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ABSTRACT

ENGINEERING APPLICATIONS OF MICROBIAL CHEMOTAXIS

By

Mark Thomas Widman

Chemotaxis is the ability of an organism to move in response to gradients of

chemicals called chemoattractants. Many species of bacteria are known to exhibit

chemotaxis to a wide variety of chemoattractants. The first objective of this research was

to develop or refine tools and methods to study the chemotactic response of bacteria. The

tools and methods include the diffusion gradient chamber (DGC) and its associated units,

the laser diffraction capillary assay (LDCA), and microelectrodes and microbiosensors.

Several mathematical models of the DGC system were written that allowed predictions of

experimental outcomes to be made without running the actual experiments. The modeling

predictions were verified by comparison to experimental data. Methods to analyze the

modeling simulations were developed to further enhance the understanding of the

chemotactic response. These analysis methods included bacterial flux and receptor

saturation calculations.

The second objective of the research was to identify applications or systems in

which chemotaxis was beneficial, and then to develop ways to engineer those systems to

fully take advantage of the benefits offered through the chemotactic response. The three

applications that were selected were microbial competition, selection of mutants, and in

situ bioremediation. Chemotaxis was predicted by the mathematical model to impart a
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competitive advantage to a bacterial population in certain non-mixed environments, and

preliminary work was done to experimentally validate the predictions. The chemotactic

response was used as a selection agent in the isolation of desirable mutants of Escherichia

coli. In situ mutagenesis was performed on feedback inhibited E. coli, and the

chemotactic response was used to separate feedback resistant mutants from the

population of inhibited bacteria. Pseudomonas stutzeri strain KC, a bacterium currently

being used to remediate a carbon tetrachloride contaminated aquifer, was found to exhibit

chemotaxis to chemicals present in the aquifer. Experimental protocols to study the

response of Pseudomonas KC around objects, and competition between Pseudomonas

KC and Escherichia coli were developed.  
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1. INTRODUCTION

Non-uniform distributions of chemical compounds, pH, dissolved oxygen, light

energy, temperature and other factors are common in many microbial ecosystems.

Microorganisms able to position themselves optimally with respect to gradients may have

1 competitive advantage over other organisms. The ability of an organism to move in

response to a gradient of a chemical species is known as chemotaxis. Many bacteria have

men shown to exhibit chemotaxis (Adler, 1972; Berg and Tedesco, 1975; Harwood et al.,

1990; Kato et al., 1990; Macnab, 1987; Yamamoto and Irnae, 1993).

There were two main objectives for this research. The first objective was to

levelop or refine tools and methods to study the chemotactic response of bacteria. The

0013 that were used include the diffusion gradient chamber (DGC), several versions of

nathematical models of the DGC system, the laser diffraction capillary assay (LDCA),

1nd microelectrodes and microbiosensors.

The second objective was to identify applications or systems in which .it might be

>ossible for chemotaxis to be of a beneficial nature, and then to deveIOp ways to engineer

hose systems so as to realize the full benefits offered by the chemotactic response. The

hree applications that were studied were microbial competition, selection of mutants, and

n situ bioremediation.

Section 2 explores the two main objectives in more detail, and describes their

ignificance to the scientific community. Section 3 gives background on the experimental

.nd modeling methods employed by others to study chemotaxis. The results of this
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2

search project are presented in the next four sections. Section 4 examines the tools and

:thods that were developed to study chemotaxis over the course of the project. Sections

1 describe the applications that were identified for improvement through chemotaxis,

i the work that was done to engineer the systems to make use of chemotaxis. A

nmary of the work, and the conclusions that were obtained are given in Section 8.

Included in Appendix A are results of some interesting experiments that did not fit

11 in the main text of the thesis, or have not been fully analyzed for their importance.

ey are included to show the range of growth patterns that can arise due to the

:motactic response, including rings and geometric patterns. Appendix B briefly

:lines the altemating-direction implicit (ADI) algorithm for solving partial differential

Iations. Appendix C gives instructions for the FORTRAN ADI model, one version of

ich is presented in Appendix D. Appendix E gives the input files for the FORTRAN

gram. The Matlab files used to produce many of the graphs and to calculate some of

quantities presented in the thesis are given in Appendix F. A dimensionless version of

model is developed in Appendix G.
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OBJECTIVES AND SIGNIFICANCE

. Development of tools

The first objective of this research was to improve existing experimental and

deling methods for studying chemotaxis, or to develop new methods, as necessary.

e diffusion gradient chamber (Emerson et al., 1994) was the main experimental tool

:d in this research. The DGC was well established and tested for chemotaxis studies by

Ierson et al., but some further enhancements to the method were made to optimize the

:tem. Considerable research was devoted to developing mathematical models of

ferent Operating modes of the DGC system. These modes included one cell population

.ponding to one chemoattractant; two cell populations responding to multiple

:moattractants; and two cell populations responding to two chemoattractants and an

Libitor gradient. These models were experimentally validated and then used for

mtitative interpretation Of experimental results, and for exploring chemotactic behavior

:hout actually running time-consuming experiments.

TO produce useful simulations that accurately modeled real chemical gradients

I microorganisms, parameter values had to be Obtained. Several methods of measuring

36 parameters were developed as part Of the research effort. These methods included

laser diffraction capillary assay (Schmidt et al., 1997) which allowed for measurement

he random motility coefficient, and microelectrodes and microbiosensors (Peteu et al.,

5), Which enabled high—resolution measurements Of gradients of oxygen and glucose.
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Applications for chemotaxis

The second Objective Of the research was to identify applications in which the

totactic response could be exploited to benefit the application. Microbial competition

he first such application selected. Many studies have examined how two populations

acteria compete in well-mixed environments, but much less is known about

petition in spatially structured systems, where chemical gradients can occur. It is

tthesized that chemotaxis can impart a competitive advantage by allowing cells to

:ion themselves in conditions optimal for their survival. The mathematical model of

)GC provided a means to explore this hypothesis. Preliminary work on experimental

rods to validate the model's predictions was also initiated.

Another application benefitted by the chemotactic response was the selection of

[III strains of bacteria that exhibited a desired trait. Specifically, chemotaxis was used

raw mutant strains of Escherichia coli into a region of the DGC having a higher

entration of an inhibitor than their non-mutagenized progenitors could tolerate. This

Od of selection by chemotaxis resulted in an improved strain of E. coli being

ned for the industrial fermentation of a valuable product.

A third application for which chemotaxis was studied was in situ bioremediation.

)acterium Pseudomonas KC, which is able to degrade carbon tetrachloride without

Icing harmful by-products, was chosen as the model organism. Pseudomonas KC is

My being used in Schoolcraft, MI, to bioremediate a contaminated aquifer. The
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otactic behavior of Pseudomonas KC was studied, and the effects of a porous

um on motility and transport were observed.
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IEMOTAXIS BACKGROUND

he chemotactic mechanism

otility and chemotactic response Of the enteric bacteria Escherichia coli and

rella typhimurium have been studied in detail (Berg and Brown, 1972; Macnab,

When these peritrichously flagellated bacteria spin their flagella counterclockwise,

gella move in a synchronized bundle, causing the cell to swim forward, or run.

the cell reverses the spin of the flagella, the bundle separates, causing the cell to

and randomly reorient itself before running in a new direction. The overall effect

series of runs followed by tumbles is referred to as a random walk, as shown in

1.

Figure 1. Random walk

.vironment with no chemoattractants, the run length is independent of direction. In

ence of a chemoattractant gradient, the cells monitor the time rate of change of
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7

upancy of receptors for the chemoattractant during a run. If an increasing

centration gradient is encountered, the tumbling frequency decreases, causing an

ended run length. If a decreasing concentration gradient is encountered, the tumbling

uency apparently remains at the basal level (Berg, 1988; Macnab, 1987). The net

 tlt is a biased random walk toward the higher chemoattractant concentration, as shown

igure 2.

   
 Low I I . I : High;

Concentration

Figure 2. Runs and tumbles in the presence of a gradient.

Experimental systems for measuring chemotaxis

Experimental systems used to study microbial chemotaxis include the capillary

(Adler, 1972; Nikita er al., 1992; Staffeld et al., 1987), the motility plate (Adler,

; Nossal, 1972; Wolfe and Berg, 1989), and the Stopped Flow Diffusion Chamber

C) (Ford, 1992; Ford et al., 1990). In the capillary assay, the open end of a capillary
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:d with buffer solution containing a chemoattractant is inserted into a cell suspension

a fixed amount of time. The capillary is then removed, and the number of cells that

_
.
>

fired the capillary are counted. By comparing this number for capillaries having

Lrent concentrations of chemoattractant, chemotaxis can be quantified. A

ematical model of the capillary assay has been developed (Rivero-Hudec and

enburger, 1986) that allows calculation of two important modeling parameters, the

om motility coefficient and the chemotactic sensitivity coefficient.

A motility plate consists of a petri dish containing a semi-solid agar medium

ng a uniform distribution of a consumable chemoattractant (Adler, 1972). The center

le plate is inoculated with cells. As they grow and consume the chemoattractant, a

ient is formed that induces migration of the cells outward from the inoculation zone.

motility plate is a simple system to use, but, because the gradient is formed by

tlar metabolism, the gradient is difficult to control and quantify. Also, the

iotactic response to non—metabolizable chemoattractants cannot be studied in a

city plate.

The SFDC is a rectangular chamber into which two impinging streams Of medium

atroduced. One stream contains the chemoattractant, and the other contains the cells

terest. When the flows are suddenly stopped, a step—change in chemoattractant is

 
gximated where the two streams intersect. Diffusion of the chemoattractant creates

(f
t

11
<
2

:itially steep gradient that decays over time. The chemotactic migration is measured

h

ght diffraction. A mathematical model of the system has been developed to calculate
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chemoattractant gradients and to analyze the resulting chemotactic migration Of the

s.

1 None of the experimental systems described above are convenient for establishing

1 characterized, steady-state gradients or multiple gradients in multiple directions. We

3 developed the Diffusion Gradient Chamber (DGC), shown in Figure 3, for studying

 
lrobial chemotaxis under such conditions. Details of the DGC system have been
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Figure 3. Diagram of the diffusion gradient chamber.

ously published (Emerson et al., 1994), so only a brief description is given here. The

consists of a square arena (5 cm x 5 cm x 1 cm) bounded by a reservoir on each
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side. Each reservoir is separated from the arena either by a semi-permeable membrane, or

by an impermeable silicone sheet, depending on whether substrate diffusion between the

arena and reservoir is desired. The arena is filled with medium containing dilute agarose

gel through which the cells can readily swim. Different concentrations of the

chemoattractant(s) are maintained in the reservoirs. Diffusion from the higher

concentration reservoir (the source) through the membrane and across the gel to the lower

concentration reservoir (the sink) results in the development of a continuous gradient

across the gel. The gradient is allowed to establish for a specified amount of time, and

:hen the chamber is inoculated. Growth and movement of the microbial populations are

nonitored from above by light diffraction.

The DGC has several advantages over other methods of studying chemotaxis.

vIultiple gradients in different directions may be established simultaneously in the

:hamber. Gradients may be allowed to approach a linear steady-state profile before

noculation, or transient gradients can be used. These gradients can be initiated

imultaneously, or in a staggered fashion to simulate pulsed influxes of chemoattractants.

The DGC has been designed with a removable lid so that samples may be withdrawn or

microsensor readings taken without sacrificing the experiment. Many different

moculation protocols may be used, including uniform inoculation across the gel,

loculation in a line, or at a point. Gas ports in the chamber provide the possibility to

laintain an inert gas headspace above the arena for anaerobic experiments, or to supply

aseous reagents to the microbes.
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DEVELOPMENT OF TOOLS

Improvements to the DGC method

1 Image acquisition system

In previous work done in the DGC system (Emerson et al., 1994), photographs of

DGC were taken manually with a 35 mm camera. This method gave good results, but

laborious and did not lend itself well to computerized image analysis. Over the

.‘se of the work presented in this thesis, several automated image analysis systems

:developed.

The first computer-based image analysis system was built using a PULNiX TM-

1 CCD-camera (PULNiX America Inc., Sunnyvale, CA) mounted above the DGC.

Pulnix camera was attached to a PC through a WinVisionPro video capture board

tnta, Mountain View, CA). A time-lapse capture program called AutOCap was

en by Sebastian Schmidt ("Development of Novel Methods to Measure Random and

notactic Microbial Motility at the Community Level", Sebastian Schmidt,

ienarbeit, Michigan State University, 1995) and used to automatically capture

res at pre-set intervals. Captured images were converted into RAW format in Matlab

)r Windows, and then analyzed.

Two other image analysis systems were installed based on Color QuickCam

ras (Connectix, San Mateo, CA). One Quickcam was connected to a PC, and the

to a Power Macintosh 7200/90. The software included with the Quickcams allowed

11
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ned-image capture. Images from these units, and, later in the research, from the

liX system, were analyzed using NIH Image (http://rsb.info.nih.gov/NIH—I1VIAGE/),

ware image analysis program.

Quantification of cells by grayscale analysis

To quantify the number of cells in a DGC through image analysis, a calibration

relating cell number to image grayscale was developed. Escherichia coli HCB 33

;rown in M63 medium (described in more detail in Section 4.2.3) with 5 mM

01 for 30 hours at 30°C. Replicate measures of the optical density of the culture

taken at a wavelength of 630 nm. Forty milliliters of the cell culture were then

to a clean DGC containing no agar, and three consecutive images of the DGC were

ed. The DGC was then emptied and cleaned for the next reading. A 0.1 ml aliquot

culture was placed in triplicate on LB agar plates and spread uniformly with a glass

nother volume of the cell culture was then diluted by a factor of 1:1.5 with M63

m, optical density measurements were taken, 40 ml of the diluted solution was

to the DGC, three more images were acquired, and three more LB plates were

Ited. This process was repeated seven times at the dilutions shown in Table 1.

The plates from each dilution were incubated at 30°C for 18 hours. At this time,

00,000 dilution plates had the most suitable number of colonies to count. The

a number Of colonies in each plate was 448, with a standard deviation of 36

s. The original culture therefore contained approximately 4.48><108 cells/ml.

 





Table 1. Dilution factor and OD for grayscale calibration

l3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Dilution Optical Density

(ml cells/ml total) (7t=630 nm)

no dilution 0.762 0.789

1:1.5 0.559 0.577

1:2 0.453 0.424

1:3 0.327 0.299

1:4 0.322 0.270

1:5 0.191 0.192

1:10 0.082 0.066

1:15 0.054 0.041

1:20 0.025 0.028

1:100 -- --

1:1000 -- --

1:10,000 -- --

1:100,000 -- --

 

vlatlab 4.0 for Windows was used to analyze the images. The image was

:d to RAW format with Image Alchemy, and then read into Matlab as an image
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. The average grayscale value of each picture was calculated in Matlab. The three

.ges for each dilution were then averaged together to give one grand average value per

ttion. Finally, each grand average was divided by the maximum of the grand averages

tormalize the values into a range from 0 to 1. The Optical density readings were also

raged at each dilution. The relationship between optical density and grayscale is

strated in Figure 4.
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Figure 4. Normalized grayscale vs. Optical density for E. coli.

The normalized grayscale was next plotted against the number of cells in the

C. This yielded a linear calibration, as shown in Figure 5. Other work in collaboration

1 Tyler Ames, a Ph.D. candidate in Dr. Worden's research group, but not included in

dissertation, has also shown that soybean plant cell concentration has a linear

tionship with grayscale in the DGC (Ames, 1997).
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Figure 5. Calibration curve for E. coli in DGC.

3 Method to measure membrane mass transfer coefficient

An experiment was designed to measure the mass transfer coefficient, ks, across

membrane. This parameter is important in the modeling work introduced in the

wing sections. A DGC system was prepared having one reservoir separated from the

a by a semi-permeable membrane, and the other three sealed. After the membrane

fixed in the chamber, the chamber was stood on one side with the membrane parallel

1e ground. 400 11L Of 0.3% agar were spread onto the membrane and allowed to

en. The agar layer was applied to duplicate any fouling of the membrane that could

place in a DGC experiment. After the agar layer solidified, the DGC was returned to

rizontal position, and filled with 45 ml of RO water.

A sucrose solution was pumped through the reservoir from a flask containing

lmL Of 30 g/L sucrose. The solution was recycled back into the 3000 mL flask. A stir
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;ar was placed in the DGC, and the DGC sat on a magnetic stir plate. The mathematical

odel for this system is

l

V flicks/us —S) (1)
arena source

Where S is the concentration of sugar in the DGC arena, Varena is the volume of the arena,

x is the area of the membrane (3.06 cmz) available for mass transfer, and Ssource is the

oncentration in the source flask. Equation ( 1) can be solved with the initial condition

=0 and linearized as

 

—S V
source arena

2
1n[ Ssource J: kSA t ( )

S .

ugar concentrations were measured over time by HPLC analysis. The results of

leasurements for both sucrose and glucose are shown in Figure 6.
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Figure 6. Determination of the membrane mass transfer coefficient.
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f4 Faster approach to steady-state gradients

!

. In some instances, steady-state gradients were desirable in the DGC. In the

Eventional Operating mode, gel without the gradient chemical was poured into the

na. When the gradient chemical was introduced into one reservoir, the diffusion

 

Fess began, and eventually a linear steady-state gradient would be established. A

hematical model of the system was developed to describe this process. The unsteady-

e diffusion equation, for the case with no cells present, is given by

35

——- = D V25

8: 5

(3)

:re S is the gradient chemical and D3 is the diffusion coefficient. In two-dimensions,

.ation ( 3) can be rewritten as

825 825 (4)

a = . 55*?

;re y is the direction parallel to the gradient and z is the vertical direction. The

dary conditions at the membranes are given by

I

 

( 5)

’35 = 1(5— (SIFO " SSink)

ay D.

he sink reservoir (position y=0 cm) and

( 6)
(3‘ —k

$16 = —D-: (S|y=5 — SSource)
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' the source reservoir (position y=5 cm). The source and sink flask concentrations were

;umed to be constant throughout the experiment. For all other boundaries, the no-flux

 undary condition was applied

l

sts = o (7)

The Matlab Partial Differential Equation Toolbox was used to solve the diffusion

1ation with a finite element method. The predicted time to reach steady—state for the

aventional method was 33 days, using sucrose as the model chemical. To define

ady-state, the elliptical equation was solved by the tool box to give the actual steady-  
te solution. Then the parabolic equation was solved, and compared to the elliptical

ution at several time points. The first time point at which the parabolic solution was

bin 95% of the elliptic solution at every node in the DGC was defined as the time  
:essary to reach steady-state.

A new method of pouring gel slabs was developed to reduce the time necessary to

.ieve the steady-state gradient. This method was developed as part of the plant cell

rk referenced in Section 4.1.2. The new method of pouring the slabs is shown

ematically in Figure 7. The DGC was tilted at an angle and Layer 1, containing a

 
centration of the gradient chemical equal to that used in the source reservoir, was

U
l
m
l
l
l

fitted and allowed to solidify. The DGC was returned to level, and Layer 2, containing

h
‘
I
l
l
l

“gradient chemical, was poured and allowed to solidify. Finally, Layer 3, containing

6 of the gradient chemical concentration used in Layer 1, was poured.
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0.4 cm ayer nocu um T

T Layer 2 2.2 cm

2 Layer 1

   
L,

Figure 7. Three-slab pouring method.

Matlab simulation of this system, depicting the concentration as a function of

tnce from the sink reservoir, is shown in Figure 8 for three time-points.

'20

10

  0
Sucrose (g/l) 5 hr

 

012345

Position (cm)

Figure 8. Simulation of approach to steady-state.

:ime necessary to reach steady—state for the three—slab pouring method is predicted to

1 hours, which is approximately 20 times less than the conventional pouring method.
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5 Recycle of source and sink flasks

Another in the operating method was the use of recycle in the source and sink

ks. In the original DGC method, fluid is pumped out of the source or sink flask,

>ugh the correSponding reservoir on the DGC, and then to a waste container. This

thod worked well, but the time an experiment could run was limited by the volume of

flasks and the pump speed. The idea of recycling medium from the reservoir to the

;k was tested. Sucrose was the gradient chemical, at an initial source flask

reentration of 20 g/L. In six different experiments, only 0.26i0.13 g/L-week (or

%/week) were lost from the flasks due to transfer across the membrane. Although this

ult is specific to the plant cell system and to sucrose, it suggests that in general, the

3k concentrations will not change significantly if the system is operated in recycle

de.

.6 Microsensors and microbiosensors

Microsensors were developed by David Emerson, Serban Peteu, and Mark

rden to measure oxygen, glucose and other chemicals (Peteu et al., 1996; Emerson et

1996a; Emerson et al., 1996b). Briefly, the microsensors are Clark-type oxygen

roelectrodes. The addition of an enzyme, such as glucose oxidase, to the tip of the

oelectrode produces a microbiosensor. The enzyme catalyzes a reaction that

umes glucose and oxygen. The rate of disappearance of oxygen is measured by the

>electrode, and allows for the glucose concentration to be measured.
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A portion of this research project was devoted to deve10ping a calibration method

the glucose microbiosensors. Because the reaction at the tip of the microbiosensor is

ked to'the oxygen concentration, calibrations at varying oxygen concentrations had to

performed. A group of microbiosensor readings, in picoamps, was obtained as a

action of percent oxygen saturation and glucose concentration. The simplest model to

the data to is a linear plane, whose equation is given by

R=aG+bX+d (8)

here R is the microbiosensor reading, G is the glucose concentration, and X is the

:rcent oxygen saturation. The Solver tool in Microsoft Excel 7.0 was used to find the

ast-squares best fit between the experimental points and the model, by varying the

trameters a, b, and d simultaneously. Four isoclines of the resulting three-dimensional

libration plane are shown in Figure 9.
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Figure 9. Three dimensional glucose microsensor calibration plane.

An example of an experiment in which the oxygen microsensor, the glucose

icrobiosensor, and the image analysis system for cell grayscale were used

nultaneously is shown in Figure 11. A swarm plate containing 1 mM glucose in M63

:dium was inoculated with 10 {AL actively growing E. coli HCB 33 (see Section 4.2.3

f more details on medium and strain). After approximately 24 hours of growth, a ring of

:teria had formed, as shown in Figure 10.
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Figure 10. E. coli forming ring in response to glucose.

Microsensor and microbiosensor readings were taken across the ring at a depth of 1 mm.

An image was recorded of the swarm plate with the Pulnix image analysis system. Figure

11 shows the combined results of the sensor readings and the image analysis. The

chemotactic wave (see Section 4.2) is visible where the gradients have the steepest slopes.
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Figure 11. Use of microsensors, microbiosensors, and image analysis, DGC modeling

4.2 Development of model  The mathematical model of the Diffusion Gradient Chamber system consists of

coupled conservation equations for the microbes, the chemoattractant(s), and the nutrient

or carbon source. The cell balance equation may be written as

a (9)

§=—V-Ju +f(H)u

where Ju is the cell flux, 11 is the cell density, and f(H) is a function for cell growth on a

nutrient (H). Many forms of the flux equations for chemotaxis have been suggested (for a

review, see Ford, 1992). A commonly used constitutive equation to describe cell

migration at the population level is that derived by Keller and Segel (1971):
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J, =—uVu+Vuu (10)

where u is the random motility coefficient and Vu is the chemotactic velocity. For the

model presented here, the Keller-Segel equation has been modified by adding a second

chemotactic flux, to give

Ju =—,uVu+VuSu+V,Qu (11)
l

where Vus is the chemotactic velocity in response to a chemoattractant S, and VUQ is the

chemotactic velocity to a chemoattractant Q. Combining Equations (9) and ( l 1) gives

au

8:

(12)
 

=uV2u—V-(V.su)—V-(V.Qu)+f<H>u

The chemotactic velocity equation prOposed by Rivero, et al. (1989) (known as

the RTBL model) is strictly applicable only to one-dimensional movement of the bacteria,

but has been shown to give good agreement with a more rigorous three-dimensional

.nodel for a range of parameter values (Frymier, et al., 1992). The RTBL model also

assumes that the temporal gradient of chemoattractant has a small contribution compared

:0 the spatial gradient, and evidence to support this assumption has been provided

:Frymier, et al., 1994). The RTBL chemotaxis term is given by

(13)

VS =vtanh w—MVS}

“ (K0, +5)
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here 1) is the swimming speed of a single cell, 0 is the tumbling frequency, NTS is the

ital number of receptors for the chemoattractant S, and KDS is the dissociation constant

tr the receptor-S complex. For shallow gradients, the modified RTBL chemotactic

:locity can be approximated by

KDS VS (14)

(Km + Sf

 

Vus = 105

here X08: the chemotactic sensitivity coefficient to the attractant S, can be expressed in

arms of individual cell parameters by

X05 =002Nrs (15)

similar equation can be written for the chemoattractant Q as

K (16)
DQ 2 VQ

KDQ+Q)

 

VuQ = log (

here XOQ is the chemotactic sensitivity coefficient to the attractant Q and KDQ is the _

ssociation constant for the receptor-Q complex. Rivero et al. (1989) showed that the

remotactic sensitivity coefficient and the random motility coefficient can be calculated

om individual cell parameters, and Rivero-Hudec and Lauffenburger (1986) showed

at both can be measured experimentally through population assays such as the capillary

say.
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The cell balance used for the DGC system is derived by combining Equations (14)

d (16) with the random motility flux term and a term for growth (on substrate H) to

:1d

9a K K vH (17)
_= V2 _ 0 —L— _ . DQ

9t ’1 u ZOSV [[(Kos + S)2 }VS] XOQV [[(KDQ +Q)2 }VQ]+ C0 + H u

tere v is the maximum specific growth rate of the cells growing on H, and C0 is the

 
 

lf-saturation constant for growth on H. The assumption of simple additivity of the

:motactic responses to multiple attractant gradients has been shown to be as good or  
:ter than more complex interaction models, but lacks the ability to completely

iI‘OdllCC experimental observations (Strauss, et al., 1995). Boon and Herpigny (1986)

rieved good agreement with experimental results when modeling the response of E.

7i to simultaneous gradients of glucose and oxygen using this assumption.

 
The cell growth term and the chemoattractant consumption terms are modeled as

mod-type (Bailey and Ollis, 1986) saturation processes. Growth of cells due to

:moattractant uptake is assumed to be negligible compared to growth due to nutrient

.ake. This assumption is reasonable for many experimental systems because the

rient (usually glycerol) is present at a much higher concentration than the

moattractant .

The two chemoattractant balances are given by

1255 u (18)
as 2
———= VS-

31‘ D5 CS+S
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vQQ (19>

 

where D5 and DQ are the chemoattractant diffusion coefficients; vs and VQ are the specific

chemoattractant consumption coefficients; and Cs and CQ are the saturation constants for

consumption of S and Q, respectively.

The nutrient balance is given by

a—H-=DHV2H—

3t

vH L (20)

C0 + H YH

 

where DH is the nutrient diffusion coefficient, and YB is the yield coefficient for growth  on H.

In both of the chemoattractant balances and in the nutrient balance, the respective

diffusion coefficients are assumed to be constant and the medium isotropic. We have

previously confirmed that substrate diffusion into the DGC is accurately described by the

model (Emerson 81‘ al., 1994).

1.2.1 Boundary conditions

A two-dimensional schematic representation of the DGC is shown in Figure 12 to

,llustrate the geometric parameters used in the mathematical model. The dimension R is

2.5 cm, and r is 2 cm. For the cell balance, a zero total flux boundary condition is applied

in all boundaries (Q) of the chamber. This boundary condition, Shown below, states that
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3 overall flux, given by the sum of the random motility and chemotaxis fluxes, is equal

zero on the boundaries.

2
KDS

KDQ
_ (21)

{#V u ‘Zosv'[[(1{m +S)2 lVSl—ZOQV-lllKDQ +Q)2 }VQlln - O

Neumann boundary conditions are used for the chemoattractant S on the

 

 

undaries where the reservoir is open to the arena. The chemoattractant is assumed to

fuse across the semi—permeable membrane, which imposes a resistance to mass

nsfer. This boundary condition is written as

( 22)
 

  

.ere Sres,S and Stem are the concentrations of the chemoattractant in the south and north

ervoirs, respectively, and ks is the mass transfer coefficient for S across the semi-

meable membrane.

Outside the reservoir openings, there is no flux of chemoattractant across the

118 of the chamber:

35 (23)
85 __ :0

832%
3y

=0 and 

 1‘0

:he reservoir is sealed with a non—permeable membrane, then the no flux boundary

tdition would apply across the entire side. The boundary conditions for Q and H are
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irnilar mathematically to those of S. For all simulations presented in this section of the

hesis, the concentration of Q in each Open reservoir was equal to the concentration of Q

nitially present in the arena, and the concentration of H in each reservoir was equal to the

oncentration of H initially in the arena.

..2.2 Initial conditions

In the experiments used to validate the model, the center of the chamber was

aoculated with a micropipette. An exponential function was used to approximate the

hape of the injected cell peak:  
u (24)

11(X’, I): 0

y exp(w1/x’2 + y’z)

 

rhere uo is the initial concentration of cells and w is a peak width factor. The values of uo

nd w were calculated to yield the same number of cells in the peak as were added

 xperimentally (~4x107 cells, Emerson et al., 1994). The variables x' and y' are defined so

rat x'=0 and y'=0 occur at the center of the arena.

The initial condition for the chemoattractant S is S(x,y)=0 for all x and y. The

titial condition for H is that H(x,y)=Ho for all x and y, where H0 is the initial

)ncentration of H in the arena. The initial condition on Q is that Q(x,y)=Q0 for all x and

. where Q0 is the initial concentration of Q in the arena.

2.3 Experiments used to validate model

Experiments in the DGC were carried out as described in Emerson et al. (1994). A

reptomycin resistant strain of E. coli HCB 33 (=RP437) that is Wild tYP€ for motility
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chemotaxis was used. A mineral salts medium (M63) was used for all experiments.

3 medium was supplemented with 2 mM glycerol, the amino acids histidine, leucine,

hionine, and threonine required for this auxotrophic strain, and 125 ug/l streptomycin.

2 glycerol served as the carbon and energy source for growth, but it is not a

moattractant for E. coli. The source reservoir contained supplemented M63 medium

either 0.1 mM or 1 mM aspartate, while the sink reservoir contained supplemented

3 medium only. The medium in the arena was stabilized with 0.15% agarose and

ially contained no aspartate. The E. coli were grown overnight with aeration at 30°C

.B broth.

In these experiments, the south reservoir (see Figure 12) was the source, and the

th the sink. These source and sink reservoirs were separated from the arena by 0.05

pore-size polycarbonate filter membranes (Poretics Corp., Liverrnore, CA).

v
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Figure 12. Schematic diagram of DGC, showing modeling coordinates.

The cast and west reservoirs were sealed off from the arena with non-permeable

silastic sheeting (Dow Corning, Inc., Midland, MI). The source and sink liquids were

autoclaved at 121°C to sterilize, and allowed to cool. To prevent a vacuum from forming

in the flasks as liquid was pumped out, the flasks were vented to the atmOSphere through

sterile filters. The gas port to the DGC (see Figure 3) was also vented to the atmosphere

through a sterile filter, to allow the headspace to be replenished with fresh air.

Both the source and sink solutions were pumped through their respective

reservoirs at 2.5 nil/hr. To allow the aspartate gradient to partially form, the system was

Operated for a given time before inoculation. The amount of time the gradient was
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allowed to form before inoculation was varied between experiments. The center point in

the arena of the DGC was inoculated with 10 u] of E. coli using a micropipette to disperse

the cells evenly throughout the depth of the agarose.

4.2.4 Computer simulations

The mathematical model was solved with an Alternating Direction Implicit (ADI)

algorithm (Carnahan et al., 1969; Chapra and Canale, 1988). The ADI method uses two

difference equations to solve each two-dimensional unsteady—state partial differential

equation. The first difference equation is implicit only in the x—direction and the second

only in the y-direction. The equations are solved in succession at time steps of At/2. The

ADI method is an unconditionally stable method with which convergence occurs with a

discretization error of the order [(At)2+(Ax)2]. For the model presented here, Ax=Ay.

