
'1

\

(
D

LlBlRARES

Illllllllllllllllllllllllllllllll|L44l’l‘lll2Ill
3 1293 01682

This is to certify that the

dissertation entitled

DESIGN RECOVERY FOR COMBINATIONAL LOGIC

EXPLOITING BOOLEAN RELATIONSHIPS

presented by

Travis E. Doom

has been accepted towards fulfillment

of the requirements for

Ph.D. degree in Computer Science

Date 3

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY

Michigan State

Unlverslty

PLACE IN RETURN BOX

to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MTE DUE DATE DUE DATE DUE

1m Wraps-p.14

DESIGN RECOVERY FOR COMBINATIONAL LOGIC

EXPLOITING BOOLEAN RELATIONSHIPS

By

Travis Edward Doom

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

1998

Copyright by

Travis Edward Doom

1998

ABSTRACT

DESIGN RECOVERY FOR COMBINATIONAL LOGIC

EXPLOITING BOOLEAN RELATIONSHIPS

By

Travis Edward Doom

The reengineering of digital circuits is an increasingly important problem in design

automation. To effectively redesign a digital system, it must be completely described

at a level detailed enough to allow for the synthesis of a new design. Recovering this

level of design from an existing implementation may be complicated as a result of

errors in the original design, incomplete information, or missing documentation. This

dissertation describes new techniques that facilitate the recovery of high-level design

information from low-level, and possibly incomplete, descriptions of digital systems.

The recovery of design information from a complete logic layout can sometimes be

achieved by identifying common implementations of high-level design entities in the

layout. Existing syntactic pattern matching techniques attempt to identify high-level

modules by identifying subcircuits within the layout that exactly correspond to com-

mon implementations of the high-level module. However, such syntactic approaches

fail to identify functionally equivalent subcircuits that are optimized, obfuscated,

or otherwise different from standard implementations. This dissertation presents a

mechanism for semantic pattern matching that overcomes many of these limitations

by identifying subcircuits that are functionally (as opposed to structurally) equivalent

to high-level modules.

This thesis also presents techniques based upon binary decision diagrams (BDDs)

that allow the representation of relationships between structures in a known or par-

tially known combinational logic. Designs are represented as structural BDDs (SB-

DDs), which contain decision variables for internal circuit structures. This thesis

presents SBDD-based techniques for representing partially specified logic and the re-

lationships that determine the behavior of the represented device. These techniques

are used to detect conflicts and deduce unspecified functional behavior from structural

context and available additional information.

Both semantic pattern matching and SBDD-based techniques provide a mecha-

nism for the effective recovery of combinational device designs and of the combina-

tional logic present in sequential devices. These techniques have proven to be effective

tools for redesign that can represent internal Boolean relationships in a fully or par-

tially specified multiple-output combinational logic circuit with a single data structure

and that can identify the high-level functionality of structures within the device.

DEDICATED TO MY FAMILY, WHO NEVER GOT TIRED OF WAITING FOR ME TO FINISH IT.

ACKNOWLEDGMENTS

I would like to thank my advisor, Anthony Wojcik, for his insight, guidance, and

advise in both this research and in my career. I am also exceptionally grateful to

Gregory Chisholm of Argonne National Laboratory who encouraged this research

and introduced me to the larger scope of the problem domain.

I gratefully acknowledge the contributions of the Design Automation Research

Group at Michigan State University’s College of Engineering whose comments and

feedback helped decide the direction of this research. I would particularly like to thank

Moon-Jung Chung and Chin-Long Wey for their support in this research. Likewise, I

gratefully acknowledge the contributions of my colleagues at Argonne National Labo-

ratory whose initial work provided a foundation for my research. I would particularly

like to thank Steve Eckmann and Ken Dritz for their aid and insight.

This work was supported in part by Argonne National Laboratory’s Division of

Information Science and through a dissertation completion fellowship provided by

the Graduate School of Michigan State University. I am greatly indebted to both

institutions for their support.

Lastly, and most importantly, I thank Jennifer White for her professional and

personal support. Her dissertation research has proved invaluable to this approach.

Her constant encouragement, support, and friendship has made this research possible.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Background 3

1.1.1 Reengineering taxonomy 3

1.1.2 The design process 6

1.2 Motivation 11

1.2.1 Legacy system reengineering 12

1.2.2 DoD’s obsolete component problem 14

1.2.3 State-of-the—art design recovery 15

1.3 Contributions 21

1.4 Dissertation outline 23

2 Representation of Boolean relationships 25

2.1 Notation and terminology 26

2.1.1 Basic notation 27

2.1.2 Application-specific terminology 28

2.1.3 Incomplete Boolean functions 29

2.1.4 Representing combinational logic 30

2.2 Decision diagrams 32

2.2.1 Binary decision diagrams 34

2.2.2 Reduced ordered binary decision diagrams 35

2.3 Applications of binary decision diagrams 39

2.4 Decision diagrams as proposition testers 41

3 Representation of structural relationships 44

3.1 Motivation for the structural binary decision diagram 45

3.1.1 Limitations of traditional representation 46

3.1.2 Requirements for new interpretation 48

3.2 Structural binary decision diagrams 50

3.2.1 Overview of the SBDD 51

3.2.2 Representing structure 53

3.2.3 Single gate example 56

3.3 Representing unknown structures 58

3.4 SBDD efficiency 64

3.4.1 Operations on and properties of the SBDD 65

vii

3.4.2 Increasing SBDD efficiency though reduction

4 Representation and recovery of partial knowledge

4.1 Representing partial knowledge

4.2 Utilizing additional relationships

4.2.1 Utilizing test vectors

4.2.2 Using BDDs to discover Specifications

4.2.3 Deduction of secondary constraints

4.2.4 Extensions to multiple blackboxes

4.3 Implementation and results

4.3.1 Implementation

4.3.2 Validity and complexity

4.3.3 Results

5 Semantic equivalence checking

5.1 Determining equivalence

5.2 Historical perspective

5.2.1 Syntactic matching

5.2.2 Factorial permutation

5.2.3 Logic verification

5.2.4 Boolean matching

5.2.5 Boolean signatures and filters

5.3 Determining semantic equivalence efficiently

5.3.1 Input Signatures and suspect sets

5.3.2 Vector input signature

5.4 Implementation and results

5.4.1 Implementation

5.4.2 Validity and complexity

5.4.3 Results

6 Reengineering methodology

6.1 Design recovery methodology

6.2 Capabilities and limitations

6.3 Formal correctness

6.4 Complexity issues

7 Conclusion and future directions

7.1 Semantic matching

7.2 Representation of available information

7.3 Reengineering methodology

A Complete RFPS solution for simplecircuit

B Computation of vector signatures for the four-bit ALU

BIBLIOGRAPHY

viii

66

74

75

83

86

9O

93

95

100

100

104

109

112

113

115

116

117

117

118

119

122

123

125

128

128

130

134

137

138

139

145

146

148

149

152

156

160

175

182

1.1

2.1

4.1

5.1

5.2

B]

B.2

B.3

LIST OF TABLES

Reverse engineering technologies and challenges, 1997 17

BDD research areas 40

RFPS results 110

Vector input signature for the TI 54181 4-bit ALU 126

Experimental results 135

Functionality of the TI SN54181 four-bit ALU 178

Calculation of input vector Signatures 179

Vector input signature for the TI 54181 4-bit ALU 180

ix

LIST OF FIGURES

1.1 General model for reengineering 4

1.2 The design process 7

2.1 A simple decision diagram 33

2.2 Simple BDD 34

2.3 BDD and functional truth-table. 35

2.4 Recursive BDD Apply algorithm 38

2.5 Shared binary decision diagram for two-bit adder 39

2.6 Using BDDS to represent constraints 42

3.1 Schematic, structural truth-table, and structural BDD for simplecircuit 47

3.2 Behavioral and structural VHDL code for simplecircuit 49

3.3 Function and characteristic function of a two-input AND gate 54

3.4 ROBDD and functional behavior of a NOR gate 56

3.5 SBDD and structural description of a NOR gate 57

3.6 Schematic, structural truth-table, and SBDD for partial simplecircuit 60

3.7 Example reduced SBDD for simplecircuit 68

3.8 Schneider circuit 71

3.9 Unreduced SBDD for the schneider circuit 72

3.10 Schneiderl circuit 73

3.11 Reduced SBDD for the schneiderl circuit 73

4.1 Extended logic operations for ternary functions 76

4.2 Unknown circuit implementation 79

4.3 A partial specification of simplecircuit 81

4.4 The SBDD for a partial specification of simplecircuit 81

4.5 Example constraint characteristic function 84

4.6 SBDDS for test vectors 88

4.7 SBDD for the partial description of simplecircuit 89

4.8 The RFPS solution for simplecircuit 91

4.9 Reduced SBDD for the schneiderl circuit with constraints 94

4.10 Reduced SBDD for the schneiderl circuit after deduction 96

4.11 Schematic for schneider2 RFPS problem 97

4.12 SBDD for schneider2 multiple-blackbox RFPS problem 98

A.1 Schematic and functional truth-table..................... 161

A.2 Behavioral and structural VHDL code for simplecircuit 162

X

A.3 BLIF code for simplecircuit

A.4 ATPG vectors for simplecircuit

A5 A partial specification of simplecircuit . . .

A.6 BLIF code for partial simplecircuit . . .

A.7 Solving the RFPS problem for simplecircuit:

A.8 Solving the RFPS problem for simplecircuit:

A.9 Solving the RFPS problem for simplecircuit:

A.10 Solving the RFPS problem for simplecircuit:

A.1l Solving the RFPS problem for simplecircuit:

A.12 Solving the RFPS problem for simplecircuit:

A.13 Solving the RFPS problem for simplecircuit:

A.14 Solving the RFPS problem for simplecircuit:

B.1 TI SN54181 four-bit ALU

B.2 BLIF code for the TI SN54181 four-bit ALU .

xi

............... 163

............... 163

............... 164

............... 164

#1 167

#2 168

#3 169

#4 170

#5 171

#6 172

#7 173

#8 174

............... 176

............... 177

Chapter 1

Introduction

Of considerable interest in the design automation community is the remanufacture

and reengineering of digital hardware systems. The basic goal of remanufacture is to

develop a set of Specifications for an existing system for the purpose of making a clone

of the original hardware system (Rekoff, 1985). The remanufacture of so-called legacy

systems1 is common (Dukes, 1994). The basic goal of reengineering is to respecify a

digital system so that it is better, in some way, than the original form. In both cases,

hardware Specifications must be determined through an analysis of available system

information. This analysis, which is the subject of this dissertation, is referred to as

reverse engineering.

Many circuits are developed without the assistance of a comprehensive, computer-

aided design (CAD) process. AS a result, detailed information about the system at

various levels of design may not be available (Bryant, 1993). Moreover, even when

an extensive amount of system design documentation is available, portions of the

1Legacy system: An older or outdated device currently being used in the field.

1

documentation may be missing, or out-of-date, or design rules and transformations

may have been employed that are not able to be used to reverse the design process

and thus Specify the design at a more abstract level. Of course, no matter how much

documentation is available, many systems are designed or modified manually without

proper documentation, a situation that can result in the system documentation being

incorrect (Keutzer, 1996).

For any existing digital system, the most accurate and up—to—date system rep-

resentation is the working physical hardware. Design documentation, if available,

cannot be trusted to describe the current system accurately. In acknowledgment of

this potential discrepancy between how a digital system actually functions and how its

operation is specified in the documentation, this dissertation describes a methodology

for the reverse engineering of such systems.

Chapter 1 reviews current reverse engineering terminology and provides an

overview of a conceptual model. To explain the motivation behind this research,

it briefly describes an existing problem for which sophisticated reverse engineering

techniques are necessary. It also provides information on the state-of-the-art reverse

engineering solutions and technologies and points out the relevance of the thesis in

this context. It describes the contributions made by the work described in this disser-

tation towards solving reverse engineering problems. Finally, it outlines the remainder

of the dissertation.

1.1 Background

The successful recovery of the design information for a digital system depends on

how well information at various levels of detail can be transformed during the reverse

engineering process. Before addressing any specific aspects of our approach to design

recovery, we review the current terminology used in the reengineering literature and

describe the traditional abstraction levels and design transformations that occur in

the typical design process. We also discuss the role of verification in the design process

and the applicability of such verification techniques to reverse engineering.

1.1.1 Reengineering taxonomy

Definitions for the fundamental ideas that characterize reengineering are often im-

plicitly assumed when this subject is discussed. Although reverse engineering had its

origin in the analysis of hardware (Rekoff, 1985), reverse engineering approaches are

now commonly to applied to software systems as well (Chikofsky and Cross, 1990).

We present here only those terms that deal with the reengineering of hardware and

define these terms in that context.

Based on the concepts of life cycles and abstractions described by Chikofsky and

Cross (1990), one can assume that an orderly life-cycle model exists for the hard-

ware design and development process. Even though the exact design methodology

may vary, the early stages of the design process deal with general, implementation-

independent concepts. Later stages emphasize implementation details. Although

there are usually iterative cycles within the design process, the process has a general

3

direction that allows one to reasonably define forward and backward activities. Span-

ning life-cycle phases involves a transition from a description of the subject system

expressed at less detailed, higher levels of abstraction in the early stages to more de-

tailed, lower levels of abstraction in the later stages. The subject system is represented

in a manner appropriate to the level of abstraction present at each life-cycle phase.

The subject system may be defined in terms of requirements, behavior, VHDL2 code,

logic structure, metal-layer geometries, or any other appropriate form.

Figure 1.1 illustrates a general model of the design life-cycle. As the level of

abstraction decreases, the amount of information represented at each phase of the

life-cycle becomes more detailed (hence the pyramid Shape).

 TmSystem

Figure 1.1: General model for reengineering. (Byrne, 1992)

Under this definition of the design process, forward engineering is defined

as “the traditional process of moving from high-level abstractions and logical,

2VHDL = yery—high-speed integrated circuit (VHSIC) hardware description language. VHDL is

a large, high-level VLSI design language with Ada-like syntax that meets the US. Department of

Defense standard for hardware description (IEEE 1076).

4

4ft." .~

implementation-independent designs to the physical implementation of a system”

(Chikofsky and Cross, 1990, page 14). Reverse engineering is defined as “the process

of analyzing a subject system to identify the system’s components and their interrela-

tionships and create representations of the system in another form or at a higher level

of abstraction” (Chikofsky and Cross, 1990, page 15). Reverse engineering does not

involve the modification or remanufacture of the subject system. “It is a process of

examination, not a process of change or replication” (Chikofsky and Cross, 1990, page

15). While reverse engineering often involves using an existing functional system as

its subject, this is not a requirement; given an apprOpriate description of the subject

system, reverse engineering can be performed starting at any stage of the life cycle.

The term design recovery refers to a subarea of reverse engineering “in which do-

main knowledge, external information, and deduction... are added to the observations

of the subject system to identify meaningful higher level abstractions beyond those

obtained directly by examining the system itself. Design recovery must reproduce

all of the information required for a person to fully understand what a [subject sys—

tem] does, how it does it, why it does it, and so forth” (Chikofsky and Cross, 1990,

page 15).

Finally, the term reengineering refers to the “examination and alteration of a sub-

ject system to reconsitute’ it in a new form and the subsequent implementation of

the new form” (Chikofsky and Cross, 1990, page 15). Reengineering generally in-

volves some form of reverse engineering, followed by a transformation or alternation

of the subject system description at some level of abstraction (restructuring), leading

to some form of forward engineering. The term remanufacture or clone refers to a

5

subarea of reengineering in which the only restructuring done is that necessary to

reimplement the subject system by means of current synthesis and fabrication tech-

nologies. The goal of remanufacture is not to add additional or better functionality,

but to create a surrogate device that preserves the the subject system’s functional

and semantic external behavior exactly.

Approaches to both software and hardware design recovery depend upon the abil-

ity to formally represent a design at various levels of abstraction. It is necessary to be

able to construct proofs of correctness that verify that two designs at different levels

of abstraction are equivalent. The formal approaches presented in this dissertation

are amenable to design recovery for digital hardware. These approaches have not,

however, proven amenable to more complex problem of design recovery in software

systems.

1.1.2 The design process

In practice, the design phase of a digital system’s life-cycle is divided into a number of

subphases to make the process tractable. After Specifying the conceptual requirements

of the design, designers of complex digital hardware use a top-down methodology and

hierarchical levels of abstraction to simplify the deSign process. An important step in

this process is a mechanism for verifying that each level of the description hierarchy

does not conflict with the level preceding it. Figure 1.2 illustrates the typical hardware

design process.

A behavioral model of a digital system is the most abstract design commonly

6

(non-vies“ am.)

Wallocation

unit binding

high-laval aynthaaia

l

onilation

(mi-ta: Translu- Level) ——>

oo-pilation

i
optiniaation

atata nininiaation

logic mthaaia

library binding

l
(mu...)

4“

goo-atrioal mthaaia

call ganaration

routing

optiniaation

i

‘ Dhyaioal Daaign

oowilation

aimlation

Figure 1.2: The design process.

aimlation

>

A
q
e
a
r
g
r
x
a

H
O
T

produced. Behavioral descriptions describe the function of a system component,

regardless of its implementation. At this stage, the designers are able to specify high-

level interconnections among high-level functions to create a device that meets the

conceptual requirements of the system. This behavioral model is usually written in a

hardware description language (HDL), such as VHDL, which allows the designer to

test the design against its conceptual requirements though simulation.

When the designers are satisfied that the high-level design is adequate, they pro-

duce a more detailed design description for the elements in the behavioral design.

Structural descriptions describe the system as an interconnection of physical mod-

ules. High-level synthesis (sometimes referred to as structural or architectural-level

synthesis) consists of generating a structural description from a behavioral model.

This process involves determining an assignment of the circuit functions to operators,

as well as their interconnections and the timing of their execution. The structural

description of the macroscopic (i.e., block-level) components of a design generated in

this way is referred to as the design’s register—transfer—level (RTL) description.

Once an adequate RTL description has been determined, the next step is to spec-

ify an interconnection of microscopic (i.e., gate-level) components that perform the

function of the macroscopic design. The process of manipulating and optimizing the

logic specifications of the block-level components to create an interconnection of logic

primitives is referred to as logic synthesis. The complicated task of transforming func-

tional (logic-level) descriptions of RTL components into an optimized interconnection

of gate-level library cells is referred to as library binding or technology mapping.

The lowest level of abstraction included in the design process is the geometrical

8

description of the physical design. Geometrical synthesis is the process of specifying

all of the geometric patterns that determine the physical layout of the chip as well

as their position. This level of design is sometimes referred to as the transistor-level

description or the implementation design.

The role of verification in synthesis and design recovery

Design verification is the process of proving to some degree of confidence that design

descriptions from difl'erent levels of abstraction perform the same task. Verification

is necessary since optimization decisions make it difficult to prove that high-level

components are equivalent to their low-level implementations produced via synthe-

sis. Because synthesis sometimes introduces errors into a design, verification is an

important aspect of each level in the design cycle.

’Iltaditionally, the low-level verification of simple designs has been performed by

generating test vectors and simulating the input-output behavior of the system (De

Micheli, 1994). However, the generation of test vectors and simulation testing is time-

consuming and, unless they are exhaustive, do not necessarily guarantee equivalence.

More recently, equivalence checking has been proposed as a more effective verification

technique for complex designs. In equivalence checking, logic functions representing

design components are proven to be equivalent, if possible. Although the equivalence

checking of designs is one of the most important problems in CAD for logic design, it

is known to be a coNP-complete3 problem, and therefore it uses a number of heuristic

3ooNP-complete = complementary nondeterministic polynomial time complete: A set or prop-

erty of computational decision problems with a yes/no answer where the complementary no/yes

problem is in the set NP-complete. The set NP-complete is a subset of NP (i.e., can be solved by

9

techniques to achieve efficient performance (Jain et al., 1997).

These heuristic techniques attempt to identify similarities between circuits to re-

duce the problem size. Kunz prOposed an indirect implication method, called recur-

sive learning (Kunz and Pradhan, 1994), which he applied successfully to the equiva-

lence checking problem. Jain et al. proposed another indirect implication technique,

called functional learning (Jain et al., 1995), which was applied to this same prob-

lem. These and Similar structural verification techniques attempt to identify related

nodes in design descriptions to Simplify the equivalence checking or test generation

process. These techniques determine implications between signal lines and other de-

sign structures or otherwise “reason about design intent” to perform this task. It

should be kept in mind that the goal of these and other verification techniques (such

as symbolic model checking (Burch et al., 1990)) is to verify the equivalence between

two related design descriptions. Not only must these descriptions be complete, but

the correspondences between the variables representing the design inputs and outputs

must be clearly defined.

Design recovery, however, is concerned primarily with the development of a high-

level design description from available low-level design information and the determi-

nation of variable correspondences between the descriptions. Verification techniques

are not designed to make these determinations. This fact does not imply that some

of the same heuristics that “reason about design intent” in verification algorithms

a nondeterministic Turing Machine in polynomial time), with the additional property that it is also

NP-hard. Thus, a solution for one NP-complete problem would solve all problems in NP. There is

always a polynomial-time algorithm for transforming an instance of any NP-complete problem into

an instance of an other NP-complete problem. Therefore, if you could solve one, you could solve

any other by transforming it to the solved one (Martin, 1997).

10

could not be made useful in some reverse engineering approaches. However, it is not

immediately obvious how to make these heuristics useful when the only reliable design

information available is that extracted from a working device. Once a design has been

reverse engineered, of course, verification techniques can be employed to validate the

recovered design.

1 .2 Motivation

Reverse engineering has been defined as the act of creating a set of specifications for

a hardware component, primarily as a result of analyzing an existing device. In his

groundbreaking paper on reverse engineering, Rekoff (1985, page 244) states that:

Reverse engineering might seem to be an unusual application of the art

and science of engineering, but it is a fact of everyday life. Reverse engi-

neering may be applied to overcome defects in or to extend the capabilities

of existing apparatus. Reverse engineering is practiced by the General Mo-

tors Corporation on Ford Motor Company products (and visa versa) to

maintain a competitive posture. Reverse engineering is practiced by all

major military powers on whatever equipment of their antagonists that

they can get their hands on. Reverse engineering might even conceiv-

ably be used by major powers to provide spare parts and maintenance

support to smaller powers who are no longer friendly with the original

manufacturers of the weapons they have in their inventory.

We now consider some current problems in reverse engineering that motivate our

research. As an example, we present an existing reverse engineering problem being in-

vestigated by both government and industry. We then describe some state-of-the—art

reverse engineering technologies and focus on how they apply to this problem. An un-

derstanding of state-of-the-art reverse engineering technologies is necessary to provide

a framework in which the Significance of the research presented in this dissertation is

clear.

11

1.2.1 Legacy system reengineering

A Significant motivating factor for reverse engineering is the critical need within in-

dustry and government agencies to sustain, maintain, and continually modernize sys-

tems being used in the field (legacy systems). Most companies that build and main-

tain fleets of high-cost, long-lived, electronic-dependent systems face the problem

of proper documentation, continuous upgrades, and documentation retrieval (Dukes

et al., 1994). To meet the necessary demands of form, fit, function, interface (F31),

and performance, computer-aided engineering (CAE) tools and techniques must be

developed to reengineer these legacy systems with state-of-the-art technology. Section

1.2.2 discusses this problem in detail.

There are substantial hindrances to implementing successful design recovery. Sys-

tems are often a blend of digital, analog, and software components. Many sources of

system data might be available, such as the physical hardware, software source code,

test program sets, manufacturing artwork, paper documentation, and data from ob-

solete design tools. With, all these potential sources of information, however, the

problem remains that some of the system data might be contradictory. Moreover,

even though staggering amounts of information may be available, it still might not

be possible to completely Specify a system. That is, portions of the system may be

known only as a “blackbox”.

Legacy systems often lack full documentation regarding the functional roles that

all components played and how those roles were met. Modern design has emphasized

the need to understand how a system’s functionality is achieved as the result of

12

the interplay of its individual components. In the domain of digital system design,

the use of representations such as VHDL have become a necessity (Dukes et al.,

1994). A representation of the functionality of a system’s components is the key to

understanding not only the overall system’s behavior but also the roles played by the

system components. When adequate documentation about functional roles and how

they are met is not available, replacement of a system means a costly de novu design

of the complete system.

Determining the functional roles of the existing system components is the start-

ing point for reengineering. Delineating these roles allows for a number of possible

outcomes that might not otherwise be possible:

a Maintenance of the existing system;

0 Replacement of one or more system components as technology advances or as

current components become unavailable;

0 Verification that the reengineered system meets the intended behavioral speci-

fication of the system; or

0 Determination of current processing bottlenecks and the components responsi-

ble for the them, which thus become candidates for redesign to enhance perfor-

mance.

Design recovery Should be viewed as a vital step in the reengineering process,

capable of providing error-free retroactive documentation of an existing digital system.

13

1.2.2 DoD’s obsolete component problem

Microelectronic components are the enabling technology for “smart” systems that

have become prevalent in critical systems. Such smart systems are used throughout

the government and industry; for example, these systems control weapon deployment

in military aircraft, temperature levels in nuclear power plants, instruments on NASA

satellites, etc. Because of the important role these components play in vital systems,

they are subject to exhaustive and expensive testing.

The increasing pace of technological advances currently causes a turnover in fab—

rication technology every 18 months (REW’98, 1998). AS old process lines close,

replacement parts for tested systems become unavailable, forcing new product devel-

opment and another complete testing cycle. This constant redesign and retesting has

become a billion dollar problem in the Department of Defense (DoD) alone.

At the beginning of the digital revolution, the federal government made up a

large portion (approximately 30%) of the market. This market dominance has fallen

sharply over the last several years. In fact, DoD’s market share has fallen to less than

1% in 1997. This diminished manufacturing sources (DMS) situation has caused

DoD to consider new ways to reengineer existing, tested systems for new technologies

thereby achieving low-price refabrication without resorting to an expensive redesign

and retesting cycle.

Unfortunately, government organizations often do not have the resources available

to purchase complete documentation for microelectronic systems. And often, even

when such documentation "does exist, it is out of date, incomplete, or does not ac-

14

curately represent engineering change orders and last minute modifications made to

the device in service. Therefore, during the reengineering process, DoD requires the

extraction the necessary redesign information from the Existing device.

Current DoD remanufacturing methodologies are not significantly automated, but

are reported to work reasonably well on some low complexity designs of older digital

families (TTL, ECL, Metal Gate CMOS), analog microcircuits, and hybrids (REW’98,

1998). Su and Dukes pr0posed techniques to automate the process of identifying a

component netlist of the wiring connections between components recognized in the

digitized schematics of VLSI systems and to then generate a structural or functional

VHDL model of the system (Su et al., 1994; Dukes et al., 1994). However, existing

methodologies lack the automation necessary to perform well (or in some cases, at

all) when applied to undocumented medium to high complexity digital designs, par-

ticularly in cases in which the system interface and functional requirements are not

fully documented (REW’98, 1998).

Although automation in reverse engineering of digital hardware has so far been

largely ignored in the mainstream literature, it is obviously an important and signif-

icant issue. This dissertation proposes several techniques that we hope will signifi-

cantly further the state of the art in this field.

1.2.3 State-of-the-art design recovery

Attempts to recover a design from documentation alone are error prone, since engi-

neering change orders (E003) and last-minute decisions are often not addressed in

15

the available documentation. To reengineer a legacy device with fidelity, it is often

necessary to recover design information from an existing system. This system may

contain errors not specified in the original design, a situation that further compli-

cates the reengineering process. In many cases, the only information available about

a system is that which can be extracted from a final implementation.

In several ways, the reverse engineering process is the complement of the synthesis

tasks described in Section 1.1.2. Table 1.1 summarizes the state of the art in design

recovery technologies as identified in the 1998 Reengineering Workshop sponsored by

Argonne National Laboratory (REW’98, 1998). Findings from that workshop and

the defined “levels” of the design recovery process are presented here.

Image Acquisition (0 ——> 1)

When design information is being recovered from an existing system, the first step

required is to extract the design layout of the chip or chips which make up the system.

A standard technique for the extraction of layout geometry information is to expose a

layer though destructive etching (which must take place at a fabrication facility) and

then to capture a series of high-resolution images (micrographs) of the exposed layer

with a field scanning electron microscope (SEM). To examine an entire device at high

resolution, it is necessary to collect a series of images and assemble them (a process

referred to as mosaicing) to form a collage of micrographs that acts as a large-scale

mural of the device in question. Each layer of the chip is exposed (via etching), in

turn, for imaging. Etching is difficult and expensive, since the etching process used

is dependent upon the fabrication technology which was used to produce the chip.

