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ABSTRACT
RELAXATION MODEL FOR HOMOGENEOUS TURBULENT FLOWS
by
Steven M. Parks

Turbulent closure for the Reynolds stress is investigated for homogeneous turbulent
flows. The basic structure of the transport equations for the turbulent kinetic energy and
turbulent dissipation is adopted from the standard k-€ model of turbulence. An integral
analysis of the Kdrm4n-Howarth relation for isotropic turbulence yields a prediction for
the destruction-of-dissipation coefficient in the e-equation. This coefficient is applied to
the problem of decaying isotropic turbulence and is shown to be able to quantitatively
reproduce several data sets for the flow available in the literature.

A Green’s function analysis of the equation for the fluctuating velocity and a
subsequent smoothing approximation yields a turbulent pre-closure relating the Reynolds
stress to mean field quantities and an unclosed quantity: the turbulent pre-stress, which is
related to both pressure fluctuations and the fluctuating Reynolds stress. An isotropic pre-
stress closure assumption is introduced and applied to the problem of homogeneous shear.
This closure is found to guarantee realizability a priori and yields a non-zero primary
nomal stress difference. Subsequent extension of the closure to an objective, anisotropic
pre-stress accounts for both stress relaxation effects as well as a non-zero second normal
stress difference for homogeneous shear flows.

The case of homogeneous shear flow in a rotating frame of reference is examined due
to its qualitative similarity to a flow in an inertial frame which also includes swirl and/or
streamline curvature. The predominant result is that the combination of shear and rotation
qualitatively changes the nature of the flow. For intermediate relative rotation rates, both k
and € are growing without bound. For large absolute relative rotation rates, turbulent

production is cut-off and both k and & decay to zero.
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CHAPTER 1

INTRODUCTION

1.1  Background

Turbulence Closure Problem

The ability to predict the low order statistical properties of turbulent flows is an
important area of research. Although the exact equations governing the instantaneous
pressure and velocity fields of constant density, constant viscosity, Newtonian fluids are
known, the field equation for the mean velocity (i.e. the Reynolds equation) is statistically
unclosed. With u = (u)+u'and p = (p)+p',

d{u)

=+ W)V (@422 @) =

Q - (Q

The statistical correlation p (u'u') is the Reynolds stress and accounts for the transport of
momentum associated with the fluctuating field. In the above equation, the mean fields
and the fluctuating fields are relative to a frame of reference rotating at a constant angular
velocity Q. Q is related to the temporal connection between the inertial and non-inertial

frames by the following expression

gg-Q.QT.e

- 2. (1.2)

"em



In Eq. (1.2), Q is the rotation dyadic, g is the permutation triadic, Q is an orthogonal
dyadic operator (i.e. Q- QT = I), and Q is the time derivative of Q. The orthogonal

operator Q defines an arbitrary, time-dependent coordinate transformation:
Q=Vx, (1.3)

where V is the gradient operator in the rotating frame of reference and J_r' is the position
vector in the inertial frame. For constant density fluids, the mean velocity field also

satisfies the continuity equation:
V-(u)=0. (1.4)

Eddy viscosity type models for the Reynolds stress presume that the mean velocity field
and the second order correlation (u'u') are related by the following model

(w'u') = 2—:_1 =2v,(S), (1.5)

where k denotes the kinetic energy per unit mass of the fluctuating field,
2k= ('), (16)

and v, is a turbulent eddy viscosity coefficient which depends on the local statistical state
of the turbulence. (§) is the mean strain rate, which is traceless for constant density fluids.
This results in a diffusion-type transport model which permits estimates of the mean field
behavior, provided a model for the scalar eddy viscosity can be specified.

Turbulent flows can be computed directly by solving the continuity and the Navier-
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Stokes equations. Because turbulent fluctuations are three-dimensional, the spatial grid
required for direct numerical simulations is also three-dimensional. The computational
grid must be fine enough to resolve all the physically significant scales of motion. Even
the “simplest” turbulent flows require a four-dimensional discretization (one in time and
three in space) whose resolution is directly dependent upon the Reynolds number. As the
Reynolds number increases, the grid must become finer because the size of the small
scales decreases. This reduction in the small scales can be seen by comparing the
Kolmogorov and integral length scales for isotropic turbulence (Tennckes and Lumley,
1972; Hinze, 1975):
n_ /e 1/4

—t- —-—‘——- oc Re‘-3/4. (1'7)

In the above expression, the dissipation € is defined by
e=v(Vu': (Vu)T), (1.8)

and the integral length scale is given by the integral of the two-point longitudinal velocity

correlation
b= [ (nnu (x+r,1))dr. (19)
0

Although direct numerical simulations (DNS) of turbulence are possible, they have
only been performed for simple geometries at relatively low Reynolds numbers. For
instance, Kim et al. (1987) have reported DNS results for fully-developed channel flow at
Reynolds numbers less than 10,000 based on the channel half-width. Such simulations
provide important statistical information which is difficult to observe experimentally.

However, the use of direct numerical simulation for practical engineering flows with
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complex geometries and/or high Reynolds numbers would require computational power
beyond what is presently available. Thus, improved models capable of predicting the low
order statistical properties for a wide class of turbulent flows remains an intense area of
research.

Turbulence models can yield physical insight into the behavior of the mean field
provided the important qualitative properties of the Reynolds stress are retained. Thus,
turbulence modeling has several distinct advantages over direct simulation. For instance,
because of the intrinsic three dimensional and unsteady nature of turbulent fluctuations,
direct simulation cannot take advantage of simplifying statistical properties. For example,
a flow which is statistically stationary must still be simulated as a transient. Furthermore,
if a specific flow geometry possesses symmetry planes and/or axisymmetric features, the
flow must still be simulated as fully three dimensional. Thus, a Reynolds stress model
which is not overly complex will almost certainly be computationally faster (and thereby

less‘expensive) than a direct simulation of the same flow.

Realizability

The term realizable as applied to Reynolds stress models relates to whether or not the
eigenvalues of the statistical correlation (u'u') are non-negative. An important aspect of
this concept relates to invariant mapping, as discussed by Lumley [1978]. Specifically, the

invariants of the anisotropic stress, defined by

I, (1.10)

are computed and cross plotted to form a /-11] phase plane of permissible turbulent states.

The invariants of Q are defined as

II= tr(é-k) (1.11)



and

Il = tr(i;-= -=b) . (1.12)

By definition, the first invariant of the isotropic stress is zero (I=tr (E) = 0).
Therefore, at least one of the anisotropic eigenvalues associated with 2 is negative.
Because II is the sum of the squares of the anisotropic eigenvalues, the second invariant is
always positive; however, III can be either positive or negative, depending on the local
dynamic state of the turbulent field. There are two key mathematical properties of the
Reynolds stress which restrict all turbulent states to a subset of the II-III plane. These
properties are: (1) the trace of the Reynolds stress is twice the total kinetic energy of the
turbulence (see Eq. (1.6)); and, (2) the Reynolds stress dyadic is positive semi-definite,

ie.,

z-(u'u')-2z20, (1.13)
for any non-zero z in E>. These two conditions imply that the anisotropic stress is
traceless and its eigenvalues are bounded by 2/3 and -1/3 (see Appendix I). Lumley [1978]
showed that all realizable turbulent states map into a quasi-triangular domain in the II-IIT
phase plane, illustrated by Figure 1.1. The portions labeled A, C and E are the vertices of
the domain, while B, D and F are the boundaries. Each of the portions are listed in an
accompanying table and described mathematically with either the coordinates of the
vertices or the equation for the boundaries. If a coordinate pair (17, II7) falls on or within
the boundaries of the L-diagram (where “L” stands for “Lumley”), then this anisotropic
state may be associated with a realizable Reynolds stress. On the other hand, no realizable
anisotropic state can fall outside the L-diagram. Non-turbulent, albeit realizable, states



Description of Points on Anisotropy Simplex

Invariants’ Eigenvalues of the Reynolds Stress
Name
i/ m R, R, R, Notes
A 1Componet | 23 | 8 | 1 | o | o | |
B 2 Component Anisotropic I =2/9+211 1-x X 0 0<x<g 12
C 2 Component Isotropic 1/6 -1736 12 12 0
D Oblate Axisymmetric mr=-6(1/6)*3 = x 122 | 1BgxgIn
E 3 Component Isotropic 0 0 173 173 173
F Prolate Axisymmetric mr=-6(/6)¥y «x x 12 | 0sx<13

-4
Notes: (1) “n-Component™ means that the Reynolds stress has “n”™ non-zero eigenvalues.
(2) “Axisymmetric” two of the cigenvalues of the Reynolds stress are equal.
Invariants of the anisotropic stress.

Figure 1.1  L-Diagram for Realizable Anisotropic States
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may fall within the L-diagram. Further a priori, model-independent restrictions of the
anisotropic turbulent states within the L-diagram remains an open question for research.
The L-diagram will be employed in this work to represent the local state of turbulence
associated with different turbulent models with different experimental data sets.

k-€ Turbulence Model
The most commonly applied turbulence model is the Boussinesq approximation
(defined by Eq. (1.5)). The k-¢ theory uses an eddy viscosity related to the kinetic energy

and dissipation associated with the fluctuating field:
2
v, = C k/e. (1.14)

The universal coefficient Cu is estimated from plane jet data to be about 0.09 (Launder
and Spalding, 1972). The first models of this type date back to Prandd (see Speziale,
1991) and use empirical, algebraic models for the specification of the characteristic
turbulent scales. Later models have moved away from this and solve differential equations
to specify the turbulent scales. These are generally termed two-equation models, as they
require two differential equations for the scale-determining parameters. The most
prevalent example of this approach to Reynolds stress modeling is the k-¢ model of
Hanjalic and Launder (1972), hereinafter denoted as the standard k-€ model. Transport
equations for the turbulent kinetic energy (k) and the turbulent dissipation rate (¢) are used

to compute turbulent time and length scales at each point in the spatial domain:

Dk

D = (Wu'):V(u)-e+V- [[v+ ﬁ]w], (1.15)

Oy

De €, .\ . _ g2 . Vi
E = -Cp'k-(l_ll_C).V(g> CDT+V [[V+ce:|VE), (1.16)
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While there are many variants on the two-equation model, the standard k- and its low
Reynolds number derivatives (see Patel, et al, 1984, for an overview) have become the
most widely tested and applied engineering turbulence models. The continuing use of the
standard k-€ model is rooted primarily in its relative simplicity combined with its ability to
provide some acceptable predictions.

Some of the computational advantages of the k-€ model include the fact that it is
simple to implement into existing flow predictor codes and that there is not much
additional computational demand inasmuch as only two additional scalar transport
equations need be solved simultaneously with the Reynolds equation. Additionally, the &-
€¢ model has been found to be computationally stable and robust, being largely
independent of the initial guess for field variables. Because of these advantages and
despite its limitations, the k-€ model has become the standard against which other models
are judged. The k-€ model is, therefore, well documented in a variety of flows and
summarizes a wealth of information. In this respect, any new model ought to be at least
comparable to the k-€ model in some basic test flow cases.

One of the many criticisms of the Boussinesq approximation lies in the fact that the
eddy viscosity coefficient is a scalar-valued function that only depends on the mean field
implicity through k and . Tha'efqre, at a fixed position in the flow field, Egs. (1.5) and
(1.10) imply that

v e -

<= e“—" (1.17)
for all combinations of base vectors . and fp' Eq. (1.17) may fit one of the cross
correlations of the anisotropic stress for simple shear flows, but cannot explain the
anisotropic distribution of kinetic energy among the components of the fluctuating
velocity. Indeed, Kitoh [1991] has shown experimentally that Eq. (1.17) is inconsistent
with the observed behavior of the anisotropic stress for the decay of swirling flow in a
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pipe and concluded that the Boussinesq model was an inadequate closure for complex

flows with strong curvature effects.

Simple Shear Flows

While eddy viscosity models typically make good predictions for two dimensional
mean shear flows (Hanjalic, 1994), they do have many limitations. For example, the
Boussinesq approximation does not predict a nommal stress anisotropy for fully developed

channel flows or for homogeneous shear flows. A simple shear flow is defined by

d(uz)
V(_x_c) = & gy.ez, (1.18)

where Ssd(uz)/dy. For this flow, the Boussinesq model predicts an equipartition of
turbulent kinetic energy among the fluctuating components of the velocity, which is
clearly unphysical. Tavoularis and Corrsin [1981], Tavoularis and Kamnik [1989], as well
as Gibson and Kanellopoulos [1987] have all observed nommal stress anisotropies for
homogeneously sheared turbulent flows. ‘

Additionally, the Boussinesq model is unable to explain the transient relaxation effects
observed in return-to-isotropy experiments or the reorganization of turbulent energy
associated with the transient development of homogeneous turbulent shear flows. For
simple mean shear flows, the anisotropic stress associated with the Boussinesq model can

be written as

b= ‘(‘Cz‘“)(s;k)(f,fz*'f ) (1.19)

The invariants of the anisotropic stress for this situation follow directly from Eq. (1.19),

viz.,
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I=tr(b) =0, (1.20)
2
I=1r(b-b) = (Cf/2) (S—:) ) (1.21)
and
HI=1tr(b-b-b) =0. (122)

Experimental studies (see, esp., Choi and Lumley, 1984; LePenven, et al, 1985)
clearly show that turbulent flows which are initially anisotropic gradually relax towards an
isotropic state when the mean strain rate is removed. The Boussinesq model, however,
predicts that the Reynolds stress responds instantaneously to a sudden change in (._-S').
Therefore, the intrinsic memory effects observed in low-order statistical properties of
turbulent flows cannot be represented by Eqgs. (1.5) and (1.19).

Experimental data for homogeneous shear flows (see, esp., Tavoularis and Karnik,
1989) also exhibit a transient relaxation to a strongly anisotropic asymptotic state. Figure
1.2 illustrates the trajectory of the relaxation process on the L-diagram. For simple shear
flows, the accessible realizable states permitted by the Boussinesq theory all lie on the line
IIT = 0 and 0SI1<2/9. Clearly the Boussinesq model cannot form the basis of a
universal closure theory for the Reynolds equation inasmuch as the Boussinesq states are
too restrictive. It is noteworthy that for simple shear flow the Boussinesq model is

realizable for III = 0 and
2
0<II = (cfl/z) (S—e") <2/9. (1.23)

With C” = 0.09, the above inequality for the Boussinesq model implies that the ratio of

turbulent to mean field time scales must be restricted to



IlEtr(_b~é)

Il=tr(b-b-b)

(27/9,0)

(1/6,-1/36)

A

(IL I = (2/3,2/9)

Boussinesq States
Exp. Data - Homogeneous Shear
Transient Approach to Asymp
© Asymptote
Isotropic State
m
\=4 L
Figure 1.2 Ani pic States for H Shear Flows
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(ik)<7 4. (1.24)

Thus, application of the Boussinesq model to turbulent flows for which k/€ » 7/S would
require Cu to be a function of Sk/¢ in order to maintain realizability.

Hanjalic [1994] has also noted the poor performance of eddy viscosity type models in
flows with streamline curvature, especially in swirling flows. This is probably related to
the misrepresentation of the underlying mechanism which distributes the kinetic energy of
the turbulence among the three components of the fluctuating velocity. A primary source
of velocity fluctuations in turbulent flows is the convective coupling between the mean
field gradient and the fluctuating field, viz,, u'-V (u). If (u) has the following local
structure for a fully developed swirling flow

(u) = (ug) (N e, (1.25)

then the local mean field gradient can be written as the sum of the following symmetric

and antisymmetric strain rates

(ug)
Vi) = ore (i)[e ot e8] 3 m PN e ot ] (120

Thus, the convective coupling between V (u) and u' has two distinct contributions:

u'(uy)
°r Te. (1.27)

WV = "',(di,@o))_e.,-

The r-component, or cross-stream component, of Eq. (1.27) provides a means to shift the
energy into the pressure field, and, thereby, increase the highly anisotropic distribution of
turbulent kinetic energy among the three components of the fluctuating velocity.

The coupling between the fluctuating field and the strain associated with streamline
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curvature does not arise in simple shear flows in inertial frames inasmuch as

S S
Vi) =S[ee tee ]+5[e,e,m08]) (1.28)
which yields
VG = () 1.29)
l_l 1‘ = lly dy uz _ez. .

