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ABSTRACT
DESIGN RECOVERY FOR COMBINATIONAL LOGIC
EXPLOITING BOOLEAN RELATIONSHIPS
By
Travis Edward Doom

The reengineering of digital circuits is an increasingly important problem in design
automation. To effectively redesign a digital system, it must be completely described
at a level detailed enough to allow for the synthesis of a new design. Recovering this
level of design from an existing implementation may be complicated as a result of
errors in the original design, incomplete information, or missing documentation. This
dissertation describes new techniques that facilitate the recovery of high-level design
information from low-level, and possibly incomplete, descriptions of digital systems.

The recovery of design information from a complete logic layout can sometimes be
achieved by identifying common implementations of high-level design entities in the
layout. Existing syntactic pattern matching techniques attempt to identify high-level
modules by identifying subcircuits within the layout that exactly correspond to com-
mon implementations of the high-level module. However, such syntactic approaches

fail to identify functionally equivalent subcircuits that are optimized, obfuscated,



or otherwise different from standard implementations. This dissertation presents a
mechanism for semantic pattern matching that overcomes many of these limitations
by identifying subcircuits that are functionally (as opposed to structurally) equivalent
to high-level modules.

This thesis also presents techniques based upon binary decision diagrams (BDDs)
that allow the representation of relationships between structures in a known or par-
tially known combinational logic. Designs are represented as structural BDDs (SB-
DDs), which contain decision variables for internal circuit structures. This thesis
presents SBDD-based techniques for representing partially specified logic and the re-
lationships that determine the behavior of the represented device. These techniques
are used to detect conflicts and deduce unspecified functional behavior from structural
context and available additional information.

Both semantic pattern matching and SBDD-based techniques provide a mecha-
nism for the effective recovery of combinational device designs and of the combina-
tional logic present in sequential devices. These techniques have proven to be effective
tools for redesign that can represent internal Boolean relationships in a fully or par-
tially specified multiple-output combinational logic circuit with a single data structure

and that can identify the high-level functionality of structures within the device.
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Chapter 1

Introduction

Of considerable interest in the design automation community is the remanufacture
and reengineering of digital hardware systems. The basic goal of remanufacture is to
develop a set of specifications for an existing system for the purpose of making a clone
of the original hardware system (Rekoff, 1985). The remanufacture of so-called legacy
systems! is common (Dukes, 1994). The basic goal of reengineering is to respecify a
digital system so that it is better, in some way, than the original form. In both cases,
hardware specifications must be determined through an analysis of available system
information. This analysis, which is the subject of this dissertation, is referred to as
reverse engineering.

Many circuits are developed without the assistance of a comprehensive, computer-
aided design (CAD) process. As a result, detailed information about the system at
various levels of design may not be available (Bryant, 1993). Moreover, even when

an extensive amount of system design documentation is available, portions of the

!Legacy system: An older or outdated device currently being used in the field.
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documentation may be missing, or out-of-date, or design rules and transformations
may have been employed that are not able to be used to reverse the design process
and thus specify the design at a more abstract level. Of course, no matter how much
documentation is available, many systems are designed or modified manually without
proper documentation, a situation that can result in the system documentation being

incorrect (Keutzer, 1996).

For any existing digital system, the most accurate and up-to-date system rep-
resentation is the working physical hardware. Design documentation, if available,
cannot be trusted to describe the current system accurately. In acknowledgment of
this potential discrepancy between how a digital system actually functions and how its
operation is specified in the documentation, this dissertation describes a methodology

for the reverse engineering of such systems.

Chapter 1 reviews current reverse engineering terminology and provides an
overview of a conceptual model. To explain the motivation behind this research,
it briefly describes an existing problem for which sophisticated reverse engineering
techniques are necessary. It also provides information on the state-of-the-art reverse
engineering solutions and technologies and points out the relevance of the thesis in
this context. It describes the contributions made by the work described in this disser-
tation towards solving reverse engineering problems. Finally, it outlines the remainder

of the dissertation.