Because of the high magnification required, only a small portion of the device can

16

Level Technologies Technical Challenges 1

0 Sample Preparation

Etching Etching

1 Image Acquisition

SEM Accuracy

Image processing Geometry

BMP to GDS—II Staging

Unconventional technology

2 Geometric Description

Postprocessing Process information

Design rule checkers

3 Transistor Netlist

Syntactic matching Exact models of gates

Semantic matching Unconventional technology

Semantic matching

4 Gate Netlist

4a Layout

Pattern matching Combinatorics

Syntactic matching Optimizations

Semantic matching Library support

Contextual matching Incomplete information

Optimization tools Clustering

Function-centric naming

4b Timing

Simulation and modeling Unconventional technology

Technology-specific information

5 Register Transfer

Model generation Complexity

Sequential functionality Validation

Timing Automating process

Domain-specific information

6 Behavioral I

Table 1.1: Reverse engineering technologies and challenges, 1997.

17

be imaged at a time. Therefore, a series of images must be taken, one at a time, to

capture the geometry of the entire layer. The staging precision of current SEMS is not

accurate enough to guarantee that consecutive micrographs are precisely adjacent.

During the mosaicing process, consecutive images that overlap must be identified

and smoothed. Consecutive images that contain a gap in the field boundaries must

be identified and filled in. Because it is difficult to position the chip so that it is

completely level, this process is further complicated by the fact that various portions

of the chip surface require different foci.

The chip scanner represents a state-of-the-art system for image acquisition. It

consists of an SEM, a highly accurate stage, and mosaicing software that aligns each

image to the next, so overlaps and gaps in the field boundaries do not distort the

overall view. The chip scanner micrographs are stored as a series of bitmap data

(BMP) files.

Geometric Description (1 —> 2)

After an aligned, high—resolution image is acquired, geometric data must be ex-

tracted from it. This process is currently performed though the use of chip scanner

software. This software converts bitmap images into a geometric data stream (such as

Cadence’s GDSII format) that contains position information. This process works well

for some conventional technologies but is subject to complications when used with

unconventional technologies. Furthermore, chip scanners allow the positions of any

additional images to be Specified though the use of position information. This allows

information from areas of obvious error to be obtained. However, although image ac-

quisition is not necessarily 100% complete and accurate, a high degree of accuracy is

18

often possible, given sufficient time and samples. The feasibility of automatically ex-

tracting mask layer information from scanned images of digital electronics has been

well demonstrated (Augustus, 1990; Fretheim, 1988; Hayden, 1989; Mueller, 1989;

Querns, 1989).

Transistor-Level Description (2 -—> 3)

The next goal is to translate the geometrical level description of the device to the

transistor level. This goal is accomplished through the use of commercially available

CAD tools (design rule checkers) that can examine geometric data and recognize

physical structures (such as transistors, resistors, and the like). Furthermore, design

rule checkers may report possible errors in the description, improving the quality of

the geometric description.

Gate-Level Netlist Layout (3 —-) 4a)

The next step in the design recovery process is the determination of the the gate-

level netlist. The current approach relies upon finding known transistor-level im-

plementations of logic gates within the transistor-level description. Currently, this

process is carried out by software which performs syntactic (or structural) matching.

Syntactic matching techniques, such as the University of Washington’s subgemini al-

gorithm (Ohlrich et al., 1993), require extensive and complete libraries and are subject

to failure when implementations of gates are unconventional. Because modifications

are commonly made to the transistor-level implementations of gates to affect power

levels, timing, and other design issues this process is not necessarily able to identify

all gate-level devices.

19

Gate-Level Netlist Timing (3 —+ 4b)

In addition to obtaining the design layout of the gates, the extraction of timing

information has been identified as a crucial step in the design recovery process. Since

timing is based on a variety of factors (including doping levels, parasitics, and delays

in interconnects), the extraction of gate-level timing information from a transistor-

level netlist has not yet been studied extensively. It is believed, however, that this

problem will not pose a significant challenge.

Register-fianSfer-Level Devices Description (4a —-> 5)

The task of identifying RTL modules from a gate-level description of a device is

exceptionally complicated. Initial approaches attempt to syntactically match RTL

devices to Specific gate-level implementations of those devices as defined in a library.

These structural approaches, although efficient, are limited by the completeness of

the library and the optimization techniques used in the design of the original device.

More general semantic matching techniques are required to allow the identification

of block-level modules whose implementation is not known a priori. Furthermore,

the identification of RTL modules in systems for which complete information is not

available is particularly challenging.

The transformation from the gate—level to the register-transfer—level has been iden-

tified as the current critical area of research in the design recovery process. This

dissertation focuses primary on research related to this transformation. Chapters 3

and 4 discuss an approach to the challenge of incomplete information during this

transformation. Chapter 5 discusses a technique for semantic equivalence checking

which allows efficient semantic matching during this transformation.

20

Register-Transfer-Level Timing Description (4b -—> 5)

The transformation of a device’s gate-level timing description to the RTL timing

description is currently unexplored. It is believed that accurate, descriptive informa-

tion can be obtained for each RTL device identified through the use of the gate-level

timing information obtained in level 4b. The RTL devices with timing information

can be represented in any hardware description language (HDL) that includes timing

descriptions. VITAL (VHDL Initiative for Timing Annotated Libraries) was pr0posed

as an appropriate HDL.

Behavioral-Level Description (5 -—> 6)

The final step in the design recovery process is to construct a complete and func-

tional behavioral-level model of the device under study. Such a model can be validated

and used to specify the design of a new implementation of the device. The problem of

transforming a description from the RTL level to the behavioral level is currently open

to solution. This transformation may be inherently intractable and therefore difficult

to automate; intervention by a human engineer is currently considered necessary.

1.3 Contributions

The research presented in this thesis concerns design recovery for the combinational

logic in obsolete components (Section 1.2.2). The transformation of the component

design from the gate-level to the RTL has been identified as the current critical

area of research in the design recovery process (Section 1.2.3). The goal of this

transformation is to produce a RTL description of the obsolete component suitable

21

for restructuring and reengineering from a recovered gate-level description and any

additional available design information. AS will be discussed in Chapter 3, one of the

key problems with this transformation is that a complete gate-level description of the

component is often unavailable. Furthermore, Since RTL devices have any number of

legal gate-level implementations, this transformation is inherently difficult.

The major contributions of this work are three-fold. First, we discuss a systematic

approach for both the representation of the known functionality and the deduction of

unknown functionality for a system under redesign. This methodology includes tech-

niques for discovering don’t care conditions and using available information about

the overall behavior of the circuit (such as test set information or out-of-date paper

schematics) to reconstruct the intended functionality of the circuit. The objective of

this design recovery approach is to allow the engineer to represent both the functional-

ity and the structure of the system, represent additional system knowledge, determine

missing information, and detect conflict between available design information and the

actual design implementation. This approach is a new mechanism for reconstructing

such information efficiently.

Furthermore, we present a semantic matching technique that allows the identifi-

cation of both standard and nonstandard implementations of RTL devices in a gate-

level description. Existing syntactic matching techniques have proven incapable of

identifying devices that have been optimized during synthesis, constructed from non-

standard cell libraries, or otherwise obfuscated. A new semantic equivalence checking

technique for testing matchings between library devices and gate-level subcircuits is

introduced which is significantly more efficient than previous techniques.

22

Lastly, we propose a preliminary approach to the formal design recovery of obsolete

systems. We discuss the capabilities of this approach, as well as its limitations.

The algorithms presented in this dissertation have been implemented in software.

Results are presented at the ends of Chapters 4 and 5 to illustrate the utility of these

techniques.

1.4 Dissertation outline

The remainder of this dissertation is structured as follows. Chapter 2 presents terms

and notation used in this field, commonly used mathematical models for circuits

and functions, and commonly defined operations. In particular, it focuses on the

capabilities and limitations of the binary decision diagram (BDD).

Chapter 3 discusses the limitations of the traditional BDD representation and

presents the structural BDD (SBDD), a Specific interpretation of a standard BDD

which is used extensively in our approach to design recovery when only partial im-

plementation specifications are available. It discusses unknown (blackbox) portions

of combinational circuits and shows how SBDDS can be used to represent multiple

Boolean relationships among known circuit structures, especially don’t care relation-

ships.

Chapter 4 introduces the reengineering from partial specifications (RFPS) prob-

lem. It discusses a methodology which allows unknown portions of gate-level de-

scription to be Specified through the use of SBDD techniques. It also discusses the

representation of partial knowledge as SBDD constraints and the effect of don’t care

23

relationships on blackbox specification. Furthermore, this chapter presents experi-

mental results from these techniques.

Chapter 5 addresses the problem of identifying high-level components in a gate-

level netlist. It discusses existing techniques that perform structural (syntactic)

matching, and introduces new functional (semantic) matching techniques. Ruther-

more, it presents heuristic techniques that help to overcome the factorial search Space

inherent in semantic matching. Preliminary results are presented to illustrate this

technique.

Next Chapter 6 proposes a design recovery approach which incorporates the SBDD

and semantic matching techniques presented in Chapters 3—5. It discusses the capa-

bilities and limitations of the proposed approach, as well as discussing its correctness

and the the complexity issues inherent in this problem and our pr0posed solution.

Finally, Chapter 7 concludes the dissertation with a summary of the dissertation

and a discussion of future research directions.

24

Chapter 2

Representation of Boolean

relationships

The goal of digital design recovery is to recover the design intent underlying a known

or partially specified circuit implementation. This problem is particularly challenging

because it requires automated techniques to provide information about the function,

purpose, and structure of the existing design and transformations that guarantee that

the functionality of the circuit is not compromised. This task is complicated by the

fact that many digital design implementations undergo iterative optimizations that

can hinder understanding the high-level function of a component in the final imple-

mentation. Furthermore, complete specifications of the design may be incomplete or

unavailable in many situations.

For any reverse engineering methodology to overcome these complications, it must

enable one to recognize the functionality of any component of an implementation in

the context of the overall circuit function. This recognition of functionality may be

25

inherently impossible given an incomplete implementation, but available information

may allow the automated deduction of a component’s general function. Such an ap-

proach requires formal techniques for the representation and manipulation of available

information.

This chapter presents the terminology and notation used in formal approaches to

digital design and verification. It also presents commonly used mathematical models

for circuits and Boolean functions and commonly defined operations. In particular, it

defines the binary decision diagram (BDD), which has quickly become the standard

mechanism for representing Boolean relationships in tools for design automation. It

also discusses the capabilities and limitations of the BDD in the design recovery

process.

2.1 Notation and terminology

A system description passes through different levels of design in a hierarchical frame-

work. This framework expresses the behavior of a design as it evolves and becomes

more detailed (Chapter 1.1.2). The iterative flow of the design process or life-cycle

generally starts with the design Specification (behavioral level). This design is defined

in more detail by using library circuits and glue logic to create a RTL (register-transfer

level) description. This description is synthesized, and optimized to create a netlist

of gates (structural level). This structural-level implementation is the lowest level of

design considered in this dissertation.

Descriptions of formal approaches for design synthesis between the RTL and the

26

gate-level of design use a specific vocabulary and terminology. Relationships at these

levels are customarily described by using Boolean algebraic notation. We will use

this same terminology when describing reverse engineering approaches between these

levels. Our notation follows Bryant (1986) and Mailhot (1991).

2.1.1 Basic notation

Definition 2.1 B = {0,1} is the two—valued Boolean domain. Boolean variables are

denoted by subscripted characters and can take on values from the set 8.

Definition 2.2 The Boolean operators disjunction {Boolean 0R), conjunction

(Boolean AND), and inversion (Boolean NOT) are represented by the symbols +,

- (or whitespace), and an appended apostrophe (or an overbar), respectively (e.g.

(231' y1+ xj)’ = x1y1+ (1347').

Definition 2.3 Using Shannon’s Theorem (Shannon, 1938; Shannon, 1949) a

Boolean function .7051, . . . ,x..) is a composition of a finite number Boolean oper-

ators and variables. A single-output Boolean function is a function f : B” —> B. An

m-output Boolean function is a function .7" : B" —> B’".

The phase of a Boolean variable x, indicates whether the value of 3:, is to be used

directly or complemented (inverted). A Boolean function f iS said to be unate in

Boolean variable 12,: if 2:,- appears always in only one phase in the expression of f. .7: is

said to be positive (or negative) unate in :6,- if only x,- (or :62) appears in the expression

of .7". f is binate in :6,- if the variable appears in both phases in the expression of .77.

27

Definition 2.4 The input vector x and output vector y of the Boolean function .7:

: B" —> B'" are each one element of the domains B" and B'", respectively.

In general, the vector variables associated with the inputs of the Boolean function

.7-',-(:r1, . . .,a:,,) are denoted as x,. When necessary, the jth input of .7}, x], 1 g j S n

is denoted as x,4j. Similarly, the vector variable associated with the output of the

Boolean function .77,- : B" —> 8'" is denoted as y,. When necessary, the jth output of

f}, y], 1 S j S m is denoted as yi4j. The output may be denoted simply as y,- when

T, is a Single-output function.

Definition 2.5 The image of A under .7: : B" —> 8'" is the subset of B'", denoted

by .7(A), where A is a subset of B". The range of .77 is the image of 8" under f'

(14:13”).

2.1.2 Application-Specific terminology

It is important to be able to discuss the subset of Boolean vector space (n-space) that

represents the sets of input vectors for which .7: takes the value 1.

Definition 2.6 The satisfying-set (or on-set) Sy of a single-output Boolean function

.7:(x1, . . . ,3”) is the set ofinput vectors {xj,j = 1,. . . , ISA} offfor which .7:(x) = 1.

The input vectors of the on-set are also called minterms. The ofl'-set of a Boolean

function .7: is defined as the set of input vectors {Xj,j = 1, . . . ,2" — ISfl} off for

which f(x) = 0.

Definition 2.7 The restriction of .7-‘(x) with respect to 23,-, denoted as .7: lag, is

28

7(x1, . . . ,x,_1,c,x,+1, . . . ,3"). The restriction of 7(x) is referred to as the positive

cofactor of 7 when c = 1 and as the negative cofactor of .7 when c = 0.

Definition 2.8 The Shannon expansion (Shannon, 1938) of 7 around :13,- represents

the equality 7 = x.- -7|x,=1 +3137 - 7|x4=0.

Definition 2.9 The smoothing of 7(221, . . . ,xn) with respect to a variable 1:,- is 834. =

f|25=l +f|$g=0°

The smoothing of a function with respect to a variable corresponds to dropping

that variable from further consideration. Informally, it corresponds to deleting all

appearances of that variable (De Micheli, 1994).

Definition 2.10 The true support or dependence set of a Boolean function

7(xl,...,:t,,), denoted If, is the subset {an-I7 lxizoaé 7 |14=1} of the set of vari-

ables {$1, . . . ,xn} used in the expression of 7. .7 depends on a variable x,- if and

only if 2:,- is a support (a: E If) of 7.

Definition 2.11 The function .7 |34=g is defined to be the composition of Boolean

functions 7: B" —-) B and g : B" —+ B, 7(x1,...,a:,-_1,g(a:1, . . . ,Tn),:t:,-+1, . . . ,xn).

2.1.3 Incomplete Boolean functions

Boolean functions can be completely or incompletely specified. Completely specified

functions follow the previous definitions. Incompletely specified functions have their

domain and range extended to the augmented Boolean domain.

29

Definition 2.12 B = {0, 1,d, u} is the augmented Boolean domain, where d means

either 0 or 1 (a don’t care) and it represents unknown.

Definition 2.13 The assignment of the value d to the Boolean variable 3:,- in an

incompletely specified Boolean function implies that the Boolean value of :12,- does not

afiect the output of the function. The value of 2:, may be either 0 or 1; we say that 1:,

is a don’t care.

Definition 2.14 Don’t care sets represent the conditions under which an incom-

pletely specified Boolean function takes the value d.

Don’t care conditions occur in Boolean logic either because some combination

of inputs of a Boolean function never occur (the domain of 7(121, . . . , an) is smaller

than B"), or because some outputs of 7 are not observed. The first class of don’t

care conditions is called controllability don’t cares, and the second class is called

observability don’t cares.

Definition 2.15 The assignment of the value it to the Boolean variable y, in an

incompletely specified Boolean function implies that the value of y,- is unknown. Al-

though the value of y,- is not specified, it is not don’t care. Neither 0 or 1 can be

assigned to y,- unless there is additional information to determine the appropriate

assignment.

2.1.4 Representing combinational'logic

Definition 2.16 A Boolean network N is an ensemble of Boolean functions. A

Boolean network is represented by a set of N Boolean variables V = {y1, . . .,yN}

30

and a set of Boolean functions {71, ...,.7N} such that N = {y.- = 7,-,i = 1,. . .,N},

where y,- = 7,- represents an assignment of a single-output Boolean function for every

Boolean variable. Functions 7,-,i = 1,. . .,N, have K, g N inputs (i.e., 7,- : B’“ —->

B), with each input corresponding to a Boolean variable of V.

Subsets of Boolean networks are also Boolean networks. Boolean networks are

represented by graphs G(V, E) where the vertex set V is in one-to-one correspondence

with the set of Boolean variables V = {91, . . . , 3m} and where E is the set of edges

{e,j|i,j E {1, . ..,N}} such that e,,- is a member of the set E if y,- E support(7j).

Such networks are acyclic by definition.

Definition 2.17 The in-degree of a vertex in a Boolean network is referred to as

the variable ’3 fanin. Similarly, the out-degree of a vertex in a Boolean network is

referred to as the variable ’3 fanout. The set of all variables represented by vertices

that are reachable from the vertex representing variable y is y ’s transitive fanout. y ’s

transitive fanin is the set of all variables which contain y in their transitive fanout.

Definition 2.18 Primary inputs are Boolean variables of a Boolean network that

depend on no other variables (i. e., 7,- is the identity function for primary inputs).

Primary outputs are Boolean variables on which no other variable depends.

Definition 2.19 The Boolean behavior of an n-input, m-output Boolean network is

the Boolean function 7 : B" —-> B” that corresponds to the Boolean network.

A Boolean network with Boolean behavior represented by a set of completely

Specified Boolean functions is fully specified. Conversely, a Boolean network whose

31

Boolean behavior is represented by one or more incompletely specified functions and

that contains one or more unknowns is only partially specified.

A combinational circuit describes a fully specified Boolean network and, therefore,

has a set of associated Boolean functions that represent its Boolean behavior. A par-

tially Specified combinational circuit describes a partially specified Boolean network

that contains partially specified Boolean behavior. A function which represents the

behavior of any structure in a combinational circuit is dependent upon the values

assigned to variables in its fanin. Thus the only variables upon which the value of a

variable representing a structure in a combinational circuit depends on are those in

its transitive fanin.

2.2 Decision diagrams

A number of forms have been suggested for representing Boolean functions. The

truth-table is one such representation. Another is the decision diagram, introduced

by Lee (1959).

Decision diagrams represent a function as a directed acyclic graphic (DAG). There

are two types of nodes: terminal nodes and decision nodes. Terminal nodes have

no children and contain values corresponding to a possible output of the function.

Terminal nodes are generally represented graphically as rectangles or Simply as their

value label. Decision nodes are labeled by a variable identifier and have one outgoing

labeled are for each possible value that the variable may be assigned. Decision nodes

are generally represented graphically as circles containing their variable identifier. A

32

decision node with no incoming arc is called a root node.

The value of the function for some variable assignment can be determined by

traversing the graph beginning at the root node for the expression in question. At

each decision node, the arc whose label corresponds to the value of the variable

assigned to that node is followed. The terminal node reached in this way contains

the value of the represented expression under that variable assignment.

Figure 2.1: A simple decision diagram. This decision diagram represents the

algebraic function x + y where x, y E {0,1,2}.

Decision diagrams, such as that depicted in Figure 2.1, are generally referred to as

multi-valued, multi—terminal decision diagrams (MDDS or MTDDS) (Minato, 1996).

MDDS can deal with arbitrary functions, but the size of the graph quickly becomes

unmanageable for complicated functions. Because most design automation problems

deal only with Boolean functions, this general data structure can be optimized for

the manipulation of Boolean symbols.

33

2.2.1 Binary decision diagrams

The binary decision diagram (BDD) was introduced by Akers (1978) as a decision

diagram form to represent Boolean functions. BDDS are decision diagrams in which

there are exactly two terminal nodes labeled “0” (the 0-terminal) and “1” (the 1-

terminal) and in which each decision node has exactly two outgoing edges: an are

labeled “0” (a O-edge), and an are labeled “1” (a I-edge). Therefore each decision

node N has exactly two children: N.0 (the child along N’s 0-edge) and N.1 (the child

along N’s l-edge).

0

'\

Node: N.l Node: N.0

Label: 0—terminal Label: l-terminal

Figure 2.2: Simple BDD. A BDD G representing the function: fN = v - 0 + 5- 1

Consider a BDD G consisting of a root decision node N, labeled with the variable

v, and N’3 two children. Let N.0 be the 1-terminal and N.1 be the 0-terminal. The

BDD G (Show as Figure 2.2) then represents the function:

fN = v - 0 + v- 1

= D.

In general, the function of any node N, labeled with the variable v, can be defined

recursively in terms of its two children, N.0 and N.1, by using its Shannon expansion

(Definition 2.8) as follows:

34

szv'fNJ‘l'F'fNo- (2.1)

Figure 2.3 illustrates a BDD along with the function and truth-table that the BDD

represents. Each node has two outgoing edges, a 1-edge (Shown as a solid arc) and a

0-edge (shown as a dotted arc). The functional value for any variable assignment is

determined by traversing the path from the root node to a terminal node by following

the appropriate branch at each decision node.

F2 = 7107299: + ijf—sl

X, x2 X3 F2

1 d d o

o 1 1 o

o 1 0 1

o o 1 1

0 0 0 O

(a) (b)

Figure 2.3: BDD and functional truth-table. A solid (dotted) arc represents the

branch taken when the decision variable is l (0).

2.2.2 Reduced ordered binary decision diagrams

BDDS were not widely used until a set of efficient algorithms for BDD implementation

was introduced by Bryant (1985) . Shannon (1949) asserted that most Boolean func-

tions require exponential Size when represented graphically. Bryant demonstrated,

however, that under reasonable restrictions, BDDS could efficiently represent a wide

range of Boolean functions.

35

Bryant’s BDD implementation requires that the BDD be ordered and reduced.

Each decision variable in an ordered BDD (OBDD) must obey an ordering restriction

that requires it to appear once, at most, on any path from the root node to a terminal

node and in a sequence defined by a total ordering of the variables. Furthermore, as

a result of eliminating and sharing isomorphic subgraphs within an OBDD, the BDD

is reduced to a compact form.

Following Bryant (1986) we now formally define reduced, ordered BDDS:

Definition 2.20 A binary decision diagram (BDD) is a directed acyclic graph con-

sisting of two types of nodes. A nonterminal node v (also referred to as a decision

node) is represented by a 3-tuple (index(v), child¢(v), child,(v)), where index(v) E

{0,1,...,n — 1}, and child1(v) and child,(v) are themselves nodes of the BDD. A

terminal node v is represented by a 2—tuple (index(v), value(v)), where index(v) = n

and value(v) E {0, 1}.

Definition 2.21 A BDD is ordered if for every nonterminal node v, index(v) <

index(child;(v)) and index(v) < index(child,(v)).

Definition 2.22 A BDD is reduced if there is no nonterminal node v such that

child;(v) = child,(v) (redundant nodes) and if there are no two nonterminal nodes u

and v such that Child((U) = child,(v) and child,(u) = child,(v) (isomorphic nodes).

The ordered, reduced form is canonical and identical for equivalent functions

(Bryant, 1985). Although properly referred to as a reduced ordered binary decision

diagram (ROBDD), the term BDD has generally come to imply a ROBDD implemen-

tation. The BDD presented in Figure 2.3(a) is an ROBDD for the function presented

36

in Figure2.3(b). All BDDS discussed in the remainder of this dissertation will be

implemented as ROBDDS.

Boolean operations such as logical AND, OR, and equality can be applied to func-

tions represented as BDDS by using BDD manipulations. Bryant presented a suite

of algorithms implementing these operations which manipulate the BDD representa-

tions of two functions and return the BDD representing the resulting function. Most

BDD implementations manipulate BDDS by using the conventional BDD Apply al-

gorithm (Figure 2.4) Bryant introduced. Through the use of dynamic programming

techniques (used to cache intermediate results), these operations have an average time

complexity almost proportional to the size of the BDD (Bryant, 1985).

Figure 2.4 provides the details of the conventional depth-first BDD Apply algo-

rithm. Step 1 illustrates the base case of the recursive algorithm. If both BDD inputs

are terminal nodes, then the operation is performed on their values, and the terminal

node corresponding to the result of that operation is returned. Step 2 is a dynamic

programming step: if the routine has already processed the two input BDDS, it looks

up the result calculated and returns that BDD. Steps 3-6 create the BDD result of

the Apply operation through recursion. Step 7 removes the root of the result if the

value of its decision variable has no effect on the functional output of the BDD; that

is, it removes irrelevant nodes. Step 8 checks to see if the computed BDD is iso-

morphic to any BDD created earlier in the recursive process. If it is, the operation

uses the previously calculated BDD (removing isomorphisms). If it is not isomorphic,

the operation returns the computed BDD after storing it for future use in Step 9.

This algorithm has a worse case time complexity of O(IF”GI), but the expected time

37

complexity is O(IFI + IG I + IResultl) (Bryant, 1986).

Apply (binary.operation op, bdd F, bdd G)

begin

1. if (is-terminal(F) and is_terminal(G)) then

return terminal(F op G).

2. if (previously.done(F, G)) then

return tableJookup(F, G).

3. v = top_variable (F, G);

4- result-0 = Apply(op, F |v=01 G lv=0)i

5. resultl = Apply(op. F lv=la lezlli

6. result = make_bdd(v,result.0,result.1);

7. if (result.0 = result.1) then

return result. 0.

8. if previously_created(result) then

return previous_bdd(result).

9. saven'n-bdd_table(result);

return result.

end.

Figure 2.4: Recursive BDD Apply algorithm (Ranjan et al., 1996).

The BDD has been of significant interest in the design automation field, and

results of ongoing research regularly improve the efficiency of this representation.

Researchers in parallel and distributed systems have recently developed breadth-first

algorithms to implement BDDS of 15 X 106 nodes and more (Ranjan et al., 1996).

Likewise, multi—rooted or shared BDDS have been proposed that allow multiple BDDS

representing multiple functions to share subgraphs (Minato et al., 1990). Figure 2.5

illustrates a shared BDD for the function of the sum and carry outputs of a two-bit

38

full adder.

c out sum_hi sum_lo

Lhi

Figure 2.5: Shared binary decision diagram for two-bit adder. This multi-

rooted BDD represents the function performed by a two-bit adder. In this represen—

tation (Somenzi, 1997), the label of each node is a unique random name. All nodes

of the same level correspond to the same variable, whose name is shown at the left

of the diagram. Solid lines indicate then arcs (i.e., l-edges). Dashed lines indicate

else arcs (i.e., 0-edges). Dotted lines indicate complemented else arcs and negate the

value of the terminal.

2.3 Applications of binary decision diagrams

Although the basic idea of the BDD has been around for more than 30 years, its

was only recently that canonical representation and efficient implementation made

39

BDDS a useful tool for CAD (Brace et al., 1990). BDD researchers have shown

that polynomial size BDDS exist for a wide class of practical circuits (Fujita et al.,

1988; Madre and Billon, 1988; Malik et al., 1988; Brace et al., 1990). The success

of BDDS as tools for solving seemingly intractable problems has motivated research

into variants of the basic data structure which aid in solving a variety of heretofore

impractical applications. An important subset of BDD research areas are listed in

Table 2.1.

Research Tapic Reference

Algebraic decision diagrams

Applications to polynomial algebra

Asynchronous circuit synthesis

Binate covering problem solver

Breadth-first manipulations

Dynamic variable reordering

Exact and approximate FSM traversal

techniques

Efficient equivalence checking

Formal verification of arithmetic circuits

ILP solver based on edge-valued BDDS

Implicit prime generation and

two-level minimization

Implicit set representation

in combinatorial problems

Matrix representation using MTBDDs

Multi-valued decision diagrams

Parallel algorithm for BDD construction

Symbolic synthesis techniques

Timed binary decision diagrams

Bahar et al., FMSD’97

Minato, IWLS’95

Lin et al., ICCAD’94

Jeong et al., ICCAD’92

Ashar et al., ICCAD’94

Rudell, ICCAD’93

Coudert et al., ICCD’90

Matsunaga, DAC’96

Bryant et al., DAC’95

Pedram et al., ICCAD’93

Coudert et al., DAC’93

Minato, DAC’93

Clarke et al., IWLS’93

T. Kam’s MS. Thesis, Berkeley’90

Kimura et al., ICCD’90

B. Lin’s, Ph.D. Thesis, Berkeley’91

Li et al., ICCD’97

Table 2.1: BDD research areas.