Only streamwise fluctuations induced by the mean field occur for simple shear flows.
However, as implied by Eq. (1.1), velocity fluctuations in non-inertial frames are
produced by convective coupling between the mean field gradient and the rotational strain
rate associated with the frame (see Appendix B). Thus, for simple shear flows in a rotating
frame of reference, velocity fluctuations occur by streamwise convective coupling and,

most significantly, by cross-stream convective coupling with the rotational strain:
u'-[V(u)+Q] =u (i(u )+Q)e -u' Qe (1.30)
~ -0 = y\dy "¢ -z T -y )
Eq. (1.30) assumes that the rotation dyadic is constant and given by

g = Q(.eygz—-ez_ey) , (1.31)
where Q represents the angular velocity of the frame rotation about the x-axis. Thus, as
previously noted by Speziale [1991] and others (Spezale, et al, 1990), an analogous
streamline curvature coupling between the mean field gradient and the fluctuating field
can be achieved by a simple shear flow in a non-inertial frame. This observation provides
a means to study the efficacy of phenomenological turbulent models under relatively

simple kinematic conditions with an anticipation that a turbulence model which performs
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adequately for simple shear in a non-inertial frame may provide a reasonable approach to
flows with strong streamline curvature in inertial frames. The ad hoc basis for this
conjecture stems from a comparison between the velocity gradient in an inertial frame (see

Eq. (1.28)) and the velocity gradient in a rotating frame, viz,,
V=2 + + (5 ) - (1.32)
u = 3leeras]t 3+ )le% 48] -

Thus, the mean field gradient associated with streamline curvature in an inertial frame is
mathematically analogous to the effective mean field associated with a simple shear flow

in a rotating frame provided

Sers ((u")) and Q(—)(ioz.

r r r

12 Objectives

This research examines a new class of phenomenological models for the Reynolds
stress. The study supports a long-standing goal of turbulence research to achieve a
practical, albeit physical, statistical closure of the Reynolds equation for the mean field
(see Eq. (1.1)). The proposed approach addresses some of the limitations of eddy viscosity
type models, while maintaining some of their advantages. The following five issues are

central elements of this investigation:

(i)  realizability;
(i) primary and secondary normal stress differences;
(iii)  spatial and temporal relaxation, or memory, phenomena;

(iv) frame dependence; and,
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W) universality.

The Boussinesq model for the Reynolds stress (Eq. (1.5)) which provides closure for the
ubiquitous k-¢ theory (Hanjalic and Launder, 1972; Speziale, 1991) as well as for the sub-
grid scale model for large scale eddy simulations (Bardina, et al, 1985), misrepresents
some aspects of the above five physical issues. Items (i)-(iv) are fundamental and
necessary for any closure hypothesis which aims for some limited form of universality.
However, the possibility of a low-order, universal closure theory for turbulent flows
remains a speculative, albeit desirable, goal.

This research is limited to the development of a closure for the normalized Reynolds

stress
R= (!21’,: )- (1.33)

Previously published experimental data for homogeneously sheared turbulent flows
provides an extensive resource to guide the development (see, esp., Tavoularis and
Kamik, 1989; Tavoularis and Corrsin, 1981; Gibson and Kanellopoulos, 1987). In order to
develop some understanding of the potential applicability of the proposed approach to
flows with streamline curvature, the new theory is used to predict the distribution of
asymptotic states for homogeneously sheared turbulence in a rotating frame of reference.
This study complements a parallel development of this theory for fully developed channel
flows by Weispfennig [1997].

1.3 Methodology

The theoretical approach to closure stems directly from the continuity equation and the
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equation of motion for a constant density, constant viscosity, Newtonian fluid. An explicit
dependence of the Reynolds stress on the reference frame (i.e. Issue (iv) in Section 1.2) is
introduced by a direct analysis of the equation for the fluctuating velocity field relative to
a rotating frame of reference (Chapter 3 and Appendix B). The development introduces
one level of memory into the closure by using a smoothing approximation related to the
relative relaxation of the space-time structure of the turbulence and a convective-diffusive
Green’s function associated with the non-local transport of momentum fluctuations by the
mean field. This strategy, which has been previously employed by Petty [1975] and others
(see, esp., Hill and Petty, 1996) for turbulent mass transfer, leads to an algebraic pre-
closure for the Reynolds stress which relates (u'u') to the gradient of the mean field, to a
scalar-field relaxation time T, associated with the temporal structure of the turbulence,
and to a statistical correlation hereinafter referred to as the turbulent pre-stress (T R )]

The pre-closure theory in a rotating frame of reference has the following structure

AT W) -A = (Y, | (134)
where the operator A is defined by

A=+, (VW) +Q). (1.35)

The fluctuating vector f' is related to instantaneous fluctuations in the instantaneous

Reynolds stress and to pressure fluctuations:

f=v. [%'gn,_,'g - (._4'._4')]. (136)

An inertial frame pre-closure for (u'u') follows directly from Egs. (1.34) and (1.35) by

setting Q = 0.
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A phenomenological relaxation model is introduced for the pre-stress and this
approach provides an additional means to further address the physical issues associated
with Items (i) and (iii) in Section 1.2. The pre-stress is formally decomposed into an
isotropic and anisotropic contribution:

20, -~
R{ff) = —I+H, (1.37)
-= 3: =
- - T
where the anisotropic pre-stress H is both symmetric (H = H ) and traceless
(tr (ii) = 0). This strategy provides an explicit, self-consistent model to relate the
isotropic coefficient & to the mean field properties inasmuch as Egs. (1.34) and (1.37)
imply that

20 = tr[AT- uu)-A]. (138)

Thus, no additional closure hypothesis is needed to evaluate the isotropic contribution to
the pre-stress. In Chapter 3, the theory is applied to homogeneously sheared turbulence
under the assumption that the anisotropic pre-stress is unimportant. This isotropic pre-
stress theory (IPS-theory) provides a theoretical limit case to compare with the anisotropic
pre-stress theory (APS-theory) developed in Chapter 4 for nontrivial il . However, the
IPS-theory provides a relatively simple extension of the Boussinesq model which
incorporates major issues associated with Items (i), (ii), (iv), and (v). The inability of the
IPS-theory to account for the well-documented phenomena associated with the return-to-
isotropy partly motivates the extension to the APS-theory in Chapter 4.

In Chapter 4, the following property is attached to the anisotropic pre-stress in order to
address Item (v) in Section 1.2:

The anisotropic pre-stress is an objective statistical property of a turbulent flow
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and any phenomenological closure model for _I:{ should be frame invariant.

The above assumption has been applied incorrectly to phenomenological models for
(u'u'), of which the Boussinesq model is a prime example as well as some algebraic
theories proposed by Speziale [1987]. The assumption here is that the operator ;1
introduced by the pre-closure provides the necessary frame-dependent effects manifested
by the Reynolds stress. The isotropic pre-stress contains a self-consistent frame

dependence inasmuch as the anisotropic pre-stress is traceless:
tr(H) = 0. (1.39)

Thus, the above closure hypothesis related to the behavior of the anisotropic pre-stress
implicitly supports the goal of developing a universal closure.

The IPS- and APS-theory are used in Chapter 5 to predict the effect of frame rotation
on the asymptotic states of homogeneous shear. The phenomenological coefficients
introduced by the model are scaled with the turbulent kinetic energy k and the turbulent
dissipation €. The large Reynolds number (i.e. K2 /ve» 1) scalar transport equations are
used to estimate the behavior of k and €. However, the coefficients in the k-€ equations are
recalibrated using the IPS- and APS- closures for the Reynolds stress. The benchmark
flows used to calibrate certain aspects of the theory include:

e homogeneous isotropic decay,
* retumn-to-isotropy, and

e asymptotic homogeneous shear.

Experimental data for these flows relative to an inertial frame are used to estimate model

coefficients.
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In Chapter 2, the classical problem of homogeneous isotropic decay is examined to
determine the effect of the turbulent Reynolds number (k2/ve) on the decay process. An
approximate integral analysis of the Kdrm4n-Howarth equation is employed to relate
velocity derivative skewness data to the dissipation coefficient which appears explicitly in
the e-equation (see the coefficient CD in Eq. (1.16)). An extension of the APS-theory
developed hereinafter to flows for which K2 /ve « 1 will require a complementary low
Reynolds number k-¢ theory to calculate the turbulent time scales needed for momentum
transport.

Figure 1.3 illustrates the structure of the theory and highlights the specific area of
focus. Presently, the development is incomplete and requires further theoretical work.
Applications to specific test flows (see the recommendations in Chapter 7) are essential to
detect flaws in the proposed closure. However, the methodology developed as part of this
research provides a clear and unambiguous framework to introduce further improvements

in the proposed low-order closure of the Reynolds stress.
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Fluctuating Field Equations

B+ @-V-v )l = - V-1

V.uw=0
Chapter 3
Preclosure k-¢ Equations
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Chapter 4 (u), ()

Figure 1.3  Closure Methodology




CHAPTER 2

THE DECAY OF ISOTROPIC TURBULENCE IN AN INERTIAL FRAME

2.1 Introduction

The problem of decaying isotropic turbulence is a classical benchmark flow in the area

of turbulence research. The absence of spatial gradients in any of the mean propertics

implies that there are no production or diffusive transport effects. Thus, the turbulence

decays uniformly with the result that
lim k = 0 and lim € = 0. 2.1
1 —> o0 t—> oo

Because the flow is isotropic and there exists no means to develop an anisotropic stress,

the kinetic energy and the dissipation of turbulence are governed by the following

equations (see Appendix A)

dk

L=t 22)
and

% = —2v{[Vu': (Va' - V) T]) - 2v*([V (Va) 1 [V (V) T)). 23)

Although Egs. (2.2) and (2.3) are formally exact, two unknown statistical correlations

21
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appear in Eq. (2.3). These two terms correspond to the production of dissipation due to
vortex stretching and the destruction of dissipation due to viscous effects, respectively.
The modeling approach for the dissipation equation introduced by Hanjalic and Launder
[1972] assumes that the destruction of turbulent dissipation scales with the local
dissipation. Thus, the following statistical ansatz is used to represent the underlying
physical effect associated with the terms on the right-hand-side of Eqg. (2.3):

®__%¢ 2.4)

where T/, represents a characteristic relaxation time for the dissipation. The conventional
k—¢ theory further assumes that T, ~k/¢ for large turbulent Reynolds numbers.
Extension of this closure to low Reynolds numbers involves the introduction of an
empirical, albeit universal, destruction of dissipation coefficient CD (Re):

2 = —C,(Re) ‘—: (2.5)
The utility of decaying isotropic turbulence is that Egs. (2.2) and (2.5) provide a means of
determining the closure coefficient C,,(Re). Much experimental (Batchelor and
Townsend, 1948; Comte-Bellot and Corrsin, 1971; and Sirivat and Warhaft, 1983) and
numerical (Bardina et al, 1985; Speziale et al, 1987; and Mansour and Wray, 1994) data
are available for the analysis of this model parameter.

Egs. (2.2) and (2.5) can be combined to yield the following equation for the turbulent
time scale k/€:

%(k/e) = Cp(Re) - 1. (2.6)

Experimental data available for isotropic decay indicate that the time scale k/¢€ increases
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throughout the decay process, which implies that C;, (Re) > 1. Analogously, Egs. (2.2)
and (2.5) can be combined to yield an equation for the turbulent Reynolds number Re
( skz/ve) R

4 (Re) = —2]ReE
5, (Re) = [Cp(Re) 2] Res. @2.7)

Eq. (2.7) implies that the decay process can occur at a constant Reynolds number Re
defined by C;, (Re‘) = 2. This critical Reynolds number Re’ is stable if CD (Re) >2
for Re <Re" and Cp,(Re) <2 for Re>Re . However, experimental measurements for
isotropic decay indicate that Re decreases throughout the decay process. Therefore, the
dissipation coefficient C;, (Re) , introduced by the closure model given by Eq. (2.5), must
satisfy the following inequality:

1<C,(Re) <2. (2.8)

With 1<CD (Re) <2, both k and € decay to zero and remain non-negative (i.e.
realizable). This follows directly by examining Egs. (2.2) and (2.5) in the k — € plane for
which

de €

— = C,(Re)-. 2.

5 = Co(Re); 29
Figure 2.1 illustrates the set of points consistent with Eq. (2.9) and Ineq. (2.8). The
boundaries of the attainable states are constructed by solving Eq. (2.9) with C, = 1 for
the entire decay process (for the upper boundary) and C,, = 2 for the entire decay
process (for the lower boundary). If 1 < CD (Re) <2, then Egs. (2.2) and (2.5) predict a

realizable relaxation process for k and € consistent with experimental observations, i.e.,
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legend)
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Legend for Figure 2.1

Re,, key Appendix E Table; Reference

7.58 A Table E.1; Batchelor and Townsend [1948]
42.6 \Y

83.7 A

354 O Table E.2; Comte-Bellot and Corrsin [1971]
769 [

139 U Table E.3; Sirivat and Warhaft [1983]

262 ]

35.1 58 Table E 4, Speziale, et al. [1987]

454 X Table E.S; Bardina, et al. [1985]
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(k, g, -E, Re) — (0,0,,0).

Figure 2.1 also shows the relaxation states measured experimentally by Batchelor and
Townsend [1948], Comte-Bellot and Corrsin [1971], and Sirivat and Warhaft, [1983]. The
DNS results of Bardina et al. [1985] and Speziale et al. [1987] are also indicated. It is
noteworthy that the data partly supports the notion that after some initial transient, the
destruction of dissipation coefficient approaches a universal function of the Reynolds
number.

Using isotropic decay data at high Reynolds numbers (Re > 500, see Comte-Bellot
and Corrsin, 1971), Hanjalic and Launder [1972] estimated the decay coefficient to be
about two. This value was later refined to 192 by Launder and Spalding [1974].
Subsequent investigators introduced empirical functions to account for the effect of the
Reynolds number on the coefficient C,,. For instance, Hanjalic and Launder [1976]
proposed the following expression

Cp = l.8|:1—§exp (—[%]2)], ’ (2.10)

whereas Lumley [1978] suggested

18
CD = l.4+0.49exp[-—J1—:-e-]. (2.11)

Both of the above empirical expressions for C;, employ the final decay coefficient
estimated by Batchelor and Townsend [1948] (i.e. CD — 1.4 as Re — 0). The high
Reynolds number asymptote of Comte-Bellot and Corrsin [1971] is used in Eq. (2.10); Eq.
(2.11) incorporates the limit C;, — 1.89 as Re — . Both Egs. (2.10) and (2.11) assume
that the destruction of dissipation coefficient increases monotonically as the Reynolds

number increases.
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Mansour and Wray [1994)] studied decaying isotropic turbulence by direct numerical
simulation. They computed the skewness of the velocity derivative as well as the
destruction-of-dissipation coefficient, C/,. The velocity derivative skewness is defined by
(see p. 58 Monin and Yaglom, 1965):

and, as discussed by Tennekes and Lumley [1972], is an important statistical property
related to vortex stretching (also see Monin and Yaglom, 1965):

—2v([Vu': (V' - Vu) T])=p = gl—JESkJR_e. (2.13)
Eq. (2.13) will be derived from the classical Kdrm4n-Howarth equation for isotropic
turbulence in Section 2.2. For Re > 100, Mansour and Wray [1994] observed that § ¢~ 03
to 0.4. For Re = 0, S, = 0. Figure 2.2 shows the effect of Re on the velocity derivative
skewness given by Mansour and Wray [1994] and Tavoularis et al. [1978]. The empirical
representations of CD given by Egs. (2.10) and (2.11) are also shown for comparison.

The goal of this chapter is to develop a relationship between the destruction-of-
dissipation coefficient C, and the turbulent Reynolds number. In the next section, the rate
of change of dissipation will be formally identified as the difference between two
statistical properties, viz., the production of dissipation due to vortex stretching and the
destruction of dissipation due to viscosity. For decaying isotropic turbulence, the
dissipation rate exceeds the production rate, with the net result that the dissipation
turnover time (cf. Egs. (2.4) and (2.5)) is positive:

1.06-p E >0. (2.14)

Tp
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The destruction coefficient § and the production coefficient # can be related to specific
statistical properties of the flow and possibly provide a means to understand the
underlying behavior of the k — & model coefficient C,,. It follows directly from Egs. (2.4),
(2.5), and (2.14) that

C,(Re) = B(Re) —P(Re). (2.15)

A better understanding of C) (Re) is essential for further improvements of the widely
used k — € transport equations for turbulent flows.