More details on the ADI method can be found in Appendix B. The program is written in

FORTRAN 77 and executed in the UNIX operating system. The balance equations for S,

Q, and H were solved by the model for a specified amount of time before the cell balance

was added, in order to simulate the gradient initiation time before inoculation. Output

from the FORTRAN program was imported to MATLAB version 4.0 for Windows. The

MATLAB program was used for image analysis and for graphical output.

4.2.5 Modeling parameters

In order to validate the mathematical model, all of the parameter values were

determined independently. The random motility coefficient, u, was measured using a

laser diffraction capillary assay (LDCA) deve10ped in our laboratory (Schmidt et al.,
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1997). The LDCA consists of a capillary tube through which a laser is directed. Cell

movement in varying agar concentrations can be observed, and through image analysis

and modeling, the random motility coefficient can be determined. LDCA experiments

indicate that the random motility decreases linearly with agar concentration over the

range of 0.15 to 0.30% agar. The random motility coefficient usedin the simulations is

the experimentally measured value for the agar concentration used in the DGC

experiments. The LDCA is described in more detail in Section 4.5. For this model, it is

assumed to be independent of the chemoattractant gradient. The maximum cell growth

rate, vH, was determined from the experimentally measured doubling time, rd, of the

bacterial population using the relationship

-1132 (25>v
H

t.1

to Calculate the growth rate.

The diffusion coefficient for aspartate (D3) was calculated by‘the Wilke-Chang

correlation (Wilke and Chang, 1955). The diffusion coefficients for Do and DH (oxygen

and glycerol, respectively) at 25°C were obtained from. the literature, and adjusted to

30°C by a correlation for the temperature dependence of diffusion coefficients (Perry and

Green, 1984). An approximate value for Ya was calculated by an electron balance for

cells growing on glycerot.

Values for the chemotactic sensitivity coefficient for aspartate, x05, and the

dissociation constant for; the receptor-attractant complex for aspartate, K03, were taken

Irom the iiterature. ‘s’alues tor the chemotactic sensitivity to various chemoattractants
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e been published (Ford, 1992). Values for the dissociation constant have been

tlished by Macnab (1987).

The values forthe saturation constants CH, Cs, and CQ were chosen to be in the

ge of those commonly reported for E. coli (Bailey and Ollis, 1986). The maximum

cific chemoattractant consumption coefficient (vs) was taken to be close in value to

maximum cell growth rate on H. The mass transfer coefficients kH, kg, and kQ were

mated by adjusting the k value for glucose, determined in previous work with the

-C (Emerson, et al., 1994) by the ratio of the molecular weight of glucose to H

ICCI'OI), S (aspartate), or Q (oxygen). The mass transfer coefficient across a membrane

;iven by k=Deff/l, where Deff is the effective diffusion coefficient, and l is the thickness

he membrane (Cussler, 1984). Deg varies with the molar volume, V, to the -0.5 (Wilke

, Chang, 1955) to ~06 power (Sitaraman et al., 1963). In results not shown, the

:licted outcomes were relatively insensitive to small variations in the mass transfer

fficient. Values for parameters used in the modeling simulations are given in Table 2.

 
 



 

416 Results 0

The cell

those Observed

“’38 introduced

chamber at 21 cc

Center of the ch.

Thfi ext

Figllre 13 The



36

Table 2. Parameter values for validation of model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value

ll 0.0010 cm2 h"

m 0.080 cm2 h"

m 0.085 cm2 11'1

C0 4.08x10'6 gH cm?

CQ 6.70x10’8 gQ cm'3

Cs 5.50x10'rgscmj’r

DH 0.01 cm2 11'1

DQ 0.09 cm2 h"1

Ds 0.033 cm2 h'1

KDQ 3.30x10‘5 gQ cm'

KDS 2.00x10'6 gs cm‘3

v 0.35 h"

VQ 0.02 gQ gu"l h'1

vS 0.60 gs g," h“

YH 0.50 gu/gH    
 

  6 Results of validation simulations

The cell growth and migration patterns predicted by the model were compared to

;se observed experimentally under two sets of conditions. In Run 1, 1.0 mM aspartate
,-

M
M

3 introduced into the south reservoir. Glycerol was initially present throughout the

)
‘
l
l
l
‘

Timber at a concentration of 5 mM. After the gradient was established for 6 hours, the

iter of the chamber was inoculated with E. coli.

The experimental photos and modeling results at four time points are shown in

Lure 13. The results of the computer simulation are shown in the left-hand column and
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tographs of the experiment in the right-hand column. In both the photos and the

fdeling simulations, lighter areas correspond to higher cell density. Several trends

:erved experimentally were reproduced by the model. The first trend was the band or

ire of cells, characterized by a locally high cell concentration near the pattern edge, that

:eloped and migrated toward the chemoattractant source. The height of the wave peak

 

[eased with time. The second trend was that the velocity of the wave decreased as it

roached the chemoattractant source. Because the edge of the pattern closest to the

rec slowed more than the rest, the pattern tended to broaden as it approached the

rce. The third trend was i the less prominent wave that migrated away from the

moattractant source reservoir.

In Run 2, the chemoattractant concentration in the source (south) reservoir

lmM aSpartate) was one tenth that in Run 1. Figure 14 shows the computer simulation

;he left-hand column and experimental photographs in the right-hand column. In this

befiment, the chamber was inoculated 6.5 hours after the gradient was initiated. As in

n l, chemotactic migration toward the aspartate source and formation of a chemotactic

l
&

five were evident in both the experiment and the model predictions. However, the

T es of the patterns were significantly different in the two runs. In particular, the

\
‘
\
]
“

*wth pattern for Run 2 was more elongated and exhibited less flattening as it

iroached the source.
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Figure 13. Simulation compared to experiment for 1.0 mM aspartate source
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Figure 14. Simulation compared to experiment for 0.1 mM aspartate source.
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Effects of grid-spacing on simulations

The simulations shown in Figure 13 and Figure 14 used a grid consisting of 81

ly spaced nodes in each direction, for a total of 812 (6561) points. To test the effects

: interval size on the predicted profiles, the grid was reduced to 512 (2601) points,

Lun 1 was simulated again. Figure 15, which gives the cell concentrations along the

entral axes of the DGC, shows that the increase from 512 to 812 had almost no effect

c predicted profiles. Other simulations (not shown) at grid-spacings of 252 and 152

row a marked difference from the results at 512 intervals.
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Figure 15. Cell concentration profiles across the two central axes of the DGC.

Concentration profiles of chemoattractants and nutrient

The cell patterns developed in response to the underlying, time-dependent

:ntration profiles of the chemoattractants and nutrient. Examples of these latter

es are shown, along with the corresponding cell profile, in Figure 16 and Figure 17.

our graphs have the concentration, g/cm3, on the vertical axis, and the spatial
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l.2.7 Effects of grid-spacing on simulations

The simulations shown in Figure 13 and Figure 14 used a grid consisting of 81

:qually spaced nodes in each direction, for a total of 812 (6561) points. To test the effects

>f the interval size on the predicted profiles, the grid was reduced to 512 (2601) points,

md Run 1 was simulated again. Figure 15, which gives the cell concentrations along the

 .wo central axes of the DGC, shows that the increase from 512 to 812 had almost no effect

)n the predicted profiles. Other simulations (not shown) at grid-spacings of 252 and 152

lid show a marked difference from the results at 512 intervals.

  

 

  

  
 

  
 

 
 

  

 

 

 

2 " o 51 intervals 7 "
. O 51 intervals

A _81 Intervals "‘ 6 __ ——-81 intervals
8 1.6 “

8

5° 3 5 —~

2 1.2 -- 2 4 _-

’i
N

3* ,3‘ __

'g 0.8
g 3

“g 1: 2 a-

E 04
E!

U ‘
u 1--

O , l o ,____"_"__,__ ---

0 1 2 3 4 5 0 1 2 3 4 5

x-dimenslon (cm)
y-dimension (cm)

Figure 15. Cell concentration profiles across the two central axes of the DGC.

4.2.8 Concentration profiles of chemoattractants and nutrient

The cell patterns developed in response to the underlying, time-dependent

:oncentration profiles of the chemoattractants and nutrient. Examples of these latter

profiles are shown, along with the corresponding cell profile, in Figure 16 and Figure 17.

All four graphs have the concentration, g/cm3, on the vertical axis, and the spatial
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sition, in cm, on the horizontal axes. Note that the jagged edges are artifacts of the

aphing program.
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Figure 16. Top: Typical cell profile. Bottom: nutrient profile.
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imental verification of these profiles was more challenging. However, as shown in

3 18 (Widman et al., 1997), microelectrodes have been used to confirm that sharp

:n profiles exist across both the cell from moving toward the aspartate source and

from the aspartate source.

250
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To validate the model's predictions of chemical gradients, glucose gradients were

.1de in a miniature DGC using microbiosensors. The miniature DGC is fashioned

me as a regular DGC, but has an arena length and width of only 3.0 cm, as

ared to 5.0 cm for the regular DGC. Figure 19 (Widman et al., 1997) shows the

s of these measurements for a single time point, along four different lines in the
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;e DGC. The variations in the profiles for the different lines arise from reservoir

:3 not completely spanning the width of the DGC, as shown in Figure 12. The

‘zcounts for this geometry.
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Figure 19. Glucose gradients at several positions in the DGC
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ptions and simplifications in the mathematical model

'3 model was able to reproduce several experimental trends for different initial '

ary conditions using the same set of parameters. The reasonable agreement

1e experimental and modeling results provides support for the simplifying

 
: 3 used. These assumptions are discussed below in more detail.

he RTBL model of chemotaxis, the random motility coefficient is shown to

;on both temporal and spatial chemoattractant gradients. We have chosen to

ese dependencies and assume constant 11. The magnitude of the flux due to

)tility is predicted to be several orders of magnitude smaller than the fluxes due

lXiS. In results not shown, the predicted growth patterns have been found to be

nsensitive to it. Therefore an exact calculation of u is not deemed necessary.

other assumption is that the gradients of chemoattractant encountered by the

re relatively shallow (i.e. Equation (14) is a reasonable approximation to

13)). This assumption has been found to be adequate for modeling the capillary

‘d et al., 1990; Rivero and Lauffenburger, 1986). However, the locally high

ions of cells in the chemotactic waves are associated with significant

ictant gradients. The use of the hyperbolic tangent term in Equation (13)

1e predicted chemotactic velocity from exceeding the swimming speed of the

hr modeling simulations, the maximum predicted velocity at any time during

.tion is only 0.154 cm/h (0.43 tun/s), much less than a typical cell swimming

 

:92 cm/h (22 urn/s) (Frymier, et al., 1994). To further validate the shallow-

 
,implification, velocity profiles from the hyperbolic tangent model and the
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ow gradient model were calculated by Equations (13) and (14), respectively, for the

ients of S predicted by the model. Typical values for the individual cell parameters

:1 and Lauffenburger, 1990) for E. coli were chosen for use in Equation (13). The cell

 
.nning speed, 1), was taken to be 30 urn/s, and the tumbling frequency multiplied by

pumber of receptors, ONT, was 75 s. The value for KD, 2.0x10'6, was the same as that

:in the simulations. Equation (15) was used to calculate a value for the chemotactic

tivity of 6.74x10'4 cm2/s from the single cell parameters. The comparisons are shown

gure 20 for the first and last time points in Runs 1 and 2. There is virtually no error

duced by substituting Equation (14) for Equation (13) for any of the gradients

untered in either run.  
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A third assumption is that the concentration of all components in the model is

instant throughout the depth (the z-direction) of the gel. Oxygen, which is initially

1iformly dispersed in the gel, is quickly consumed by the cells, causing vertical

"adients to form. In experiments (Emerson, unpublished data), we have measured

gnificant vertical oxygen gradients in the zone of cell growth with oxygen

icroelectrodes. The variation in oxygen concentration with depth is thought to be

utially responsible for the deviations between the experimental and predicted profiles.

.3 Analysis of modeling results

3.1 Flux calculations

The model was used to calculate the direction and magnitude of cell fluxes arising

om chemotaxis and random motility in the DGC. Equation (11) was rewritten in terms

i'fluxes due to single driving forces as

Ju : Jim + JuS + JuQ
(26)

here JW is the flux due to random motility, JuS is the flux due to chemotaxis in response

S-gradients, and JllQ is the flux due to chemotaxis in response to Q-gradients. The

agnitude and direction of each flux term were calculated individually for Run 1 at time

) hr and are presented at each node point in Figure 21—Figure 24. The length of each

row corresponds to the magnitude of the flux, and the direction of the arrow

>rresponds to the direction of the flux. The tail of the arrow 1s located at the pomt where

e flux is calculated. (Note that in Figure 21-Figure 24 only the top 20% of the fluxes are
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vn to reduce the number of arrows and to improve clarity.) In each of these figures,

ighter (whiter) shading corresponds to higher concentration of the component being

trated. The top graph in Figure 21 overlays the JuS flux arrows onto the

moattractant S gradient profile, and the lower graph in Figure 21 overlays the Jus flux

ws onto the cell profile. The top graph in Figure 22 shows JuQ overlayed onto the Q

ile, and the bottom graph in Figure 22 shows JuQ overlayed onto the cell profile.

re 23 shows Juu, the flux due to random motility. Figure 24 shows the total flux,

ined by adding the three flux components together. The maximum magnitude of each

of cell flux is given in Table 3.  
Table 3. Maximum predicted cell fluxes for Run 1 at 20 hours.

 

 

 

 

  
 

Flux component Maximum magnitude of flux

(x 105 gcells/cmz‘h)

Jus
8.05

JuQ 3.83

Jm,
0.0000131

Ju
1 1.4     
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Figure 21. Fluxes due to response to S chemoattractant.



   

y
—
p
o
s
i
t
i
o
n
[
m
m
]

25

x—position [mm]

50

y
-
p
o
s
i
t
i
o
n
[
m
m
]

N 0
1

 
25

x—position [mm]

Figure 22. Fluxes due to response to Q chemoattractant.
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3.2 Receptor saturation

The degree to which receptor saturation suppresses the chemotactic response can

: calculated from the simulation results. We define a global chemotactic response factor,

;, as the average cell flux (along a line of constant x) in response to the chemoattractant

divided by the average cell flux (along the same constant x line) that would result if the

:ceptors were completely free of any S. This definition is expressed mathematically as

 

 

 
 

2R 2R 2 ‘2 (27)
KB, 35 R s as

{[9503 (K03 +S)2 3y “idy lid); iii“- KDS] 3y uddy

5 = 2R 2R : 2R

1 8S (95

———u d d —u d

{[9605 KDSBy :iy ii y {[3}; iy

he value of ¢s will vary between 0 and 1. If tbs is close to one, then the chemotactic

spouse is close to the maximum it can attain for the given gradient. As (1)3 approaches

arc, the chemotactic response to the gradient of S diminishes. The chemotactic response

lctor has been calculated for Run 1 and Run 2 at each of the time points shown in Figure

3 and Figure 14. Figure 25 shows (pg plotted against the x-position for both runs.

alculation of (pg was limited to areas where the cell concentration was greater than 0.1%

Fthe maximum cell concentration occurring at that time point.
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4.3.3 Pattern dynamics

Two hypotheses could explain the flattening of the pattern seen in Figure 13. The

first hypothesis is that the cell receptors become saturated for the chemoattractant S,

reducing the cell’s chemotactic response to gradients in S. The second hypothesis is that it

takes longer for the cells to consume the higher concentrations of chemoattractant found

near the source.

The chemotactic response factor values (Figure 25) provide strong support for the

first hypothesis. In Run 1, (pg values lie between 0.02 and 0.18 at all time points for which

(1)3 was determined. The values are the lowest in the middle of the pattern (indicated by

point A at time 17 hr), where the flattening is the most evident, and highest near the edges

of the pattern (indicated by the two points labeled B at time 17 hr). In Run 2, the tbs

values vary between 0.25 and 0.9, indicating that chemotaxis is suppressed to a much

lesser degree by receptor saturation than in Run 1. This result would be expected since

the maximum chemoattractant concentration in Run 2 is approximately one tenth that in

Run 1.

The 23 hr (pg curve for for Run 1 is flat from approximately 1.7 cm to 3.2 cm,

while the 24 hr (1)3 curve for Run 2 has a much rounder appearance. For broadening to

occur, the y-component of the wave’s velocity at the sides of the pattern must exceed that

in the center. The shapes of the $3 curves are consistent with such a velocity gradient, and

Suggest that receptor saturation is at least partially responsible for the pattern broadening.
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4.3.4 Chemotactic wave in response to oxygen

Movement of a portion of the chemotactic wave away from the chemoattractant

source reservoir (i.e. toward the north) was an unexpected experimental result. This effect

was not reproduced in the simulations with a single chemoattractant. We hypothesized

that this behavior could arise in response to gradients formed by the consumption of a

second chemoattractant that is uniformly distributed throughout the chamber initially. The

second chemoattractant has been identified as oxygen, a known chemoattractant for E.

coli (Adler, 1972). The microelectrode measurements shown in Figure 18 indicate that

significant oxygen gradients coincide with the cell wave fronts moving both toward and

away from the applied chemoattractant gradient. Model predictions indicate that the wave

moving away from the aspartate source tracks an oxygen gradient rather than an aspartate

gradient.

4.4 Variations on original model

The original model, presented in Section 4.2, gave good agreement with

experiments for one bacterial population responding to gradients of two chemical

compounds, and growing on a third. The resulting simulations were not perfect matches,

however, and experimental data, such as the oxygen gradients, suggested that a more

complex model was needed to match the experimental results more closely.

First, a second bacterial balance was added to the model. This balance allowed

competition or other multi-population phenomena to be studied. More details on this

modification to the model are given in Sections 5 and 6.
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In addition to the second cell balance, several improvements were built into this

second-generation model. These included making consumption of the chemoattractant S

and the nutrient H dependent on the concentration of chemoattractant, Q. Biologically

speaking, this can be interpreted as modeling Q as the electron acceptor in the system. If

Q were oxygen, then the cell's metabolism is aerobic, with electrons being donated to

oxygen. If Q were nitrate, anaerobic denitrification could be modeled. Another

improvement was the addition of death terms and endogenous metabolism terms (Bailey

 
and Ollis, 1986). The death terms model the death of cells, while endogenous metabolism1

:takes into account the loss of cell mass due to internal consumption, such as during a

 

period of low nutrient availability. Cell maintenance terms were added to the

chemoattractant and nutrient balances to allow for consumption for uses other than

growth. The cell maintenance terms could include nutrient consumed for energy for

 motility, for example.

An important modification to the second-generation model was the ability of the

cells to grow on the chemoattractant S. This gives the model the ability to model a

compound which is both a chemoattractant and a growth nutrient, such as glucose for E.

coli, or acetate for Pseudomonas KC (see Section 7).

The second-generation model for cell population i (i=a or b) is given by

8L1,

797:“:‘V2 up _V.(ch)is _V.(V It)“, +

 

1121‘ i

. . 2
Q vth + vlSS __ veg u,- __ d Ll ( 8)

C,,, + H C“ + S

where vet is the endogenous metabolism term and dth; is the death term for the ith

population. The balance for the consumable compound j (i=8 or H) is now given by
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if 2 1' Q (29)
— V

31—11) j2["”'C+JC +Qu']

 

where Vijm is the total consumption coefficient for the ith population growing on j. This

tennis given by

v.. ( 30)

ijm — Y ij

'1

where Yij is the yield coefficient for cells growing on j and cmij is the cell maintenance

term, for the consumption of j. The balance for the compound Q is given by

   

mg

a Q _ rhm H vism S vet Q ( 31)

BI—qu—VQ 21“th C,,,+H+Y C+S+YiC,q+Q“‘]

where Yiq is the yield coefficient for the consumption of Q by the ith population used for

endogenous metabolism.

Two time-points from a sample simulation using the second-generation model are

shown in Figure 26. Values for unknown parameters, such as the endogeneous

metabolism terms and the consumption terms were estimated. More work will be needed

to obtain accurate values for these parameters, but the model has been shown to produce

results that resemble the experimental data.
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Figure 26. Sample simulations from second-generation model.

4.5 Laser diffraction capillary assay

The laser diffraction capillary assay was conceived and developed as a portion of

this research project, but the majority of the work was done by an Aachen exchange

student, Sebastian Schmidt. For this reason, only a brief summary of the LDCA method

will be presented within the body of this work. For further details, see Schmidt et al.,

1997.

Motility parameters necessary for the modeling work, such as the random motility

coefficient and the chemotactic sensitivity coefficient, were not known for bacteria

moving through a semi—solid medium, such as the dilute agar gel in the arena of the DGC.

Therefore, a method to independently measure these parameters was needed. The LDCA

allows the random motility coefficient to be measured at various agar gel concentrations,
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and preliminary experiments indicate that it will also allow chemotactic sensitivity

coefficients to be measured as a function of agar concentration.

The LDCA consists of a 1.6 mm inside diameter glass capillary, which can be

mounted on a microscope stage. A step change in cell concentration inside the capillary

was achieved by successively inserting the tip of the capillary into each of the two agar

suspensions in the culture tubes (Figure 27). The capillaries were filled over a total length

of 30 m, then mounted on the microscope stage. The end of the capillary opposite from

a He/Ne laser was sealed with silicone grease to avoid unwanted convection during the

experiment.
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x=-L ' x=0 =L

= Agar suspension with no cells

-= Agar suspension with cells

Figure 27. Filling the capillary in the LDCA

  

The laser was shone axially through the capillary. A CCD camera, attached to a computer,

was mounted on the optical lens of the microscope. Images were captured at 1.5 minutes,

15 minutes, and then at 30 minute intervals. A typical run lasted 3 hours. The LDCA was

maintained at room temperature for all runs.

The mathematical model for the LDCA is similar to that used by Ford and

Lauffenburger (1992) for the SFDC, with the chemotaxis terms omitted. The one-

dimensional cell balance is given by
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a_B_ 323 (32)

at flaxz

 

The analytical solution to this model is

B 1 .. (33>
——2-erfc Tilt 

using the boundary conditions

B(x,0)=1for—L<x<0 (34)

B(x,0)=0for0<x<L (35)

83 (36)dB

x(-le)—3;(L,t)—0

The concentration gradient at x=0 is given by differentiating Equation ( 33) to yield

33 _ —0.5 (37)

75747317

 

This slope can be experimentally measured at each time—point from the captured images.

The model is fit to the slopes by adjusting the random motility coefficient, 11. The random

motility coefficient for the bacteria Pseudomonas stutzeri KC, measured by the LDCA as

a function of agar concentration, is shown in Figure 28. The open circles show the data

points. The solid line is the best fit of the model, and the dashed lines represent the 95%

confidence interval for the fit. The random motility coefficient for a zero agar
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concentration, estimated by extrapolation, is 2.0)(10'6 cmzls. This value is of the same

order of magnitude as that reported by Segel et al. (1977) for P. fluorenscens (6><10'6

cm2/s). The important finding of the LDCA work was that the random motility coefficient

displayed a linear relationship with agar concentration, at least in the region of agar

concentration tested.
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Figure 28. The random motility coefficient of Pseudomas KC.
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5. MICROBIAL COMPETITION

5.1 Competition background

Chemotactic microorganisms able to position themselves optimally with respect

to gradients may have a competitive advantage over other organisms. Chet and Mitchell

(1976) stated that chemotaxis "presumably gives. . .microorganisms a selective advantage.

Since most ecosystems are not fully mixed, enzyme kinetics cannot be postulated as the

sole criterion for the competitive advantage of one microorganism over another."

The effects of chemotaxis on competition have been studied on a theoretical basis,

utilizing mathematical models to predict possible outcomes of competition between two

microbial populations. Lauffenburger et al. (1981) showed that in a one-dimensional,

confined domain, with a substrate diffusing in from one side, increasing levels of random

motility could be detrimental to the survival of a bacterial pOpulation. Lauffenburger et

al. (1982) went on to show that if the substrate was also a chemoattractant, a certain level

of chemotaxis could impart an advantage to a population, canceling the effects of lower

growth rates or higher random motilities. Both of these studies involved only a single

bacterial population. Lauffenburger and Calcagno (1983), building on the previous work

(Lauffenburger et al., 1981; Lauffenburger et al., 1982) modeled two randomly motile

populations simultaneously. They found that if a slower growing population also had

sufficiently lower random motility, it could out-compete a faster growing population that

had a higher random motility. Kelly et al. (1988), using a model systemiwith the same

geometry as the Lauffenburger papers, modeled two chemotactic pOpulations

66
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simultaneously. Their model predicted that there was a minimum level of chemotaxis

above which a population would have a competitive advantage over a non-chemotactic,

immotile population.

The model of Kelly et al., which included a death term and therefore allowed for

steady-state solutions, predicted that at steady-state, three conditions could arise: (1) the

first pOpulation would survive and the second would disappear, (2) the second population

would survive, while the first disappeared, or (3) both populations would coexist. The

authors pointed out that the time to attain steady-state predicted by their model is on the

order of a year, and in real systems, it is likely that variations in chemical gradients would

occur over that time period. They concluded that the ability to "consider the effects of

motility and chemotaxis on population growth and competition in rapidly changing

environments is clear".

Relatively few studies have addressed the effects of chemotaxis on competition

from an experimental vieWpoint. Pilgram and Williams (1976) found that a chemotactic

strain of Proteus mirabilis outgrew a non-chemotactic but still motile strain in stationary

culture, but that the two strains grew equally well in mixed’culture. Kennedy and Lawless

(1985) studied a motile, chemotactic strain of Pseudomonas fluorescens and a immotile

strain of the same species, and found that in unmixed aerobic and anaerobic soils, the

chemotactic strain survived significantly better than the non-chemotactic strain. Both had

similar growth characteristics in mixed culture.

Other work has focused on the interaction of two or more populations of

Organisms growing in the presence of spatially varying environments. Caldwell and
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Hirsch (1972) studied the growth of microorganisms in two-dimensional concentration

gradients in their steady-state diffusion plate. The organisms were immobilized in an agar

layer, and growth was quantified as a function of position in the gradients. Although this

study did not address competition directly, the researchers did find that the organisms

could have vastly different growth characteristics, depending upon their adaptability to

the local concentration conditions.

Tilman (1994), taking a broad ecological perspective of competition in spatially

structured habitats, noted that coexistence of species could occur if a species with a high

dispersal rate could move into a zone not inhabited by a superior competitor with less

movement capability. Holmes et al. (1994), again from an ecologically based viewpoint,

studied how partial differential equations could be used to study, among other things,

competition, dispersal, and dispersal-mediated coexistence in spatially structured systems.

In this study, a system of partial differential equations was used to describe a

spatially structured system in which two bacterial populations were growing. The system,

called the diffusion gradient chamber (DGC), has been established as a tool that allows

the formation of two-dimensional chemical gradients (Emerson et al., 1994).

Microorganisms inoculated into the chamber can be observed, and their growth and

movement properties recorded. Widman et al., (1997) (see Section 4.2), developed a

mathematical model of the DGC that included two chemoattractant balances, a nutrient

balance, and a cell balance. In addition to modeling a different physical geometry, the

Widman et al. model offered three features not found in the Kelly et al., (1988) model:

(1) the substrate does not necessarily have to be a chemoattractant, and vice versa; (2) the
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model equations are solved in two dimensions, as opposed to one dimension; and (3) the

transient model can be solved over relatively short time periods, and the data can be

analyzed without requiring a steady-state solution. In this study, the model of the DGC is

extended to include a second cell balance, which allows predictions of the outcomes of

competitions between two microbial populations.

5.2 Competition mathematical model

The system of coupled partial differential equations that describes the DGC

system, introduced in Widman et al. (1997), was extended to include a second cell

balance. The cell balances for Populations A and B are given by  
38W ( >

au. K . KDiQ

—'=fl.-V2u,-_Z.~ V __‘L’ uiVS —Zi V _— uin + ”i

at OS [[(Kots +S)2 OQ (KDrQ +Q)2 C1” + H

where, for i=A or B, u, is the cell concentration, S and Q are the two chemoattractants, H

is the nutrient, u, is the random motility coefficient, X015 is the chemotactic sensitivity

 
coefficient to the attractant S for the ith population, KDiS is the dissociation constant for

the receptor-S complex, inQ is the chemotactic sensitivity coefficient to the attractant Q,

KDiQ is the dissociation constant for the receptor-S complex, V,“ is the maximum specific

growth rate, and CiH is the half-saturation constant for growth on H.

The chemoattractant and nutrient balances were changed to reflect the addition of

the second cell population. The chemoattractant balances are given by
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where, for j=S or Q, Dj is the chemoattractant diffusion coefficient, Vij is the specific

chemoattractant consumption coefficient for the ith population consuming the jth

chemoattractant, and Cij is the saturation constants for ith population consuming the jth

chemoattractant.

As described in Section 4.2.3, the chemoattractant S is introduced from one or

more of the DGC reservoirs, and forms diffusion gradient across the gel in the arena. The

chemoattractant Q is initially present at a constant concentration throughout the gel and

the reservoirs. In the experiments used to validate the model, Q was most likely oxygen,

which is a chemoattractant for many bacteria.

The nutrient balance becomes

flzDHVZH—X
B VrHH _L_‘i_ (40)

at i=A C... + H Y...

where DH is the nutrient diffusion coefficient, and YiH is the yield coefficient for the

growth of the ith population on H.

The assumptions made in the original, single population model are given and

justified in Section 4.2.9. The new assumptions introduced by including the second cell

balance are that the effects of the two populations on the chemoattractants and the

nutrient are additive (Lauffenburger and Calcagno, 1983; Kelly et al., 1988); that neither

cell population preferentially consumes one chemoattractant or nutrient over the other;
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and that there are no direct interaction effects between the two populations, such as

predation or parasitism.

5.3 Modeling parameters

Many of the parameters used in the model are given in Section 4.2.5. The

parameters were measured independently, obtained from the literature, or calculated from

correlations. All the parameters had reasonable values for a population of E. coli, and the

model was verified by comparing its simulations to experiments with E. coli.

In this study, the base set of parameters for each population is given in Table 4.
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Table 4. Base case parameters for competition simulations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Parameter Value

(i = a or b)

u, 0.0010 cm2 h'1

XOAQ 0.085 cm2 h“

XOBQ 0

XOAs 0.020 cm?1

Xoas 0

Cir; 4.08x10’6 gH cm'3

CiQ 6.70x10'8 gQ cm’r

Cis 5.50x10'5 gs cm‘f

DH 0.01 c? h'1

DQ 0.033 cmTh’l

D5 0.033 cmThT

KDtQ 3.301.105 g., cm'3

Kors 2.00x10'vgs cm'3

vAH 0.35 h'1

VBH 0.5 h'I

VAQ 0'02 8Q gu'l h-r

vBQ 0

MS 0.60 gs a.‘1 h'1

vBs 0

YiH 0.50 gu/gH     
From this base set, individual parameters for Population A were varied to test

their effects on the outcomes of competition simulations. In many mathematical models,

Where the effects of parameters are unknown, a dimensionless model enables many

parameter effects to be studied at one time. In the case of this particular model, however,

a dimensionless model did not decrease the number of parameters, and was therefore not
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useful for parametric studies (see Appendix G). The chemotactic sensitivity coefficient to

the attractant S (xOAs), the dissociation constant for the receptor-S complex (KDAS), and

the specific chemoattractant consumption coefficient for the attractant S (vAs) were

chosen as the variables to be manipulated. The initial amount of H present and the

inoculation pattern of the two populations were also varied in some simulations. For all

simulations, the maximum specific growth rate of P0pulation B (ttB) was set to 0.5 h'l,

while that for Population A was left at the base case value of 0.35 h]. The larger growth

rate for Population B would give it a competitive advantage in a well-mixed environment

(Hansen and Hubbell, 1980). Population B does not interact with either chemoattractant,

including chemotaxis or consumption. In other words, the base case for Population B is

that it is only able to move by random motility, and it consumes only H.

In all simulations, the gradient was allowed to initialize for 6 hours before

inoculation. After inoculation, the duration of the simulated experiment was 30 hours.

The base case initial condition for the cells is that they are inoculated in the center of the

chamber, at an equal concentration, as described in Widman et al. (1997).