1.1 Background

The successful recovery of the design information for a digital system depends on
how well information at various levels of detail can be transformed during the reverse
engineering process. Before addressing any specific aspects of our approach to design
recovery, we review the current terminology used in the reengineering literature and
describe the traditional abstraction levels and design transformations that occur in
the typical design process. We also discuss the role of verification in the design process

and the applicability of such verification techniques to reverse engineering.

1.1.1 Reengineering taxonomy

Definitions for the fundamental ideas that characterize reengineering are often im-
plicitly assumed when this subject is discussed. Although reverse engineering had its
origin in the analysis of hardware (Rekoff, 1985), reverse engineering approaches are
now commonly to applied to software systems as well (Chikofsky and Cross, 1990).
We present here only those terms that deal with the reengineering of hardware and
define these terms in that context.

Based on the concepts of life cycles and abstractions described by Chikofsky and
Cross (1990), one can assume that an orderly life-cycle model exists for the hard-
ware design and development process. Even though the exact design methodology
may vary, the early stages of the design process deal with general, implementation-
imdependent concepts. Later stages emphasize implementation details. Although
there are usually iterative cycles within the design process, the process has a general

3



direction that allows one to reasonably define forward and backward activities. Span-
ning life-cycle phases involves a transition from a description of the subject system
expressed at less detailed, higher levels of abstraction in the early stages to more de-
tailed, lower levels of abstraction in the later stages. The subject system is represented
in a manner appropriate to the level of abstraction present at each life-cycle phase.
The subject system may be defined in terms of requirements, behavior, VHDL? code,
logic structure, metal-layer geometries, or any other appropriate form.

Figure 1.1 illustrates a general model of the design life-cycle. As the level of
abstraction decreases, the amount of information represented at each phase of the

life-cycle becomes more detailed (hence the pyramid shape).

{Alteration)
(i‘ﬁs;mi;m : (El'l‘eﬁnemem)
) ,
/ Design .——E—>le desi Design
re-code
/ Implementation > Implementation
Existing System Target System

Figure 1.1: General model for reengineering. (Byrne, 1992)

Under this definition of the design process, forward engineering is defined

as “the traditional process of moving from high-level abstractions and logical,

3VHDL = very-high-speed integrated circuit (VHSIC) hardware description language. VHDL is
a large, high-level VLSI design language with Ada-like syntax that meets the U.S. Department of
Defense standard for hardware description (IEEE 1076).
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implementation-independent designs to the physical implementation of a system”
(Chikofsky and Cross, 1990, page 14). Reverse engineering is defined as “the process
of analyzing a subject system to identify the system’s components and their interrela-
tionships and create representations of the system in another form or at a higher level
of abstraction” (Chikofsky and Cross, 1990, page 15). Reverse engineering does not
involve the modification or remanufacture of the subject system. “It is a process of
examination, not a process of change or replication” (Chikofsky and Cross, 1990, page
15). While reverse engineering often involves using an existing functional system as
its subject, this is not a requirement; given an appropriate description of the subject
system, reverse engineering can be performed starting at any stage of the life cycle.

The term design recovery refers to a subarea of reverse engineering “in which do-
main knowledge, external information, and deduction... are added to the observations
of the subject system to identify meaningful higher level abstractions beyond those
obtained directly by examining the system itself. ... Design recovery must reproduce
all of the information required for a person to fully understand what a [subject sys-
tem] does, how it does it, why it does it, and so forth” (Chikofsky and Cross, 1990,
page 15).

Finally, the term reengineering refers to the “examination and alteration of a sub-
ject system to reconsitute it in a new form and the subsequent implementation of
the new form” (Chikofsky and Cross, 1990, page 15). Reengineering generally in-
volves some form of reverse engineering, followed by a transformation or alternation
of the subject system description at some level of abstraction (restructuring), leading
to some form of forward engineering. The term remanufacture or clone refers to a

5



subarea of reengineering in which the only restructuring done is that necessary to
reimplement the subject system by means of current synthesis and fabrication tech-
nologies. The goal of remanufacture is not to add additional or better functionality,
but to create a surrogate device that preserves the the subject system’s functional

and semantic external behavior exactly.