Many automated approaches to hardware verification, such as model-checking,

40

rely on BDDS or some variant as the underlying representation. Because of their

compactness and efficiency, the use of BDD forms has become essential in approaches

to a variety of CAD problems, especially those using formal methods for design and

verification. The design automation community is using BDDS ubiquitously in formal

verification, logic syntheses, test generation, and Simulation (Sentovich, 1996; Bryant,

1995). It is for these reasons that we chose to use BDD-based techniques in the

research presented in this dissertation.

2.4 Decision diagrams as proposition testers

A BDD can be viewed as describing two complementary subsets of an n—dimensional

Boolean search space: one in which the decision variable assignments produce a 0

(false) function value, and one in which the variable arguments produce a 1 (true)

function value. By creating a function 7 whose satisfying set S; (Def. 2.6, p. 28)

contains all assignments of the variables’ arguments that satisfy some property, BDDS

can be used to test any proposition.

Figure 2.6a Shows the BDD representation of the Boolean proposition ((a V

b) A (c V d)). Logical conjunction/disjunction representation is used to empha-

size that this is a proposition, not simply a Boolean function. Each element of

the satisfying set describes a unique path beginning at the root node and end-

ing at the 1-terminal. As long as at least one such 1-path exists, the propo-

sition is satisfiable. In this example, the satisfying set of 1-paths (a,b,c,d) is:

S; = {(1,d, 1,d), (1,d,0,1), (0,1,1,d),(0,1,0,1)}.

41

(C)

Figure 2.6: Using BDDS to represent constraints. BDDS representing (a) the

pr0position [(aVb) A (ch)], (b) the proposition b, and (c) the proposition {[(avb) A

(c V d)] A b}, constructed by composing BDDS (a) and (b).

42

BDDS allow us to test a proposition by applying constraints to the proposition’s

BDD representation (Baldwin, 1994). For example, let us test our proposition under

the constraint that b = 0. By creating a BDD for the proposition 5 (Figure 2.6(b))

and using the Apply algorithm (Figure 2.4) with the Boolean AND operation to

compose the two BDDS, we create a new BDD (Figure 2.6(c)) that represents the

original proposition with the constraint that b = 0. In this new BDD, in all 1-

paths, a = 1, a necessary condition when b = 0. By examining the l-paths (a,

b=0, c, d) in this new BDD, we can determine each unique variable assignment

that results in the proposition being satisfied under this constraint, namely, S; =

{(1,0.1,d),(1,0,0.1)}-

43

Chapter 3

Representation of structural

relationships

To effectively approach the reverse engineering problem, one must be able to formally

represent and reason about Boolean relationships encapsulating known and deduced

system information. As shown in Chapter 2, a BDD representation of a Circuit’s

function provides a complete and compact representation of the Circuit’s behavior.

It does not, however, encode the relationships among internal structures and circuit

outputs that are vital to design recovery.

To successfully reverse engineer a digital component, one may need to make use

of relationships defined at the structural level of design. Since a straightforward

representation of the Circuit’s function fails to represent the structures defined in the

implementation, a new function that more completely represents the structure as well

as the functionality of the circuit needs to be defined.

This chapter presents the structural binary decision diagram (SBDD). SBDDS

44

allow for efficient discovery and compact representation of structural relationships

and don’t care conditions for multiple output functions.

3.1 Motivation for the structural binary decision

diagram

The key to representing and integrating full, and partial, functionality of digital com-

ponents lies in providing an efficient, canonical representation for available system

knowledge that can uniformly represent partial information from different levels of

design. Such a representation allows the transformation of existing design data ob-

tained from various sources into a representation useful for design automation. Such

a uniform representation also Simplifies the tasks of recreating the functionality of a

partially specified system and detecting conflicting design information.

The problems faced by an approach to such a representation include the following:

representing full, and partial, functionality of digital components and integrating

these representations; recreating the functionality performed by a system for which

only incomplete design information is available; identifying the high-level functionality

of known or recovered components; resolving conflicting information about the design;

and handling both combinational and sequential circuits/devices.

45

3.1.1 Limitations of traditional representation

As we have seen, the BDD is a key tool for representing functionality. 'ITaditionally,

BDDS are used to encode the behavior of a combinational circuit by representing

the function of each circuit output in terms of the primary circuit inputs (as shown

in Chapter 2). Terminal nodes of a BDD graph represent the logic values that a

function takes on for all possible input variable values. Since BDDS are concerned

only with functionality, all structure of the circuit is lost. Indeed, it is the canonical

form inherent in reduced BDDS that make them most attractive (Lai et al., 1992).

BDD-based techniques constitute a powerful approach to many problems in the

design automation field. Although serious efficiency issues are not uncommon in

BDD-based techniques, these issues are relatively well known (Bryant, 1995). The

traditional BDD representation of a combinational circuit, however, is not an adequate

tool for reverse engineering.

Figure 3.1 presents a simple single-output combinational circuit that we will refer

to as simplecircuit. This circuit is used throughout this dissertation to illustrate

basic concepts. Consider the schematic for simplecircuit (Figure 3.1(a)) and its

corresponding BDD (Figure 2.3, page 35). This BDD representation is the traditional

way in which BDDS are used to represent circuits.

This traditional BDD representation provides a complete and canonical represen-

tation of the circuit behavior. This representation is of great value, for example, in

the field of formal circuit verification. In particular, because BDDS are canonical

representations, checking a reference circuit for equivalence with a modified version

46

X1 X2 X3 M1 M2 M3 M4 F2 XS

1 1 l 0 0 0 1 0 l

444 1 1 0 0 0 1 0 0 1

1 0 1 0 1 0 0 0 1

1 0 0 1 0 0 l 0 1

O 1 1 0 0 0 l 0 l

0 1 0 0 0 1 0 1 1

_ _ _ 0 0 1 0 1 0 0 1 1

F2 = X1(X2Xa + X2X3) o 0 0 1 o o 1 o 1

(a) otherwise 0

(C)

Figure 3.1: Schematic, structural truth-table, and structural BDD

for simplecircuit. (a) Complete schematic and functional description of

simplecircuit; (b) Truth table for the structure function (Definition 3.3) of

simplecircuit; (c) BDD representing simplecircuit’s complete structure func-

tion. 1-edges (O-edges) are represented as solid (dotted) arcs.

47

of the circuit is easily accomplished. However, this representation does not encode

the structure or topology of the actual circuit, nor does it provide information about

the relationships among the internal gate values and the circuit outputs. A number

of combinational circuit implementations can satisfy the behavior Specified by the

BDD in Figure 2.3. Although this BDD describes the functionality of the circuit with

respect to its output, it does not contain any information regarding the configura-

tion of gates within the circuit that provides this functionality. This representation

corresponds to a specification from the behavioral level of design (Figure 3.2).

3.1.2 Requirements for new interpretation

In reverse engineering applications, the function of a combinational circuit may not

be completely Specified. In this case, any available information, including the re-

lationships specified by the t0pology of the circuit structures, may be of value in

determining the effective function of the unspecified component. Therefore, one must

depart from the traditional mechanism by which a BDD is used to represent a circuit

and define a different method by which the structure as well as the functionality of

the circuit may be encoded.

To recover design intent from an incomplete circuit implementation, we must be

able to perform deductions on whatever information is made available to us, regardless

of the level of abstraction" of the information. Thus, recognizing the functionality

in an incomplete circuit implementation description requires techniques that close

the gap among different levels of abstraction. It also requires algorithms that can

48

ENTITY simplecircuit IS

PORT(X1,X2,X3: in bit; F2: out bit);

END simplecircuit;

ARCHITECTURE behavioral OF simplecircuit IS

BEGIN

F2 <= (not X1) and (((not X2) and X3) or (X2 and (not X3))) after 10 ns;

END behavioral;

ARCHITECTURE structural OF simplecircuit IS

SIGNAL M1, M2, M3, M4 : bit ;

FOR ALL : nor2 USE ENTITY trace.nor2(behav);

FOR ALL : probe USE ENTITY trace.probe(behav);

BEGIN

gateO: nor2 PORT MAP (O => M1, a => X2, b => X3);

gatel : nor2 PORT MAP (O => M2, a => X2, b => M1);

gate2 : nor2 PORT MAP (0 => M3, a => M1, b 2) X3);

gate3 : nor2 PORT MAP (0 => M4, a => M2, b => M3);

gate4 : nor2 PORT MAP (0 => F2, a => X1, b => M4);

output.F2 : probe;

GENERIC MAP(“F2”, “Sim_resultS/F2”);

PORT MAP(F2);

END structural;
Figure 3.2: Behavioral and structural VHDL code for simplecircuit. The

behavioral description corresponds to the circuit Specification, which is efficiently

represented by a BDD. The structural description corresponds to the circuit imple-

mentation, which the SBDD (Chapter 3) efficiently represents.

49

deduce “new” information about function from the partial information available. The

result of these techniques should be a compact representation of complete component

knowledge for use by redesign tools. Such tools can take advantage of the information

so represented to discover or redesign the missing components of the implementation

description.

A new interpretation of standard BDDS has been developed that encapsulates the

relationships present in the structural description of a combinational logic circuit.

Structural binary decision diagrams (SBDDS) allow partial information related to the

function and logic structure of a module to be represented in a simple, yet powerful,

characteristic function. SBDDS not only retain the desirable qualities of standard

BDDS but also include necessary structural information needed to represent a partially

specified digital component. Thus, SBDDS correspond to a specification from the

structural level of design (Figure 3.2). SBDDS allow for canonical representation of

design data and also provide a data structure that allows the partial information

represented by the SBDD to be refined as the reengineering process progresses.

3.2 Structural binary decision diagrams

When attempting to reengineer a circuit from partial knowledge, discovering the

overall function of the circuit is the primary goal. Achieving that goal, however, may

require reconstructing the functionality of missing components within the circuit by

making use of structural context. The standard interpretation of BDDS encodes the

function of a circuit only in terms of the primary inputs and the outputs of the circuit;

50

all structural context is lost. However, instead of defining a new data structure,

we will define a different interpretation of standard BDDS that will encapsulate the

relationships present in the structural description of the circuit.

3.2.1 Overview of the SBDD

The primary difference between the SBDD interpretation of a circuit and the standard

BDD representation of a circuit is in the interpretation of the terminal nodes. In a

traditional BDD interpretation, the terminal labels represent the value of the function

for the input conditions described by the path from the root to the terminal. In an

SBDD interpretation, the l-terminal indicates that the path from the root to the

l-terminal may be a legal assignment in the circuit.

A legal assignment of variables is defined as an assignment of values to variables

that could occur in a circuit that does not deviate from its Specified behavior (i.e., a

fault-free circuit). To illustrate such an assignment, consider a circuit consisting of

an OR gate with inputs a and b and an output c. The following assignments (a,b,c)

are examples of legal assignments: (1,1,1), (1,0,1), (0,0,0). The following assignments

(a,b,c) are examples of illegal assignments: (1,1,0), (1,0,0), (0,0,1). (0,0,1) is an illegal

assignment because the structure of the circuit requires that c = 0 when both a and

b are equal to 0.

SBDDS may contain a variable representing the output of any gate, line, or other

logic structure within a circuit description. A 1-path in an SBDD is an assignment

of inputs, outputs, and internal structure values that do not contradict anything that

51

is known about the functional behavior of the circuit. This does not mean that any

path to the 1-terminal is a legal variable assignment; it only means that there is no

information which indicates such an assignment is illegal. Any path from the root to

the 0-terminal (a 0-path) represents an illegal assignment that contradicts available

knowledge about the relationships between the variables and thus cannot occur in a

fault-free circuit.

Informally, an SBDD for a digital circuit is a reduced, ordered, binary decision

diagram defined as follows:

a Each decision node variable may represent a circuit input, a circuit output, or

the value (output) of any structure performing a known or unknown function

within the circuit.

a A l-edge represents a state in which the structure represented by the decision

node variable has a value of 1.

a A 0-edge represents a state in which the structure represented by the decision

node variable has a value of 0.

a Any variable assignment that is a 0-path (ending in the 0—terminal) is illegal

and cannot occur in a fault-free implementation.

a Any variable assignment that is a 1-path (ending in the 1-terminal) does not

contradict any fact known about the function or structure of the circuit and

may occur.

52

Because of the large number of O—paths in most SBDDS, graphical representations

quickly become cluttered with arcs to the O—terminal. In this dissertation, all SBDD

terminal nodes are represented multiple times and without boxes. In figures, all 1-

edges are shown as solid arcs, and 0-edges are Shown as dotted arcs. For clarity, arcs

leading directly to the 0-terminal may not be represented in figures; any node for

which only one outgoing arc exists may be assumed to have the O-terminal as the

target for the missing complementary are.

3.2.2 Representing structure

The function of a combinational circuit is generally represented as a set of Boolean

functions, each of which describes the logical behavior of one of the Circuit’s out-

puts. This notation concisely represents the behavioral functionality of the circuit,

representing the function only in terms of the Circuit’s primary inputs and primary

outputs. Any number of circuit implementations exist which satisfy this behavioral

functionality. We now consider a description that can represent relationships between

structural components of a particular implementation.

Definition 3.1 Consider a combinational circuit A consisting of k internal compo-

nents. The variables representing the inputs or outputs to any internal component

are net variables and V denotes the set of all net variables. The circuit ’3 primary

inputs and primary outputs are special net variables and are included in V. In the

appropriate context, V is used to represent an assignment of Boolean values to the set

of net variables.

53

Definition 3.2 Each component i in a combinational circuit defines the relationship

between the component’s n,- inputs and its m, outputs. Denote component i’s input

variable vector as x; and its output variable vector as y; where each element in x;

and y; represents the value of a net variable in V. The function of component i can

therefore be represented as .7,- : 8'“ —> B’"‘,7,~(xi) = yi.

The characteristic function (De Micheli, 1994) of component i, 26,0

{0,1}"“'+'3"'I —> {0,1}, is defined to be:

X:C(XI,YI) = 1 iff 7:1(XI) = Yi- (3-1)

Consider a component labeled j that consists of a single AND gate: 34,4, 2

AND(xj41,x,-42). Figure 3.3 presents the function f; and characteristic function 33-0 of

component j.

(I) - - . x40

551,1 131,2 fj 44,1 374.2 911,1 4,

i (1) (1) l 0 0 1

0 1 0 0 1 0 1

0 0 0 0 0 0 1

otherwise 0

(a)
(b)

Figure 3.3: Function and characteristic function of a two-input AND gate.

(3) Output function; (h) Characteristic function.

Definition 3.3 The structure function of a k component combinational circuit over

the net variables V is defined as X5 : {0,1}'Vl —> {0,1} where:

54

k

X500 = II 41-069, yr)- (3.2)

The structure function, is a Boolean function in WI variables whose value is false

only for those assignments of Boolean values to net variables that contradict the

functional constraints imposed by the circuit structures. Hence, the value of the

complete structure function is false for net variable assignments that could not be

observed in the correctly functioning circuit.

Definition 3.4 A structural-level circuit implementation can be viewed as a directed,

acyclic graph (DA G) in which each vertex represents a structure (usually a gate) and

each arc (structurel, structureg) indicates that the output of structurel is an input to

structureg. This DAG forms a partial order on the set of net variables (Definition

3.1) representing the circuit ’3 components. A structural BDD (SBDD) is a ROBDD

representation of the combinational circuit ’3 structure function (Definition 3.3) with

a BDD variable order (Definition 2.21) that does not violate this partial order.

Consider the combinational circuit simplecircuit and its functional specification

presented in Figure 3.1(a) (page 47). This behavioral-level Specification describes the

function of the circuit in terms of its primary inputs and outputs. Figure 3.1(b)

presents the truth-table for the implementation’s structural function, which describes

the circuit in terms of its complete set of net variables. Figure 3.1(c) presents a BDD

which represents the structural function for simplecircuit; such a BDD is referred

to as the structural BDD (SBDD) for the circuit. In a completely Specified circuit,

the values assigned to the primary inputs completely specify the necessary value of all

55

other net variables. Therefore, for each assignment of input variables in a completely

Specified circuit, exactly one l-path exists in its structural BDD.

3.2.3 Single gate example

The schematic Shown in Figure 3.4(a) illustrates a subcircuit of simplecircuit (Fig-

ure 3.1(a)) that consists of a Single NOR gate M1. Figure 3.4(b) illustrates the

traditional BDD representation of this circuit. The BDD represents the value of the

output M1. Observe that the output M1 = 0 in this circuit when X2 = 1. This is

represented in the BDD by the path X2 -1—> 0. In this traditional representation, the

terminal labels of the BDD represent the output value of the function, in this case the

gate M1. Although this representation is sufficient for a circuit consisting of a single

gate, there is no means for representing the output value of any additional gates.

M1=X2+X3

X2 X3 M1

D L 1 . .
[ED—’1 0 1 0

(4 0 0 1

a [j]

(C)

(b)

Figure 3.4: ROBDD and functional behavior of a NOR gate.

Consider the SBDD representation of this same one-gate circuit (Figure 3.5(a)).

The SBDD representation contains all of the information present in the BDD repre-

56

sentation. For example, observe that when X; = 1 in the circuit, the output M1 = 0.

This is represented in the SBDD by considering two paths. The path X2 —1> M1 —0> 1,

represents that if X2 = 1, then M1 = 0 is a legal assignment. Conversely, the path

X2 3+ M1 1) 0 represents that if X2 = 1, then M1 = 1 is an illegal assignment. Since

exactly one legal assignment exists for M1 when X2 = 1, it can be deduced that the

gate M1 = 0 when X2 =1.

X2 X3 M1|F'

1 d 0 1

0 1 0 1

0 o 1 1

I' a (b)

l 0 l 0

(a)

Figure 3.5: SBDD and structural description of a NOR gate. For clarity,

terminal nodes in SBDDS are represented multiple times and without boxes.

Observe that the SBDD interpretation represents the same information present in

the BDD representation but that it does so by representing M1 as a decision node,

rather than as the overall function of the BDD. This representation allows uS to repre-

sent the values of any number of structure outputs within a single BDD representing

the Circuit’s structure function. Figure 3.1(c) presents a SBDD constructed in this

way.

57

3.3 Representing unknown structures

In many cases, as discussed in Chapter 1, complete information regarding the func-

tionality of one or more circuit components is unavailable. Any component whose

functionality is not fully Specified is called a blackbox structure (Wojcik et al., 1997).

The outputs of such a structure are referred to as blackbox net variables.

Definition 3.5 Let the behavior of an output b E V of a blackbox component i with

inputs x; be defined by the partial function 7 : 3’“ —+ Sm‘,7(xi) where B is used as

defined in Definition 2.12. Then the characteristic function for blackbox output b is

defined to be:

0, if 7(xi) 76 b

95.31% b) = 1, if r(x,) = b (3-3)

1, if .7(xi) = undefined

By defining the characteristic function of a partially Specified component in this way,

one can state the following property of the circuit’s structure function.

Theorem 3.1 Let X5 be the structure function for a combinational circuit A as given

in Definition 3.3, where X0 represents a characteristic function for any structure,

including structures specified by a partial function, as defined in Definition 3. 5. Then

XS(V) = 0 only if the assignment of Boolean values to net variables V is never

observable in the functioning circuit A.

Proof: Assume that A’s structure function XS(V) = 0 for some assign-

ment of Boolean values to net variables V that was observable in the func-

58

tioning circuit. According to Equation 3.2, X5 (V) = L, X,C(xi, yi) = 0.

Thus, there must exist a component j in A for which Xf(xj,yj) = 0.

Therefore, according to Equation 3.3, fJ-(xj) 76 yj. Since Xj,yj g V, this

conclusion contradicts the assumption that V is observable in the func-

tioning circuit, and thus the assumption must be false.

Definition 3.5 provides a mechanism for representing partial knowledge within

the SBDD framework. A structure function that includes the characteristic function

of a blackbox output may only partially Specify the functionality of the combina-

tional circuit it represents. Theorem 3.1 provides a basis from which it is possible to

deduce the set of possible relationships that the blackbox may represent. In a struc-

ture function including partial knowledge, an assignment of net variables for which

XS(V) = 1 does not contradict any known relationship, but it is not guaranteed to be

the Single relationship that represents the observable functionality of the blackbox in

the functioning circuit. The single relationship that represents the blackbox can be

determined only by eliminating all other relationships from consideration. Formally:

Definition 3.6 The structure function XS fully specifies the functionality of the com-

binational circuit A it represents if for any assignment of A ’3 primary input variables

X); Q V, there exists exactly one assignment of values to the net variables in V — xA

for which XS(V) = 1. Otherwise, XS partially specifies the functionality.

Figure 3.6(a) presents a partial specification for simplecircuit, representing a

portion of the implementation as a blackbox. In the SBDD (Figure 3.6(c)) that

represents the partial Specification’s structure function (Figure 3.6(b)), there is no

59

longer a unique l-path for every input variable assignment. Thus, this structure

function only partially specifies the functionality of the circuit.

Bldhox

O

b

c

F2 = 7‘1- ' 133(th M1. X3)

(8)

X1 X2 X3 M1 BB F2 XS

1 l d 0 d 0 1

1 0 1 0 d 0 1

1 0 0 1 d 0 1 '~ 4

0 1 d 0 1 0 1

0 1 d 0 0 l 1

0 0 1 0 l 0 1

0 0 1 0 0 1 1 0 I 0 I 0 l l

0 0 0 1 1 0 1

o 0 o 1 o 1 1 (0)

otherwise 0

(b)

Figure 3.6: Schematic, structural truth-table, and SBDD for partial

simplecircuit. (a) Partial schematic and functional description of simplecircuit;

(b) 'Il‘uth table for the structure function (Definition 3.3) of partial simplecircuit;

(c) SBDD representing simplecircuit’s structure function. The blackbox net vari-

able BB is used to represent the value of the unspecified structure output M4.

Observe that all primary input variable assignments in which X1 = 1 have a single

1-path, and that the value of the blackbox has no effect on the circuit output. This

fact can be verified though observation of the partial circuit schematic (Figure 3.6(a)).

The representation has encapsulated the fact that the value of the blackbox is a don’t

care for the value of F2 when X1 = 1. The representation also clearly shows that the

60

function of the blackbox structure and the value of its output BB defines the value

of the output variable F2 when X1 51$ 1. In such Situations, we say that F2 depends

on or is sensitized to BB. Formally:

Definition 3.7 Let the partial specification of a combinational circuit A with primary

inputs i, primary outputs o, and an unspecified component output represented by

the blackbox net variable b be represented by the structure function XS over the net

variables V = {i,...,b,...,o}.

Let 7945(V’) represent a Boolean function that is true for only those assignments

of net variables for which X(iJ-, . . .,b, . . . ,o) = 1,0 E V’ Q V — ij — {b}.

If Vij E {0, 1}'i',.7i440(V’) = 7%,1(V’), the value ofb has no efi'ect on the other net

variables in V’, and b is a don’t care under V’.

Conversely, if 3i; 6 {0, 1}“|,.7;44O(V’) 75 7i441(V’), the value of b has an effect on

the other net variables in V’, and the net variables whose value depends on b are

sensitized to b.

The BDD representation of the structural function allows one to efficiently identify

input conditions under which output variables are sensitized to a blackbox net vari-

able. In Figure 3.6, one can see that the value of the primary output net variable F2

is independent of the value of the blackbox net variable BB when X1 = 1. However,

when X1 = 0, the value of F2 clearly depends upon the value of BB. For the input

vector X1 = 1,X2 = 0,X3 = 1, for example, if BB = 1, then F2 = 0. If, however,

BB = 0 under the same input vector, then F2 = 1. Therefore, F2 is sensitized to the

blackbox net variable BB. This situation leads to the following result:

61

Theorem 3.2 Let G be an SBDD representation (Definition 3.4) of a structural

function of a combinational circuit containing a blackbox net variable b. Consider

each I-path in G.

1. If the node corresponding to the net variable b does not appear on the I-path,

then b is a don’t care under the variable assignment described by the 1-path.

2. If the node corresponding to the net variable b does appear on the I-path, then

at least one net variable representing a structure in the transitive fan-out of the

structure represented by b is sensitized to b’s value. Furthermore, the sensitized

variable will appear between b and the 1-terminal.

Proof:

(1) Assume that for a blackbox net variable b that does not appear on

some 1-path in G, that b is not a don’t care under the variable assignment

described by the 1-path. If b is not a don’t care, then according to Defi-

nition 3.7, the value of at least one variable represented in G depends on

(is sensitized to) the value of b.

Furthermore, the variables form a Boolean network (Definition 2.16) repre-

senting a combinational circuit. Thus the sensitized variable must appear

in b’s transitive fan-out. Since G is an SBDD, its variables are ordered

based upon the partial order implicit in the DAG representation of the

Boolean network (Definition 3.4). Therefore the sensitized variable has a

higher index (Definition 2.21) than b in G’s BDD variable ordering

62

Since b does not appear on the l-path, it must be reduced, and thus,

child,(b) = child,(b) by Definition 2.22. It has already been determined,

however, that a variable whose index is greater than b’s exists and that

Since the variable is sensitized to b, its value depends upon b under the

input vector of the l-path under observation. Therefore the value of that

variable depends on whether it is the left (b = 0) or right (b = 1) child of b.

It has already been shown, however, that the right and left children of b are

equivalent. This is a contradiction, and therefore our initial assumption

must be false. Any blackbox net variable b that does not appear on some

l-path in G is a don’t care.

(2) Since the variables form a Boolean network (Definition 2.16) repre-

senting a combinational circuit, a sensitized variable (if one exists) must

appear in b’s transitive fan-out and therefore has a higher index (Defini-

tion 2.20) than b in the BDD variable ordering (Definition 3.4). Thus, it

can only appear between b and the l-terminal in any path, including the

one under observation.

Assume that for a blackbox net variable b that appears on some 1-path in

G, that no net variable representing a structure in the transitive fan-out

of the structure represented by b is sensitized to b’s value. Furthermore,

since the variables form a Boolean network (Definition 2.16) representing

a combinational circuit, only variables that represent a structure which

appears in the transitive fan-out of the structure represented by b can

63

be sensitized to b. Thus, no variables on the 1-path are sensitized to b.

Therefore b is a don’t care along that 1—path and b’s right and left children

are identical. It is a property of ROBDDS that nodes whose children are

isomorphic subgraphs are removed from the diagram. This contradicts

the fact that a decision node representing the variable b appears on the

l-path, and therefore our initial assumption must be false. If b appears on

some l-path in G, a variable which is sensitized to b appears along that

l-path.

Theorem 3.2 allows one to determine when a blackbox variable is fully specified

by simply examining of the structure of the SBDD graph. For example, note that BB

is on at least one l-path (e.g., any 1-path for which X1 = 1) in Figure 3.6. Therefore

some net variable (in this case the net variable F2) must be sensitized to BB. Thus

multiple l-paths exist under the primary input vector for which the net variable F2

is sensitized to BB. Therefore, according to Definition 3.6, BB is not fully specified.

3.4 SBDD efficiency

Although SBDDS encode the mathematical relationships between input, output, and

internal structure values implicit in the hierarchy of the circuit, the actual topology

of the circuit is not represented. To be able to introduce information from any

level of design abstraction, one cannot assume that the specification has the same

topology as the implementation or even that corresponding blocks in the specification

and implementation are equivalent. An assumption of topological equivalence may

64

be invalidated by optimization techniques applied to the implementation; thus, it

must be avoided. SBDDS encode structural context only via representation of the

mathematical relationship between structures.

The representation of these numerous relationships is not without cost. The struc-

ture function (Definition 3.3) which encapsulates these relationships may become ex-

ceptionally complex. The next section introduces issues related to the efficiency of

the BDD representation of the structure function.

3.4.1 Operations on and properties of the SBDD

Since a BDD’s size is sensitive to the order of its variables, it is necessary to order the

SBDD decision variables appropriately. These variables include the input variables

and the additional variables for internal structures in the design, including the design

outputs. As presented in Definition 3.4, a structural-level circuit implementation

can be viewed as a directed, acyclic graph (DAG) in which each vertex represents

a structure (usually a gate) and each arc (structurel, structureg) indicates that the

output of structurel is an input to structureg. This DAG forms a partial order on

the set of gates. We use this order as a basis for selecting an SBDD variable total

ordering heuristic.