In Section 2.3, a semi-theoretical approach is used to relate C;, and Re. Subsequently,
an integrated form of the K4rmé4n-Howarth equation (hereinafter referred to as the IKH-
equation), which links the double and triple longitudinal velocity correlations, is
employed to develop an approximate relationship between 8 (Re) and #(Re). An
empirical representation for 8 (Re) , which agrees with experimental results for high and
low Reynolds number asymptotes, permits the velocity derivative skewness factor to be
predicted from the IKH-equation. The adjustable parameters introduced by the
approximation are determined in part from the experimental data summarized by Figure
2.2. In Section 2.6, the non-linear dynamic equations given by Egs. (2.2) and (2.5) are
solved in the time domain for an arbitrary, albeit realizable, initial state (k 2 €,) -

22  Local Analysis of the Kdrm4n-Howarth Equation

The Kdrmén-Howarth equation stems directly from the Navier-Stokes equation and
provides the following fundamental relationship between the double and triple
longitudinal velocity correlations for isotropic turbulence (see K4irm4n and Howarth,
1938; Hinze, 1975; and, esp., p. 122 Monin and Yaglom, 1965),



In Eq. (2.16), B 1. (7, t) represents the double longitudinal velocity correlation,

By (nt) = (W, (xDu (x+1,1), (2.17)
and T;; (7, 1) is the triple longitudinal velocity correlation,

T (nt) = Wi nu, (x+rn10). (2.18)

Eu_ (r,t) is an even function of r (= r|) and i‘m (r,t) is an odd function of r.

Therefore, a Taylor series representation of the two correlations can be written as follows,

. 3’B a'B
By, =B, (01 +l,( ;‘L] r2+—l'-( fL) e, 2.19)
21\ or 0 a\ o reo
and
. T,
Ty = i'( ‘;""] P (2.20)
3\ or -0

An equation for the kinetic energy follows directly from Eq. (2.16) by setting r = 0:

4
dt

- a’B
Bu(o,t)=10v( "‘) . @.21)

2
ar’ J,._o

Because §LL (0,t) = 2k/3 for isotropic turbulence, Egs. (2.21) and (2.2) imply that

azéu)

=7 (2.22)
r

€= —15\'(

r=0
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With the Taylor microscale A defined by the following expression (Tennekes and Lumley,
1972):

3’B By, (0,1)
() . a0 e
ar r=0 K
Eq. (2.22) can be rewritten as
B, (0,1
e = 15y %D _ 10vk (2.24)

A2 A2

Eq. (2.21) governs the rate of viscous decrease of the turbulent kinetic energy for an
isotropic decay process. The Taylor microscale, or the energy dissipation length scale, is
defined by the double longitudinal velocity correlation; A can also be related to the second
moment of the velocity derivative (see p. 143, Monin and Yaglom, 1965).

Eqgs. (2.23) and (2.24) suggest that an equation for the energy dissipation also follows
from the K4irm4n-Howarth equation (i.e. Eq. (2.16)) by differentiating twice with respect
to r and then setting r = 0. This analysis yields (see p. 144, Monin and Yaglom, 1965)

3’B ‘B T
SR I o
dt\ gr 3 or 3\ or r=0

r=0 r=0

Egs. (2.23) and (2.24) can be used to rewrite Eq. (2.25) as

2

de (3
- = Y T (2:26)
where
4 (3*B
TR ( f’*] (227)
BLL (0) ar r=0
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and
pu T _ MR (33 i"”') 2.28)
315 By, )\ /i

The first term on the right-hand side of Eq. (2.26) causes a decrease in energy dissipation

due to viscous damping as 8 is always positive, i.e.,

o'B
( ”‘) >0. (2.29)
ort

r=0

The second term on the right-hand side of Eq. (2.26) accounts for the “production” of
dissipation by vortex stretching (see p.144 Monin and Yaglom, 1965; and, esp., p. 83
Tennekes and Lumley, 1972). For isotropic turbulence, # is generally positive inasmuch

T
( ”“) <0. (2.30)

3
or y=0

The production term can also be written in terms of the velocity derivative using the

following result (see Appendix F)

2 () @D em
(B (0)) or 0

Eq. (2.26) shows that the net destruction of dissipation coefficient CD (Re) has two
contributions (see Eq. (2.15)). In the next section, an integral analysis of the K4rm4n-

r=

Howarth equation is used to estimate the effect of the Reynolds number on the coefficient
C,, by using velocity derivative skewness data (see Figure 2.2).
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23  Global Analysis of the Kdrm4dn-Howarth Equation

Integrating Eq. (2.16) from r = 0 to r = e yields an integrated form of the Kdrm4n-

Howarth equation (IKH-equation):
d [ _J - L _J l _ *0 l -
= { By dr = 8v (j) ;airwu) dr+4 ({ ~Typdr . 2.32)

The following conditions on the double and triple longitudinal velocity correlations have

been used to obtain Eq. (2.32)

ar '80,”
r=0,00

dB ..
("‘) =0 and (T = 0.

With dimensionless velocity correlations defined as

By, (r.t
B, = _L('_). (2.33)
B (0,0
and
Typp (1, t
T, = :E‘—('—) (2.34)
T, (0,1)
Eq. (2.32) can be rewritten as
. - - 3/2
dit [By 0.0A1] = %‘-’Bu (0,01,+4 (B (0,0) 1, (2.35)

The dimensionless integrals in the above equation are defined as follows:



I, = [B,dE, (2.36)
0

1= é;’g(su) d&, and 237)

=] édeg, (2.38)

where & = r/A. Because k = 3B, (0, t) /2, Eq. (2.35) may also be written as

2 (kM) = xk A F‘k“’ I, (2.39)

With A2 = 10vk/e, it follows directly from Eq. (2.6) that temporal changes in the Taylor

microscale are governed by
dA 10ve
- = (Cp-1 .
dt ( ) T4k (240)

Therefore, because C D> 1 for isotropic decay in an inertial frame of reference, Eq. (2.40)
implies that the integral microscale increases during the decay process. Note, however,
that the rate of change in A decreases inasmuch as the ratio k/& — o as k and € decay (see
Section 2.1).

Eqgs. (2.40), (2.2) and (2.5) can be used to eliminate the Taylor microscale from
Eq.(2.39) with the result that

k[ d 8[L I3 [sRe
425 Ly | = 2| 2322, 4
=3 e[d:"(l)] 5[1,+11J 3 | @4D

An important assumption regarding the decay process is that the integral I, depends only
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on the instantaneous Reynolds number (lcz/ve):

I, = I, (Re). (242)

The above universality hypothesis uncouples Eq. (2.41) from the initial conditions.
Therefore, it follows from Egs. (2.42) and (2.7) that

k d k dRedl"(Il)] dln(Il)
2-8— [2}"‘ (Il)] - 2E [7 dRe =2 (CD -2 din(Re) @43

Eq. (2.41) can now be rewritten as

din(l,) gL, I [sg,
(CD—3)+2(CD—2)dln(Re) = 3[1—1'0'7; —3— . (2.44)

The above equation is an integral property of the Kirm4n-Howarth equation and will be

subsequently used to develop some understanding of the possible dependence of the
destruction-of-dissipation coefficient C,, as well as the velocity derivative skewness on
the turbulent Reynolds number for 0 < Re < oo.

24  Approximate Analysis of the Dissipation and Production Integrals

The previously developed series expansions for the double and triple longitudinal
correlations (see Egs. (2.19) and (2.20)) can be rewritten in terms of €, 8, and # by using
the definitions given by Egs. (2.27) and (2.28):

1,2 58,4
B,, =1=-=E"+=E"+... 24

LL
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and

15 ¢ .3
= - ’-—— 2.
Towe Re 14g * (246)

Figure 2.3 illustrates the behavior of the three functions which determine the integrals I,
I, and I;. As an approximation, the integrals in Eq. (2.44) will be estimated using a finite
cut-off separation distance related to the behavior of the dissipation integrand I, (see
Figure 2.3):

g
1,3 8

I~ [BdE = § - B+ B+, (2.47)

0

g°1 208

2 _ 3
IZ- {EE(Bu)dg = —€C+E§c+"" (2.48)
and
g‘l 15 P
-_ |22 3

I, £ £l = ,Re ot (2.49)

The cut-off separation distance & .+ defined by Figure 2.3, scales with the Taylor

microscale and the dimensionless viscous destruction coefficient,

e 14
=y = J; : 2:50)

The experimental results of Tavoularis and Corrsin [1981] and the direct simulation
results of Mansour and Wray [1994] show that the velocity derivative skewness S, < e as
Re — oo; therefore, Eq. (2.13) implies that
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Figure 2.3 Qualitative Behavior of the Integrands of /,, /5, and /3; Estimation of the
Cut-off Integration Distance .
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lim #~S,JRe. 2.51)

Re = oo

It follows from Eqgs. (2.15) and (2.51) that

lim C,=C) =5 >1. (2.52)
Re—0
Experimental data of Batchelor and Townsend [1948] at low Reynolds numbers imply that
C"D = 1.4; therefore, it follows from the above limits that 8, = 1.4.
At large Reynolds number, the data of Tavoularis and Corrsin [1981] and the
simulations of Mansour and Wray [1994] (see Figure 2.2) indicate that

lim §, -S =~0.4. (2.53)
Re — oo
Therefore, the production of dissipation coefficient increases with the Reynolds number as
follows (see the definition of # given by Eq. (2.13))

lim £ = ——5"JRe . 254
Re—se 13J15 ¢ @349
Because 1<C; <2, it follows that the asymptotic behavior of 8 at large Reynolds

numbers must be as follows

lim S=5_ = 5™ JRe, (2.55)

Re = o 3J_ k

where C7) ~ 1.8 to 1.9 (see Section 2.1; Comte-Bellot and Corrsin, 1971; and Sirivat and
Warhaft, 1983).
It follows directly from Eq. (2.50) and the asymptotic behavior of the viscous

destruction term that the integral cut-off parameter § . has the following limits at high and
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low Reynolds numbers

lim & = J2 (2.56)
Re—0
and
lim & =0 @2.57)
Re— e

Each of the integral ratios appearing in Eq. (2.44) can be estimated in terms of §_. For
instance, it follows directly from Egs. (2.47) and (2.48) that

208,13

1, BRARTAN

l—" 1 3 , (2.58)
3 5

b SeTgRtse

As Re — o, Eq. (2.50) for & . implies that the ratio 1,/1, asymptotically approaches

-2/3 inasmuch as

=|= -2, (2.59)
I, 451 (1 3
1-—-+8(=
1508 \42

For Re — 0, it follows from Eq. (2.38) in the previous section that

R?E-[Iz] _ -3+9(3)

lim 1—2 -§(c"-3) (2.60)
Re—o| I, g b 7 )

provided I,/I, < = and dI,/dRe < = for Re — 0. Therefore, with Cj, = 1.4, Eq.(2.60)

implies that

12
lim | =] = -1. 4 (2.61)
Re—>0 Il
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Because 0<§_ < ﬁ, a linear interpolation for 7,/1, as a function of §_ will be used
between the two limits given by Egs. (2.59) and (2.61). Therefore,

I 3
2__2 1% (2.62)
I, 3 3/
which can also be written as
I
2 _ Z__l. _li (2.63)

I, 3 34108

It follows from Egs. (2.47) and (2.50) that Il depends on the turbulent Reynolds

number implicitly through & _ and, consequently, 8. Thus,

Re 4 [Redd] 39 2.64)
I,dRe L B8 dRel|I ds | '

It follows from Egs. (2.47) and (2.50) that

1
1-8(;)
54l __1

s — = . (2.65)
1, d8 2 l_oe)
For Re — o0, Eq. (2.55) shows that 8 — oo; therefore,
8 ‘"1 1
im |[— | = —. 2.66
For Re - 0,
y. dIl 1
im | =— | = -=a. 2.67
Re-»o[ll d.s] 2* @6n

The parameter a remains as an adjustable universal parameter. A linear interpolation
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similar to Eq. (2.62) is used for intermediate values of the Reynolds number. Therefore,

84l 1[ E-'c:|
—— =14+ [a-1]—= |, (2.68)
Ias 2 2

or, in terms of the viscous destruction coefficient,
sdl 1[ 14]
——— ==—|14[a-1] |—|. 2.69
AT R T @)

The estimate of 1,/1, follows from the approximations expressed by Egs. (2.47) and
(2.49) along with the integration cut-off distance given by Eq. (2.50):

- 1 f& +
s _15ReDT 2.70)
I, 7.3 ' ‘
gc - a&c +...
The limiting behavior of Eq. (2.70) is not apparent, so the lead term in the numerator is

factored and the remaining ratio is modeled as a universal constant:

I -
3 1.° @.71)

I 15Re 3
The parameter b is a constant to be evaluated at the high Reynolds number asymptote. At

infinite Reynolds numbers, Eq. (2.55) implies that

(2.72)

N

C"
D 16 8
22 2.73)
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This gives b = 0.0343 for C;) = 1.83.

25 Parameter Estimates

The asymptotic states (i.e. Re — 0 and Re — =) have been used to approximate the
integral expressions found in Eq. (2.44). Eq. (2.44) may now be used to predict the
intermediate behavior of CD (Re) . A parametric study of CD (Re) with respect to the
empirical parameter in the representation for 8 (Re) will conclude this section. The
selection of 8 (Re) may be judged as acceptable based on the resulting prediction of the
velocity derivative skewness compared to experimental and simulation data for S, (Re) .

The form of 8 (Re) is specified by the following function:

(c; + ;ZJES‘:J@) (€= Co) exp| - (Re/Re™) "], 2.74)
where S: represents the high Reynolds number asymptote for the skewness. Re and n
are empirical parameters which control the transition for the destruction term between its
high and low Reynolds number asymptotes.

The parameters a, Re’ and n are selected to reproduce the trend in Sk (Re)
consistent with Eq. (2.44) and the foregoing approximations to I, I,, and I,. The
constants, which have been determined as a result of a parametric study, are @ = -3.5,
Re" =22andn = 1.25. Figure 2.4a shows the behavior of Sk (Re) predicted by Eq.
(2.44). By design, the skewness assumes a value of 0.4 at large Reynolds numbers.
Interesting is the prediction that a local maximum of Sk’ max = 0-52 occurs at Re =5,
which compares favorably with the data for the skewness: S kmax™ 0.5t 0.6 at Re=5
to 10 (Tavoularis et al, 1978; and Mansour and Wray, 1994). All asymptotic and
empirical parameters used to support this analysis are summarized in Table 2.1. Of the ten
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Figure 24a  Predictions of the IKH-Equation for the Skewness Using a Prescribed
Function for the Destruction of Dissipation ( a = -3.5, Re = 2.2 and
n = 1.25).
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Table 2.1: Summary of Parameters Used in the Analysis of the IKH-Equation

Parameter Value Basis
C; 1.83 High Re data of Comte-Bellot and Corrsin [1972];
direct simulations of Mansour and Wray [1994]
Cp 1.4 Final decay period of Batchelor and Townsend [1948]
S: 04 Data of Tavoularis et al. [1978]; direct simulations of
Mansour and Wray [1994]
(1,/1)) -1 Consistency with C},
[/]
(1,/1) -243 Asymptotic behavior of series representations for
= integral quantities
pdl, -12 Asymptotic behavior of series representations for
[;; 5] integral quantities
a -3.5 Empirical parameter in (8/1,) (dI,/d8) selected
for consistency with data for skewness
b 0.0343 | Consistency with C},
Re’ 22 Empirical parameter in S (Re) selected for
consistency with data for skewness
n 1.25 Empirical parameter in B8 (Re) selected for

consistency with data for skewness
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parameters listed in Table 2.1, seven are derived directly from experimental data and/or
from consistency conditions with the asymptotic behavior of various quantities. Only
three quantities are left as free constants to reproduce the data for the velocity derivative
skewness.