Approaches to both software and hardware design recovery depend upon the abil-
ity to formally represent a design at various levels of abstraction. It is necessary to be
able to construct proofs of correctness that verify that two designs at different levels
of abstraction are equivalent. The formal approaches presented in this dissertation
are amenable to design recovery for digital hardware. These approaches have not,
however, proven amenable to more complex problem of design recovery in software

systems.

1.1.2 The design process

In practice, the design phase of a digital system’s life-cycle is divided into a number of
subphases to make the process tractable. After specifying the conceptual requirements
of the design, designers of complex digital hardware use a top-down methodology and
hierarchical levels of abstraction to simplify the design process. An important step in
this process is a mechanism for verifying that each level of the description hierarchy
does not conflict with the level preceding it. Figure 1.2 illustrates the typical hardware

design process.

A behavioral model of a digital system is the most abstract design commonly
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produced. Behavioral descriptions describe the function of a system component,
regardless of its implementation. At this stage, the designers are able to specify high-
level interconnections among high-level functions to create a device that meets the
conceptual requirements of the system. This behavioral model is usually written in a
hardware description language (HDL), such as VHDL, which allows the designer to
test the design against its conceptual requirements though simulation.

When the designers are satisfied that the high-level design is adequate, they pro-
duce a more detailed design description for the elements in the behavioral design.
Structural descriptions describe the system as an interconnection of physical mod-
ules. High-level synthesis (sometimes referred to as structural or architectural-level
synthesis) consists of generating a structural description from a behavioral model.
This process involves determining an assignment of the circuit functions to operators,
as well as their interconnections and the timing of their execution. The structural
description of the macroscopic (i.e., block-level) components of a design generated in
this way is referred to as the design’s register-transfer-level (RTL) description.

Once an adequate RTL description has been determined, the next step is to spec-
ify an interconnection of microscopic (i.e., gate-level) components that perform the
function of the macroscopic design. The process of manipulating and optimizing the
logic specifications of the block-level components to create an interconnection of logic
primitives is referred to as logic synthesis. The complicated task of transforming func-
tional (logic-level) descriptions of RTL components into an optimized interconnection
of gate-level library cells is referred to as library binding or technology mapping.

The lowest level of abstraction included in the design process is the geometrical

8



description of the physical design. Geometrical synthesis is the process of specifying
all of the geometric patterns that determine the physical layout of the chip as well
as their position. This level of design is sometimes referred to as the transistor-level

description or the implementation design.

The role of verification in synthesis and design recovery

Design verification is the process of proving to some degree of confidence that design
descriptions from different levels of abstraction perform the same task. Verification
is necessary since optimization decisions make it difficult to prove that high-level
components are equivalent to their low-level implementations produced via synthe-
sis. Because synthesis sometimes introduces errors into a design, verification is an
important aspect of each level in the design cycle.

Traditionally, the low-level verification of simple designs has been performed by
generating test vectors and simulating the input-output behavior of the system (De
Micheli, 1994). However, the generation of test vectors and simulation testing is time-
consuming and, unless they are exhaustive, do not necessarily guarantee equivalence.
More recently, equivalence checking has been proposed as a more effective verification
technique for complex designs. In equivalence checking, logic functions representing
design components are proven to be equivalent, if possible. Although the equivalence
checking of designs is one of the most important problems in CAD for logic design, it

is known to be a coNP-complete® problem, and therefore it uses a number of heuristic

3coNP-complete = complementary nondeterministic polynomial time complete: A set or prop-
erty of computational decision problems with a yes/no answer where the complementary no/yes
problem is in the set NP-complete. The set NP-complete is a subset of NP (i.e., can be solved by

9



techniques to achieve efficient performance (Jain et al., 1997).