This ordering exploits the structure of the circuit to obtain a suitable input order-

ing (although it may not be optimal). Efficiency issues are discussed in Chapter 6.

Similar heuristic orderings are used by Bryant (Bryant, 1986). Dynamic reordering

(Rudell, 1993) and other advanced BDD reduction techniques can be applied to the

65

SBDD structure if necessary.

An SBDD can be produced for any circuit by creating an SBDD for each structure

(as shown for a NOR gate in Figure 3.5) and then successively AND-ing these SBDDS

together by using the BDD recursive Apply operation (Figure 2.4). Each structure

acts as a constraint on the behavior of the circuit and marks illegal argument assign-

ments as O-paths.

For example, consider simplecircuit (Figure 3.1). An SBDD for each gate in

simplecircuit can be constructed, illustrated for the gate M1 discussed previously

in Figure 3.4. When these SBDDS are combined with the BDD AND operation, the

result is the complete SBDD for the circuit. Figure 3.1(c) presents the complete

SBDD for simplecircuit and demonstrates that the SBDD encodes the value of

every gate-level structure in the circuit under every possible assignment of primary

inputs.

In a completely specified combinational circuit, the value of each internal structure

is defined by the values of the primary inputs. Therefore, exactly one are leading from

each SBDD node representing an internal structure is illegal and Should lead to the

0—terminal. The example SBDD shown in Figure 3.1(c) illustrates this property.

3.4.2 Increasing SBDD efficiency though reduction

A key aspect of the efficiency of the BDD representation is the Sharing of isomorphic

subgraphs in reduced BDDS, as described in Definition 2.22. In a complete, fully

specified SBDD, however, there may be very little Sharing of isomorphic subgraphs

66

and very little accompanying reduction in the number of irrelevant decision nodes.

Such an SBDD has a worst-case size of O(2"k), where n is the number of input vari-

ables plus blackbox nodes and k is the number of non-blackbox structures represented

in the SBDD. Since each behavior of the non-blackbox structure is fully defined by

the value of the input variables and blackbox structures, exactly one are from any

decision node representing such a variable leads directly to the 0—terminal, and ex-

actly one are does not. There is no real “branching” at such a node, and thus such a

variable increases the maximum size of the SBDD linearly rather than exponentially.

Worst-case size may by observed if l-paths exist that are only Slightly different

from each other (perhaps differing in only a Single gate). Such a difference forces

the SBDD representation to create two separate 1-paths until they merge after the

portion of each path in which they differ. Reducing the number of internal structures

represented by an SBDD not only reduces the graph size linearly, but also increases

the likelihood of isomorphic subgraph Sharing.

Reducing such a decision variable is straightforward. Because exactly one are

leads to the O-terminal, each decision node that refers to the variable can be removed

by pointing the incoming are directly to the node referred to by the outgoing arc that

does not point to the 0-terminal. For example, if a decision node variable representing

M1 in the SBDD for simplecircuit (Figure 3.7(a)) is removed, an SBDD (Figure

3.7(b)) that still represents the effect of that gate, but that no longer has any node

containing that decision variable, is obtained.

The functional constraints imposed by such a structure (whose decision variable

has been reduced) are still represented in the SBDD. However, the ability to directly

67

(b)

Figure 3.7: Example reduced SBDD for simplecircuit (Figure 3.1). (a)

The unreduced SBDD for simplecircuit. (b) The SBDD for simplecircuit with

the variable M1 reduced. For clarity, arcs leading directly to the 0-terminal are not

shown in the graphical representation.

68

reference the reduced variable in any way is lost. Deduced relationships involving the

variable that have already been introduced are not lost, but the ability to introduce

new relationships that directly involve such a reduced variable is lost. If some set

of decision node variables that does not need to be referenced directly in future

constraints can be determined, reducing these variables can greatly reduce the Size of

the SBDD representation.

To work on very large circuits efficiently, the number of intermediate gate variables

should be limited to only those relevant to a particular problem. If, however, the goal

is to represent the unreduced structure of an entire circuit, then the SBDD is no less

efficient than any other encoding.

If the goal is restricted to representing only the knowledge pertaining to the overall

function output and determining the functionality of a set of blackbox components,

one can reduce the SBDD’s size by limiting the decision variables as follows:

0 Decision variables representing primary inputs may not be removed, since they

are necessary to Specify the state of the overall circuit.

a Decision variables representing circuit output may not be removed, since their

values capture the functionality of the circuit.

a Decision variables representing a structure that is a direct input to a blackbox

may not be removed, Since they Specify the state of the blackbox under various

input conditions.

a Decision variables representing blackbox outputs may not be removed, since

they encode the relationships which we are attempting to recover.

69

a Any remaining decision variable may be removed once all the variables repre-

senting the outputs of any structures to which it is a direct input have been

introduced into the SBDD, Since the decision variable will not be directly ref-

erenced once all such relationships have been introduced.

Consider the circuit Shown in Figure 3.8 and the corresponding complete, fully

Specified SBDD Shown in Figure 3.9. This complete SBDD representation has few

subgraph isomorphisms and therefore approaches worst-case Size. However, since the

representation of the SBDD is limited to only those variables that are needed to solve

a particular problem (such as determining the function of the blackbox 331 in the

schneiderl circuit presented in Figure 3.10), the Size of the SBDD can be greatly

reduced by removing unnecessary net variables. Figure 3.11 presents the reduced

SBDD for the schneiderl circuit.

The reduced representation clearly shows that the output of the blackbox 881

has no efl'ect on the output Z and can be considered a don’t care under every as-

signment of the input variables except for the assignments (1,1,1,1), (1, 0, 0, d), and

(0,0,0, 1). This representation does not, however, Show the relationships between

the removed net variables and the value of the blackbox variable. Thus, the ability

to further Specify the behavior of the blackbox variable with any information that

defines relationships between the blackbox variable and the variables that have been

removed is lost. Chapter 44discusses how to take advantage of relationships between

the net variables represented in the SBDD to help complete the specification of a

partially specified blackbox function.

70

 s
e
e
s

Figure 3.8: Schneider circuit.

08

71

,oo

o

o

I
u

.

. a

a

. a

a

U

a a

n a

a a

a

4 4

oooé®0booo®

Figure 3.9: Unreduced SBDD for the schneider circuit. For clarity, are leading

directly to the O-terminal are not shown in the graphical representation.

72

Figure 3.10: Schneiderl circuit. This figure presents a partial schematic for the

schneider circuit (Figure 3.8). In this example, the function of the portion of the

circuit represented by the blackbox device bbl is unknown.

Figure 3.11: Reduced SBDD for the schneiderl circuit. For clarity, arcs leading

directly to the O-terminal are not shown in the graphical representation.

73

Chapter 4

Representation and recovery of

partial knowledge

As described in Chapter 1, the goal of digital design recovery is to reconstruct the

behavioral-level description of an existing electronic part, board, or system from avail-

able information. This task is complicated by the fact that often only partial or

conflicting design information is available.

Our overall approach, therefore, relies primarily on information provided by the

analysis of an existing system (Section 1.2.3). This process, however, is not neces-

sarily 100% accurate. Errors in etching or imaging, or an inability to identify the

functionality of particularly complex transistor layouts may cause the recovered de-

sign implementation to contain areas with unknown functionality (e.g., blackboxes).

Even when an adequate description of the implementation is available, it may be

important to be able to verify the accuracy of existing documentation by testing this

description against all available information.

74

A key aspect of the design recovery problem is dealing with systems for which

the original design information is incomplete or conflicting. Existing reengineering

approaches do not address this issue. We believe that a complete redesign process

requires a methodology to infer the missing or incomplete specification, if possible.

This chapter presents a methodology for uniformly representing any available sys-

tem information that describes functional relationships among system components.

It then describes a new way to use this representation to discover complete circuit

functionality in many cases. Although the ability to specify an unknown portion of

a circuit implementation depends on the coverage provided by the available system,

the approach presented in this dissertation will generally allow the efficient recovery

of blackbox functionality if this functionality is deducible from the available informa-

tion.

4.1 Representing partial knowledge

Don’t care information is used for optimization in many digital system design appli-

cations. This information, usually in the form of incompletely specified Boolean func-

tions, is traditionally represented as a ternary-valued function f : {0,1}" -+ {0, 1, d}

(Minato, 1996). Ternary-valued functions are manipulated by the extended logic

operations presented in Figure 4.1.

There are two common ways in which decision diagrams are used to represent

ternary-valued functions. The first method is to represent the ternary values 0, d,

and 1 as terminal nodes in a multiple-terminal BDD (Matsunaga and Fugita, 1989).

75

NOT AND OR EXOR

Ll. f-gOdl f+gOd1 f€BgOd1

T'T 0000 00d1 00d1

dd dOdd dddl dddd

__1___0_ 10d1 1111 11d0

Figure 4.1: Extended logic operations for ternary functions.

The second way is to represent the function as a pair of BDDS in which each ternary

value is represented by an encoded pair of Boolean values (Minato et al., 1990).

These representations of incompletely specified Boolean functions are highly ef-

ficient for calculating and representing the don’t care sets and are often used for

optimization as part of the technology mapping process. In these traditional rep-

resentations, however, the decision variables cannot assume the value d; only the

function value can take on the (1 value. Furthermore, neither the decision variables

nor the overall function can be assigned an unknown value that is not a don’t care.

Thus, these BDDS do not represent the entire augmented Boolean domain (Definition

2.12).

An obvious approach to representing functions f : 8" —-) 3 is to define a set

of extended logic operations for the augmented Boolean domain and to extend the

multiway decision diagram such that each decision node contains a O-edge, l-edge,

d-edge, and a u-edge. A representation of this sort accurately (if not necessarily

efficiently) represents functions in the augmented Boolean domain. Although this

representation allows the specification of the effect of a variable having an unknown

76

value, it does not provide a mechanism for determining that a variable must logically

take on the value don’t care or unknown along any path. Hence, this representation

is not particularly amenable to automated deduction.

The SBDD representation of partial functions presented in Section 3.3 encapsu-

lates the representation of both the don’t care and the unknown (undefined) rela-

tionships that are present in a partially specified Boolean network (Section 2.1.3).

Furthermore, simple examination of the graph structure allows the identification of

don’t cares and unknowns which exist in the system. Finally, even though this in-

formation about additional variable and functional values is included in the SBDD

representation, no new algorithms for creating SBDDS or operating on them need to

be developed. The available (and developing) BDD algorithms can be used directly.

Therefore, we will use SBDDS to represent our system of functions in the augmented

Boolean domain. Additionally, we will present SBDD algorithms that allow the intro—

duction of new information that may specify, in part or full, the unknown relationships

represented.

As defined in Chapter 3, an SBDD decision node variable may represent any

structure in a circuit description regardless of whether its function is completely

specified. It is this ability to efficiently represent partial knowledge that allows SBDDS

to be an appropriate tool for reengineering systems in which only partial knowledge

is available.

Consider any gate, or collection of gates, that defines the functional relationship

between any arbitrary set of internal or primary input lines and an arbitrary set of

internal or primary output lines. Based on Section 3.3, such a gate or collection of

77

gates for which a complete functional specification is unavailable is referred to as a

blackbox structure. Since SBDDS represent one output line per decision variable, a

blackbox decision node variable must be created for each output of such an unknown

structure.

Because no information on which to base the functionality of the blackbox is

available, there is no information that allows the overall functionality of the circuit

to be constrained: a 1-path must exist for either value of the blackbox decision

variable (Definition 3.5). Exactly one of these paths is legal in the fully specified

circuit function, but allowing 1-paths along both branches enables the value of this

component to be represented as unknown. If the blackbox has no effect on decision

variables subsequent to it in the variable ordering, its value is effectively a don’t care

and does not appear on that SBDD 1-path. Any SBDD decision variable representing

a structure that is fully specified will have one branch leading immediately to a 0-

terminal, and the other branch will be part of at least one l-path. An SBDD node

representing a blackbox variable may have 1-paths along both branches; such nodes

are called unknown nodes.

Figure 4.2(a) shows a completely unspecified circuit that computes the two-output

Boolean function f(a, b) = (2:, y). Without additional knowledge, the SBDD for such

a circuit would simply be the 1-terminal, because no information regarding the cir-

cuit’s functionality would be available. Although this example provides no structural

context that might allow one to deduce additional information, assume that a partial

description of the circuit behavior is available that specifies that f(1, 1) = (1,1) and

f(1,0) = (O, u) Figure 4.2(b) shows the SBDD for this circuit that encodes this

78

a—J BlackBox F—x

(a)

(b)

Figure 4.2: Unknown circuit implementation. The SBDD representation of

partial knowledge. This SBDD represents the partial knowledge .7(1, 1) = (1, 1) and

7"(1, 0) = (O, u).

partial knowledge. Note that this figure contains a blackbox decision node variable

for each of the two outputs of BB and fully encodes the partial knowledge introduced.

The SBDD can be interpreted as follows:

0 If a = 0, then both blackbox outputs are unknown. Consider the path a —0> 1 in

the SBDD for this circuit (Figure 4.2(b)). Recall that any path that ends at the

l-terminal in an SBDD may be legal in the system. Therefore, any assignment

of values to BB; and 38,, may be legal when a = 0, and thus their behavior is

not determinable from the information provided.

0 Ifa = 1 and b = 1, then BBz = 1 and BB, = 1. Consider the path

a —1+ b —1-) BB; -9-> O in the SBDD for this circuit (Figure 4.2(b)). Recall that

any path that ends at the O-terminal in an SBDD is illegal in the system (i.e., it

contradicts a known relationship). Therefore, BB; ;£ 0 when a = 1 and b = 1.

79

Hence, BB; = 1. Similarly, the path a —1> b —1-) BB; 3+ 88,, -°) 0 indicates that

38,, 76 0 when a = 1, b =1, and BB; = 1. Hence, BB; 2 1.

If a = 1 and b = 0, then BB; = 0 and BB; is unknown. Consider the path

a —l> b —0) BB; —l> 0 in the SBDD for this circuit (Figure 4.2(b)). Therefore,

BB; aé 0 when a = 1 and b = 1 Hence, BB; = 1. Furthermore, the path

a —1> b —°) BB; 9+ 1 indicates that no assignment of remaining variables is

illegal when a = 1, b = 0, and BB; = 0. Thus, the actual value of 38,, cannot

be determined under the input conditions a = 1, b = 0 and BB; is considered

unknown.

It should be stressed that this representation is based entirely upon effective func-

tionality of the blackbox or blackboxes in the context of the overall system function-

ality. The number or position of the blackboxes within the system is not an issue

with regards to this representation although it may play a factor in the difficulty of

recovering the missing functionality.

Example: partial specification of simplecircuit

Figure 4.3(a) presents a partial specification for simplecircuit (Figure 3.1(a)), rep-

resenting a portion of the implementation as a blackbox. Consider the symbolic

solution space to this partial specification (Figure 4.3(b). This table clearly repre-

sents that the value of the output F2 is O for all input variable assignments with

X1 = 1. Therefore the behavior of the unspecified portion of the circuit is irrelevant

and thus a don’t care.

80

F2 = YI'BB(X23M13X3)

XsAn BB| n

[E

X1 X2

@— 1 d d d d

0 1 1 0 u

l: 0 1 0 0 u

0 0 1 0 u

0 0 0 1 u

(M

)

BBUOO)

)

)BBm10

Figure 4.3: A partial specification of simplecircuit. (a) Circuit with unspecified

subcircuit: Area A represents the known input logic, area B represents the unknown

blackbox subcircuit, and area C represents the known output logic. (b) The symbolic

solution space to this circuit: The blackbox representing M4 is denoted symbolically

as BB.

X1 X2 X3 M1 BB F2

1 1 d 0 d 0

1 0 1 0 d 0

1 0 0 1 d 0

0 1 d 0 ifBB=1 then F2=0

ifBB=0 then F2=1

‘0 0 0 1 0 ifBB=1thenF2=0

ifBB=0 then F2=1

_ 0 0 0 1 ifBB=1 then F2=0

. "'~ 0 if BB = 0 then F2 =1

(M

Figure 4.4: The SBDD for a partial specification of simplecircuit. The truth-

table representation of the SBDD contains unknowns but still encapsulates what the

state of the circuit is under either of the possible values of BB under all variable

assignments.

81

Figure 4.4(a) presents the SBDD for this partial specification. All input variable

assignments for which X1 = 1 have a single l-path, and the value of the blackbox has

no effect upon the circuit output. The representation has encapsulated the fact that

the value of the blackbox is a don’t care for the overall function when X1 = 1.

The symbolic solution space to any such problem is contained within the SBDD

representation and can be extracted without difficulty. Figure 4.4 illustrates the

extraction of the truth-table representation of the blackbox BB from its SBDD rep-

resentation. This truth-table representation is equivalent to the symbolic solution

space presented in Figure 4.3(b).

Consider the truth-table row in Figure 4.3(b) corresponding to the assignment

X1 = 0, X2 = 1, X3 = 0. The symbolic truth-table specifies that M1 = 0, that

the value of the blackbox BB is unknown, and that the value of the output F2 is

—B when the inputs to BB are X2 = 1, X3 = O, and M1 = O. This information is

represented in the Circuit’s SBDD (4.4(a)) as follows.

Consider the path X1 —0> X2 3+ M1 —0-> BB. Since neither of BB’s children

are the O-terminal, the value of BB is unknown (Definition 3.6). The paths X1 —0>

Xz—‘>M,—°+BB—‘>F2—l>0andxl$x2i>M1—°>BB—1>F2—°>1auowone

to deduce that when X1 = 0 and X2 = 1 (regardless of the value of X3) M1 = 0,

and that if BB = 1 that the only legal assignment for F2 is 0. Likewise, the paths

X1—°>X2—1)M1—°+BB—9+F2—1-)1andX1—°)X2—1>M1—°>BB—°+F2—O+Oallowone

to deduce that when X1 = 0 and X2 = 1 that (regardless of the value of X3) M1 = 0,

and that if BB = 0 that the only legal assignment for F2 is 1. This information is

contained in the truth-table row in Figure 4.4(b) corresponding to the assignment

82

X1 = 0, X2 = 1, X3 = d, M1 = 0. Note that the output F2 = BB in this truth-table

corresponds to the known information available in Figure 4.3(b).

Therefore, using only the SBDD representing the partial specification, one can

deduce that M1 = 0, the value of the blackbox BB is unknown, and that the value of

the output F2 is BB for the the input assignment X1 = 0, X2 = 1. Similar deductions

allows the construction of a truth-table representing the information encapsulated by

the SBDD (Figure 4.4(b)).

4.2 Utilizing additional relationships

As discussed previously, various forms of information concerning the functionality

and structure may be available for any digital system. To make full use of all this

information, a uniform way to represent the Boolean relationships between the net

variables that the information describes must be determined. This section describes

a methodology for representing full or partial relationships between net variables and

shows how this information can be used to more completely specify the behavior of

a partially specified digital device.

Definition 4.1 For any Boolean relationship ’R(x, y) between net variable vectors

x, y e N, a constraint characteristic function is defined as:

XR(x, y) = 0 iff x—R-y. (4.1)

83

Consider, for example, a device that includes four net variables: a, b, c, and d.

Suppose that available information states that a and b are control variables and that

if a and b are both 1, then d = E. This relationship would be represented by the

constraint characteristic function shown in Figure 4.5.

a b c d XR

0 d d d 1

d 0 d d 1

1 l 0 0 0

1 1 O 1 1

1 1 1 0 1

1 1 l 1 0

Figure 4.5: Example constraint characteristic function. This truth-table repre-

sents the constraint characteristic function XR(< a, b >, < c, d >) for a relationship

that states that if a = 1 and b = 1, then d = E.

Applying a constraint characteristic function (Definition 4.1) to the structure func-

tion (Definition 3.3) for a circuit introduces additional knowledge while assuring the

validity of Theorems 3.1 and 3.2. The introduction of relationships created from

available device information may allow the behavior of a partially specified circuit to

be fully specified, as stated below.

Theorem 4.1 Let XS(N) represent the structure function (Definition 3. 3) for a par-

tial specification of a combinational circuit A in terms of net variables N. Further-

more, let XR(x, y) describe a relationship between two sets of net variables in N. Let

A contain a partially specified component B, whose inputs Bin depend on some set of

84

variables in x and a variable u, upon whose value some set of variables in y depends.

If u is sensitized to an output Bout of B, then X3 implies a partial specification of B.

Proof: As defined above, the value of the net variables Bin and y depend on the

assignment of net variables in x. Likewise, since the values of the net variables in y

are dependent upon u, the value of u is determined by the necessary value required to

produce the appropriate value in y for the input assignment x. Therefore the value

of u is also dependent on x.

Furthermore, since the variable v is sensitized to the blackbox output Bout, the

value of u determines the necessary value of Bout in the sensitive assignment(s). Thus,

the value of Bout can be determined for the blackbox inputs Bin under any conditions

specified in X” for which u’s value can be determined for an assignment of x in which

the u is also sensitized to Bout. Therefore an output function for B has been partially

specified.

In essence, this theorem states that when the characteristic function for any re-

lationship is applied to the structural function for the circuit, previously unspecified

behavior of blackbox components may become specified. As mentioned in Section

1.2.1, a great deal of information regarding a design is often available. Regardless of

the level of design at which information is presented (Section 1.1.2), if the available

information describes a Boolean relationship between net variables, its corresponding

constraint characteristic function can be determined and used to try to specify the

behavior of the blackbox. Thus, we have described a way in which information from

any level of design can be used to help determine the behavior of an unspecified black-

85

box structure. In the remainder of this section we illustrate the use of this theorem

by demonstrating how the relationships present in test vectors can help specify the

functionality of a partial schematic.

4.2.1 Utilizing test vectors

A number of possible sources for design information exist, but the actual format

of the information is not particularly relevant as long as the partial relationships

between the net variables that the information describes can be examined. The text

that follows considers a set of test vectors as an additional source of information

and demonstrates how this information can be represented as a set of constraint

characteristic functions (Definition 4.1). To more clearly demonstrate the application

of the proposed methodology, we focus on instances of the following problem:

Reengineering from partial specifications (RFPS) problem:

Given a partial representation for a combinational circuit and a set (par-

tial or complete) of test vectors for the functioning circuit, discover the

global functionality of the circuit and the effective functionality of the

partially specified circuit components.

For the purpose of this problem, circuit functionality refers to the underlying

basic logic functions created by connecting gates, library constructs, or other digital

building blocks. This functionality does not include hold times, wire and propagation

delays, or other timing issues. The goal is simply to identify the basic function of the

complete combinational circuit. Once functionality has been determined, traditional

86

techniques can be used to re—synthesize missing portion of the circuit.

Sets of test vectors that are used for simulation testing and post-silicon verification

are commonly available for digital designs. For combinational circuits, test vectors

consist of a set of input vectors and their corresponding output vectors that can

be used to verify correctness of function. Therefore, test vectors provide partial

information about the input/output relationship of the circuit, which can be described

by constraint characteristic functions and therefore represented by an SBDD.

The relationships specified by a test vector may be represented as an SBDD in

which all paths are 1-paths except for the paths that correspond to the input variable

state specified by the test vector and the illegal output states. Consider the test vector

< 0,1,0 >=< 1 > for simplecircuit (Figure 3.1) that has inputs X1,X2, and X3

and a single output F2. This test vector describes a partial relationship that states

that F2 cannot have the value 0 if X1 = 0, X2 = 1, and X3 = 0. This relationship can

be represented by a constraint characteristic function and the corresponding SBDD

shown in Figure 4.6(a). Likewise, a test vector < 1, 0 >=< 1, 0 > for a circuit with

inputs X1, X2 and outputs Y1, Y2 describes a relationship that states that the only

legal value for Y1 is 1 and the only legal value for Y2 is 0 when X1 = 1 and X2 = 0

(Figure 4.6(b)).

Figure 4.6(a) shows the SBDD constraint for one of the automatic test pattern

generation (ATPG) vectors for simplecircuit generated by using the U.C. Berkeley

SIS package (Sentovich et al., 1992). Such a constraint can be used to invalidate all

1-paths in the SBDD that represent an assignment of values to net variables that was

proven illegal by the test vector. This SBDD constraint can be composed with the

87

(a) (b)

Figure 4.6: SBDDS for test vectors. These SBDDS represent the test vectors for:

(a) f : 33 —> Bl;f(0,1,0) = 1 and (b) g : 32 —) Bz;g(1,0) = (1,0).

SBDD for a partial specification of the circuit (Figure 4.4) to produce a new SBDD

encapsulating this additional knowledge (Figure 4.7). This constraint invalidates all

paths of Figure 4.4 along which X1 = 0,X2 = 1,X3 = O, and F2 ¢ 1. All other

paths in the SBDD are unaffected by this constraint. See Appendix A for a detailed

description of this process.

Introducing new knowledge via constraint may have one of several effects on the

SBDD:

o It may “discover behavior” and reduce “unknown” nodes (that is, blackbox

nodes in which neither arc leads to a terminal-O) into “known nodes”, thereby

achieving the same effect as traditional backtraceing.

This effect can be seen in the previous example. BB is an unknown node along

the path X1 = 0, X2 = 1,X3 = O in Figure 4.4. After the application of the

SBDD constraint for the test vector, however, the value of BB is “known” along

this path, as shown in Figure 4.7.

88

Figure 4.7: SBDD for the partial description of simplecircuit. This SBDD

demonstrates the effect of applying the constraint f (0, 1, 0) = 1. Contrast this with

Figure 4.4(c), which shows the SBDD before the constraint was applied.

o It may instantiate an instance of a decision variable node along a path in which

that variable was previously a don’t care. This occurs when the value of an

unknown blackbox node becomes known somewhere along the path as a result

of the introduction of new information.

A trivial example of this effect can be seen in the previous example as well. In

Figure 4.4, there is no decision node for X3 along the path X1 = O,X2 = 1;

X3 is a don’t care. The new information represented in Figure 4.7 shows that

the value of X3 is no longer considered a don’t care along that path, because

its value has been determined to have an effect on the value of F and therefore

BB.

0 It may allow the deduction of a secondary constraint. (See Section 4.2.3.)

89

4.2.2 Using BDDs to discover specifications

Consider an example RFPS problem (Section 4.2.1) consisting of the partial schematic

for simplecircuit presented in Figure 4.3 and the SIS-generated (Sentovich et al.,

1992) ATPG test vectors for simplecircuit presented in Figure 4.8(a). Each test

vector defines a simple relationship between a particular primary input assignment

and a primary output assignment. The characteristic function representing this re-

lationship (Definition 3.2) is false only for variable assignments for which the inputs

take on the value specified by the test vector but for which the outputs do not. Dis-

covering the specification of a blackbox component can be simplified though the use

of the BDD representation of the structure and characteristic functions (as discussed

in Chapter 3 and Section 4.2.1).

Constraint characteristic functions can be represented by BDDS such as the one in

Figure 4.8(c), where the BDD represents the characteristic function of the relationship

defined by the test vector X1 = 0,X2 = 1,X3 = O —+ F2 = 1. The addition of

each constraint that defines a previously unspecified relationship modifies the BDD

representation of the structure function (Theorem 4.1). Figure 4.8(d) presents the

result of applying the BDDS representing the test vectors in Figure 4.8(a) to the

structural BDD of the partial implementation of simplecircuit (Figure 4.3(a)).

Appendix A provides the details for this example.

The goal of the RFPS problem is to determine the functionality of the missing

component(s) so that the system can be redesigned. After a structure function is

constructed and all relationships between internal variables are represented, there are

90

X1 X2 X3 F2

0 0 0 0 X2 X3 M1 BB

0 0 1 1 1 1 0 1 '

0 1 1 0 0 0 l l

0 1 0 1 1 0 0 0

1 1 0 0 0 1 0 0

otherwise d

(a)

Figure 4.8: The RFPS solution for simplecircuit. (a) The ATPG test vec-

tors for the simplecircuit RFPS Problem; (b) BB specified to within don’t care

conditions; (c) The BDD representing the characteristic function of the test vector

X1 = 0,X2 = 1, X3 = O -> F2 = 1; (d) The BDD representing the structure function

of simplecircuit after including the relationships defined in the test vectors.

91

four cases described below. Section 4.3 presents the algorithm that automates the

identification of the appropriate case and the extraction of the blackbox specification

from a structural BDD.