The effects of the parameters a and Re" on the resulting skewness prediction are
shown in Figures 2.4b and 2.4c. In each case, the parameters used in the computations are
the same as those listed in Table 2.1, with the exception of the variable shown in the
figures. Figure 2.4b indicates that the parameter Re” influences both the location (in
terms of Re) and the magnitude of the local maximum in the skewness. Figure 2.4c shows
that the parameter a also influences the magnitude of the local maximum in the skewness
as well as the low Reynolds number behavior of the skewness.

Figure 2.5 illustrates the semi-theoretical prediction of C;, (Re) and Figure 2.6 shows
the individual contributions of 8(Re) and P (Re) to the destruction-of-dissipation
coefficient. The curve for 8 (Re) is the empirical prescription described by Eq. (2.74).
The curve for P (Re) is the resulting prediction of Eq. (2.44). Within the context of the
modeled form of the IKH-equation, the local maximum in CD (Re) is a direct
consequence of the transition of 8§ (Re) between high and low Reynolds number behavior.
For instance, if C’l; - C‘l’, = ( (with all other parameters being the same as given above),
then C, (Re) is constant. As C, - Cj, increases, however, the non-monotonic behavior
becomes more pronounced. At large Reynolds numbers, the growth of both production
and destruction are proportional to JRe, and Cp=8-P-Cp =183,

Given that the non-monotonic behavior of C,, (Re) is supported by: (1) the analysis
of the classical Kdrm4n-Howarth Equation; and, (2) the numerical simulations of Mansour
and Wray [1994], the following empirical representation of C;, (Re) is proposed as an
improvement on the previous expressions developed in the literature (see Figure 2.2),

s

C;+C5 (Re/Re,) .
c,= 22 il [1+C [exp(—p {in(Re/Rep) 1) ]]. 2.75)
1+ (Re/Re,)*
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Figure 2.4b  The Effect of Re* on the Velocity Derivative Skewness (a = -3.5 and
n = 125).
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Figure 2.4c  The Effect of a on the Velocity Denvative Skewness (Re. = 2.2 and
n = 1.25).
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Eq. (2.75)
Eq. (2.44), IKH-equation
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Figure 2.5 Predictions of the IKH-Equation for the Destruction of Dissipation
Coefficient
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Predictions of the IKH-Equation for the Production of Dissipation Using a
Prescribed Function for the Destruction of Dissipation.



In Eq. (2.75), Re, determines the Reynolds number at which the decay coefficient
approaches its high Reynolds number asymptote and s is a sharpness parameter for this
approach. Equivalently, Re, determines where C,, (Re) achieves its local peak and p
relates to the sharpness of this peak. The quantity C* determines the value of Cp atthe
local maximum. The following parameters have been selected in order to reproduce the
local maximum and minimum in C;, (Re) illustrated by Figure 2.5: Re, = 5, s = 04,
Re, = 15,p = 0.65,and C* = 0.054.

26  Transient Isotropic Decay

With C, (Re) expressed by Eq. (2.75), Egs. (2.2) and (2.5) may be employed to
compute an isotropic decay process for any arbitrary initial conditions given by k , € ,
and Re, (ki/ve ,)- These equations have been integrated using a fourth order Runge-
Kutta integration algorithm (Carnahan et al, 1969; see also Appendix H). For an
appropriate specification of the initial conditions, this calculation can be used to reproduce
the isotropic states which correspond to the experiments of Batchelor and Townsend
[1948], Comte-Bellot and Corrsin [1971], and Sirivat and Warhaft [1983] (see Figure 2.1).

Figures 2.7a-2.7g present the results for the seven experimental data sets used in this
chapter. The results are given as a crossplot of the turbulent kinetic energy vs. the
dissipation. Egs. (2.2) and (2.5) imply that
. (2.58)

&%
LYES

1
¢p
The local slope of the computed line compared to the slope of the data points gives an
indication as to the quality of the specification of C/, (Re) . In general, the reproduction of
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Figure 2.7a Model Computations for the Isotropic Decay Data of Batchelor and
Townsend [1948] (I/ =150 cm/s, Re, = 7.58)
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Figure 2.7b Model Computations for the Isotropic Decay Data of Batchelor and
Townsend [1948] (U = 643 cm/s, Re, = 42.6)
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Figure 2.7c  Model Computations for the Isotropic Decay Data of Batchelor and
Townsend [1948] (U = 1286 cm/s, Re, = 83.7)
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Figure 27d Model Computations for the Isotropic Decay Data of Comte-Bellot and
Corrsin [1971] (U= 10 m/s, Re, = 354)



55

0.1 1 1 [ I B | 1 1 [ER T U B |

0.01 0.1 1

Figure 2.7¢e = Model Computations for the Isotropic Decay Data of Comte-Bellot and
Corrsin [1971] (U= 10 m/s, Re, = 769)
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Figure 2.7f  Model Computations for the Isotropic Decay Data of Sirivat and Warhaft
[1983] (U = 340 cm/s, Re, = 139)
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Figure 2.7g  Model Computations for the Isotropic Decay Data of Sirivat and Warhaft
[1983] (U = 630 cm/s, Re,, = 262)
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the data sets is quite good. Specifically, the initial decay stages of each of the seven data
sets is well represented, although some sets show deviation from the computations at
points farther along in the decay process. This is not surprising, however, as the degree of
homogeneity and isotropy of the flow worsens at larger downstream positions in the wind
tunnel (Comte-Bellot and Corrsin, 1971). Of particular note are the two cases which
represent the extrema for the experimental Reynolds numbers. Figure 2.7¢ represents the
highest Reynolds number data of Comte-Bellot and Corrsin [1971] (Re, = 769). The
slope of the calculation is slightly higher than that of the data, indicating that C,, is
relatively low, and perhaps approaches its asymptote too slowly. Figure 2.7a represents the
low Reynolds number data of Batchelor and Townsend [1948] (Re 0 = 7.58). Here, the
representation of the data is excellent throughout the entire decay process. The good
agreement of the data sets which span two decades of Re o is an indication that Eq. (2.75)
is a quantitatively good expression for C,.

Figures 2.7h and 2.7i present the results of the same calculations, but compared with
the direct simulations of Bardina et al [1985] and Speziale et al. [1987]. The solid line
shows the results of the computations using the data at t€,/k = 0 as the initial
conditions, whereas the dashed line shows the results using the simulation data at
te,/k, =1 as the initial state for the solution of Egs. (2.2) and (2.5). What is most
noteworthy about these two simulations is the fact that the initial decay period is very
poorly characterized, while the final decay is well reproduced. This, however, does not
necessarily mean that the model for CD (Re) is poor. Rather, the limitations of direct
simulations are brought into question. Huang and Leonard [1994] address this problem.
They indicate that, during the initial stages of a direct simulation, the maximum resolvable
wavenumber I'me of the turbulent energy spectrum (E k) is relatively small. Thus,
although the larger, energy-containing eddies (i.e. low wavenumber k) may be well
characterized, the smaller, dissipative eddies (i.e. high wavenumber k) are not. Without an

accurate characterization of both the energy-containing and dissipative eddies, the decay
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Figure 2.7h  Model Computations for the Isotropic Decay Simulations of Speziale, ef al.
[1987] (Re, = 35.1)
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Figure 2.7i  Model Computations for the Isotropic Decay Simulations of Bardina, et al.
[1985] (Re, = 45.4)
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transient is clearly suspect. Huang and Leonard explain, however, that fcmx increases
during the course of the simulation. Therefore, at longer times, both types of eddies are
accurately represented and the quality of the decay transient is much more reliable.

Figure 2.8 presents the decay of the turbulent kinetic energy in the time domain for
three different initial Reynolds numbers: Re = 10, 100, 1000. The kinetic energy
nommalized by its initial value is plotted versus the dimensionless decay time
(Tt =t 0/ k o). It is noted that the small differences among the three cases are manifested
only in the long time behavior. The curves follow the trends expected from the nature of
Egs. (2.2) and (2.5): At higher Reynolds numbers, C, is higher and causes the turbulent
dissipation to decay more rapidly, causing the turbulent kinetic energy to persist longer.

2.7 Conclusions

The integral form of the Kdrm4n-Howarth equation for isotropic turbulence provides a
semi-theoretical prediction for the destruction coefficient C;, in the equation for the
turbulent scalar dissipation. Integral expressions containing the double and triple velocity
correlations are estimated using Taylor series representations of the velocity correlations
and a characteristic cut-off integration length. A modeling hypothesis is made which
assumes that the ratio of the integral quantities is correctly represented, although the
absolute magnitudes of the integrals may not be.

Empirical parameters which are chosen to reproduce experimental data for the
velocity derivative skewness in decaying isotropic turbulence predict that C/, spans its
upper and lower limits in a non-monotonic fashion. This is unlike previous approaches to
this problem, which have simply bridged the two limiting cases with some monotonic,
empirical function. The non-monotonic behavior CD (Re) is seen in some direct

simulations of this flow. The resulting prediction for CD (Re) is able to reconstruct the
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Figure 2.8 Predicted Transient Decay of the Turbulent Kinetic Energy as a Function of
Initial Turbulent Reynolds Number
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various experimental and direct simulation data available in the literature.

Within the context of the modeled form of the IKH equation, the non-monotonicity of
Cp (Re) is a direct consequence of the fact that C;, varies between two different upper
and lower Reynolds number limits. For C;-C; = 0, C,(Re) would be a constant
function, while the local maximum in CD (Re) becomes more pronounced as C; - C‘l’)
increases.

The disparity between the calculations and the initial stages of decay in direct
simulations illustrates that care must be taken when treating direct simulation data. Only
the longer-time simulation data resolve both the large and small turbulent scales and
provide meaningful data for comparison.



CHAPTER 3

ISOTROPIC PRE-STRESS CLOSURE THEORY FOR
HOMOGENEOUSLY SHEARED TURBULENCE

3.1 Introduction

Homogeneously sheared turbulence has the interesting feature that the turbulent time
scale k/e approaches a constant finite value as the flow develops (Tavoularis and Corrsin,
1981; Gibson and Kanellopoulos, 1987; Rohr et al., 1988; and, Tavoularis and Kamik,
1989), although the kinetic energy k and the dissipation € associated with the velocity
fluctuations continuously increase as z — eo. Figure 3.1 summarizes the asymptotic state
attained by this flow for which the shear rate § is approximately constant. The existence of
this state requires that the transport equations governing the turbulent kinetic energy and
the scalar dissipation rate satisfy the following model-independent condition

1dk lds
lim|-——|= lim|-—|. 3.1
z-no[kdz] z-n-[edz] @1

For homogeneous shear flows at high turbulence Reynolds numbers (k2 » VE), the k-€
equations (Hanjalic and Launder, 1972) are

W) OF = ~uy: Vi -e, (32
Z
de (u'u'):V(u) e
(“z) (0) a“z’ =-C P._—'tp -C D't';. (3.3)

(uz) (0) is the axial component of the mean velocity along the centerline of the flow field.
Tp and T, represent, respectively, turbulent time scales associated with the production of
64
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: These numbers represent the average of cases A, B, and C from Tavoularis and Karnik [1989].

Figure 3.1 Asymptotic State for Homogeneously Sheared Turbulent Flows
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dissipation and the destruction of dissipation. The standard k-¢ theory of turbulence
assumes that T, = T, = k/¢ and that Cp, and C, are constants independent of the local
state of turbulence. According to Eq. (3.1), an asymptotic state of turbulence is predicted
by Egs. (3.2) and (3.3) provided the ratio of production to dissipation satisfies (Speziale,
1991)

34)

lim [‘<'_4"_">=V<y>] _Cp-1

Z—r e € - CP-I.

Eqgs. (3.2) and (3.3) are also consistent with experimental data for homogeneous decay
provided CD = 1.83 (see, esp., Comte-Bellot and Corrsin, 1971; Mansour and Wray,
1994; and Chapter 2 of this dissertation).

The Reynolds stress can be written as the sum of an isotropic and an anisotropic stress
(Spezale, 1991)

I+2kb, 3.5)

where !_) = QT and ¢tr (!;) = 0. For a strictly homogeneous flow with § = 0, the
anisotropic stress b is zero. Because (u'u') is a non-negative operator, the eigenvalues
associated with the Reynolds stress are non-negative (Schumann, 1977). Moreover,
because

tr{u'u’) = 2k>0, (3.6)

at least one eigenvalue of (u'u') must be non-zero and positive. This means that the
normalized components of the turbulent kinetic energy are confined to the energy simplex
illustrated by Figure 3.2. The homogeneous shear data (Tavoularis and Karnik, 1989)
summarized by Figure 3.2 show that this flow produces a positive primary normal stress

difference,
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i I:(u'zu'z) - (u'yu'y)
Z—deo

=0.377,
=03

as well as a negative second normal stress difference,

lim

Ze

[ (u'yu'y) - (' ')

T ] =-0.040.

The anisotropic stress b has two non-trivial invariants: II = tr(b-b) and
III = tr(b-b-b). Lumley [.1978] has shown that all realizable turbulent sta.tes_(ll, //))
must fall .on_ o; within a two dimensional domain illustrated by Figure 3.3. The
experimental data for homogeneous shear approach the asymptotic state given by
zli_r’n“ (15, IIT) = (0.138, 0.0174).

For a constant density fluid, the Boussinesq model for the anisotropic stress is (Hinze,
1959 and Brodkey, 1967)

2kb = —v,[V(u)+ V()] = -2v,(S). (3.7

(f) represents the mean strain rate dyadic and v, is a scalar valued eddy viscosity. For
v,>0, Eq. (3.7) implies that the kinetic energy is irreversibly transferred from the mean
field to the fluctuating field inasmuch as

—(u'u'):V(u) = 2v¢(§)z (;S’) >0 (3.8)

for all turbulent flows. This feature partly justifies the use of Eq. (3.7) as an approximate
model for the anisotropic stress. However, for homogeneous shear flows, Eq. (3.7) also
predicts an equipartition of kinetic energy among the components of the fluctuating
velocity as well as a zero third invariant for =b (i.e., III'=0). These results clearly
contradict the experimental measurements summarized by Figures 3.2 and 3.3. Thus, as
previously noted by Speziale [1991], the Boussinesq model qualitatively misrepresents the

underlying mechanism associated with the flux of momentum due to velocity fluctuations.
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11 = 6(11/6)?

Asymptotic State:
(0.0174, 0.138)

(636)

Region of Developing

11 = -6(11/6)%?
States: 2 <& <26

i

Isotropic State: (0, 0)

Figure 3.3 Anisotropy Invariant Diagram with Transition States for Homogeneously
Sheared Turbulence
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The proposed pre-closure representation of the Reynolds stress supports a long-
standing goal of turbulence research to achieve a practical statistical closure of the mean
field equations and, thereby, complements other algebraic turbulent closure models for the
anisotropic stress b (see, esp., Speziale, 1991; Taulbee, 1989; Reynolds 1989; and,
Hanjalic, 1994). Th-e development of homogeneously sheared turbulent flows towards an
asymptotic state provides a critical experimental test flow to partially guide the evaluation
of the proposed theory.

The objective of this chapter is to develop this new pre-closure for the Reynolds stress.
In Section 3.2, an analysis of the governing equations for the fluctuating velocity yields a
relationship between the Reynolds stress, mean field quantities, and the pre-stress (see Eq.
(1.37)). A simplifying assumption is made regarding the isotropic nature of the pre-stress
in Section 3.3, which is found to directly impact Issues (i) and (ii) from Section 1.2. The
asymptotic state of homogeneously sheared turbulent flows is used to calibrate universal
model parameters and the transient approach to this asymptote is examined.

3.2  Preclosure Theory

The fluctuating velocity associated with a constant density, Newtonian fluid satisfies
the following equation (Monin and Yaglom, 1965)

@) =-h', 3.9)
where
K=u-Vu)+f', (3.10)

and



n

[=V- [%!+g'g‘ - (x_c'l_c')] . (3.11)

The convective-diffusive operator (£) depends on the mean velocity field (u) and the

kinematic viscosity of the fluid, v:
(:)=%+ (u)-V-vVi. (3.12)

Eq. (3.9) is exact and emphasizes that fluctuations in momentum (i.e. pu') are produced
within the flow domain by (1) a convective coupling between the mean velocity gradient
and the fluctuating velocity; (2) pressure fluctuations; and, (3) fluctuations in the
instantaneous Reynolds stress, u'u’ — (u'u'). Momentum fluctuations are transported by
viscous fluctuations in the molecular stress and by mean field convection.