These heuristic techniques attempt to identify similarities between circuits to re-
duce the problem size. Kunz proposed an indirect implication method, called recur-
sive learning (Kunz and Pradhan, 1994), which he applied successfully to the equiva-
lence checking problem. Jain et al. proposed another indirect implication technique,
called functional learning (Jain et al., 1995), which was applied to this same prob-
lem. These and similar structural verification techniques attempt to identify related
nodes in design descriptions to simplify the equivalence checking or test generation
process. These techniques determine implications between signal lines and other de-
sign structures or otherwise “reason about design intent” to perform this task. It
should be kept in mind that the goal of these and other verification techniques (such
as symbolic model checking (Burch et al., 1990) ) is to verify the equivalence between
two related design descriptions. Not only must these descriptions be complete, but
the correspondences between the variables representing the design inputs and outputs
must be clearly defined.

Design recovery, however, is concerned primarily with the development of a high-
level design description from available low-level design information and the determi-
nation of variable correspondences between the descriptions. Verification techniques
are not designed to make these determinations. This fact does not imply that some

of the same heuristics that “reason about design intent” in verification algorithms

a nondeterministic Turing Machine in polynomial time), with the additional property that it is also
NP-hard. Thus, a solution for one NP-complete problem would solve all problems in NP. There is
always a polynomial-time algorithm for transforming an instance of any NP-complete problem into
an instance of an other NP-complete problem. Therefore, if you could solve one, you could solve
any other by transforming it to the solved one (Martin, 1997).

10



could not be made useful in some reverse engineering approaches. However, it is not
immediately obvious how to make these heuristics useful when the only reliable design
information available is that extracted from a working device. Once a design has been
reverse engineered, of course, verification techniques can be employed to validate the

recovered design.

1.2 Motivation

Reverse engineering has been defined as the act of creating a set of specifications for
a hardware component, primarily as a result of analyzing an existing device. In his

groundbreaking paper on reverse engineering, Rekoff (1985, page 244) states that:

Reverse engineering might seem to be an unusual application of the art
and science of engineering, but it is a fact of everyday life. Reverse engi-
neering may be applied to overcome defects in or to extend the capabilities
of existing apparatus. Reverse engineering is practiced by the General Mo-
tors Corporation on Ford Motor Company products (and visa versa) to
maintain a competitive posture. Reverse engineering is practiced by all
major military powers on whatever equipment of their antagonists that
they can get their hands on. Reverse engineering might even conceiv-
ably be used by major powers to provide spare parts and maintenance
support to smaller powers who are no longer friendly with the original
manufacturers of the weapons they have in their inventory.

We now consider some current problems in reverse engineering that motivate our
research. As an example, we present an existing reverse engineering problem being in-
vestigated by both government and industry. We then describe some state-of-the-art
reverse engineering technologies and focus on how they apply to this problem. An un-
derstanding of state-of-the-art reverse engineering technologies is necessary to provide
a framework in which the significance of the research presented in this dissertation is
clear.

11



1.2.1 Legacy system reengineering

A significant motivating factor for reverse engineering is the critical need within in-
dustry and government agencies to sustain, maintain, and continually modernize sys-
tems being used in the field (legacy systems). Most companies that build and main-
tain fleets of high-cost, long-lived, electronic-dependent systems face the problem
of proper documentation, continuous upgrades, and documentation retrieval (Dukes
et al., 1994). To meet the necessary demands of form, fit, function, interface (F3I),
and performance, computer-aided engineering (CAE) tools and techniques must be
developed to reengineer these legacy systems with state-of-the-art technology. Section

1.2.2 discusses this problem in detail.

There are substantial hindrances to implementing successful design recovery. Sys-
tems are often a blend of digital, analog, and software components. Many sources of
system data might be available, such as the physical hardware, software source code,
test program sets, manufacturing artwork, paper documentation, and data from ob-
solete design tools. With all these potential sources of information, however, the
problem remains that some of the system data might be contradictory. Moreover,
even though staggering amounts of information may be available, it still might not
be possible to completely specify a system. That is, portions of the system may be

known only as a “blackbox”.

