 and 12 in r, 12(Y)=12(Y) if 1,(X)=12(X) and

rtmnomrfl

In temporal database design, it is necessary to consider functional dependencies as well as

P-dependencies. In the next section, inference rules involving both functional

dependencies and P-dependencies are presented.

5.3 Inference Rules for Functional Dependencies and P-dependencies

In this section, we first examine the relationship between functional dependencies and P-

dependencies. Then, inference rules which involve only P-dependencies are presented.

These inference rules directly correspond to the inference rules for functional

dependencies. We Show that inference rules presented here are sound, and they together

with inference rules for functional dependencies are complete.

5.3.1 THE RELATIONSHIP BETWEEN FUNCTIONAL DEPENDENCIES AND P-

DEPENDENCIES

First, we examine inference rules that give the relationships between functional

dependencies and P-dependencies. Let r(R) be a relation, X and Y be sets of attributes in

R, and X T —> Y denote the functional dependency of Y on X and T. The following

inference rules hold for any relation.

11: XT=> YimplieSXT—a Y.

12: X T-) Y implies X T:9 Y ifX and Y are homogeneous.
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From 11, we see that a P-dependency implies a functional dependency. From 12, a

functional dependency implies a P-dependency only when all time-varying attributes in

the dependency are homogeneous. Next, we prove I] and 12 are sound.

Proposition 5.1: 11 and 12 are sound.

Proof:

11 follows from the definitions of functional dependency and P—dependency.

For 12: Let X and Y be sets of homogeneous attributes, r(R) be a temporal relation that

satisfies X T —> Y, and 1, and 12 be any two tuples in r such that 11(X)=12(X) and

12(7)n12(7)¢O. Since X and Y are homogeneous, the values of X and Y for the sub-

interval 11(7)n12(7) are the same as the values of X and Y for the whole intervals 12(7)

and 12(7). Thus, 12(X)=12(X), 1,(Y)=12(Y), andX T=> Y. C]

From 11 and 12, we can conclude that a functional dependency is equivalent to a P-

dependency if all time-varying attributes in the dependency are homogeneous. For

example, Name T —) MaritalStatus and Name T => MaritalStatus are equivalent because

Name and MaritalStatus are homogeneous.

Lemma 5.1: IfX and Y are sets of homogeneous attributes, X T—-) Y is equivalent to X T

=Y.

Proof:

Let X and Ybe sets of homogeneous attributes. From 11, X T=> Y implies X T—> Y. From
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12, X T—i Y implies X T: Y. Thus, X T—> Y is equivalent to XT: Y. (2

5.3.2 INFERENCE RULES FOR P-DEPENDENCIES

Inference rules for P-dependencies are similar to those for functional dependencies. In

PIOposition 5.2, we Show that reflexivity, augmentation, and transitivity hold for P-

dependencies.

Proposition 5.2: Let r(R) be a relation, and X, Y, and Z be sets of attributes in R. For any

r(R), the following inference rules hold.

13 (Reflexivity): X YT: X.

14 (Augmentation): X T: Yimplies XZT: YZ.

15 (Transitivity): XT: Yand YT: ZimplyXT: Z.

Proof:

For 13: It is Obvious that, for any tuples 11 and 12 in r, if 12(X Y)=12(X Y) and

1,(T)n12(7)¢O, then 1,(X)=12(X). Thus, X YT: X.

For 14: Since X T : Y, for any tuples 12 and 12 in r, 12(Y)=12(Y) if 12(X)=12(X) and

1,(7)n12(7)¢O. Then, for any tuples 1, and 12 in r, 1,(Y Z)=12(YZ) if 13(X Z)=12(X Z) and

11(7)012(7) #3. Thus, XZT: YZ.

For 15: Since X T : Y, for any tuples 12 and 12 in r, 12(Y)=12(Y) if 12(X)= 12(X) and

12(7)n12(7)¢O. Since YT: Z, 12(Z)=12(Z) if 11(Y)=12(Y) and 1,(T)n12(7)¢O. Then, for

any tuples 12 and 12 in r, 12(Z)=12(Z) if 11(X)=12(X) and 12(7)n12(7)¢O. Thus, X T: 2.1:
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The following example shows the derivation of P-dependencies which uses reflexivity,

augmentation, and transitivity of P-dependencies.

Example 5.1: Given the following P-dependencies:

PI: Name T: Dept Rank, and

P2: Rank CompanyProfit T: Bonus.

The P-dependency Name CompanyProfit T : Bonus can be derived from P1 and P2 by

using I3-15 as shown below.

P3: Name CompanyPrOfit T: Dept Rank CompanyProfit (From Pl by 14)

P4: Dept Rank CompanyProfit T: Rank CompanyProfit (By 13)

P5: Name CompanyProfit T: Rank CompanyProfit (From P3 and P4 by 15)

P6: Name CompanyProfit T: Bonus (From P2 and P5 by IS)

5.3.3 COMPLETE SET OF INFERENCE RULES FOR FUNCTIONAL DEPENDENCIES AND P-

DEPENDENCIES

Now, we Show that 11-15, together with inference rules for functional dependencies, are

complete for deriving both functional dependencies and P-dependencies in temporal data.

We call reflexivity, augmentation, and transitivity for functional dependencies 16, I7 and

18, respectively. To prove the completeness, we need to define the transitive closure of a

set of attributes, based on functional dependencies and P—dependencies. Note that when

we use the term “dependencies”, we mean functional dependencies and P-dependencies.
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Definition 5.3: Closure

Let X and Y he sets of attributes, and G be a set of dependencies. The closure of G,

denoted by 0*, is the set of dependencies derived from G, using 11-18. The functional

closure of X under G, denoted by X; +, = {Y IX T -—) Y is in G“ I. The property closure of

Xunder G, denoted bepi, = {YIXT: Y is in 0*}.

Using the definition of closure, equivalent sets of functional dependencies and P-

dependencies can be defined similar to equivalent sets of functional dependencies. That

is, a set of dependencies G is equivalent to a set of dependencies H if G+=H*‘ Also note

that, for any set of attributes X, X’p ; X; because X T : Y implies X T —) Y. The

following example shows functional and property closures of a set of attributes.

Example 5.2: Let Acc#, Name, Addr and InterestRate be homogeneous attributes,

MinimumBalance be a non-homogeneous attribute, and Bank(Acc# Name Addr

InterestRate MinimumBalance 7) be a temporal relation. Given the set of dependencies,

Dl-D4 shown below, on the relation Bank, we Show the derivation of the property closure

and the functional closure ofAcc#.

D1: AcctlI T: Name

D2: MinimumBalance T: InterestRate

D3: Acc# T —> MinimumBalance

D4: Name T-—) Addr

The property closure of Acc#, ACC#p+, is {Acc#, Name, Addr, InterestRate}, and the

derivation is shown below.



D5: Acc# T: Acc# Name (From D1, by 14)

D6: Name T: Addr (From D4, by 12)

D7: Acc# Name T: Acc#Name Addr (From D6, by 14)

D8: Acc# T: Acc# Name Addr (From D5 and D7, by 15)

D9: MinimumBalance T -—> InterestRate (From D2, by 11)

D10: Acc# T —-) InterestRate (From D3 and D9, by 18)

D11: Acc# T: InterestRate (From D10, by 12)

D12: Acc# Name Addr T: Acc# Name Addr InterestRate (From D1 1, by 14)

D13: Acc# T: Acc# Name Addr InterestRate (From D8 and D12, by 15)

The functional closure of Acc#, Acc#3*, is {Acc#, Name, Addr, MinimumBalance,

InterestRate}, and it can be derived similarly.

Il-I8 are complete, i.e., a dependency can be derived from a set of dependencies G by

using Il-I8 if and only if the dependency is implied by G. The proof is Similar to the proof

of completeness for inference rules for traditional functional dependencies [10]. We Show

that there exists a temporal relation r that satisfies any functional dependency or P-

dependency which is in the closure of a set of dependencies and no other functional

dependency or P-dependency which is not in the closure.

Theorem 5.1: 11-18 are complete.

The Proof is Shown in Appendix A.
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5.4 P-inconsistency and Normal Forms for Temporal Relations

In this section, two normal forms for temporal relations are presented. First, we show how

P-inconsistency occurs and present a normal form that avoids P-inconsistency. Second,

we extend traditional 3NF to avoid anomalies in temporal relations. Since functional

dependencies are present in temporal relations, anomalies addressed in non-temporal

normal forms can also occur in temporal relations.

5.4.1 P-INCONSISTENCY AND P-CONSISTENCY NORMAL FORM

In some temporal relations, certain information cannot be inserted. Consider the relation

Acclnterest, in Figure 5.3, under the set of dependencies {Acc# T -> MinimumBalance,

MinimumBalance T : InterestRate}. The information, ‘the level Of the lowest balance

for the account number 276282 during [1/16/96, 2/15/96] was $500’, cannot be inserted

in the relation Acclnterest because there are two different interest rates for the $500

minimum balance during the interval. The interest rate is 4% for [1/16/96, 1/31/96] and

5% for [2/1/96, 2/15/96]. It is not possible to put both values of InterestRate in a tuple

because it violates BTNF. However, the interval [1/16/96, 2115/96] cannot be

decomposed into intervals [1/16/96, 1/31/96] and [2/1/96, 2/15/96] for each value of

InterestRate because MinimumBalance is a non-homogeneous attribute. We call this

problem P-inconsistency. In the relation Acclnterest, P-inconsistency occurs because

there are a P—dependency MinimumBalance T : InterestRate and another dependency

Acc# T —) MinimumBalance, which contains a non-homogeneous attribute
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MinimumBalance.

I Acc# MinimumBalance InterestRate T j

| 1 76282 $500 4% [1/1/96.1/31/96] |

| 1 76282 $500 5% [2/1/96, 2/28/96] I  

Figure 5.3: P-inconsistency in the relation Acclnterest.

‘P-inconsistency in the relation Acclnterest can be avoided by decomposing the relation

Acclnterest into the relations AccBalance and BalanceRate, in Figure 5.4. The

decomposition cannot be done based on functional dependencies only. The property

dependency and types of attributes are important basis for the decomposition. In these

two relations, a P-dependency MinimumBalance T : InterestRate and another

dependency Acc# T -> MinimumBalance with a non-homogeneous attribute

MinimumBalance are not present in the same relation. Thus, P-inconsistency is avoided,

and the information ‘the level of the lowest balance for the account 276282 during

[1/16/96, 2/15/96] was $500’ can be inserted, as shown in Figure 5.4 (a), without any

problem.

However, if all attributes in the P-dependency are included in another dependency with

non-homogeneous attributes, or vice versa, the two dependencies can be allowed in the

same relation. For example, suppose {MinimumBalance T : InterestRate, InterestRate

T -> MinimumBalance} is the set of dependencies on the relation BalanceRate, in Figure

5.4(b). P-inconsistency cannot occur in this relation because any valid data must satisfy

both dependency, and thus there is only one value of InterestRate for an interval.

Therefore, P-inconsistency occurs when a P-dependency and another dependency with
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non—homogeneous attributes are present in the same relation while one dependency does

not contain all attributes in another, or vice versa.

 

 

 

 

     

 

 

 

   

Acc# MinimumBalance T

1 76282 $500 [Ill/96, 1/31/96]

1 76282 $500 [2/1/96, 2/28/96]

276282 $500 [1/16/96, 2/15/96]

(a) The relation AccBalance.

| MinimumBalance InterestRate r |

| $500 4% [1/1/96,1/31/96] |

| $500 5% [2/1/96, 2/28/96] I

(b) The relation BalanceRate.

Figure 5.4: The decomposition of the relation Acclnterest into the relations AccBalance

and BalanceRate to avoid P—inconsistency.

Without losing generality, we assume that each attribute in a relation must be in a

dependency. If there are attributes which are not in any dependency, a relation is created

for each attribute. Since there is no constraint on the relation, P-inconsistency cannot

occur. Now, we only have to deal with attributes in the dependencies. Trivial

dependencies, such as Name T —> Name or Name T: Name, can be disregarded because

they are always satisfied. Then, a normal form that avoids P-inconsistency can be defined

as follows:

Definition 5.4: P-consistency normalform

Let R be a relation scheme, X and Y be sets of attributes in R, A be a Single attribute in R,

and G be a set of dependencies on R. R is in P-consistency normal form (PCNF) with



respect to G if R is in BTNF, and;

1. There iS no non-homogeneous attribute in R, or

2. All dependencies on R are functional dependencies, except P-dependencies X T : Y

such that X, Y and T are all in every non-trivial dependency on R, or

3. There is a non-trivial P-dependency of the form X T : A in G, such that X or A are

non-homogeneous, there is no YCX that Y T : A, and the P—dependency contains all

attributes in R.

The following example Shows a set of relations in PCNF.

Example 5.3: Consider a set of dependencies on the relation Bank in Example 5.2. The

relation Bank can be decomposed into three PCNF relations; Customer(Acc# Name Addr

7), Balance(Acc# MinimumBalance 7) and Rate(MinimumBalance InterestRate 7).

According to Item 1 in Definition 5.4, the relation Customer under the set of

dependencies {Acc# T : Name, Name T —> Addr} is in PCNF because there is no non-

homogeneous attribute in the relation. According to Item 2, the relation Balance under

the set of dependencies {Acc# T —) MinimumBalance} is in PCNF because there is no

non-trivial P—dependency on the relation. According to Item 3, the relation Rate under the

set of dependencies {MinimumBalance T : InterestRate} is in PCNF because

MinimumBalance is non-homogeneous, and there is a P-dependency MinimumBalance T

: InterestRate which contains all attributes in the relation.
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Next, we prove that PCNF avoids P-inconsistency. That is, a non-trivial P-dependency

and another non-trivial dependency with non-homogeneous attributes are not present in

the same PCNF relation, unless one dependency contains all attributes in another

dependency.

Theorem 5.2: PCNF avoids P-inconsistency.

Proof:

We show that PCNF prevents the presence of a P-dependency and another dependency

with non-homogeneous attributes in the same relation unless one dependency contains all

attributes in another.

First, consider a relation that contains no non-homogeneous attributes, according to Item

1 in Definition 5.4. Then there is no dependency with non-homogeneous attributes on the

relation. Thus, P-inconsistency cannot occur.