0 Case 1: The structure function represents the complete functionality of the cir-

cuit as well as that of the blackbox. In this case, the exact functionality of

the blackbox can be extracted from the BDD representation of the structure

function.

0 Case 2: The structure function represents the complete functionality of the cir-

cuit but not of the blackbox. The circuit functionality is completely specified if

all paths though blackboxes have one are leading to the O—terminal and the other

arc containing exactly one l-path. In this case, the exact functionality of the

blackbox is not necessarily defined under all of its input conditions. However,

as the functionality of the circuit is fully defined, the unknown specifications of

the blackbox are don’t cares. Thus, the blackbox is specifiable to within don’t

care conditions, which is sufficient for reengineering.

In other words, one identifies for which inputs the value of the blackbox affects

the output, and what the value of the blackbox is under these inputs. For all

other inputs (in which the blackbox output does not have an effect upon the

circuit output), one does not necessarily know the exact value of the blackbox

but does know that it is a don’t care in terms of the overall circuit function.

Examination of the SBDD in Figure 4.8(d) provides a specification for the

functionality of the blackbox structure to within don’t care conditions (Figure

92

4.8(b)).

Case 3: Conflicting information is detected. The third case occurs when no

value of a blackbox output can satisfy all constraints. If this situation occurs,

one can identify the conflicting relationships but must resolve the situation

externally.

Case 4: The solution is incomplete. In the final case, neither the circuit nor

the blackbox component(s) are fully specified. If, after constraints representing

all available information has been applied, any blackbox node remains unknown,

then the function in only partially specified. The SBDD represents the sum of all

applicable knowledge about the circuit, but additional information is necessary

to produce a full functional description.

The SBDD representation can be used to extract the set of necessary relation-

ships that must be determined to complete the specification. If these relation-

ships can be determined (perhaps through the use of a operational device or

simulation of the Circuit’s behavior), the blackbox component can be specified

to within don’t care conditions without resorting to exhaustive testing.

4.2.3 Deduction of secondary constraints

When accumulated partial information dictates the necessary output of a blackbox

under some input assignment, that knowledge may be able to be applied to resolve

other unknown blackbox nodes. Since the behavior of the blackbox structure is consis-

tent, the blackbox will produce the same output whenever its inputs have a particular

93

assignment. Whenever a blackbox node becomes known, a secondary constraint that

represents the assignment of the direct inputs into the blackbox structure and the

expected output of the blackbox is created. Application of this secondary constraint

forces other unknown nodes representing the same blackbox structure to produce the

correct output if their direct inputs have the appropriate assignment.

Figure 4.9 presents the SBDD for schneiderI (Figure 3.10) after the SIS-

generated test vectors for the circuit have been applied, as discussed in Section 4.2.1.

The circuit is not fully specified since one node remains unknown. To fully specify

the circuit, one of the two 1-paths beginning X1 —1> X2 —°> X3 —°> X4 —1+ 381 must be

determined illegal.

X1 X2 X3 X4 2

1 0 1 1 T

1 0 0 0 1

1 1 1 1 0

1 1 0 1 1

0 0 0 1 1

1 1 1 0 1

0 0 0 0 0

0 1 1 1 1

(b)

Figure 4.9: Reduced SBDD for the schneiderl circuit with constraints. The

SBDD (a) is the result of applying the SIS-generated ATPG test vectors (b) for

the schneider circuit to the SBDD for schneiderl (Figure 3.11). For clarity, arcs

leading directly to the O-terminal are not shown in the graphical representation.

Figure 3.10 shows that BBl’s primary inputs are X2 and X3. It can be determined

94

from the known 1-path X1 —0+ X2 —0+ X3 -°-> X4 —1) BB1 1) Z —l) 1 that 881 has

a value of 1 when its inputs (X2,X3) are (0,0). Since the structure represented

by 331 is combinational, it must take that same value along the unknown path

X1 —1> X2 —°> X3 —°> X4 —l> BBI because that path also has (X2,/Y3) = (0, 0).

Applying this knowledge as a system-wide constraint allows one to determine

the l-path for the last unknown node. The function is now fully specified (Figure

4.10(b)). Furthermore, the structure 831 can be specified to within don’t care con-

ditions (d-conditions) (Figure 4.10(c)). That is, the necessary functionality of 881

in the circuit can be exactly specified, and the behavior of 881 under all of its input

assignments in which it is not a don’t care can be exactly identified. Finally, a speci-

fication of assignments under which BB] is a don’t care can be determined, thereby

allowing identification or reengineering of the previously unspecified component (Fig-

ure 4.10(c)).

The identification of such deduced constraints requires an examination of the

entire SBDD. Its complexity therefore increases with the size of the graph. The com-

plexity of the application of the deduced constraint likewise depends on the number

of nodes in the SBDD.

4.2.4 Extensions to multiple blackboxes

For clarity, the examples discussed in this thesis have been limited to circuits that

contain no more than a single blackbox. The definitions, however, have been general

and have not restricted the number of blackboxes that may exist in a device whose

95

(61)

X2 X3 881

0 0 1

0 1 d

1 0 d 1 1 1 1 1 1 1 1

1 1 0

(b)

(C)

Figure 4.10: Reduced SBDD for the schneider1 circuit after deduction. (a)

the secondary constraint to be applied to the SBDD for schneiderl; (b) a completely

specified SBDD deduced by applying test vectors and the secondary constraint; (c)

The blackbox 881 is specified to within d—conditions.

96

design is to be recovered. We now present an example that contains an unknown

portion which must be represented by multiple blackbox variables. In this particular

example, the blackbox variables are part of the same unknown structure and share a

common set of inputs.

Figure 4.11 presents a partial schematic of an implementation of the schneider

circuit (Figure 3.8) in which a the unknown portion has two outputs and thus each

must be represented by a blackbox variable. Figure 4.12 presents the SBDD that

represents the structure function and constraint functions generated from schneider’s

SIS~generated set of ATPG test vectors.

Figure 4.11: Schematic for schneider2 RFPS problem. This schematic presents

a partial implementation of the schneider circuit (Figure 3.8). The functionality of a

portion of the circuit is unknown, and thus multiple blackbox variables are necessary

to represent the unknown structure.

In a circuit with multiple blackboxes, the deduction of secondary constraints (Sec-

tion 4.2.3) is not necessarily straightforward. For each unknown node in an SBDD,

97

.. 0

X2

X3

X4

02

881

882

l-tcrminal l l l l l l l l l

Figure 4.12: SBDD for schneider2 multiple-blackbox RFPS problem. This

SBDD representation specifies the deduced functionality of schneider2 and both

blackboxes after constraints (Figure 4.9(b)) and deduction are applied. The behav-

ior of the blackboxes (and thus the circuit) remain unspecified for only three input

assignments (1001, 1000, and 0001).

98

two subgraphs exists which represent the behavior of the rest of the system under the

two possible behaviors of the blackbox node. Exactly one of the two paths leading

from the node represents behavior that is legal in the actual circuit. When multiple

blackboxes exist, seemingly “known” blackbox nodes (i.e., exactly one of the nodes

children is the 0-terminal) may exist along a path which is not provably legal due to

the presence an another (unknown) blackbox node along the path.

For example, consider the behavior of the blackbox variables 831 and BB2 in

Figure 4.12. Under the input assignment 1000 (i.e., X1 = 1, X2 = 0, X3 = 0, X4 = 0),

02 is constrained to take the value 1 because the 0-edge from G2 along that path leads

to the 0-terminal. However, neither arc of the node representing the blackbox variable

BBl leads to the 0—terminal (i.e., the node is unknown). If, however, 881 = 1 under

this input assignment, the SBDD shows that BB2 = 0. For the input assignment

1000, BBZ’s inputs (Figure 4.11) have the values X1 = 1, 02 = 1, X4 = 0. We cannot,

however, apply the relationship BBZ(1, 1, 0) = 0 to the entire SBDD as a secondary

constraint since the ”truth” of that relationship depends upon the behavior of 381,

which remains unknown.

A secondary constraint can only be deduced from known blackbox nodes which

belong to exactly one 1-path. Note that in systems with multiple blackboxes, a

secondary constraint may itself generate “new” information, creating a tertiary con-

straint, and so on.

Overall, the design recovery of systems which contain multiple blackboxes proceeds

in an identical fashion to those consisting of a single blackbox. Additional blackboxes

do, however, increase the degrees of freedom available to the structure function. Each

99

additional blackbox can cause an exponential increase in the number of possible paths

which must be proven legal or illegal. In some circumstances, a correspondingly

greater amount of available information may be necessary to fully specify the behavior

of the circuit.

4.3 Implementation and results

The techniques discussed in Section 4.2 were implemented in C using Carnegie Mellon

University’s BDD package (Long, 1996). This section presents an overview of a

structural BDD implementation and initial results.

4.3.1 Implementation

This section discusses the algorithmic details of the initial implementation of a design

recovery tool based on the SBDD methodology. This algorithm demonstrates one way

in which to approach the RFPS problem presented in Section 4.2.1 using SBDD-based

techniques.

As input, the algorithm requires only the mathematical relationships defined by

the structure of the circuit (Definition 3.3) and available external information (Defini-

tion 4.1) (in this case, a set of test vectors). Our initial implementation automates the

extraction of these relationships through examination of the partial system schematic

and the ATPG test set. The algorithm uses SBDDS as representations of these math-

ematical relationships.

The possible outputs of the algorithm correspond to the the cases discussed in Sec-

100

tion 4.2.2. If possible, the system will specify the behavior or any blackbox structures

to within don’t care conditions. Otherwise, the algorithm will identify the deduced

behavior as well as a minimal set of test vectors that, if determined, would allow the

complete specification to be deduced. If conflicting information is detected during

processing, the algorithm will halt with output describing the conflicting relation-

ship. We present this algorithm as an example of one way in which SBDD-based

techniques may be leveraged in design recovery solutions.

The SBDD Algorithm

Step 1: Initialization. Initialize the structural BDD G to logical one. Assign

the primary inputs as BDD variables using some reasonable total order.

Step 2: Apply legal component or relationship constraint. A constraint

is applied to G by constructing a BDD that represents its characteristic function (as

defined in Definitions 3.2, 3.5, and 4.1) and by using the BDD Apply function with

the And operator (Bryant, 1986). If the decision variable representing the output of

a legal component constraint is not represented in C, it is introduced into C.

For building the structural BDD, component and relationship characteristic func-

tions are considered identical; both represent relationships between net variables in

the BDD. A relationship constraint is legal if all of the variables on which the relation-

ship depends exist as BDD variables. A component constraint is legal if the variables

that represent the component’s inputs exist in the BDD. Because of the structure of

combinational circuits, all constraints eventually become legal. Since each constraint

must be constructed as an SBDD and composed with the structural BDD G using

101

the BDD Apply operation, the introduction of each constraint is an O(IG'I) operation

(Bryant, 1985).

Step 3: Reduce BDD size. If all the constraints related to a particular vari-

able have been applied, remove the variable from the structural BDD by using the

smoothing operator (Definition 2.9). Variables that represent inputs to or outputs

from a blackbox structure are not subject to this reduction. Variables representing

the primary inputs and outputs of the structure are also nonreducible.

Although the functional constraints imposed by a structure whose variable has

been removed from the BDD in this way are still represented in the BDD, the ability

to directly reference or introduce new relationships which directly involve the re-

moved variable is lost. Such removal, however, greatly increases the efficiency of the

representation (Section 3.4.2). The application of the smoothing Operator requires

examination of each node to determine if it is subject to remove and is therefore an

0(IG I) Operation.

Step 4: Test for conflict and repeat. Verify that at least 1-path exists for each

assignment of primary input values. This examination requires a recursive traversal

of the BDD and is therefore an O(IG I) operation. If an assignment of primary input

values exists for which no 1-path exists, a conflicting relationship has been introduced.

In this case, the relationships is identified and the algorithm halts. Otherwise, if any

constraints remain unapplied, return to Step 2.

Step 5: Determine completeness of specification. If the resulting structural

BDD has a unique 1-path for each input vector, it is fully specified; proceed to Step

7. This examination requires a recursive traversal of the BDD and is therefore an

102

0(|G|) operation.

Step 6: Acquire necessary knowledge. Consider each primary input assign-

ment for which multiple l-paths exist. For each such assignment, determine the value

of all blackbox inputs by examining the paths. These blackbox input assignments

(which may be duplicates) represent blackbox input conditions for which the output

of the blackbox is unknown and not a don’t care. The discovery of the behavior of the

blackbox in these conditions will fully specify the blackbox. For each unique blackbox

input condition, select its associated primary input assignment. If the corresponding

circuit outputs for this set of input assignments can be determined, then the circuit

can be fully specified by applying these relationships as constraints (goto Step 2).

This step requires a recursive search of the BDD graph and is therefore an O(IG I)

operation.

Consider Figure 4.7 (page 89). The behavior of the overall functionality of

simplecircuit represented by this BDD is unknown for all primary input assign-

ments for which multiple 1-paths exist (namely 000, 001, and 011). Since each of

these input assignments presents a different input assignment to the blackbox func-

tion 8306;», X3, M1) (respectively 001, 010, and 110), each of these input conditions

represents an unresolved vector. Determination of all unresolved vectors (provided

in Figure 4.8(a)) leads to a complete specification of the overall circuit functionality

(Figure 4.8(d)).

Step 7: Specify blackbox structures. Consider each node n in G that rep-

resents the output of a blackbox structure BB. Consider the value of the primary

inputs as defined along the path from the root to n. If exactly one 1-path exits, then

103

the behavior of output b from structure BB is defined for the values of BB’3 inputs

that were defined on the path from the root to n. If more than one l-path exists, then

the value of b is explicitly unspecified and is not a don’t care. b is a don’t care for any

input assignment to BB that is not known or explicitly unspecified. After producing

the blackbox specification, halt. This step also requires a complete traversal of the

BDD and is therefore an O(|G|) operation.

Consider Figure 4.8(d), the value of the blackbox structure BB can be specified to

don’t care conditions using this step to produce the truth-table presented as Figure

4.8(b).

4.3.2 Validity and complexity

The algorithm has a well defined next-step function. Furthermore, the properties

specified in Theorem 4.1 (page 84) hold. Thus, the resulting SBDD must correspond

to exactly one of the four cases specified in Section 4.2.2 (page 90). Clearly defined

halting conditions are identified for each case. For the cases in which the complete

specification of the circuit is represented (Cases 1 and 2), the algorithm halts in Step

7. For the case in which conflicting information is present (Case 3), the algorithm

halts in Step 4. Otherwise (Case 4), the algorithm terminates in Step 6.

It remains to be shown that each step is well-defined and correct. Since SBDDS are

simply a particularly efficient representation of possible solutions to a set of math-

ematical constraints and operations, the results are correct by construction. This

section addresses the correctness of each step and thus the validity of the presented

104

SBDD algorithm.

Step 1: Initialization. In Step 1, the SBDD G is created. At initialization,

the root node of G is the l-terminal. This standard BDD operation takes 0(1) time

using the standard BDD algorithm assignment operator and is guaranteed to complete

(Bryant, 1985). The primary inputs i are added to the BDD manager as decision

variables in some reasonable order (an O(Iil) operation). Any total ordering of the

primary inputs is algorithmically correct, but the efficiency of the representation may

be very sensitive to the variable order chosen (Bryant, 1985). Dynamic reordering

techniques can be used at any time during the algorithm to modify the order of the

primary inputs if necessary.

Step 2: Apply legal component or relationship constraint. In Step 2, con-

straint SBDDS are created and applied to the SBDD G. When applying constraints,

variables for the inputs and outputs must be introduced into the BDD manager if

they have not previously been included. Since the topology of the circuit itself forms

a reasonable variable ordering (Section 3.4.1), such an ordering can be determined

by performing a traversal of the Boolean network for the system (an O(k) operation,

where k is the number of structure output variables in the system).

For a known structure, an SBDD representing its characteristic equation (Def-

inition 3.2) is constructed. For an unknown structure, an SBDD representing the

characteristic function for the blackbox (Definition 3.5) is constructed. For any ad-

ditional relationship specified, a constraint characteristic function (Definition 4.1)

is constructed. The construction of the BDD representing these functions proceeds

using standard BDD techniques for representing functions (Bryant, 1985). As no

105

relationship can involve more than k variables (where k is the number of structure

output variables in the system), this operation has an average—case time complexity

of O(Ikl) and a worst-case time complexity of 0(2'“). This worst-case complexity is

uncommon for most Boolean functions (Bryant, 1985).

Finally, the newly created SBDD constraint is applied to the SBDD G using the

standard BDD Apply algorithm with the Boolean And operator. The composition is

a O(IGI) - O(IFI) operation (Bryant, 1985). Since the definitions of the functions for

each constraint are well defined, and only standard BDD operations are used, this

step is correct and will complete.

Step 3: Reduce BDD size. In Step 3, the size of the SBDD G is reduced, if

possible. The worst-case size for G is 0(2"+’), where k is the number of structure

output variables in the system, and i is the number of primary inputs. Although the

average size does not generally approach this worst-case size, no guarantees can be

made. This reduction step is included to increase the efficiency of the representation,

but is not a necessary component of the SBDD algorithm. The reduction of an SBDD

by removing SBDD variables is discussed in Section 3.4.2. Once a variable has been

removed, the introduction of a relationship which involves the variable will cause an

error and the algorithm will halt. Therefore, removal of a decision node is not allowed

until all relationships which directly involve its variable have been included in G. This

step requires a well-defined graph traversal of G and is therefore an O(IGI) operation.

Step 4: Test for conflict and repeat. In Step 4, the SBDD is examined to

determine if any assignment of input variables leads directly to the 0-terminal. If such

a case is found, the algorithm determines that the last relationship introduced has

106

caused a conflict with one or more relationships represented in the SBDD and halts.

This test requires a well-defined graph traversal and is therefore an O(IGI) operation.

After testing for conflict, the next available constraint is selected and the algorithm

returns to Step 2. It is necessary to first apply the characteristic equations for all

known and unknown systems structures in the partial order defined by the system

topology. Only after introducing these relationships can additional information be

introduced. By introducing relationships in this order, we guarantee that the “inputs”

to each relationship are available and that their values are well defined prior to the

introduction of additional information.

Step 5: Determine completeness of specification. In Step 5, the SBDD is

examined for completeness. Since a fully specified SBDD has exactly one 1-path for

each assignment of input variables, this determination can be made by a simple graph

traversal. If any node in G representing a decision variable which is not a primary

input does not have exactly one arc which leads to the 0-terminal, then the SBDD is

not fully specified. This test requires a well-defined graph traversal and is therefore

an O(|G I) operation.

Step 6: Acquire necessary knowledge. In Step 6, the partially specified

relationships of SBDD G are identified. This step is similar to the traversal performed

in Step 5, except that the primary input assignment which appears in the path to

each “unknown” node is recorded. The node is then marked to prevent redundant

primary input assignments from being recorded. This test requires a well-defined

graph traversal and is therefore an O(|G|) operation. This set of primary input

vectors represents input conditions for which the output behavior of the circuit is

107

unknown. Once the set of vectors has been determined, the algorithm produces the

information, and halts.

If an external source can provide the behavior of the primary outputs under the

input assignments represented by this set of vectors, this information can be used (in

Step 2) to fully specify the SBDD. This claim is supported as follows. Each vector

corresponds to an assignment of primary inputs which produces an assignment of

blackbox inputs under which the behavior of the blackbox structure is unknown (this

follows from the technique use to produce the set of vectors). If the circuit output

assignment is unknown for the input assignment represented by the vector, then at

least one output is sensitized to a blackbox variable which appears along the SBDD

path. Therefore, by Theorem 4.1, the vector specifies a partial relationship upon the

blackbox(es) to which it is sensitized.

The set of vectors can be reduced in size by examining the SBDD to determine

the blackbox input conditions for the unknown node or nodes appearing on the path

corresponding to each vector. For each path, the variable assignment for inputs to

the unknown structure can be determined. Vectors in the set which share unknown

structure input assignments are redundant since the generation of secondary con-

straints (Section 4.2.3) guarantees that information deduced regarding the output of

any blackbox for some blackbox input assignment are uniformly represented through-

out the SBDD. This reduction is done for efficiency only, and does not necessarily

need to be included as part of the algorithm.

Step 7: Specify blackbox structures. In Step 7, a specification for the black-

box structure in a fully specified SBDD G is produced. This specification can be gen-

108

erated by recursively traversing G (which is an 0(|G|)) operation). As each blackbox

node is encountered, the blackbox input assignment to which it corresponds (this is

specified by the path used to reach the node) is recorded. Furthermore, the output

of the blackbox node is recorded. For all blackbox input assignments which are not

recorded, the function of the blackbox is a don’t care.

4.3.3 Results

The structural BDD-based approach has been applied to a number of benchmark

combinational circuits (McElvain, 1993). Results are summarized in Table 4.1. The

column labeled “Shared BDD Size” presents the size of the BDD(s) representing

the functionality of the circuit, as implemented by an efficient complemented-edge,

shared-BDD package (Somenzi, 1997). For each circuit, several blackbox scenarios

were tested, including cases in which the subcircuit contains multiple blackboxes and

multiple outputs. For each scenario, we present the size of the structural BDD and

the CPU time necessary to construct it. Although the representation of the Circuit’s

structure function is significantly larger than a traditional BDD representation, this

complexity is the necessary cost of providing a framework for representing partial

information.

Since net variables which represent nonessential circuit structures are reduced once

it is no longer necessary to reference the variable (Step 3 of the algorithm), the size

of the SBDD becomes relatively independent of the number of gates in the circuit.

The limiting factors on its size are the number of primary inputs and outputs, and

109

Circuit No. of No. of No. of Shared

Name Inputs Outputs Gates BDD Size

alu4 14 8 681 1453

f51m 8 8 43 73

pml 16 13 39 42

t481 16 l 2072 202

z4ml 7 4 20 47

Circuit Unknown Structural Unresolved CPU Time

Name Gates BDD Size Vectors (sec)

alu4 0 1663 0 4.6

2 1774 0 7.61

4 1779 7 8.8

f51m 0 765 0 17.1

5 3057 0 20.9

10 3898 12 20.9

pml 0 1101 0 45.4

4 1980 0 60.3

8 3605 0 78.9

t481 0 204 0 294.78

10 441 4 353.1

50 - 5061 68 1738.3

z4ml 0 80 0 3.8

3 173 0 4.5

10 215 10 5.3

Table 4.1: RFPS results. Structural BDD sizes and run times to discover the

functionality of partially specified components removed from benchmark circuits.

110

number of essential internal structures represented (Section 3.4.2).

The CPU time (indicated in CPU seconds on a SPARCStation 20) indicates the

time needed to (1) build the SBDD from a partial netlist description, (2) apply the

relationship constraints for the Circuit’s ATPG test vectors, and (3) provide a de-

scription of the blackbox functionality or indicate additional sufficient tests. In many

of the cases, the additional information provided in the form of a circuit’s ATPG test

vectors was insufficient to allow complete deduction of the overall circuit functionality.

The number of “Unresolved Vectors” column indicates the number of input/output

relationships which must be determined in order to specify the behavior of the black-

boxes to within don’t care conditions and to therefore specify the functionality of the

overall circuit. Note that the algorithm allows the exact determination of the needed

additional input/output relationships.

It is necessary to mention that the number of unresolved vectors is significantly

influenced by the selection of the unknown gates. The number of blackbox structures,

the numbers of inputs and outputs of each structure, and the importance of each

unknown structure’s role in the overall circuit functionality are all factors which

affect the difficultly of determining the complete functionality of the circuit. Since

no existing techniques provide an effective solution to this problem, we provide these

preliminary results simply to demonstrate the feasibility of this approach.

These preliminary experiments have demonstrated the feasibility of this technique.

The blackbox specifications produced are provably correct by construction. Since this

problem is inherently intractable, however, this approach must fail for problems of a

certain size or complexity.

111

Chapter 5

Semantic equivalence checking

The problem of identifying meaningful components from a gate-level description has

been identified as a critical research area in the design recovery process (Section

1.2.3). Of particular interest is identifying a cluster of connected low-level devices

that form a high-level component. Previous approaches to this problem have relied

on the identification of exact structural matching (syntactic matching) to identify

subcircuits.

Semantic techniques can be used to identify subcircuits that are equivalent to

a high-level component in many situations for which syntactic techniques fail (Eck-

mann and Chisholm, 1997). For example, the structural changes imposed by new

implementations, design optimizations for area and power, or many other complicat-

ing factors can cause purely syntactic techniques to fail, but such structural changes

are amenable to semantic techniques. Semantic matching consists of two primary

tasks: the identification of subcircuits which may be block-level modules, and the

determination of semantic equivalence between such a subcircuit and a block-level

112

module. The first of these tasks is addressed elsewhere (White et al., 1997). This

chapter focuses upon the efficient determination of semantic equivalence.

Although semantic techniques are not limited to any particular level of circuit

description or application, this dissertation considers only the identification of high-

level components from gate-level netlists. The methods presented here are restricted

to identifying the block-level functionality of synchronous combinational components

with no loops or other timing issues. Since combinational circuits are the basis of

various logic circuits, the transformation of combinational netlists to a higher level

of design (a netlist of high-level components and glue-logic) will provide a basis for

understanding sequential circuit functionality in the future.

5.1 Determining equivalence

Identifying the subcircuits in a detailed circuit description is a fundamental operation

in both circuit validation and design recovery. Existing techniques for such identifica-

tion in design recovery rely on finding an exact match for a subcircuit structure within

the description (Section 5.2.1). These techniques fail to identify subcircuits that are

functionally equivalent but have been obfuscated because a different technology has

been used or because the design has been optimized.

Following the notation commonly used in Boolean Matching (Benini and De

Micheli, 1997), consider some subcircuit (or cluster) of a combinational circuit.

Such a subcircuit has |i| inputs such that, i = (i1, . . .,ilil), |o| outputs such that,

o = (01, . . . , OM), and a vector of Boolean functions (the cluster function) that deter-

113

mines the relationships among them:

f(i) = (f1(i), . . .,f|o|(i)). (5.1)

Likewise, for any high-level component module with inputs x and outputs y, there

exists a vector of Boolean functions (the pattern function) that describes its behavior:

9(X) = (91(X),---191y1X))- (5-2)

Two bijections, 7n, the input permutation function, and no, the output permuta-

tion function are defined as follows:

7r, : {7:1, . . .,ilil} —) {$1, . . . ,xlxl} (5.3)

7T0 : {1:1, . . . ,flol} —) {g1,. . . ,QM}. (5.4)

Definition 5.1 Two vectors of Boolean functions fond g are input-permutation,

output-permutation equivalent (’P’P-equivalent) if bijections exist such that:

Vk,1 S k S |o|,fk(i) = rr0(fk)(rr1(i)). (5.5)

We can now define semantic equivalence for combinational designs.

Definition 5.2 Two combinational designs D1 and Dz with corresponding vectors

of Boolean functions fand g are semantically equivalent if and only if fond g are

’P’P-equivalent. The input bijection 7r; and the output bijection rro under which fond

114

g are ’P’P-equivolent describe the input and output correspondences between D1 and

D2.

This definition of semantic equivalence provides a mechanism for identifying sub-

circuits that are functionally equivalent, irrespective of obfuscating details.

Definition 5.3 Semantic matching is the process of identifying a block-level compo-

nent which is semantically equivalent to o combinational subcircuit described at the

gate—level (i.e., o netlist).

Transforming detailed gate-level circuit descriptions into corresponding descrip-

tions based on block-level modules depends on enumerating all of the candidate sub-

circuits within the original detailed description and determining semantic equivalence

for each candidate (Eckmann and Chisholm, 1997; Doom et al., 1998). This chap-

ter is primarily concerned with presenting efficiency issues and solutions related to

determining semantic equivalence.

5.2 Historical perspective

This section of the dissertation covers some common terms, major issues, and pub-

lished techniques related to the identification of high-level entities necessary for design

recovery. It describes some existing algorithms that have been used to solve some in-

stances of the equivalence problem.

115

5.2.1 Syntactic matching

Previous approaches to this problem have relied on the discovery of subgraph iso-

morphisms to identify meaningful subcircuits (Bochner, 1988; Luellau et al., 1984;

Ohlrich et al., 1993). In these approaches, the circuit is represented as a labeled

graph. Likewise, a graph representing some subcircuit of interest is defined. These

approaches then attempt to find all instances of the defined subcircuit in the graph

representing the full circuit. In other words, these approaches attempt to identify

clusters of gates that exactly match some search pattern.