Legacy systems often lack full documentation regarding the functional roles that
all components played and how those roles were met. Modern design has emphasized
the need to understand how a system’s functionality is achieved as the result of

12



the interplay of its individual components. In the domain of digital system design,
the use of representations such as VHDL have become a necessity (Dukes et al.,
1994). A representation of the functionality of a system’s components is the key to
understanding not only the overall system’s behavior but also the roles played by the
system components. When adequate documentation about functional roles and how
they are met is not available, replacement of a system means a costly de novu design
of the complete system.

Determining the functional roles of the existing system components is the start-
ing point for reengineering. Delineating these roles allows for a number of possible

outcomes that might not otherwise be possible:

e Maintenance of the existing system;

e Replacement of one or more system components as technology advances or as

current components become unavailable;

e Verification that the reengineered system meets the intended behavioral speci-

fication of the system; or

e Determination of current processing bottlenecks and the components responsi-
ble for the them, which thus become candidates for redesign to enhance perfor-

mance.

Design recovery should be viewed as a vital step in the reengineering process,
capable of providing error-free retroactive documentation of an existing digital system.

13



1.2.2 DoD’s obsolete component problem

Microelectronic components are the enabling technology for “smart” systems that
have become prevalent in critical systems. Such smart systems are used throughout
the government and industry; for example, these systems control weapon deployment
in military aircraft, temperature levels in nuclear power plants, instruments on NASA
satellites, etc. Because of the important role these components play in vital systems,

they are subject to exhaustive and expensive testing.

The increasing pace of technological advances currently causes a turnover in fab-
rication technology every 18 months (REW’98, 1998). As old process lines close,
replacement parts for tested systems become unavailable, forcing new product devel-
opment and another complete testing cycle. This constant redesign and retesting has

become a billion dollar problem in the Department of Defense (DoD) alone.

At the beginning of the digital revolution, the federal government made up a
large portion (approximately 30%) of the market. This market dominance has fallen
sharply over the last several years. In fact, DoD’s market share has fallen to less than
1% in 1997. This diminished manufacturing sources (DMS) situation has caused
DoD to consider new ways to reengineer existing, tested systems for new technologies
thereby achieving low-price refabrication without resorting to an expensive redesign

and retesting cycle.

Unfortunately, government organizations often do not have the resources available
to purchase complete documentation for microelectronic systems. And often, even
when such documentation does exist, it is out of date, incomplete, or does not ac-

14



curately represent engineering change orders and last minute modifications made to
the device in service. Therefore, during the reengineering process, DoD requires the

extraction the necessary redesign information from the txisting device.

Current DoD remanufacturing methodologies are not significantly automated, but
are reported to work reasonably well on some low complexity designs of older digital
families (TTL, ECL, Metal Gate CMOS), analog microcircuits, and hybrids (REW’98,
1998). Su and Dukes proposed techniques to automate the process of identifying a
component netlist of the wiring connections between components recognized in the
digitized schematics of VLSI systems and to then generate a structural or functional
VHDL model of the system (Su et al., 1994; Dukes et al., 1994). However, existing
methodologies lack the automation necessary to perform well (or in some cases, at
all) when applied to undocumented medium to high complexity digital designs, par-
ticularly in cases in which the system interface and functional requirements are not
fully documented (REW’98, 1998).

Although automation in reverse engineering of digital hardware has so far been
largely ignored in the mainstream literature, it is obviously an important and signif-

icant issue. This dissertation proposes several techniques that we hope will signifi-

cantly further the state of the art in this field.

1.2.3 State-of-the-art design recovery

Attempts to recover a design from documentation alone are error prone, since engi-
neering change orders (ECOs) and last-minute decisions are often not addressed in
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the available documentation. To reengineer a legacy device with fidelity, it is often
necessary to recover design information from an existing system. This system may
contain errors not specified in the original design, a situation that further compli-
cates the reengineering process. In many cases, the only information available about
a system is that which can be extracted from a final implementation.