Second, there are two types of relations according to Item 2 in Definition 5.4. One is a

relation on which there is no non-trivial P-dependency. The other is a relation on which

there is a non-trivial P-dependency derived from G, and all attributes in the P-dependency

are contained in every non-trivial dependency on R. If there is no non-trivial P-

dependency on R, it is clear that P-inconsistency cannot occur. If there is a non-trivial P-

dependency derived from G, and all attributes in the P.dependency are contained in every

non-trivial dependency on R, then there is no non-trivial P—dependency that does not

contain all attributes in each functional dependency on R. Thus, P-inconsistency cannot
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OCCUI'.

Finally, consider Item 3 in Definition 5.4. If there is a non-trivial P-dependency of the

form X T : A in G, such that X or A are non-homogeneous and there is no YcX that Y T

: A, and the P-dependency contains all attributes in R, then there is no non-trivial P-

dependency which does not contain all attributes in other dependency on R. Then, P-

inconsistency cannot occur. Therefore, PCNF avoids P-inconsistency. [3

5.4.2 THIRD NORMAL FORM FOR TEMPORAL RELATIONS

Anomalies addressed in non-temporal relations can also occur in temporal relations. For

example, consider the relation Acclnterest in Figure 5.3. The information, ‘the interest

rate for $500 minimum balance during [2/16/96, 3/15/96] was 5%’, cannot be inserted if

there is no account with $500 minimum balance during [2/ 16/96, 3/15/96]. Similar to

anomalies in non-temporal relations, this anomaly is caused by the transitive dependency

which arises from Acc# T -) MinimumBalance and MinimumBalance T: InterestRate.

The anomalies in temporal relations can be avoided by preventing transitive or partial

dependencies caused by both functional dependencies and P—dependencies. For example,

the relation Acclnterest is decomposed into the relations AccBalance and BalanceRate, as

Shown in Figure 5.4. The transitive dependency caused by Acc# T —) MinimumBalance

and MinimumBalance T : InterestRate is eliminated in the two relations. Then, the

information, ‘the interest rate for $500 minimum balance during [2/15/96-3/15/96] was

5%’, can be inserted in the relation BalanceRate without any problem. The traditional
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3NF can be modified to apply for temporal relations as follows:

Definition 5.5: 3NFfor temporal relations

A relation scheme R is in 3NFT (3NF for temporal relations) with respect to a set of

dependencies G if R is in BTNF and there is no non-prime attribute in R which is

transitively dependent or partially dependent, based on both functional dependencies and

P-dependencies, on the key of R.

The definitions of key and non-prime attribute in temporal relations are the same as those

in non-temporal relations. Next, we give examples of relations in 3NFI‘.

Example 5.4: The relation Bank in Example 5.2 can be decomposed into the relations

ANM(Acc# Name MinimumBalance 7), Address(Name Addr 7), and Rate

(MinimumBalance InterestRate 7), which are in 3NFI'.

5.4.3 RELATIONSHIPS BETWEEN P-CONSISTENCY NORMAL FORM AND THIRD

NORMAL FORM FOR TEMPORAL RELATIONS

Notice that a 3NFT relation is not necessarily a PCNF relation, and vice versa. For

example, the relation ANM (Acc# Name MinimumBalance 7) in Example 5.4 is in 3NFT,

but it is not in PCNF because Acc# T: Name and Acct}f T -> MinimumBalance are in the

same relation and MinimumBalance is non-homogeneous. On the other hand, the relation

Customer(Acc# Name Addr 7) under a set of dependencies {Acc# T : Name, Name T ->

Addr}, in Example 5.3, is in PCNF. However, it is not in 3NFI‘ because Addr is

transitively dependent on Acct!f and T.



68

It is desirable to have a relation in both PCNF and 3NFT. We will discuss a

normalization algorithm that gives relations in both PCNF and 3NFI‘ in Section 5.6. The

problem of normalization into PCNF is NP-complete if there are equivalent sets of

attributes in the relation. We give a heuristic for decomposition into PCNF and 3NF1‘ in

polynomial time. Before we can discuss normalization into PCNF and 3NFT, we need to

examine equivalent sets of attributes and minimal covers for functional dependencies and

P-dependencies, which are necessary for normalization into PCNF.

5.5 Equivalent Sets of Attributes and Minimal Covers of a Set of

Functional Dependencies and P-Dependencies

Equivalent sets of attributes under a set of functional dependencies and P-dependencies

can be defined in a similar manner to those for a set of functional dependencies. X and Y

are functionally equivalent, denoted by X T (—) Y T, under a set of functional dependencies

ifX T —> Y and Y T —> X. X and Y are P-equivalent, denoted by X T: Y T, under a set of

functional dependencies and P-dependencies if X T : Y and Y T : X. Next, we give

examples of equivalent sets of attributes.

Example 5.5: Consider a relation TaxInterest and a set of dependencies G shown below.

G = { MinimumBalance T: AccountType PercentTaxWithheld InterestRate,

AccountType T:MinimumBalance PercentTaxWithheld,

AveBalance InterestRate T —) Interest}.

Here, MinimumBalance T : AccountType and AccountType T : MinimumBalance
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under G. Therefore, MinimumBalance and AccountType are P-equivalent. Since a P-

dependency implies a functional dependency, MinimumBalance and AccountType are also

functionally equivalent.

A minimal cover of a set of functional dependencies and P-dependencies can be defined

in a similar way to a minimal cover of a set of functional dependencies. That is, a set of

dependencies G is a minimal cover if it is reduced and non-redundant, and the right-hand

side of each dependency in G contains only one attribute. When there are equivalent sets

of attributes under a set of dependencies, there are more than one minimal cover for the

set of dependencies. The next example shows two different minimal covers of G in

Example 5.5 .

Example 5.6: The following sets of dependencies, G1 and G2, are two different minimal

covers of G in Example 5.5.

G; = { MinimumBalance T: AccountType,

MinimumBalance T: PercentTaxWithheld,

MinimumBalance T: InterestRate,

AccountType T: MinimumBalance,

AveBalance InterestRate T —-) Interest}.

G2 = { MinimumBalance T: AccountType,

AccountType T: PercentTaxWithheld,

AccountType T: InterestRate,

AccountType T: MinimumBalance,
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AveBalance InterestRate T —) Interest}.

Two different minimal covers of the same set of dependencies give the same

decomposition for 3NFI‘. For example, based on G, and G2, the relation TaxInterest can

be decomposed into the relations TaxInterestRate (MinimumBalance AccountType

PercentTaxWithheld InterestRate 7) and Balancelnt (AveBalance InterestRate Interest 7).

However, a different minimal cover can give a different decomposition for PCNF. Given

that MinimumBalance, AveBalance and Interest are non-homogeneous and AccountType,

InterestRate, and PercentTaxWithheld are homogeneous. Based on G], the relation

TaxInterest can be decomposed into R2(MinimumBalance AccountType 7),

R2(MinimumBalance PercentTaxWithheld 7), R3(MinimumBalance InterestRate 7), and

R4(AveBalance InterestRate Interest 7). However, based on G2, the relation TaxInterest

can be decomposed into R5 (MinimumBalance AccountType 7), R5 (AccountType

PercentTaxWithheld InterestRate), and R7(AveBalance InterestRate Interest 7). The

latter decomposition is more desirable because it gives a smaller number of relations.

If a non-homogeneous set of attributes is P-equivalent to a homogeneous set of attributes,

the non-homogeneous set can be replaced by the homogeneous set. If a P—dependency

with non-homogeneous attributes can be substituted by a P-dependency without non-

homogeneous attributes, the number of relations in PCNF may be reduced. For example,

MinimumBalance T : PercentTaxWithheld and MinimumBalance T : InterestRate in

G2 can be replaced by AccountType T : PercentTaxWithheld and AccountType T :

InterestRate because MinimumBalance and AccountType are P-equivalent. This new

minimal cover, G2, as shown in Example 5.6, gives a better decomposition of the relation
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TaxInterest. In this section, we Show that finding equivalent sets of attributes is an NP-

complete problem. Furthermore, we Show that the problem of finding a dependency to

replace another dependency in a minimal cover is also NP-complete.

5.5.1 FINDING EQUIVALENT SETS OF ATTRIBUTES .

For functional dependencies on non-temporal relations, the problem of determining if two

given sets of attributes are equivalent has polynomial-time complexity [9]. The problem

of finding equivalent sets of attributes for a given set of attributes has not been previously

addressed. Here, we Show that finding equivalent sets of attributes is an NP-complete

problem. First, we introduce the notion of determinative, which can be used to derive

equivalent sets of attributes. The determinative of the attribute A in the set X contains

subsets of the closure of X which determine A. The determinative is formally defined as

follows:

Definition 5.6: Determinative

Let R be a relation scheme, X be a set of attributes in R, A be an attribute in X, and G be a

set of dependencies on R. The fiinctional determinative of A in X under G, denoted by

DP(A, X, G), is {Y1 Y;Xp+, Y T —> A under G}. The property determinative of A in X

under G, denoted by DP(A, X, G), is {YI YgXp", Y T: A under G}.

Following is an example of determinatives.

Example 5. 7: Consider the relation TaxInterest, the set of dependencies G in Example

5.5, and a set of attributes X = {MinimumBalance, Interest}. (AccountType) is in
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DP(MinimumBalance, X, G), and (Interest) is in DP(Interest, X, G).

A set of attributes which is equivalent to a given set X can be created from the

determinative of each attribute in X. Consider the relation TaxInterest in Example 5.7.

We can find a set of attributes which is P-equivalent to (MinimumBalance Interest) by

choosing one member from DP(MinimumBalance, X, G), e.g. (AccountType), and one

member from DP(Interest, X, G), e.g. (Interest). Thus, (AccountType Interest) is P-

equivalent to (MinimumBalance Interest). Now, we prove that an equivalent set of

attributes ofX can be created from the determinative of each attribute in X.

Lemma 5.2: Let R be a relation scheme, X and Y be sets of attributes in R, and G be a set

of dependencies on R. X TH Y T (or X T 4: Y 7) under G if and only if Y=UAex Y3 where

Yge DF(A, X, G) (or he DP(A, X, G), respectively) for each attribute A in X.

Proof:

First, we prove the “it” part. Let YAe DF(A, X, G) for each A in X, and Y=UAex Y3. X T ->

Y3 and YA T—> A because YAE DF(A, X, G). Since X T —-> YA for all A in X and Y=UAex

Y3,XT—> Y. Since Y3 T->A forallA inXand Y=UAex YA, YT—)X. Thus,XT<—> YT

under G. Similarly, we can prove the “if” part for P-equivalent sets of attributes.

Second, we prove the “only if” part. Let X T H Y T under G. Since X T -—> Y, YCXF+'

Since Y T -) X, for each attribute A in X, there is YAQY such that YA T —> A. That is, there

is YAe DF(A, X, G) for each attribute A in X and Y=UAex YA, Similarly, we can prove the

“only if” part in a P-equivalent set of attributes. C
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Next, we Show that finding functionally equivalent or P-equivalent sets of attributes is an

NP-complete problem. The problem of finding equivalent sets of attributes is formally

defined as follows:

Equivalent set of attributes problem (EQ):

Input: A relation scheme R, a set of attributes H, a set of dependencies G, and a set of

attributes X, such that X T —-> A (or X T: A) is in G.

Question: Find Ygl-I such that X¢Y, X T <—) Y T( X T: Y 7) under G.

We Show that EQ is NP-complete by Showing a reduction of the hitting set problem [42],

which is an NP—complete problem, to EQ. The hitting set problem is defined as follows:

Hitting set problem (HS):

Input: A collection of sets C2, C2,..., C,., where C; a finite set S, for i=1, 2,..., n,

and a positive integer KSISI.

Question: Find a set S’cS such that IS'ISK and for i=1, 2,..., n, there is cte C.- Such that

CIES’.

We consider a special case of EQ, where every dependency is a P-dependency whose left-

hand Side contains only one time-varying attribute. In the proof, we assume that each set

C.- in HS is the determinative of an attribute in X. A set of dependencies can be created

from the determinatives of attributes in X. According to Lemma 5.2, the hitting set of the

determinatives of attributes in X is P-equivalent to X. Thus, there is a polynomial-time

reduction of HS to the special case of EQ, and EQ is NP-complete.
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Lemma 5.3: EQ is NP-complete.

The proof is shown in Appendix B.

From Lemma 5.3, we see that, given a set of functional dependencies on a non-temporal

relation, finding equivalent sets of attributes for a given set is also NP-complete. Next, we

examine minimal covers for a set of functional dependencies and P-dependencies.

5.5.2 MINIMAL COVERS FOR A SET OF FUNCTIONAL DEPENDENCIES AND P-

DEPENDENCIES

AS Shown earlier, a minimal cover of a set- of functional dependencies and P-

dependencies is similar to that of a set of functional dependencies. It is formally defined

as follows:

Definition 5. 7: Minimal covers

Let R be a relation scheme, G be a set of dependencies on R, and X and Y be sets of

attributes in R. G is a minimal cover if G is reduced, non-redundant and, for each X T —>

Y (or X T: Y) in G, Y contains only one attribute.

The algorithm that creates a minimal cover for a set of functional dependencies can be

easily modified for it to be applicable to a set of functional dependencies and P-

dependencies because the inference rules for functional dependencies and those for P-

dependencies are similar. We will not discuss the algorithm here. It is easy to see that a

minimal cover of a set of functional dependencies and P-dependencies can be created in

polynomial time.
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5.5.3 SUBSTITUTING DEPENDENCIES IN A MINIMAL COVER

AS Shown earlier, one minimal cover can give a better decomposition than another

minimal cover. A better decomposition can be obtained if a P-dependency with non-

homogeneous attributes in a minimal cover can be replaced by a dependency without non-

homogeneous attributes. In this section, we examine when a dependency in a minimal

cover can be replaced by other dependency (or dependencies). Then, we Show the

problem of finding a replacement of a dependency is an NP—complete problem.

As shown in Example 5.6, there are possibly more than one minimal cover for a set of

dependencies. A different minimal cover can be obtained by substituting a dependency in

a minimal cover by other dependency or dependencies. In Example 5.6, a dependency

MinimumBalance T : PercentTaxWithheld is‘replaced by a dependency AccountType T

: PercentTaxWithheld. We call a dependency that can be replaced by a single

dependency a 1-1 substitutable dependency, and the dependency with which it is replaced

a substitute dependency.