5.4 Analysis of competition simulations

5.4.1 The dynamic competition factor

Typically, the result of a competition experiment between two microbial

pOpulations in well-mixed culture is quantified by the death or disappearance of one

population and the continued survival of the other. This type of steady-state competition

result is not readily amenable to the transient DGC model. Therefore, a dynamic
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competition factor (tlt), was defined to give a time-variant measure of the ratio of the

masses of the populations; ‘1’ is defined by

”I“ (x, y,z,l‘)dV (41)

1”“) = yyyu,(x,y,z,.)av
V

where V is the total volume of the gel, and ua(x,y,z,t) and ub(x,y,z,t) are calculated from

the model. The coordinate axes are defined in Figure 29. It is assumed that the two-

dimensional concentration profiles predicted by the model are constant throughout the

depth of the gel (the z-direction).

Source side

 

X Sink side

Figure 29. Coordinate axes used for competition analysis.

When \p = 1, both populations have the same total mass present in the chamber. A

value of tyr < 1, indicates that Population B has a higher total mass than Population A, and

a value of \p > 1 indicates that Population B has a lower total mass than Population A.
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Therefore, for the purposes of this study, Population A will be said to have an

instantaneous competitive advantage over Population B at a given time if \p > 1 at that

time, and vice versa.

Another measure of the competitive relationship of the two populations can be

derived from Ill. The local competition rate, ty‘, is the rate of change of the ratio of the

masses, and can be found by

, d '1’ (42)

If 111' > 0, then the mass of Population A is increasing relative to the mass of Population

B. If t)! < 1, but 111' > 1, Population A may still have the overall competitive advantage,

although its total mass has not yet become greater than the total mass of B.

5.4.2 The average concentration curve  Another useful approach to studying the spatial arrangement of the two competing

pOpulations was the development of the average concentration curve. This curve plots the

average concentration of the population along each line perpendicular to the gradient (the

x-direction) vs. the position parallel to the gradient (the y-direction). The average

concentration is calculated (for Population A, for example) by

x=L n n . (43)

j uA(x, y)|yAyAzdx Ema, y)|yAyAzAx,. 2...,(1, y)) Y .

i=1 : i=1 'HA(Y) = x=0
 

AxAyAz z nAxAyAz n
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where L is the width of the chamber, n is the number of grid points in the x-direction, Ax

and Ay are determined by the grid spacing and are always equal, and Az is the depth of

the gel. Figure 30 shows a typical competition simulation, and one line used to calculate a

point on the total mass curve. The chemoattractant S is diffusing in from the top of the

image.

15 hours 20 hours 25 hours

   
Line of constant y

along which one

point of average

concentration

curve calculated

 

Figure 30. Typical simulation, illustrating average concentration curve calculation.

It should be noted that the average concentration curve can be related to the

dynamic competition factor as

jit‘A(y,t)dy (44)

WU): j'rZB(y,t)dy

for any time point. By studying the dynamic competition factor and the average

concentration curve, some measure of the spatially developing competitive outcomes of

the simulations can be found.
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5.4.3 Saturation of chemoreceptors

The global chemotactic response factor, 03, defined in Section 4.3.2, can be

utilized to explain some of the responses that occur in the following simulations. Another

quantity used to analyze some of the simulation results was the maximum flux attainable

for a given S gradient. This term is the integrand of the denominator of the second term of

the equality in Equation ( 27), and can be defined as

10.45 é‘gd (45)

y

KDAS 8y x L

W
O

F.....,.(x) =

where Fmax(x) is the average maximum flux attainable for a given S gradient, along a line

of constant x.

5.5 Competition simulations

Matlab v. 4.2c1 was used to visualize the output of the FORTRAN model. Matlab

was also used to solve for the dynamic competition factor, the average concentration

curve, and the global chemotactic response factor (see Appendix F for the Matlab code).

The Matlab function "trapz.m", which utilizes the trapezoidal method, was used to

approximate the solution to the integrals.

5.5.1 Effect of modeling parameters on competition results

In the following sets of simulations, the parameters for Population B are as shown

in Table 4, The indicated parameter for Population A is varied in each set of simulations.
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Range finding runs (results not shown) were performed to find a parameter range that

showed a good variation in results. The parameter of interest was then varied within this

range to produce the desired simulation sets. Both populations were inoculated in equal

concentrations in the center of the chamber. The simulated experimental time was 30

hours after inoculation of the cells. The chemoattractant gradient was initiated for 6 hours

prior to cell inoculation. The grid-spacing used for all simulations was 412 points. This

number is less than the 512 points used in the study that validated the model (Widman er

al., 1997), but was found to be sufficiently accurate and allowed for the fastest possible

simulation times.

5.5.2 Variation of ans

The chemotactic sensitivity factor for Population A, X0As. was varied between

0.01-0.07 cmzlh to assess its affect on the outcome of simulated competitions. Three time

points in this simulation for X0AS=O~O7 are shown in Figure 30. The lighter areas

correspond to higher cell densities. Both Populations A and B are shown in shades of

gray. Population A is the one which moves out in a chemotactic wave toward the

chemoattractant source, while P0pulation B remains in the center of the chamber, around

the inoculation point. Figure 31A shows the dynamic competition factor. In many of the

dynamic competition graphs shown, the initial 10 hour period shows a similar decreasing

trend.
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Figure 31 Variation of XOAS-

This trend occurs because significant concentrations of S do not diffuse into the

center of the chamber until approximately 10 hours after inoculation (results not shown).

Figure 31B shows the average concentration curves for four values of X0As, at 25 h. In this

graph and all subsequent average concentration curve figures, the attractant source is at

the position y=5 cm. For higher levels of XOAs. Population A encountered the wall of the

chamber before 30 hours. In the graphs of Figure 31, only times before the wall was

reached are shown in the graphs. Figure 32A shows the average concentration curve for

both Populations A and B, for the case where dis=0-03 cmzlh, at 25 hours. The average

concentration curves for Population B in most of the other simulations were very similar,

so they will not be shown in future graphs. Figure 32B shows the density maps of the 25

hour time-point of Populations A and B for XoAs=0~03 cmZ/h, illustrating the chemotactic

wave. The wave is the high concentration band of cells of Population A moving toward

the chemoattractant source.
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Figure 32. Other results of variation of XOAS

Note that in this figure, and all figures of the density map type, the cell population with

the highest concentration at any point in the chamber is the one that appears in the graph.

This does not necessarily mean that the other population does not exist at this point, only

that it is at a lower concentration.

The chemotactic sensitivity coefficient is a measure of the magnitude with which

the cell population migrates chemotactically in response to a chemoattractant gradient. In

Figure 31A it is apparent that below a certain X0 value (in this case, X0AS=O~01 cmZ/h), the

growth advantage of Population B is so large that, in the time-frame of the experiment,

Population A is overgrown by B, as indicated by 111' < O at all times. At higher levels

(X0A520.03 cmz/h), the sign of 111' becomes positive after about 10 hours, and at the

highest levels of XOAs. 1)! reaches a value greater than one, indicating that the total mass of

Population A has become greater than the total mass of Population B. For this set of
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conditions, chemotaxis can be said to impart a competitive advantage, as measured by the

total mass of microorganisms present, to Population A.

The average concentration curves of Figure 31B give another view of the effect of

the chemotactic sensitivity. As X0As increases, two things occur. First, the peak of the

average concentration curve shifts toward the attractant source, which is located at the

side of the chamber corresponding to y=5 cm. The average concentration curve for

Population B remains close to the center of the chamber, as illustrated in Figure 32A. The

peak of Population A moving further from the center indicates greater separation of the

two populations. By moving away from Population B, Population A is able to enter areas

of higher nutrient (H) concentration, that can be consumed without having to compete

with B.

The second trend that can be observed in Figure 31B is that as the chemotactic

sensitivity increases, the maximum height of the average concentration curve increases.

This indicates that not only is the total mass of Population A increasing, but also that the

carrying capacity of the chemotactic wave (Widman er al., 1997) of Population A is

increasing. The chemotactic wave is better illustrated in Figure 32B. The bright band of

cells moving toward the chemoattractant source is the chemotactic wave. This wave of

cells may allow for faster consumption of the chemoattractant, creating sharper gradients,

and therefore allowing for faster chemotaxis toward the source. By increasing the

calTying capacity of the wave, the cells may be gaining an even larger competitive

advantage by being able to consume larger concentrations of both the chemoattractant S

and the nutrient H as the wave travels through the region.
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5.5.3 Variation of vas

The second parameter varied was the specific chemoattractant consumption

coefficient, vAs. It was varied between 0 and 1.0 gsguA'lh'l. Figure 33A shows the

dynamic competition factor for five values of vAs. Figure 33B shows a centerline (x=2.5

cm) profile of the chemoattractant S gradient at 30 hours for each value of vAs. Figure

33C shows a density map profile for both populations with vAs=l .0 gsguA'lh'1 and Figure  
33D shows the profiles for vAs=O gsguA‘lh'l, both at 30 hours.
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Figure 33. Variation of vAs.

Increasing the specific chemoattractant consumption coefficient, vAs, had an effect

on the dynamic competition factor curves similar to that of increasing XOAs, as shown in

Figure 33A. The reasons for the increased competitive advantage are not the same,

however. Figure 33B shows the S concentration profiles for the position x=2.5 cm, or, in

Other words, down the center of the DGC. As vAs is increased, a given mass of cells can
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consume a larger quantity of S, and therefore increase the gradient of S that is

encountered by the wave of A. This increase in slope enables a faster chemotactic

response, and therefore a more rapid separation of P0pulations A and B. Even with

vA5=0, meaning no consumption of the chemoattractant S, the value of 111' does become

positive near the end of the simulation (Figure 33A). If the dimensions of the chamber

were greater, it is likely that w' would become positive, even with no consumption of S.

This can again be explained by the carrying capacity of the wave. With no consumption

of S, the gradient is relatively shallow, and the carrying capacity of the wave is low.

When vAs is high, the gradients are sharper, which increases chemotaxis, and

subsequently increases the carrying capacity of the wave. This is illustrated in Figure

33C, where VAS is high and the wave is very apparent, and in Figure 33D, where vAs=0,

and the wave is just beginning to appear at 30 hours. The ability of Population A to

consume S gives it a greater competitive advantage, but at this level of chemotaxis

(X0A3=0.02), the ability to consume S is not necessary for A to compete successfully.

5.5.4 Variation of KDAS

The third parameter varied was the dissociation constant for the receptor-S

complex, KDAS. The parameter range was 1><10'7 - 8><10'6 g/cm3. Figure 34A and Figure

34B show the w(t) values for five values of KDAS. Note that the curve for KDAS=1><10'6 is

shown in both figures, for comparison. The arrows Show the direction of increasing KDAS.
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In Figure 34A, for KDAS < 1x106, increasing KDAS made Population A more

competitive, as indicated by larger w values at the later time points. However, above

1x10'6, increasing KDAS caused \y to decrease at later times, as shown in Figure 34B. The

reasons for these trends are shown in Figure 34C and Figure 34D. Figure 34C shows the

average maximum attainable fluxes for the corresponding S-gradient, at 30 hours. The

legend in Figure 34C applies to Figure 34D and Figure 34E, as well. Figure 34D shows

the global chemotactic response factor for the five parameter values, also at 30 hours. The

maximum mass flux is inversely proportional to KDAS, as shown in Equation (45).

Consequently, at the lowest values of KDAS, Fmax reaches its highest levels. However,

when S >> KDAS, (e.g. for the lowest values of KDAS), the value of (1)3 approaches 0 at all

points in the chamber. As KDAS increases, the level of saturation of the receptors

decreases, and therefore the population responds with a higher chemotactic flux to the S-

gradient. The trade—off between the opposing trends of Fmax and dis results in an optimum

value for KDAS of about 1x10‘6 g/cm3, where flux is high and saturation is low. This

optimum KDAs value is most likely dependent on the concentration and SIOpe of the

gradient. Evidence for an optimum KDAS value is also given in Figure 34E, which shows

the average concentration profiles for Population A for a low, intermediate, and high

value of KDAS at 30 hours. Although the peaks of the curves for the intermediate and high

values appear at about the same y-position, the carrying capacity of the wave for the

intermediate value is clearly greatest.
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5.5.5 Variation of chemoattractant concentration

In this group of simulations, the initial conditions for the chemoattractant S were

varied. The base case set of initial conditions for all of the chemical compounds is given

in Table 5. For all simulations, the east and west reservoirs were sealed (the mass transfer

coefficient was set to 0). The parameters for Population A were set to the base case

values, with the exception of XOAs, which had a value of 0.05 cmZ/h.

Table 5. Base case initial conditions for competition simulations.

 

 

 

 

 

 

Compound and location Value (g/cm3)

S in arena, south reservoir 0

S in north reservoir 1.32><10"4

Q in arena, N and S reservoirs 1.32><10'5

H in arena, N and S reservoirs 4.6x10’4

P0pulation A, Population B 5x10'6   
 

The concentration of S in the north reservoir was varied from 1.32><10‘6 to

1.32><10'2 g/cm3. Figure 35A and Figure 35B show the dynamic competition factor for six

concentrations of S in the source reservoir. Like the results shown in Figure 34A and B,

Figure 35A and B also show a reversal in the w trend above a certain chemoattractant

source concentration. For values of S S 1.32x10’6, W' is always negative. As the

concentration is increased, the Sign of w‘ changes after a certain amount of time (between

10 and 20 hours) in each simulation. Above a certain concentration, however, the IV trend
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begins to decrease with increasing concentration. This effect can again be explained by

the trade-off between the maximum flux and saturation of receptors.

Figure 35C and Figure 35D show the maximum obtainable flux for the six

concentrations. Note that the y-axis has a different scale in the two figures. To avoid

using simulations where the cells had encountered the wall of the chamber, the 28 hour

time-point was used for all graphs that show a trend at a single time. The graphs in Figure

35C and Figure 35D have been split because the scales are so different. The overall trend

is that as the concentration of S increases, so does the maximum attainable flux.

Figure 35E shows the tbs curves for the four lowest concentrations. At the higher

concentrations, the dis values were extremely close to O at every position. The same

opposing trends that were observed in the response to KDAS are apparent in this set of

simulations. The level of S that minimizes saturation and maximizes flux imparts the best

conditions for survival to Population A. In Figure 35F, the average concentration curves

for three concentrations are shown. At the lowest concentration, a wave does not form, as

indicated by the lack of a local maximum in cell concentration near the source side of the

growth region. At the intermediate concentration, a strong wave has traveled nearly to the

wall of the chamber. At the highest concentration, a wave is apparent, but has a low

carrying capacity and has not moved as far from the inoculation point.
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5.5.6 Variation of inoculation conditions

A large variety of inoculation patterns can be envisioned that could influence the

microbial competition. For example, one population could be inoculated further from the

S-source than the other, possibly disadvantaging the population further from the S-source.

Alternatively, two different inoculation points equidistant from the source of the

chemoattractant S could be used.

  
Figure 36. Pop. A inoculated farther from S source than pop. B.

In Figure 36, a the first approach was tested. The source of S is from the north

(top) in each image. The cell properties are the same as used in Section 5.5.5. Population

A was inoculated further from the S—source, but directly in line with Population B. The

chemotactic wave in Population A still was able to form, although it may be more in

response to the chemoattractant Q than to S. As the S gradient develops over time, it will

enter areas of the DGC where Population A is present, and Population A may gain the

competitive advantage.
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Figure 37. Pop. A inoculated to the side and away from S source.

Figure 37 shows the results for a combination of the two inoculation classes

discussed. Population B has been moved closer to the S-source, while Population A was

moved to one side, away from Population B. Again the chemotactic wave is apparent, and

Population A is able to move into a larger area of the chamber than Population B.

Figure 38, which shows the dynamic competition factor curves for the simulations

in Figure 36 and Figure 37, indicates that in both figures, the S-gradient is giving

Population A some advantage, because it is only after S reaches Population A

(approximately 10 hours), that the dynamic competition factor begins to increase (rp'>0),

indicating that Population A is gaining mass at a faster rate than B.

It is apparent from these few test situations that the inoculation pattern of the two

pOpulations can play an important role in determining which population will have the

competitive advantage. Another situatiOn that could be tested is to have one population

well—established in the DGC, and introducing the other at a much lower concentration, to

test if it can successfully "invade" and be coexistent with the initial population. The
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results of all of these variation of inoculation point simulations are highly dependent upon

the time point being studied.
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5.5.7 Variation of nutrient initial conditions

Another hypothesis that was explored with the model was that if the nutrient

compound was diffusing in from one reservoir with the chemoattractant, as opposed to

being uniformly distributed through the gel, then the chemotactic response of a

pOpulation might give it the competitive advantage by moving that population toward the

nutrient, while the other was left behind in a low nutrient environment. To test this

hypothesis, a simulation was performed where the two populations had the parameters

given in Table 4, except XOAs=O.05 cmZ/h, VAH=O-5 hJa and VBH=O-7 114' The nutrient was

 

 

 



present i

was pre:

same as

simulati

39C sho



93

present in the north reservoir (x = 5 cm) at a concentration of 8.6><10'4 g/cm3, and no H

was present in the gel initially. The chemoattractant and cell initial conditions were the

same as given in Table 5. Figure 39A shows the dynamic competition factor for this

simulation, and Figure 39B shows the average concentration curves at time = 30 h. Figure

39C shows the centerline profiles (y=2.5 cm) of the H and S compounds.
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Figure 39. Competition for nutrient diffusing in at x = 5 cm.

Figure 39A illustrates that even though Population B has a growth advantage, it

never obtains a higher mass than Population A. This is explained by the fact that

POpulation B never experiences a high concentration of the nutrient. As shown in Figure

39B, the chemotactic response of Population A has. allowed it to move toward the source
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of nutrient and chemoattractant. Figure 39C illustrates . that the nutrient has been

completely consumed by P0pulation A, and is not available to Population B. The small

mass of Population B that appears close to the source of S and H in Figure 39B most

likely is the product of a small amount of growth that occurred before Population A fully

consumed the H that had diffused to the center of the chamber.

In this simulation, the chemotactic response of Population A gave it an even more

pronounced advantage in that \p never had a value less than 1, even though Population B

was a faster grower. In a system where gradients of both chemoattractants and nutrients

exist, chemotaxis may be extremely important in determining the competitive winner. An

example of a real system where these conditions might occur is bioremediation, as

discussed in Section 7.

5.6 Future work on competition

The next step needed in the competition studies is to develop experimental

methods to corroborate the modeling predictions. The focus of the experimental work

should be on finding mutant bacteria that would differ from the main strain only in a

single transport property, such as random motility, or response to a single

chemoattractant.

Many transport mutants of E. coli have been previously isolated and cataloged,

and the genes involved in the specific mutations are well defined. Emerson et al. (1994)

studied the growth of such E. coli mutants in the DGC. At the time of this writing,

however, Pseudomonas KC (see Section 7) was the focus of this portion of the research
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project. Well-characterized mutants of Pseudomonas KC are not currently available, but

efforts to develop them are underway in Dr. Craig Criddle's laboratory. Petty Setiawan,

working on a project that was part of this thesis work, screened 120 Pseudomonas KC

mutants for their motility and chemotaxis parameters. None were found that have the

desired prOperties that would make them useful in the competition experiments.

One way to perform these experiments would be to select transport mutants which

possess a selection marker, such as antibiotic resistance or fluorescence. A mixture of the

mutant and non-mutant strains could then be inoculated in a swarm plate or the DGC, and

after the growth and motility patterns had formed, samples could be taken. The selection

marker would allow each strain to be counted individually, and the outcome of the

competition could be quantified.

A preliminary competition experiment has been performed (Petty Setiawan's

work) to begin to study the effects of chemotaxis on competitions. In this experiment,

Escherichia coli was competed against Pseudomona stutzeri strain KC (see Section 7 for

more details on Pseudomonas KC). Swarm plates were poured that contained M9

medium at pH 7.5. The plates contained 2 mM glycerol as the nutrient source and 0.1 mM

aSpartate as the chemoattractant. Two plates were inoculated with 20 ul of either actively

growing Pseudomonas KC or E. coli culture that had been adjusted to have the same

Optical densities. The plates were incubated at 27 °C for 48 hours. These plates, shown in

Figure 40, allowed the response of the individual populations to be observed.
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Mixture of two populations

Figure 40. Competition between Pseudomonas KC and E. coli in swarm plates.

In a third swarm plate, a 20 ul aliquot of an equal mixture, based on optical

density, of the two populations was inoculated in a swarm plate and incubated at 27 °C

for 48 hours. An image of this swarm plate is also given in Figure 40. After 48 hours,

samples were taken at 5 locations in the competition swarm plate. The samples were

diluted by a factor of l:10,000 and plated on nutrient agar plates. The nutrient agar plates

were incubated for two days at 27 °C. Individual colonies of E. coli and Pseudomonas

KC could be differentiated by their unique morphologies, and counted. The results are
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shown in Figure 41. The origin of the x-axis corresponds to the center point of the swarm

plate.
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Figure 41. Colony counts in competition experiment.

The E. coli remained primarily in the center of the swarm plate. Although the

results are not symmetrical, the Pseudomonas KC have moved outward from the center.

The Pseudomonas KC may be at a competitive advantage in this case if the resources in

the center of the plate are fully consumed. The Pseudomonas KC would be able to move

into areas at the edge of the growth front where resources are still plentiful.

More work needs to be done with experiments such as this one. For instance,

gradient measurements would be useful in determining if resources such as the nutrient

(glycerol) were still available in the center of the plate. Also, in this experiment, no effort

was made to control the relative growth rates of the two populations.
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6. SELECTION OF MUTANTS

6.1 Experimental work

This portion of the research was completed as a collaboration with Mark Mikola,

a M. S. candidate in Dr. Worden's research group. The experimental portions of the work

were performed entirely by Mr. Mikola, and are detailed in Mikola (1996) and in "In-situ

Mutagenesis and Chemotactic Selection of Microorganisms in a Diffusion Gradient

Chamber" by M. R. Mikola, M. T. Widman, and R. M. Worden, submitted to Applied

Biochemistry and Biotechnology.

To summarize, it was desired to obtain a strain of E. coli whose isozyme of

DAHP synthase, designated AroF, was not inhibited by L-tyrosine, a product in the

metabolic pathway. To achieve this goal, a population of E. coli that experienced

feedback resistance from tyrosine was inoculated into a DGC. The E. coli had previously

tested positive for chemotaxis toward glucose in a separate DGC experiment. The DGC

had in its source flask 125 M m-fluorotyrosine (m-FT), a non-metabolizable tyrosine

analogue, and 5 mM glucose. The bacteria only grew in the portion of the DGC farthest

away from the source of m-FT (see Figure 42A). After the initial growth period, the DGC

lid was removed, and the DGC was exposed to ultraviolet radiation at a distance of 60 cm

for 10 seconds. The lid was replaced and the incubation continued. Blooms of mutants

that were less inhibited by the m-FT appeared after the mutation process (Figure 42B).

The chemotactic response to the glucose gradient drew the mutants toward the source of

glucose and m-FT, as seen in Figure 42C.
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Figure 42. Mutant selection by chemotactic response (source at top of pictures).

6.2 Modeling selection of mutants

The mathematical model of the DGC system presented in Section 4.2 was

modified and used to simulate strain selection in the DGC. For this application, a second

cell balance was added to account for both the original (A) and the mutant (B) strains.

Also, a balance was added to account for diffusion and cellular uptake of the inhibitor (P)

by both strains:

:92_

8t _

vaFP vbPP ( 46)

a ”[7

Cu, + P C“. + P

  DPVZP—

where Dp is the diffusion coefficient of the inhibitor; Vap and pr are the specific

consumption coefficients for Populations A and B consuming P; and Cap and Cbp are the

saturation constants for consumption of P by Populations A and B, respectively.
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The chemotactic sensitivity coefficients for both populations responding to the

chemoattractants S and Q, the random motility coefficients, and the maximum specific

grth rates were modified to incorporate the inhibition effects. The form of the modified

terms chosen is analogous to noncompetitive inhibition in enzyme kinetics (Bailey and

Ollis, 1986). The modified chemotactic sensitivity is given by

 , _ x... (47)

 

where x'Oij is the inhibited chemotactic sensitivity for the ith population (i=a or b)

 

responding to the jth chemoattractant (j=S or Q), m is the uninhibited chemotactic

sensitivity, and Kfijx is the inhibition constant for the chemotactic sensitivity of the ith

population to the jLh chemoattractant. The modified random motility coefficient is given

by

I “i ( 48)

 

 
where u'i is the inhibited random motility coefficrent for the 1t population, Iii IS the

uninhibited random motility coefficient, and K1,l1 is the inhibition constant for the random

motility of the ith population. The inhibited maximum specific growth rate is given by
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I vii-l
( 49)

 

 

where v'iH is the inhibited maximum specific growth rate for the ith population growing on

H, viH is the maximum specific growth rate, and Kn. is the inhibition constant for the

specific growth rate of the ith population. In terms of the variables defined above, the two

cell balance equations are given by

( 50)

 

where u. is the ith cell population (either a or b). The nutrient balance was also modified to

include the inhibited maximum specific growth rates:

8H

———=D VZH—

at ”

_aiaiea_____véaH_u_,_ (51)

C.H+H Y2]. CbH+H YbH

where DH is the diffusion coefficient for H, Cm is the half-saturation constant, and YiH is

the yield coefficient. Values for the modeling constants were taken from the literature

(Widman et al., 1997) insofar as possible. Values for the inhibition constants included in

Equations ( 47)-( 49) were chosen that gave reasonable agreement with the experimental

trends.

Figure 43 shows a time sequence of contour plots depicting cell concentration as a

function of position. The contour lines show constant concentration isoclines, as

calculated by a built-in Matlab program. The chemoattractant (glucose) gradient is
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indicated by gray shading, with lighter gray indicating a higher glucose concentration.

There is no m-FT in this simulation. The source reservoir is on the side correSponding to

the top of each figure. Bias of the cell’s migration in this direction is comparable to that

observed experimentally.

 

 

 



104

Increasing Time

  

 

Figure 43. E. coli responding to chemoattractant gradient.
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The ability of the mathematical model to reproduce the experimental trends

shown in Figure 42 was evaluated. Figure 44 shows the predicted growth-pattern

evolution in which gradients of both a chemoattractant and an inhibitor are applied, and

only the population sensitive to the inhibitor is present. In this figure, the gray shading

indicates the inhibitor gradient. The effect of chemotaxis, which was significant in Figure

43, is overwhelmed by the effect of the inhibitor. As the concentration gradient of the

inhibitor becomes established, cell growth occurs predominantly in the sink end of the

DGC. This trend was observed experimentally in Figure 42. The base case set of

parameters for all of the simulations shown is given in Table 6. In these simulations,  
Population A was the inhibited population, while Population B was the mutant. The

boundary and initial conditions are similar to those presented in Sections 4.2.1 and 4.2.2.

The inhibitor concentration (P) in the source reservoir was 0.0132 g/cm3. The

chemoattractant concentration (S) in the source reservoir was 0.000132 g/cm3. The

second chemoattractant concentration (Q) in the source and sink reservoirs and initially in

the gel was 0.0000132 g/cm3. The nutrient concentration (H) in the source and sink

reservoirs and initially in the gel was 0.000046 g/cm3. The value of uao was 3><10‘6 g/cm3,

and ubO was 3><10'7 g/cm3. The gradients were allowed to initiate for 12 h before

inoculation of Population A. Population B appeared in the simulation 15 h after

Population A. The simulation continued for 25 h after the appearance of Population B.
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The ability of the mathematical model to reproduce the experimental trends

shown in Figure 42 was evaluated. Figure 44 shows the predicted growth—pattern

evolution in which gradients of both a chemoattractant and an inhibitor are applied, and

 only the population sensitive to the inhibitor is present. In this figure, the gray shading

indicates the inhibitor gradient. The effect of chemotaxis, which was significant in Figure

43, is overwhelmed by the effect of the inhibitor. As the concentration gradient of the

inhibitor becomes established, cell growth occurs predominantly in the sink end of the

DGC. This trend was observed experimentally in Figure 42. The base case set of

parameters for all of the simulations shown is given in Table 6. In these simulations,

 
Population A was the inhibited population, while Population B was the mutant. The

boundary and initial conditions are similar to those presented in Sections 4.2.1 and 4.2.2.

The inhibitor concentration (P) in the source reservoir was 0.0132 g/cm3. The

 
chemoattractant concentration (S) in the source reservoir was 0.000132 g/cm3. The

second chemoattractant concentration (Q) in the source and sink reservoirs and initially in

the gel was 0.0000132 g/cm3. The nutrient concentration (H) in the source and sink

reservoirs and initially in the gel was 0.000046 g/cm3. The value of uao was 3X106 g/cm3,

and ubO was 3x107 g/crn3. The gradients were allowed to initiate for 12 h before

inoculation of Population A. Population B appeared in the simulation 15 h after

Population A. The simulation continued for 25 h after the appearance of Population B.
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Table 6. Parameter values for inhibition model

 

 

 

 
 

 

 

 

 

 

 

 

  
 

 

 

 

 
 

 

 

 

Parameter Value

(i=a or b)

p, 0.010 cm2 11'1

XOiQ 0.08 c3111"

10,, 0.08 cmth

crn 4.08x10'6 gH cm'3 l

on, 6.70x10'8 gQ crn‘3

CS 5.50x10'5 gs crn‘3

DH 0.01 CI? hj

DQ 0.033 crnfhr

DS 0.033 cmfh’l

Dp 0.033 cmfh'l

KDiQ 3.30x10'5EQ crn'3

KDis 2.00x10'fgs crn'3

via 0.35 h~I

ViQ 0-02 gQ gt:1 h-1

vis 0.60 gs g.,'1 h’1

YiH 0‘50 gu/gH

Klajx 1.0x10'6 g cm‘T

KI,” 1.0x10$ g crnT

Km 1.0x10'6 g cm:    
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Figure 44. E. coli responding to inhibitor gradient and chemoattractant gradient.
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Figure 45 is a simulation of a mutation event giving rise to a mutant (Population

B) that is insensitive to the inhibitor. As in Figure 44, Population A, which is sensitive to

the inhibitor, grows preferentially near the sink. Population B takes longer to appear in

significant concentration, because this population was initiated after Population A, and at

a lower concentration than Population A, to simulate the UV mutagenesis. The beneficial

effect of the chemoattractant in separating the two populations is evident, as Population B

moves preferentially toward the source reservoir, while Population A remains

predominantly near the sink reservoir. These trends are similar to those observed

experimentally in Figure 42.

The model allowed the effectiveness of the method to be explored under less

favorable conditions than were experienced in the experimental work, such as mutants

that lose their chemotactic response, or that appear in areas of the DGC far from the

chemoattractant source. The model predicts that even in these worse case scenarios, the

method should still allow the desired mutants to be selected. The noncompetitive

inhibtion form used in the modeling (Equation ( 47), for example) adequately reproduced

the trends of the experiment, but other forms may be more physically realistic, and may

be elucidated through further experiments and modeling.
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Figure 45. Simulation of experiment shown in Figure 42.
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The model can also be used to test other situations. For example, Figure 46 shows

a simulation of the case where the mutation occurred in the middle of the growth pattern

of Population A, and the mutant (Population B) was not chemotactic to S. In this case, the

two populations were still able to be separated, but in this case the separation is based

predominantly on the influence of the inhibitor gradient and spreading due to chemotaxis

"

to Q. To estimate the benefit obtained by chemotaxis toward S, this simulation was then  
repeated with chemotaxis to S reinstated. The results, shown in Figure 47, indicate that

chemotaxis toward S does further enhance the rate of separation. Presumably, the more

potent the chemoattractant (i.e., the higher the x'osj value) the greater the enhancement.
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Figure 46. Mutant appears far back in population.
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Figure 47. Mutant now chemotactic to S.
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7. BIOREMEDIATION

The transport of bacteria through porous media, specifically soil or aquifer

environments, has been studied in both experimental and modeling systems (Abu~Ashour,

er al., 1993; Sarkar, et al., 1994a; Sarkar et al., 1994b, for example). In a number of these

references, the chemotactic movement of the bacteria has been ignored (Tan, et al., 1994)

or considered too complex to include, even though results have been recorded which

might suggest chemotaxis is important. For example, Abu-Ashour et al. (1993) reported

that several field and laboratory experiments found that the average velocity of bacteria

through soil was faster than the velocity of tracers and of the groundwater.