In several ways, the reverse engineering process is the complement of the synthesis
tasks deséribed in Section 1.1.2. Table 1.1 summarizes the state of the art in design
recovery technologies as identified in the 1998 Reengineering Workshop sponsored by
Argonne National Laboratory (REW’98, 1998). Findings from that workshop and
the defined “levels” of the design recovery process are presented here.

Image Acquisition (0 — 1)

When design information is being recovered from an existing system, the first step
required is to extract the design layout of the chip or chips which make up the system.
A standard technique for the extraction of layout geometry information is to expose a
layer though destructive etching (which must take place at a fabrication facility) and
then to capture a series of high-resolution images (micrographs) of the exposed layer
with a field scanning electron microscope (SEM). To examine an entire device at high
resolution, it is necessary to collect a series of images and assemble them (a process
referred to as mosaicing) to form a collage of micrographs that acts as a large-scale
mural of the device in question. Each layer of the chip is exposed (via etching), in
turn, for imaging. Etching is difficult and expensive, since the etching process used
is dependent upon the fabrication technology which was used to produce the chip.

Because of the high magnification required, only a small portion of the device can
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Level Technologies Technical Challenges |
0 Sample Preparation
Etching Etching
1 Image Acquisition
SEM Accuracy
Image processing Geometry
BMP to GDS-II Staging
Unconventional technology
2 Geometric Description
Postprocessing Process information
Design rule checkers
3 Transistor Netlist
Syntactic matching Exact models of gates
Semantic matching Unconventional technology
Semantic matching
4 Gate Netlist
4a Layout
Pattern matching Combinatorics
Syntactic matching Optimizations
Semantic matching Library support
Contextual matching Incomplete information
Optimization tools Clustering
Function-centric naming
4b Timing
Simulation and modeling Unconventional technology
Technology-specific information
5 Register Transfer
Model generation Complexity
Sequential functionality Validation
Timing Automating process
Domain-specific information
6 Behavioral

Table 1.1: Reverse engineering technologies and challenges, 1997.
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be imaged at a time. Therefore, a series of images must be taken, one at a time, to
capture the geometry of the entire layer. The staging precision of current SEMs is not
accurate enough to guarantee that consecutive micrographs are precisely adjacent.
During the mosaicing process, consecutive images that overlap must be identified
and smoothed. Consecutive images that contain a gap in the field boundaries must
be identified and filled in. Because it is difficult to position the chip so that it is
completely level, this process is further complicated by the fact that various portions
of the chip surface require different foci.

The chip scanner represents a state-of-the-art system for image acquisition. It
consists of an SEM, a highly accurate stage, and mosaicing software that aligns each
image to the next, so overlaps and gaps in the field boundaries do not distort the
overall view. The chip scanner micrographs are stored as a series of bitmap data
(BMP) files.

Geometric Description (1 — 2)

After an aligned, high-resolution image is acquired, geometric data must be ex-
tracted from it. This process is currently performed though the use of chip scanner
software. This software converts bitmap images into a geometric data stream (such as
Cadence’s GDSII format) that contains position information. This process works well
for some conventional technologies but is subject to complications when used with
unconventional technologies. Furthermore, chip scanners allow the positions of any
additional images to be specified though the use of position information. This allows
information from areas of obvious error to be obtained. However, although image ac-
quisition is not necessarily 100% complete and accurate, a high degree of accuracy is
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often possible, given sufficient time and samples. The feasibility of automatically ex-
tracting mask layer information from scanned images of digital electronics has been
well demonstrated (Augustus, 1990; Fretheim, 1988; Hayden, 1989; Mueller, 1989;

Querns, 1989).
Transistor-Level Description (2 — 3)

The next goal is to translate the geometrical level description of the device to the
transistor level. This goal is accomplished through the use of commercially available
CAD tools (design rule checkers) that can examine geometric data and recognize
physical structures (such as transistors, resistors, and the like). Furthermore, design
rule checkers may report possible errors in the description, improving the quality of

the geometric description.
Gate-Level Netlist Layout (3 — 4a)