An exact, albeit formal, representation of the fluctuating velocity can be written in
terms of a Green’s function (Morse and Feshbach, 1953) associated with the linear
differential operator (2). For statistically stationary flows in an unbounded domain,

t
Wz =-[difaV(G) &t |5 DR GED. (3.13)
-V
For0<t-1« “5 —J_'E"z/v, the Greens’ function is spatially peaked in a frame of reference
moving with the local mean velocity; however, as ¢ — ¢ — oo, viscous momentum transport
causes the Green’s function to relax to zero over the entire spatial domain. For an
unbounded spatial domain, the Green’s function satisfies the following integral property

[aV(G) (.t |5 D) = 1. | (3.14)

v
The analog of Eq. (3.13) for a passive scalar field has been previously used by Hill and
Petty [1996] and many others.

A formal representation for the Reynolds stress follows by either pre- or post-
multiplying Eq. (3.13) by the fluctuating velocity u' (x, t) and then forming the ensemble
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average to obtain

t
wu') = - [ dt[dV(G) (.t |%T) (' (x OB (7)) =

— V

t
= [ dt[dV(G) (x,t|% D) (b 3. D u' (x,0). (B.15)
- V
Eq. (3.15) relates the Reynolds stress to the Green’s function and to the symmetric space-

time correlation defined by
W @O EGD) =W @HWED)- V@) + @' x0f &) =
V@ - G 0+ (PG (6 0). B16)

All the components of (h'(x,?)u'(x,t)) relax to zero for either lt—?l»tH or
|x -] » 1, where z,, (~k/€) and 1, (~k**/€) represent finite wurbulent time and
length scales, respectively. The physical hypothesis that /<o and T, <eo partially
motivates the use of a spatial smoothing approximation to simplify the non-local
representation of the Reynolds stress given by Eq. (3.15).

A spatial Taylor series expansion of k' (x,) about (x,?) gives
B (x,1) = h'(x,1) + (x-x) - Vh'(x,27)
+53-0 @E-D:VVR@ED+.. (1)

Inserting Eq. (3.17) and Eq. (3.14) into Eq. (3.15) gives the following representation for
the Reynolds stress in terms of the spatial moments of the Green’s function

t oo
ww)=-[di| (@D x0)+ 3 AY (x1-1) (3.18)

—o0 i=1
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where
AW = [Idf'(gc—s_'z) (G (3,1 |§,;)] VR 5D @ 0) (3.19)
v
and
AP = [I dV (x-3) (x-3) (G) (x.t |5, ?)]: (VVE s Du' (50).  (320)
v

- The temporal correlation A (») (x,t—1) involves the nth spatial moment of the Green’s
function contracted with the nth order gradient of the fluctuating field A’. For ¢ = 1, all of
the spatial moments of (G)(x,t |x,7) are zero; however, these moments become non-
zero on a time scale associated with the viscous transport of momentum. The foregoing
expansion of Eq. (3.15) exploits the ides that the Green’s function (G) (x, ¢ |x,7) acts like
a spatial delta distribution on a time scale for which turbulent comrelations become
uncorrelated.

For turbulent flows at large Reynolds numbers (i.e. T, « li,/v), the spatial moments
of the Green’s function are assumed to remain small over the finite time scale for which
turbulent fluctuations are temporally correlated. This hypothesis motivates the use of a
spatial smoothing approximation which reduces Eq. (3.18) to the following statistically

stationary approximation
WiuY=-[(r @D (x,0)dt = =[x Ok (x,1))dr, (321)
0 0

where T=1—1. Eq. (3.21) gives a representation of the Reynolds stress in terms of the
temporal history of the turbulence. As previously noted, the autocorrelation
(h' (._x,;)l_l' (x, ) ) must be a symmetric dyadic-valued ‘operator. This follows directly
from the fundamental representation of u' in terms of h', the source of momentum

fluctuations.
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Eq. (3.21) can be simplified further by assuming that there exists a scalar-valued

memory function m (x, t) with a finite cut-off time such that

(B (xDu'(x0) = R & Du' (x,0))m(x,1). (3.22)
Thus, Eq. (3.21) can be represented by

(Wu') = tp(h'u’) = —tp(u'h’), (3.23)

where the relaxation time T, is a phenomenological coefficient dependent on the temporal
structure of the turbulence:

= [m(x,1)dr . (3:24)
0
For statistically stationary flows, the integral time scale T, depends on the local statistical
properties of the turbulence k and €, the mean velocity gradient (S = ||V (u)|)), and the

viscosity of the fluid. Dimensional reasoning suggests that
t. = C.= (3.25)

where C,, is a dimensionless function of kS/€ and the turbulent Reynolds number K /ve.
It follows from Eq. (3.10) that Eq. (3.23) can be written as

@w) = —ta(fu) - V(W) (Ww') = (W) - TeWw) Viu).  (3.26)

Algebraic equations for the turbulent correlations (f%') and (u'f’) follow by pre- and
post-multiplying Eq. (3.13) by f'(x, #) and taking the ensemble average. The previously
employed spatial smoothing approximation for large turbulent Reynolds numbers and the
use of the memory ansatz expressed by Eq. (3.22) yields the following result for the
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symmetric correlation (ff):

() = —Fu )t (fu') - Vu) = —(uf ItV () - (uf). (3.27)

In the above expression, T is assumed to be the same relaxation time as defined by Eqs.
(3.24) and (3.25). The idea that a single scalar relaxation function can be used to
characterize the temporal structure of all low-order, space-time correlations is a significant
unifying step towards a practical closure theory.

Egs. (3.26) and (3.27) can be combined to yield the following pre-closure
representation of the Reynolds stress

[I+7.V )] (ww)- [T+7,V ()] = (Y. (3.28)

Eq. (3.28) is called the pre-closure hereinafter because it relates the Reynolds stress to
three aspects of the flow field: (1) the spatial gradient of the mean field; (2) the relaxation
time Tas and, (3) the unclosed turbulent pre-stress, ti(_ff) . For small dimensionless

relaxation times:
NR = 1:R|| V(g)" «l, (3.29)

the pre-stress approaches the Reynolds stress. Like the Reynolds stress, the pre-stress is a
non-negative operator, and, thereby, has only non-negative eigenvalues.

Eq. (3.11) could be used to formally relate the turbulent pre-stress to other unknown
statistical correlations involving spatial gradients of the fluctuating pressure and the
divergence of fluctuations in the instantaneous Reynolds stress. Alternatively, a
phenomenological theory for the pre-stress could be developed analogous to Eq. (3.5) by
first writing ‘1:12R (ff" as the sum of an isotropic pre-stress and an anisotropic pre-stress

2(f)= 2?“:” 2uH (3.30)
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Like the anisotropic stress b, the anisotropic pre-stress Li is both symmetric (g = LiT)
and traceless (tr (L{) = 0). The isotropic pre-stress coefficient & must satisfy the

following normalization condition
Car(ff) = 200 = 2k+ 2T, Wu'): V) + T [or (V@) - wu)- V) ].  (331)

As the relaxation group N, increases, the isotropic and anisotropic parts of the pre-stress
should make significant contributions to the distribution of kinetic energy among the
components of the fluctuating velocity as well as to the shear components of the Reynolds
stress. Egs. (3.28), (3.30), and (3.31) provide an alternative closure strategy to previously
developed approaches based on the anisotropic part of the Reynolds stress.

In this paper, the efficacy of using Eq. (3.28) with

H=0 (3.32)

will be explored. This assumption provides a closure model for the normalized Reynolds
stress

2

(u'u')

>y

(3.33)

e

A non-trivial model for H is presented in Chapter 4 of this work. Weispfennig [1997] has
also considered non-trivial models for the anisotropic pre-stress.
3.3  Isotropic Pre-stress Theory

For homogeneous shear and iI = 0, Egs. (3.28)~(3.30) reduce to the following set of
equations for the components of the normalized Reynolds stress
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Rxx = 3 +NR2 1] (3'34)
1
yy - 2’ (3.33)
3+ NR
1+ N2
Rzz = 5 (3.36)
3+ N,
and
-N
R
v = 5 - (3.37)
3+ NR

The relaxation group N, is defined by N, = T,S. The isotropic pre-stress coefficient a is
given by

3
-
3+N,

o

= = 38

k (3.38)
The above set of equations, hereinafter termed the isotropic pre-stress (IPS-) theory,

approaches the Boussinesq theory (see Eq. (3.7)) for N «1 inasmuch as

R”=R”=R =1 R =-§NR,anda=k.1heeddyviscositycoefﬁcientforﬂﬁs

zz - 3 Tyz
limiting case is the same as the standard k-€ theory, viz.,

2
2k
lim v, =-C,—. 3.39
N0 3 Re (339
For Np» 1, the IPS-theory shifts the kinetic energy to the axial component of the
fluctuating velocity with the result that R = Ryy = l/NR2 and R,, — 1. Eq. 3.37)
predicts that the shear component of the Reynolds stress becomes inversely proportional

to the relaxation number, Ryz = —=1/Np, and Eq. (3.38) gives a/k = 3/NR2 for Np» 1.
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Eq. (337) shows that a maximum in R, (ie. 1/4/12) occurs at Ny = J3.
Furthermore, Egs. (3.25) and (3.37) together with N, = ‘tRS imply that

o k> dluy) 3.40
-(uyuz) = 3 (3.40)
where
2C
c. = —2% | (3.41)
b O34N?

Thus, the IPS-theory predicts that the eddy viscosity coefficient Cy decreases as the
relaxation group increases, provided Cp is modeled as a universal constant. This non-
linear dependence on the mean shear field is fundamentally different than the behavior
presumed by the k-€ theory, which employs a constant eddy viscosity coefficient.

The IPS-theory and the Boussinesq theory also predict qualitatively different results

for the invariants of the anisotropic stress. For homogeneous shear,

I = b, +b) +b,+2b), (3.42)
and
Il = b}, +b) +b.,-3b, b} (3.43)

For the Boussinesq theory, Egs. (3.7) and (3.39) imply thatb__ = byy =b, = 0, and
byz = =N /3. (3.44)

Therefore, for this special case, Egs. (3.42) and (3.43) yield

2
Iy = 5Ny and Il = 0. (3.45)
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Because the third invariant is zero, it follows directly from Figure 3.3 and Eq. (3.45) that
realizable Boussinesq turbulent states are restricted to N, € [0, 1].
It follows directly from Egs. (3.5) and (3.34)-(3.37) that the IPS-theory yields the

following results for the components of the anisotropic stress

2
Ny
b, = - (3.46)
3(3+NyY)
2
N
byy = ————5 (3.47)
3(3+Ny9)
b, = —2b” , (3.48)
and
-N
= - (3.49)
3+N,
The invariants /T and 711 for this theory can be written as
2
.= - (3.50)
IPS 2
3 3+N,
and
9+2N2( N2 Y
Il ps = —— - (3.51)
9N, 3+N,

As the relaxation number goes to zero, Egs. (3.50) and (3.51) give the isotropic pair
(InL1n = (0,0); as Np—e, (ILII) = (2/3,2/9); and, for Np =1,
(ILIII) = (1/6,11/576). Figure 3.4 shows the locus of realizable homogeneous
shear states predicted by the IPS-theory for 0 < N, < oo, The asymptotic state measured by
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IPS-States Invariant Domain

Boundary

Asymptotic State:
(0.0174. 0.138)

Boussinesq
Regime

i/

Figure 3.4 Anisotropy Invariants Predicted by the IPS-Theory for Homogeneously
Sheared Turbulence
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Tavoularis and Kamnik [1989] is also shown on Figure 3.4. Clearly, the IPS-theory
represents a significant improvement over the classical algebraic Boussinesq theory for
which 11T, = 0 for all homogeneous shear states (cf. Figure 1.2).

The spatial development in the relaxation group is determined by the transport
equations for k and €. Egs. (3.2) and (3.3) can be combined to yield the following non-
linear, ordinary differential equation for N

dN,

d—§ = 2NRRyZ(CP- 1) +CR(CD_ 1). (3.52)

where the dimensionless development time § is defined by
§ =285/ (uz) 0), (3.53)

and Ryz is given by Eq. (37). As & approaches infinity, Eq. (3.52) reduces to the
asymptotic condition given by Eq.(3.4).

34 Parameter Estimates

Although Figure 3.4 shows that the IPS-theory gives an improved prediction of the
anisotropic invariants compared to the Boussinesq theory, the experimentally observed
asymptotic state is nevertheless unattainable. Figure 3.5 illustrates a selection strategy for
the asymptotic value of N, which minimizes the relative error between the asymptotic
experimental state (117, 1117) and the locus of attainable states consistent with the IPS-
theory. Therefore, with

n-)* (-’
A= { - }+{ . } : (3.54)
I i

Ny is sclected to minimize A (see Figure 3.5). This procedure yields Ny = 0.945,
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R}, =R} = 0257, R} = 0486, and -R = 0.243. With Ny = Cp(Sk/¢),,, the
relaxation coefficient Cp = 0.227 for (Sk/e), = 4.16, as reported by Tavoularis and
Karnik [1989] (see Figure 3.1).

The existence condition for an asymptotic state (see Egs.(3.4) and (3.52)) provides an
additional equation for the model coefficient Cp:

_ Cpr(Cp—1)
—_—
ZNZR),Z

C,=1

P (3.55)

Eq. (3.55) implies that Cj, = 1.41 for Cp, = 1.83 and NgR| = —0.229. Table 3.1 gives
a summary of the model parameters for the IPS-theory. Table 3.2 gives the predicted
properties of the asymptotic state for homogeneously sheared flows.

35 Results and Discussion

Eq. (3.52) with Ryz given by Eq. (3.37) was solved numerically using a fourth order
Runge-Kutta algorithm (Carnahan, et al., 1969; see also Appendix H) with a variable time
step. The three model parameters Cp, C;), and C,, are assumed to be universal constants
independent of Sk/e. Figure 3.6 shows that the relaxation group N (=1.S)
monotonically approaches its asymptotic limit for a wide range of initial states
(0 < Ny < 10). The development time for Ny = Ny depends on the initial conditions. For
an isotropic initial condition (i.e. N; = (), the asymptotic state is approached for
developmental times on the order of ten. However, for highly anisotropic initial conditions
(N = 10), the approach to the asymptote requires & = 30.

Figure 3.7 shows the response of the normal components of the normalized Reynolds
stress subjected to an isotropic initial state (R = 1/3 and N; = 0). Like the relaxation
group, an asymptotic state is attained for € :10 t(-) 30, depending on the initial turbulent
state. This result is comparable to the development times observed experimentally by
Tavoularis and Corrsin [1981] and is sensitive to the initial state of turbulence. The
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Table 3.1: Parameter Estimates for the IPS-Theory

Parameter Estimate I Basis
Cp 1.83 Isotropic Decay (Comte-Bellot and Corrsin, 1971;
Mansour and Wray, 1994; see Chapter 2)
Cp 141 Existence condition for k-€ equations
Cr 0.227 Optimization of anisotropy invariants
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Table 3.2: Predictions of Asymptotic Statistical Properties for

Homogeneously Sheared Turbulence
Property IPS-Theory Experimental

Ng T 0945 | NAT |
kS/e N/At 4.16

Ry, 0.257 0.236

Ryy 0.257 0.196

R, 0.486 0.568
-Ry, 0.243 0.165

n 0.153 0.138

i/ 0.0162 0.0174

t Data point not applicable to this entry.