Some of the dependencies in a minimal cover cannot be replaced by a Single dependency,

but can be replaced by a set of dependencies. For example, consider a minimal cover

Gr-{EmployeeID T : LicensePlate, LicensePlate T : AutoID, AutoID T :

EmployeeID} on a relation Auto(EmployeeID LicensePlate AutoID 7). The dependency

EmployeeID T : LicensePlate cannot be substituted by one dependency. However, it is

possible to substitute the dependency by the dependencies EmployeeID T : AutoID and

AutoID T : LicensePlate. We call a dependency that can be replaced by a set of
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dependencies a I-n substitutable dependency. Some of the dependencies in a minimal

cover have no equivalent sets of attributes, and thus they are in every possible minimal

covers of the set of dependencies. We call this type of dependency a non-substitutable

dependency. The dependencies in Example 5.1 are non-substitutable dependencies.

Next, we formally define l-lsubstitutable, l-n substitutable, and non-substitutable

dependencies.

Definition 5.8: 1-1 substitutable, l-n substitutable and non-substitutable dependencies

Let R be a relation scheme, G be a minimal cover on R, X, Y, and Z be sets of attributes

in R, and A, B, and C be attributes in R.

For X T : A (or X T —> A) in G, if there are Y and B such that X¢Y or A133, and G-{X T

: A (or X T —> A, respectively)} U {Y T : B (or Y T —> B, respectively)} is a minimal

coverofG, thenXT:A (orX T—rA) is 1-1 substitutable in G and YT: B (or YT—>

B, respectively) is a substitute dependency ofX T: A (or X T —-) A, respectively).

X T : A (or X T —-> A) in G is I-n substitutable if there are no Z and no C such that X¢Z

or A¢C, and GsG-{X T : A (or X T —> A, respectively)} U {2 T : C (or Z T —) C,

respectively)}, but there are Y, B, and a set of dependencies G’M such that X¢Y or A¢B,

and GaG-{X T: A (orX T—) A, respectively)} U {Y T: B (or Y T —) B, respectively)}

U G’.

X T: A (or X T —-> A) in a minimal cover G is non-substitutable if for any minimal cover

G’!G,XT:A (orXT—rA) is in G’.
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Next, we prove that a dependency is a 1-1 substitutable dependency if there is a set of

attributes that are equivalent to the set of attributes in the dependency, and the equivalent

set of attributes can be derived without using the 1-1 substitutable dependency.

Lemma 5.4: Let R be a relation scheme, G be a minimal cover of a set of dependencies

onR,Xand YbesetsofattributesinR,AandeeattributesinR,andXT:A(orXT

—>A) be in G. XT:A (orXT—>A) is 1-1 substitutable ifand only ifthere are YandB

suchthatXT: YT(OI‘XT(—) Y7) andXA T: YBT (orXA TH YB 7)canbe

derived from G, andXT: Y(orXT—> Y7) and YB T:A (or YB T—)A)canbe

derived from G-{X T: A (or X T —-) A, respectively)}.

The proof is shown in Appendix C.

Now, we Show that the problem of finding a substitute dependency for a given

dependency is NP-complete. We define the problem of finding a substitute dependency as

follows:

Substitute dependency problem (SUB):

Input: A relation scheme R, a minimal cover G on R, a dependency X T : A (or X T

—) A), where X or A are non-homogeneous, and a set of attributes H.

Question: Find a dependency Y T: B (or Y T —) B) ofX T : A (or X T -—) A) such that

Yc;H,BeH,andG=G- {XT:A(orXT—)A)} U {YT:B(orYT->B)}.

We prove that SUB is NP-complete by showing a polynomial-time reduction of EQ to a

special case of SUB, where the minimal cover contains only 1-1 substitutable or non-
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substitutable P-dependencies.

Lemma 5.5: SUB is NP-complete.

Proof:

First, we Show that a special case of SUB, where G contains only 1-1 substitutable or

non-substitutable P-dependencies, is NP-complete. If we non-deterministically pick Y and

B in H, it takes polynomial time to determine whether GiG-{X T : A}U{Y T : B}.

Therefore, the special case of SUB is in NP.

The input R, G, and H of SUB and EQ are the same. The input X T : A of SUB can be

derived from X and G of EQ, as shown in T1 in Figure 5.5, by finding a P-dependency in

G whose left-hand Side is X T. This can be done in polynomial time. According to

Lemma 5.4, X T : A is a 1-1 substitutable if and only if there are Y and B such that X¢Y

orA¢B,X T: YTandXA T: YB T. And, YT: B is a substitute dependency ofX T

: A. Then, for the output, if Y T : B is a substitute dependency of X T : A such that

X¢Y, X T: Y T. Thus, there is a polynomial-time reduction of EQ to the special case of

SUB. Therefore, the special case of SUB is NP-complete and SUB is also NP-completefl
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Figure 5.5: The reduction of EQ to a Special case of SUB.
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5.6 Normalization into P-Consistency Normal Form and 3NF for

Temporal Relations

In this section, we discuss the decomposition of a relation into PCNF and 3NFT relations.

The decomposition algorithm for 3NF also decomposes a temporal relation into 3NFT

relations. In Section 5.6.1, a normalization algorithm for PCNF and 3NFT is presented.

However, this algorithm does not guarantee the minimum number of normalized

relations. In Section 5.6.2, we show that finding the decomposition that gives the

minimum number of normalized relations is an NP-complete problem. Finally, in

Section 5.6.3, we present a heuristic that gives the. minimum number of PCNF and 3NFT

relations in polynomial time if there is no 1-n substitutable dependency and all equivalent

sets of attributes are disjoint.

5.6.1 A NORMALIZATION ALGORITHM

The normalization into PCNF and 3NFT can be done by first decomposing a relation into

3NFT relations, using the 3NF decomposition algorithm. Then, each 3NFT relation is

decomposed into PCNF relations. PCNF decomposition can be done by grouping

dependencies according to the three items in Definition 5.4. A normalization algorithm is

shown below.

Alggm'm 1: Normalization into PCNF and 3NFT relations

Input: a set of dependencies 6.

Output: a set of relation schemes.
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Method:

1. Find a minimal cover, MG, of G.

2. From MG, find a set of dependencies, N, with equivalent left-hand side.

3. From dependencies in N.

3.1. Find functional dependencies with non~homogeneous attributes and the same

types of sets of attributes on the left-hand side of the dependencies.

3.2. Find dependencies in which all attributes are contained in every function

dependency found in Step 3.1.

3.3. Create one relation scheme from attributes in the dependencies found in Step

3.1 and 3.2.

4. From dependencies in N, find dependencies without non-homogeneous attributes.

Create one relation scheme from attributes in these dependencies.

5. From dependencies in N, find a P-dependency with non-homogeneous attributes and

dependencies in which all attributes are contained in the P-dependeney. Create one

relation scheme from all attributes in these dependencies.

6. Repeat Step 5 for all P-dependencies with non-homogeneous attributes found in N.

7. Repeat Step 2-6 until all dependencies in MG are considered.

8. If the key of R is not contained in any relation created in Step 3-6, create a relation

scheme Flo from the key of R.

It is obvious that Algorithm 1 has polynomial-time complexity. Next, we prove that

Algorithm 1 gives a dependency-preserving and lossless decomposition for PCNF and

3NFT.

Lemma 5.6: Algorithm 1 gives a dependency-preserving and lossless decomposition for

PCNF and 3NFT.

The proof is given in Appendix D.
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Algorithm 1 may give a different number of PCNF and 3NFT relations if a different

minimal cover is derived in Step 1. Consider the minimal covers G2 and G2 in Example

5.6. If G, is derived in Step 1, Algorithm 1 decomposes the relation TaxInterest into the

following relations: R2(MinimumBalance AccountType 7), R2(MinimumBalance

PercentTaxWithheld 7), R3(MinimumBalance InterestRate 7), and R4(AveBalance

InterestRate Interest 7). However, this relation can be decomposed into fewer relations.

If G2 is derived in Step 1, Algorithm 1 decomposes the relation TaxInterest into relations

R5(MinimumBalance AccountType 7), R5(AccountType PercentTaxWithheld InterestRate

7), and R7(AveBalance InterestRate Interest 7).

Algorithm 1 does not always give the best decomposition, i.e., the decomposition which

gives the fewest normalized relations. We Show in the next section that the problem of

finding such a decomposition is NP-complete.

5.6.2 FINDING A MINIMUM DECOMPOSITION

It is desirable to achieve a decomposition that gives the fewest PCNF and 3NFT relations

because it reduces the number of join operations required in queries. We call a

decomposition which gives the minimum number of PCNF-3NFT normalized relations a

minimum decomposition. We will Show that finding a minimum decomposition is an NP-

complete problem. First, we define the problem as follows:

Minimum decomposition problem (MD):

Input: A relation scheme R, a set of dependencies G on R, and a set of homogeneous

attributes H.
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Question: Find a minimum decomposition of R into PCNF and 3NFT relations.

We Show that MD is NP-complete by reducing SUB to a Special case of MD, where there

are only non-substitutable or 1-1 substitutable P-dependencies on the relation, and no two

dependencies have the same substitute dependency. First, we Show that, in this Special

case, a decomposition is a minimum decomposition if, in the minimal cover of each

normalized relation, there is no P-dependency with non-homogeneous attributes, that can

be replaced by a P-dependency without non-homogeneous attributes.

Lemma 5.7: Let R be a relation scheme, and G be a minimal cover on R, where G

contains only P-dependencies which are either non-substitutable or 1-1 substitutable, and

no two dependencies can have the same substitute dependency. A decomposition of a

relation scheme R into {R2, R2,..., R3}, where G2, G2,..., and G, are minimal covers on

R2, R2,..., R3, respectively, is a minimum decomposition if and only if, R2, R2,..., R3 are

created from Algorithm 1, and for each 1-1 substitutable dependency X T : A in

G2UG2U. . .UG,I such that X or A are non-homogeneous, there is no substitute dependency

Y T: B ofX T: A such that Y and B are homogeneous.

The proof is shown in Appendix D.

Next, we prove that MD is NP-complete by giving a polynomial-time reduction of SUB

to the special case of MD, where the minimal cover contains only 1-1 substitutable or

non-substitutable P-dependencies, and no two dependencies can be replaced by the same

dependency.
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Theorem 5.3: MD is NP-complete.

The proof is shown in Appendix E.

Now that we have proven that finding a minimum decomposition is NP-complete, we

need a heuristic that finds a “good” decomposition in polynomial time. In the next

section, we present a heuristic that finds a minimum decomposition in most cases.

5.6.3 A HEURISTIC FOR REDUCING THE NUMBER RELATIONS IN THE

DECOMPOSITION

In this section, we present a heuristic for PCNF and 3NFT decomposition. This heuristic

reduces the number of normalized relations by replacing 1-1 substitutable P-dependencies

with non-homogeneous attributes by their substitute dependencies without non-

homogeneous attributes. To find 1-1 substitutable dependencies and their substitute

dependencies, we must first find equivalent sets of attributes for some sets of attributes in

the dependencies. Since finding equivalent sets of attributes is also NP-complete, we first

present a heuristic that finds equivalent sets of attributes in polynomial time.

5.6.3.1 A Heuristic for Finding Equivalent Sets of Attributes

In this section, we present a heuristic that finds sets of attributes which are equivalent to a

given set of attributes. The heuristic presented here has polynomial-time complexity.

However, it cannot find some equivalent sets of attributes that are not disjoint.

To find equivalent sets of attributes for a given set X, we first find the closure of X, called
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Y. We then remove one attribute at a time from Y. If the remainder of Y after removing

an attribute is not equivalent to X, put the attribute back into Y and repeat the process

until the smallest set of attributes which is equivalent to X is found. In general, there

may be more than one equivalent set of attributes. To find another equivalent set, repeat

the same process, but remove each attribute in the equivalent set previously found, one at

a time. The heuristic is Shown below.

W:Finding functionally equivalent (or P-equivalent) sets of attributes

Input: A set of dependencies G and a set of attributes X.

Output: EO={YI Y T<—> X T(or Y T: X 7) under 6}.

Method:

1. XF={attribute Al x T—) A} (or XP {attribute Al x T: A}); z= LIST(X)|ILIST(XF (or

XP) -X); EO={X}; SUCCESS=T.

2. Find if there is any set of attributes WeXand W THX T(or W T:X 7).)

While (SUCCESS)

2.1 Y= XF (or XP);

2.2 (If Y-A is not equivalent to X, keep A in Y.)

For each attribute A in 22

2.2.1 If (Y-A) THX (or (Y-A) T:X), then Y= Y-A.

2.3 (If new equivalent set of X is found, repeat Step 2.)

If (Ye E0), then EO=EOU{ Y}; Z=LIST( Y)IILIST(Z- Y).

2.4 (If there is no new equivalent set of X is found, stop here.)

If (EO={X}), SUCCESS=F.

3. retum(E0).

Note: ll denotes the concatenation of lists.

It is obvious that the sets Of attributes in E0, produced in Algorithm 2, is equivalent to X.

In Step 2.2, Y=Y-A if (Y-A) T HX (or (Y-A) T :X). In Step 2.3, Y is added into E0.
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Therefore, each set of attributes in EC is equivalent to X. Next, we prove that Algorithm 2

has polynomial-time complexity.

Lemma 5.8: Algorithm 2 has polynomial-time complexity.

Proof:

Obviously, Step 1 and 3 in Algorithm 2 take linear time. First, we prove that Step 2 is

repeated at most n times, where n is the number of time-varying attributes in the relation

scheme R. Let R T be the relation scheme. Step 2 is repeated until no new equivalent set

of attributes is found. No new attribute is found when the equivalent set of attributes

found in the last repetition of Step 2 is Y and all sets of attributes that contain at least one

attributes in R-Y are found in previous repetitions. The number of sets of attributes that

contain at least one attributes in R-Y that can be found in Step 2 is no greater than n.

Therefore, Step 2 is repeated at most n times.