Recently, a few studies have addressed the role motility plays in transport through

porous media. Duffy et al. (1995) attempted to adapt the homogeneous media random

walk model to a porous media. They utilized a tortuosity factor that was proportional to

the ratio of the random motility in bulk liquid to the effective random motility in the

porous media. Their model gave good qualitative agreement with an experimental sand

column through which Pseudomonas putida swam. Barton and Ford (1997) showed that

both the random motility coefficient and the chemotactic sensitivity coefficient could. be

replaced with effective values that incorporate the effect of the porous media. An

ecological system in which chemotaxis through soil is important is the colonization of

roots by Rhizobium meliloti. Soby and Bergman (1983) demonstrated that active motility

and chemotaxis were necessary for efficient spreading of the bacteria through soil.
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The effective transport of bacteria through the soil is an important requirement for

an in situ bioremediation project. Devare and Alexander (1995) found that a

phenanthrene-metabolizing Pseudomonas sp. could adequately remove phenanthrene in

the areas of a soil column in which the bacteria was inoculated, but not in other areas.

They blamed this result on bacterial retention by the clay soil, and noted that in aquifer

sands, retention was much less. Their conclusion was that transport of bacteria to the

contaminant was very important to the success of bioremediation. Bosma et al. (1988)

presented a model for bacteria consuming xenobiotic chemicals in a soil column. Their

model incorporated chemotactic movement, and its results compared well with

experimental data.

Pseudomonas stutzeri KC is a denitrifying bacterium able to degrade carbon

tetrachloride (CT) into carbon dioxide and nonvolatile products without the production of

chloroform (Criddle et al., 1990; Dybas et al., 1995; Mayotte et al., 1996). In contrast,

other microbes typically convert CT to chloroform. The outstanding potential of this

microbe for bioremediation of CT spills has been demonstrated both in shaker-flask

experiments (Tatara et al., 1993), and a model aquifer system (Witt 1994; Mayotte et al.,

1996). The Michigan Department of Natural Resources is sponsoring a major

bioaugmentation field experiment with this organism in a CT-contaminated aquifer near

Schoolcraft, Michigan. In this experiment, acetate is periodically injected into the ground

as an electron donor for the reaction, and the naturally occurring nitrate is the electron

acceptor. The Pseudomonas KC is introduced into the aquifer soil, and the flow of

contaminated water is directed through a "biofence" of the bacteria.
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Chemotactic movement of Pseudomonas KC has been observed in sand columns

in the laboratory (personal communication with Mike Witt). The sand column was

packed with aquifer sand, and supplemented with acetate. The nitrate concentration was

equal to that observed in the Schoolcraft aquifer. Preliminary experimental measurements

indicated that the chemotactic movement was in response to nitrate gradients. The cell

front was moving at a velocity approximately 8 cm/day faster than the water velocity of

15 cm/day.

7.1 Experimental results

7.1.1 Swarm plates

Studies were initiated to characterize the chemotactic response of Pseudomonas

KC to various possible chemoattractants. Solutions of Medium D (Tatara, er al., 1993)

were prepared with varying levels of acetate and/or nitrate. The pH of the medium was

adjusted to 8.2. Swarm plates (Petty Setiawan's work) were made using the Medium D

solutions supplemented with 0.25% high strength agar gel. The gel mixture was poured

into petri dishes and allowed to solidify. A 20 p11 aliquot of actively growing

Pseudomonas KC culture was inoculated in the center of the plate. For the anaerobic

experiments, the plates were incubated in a GasPak 150TM Anaerobic System (VWR

Scientific). For aerobic experiments, the plates were incubated on the lab bench.

Figure 48 shows the chemotactic ring patterns formed in response to varying

levels of nitrate, at a constant acetate concentration of 1 g/l. In the image on the left, the

nitrate concentration was 1 g/l, and on the right, the nitrate concentration was 2.5 g/l. All
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swarm plate images were taken 48 hours after inoculation. The mass ratio of l g acetate

to 1 g nitrate is the balanced ratio for consumption of the two chemical species by

Pseudomonas KC (personal communication with Dr. Craig Criddle). When the ratio of

acetate to nitrate was equal to one, only a single ring appeared, as shown in the left-hand

image of Figure 48. In the right-hand image, when nitrate is in excess, a double ring

occurred. One hypothesis is that the outer ring is due to consumption of acetate, and the

inner ring due to the use of the remaining nitrate, or an intermediate such as nitrite, for the

consumption of another carbon source, such as endogenous metabolism. The outer ring

may be due to acetate, nitrate, or a combination of both.

 

Figure 48. Chemotactic rings of Pseudomonas KC at varying nitrate levels.

In the next experiments, the acetate concentration was varied. Figure 49 shows

experiments at a constant nitrate level of 50 mg/l, and acetate varying from 100 mg/l on

the left to 1000 mg/l on the right. In the low acetate image, there is no noticeable
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movement from the inoculation condition. Both growth and motility seem to be at a

minimal level. In the higher acetate image, however, the high density ring indicates

considerable growth, but the diameter of the ring indicates that motility is slower than in

Figure 48. In the next set of experiments, the nitrate level was set to 500 mg/l. In the left-

hand image in Figure 50, the acetate concentration was 100 mg/l, and in the right-hand

image 1000 mg/l. At 100 mg/l acetate, only a single ring forms. In the 1000 mg/I image,

the many bright white dots are bubbles that appeared in the gel. The bubbles only

appeared when the acetate to nitrate ratio was greater than one. We hypothesize that the

bubbles may contain nitrogen that forms when excess acetate is present to complete the

denitrification reaction shown in Equation ( 52)

 

Figure 49. Nitrate concentration = 50 mg/l, varying acetate.
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Figure 50. Nitrate concentration = 500 mg/l, varying acetate.

Pseudomonas KC is known to preferentially use nitrate before consuming nitrite. When

acetate is in excess, however, the Pseudomonas may utilize the nitrite as an electron

acceptor to further consume the remaining acetate. This would result in the formation of

nitrogen, and possibly the bubbles.

No; —> No; —> N2 (52)

In aerobic experiments with the Pseudomonas KC, n0 nitrate was added to the

medium. Instead, oxygen was used as the electron acceptor. In results not shown, it was

found that no ring formed at an acetate concentration of 100 mg/l. For concentrations

ranging between 1000 mg/l and 1750 mg/l, a ring of approximately 4.7 cm in diameter

formed. At a concentration of 2500 mg/l, no ring was observed. These results suggest that

at the higher concentrations of acetate, the chemotactic receptors may be saturated.

Additional experiments were performed to test the aerobic response of

Pseudomonas KC to attractants other than acetate. Medium M9 (Maniatis et al., 1982),
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adjusted to pH 7.5, was used for the medium. In the left-hand image in Figure 52, the M9

medium was supplemented with 1 mM glucose. A distinct chemotactic ring formed, but

more cells seemed to remain in the center of the plate than in the acetate/nitrate

experiments shown above. In the right-hand image of Figure 52, the medium was

supplemented with 0.1 mM aspartate as the chemoattractant, and 2 mM glycerol as the

carbon source. In this instance, a fairly wide, diffuse ring was observed.

 

Figure 51. Pseudomonas KC responding to glucose (left) and aspartate(right).

7.1.2 DGC experiments

Experiments were performed in the DGC to test the response of the Pseudomonas

KC to applied gradients of acetate and nitrate. Medium D-, containing 3.5 g/l K2HPO4,

1.24 g/l KH2P04, and 1.0 g/l (NH4)2SO4 was used as the minimal medium for the

experiment. The pH of the medium was adjusted to 8.1 with KOH. After autoclaving, 2
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mI/l of 1 M MgSO4 was added to the medium. Shake flask experiments were performed

to test the growth characteristics of Pseudomonas KC in this medium. The shake flask

experiments showed that the maximum growth, as measured by optical density, was

comparable to growth in the complete Medium D recipe. The Medium D- recipe

contained fewer components, which was useful not only for simplicity, but also to

minimize the number of consumable chemical components that could possibly elicit a

chemotactic response. The effects of using Medium D- on carbon tetrachloride

degradation were not studied as part of this work.

An initial DGC experiment was performed to test the chemotactic response to

nitrate and acetate in Medium D- (results not shown). The source flask contained, in

addition to 800 ml of Medium D—, 5 mM sodium acetate and 5 mM sodium nitrate. The

sink flask contained 800 ml of Medium D—. The arena of the DGC contained Medium D-

and 0.25% high-strength agar gel. After 28 hours of growth, a pattern similar to the E.

coli growth patterns shown in Figure 13, had developed, with a definite bias in movement

toward the acetate/nitrate source. A 0.5 ml sample was removed from the gel at the point

nearest to the source reservoir. A similar sample was removed from the gel at what

appeared to be the center of the chemotactic wave moving toward the acetate/nitrate

source reservoir. The samples were injected into shake flasks and incubated. These

samples were taken in an effort to isolate bacteria that were optimized for chemotaxis in

the DGC environment.

A second DGC experiment was performed with the same parameters. This time, a

15 ul aliquot of the cell culture taken from the spot nearest the wall in the previous
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experiment was used to inoculate the chamber. The gradient was allowed to initialize for

22 hours before inoculating the bacteria. The results of this experiment are shown in

Figure 52. The times shown in the corners of the images correspond to the time after

inoculation of the bacteria. The acetate/nitrate source is at the bottom in each image.
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Figure 52. Pseudomonas KC responding to acetate and nitrate in a DGC.
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7.1.3 Movement of wave around obstacles

A first logical step in understanding the effect of solids on chemotaxis in an

otherwise homogenous medium would be to study a medium which has one or a few

objects. To test the response of the chemotactic wave to obstacles in its path, swarm plate

experiments were performed (Laura Booms‘ work). Medium D- supplemented with 5 g/L

sodium acetate, 3 g/L sodium nitrate, and 0.25% agar was adjusted to a pH of 8.2 with

KOH. The plates were poured, and before the agar solidified, two sterilized tubing

connectors with sealed ends objects were placed in the gel. The gel was allowed to

solidify, and then 20 ul of Pseudomonas KC culture were inoculated in the center. In

Figure 53A, taken 26 hours after inoculation, the wave has moved approximately halfway

across the tubing connectors. In Figure 53B (42 hours), the wave has moved beyond the

ends of the connectors. The objects did not appear to perceptibly inhibit the movement of

the wave.

 

Figure 53. Movement of wave around obstacles in swarm plates.
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To test how a large object would affect the chemotactic wave, an experiment was

performed under the following conditions in a DGC. A cut-off glass test tube 1 cm in

diameter was inserted into the gel, close to the source reservoir, to serve as an object in

the path of the chemotactic wave.

Pseudomonas KC were grown for 3 days in a 100 ml flask containing Medium D-

and the same ratio of acetate and nitrate as in the source flask. 6 m1 of culture were spun

in a microcentrifuge, and the resulting pellets were resuspended in 0.5 ml of fresh media.

15 1.11 of the resuspended culture were inoculated into the center of the arena 5 hours after

the gradient was initiated.

A time-sequence of image captures from the experiment is shown in Figure 54.

The time increases from left to right, and t0p to bottom. The source reservoir is located at

the bottom in each picture. The edge of the wave just encountered the tube in Figure 54A.

In Figure 54D the cells have passed the object and have rejoined on the other side. This

experiment indicates that, at least in this very simple single-object situation, an obstacle

will not catastrophically disrupt the chemotactic movement of the cell population.
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Figure 54. Chemotaxis of Pseudomonas KC around an object.
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7.2 Future work on bioremediation

Further experimental and modeling work will be necessary to prove the

hypothesis that chemotaxis can enhance a bioremediation effort. First, studies should

focus on the effects of a porous medium on the chemotactic response. A method to create

a wall of glass beads, sand, or soil in the DGC has been developed (see Figure 55). A

DGC was modified to allow two specially cut microscope slides to be placed 1 cm and 2

cm from one wall. Glass beads were placed between the slides, and the gel was poured

into the chamber. Small gaps between the slides and the bottom cover of the DGC

allowed the gel to penetrate under the slides and up into the beads. After the gel

solidified, the slides were carefully removed, and the three gel regions combined.

Experiments to test how the bacteria are transported through the porous wall should be

designed and performed with and without chemoattractant gradients present. Initially,

glass beads of known diameter could be used to give a system with well—defined pore

structure. Next, a more environmentally realistic wall material, such as aquifer sands,

could be used.
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Figure 55. Set-up to make glass-bead wall in DGC.

A version of the mathematical model was developed that included a balance for a

contaminant. The balance was similar to the nutrient and chemoattractant balances, but

had a term that accounted for disappearance of the contaminant. This model could be

used to predict the enhanced contaminant degradation when chemotaxis occurs. The

model was never fully tested and debugged, and suitable parameters for the contaminant

model were not found. A new cellular dynamics model has been proposed by Drs.

Worden and Lastoskie which would allow for predictions of the behavior of cells in a

porous medium.

For the Pseudomonas KC system specifically, a method to quantify the amount of

Carbon tetrachloride in a DGC will need to be developed. A control experiment with no



applied cl

degradatic

movemen'

compare 1

growth sh

independt

()1

bioremed

cells witl

injection

possible

uncontan

pulse Chf

how the

(Section

maximiz

0Plimize

zones. 1

bioreme

money (



128

applied chemoattractant gradient should be performed to measure the amount of

degradation of carbon tetrachloride that takes place in the absence of chemotactic

movement. Then an experiment with an applied chemoattractant gradient should be run to

compare the degradation rate to the control experiment. Factors such as the amount of

growth should be accounted for in the analysis, so that the effect of chemotaxis can be

independently evaluated.

Other experiments to discover ways in which chemotaxis could improve a

bioremediation effort could focus on the concept of controlling the dissemination of the

cells with chemoattractant gradients. One hypothesis is that by carefully placing the

injection wells through which the chemoattractant is introduced into the soil, it may be

possible to direct the spreading of the bacteria so as to minimize the losses into

uncontaminated zones. A relatively simple experiment to test this hypothesis would be to

pulse chemoattractant into different reservoirs of the DGC at timed intervals, and observe

how the cell population responded. In the section of this thesis on microbial competition

(Section 5), the model predicted that optimal chemoattractant concentrations exist that

maximize the chemotactic wave properties, such as the carrying capacity, and could

optimize the delivery protocols to obtain the best transport of cells to the contaminated

zones. The mathematical model should prove to be an extremely useful tool to explore

bioremediation, and, through modeling simulations, considerable experimental time and

money can be saved.
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8. SUMMARY

The focus of this research was on microbial chemotaxis, and how it could benefit

engineering applications. Tools were developed to aid in the study of the chemotactic

response. Experimental tools included the diffusion gradient chamber, microsensors and

microbiosensors, and the laser diffusion capillary assay. A mathematical model of the

diffusion gradient chamber was also developed that allowed two cell balances, two

chemoattractant compounds, and a nutrient compound to be modeled simultaneously. The

mathematical model allowed predictions of chemotactic responses to be made without

having to run time consuming experiments. The model was validated by comparing its

predictions to experimental data from DGC experiments. The validation experiments

involved Escherichia coli responding to gradients of aspartate.

The applications that were identified that could benefit from the chemotactic

response were microbial competition, selection of mutants, and bioremediation. The

mathematical model was used to explore the effects of several modeling parameters on

the predicted competitive outcomes. Chemotaxis was shown to give a competitive

advantage to a bacterial population in certain cases in non-mixed environments. Several

techniques to analyze the modeling predictions were developed, including the dynamic

competition factor. For the selection of mutants t0pic, the chemotactic response was

exploited to draw mutants of a bacterial species into an area in which the parent strain

could not grow well. Again, the mathematical model was used to more fully explore the

inhibition and chemotaxis interaction. The model predicted that the selection method
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should work well in various scenarios. Finally, the response of an important bacterium for

bioremediation, Pseudomonas stutzeri strain KC, was studied. Pseudomonas KC was

found to be chemotactic to nitrate and acetate. The reaction of the chemotactic wave to

obstacles also studied as a first step in examining chemotaxis through porous media.

Preliminary competition experiments between Pseudomonas KC and Escherichia coli

 were performed. Further experiments could lead to a better understanding of the interplay

between chemotaxis and competition in environments important to bioremediation, such

as an aquifer.
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APPENDIX A

Miscellaneous chemotaxis experiments

Appendix A includes selected experimental results that do not directly fit into a

section of the thesis, but that are interesting or informative in the context of studying the

chemotactic response.

, Figure 56 shows three swarm plate experiments. In each of these experiments, the

organism used was E. Coli HCB 33. M63 minimal medium, supplemented with the

required amino acids and streptomycin (see Section 4.2.3), was the base medium. A 10 ul

aliquot of actively growing culture was inoculated into the center of each plate. In Figure

56A, glucose was initially present at a constant concentration of 3 mM throughout the

gel. The image was taken 20 hours after inoculation. The multiple waves or bands could

be attributed to chemotaxis to other chemoattractants, one of which would likely be

oxygen. Figure 56B, also 20 hours after inoculation, shows the response to 1 mM glucose

and 1 mM aspartate. In this case, a very uniform single wave formed, that is sharply

defined on the outer edge. Since at least two known chemoattractants (glucose and

aspartate) were present, and possibly a third with oxygen, it might be assumed that

multiple bands would occur. This did not occur experimentally in this particular case,

however. It is possible that the consumption of the two chemoattractants was similar, and

the chemotactic waves overlapped closely. The image in Figure 56C was taken 42 hours

after inoculation. This swarm plate contained 1 mM glucose and 3 mM glycerol. Some

research has reported that glycerol can be an inhibitor of chemotaxis (see Zhulin et al.,
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1997 for a review), which might explain the slower swarming under the glycerol

conditions.

  
Figure 56. Swarm plates with various chemoattractants.

Pattern formation

An interesting phenomenon that is thought to be related to chemotaxis is the

formation of patterns in bacterial populations (Agladze et al., 1993; Woodward et al.,

1995; Budrene and Berg, 1995). In these studies, swarm plates were used to study the

symmetrical patterns, sometimes described as looking like snowflakes, formed by E. coli

or S. typhimurium. The current hypothesis is that the bacteria exude a chemoattractant

substance, which causes conglomeration of bacteria in patterns.

A DGC experiment was set-up to test the response of E. coli HCB 33 to aspartate

and glucose. M63 minimal medium was used with the required amino acids and

streptomycin. The source concentrations were 3 mM aspartate and 5 mM glucose. The

inoculation culture was grown in a shake flask with 10 mM glucose and supplemented

M63. The gradients were allowed to initiate for 5 1/2 hours prior to inoculation. A 10 ml
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aliquot of cells that had been growing in the shake flask for 22 hours was inoculated in

the center of the chamber. Because of a problem with the camera, no images were taken

until 16 hours after inoculation. At that time, a very unique pattern had formed in the

DGC, as shown in Figure 57A. This pattern includes spots indicating local high

concentrations of E. coli. The pattern continued to evolve, as shown in Figure 57B (18

hours) and Figure 57C (20 hours). Attempts to reproduce these results failed.

 

Figure 57. Pattern formation in the DGC.

A version of the mathematical was developed to incorporate a chemoattractant

produced by the bacteria. This model was tested, and appeared to be working properly.

However, no patterns were observed in the simulations. Work may be necessary to find

the correct parameter combinations that allow for pattern formation, if this line of

research is continued.

Movement around objects

A group of swarm plate experiments was performed to analyze the movement of

the chemotactic wave of Pseudomonas KC around objects. The experimental conditions
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are described in Section 7.1.3. In Figure 58, three objects were placed in the gel. The

object in the lower right—hand section of the gel was a tubng connector with an open

channel through it. It appeared that the cells swam more quickly through the opening than

around the object. Two hypotheses were formed to explain this phenomenon. The first

was that the tubing connector was full of water remaining from the autoclave cycle. When

the connector was immersed in the gel, the gel may not have displaced the water. The

cells would then encounter less resistance to swimming in the water as compared to the

gel surrounding the connector, and could move through the connector faster. The second

hypothesis was that, in the narrow confines of the connector (the channel is

approximately 0.4 mm in diameter), the cells tumbling would be confined, and it would

be harder for the cells to change swimming direction. Evidence of this has been observed

in capillary assays (Liu and Papadopoulos, 1995; Liu et al., 1996), although their

capillaries had much smaller diameters.

 

Figure 58. Chemotaxis through a hollow object.
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APPENDIX B

The Alternating-Direction Implicit Method

This discussion and the figures have been adapted from Chapra and Canale (1988)

and from Carnahan et al. ( 1969). The altemating—direction implicit (ADD scheme uses

tridiagonal matrices to solve parabolic equations in two or more spatial dimensions. Each

time step is broken into two steps, as shown in .

 

o Explicit

 

o Implicit  

 

 

 

 

 

 

 
 

 

First half-step
Second half-step

Figure 59. The alternating-direction implicit ethod.

The first step to solve the simple two-dimensional diffusion equation given in Equation (

4) is written
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—1.j r,j+1 .,j—1

At / 2 ’ 5 (M2 + (M)?-
 
 

SIT/2 — Silij D Si11,j_ZS,-':j+ Si" Sim/2 - 25:31” +S."+l/2] (53)

such that the approximation of azs/axz is explicit, while the approximation of 828/8y2 is

implicit. For the model presented in Section 4.2, the grid was square, and thus Ax=Ay, so

Equation ( 53) may be rearranged as

— 153”“2 + 2(1+ xt)s;f;f”2 — 154“” = 151,]. + 2(1— Ms; + 15;,j ( 54)
uj-l

r,j+l

where 9c=DsAt/(Ax)2. When Equation ( 54) is written for each point on the grid, a

tridiagonal set of simultaneous equations results. For the second half step, Equation ( 4) is

 

 

approximated by

5:ij _ Siiil/z _ Sir-iiij _ 25:? + Sin—iij + Siiiiiz — 25:?” + Srii-liz ( 55)

At / 2 5 (my (Ayf

so that now the approximation of azs/axz is implicit, and the approximation of 828/8y2 is

explicit. Equation ( 55) can be rearranged to yield

— 15:33,. + 2(1+ MS“ — 15,17}j = 2.53”“ + 2(1— ”5:?” + 25,737,112 ( 56)
ivj [hi—1

Again, when Equation ( 56) is written for the entire grid, a tridiagonal matrix results.
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APPENDIX C

Instructions for FORTRAN model

The program currently solves five coupled PDE'S. These include two cell balances

(ua and ub), two chemoattractants (s and q) and a growth nutrient (h). The sides of the

chamber are identified by compass directions (n,s,e,w). For the version of the program

that these instructions pertain to, the chemoattractant q should be thought of as oxygen.

0 The unit basis for all variables is mass=grams, length=centimeters, time=hours.

0 Filenames are italicized, while variable names are in "quotes".

0 Each input file is formatted, so be sure to keep numbers in the proper positions.

On a Sun or HP:

1. Modify the paramfile.

This file contains the parameters of the model, including chemotactic sensitivities,

diffusion coefficients, mass transport coefficients, etc.

The param file also contains information about the simulation run-time and grid

Spacing. The value of "m" sets the grid size (m x m matrix). "Timeinit" sets the time that

the gradients establish before cell inoculation. "Timeinoc" sets the time that the cells

grow in the chamber. "Timeinit" plus "timeinoc" gives the total simulated time of the

experiment. Param also contains instructions for the simulation that specify a movie

output or single graph output.
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A list of variables contained in the param file and their definition is included at the

end of this section.

2. Modify the init file.

This file sets the initial conditions, including initial cell concentration,

chemoattractant boundary conditions, and nutrient boundary conditions. The parameters

beginning with r (rsn, for example) correspond to the reservoir concentrations. In the

example, rsn is reservoir, s-chemoattractant, north side. The initial concentration in the

gel is also set in init. For example, "stini" sets the concentration of s in the gel at the

beginning of the simulation. The nutrient concentration is usually set equal to the nutrient

concentration in the four reservoirs. For a chemoattractant that will make a gradient, the

initial concentration in the gel is usually 0. The cell concentration is initialized by "uaint"

and "ubini". Note that these are not the initial concentrations, but are a parameter for the

cell initialization subroutine.

3. Modify the "time" file.

"Numti" tells the program how many matrices to print. For example, for "numti" =04,

four graphs would be produced at times specified by "timel

"time2", etc. The times are time after inoculation. Note that the variable "timeinoc" in

param specifies how long the simulation will run, so any time longer than "timeinoc" will

not print a graph.

4. If necessary, modify the FORTRAN program itself.

Subroutine uaO sets the initial cell distribution. Currently, an exponential peak is

used.
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The subroutines f and ifs set the nutrient and chemoattractant uptake functions. Note:

both f and fs must have identical functionalities. If one is changed, the other must also

be changed. Both functions correspond to the same term in the equations, but are slightly

different because of the finite differencing algorithm.

The subroutine chemofl sets the functionality of the chemotaxis term.

Other subroutines set the windows of the reservoirs, calculate velocities, set

boundary conditions, and calculate certain other values.

5. To run the program, a Sun computer must be used. If an HP is the current

computer, open a window to a Sun.

To run the program in batch mode, type:

batch

An at> prompt should appear. Type the following commands (..J = return, underlined

words should be replaced with appropriate name, and bold indicates pressing control and

D at the same time):

at> f77 _tllegamej .J

at> a.out .J

at> mailx -s "subject" mail-address J

at> ctrl-D

The simulation is complete when mail bearing the "subject" is received. At this time, files

called lcella.m, lcellb.m, latts.m, lattq.m, and lnut.m should be in the directory from

which the program ran. These files are formatted for Matlab.
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Matlab instructions:

1. At a Sun or HP, start Matlab by typing:

matlab

2. At the Matlab prompt, switch to the directory containing the simulation files:

cd path\directog

3. Type the name of the file you wish to work with, without the m extension. For

example, to look at the cell Population a matrix, type lcella

4. To check if the matrices have been properly loaded, type who

For example, if "numti" = 4, and if individual graphs were specified, then there

should be 4 matrices named ual, ua2, ua3, and ua4.

5. Two types of graphs are useful for viewing:

Three dimensional plots are created with the surf command. surf(ual) will yield a 3-D

plot, with Matlab default View angle and axis.

Overhead View type plots are created with the appmult command.

appmult(ual,3,'pcolor')

will give a good overhead plot. The value 3 can be changed to give better or worse plots.

Higher numbers give smoother graphs, but take longer to view and print. Lower numbers

give coarser plots, but are faster.

Matlab has a fairly good help feature. Typing help will list general help topics, or type

help command to get specific help.
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APPENDIX D

The FORTRAN model

This is the FORTRAN model used to solve the competition model. This model

can be reduced to the one-cell population model simply by setting the initial condition for

Population B to zero in the initialization file (see Appendix E).

implicit double precision (a—h,o-z)

C

parameter (nmax=100,kmax=100)

C

dimension x(0:nmax),y(0:nmax)

dimension ual(O:nmax,0:nmax),ua2(0:nmax,0:nmax
)

dimension ub1(0:nmax,0:nmax),ub2(0:nmax,0:nmax
)

dimension H1(O:nmax,0:nmax),H2(O:nmax,O:nmax)

dimension S 1(O:nmax,0:nmax),82(0:nmax,0:nmax)

dimension q1(O:nmax,0:nmax),q2(0:nmax,0:nmax)

dimension aa(0:nmax),bb(0:nmax),cc(0:nmax)

dimension funua(O:nmax),funs(0:nmax),funh(0:nma
x)

dimension rhsua(0:nmax),rhss(0:nmax),rhsh(0:nmax
)

dimension funub(0:nmax)

dimension rhsq(0:nmax),funq(0:nmax),rhsub(0:nma
x)

dimension uua(0:nmax),us(0:nmax),uh(0:nmax),uq(
0:nmax),uub(0:nmax)

dimension mcount3(0:kmax), time(Ozkmax)

dimension velm(0:500),vell(0:500)

dimension distm(0:500),distl(0:500),timm(0:500),ti
ml(0:500)

open(16,file='lcella.m')

open(32,file='lcellb.m')

open( 17,file='latts.m')

open(23,file='1attq.m')

open(18,file='lnut.m')

open(19,fi1e='time')

open(24,file=‘init')

open(22,file=‘param')

open(30,file='distmax')

open(3 1 ,file='dist1im')
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read(22,101)m

read(22, 1 O3)tirninit

read(22,103)timinoc

read(22, 102)numcel

read(22,102)numvel

read(22,102)kstep

read(22,100)dmin

read(22,102)movc

read(22,100)R

read(22, 100)ayoff

read(22, 100)axoff

read(22, 100)byoff

read(22, 100)bxoff

read(22, 100)awid

read(22, 100)bwid

read(22,100)Dh

read(22, 100)thn

read(22, 100)ths

read(22, 100)the

read(22, 100)thw

read(22, 100)Ds

read(22, 100)tsn

read(22, 100)tss

read(22, 100)tse

read(22, 100)tsw

read(22,100)Dacs

read(22, 100)Dbcs

read(22, 100)DKas

read(22, 100)DKbs

read(22, 100)cas

read(22, 100)vas

read(22, 100)Yas

read(22, 100)cbs

read(22,100)vbs

read(22,100)Ybs

read(22, 100)Dq

read(22, 100)tqn

read(22, 100)th

read(22, 100)tqe

read(22, 100)tqw

read(22,100)Dacq

read(22, 100)Dbcq

read(22, 100)DKaq
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read(22, 100)DKbq

read(22, 100)caq

read(22, 100)vaq

read(22, 100)Yaq

read(22, 100)cbq

read(22, 100)qu

read(22, 100)qu

read(22,100)Dua

read(22,100)va

read(22,100)ca

read(22, 100)Ya

read(22,100)Dub

read(22, 100)vb

read(22, 100)cb

read(22,100)Yb

read(24, 100)uaini

read(24,100)ubini

read(24, 100)rsn

read(24,100)rss

read(24, 100)rse

read(24,100)rsw

read(24, 100)rqn

read(24, 100)rqs

read(24, 100)rqe

read(24,100)rqw

read(24, 100)rhn

read(24, 100)rhs

read(24, 100)rhe

read(24, 100)rhw

read(24, 100)stini

read(24, 100)qtini

read(24, 100)htini

100 format(6x,d13.10)

101 format(4x,i4)

102 format(7x,i7)

103 format(8x,d13.10)

if(movc.eq.2)then

write(l6,*)'ua=['

write(32,*)'ub=['

write(17,*)'s=['

write(23,*)'q=['

write(18,*)'h=['

endif

 

C
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hr=2.0d0*R/m

ht=0.15625d0*hr*hr

mcount1=timinit/ht+1

mcount2=timinocfht+1

write(*,*)'hr =',hr

write(*,*)'ht =',ht

write(*,*)'mcount1=',mcount1

write(*,*)'mcount2=',mcount2

read(19,201)numti

do 555 i=1,numti

read(19,202)time(i)

mcount3(i)=time(i)/ht

time(i)=mcount3(i)*ht

write(*,*)'Real time',i,'=',time(i)

555 continue

201 format(6x,i2)

202 format(6x,d6.2)

C Calculate values of hr and ht

C

C set up the initial gradient of attractant and nutrient

C

C set up the initial chemoattractant concentration in chamber

do 10 i=0,m

do 5 j=0,m

S 1(i,j)=stini

q1(i,j)=qtini

H1(i,j)=htini

ua1(i,j)=0.0d0

ub1(i,j)=0.0d0

5 continue

10 continue

C

D0=Dh*(ht/2.0d0)/(hr**2)

D1=Ds*(ht/2.0d0)/(hr**2)

D2=Dua*(ht/2.0d0)/(hr**2)

D3=Dacs*(ht/2.0d0)/(hr**2)

D4=Dq*(ht/2.0d0)/(hr**2)

D5=Dacq*(ht/2.0d0)/(hr**2)

D6=Dub*(ht/2.0d0)/(hr**2)

D7=Dbcs*(ht/2.0d0)/(hr**2)