Such syntactic techniques have been successfully used to identify isomorphisms

between structures in a graph representing a circuit description and a particular im-

plementation (or a set of implementations) of a block-level module. For any given

block-level module, certain implementations are available in technology-specific li-

braries. By performing a syntactic match for every implementation of every module

available in a technology library, all standard implementations of block-level modules

implemented with that library can be identified.

The advantage of syntactic matching is that it is exceptionally efficient. Subgemini

is an algorithm for isomorphic subgraph matching with complexity linear to the graph

size (Ohlrich et al., 1993). The disadvantage of syntactic matching, in general, is

that a syntactic algorithm can identify only the set of specific implementations of a

functional component that are contained in its library. Nonstandard or intentionally

obfuscated implementations will never be recognized. Phrthermore, any optimization

that modifies the implementation of the entity (such as optimizations for don’t care

116

conditions) renders the entity unfit for recognition by structural techniques. Syntactic

matching cannot reliably recognize all the functional components that exist in a

circuit.

Although they are useful in applications such as converting a transistor netlist

into a gate netlist, techniques that rely on exact structural matching have limited

application to levels of design in which components have many valid implementations.

Therefore semantic techniques which allow the identification of block-level modules

based upon their functionality, rather than their structure, must be considered.

5.2.2 Factorial permutation

Although the equivalence of two single-output functions represented as ROBDDS can

be tested in constant time (Bryant, 1985), such testing requires that the correspon-

dences between the input variables be clearly identified. Because input and output

variable correspondences are not generally available, the straightforward method for

determining if two multiple-output functions are ’P'P-equivalent is to test for equiva-

lence over the set of lill - lo‘ll possible pairs of bijection functions (i.e., over all input

and output permutations). When there are more than seven or eight inputs, the

straightforward permutation technique is computationally intractable.

5.2.3 Logic verification

In logic verification, a specification describing some functional behavior is compared

with a circuit implementation of that function to prove equivalence. Verification

117

techniques that can deal with problems involving large numbers of inputs, sequential

behavior, and significant numbers of intermediate gates do exist. However, such tech-

niques require that correspondences between the implementation and specification

be known (Lai et al., 1992). Since one cannot assume knowledge of such correspon-

dences when attempting to identify high-level components in a flat netlist, verification

techniques are generally not applicable.

5.2.4 Boolean matching

Technology mopping (also known as cell-library binding) is part of the synthesis pro-

cess that is commonly used to transform logic representations into interconnections

within a set of implementation-dependent cells. Technology mapping is used to cre-

ate cost-optimized implementations for some logic function or Boolean network in a

particular implementation style that defines some library of building blocks (cells).

Detecting the equivalence of these Boolean functions to cells, referred to as Boolean

matching, is well studied (Benini and De Micheli, 1997).

In many ways, the problem of determining equivalence between a combinational

circuit and a high-level entity library is similar to the problem of Boolean matching.

Boolean matching algorithms are designed to efficiently match small (fewer than six

inputs), single-output clusters with a component of their cell libraries that implements

the function at the least cost. However, although a general solution to the equivalence

problem must be able to efficiently match functions with any number of inputs and

outputs, it also needs to be concerned with only a single (although possibly multiple-

118

output) pattern function rather than attempting to find a “least cost” match from an

entire library of matching functions. The goal of semantic matching is not to find the

best implementation of a function from a set of possible implementations but only

to identify equivalence and variable correspondences between a particular subcircuit

and a particular high-level component. It appears that no suitable solution to this

problem has been proposed in the literature.

5.2.5 Boolean signatures and filters

A signature of a Boolean function is a unique characteristic representation of some

property of the function. Two otherwise unrelated functions can have the same

signature. Having equal signatures is a necessary condition for equivalence matching.

thctions that share a signature are said to share a signature class.

A signature function is a function that takes an arbitrary function as an input and

returns a characteristic signature for that function. The value of a signature function

must be determined only by the behavior of the generic function; variable order,

variable labels, and random elements may not be used as part of the determination.

Boolean signatures have been used successfully to increase the efficiency of Boolean

matching algorithms (Mailhot and De Micheli, 1993). Since sharing a signature class

is a necessary condition for equivalence, the matching of signature functions can be

used to eliminate functions from equivalence consideration. thctions that do not

have matching signature characteristics can be filtered from the search space since

they cannot be equivalent. The primary limit to the effectiveness of such filtering is

119

the complexity cost of the signature function.

The use of filtering techniques in Boolean matching (Mailhot and De Micheli, 1993)

has resulted in the discovery of a wide variety of signature tests by various researchers.

Using signatures as filters to eliminate some permutations from consideration can

appreciably reduce the complexity of a ’P’P-equivalence check (Definition 5.1). There

are two classes of signatures: those that provide information regarding the behavior

of input variables (input signatures), and those that provide information regarding

the behavior of output variables (output signatures). Some of these signatures are

discussed briefly here because they provide directions for future research. Lai et al.

(1992) contains additional details.

For any function f(:1:1, . . . ,xn), represented by BDD G of size |G|, the following

signatures are defined:

0 Cardinality of dependence set: The dependence set of a function consists of only

those input variables that have an effect on its value. Thus,

131317”):{xilfl---,1151—1,0,Cl3i+1,~-)?é f(- - - 15171—1, 1133141, - - ml} (55)

The output signature Fdep(f) = |Dep(f)I can be computed in O(IGI) time by

using a BDD-based algorithm (Lai et al., 1992). This signature is particularly

useful when output-permutation equivalence is being determined. Outputs can

be permuted only with outputs of the same dependence set cardinality. Func-

tions that do not have the same number of outputs in each cardinality class

cannot be equivalent.

120

e Cardinality of on-set: The on-set of a function consists Of all input assignments

that produce a true (on) output.

Fan = |{XIf(X) = 1}|- (5-7)

Since the range of FM is quite large (2'"), the cardinality of the on-set is

one of the more effective Boolean signature functions. This signature can be

computed in O(IGI) time by using existing algorithms (Lai et al., 1992). This

signature can be used to reduce both the number Of output matchings between

multiple-output functions and the number Of input permutations.

o Unateness Of input variables: A binate variable is present in both its direct

and complemented phase in the minterm expression for a function. A unate

variable is present in either its direct or complemented form, but not both. Thus

the unateness Of each input variable can be used as a signature Funate(f, :13) =

{binote, positive unate, negative unate}. For two functions to be equivalent,

corresponding input variables must have similar unateness properties.

The unateness Of input variables can also be used as an output signature. For

each output, count the number of binate, positive unate, and negative unate

input variables that occur in the function’s minterm expression. Its matching

function must share these same sums. Computing the unateness of each input

variable for each output function is a O(IGIZ) Operation (Lai et al., 1992), which

may be too expensive for semantic matching.

121

0 Symmetry class of input variables: Two variables are symmetric if they can

be interchanged without changing the value Of the function. Thus :13,- and :12,-

are symmetric if and only if f(. ..,a:,-,...,x,-,...) = f(. ..,2:,-, . ..,.r,-,...). The

input variables can be partitioned into symmetry classes that act as a signature

for each output function. In addition, input variables can be matched only to

input variables that have equivalent symmetry classes over all output functions.

Symmetry computation requires an O(IGIZ) Operation (Lai et al., 1992) for

each pair Of inputs for each function and is probably too expensive for semantic

matching. Although they can be effective for small cells in Boolean matching

problems, symmetry classes are not always an effective signature on high-level

entities, many Of which have few symmetries.

High-level entities, however, Often possess group symmetries. When some group

of input variables can be interchanged with a disjoint group of input variables

without changing the value Of the function, the groups of variables are said to

be group symmetric. Group symmetries are also signature functions that might

be particularly effective on high-level entities representing arithmetic functions.

However, no algorithm is currently known for efficiently calculating group sym-

metries.

5.3 Determining semantic equivalence efficiently

This section describes an algorithm for determining if a semantic match exists be-

tween a subcircuit and a high-level component. A general solution to the equivalence

122

problem requires the identification Of high-level components that are more complex

then those dealt with in Boolean matching but that lack the input/output corre-

spondences between the logic design and the library components that verification

techniques require. Since the functionality Of the high-level component may be repre-

sented in any number Of structural forms, the subcircuit must be identified by proving

semantic equivalence (Eckmann and Chisholm, 1997). Since semantic equivalence is

defined as the process Of determining equivalence between any pair Of Boolean func-

tions, these techniques are not limited to any particular level of circuit description or

application. This thesis, however, considers semantic equivalence only in the context

of the identification Of high-level components in gate-level netlists.

5.3.1 Input signatures and suspect sets

This approach to the semantic matching problem makes use Of signature informa-

tion to reduce the number of input correspondences that must be considered. This

reduction is accomplished through the use Of suspect sets.

As discussed in Section 5.2.5, a signature Of a Boolean function is a unique, char-

acteristic representation Of some property Of the function. The class Of signatures

that provide information regarding the behavior of a function’s input variables are

referred to as input signatures.

Definition 5.4 The signature values for any input signature function can be used to

partition the function inputs into classes corresponding to their signature. Such a list

of inputs is a signature class.

123

The following result is clear.

Theorem 5.1 A pattern function and a cluster function cannot be semantically

equivalent under any input correspondence in which any pair of corresponding inputs

are members of difiering signature classes.

Proof: Consider a cluster function and a pattern function which are se-

mantically equivalent. Assume that some pair Of corresponding inputs

(say y and 2:, respectively) exist which are not members Of signature

classes with equal signature value. Since y and a: do not share a signa-

ture class, some input signature function f exists such that f(y) 51$ f (2:)

This contradicts that fact that y and x are corresponding inputs Of equiv-

alent functions and must therefore have the same signature for all input

signature functions. Therefore, our assumption was incorrect; pairs of

corresponding inputs must be members of signature classes with equal

signature value.

Definition 5.5 A cluster input variable i; ’s suspect set, 5.; is the subset of pattern

function 9 ’3 inputs, 2:1, . . . ,xlxl, that share a signature class with i; under every input

signature for which information is available.

The use of suspects sets allows one to significantly reduce the factorial search

space associated with determining semantic equivalence.

124

5.3.2 Vector input signature

A new signature function that has proven to be an adequate initial filter for many

problems is introduced here. It takes advantage Of the fact that the vector functions

under consideration consist Of multiple functions, each corresponding to a single out-

put.

Definition 5.6 A positive (negative) Boolean unit vector is defined as a vector in

which exactly one element has the value 1 (0) and in which all other elements have

the value 0 (1).

Definition 5.7 For any vector of Boolean functions f(1) = o, ij’s positive unit

vector input signature is the sum of the function outputs (i.e., the cardinality of the

on-set) when the positive unit vector with input ij equal to 1 is applied.

Ill

f+;;;(i,-) = z fn(u), where u; = 1 if and only if k = j. (5.8)

71:]

The negative unit vector input signature is defined similarly.

Definition 5.8 For any vector of Boolean functions f(i) = o, the function’s vector

signature is an ordered set of |i| (as, y) pairs, in which each such pair corresponds to an

input ij of f and z (y) represents the positive (negative) unit vector input signature.

Table 5.1 shows the results of applying the vector signature to the vector function

Of a 4-bit ALU. The resulting vector signature is {2 x (1,7),1 x (2, 2), 1 x (2, 5), 6 x

(2, 7), 3x (3, 5), 1 x (6, 5)}. The details Of computing this vector signature are presented

in Appendix B.

125

Vector Input Signature

Input Name Positive Negative

sell, Cn’ 1 7

sel3 2 2

a0 2 5

selO, sel2, b0, b1, b2, b3 2 7

a1, a2, a3 3 5

m 6 5
Table 5.1: Vector input signature for the TI 54181 4-bit ALU. The positive

and negative unit vector input signatures are shown for a 4-bit ALU with selection

inputs se10-3, mode input m, carry input Cn’, and data inputs a0—3 and b0—3. The

vector signature partitions the function inputs into six signature classes.

The positive and negative signature functions each return a signature which ranges

in value from 0 to |o| (where |o| is the number of function outputs). These functions

alone can be used to partition inputs into |o| - lol = |o|2 suspect sets. Therefore these

signatures become potentially more effective as the number Of function outputs in-

creases and are particularly well-suited to the multi-output functions which represent

block-level modules in semantic matching.

Non-unit vector input signatures

When any signature class contains a single member (that is, no other input shares its

(1:, y) signature value), a correspondence is clearly identifiable. The vector signature

for the four-bit ALU shown in Table 5.1 has three signature classes with only a single

member (the signature classes for sel3, o0, and m). Recognizing correspondences for

such variables is straightforward. A signature class with multiple members, however,

126

does not differentiate among the inputs sharing the signature class. Such differentia-

tion may sometimes be achieved through the use of additional non-unit vector input

signatures.

In the case of the four-bit ALU, six inputs are members Of the suspect set < 2, 7 >.

Let us consider other input vectors which can be applied to provide information

tO further difl'erentiate these six inputs. The correspondence between sel3 and the

pattern function input to which it correspondences is clear, since only one input is a

member Of the appropriate suspect set. Similarly, for each suspect set, a corresponding

number Of pattern function inputs exist which have the same signature values. This

ability to partition both the inputs in the pattern function, as well as the inputs in

the cluster function, provides a way for us to create new vectors to use to produce

signatures.

Let us consider how we might attempt to create a new signature which would help

differentiate the cluster input variable selO from the rest of the variables in suspect

set < 2, 7 >. Consider the vector corresponding to the assignment sell = Cn’ = 1,

sel3=0,a0=0,o1=a2=a3=1,m=0,andsel0=sel2=b0=b1=b2=b3=0

to the cluster function inputs. Since the corresponding groups of input variables in

corresponding suspect sets are clearly identified in the pattern function, it is possible

to create an assignment of values to pattern function inputs which exactly corresponds

to this vector. Consider now, the effect of changing the value Of one Of the inputs

in the suspect set < 2, 7 > to 1 and noting the output sum. The output-sum may

difler as different inputs are assigned the value 1. Thus, this technique can be used

as a signature to differentiate the inputs from each other. This same technique can

127

be used with the inputs in the corresponding pattern function suspect set. If, for

example, the cluster functions sum-of-outputs for the vector in which sel0 = 1 does

not equal pattern function’s sum-of-outputs for the vector in which b0 = 1, then sel0

and b0 do not correspond and can be placed in different suspect sets.

The ability to distinguish inputs in different suspect sets from one another provides

a means for the creation Of additional vector input signatures. Like the positive and

negative unit vectors, these additional non-unit vectors can be used to in a sum-of-

Outputs signature function to provide additional information which may define new

suspect sets. These effective use of non-unit vectors has not been fully explored and

remains open.

5.4 Implementation and results

This section presents an overview of an algorithm for determining semantic equiva-

lence between two gate-level structures and preliminary results.

5.4.1 Implementation

This approach to the semantic matching problem makes use of signature informa-

tion to reduce the number of input correspondences that must be considered. This

reduction is accomplished though the use of suspect sets (Definition 5.5).

Let f(i) = o be the vector Of Boolean functions for some subcircuit. Let 9(x) = y

be the vector Of Boolean functions for a high-level component. Semantic equivalence

and input/output correspondences between the subcircuit and the high-level compo-

128

nent can be determined as described by the following algorithm.

Semantic Equivalence Algorithm

Step 1: Create binary decision diagrams. Create a BDD for each “output”

Oj of the cluster function f. Likewise, create a BDD for each “output” 3;, of the

pattern function 9.

Step 2: Determine signature classes. Determine the vector signatures for the

inputs off and 9. Partition the set Of each function’s input variables into equivalence

classes defined by these signatures. Compare the number Of inputs from each function

which return the same signature. If this number differs for any signature value, the

functions cannot be equivalent; the algorithm returns a negative result and halts.

Step 3: Determine suspect sets. For each input 2', of the cluster function

f, create a suspect set S, which contains the subset of inputs of pattern function

9 that have the same signature as the input ij. Apply additional input signatures

(Sections 5.2.5 and 5.3.2) tO reduce suspect set size below a predetermined threshold,

if possible.

Step 4: Iterate though legal input correspondences. Eliminate all match-

ings that include a correspondence between a cluster function input ij and any pattern

function input which is not in 31-. For each remaining input correspondence, attempt

to identify a output correspondence under which the functions are equivalent (Step 5).

After all input correspondences have been considered, any correspondences accepted

in Step 5 are produced as output, and the algorithm halts. If no correspondences

under which the functions are equivalent has been identified, the algorithm returns a

129

negative result and halts.

Step 5: Determine legal output correspondences. Compare each pair Of

BDDS representing a substituted cluster function output and a pattern function out-

put. If a unique output matching for each pair is determined, a legal correspondence

has been identified; the algorithm accepts the identified correspondence, and returns

a positive result.

5.4.2 Validity and complexity

We now present a proof Of validity for the semantic equivalence checking algorithm.

Theorem 5.2 The Semantic Equivalence Algorithm (Section 5.4.1) will determine

an input correspondence under which function f and function g are semantically

equivalent if and only if such a correspondence exists.

Proof:

Two functions are semantically equivalent if any only if a correspondence

between their respective inputs and outputs can be found under which

the functions are ’P’P-equivalent (Definition 5.2). Obviously, if every pos-

sible correspondence is checked (as in the factorial permutation approach

described in Section 5.2.2), a correspondence under which function f and

function g are equivalent will be found if (and only if) such a correspon-

dence exists. Thus, we need only prove the following:

A. The Semantic Equivalence Algorithm does not discard any corre-

spondence under which functions f and g are equivalent (i.e., no

130

false negatives).

B. The Semantic Equivalence Algorithm does not accept a correspon-

dence under which f and Q are not equivalent (i.e., no false posi-

tives).

Proof of A: Assume that f and g are equivalent functions under one

or more input and output correspondences. Clearly, if all input corre-

spondences and output correspondences are tested (as is done in the fac-

torial permutation approach discussed in Section 5.2.2), then each such

correspondence will be identified (and only such correspondences). As

the semantic equivalence algorithm attempts to perform a more efficient

search Of the input and output correspondence space by removing some

correspondences from consideration, we need only show that the correct

correspondence is not removed from consideration.

The algorithm removes from consideration only those correspondences

which take place between input variables which are members of non-

corresponding suspects sets and thus possess differing input signatures

for at least one signature function. Theorem 5.1 states that two functions

can be semantically equivalent only under input correspondences which

take place between members of their respective signature classes that have

equal signature value. Therefore, the functions f and g cannot be equiv-

alent under the correspondences that are removed from consideration.

Proof of B: Assume that f and g are not equivalent functions under any

131

input and output correspondences. If all input correspondences and out-

put correspondences are tested (as is done in the factorial permutation

approach), then the functions will fail to be equivalent under every corre-

spondence tested. Thus, it will have been proven that the functions are

not equivalent.

The semantic equivalence algorithm is only capable Of discarding corre-

spondences which would normally be checked during the factorial per-

mutation approach. NO additional correspondences are added. Thus,

non-equivalent functions f and 9 will always be identified as such.

Complexity

The factorial permutation technique presented in Section 5.2.2 requires |i|l|O|l com-

parisons. The Semantic Equivalence Algorithm achieves significant improvement. Let

n represent the cardinality of the largest input suspect set determined in Step 3 Of the

algorithm. An upper bound on the number Of legal input correspondences is MW”.

The Semantic Equivalence Algorithm, however, constrains the value of n to be less

than a predetermined threshold. Reasonably small values Of n can be achieved for

many problems through pruning suspect set sizes by applying multiple signature val-

ues until all suspect set sizes fall below some threshold (say, less than seven). Since

n has an upper limit (the threshold) n can be treated as a constant value c, and the

input correspondence selection will be exponential in complexity: O(c'”).

Pruning of suspect sets to reduce n below some constant threshold is effective

in most components except those with large numbers Of symmetric inputs (which

132

are indistinguishable under Boolean signatures). In such cases, however, any input

matching will succeed for the symmetric inputs, which actually simplifies the process

Of proving semantic equivalence because a correspondence will be identified very early

in the execution Of the algorithm.

Although BDDs are an efficient mechanism for representing the functionality Of

most components, their size may become intractably large for certain functions under

some (or all) variable orderings (Bryant, 1985). Since a “good” variable ordering

for the pattern function library can be obtained a priori, most BDD-based concerns

can be eliminated. If the BDD for any cluster function output exceeds the size Of

the largest BDD representing a pattern function output, that input matching can

be immediately discarded and BDD generation can be discontinued since no legal

correspondence can exist between functions that have BDDS Of different sizes under

the same variable ordering. Pathological functions (such as multipliers) that have no

efficient BDD representation remain an Open issue.

Since each cluster output BDD is tested against each pattern output BDD ex-

actly once in Step 5 of the algorithm, the complexity Of determining legal output

correspondence is only O(|o|2). Therefore, the overall complexity Of this approach

is 0(clillol2). This exponential algorithm is a significant improvement over factorial

methods and makes semantic matching feasible for many block-level modules.

133

5.4.3 Results

The algorithm for semantic matching was implemented in C using the University Of

Colorado’s decision diagram library (Somenzi, 1997). Experiments were conducted on

a Sun Ultra Enterprise 3000 running Solaris 2.5.1 with 256 MB of main memory and

879 MB of virtual memory. Experimental circuits were taken from the LGSynth93

benchmark suite (McElvain, 1993).

Table 5.2 compares the Semantic Equivalence Algorithm with the factorial ap-

proach. For each component, the table shows the size of the subcircuit, size (number

of decision nodes) Of the BDD representation Of the component’s pattern function (un-

der some reasonable variable ordering), number Of input matchings, and total number

of BDD equivalence checks made during the program’s run time. Since some functions

contain symmetries, it is not sufficient, in general, to only identify a single correspon-

dence when multiple correspondences exists. In design recovery, for example, it is

necessary tO identify all possible correspondences so that the “best” correspondence

can be used in the recovered design description. Therefore, the algorithm always

performs a complete search Of the correspondence space and this is reflected in the

run time presented.

The 24ml circuit (a 3-bit adder) shows a case in which the inputs are indistin-

guishable from their vector signature, and thus the number Of input matchings is 7!.

Note that because the algorithm prunes (i.e., reduces) the output search space, the

number Of comparisons is only 20,304, an order Of magnitude less then the number

Of comparisons necessary in a 120,160 (7l4!) nonpruned search.

134

Circuit No. of No. of BDD

Name Inputs Outputs Size

C1908 33 25 127349

a1u2 10 6 231

cc 21 20 57

f51m 8 8 73

pml 16 13 42

sct 19 15 102

t481 16 1 202

z4ml 7 4 47

Circuit Input Matchings Correspondences Checked Run Time

Name Method 1 Method 2 Method 1 Method 2 (sec)

01908 8.7e+36 7.9e+12 1.3e+62 NA NA

alu2 3.6e+06 2.0e+00 2.9e+10 3.2e+01 0.2

alu4 8.7e+10 8.6e+03 3.5e+15 6.9e+04 232.4

cc 5.1e+19 1.4e+07 1.2e+38 1.5e+09 37675.5

f51m 4.0e+04 4.8e+01 1.6e+09 4.3e+02 0.1

pml 2.1e+13 2.0e+05 1.3e+23 2.8e+06 273.4

sct 1.2e+17 4.0e+07 1.6e+29 6.0e+08 75647.4

t481 2.1e+13 2.3e+07 2.1e+13 2.3e+07 88354.5

z4ml 5.0e+03 5.0e+03 1.2e+05 2.0e+04 4.55

Table 5.2: Experimental results. The circuits included in this table are a subset

Of the LGSynth93 benchmark suite. The results listed for Method 1 are calculated

for the Factorial Permutation approach (Section 5.2.2). The results presented for

Method 2 are experimental‘results for a single vector signature implementation Of the

Semantic Equivalence Algorithm presented in Section 5.4.1.

135

The alu4 circuit (a 4-bit ALU) is sufficiently complex to have fairly well-

distributed vector signatures and thus is able to take advantage of vector signature

information to recognize that only 8,640 Of the greater than 87 billion possible input

matchings can possibly produce a legal correspondence. The use Of vector signatures

has made this intractable comparison feasible. Furthermore, note that Of the 3.5 x

1015 total correspondences (14l8!) possible, only 69,411 comparisons are necessary.

Obviously, circuits (such as C1908) exist for which a single vector signature does

not adequately prune the matching space. A single vector signature is capable Of

reducing the number of input matchings for the 173 input LGSynth93 pair circuit

from 173! to approximately 73!. While this reduction Of search space is certainly

significant, the suspects sets must be significantly reduced in size (by using additional

input signatures) to permit semantic matching within a reasonable execution time.

136

Chapter 6

Reengineering methodology

As discussed in Section 1.1.1, reengineering consists Of some form of reverse engineer-

ing, followed by possible alteration, and finally the more traditional forward engineer-

ing process. The rationale for the reengineering Of legacy digital systems (Section

1.2.2) is to reduce the costs associated with the reimplementation Of existing, tested

devices in new fabrication technologies. Thus, the first step in the reengineering of

legacy digital systems is the recovery Of the original design to a level appropriate for

reimplementation.

The RTL description of a device is technology independent and therefore abstract

enough to allow for implementation in any fabrication technology (De Micheli, 1994).

Furthermore, for many systems, formal verification techniques exist which can prove

the equivalence of a synthesized implementation and the RTL description.

The difficulty lies in constructing a RTL description of an existing device which is

provably correct. If such a design can be recovered and if existing formal verification

techniques can prove the synthesis (forward engineering) process correct, then we will

137

have reengineered a new device which is provably equivalent to the legacy system.

Ideally, the testing cycle for the reengineered device will be significantly shortened by

providing a formal proof Of correctness.

6.1 Design recovery methodology

This section presents a possible approach to design recovery which takes advantage of

the SBDD and semantic pattern matching techniques discussed previously (Chapters

3, 4, and 5).

Design recovery methodology

Step 1: Partitioning. Using syntactic matching techniques, identify all sequen-

tial system components. Use these devices as cut points to divide the system into

subcircuits of combinational logic.

Step 2: Represent available information. Represent the structural rela-

tionships within each cluster Of combinational logic as an SBDD (Chapter 4). Create

constraint characteristic functions (Definition 4.1) for any available information which

provides information regarding the relationship Of structures within the cluster.

Step 3: Refine specification. If the information represented introduces a

conflict, then flag the relationships for external resolution (Section 4.2.2, Case 3). If

functionality remains unspecified, then determine a minimal set Of information which

is sufficient to specify behavior. Determine this information through testing, external

deduction, or other techniques (Section 4.2.2, Case 2). If the SBDD representing

138

the combinational subcircuit is completely specified (Section 4.2.2, Case 1), then

synthesize a gate-level implementation of the blackbox functionality and complete

the structural description. If the functionality Of the combinational cluster cannot be

completely specified, then provably correct recovery of the design is not possible.

Step 4: Match functional behavior. For each subcircuit of the cluster, at-

tempt tO determine block-level functionality (if any) using semantic matching tech-

niques (Chapter 5). Every subcircuit must be considered since any subcircuit may

implement the functionality Of a block-level module (Doom et al., 1998). Recall that

semantic matching techniques determine equivalence though matching Of functional-

ity rather than matching implementation. Hence, the introduction Of deduced gate-

level implementations of blackbox components (in Step 3) does not pose additional

complications for this matching.

Step 5: Produce RTL description. Produce a description Of the circuit in

terms Of sequential components (if any) identified in Step 1, block-level modules

identified for each combinational cluster in Step 4, and remaining combinational logic.

In many cases, this description should be sufficient for effective redesign.

6.2 Capabilities and limitations

This methodology is presented as a preliminary approach tO the design recovery of

digital systems. The SBDD and semantic matching techniques used in this approach

are currently only applicable tO combinational circuits; therefore it is necessary that

we partition the system (Step 1) into combinational subcircuits prior to the applica-

139

tion of these techniques. This methodology is particularly apprOpriate to the design

recovery of Obsolete legacy systems, as these systems are Often composed of non-

optimized, primarily combinational devices.

Furthermore, this methodology is capable of deducing the functional role of par-

tially specified combinational components. However, the SBDD-based techniques

discussed in Chapters 3 and 4 are not currently applicable to sequential devices and

are therefore not yet applicable in the determination of the specifications of partially

specified sequential components. Thus, it is necessary that any blackbox compo-

nents be composed of fully combinational devices in order to utilize this approach in

sequential systems for which only partial information exists.

This preliminary approach is primarily targeted towards non-Optimized systems.

The identification of library entities in modern systems are complicated by design

optimizations which may obfuscate the function of the entity implementation.