Since Step 2.1, 2.2 and 2.3 take polynomial time, n repetitions of Step 2 takes polynomial

time. Thus, Algorithm 2 takes polynomial-time. D

The following example shows the derivation of equivalent sets of attributes, using

Algorithm 2.

Example 5.8: Consider a set of dependencies {A T —> C, A B T —) D, C D T -) A, D T —>

B E, E T -+ B}. The sets of attributes which are functionally equivalent to X = (A B) can

be derived by using Algorithm 2, as follows. First, compute the functional closure of X,

which is Y=(AB CD E). Inthe first try,Z=list ofA, B, C, D, E, and wetryto remove
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each attribute in Z, starting from the head of the list. Y-A, which is (B C D E), does

functionally determine X. Thus, A is removed from Y, and Y = (B C D E). Similarly, B is

removed from Y and Y = (C D E). Next, we try to remove C. Since Y-C does not

functionally determine X, C cannot be removed. Similarly, D cannot be removed from Y,

but E is removed from Y. Then, Y = (C D), and is functionally equivalent to X. To find

another equivalent set of attributes, the same procedure is repeated with the same Y = (A

B C D E). However, we first try to remove each attribute in (C D) which is previously

found to be equivalent to X first. Thus, Z = list of C, D, A, B, E. We find (A B) is

equivalent to (A B). Since no new equivalent set of attributes is found, we stop. Notice

that (A E), which is functionally equivalent to (A B), cannot be derived in this approach

because they are not disjoint.

Next, we present a heuristic for PCNF and 3NFT decomposition that uses Algorithm 2 to

reduce the number of relations.

5.6.3.2 Using Equivalent Sets of Attributes to Reduce the Number of Relations

The heuristic presented in this section reduces the number of relations in a decomposition

by replacing P-dependencies with non-homogeneous attributes with their substitute

dependencies without non-homogeneous attributes.

$92M: Finding a decomposition for PCNF and 3NFT, and reducing the number of

relations.

Input: a set of dependencies G.

Output: a set of relation schemes.
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Method:

1. Find MG, which is a minimal cover of G.

2. (Replace a 1-1 substitutable P-dependency with non-homogeneous attributes by a

P-dependency with only homogeneous attributes.)

For each dependency X T= A in MG such that X or A are non-homogeneous:

2.1. Find YgHandBeHsuchthatXTa YTandXA T4: YB Tcanbe

derived from MG, and X T: Yand YB T=¢ A can be derived from MG-

{X T=> A} (use Algorithm 2).

2.2. If there are such Yand 8, let MG=MG-{X T=> A}U{Y T: B).

3. Create relation schemes {Fi,, Fi,,..., Fin}, according to Step 2-8 in Algorithm 1

It is clear that Algorithm 3 has polynomial-time complexity. Step 1 takes polynomial

time because a minimal cover can be created in polynomial time. Step 2 takes

polynomial time because it is based on Algorithm 2 which, according to Lemma 5.8, has

polynomial-time complexity, and is performed at most IGI times. Step 3 takes polynomial

time because it is based on Algorithm 1 which has polynomial-time complexity. Next,

we prove that Algorithm 3 also gives a dependency-preserving and lossless

decomposition for PCNF and 3NFT.

Lemma 5.9: Algorithm 3 gives a dependency-preserving and lossless decomposition for

PCNF and 3NFT.

Proof:

In Step 2, 1-1 substitutable dependencies are replaced by their substituted dependencies.

According to Lemma 5.4, the set of dependencies MG produced in Step 2 is equivalent to

the input G. Step 3 is Algorithm 1, and it is proved, in Lemma 5.6, to produce a
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dependency-preserving and lossless decomposition for PCNF and 3NFT. Therefore,

Algorithm 3 gives a dependency—preserving and lossless decomposition for PCNF and

3NFT. D

The following example shows a decomposition of the relation TaxInterest which is

produced by Algorithm 3 using the minimal cover G2 in Example 5.6.

Example 5.9: Consider the relation TaxInterest in Example 5.6. Suppose the minimal

cover 6, in Example 5.6 is derived in Step 1 in Algorithm 3. In Step 2, MinimumBalance

T => PercentTaxWithheld and MinimumBalance T => InterestRate are substituted by

AccountType T => PercentTaxWithheld and AccountType T =9 InterestRate. In Step 3, the

relation TaxInterest is decomposed into relations R5(MinimumBalance AccountType T),

R6(AccountType PercentTaxWithheld InterestRate T), and R7(AveBalance InterestRate

Interest T). This decomposition is a minimum decomposition.

Algorithm 3 reduces the number of normalized relations. However, it does not guarantee

the minimum decomposition because it only replace 1-1 substitutable dependencies, but

not In substitutable dependencies, and Algorithm 2 does not guarantee to find all

equivalent sets of attributes. The following example shows a situation when Algorithm 3

does not produce a minimum decomposition because of a l-n substitutable dependency.

Example 5.10: Let A, B, C, D, E, F, G, and H be homogeneous attributes and I be a non-

homogeneous attribute. Consider the relation S(A B C D E F G H J T) and the minimal

cover M shown in Figure 5.6. From Algorithm 3, no dependency is replaced in Step 2,

and the dependencies are grouped as follows: {A B T -) G, A B T -> H, G H T -)A, G H
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T—>B,GHT—>D,GHT—9E,DET=> G,DET=>H}, (011:: C}, {HJT=>F},

{BCDFT=J}, {GHT=> J}. InStep 3,Sis decomposed into 51043050117),

S2(C G J T), S3(F H J T), S4(B C D F J T), and 85(G H J T), which is not a minimum

decomposition.

M={ABT—)G, ABT—aH, M’=(ABT—>G, ABT—)H,

DET=>G, DET=>H, DET=>G, DET=>H,

GHT=> J, GJT=>C, ABT=> C, DET=F,

HJT=>F, GHT—)A, GJT=>C, HJT=>F,

GHT—>B, CHT—>D, GHT—nt, GHT-eB,

GHTaE BCDFT=JL GHTAD,GHT+E

BCDFT=>J}.

Figure 5.6: Minimal covers M and M’on a relation S.

The dependency G H T => J in M is l-n substitutable and it can be replaced by A B T =>

C and D E T => F. A minimal cover M', shown in Figure 5.6, can be created from M by

replacing GH T=> JinMwithA B T=> CandD E T=o F. Using M’, the relation rcan

be decomposed into the relations 56(A B D E G H T), S7(C G J T), 53(F H J T), and S9(B

CD F J T), which is a minimum decomposition.

5.7 Conclusions

Existing design principles for temporal databases are not applicable when non-

homogeneous data are involved. In this chapter, we address an inconsistency problem in

temporal relations with homogeneous and non—homogeneous data, called P—inconsistency.

P-inconsistency occurs when there are both a P-dependency and another dependency with
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non-homogeneous attributes in the same relation. We propose a normal form called

PCNF which avoids P-inconsistency. It is desirable to avoid both P-inconsistency and

anomalies caused by transitive and partial dependencies. We study the decomposition for

PCNF as well as 3NFT, which avoids transitive and partial dependencies, and prove that

the problem of finding a minimum decomposition is NP-complete. In the process, we also

prove that the problem of finding equivalent sets of attributes is an NP-complete problem.

A polynomial-time heuristic which decomposes a relation into PCNF and 3NFT relations

is presented.



Chapter 6

EXTENSION OF DATALOG FOR PROPERTY AND REPRESENTATIVE

RELATIONS

6.1 Introduction

There are a few extensions of Datalog [81] to support temporal data, such as Templog [1,

7], Datalog;s [19, 20], and Temporal DATALOG [63]. In these deductive databases,

temporal data are associated with points of time. Representative relations cannot be

represented in these data models. For example, the highest temperature over a time

interval is associated with the whole interval, but not with each point in the interval, and

thus it cannot be represented in these extensions of Datalog. In this chapter, we propose

an extension of Datalog, called TDatalog, which supports both property and

representative relations.

In TDatalog, a temporal data is associated with a time interval. The implicit relationship

between time intervals associated with temporal data in an IDB rule is adopted from a

type of if-statement called a generalization if—statement [31]. In a generalization if-

statement, it is assumed that the consequence is true when all the conditions are true

(unless specified otherwise). Thus, in an IDB rule, the time interval associated with the

91



92

head can be derived from the intervals associated with predicates in the body, based on

this assumption, and the types of temporal data in the body. Furthermore, explicit

relationship between intervals associated with temporal data in an IDB rule can be

specified by temporal predicates. Because of the decomposability of the intervals

associated with the two types of temporal data, the interpretations of these temporal

predicates also depend on types of the temporal data, as shown in Chapter 4.

The focus in this chapter is to extend Datalog to capture both property and representative

relations. In this extension of Datalog, the relationship between time in IDB rules is

implicit, and can be derived from the rules, based on types of temporal data in the rules.

The rest of this chapter is organized as follows. In Section 6.2, the relationship between

time in if-statements are examined, and applied in the extension of Datalog. Based on this

implicit relationship between time, TDatalog is presented in Section 6.3. Section 6.4

discusses the translation of TDatalog to relational algebra presented in Section 4.4.

Section 6.5 presents the conclusion.

6.2 Relationships between Time in If-statements

The similarity between if-statements and IDB rules in Datalog is obvious. However, the

relationship between time in if-statements and IDB rules in temporal deductive databases

has not been previously addressed. Based on the tense patterns in if-statements, if-

statements can be classified into 3 types: hypothetical, generalization, and conditional if-

statements [31]. In this section, the relationships between time in hypothetical and

generalization if-statements are examined, and they are compared to the relationship
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between time in IDB rules in temporal databases. Conditional if-statements are not

discussed here because they involve modality which is not in the scope of this study. The

relationship between time in generalization if-statements is adopted for TDatalog.

6.2.1 HYPOTHETICAL IF-STATEMENTS

In a hypothetical if-statement, “it” acts as conjunction, and thus the condition and the

consequence are two independent clauses. The time of the conditions and the time of the

consequences are independent, and are indicated by tenses or time adverbial phrases. An

example of a hypothetical if-statement is shown in Example 6.1.

Example 6.1: The following if-statement is a hypothetical if-statement because the tense

of the condition and the tense of the consequence are independent.

IfJohn left on Monday, he will arrive on Friday.

The time of the consequence, which is indicated by future tense “will arrive” and the

phrase “on Friday,” does not depend on the time of the condition, which is indicated by

past tense “left” and the phrase “on Monday.”

The relationship between time in a hypothetical if-statement is explicitly stated. Similarly,

the relationship between time in an IDB rule can be explicit. For example, in Datalog;s

rules, the relationship between time is specified explicitly. The if-statement in Example

6.1 can be expressed in Datalog“, as follows:

arrive(“John", T-l-4) :- leave(“John”, T), T: Monday.
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Next, we examine another type of if-statement, called generalization if-statement.

6.2.2 GENERALIZATION IF-STATEMENTS

In a generalization if-statement, the if clause acts as an adverbial modifier, and the time of

the consequence depends on the time of the condition. A generalization if-statement

describes “the generalization about the occasion of condition's satisfaction” [31]. Thus,

the time when the consequence is true depends on the time when the condition is true.

The following example shows a generalization if-statement.

Example 6.2: The following is a generalization if-statement.

A student is a senior ifhe/she completes more than 100 credits. [S 1]

In this sentence, the tenses in the condition and the consequence are the same. Thus, the

time of the consequence is the same as the time of the condition, and the explicit

relationship between time can be omitted. However, the relationship between time in this

type of if-statement also depends on types of temporal data and temporal modifiers in the

statement. These factors are discussed next.

6.2.2.1 Effects of Types of Temporal Data

As mentioned earlier, the consequence in a generalization if-statement is true when all the

conditions are true. However, the characteristic of a temporal data determines when the

temporal data is true. A property data is true for an interval as well as its sub-intervals,

while a representative data is true for an interval and not necessarily for its sub-intervals.

Thus, in a generalization if-statement, the time when the consequence is true also depends
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on the types of temporal data in the condition. Consider the following three

generalization if-statements.

A stock is stable if the difi‘erence between the highest and the lowest price is less

than 20 points. [82]

A student is a senior if he/she completes more than 100 credits and his/her GPA

is higher than 1.0. ‘ [S3]

A stock is unstable if the difference between the highest and the lowest price is

more than 100 points and it is an entertainment business. [S4]

The highest price and the lowest price of a stock are representative data. The number of

credits completed, GPA, and the type of business are property data In [S2], the highest

price and the lowest price are applied to the whole interval. They are true at the same

time if the time intervals associated with both of them are exactly the same. And, the

consequence “A stock is stable” is true for that time interval. Now, consider [83] in

which both conditions are property data. Since the number of credits and GPA are

applied to all sub-intervals associated with the data, they are both true during the

intersection of the intervals. Thus, the consequence “A student is a senior” is true during

the intersection of the two intervals. Finally, for [84], two conditions are representative

data and another is a property data. All conditions are true when the time intervals

associated with representative data are equal, and are contained in the interval associated

with the property data. This type of implicit relationship between time is adopted for the

extension of Datalog presented in Section 6.3.
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Another factor that effects the relationship between time in generalization if-statements is

the roles of conditions in if-statements, which are examined next.

6.2.2.2 Effects of Roles of Conditions

In any statements, clauses have different roles. For example, the statement “John works

for a company which is located in Canada” is composed of two clauses; “John worksfor

a company” and “which (the company) is located in Canada.” The first clause is the

main clause, and the second is the modifier of the main clause. In generalization if-

statements, main clauses and modifiers have different effects on the relationship between

time. Consider the following generalization if-statement.

A student ’s tuition for a semester is pre-paid if it is paidfor before he/she registers

for the semester. [85]

There are two clauses in the if part of this statement; “it (a student’s tuition for a

semester) is paid for’’ and “before he/she (the student) registers for the semester.” The

fust clause is the main condition, and the second clause is a modifier which specifies

when the main condition is true. The fu'st clause is called a main condition, and the

second a modifier. Only the first clause directly determines when the consequence is true.

The time when the consequence “a student ’s tuition for a semester is pre-paid” is the

time when the main condition “the tuition is paidfor” is true. According to the modifier

“before the student registersfor the semester”, the time when the main condition itself is

true must be before the time that the student registers for the semester.
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The relationship between time in generalization if-statements is adopted in TDatalog,

which is an extension of Datalog presented in the next section.