D8=Dbcq*(ht/2.0d0)/(hr**2)

C

C solving the ode
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do 1000 k=1,mcount1

C

C take care of boundary points:

C

i=0

do 20 i=0,m

t=tr(i,hr,tss,Ds)

call rhbound(m,S1(i,0),S1(i,1),rss,D1,hr,t,rhss(i))

funs(i)=1.0d0

t=tr(i,hr,tqs,Dq)

call rhbound(m,q1(i,0),q1(i,1),rqs,D4,hr,t,rhsq(i))

funq(i)=1 .0d0

t=tr(i,hr,ths,Dh)

call rhbound(m,H1(i,O),H1(i,1),rhs,D0,hr,t,rhsh(i))

funh(i)=1 .0d0

20 continue

C

call PDMTRIX(m,Dl,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

do 25 i=0,m

82(i,0)=us(i)

q2ti,0>=uq<i)

h2(i,0)=uh(i)

25 continue

j=m

do 30 i=0,m

=tr(i,hr,tsn,Ds)

call rhbound(m,S1(i,m),Sl(i,m-1),rsn,D1
,hr,t,rhss(i))

funs(i)=1 .0d0

t=tr(i,hr,tqn,Dq)
-

call rhbound(m,q1(i,m),q1(i,m-1),rqn,D4,hr,t,rhsq(i))

funq(i)=1.0d0

t=tr(i,hr,thn,Dh)

call rhbound(m,H1(i,m),H1(i,m-1),rhn,D0,hr,t,rhsh(i))

funh(i)=1 .0d0

30 continue

C

call PDMTRIX(m,D1,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)
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call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

do 35 i=0,m

S2(i,m)=us(i)

q2(i,m)=uq(i)

h2(i,m)=uh(i)

35 continue

C take care of interior points:

C

do 50 j=1,m-1

t=tr(j ,hr,tsw,Ds)

call rh2(m,S l(0,j),S 1(0,j-1),S 1(0,j+1),rsw,D
1 ,hr,t,rhss(0))

funs(0)=1.0d0+D1*hr*tr(j,hr,tsw,
Ds)

t=tr(i ,hr,tqw,Dq)

call rh2(m,q1(0,j),q1(0,j- 1),q1 (
O,j+1),rqw,D4,hr,t,rhsq(0))

funq(0)= 1 .0d0+D4*hr*tr(j ,hr,tqw,Dq)

=tr(j ,hr,thw,Dh)

call rh2(m,h1(0,j),h1(0,j- 1),h1(
0,j+1),rhw,D0,hr,t,rhsh(0))

funh(0)=1.0d0+D0*hr*tr(j,hr,thw,Dh
)  

=tr(j ,hr,tse,Ds)

call rh2(m,S1(m,j),S1(m,j—1),S1(m,j+1),rse,D1,hr,t,rhss(m))

funs(m)=1.0d0+D1 *hr*tr(j ,hr,tse,Ds)

t=tr(j ,hr,tqe,Dq)

call rh2(m,q] (m,j),q1(m,j-1),q1(m,j+1),rqe,D4,hr,t,rhsq(m))

funq(m)=1 .0d0+D4*hr*tr(j
,hr,tqe,Dq)

t=tr(j ,hr,the,Dh)

call rh2(m,h1(m,j),h1(m,j-1),h1(m,j+1),rhe,D0,hr,t,rhsh(m))

funh(m)=1 .0d0+D0*hr*tr(i
,hr,the,Dh)

do 40 i=1 ,m—l

rhss(i)=S1(i,j)+D1
*(S1(i,j+1)-2.0d0*

Sl(i,j)+S1(i,j-1))

funs(i)=1.0d0

rhsq(i)=q1(i,j)+D4
*(q1(i,j+1)—2.0d0*

q1(i,j)+q1(i,j-1))

funq(i)=1.0d0

rhsh(i)=hl(i,j)+D0
*(h1(i,j+1)—2.0d0*

h1(i,j)+h1(i,j-1))

funh(i)=1.0d0

40 continue

call PDMTRIX(m
,D 1,funs,aa,bb,cc)

call TRISOLV(m,aa
,bb,cc,rhss,us)

call PDMTRIX(m,D4
,funq,aa,bb,cc)
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call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

do 45 i=0,m

S2(i,j)=us(i)

h2(i,j)=uh(i)

45 continue

50 continue

C

C implicit in y direction:

C

do 55 i=0,m

do 56 j=0,m

S 1(i,j)=82(i,j)

q1(1,j)=q2(i,j)

h1(i,j)=h2(i,j)

56 continue

55 continue

C

C take care of boundary points:

C

 
i=0

do 60 j=0,m

t=tr(j ,hr,tsw,Ds)

call rhbound(m,S 1(0,j),S 1(1,j),rsw,D1,hr,t,rhss(j))

funs(0)=1.0d0

t=tr(j ,hr,tqw,Dq)

call rhbound(m,ql(0,i),q1(1,j),qu’D4,hr,t,rhsqG))

funq(0)= 1 .0d0

t=tr(j ,hr,thw,Dh)

call rhbound(m,Hl(O,j),H1(1 ,j),rhw,D0,hr,t,rhsh(i))

funh(0)=1.0d0

60 continue

call PDMTRD((m,D1,f
uns,aa,bb,cc)

call TRISOLV(m,aa,bb,
cc,rhss,us)

call PDMTRIX(m,D4,fu
nq,aa,bb,cc)

call TRISOLV(m,aa,bb,
cc,rhsq,uq)

call PDMTRIX(m,DO,fu
nh,aa,bb,cc)

call TRISOLV(m,aa,b
b,cc,rhsh,uh)

do 65 j=0,m

82(0,j)=us(i)

q2(0,j)=uqti)
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h2(0,j)=uh(i)

65 continue

C

i=m

do 70 j=0,m

t=tr(i ,hr,tse,Ds)

call rhbound(m,S 1(m,j),S 1(m-1,j),rse,D1,hr,t,rhss(j))

funs(0)=1.0d0

t=tr(i,hr,tqe,Dq)

call rhbound(m,q1(m,j),q1(m-1,j),rqe,D4,hr,t,rhsq(j))

funq(0)=1 .0d0

t=tr(i,hr,the,Dh)

call rhbound(m,H1(m,j),H1(m—1,j),rhe,D0,hr,t,rhsh(j))

funh(0)=1 .0d0

70 continue

call PDMTRIX(m,D 1 ,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb
,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRD((m,D0,funh,aa,bb,cc
)

call TRISOLV(m,aa,bb,cc,rhsh,
uh)

do 75 j=0,m

32(m,j)=US(i)

q2(m,j)=uq(i)

h2(m,j)=uh(i)

75 continue

C take care of interior points:

C

do 90 i: 1 ,m-l

C

t=tr(i,hr,tss,Ds)

call rh2(m,Sl(i,0),S1(i-1,0),S1(i
+1,0),rss,D1,hr,t,rhss(0))

funs(0)=1.0d0+D1*hr*tr(i,h
r,tss,Ds)

=tr(i,hr,tqs,Dq)

call rh2(m,q1(i,0),q1(i-1,0),q1(i
+1,0),rqs,D4,hr,t,rhsq(0))

funq(0)=1 .0d0+D4*hr
*tr(i,hr,tqs,Dq)

t=tr(i,hr,ths,Dh)

call rh2(m,h1(i,0),h1(i-1,0),h1(i
-1,0),rhs,D0,hr,t,rhsh(0))

funh(0)=1 .0d0+D0*hr*tr
(i,hr,ths,Dh)

=tr(i,hr,tsn,Ds)

call rh2(m,S](i,m),S1(i-1
,m),S1(i+1,m),rsn,D1

,hr,t,rhss(m))
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funs(m)=] .0d0+D1*hr*tr(i,hr,tsn,Ds)

t=tr(i,hr,tqn,Dq)

call rh2(m,q1(i,m),q1(i-l,m),q1(i+1,m),rqn,D4,hr,t,rhsq(m))

funq(m)=1 .0d0+D4*hr*tr(i,hr,tqn,Dq)

t=tr(i,hr,thn,Dh)

call rh2(m,h1(i,m),hl(i-1,m),h1(i-1 ,m),rhn,D0,hr,t,rhsh(m))

funh(m)=1 .0d0+D0*hr*tr(i,hr,thn,Dh)

 

C

do 80 j=1,m—1

rhss(i)=S 1(i,j)+D1*(S 1(i+1,j)-2.0d0*S l(i,j)+S 1(i-1,j))

funs(i)=1.0d0

rhsq(i)=q1(i,j)+D4*(q1(i+1,j)—2.0d0*q1(i,j)+q1(i-1,j))

funq(j)=1.0d0

rhsh(i)=h1(i,j)+D0*(h1(i+1,j)-2.0d0*hl(i,j)+h1(i-1,j))

funh(i)=1.0d0

80 continue

C

call PDMTRD((m,D1,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

do 85 j=0,m

32(i,j)=US(i)

q2(i,j)=uq(i)

h2(i,j)=uh(i)

85 continue

90 continue

C

do 95 j=0,m

do 96 i=0,m

S 1 (i,j)=32(i,j)

C11 (i,j)=q2(i,j)

h1(i,j)=h2(i,j)

96 continue

95 continue

C

1000 continue

C

C set up the initial cell condition (inoculation)

C

C

axoff=axoff*hr

-‘
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ayoff=ayoff*hr

bxoff=bxoff*hr

byoff=byoff*hr

do 1010 i=0,m

x(i)=hr*i-R

do 1005 j=0,m

yG)=hr*j-R

ual (i,j)=ua0(x(i),y(j),uaini,ayoff,axoff,awid)

ub1(i,j)=ub0(x(i),y(j),ubini,byoff,bxoff,bwid)

1005 continue

1010 continue

C

C solving the ode

C

kt0=- 1

kt20=- 1

mcount4= 1

1ve1= 1

mvel=1

distm(0)=0.

distl(0)=0.

kve1= 1

(:****************
******************

******************
************

 
*******

do 2000 k=1,mcount2+1

C

C track the steps

C

kt1=klmcount2

C

C if(kt1.eq.1) then

C kt0=kt1

if(k.eq.mcount3(mcount4))
then

C

C print out the results

if(movc.eq. 1)then

if(mcount4.lt. 10)then

write(16,360)'ua',mcount4,'
=

write(32,360)'ub',mcount4,‘
=

write(17,360)'s',mcount4,‘
= ['

write(23,360)'q',mcount4,'
= ['

write(18,360)'h',mcount4,'
= ['

360 format(a2,i1,a4)

e1seif(mcount4.gt.9)then

[l

[I
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write(16,36l)'ua',mcount4,' = ['

write(32,361)'ub',mcount4,’ = ['

write(17,361)'s',mcount4,' = ['

write(23,361)'q',mcount4,' = ['

write(18,361)'h',mcount4,' = ['

361 format(a2,i2,a4)

endif

do 1210 j=0,m

write(16,575)(ua1(i,j),i=0,m)

write(32,575)(ub1(i,j),i=0,m)

write(17,575)(S1(i,j),i=0,m)

write(23,575)(q1(i,j),i=0,m)

write(l 8,575)(h1(i,j),i=0,m)

12 10 continue

write(16,*)'];'

write(32,*)'];'

write(17,*)'];'

write(23,*)'];'

write(18,*)'];'

575 format(2x,101(e10.4,2x))

mcount4=mcount4+l

elseif(movc.eq.2)then

C

C print out the results

do 121 1 j=0,m

write(16,575)(ua1(i,j),i=0,m)

write(32,575)(ub1(i,j),i=0,m)

write( 17,575)(S 1(i,j),i=0,m)

write(23,575)(q1(i,j),i=0,m)

write(18,575)(h1(i,j),i=0,m)

121 1 continue

mcount4=mcount4+1

C

else

endif

endif

C

C kt2: index for status of the program

C

kt2=k/(mcount2/10)

if(kt2.gt.kt20) then
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kt20=kt2

write(6,*) 'kt2=',kt2

else

endif

C implicit in x direction:

C

C take care of boundary points:

C

C

C

rhss(0)=s1(0,0)+D1*(S 1(0,1)-S 1 (0,0))

funs(0)=l .0d0+(ht/2.0d0)*fs(cas,vas,s l (0,0))*ua1 (0,0)/Yas

funs(O)=funs(0)+(ht/2.0d0)*fs(cbs,vbs,s1(0,0))*ub1(0,0)/Ybs

rhsq(0)=q1(0,0)+D4*(q1(0,1)-ql(0,0))

funq(0)=1 .0d0+(ht/2.0d0)*fs(caq,vaq,q1(0,0))*ua1(0,0)/Yaq

funq(0)=funq(0)+(ht/2.0d0)*fs(cbq,qu,q1(0,0))*ub1(0,0)/qu

rhsh(0)=h1(0,0)+D0*(h1(0,1)-h1(0,0))

funh(0)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(0,0))*ua1(0,0)/Ya

funh(0)=funh(0)+(ht/2.0d0)*fs(cb,vb,h1 (0,0))*ub1 (0,0)/Yb

rhss(m)=S 1(m,0)+D1*(s 1(m, 1)-s 1(m,0))

funs(m)=1 .0d0+(ht/2.0d0)*fs(cas,vas,s1(m,0))*ua1(m,0)/Yas

funs(m)=funs(m)+(ht/2.0d0)*fs(cbs,vbs,s1(m,0))*ub1(m,0)/Ybs

rhsq(m)=q1 (m,0)+D4*(q1(m, 1)-q1(m,0))

funq(m)=1 .0d0+(ht/2.0d0)*fs(caq,vas,q1(m,0))*ua1(m,0)/Yaq

funq(m)=funq(m)+(ht/2.0d0)*fs(cbq,vbs,q1(m,0))*ub1(m,O)/qu

rhsh(m)=h1(m,0)+DO*(h1(m, 1)-h1(m,0))

funh(m)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(m,0))*ua1(m,0)/Ya

funh(m)=funh(m)+(ht/2.0d0)*fs(cb,vb,h1(m,0))*ub1(m,0)/Yb

i=0
C Cell group a

a12=0.5d0*chemof1(DKas,S1(1,0))*ua1(1,0)

a12=a12+0.5d0*chemof1(DKas,S 1 (0,0))*ua1 (0,0)

b12=0.5d0*chemof1(DKas,S1(0,1))*ua1(0,1)

b12=b12+0.5d0*chemof1(DKas,S1(0,0))*ua1(0,0)

c12=0.5d0*chemof1(DKaq,q1(1,0))*ua1(1,0)

c12=c12+0.5d0*chemof1(DKaq,q1(0,0))*ua1(0,0)

d12=0.5d0*chemof1(DKaq,q1(0,1))*ua1(0, 1)

d12=d12+0.5d0*chemof1(DKaq,q 1(0,0))*ua1(0,0)

rhsua(0)=ua1(0,0)+D2*(ua1(0,1)-ua1(0,0))

rhsua(0)=rhsua(0)+(ht/2.0d0)*f(ca,va,hl (0,0))*ua1(0,0)

rhsua(0)=rhsua(0)-D3*a12*(s1(1,0)-s1(0,0))

rhsua(0)=rhsua(0)—D3*b12*(S1(0,1)-sl(0,0))

rhsua(0)=rhsua(0)-D5*c 12*(q 1 (1 ,O)-q1(0,0))
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rhsua(0)=rhsua(0)-D5*d12*(q1(0,1)-q1(0,0))

funua(0)=1.0d0

C

a21=0.5d0*chemof1(DKas,S 1(m,0))*ua1(m,0)

a21=a2l+0.5d0*chemof1(DKas,S1(m—1,0))*ua1(m-1,0)

b12=0.5d0*chemof1(DKas,S1(m,1))*ua1(m,l)

b12=b12+0.5d0*chemof1(DKas,S1(m,0))*ua1(m,0)

c2 l=0.5d0*chemof1(DKaq,q1(m,0))*ua1(m,0)

021=cZi+0.5d0*chemof1(DKaq,ql(m—1,0))*ua1(m-1,0)

d12=O.5d0*chemof1(DKaq,q1(m,1))*ua1(m, 1)

d12=d12+0.5d0*chemof1(DKaq,q1(m,0))*ua1(m,0)

rhsua(m)=ua 1 (m,0)+D2*(ua1 (m, 1)-ua1 (m,0))

rhsua(m)=rhsua(m)+(ht/2.0d0)*f(ca,va,h1(m,0))*ua1(m,0)

rhsua(m)=rhsua(m)-D3*a21*(s1(m-1,0)—sl(m,0))

rhsua(m)=rhsua(m)-D3*b12*(sl(m,1)-s1(m,0))

rhsua(m)=rhsua(m)-D5*c2 l *(q1(m-1 ,0)~q1(m,0))

rhsua(m)=rhsua(m)—D5*d12*(q1(m, 1)—q1(m,0))

funua(m)= 1 .0d0

C Cell group b

a12=0.5d0*chemof1(DKbs,S1(1,0))*ub1(1,0)

a12=312+0.5d0*chemof1(DKbs,S1(0,0))*ub1(0,0)

b12=0.5d0*chemof1(DKbs,S 1(0,1))*ub1(0, 1)

b 12=b12+0.5d0*chemof1(DKbs,S 1(0,0))*ub1(0,0)

c12=0.5d0*chemof1(DKbq,q1(1,0))*ub1(1,0)

cl2=c12+O.5d0*chemof1(DKbq,ql(0,0))*ub1(0,0)

d12=0.5d0*chemof1(DKbq,ql(0,1))*ub1(0, 1)

d12=d12+0.5d0*chemof1(DKbq,q1(0,0))*ub1(0,0)

rhsub(0)=ub1(0,0)+D6*(ub1(0,1)—ub1(0,0))

rhsub(0)=rhsub(0)+(ht/2.0d0)*f(cb,vb,h1(0,0))*ub1(0,0)

rhsub(0)=rhsub(0)-D7*a12*(s1(1,0)—sl(0,0))

rhsub(0)=rhsub(0)—D7*b 12*(S 1(0,1)~sl(0,0))

rhsub(0)=rhsub(O)-D8*c 12*(q1( 1 ,0)-q1(0,0))

rhsub(0)=rhsub(0)—D8*d12*(q1(0,1)-q1(0,0))

funub(0)=1 .0d0

 

 

C

a21=0.5d0*chemof1(DKbs,S1(m,0))*ub1(m,0)

a21=a21+0.5d0*chemof1(DKbs,S1(m-1,0))*ub1(m— 1,0)

b12=0.5d0*chemof1(DKbs,S1(m,1))*ub1(m,1)

b12=b12+0.5d0*chemof1(DKbs,S1(m,0))*ub1(m,0)

c21=0.5d0*chemof1(DKbq,q1(m,0))*ub1 (m,0)

c21=c2l+0.5d0*chemof1(DKbq,q1(m-1,0))*ub1(m~1,0)

d12=0.5d0*chemof1(DKbq,q1(m,1))*ub1(m,1)

d12=d12+0.5d0*chemof1(DKbq,q1(m,0))*ub1(m,0)

rhsub(m)=ub1(m,0)+D6*(ub1(m,1)-ub1(m,0))
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rhsub(m)=rhsub(m)+(ht/2.0d0)*f(cb,vb,h1(m,0))*ub1(m,0)

rhsub(m)=rhsub(m)—D7*a21*(s1(m-1,0)-sl(m,0))

rhsub(m)=rhsub(m)-D7*b12*(s l(m,1)-sl(m,0))

rhsub(m)=rhsub(m)-D8*021*(ql(m—1,0)-q1(m,0))

rhsub(m)=rhsub(m)-D8*d12*(q l (m, 1)-q1 (m,0))

funub(m)=1.0d0

C

do 1020 i=1 ,m-l

C

t=tr(i,hr,tss,Ds)

call rhbound(m,S1(i,0),S1(i,1),rss,D1,hr,t,rhss(i))

funs(i)= 1 .0d0+(ht/2.0d0)*fs(cas,vas,s 1 (i,0))*ua1(i,0)/Yas

funs(i)=funs(i)+(ht/2.0d0)*fs(cbs,vbs,s1(i,0))*ub1(i,0)/Ybs

t=tr(i,hr,tqs,Dq)

call rhbound(m,ql (i,0),q1 (i, 1),rqs,D4,hr,t,rhsq(i))

funq(i)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(i,0))*ua1(i,0)/Yaq

funq(i)=funq(i)+(ht/2.0d0)*fs(cbq,qu,q1(i,0))*ub1(i,0)leq

t=tr(i,hr,ths,Dh)

call rhbound(m,H1(i,0),H1(i, 1),rhs,D0,hr,t,rhsh(i))

funh(i)= 1 .0d0+(ht/2.0d0)*fs(ca,va,h1(i,0))*ua1(i,0)lYa

funh(i)=funh(i)+(ht/2.0d0)*fs(cb,vb,h1(i,0))*ub1(i,O)/Yb

C Cell group a

a12=0.5d0*chemof1(DKas,S1(i+1,0))*ua1(i+1,0)

a12=a12+0.5d0*chemof1(DKas,S1(i,0))*ua1(i,0)

a21=0.5d0*chemof1(DKas,S1(i,0))*ua1(i,0)

a21=a2l+0.5d0*chemof1(DKas,S1(i-1,0))*ua1(i-1,0)

b12=0.5d0*chemof1(DKas,S 1(i,1))*ua1 (i, 1)

b12=b12+0.5d0*chemof1(DKas,S 1(i,0))*ua1(i,0)

c12=0.5d0*chemof1(DKaq,q1(i+1,0))*ua1(i+1,0)

c12=c12+0.5d0*chemof1(DKaq,ql(i,0))*ua1(i,0)

ch=0.5d0*chemof1(DKaq,q1(i,0))*ua1(i,0)

c21=c2l+0.5d0*chemof1(DKaq,q1(i~1,0))*ua1(i—l ,0)

d 12=0.5d0*chemof1 (DKaq,q l (i, 1 ))*ua1 (i, 1)

d12=d12+0.5d0*chemof1(DKaq,ql(i,0))*ua1(i,0)

rhsua(i)=ua1 (i,0)+D2*(ua1 (i, 1)-ua1(i,0))

rhsua(i)=rhsua(i)+(ht/2.0d0)*f(ca,va,h l(i,0))*ua1(i,0)

rhsua(i)=rhsua(i)—D3*a12*(s 1(i+1 ,0)-s 1(i,0))

rhsua(i)=rhsua(i)-D3 *a21*(s1(i-1,0)-sl(i,0))

rhsua(i)=rhsua(i)-D3*b12*(S1(i,1)—S1(i,0))

rhsua(i)=rhsua(i)-D5*012*(ql(i+1,0)-q1(i,0))

rhsua(i)=rhsua(i)-D5*c2 1 *(q1(i-1,0)-q1(i,0))

rhsua(i)=rhsua(i)-D5*d12*(q1(i,1)-q1(i,0))

funua(i)=1.0d0

C Cell group b
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a12=0.5d0*chemof1(DKbs,S 1(i+1,0))*ub1(i+1,0)

a12=a12+0.5d0*chemof1(DKbs,S1(i,0))*ub1(i,0)

a21=0.5d0*chemof1(DKbs,S1(i,0))*ub1(i,0)

a21=a21+0.5d0*chemof1(DKbs,S1(i-1,0))*ub1(i-1,0)

b12=0.5d0*chemof1(DKbs,S 1(i,1))*ubl(i, 1)

b12=b12+0.5d0*chemof1(DKbs,S l(i,0))*ub1(i,0)

c12=0.5d0*chemof1(DKbq,q1(i+] ,O))*ub1(i+1,0)

c12=c12+0.5d0*chemofl(DKbq,q1(i,0))*ub1(i,0)

c21=0.5d0*chemof1(DKbq,q1(i,0))*ub1(i,0)

c2 l=c2 1+0.5d0*chemof1(DKbq,q1(i-1 ,0))*ub 1(i- 1,0) ‘

d 1 2=0.5d0*chemof1(DKbq,q 1 (i, 1))*ub 1 (i, 1)

d12=d12+0.5d0*chemofl(DKbq,ql(i,0))*ub1(i,0)

rhsub(i)=ub1(i,0)+D6*(ub1(i,1)-ub1(i,0))

rhsub(i)=rhsub(i)+(ht/2.0d0)*f(cb,vb,h1(i,0))*ub1(i,0)

rhsub(i)=rhsub(i)—D7*a12*(s 1(i+1 ,0)-s1 (i,0))

rhsub(i)=rhsub(i)-D7*a21*(s 1(i-1,0)-s1(i,0))

. rhsub(i)=rhsub(i)—D7*b12*(S1(i,1)—S1(i,0))

rhsub(i)=rhsub(i)-D8*c 12*(q1(i+1 ,0)—q1(i,0))

rhsub(i)=rhsub(i)—D8*021 *(q1(i-1,0)-q1(i,0))

rhsub(i)=rhsub(i)—D8*d12*(q1(i,1)-q1(i,0))

funub(i)=1 .0d0

1020 continue

C

 

 

call PDMTRIX(m,D 1 ,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

call PDMTRIX(m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRD((m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1025 i=0,m

S2(i,0)=us(i)

q2ti.0)=uq<i>

h2(i,0)=uh(i)

ua2(i,0)=uua(i)

ub2(i,0)=uub(i)

1025 continue

C

i=m

C

rhss(0)=S 1(0,m)+D1*(sl (0,m-1)-s 1(0,m))
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funs(0)=1.0d0+(ht/2.0d0)*fs(cas,vas,s1(0,m))*ua1(0,m)/Yas

funs(0)=funs(0)+(ht/2.0d0)*fs(cbs,vbs,s1(0,m))*ub1(0,m)/Ybs

rhsq(0)=ql(0,m)+D4*(q1(0,m-1)-q1(0,m))

funq(0)=1 .0d0+(ht/2.0d0)*fs(caq,vaq,q1(0,m))*ua1(0,m)/Yaq

funq(0)=funq(0)+(ht/2.0d0)*fs(cbq,qu,q1(0,m))*ubl(0,m)/qu

rhsh(0)=h1(0,m)+D0*(h1(0,m-1)-h1(0,m))

funh(0)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(0,m))*ua1(0,m)/Ya

funh(0)=funh(0)+(ht/2.0d0)*fs(cb,vb,h1(0,m))*ub1(0,m)/Yb

rhss(m)=S1(m,m)+D1*(s1(m,m-1)-s1(m,m))

funs(m)= 1 .0d0+(ht/2.0d0)*fs(cas,vas,s 1 (m,m))*ua1(m,m)/Yas

funs(m)=funs(m)+(ht/2.0d0)*fs(cbs,vbs,s1(m,m))*ub1(m,m)/Ybs

rhsq(m)=q1(m,m)+D4*(q1(m,m- 1)-q1(m,m))

funq(m)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(m,m))*ua1(m,m)/Yaq

funq(m)=funq(m)+(ht/2.0d0)*fs(cbq,qu,q1(m,m))*ub1(m,m)/qu

rhsh(m)=h1(m,m)+D0*(h1(m,m— 1 )—h1(m,m))

funh(m)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(m,m))*ua1(m,m)/Ya

funh(m)=funh(m)+(ht/2.0d0)*fs(cb,vb,h1(m,m))*ub1 (m,m)/Yb

C Cell group a

0
0

a12=0.5d0*chemof1(DKas,S1(1,m))*ua1(1,m)

a12=a12+0.5d0*chemof1(DKas,S1(0,m))*ua1(0,m)

b21=0.5d0*chemof1(DKas,S1(0,m))*ua1(0,m)

b21=b21+0.5d0*chemof1(DKas,S1(0,m-1))*ua1(0,m-1)

c12=0.5d0*chemof1(DKaq,q1(1,m))*ua1(1,m)

c12=c12+0.5d0*chemof1(DKaq,q1(0,m))*ua1(0,m)

d2 1=O.5d0*chemofl(DKaq,q1(0,m))*ua1(0,rn)

d21=d21+0.5d0*chemof1(DKaq,q1(0,m-1))*ua1(0,m-1)

rhsua(O)=ua1(0,m)+D2*(ua1(0,m—1)-ua1(0,m))

rhsua(O)=rhsua(0)+(ht/2.0d0)*f(ca,va,h1(0,m))*ua1(0,m)

rhsua(O)=rhsua(0)-D3 *a12*(s1 (1 ,m)-s 1 (0,m))

rhsua(O)=rhsua(0)-D3 *b21*(S 1(0,m—1)-s 1(0,m))

rhsua(O)=rhsua(0)-D5*c12*(q1(1,m)-q1(0,m))

rhsua(O)=rhsua(0)—D5*d21*(q1(0,m-1)-q1(0,m))

funua(0)=1.0d0

a21=0.5d0*chemof1(DKas,S1(m,m))*ua1(m,m)

a21=a21+0.5d0*chemof1(DKas,S 1(m—1 ,m))*ua1(m—1,m)

b2l=0.5d0*chemof1(DKas,S 1(m,m))*ua1(m,m)

b21=b21+0.5d0*chemof1(DKas,S 1(m,m—1))*ua1(m,m— 1)

ch=0.5d0*chemof1(DKaq,q1(m,m))*ua1(m,m)

c2l=c21+0.5d0*chemof1(DKaq,q1(m-1,m))*ua1(m—1,m)

d21=0.5d0*chemof1(DKaq,ql (m,m))*ual (m,m)

d21=d21+0.5d0*chemof1 (DKaq,q1(m,m—1))*ua1(m,m— 1)

rhsua(m)=ua](m,m)+D2*(ua1(m,m—1)-ua1(m,m))
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rhsua(m)=rhsua(m)+(ht/2.0dO)*f(ca,va,h1(m,m))*ua1(m,m)

rhsua(m)=rhsua(m)-D3*a21 *(s l (m— 1 ,m)-s 1 (m,m))

rhsua(m)=rhsua(m)-D3*b2 1*(S l(m,m- 1 )-s 1 (m,m))

rhsua(m)=rhsua(m)—D5*c21*(q1(m-1,m)-q1(m,m))

rhsua(m)=rhsua(m)-D5*d2 1 *(q 1(m,m—1)-q1(m,m))

funua(m)=1 .0d0

C

C Cell group b

a12=0.5d0*chemof1(DKbs,S1(1,m))*ub1(1,m)

a12=a12+O.5d0*chemof1(DKbs,S1(0,m))*ub1(0,m)

b21=0.5d0*chemof1(DKbs,S1(0,m))*ub1(0,m)

b21=b21+0.5d0*chemof1(DKbs,S 1(0,m-1))*ub1(0,m- 1)

c12=0.5d0*chemof1(DKbq,q1(1,m))*ub1(l,m)

c12=c12+0.5d0*chemof1(DKbq,q1(0,m))*ub1(0,m)

d21=0.5d0*chemof1(DKbq,q1(0,m))*ub1(0,m)

d2 l=d21+0.5d0*chemof1(DKbq,q1(0,m-1))*ubl(0,m- 1)

rhsub(0)=ub1(0,m)+D6*(ub 1(0,m- 1)-ub1(0,m))

rhsub(0)=rhsub(0)+(ht/2.0d0)*f(cb,vb,h1(0,m))*ub1(0,m)

rhsub(0)=rhsub(0)-D7*a12*(s1(1,m)-s 1(0,m))

rhsub(0)=rhsub(0)—D7*b2 1 *(S 1(0,m—1)-sl(0,m))

rhsub(0)=rhsub(O)-D8*c12*(q](1,m)-q1(0,m))

rhsub(0)=rhsub(0)-D8*d21*(q1(0,m-1)-q1(0,m))

funub(0)=1 .Od0

0
0

a21=0.5d0*chemof1(DKbs,S1(m,m))*ub1(m,m)

a21=a21+0.5d0*chemof1(DKbs,S1(m—1,m))*ub1(m—1,m)

b21=0.5d0*chemof1(DKbs,S1(m,m))*ub1(m,m)

b21=b21+0.5d0*chemof1(DKbs,S l(m,m-1))*ub1(m,m-1)

c21=0.5d0*chemof1(DKbq,q1(m,m))*ub1(m,m)