86

10
50 10.0
35
1t
[ Asymptotic State
Np = 0.945
0.50
Ng
0.15
0.1 ¢
Ny = 00
001 1 Lt 1111 1 L1 11111l 1 1 1 131l

Figure 3.6 = The Effect of the Development Time on the Relaxation Group for
Homogeneously Sheared Turbulence
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Figure 3.7  The Effect of the Development Time on the Distribution of Kinetic Energy
for Homogeneously Sheared Turbulence ( = IPS-theory; experimental
data (Tavoularis and Kamik, 1989): O R,,; A R,,; OR,))
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asymptotic state for the IPS-theory is as close to the data as allowed by the optimization of
the model parameter Cg (see Figure 3.5). For an anisotropic pre-stress (g # (__)), the
invariants of the Reynolds stress anisotropy can be reproduced exactly (see Chapter 4).
The IPS-theory clearly does not predict a second normal stress difference, and the
predicted primary nommal stress difference, R, - R;y = 0.229, is significantly smaller
than the experimental estimate of 0.372 (see Figure 3.2). These predictions, however, can
easily be improved by using a phenomenological theory with a non-trivial anisotropic pre-

stress. For instance, it follows directly from Egs. (3.28), (3.29), and (3.30) that

la
Rn = g-k- +Hxx R (3.56)
R =1%.m 3.57
w= 3 Ty (3.57)
and
_ la 2
R, = 37 tHy~2NgR, ~NiR,. (3.58)

Egs. (3.56) and (3.57) stem directly from the pre-closure and imply that an anisotropic
pre-stress is a necessary condition for a non-zero second normal stress difference.

Egs. (3.57) and (3.58) also show that the primary normal stress difference arises from
two distinct physical effects: (1) the primary nommal difference HZZ-H”; and, (2) the
convective coupling between the transverse velocity fluctuations and the mean field
gradient,

d(uz)

g 5 (3.59)

u-Viu) =

This fluctuating field is directly responsible for the two statistical correlations (u'zu'y)s
and (u' yu'y)S, which, as indicated above, make the Reynolds stress anisotropic even if the

pre-stress is isotropic.
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The normalization of the pre-stress (Eq. (3.31)) gives the following expression for
o/ k (see Eq. (3.31))

a _ 2

i l+2NRRyz+NRR”. (3.60)
For an isotropic pre-stress, R),z = -N RR”, and Eq. (3.60) reduces to

2 =14+N 3.61

; =1+ kRyz' ( R )

With this result, Egs. (3.56)-(3.58) can be re-written in canonical form:

R, = %(1 -®) , (3.62)
1
Ryy = 3 (1-2) , (3.63)
and
1
Rzz = 3 (1+2@), (3.64)
where
R=-N.R = Wy 3.65
== RR)'Z - —tR 2k : (3.65)

It follows from Eq. (3.25) that the above expression for & can be rewritten as

Ce (u'zu'y)S
2¢ )

(3.66)

Thus, the ratio of production to dissipation of turbulent kinetic energy (see Eq. (3.2))
determines the redistribution of energy among the velocity fluctuations. It follows from
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Eq. (3.4) (see also Eq. (3.55) and Table 3.1) that

CoCp-1
lim @ = — = 0.229. (3.67)
Z—> oo 2 CP“ 1

Eqgs. (3.62)-(3.64) predict a non-zero primary normal stress difference and a zero second

normal stress difference:
R._.-R_=2¢R . R -R_=0. (3.68)

For the IPS-theory, Figure 3.7 and Egs. (3.62)-(3.64) show how & redistributes the energy
produced by the coupling between the shear component of the Reynolds stress and the
mean gradient. The experimental data of Tavoularis and Karmnik [1989] show the same
qualitative trend as the theory but, clearly, R” -R_#0.

Figure 3.8 illustrates the possibility that the shear component of the Reynolds stress
may not approach its asymptotic state monotonically. The figure also shows that -Ryz has
a maximum value at N, = J3. Because Np = 0945< J3, the monotonic behavior of
the relaxation group towards its asymptote causes the shear stress to relax monotonically
for initial states characterized by Nj<+3. On the other hand, for N3>43, -R ,
increases to a local maximum and then decreases to its asymptotic value for development
times greater than ten. If N; > 2.7, the transient shear component of the Reynolds stress
overshoots its asymptotic state at some finite time (see Figure 3.8). This complex transient
response may have the appearance of a quasi-asymptotic condition, but Figure 3.8 shows
that Ryz requires & > 30 to attain its ultimate asymptotic state for highly anisotropic initial
conditions.

The maximum in —Ryz occurs because of two competing physical processes. For small
values of N, the IPS-theory approaches the Boussinesq (or gradient) transport regime for
which (u'yu'z) ~ §; for large values of the relaxation group, the shear component of the

Reynolds stress approaches the so-called equilibrium transport regime:
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Figure 3.8 The Effect of the Development Time on the Shear Component of the
Normalized Reynoldsj/_Stress for Homogeneously Sheared Turbulence (a:
Np = 02;b: Np = J3.¢: Np = 50,d: Np = 0.945, -R{, = 0.243)
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2k 2e
i )< 2k 28 3.69
S D = Ty = TCs o)

Eq. (3.69) shows that, in the equilibrium regime, the production of turbulent energy,
—(u' yu' z)S , is proportional to the dissipation of turbulent energy. This non-linear transport
regime arises because the energy in the transverse fluctuations (u'yu'y) decreases
significantly as N increases due to the redistribution of energy by & (see Eqgs. (3.63) and
(3.68)). Thus, the IPS-theory for homogeneously sheared turbulent flows yields a shear-
thinning eddy viscosity (see Egs. (3.40) and (3.41)) which bridges the gradient transport
regime (N — 0) with the equilibrium transport regime (Np — o0):

=(u'yu',)

2C, 32
e = d(u)/dy s

. (3.70)
3+N €

v = T’ ') =
For some simple shear flows, the relative time scale N, may span a wide range of values;
Therefore, both transport regimes may occur in the same flow field, albeit at different

spatial locations.

3.6 Conclusions

As a direct consequence of the pre-closure theory given by Eq. (28), a non-zero
primary normal stress difference obtains regardless of the closure hypothesis for the pre-
stress; however, a non-zero second normal stress difference requires the existence of a
non-trivial anisotropic pre-stress.

For positive k and €, the IPS-theory predicts realizable turbulent states for 0 SN, S oo,
whereas realizable states for the Boussinesq theory occur only for 0 SN, s 1. This
theoretical result obtains for the IPS-model because the pre-closure relates the Reynolds
stress to a pre-stress having only non-negative eigenvalues. For the special case of an
isotropic pre-stress, all the eigenvalues of the pre-stress are all equal to a/3k (> 0).

The IPS-theory with Cj interpreted as a wniversal constant predicts two distinct
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transport regimes bridged by an effective eddy viscosity which depends on <.S. For
TS « 1, a gradient transport regime occurs (i.e. (u'yu'z)~S); whereas, for TS » 1, an
equilibrium transport regime occurs (i.e. (u'yu'z) ~1/8).

The time required for the turbulence to achieve an asymptotic state is strongly
dependent on initial conditions. The developmental times needed to reach an asymptotic
state based on the IPS-theory agree qualitatively with experimental observations.



CHAPTER 4

ANISOTROPIC PRE-STRESS THEORY FOR
HOMOGENEOUSLY SHEARED TURBULENT FLOWS

4.1 Introduction

In Chapter 3, an algebraic pre-closure theory for the Reynolds stress from an analysis
of the equation of motion for statistically stationary turbulent flows was developed. A
spatial smoothing approximation and the use of a memory ansatz for turbulent temporal
correlations were key elements in the development of the following pre-closure theory for

the Reynolds stress

AT ww)-A = () @1
where

A=[I+1,9)] . 4.2)

Eq. (4.1) relates the Reynolds stress to the gradient of the mean velocity, the relaxation
time T, and the turbulent pre-stress. For large turbulent Reynolds numbers (i.e. K » VE),
the relaxation time is assumed to scale with the characteristic eddy turnover time k/¢,

k
‘I:R = CRE ’ 4.3)

where k represents the kinetic energy of the turbulent fluctuations (2k = (u'- u')) and €
represents the dissipation of turbulent kinetic energy (e =v(V u': (Vu') TY). The model
94
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coefficient Cp is assumed to be independent of turbulent and mean field statistical
properties.
The turbulent pre-stress ‘l:,ze (ff" depends on statistical correlations related to pressure

fluctuations and fluctuations in the instantaneous Reynolds stress,
T=uwuw—(uu) . (4.4)
With f' defined by

pav-[Ereg] @

it follows that the correlation (f¥) can be expressed as
¢ =@ (&) (Ep+@ (E)w-m

+((V-£)v(”'

E))+((v.!) (V-7)). (@46)

Although a closure for the pre-stress could be developed by analyzing the statistical
correlations appearing in Eq. (4.6), the approach employed in Chapter 3 was based on an
alternative strategy which incorporated a direct decomposition of the pre-stress into

isotropic and anisotropic components:
2 20 L 2kH 4
)= 3 +2kH . 4.7

The anisotropic pre-stress 2kH is symmetric and traceless. Because tr(u'u') = 2k,
Eq.(4.1) requires that the isotropic coefficient a be determined by the following equation

20 = ‘citr({f') =2k+ 21R(1_4'1_¢'):V(g)+'titr(V(y)T- (u'u')-Vu)) . (4.8)
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Eq. (4.8) provides a means to relate the isotropic coefficient a to the mean field and the
specific closure hypothesis for the anisotropic pre-stress H.
In Chapter 3, the implications of an isotropic pre-stress (IPS-) theory, for which

H = 0, were examined. Egs. (4.1) and (4.7) were applied to a homogeneously sheared

turbulent flow (ie. §=d(u,)/dy = constant, see Figure 3.1). The evolution of the
turbulent time scale k/€ was computed using the k — € theory of turbulence (Hanjalic and
Launder, 1972). For homogeneous shear flows at high Reynolds numbers, the equations

governing the turbulent kinetic energy and dissipation simplify to

(uz>(())(£( = —'u'):Vu)y-¢ (4.9)
dz - -
de u'u'):V{u) £
<UZ>(0) zi—z = _CP—‘[I)_ - CD‘[_D N (410)

where 1, = 1, = k/e. Cp and (p are constants independent of the local state of
turbulence. The IPS-theory predicts a positive first normal stress difference and a shear
thinning eddy viscosity coefficient which bridges the more traditional gradient transport
regime for which (u'yu' )~ S with an equilibrium transport regime for which
(u'yu‘z>~ 1/S. However, the IPS-theory erroneously predicts that the second normal
stress difference is zero for homogeneously sheared turbulence. Moreover, the algebraic
pre-closure theory with an isotropic pre-stress cannot explain return-to-isotropy
experiments for homogeneous turbulent flows (Choi, 1983; Choi and Lumley, 1984; and,
LePenven, et al., 1985).

Therefore, the purpose of this chapter is to further demonstrate the utility of Eqs. (4.1)
and (4.7) by using an anisotropic pre-stress (APS-) model. In Section 4.2, an APS-model
for the pre-stress which incorporates a phenomenological relaxation process consistent
with the return-to-isotropy phenomena is introduced in accordance with Issue (iii) of
Section 1.2. Return-to-isotropy data are used to determine the phenomenological
relaxation parameter. The extension of the closure model to an anisotropic pre-stress also

serves to address the limitation of the IPS-theory, which had a zero second normal stress
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difference (see (ii) in Section 1.2). The asymptotic state of homogeneous shear is used as
in Chapter 3 to determine the APS-model constants. The non-algebraic nature of the APS-
theory does not permit an g priori evaluation of realizable turbulent states; however, the
realizability of the transient computations are verified a posteriori.

42  Anisotropic Pre-stress Theory

Eq. (4.1) can be generalized to a class of non-inertial frames rotating at a constant
angular velocity relative to an inertial frame by replacing the frame-dependent V(u)
operator with v (g')+£l, where g' is the instantaneous velocity in the non-inertial
frame and 2 represents tlTe anti-symmetric temporal connection between the inertial and
non-inertial_frames (Bird et al., 1977):

gz-g-g , (4.11)
where Q is an orthogonal dyadic-valued operator (ie. Q- Q' = I) and  is the time
derivative. Thus, the pre-closure theory for the Reynolds stress contains an explicit
dependence on the frame of reference through the operator A defined by Eq. (4.2).

Unlike the Reynolds stress, the theory developed here assumes that the anisotropic
pre-stress H (= 2kH) is an objective property of the motion associated with the mean
field and should not depend on the reference frame. Whence, the anisotropic pre-stress in
a non-inertial frame can be related to the anisotropic pre-stress in an inertial frame by the

following expression (Mase and Mase, 1992)

T (4.12)

e
*
l
no
e
[[\w)

With this hypothesis, a frame indifferent closure model is proposed for é . Thus, an APS-
closure theory combines the pre-closure equation for the Reynolds stress (see Egs. (4.1)
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and (4.7)) and the following linear relaxation model for the anisotropic pre-stress
-~ . 1 -
H+A[M-3I:M1] = B(S). (4.13)

For large turbulence Reynolds numbers, the phenomenological parameters A and B are

assumed to scale with k and €:
X-Ck 4.14
- lE ’ ( -1 )
and

B = 2kCp- . (4.15)

CB and C, are universal model coefficients. In the above equation, the mean strain rate
dyadic (S) is defined by

2(S) = V(u)+ (Va)T, (4.16)

and the mean vorticity dyadic (W) is defined by

2W) = V@) - (V)™ 4.17)
(V=V) can also be written as
Wy=g-(w) , (4.18)

where (w) is the mean vorticity, (w) = V X (), and g is the permutation triadic.
L'l is an objective time derivative defined by (see Joseph, 1990; Denn, 1990; Bird et
al., 1977; and Appendix D):
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g(g)sg@»f(y)-vg-(gf-g-g Wy-al(s)-B+H-(S)]. @19

With a = 0, Eq. (4.19) reduces to the corotational Jaumann derivative. For @ = 1 and
a = -1, Eq. (4.19) yields the upper and lower convected derivatives of Oldroyd,
respectively. Appendix D demonstrates that the operator y (EI) is objective for
—oo0 < @ < +90, Physically, the Jaumann derivative represents the_w;poral changes in the
pm—sﬁess relative to a frame of reference moving with the local mean velocity and
rotating with  an angular velocity equal to the mean vorticity. Note that Egs. (4.13) and
(4.19) maintain the symmetry and the contraction properties of the anisotropic pre-stress,
ie.,

and (4.20)

I
]
Ui
"y
I J
"
(=]

43  Anisotropic Homogeneous Decay

For homogeneous turbulence with no mean shear, the anisotropic pre-stress £1 equals
the anisotropic stress 2kb and Egs. (4.1), (4.8), and (4.13) imply that

(._4'5')52—3"!+__1? (4.21)
and

- kd -

H+Cy oo (H) = 0. (4.22)

For this flow, the kinetic energy is governed by the following equation (see Eq. (2.2))

agr g 4.23)
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For anisotropic homogeneous decay, the relaxation coefficient C, associated with the
anisotropic pre-stress can be estimated from return-to-isotropy data (Choi, 1983; Choi and
Lumley, 1984; and, LePenven, et al, 1985). With g = 2kH, it follows from Eq. (4.22)
that

L H) = ———2H. (4.24)

Eq. (4.24) shows that the pre-stress returns to an isotropic state provided C, <1. For
homogeneous, shear-free flows, the anisotropic pre-stress H is equivalent to the
anisotropic stress b:

(u'u') 1

-=I. 4.
2k 3= “4.25)

I 3y

"

With the second invariant of the anisotropy tensor defined as
I =tr(b-b), (4.26)

it follows directly from Eqgs. (4.24) and (4.25) that

_k_d(ll) _ Z(I-Cl)
e dt C,

II. 4.27)

Combining Eqgs. (4.23) and (4.27) yields

dan _20-Cn

I & x (4.28)

If C,' is taken to be a constant, it then follows from Eq. (4.28) that
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=1 (-"-)", (4.29)

where

2(1-C,)

G, (4.30)

n=
Eq. (4.29) provides a convenient means for comparing the above theory with return-to-
isotropy data. In Eq. (4.29), k,, and 1]  are reference values taken as the first data point for-
which the gradient of the mean field has been effectively removed. Figure 4.1 shows the
return-to-isotropy data of Choi and Lumley [1984] and of LePenven et al [1985], which
are summarized in Tables E.11-E13 of Appendix E. In Figure 4.1, only data with a
positive third invariant (/II>0Q) are chosen, as they more closely represent the
homogeneous shear flow of interest. In order to model C;. for a wider class of flows (Issue
(v) in Section 1.2), C, could be viewed as a universal function of the invariants II and Il
(¢f. Sarkar and Speziale, 1990 and Lumley, 1978). However, in this work, C, is assumed
to be a constant.