6.3 TDatalog: an Extension of Datalog

In this section, an extension of Datalog, called TDatalog, is presented. Similar to

Datalog, there are two types of databases in TDatalog; an extensional database (EDB) and

an intensional database (IDB). Predicates defined in EDB and IDB represent temporal

data, and these predicates are called data predicates. A major difference between

TDatalog and Datalogls is the way the relationship between time in IDB rules is defined.

The relationship between time in a Datalog], rule, which is analogous to the relationship

between time in a hypothetical if-statement, is explicitly defined through the temporal

arguments in the rule. On the other hand, the relationship between time in a TDatalog

rule, which is analogous to a generalization if-statement, is implied from the rule, and

types of temporal data in the rule. Furthermore, temporal data in Datalog], are associated

with time points, while temporal data in TDatalog are associated with time intervals.

This allows TDatalog to capture representative relations. Next, data predicates defined in

EDB and [DB are discussed.

6.3.1 EXTENSIONAL DATABASES

EDB predicates in TDatalog represent temporal data. An EDB predicate in TDatalog is

similar to that in Datalog, except for the additional argument, i.e. the valid time,

associated with an EDB predicate in TDatalog. In Datalog“, a time point is added as



98

another argument in a predicate. In TDatalog, a time interval, instead of a point, is

associated with a predicate because, in a representative relation, a tuple is associated with

the whole interval, but not its sub—intervals. The syntax of an EDB predicate is shown

below.

predicate-symbol(arguments): t., where arguments is the list of values of

the arguments for the predicate, and t is a time interval.

The type of a temporal data represented by an EDB predicate is defined in the type

predicate, as shown below.

type( predicate-symbol, data-type), where predicate-symbol is a predicate

symbol representing a temporal data, and data-type is the type of the

temporal data, i.e. property or representative.

The following example shows an extensional database.

Example 6.3: Consider the temporal data in [S2] and [S4]. The predicate company

represents a property data “the type of business of a company”, and the predicates

highestprice and lowestprice represent representative data “a stock’s highest price” and “a

stock’s lowest price”, respectively.

type(company. pmpeny).

type(highestprice, representative).

type(lowestprice, representative).

company(microsoft, software): [1/1/75, 12/31/97].
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company(pentax, lenses): [1/1/19, 12/31/97].

company(pentax, camera): [1/1/71, 12/31/97].

highestprice(microsoft, 150):[7/I/97, 7/31/97].

lowestprice(microsoft, 120): [7/1/97, 7/31/97].

highestprice(pentax, 70):[7/1/97, 7/31/97].

lowestprice(pentax, 60): [7/1/97, 7/31/97].

Notice that time intervals are distinguished from other arguments. The time intervals

have pre-determined meaning according to the type of the data predicates associated with

the intervals. On the other hand, other arguments can have any user-defined meaning.

Furthermore, the time interval can be omitted when the predicate is used in IDB rules,

which will be discussed later, while other arguments cannot. Next, IDB rules are defined.

6.3.2 INTENSIONAL DATABASES

Some data predicates in TDatalog are defined by rules in intensional databases. Similar

to EDB predicates, types of these predicates must also be defined in a type predicate in an

IDB. For example, the type of the predicates stable and unstable, representing the

property fact “a stock is stable” in [82] and the representative fact “a stock is unstable” in

[S4], can be defined in TDatalog as follows:

type(stable, property).

type(unstable, representative).

Similar to Datalog, a rule in TDatalog is composed of the head and the body. A head

contains an IDB predicate, and the body is the conjunction of data predicates and
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temporal predicates. The temporal predicates defined in Section 4.2, e.g. before, after,

etc., are adopted in TDatalog. The syntactical difference between the temporal predicates

in Section 4.2 and those in TDatalog is the arguments in the temporal predicates. An

argument of a temporal predicate in Section 4.2 is either a time constant or a valid time.

In TDatalog, an argument of a temporal predicate is either a time constant or a data

predicate with the omission of the time. A data predicate in a temporal predicate refers to

the time interval associated with the data predicate. The semantics of temporal predicates

in TDatalog also depends on the types of temporal data in the temporal predicate, as

shown in Chapter 4. The following example shows temporal predicates in TDatalog.

Example 6.4: Consider the EDB predicates in Example 6.3. The following are examples

of temporal predicates in TDatalog.

equal (company (pentax, camera), highestprice (pentax, 70)) [P1]

equal (highestprice (microsoft, 150), lowestprice (microsoft, 120)) [P2]

A temporal predicate in a rule specifies the relationship between intervals associated with

two temporal data For example, [P1] indicates that the predicates company (pentax,

camera) and highestprice (pentax, 70) are true at the same time, and [P2] indicates that

the predicates highestprice (microsoft, 150) and lowestprice (microsoft, 120) are true at

the same time. As a result, the valid time of a data predicate is restricted by a temporal

predicate. For example, the time interval associated with the predicate company (pentax,

camera) that satisfies [P1] is the sub—interval which is equal to the time interval

associated with the predicate highestprice (pentax, 70). Thus, the valid time of the

predicate company (pentax, camera) that satisfies [P1] is not the whole interval of
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[l/l/71-12/31/97], but a sub-interval [7/1/97-7/31/97]. On the other hand, in [P2], the

predicate highestprice is a representative data and the interval associated with the

predicate cannot be decomposed. Thus, the whole interval of time associated with the

predicate highestprice (pentax, 70) must satisfy [P2].

The relationship between time in a rule can be derived, based on the relationship between

time in generalization if-statements discussed in Section 6.2.2. First, find main conditions

in the rule. In an IDB rule, if a data predicate is an argument of a temporal predicate in the

body, but not present outside temporal predicates, the data predicate is a modifier. If a

data predicate is present outside temporal predicates in an IDB rule, it is a main condition.

For example, consider the following TDatalog rule.

tuition(Student, Semester, pre-paid) :- paid(Student, Semester), before (paid

(Student, Semester), register(Student, Semester)).

The predicate paid (Student, Semester) is a main condition, and the predicate

register(Student, Semester) is a modifier.

Second, if a main condition has a modifier, find the valid time of the main condition

which satisfies the modifier. The time associated with the head of the rule is determined

by the time associated with main conditions in the body, as follows:

Let P) and P2 be predicates representing property data, R1 and R2 be predicates

representing representative data, H be the head of an IDB rule, and TP), TP2,

TR), TR2, and TH be the time intervals associated with P1, P2, R1, R2, and H,

respectively.
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o For the rule H :- P1, P2, TH = TPlnTP2 if TPlnTPr-tfl.

- For the rule H :- R1, R2, TH: TR; if TR1=TR2.

o For the rule H :- P1, R2, TH: TR2 if TR2 is contained in TPI.

The following example shows the relationship between time derived from TDatalog rules.

Example 6.5: [82], [S3], and [S4] can be expressed in TDatalog as follows:

stable(X) :- highestprice(X, Y), lowestprice(X, Z), Y-Z<20. [R1]

status(X, “senior”) :- credit(X, Y), Y>100, GPA(X, Z), Z>I.0. [R2]

unstable(X) :- highestprice(X, Y), lowestprice(X, Z), Y-Z>100, company(X,

“entertainment”). [R3]

In [R1], highestprice and lowestprice are representative data. The time associated with

stable(X) is the interval associated with highestprice(X, Y), and the intervals associated

with highestprice(X, Y) and lowestprice(X, Z) are equal. In [R2], credit and GPA are

representative data. The time associated with status(X, “senior”) is the intersection of the

intervals associated with credit(X, Y) and GPA(X, Z), where the intersection is not empty.

In [R3], the time associated with unstable(X) is the time interval associated with

highestprice(X, Y), if the intervals associated with highestprice(X, Y) and lowestprice(X,

Z) are equal, and contained in the interval associated with company(X, “entertainment”).

It is clear from the discussion in this section that TDatalog is closely related to the

extension of relational algebra presented in Chapter 4. Next, the translation from

TDatalog into the algebra is presented.
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6.4 Translation from TDatalog to Relational Algebra

A relation defined by a Datalog rule can be calculated from a relational algebra

expression, which is translated from the rule [81]. Similarly, a temporal relation defined

in a TDatalog rule can be calculated by translating the rule into the relational algebra

presented in Chapter 4. Then, the relational algebra is used to calculate the relation. The

translation is similar to the translation of Datalog into relational algebra, except for the

valid time and the temporal predicates which are not present in Datalog. Time-varying

attributes are handled the same way as the translation from Datalog to relational algebra,

and will be omitted here.

An IDB rule can be translated into a relational algebra expression as follows. For each

temporal predicate p(Q, R) in a rule, create a new relation from Q and R, i.e. Q 94,,(92, R7)

R, where T denotes the valid time. Notice that the valid time in this new relation is

created from the valid time in Q and R, as shown in Table 4.2. Then, join the relations

created for temporal predicates and the relations that represent the main conditions in the

rule. The following example shows the translation of a TDatalog rule into a relational

expression.

Example 6.6: Consider the rule P :- Q, p(Q, R), S., where P, Q, R, and S are temporal

relations and p is a temporal predicate. The relation P can be created by first creating a

relation Q’ = Q N p(QJ, m R. Then, create a relation Q” by joining Q’ and Q when

equal(Q’.T, QHT) That 18, Q”: Q’NequQ’J‘. Q1) Q. Finally, P iS created by joining Q”

and S when equal(Q”. T, ST). That is, P = Q”I><,M(QI:T, 52) S.
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A relation defined by a recursive rule in TDatalog can be calculated similar to the

evaluation of a recursive rule in Datalog. A relation defined by a recursive rule is created

by repeatedly calculating the relation from the relational algebra expression until no new

tuple is created.

6.5 Conclusions

In this chapter, an extension of Datalog, called TDatalog, is presented. The relationship

between time in TDatalog rules is adopted from the relationship between time in

generalization if-statements. The characteristics of property and representative data are

incorporated in TDatalog rules, as shown in Section 6.2.2.1. The calculation of relations

defined in TDatalog rules is discussed in Section 6.4.

There are a few advantages of TDatalog rules. First, different characteristics of property

and representative data are taken care of automatically in the rules. Second, Datalog rules

can also serve as TDatalog rules since the valid time in TDatalog rules is omitted. The

valid time of a predicate defined in a rule can be derived based on types of temporal data

in the rule.

Imprecise valid time is another important aspect in temporal databases. In the next

chapter, temporal predicates, defined in Section 4.2, are extended to handle imprecise

valid time in property and representative relations.



Chapter 7

RELATIONAL ALGEBRA FOR TEMPORAL RELATIONS WITH IMPRECISE

VALID TME

7.1 Introduction

Imprecise information has been addressed in many database research [15, 43, 51, 84, 85,

88][51]. In temporal databases, the valid time itself can be imprecise. For example, the

exact year that King Tutankhamen reign is unknown. It is said that he reigned during

1347-1339 BC, 1334-1325 BC, or 1336-1327 BC. However, this imprecise information is

useful in many queries. For example, we can find Egyptian Kings after Tutankhamen.

However, the answer for the query for Hittite kings whose reign overlaps Tutankhamen’s

is not precise. If Tutankhamen reigned during 1347-1339 BC, the answer to the query is

Suppiluliuma I, who reigned during 1380-1340 BC, and Amuwanda II, who reigned

during 1340-1339. If Tutankharnen reigned during 1334-1325 BC or 1336-1327 BC, the

answer for the query is Mursili II, who reigned during 1339-1306 BC. It is possible that

any one of the answers is true. Even though the answer to this query is not precise, it is

useful. Imprecise valid time is an important issue in temporal databases [15, 32, 33].

Relational algebra is extended to capture imprecise valid time in [15]. In [32], probability

105
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is associated with an imprecise valid time. However, in most situations, this probability is

unknown. For example, the probability that King Tutankhamen’s reign began in 1347

BC (or 1334 BC or 1336 BC) is unknown. Although it is possible to assign arbitrary

probability when the actual value is unknown, the computational cost for operations

involving probability is unnecessarily high. In this chapter, a simpler approach is

adopted. Operators and temporal predicates on imprecise intervals are defined. Then,

interpretations of temporal predicates on imprecise intervals are extended to handle

imprecise valid time in property and representative relations.

First, the representation of precise intervals is extended for imprecise intervals. An

interval can be represented by the two end points. However, an end point of an imprecise

interval is an unknown point in a given set. For example, there are three possible

beginning points and three possible ending points of the interval of King Tutankhamen’s

reign, as shown earlier. Notice also that, given the possibility that Tutankhamen was

throned in 1347 BC, or 1334 BC, it is possible that he was throned at any time during

1347-1334 BC. Thus, the beginning point of Tutankhamen’s reign can be any point

between 1347-1334 BC. The possible end point is in a set of points between, and

including, two given points. This set is called a range, and imprecise intervals can be

defined on ranges. In Section 7.2, operators and temporal predicates on ranges are

defined. Then, in Section 7.3, operators and temporal predicates, which are an extension

of Allen’s temporal predicates [2], on imprecise intervals are defined, based on operators

and temporal predicates on ranges. Temporal predicates for imprecise intervals can be

classified into two types; precise and imprecise predicates. A precise predicate, e.g.
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before, after, etc., indicates a certain relationship definitely holds for any possible

intervals of two imprecise intervals. For example, an imprecise interval whose ending

point is between 1347 BC and 1334 BC is definitely before an imprecise interval whose

beginning point is between 1330 BC and 1300 BC. An imprecise predicate, e.g. pbefore

(probably before), indicates a certain relationship probably holds for two imprecise

intervals. For example, an imprecise interval whose ending point is between 1347 BC

and 1334 BC is probably before an imprecise interval whose beginning point is between

1339 BC and 1300 BC. In Section 7.4, interpretations of temporal predicates for

imprecise valid time, based on characteristics of property and representative relations, are

studied. The interpretations of precise predicates are similar to those in Section 4.2;

however, the interpretations of imprecise predicates must be included.

7.2 Ranges

A range is a set of points between, and including, two given points, called an upper

bound and a lower bound. For example, a range R = <l990, 1993> is a set of points

between, and including, 1990 and 1993, where the lower bound of R is 1990 and the

upper bound is 1993. Let lower(R) denote the lower bound of R, and upper(R) denote the

upper bound of R. For example, lower(<l990, 1993>) = 1990 and upper(<1990, 1993>) =

1993.