021=c21+0.5d0*chemof1(DKbq,q1(m-1,m))*ub1(m-1,m)

d21=0.5d0*chemof1(DKbq,q1(m,m))*ub1(m,m)

d21=d21+O.5d0*chemof1(DKbq,q1(m,m-1))*ub1(m,m— 1)

rhsub(m)=ubl (m,m)+D6*(ub1(m,m- 1)—ub1(m,m))

rhsub(m)=rhsub(m)+(ht/2.0dO)*f(cb,vb,h1(m,m))*ub1(m,m)

rhsub(m)=rhsub(m)—D7*a21*(s 1(m-1,m)—sl(m,m))

rhsub(m)=rhsub(m)-D7*b21 *(S 1(m,m- 1)—s 1 (m,m))

rhsub(m)=rhsub(m)-D8*c21 *(q 1 (m— 1 ,m)-q 1 (m,m))

rhsub(m)=rhsub(m)—D8*d21*(ql(m,m—1)-q1(m,m))

funub(m)=1.0d0

do 1030 i=1,m—1

t=tr(i,hr,tsn,Ds)
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call rhbound(m,S 1(i,m),S 1(i,m-1),rsn,D1,hr,t,rhss(i))

funs(i)=1 .0d0+(ht/2.0d0)*fs(cas,vas,s1(i,m))*ua1(i,m)/Yas

funs(i)=funs(i)+(ht/2.0d0)*fs(cbs,vbs,s l (1,m))*ub l (i,m)/Ybs

t=tr(i,hr,tqn,Dq)

call rhbound(m,q1(i,m),q1(i,m-1),rqn,D4,hr,t,rhsq(i))

funq(i)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(i,m))*ua1(i,m)/Yaq

funq(i)=funq(i)+(ht/2.0d0)*fs(cbq,qu,q1(i,m))*ub 1(i,m)leq

t=tr(i,hr,thn,Dh)

call rhbound(m,Hl(i,m),H1(i,m-1),rhn,D0,hr,t,rhsh(i))

funh(i)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(i,m))*ua1(i,m)/Ya

funh(i)=funh(i)+(ht/2.0d0)*fs(cb,vb,h1(i,m))*ubl (i,m)/Yb

C Cell group a

a12=0.5d0*chemof1(DKas,Sl(i+1,m))*ua1(i+l,m)

a12=a12+0.5d0*chemof1(DKas,S 1(i,m))*ua1(i,m)

a21=0.5d0*chemof1(DKas,S1(i,m))*ua1(i,m)

a21=a21+0.5d0*chemof1(DKas,S1(i-1,m))*ua1(i—1,m)

b21=0.5d0*chemof1(DKas,S 1(i,m))*ua1(i,m)

b21=b21+0.5d0*chemofl(DKas,S1(i,m-1))*ual(i,m-1)

c12=0.5d0*chemof1(DKaq,q1(i+1,m))*ual(i+l,m)

c12=c12+0.5d0*chemof1(DKaq,q1(i,m))*ua1(i,m)

021=0.5d0*chemof1(DKaq,q1(i,m))*ua1(i,m)

02l=c21+0.5d0*chemof1(DKaq,q](i-1,m))*ual(i-1,m)

d21=0.5d0*chemof1(DKaq,q1(i,m))*ua1(i,m)

d2 1=d21+0.5d0*chemof1 (DKaq,q1(i,m—1))*ua1(i,m- 1)

rhsua(i)=ua](i,m)+D2*(ua1(i,m-l)-ua1(i,m))

rhsua(i)=rhsua(i)+(ht/2.0dO)*f(ca,va,hl (i,m))*ua1(i,m)

rhsua(i)=rhsua(i)-D3 *a12*(sl(i+1,m)—sl(i,m))

rhsua(i)=rhsua(i)-D3 *a21*(sl(i-1,m)-sl(i,m))

rhsua(i)=rhsua(i)-D3*b21*(S 1(i,m- l)-S 1(i,m))

rhsua(i)=rhsua(i)-D5*c1 2*(q1(i+1 ,m)-ql(i,m))

rhsua(i)=rhsua(i)-D5*c21 *(q1(i-1 ,m)-q1(i,m))

rhsua(i)=rhsua(i)-D5*d21*(q1(i,m-1)-q1(i,m))

funua(i)=l .0d0

C Cell group b

a12=0.5d0*chemof1(DKbs,S1(i+1,m))*ub1(i+1,m)

a12=a12+0.5d0*chemof1(DKbs,S1(i,m))*ub1(i,m)

a21=0.5d0*chemofl (DKbs,S 1(i,m))*ubl(i,m)

a21=a21+0.5d0*chemof1(DKbs,S1(i-l,m))*ub1(i—1,m)

b21=0.5d0*chemof1(DKbs,S 1(i,m))*ub1 (i,m)

b21=b21+0.5d0*chemof1(DKbs,S1(i,m-1))*ub1(i,m-1)

c l2=0.5d0*chemofl(DKbq,q1(1+1,m))*ub1(i+1,m)

c12=c12+0.5d0*chemof1(DKbq,q1(i,m))*ub1(i,m)

021=0.5d0*chemof1(DKbq,q1(i,m))*ub1(i,m)

021:021+0.5d0*chemof1(DKbq,ql(i-1,m))*ub1(i-1 ,m)

 

 
 



 

C

1030

C

1035
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d21=0.5d0*chemof1(DKbq,q1(i,m))*ub1(i,m)

d21=d21+0.5d0*chemof1(DKbq,q 1(i,m-1))*ub1(i,m- 1)

rhsub(i)=ub1(i,m)+D6*(ub] (i,m-1)-ub1(i,m))

rhsub(i)=rhsub(i)+(ht/2.0d0)*f(cb,vb,h1(i,m))*ub1(i,m)

rhsub(i)=rhsub(i)-D7*a12*(sl (i+1,m)-s 1(i,m))

rhsub(i)=rhsub(i)-D7*321*(sl(i-1,m)-sl(i,m))

rhsub(i)=rhsub(i)-D7*b21*(S 1(i,m-1)-Sl (i,m))

rhsub(i)=rhsub(i)-D8*c12*(q1(i+1 ,m)-q1(i,m))

rhsub(i)=rhsub(i)-D8*021 *(q1(i-1 ,m)-q1(i,m))

rhsub(i)=rhsub(i)-D8*d21*(q1(i,m—1)-q1(i,m))

funub(i)=1.0d0

confinue

call PDMTRIX(m,D 1 ,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

call PDMTRD((m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRIX(m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1035 i=0,m .

82(i,m)=us(i)

q2(i,m)=uq(i)

h2(i,m)=uh(i)

ua2(i,m)=uua(i)

ub2(i,m)=uub(i)

continue

C take care of interior points:

C

C

do 1050 j=1,m~1

t=tr(j ,hr,tsw,Ds)

call rh2(m,Sl(0,j),S1(0,j—1),S1(0,j+1),rsw,D1,hr,t,rhss(0))

funs(0)=1.0d0+(ht/2.0d0)*fs(cas,vas,s1(0,j))*ua1(0,j)/Yas

funs(O)=funs(0)+(ht/2.0d0)*fs(cbs,vbs,s1(0,j))*ub1(0,j)/Ybs

funs(0)=funs(0)+D1 *hr*tr(i,hr,tsts)

t=tr(j ,hr,tqw,Dq)

call rh2(m,q1(0,j),q1(0,j—1),q1(0,j+1),rqw,D4,hr,t,rhsq(0))

funq(0)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(0,j))*ua1(0,j)/Yaq
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160

funq(0)=funq(0)+(ht/2.0d0)*fs(cbq,qu,q1(0,j))*ub1(0,j)/qu

funq(0)=funq(0)+D4*hr*tr(j,hr,tqw,Dq)

t=tr(j,hr,thw,Dh)

call rh2(m,h1(0,j),h1(0,j-1),h1(0,j+1),rhw,D0,hr,t,rhsh(0))

funh(0)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(0,j))*ua1(0,j)/Ya

funh(0)=funh(0)+(ht/2.0d0)*fs(cb,vb,h1(0,j))*ub1(0,j)/Yb

funh(0)=funh(0)+D0*hr*tr(j,hr,thw,Dh)

t=tr(j ,hr,tse,Ds)

call rh2(m,S1(m,j),Sl(m,j-1),S1(m,j+1),rse,D1,hr,t,rhss(m))

funs(m)=1.0d0+(ht/2.0d0)*fs(cas,vas,s1(m,j))*ua1(m,j)/Yas

funs(m)=funs(m)+(ht/2.0d0)*fs(cbs,vbs,s1(m,j))*ub1(m,j)les

funs(m)=funs(m)+D 1 *hr*tr(j,hr,tsw,Ds)

t=tr(j ,hr,tqe,Dq)

'call rh2(m,q1(m,j),q1(m,j-1),ql(m,j+1),rqe,D4,hr,t,rhsq(m))

funq(m)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(m,j))*ua1(m,j)/Yaq

funq(m)=funq(m)+(ht/2.0d0)*fs(cbq,qu,q l (m,j))*ub 1(m,j)/qu

funq(m)=funq(m)+D4*hr*tr(j,hr,tqw,Dq)

t=tr(i ,hr,the,Dh)

call rh2(m,h1(m,j),h1(m,j-1),h1(m,j+1),rhe,DO,hr,t,rhsh(m))

funh(m)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(m,j))*ua1(m,j)/Ya

funh(m)=funh(m)+(ht/2.0d0)*fs(cb,vb,h1(m,j))*ub1(m,j)le

funh(m)=funh(m)+D0*hr*tr(j,hr,thw,Dh)

i=0

C Cell group a

a12=0.5d0*chemof1(DKas,S1(i+1,j))*ua1(i+1,j)

312=a12+0.5d0*chemof1(DKas,S l(i,j))*ua1(i,j)

b12=0.5d0*chemof1(DKas,S1(i,j+1))*ua1(i,j+l)

b12=b12+0.5d0*chemof1(DKas,S1(i,j))*ual(i,j)

b21=0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=b21+0.5d0*chemof1(DKas,S l(i,j-1))*ua1(i,j- l)

c12=0.5d0*chemof1(DKaq,q1(i+1,j))*ua1(i+1,j)

c12=c12+0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

d12=0.5d0*chemof1(DKaq,q1(i,j+1))*ua1(i,j+1)

d12=d12+0.5d0*chemof1(DKaq,q1(i,j))*ual(i,j)

d21=0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

d21=d21+0.5d0*chemof1(DKaq,q1(i,j-1))*ua1(i,j- 1)

rhsua(O)=ua1(0,j)+D2*(ua1(0,j+1)-ua1(0,j))

+D2*(ua1(0,j-1)-ua1(0,j))

rhsua(O)=rhsua(0)+(ht/2.0d0)*f(ca,va,h1(0,j))*ua1(0,j)

rhsua(O)=rhsua(0)—D3*a12*(s1(1,j)-sl(0,j))

rhsua(O)=rhsua(0)-D3*b12*(sl(0,j+1)-s1(0,j))

rhsua(O)=rhsua(0)-D3*b21*(s1(0,j—1)—s1(0,j))

rhsua(O)=rhsua(0)-D5*c12*(q 1 (1 ,j)-q1(0,j))
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rhsua(O)=rhsua(0)-D5*d12*(q1(0,J+1)-q1(0,j))

rhsua(O)=rhsua(0)-D5*d2] *(q1(0,j-1)-q1(0,j))

funua(0)=1.0d0

i=m

a21=0.5d0*chemof1(DKas,S 1(i,j))*ua1(i,j)

a21=a21+0.5d0*chemof1(DKas,S1(i-l,j))*ua1(i-1,j)

b12=0.5d0*chemof1(DKas,S1(i,j+1))*ua1(i,j+1)

b12=b12+0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=b21+0.5d0*chemof1(DKas,S1(i,j-l))*ua1(i,j-1)

c21=0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

c21=c21+0.5d0*chemof1(DKaq,ql(i-1,j))*ual(i-1,j)

d12=0.5d0*chemof1(DKaq,q1(i,j+1))*ua1(i,j+1)

d12=d12+0.5d0*chemof1 (DKaq,q] (i,j))*ual (i,j)

d21=O.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

d21=d21+0.5d0*chemof1(DKaq,q1(i,j-1))*ua1(i,j- 1)

rhsua(m)=ua1(m,j)+D2*(ua1(m,j+1)-ua1(m,j))

+D2*(ua1(m,j-1)—ua1(m,j))

rhsua(m)=rhsua(m)+(ht/2.0d0)*f(ca,va,hl(m,j))*ua1(m,j)

rhsua(m)=rhsua(m)-D3*a21*(sl(m—1,j)-s1(m,j))

rhsua(m)=rhsua(m)—D3*b12*(s1(m,j+1)-sl(m,j))

rhsua(m)=rhsua(m)-D3*b21 *(s 1(m,j- 1)-s 1(m,j))

rhsua(m)=rhsua(m)-D5*c2l*(q1(m-1,j)‘q1(m,j))

rhsua(m)=rhsua(m)-D5*d12*(q1(m,j+1)-q1(m,j))

rhsua(m)=rhsua(m)—D5*d21*(q1(m,j-l)-q1(m,j))

funua(i)=1.0d0

C Cell group b

a12=0.5d0*chemofl(DKbs,S 1(i+l,j))*ub1(i+1,j)

a12=a12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b12=0.5d0*chemof1(DKbs,S 1(i,j+ 1))*ub1(i,j+1)

b12=b12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=b21+0.5d0*chemof1(DKbs,S1(i,j-1))*ub1(i,j-1)

c12=0.5d0*chemof1(DKbq,q1(i+1,j))*ub1(i+1,j)

c12=c12+0.Sd0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d12=0.5d0*chemof1(DKbq,q1(i,j+1))*ub1(i,j+1)

d12=d12+0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=d21+0.5d0*chemof1(DKbq,ql(i,j-1))*ub1(i,j-1)

rhsub(0)=ub1(0,j)+D6*(ub1(0,j+1)-ub 1(0,j))

+D6*(ub1(0,j-1)-ub1(0,j))
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rhsub(0)=rhsub(0)+(ht/2.0d0)*f(Cb,Vb,h1(0,j))*ub1(OJ)

rhsub(0)=rhsub(0)-D7*a12*(s1(1,j)—sl(O,J))

rhsub(0)=rhsub(0)-D7*b 1 2*(s 1 (0,j+1 )-s 1 (0,j))

rhsub(0)=rhsub(0)—D7*b21 *(sl(0,j-1)-s 1(0,j))

rhsub(0)=rhsub(0)-D8*c12*(q1(1,j)-q1(0,j))

rhsub(0)=rhsub(O)-D8*d12*(q 1 (0,j+ 1 )-q 1 (0,j))

rhsub(0)=rhsub(0)-D8 *d2] *(q1(0,j-1)-q1(0,j))

funub(0)=1 .OdO

i=m

a21=0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

a21=a21+0.5d0*chemof1(DKbs,S1(i-1,j))*ub1(i-l ,j)

b12=0.5d0*chemof1(DKbs,S1(i,j+1))*ub1(i,j+l)

b12=b12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=b21+0.5d0*chemof1(DKbs,S1(i,j-1))*ub1(i,j-l)

c21=0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

c21=c21+0.5d0*chemof1(DKbq,q1(i-1,j))*ub1(i-1,j)

d12=0.5d0*chemof1(DKbq,q1(i,j+1))*ub1(i,j+1)

d12=d12+0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=0.5d0*chemof1(DKbq,q1(i,j))*ubl(i,j)

d21=d21+0.5d0*chemof1(DKbq,q1(i,j-1))*ub1(i,j-1)

rhsub(m)=ub1(m,j)+D6*(ubl(m,j+l)-ub1(m,j))

+D6*(ub1(m,j-1)—ub1(m,j))

rhsub(m)=rhsub(m)+(ht/2.0d0)*f(cb,vb,h1(m,j))*ub 1 (m,j)

rhsub(m)=rhsub(m)-D7*a21*(sl(m-1,j)-s l(m,j))

rhsub(m)=rhsub(m)—D7*b12*(s1(m,j+1)—sl(m,j))

rhsub(m)=rhsub(m)-D7*b21*(s1(m,j-1)—sl(m,j))

rhsub(m)=rhsub(m)-D8*c21*(q1(m—1,j)-q1(m,1))

rhsub(m)=rhsub(m)-D8*d12*(q1(m,j+1)-q1(m,j))

rhsub(m)=rhsub(m)-D8*d2l *(q1(m,j-1)-q1(m,j))

funub(i)=1.0d0

 

do 1040 i=1,m—1

rhss(i)=S1(i,j)+Dl*(S1(i,j+1)-2.0d0*Sl(i,j)+S1(i,j—1))

funs(i)=1.0d0+(ht/2.0d0)*fs(cas,vas,s1(i,j))*ual(i,j)/Yas

funs(i)=funs(i)+(ht/2.0d0)*fs(cbs,vbs,s1(i,j))*ub1(i,j)/Ybs

rhsq(i)=q1(i,j)+D4*(q1(i,j+l)~2.0d0*q1(i,j)+q1(i,j-1))

funq(i)=1.0d0+(ht/2.0d0)*fs(caq,vaq,q1(i,j))*ua1(i,j)/Yaq

funq(i)=funq(i)+(ht/2.0d0)*fs(cbq,qu,q1(i,j))*ub1(i,j)/qu

rhsh(i)=h1(i,j)+D0*(h1(i,j+1)-2.0d0*h1(i,j)+h1(i,j-1))

funh(i)=1.0d0+(ht/2.0d0)*fs(ca,va,h1(i,j))*ual(i,j)/Ya
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funh(i)=funh(i)+(ht/2.0d0)*fs(cb,vb,h1(i,j))*ubl (1,j)/Yb

C Cell group a

a12=0.5d0*chemofl(DKas,S 1(i+1,j))*ua1(1+1,j)

a12=a12+0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

a21=0.5d0*chemof1(DKas,S 1(i,j))*ua1(i,j)

a21=a21+0.5d0*chemof1(DKas,S1(i-1,j))*ua1(1~1,j)

b12=0.5d0*chemof1(DKas,S1(i,j+1))*ua1(i,j+1)

b12=b12+0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=b21+0.5d0*chemof1(DKas,S l(i,j-l))*ua1(i,j- 1)

c12=0.5d0*chemof1(DKaq,q1(i+1 ,j))*ual (1+1 ,j)

c12=ch+0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

c2 l=0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

c21=c21+0.5d0*chemofl(DKaq,q1(i-1,j))*ua1(i-1,j)

d12=0.5d0*chemof1(DKaq,ql(i,j+1))*ual(i,j+1)

d12=d12+0.5d0*chemof1(DKaq,q1(i,j))*ua1(i,j)

d21=0.5d0*chemof1 (DKaq,q1(i,j))*ua1(i,j)

d21=d21+0.5d0*chemof1 (DKaq,q1(1,j-1))*ua1(1,j- 1)

rhsua(i)=ua1(i,j)+D2*(ua1(1,j+1)-ua1(i,j))

* +D2*(ua1(i,j-1)-ua1(1,j))

rhsua(i)=rhsua(i)+(ht/2.0d0)*f(ca,va,h 1 (1,j))*ua1(1,j)

rhsua(i)=rhsua(i)-D3*a12*(sl (1+1 ,j)-s 1 (i,j))

rhsua(i)=rhsua(i)-D3*a21*(sl(i-1,j)-sl(i,j))

rhsua(i)=rhsua(i)-D3*b12*(sl(i,j+1)—sl (i,j))

rhsua(i)=rhsua(i)-D3*b21 *(s 1(i,j-1)—sl(i,j))

rhsua(i)=rhsua(i)-D5*c12*(q1(i+1,j)—ql(i,j))

rhsua(i)=rhsua(i)-D5*021*(q1(i-1,j)-q1(i,j))

rhsua(i)=rhsua(i)-D5*d12*(q1(i,j+1)~q1(i,j))

rhsua(i)=rhsua(i)-D5*d21*(ql(i,j-1)-q1(i,j))

funua(i)=l .0d0

C Cell group b

a12=0.5d0*chemof1(DKbs,S 1 (i+1,j))*ub1(i+1,j)

a12=a12+0.5d0*chemof1(DKbs,S 1 (i,j))*ubl(i,j)

a21=0.5d0*chemofl(DKbs,S1(i,j))*ub1(i,j)

a21=a21+0.5d0*chemof1(DKbs,S1(i-1,j))*ub1(i-1,j)

b12=0.5d0*chemof1(DKbs,S1(i,j+1))*ub1(i,j+1)

b12=b12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(1,j)

b21=0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=b21+0.5d0*chemofl(DKbs,S 1(i,j-1))*ub1(i,j— 1)

ch=0.5dO*chemof1(DKbq,q1(i+1,j))*ub1(i+1,j)

c12=c12+0.5d0*chemof1(DKbq,q1(i,j))*ub](i,j)

021=0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

c21=c21+0.5d0*chemof1(DKbq,q1(1-1,j))*ub1(i~1,j)

d12=0.5d0*chemofl(DKbq,q1(i,j+1))*ub1(i,j+1)
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d12=d12+0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=d21+0.5d0*chemof1(DKbq,q1(i,j-1))*ub1(i,j-1)

rhsub(i)=ub1(i,j)+D6*(ub1(i,j+1)-ub1(i,j))

* +D6*(ub1(i,j-l)-ub1(1,j))

rhsub(i)=rhsub(i)+(ht/2.0d0)*f(cb,vb,h 1 (i,j))*ub 1 (1,j)

rhsub(i)=rhsub(i)-D7*a12*(s 1(i+1,j)-s 1(i,j))

rhsub(i)=rhsub(1)-D7*a21*(sl(i-1,j)-sl(i,j))

rhsub(i)=rhsub(i)—D7*bl2*(s1(i,j+1)-sl(i,j))

rhsub(i)=rhsub(i)—D7*b2l *(s 1(i,j—1)-sl(i,j))

rhsub(i)=rhsub(i)-D8*c12*(q1(i+1,j)-q1(i,j))

rhsub(i)=rhsub(1)-D8*c21*(q1(1-1,j)-q1(1,j))

rhsub(i)=rhsub(i)-D8*d12*(q1(i,j+1)-q1(1,j))

rhsub(i)=rhsub(i)-D8*d21*(q1(i,j-1)-q1(i,j))

funub(i)= l .0d0

C

1040 continue

C

call PDMTRIX(m,D 1 ,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRD((m,D0,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

call PDMTRIX(m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRIX(m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1045 i=0,m

82(i,j)=us(i)

q2(i,j)=uq(i)

h2(i,j)=uh(i)

ua2(i,j)=uua(1)

ub2(i,j)=uub(i)

1045 continue

1050 confinue

C

C implicit in y direction:

C

do 1055 i=0,m

do 1056 j=0,m

s 1(i,j>=82(i,j>

ql (i,j)=q2(i,j)

h1(i,j)=h2(i,j)
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ual(1,j)=ua2(i,j)

ub1(i,j)=ub2(1,j)

1056 continue

1055 continue

C

C take care of boundary points:

C

i=0

C

rhss(0)=S 1(0,0)+D1*(S 1(1,0)-S 1(0,0))

rhss(0)=rhss(O)-(ht/2.0d0)*f(cas,vas,s1(0,0))*ua1(0,0)/Yas

rhss(0)=rhss(0)-(ht/2.0d0)*f(cbs,vbs,s1(0,0))*ub1(0,0)/Ybs

funs(0)=1 .0d0

rhsq(O)=q1(0,0)+D4*(q1(1,0)-q1(0,0))

rhsq(0)=rhsq(0)-(ht/2.0dO)*f(caq,vaq,q1(0,0))*ua1(0,0)/Yaq

rhsq(0)=rhsq(0)-(ht/2.0d0)*f(cbq,qu,q1(0,0))*ub1(0,0)/qu

funq(0)=1 .0d0

rhsh(0)=h1(0,0)+D0*(h1(1,0)-h1(0,0))

rhsh(0)=rhsh(0)-(ht/2.0dO)*f(ca,va,h1(0,0))*ua1(0,0)/Ya

rhsh(0)=rhsh(0)-(ht/2.0d0)*f(cb,vb,h1(0,0))*ub1(0,0)/Yb

funh(0)= 1 .0d0

rhss(m)=S1(0,m)+D1*(S1(1,m)-Sl(0,m))

rhss(m)=rhss(m)-(ht/2.0d0)*f(cas,vas,s1(0,m))*ua1(0,m)/Yas

rhss(m)=rhss(m)-(ht/2.0d0)*f(cbs,vbs,s1(0,m))*ub1(0,m)/Ybs

funs(m)=1.0d0

rhsq(m)=q](0,m)+D4*(q1(1,m)-q1(0,m))

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(caq,vaq,q1(0,m))*ua1(0,m)/Yaq

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(cbq,qu,q1(0,m))*ub 1(0,m)leq

funq(m)=l .OdO

rhsh(m)=hl(0,m)+D0*(h1(1,m)-h1(0,m))

rhsh(m)=rhsh(m)—(ht/2.0dO)*f(ca,va,h1(0,m))*ual (0,m)/Ya

rhsh(m)=rhsh(m)-(ht/2.0d0)*f(cb,vb,h1(0,m))*ub1(0,m)/Yb

funh(m)= l .0d0

C Cell group a

a12=0.5d0*chemofl(DKas,S 1(1,0))*ua1 (1,0)

a12=a12+0.5d0*chemof1(DKas,S1(0,0))*ua1(0,0)

b12=0.5d0*chemof1(DKas,S 1(0,1))*ua1(0, 1)

b12=b12+0.5d0*chemof1(DKas,S1(0,0))*ua1(0,0)

c12=0.5d0*chemof1(DKaq,q1(1,0))*ua1(1,0)

c12=c12+0.5d0*chemof1(DKaq,q1(0,0))*ua1(0,0)

d12=0.5d0*chemof1(DKaq,q1(0,1))*ua1(0, 1)

d12=d12+0.5d0*chemof1(DKaq,q1(0,0))*ua1(0,0)

rhsua(O)=ua1(0,0)+D2*(ua1(1,0)-ua1(0,0))

rhsua(O)=rhsua(0)+(ht/2.0dO)*f(ca,va,h1(0,0))*ua1 (0,0)
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rhsua(O)=rhsua(0)-D3*a12*(8 1(1 ,0)-s1(0,0))

rhsua(O)=rhsua(0)-D3*b 12*(S 1(0, 1)-s 1 (0,0))

rhsua(O)=rhsua(0)-D5*c12*(q1(1,0)-q1(0,0))

rhsua(O)=rhsua(0)-D5*d12*(q1 (0, 1)-q1(0,0))

funua(0)=1 .0d0

a12=0.5d0*chemofl(DKas,S1(1,m))*ua1(1,m)

a12=a12+0.5d0*chemof1(DKas,S l(0,m))*ua1(0,m)

b21=0.5d0*chemof1(DKas,S1(0,m-1))*ua1(0,m-1)

b21=b21+0.5d0*chemof1(DKas,S1(0,m))*ua1(0,m)

c12=0.5d0*chemof1(DKaq,q1(1,m))*ua1(1,m)

012=c12+0.5d0*chemof1(DKaq,q1(0,m))*ua1(0,m)

d21=0.5d0*chemof1(DKaq,ql (0,m— 1))*ua1(0,m- 1)

d21=d21+0.5d0*chemof1(DKaq,q1(0,m))*ua1(0,m)

rhsua(m)=ua1(0,m)+D2*(ua1 (1 ,m)-ua1(0,m))

rhsua(m)=rhsua(m)+(ht/2.0d0)*f(ca,va,h1(0,m))*ua1(0,m)

rhsua(m)=rhsua(m)-D3*al2*(s 1 (1,m)-s 1(0,m))

rhsua(m)=rhsua(m)-D3*b21*(sl(O,m—1)—s1(0,m))

rhsua(m)=rhsua(m)—D5*c12*(q1(1,m)-q1(0,m))

rhsua(m)=rhsua(m)-D5*d21*(q1(0,m-l)—q1(0,m))

funua(m)=1.0d0

C

C Cell group b

a12=0.5d0*chemof1 (DKbs,S 1(1,0))*ub 1 (1 ,0)

a12=a12+0.5d0*chemof1(DKbs,S1(0,0))*ub1(0,0)

b12=0.5d0*chemof1(DKbs,S1(0,1))*ub1(0,1)

b12=b12+0.5d0*chemof1(DKbs,S 1(0,0))*ub1(0,0)

c12=0.5d0*chemof1(DKbq,ql(1,0))*ub1(1,0)

c12=c12+0.5d0*chemof1(DKbq,q1(0,0))*ub1(0,0)

d12=0.5d0*chemof1(DKbq,q1(0, l))*ub1(0,1)

d12=d12+0.5d0*chemof1(DKbq,q1(0,0))*ub1(0,0)

rhsub(0)=ub1(0,0)+D6*(ub1(1,0)-ub1(0,0))

rhsub(0)=rhsub(0)+(ht/2.0d0)*f(cb,vb,h1(0,0))*ub1(0,0)

rhsub(0)=rhsub(0)-D7*a12*(s1(1,0)-sl(0,0))

rhsub(0)=rhsub(0)-D7*b12*(S1(0,1)-sl(0,0))

rhsub(0)=rhsub(0)-D8*c 12*(q1(1,0)-q1(0,0))

rhsub(0)=rhsub(0)-D8*d12*(q1(0,1)-q1(0,0))

funub(0)=1.0d0

a12=0.5d0*chemofl(DKbs,S l(1,m))*ub1(1,m)

312=a12+0.5d0*chemof1(DKbs,S1(0,m))*ub1(0,m)

b21=0.5d0*chemof1(DKbs,S1(0,m—1))*ub1(0,m-1)

b21=b21+0.5d0*chemof1(DKbs,S1(0,m))*ub1(0,m)

c12=0.5d0*chemof1(DKbq,ql(1,m))*ub1(1,m)
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c12=c12+0.5d0*chemof1(DKbq,q1(O,m))*ub1(0,m)

d21=0.5d0*chemof1(DKbq,q1(0,m—1))*ub1(0,m- 1)

d21=d21+0.5d0*chemof1(DKbq,q1(0,m))*ub1(0,m)

rhsub(m)=ub1(0,m)+D6*(ub1 (1 ,m)-ub 1(0,m))

rhsub(m)=rhsub(m)+(ht/2.0d0)*f(cb,vb,h1(0,m))*ub1(0,m)

rhsub(m)=rhsub(m)-D7*a12*(s 1 (1 ,m)-s1(0,m))

rhsub(m)=rhsub(m)-D7*b21 *(s 1(0,m-1)—s 1 (0,m))

rhsub(m)=rhsub(m)—D8*c12*(q1( 1 ,m)-q1(0,m))

rhsub(m)=rhsub(m)-D8*d21*(q1(0,m-1)-q1(0,m))

funub(m)=1 .0d0

do 1060 j=1,m-1

t=tr(j ,hr,tsw,Ds)

call rhbound(m,S1(0,j),Sl(1,j),rsw,D1,hr,t,rhss(j))

rhss(j)=rhss(j)-(ht/2.0d0)*f(cas,vas,s 1 (0,j))*ua1(0,j)/Yas

rhss(i)=rhss(j)-(ht/2.0d0)*f(cbs,vbs,s l(0,j))*ub 1(0,j)/Ybs

funs(0)=1.0d0

t=tr(j ,hr,tqw,Dq)

call rhbound(m,q](0,j),q1(1,j),rqw,D4,hr,t,rhsqG))

rhsq(j)=rhsq(j)-(ht/2.0d0)*f(caq,vaq,q1(0,j))*ua1(0,j)lYaq

rhsq(j)=rhsq(j)-(ht/2.0d0)*f(cbq,qu,q1(0,j))*ub1 (0,j)leq

funq(0)=1 .Od0

t=tr(j ,hr,thw,Dh)

call rhbound(m,h1(0,j),h1(1,j),rhw,D0,hr,t,rhsh(i))

rhsh(i)=rhsh(j)—(ht/2.0d0)*f(ca,va,h1(0,j))*ua1(0,j)/Ya

rhsh(i)=rhsh(j)-(ht/2.0d0)*f(cb,vb,h1(0,j))*ub1(0,j)/Yb

funh(0)=1.0d0

C Cell group a

a12=0.5d0*chemofl(DKas,S1(1,j))*ua1(l,j)

a12=a12+0.5d0*chemof1(DKas,S1(0,j))*ua1(0,j)

b12=0.5d0*chemof1(DKas,S1(0,j+1))*ua1(0,j+1)

b12=b 12+0.5d0*chemof1(DKas,S 1 (0,j))*ua1(0,j)

b21=0.5d0*chemof1(DKas,S1(0,j-1))*ua1(0,j-1)

b21=b21+0.5d0*chemof1 (DKas,S 1(0,j))*ua1(0,j)

c12=0.5d0*chemof1(DKaq,q1(i,j))*ua1(1,j)

cl2=c12+0.5d0*chemof1(DKaq,q1(0,j))*ua1(0,j)

d12=0.5d0*chemof1(DKaq,ql(0,j+1))*ua1(0,j+1)

d12=d12+0.5d0*chemof1(DKaq,q1(0,j))*ua1(0,j)

d21=0.5d0*chemof1(DKaq,q1(0,j-1))*ua1(0,j-1)

d21=d21+0.5d0*chemof1(DKaq,q1(0,j))*ua1(0,j)

rhsua(i)=ua1(0,j)+D2*(ua1(1,j)—ua1(0,j))

rhsua(i)=rhsua(j)+(ht/2.0d0)*f(ca,va,h1(0,j))*ua1(0,j)

rhsua(j)=rhsua(j)-D3*a12*(s1 (1 ,j)—sl(0,j))
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rhsua(i)=rhsua(i)-D3*b12*(S1(0,j+1)-s1(0,j))

rhsua(i)=rhsua(i)-D3*b21*(S1(0,j-1)-sl(0,j))

rhsua(i)=rhsua(i)-D5*012*(q1(1,j)-q1(0,j))

rhsua(i)=rhsua(i)-D5*d12*(q1(0,j+1)-q1(0,j))

rhsua(i)=rhsua(j)-D5*d21*(ql(0,j-1)-q1(0,j))

funua(i)=1.0d0

C

C Cell group b

a12=0.5d0*chemofl(DKbs,S 1(1,j))*ub1(1,j)

a12=a12+0.5d0*chemof1(DKbs,S 1 (0,j))*ub1(0,j)

b12=0.5d0*chemof1(DKbs,S1(0,j+1))*ub1(0,j+1)

b12=b12+0.5d0*chemof1(DKbs,S l(0,j))*ub1(0,j)

b21=0.5d0*chemof1(DKbs,S1(0,j-1))*ub1(0,j-1)

b21=b21+0.5d0*chemof1(DKbs,S l(0,j))*ub1(0,j)