The next step in the design recovery process is the determination of the the gate-
level netlist. The current approach relies upon finding known transistor-level im-
plementations of logic gates within the transistor-level description. Currently, this
process is carried out by software which performs syntactic (or structural) matching.
Syntactic matching techniques, such as the University of Washington’s subgemini al-
gorithm (Ohlrich et al., 1993), require extensive and complete libraries and are subject
to failure when implementations of gates are unconventional. Because modifications
are commonly made to the transistor-level implementations of gates to affect power
levels, timing, and other design issues this process is not necessarily able to identify
all gate-level devices.
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Gate-Level Netlist Timing (3 — 4b)

In addition to obtaining the design layout of the gates, the extraction of timing
information has been identified as a crucial step in the design recovery process. Since
timing is based on a variety of factors (including doping levels, parasitics, and delays
in interconnects), the extraction of gate-level timing information from a transistor-
level netlist has not yet been studied extensively. It is believed, however, that this
problem will not pose a significant challenge.

Register-Transfer-Level Devices Description (4a — 5)

The task of identifying RTL modules from a gate-level description of a device is
exceptionally complicated. Initial approaches attempt to syntactically match RTL
devices to specific gate-level implementations of those devices as defined in a library.
These structural approaches, although efficient, are limited by the completeness of
the library and the optimization techniques used in the design of the original device.
More general semantic matching techniques are required to allow the identification
of block-level modules whose implementation is not known @ priori. Furthermore,
the identification of RTL modules in systems for which complete information is not
available is particularly challenging.

The tranéformation from the gate-level to the register-transfer-level has been iden-
tified as the current critical area of research in the design recovery process. This
dissertation focuses primary on research related to this transformation. Chapters 3
and 4 discuss an approach to the challenge of incomplete information during this
transformation. Chapter 5 discusses a technique for semantic equivalence checking
which allows efficient semantic matching during this transformation.
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Register-Transfer-Level Timing Description (40 — 5)

The transformation of a device’s gate-level timing description to the RTL timing
description is currently unexplored. It is believed that accurate, descriptive informa-
tion can be obtained for each RTL device identified through the use of the gate-level
timing information obtained in level 4b. The RTL devices with timing information
can be represented in any hardware description language (HDL) that includes timing
descriptions. VITAL (VHDL Initiative for Timing Annotated Libraries) was proposed
as an appropriate HDL.

Behavioral-Level Description (5 — 6)

The final step in the design recovery process is to construct a complete and func-
tional behavioral-level model of the device under study. Such a model can be validated
and used to specify the design of a new implementation of the device. The problem of
transforming a description from the RTL level to the behavioral level is currently open
to solution. This transformation may be inherently intractable and therefore difficult

to automate; intervention by a human engineer is currently considered necessary.

1.3 Contributions

The research presented in this thesis concerns design recovery for the combinational
logic in obsolete components (Section 1.2.2). The transformation of the component
design from the gate-level to the RTL has been identified as the current critical
area of research in the design recovery process (Section 1.2.3). The goal of this
transformation is to produce a RTL description of the obsolete component suitable
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for restructuring and reengineering from a recovered gate-level description and any
additional available design information. As will be discussed in Chapter 3, one of the
key problems with this transformation is that a complete gate-level description of the
component is often unavailable. Furthermore, since RTL devices have any number of
legal gate-level implementations, this transformation is inherently difficult.

The major contributions of this work are three-fold. First, we discuss a systematic
approach for both the representation of the known functionality and the deduction of
unknown functionality for a system under redesign. This methodology includes tech-
niques for discovering don’t care conditions and using available information about
the overall behavior of the circuit (such as test set information or out-of-date paper
schematics) to reconstruct the intended functionality of the circuit. The objective of
this design recovery approach is to allow the engineer to represent both the functional-
ity and the structure of the system, represent additional system knowledge, determine
missing information, and detect conflict between available design information and the
actual design implementation. This approach is a new mechanism for reconstructing
such information efficiently.