Next, operators on ranges, which are required for the operators on imprecise intervals, are

defined. The min operator on two ranges finds a range whose lower and upper bounds are

the smaller of the lower and the upper bounds of the two given ranges. Similarly, the max
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operator on two ranges finds a range whose lower and upper bounds are the bigger of the

lower and the upper bounds of the two given ranges. These operators are formally

defined as follows.

Definition 7.1: min and max operators

Let R) and R2 be ranges. The min and the max operators can be defined as follows:

min(R1, R2) = < min(lower(R1), lower(R2)), min(upper(R1), upper(R2)) >.

maxsz. R2) = < max(lower(R1). lower(R2)), maxfuppettRI). upper(Rz)) >.

The following example shows the operators min and max on ranges.

Example 7.1: Let R) = (1990, l993> and R2 = <1987, 1996). min(R1, R2) = <1987,

l993> and max(R1, R2) = <1990, 1996>, as shown in Figure 7.1.

R] < ----->

R2 < ----------------->

min(R), R2) < ----------->

MR], R2) < ----------->

1987 1990 1993 1996

Figure 7.1: The min and max operators.

Allen’s temporal predicates between intervals are defined on the relationships between

end points [2]. The temporal predicates between imprecise intervals can be defined

similarly. However, an end point of an imprecise interval is a point in a range, and the

relationships between points in ranges can be imprecise. For example, if a point A is in a

range <1990, 1993) and a point B is in a range <1992, 1996>, then A probably is before,

after, or the same point as B. On the other hand, the relationships between points in
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ranges can sometimes be precise. For example, if a point A is in a range <1990, 1992>

and a point B is in a range <1993, 1996>, A is definitely before B. It is necessary to

capture both situations. In Definition 7.2, the predicates <,, >,, and =r indicate

“definitely” before, after, and equal, while the predicates p<,, p>,, and p=.-r indicate

“probably” before, after, and equal. The former type of temporal predicate is called

precise predicate, and the latter, imprecise predicate.

Definition 7.2: <,, >,, =,, p<,, p>,, andp=,

Let R, and R2 be ranges. Precise and imprecise predicates for ranges are defined in Table

7.1 below.

Table 7.1: Definitions of precise and imprecise predicates on ranges.

 

 

 

Precise Definition Imprecise Definition

Predicate Predicate

<:(Rz. R2) upper(Rz) < lower(R2). MR1. R2) lower(Rz) < upper(R2)-

>r(R1. R2) lower(Rz) > upper(R2). P>:(Rz. R2) upper(Rz) > lower(R2).

 

 
4R1. R2) lower(RI) '-' upper(Rl) = P=I(R1. R2) upper(Rl) 2 l0W€l'(R2) 01'

lower(R2) = upper(R2). lower(R)) S upper(R2).    
 

From definitions of predicates in Table 7.1, it is clear that the computational cost of these

predicates are lower than that of the predicates in [32], which require the summation of

products, e.g., 2k) P(I)-P(1). Furthermore, in Table 7.1 the precise predicates are

distinguished from the imprecise predicates, while in [32] they are distinguished by the

probability indicated in the predicates.
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There are a few observations that need to be indicated here. First, if <,.(R2, R2) is true,

p<.-(R1, R2) is true, and similarly for >r and =r. Second, if <,(R,, R2) is true, >,(R,, R2) and

=.(R), R2), are false, and similarly for >r and =,. Third, if <,(R2, R2) is false but p<,(R,, R2)

is true, either >,(R1, R2) or =,(R,, R2) are true, and similarly for >r and =,. Finally, =,(R1,

R2) is true only when both ranges contain only one point, i.e. they are precise, and the two

points are equal.

Next, imprecise intervals are defined on ranges. Based on the operators and the temporal

predicates on ranges, operators and temporal predicates on imprecise intervals are

defined.

7.3 Imprecise Intervals

A precise interval can be defined by its end points, and an imprecise interval can be

defined similarly. While an end point of a precise interval is a point, an end point of an

imprecise interval is an unknown point in a range. Thus, an imprecise interval can be

defined, based on ranges, as follows:

Definition 7.3: Imprecise Interval

Let B and E be ranges. An imprecise interval I, denoted by [B, E], is an interval of which

the beginning point is in B and the ending point is in E, where lower(B)<lower(E) and

upper(B)<upper(E). Let begin(I) denote the range of the beginning point of I, i.e. B, and

end(I) denote the range of the ending point of I, i.e. E.
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The following example shows an imprecise interval.

Example 7.2: The interval of Tutankhamen’s reign is the imprecise interval T1 = [<1347

BC, 1334 BC>, <1339 BC, 1325 BC >]. begin(TI) is the range <1347 BC, 1334 BC) and

end(TI) is the range <1339 BC, 1325 BC >. Notice that lower(<l347 BC, 1334 BC>) <

lower(<l339 BC, 1325 BC >) and upper-(<1347 BC, 1334 BC>) < upper(<l339 BC,

1325 BC >).

In Definition 7.3, there is a restriction on the relationship between the ranges of the

beginning and the ending points of an interval. First, the range of the ending point cannot

contain any point before the lower bound of the range of the beginning point, as shown in

the range E in Figure 7.2, because the ending point cannot come before the beginning

point. That is, lower(B) < lower(E), where B is the range of the beginning point and E is

the range of the ending point. Second, the range of the beginning point cannot contain any

point after the upper bound of the range of the ending point, as shown in the range B in

Figure 7.2, because the beginning point cannot come after the ending point. That is,

upper(R) < upper(E).

B < ------xxxxx>

E <xxxxx------>

Figure 7.2: The restriction on the relationship between the ranges of the beginning and

the ending points of an interval. x denotes the part of the range which violates the

restriction in Definition 7.3.

In [32], it is assumed that the ranges of the beginning and the ending points must be

disjoint, which is more restricted than Definition 7.3. However, the assumption of disjoint
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ranges of beginning and ending points is too limited. Censider an imprecise interval with

overlapping ranges of the beginning and ending points shown in Figure 7.3. From the

definition of imprecise intervals, the beginning point of this imprecise interval can be any

point in the range B. Thus, it is possible that lower(B) is the beginning point of the

interval. Then, the ending point of the interval can be any point after lower(B). Thus,

there is no reason to prevent overlapping ranges of the beginning and the ending points.

Figure 7.3: An imprecise interval with overlapping ranges of the beginning and the

ending points.

Temporal predicates and operators on imprecise intervals are necessary for queries on

temporal databases with imprecise valid time. In the next section, the temporal predicates

on imprecise intervals are examined.

7.3.1 TEMPORAL PREDICATES ON IMPRECISE INTERVALS

Allen’s temporal predicates on intervals are defined on the temporal predicates on the end

points [2]. For example, an interval A is before an interval B if the ending ofA is before

the beginning of B. Similarly, the temporal predicates on imprecise intervals can be

defined on the temporal predicates on ranges. For example, an imprecise interval C is

definitely before an imprecise interval D if the range of the ending point of C is definitely

before the range of the beginning point of D. However, the end points of imprecise

intervals are ranges, and the temporal predicates on ranges can be imprecise as shown in

Section 7.2. Thus, the temporal predicates on imprecise intervals can be imprecise. For
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example, the imprecise interval [<1990, 1993>, <1995, 1997>] probably is after or met

by or overlaps the imprecise interval [<1980, 1982>, <1990, l993>]. Based on the

temporal predicate on ranges, the definitions of precise predicates, such as BEFORE, AFTER,

MEET, etc., can be easily extended to capture imprecise relationships. Precise predicates,

e.g., BEFORE, AFTER, MEET, etc., and imprecise predicates, e.g., PBEFORE, PAFTER, PMEET,

etc., on imprecise intervals are defined as follows.

Definition 7.4: Temporalpredicates between imprecise intervals

Let I) and I2 be imprecise intervals. Precise temporal predicates and imprecise temporal

predicates on imprecise intervals are defined in Table 7.2 and Table 7.3.

Table 7.2: Definitions of precise temporal predicates on imprecise intervals.

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Precise Predicate Definition

on (11.12)

BEFORE <,(end(I,), begin(Iz»

AFTER >r(begin(11). end(Iz»

MEET =,(begin(11). end(12))

MET__BY =.(end(I1), begin(I2))

OVERLAP <,(begin(I1), begin(12)) A <,(begin(Iz), end(II» A <r(flldUI).

end(I2))

0VERLAPPED_BY >,(begin(I,), begin(I2)) A >,(end(I2), begin(l1)) A >,(end(11),

01402))

START =r(b€81°n(11). begin(I2)) A <r(end(11). 811402))

STARTED_BY =.(begin(11), begin(I2)) A >,(end(12), end(I2))

FINISH =,(end(I1), end(I2)) A >.-(begin(II), begin(I2))

FINISHED__BY =.(end(I,), end(I2)) A <,(begin(12), begin(I2))

DURING >,(begin(12), begin(I2)) A <,(end(I:), end(Iz))

CONTAIN <,(begin(I1), begin(I2)) A >,(end(I1), end(I2))

EQUAL =,(begin(12), begin(I2)) A =,(end(I1), end(I2))
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Table 7.3: Definitions of precise and imprecise predicates on imprecise intervals.

 

 

 

 

 

 

Imprecise Predicate Definition

0" (II. 12)

PBEFORE p<,(end(II). begin(Iz»

PAFTER p>,(begin(II). end(Iz»

PMEEI‘ p=,(begin(11). end(lz»

PMET_BY p=.(end(II). begin(b»

POVERLAP p<,(begin(11), begin(I2)) A p<r(begin(l2), end(I1)) A

P<r£end(11). end(12))

POVERLAPPED_BY p>,(begin(11), begin(I2)) A p>r(end(I2), begin(I)» A

P>r(€nd(11). end(12))'

 

 

 

 

 

 

 

    

PSTART p=,(begin(12), begin(I2)) A p<,(end(l1), end(I2))

PSTARTED_BY p-—.(begin(11), begin(I2)) A P>r(end(ll)9 endflz»

PFINISH —.(end(11), end(I2)) Ap>,(begin(11), begin(IzD

PFINISHED_BY p=,(end(I1), end(I2)) A p<,(begin(l,), begin(I2))

PDURING p>,(begin(11), begin(I2)) A p<,(end(I,), end(I2))

PCONTAIN p<.(begin(11), begin(I2)) A p>.(end(II)_. end(12))

reel/AL p=r(beginglz). begin(Iz» A p=r(end(lz). end(Iz»
 

Similar to the temporal predicates on end points in ranges, PBEFOREU1, I2) is true and

other precise predicates, such as AFTER, MEET, etc., between I) and I2 are false if

BEFORE(II, I2) is true. Furthermore, if PBEFOREUI, I2) is true but BEFORE(I), I2) is false, at

least one of other imprecise predicates, such as, PAFI'ER, PMEEr, etc., between I2 and I2 is

true.

Based on predicates in Definition 7.4, we define four more temporal predicates, which are

frequently used in queries and other definitions. They are shown in Table 7.4 and Table

7.5.
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Table 7.4: Additional precise temporal predicates on imprecise intervals.

 

 

Precise Predicate Definition

on (’1 9 [2)

COMMON OVERLAPUI, 12) v OVERIAPPED_BY(II, 12) v STARIU,, I2) v

STARTED_BY(I), I2) v FINISHU,, 12) v FINISHED_Br(h, I2) v

DURING(I,, I2) v CONTAIN(I,, 12) v EQUAL“), I2)

 

DISJOINT  BEFORE(I,, 12) v AFTER(I,, I2) or MEET(II, 12) v MET_BY(I), I2).  
 

Table 7.5: Additional imprecise temporal predicates on imprecise intervals.

 

 

Imprecise Predicate 001701.119"

0" (II. 12)

PCOMMON POVERIAPU), 12) v P0VERLAPPED_BY(II, I2) v PSTARTUI, [2) v

PSTARTED_BY(II, 12) v PFINISHU), 12) v PFINISHED_BK1,, [2) v

PDURINGUI, 12) or PCONTAINU], I2) v PEQUAL(I,, I2)

 

PDISJOINT  PBEFOREU), 12) v PAFTER(II, 12) v PMEEKI], 12) v PMET_Br(I,, I2).

 

These temporal predicates on imprecise intervals can be used in queries on temporal

databases with imprecise valid time. For example, after can be used in the query for

Egyptian kings who reigned “definitely” after Tutankhamen, and pcommon can be used in

the query for Hittite kings whose reign “probably” overlaps Tutankhamen’s reign. Next,

operators on imprecise intervals are defined.

7.3.2 OPERATORS ON IMPRECISE INTERVALS

Operators union (u), intersection (n), and difference (-) for precise intervals must be

extended to apply for imprecise intervals. Figure 7.4 shows operators U, n, and - on
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imprecise intervals in a simple situation. [1U12 = [min(begin(l,), begin(I2)), max(end(I1),

end(12))]. 11012 = [max(begin(h). 17880102». min(end(12), end(Izm. and 1142 = [begin(Il),

begin(I2)] 01' [(end(I2), end(IIH-

 

 

 

h <----> <-———>

12 <----> <---—>

[1U]; <----> <---->

hrv2 <---->-———<-—-->

Irb <---->————<---->

Figure 7.4: Union, Intersection, and difference of two imprecise intervals in a simple

situation.

However, complication may arise when the imprecise intervals created by these

expressions violate the restriction in Definition 7.3. For example, in Figure 7.5, [INF

[begin(I2), end(I))l, but lower(begin(12)) > lower(end(I,)) and upper-(begin(I2)) >

upper(end(I,)). Furthermore, in this situation 11U12 cannot be represented by one

imprecise interval, and thus is undefined. More complex operations must be added to

accommodate these details, and the operators are defined in Definition 7.5.

 

 

h <----> < ------>

h <—---—-> <---->

12nI2 <XX---->

<--—-xx>

I[U]2 Undefined

Figure 7.5: Union and Intersection of two imprecise intervals in a complicated situation.
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Definition 7.5: Union, intersection, and difference on imprecise Intervals

Let I2 = [B,, E] and I2 = [B2, E2] be imprecise intervals, B = max(BI. 32) and E = min(E1,

E2). Operators on imprecise intervals can be defined in Table 7.6.