The solid line in Figure 4.1 indicates the trajectory of the linear APS-theory in the II/k
phase plane for C, = 2/3 (i.e. n = 1). It is apparent from Figure 4.1 that most of the
long time decay data are consistent with a decay exponent of unity. The long time data
may deviate from the solid line due to the fact that the initial reference state is not truly
homogeneous and/or shear free. The data in Figure 4.1 can also be correlated by using a
phenomenological closure model which assumes that the pressure-strain rate correlation
in the second-order moment equation for the Reynolds stress is proportional to the
anisotropic stress (Launder et al., 1975),

i’i‘;——) = —2kclg§ . 4.31)
The phenomenological coefficient C, is often referred to as the Rotta constant. A value of
C, = 2/3 in the APS-theory is equivalentto C, = 3 (cf Speziale, 1991).
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wi,

Eq. (4.29)

Figure 4.1 Relaxation to Isotropic Homogeneous Decay ( = APS-theory; O Choi
and Lumley, 1984 (plane distortion); O Choi and Lumley, 1984
(axisymmetric expansion); A LePenven et al., 1985 (111 > 0))
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44  Homogeneously Sheared Turbulence

For homogeneously sheared turbulence,

\% duy) 4.32)
(u) = 5 5 .
and
(u'u')
5! Yy = Rxx_x_e +R_e y_e +Rzz_e _e +R e +Rzy_ezgy 4.33)

The pre-closure theory (see Egs. (4.1), (4.2), (4.7), and (4.8)) applied to homogeneous
shear yields the following relationships between the components of the Reynolds stress

and the components of the pre-stress:

la

Rn = 5; +Hxx , 4.34)
R =1%n (435
w3k w’ -35)
20
R =1-=— 4,
z= 1733 e (4.36)
and
R, =-NgR +H . (4.37)

In Chapter 3, the above set of equations were examined for the special case H = 0
(IPS-theory). Egs. (4.35) and (4.36) imply that the first normal stress difference is given
by
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a
R,, —Ryy =1- T +H, —Hyy. (4.38)

The second normal stress difference follows by subtracting Eq. (4.34) from Eq. (4.35):
R -R_=H -H_ . (4.39)

Eq. (4.39) shows that, if R”,—Rnaeo, then the pre-stress must have an anisotropic
component which has a second normal pre-stress difference. Eq. (4.38), however, shows
that the isotropic portion of the pre-stress causes a primary normal stress difference in the
Reynolds stress even if the anisotropic part of the pre-stress is zero. Thus, as previously
noted by Parks et al. [1997] (also see Chapter 3), the primary role of the isotropic pre-
stress is to redistribute the kinetic energy of turbulent fluctuations among the velocity
components subject to the normalization requirement that ¢r (5) = 1. For homogeneous

shear, Eq. (4.8) reduces to

a
= 1+2NgR  +NpR, | (4.40)
where
Sk
No=1,5 = CR? . (4.41)

The phenomenological role of the isotropic pre-stress is clearly indicated by Eqs. (4.34)-
(4.36). On the other hand, the underlying statistical aspects of the flow which cause a are
expressed in Eq. (4.40) and the contraction of Eq. (4.6).

The APS-theory presented here assumes that the anisotropic pre-stress is governed by
the phenomenological model given by Eq. (4.13). With il = Zkg » Eq. (4.13) can be

written in dimensionless form as
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s u+Alf-1a:a1] = B @2

where the temporal operator L_l is defined by Eq. (4.19) with il replaced by L{ In the

above equation,
1Dk
EA-— . 443
9= Dt (4.43)
and
k _ dk
=== Vk. 444
Dr - 3 +(u)- (4.44)

For homogeneous shear, the normal components of the anisotropic pre-stress satisfy

the following set of ordinary differential equations

dH_ 2
De‘—‘-l-é—-!-(l-i-q)H —gaDeH =0, 4.45)
dH
De,—== d§ +(l+q)H +( +l)De,Hyz , (4.46)
and
D fH—“+(1+ YH. +(2-1)DeH_ =0 (4.47)
€ dE My, 3 €y, = - :

Note that the sum of Egs. (4.45)-(4.47) preserves the anisotropy property, ¢r (g) =0.In
the above equations, the dimensionless development time is defined as

§ =25/(u,)(0) . (4.48)

The turbulent Deborah number De‘ introduced in the dimensionless formulation
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compares the phenomenological relaxation time for the anisotropic pre-stress with the
characteristic time of the mean field:

De=AS = C, 2 . (4.49)

Ae
The parameter ¢ (see Eq. (4.43)) compares the characteristic relaxation time for the
anisotropic pre-stress with the characteristic turnover time of the turbulent kinetic energy.
The off-diagonal components of the anisotropic stress satisfy the following ordinary
differential equations

dH
€ d§

=0, (4.50)

dH
t dg

=0, (4.51)

and

dH De aDe 1 kS
¢ d§ (H -H, )+—(H +H,) = SCp—. (452)

45  Asymptotic Homogeneous Shear

As the dimensionless development time increases, the above set of equations predict
the existence of an asymptotic state provided

lim kS _ (_k;S') <eoo . (4.53)

Thus, with ¢ = ¢° <=, De, = De,* <0, and (kS/€) , < =, the above set of equations
imply that (see Appendix G) H:y =0,H,, =0,
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De °H’
« Za7 e (4.54)
3 l+q“
De°H°
- _(1+£) oy (4.55)
yy 3) 144°
De°H*®
H = (1-‘-‘);’—‘. (4.56)
“ 3/ 1+4°
and
- Cy (1+4°) De*
2= 2C a2 a2 2 e “37
A(1+q) + (De,”) (1-a"/3)
It follows from Eq. (4.43) and (4.9) that
1Dk
EA-— = -1), 4.58
q 7~th G, (P-1) (4.58)

where £ represents the ratio of production to dissipation of turbulent kinetic energy:

—(u' u')S
pe—2L % (4.59)
€
Egs. (4.9) and (4.10) imply that
Cp-1
lim P = ¢ = . (4.60)

Thus, the asymptotic value of g can be related to the model parameters in the e-equation
and to the relaxation coefficient C, :
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(4.61)

It follows directly from Eqgs. (4.54), (4.55), and (4.57) that a negative second normal
stress difference develops for the APS-theory provided CBCl > 0 (assuming —JZ; <a<l)

inasmuch as
a a Ha Ha DelaHa
Ry, =Ry = H,, - xx:—(l_a)l ayr =
+q
- C.C 2
(12“) B2 (S?k) (4.62)
a

¢2 52 2
(1+q) + (De,) (1-a"/3)

The APS-theory at large turbulent Reynolds numbers contains six phenomenological
coefficients: Cp, Cp Cpg, Cﬂ’ C,» and a. Isotropic, homogeneous decay requires
Cp = 1.83 (see Chapter 2). Anisotropic, homogeneous decay (i.e. retumn-to-isotropy)
requires C, = 2/3 (see Figure 1).

The statistical properties of asymptotic homogeneous shear measured by Tavoularis
and Karnik [1989] can be used to estimate Cp, Cp, CB' and a. For instance, as § — oo,

(i‘;_‘) = 4.16, (4.63)
a
and
R;y-R:x = -0.040. (4.64)

The invariants 17 and I17 associated with the anisotropic stress b have also been measured.
These parameters are given by (also see Eq.(4.30)):

I =1tr (:b . =b) (4.65)
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and
III = tr (=b -b-b). (4.66)

For & — o, the data of Tavoularis and Kamik [1989] imply that II: = (0.138 and
1r; = 0.0174.
The existence condition for an asymptotic solution (see Eq. (4.60)) can be rewritten as

kS CD -1
-2R® (—) = ) (4.67)
n\e ), Cp-1

A consistent set of model parameters (Cp Cg, Cﬁ. a) can be identified for which Eqgs.
(4.38), (4.63), (4.64), and (4.67) are satisfied exactly and which also exactly reproduces
the experimental values for the asymptotic normalized Reynolds stress components. It is
found that Cp, = 1.60, C, = 0.271, CB = 0.174, and a = —2/3. Table 4.1 summarizes
these parameters

4.6  Transition States for Homogeneously Sheared Turbulence

The component equations for the anisotropic pre-stress depend on the development of
the time scale k/e. Because the mean strain rate is constant (S is a constant) the k- and &-

equations can be combined into a single equation for the dimensionless relaxation group
(see Eq. (3.52)):

dN,

d_§ = ZNRRyz(CP-l) +Cr(Cp-1), (4.68)
where N, = C.Sk/¢e. The development of the Reynolds stress towards an asymptotic
state can be calculated by solving Eq. (4.68) along with Eqs. (4.45)-(4.47) and (4.50)-
(4.52). The transient calculations assume that an initially isotropic, homogeneous
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Table 4.1: Parameter Estimates for the APS-Theory

Parameter Estimate Basis

Cp 1.83 Isotropic Decay (Comte-Bellot and Corrsin, 1971;
Mansour and Wray, 1994; see Chapter 2)

Cp 1.60 Existence condition for k-€ equations

Cr 0.271 . . .
Reproduction of asymptotic state for

Cp 0.174 homogeneous shear (Tavoularis and Kamik,

4 23 1989)

C, 2/3 Return to isotropy data (/17 > 0; Choi and Lumley,
1983; LePenven et al., 1985)
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turbulence is subjected to an instantaneous increase in the mean shear. Therefore,

0 forE<0
N, = (4.69)
N; for§ = 0.

Because N, = 0 for € <0, the Reynolds stress and the pre-stress are isotropic; however,
once Np = N;, the Reynolds stress and the isotropic part of the pre-stress respond

instantaneously and attain a state consistent with the IPS-theory:

% I for§<0
(4.70)

0y
]

R° fork =0,

where R® is the nommalized IPS-Reynolds stress for N;>0 and H° = 0. Thus R®
satisfies

%
k

I N
"y

. 4.71)

]
°
W | -

The operator éo is defined by Eq. (4.2) with N, = N;. Thus, Eq. (4.70) defines the initial
state of turbulence for which the pre-stress is isotropic and the Reynolds stress has a
degree of anisotropy commensurate with the initial relaxation parameter N"R. Because
g" = Q. it follows from Egs. (4.50) and (4.51) that ny = 0, and sz = 0 for §>0.
The transient behavior of the components of the anisotropic pre-stress together with the
relaxation group N, were determined by numerical integration using a fourth-order
Runge-Kutta integration algorithm (Carnahan, et al, 1969; see also Appendix H).

Figure 4.2 shows the transient response of the relaxation parameter N, as a function of
its initial value (with 0 < N; < 10). Unlike the IPS-theory, the approach to the asymptote

is not necessarily monotonic; as the turbulence nears the asymptotic state, oscillation in
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Figure42  The Effect of the Development Time on the Relaxation Group for
Homogeneously Sheared Turbulence
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the Reynolds stress components (cf. Figures 4.3 and 4.4) can cause the first term on the
right-hand-side of Eq. (4.68) to generate oscillations in dNp/ dg. Approximately ten
developmental time units are required to reach the asymptote, with more being required
for larger values of Ny.

Figures 4.3 and 4.4 present the transient development of the turbulence from an initial
state characterized by N; = 0.7. This initial value of N, is selected to closely represent
initial states (in terms of the invariant pair (I, III) ) from the experimental data.These
figures present the individual components of the normalized Reynolds stress and the
anisotropic pre-stress, respectively. The development times are on the order of ten to
twenty units. Compared to the IPS-theory, the salient difference is an exact representation
of the asymptotic values of the Reynolds stress through a non-zero secondary normal
stress difference.

From Egs. (4.34)-(4.37), it is apparent that oscillations in transient development of the
Reynolds stress components are directly related to similar oscillations in the components
of the pre-stress anisotropy H. As such, it is instructive to investigate the equations
governing the transient behav—ior of the anisotropic pre-stress as well as the individual
terms which contribute its transient evolution. Egs. (4.52) and (4.47) may be recast as the

following by dividing each term by De,:

dH C
__yf-.l._a_(l"'Q) _l _ _a
d& ~ 2C, De, H,-SH,-H,)-5(H, +H) 4.72)
and
dH
2z (1+9) (a )”
= - H 1= - . .
d§ Det z \3 1 yZ 4.73)

Figures 4.5 and 4.6 show the contributions to the development of dHyz/d§ and
dH e d&, respectively, for the simulation shown in Figure 4.4. In Figures 4.5 and 4.6, the
solid line represents the net time derivative and the thin lines represent the individual
contributions to the net time derivative. From Eq. (4.72), it is evident that an initially
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Figure 4.3 Transient Response of Isotropic Turbulence to a Sudden Increase in the
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isotropic turbulence (i.e. H = 0) would remain isotropic in the absence of the linear
strain-coupling coeﬁ‘icient—icp).and the linear relaxation coefficient ( G,)- Since both of
these coefficients are modeled as constants, the term %CB/ C, provides a constant source
of anisotropy in the pre-stress, causing the shear component of H to develop more rapidly
than the normal components (cf Figure 4.4). Once a signifi-cant component Hyz has
developed, it serves as a means to develop normal pre-stress anisotropies (cf Egs. (4.45)-
(4.47)). From Figure 4.5, it is seen that, once appreciable normal pre-stress anisotropies
have been developed, they serve to balance the anisotropy source term %Cb/ C, for the
component Hyz. For the normal pre-stress anisotropies, the ultimate asymptotic value
obtained represents a balance between a growth term (proportional to Hyz) and an
exponential decay term (proportional to the component itself). Figure 4.6 shows this
representative behavior for the component H,,.

The source of the oscillations may be determined by investigating the governing

equations for the anisotropic pre-stress components in the following matrix form:

h'=B-h+b, (4.74)
where the tensors and vectors in Eq. (4.74) are defined as follows:
dH”/ dg
h'= dHu/ dg|, 4.75)
dHyz/d§
-
Hy.v
h= sz , 4.76)
£
0
b= 0 , 4.77)
1
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and _ _
a
o 0 ‘-5"1
B=| 0 o —§+1. 4.78)
—a+1 —a—1

In Eq. (4.78), a is the parameter associated with the convected time derivative (see Eq.
(4.19)) and « denotes the term — (1 +q) /De,. Note that the component H__ does not
appear in the above equations as it is not independent (due to the anisotropic pre-stress
being traceless) and has been eliminated from the system of equations.

With the system of equations expressed in the form given by Eq. (4.74), the solution to
the characteristic equation for the matrix B yields the eigen values of B. Positive
eigenvalues indicate that the asymptotic sol;tion to Eq. (4.74) is not stable-, while the
reverse is true for negative eigenvalues. In the event of imaginary eigenvalues, the
solution exhibits oscillatory behavior (Carnahan et al., 1969). The characteristic equation

for the matrix g is:

det (B - M) = 0. (4.79)
Egs. (4.78) and (4.79) yield the following cubic equation:

(@=2) [(@-M’-¢(@)] =0, (4.80)
where the parameter ¢ (a) denotes the following collection of terms

0w = 5)(2) ()55

By inspection, the roots to Eq. (4.80) are
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A=
Ay = =4 . (4.82)
A, = a+ o

Since a <0 (i.e. g>-1) for all points during the transient simulation, this represents a
contribution to a stable asymptotic state. For -»/5 <a< »/5 » ¢ (a) <0, meaning that "2
and A, are a complex conjugate pair, as the value for a selected in these simulations is
—2/3. Thus, since the real parts of the eigenvalues are all negative, the asymptotic state is
stable. However, since two of the eigenvalues have non-zero imaginary parts, the
approach to the asymptote will exhibit oscillations.

The isotropic and anisotropic parts of the pre-stress represent two different responses
of the turbulence to an external force. The isotropic portion of the pre-stress causes an
instantaneous response to a mean shear, immediately reorganizing the Reynolds stress to
an anisotropic state. Subsequently, the components of the anisotropic pre-stress relax
towards their asymptotic values as illustrated on the invariant phase plane by Figure 4.7
and on the A-hyperplane by Figure 4.8. On a very short timescale, the turbulence relaxes
towards the isotropic state, but then reverses direction and approaches the asymptote. As it
nears the asymptote, the oscillations in the components of the pre-stress (see Figure 4.4)
result in the two trajectories in Figures 4.7 and 4.8 approaching the asymptote in a

contracting orbit.