012:0.5d0*chemof1(DKbq,q1(1,j))*ub1(1,j)

c 12=c12+0.5d0*chemof1(DKbq,q1(0,j))*ub1(0,j)

d12=0.5d0*chemof1(DKbq,q1(0,j+1))*Ub1(0,j+1)

d12=d12+0.5d0*chemof1(DKbq,ql (0,j))*ub1(0,j)

d21=0.5d0*chemof1(DKbq,q1(0,j-1))*ub1(0,j-1)

d21=d21+0.5d0*chemof1(DKbq,q1(0,j))*ub1(0,j)

rhsub(i)=ub1(0,j)+D6*(ub1(1,j)-ub1(0,j))

rhsub(i)=rhsub(j)+(ht/2.0d0)*f(cb,vb,h1(0,j))*ub1(0,j)

rhsub(i)=rhsub(i)—D7*a12*(s1(1,j)-81(0,j))

rhsub(i)=rhsub(j)-D7*b12*(S 1(0,j+1)-s 1 (0,j))

rhsub(i)=rhsub(j)-D7*b21*(S1(0,j-1)—sl(0,j))

rhsub(i)=rhsub(j)-D8*c12*(q1(1,j)—q1(0,j))

rhsub(i)=rhsub(j)-D8*d12*(q1(0,j+1)—q1(0,j))

rhsub(i)=rhsub(j)-D8*d21*(q1(0,j-1)—q1(0,j))

funub(j)=1.0d0

1060 continue

C

 
 

call PDMTRD((m,D1,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRD((m,D0,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh)

call PDMTRIX(m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRIX(m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1065 j=0,m

82(Oaj)=u8(i)

q2t0,j)=uq(i)
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C

C
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h2<0.j>=uho>

ua2(0,j)=uua(j)

ub2(0,j)=uub(j)

continue

i=m

rhss(0)=Sl(m,0)+D1*(S 1(m—1,0)-S 1(m,0))

rhss(0)=rhss(0)-(ht/2.0d0)*f(cas,vas,s 1(m,0))*ua1 (m,0)lYas

rhss(0)=rhss(0)-(ht/2.0d0)*f(cbs,vbs,s1(m,0))*ub1(m,0)les

funs(0)=1 .0d0

rhsq(0)=q1(m,0)+D4*(q1(m-1,0)—q1(m,0))

rhsq(0)=rhsq(0)-(ht/2.0d0)*f(caq,vaq,q1(m,0))*ua1(m,0)/Yaq

rhsq(0)=rhsq(0)—(ht/2.0d0)*f(cbq,qu,q1(m,0))*ub1(m,0)leq

funq(0)=1 .OdO

rhsh(0)=h1(m,0)+DO*(h1(m-1,0)-h1(m,0))

rhsh(0)=rhsh(0)-(ht/2.0d0)*f(ca,va,h l (m,0))*ua1 (m,0)/Ya

rhsh(0)=rhsh(0)-(ht/2.0d0)*f(cb,vb,h1(m,0))*ub1(m,0)/Yb

funh(0)=1 .0d0

rhss(m)=S 1(m,m)+D1 *(S 1(m-1,m)—S 1(m,m))

rhss(m)=rhss(m)~(ht/2.0d0)*f(cas,vas,s 1 (m,m))*ual (m,m)/Yas

rhss(m)=rhss(m)—(ht/2.0d0)*f(cbs,vbs,s1(m,m))*ub1(m,m)/Ybs

funs(m)=1.0d0

rhsq(m)=q1(m,m)+D4*(ql(m-1,m)-q1(m,m))

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(caq,vaq,q1(m,m))*ua1(m,m)/Yaq

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(cbq,qu,q1(m,m))*ub1(m,m)/qu

funq(m)= l .0d0

rhsh(m)=hl(m,m)+D0*(h1(m-1,m)—h1(m,m))

rhsh(m)=rhsh(m)-(ht/2.0d0)*f(ca,va,h1(m,m))*ual (m,m)/Ya

rhsh(m)=rhsh(m)-(ht/2.0d0)*f(cb,vb,hl (m,m))*ubl(m,m)le

funh(m)=1 .0d0

C Cell group a

a21=0.5d0*chemof1(DKas,S1(m-1,0))*ua1(m-1,0)

a21=a2l+0.5d0*chemof1(DKas,S 1(m,0))*ual(m,0)

b12=0.5d0*chemof1(DKas,S1(m,1))*ua1(m,1)

b12=bl2+0.5d0*chemof1(DKas,S 1(m,0))*ua1(m,0)

021:0.5d0*chemof1(DKaq,q1(m—1,0))*ua1(m—1,0)

c21:021+0.5d0*chemofl(DKaq,q1(m,0))*ua1(m,0)

d12=0.5d0*chemof1(DKaq,ql (m, 1))*ua1(m, 1)

d12=d12+0.5d0*chemof1(DKaq,q1(m,0))*ua1(m,0)

rhsua(O)=ua1(m,0)+D2*(ua1(m-1,0)-ua1(m,0))

rhsua(O)=rhsua(0)+(ht/2.0d0)*f(ca,va,h1(m,0))*ua1(m,0)

rhsua(O)=rhsua(0)—D3 *a21 *(s 1(m— 1 ,0)-sl(m,0))

rhsua(O)=rhsua(0)-D3*b12*(S 1(m, 1)-s 1(m,0))
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rhsua(O)=rhsua(0)-D5*c21 *(q1(m- 1,0)-q1(m,0))

rhsua(O)=rhsua(0)-D5*d12*(q1(m, 1)-q1 (m,0))

funua(0)= 1 .OdO

a21=0.5d0*chemof1(DKas,S1(m-1,m))*ua1(m—1,m)

a21=a21+0.5d0*chemof1(DKas,S1(m,m))*ua1(m,m)

b21=0.5d0*chemofl(DKas,S 1(m,m— l ))*ual (m,m— 1)

b21=b21+0.5d0*chemof1(DKas,S 1(m,m))*ua1(m,m)

c2l=0.5d0*chemof1(DKaq,ql(m-1,m))*ual(m-1,m)

c21=c21+0.5d0*chemof1(DKaq,q1(m,m))*ual(m,m)

d21=0.5d0*chemof1(DKaq,q1(m,m-1))*ua1(m,m-1)

d21=d21+0.5d0*chemof1(DKaq,q1(m,m))*ua1(m,m)

rhsua(m)=ua1(m,m)+D2*(ua1(m-1,m)-ua1(m,m))

rhsua(m)=rhsua(m)+(ht/2.0d0)*f(ca,va,h1(m,m))*ua1(m,m)

rhsua(m)=rhsua(m)-D3*a21 *(sl(m-1,m)-sl(m,m))

rhsua(m)=rhsua(m)-D3*b21*(sl(m,m—1)—sl(m,m))

rhsua(m)=rhsua(m)-D5*c21*(q1(m—l,m)-q1(m,m))

rhsua(m)=rhsua(m)—D5*d21*(q1(m,m—l)-ql(m,m))

funua(m)=1.0d0

C

C Cell group b

a21=0.5d0*chemof1(DKbs,S 1(m-1,0))*ub1(m—1,0)

a21=a21+0.5d0*chemof1(DKbs,S 1(m,0))*ub1(m,0)

b 12=0.5d0*chemof1(DKbs,S 1(m, 1))*ub1(m, 1)

b12=b12+0.5d0*chemof1(DKbs,S1(m,0))*ub1(m,0)

c21=0.5d0*chemof1(DKbq,ql(m-1,0))*ub1(m—1,0)

c21:021+0.5d0*chemof1(DKbq,q1(m,0))*ub1(m,0)

d12=0.5d0*chemof1(DKbq,q1(m, 1))*ub1(m,1)

d12=d12+0.5d0*chemof1(DKbq,ql(m,0))*ub1 (m,0)

rhsub(0)=ub1(m,0)+D6*(ub](m—1,0)-ub1(m,0))

rhsub(0)=rhsub(0)+(ht/2.0d0)*f(cb,vb,h1(m,0))*ub1(m,0)

rhsub(0)=rhsub(0)-D7*a21 *(s 1(m—l ,0)-s 1(m,0))

rhsub(0)=rhsub(0)-D7*b12*(S 1(m, 1)-s 1(m,0))

rhsub(0)=rhsub(0)-D8*c21*(ql(m—1,0)-q1(m,0))

rhsub(0)=rhsub(0)-D8*d12*(q1(m,1)-q1(m,0))

funub(0)==l .0d0

a21=0.5d0*chemof1(DKbs,S1(m-1,m))*ub1(m-1,m)

a21=a21+0.5d0*chemof1(DKbs,S1(m,m))*ubl(m,m)

b21=0.5d0*chemof1(DKbs,S1(m,m—1))*ub1(m,m-l)

b21=b21+0.5d0*chemof1(DKbs,S l(m,m))*ub1(m,m)

c21=0.5d0*chemof1(DKbq,q1(m-1,m))*ubl(m—1,m)
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c21=c2l+0.5d0*chemof1(DKbq,q1(m,m))*ub1(m,m)

d21=0.5d0*chemof1(DKbq,q1(m,m-1))*ub1(m,m—1)

d21=d21+0.5d0*chemof1(DKbq,ql(m,m))*ub1(m,m)

rhsub(m)=ub1(m,m)+D6*(ub1(m-1 ,m)-ub1(m,m))

rhsub(m)=rhsub(m)+(ht/2.0d0)*f(cb,vb,h1(m,m))*ub 1(m,m)

rhsub(m)=rhsub(m)—D7*a21*(s1(m-1,m)-s1(m,m))

rhsub(m)=rhsub(m)-D7*b21 *(s 1(m,m—1)—s 1(m,m))

rhsub(m)=rhsub(m)-D8*c21*(q1(m-1,m)-q1(m,m))

rhsub(m)=rhsub(m)-D8*d2 1 *(q 1 (m,m- 1)-q 1 (m,m))

funub(m)=1.0d0

do 1070 j=1,m-1

t=tr(i ,hr,tse,Ds)

call rhbound(m,S 1(m,j),S 1(m-1,j),rse,D1,hr,t,rhss(i))

rhss(i)=rhss(j)-(ht/2.0d0)*f(cas,vas,s1(m,j))*ual(m,j)/Yas

rhss(i)=rhss(i)-(ht/2.0d0)*f(cbs,vbs,s1(m,j))*ub1(m,j)/Ybs

funs(0)=1 .0d0

t=tr(j ,hr,tqe,Dq)

call rhbound(m,ql(m,j),ql(m—1,j),rqe,D4,hr,t,rhsq(i))

rhsq(j)=rhsqG)-(ht/2.0d0)*f(caq,vaq,q1(m,j))*ua1(m,j)/Yaq

rhsq(j)=rhsq(j)-(ht/2.0d0)*f(cbq,qu,q1(m,j))*ub1(m,j)/qu

funq(0)=1 .0d0

t=tr(j ,hr,the,Dh)

call rhbound(m,hl(m,j),h1(m—1,j),rhe,D0,hr,t,rhsh(j))

rhsh(j)=rhsh(j)-(ht/2.0d0)*f(ca,va,h1(m,j))*ua1(m,j)/Ya

rhsh(j)=rhsh(j)-(ht/2.0d0)*f(cb,vb,h1(m,j))*ub1(m,j)/Yb

funh(0)=l .0d0

C Cell group a

a21=0.5d0*chemof1(DKas,S1(m-1,j))*ua1(m—1,j)

a21=a21+0.5d0*chemof1(DKas,S1(m,j))*ua1(m,j)

b12=0.5d0*chemof1(DKas,S1(m,j+1))*ual(m,j+1)

b12=b12+0.5d0*chemof1(DKas,S1(m,j))*ua1(m,j)

b21=0.5d0*chemof1(DKas,S 1(m,j- 1))*ua1(m,j- 1)

b21=b21+O.5d0*chemof1(DKas,S1(m,j))*ua1(m,j)

c21=0.5d0*chemof1(DKaq,q1(m-1,j))*ua1(m-1,1)

c21=c2l+0.5d0*chemof1(DKaq,ql (m,j))*ual(m,j)

d12:0.5d0*chemof1(DKaq,ql(m,j+1))*ua1(m,j+1)

d12=d12+0.5d0*chemof1(DKaq,ql (m,j))*ua1(m,j)

d21=0.5d0*chemof1(DKaq,q1(m,j-1))*ua1(m,j-1)

d21=d21+0.5d0*chemof1(DKaq,ql(m,j))*ua1(m,j)

rhsua(i)=ua](m,j)+D2*(ua1(m-1,j)—ua1(m,j))

rhsua(i)=rhsua(j)+(ht/2.0d0)*f(ca,va,h1(m,j))*ua1(m,j)

rhsua(i)=rhsua(j)-D3*a21*(sl(m—1,j)-sl(m,j))
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rhsua(i)=rhsua(j)-D3*b12*(S1(m,j+1)-s1(m,j))

rhsuafi)=rhsua(j)-D3*b21*(S1(m,j-1)-s1(m,j))

rhsua(i)=rhsuaG)-D5*c21*(q1(m—1,j)-q1(m,j))

rhsua(i)=rhsua(i)-D5*d12*(q1(m,j+1)-q1(m,j))

rhsua(i)=rhsua(j)-D5*d21*(q1(m,j-1)-ql(m,j))

funua(i)=1 .0d0

C

C Cell group b

a21=0.5d0*chemof1(DKbs,Sl(m—1,j))*ub1(m-1,j)

a21=a21+0.5d0*chemof1(DKbs,S1(m,j))*ub1(m,j)

b12=0.5d0*chemof1(DKbs,S l(m,j+1))*ub1(m,j+1)

b12=b12+0.5d0*chemof1(DKbs,S1(m,j))*ub1(m,j)

b21=0.5d0*chemofl(DKbs,S 1(m,j-1))*ub 1(m,j-1)

b21=b21+0.5d0*chemof1(DKbs,S1(m,j))*ub1(m,j)

c21=0.5d0*chemof1(DKbq,ql(m-1 ,j))*ub1(m-1,j)

c21=c21+0.5d0*chemof1(DKbq,q1(m,j))*ubl (m,j)

d12=0.5d0*chemof1(DKbq,q1(m,j+1))*ub1(m,1+1)

d12=d12+0.5d0*chemof1(DKbq,q1 (m,j))*ub 1(m,j)

d21=0.5d0*chemof1(DKbq,q1(m,j-1))*ub1(m,j-1)

d21=d2 1+0.5d0*chemof1 (DKbq,q1(m,j))*ub1(m,j)

rhsub(i)=ub1(m,j)+D6*(ub1(m-1,j)—ub1(m,j))

rhsub(i)=rhsub(j)+(ht/2.0d0)*f(cb,vb,h1 (m,j))*ub 1 (m,j)

rhsub(j)=rhsub(j)-D7*a21*(sl(m—1,j)-sl(m,j))

rhsub(j)=rhsub(j)-D7*b12*(S 1(m,j+1)-s 1 (m,j))

rhsub(i)=rhsub(i)-D7*b21*(S1(m,j-1)-s1(m,j))

rhsub(j)=rhsub(j)-D8*c21*(q1(m-1,j)-q1(m,j))

rhsub(i)=rhsub(i)—D8*d12*(q1(m,j+1)-q1(m,j))

rhsub(i)=rhsub(j)-D8*d21*(q1(m,j-1)-q1(m,l))

funub(i)= 1 .0d0

1070 continue

C

 

  

call PDMTRIX(m,D1,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRIX(m,D4,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRD((m,DO,funh,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsh,uh) '

call PDMTRIX(m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRIX(m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1075 j=0,m

sztm.j)=uso)

q2(m,j)=uq(i)
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h2(m,j)=uh(i)

ua2(m,j)=uua(j)

ub2(m,j)=uub0')

1075 continue

 

C take care of interior points:

C

do 1090 i=1,m-1

C

t=tr(i,hr,tss,Ds)

call rh2(m,S1(1,0),Sl(i—1,0),S1(i+1,0),rss,D1,hr,t,rhss(0))

rhss(O)=rhss(0)-(ht/2.0d0)*f(cas,vas,s 1 (1,0))*ua1 (1,0)/Yas

rhss(0)=rhss(0)-(ht/2.0dO)*f(cbs,vbs,s1(1,0))*ub1(1,0)/Ybs

funs(0)=l .0d0+D1*hr*tr(i,hr,tss,Ds)

t=tr(i,hr,tqs,Dq)

call rh2(m,q1(i,0),q1(i-1,0),q1(i+1,0),rqs,D4,hr,t,rhsq(0))

rhsq(0)=rhsq(O)-(ht/2.0d0)*f(caq,vaq,q1(i,0))*ua1(1,0)/Yaq

rhsq(0)=rhsq(0)-(ht/2.0d0)*f(cbq,qu,q1(1,0))*ub1(1,0)/qu

funq(0)=1.0d0+D4*hr*tr(i,hr,tqs,Dq)

t=tr(i,hr,ths,Dh)

call rh2(m,h1(i,0),h1(1-1,0),h1(i+1,0),rhs,D0,hr,t,rhsh(0))

rhsh(0)=rhsh(0)-(ht/2.0d0)*f(ca,va,h 1 (i,0))*ua1 (1,0)/Ya

rhsh(0)=rhsh(0)-(ht/2.0dO)*f(cb,vb,h1 (i,0))*ub1 (1,0)/Yb

funh(0)=1 .0d0+D0*hr*tr(i,hr,ths,Dh)

t=tr(i,hr,tsn,Ds)

call rh2(m,S1(i,m),Sl(1-1,m),S1(i+1,m),rsn,D1,hr,t,rhss(m))

rhss(m)=rhss(m)-(ht/2.0dO)*f(cas,vas,s1(i,m))*ua1(i,m)/Yas

rhss(m)=rhss(m)—(ht/2.0d0)*f(cbs,vbs,s 1(i,m))*ub 1(1,m)/Ybs

funs(m)=].0d0+D1*hr*tr(i,hr,tsn,Ds)

t=tr(i,hr,tqn,Dq)

call rh2(m,q1(1,m),q1(1-1,m),q1(1+1,m),rqn,D4,hr,t,rhsq(m))

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(caq,vaq,q1(i,m))*ua1(i,m)/Yaq

rhsq(m)=rhsq(m)-(ht/2.0d0)*f(cbq,qu,q1(i,m))*ub1(1,m)/qu

funq(m)=l .0d0+D4*hr*tr(i,hr,tqn,Dq)

t=tr(i,hr,thn,Dh)

call rh2(m,h1(i,m),h1(i-1,m),hl(1+1,m),rhn,D0,hr,t,rhsh(m))

rhsh(m)=rhsh(m)-(ht/2.0dO)*f(ca,va,hl(i,m))*ua1(i,m)/Ya

rhsh(m)=rhsh(m)—(ht/2.0d0)*f(cb,vb,h1 (1,m))*ub 1(1,m)/Yb

funh(m)=1 .0d0+D0*hr*tr(i,hr,thn,Dh)

 

C

i=0

C Cell group a

a12=0.5d0*chemof1(DKas,S 1 (1+1 ,0))*ua1 (1+1 ,0)

a12=a12+0.5d0*chemof1(DKas,S 1 (i,0))*ua1 (1,0)



(
'
3
0
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a21=0.5d0*chemof1(DKas,S1(1,0))*ua1(1,0)

a21=a21+0.5d0*chemof1(DKas,S 1(1-1,0))*ua1(i- 1,0)

b12=0.5d0*chemof1(DKas,S 1(i,1))*ua1 (1, l)

b12=b12+0.5d0*chemof1(DKas,S1(1,0))*ua1(i,0)

c12=0.5d0*chemof1(DKaq,q1(i+1,0))*ua1(i+1,0)

c 12=c12+0.5d0*chemof1(DKaq,q1(1,0))*ua1(i,0)

c21=0.5d0*chemof1(DKaq,q1(i,0))*ua1(1,0)

c21=c21+0.5d0*chemof1(DKaq,q1(1-1,0))*ua1(1-1,0)

d12=0.5d0*chemof1(DKaq,q](i,1))*ua1(1,1)

d12=d12+0.5d0*chemof1(DKaq,q1(i,0))*ua1(1,0) .

rhsua(O)=ua1(i,0)+D2*(ua1(1+1,0)-ua1(i,0))

* +D2*(ual (1-1 ,0)-ual (i,0))

rhsua(O)=rhsua(0)+(ht/2.0d0)*f(ca,va,h1(i,0))*ua1(i,0)

rhsua(O)=rhsua(0)-D3*al2*(s 1(i+1,0)-s 1(i,0))

rhsua(O)=rhsua(0)-D3*a21*(sl(i-1,0)-sl(i,0))

' rhsua(O)=rhsua(0)-D3*b12*(S1(i,1)-sl(i,0))

rhsua(O)=rhsua(0)-D5*c12*(q1(i+1,0)-q1(i,0))

rhsua(O)=rhsua(O)-D5*02 1*(q1(1— 1 ,0)-q1(1,0))

rhsua(O)=rhsua(0)—D5*d12*(q1(i,1)-q1(1,0))

funua(0)=1.0d0

 

 

i=m

 a12=0.5d0*chemofl(DKas,S l(i+1,m))*ua1(i+1,m)

a12=a12+0.5d0*chemof1(DKas,S1(i,m))*ua1(i,m)

a21=0.5d0*chemof1(DKas,S1(i,m))*ua1(i,m)

a21=a21+0.5d0*chemof1(DKas,S1(1-1,m))*ua1(i-1,m)

b21=0.5d0*chemofl(DKas,S1(i,m))*ua1(i,m)

b21=b21+0.5d0*chemof1(DKas,S1(i,m-1))*ua1(i,m-1)

c12=0.5d0*chemof1(DKaq,q1(i+1,m))*ua1(i+1,m)

c12=c12+0.5d0*chemof1(DKaq,q1(i,m))*ua1(i,m)

c21=0.5d0*chemof1(DKaq,ql(i,m))*ual(i,m)

c2l=c21+0.5d0*chemof1(DKaq,ql(i-1 ,m))*ua1(i-1,m)

d21=0.5d0*chemof1(DKaq,ql (i,m))*ua1(i,m)

d21=d2l+0.5d0*chemof1(DKaq,q1(i,m-1))*ua1(i,m-1)

rhsua(m)=ua1 (1,m)+D2*(ua1 (1+1 ,m)-ual (i,m))

* +D2*(ua1(1- 1,m)-ual (i,m))

rhsua(m)=rhsua(m)+(ht/2.0d0)*f(ca,va,h1(i,m))*ua1(i,m)

rhsua(m)=rhsua(m)-D3*al2*(s 1 (1+ 1 ,m)-S 1 (i,m))

rhsua(m)=rhsua(m)-D3*a21*(sl(i-1,m)-Sl(i,m))

rhsua(m)=rhsua(m)-D3*b21*(S 1 (i,m-1)-s 1(1,m))

rhsua(m)=rhsua(m)-D5*c12*(q1(i+1,m)-q1(i,m))

rhsua(m)=rhsua(m)-D5*c21*(q1(i-1,m)-q1(i,m))
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rhsua(m)=rhsua(m)—D5*d21*(q1(i,m—1)-q1(i,m))

funua(m)=1.0d0

C Cell group b
0
0

a12=0.5d0*chemofl(DKbs,S1(i+1,0))*ub1(i+l,0)

a12=312+0.5d0*chemof1(DKbs,Sl(i,0))*ub1(i,0)

a21=0.5d0*chemof1 (DKbs,S 1(i,0))*ub 1 (1,0)

a21=a21+0.5d0*chemof1(DKbs,S1(i-1,0))*ub1(i-1,0)

b12=0.5d0*chemof1(DKbs,S1(i,l))*ub1(i, l)

b12=b12+0.5d0*chemof1(DKbs,S1(1,0))*ub1(i,0)

c12=0.5d0*chemof1(DKbq,ql(i+1,0))*ub1(i+1,0)

c12=c12+0.5d0*chemof1(DKbq,q1(i,0))*ubl(i,0)

c21=0.5d0*chemof1(DKbq,q1(i,0))*ub1(1,0)

c21=c21+0.5d0*chemof1(DKbq,q1(i-1,0))*ub1(i—1,0)

d12=0.5d0*chemof1(DKbq,q1(i, 1))*ub1(i, 1)

d12=d12+0.5d0*chemof1(DKbq,q1(i,0))*ub l (1,0)

rhsub(0)=ub1(i,0)+D6*(ub1(i+1,0)-ub1(i,0))

+D6*(ub1(i-1,0)-ub1(i,0))

rhsub(0)=rhsub(0)+(ht/2.0d0)*f(cb,vb,h1 (i,0))*ubl (1,0)

rhsub(0)=rhsub(0)-D7*a12*(s1(i+1,0)-s1(i,0))

rhsub(0)=rhsub(0)-D7*a21*(sl(i-1,0)—sl(i,0))

rhsub(0)=rhsub(0)—D7*b12*(S l (i,1)-s1(i,0))

rhsub(0)=rhsub(0)-D8*c12*(q1(i+1,0)—q1(i,0))

rhsub(0)=rhsub(0)—D8*c21*(q1(i-1,0)—q1(i,0))

rhsub(0)=rhsub(0)-D8*d12*(q1(i,1)—q1(1,0))

funub(0)=1.0d0

J=m

a12=0.5d0*chemof1 (DKbs,S1(i+1,m))*ub1(i+1,m)

a12=a12+0.5d0*chemof1(DKbs,S1(i,m))*ub1(i,m)

a21=0.5d0*chemof1(DKbs,Sl(i,m))*ub1(i,m)

a21=a21+0.5d0*chemof1(DKbs,S1(1-1,m))*ub1(i-l,m)

b21=0.5d0*chemof1(DKbs,Sl(i,m))*ub1(i,m)

b21=b21+0.5d0*chemof1(DKbs,S1(i,m-1))*ubl(i,m—1)

c12=0.5d0*chemof1(DKbq,q1(i+1,m))*ub1(i+l,m)

cl2=c12+0.5d0*chemof1(DKbq,q1(i,m))*ub1(i,m)

c21=0.5d0*chemof1(DKbq,q1(i,m))*ub1(i,m)

c21=c21+0.5d0*chem0f1(DKbq,q1(i-l,m))*ubl(1—1,m)

d21=0.5d0*chemof1(DKbq,q1(i,m))*ubl(i,m)

d21=d21+0.5d0*chem0f1 (DKbq,q 1 (i,m- 1 ))*ub 1 (i,m— 1)

rhsub(m)=ub1(i,m)+D6*(ub1(i+1,m)-ub1(i,m))

+D6*(ub1(i-1,m)-ub1(i,m))
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rhsub(m)=rhsub(m)+(ht/2.0d0)*f(cb,vb,h l (1,m))*ub 1 (i,m)

rhsub(m)=rhsub(m)-D7*a12*(s1(1+1 ,m)—s 1 (i,m))

rhsub(m)=rhsub(m)—D7*a2 1 *(s 1 (1—1 ,m)-s1(i,m))

rhsub(m)=rhsub(m)-D7*b21 *(S 1(1,m- l)-S 1(1,m))

rhsub(m)=rhsub(m)-D8*c12*(q1(i+1,m)-q1(i,m))

rhsub(m)=rhsub(m)—D8*c21*(q1(1—1 ,m)-q 1(1,m))

rhsub(m)=rhsub(m)-D8*d21 *(q 1 (i,m- 1)-q1(i,m))

funub(m)= 1 .0d0

do 1080 j=1,m-1

rhss(j)=Sl(1,j)+D1*(S1(1+l,j)-2.0d0*S1(i,j)+S1(1-1,j))

rhss(j)=rhss(i)-(ht/2.0d0)*f(cas,vas,s 1 (i,j))*ual (1,j)/Yas

rhss(j)=rhss(j)-(ht/2.0d0)*f(cbs,vbs,s1(i,j))*ubl(i,j)/Ybs

funs(i)=1.0d0

rhsq(j)=q1(1,j)+D4*(q1(1+1,j)-2.0d0*q1(i,j)+ql(i-1,j))

rhsq(j)=rhsq(j)-(ht/2.0d0)*f(caq,vaq,q1(i,j))*ual(i,j)/Yaq

rhsq(j)=rhsq(j)—(ht/2.0d0)*f(cbq,qu,q1(i,j))*ub1(i,j)/qu

funq(i)=1.0d0

rhsh(i)=h1(1,j)+D0*(h1(i+1,j)-2.0d0*h1(i,j)+hl(i-1,j))

rhsh(i)=rhsh(j)-(ht/2.0d0)*f(ca,va,h1(i,j))*ua1(i,j)/Ya

rhsh(i)=rhsh(j)-(ht/2.0d0)*f(cb,vb,h1(i,j))*ubl(i,j)/Yb

funh(i)= 1 .OdO

C Cell group a

al2=0.5d0*chemof1(DKas,S1(1+1,j))*ua1(i+1,j)

a12=a12+0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

a21=0.5d0*chemof1(DKas,S 1(i,j))*ual(i,j)

a21=a21+0.5d0*chemof1(DKas,S1(1-1,j))*ua1(1—1,j)

b12=0.5d0*chemof1(DKas,S1(i,j+1))*ua1(i,j+1)

b12=b12+0.5d0*chemof1(DKas,S1(i,j))*ua1(i,j)

b21=0.5d0*chemofl(DKas,S1(i,j))*ua1(i,j)

b21=b21+0.5d0*chemof1(DKas,S1(i,j-1))*ua1(i,j-1)

c12=0.5d0*chemof1(DKaq,ql(1+1,j))*ua1(i+1,j)

c 12=c12+0.5d0*chemof1(DKaq,ql(i,j))*ua1 (i,j)

c21=0.5d0*chemof1(DKaq,ql(i,j))*ua1(i,j)