Table 7.6: Operators on imprecise intervals.

 

 

 

 

 

 

 

 

    

Operator Condition Result

II U 12 COMMONUI. 12) [min(BI. 32). max(E,, 52)]

I1 U 12 NOT COMMON(I1, I2) undefined

I1 n I2 PCOMMON(I1, I2) [<loweI(B), min(upper(B), upper(E))>,

<max(lower(E), lower(B)), upper(E)>]

I] n 12 NOT PCOMMONU], 12) Q

I: - 12 lower(B:)S upperth) [<lower(B:). min(upperth). upper(Bz))>.

and upper(E1)> <max(lower(Bz. 32)). upper(B2)>]

lower(E2)

II ' ’2 l0W¢"‘(BI) > upper(B2) [<10W8f'(Ez). min(upper(El), upper(E2))>,

and upper(E))S <max(lower(E1, 52)). upper(B1)>]

lower(E2)

II - 12 lower(B))S upper-(B2) [<10Wfl(BI). min(upper(BI), upper(32))>.

and upper(E))S <max(lower(B,, 32)). “PP9"(32)>] and

lower(E2) [<10W€"(Ez). min(upper(El), upper(E2))>,

WIOIWKEI. 52)). upper(B,)>]
 

These operators on imprecise intervals can be used to calculate the valid time in temporal

databases with imprecise valid time.

7.4 Interpretations of Temporal Predicates for Imprecise Valid Time

in Property and Representative Relations

In Section 4.2, different interpretations of temporal predicates for property and

representative relations with precise valid time are examined. Similarly, different
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interpretations of temporal predicates for imprecise intervals are applied when the

intervals are the valid times in property and representative relations. For example,

consider the interpretations of the predicate pduring in the following two queries:

Q’): Find all Hittite kings who probably reigned during King Tutankhamen ’s

reign.

Q’2: Find all Hittite kings who reigned longer than 5 years and probably

reigned during King Tutankhamen ’s reign.

For Q’), the valid time when a Hittite king reigned, t), and the valid time when King

Tutankhamen reigned, t2, are obtained. Then, the interpretation that some sub-interval of

t; is in t2 is applied to the predicate pduring because the reign of a king is a property

relation and the valid time is decomposable. For Q’2, the valid time of the length of a

Hittite king reign, t3, and the valid time when King Tutankhamen reigned, t4, are

obtained. In this query, the interpretation that the whole interval of t3 is in t4 is applied to

the predicate pduring because the length of a reign is a representative relation and t3 is not

decomposable. Similar to the interpretations of temporal predicates in Section 4.2, the

first interpretation is called pduringa, and the second, pduringu These two interpretations

can be defined in terms of temporal predicates for imprecise intervals, which is denoted

by italic capital letters. The followings are the two interpretations.

Let A and B be sets of time-varying attributes, TA, and T3 be imprecise valid

time, and RA(A TA) and R2(B T3) be two temporal relations.

pduringa(TA, T3) = 3 IA IACTA PDURINGUA, T3)
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PBEFORE(T212) v PMEmT213) v P0VERLAP(T213) v

PFINISHED_BY(TA,TB) v PCONTAIN(T212).

pduringv (TA, TB) PDURING(TA, TB).

As mentioned in Section 4.2, the predicates meet, pmeet, start, pstart, finish, pfinish,

overlap, paverlap, and their inverses, are independent of types of temporal relations, and

each of them has only one interpretation. The interpretations of predicates before, after,

during, contain and equal are similar to those in Section 4.2, and the interpretations of

predicates pbefore, pafter, pduring, pcontain and pequal are presented in Table 7.7.

7.5 Conclusions

Valid time in temporal databases can be imprecise. Though the result of a query on

imprecise valid time can be imprecise, it is still useful. In this chapter, a representation of

imprecise intervals is presented. This representation imposes less restriction than the

representation proposed in [32]. Based on this representation, the operators union,

intersection, and difference on imprecise intervals are defined. The relationships between

intervals, presented in Chapter 4, are extended to capture both precise and imprecise

relationships between imprecise intervals. The representation of imprecise intervals, the

operators and relationships on imprecise intervals can be incorporated in temporal

databases to allow queries on imprecise valid time. Finally, interpretations of temporal

predicates for imprecise valid time in different types of temporal relations are defined on

the temporal predicates for imprecise intervals.
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Table 7.7: Temporal predicates for imprecise valid time.

Let A and B be sets Of time-varying attributes. TA and T. be valid time and RA(A TA) and R3(B T2) be

temporal relations. The column Predicate contains names of temporal relationship between RA and R2. The

columns RA and R. are types of RA and R,, where P and R denote property and representative relations

respectively. The column Interpretation contains the interpretation of the corresponding predicate and the

column Definition contains the definitions of interpretation of the predicates.

 

Predicate
Re

Interpretation Definition
 

pbefore(TA, T3) P/R pbefore (,(TA, T3) PBEFORHTA, T3)'
 

pbefore(TA, T3)

RA

R

P P/R pbefore_:,(T2], T3) PBEFORE(TA, T2) v PMEEItT2, T2) v

P0VI5RIAP(TA. T9) v PC0NTAIN(TA‘ T2)
 

Paf’eKTA. To) P/R PafteMTAfl) PAFTER(TA, T2)
 

Paf’e'IT/u To) P/R Paf’er3(TA: To) PAHER(TA, T2) v PMET_BY(TA, T2) v

POVERLAPPEDJKTA, TB) v

PDURING(TA,_T1_3)
 

pduring(TA: To) P/R pduringKT,” T!) PDURINcKTA, T2)
 

pduring(TA, TB) '
0
”

P/R pduring3(TA: To) P0VERIAP(TA, T2) v

POVERLAPPEDJKTA, T2) v

PCONTAIN(TA, T2) v PDURING(TA, T2) v

PSTARKTA, T2) v PSTARTEDJI/(TA, T3)

v PFINISII(TA, T2) v PFINISHEDJI/(TA,

T3! V PEQUfl T4 T3)
 

pcontain(TA, TB) P/R pcontain p(TA, T92 PC0NTAIN(TA, T2)
 

pcontain(T2, T3) P/R "
U
N

pcontain3(TA, T3) POVERIAP(TA, T2) v

POVERLAPPEDJKTA, T2) v

PC0NTAIN(TA, T2) v PDURING(TA, T2) v

PSTARIITA, T2) v PSTARTEDJKTA, T2)

v PFINISH(TA, T2) v PFINISHED_BY(TA,

Q) v REQUAMTL T9)
 

pequal(TA, T2) equalMTA, T3) PEQUMTA, TB)
 

[7qu“ TA: To) equalv3( T2], T3) PDURING(TA, TB) v PsrAmtTA, T2) v

PFINISII(TA, T2) v PEQUAL(TA, T2)
 

pequaKTA. To) equalgv(TA, To) PCONTAIMTA, T2) v PSTARTEDJKTA,

T2) v PFINISHEDJKTA, T2) v

[EQUMTAr Til
 

 
PequaKTA. To)

   
equalaiTA. To)

 
POVEMTA, T3) V

P0VERLAPPED_BY(TA, T3) v

PCONTAIN(T2, T2) v PDURING(TA, T2) v

PSTARKTA, T3) V PSTARTED_BY(TA. T3)

v PFINISH(TA, T2) v PFINISIIED_BY(TA,

TB) v PEQUA_I£TA TB) . 
 



Chapter 8

CONCLUSIONS

8.1 Discussions

Both homogeneous and non-homogeneous data have been addressed in many researches

in AI [3, 58, 73]. These are focused on automatic planning by using temporal facts, and

database issues such as design principles are not addressed to the studies. On the other

hand, non-homogeneous data are not considered in existing temporal databases, and

design principles for temporal databases containing both homogeneous and non-

homogeneous data have not been addressed. The goal in this dissertation is to define a

data model for both homogeneous and non-homogeneous data, and to provide design

principle for temporal databases that contain both homogeneous and non-homogeneous

data.

In Chapter 3, two types of temporal relations-property relations and representative

relations, which represent homogeneous data and non-homogeneous data are defined. In

Chapter 4, a temporal relational data model which supports both homogeneous and non-

homogeneous data is presented. Relational operators on temporal relations depend on the

characteristics of temporal relations. The valid time in temporal relations are
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manipulated according to the characteristics of the temporal data represented by the

relations. Furthermore, temporal predicates for time intervals, defined in [2], are extended

to apply on valid time of property and representative relations. The difference between

the extension of temporal predicates and the original temporal predicates is a result of the

decomposable valid time for property relations and non-decomposable valid time for

representative relations. As a result, users are relieved from the task of manipulating the

valid time. This also prevents errors in the manipulation of the valid time.

P-inconsistency can occur in temporal databases with homogeneous and non-

homogeneous data. In Chapter 5, PCNF, which avoids P-inconsistency, is defined. PCNF

is based on P-dependencies, functional dependencies, and types of time-varying

attributes. A normalization algorithm for PCNF is presented. However, this algorithm

may not give the minimum number of normalized relations. We prove that the problem

of finding the minimum number of relations in PCNF is NP-complete. In the process, we

also prove that finding equivalent sets of attributes is an NP-complete problem.

For traditional normal forms, such as 3NF, the numbers of normalized relations created

from different minimal covers are the same. However, for PCNF, different minimal

covers can give different numbers of normalized relations. We present a heuristic for

reducing the number of normalized relations for PCNF.

Based on this temporal relational data model, a temporal deductive database, called

TDatalog, is defined in Chapter 6. The manipulation of time in a TDatalog rule is implied

from types of temporal relations in the rules. Since the manipulation of valid time is
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implicit in TDatalog rules, Datalog rules are also applicable in TDatalog, which is an

advantage of TDatalog.

Finally, in Chapter 7, the temporal relational data model presented in Chapter 4 is

extended to support imprecise valid time in property and representative relations.

Imprecise valid time in temporal databases is addressed in [15, 32, 33]. However,

imprecise valid time in non-homogeneous data is not considered in these works.

8.2 Future Work

There are two issues that need to be addressed in the future work. First, the heuristic for

PCNF normalization can be improved. This heuristic is based on the substitution of a set

of attributes in a dependency by an equivalent set of attributes. However, it is not

possible to find all equivalent sets of attributes. If more can be found, a better

decomposition can be generated. Thus, the heuristic for finding equivalent sets of

attributes should be further examined.

Second, design principles for temporal databases based on other characteristics of

temporal data need to be studied. In this dissertation, a type of inconsistency, based on

homogeneous and non-homogeneous data, is identified. It is necessary to examine if other

type of inconsistencies, based on other characteristics of temporal data, in temporal

databases can be identified.
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Appendix A

PROOF OF THEOREM 5.1.

Theorem 5.1: 11-18 are complete.

Proof:

Let r(R) be a relation, G be a set of dependencies on R, and W, X, Y, and Z be sets of

attributes in R. We ShOw that there exists a relation r that satisfies G+ and no other

dependencies which are not in G‘“.

Let r(R) be a temporal relation with four tuples 1'), t2, t3, and 14.

11(7) = 12(7). Emma?) g. D. amoral) = O. amnum = O.

T](A) = 12(A) HA is in XF+, T](A) ¢ 12(A) IfA is not in XF+,

13(A) = 14(A) ifA is in Xp+, T3(A) at t4(A) ifA is not in Xp+.

First, we show that r satisfies G”. For any functional dependency W T —> Z in G”, we

Show that r satisfies W T -> Z.

Case 1: Xp+QWCXp+. From 16-17 and WQXF“, X T—) Wis in G”. meX T —> Wand W

T —> Z, through 18, X T —> Z is also in G” Then, Z; Xpi. Thus, r satisfies WT —> Z.
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Case 2: WgXH. Since WgXH, r satisfies W T —) Z.

Case 3: WgXp“. From 16-17 and W;Xp+, X T : Wis in G“' From X T : Wand W T -—>

Z, through 11 and 18, X T —> Z is in G* Then, Z ; Xp”. Thus, r satisfies W T —) Z.

For any P-dependency WT: Z in G”, we show that r satisfies W T: Z.

Case 1: WgXp+. From 13-14 and WgXp+, X T : Wis in G+' From X T: Wand WT:

Z, through 15, X T: Z is in G‘“ Then, Z; Xp+. Thus, r satisfies W T: Z.

Case 2: X and Z are homogeneous, and XPIQW;XFI. From 13-14 and W;Xp+, X T —> W is

in G‘. FromX T—) Wand WT: Z, X T: Zis in G+ by 11, I2 and 15. Then, ZgXp+'

Thus, r satisfies W T: Z.

Case 3: X or Z are non-homogeneous, and Xp+QWCXp+. From 13-I4 and WgXH, X T —-)

Wis in G" FromX T—> Wand WT: Z, through 11 and 18, X T—> Z is in G” Then,

ZgXFI' Thus, r satisfies W T: Z.

Case 4: WgXp+. Because WgXp“, r satisfies W T: Z.

Therefore, r satisfies any dependencies in G”.

Second, we Show that r does not satisfy any dependency which is not in GI‘ Let X T —) Y

and X T: Z be dependencies which are not in G’“ Since X T -> Y is not in 0‘, Y-Xp+¢Q.

71(Y-Xp+) ¢ 12(Y-pr) and 13(Y-XF+) i 74(Y-Xp+). Then, I' does ROI satisfy X T —> Y.

Similarly, since X T : Z is not in G“, Z-Xp+¢®. T3(Z-Xp+) a: 14(Z-Xp”). Then, r does not
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satisfy X T: Z.

Then, r satisfies 6*, and does not satisfy X T —> Y or X T: Z which are not derived from

G. Thus, 11-18 are complete. 13
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Appendix B

PROOF OF LEMMA 5.3

Lemma 5.3: EQ is NP-complete.

Proof:

To prove that EQ is NP-complete, we Show that a special case of EQ is NP-complete. We

consider a special case of EQ such that G contains only P-dependencies, and for all

dependencies X T: A in G, X is a single attribute.

First, we Show that the special case of EQ is in NP. If we non-deterrninistically choose

YCH, it takes polynomial time to determine whether X T 4: Y T under G. Thus, EQ is in

NP.