Furthermore, we present a semantic matching technique that allows the identifi-
cation of both standard and nonstandard implementations of RTL devices in a gate-
level description. Existing syntactic matching techniques have proven incapable of
identifying devices that have been optimized during synthesis, constructed from non-
standard cell libraries, or otherwise obfuscated. A new semantic equivalence checking
technique for testing matchings between library devices and gate-level subcircuits is
introduced which is significantly more efficient than previous techniques.
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Lastly, we propose a preliminary approach to the formal design recovery of obsolete
systems. We discuss the capabilities of this approach, as well as its limitations.

The algorithms presented in this dissertation have been implemented in software.
Results are presented at the ends of Chapters 4 and 5 to illustrate the utility of these

techniques.

1.4 Dissertation outline

The remainder of this dissertation is structured as follows. Chapter 2 presents terms
and notation used in this field, commonly used mathematical models for circuits
and functions, and commonly defined operations. In particular, it focuses on the
capabilities and limitations of the binary decision diagram (BDD).

Chapter 3 discusses the limitations of the traditional BDD representation and
presents the structural BDD (SBDD), a specific interpretation of a standard BDD
which is used extensively in our approach to design recovery when only partial im-
plementation specifications are available. It discusses unknown (blackbox) portions
of combinational circuits and shows how SBDDs can be used to represent multiple
Boolean relationships among known circuit structures, especially don’t care relation-
ships.

Chapter 4 introduces the reengineering from partial specifications (RFPS) prob-
lem. It discusses a methodology which allows unknown portions of gate-level de-
scription to be specified through the use of SBDD techniques. It also discusses the
representation of partial knowledge as SBDD constraints and the effect of don’t care
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relationships on blackbox specification. Furthermore, this chapter presents experi-
mental results from these techniques.

Chapter 5 addresses the problem of identifying high-level components in a gate-
level netlist. It discusses existing techniques that perform structural (syntactic)
matching, and introduces new functional (semantic) matching techniques. Further-
more, it presents heuristic techniques that help to overcome the factorial search space
inherent in semantic matching. Preliminary results are presented to illustrate this
technique.

Next Chapter 6 proposes a design recovery approach which incorporates the SBDD
and semantic matching techniques presented in Chapters 3-5. It discusses the capa-
bilities and limitations of the proposed approach, as well as discussing its correctness
and the the complexity issues inherent in this problem and our proposed solution.

Finally, Chapter 7 concludes the dissertation with a summary of the dissertation

and a discussion of future research directions.
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Chapter 2

Representation of Boolean

relationships

The goal of digital design recovery is to recover the design intent underlying a known
or partially specified circuit implementation. This problem is particularly challenging
because it requires automated techniques to provide information about the function,
purpose, and structure of the existing design and transformations that guarantee that
the functionality of the circuit is not compromised. This task is complicated by the
fact that many digital design implementations undergo iterative optimizations that
can hinder understanding the high-level function of a component in the final imple-
mentation. Furthermore, complete specifications of the design may be incomplete or
unavailable in many situations.

For any reverse engineering methodology to overcome these complications, it must
enable one to recognize the functionality of any component of an implementation in
the context of the overall circuit function. This recognition of functionality may be
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inherently impossible given an incomplete implementation, but available information
may allow the automated deduction of a component’s general function. Such an ap-
proach requires formal techniques for the representation and manipulation of available
information.

This chapter presents the terminology and notation used in formal approaches to
digital design and verification. It also presents commonly used mathematical models
for circuits and Boolean functions and commonly defined operations. In particular, it
defines the binary decision diagram (BDD), which has quickly become the standard
mechanism for representing Boolean relationships in tools for design automation. It
also discusses the capabilities and limitations of the BDD in the design recovery

process.

2.1 Notation and terminology

A system description passes through different levels of design in a hierarchical frame-
work. This framework exptesses the behavior of a design as it evolves and becomes
more detailed (Chapter 1.1.2). The iterative flow of the design process or life-cycle
generally starts with the design specification (be