021=c21+0.5d0*chemof1(DKaq,ql(i-1,j))*ua1(i-1,j)

d12=0.5d0*chemof1(DKaq,q1(i,j+1))*ua1(i,j+l)

d12=d12+0.5d0*chemof1(DKaq,q1(1,j))*ua1(i,j)

d21=0.5d0*chemof1 (DKaq,q 1 (1,j))*ual(i,j)

d21=d21+0.5d0*chemof1(DKaq,ql(1,j-1))*ua1(i,j—1)

rhsua(i)=ual(i,j)+D2*(ua1(i+1,j)—ua1(i,j))

* +D2*(ua1(i-1,j)-ua1(1,j))

rhsua(i)=rhsua(j)+(ht/2.0d0)*f(ca,va,h1(i,j))*ua1(i,j)

rhsua(i)=rhsua(j)-D3*a12*(s1(1+1,j)-s1(i,j))
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rhsua(i)=rhsua(i)-D3*a21*(s1(1- 1 ,j)—81(i,j))

rhsua(i)=rhsua(i)-D3*b12*(S1(i,j+1)-S1(i,j»

rhsua(i)=rhsua(i)—D3*b2 1 *(s 1 (i,j-1)-S 1 (i,j))

rhsua(i)=rhsua(j)-D5*c12*(q1(i+1,j)-q1(i,j))

rhsan')=rhsua(i)-D5*c21*(q1(i—1,j)—q1(i,j))

rhsua(i)=rhsua(j)—D5*d12*(q1(i,j+1)-q1(1,l))

rhsua(i)=rhsua(j)—D5*d21*(q1(i,j-l)-q1(i,j))

funua(i)=1 .OdO

C Cell group b

a12=0.5d0*chemofl(DKbs,S1(1+1,j))*ub1(i+1,j)

a12=a12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

a21=0.5d0*chem0f1(DKbs,S1(i,j))*ub1(i,j)

a21=a21+0.5d0*chemof1(DKbs,S1(1—1,j))*ubl(i-1,j)

b12=0.5d0*chemof1(DKbs,S1(1,j+1))*ub1(1,j+1)

b12=b12+0.5d0*chemof1(DKbs,S1(i,j))*ub1(i,j)

b21=0.5d0*chemof1(DKbs,S 1(i,j))*ub1(i,j)

b21=b21+0.5d0*chemof1(DKbs,S 1(i,j-1))*ub1(i,j— 1)

c12=0.5d0*chemof1(DKbq,ql(i+1,j))*ub1(i+1,j) ’

c12=c12+0.5d0*chemof1(DKbq,q1(i,j))*ubl(i,j)

021:0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

c2l=c21+0.5d0*chemof1(DKbq,q1(1~ 1,j))*ub1(i-1 ,j)

d12=0.5d0*chemof1(DKbq,q1(i,j+1))*ub1(i,j+1)

d12=d12+0.5d0*chemof1(DKbq,q1(i,j))*ub1(i,j)

d21=0.5d0*chemof1(DKbq,q1(i,j))*ubl(i,j)

d21=d2 1+0.5d0*chemof1(DKbq,q1(1,j-1))*ub1(i,j- 1)

rhsub(i)=ub1(i,j)+D6*(ub1(1+1,j)-ub1(i,j))

* +D6*(ub1(i-1,j)-ub1(i,j))

rhsub(i)=rhsub(j)+(ht/2.0d0)*f(cb,vb,h1 (i,j))*ub 1(i,j)

rhsub(i)=rhsub(i)-D7*a12*(s1(1+1,j)-sl(1,j))

rhsub(j)=rhsub(j)-D7*a21 *(s 1(i—1,j)-sl(i,j))

rhsub(i)=rhsub(i)-D7*b12*(s1(i,j+1)-sl(i,j))

rhsub(i)=rhsub(j)-D7*b2 1 *(s 1(1,j- 1)—s1(i,j))

rhsub(i)=rhsub(j)-D8*c12*(q1(i+1,j)-q1(i,j))

rhsub(i)=rhsub(i)-D8*021*(q1(1-1,j)-q1(1,j))

rhsub(i)=rhsub(j)-D8*dl2*(q1(i,j+1)-q1(i,1))

rhsub(i)=rhsub(j)~D8*d21*(q1(i,j-1)-q1(i,j))

funub(i)=l .0d0

1080 continue

C

 

 

 

call PDMTRIX(m,D 1,funs,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhss,us)

call PDMTRD((m,D1,funq,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsq,uq)

call PDMTRIX(m,D0,funh,aa,bb,cc)
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call TRISOLV(m,aa,bb,cc,rhsh,uh)

call PDMTRD{(m,D2,funua,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsua,uua)

call PDMTRIX(m,D6,funub,aa,bb,cc)

call TRISOLV(m,aa,bb,cc,rhsub,uub)

do 1085 j=0,m

SZGJFUSO)

q2(i,j)=uqti)

h2(i,j)=uh(i)

ua2(i,j)=uua(i)

ub2(i,j)=uub(j)

1085 continue

1090 continue

C

do 1095 j=0,m

do 1096 i=0,m

810.1):8201)

q1(i,j)=q2(i,j)

h1(i,j)=h2(i,j)

ua1(i,j)=ua2(i,j)

ub1(1,j)=ub2(i,j)

1096 continue

1095 confinue

C

2000 continue

C

call veloc(mvel,lvel,distm,t1mm,distl,timl,velm,vell)

write(30,*)'timemax,distmax,velm'

write(3 1,*)'timelim,distlim,vell'

kvel2=mcount2lnumvel

do 2060 1=1,mve1—1

write(30,*)timm(i),',',distm(1) ,',',ve1m(1)

2060 continue

do 2062 i=1 ,lvel-l

write(31,*)timl(i),',',dist1(i),',',ve11(1)

2062 continue

if(movc.eq.2)then

write(16,*)'];'

write(17,*)'];’

write(23,*)'] ;’

write(18,*)'];'

endif

stop

end
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C

C

C The following four functions give the initial conditions

C

C

function ua0(x,y,uaini,yoff,xoff,aw1d)

implicit double precision (a-h,o-z)

301 forrnat(6x,d10.9)

r=sqrt((x-xoff)**2+(y—yoff)**2)

if(r.le.0.3d0) then

uaO=uaini/dexp(awid*r)

else

ua0=0.0d0

endif

return

end

function ub0(x,y,ubini,yoff,xoff,bwid)

implicit double precision (a—h,o-z)

301 forrnat(6x,d10.9)

r=sqrt((x-xoff)**2+(y-yoff)**2)

if(r.le.0.3d0) then

ubO=ubini/dexp(bwid*r)

else

ub0=0.0d0

endif

return

end

C

C

C The function f(x) is the uptake of nutrient

C

function f(ca,v,x)

implicit double precision (a-h,o-z)

if(x.ge.0.0d0) then

f=v*x/(ca+x)

else

f=0.0d0

endif

return

end

C

C fs=f(x)/x

function fs(c,v,x)
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implicit double precision (a-h,o-z)

if(x.ge.0.0d0) then

fs=v/(c+x)

else

fs=0.0d0

endif

return

end

C

C chemof1*chemof2: non-linear chemotaxis coefficient function

C chemof1 is defined by Keller-Segel model

C

function chemof1(DK,x)

implicit double precision (a-h,o-z)

if(x.ge.0.0d0) then

chemof1=DK/(DK+x)**2

else

.chemof1=0.0d0

endif

return

end

C

C function diffu is defined by Monod's law

C

function diffu(v2,c2,eps,x)

implicit double precision (a—h,o-z)

if(x.ge.0.0d0) then

diffu=v2*x/(c2+x)+eps

else

diffu=eps

endif

return

end

C tr(i): sets tr to 0 if outside window, or to desired value inside window

function tr(i,h,tk,dxy)

implicit double precision (a—h,o-z)

x=-2.5d0+i*h

y=abs(x)

if(y.1e.2.0d0) then

tr=tk/dxy

else

tr=0.0d0

endif

return
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end

C

C rhbound: subroutine to calculate boundary conditions at

C sink or reservoir.

C

subroutine rhbound(n,a,b,c,d,hr,t,rh)

implicit double precision (a-h,o—z)

C dimension a(0:n),b(0:n),rh(0:n)

rh=a+d*(b-a-hr*t*(a-c))

return

end

C rh2: subroutine to calculate boundary conditions at

C sink or reservoir.

C

subroutine rh2(n,a,b,e,c,d,hr,t,rh)

implicit double precision (a-h,o-z)

C dimension a(0:n),b(0:n),rh(0:n)

rh=a+d*(b-2*a+e+hr*t*c)

return

end

C

C maxcalc: finds maximum density on wave

C

subroutine maxcalc(ua1,k,m,ht,hr,umax,pmax,t)

implicit double precision (a—h,o-z)

dimension ua1(0: 100,0: 100)

mcent=m/2

1max=0

5 if(ua1(mcent,imax+1).ge.ua1(mcent,imax))then

imax=imax+1

goto 5

endif

umax=ua1 (mcent,imax)

pmax=2.5d0'-float(imax)*hr

C write(*,*)'pmax=',pmax

=k*ht

C write(*,*)'t=',t

return

end

C

C limcalc: finds first point where minimum
cell density occurs

C

subroutine limcalc(ua1,k,m,ht,hr,drnin,ulim,plim,t)

implicit double precision (a-h,o-z) '
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dimension ua1(0: 100,0: 100)

mcent=ml2

imax=0

5 if(ua1(mcent,imax+1).1t.dmin)then

imax=imax+1

goto 5

endif

ulim=ua1(mcent,imax)

plim=2.5d0-float(imax)*hr

C write(*,*)'plim=',plim

t=k*ht

C write(*,*)'t=',t

return

end

subroutine veloc(mvel,lve1,distm,timm,dist1,timl,ve
lm,vell)

implicit double precision (a—h,o-z)

dimension distm(0: 100),distl(0: 100)

dimension timm(0: 100),timl(0: 100)

dimension velm(O: 100),ve11(0: 100)

do 2089 i=2,mvel-1

velm(i—1)=(distm(i)-distm(i- 1))/(
t1mm(i)-timm(i- 1))

2089 continue

do 2099 i=2,lvel-1

ve11(i-1)=(distl(i)-distl(i-1))/(timl(i)-timl(
i- 1))

2099 continue

return

end

C

C SOLVES THE TRIDIAGONAL
SYSTEM OF LINEAR EQUAT

IONS

C

SUBROUTINE TRISOLV(N,A,B,C,FUN,X)

implicit double precision (a—h,o-z)

DIMENSION A(O:N),B(0:N),C(O:N),FUN(0:N),X(0:N
)

DIMENSION ARFA(0:500),BATA(0:500),GAMA(O:5
00),GUN(0:500)

B(O)=0.0d0

C(N)=0.0d0

ARFA(O)=A(0)

GAMA(O)=C(0)

DO 4000 I=1,N

GAMA(I)=C(I)

BATA(D=B(D/ARFA(I-
1)
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ARFA(I)=A(I)-BATA(I)*C(I— 1)

4000 CONTINUE

GUN(O)=FUN(0)

DO 4999 I=1,N

GUN(I)=FUN(I)-BATA(I)*GUN(I- 1)

4999 CONTINUE

X(N)=GUN(N)/ARFA(N)

DO 4888 I=1,N

X(N-I)=(GUN(N-I)—GAMA(N-I)*X(N-I+1))/ARFA(N-I)

4888 CONTINUE

C

RETURN

END

C

C SET UP THE TRIDIAGONAL MATRD( for constant coefficient terms

C

SUBROUTINE PDMTRIX(n,dxy,fu,aa,bb,cc)

implicit double precision (a-h,o-z)

DINIENSION fu(0:n),aa(0:n),bb(0:n),cc(0:n)

bb(0)=0.0

aa(0)=fu(0)+1 .0d0*dxy

cc(0)=-1 .0d0*dxy

bb(n)=-1 .0d0*dxy

aa(n)=fu(n)+1.0d0*dxy

cc(n)=0.0

do 5000 i=1,n-l

bb(i)=-dxy

cc(i)=-dxy

aa(i)=fu(i)+2.0d0*dxy

5000 continue

return

end
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Input files for model
the

.. file 5615
I! am

. . E. The Par '

Sample in put files for the program given 1n Appendlx f1 5615 the initial

. Il'nit" ] 6

values of all parameters and the time for solution. The 1 cifiCS which

, ll ' 6

conditions for each population and chemical component The

tfine—points should be printed to the output files.

Sample param file:

In: 41

timinit= 06.0d0

timin0c= 30.0d0

numcel: 2

numvel: 100

kstep: 20

dmin = 0.000001d0 .

move: 1 1=individual matrices, 2=m0V15

R =. 2.5d0

ayoff: 0.0d0

axoff: 0.0d0

byoff= 0.0d0

bxoff: 0.0d0

awid = 1.0d0

bwid = 1.0d0

Dh — 0.01d0

thn 0.155d0

ths 0.155d0

the 0.000d0

thw 0.000d0

Ds 0.033d0

tsn 0.1071d0

tss 0.1071d0

tse 0.000d0

tsw 0.000d0

Dacs = 0.03d0

Dbcs = 0.00d0

DKas = 0.00000200d0
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DKbs = 0.00000200d0

cas = 0.0000550d0

vas = 0.600d0

Yas = 1.0000d0

cbs = 0.0000550d0

vbs = 0.000d0

Ybs = 1.0000d0

Dq = 0.033d0

tqn = 0.891d0

tqs = 0.891d0

tqe = 0.000d0

tqw = 0.000d0

Dacq= 0.080d0

Dbcq = 0.00d0

DKaq = 0.0000330d0

DKbq = 0.0000330d0

caq = 0.000000067d0

vaq = 0.02d0

Yaq = 1.0000d0

cbq = 0.000000067d0

qu = 0.0d0

qu = 1.0000d0

Dua = 0.00100d0

va = 0.35d0

ca = 0.00000408d0

Ya = 0.350d0

Dub = 0.0010d0

vb = 0.50d0

Cb = 0.00000408d0

Yb = 0.50d0

Sample init file:

uaini: 0.000005d0

ubini: 0.000005d0

rsn = 0.000132d0

rss = 0.00000d0

rse = 0.0000d0

rsw = 0.0000d0

rqn = 0.0000132d0

rqs = 0.0000132d0

rqe = 0.0000132d0

rqw = 0.0000132d0
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rhn = 0.00046d0

rhs = 0.00046d0

rhe = 0.00046d0

rhw = 0.00046d0

stini= 0.00000d0

qtini: 0.0000132d0

htini= 0.00046d0

Sample time file:

numti=04

time1= 10.0d0

time2= 15.0d0

time3= 20.0d0

time4= 30.0d0
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Matlab program files

The following Matlab program files were created for use with Matlab 4.2c for

Windows. No guarantees are made that they will work with more recent versions.

Commands enclosed in quotes should be entered into Matlab exactly as typed.

The file appmultm plots the cell matrix as a density plot. The simulation plots in

Figure 13 were created using appmult.m, for example. The syntax is

"appmult(u,#,'pcolor')" where u is the name of the matrix to be plotted, and # is the

amount of interpolation; typically 2 or 3 works well. (Note: I did not write this file. It is

modified from the version found at the Mathworks site, www.mathworks.com.)

function hfi = app_int(x,y,z,s,dc)

% This function approximates interpolated shading by interpolating

% data and using flat shading. The inputs are the data that was used

% to generate the original object, a scale factor, and a string

% that contains the drawing command. The

% function returns a handle to the new

% object.

%

% Syntax 1:For just Z—Data (e.g., surf(z) => app_int(z,s,dc))

% z = zdata, s = scaling factor and dc = drawing command used to

% create the plot

%

% Syntax 2: For x,y,z Data ( e.g., surf(x,y,z) ) => app_int

% (x,y,z,s,dc)

%

% Example 1: [x,y,z] = peaks;surf(z);shading
interp

% app_int(z,3,'surf) interpolate by a factor of 3

%

% Example 2: [x,y,z ] = peaks; surf(x,y,z); shading interp

% app_int(x,y,z,3,‘surf')interpolate
by a factor of 3

if ( nargin == 3 )

do = z;
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z = x;

s = y;

[m n] = size(z);

x = 1:n; y = (1:m)';

mscal = m*s;

nscal = n*s;

xi = 11nspace(l,n,nscal);

yi = 11nspace(1,m,mscal)';

21 = interp2(x,y,z,xi,yi);

% figure;

cmd = ['hfi=' dc '(xi,yi,zi);'];
i

eval(cmd);

shading flat;

elseif ( nargin == 5 )

[m n] = size(z);

mscal = m*s;

nscal = n*s;

mint = min(min(x));

maxt = max(max(x));

xi = linspace(mint,maxt,mscal);

mint = min(min(y));

maxt = max(max(y));

yi = linspace(mint,maxt,nscal)';

zi = interp2(x,y,z,xi,yi);

figure;

cmd = ['hfi=' dc '(xi,yi,zi);'];

eval(cmd);

shading flat;

end

colormap(gray)

axis('square')

 

 

The program surftwom allows two cell matrices to be plotted on the same figure,

with different colormaps. Examples of this program are Figure 33C and Figure 33D. The

syntax is "surftwo(u1,u2)" where 111 and u2 are the two cell matrices.

%Program to plot two cell populations on one figure

%with different colormaps.

function[h]=surftwo
(ua,ub)

h(1)=surf(ua),axis equal
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hold on

h(2)=surf(ub);

hold off

m=64;

cmin=min(ua(:));

cmax=max(ua(:));

c1=min(m,round((m-1)*(ua--cmin)/(cmax--cmin))+1);

cmin=min(ub(:));

cmax=max(ub(:));

c2=min(m,round((m-1)*(ub-cmin)/(cmax-cmin))+1)+64;

set(h(1),'cdata',cl);

set(h(2),'cdata',c2);

caxis([min(cl(:)) maX(c2(:))]);

view(2);

shading interp;

colormap([bone(64);copper(64)]);

 
The file centmassm calculates the average mass for two cell matrices. An

example is Figure 35F. The syntax is "[cma,cmb]=centmass(u1,u2)" where ul and u2 are

the cell matrices. The returned variables cma and cmb may be plotted with "plot(cma),

 hold, plot(cmb)".

function[cma,cmb]=centmas
s(ua,ub)

%calculate the total mass along line perpendicular to gradient,

%by summing across each line parallel to gradient.

[r,c]=size(ua);

centline=round(r/2);

for 1: 1 :r;

cma(i)=sum(ua(i,:))/(r- 1);

cmb(i)=sum(ub(i,:))/(r—1);

end '

The file competit.m computes the dynamic competition factor for two cell

populations. Examples are Figure 35A and Figure 35B. The syntax is "competit", where
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the value for num (the number of timepoints) and the cell matrices, have already been

entered into the Matlab variable space. The returned variable rab is the dynamic

competition factor, and is the ratio of the total mass of Population A to the total mass of

Population B. A plot can be created using "plot(rab)".

%Computes total mass of a and b and ratio a/b for uai, ubi where i=1:num

%To use, first specify value for num, then type competit

clear ta,clear tb,clear rab

for i=1:num;

[ta(i)]=totmass(eva1(['ua',num28tr(i)]), 1 .6);

[tb(i)]=totmass(eval(['ub’,num28tr(i)]),1.6);

rab(i)=ta(i)/tb(i);

end

The file totrnass.m is a subroutine called by the program competit.m.

function[tmass]=totmass(u,ht)

% Calculates total mass under cell profile

% Assumes length and width of DGC = 5 cm 4

% ht is the height of the gel, usually 1.6 cm

% Find number of increments

[r,c]=size(u);

% Compute area under 2-D plot, multiply by l*w*h for mass

tmass=trapz(trapz(u))*5/(r-1)*5/(c-1)*ht;

The program totvel.m calculates the mass fluxes due to chemotaxis to S,

chemotaxis to Q, random motility, and the total mass flux. Examples are Figure 21-F1gure

24. The syntax is

"[uxs,uys,uxq,uyq,uxu,uyu,uxt,uyt,mag,dir,dxc,dyc,aoverh]=totvel(kds,xos,kdq,xoq,du,s,

q,u,minv)" where kds and kdq are the dissociation constants for the receptor—S and
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receptor-Q complexes, respectively; xos and xoq are the chemotactic sensitivity

coefficients for S and Q; du is the random motility coefficient; s, q, and u are the S-

chemoattractant, Q-chemoattractant, and cell matrices, respectively; and minv _is a

minimum flux below which no values are reported. The returned variables uxs and uys

are the x and y components of the flux due to chemotaxis to S; uxq and uyq are the x and

y components of the flux due to chemotaxis to Q; uxu and uyu are the x and y

components of the flux due to random motility; and uxt and uyt are the x and y

components of the total mass flux. The fluxes can be plotted with the quiver command, as

illustrated near the end of the program.

function[uxs,uys,uxq,uyq,uxu,uyu,uxt,uyt,mag,dir,dxc,dyc,aoverh]=totvel(kds,xos

,kdq,xoq,du,s,q,u,minv)

%This program calculates the flux matrices for chemotaxis to S and Q,

%(uxs,uys,uxq,uyq), random motility (uxu,uyu), and the total flux (uxt,uyt).

[m,n]=size(u);

dir=zeros(m,n);

%Calls to the subroutine chemo, which is where intermediate fluxes actually

calculated.

[uxs,uys]=chemo(kds,xos,s,u,minv);

[uxq,uyq]=chemo(kdq,xoq,q,u,minv);

[uxu,uyu]=randmot(du,u,minv);

%Total flux found by summing components of flux.

uxt=uxs+uxq+uxu;

uyt=uys+uyq+uyu;

%Magnitude of maximum flux calculated.

mag=sqrt(uxt.*uxt+uyt.*uyt);

%Maximum flux magnitude found.

maxvel=max(max(abs(mag)));

%A minimum flux value to be graphed is calculated. Minv=5 works well. (80% of

fluxes graphed).

minvel=maxvel/minv;

%Loop to remove fluxes whose magnitudes are lower than minvel.

fori = lzm,

for j = 1:n;

if abs(mag(i,j)) < rninvel

uxt(i,j)=0;
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receptor-Q complexes, respectively; xos and xoq are the chemotactic sensitivity

coefficients for S and Q; du is the random motility coefficient; 3, q, and u are the S-

chemoattractant, Q-chemoattractant, and cell matrices, respectively; and minv _is a

minimum flux below which no values are reported. The returned variables uxs and uys

are the x and y components of the flux due to chemotaxis to S; uxq and uyq are the x and

y components of the flux due to chemotaxis to Q; uxu and uyu are the x and y

components of the flux due to random motility; and uxt and uyt are the x and y

components of the total mass flux. The fluxes can be plotted with the quiver command, as

illustrated near the end of the program.

function[uxs,uys,uxq,uyq,uxu,uyu,uxt,uyt,mag,dir,dxc,dyc,aoverh]=t0tvel(kds,xos

,kdq,xoq,du,s,q,u,minv)

%This program calculates the flux matrices for chemotaxis to S and Q,

%(uxs,uys,uxq,uyq), random motility (uxu,uyu), and the total flux (uxt,uyt).

[m,n]=size(u);

dir=zeros(m,n);

%Calls to the subroutine chemo, which is where intermediate fluxes actually

calculated.

[uxs,uys]=chemo(kds,xos,s,u,minv);

[uxq,uyq]=chemo(kdq,xoq,q,u,minv);

[uxu,uyu]=randmot(du,u,minv);

%Total flux found by summing components of flux.

uxt=uxs+uxq+uxu;

uyt=uys+uyq+uyu;

%Magnitude of maximum flux calculated.

mag=sqrt(uxt.*uxt+uyt.*uyt);

%Maximum flux magnitude found.

maxvel=max(max(abs(mag)));

%A minimum flux value to be graphed is calculated. Minv=5 works well. (80% of

fluxes graphed).

minvel=maxvel/minv;

%Loop to remove fluxes whose magnitudes are lower than minvel.

for i = l:m,

for j = 1:n;

if abs(mag(i,j)) < minvel

uxt(i,j)=0;
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uyt(i,j)=0;

end

end

end

%subplot(2,2,1),quiver(uxs,uys,3,'w'),title('chemo s'),axis square

%subplot(2,2,2),quiver(uxq,uyq,3,'w'),title('chemo q'),axis square

%subplot(2,2,3),quiver(uxu,uyu,3,'w'),title('randmot'),axis square

%subplot(2,2,4),quiver(uxt,uyt,3,‘w'),title('total flux'),axis square

dxc=zeros(m,n);

dyc=zeros(m,n);

for 1 = l:m,

for j = 1:n;

if mag(i,j)~=0

dxc(i,j)=uxt(i,j)/mag(i,j);

dycti,j)=uyt(i,j)/mag(i,j);

end

end

end

The file chem0.m is called as a subroutine in totvel.m.

function[ux,uy,satx,saty]=chemo(kd,xo,c,u,minv)

%calculate the partial derivatives of c in the x and y directions

[m,n]=size(c);

dx=5/m;

dy=5/n;

[px,py]=gradient(c,dx,dy);

%calculate the matrix kd/(kd+c)"2

for i = l:m,

for j = 1:n;

sat(i,j)=kd/(kd+c(i,j))"2;

end

end

%calculate the velocity coefficient matrix kd/(kd+c)"2*px(or py)

%the .* operator causes only the corresponding two matrix positions to be

multiplied

%rather than real matrix multiplication

satx=xo*(sat.*px);

saty=xo*(sat.*py);

%clear all values of u below a minimum value

maxu=max(max(u));
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minu=maxul1000;

for i = l:m,

for j = 1:n;

if u(i,j) < minu

u(i,j)=0;

end

end

end

%multiplies the cell density times the velocity coefficient

ux=u.*satx;

uy=u.*saty;

mag=sqrt(ux.*ux+uy.*uy);

maxvel=max(max(abs(mag)));

minvel=maxvel/minv;

%maxvely=max(max(abs(uy)));

%minve1y=maxvely/minv;

fori = l:m,

for j = 1:n;

if abs(mag(i,j)) < minvel

ux(1,j)=0;

uy(i,j)=0;

end

end

end

The file randmotm is called as a subroutine in the program totvel.m

function[ux,uy]=randmot(
du,u,minv)

%calculate the partial derivatives of u in the x and y directions

[px,pyl=gradient(u);

%calculate the velocity coefficient matrix du*px(or py)

%the .* operator causes only the corresponding two matrix positions to be

multiplied

%rather than real matrix multiplication

%clear all values of 11 below a minimum value

[m,n]=size(u);

maxu=max(max(u));

minu=maxul1000;

for i = l:m,

for j = 1:n;

if u(i,j) < minu

 



194

u(i,j)=0;

end

end

end

ux=du*u.*px;

uy=du*u.*py;

mag=sqrt(ux.*ux+uy.*uy);

maxvel=max(max(abs(mag)));

minvel=maxvel/minv;

fori = l:m,

for j = 1:n;

if abs(mag(i,j)) < minvel

ux(i,j)=0;

UY(1,j)=O;

end

end

end

The program "retard4.m" calculates the global chemotactic response factor. An

example is Figure 25. The syntax is "[phi,den,num,dent]=retard4(u,s,kd,perct)" where u is

the cell matrix, s is the chemoattractant S matrix, kd is the dissociation constant for the

receptor-S complex, and perct is the lowest percent value of the maximum cell

concentration for which a value of the global chemotactic response factor will be

calculated. The global chemotactic response factor is given by the returned variable phi.

function[phi,den,num,dent]=retard4(u,s,kd,perct)

% Calculation of retardation factor.

% Retard4 calculates factor along y-direction for all x.

% perct is the minimum percentage of the maximum cell concentration above

% which the cell concentration will not be assumed to be 0.

% Right now, only works when gradient in direction of matrix columns.

% Calculation of s-gradient

[m,n]=size(u);

dy=5/m;

maxui=max(max(u));

minui=perct*maxui;
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for i=1:n,

grads=abs(gradient(s(:,i)',dy)');

% Calculate (1+s/kd)) term.

grp1=(1+s(:,i)/kd);

% Calculate (1+s/kd)"(-2)*gradient(s)

gsgrp1=grp1."(-2).*grads;

% Calculate integrand of numerator of retardation factor

num=gsgrp1.*u(:,i);

for j: 1 :m,

if u(i,i) < minui

num(j)=0;

end

end

% Calculate integrand of denominator of retardation factor

den=grads.*u(:,i);

% Evaluate integrals with trapezoid method. Calculate phi.

% phi=zeros(size(pos));

%Make den a function of i, so average maximum flux can be reported.

dent(i)=trapz(den);

phi(1)=trapz(num)/trapz(den);

end
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APPENDIX G

Dimensionless model

Over the course of the competition modeling studies, it became apparent that there

was an almost infinite number of parameter combinations to be tested. Many times, it is

possible to reduce the number of parameters in a model by making it dimensionless, and

then varying the dimensionless groups.

The competition model was made dimensionless by employing the following

scales (the ' indicates the dimensional quantity):

 

t = vnHt’ (57)

-' 58

ui = u, for i=a,b ( )

uiO

. °’ . (59)
_]=—_" forj=H,S,Q

.10

D
(60)

V = V’ —-H-

VaH

When these scales were substituted into the dimensional equations and the

equations were rearranged, the new dimensionless equations were:
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a

(61)

But“ :1», Vzua—X35$V.[
[___G_IS_2]U

RVS —)ca83QV. _Q‘Q—z. 11an + H 11,,

(Gas +8)
(Biro + Q)

Wait '1' H

  

 
 

dub 0 9 H (62)

=1. Vzu —?»5 V- —LuVS —)\.5 V— ——bQ—uV + n"

at b b b w [[(o,,+s)2] b b bQ (9,,Q+Q)2 b Q WbH+Hub

 

 
as S S (63)

—=o V28—
at S Bus Was-1's ua_ Tcl—IBbS—“lbs-1's ub

519_ 2 __9_ Q (64)

at —GQV Q BaQ WaQ+Qua—TCHBbQ wa+Qub

8H H H (65)

__ ____ V2 __ _ __—

at H 1’ tlrafl+Hua RH¢b t|IbH+Hub

where the dimensionless variables are defined as:

 

 

-
. . . . . 66

)ti = E‘— for i=a,b Measure of random mot111ty to nutr1entd1ffusron ( )

H

Xoij . .
. . . . _ ( 67)

51) = —- for i=a,b; j=S,Q Measure of chemotaxrs to random motitility

Hij

.. ( 68)

0,]- - ,le for i=a,b

.10
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\Iltj = "fl for i=a,b; j=S,Q Saturation constant over initial concentration

0

V .

it]. = —b’ for j=S,Q,e,d Max. growth rate of b on j to max. growth rate of a on j

at

Vi'uio . . , . .

1311- = J— for 1=a,b; j=S,Q,H,e Compares max uptake ofi on j to rate of 1 on H

1H 0

.l

D.

o. = D—’ for j=S,Q Ratio of diffusivity of j to diffusivity of H

H

 

t1)i = '0 for 1=a,b; St01chiometr1c concentration ratlo

HOYiI-I

( 69)

( 70)

(71)

( 72)

( 73)

By comparing the dimensionless equations (Equations ( 61)-( 65)) to the

dimensional equations (Equations (38)-(40)), it is obvious that the number of parameters

has been reduced by only one. The introduction of the dimensionless groups has not

significantly simplified the model.
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ij . . . . . . .
WU = ,— for 1=a,b; j=S,Q Saturat1on constant over initial concentration

0

v .

1t]. = —b’ for j=S,Q,e,d Max. growth rate of b on j to max. growth rate of a on j

at

i'uio . .

[3,). = J for 1=a,b; j=S,Q,H,e Compares max uptake ofi on j to rate ofi on H

1H0

 

J

D.

G. = D-J- for j=S,Q Ratio of diffusivity of j to diffusivity of H

H

t1)i = ‘0 for 1=a,b; St01ch10metr1c concentration ratio

HOYiH

 

( 69)

( 70)

(71)

( 72)

( 73)

By comparing the dimensionless equations (Equations ( 61)-( 65)) to the

dimensional equations (Equations (38)—(40)), it is obvious that the number of parameters

has been reduced by only one. The introduction of the dimensionless groups has not

significantly simplified the model.
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