Next, we show a polynomial-time reduction of the hitting set problem (HS), which is NP-

complete, to the special case of EQ. Given the input C.-, for i=1, 2,...,n, of HS, we can

create the input of G, H and X for EQ such that C.- is a determinative of an attribute A.- in

X in G, for i=1, 2, ..., n, and all equivalent sets of attributes of X is smaller than an

integer K. R, G, H, and X can be created as follows:

1. Let G' = Q; X: a; H= CyuC2U...UCn; Fl: FLAT}.
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2. For i= 1, 2, n:

2.1. create a new attribute A, such that A, is not in H: Fi=FiO{A,}.

2.2. G’=G’O{B T: A1 B is an attribute in C,}.

2.3. X=XUA;.

3. G = minimal cover of G’.

It is clear that the algorithm above has polynomial-time complexity. The set of

dependencies G’ is created in Step 2 by first creating an attribute A), which is not in H,

and create G’such that C.- = DP(A,, X, G’)r\H. Since A.- is not in H, A.- is not in DP(A,, X,

G’)nH. G’created in Step 2 may not be a minimal cover. Thus, G, the minimal cover of

G’, is created in polynomial time, in Step 3. Therefore, C.- = DP(A, X, G)nH, where A is

an attribute in X.

The output Y of EQ is a set of attributes, in H, which is equivalent to X. The output S’for

HS is the set of attributes Y, derived from EQ. Since IYISK, then IS’ISK. Therefore, there

is a polynomial-time reduction of HS to a special case of EQ.

Next, we show that S’is the output of HS if and only if Y is the output of EQ. From the

reduction, C; = DP(A,, X, G)nH, IS’ ISK and S’contains at least one attribute from C,-, for

i=1, 2,..., n. Then, S’ is the hitting set of C,-, for i=1, 2,..., It. From Lemma 5.2, X T: Y

Tunder G if and only if Y=uAex YA and he DP(A,, X, G). C; = DP(A,, X, G)nH. Thus, X

T: Y Tunder G if and only if Y is a hitting set of C.-, for i=1, 2,..., n. S’is Y such that

IYISK. Therefore, S’is the hitting set of C), for i=1, 2,..., n, such that IS’ISK if and only if

YgH and X T : Y T under G. Thus, the special case of EQ is NP-complete. Since a
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special case of EQ is NP-complete, EQ is NP-complete.
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Appendix C

PROOF OF LEMMA 5.4

Lemma 5.4: Let R be a relation scheme, G be a minimal cover of a set of dependencies

on R, X and Y be sets of attributes in R,A and B be attributes in R, andX T:A (orX T

—>A)bein G. G- {XT:A (orXT—9A)} U {YT:B(or YT—->B)} isaminimal

coverofGifandonlyifthereareYanstuchthatYT:B(orYT—rB)isreduced,XT

:YT(orXT<—-)YT)andXAT:YBT (orXATHYBDcanbederivedfromG,

andXT: Y(orXT—) YT), and YBT:A(or YBT—>A)canbederivedfromG—{XT

:A (or X T —) A, respectively) }.

Proof:

First, prove the “it” part. Let Y and B be a set of attributes and an attribute such that X¢Y

orA¢B,YT:XandXAT:BcanbederivedfromG,andXT:YorYBT:Acan

bederived from G-{XT:A}. Let G’=G-{XT:A} U (YT: B}. Since YT:Bis in

G’andXT: YandYBT:AcanbederivedfromG- {XT:A},XT:Acanbe

derivedfromG’. SinceXT:AisinGandYT:XandXAT:Bcanbederived

from G, Y T:Bcanbederived from G. Thus, G’eG. IfYT:Bis redundant in G’,

GsG-{X T : A}, which contradicts to the fact that G is a minimal cover. Therefore, Y T
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: B is non-redundant in G’. Since Y T : B is reduced and non-redundant, G’ is a

minimal cover of G. Similarly, we can prove that G - {X T —-) A} U {Y T -) B} is a

minimal cover ofG ifthere are Yand B such thatXT<—-> YTandXA TH YB Tcan be

derived from G, andXT—> YTand YB T—>Acanbederived from G-{XT-—)A}.

Second, we prove the “only-it" part. Let X T : A be a dependency in G, there are Y and

B such that X¢Y or A¢B, and G-{X T : A} U {Y T: B} is a minimal cover of G. Thus,

YT: B is reduced. To prove that YT:XandXA T: Bcanbe derived from G, we

first Show that X T: A is used in the derivation of Y T: B from G. Assume X T: A is

not used in the derivation of Y T : B from G. That is, Y T : B can be derived from G-

{XT:A}. SinceXT:A canbederived from G—[XT:A} U {YT: B}, and YT:

B can be derived from G-{X T : A}, X T : A can be derived from G-{X T : A}.

Therefore, X T : A is redundant in G, and G is not a minimal cover, which is a

contradiction. Thus, X T : A is used in the derivation of Y T : B from G. Since X T :

A is used in the derivation onT: B from G, YT:XandXA T:Bcan bederived

from G.

Next, we prove that X T : Y and Y B T : A can be derived from G-{X T : A}. Since

GEO-{XT:A} U {YT:B}, YT:Bcanbederived fromGandXT:Acanbe

derived from G-{X T: A} U {YT: B}. Since G is a minimal cover, X T: A cannot

be derived from G-{X T: A}, but it can be derived from G-{X T: A} U {Y T : B}.

That is, YT:B is used in the derivation ofXT:A from G-{XT:A} U {YT: B}.

Thus, X T: Yand YB T:A can be derived from G-{X T: A}, and also from G.
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Therefore, Y T : B is reduced, X T 4: Y T and X A T 4: Y B Tcan be derived from G,

andXT: Yand YB T:A can be derived from G—{X T:A}. Similarly, we can prove

that ifG- {XT:A (orXT—>A)} U {YT:B(or YT-—>B)} is aminimal coverofG,

then there are Yanstuch that YT—>Bis reduced,XT<—> YTandXA T(—> YB Tcan

be derived from G, andXT—aYand YB T—>A can be derived from G-{X T-—>A}. C
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PROOF OF LEMMA 5.6.

Lemma 5.6: Algorithm 1 gives a dependency-preserving and lossless decomposition for

PCNF and 3NFT.

Proof:

Let R be a temporal relation scheme, and G be a set of dependencies on R. Let R0, R,, R2,

and R,, be relation schemes obtained from the decomposition by Algorithm 1, and Go,

0,, G2, and G,. be sets of dependencies on R0, R2, R2, ..., and R... respectively.

It is obvious that the decomposition is dependency-preserving and lossless. From Step 1,

MG is a minimal cover of G. Thus, MG 3 G. From Step 2-7, G, U G2 U U G,, = MG.

and G0 = 9 because R0 contains only the key of R. Therefore, G E G, U G2 U U G...

Therefore, the decomposition is dependency-preserving. From Step 8, R0 contains the

universal key of R or there is R}, for lSiSn, such that R} contains the universal key. A
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decomposition is lossless if there is a relation scheme in the decomposition that contains

the universal key. Therefore, Algorithm 1 gives a lossless decomposition.

Finally, we prove that the relations created in Algorithm 1 are in 3NFT and PCNF. First,

consider 3NFT. From Step 8, R0 contains the key of R. Then, there is no dependency

between attributes in R0. Thus, R0 is in 3NFT. From Step 1 and 2, dependencies on each

relation created from Algorithm 1 are dependencies in the minimal cover with equivalent

sets of attributes on the left-hand side. Similar to the decomposition of 3NF, there is no

non-prime attribute in R, which is transitively or partially dependent on the key of R,-.

Thus, each R,~ is in 3NFT.

Second, we prove that the relations created by Algorithm 1 are in PCNF. There is no

non-homogeneous attribute in R.- created in Step 4. Thus, R1 is in PCNF according to Item

1 in Definition 5.4. For a relation scheme R.- created in Step 3, there are only functional

dependencies on R,- and P-dependencies X T : Y such that X, Y and T are in a

functional dependency. Since there is no transitive dependency, according to 3NFT, no

P-dependency can be derived. Thus, R,- created in Step 4 is in PCNF according to Item 2

in Definition 5.4. For a relation scheme R,- created in Step 5, there are only P-

dependencies with non-homogeneous attributes. Thus, R.- created in Step 5 is in PCNF

according to Item 3 in Definition 5.4. If R0 is created in Step 8, it contains only the

universal key. Since R0 contains only the universal key, there is no non-trivial

dependency on R0. Thus, it is in PCNF. Therefore, the relation schemes created by

Algorithm 1 are also in PCNF.
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In conclusion, Algorithm 1 gives a dependency-preserving and lossless decomposition

for PCNF and 3NFT. D
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Appendix E

PROOF OF LEMMA 5.7.

Lemma 5.7: Let R be a relation scheme, and G be a minimal cover on R, where G

contains only P-dependencies which are either non-substitutable or 1-1 substitutable, and

no two dependencies can have the same substitute dependency. A decomposition of a

relation scheme R into {R}, R2,..., Rn}, where G1, G2,..., and G" be minimal covers on R1,

R2,..., Rn, respectively, is a minimum decomposition if and only if, R), R2,..., R,, are

created from Algorithm 1, and for each 1-1 substitutable dependency X T : A in

GIUGZU. . .UG,, such that X or A are non-homogeneous, there is no substitute dependency

Y T: B ofX T: A such that Y and B are homogeneous.

Proof:

Let {R2, R2,..., R,,} be a decomposition of R created from G in Algorithm 1, and 0;,

G2,..., 0,. be minimal covers on R), R2,..., Rn, respectively. Each dependency in

G;UG2U...UG,. is either a non-substitutable dependency or a 1-1 substitutable.

According to Algorithm 1, there is at most one relation which contains no non-

homogeneous attribute. Then, let R,. be the relation which contains no non-homogeneous

attributes. Thus, each of G1, G2,. . .,G,.-2 contains a P—dependency with non-homogeneous
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attributes.

First, we prove the “it” direction. Let the decomposition of R into {R’1, R’2 R’,..} be

another decomposition of R. Let G’), G'2,..., G’,,, be minimal covers on R’2, R’2,..., R’m,

respectively, and G'IUG'ZU. . .UG’MEG. Let G’,, G2,..., 0’, be sets of dependencies with

non-homogeneous attributes, and G’m, G’,-+2,..., G’,,, be sets of dependencies without

non-homogeneous attributes. For each dependency in 0;, G2,..., and G", there is a

corresponding dependency in 6’), G’2,..., G’m, which is either the same dependency itself

or its substitute dependency. For a P-dependency with non-homogeneous attributes, there

is no substitute dependency without non-homogeneous attribute. Thus, for each

dependency in G,, on R", there is a corresponding P-dependency in G’;, G’2,. .. or 6’... For

a P-dependency with non-homogeneous attributes, there is possibly a substitute

dependency with or without non-homogeneous attributes. Thus, for each P-dependency

with non-homogeneous attributes in G), G2,...,G,,.1, there is a corresponding P-

dependency in G’;, G’2,. .. or G’.-. Since two P-dependencies with non-homogeneous

attributes are not allowed in the same PCNF relation unless one contains the other, and no

two dependencies can be replaced by the same dependency, i 2 n-I. There is at least one

minimal cover among 6’), G’2,..., G’,,. which contains a substitute dependency of a

dependency in G,. or a dependency in G,L Thus, nSm.

Now, we prove the “only if” direction. Let the decomposition of R into {R2, R2,..., R,,}

be a minimal decomposition, and the decomposition of R into {R’2, R’2,..., R’,,.} be a

different decomposition of R, where G’;, G’2,..., G2,. be minimal covers on R’1, R’2



138

R’,,,, respectively, and G')UG’2U...UG’,,.-=—G. Since the decomposition of R into [R,,

R2,..., R,,} is a minimal decomposition, n_<_m. Since G contains only 1-1 and non-

substitutable P-dependencies, for each X T : A in G1, G2,..., and G... there are X T : A

or Y T : B, which is a substitute dependency of X T : A, in G'I, G'2,..., G’", If nSm,

there is no substitute dependency Y T : B of X T : A in G such that X or A are non-

homogeneous and Y and B are homogeneous. Thus, for each 1-1 substitutable

dependency X T : A in G such that X or A are non-homogeneous, there is no substitute

dependency Y T: B ofX T: A such that Y and B are homogeneous. D
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PROOF OF THEOREM 5.3

Theorem 5.3: MD is NP—complete.

Proof:

First, we show that a special case of MD, where the minimal cover G contains only 1-1

substitutable or non-substitutable P-dependencies, is NP-complete.

For each dependency X T : A in G such that X or A are non-homogeneous, if we non-

deterrninistically guess a substitute dependency Y T : B of X T : A such that Y and B

are homogeneous. Then, a new minimal cover G’ is created by replacing X T : A in G

by Y T : B. A decomposition of R into {R1, R2,..., R,.} by using Algorithm 2 and G’ is

the minimum decomposition, as shown in Lemma 5.7, because G’ does not contain X T

: A, where X orA are non-homogeneous, and X T: A can be replaced by Y T: B such

that Y and B are homogeneous. Since Algorithm 2 has polynomial-time complexity and

G’ can be created in polynomial time, the special case of MD is in NP.

Next, we show the polynomial-time reduction of SUB, which is NP-complete according

to Lemma 5.5, to the special case of MD. The input R, G, and H of SUB and MD are the

same. The output of MD is a minimum decomposition of R into {R2, R2,. . ., R,.}. For X T
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: A, which is an input of SUB, if there is R,=(X A T), there is no substitute of X T : A

which contains only homogeneous attributes. Otherwise, there is a substitute Y T : B of

X T : A which contains only homogeneous attributes. We can find Y T : B by finding

R,- such that X is in R; and R; contains only homogeneous attributes. Then, find the

minimal cover G,- on R,-. G, is a minimal cover of {Z T: Cl 2 T: C is in G, and Z and C

are in R,~.} G,- can be calculated in polynomial time. Then, for each Z T : C is in G’-G,

testing if Z T : C is a substitute ofX T: A in G can be done in polynomial time. Thus,

there is a polynomial-time reduction of SUB to the special case of MD. Therefore, the

special case of MD is NP-complete, and MD is NP-complete. l]
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