Non-reversible Optimizations

During the design and synthesis process, logic functions may be modeled from avail-

able block-level or gate-level components that “almost” fit the necessary function.

Common techniques used to create implementations for functions which “almost” fit

an existing function include bridging inputs, applying stuck-at values, and ignoring

outputs (Mailhot and De Micheli, 1993).

When two (or more) inputs to a library cell are connected to the same input line,

such cell inputs are bridged. When a cell input is tied to ground (power), the input

is stuck-ot-O (stuck-at-I). Furthermore, some outputs of the library entity may not

140

be used. Designs that incorporate these Optimizations may be difficult to identify in

their corresponding gate-level netlists. The actual components used depend on the

specific modules available and the cost metrics associated with the binding processes.

When a block—level component is designed with bridged or stuck-at inputs, its

gate-level implementation may be optimized to take advantage Of this fact during

synthesis. In cases involving stuck-at or bridged inputs, the number of observable

inputs to a cluster of gates may actually differ from the number of inputs to the

block-level module which it represents. Likewise, a design which contains a block-level

module with an output which is ignored will generally not represent that output at the

gate-level, causing the number Of observable outputs to a gate cluster to differ from

the number of outputs Of the block-level which it represents. In these cases, existing

semantic matching techniques are not sufficient, alone, to identify the block-level

device which corresponds to such a subcircuit. Design recovery in this circumstance

remains an open problem.

Reversible Optimizations

Another common design Optimization is the reduction of implementation area by

causing the intermediate functionality of several distinct library units to occur in a

single, shared cluster. During logic synthesis and technology mapping, each block-

level module is reduced to primitive logic functions which must be mapped to available

library cells and appropriately interconnected to provide the necessary high-level func-

tionality of the block-level component. In situations where two or more block-level

components share a logic function primitive, the gate-level implementation may be

141

Optimized so that the same physical implementation is used in the logical function of

both block-level modules (De Micheli, 1994).

Since both modules sharing a portion of combinational logic can be functionally

identified through semantic comparison to the appropriate combinational cluster, Op-

timizations of this sort are reversible. Such Optimizations must be kept in mind, how-

ever, when designing a subgraph enumeration algorithm (Section 5.1). It is necessary

in such cases to allow for the possibility that some cluster outputs are not outputs of

a block-level device but are, instead, used in the implementation Of another device.

Such an approach seriously complicates the subgraph enumeration process, but is

necessary to allow identification of block-level modules which have undergone such

Optimization.

Don’t Care Sets

Consider a circuit with primary inputs x, primary outputs z, and the vector Of

functions ’H(x) = 2 (as defined in Equation 5.1), which determines the relationship

between them. Also consider some cluster within this circuit with inputs i, outputs

O, and vector of functions f(1) = o, which similarly determines the behavior Of the

cluster circuit. In a completely specified circuit, it is possible to determine the vector

of functions ’P(x) = i (which determines the cluster inputs for any given primary

input set) and the function Q(x, o) = 2 (which determines the value of the primary

outputs based upon the value of the cluster outputs and the behavior Of the rest of the

circuit). These relationships fully describe the environment around the multi-output

cluster.

The input controllability don’t core set (CDC) for the cluster includes all input

142

conditions that are never produced by the environment (Benini and De Micheli, 1997).

Thus the CDC is defined as follows:

CDC = {ili is not in Ronge(’P(x))}. (6.1)

The output observobility don’t core set (ODC) for each output of the cluster denotes

all input patterns that produce situations in which the output of the cluster is not

Observed by the environment (Benini and De Micheli, 1997). Effectively, the ODC set

contains all cluster inputs for which the values of the primary outputs do not depend

upon the output(s) of the cluster. In mathematical terms:

ODC = {ile such that ’P(x) = i, V0 6 Ronge(f), Q(x,o) = ’H(x)}. (6.2)

These don’t care conditions produce degrees of freedom available within the cluster

function. Functions within these degrees of freedom will produce behavior which is

indistinguishable with regards to the environment. Therefore, during synthesis, a

function “effectively equivalent” but not necessarily “identically equivalent” to the

logic function specified by the cluster may be chosen to implement it. That is, some

vector function f’ can be used such that:

Vi 6 {Range(’P) — CDC — ODC},f(i) = f'(i). (6.3)

The actual function implemented will be one of the functions that obeys these condi-

143

tions and meets some design criteria such as cost. These kinds of don’t care optimiza-

tions are common in sophisticated synthesis algorithms as well as in hand-Optimized

designs.

In order to recover design in systems which exploit don’t care sets during Opti-

mization, we must be able to determine the efiective high-level function implemented

by a cluster. The preliminary results presented in this dissertation do not consider

problems that contain don’t care Optimizations. We hypothesize, however, that this

task can be effectively carried out by determining the effective functionality of a sub-

circuit by treating it as a blackbox, and identifying all blackbox input assignments

for which it is not a don’t care (as described in Chapter 4).

With this information, it is possible to define a new cluster function which has

the behavior of the original cluster function under all input assignments which do not

correspond to don’t care assignments, and the value 0 otherwise. Intuitively, we apply

a mask which sets the value Of the function to 0 under any input conditions which

have been identified as don’t care conditions. Likewise, it is possible to define a new

pattern function which has the behavior of the original pattern function under all

inputs which do not correspond to don’t care assignments, and the value 0 otherwise.

The application of this mask efl'ectively removes all degrees of freedom, and allows

the semantic matching techniques described in Chapter 5 to determine if the effective

role of the cluster is that of the module represented by the pattern function.

144

6.3 Formal correctness

It is of vital importance that the recovered design be functionally correct. That is,

the recovered design need not necessarily be identical to the original design, but it

should represent the same functionality (assuming that there were no errors in the

original implementation).

Obviously, in a completely specified implementation, existing formal verification

techniques can be applied to prove equivalence between the existing implementation

and the recovered design. Designs recovered using our proposed methodology, how-

ever, are provably correct by construction. Intuitively, the subgraph enumeration

and semantic matching techniques replace portions Of the implementation-level de-

sign with equivalent block-level components. Since the functionality performed by the

block-level components is exactly equivalent to that performed by the gates which

they represent, the recovered design is correct. If semantic matching is performed on

optimized circuits as discussed in the previous section, the block-level components are

not necessarily exactly equivalent to the gate which they represent but are provably

equivalent in the overall context of the function.

In situations for which only partial system knowledge is available, the deduction

of effective functionality is also provable. SBDDS are used to represent characteris-

tic functions of partial relationships within a system. Our approach only recovers

effective functionality of systems represented by fully specified SBDDS. If the SBDD

representing the system is not fully specified, the design is not recovered.

However, if the SBDD representation is fully specified, then the specification of

145

j

any blackbox structures is the collection of the unique input/output relations which

satisfy the constraint characteristic functions. Furthermore, it is Obvious that the

assignment of output values is alway “correct” for input conditions under which the

value of the blackbox has been determined as a don’t care in terms of overall system

function. Therefore, a formal proof of equivalence can be constructed for any design

recovered by this approach.

6.4 Complexity issues

The problem of representing and proving equivalence of arbitrary Boolean functions

is inherently intractable (Jain et al., 1997). Although the BDD representation has

proven to be an effective representation for the functionality of many digital systems,

the usefulness of this representation is dependent upon a number of factors. Most

important among these factors are the number of variables represented, the BDD

variable order, and the particular BDD variant (BMD, ZDD, et a1. (Bryant, 1995))

which is used as the underling representation.

The SBDD approach to the deduction of functionality is dependent upon the

the representation of the characteristic function that represents known relationships.

Section 3.4.2 presented the worst-case SBDD size and a technique for size reduction.

In some circumstances, Of course, the functions represented by an SBDD can reach

these worst-case sizes. This approach uses SBDDS only to represent the combinational

portions of the digital system. Therefore the size of the SBDD is based upon the size

of the partitions (Section 6.1, Step 6), not necessarily on the size Of the overall circuit.

146

We are therefore confident that SBDD-based techniques are applicable to systems Of

the complexity currently undergoing reengineering.

On-going research efforts to extend the capabilities of the BDD representation

are active in the design automation community. Since the SBDD is fundamentally a

BDD which represents a Boolean function described in Chapters 3 and 4, this on-going

research can be utilized to increase the maximum size of combinational subcircuits

which may be represented by this methodology. In particular, research into parallel

BDD implementations will have significant impact upon the size of combinational

partitions which can be effectively represented and solved.

As our goal for this dissertation is to provide a preliminary approach to the prob-

lem of redesign for digital systems, as opposed to implementing a commercial redesign

system, we are unable to include results which concern the size of problems which can

be solved using this approach. It is our hope, however, that opportunities for such

research will present themselves in the future.

147

Chapter 7

Conclusion and future directions

We have shown that considerable interest exists in the design automation community

regarding formal techniques for the remanufacture and reengineering Of obsolete digi-

tal systems. Furthermore, we have discussed substantial hindrances to implementing

successful reengineering. Systems are often a blend of digital, analog, and software

components. A variety of sources Of system data might be available, such as the

physical hardware, software source code, test program sets, manufacturing artwork,

or paper documentation. Even with all of these potential sources of information,

reengineering is complicated by the fact that some of the system data might be con-

tradictory, incomplete, or out-Of-date. It is our belief that formal design recovery

in the reengineering process should be viewed as a process for providing error-free

retroactive documentation of an existing digital system.

We have presented an introductory overview of the reengineering process, of the

design process, and Of the current role of formal verification in digital design. Fur-

thermore, we have discussed the need for formal design recovery in existing critical

148

legacy systems. Most importantly, we have presented new techniques that facilitate

the formal recovery of high-level design information from available low-level, and pos-

sibly incomplete, descriptions of digital systems. These techniques take advantage of

the proven efficiency of BDDs to represent partially specified logic and to represent

the Boolean relationships which determine the behavior of the represented device.

Using these techniques, we have shown that we can identify block-level modules, de-

tect conflicts, and deduce unspecified functional behavior from structural context and

available additional information.

7.1 Semantic matching

The goal of reengineering digital systems (Section 1.2.2) is to reduce the costs asso-

ciated with the remanufacture of existing, tested devices. In order for a device to be

implemented in a new technology, it is first necessary to recover a RTL design of the

system. The only source of trusted system information in some critical systems is the

existing, fully tested, physical hardware. Other sources of information, if available,

cannot necessarily be trusted to be correct. Furthermore, state of the art reverse en-

gineering techniques are not always able to provide a complete gate-level description

of an existing device. In some cases, the functionality of portions of the device are

unknown and must be treated as blackboxes.

Previous approaches to this problem have attempted to transform gate-level de-

scriptions Of a device into RTL descriptions of a device through syntactic (structural)

matching techniques. Syntactic matching, however, has limited application since

149

high-level components have many valid implementations. Design Optimizations for

area and power, for example, may obfuscate implementations, causing syntactic tech-

niques to fail.

The function of an arbitrary combinational subcircuit is semantically (function-

ally) equivalent to the function of a high-level component if input and output cor-

respondence exist under which the functions are equivalent. Previous approaches

to this problem could not utilize semantic techniques since they required factorial

exploration of the input and output correspondence search space.

We have met our goal of developing a method to determine semantic equivalence

between a subcircuit and a high-level component in a tractable number of compar-

isons. We introduced the concept of using input signature functions to partition device

inputs into equivalence classes called suspect sets. In particular, we introduced a new

input signature function (the vector signature function) which takes advantage of

the multiple-output nature of high-level modules and has proven to be particularly

efficient in partitioning device inputs. Since input correspondences need only be con-

sidered between members of corresponding suspect sets, we significantly reduced the

complexity of this problem, making it tractable for many common modules. Lastly,

we have presented preliminary results which demonstrate the effectiveness of the tech-

nique using a single vector signature filter.

Future directions in semantic matching relate primarily to the introduction Of

additional filters to decrease the run time and increase the capabilities of the program.

The vector signature alone is not an effective filter for several of the circuits tested.

Additional function filters, such as those described in Section 5.2.5, are necessary if

150

this technique is going to be used effectively. The effectiveness and the costs of each

filter should be explored and the identification Of intractable problems, if any, should

be considered.

Some functions are inherently difficult to describe and match when this technique

is used. The multiplier and multiplexer are two such functions. The multiplier is

quite sensitive to filtering, and the number of comparisons necessary is relatively

small. Each such comparison, however, is exceptionally time consuming. Multipliers

are well known to produce exponential graphs when represented as BDDS. Creating

the BDD that represents the function Of the multiplier under some variable ordering

may be prohibitively time consuming.

The multiplexer function, on the other hand, is almost completely insensitive to

the vector filter function. A multiplexer consists of n control inputs, 2" data inputs,

and a single output whose value is equal to that Of the input selected by the control

inputs. Although the n control inputs may be identified by the vector signature,

all but two of the data inputs (the I and 0 lines) fall into the same equivalence class

(since their behavior is never selected by the control inputs). If n is greater than four,

there would be at least 2" — 2 = 16 — 2 = 14 input variables in the same vector class,

requiring at least 14! comparisons, which is intractable. The equivalence algorithm

can “flag” such clusters as having an intractable number of comparisons, but some

other method must be later used to consider these cases.

A technique for canonically ordering variables based on the recursive sorting Of

truth-tables by row and column sums is presented in (Wu et al., 1994). If such a

technique can be implemented efficiently, it will be completely unnecessary to consider

151

searching the factorial matching space to determine PP-equivalence (Definition 5.1).

The canonical ordering for the cluster and the canonical order for the entity must

indicate an appropriate matching when such a matching exists. A tool based on this

mechanism should be developed and tested for efficiency as well as maximum problem

size. Although this canonicalization is of exponential complexity, this technique is

quite promising.

This canonical ordering technique could be quite useful in performing (exact)

equivalence matching, because we would no longer need to test equivalence under all

input correspondences. We would merely need to determine the “unique” input order

of the function before the test. This technique would be more efficient than current

techniques for many functions, particularly those with a large number of inputs and a

small number Of outputs for which signature-based techniques may prove intractable.

To the best of our knowledge, no techniques for “canonicalizing” the variables in

a BDD has been proposed. Perhaps a metric by which a BDD could be recursively

ordered can be determined. If so, this would be a significant contribution to the field.

7.2 Representation of available information

Design recovery for digital systems is challenging as some information about the cir-

cuit may be unavailable. Therefore, it is necessary to be able to recognize the func-

tionality of any set of circuit components from available system information. Since

this information may not have been fully tested, conflicts between available informa-

tion must be identified so that they may be resolved externally. Although complete

152

deduction of functionality may be impossible in an incompletely specified implemen-

tation, available information allows the deduction of complete system specification in

many cases.

The traditional BDD representation of circuit functionality represents the exter-

nal functionality of the circuit. That is, circuits are generally represented as a set of

functions representing primary outputs in terms of primary inputs. Representations

of this sort are equivalent to behavioral-level descriptions of the device. Since BDDs

can be used to represent any Boolean function, they are also capable Of represent-

ing the characteristic equations of circuit structures. In Chapter 3, we defined the

structure function to be a characteristic function which represents the behavior of in-

ternal circuit structures as well as the Circuit’s primary outputs. This representation

corresponds to a structural-level representation.

In Chapter 4, we described a more “relaxed” characteristic function in which any

variable assignment which leads to a 0-terminal is illegal, but in which a variable

assignment leading to a l-terminal is not guaranteed to be legal. This new charac-

teristic function is capable of representing partially specified information. We refer

to a BDD which represents this “relaxed” characteristic function as an SBDD, and it

is this interpretation Of our new function which is the basis for our approach.

It should be noted that SBDDS may contain decision variables representing more

than one output. Standard BDD representations of a circuit require one BDD for

each output. Furthermore, BDDS contain no decision variables representing internal

circuit structures. An SBDD can represent an entire circuit, with all of its variable

relationships, in one structure. It is exactly this ability to represent relationships

153

throughout an entire circuit which makes SBDDS a powerful tool for reengineering.

Recovery of unspecified functionality

SBDDS allow for the representation of partial Boolean functions involving variables

represented as a decision nodes. Furthermore, we have shown how characteristic func-

tions representing information available at various design levels can be created and

included to specify new relationships within the SBDD or to identify conflict. New

relationships between any of the variables represented can be introduced by limiting

all l-paths which contradict the relationship. Any Boolean relationship between vari-

ables represented in the SBDD can be included, regardless of the level of design from

which the information comes. The satisfying set of an SBDD represents the subset

of the Boolean space determined by net variables which encapsulates the system’s

behavior.

After introducing new knowledge, the circuit may then become completely spec-

ified, or it may still contain unknowns, (nodes labeled as representing blackboxes,

for which either a 0 or 1 output may be legal). For a completely specified circuit,

we know for which inputs the value of the blackbox has an effect upon the output

and what the value of the blackbox is under these inputs. For all other inputs (for

which the blackbox output has no effect upon the circuit output), the value of the

blackbox does not need to be known. These values are don’t cores for the blackbox

functionality in the context Of the overall circuit function.

These techniques allow the identification of the three possible results (Section

4.2.2) which occur after the inclusion of all available information. In cases which the

154

overall circuit functionality is completely specifiable, we have shown how to apply

efficient graphical techniques to identify the specification of blackbox structures to

within don’t care conditions. In cases in which the overall circuit functionality is not

completely specified, we have shown how to create a minimal list of input/output

relationships which, if determined, allow complete deduction of the specification.

Finally, we have shown how conflicting information can be identified by graphically

identifying situations in which no legal 1-path exists for any primary input assignment.

Initial work in this area is promising. “Complete knowledge” representations of

partially specified combinational implementations have been produced which encode

the necessary functionality of the circuit hierarchy. Furthermore, we have been able

to apply information from another level of description (test vectors) and automate

a deductive task. To the best of our knowledge, this is among the first such work

which makes use of test vector information to aid in the design recovery of a digital

component. Parallel research has proposed an informal approach towards recovering

the design of digital VLSI circuits with incomplete implementation information using

methods such as exhaustive simulation '(Wey and Khalil, 1998; Khalil, 1998). Our

approach allows for the mathematical simplification of the problem search space as

Opposed to relying on partitioning heuristics of the sort utilized in this informal

approach. Furthermore, our approach allows the utilization Of relationships between

any set of net variables to be used in recovering the design rather than being limited

to relationships between the primary inputs and outputs. Both approaches have merit

and need to be studied further.

In the future, we hope to apply this approach to more difficult problems. In par-

155

ticular, we wish to incorporate constraints representing information from other levels

of design. Additionally, the feasibility of redesign for systems in which large num-

bers of blackboxes produce the possibility of multiple legal implementations should

be explored.

There are several functional library packages for BDDS in common use. The SBDD

interpretation will remain a ROBDD in function, hence all theorems which apply to

ROBDDS will apply to SBDDs as well. SBDD implementations can take advantage Of

existing tool-sets and will be able to take advantage of ongoing research in distributed

algorithms (Ranjan et al., 1996) for BDD implementations or other techniques which

may increase the utility of BDDs in the future.

7.3 Reengineering methodology

Finally, we have suggested a reengineering approach which make uses Of both semantic

matching and SBDD-based techniques to recover the design of digital systems to the

register-transfer level. Since these techniques use logical equivalence and deduction,

the resulting design is provably correct.

We have presented a formal approach to recovering the design of components in

a partially specified combinational design. Unlike traditional BDD representations of

circuit function, our approach is capable of representing partial specifications of the

circuit’s external or internal functionality. This approach uses characteristic functions

to represent relevant Boolean relationships among net variables, where the relation-

ships can come from any level of the design process.

156

We have presented techniques which allow for the deduction of the functionality

Of unspecified circuit components. When complete deduction is not possible, our

representation allows for the enumeration of unknown relationships which may allow

complete recovery if a means for acquiring these relationships exists.

A final salient feature of this approach is its ability to detect conflicting infor-

mation about a design. Because the SBDD represents legal assignments Of variable

values, information incorporated into an SBDD that results in conflicting legal as-

signments can be easily detected. This will allow the user of the system to examine

the sources of the conflicting information and determine what course of action should

be taken.

Our approach focuses primarily on the identification of block-level combinational

devices. We take advantage of the fact that the identification Of latches in a sequential

circuit is a relatively simple problem to allow our approach to be used on simple

sequential devices (Section 6.1). However, it should be noted that our approach is

not currently capable of identifying block-level sequential devices (such as a shift

register). The extension of our work to include the identification of such devices

would greatly extend the utility Of this approach as a tool for recovering the design

to a level more readily understandable by humans (although this identification is not

necessary for simple reimplementation).

It must be kept in mind that the focus of our proposed reengineering approach

is to deal with the effective reimplementation of legacy digital systems. An impor-

tant future direction of research involves determining additional techniques which

will allow similar reengineering on the complex and highly-Optimized devices pro-

157

duced using modern synthesis techniques. Conversely, such research would also prove

invaluable in determining effective techniques to protect intellectual property from

“hostile” reverse engineering through intentional Obfuscation.

Clearly, the initial approach presented in this dissertation forms a basis for pur-

suing such future research. We hope that Our contributions to this topic provide

insights which prove valuable to the reengineering community at large. Although a

comprehensive design recovery methodology has yet to be developed, we hope that

our work is convincing proof of the feasibility Of design recovery for digital hardware,

and that it motivates additional research into this Open problem.

158

APPENDICES

159

Appendix A

Complete RFPS solution for

simplecircuit

This appendix contains a detailed walk-through of the application of the SBDD-

based design recovery methodology to an RFPS problem (Section 4.2.1) for the cir-

cuit simplecircuit. This circuit (Figure A.1) is referenced extensively throughout

Chapters 3 and 4. Throughout the dissertation, graphs representing SBDDS were

represented with multiple terminals and repetition of nodes representing decision

variables for primary outputs so as to be more intuitive. In this appendix, SBDDS

are presented as they are actually represented in the system (i.e., with subgraph

isomorphism sharing).

Figures A.2 and A3 present the VHDL and BLIF code (respectively) for

simplecircuit. Figure A.4 presents the set of ATPG test vectors generated for this

circuit the SIS synthesis package (Sentovich et al., 1992). The information presented

in these figures represents a subset of the design information commonly associated

160

F2 = T1(Y2Xs + Xz-X_3)

’9 DD:—— X1X2X3F2

12>— D, 1.1.0
3291 n-
W 0101

0011

(a) 0000

(b)

Figure A.1: Schematic and functional truth-table.

with a digital device.

In the RFPS problem for simplecircuit presented in Chapter 4, the only design

information is a partial schematic (Figures A5) in BLIF format (Figure A6) and the

Circuit’s set of ATPG test vectors (Figure A.4). The use of the algorithm presented

in Section 4.3.1 to recover the specifications of this partial design will now be shown.

Initially, the SBDD representing the system’s structure function is initialized to

logical 1 (the l-terminal). For each structure in the system (as described in the

provided BLIF file) a constraint SBDD is created which represents the characteristic

function of the component. These constraint SBDDS are composed with the SBDD

representing the system’s structure function. After all such SBDDS are composed,

the resultant SBDD represents the sum of the separately available information.

Three structures are identified in the BLIF file for this RFPS problem. Figure

A.7 presents the SBDD representing the functional constraint imposed by the first

structure appearing in the BLIF file (the gate M1). The second structure in the

BLIF file is that of the unknown structure BB. Including the SBDD representing the

161

ENTITY simplecircuit IS

PORT(X1,X2,X3: in bit; F2: out bit);

END simplecircuit;

ARCHITECTURE behavioral OF simplecircuit IS

BEGIN

F2 <= (not X1) and (((not X2) and X3) or (X2 and (not X3))) after 10 ns;

END behavioral;

ARCHITECTURE structural OF simplecircuit IS

SIGNAL M1, M2, M3, M4 : bit ;

FOR ALL : nor2 USE ENTITY trace.nor2(behav);

FOR ALL : probe USE ENTITY trace.probe(behav);

BEGIN

gateO: nor2 PORT MAP (0 => M1, a => X2, b => X3);

gatel : nor2 PORT MAP (O => M2, a => X2, b 2) M1);

gate2 : nor2 PORT MAP (O => M3, a => M1, b => X3);

gate3 : nor2 PORT MAP (O => M4, a => M2, b => M3);

gate4 : nor2 PORT MAP (O => F2, a => X1, b => M4);

output.F2 : probe;

GENERIC MAP(“F2”, “sim.results/F2”);

PORT MAP(F2);

END structural;

Figure A.2: Behavioral and structural VHDL code for simplecircuit. The

behavioral description corresponds to the circuit specification, which is efficiently

represented by a BDD. The structural description corresponds to the circuit imple-

mentation, which the SBDD efficiently represents.

162

file name: simplecircuitblif

.model simplecircuit

.inputs X1 X2 X3

.outputs F2

.gate nor2 a=X2 b=X3 O=M1

.gate nor2 a=X2 b=Ml O=M2

.gate nor2 a=M1 b=X3 O=M3

.gate nor2 a=M2 b=M3 O=M4

.gate nor2 a=X1 b=M4 O=F2

.end

Figure A.3: BLIF code for simplecircuit.

ATPG test sequences for simplecircuit

inputs:

X1 X2 X3

outputs:

F2

0 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

1 1 0 0

Figure A.4: ATPG vectors for simplecircuit.

163

F2 = 7f: ' BB(X21M11X3)

@ f i i i l 33.14:)

E I E E Blackbox E E E X1 X2 X3 M1 BB F2

D :' i; as : :l = 1 d d d d 0

E 5 5 . 0 1 1 0 u BB(1,0,1)

E” L__l—______________________ 0 1 0 0 u BB(1,0,1))
A a c 0 0 1 0 u BB(0,0,1)

(a) 0 0 0 1 u BB(0,1,0)

Figure A5: A partial specification of simplecircuit. (a) Circuit with unspecified

subcircuit: Area A represents the known input logic, area B represents the unknown

blackbox subcircuit, and area C represents the known output logic. (b) The symbolic

solution space to this circuit: The blackbox representing M4 is denoted symbolically

as BB.

file name: partialsimplecircuitblif

.model partialsimplecircuit

.inputs X1 X2 X3

.outputs F2

.gate nor2 a=X2 b=X3 O=M1

.gate bb3 a=M1 b=X2 c=X3 O=BB

.gate nor2 a=BB b=X1 O=F2

.end

Figure A.6: BLIF code for partial simplecircuit.

164

unknown functionality of BB introduces no useful new relationships (Figure A.8).

After the introduction of the final structure, the SBDD in Figure A9 is produced.

This SBDD represents the useful logical relationships deducible from the information

available in the BLIF file. Most importantly, this SBDD allows the identification of

those input conditions under which the value of the blackbox BB affects the system

output F2 and under which input conditions its output is a don’t care (Figure A.9(c)).

Once all information available in the partial schematic has been introduced, the

algorithm attempts to introduce any additional system information available. In

the RFPS problem, a set of test vectors is provided. For each test vector, a SBDD

representing the relationship is constructed (as discussed in section 4.2.1) and applied

to the system SBDD.

Figure A.10 shows the introduction of the relationship represented by the first

ATPG test vector to the system SBDD. Note that after the introduction of this rela—

tionship, the value of BB has been determined under the blackbox input conditions

X2 = 0, X3 = 0, M1 = 1. This relationship has been deduced from the fact that the

output F2 is sensitized to the value of BB under the primary input conditions spec-

ified by the first test vector. Therefore, since the test vector specifies the necessary

value of F2 under those input conditions, a partial specification of BB is deduced.

Figures All through A.14 present similar deductions. Note that the final test vector

does not introduce any new information about the system, and thus the SBDDS for

steps 7 and 8 are identical.

After the addition of all available information, the SBDD is examined and the

specification of BB is extracted. In this example, the effective functionality Of

165

BB is specified (to within don’t care conditions) and therefore, the functionality

of simplecircuit is fully specified.

166

file name: partialsimplecircuitblif

.model partialsimplecircuit

.inputs X1 X2 X3 X1 X2 X3 M1 BB F2 X5

.outputs F2 d 1 d 0 d d 1

.gate nor2 a=X2 b=X3 O=M1 d 0 1 0 d d 1

.gate bb3 a=M1 b=X2 c=X3 O=BB d 0 0 1 d d 1

.gate nor2 a=BB b=X1 O=F2 otherwise 0

.end

(b)

(3)

X2

X3

X5 = (X2 VX3 H M1)

M1 ((1)

terminals 0 i 1

(C)

Figure A.7: Solving the RFPS solution for simplecircuit: #1. (a) The BLIF

commands for the simplecircuit RFPS Problem (Structures whose relationships

have been represented in the SBDD are shown in italics. The structure whose rela-

tionship is newly represented in the SBDD is shown in bold italics); (b) A truth-table

for the structure function represented by (c); (c) The BDD representing the structure

function of simplecircuit after including the relationships specified in (a); (d) The

symbolic logic expression for the structure function.

167

file name: partialsimplecircuitblif

.model partial.simplecircuit

.inputs X1 X2 X3 X1 X2 X3 M1 BB F2 XS

.outputs F2 d 1 d 0 d d 1

.gote nor2 a=X2 b=X3 0=M1 d 0 1 0 d d 1

.gate bb3 a=M1 b=X2 c=X3 O=BB d 0 0 1 d d 1

.gate nor2 a=BB b=X1 O=F2 otherwise 0

.end

(b)

(a)

.. e

.. a
XS: (X2VX3HM1)

.. a o <d>

terminals 0 l

Figure A.8: Solving the RFPS solution for simplecircuit: #2. (a) The BLIF

commands for the simplecircuit RFPS Problem (Structures whose relationships

have been represented in the SBDD are shown in italics. The structure whose rela-

tionship is newly represented in the SBDD is shown in bold italics); (b) A truth-table

for the structure function represented by (c); (c) The BDD representing the structure

function of simplecircuit after including the relationships specified in (a); (d) The

symbolic logic expression for the structure function.

168

. . . _ . X1 X2 X3 M1 BB F2 XS

file name: partialsunplecrrcuitbhf 1 1 d 0 d o 1

.rnodel partraLsimplecncuit 1 0 1 0 d o 1

.inputs X1 X2 X3 1 0 0 1 d 0 1

.outputs F2 0 l d 0 1 0 1

.gote nor2 a=X2 b=X3? 0=MI 0 1 d 0 0 1 1

.gote bb3 o=M1 b=X2 c=X3 O=BB 0 0 1 0 1 0 1

.gate nor2 a=BB b=X1 O=F2 0 0 1 0 0 1 1

.end 0 0 0 1 l 0 1

0 0 0 1 0 l 1

otherwise 0
(a)

x1

x2

X2 X3 M1 BB

1 d 0 u

0 l 0 u X3

0 0 l u

otherwise d

MI

(0)

XS: (X2VX3HM1)/\ BB

(BB V M1 H F2)

(6) F2

terminals

((0

Figure A.9: Solving the RFPS solution for simplecircuit: #3. (a) The BLIF

commands for the simplecircuit RFPS Problem (Structures whose relationships

have been represented in the SBDD are shown in italics. The structure whose rela-

tionship is newly represented in the SBDD is shown in bold italics); (b) A truth-table

for the structure function represented by (d); (c) The specification Of BB encoded in

the SBDD; (d) The BDD representing the structure function of simplecircuit after

including the relationships specified in (a); (e) The symbolic logic expression for the

structure function.

169

X1 X2 X3 M1 BB F2 XS

X1 X2 X3 F2 1 1 d 0 d 0 1

o 0 o o 1 0 l 0 d 0 1 X2 X3 Ml BB

0 0 1 1 1 0 0 1 d 0 1
l d 0 u

0 1 1 0 0 1 d 0 1 0 1

0 l 0 u

0 1 0 1 0 l d 0 0 1 l
0 0 l l

1 1 0 0 3 g i 3 (1) 2 1 otherwise d

(a) 0 O 0 1 l 0 1

otherwise 0 (C)

(b)

.. 0

x2 9 '

..

.. o o ,
 X5 = (X2VX3 H M1)/\

(BE VM1 H F2)/\

(KAY—2173472)

(e)

terminals 1

((0

Figure A.10: Solving the RFPS solution for simplecircuit: #4. (a) The ATPG

test vectors for the simplecircuit RFPS Problem (Vectors whose relationships have

been represented in the SBDD are shown in italics. The vector whose relationship

is newly represented in the SBDD is shown in bold italics); (b) A truth-table for

the structure function represented by (d); (c) The specification of BB encoded in

the SBDD; (d) The BDD representing the structure function of simplecircuit after

including the relationshipsspecified in (a); (e) The symbolic logic expression for the

structure function.

170

X1 X2 X3 M1 BB F2 x5

X1 X2 X3 F2 1 1 d 0 d 0 1

0 0 0 0 1 0 1 0 d o 1 X2 X3 M1 BB

0 0 1 1 1 o 0 1 d o 1 1 d 0 u

0 1 1 0 o 1 d 0 1 0 1 0 1 0 0

0 1 0 1 0 1 d 0 0 1 1 0 0 1 1

1 1 0 0 0 0 1 0 0 1 1 otherwise d

0 0 0 1 1 0 1

(a) otherwise 0 (c)

(b)

X1

X2

X3

ifs == ()Ké’V'jfi3‘++.fi41)/\

(131§‘V.fi41‘++.P})/\

1" ,0 (ZAEszsEM

(ZAEAXa-st)

BB (8)

F2

tunmuh l 0

(d)

Figure A.11: Solving the RFPS solution for simplecircuit: #5. (a) The ATPG

test vectors for the simplecircuit RFPS Problem (Vectors whose relationships have

been represented in the SBDD are shown in italics. The vector whose relationship

is newly represented in the SBDD is shown in bold italics); (b) A truth—table for

the structure function represented by (d); (c) The specification of BB encoded in

the SBDD; (d) The BDD representing the structure function of simplecircuit after

including the relationships specified in (a); (e) The symbolic logic expression for the

structure function.

171

X1 X2 X3 M1 BB F2 X3

X1 X2 x3 F2 1 1 d 0 d 0 1

0 g 0 0 l 0 1 0 d 0 1 X2 X3 M1 BB

0 0 1 1 1 0 0 1 d 0 1 1 l 0 l

0 1 1 0 0 l 1 0 1 0 1 l 0 0 u

0 1 0 1 0 1 0 0 1 0 1 0 l 0 0

1 1 0 0 0 l 0 O 0 1 1 0 0 l l

0 0 1 0 0 l 1 otherwise d

(a) 0 0 0 1 1 0 1

otherwise 0 (c)

(b)

.1 o

.. o "o 1mm.»
: : (WHFQA

(TATA‘X—afyx

.. (1.112.113.1121
'. 1: Z 2.1-I . . . :1: .

(e)

amine]: l

(d)

Figure A.12: Solving the RFPS solution for simplecircuit: #6. (a) The ATPG

test vectors for the simplecircuit RFPS Problem (Vectors whose relationships have

been represented in the SBDD are shown in italics. The vector whose relationship

is newly represented in the SBDD is shown in bold italics); (b) A truth-table for

the structure function represented by (d); (c) The specification of BB encoded in

the SBDD; (d) The BDD representing the structure function of simplecircuit after

including the relationshipsspecified in (a); (e) The symbolic logic expression for the

structure function.

172

X1 X2 X3 F2 X1 X2 X3 M1 BB F; X3

0 0 0 0 l 1 d 0 d 0 l

0 0 1 1 l 0 l 0 d 0 l

0 1 1 0 l 0 0 l d 0 l

0 1 o 1 0 1 1 0 1 0 l

1 1 0 0 0 1 0 0 0 1 1

0 O 1 0 0 1 1

(3) otherwise 0

(b)

x. 0

x2 0 0

m 0 000

Figure A.13: Solving the RFPS solution for simplecircuit: #7. (a) The ATPG

test vectors for the simpleCircuit RFPS Problem (Vectors whose relationships have

been represented in the SBDD are shown in italics. The vector whose relationship

is newly represented in the SBDD is shown in bold italics); (b) A truth-table for

the structure function represented by (d); (c) The specification Of BB encoded in

the SBDD; (d) The BDD representing the structure function Of simplecircuit after

including the relationships specified in (a); (e) The symbolic logic expression for the

structure function.

X2 X3 M1 BB

1 1 0 1

1 0 0 0

0 l 0 0

0 0 1 1

otherwise d

(C)

(X2VX3 HM1)/\

(BBVM1HF2)/\

C’CAEAE—VEM

(Tl/\YzAxs szlA

(YT/\X2AX3 —>-172)/\

(7;sz AXE—1F»

(C)

173

X1X2X3F2

o o oo

o o 1 1

o 1 1 o

o 1 01

1 1 00

(a)

XI

X2

X3

Ml

BB

F2

l-terminal

Figure A.14: Solving the RFPS solution for simplecircuit: #8. (a) The ATPG

test vectors for the simplecircuit RFPS Problem (Vectors whose relationships have

been represented in the SBDD are shown in italics. The vector whose relationship

is newly represented in the SBDD is shown in bold italics); (b) A truth-table for

the structure function represented by (d); (c) The specification of BB encoded in

the SBDD; (d) The BDD representing the structure function of simplecircuit after

including the relationshipsspecified in (a); (e) The symbolic logic expression for the

structure function.

X1 X2 X3 M1 BB F2 XS

1 1 d 0 d 0 1

1 0 l 0 d 0 1

1 0 0 1 d 0 1

0 1 1 0 1 0 1

0 1 0 0 0 1 1

0 0 1 0 0 1 1

otherwise 0

(b)

X5 =

Ml

X2 X3 M1 BB

1 1 0 l

1 0 0 0

0 1 0 0

0 0 1 1

otherwise d

(C)

(X2VX3 H M1)/\

(BBVM1 HF2)/\

(EAEAEAEM

(ZAEAXa —) F2)/\

Off/\XzAxs 43M

(EAXgAYasz)/\

(X1AX2A—X:—)E)

(e)

174

Appendix B

Computation of vector signatures

for the four-bit ALU

An implementation of the TI SN54181 four-bit ALU (Figure BI) is presented in

Figure B.2. Table B.1 presents the function table for the circuit.

The output values of the ALU function for each input’s positive and negative unit

vector are presented in Table B.2. For each such vector, the one-sum of the output

values is calculated. These values are used to determine each input’s signature class.

For example, the table shows that the sum of the function outputs for the input vector

(S2 = 1, all other inputs = 0) is 2. This value is 82’s positive vector input signature.

Likewise, 82’s negative vector input signature is shown to be 7. Thus 82 is a member

of the signature class < 2, 7 >.

This information is used to partition the inputs into suspect sets (Section 5.3.2)

and presented in Table B.3 for a particular implementation Of the ’181 ALU in which

the selection inputs are labeled selO-sel3, the carry input is labeled Cn’, the mode

175

llll

__ A0 s3 52 81 so

_ A1

—- A2 F0 —

— A3 ’181ALU F1 —

— BO F2

— B1 F3 ~—--

——~ 132

— 33 A=B —

C’__n+4—

_ C’_n Y _

_ M x __

Figure B]: TI SN54181 font-bit ALU.

176

file name: l81.blif #-

.model 181.4bit_ALU .inputs 111 C11.

.inputs 80 31 s2 s3 .gate inv a=m O=m-

.outputs f0 fl f2 f3 aEQb x Cn4- y #

.gate buf a=n33 O=m1

.inputs b3 a3 .gate and2 a=n32 b=n23 O=m2

.gate inv a=b3 O=b3- .gate and3 a=n32 b=n22 c=n13 O=m3

.gate and3 a=b3 b=s3 c=a3 O=k15 .gate and4 a=n32 b=n22 c=n12 d=n03 O=m4

.gate and3 a=a3 b=s2 c=b3- O=k16 .gate nor4 a=ml b=m2 c=m3 d=m4 O=y

.gate nor2 a=k15 b=k16 O=n32 .gate nand5 a=n22 b=n12 c=n02 d=Cn- e=n32 O=m5

.gate and2 a=b3- b=sl O=k7 .gate nand4 a=n32 b=n22 c=n12 d=n02 O=x

.gate and2 a=sO b=b3 O=k8 .gate inv a=y O=y-

.gate buf a=a3 O=a3b .gate inv a=m5 O=m5-

.gate nor3 a=k7 b=k8 c=a3b O=n33 .gate or2 a=y- =m5- O=Cn4-

.gate xor2 a=n32 b=n33 O=m6

.inputs b2 32 #

.gate inv a=b2 O=b2- .gate and5 a=n02 b=n12 c=n22 d=m- e=Cn- O=m7

.gate and3 a=b2 b=s3 c=a2 O=k9 .gate and4 a=n12 b=n22 c=n03 d=m- O=m8

.gate and3 a=a2 b=s2 c=b2- O=k10 .gate and3 a=n22 b=nl3 c=m- O=m9

.gate nor2 a=k9 b=k10 O=n22 .gate and2 a=n23 b=m- O=m10

.gate and2 a=b2- b=sl O=k1 .gate nor4 a=m7 b=m8 c=m9 d=m10 O=m19

.gate and2 a=sO b=b2 O=k2 .gate xor2 a=m6 b=m19 O=f3

.gate buf a=a2 O=a2b .gate xor2 a=n22 b=n23 O=m11

.gate nor3 a=kl b=k2 c=a2b O=n23 #

.gate and4 a=Cn- b=n02 c=n12 d=m- O=m12

.inputs a1 b1 .gate and3 a=n12 b=n03 c=m- O=m13

.gate inv a=b1 O=b1- .gate and2 a=nl3 b=m- =m14

.gate and3 a=b1 b=s3 c=a1 O=k11 .gate nor3 a=m12 b=ml3 c=m14 O=m20

.gate and3 a=al b=s2 c=bl- O=k12 .gate xor2 a=mll b=m20 O=f2

.gate nor2 a=k11 b=k12 O=n12 .gate xor2 a=n12 b=nl3 O=m15

.gate and2 a=b1- b=sl O=k3 #

.gate and2 a=sO b=bl O=k4 .gate and3 a=Cn- b=n02 c=m- O=m16

.gate buf a=al O=a1b .gate and2 a=n03 b=m- O=ml7

.gate nor3 a=k3 b=k4 c=a1b O=n13 .gate nor2 a=ml6 b=m17 O=m21

.gate xor2 a=m15 b=m21 O=fl

.inputs a0 b0 .gate xor2 a=n02 b=n03 O=m22

.gate inv a=b0 O=b0- #-

.gate and3 a=b0 b=s3 c=a0 O=k13 .gate 11de a=Cn- b=m- O=m18

.gate and3 a=a0 b=82 c=b0- O=k14 .gate xor2 a=m22 b=ml8 O=f0

.gate nor2 a=kl3 b=kl4 O=n02 .gate and4 a=f3 b=f2 c=f1 d=f0 O=aEQb

.gate and2 a=b0- b=sl O=k5 .end

.gate and2 a=sO b=b0 O=k6

.gate buf a=a0 O=aOb

.gate nor3 a=k5 b=k6 c=a0b O=n03

Figure B.2: BLIF code for the TI SN54181 four-bit ALU.

177

WT6N 136cm: AWT'rrc

M=l M=O

ss 32 51 so c,.=1 c..=o

0 0 0 o F=Z F=A F=APLUS1

0 0 0 1 F=A+B F=A+B F=(A+B)PLUSI

0 0 1 o 17:23 P=A+B P=(A+B)PLU31

0 o 1 1 F=0 F: MINUS 1 (2’8 COMPL) F: ZERO

0 1 0 0 17:11? P=APLUSAB F=APLUSABPLUS1

0 1 o 1 F=B F=(A+B)PLUSAB F=(A+B)PLUSABPLUS1

o 1 1 0 F=AeB F=AMINUSBMINUS1 F=AMINUSB

o 1 1 1 FzAB FzABMINUSI FzAB

1 o o o F=Z+B F=APLUSAB F=APLUSABPLUSI

1 0 0 1 P='A' ems" F=A PLUS B F: A PLUS B PLUS 1

1 o 1 0 F=B F=(A+'B') PLUS AB F=(A+B) PLUS AB PLUSI

1 0 1 1 F=AB F=ABMINUS1 F=AB

1 1 o o F: 1 F=A PLUS SHIPTL(A) F: A PLUS A PLUS 1

1 1 o 1 F=A+B F=(A+B)PLUSA F=(A+B)PLUSAPLUS1

1 1 1 o F=A+B F=(A+'§)PLUSA P=(A+B)PLUSAPLUS1

1 1 1 1 F=A F=AMINUS1 F=A
Table B.l: Functionality of the TI SN54181 four-bit ALU.

input is labeled m, and the data inputs are labeled a0-a3 and b0-b3. Observe, for

example, that the input se12 (a cluster function variable) corresponding to the input

32 (a pattern function variable) are members of the signature class < 2, 7 >.

178

Inputs F0 F1 F2 F3 A:8 C’_n+4 Sum of Outputs

S3:1, all other inputs:0 1

S3:0, all other inputs=l 1

82:1, all other inputs=0

S2:0, all other inputs:1

51:1, all other inputs=0

81:0, all other inputs:1

S0:1, all other inputs:0

S0:0, all other inputszl

83:1, all other inputs:0

83:0, all other inputs=1

82:1, all other inputs=0

82:0, all other inputs:l

81:1, all other inputs=0

81:0, all other inputs:1

80:1, all other inputs=0

80:0, all other inputs:1

A3:l, all other inputs:0

A3:0, all other inputs:1

A2:l, all other inputs:0

A2:0, all other inputs:1

A1:l, all other inputs:0

A1:0, all other inputs:1

A0:1, all other inputs=0

A0:0, all other inputs:1

C’.n:l, all other inputa:0

C’.n:0, all other inputs:1

M:l, all other inputs:0

M:0, all other inputs:1

Q
H
H
O
O
O
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
O
H
H
O
H

H
H
H
O
H
H
O
H
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
Q
Q
O

H
H
H
O
D
-
I
‘
D
H
O
O
H
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
O
O

H
H
H
O
H
O
H
O
H
O
O
H
H
O
H
O
H
O
H
O
H
C
H
O
H
O
O
O

O
r
-
I
H
O
O
D
O
D
O
O
O
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
O
O

H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
H
O
O
D

X

O
H
O
H
O
H
O
P
‘
Q
H
O
H
O
F
‘
O
F
—
‘
O
F
—
‘
O
H
C
H
O
O
O
H

H
O
F
‘
O
’
H
O
H
O
H
O
H
O
H
O
H
O
H
‘
O
H
O
H
O
H
H
H
O
H
Q

~
<

m
a
:
q
w
u
w
m
w
m
w
q
u
n
q
q
u
q
w
q
m
q
w
fl
m
t
o
n

Table 8.2: Calculation of input vector signatures. For each input i, this table

presents i’s positive vector input (i=1, all other inputs = 0) and i’s negative vector

input (i = 0, all other inputs = 1). The values of the function outputs are shown for

each vector input and the one-sum of the outputs is calculated.

179

Vector Input Signature

Input Name Positive Negative

sell, Cn’ 1 7

sel3 2 2

a0 2 5

selO, se12, b0, b1, b2, b3 2 7

al, a2, a3 3 5

m 6 5

Table 8.3: Vector input signature for the TI 54181 4—bit ALU. The positive

and negative unit vector input signatures are shown for a 4-bit ALU with selection

inputs selO-3, mode input m, carry input Cn’, and data inputs a0—3 and b0-3. The

vector signature partitions the function inputs into six signature classes.

180

BIBLIOGRAPHY

181

Bibliography

Akers, S. (1978). Binary decision diagrams. IEEE Transactions on Computers, C-

27(6):509—516.

Augustus, E. (1990). VLSI circuit layer determination by reflectance for use in re-

verse engineering. Master’s thesis, School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson Air Force Base, Ohio.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and

Somenzi, F. (1997). Algebraic decision diagrams and their applications. Journal

of Formal Methods in Systems Design, 10(2/3):171—206.

Baldwin, R. A. (1994). A Discipline Independent Framework for Engineering Design.

PhD thesis, Michigan State University.

Benini, L. and De Micheli, G. (1997). A survey of Boolean matching techniques for

library binding. ACM Transactions on Design Automation of Electronic Systems,

2(3):193-226.

Bochner, M. (1988). LOGEX - an automatic logic extractor from transistor to gate

level for CMOS technology. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 517-522.

Brace, K., Bryant, R. E., and Rudell, R. (1990). Efficient implementation of a BDD

package. In Proceedings of the ACM/IEEE Design Automation Conference, pages

40—45.

Bryant, R. E. (1985). Symbolic manipulation of Boolean functions using a graphical

representation. In Proceedings of the ACM/IEEE Design Automation Confer-

ence, pages 688—694.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677—691.

Bryant, R. E. (1993). Symbolic analysis methods for masks, circuits, and systems. In

Proceedings of the IEEE International Conference on Computer Design, pages

6—8.

182

Bryant, R. E. (1995). Binary decision diagrams and beyond: Enabling technologies

for formal verification. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 236—244.

Burch, J. R., Clarke, E. M., and McMillan, K. L. (1990). Sequential circuit verifica-

tion using symbolic model checking. In Proceedings of the ACM/IEEE Design

Automation Conference.

Byrne, E. J. (1992). A conceptual foundation for software re-engineering. In Proceed-

ings for the Conference on Software Maintenance, pages 226—235.

Chikofsky, E. J. and Cross, .1. H. (1990). Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1):13—17.

De Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill.

Doom, T. E., White, J. L., Chisholm, G., and Wojcik, A. S. (1998). Identifi-

cation Of functional components in combinational circuits. Technical Report

ANL/DIS/TM-47, Argonne National Laboratory.

Dukes, M., Brown, F., and DeGroat, J. (1994). A generalized extraction system for

VHDL. In Proceedings of the IEEE International ASIC Conference and Exhibit,

pages 165—171.

Dukes, M. A. (1994). Generating VHDL models from inadequately-documented in-

tegrated circuits. In Proceedings of the Conference on Advances in Modeling and

Simulation, pages 165-171.

Eckmann, S. and Chisholm, G. (1997). Assigning functional meaning to digital cir-

cuits. Technical Report ANL/DIS/TM-43, Argonne National Laboratory.

Fretheim, E. (1988). Reverse engineering VLSI using pattern recognition techniques.

Master’s thesis, School of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson Air Force Base, Ohio.

Fujita, M., Phjisawa, H., and Kawato, N. (1988). Evaluation and improvements of

Boolean comparison method based on binary decision diagrams. In Proceedings

of the IEEE International Conference on Computer-Aided Design, pages 2—5.

Hayden, R. (1989). Analysis system for reverse engineering VLSI circuits. Master’s

thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-

Patterson Air Force Base, Ohio.

Jain, J ., Mukherjee, R., and Fujita, M. (1995). Advanced verification techniques based

on learning. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 420—426.

Jain, J., Narayan, A., Fujita, M., and Sangiovanni-Vincentelli, A. (1997). A survey

of techniques for formal verification of combinational circuits. In Proceedings of

the ACM/IEEE Design Automation Conference, pages 445—454.

183

1
1
.
0
7
9

1

Keutzer, K. (1996). The need for formal methods for integrated circuit design. In Pro-

ceedings of the First International Conference on Formal Methods in Computer-

Aided Design, volume 1166, pages 1—18. Springer Lecture Notes in Computer

Science.

Khalil, M. A. (1998). Redesign process of digital VLSI circuit with incomplete imple-

mentation information. Master’s thesis, Department of Electrical Engineering,

Michigan State University, East Lansing, Michigan.

Kunz, W. and Pradhan, D. (1994). Recursive learning: A new implication technique

for efficient solutions to CAD problems - test, verification, and Optimization.

IEEE Transactions on Computer-aided Design of Integrated Circuits, 13(9):1143—

1158.

Lai, Y., Sastry, S., and Pedram, M. (1992). Boolean matching using binary decision

diagrams with applications to logic synthesis and verification. In Proceedings of

the IEEE International Conference on Computer Design, pages 452—458.

Lee, C. (1959). Representation Of switching circuits by binary decision programs. Bell

System Technical Journal, 38:509—516.

Long, D. (V1996). [URL: ftp://emc.cs.cmu.edu/pub/bdd/bdlib.tar.Z].

Luellau, F., Iloepken, T., and Barke, E. (1984). A technology independent block ex-

traction algorithm. In Proceedings of the ACM/IEEE Design Automation Con-

ference, pages 610—615.

Madre, J.-C. and Billon, J.-P. (1988). Proving circuit correctness using formal compar-

ison between expected and extracted behavior. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 205—210.

Mailhot, F. (1991). Technology Mapping for VLSI Circuits exploiting Boolean Prop-

erties and Operations. PhD thesis, Stanford University.

Mailhot, F. and De Micheli, G. (1993). Algorithms for technology mapping based

on binary decision diagrams and on Boolean operations. IEEE Transactions on

CAD/ICAS, 12(5):599—620.

Malik, S., Wang, A., Brayton, R., and Sangiovanni—Vincentelli, A. (1988). Logic

verification using binary decision diagrams in a logic synthesis environment. In

Proceedings of the IEEE International Conference on Computer-Aided Design,

pages 6—9.

Martin, J. C. (1997). Introduction to Languages and the Theory of Computation -

2nd ed. McGraw—Hill, New York.

Matsunaga, Y. and Fugita, M. (1989). Multi-level logic optimization using binary

decision diagrams. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 556—559.

184

McElvain, K. (1993). LGSynth93 benchmark set: Version 4.0. [URL: ftp: //ftp.mcnc-

.org/pub/benchmark/Benchmark.dirs/LGSynth93] .

Minato, S. (1996). Binary Decision Diagrams and Applications for VLSI CAD.

Klewer, Hingham, MA.

Minato, S., Ishiura, N., and Yajima, S. (1990). Shared binary decision diagram with

attributed edges for efficient Boolean function manipulation. In Proceedings of

the ACM/IEEE Design Automation Conference, pages 52—57.

Mueller, M. (1989). Investigation of Gabor filters for use in reverse engineering VLSI.

Master’s thesis, School of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson Air Force Base, Ohio.

Ohlrich, M., Ebeling, C., Ginting, E., and Sather, L. (1993). Subgemini: Identifying

subcircuits using a fast subgraph isomorphism algorithm. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 31—37.

Querns, J. (1989). Segmentation of regions of contiguous common composition on

VLSI circuits. Master’s thesis, School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson Air Force Base, Ohio.

Ranjan, R., Sanghavi, J ., Brayton, R., and Sangiovanni-Vincentelli, A. (1996). Binary

decision diagrams on network of workstations. In Proceedings of the Internation-

all Conference on Computer Design: VLSI in Computers and Processors, pages

358—364, Austin, Texas. IEEE.

Rekoff, M. G. (1985). On reverse engineering. IEEE Trans. on Systems, Man, and

Cybernertics, SMC-l5(2):244—252.

REW’98 (1998). Reverse Engineering Workshop, Del Mar, California. Sponsored by

Argonne National Laboratory.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. In

Proceedings of IEEE International Conference on Computer-Aided Design, pages

42-47.

Sentovich et a1. (1992). SIS: A System for Sequential Circuit Synthesis. Department Of

Electrical Engineering and Computer Science, University Of California, Berkeley,

California.

Sentovich, E. M. (1996). A brief study of BDD package performance. In Proceedings of

the First International Conference, Formal Methods in Computer-Aided Design,

Volume 1166 of Lecture Notes in Computer Science, pages 389—403, PalO Alto,

California. Springer-Verlag.

Shannon, C. E. (1938). A symbolic analysis of relay and switching circuits. Trans.

AIEE, 57:713—723.

185

Shannon, C. E. (1949). The synthesis of two-terminal switching circuits. Bell System

Technical Journal, 28:59—98.

Somenzi, F. (1997). CUDD: Colorado University Decision Diagram package. [URL:

http://www.bessie.colorado.edu/~fabiO/CUDD]. Release 2.1.2.

Su, W., Michael, G., and Dukes, M. (1994). Automated generation of VHDL models

by recognizing paper schematics of electronic systems. In Proceedings of the

Government Microcircuits Applications Conference, pages 39—42.

Wey, C.-L. and Khalil, M. A. (1998). Redesignability analysis of digital VLSI circuits

with incomplete implementation information. In Proceedings of IEEE Interna-

tional Symposium on Circuits and Systems.

White, J., Doom, T., Wojcik, A., Chung, M., and Chisholm, G. (1997). Candidate

subcircuit generation to facilitate identification of high-level components in logic

circuits. Technical Report MSUCPS:TR97—48, Department of Computer Science,

Michigan State University. http://web.cps.msu.edu/TR/MSUCPS:TR97-48.

Wojcik, A., Wey, 0., Doom, T., and Samarziya, J. (1997). An approach to the redesign

of digital circuits from partial information. Technical Report MSUCPS:TR97—47,

Department of Computer Science, Michigan State University. http://web.cps-

.msu.edu/TR/MSUCPS:TR97-47.

Wu, Q., Chen, C., and Acken, J. (1994). Efficient boolean matching algorithm for

cell libraries. In Proceedings of the IEEE International Conference on Computer

Design, pages 36—39. ‘

186

"1111111111111?