4.7 Conclusions

The presented anisotropic closure for the pre-stress extends the predictive capabilities
of the IPS-theory for the case of homogeneous shear due to the interaction of a linear
dependence on the mean strain rate and a frame invariant relaxation effect. Both effects
are required to generate a non-zero second normal stress difference as well as an improved

primary normal stress difference. The fact that experimentally observed values of the
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Figure 4.7 Transient response of Isotropic Turbulence to a Sudden Increase in the
Mean Strain Rate (N, = 0.7): Anisotropy Invariants
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second normal stress difference are negative requires that the phenomenological
parameter C[3 > (). The choice of a convected time derivative in the phenomenological
model for the anisotropic pre-stress is required in order to have a non-trivial second
normal stress difference in the absence of non-linear terms in the mean strain rate.
Moreover, an interpolated convective derivative (with a = -2/3) is specifically chosen to
represent the finite memory associated with the anisotropic pre-stress (Issue (iii), Section
1.2), inasmuch as it is able to exactly reproduce the experimentally observed asymptotic
Reynolds stress components.

The turbulent pre-stress exhibits two qualitatively different means of reacting to an
external driving force, such as mean shear. The isotropic portion of the pre-stress causes
an instantaneous reorganization of the turbulence in response to the imposition of the
mean shear. This state is equivalent to the state predicted by the IPS-theory at a given
value of the relaxation parameter. Note that this rapid effect results in a non-zero primary
normal stress difference, although the second normal stress difference remains zero.
Conversely, the anisotropic portion of the pre-stress reacts slowly to an imposed mean
shear. The time scale for this reaction is related by the turbulent Deborah number, De,. The
anisotropic pre-stress causes the second normal stress difference and partly influences the
primary normal stress difference.

As the IPS-theory is realizable for all Ng given a positive turbulent kinetic energy and
dissipation, the initial state of these transient calculations is always realizable. The
turbulence predicted by the APS-theory remains realizable during the entire transient
approach to the asymptotic state. Similar to the IPS-theory, the developmental times for
the turbulent statistics to reach their asymptotic values depend on the initial conditions and

are comparable to those seen experimentally



CHAPTER 5

HOMOGENEOUSLY SHEARED TURBULENCE
IN A ROTATING FRAME OF REFERENCE

5.1 Introduction

Homogeneously sheared turbulence relative to a rotating frame of reference provides a
critical test for Reynolds stress closure theories. Figure 5.1 shows a schematic of this flow.

The mean velocity gradient is constant within the non-inertial frame:
Vu) =See. (.1

where § is a constant and both e, and e, represent mutually perpendicular unit vectors in
the non-inertial frame. For this problem, turbulent fluctuations couple with the mean

velocity gradient and the rotational tensor, defined by

Q=g-0=Q(e-cc), (52)
where @ (= Q_ex) is the rotation vector, § is the permutation triadic, and Q is the scalar
rotation rate. The impetus for investigating flows within a rotating frame of reference
stems from the following observations drawn in Section 1.1:
the superposition of a frame rotation upon a simple mean shear generates a cross-
stream turbulent production term analogous to the cross-stream turbulent

production which arises in inertial frame flows with streamline curvature.
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Figure 5.1 Schematic for Homogeneously Sheared Turbulence in a Rotating Frame.
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Previous authors (Spezale and Mhuiris, 1989; Speziale, et al., 1990) have investigated
rotating homogeneous shear flows using two-equation models and second order closures.
They report that asymptotic homogeneous shear states exist for a finite range of the

relative rotation rate (£2/5),
—0 < (Q/8) ;, <Q/S < (Q/S) 0 <o (5.3)

The asymptotic states are attained for large development times (¢ =z/ (uz) (0) ) and have

the following limiting behavior

lim (k, &, k ) —> (oo, oo, constant) . (54)
to e €
For (Q/S) < (Q/S),,;, and (Q/S) > (Q/S) ., the flow changes qualitatively
inasmuch as the turbulent kinetic energy k and the dissipation € decay rather than grow,
ie.,

lim (k,e,f)—) (0,0, ). (5.5)

tee €

The standard k-€ model of turbulence is frame indifferent due to the fact that no
explicit frame-dependent terms appear in the k- and e-transport equations (see Appendix B
and C) and the fact that the basic Boussinesq approximation for the Reynolds stress is
frame-indifferent. Therefore, the k-€ model incorrectly predicts no influence of Q on the
low-order statistical properties of homogeneous shear. However, the k- theory does
predict a mean field dependence on the rotation because of the Coriolis terms in the
Reynolds equation (see Eq. (1.1)). Moreover, second-order closure models for the
Reynolds stress (see Appendix B) also include explicit Coriolis effects and, thereby,

account for the influence of Q on low-order flow statistics. However, closure models for
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the statistical correlations which appear in the second-moment equation for (u'u') are
often assumed to be frame indifferent. For example, the LRR-model of Launder et al
[1975] relative to a rotating frame of reference reduces to the following equation for
statistically stationary rotating homogeneous shear flows:

d(u'u')

() () —==+ @w')- [V (wh+20] + [V @)+ 20]"- ) =

+C, (ww)- [V @+0]+ [V @+0])"- (i) - S @u): vV @i)  66)

The convective coupling of the Reynolds stress with the mean velocity gradient and the
rotation dyadic on the left-hand-side of Eq. (5.6) arises naturally with a change of frame.
The terms on the right-hand-side account for two distinct physical processes: (i) an
isotropic destruction of the Reynolds stress due to turbulent dissipation of energy; and, (2)
a redistribution of energy among the components of the fluctuating velocity. Because
(u'u'): i_'l =0 and ¢tr( f) =0, a contraction of the two redistribution terms is identically
zero. Thus, these terms do not explicitly influence the energy balance (cf. Eg. (1.15))
which follows directly from the trace of Eq. (5.6):

() (0) £ (u' ) = =2(uw'%V (u)-2e. ex)

Eq. (5.7) has the same form and physical interpretations as its inertial frame counterpart.
Clearly, changes in the kinetic energy of the fluctuating field for homogeneous shear
occur because of turbulent production and turbulent dissipation. The last two terms on the
right-hand-side of Eq. (5.6) account for the slow and the fast redistribution of energy due

to the pressure-strain rate correlation.
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Application of the LRR-model to return-to-isotropy experiments in an inertial frame
(see Section 4.3) reduces to the same dynamic model as the APS-theory. With a Rotta
coefficient Cl = 3.0, the LRR-predictions and the APS-predictions (for CR = 2/3) are
indistinguishable when applied to the relaxation of homogeneous turbulence to an
isotropic state. However, these two closure strategies predict significantly different
responses in non-inertial frames.

In this chapter, the APS-theory is applied to rotating homogeneous shear flows and the
results provide a basis to compare the LRR-model and the APS-model (see Section 5.5).
The standard k-€ transport equations are employed to determine the turbulent time scale
(i.e. k/¢€) for both the LRR- and APS-models. However, recent research (see Speziale et
al, 1987) suggests that the scalar dissipation equation should also have an explicit
Coriolis effect. Earlier DNS results for isotropic decay by Bardina et al [1985] and by
Speziale et al. [1987] seem to support this view. However, this fundamental question is
not addressed in this dissertation. Instead, the explicit Coriolis effects in the operator ;1
(see Eq. (4.2)) are evaluated and compared with the LRR-model.

5.2  Preclosure Theory

The turbulent pre-closure for rotating homogeneous shear is the same as that
expressed by Egs. (4.1), (4.2) and (4.7), with the exception that the velocity gradient in the
inertial frame (cf. Eq. (4.2)) is replaced with the sum of the mean velocity gradient in the
non-inertial frame and the rotation dyadic (see Section 4.1). Thus, the turbulent pre-

closure for rotating homogeneous shear is

I+2kH, (5.8)
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where

;‘"’__“"‘R(V (g)+£) = !+NR[(I+?)eygz—% £ ] 5.9)

The trace of Eq. (5.8) utilizing Eq. (5.9) yields the following expression for the

isotropic portion of the pre-stress:

a Q)2 Qy?
7 = L+2NpR, + (E) N2R, .+ (“E) NiR, . (5.10)

Eqgs. (5.8) along with (5.9) and (5.10) gives the following component equations for the

pre-closure:
_la 5.11
Rxx - §;+Hxx’ ( d )
la Q Q).
Ryy =3 +H +2 NRRyz (S) NgR, ., (5.12)
R =1%,u 2%y 2N Q ‘A2 5.13
22_5; _—RR)'Z— RR)’Z RR’Y’ (. )
and
Q Q Q Q
1S (PR R = et (10, 619

Note that Egs. (5.10)-(5.14) reduce to Egs. (4.40) and (4.34)-(4.37) for Q = 0.

As was observed in Chapter 3, the isotropic portion of the pre-stress (Eq. (5.10))
serves to redistribute energy among the normal components of the Reynolds stress. Each
of the last three terms on the right-hand-side of Eq. (5.10) is found in the normal

component equations with equal magnitude, but opposite sign. In Chapter 3, it was noted
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that the term 2N RRyz shifts energy from Ry y and R__ to the streamwise component R, .
Conversely, the final two terms in Eq. (5.10) cause a redistribution due to coupling with
the frame rotation to remove energy from Ryy and R,,, which subsequently transfers it to
the axis of rotation, i.e. to R,.. The term 2 (/) NRRyz also arises in the component
equations for Ry y and R_, but with opposite sign. These relate directly to the source/sink
terms for velocity fluctuations due to coupling with the rotation dyadic (see Eq. (1.30)).
Because they are of opposite sign, energy transfers from Ryy to R, (or vice versa,
depending on the direction of rotation).

The mathematical nature of the operator é is important in that, if its determinant were
zero, then there would be no algebraic connection between the Reynolds stress and the
statistical correlations responsible for the pre-stress (see Eq. (4.7)). For homogeneous
shear flows, the determinant of .;t is

det(4) = 1+Np= (1+3) (5.15)
From Eq. (5.15), it is apparent that det (;l) could only possibly be negative for
-1<Q/5<0. In this range, it follows directly that N <2 is a sufficient condition for
det (Q) > 0. For the asymptotic state associated with a particular value of €/, it would
be possible to verify a posteriori that det (._‘_}) > 0. However, for a transient calculation in
the range -1 <Q/S <0, there would exist some upper bound above which an initial

condition for N, could not be specified:

Q Q -172
Nk'm=[(-3)(1+§)] 22, for -1<Q/S<0. (5.16)
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5.3  Coriolis Redistribution of Turbulent Energy for Homogeneous Flows

In the absence of a mean shear, the pre-closure still predicts a frame dependence on the

Reynolds stress due to rotation. With § = 0 and N, = tRS » Eq. (5.9) reduces to:

"
i
LY

+1:R!=1 =:I Tx Qfe e - ey:] (5.17)

- -2~

From Eq. (5.10), it follows directly that the isotropic portion of the pre-stress is given by

= 1+ (D) (R, +R,). (5.18)

IR

For isotropic turbulence in an inertial frame, g = (=) and a/k = 1, since 4_} = I As Q
changes from zero (either positive or negative), the anisotropic pre-stress remains zero in
the absence of any mean field deformation process. However, this isotropic part of the pre-
stress changes according to Eq. (5.18) and the operator é depends on the rotational rate QQ
Therefore, with § = 0, Egs. (5.8) and (5.17) lead to the following component equations

for the pre-closure:

1
R, = j0/k, (5.19)
R+ (1,Q)%R,, = ja/k, (5.:20)
R, + (3,Q)°R = a/k, (5.21)
and
R, =0. (5.22)

Egs. (5.20) and (5.21) combine with Eq. (5.18) to give



132

1

R =R = —— (5.23)
Yo 34 (1,9)?
This implies that
1+ (1,Q)?
- (5:24)

=34 (1,0)2

since Rxx+Ryy+Rzz = 1.

Thus, the noninertial pre-closure theory for the Reynolds stress predicts a
redistribution of turbulent kinetic energy among the components of the fluctuating
velocity in the absence of any mean field deformation. As the characteristic time scale for
the turbulence becomes large compared to the time scale for rotation (i.e. |1:RQ| » 1), the
turbulence approaches a one-component state (cf. Figure 1.1), with the turbulent energy
aligned along the axis of rotation. This redistribution process is symmetric about
1,82 = 0 and is summarized in Figure 5.2. It is also noted that Egs. (5.23) and (5.24)
express a realizable turbulent state for all 'tRQ € [—oo, 0] .

The goal of this chapter is to apply the noninertial pre-closure theory to
homogeneously sheared turbulence (see Issue (iv), Section 1.2). The asymptotic states for
both the IPS- and APS- theories are examined along with the effect of rotation on the
qualitative nature of the turbulence. The symmetry about Q = 0 predicted by Egs. (5.23)
and (5.24) will be broken by the presence of S > 0.

54  Isotropic Pre-Stress Theory for Rotating Homogeneous Shear

Similar to the approach taken in Chapters 3 and 4, the consequences of the IPS-theory
are considered prior to evaluating the APS-theory. Thus, for the following analysis in this
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section, H = (0. For the problem of rotating homogeneous shear, no new

phenomenological parameters are introduced, so the results may be computed directly
from the parameters outlined in Table 3.1.

The asymptotic states for the IPS-theory are determined by solving the initial value
problem for the relaxation group N, at a fixed value of Q/S. Since the evolution
equation for N, does not explicitly introduce frame-dependent effects, the governing
equation is the same as Eq. (4.68):

dN,

& = 2NgR (Cp—1) +Cp(Cp-1) . (5.25)

If asymptotic states exist (i.e. dN,/ d§ — 0), then it follows directly from Eq. (5.25) that
N RRyz does not depend on /S inasmuch as:

lim (-NgR ) = b 150 b NP (5.26)
g K T 3(Cm1) T '

The above numerical result assumes that the IPS parameters listed in Table 3.1 are
universal. With R = 1-R -R, and H = 0, Egs. (5.11)-(5.14) may be reduced to
three coupled algebraic equations for R”, R,,, and Ryz. During the transient calculations,
the coefficient matrix for equations relating these three components is inverted using a
Gauss-Jordan elimination technique (Carnahan et al., 1969). Although there is no explicit
dependence on /S in the equation for N, the asymptotic state N; does depend on
€2/8 due to the Reynolds stress components. The initial state used to compute the

approach to the asymptotic states is the inertial frame asymptote:
Ny = 0945, (5.27)

The initial value problem was solved using a fourth order Runge-Kutta integration scheme
(Carnahan et al., 1969; see also Appendix H).
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With H = 0, Egs. (5.12) and (5.13) may be expressed as follows:

C.C R
) Sy (1) Q/S)

(Cgl sz) (Rzz) - (1) 2NRRYZ(1+Q/S ? (5.28)
where

U (5.292)

Q 2

(:12 = 1+Ni(§‘) 1) (s.ng)

and
Q 2
C, = 1+N§(1+-§) ) (529)

For § — oo, NRRyz approaches 0.230 as indicated above. Therefore, the determinant of

the coefficient matrix in Eq. (5.28) must be non-zero:

det(C) = 4-[1+N§(%)2][1+N§(1+%)2]¢0 . (5.30)

For a fixed value of /S, there exists an N; such that the condition de¢ ( __(:') = (0 is met;
this identifies states for which asymptotic states do not exist. Thus, the limits on Q/S for
which an asymptotic state cannot exist is determined by the intersection of N; and N;.
Both N; and N; depend on Q/S. The solution to Eq. (5.30) for det ( S) =0is

(N“?)2 = _(M—)z[-ld: ,1+ 12¢ 2], (5.31)
2(1+Q/8) (1+¢)

where
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¢‘[ @/s) ]

Note that only the positive root from Eq. (5.31) is considered, as N; (Q2/S) is a real-
valued quantity.

Figure 5.3. presents the results of the IPS-asymptotic states for N;. These results are
qualitatively similar to other second-order closure models. The IPS-theory predicts
unbounded growth of k and € over the range —1.26 < /5 <0.26. A similar behavior is
predicted by the second-order closure of Launder et al. [1975] for —0.11 < Q/S <0.39.
Outside of this range, the flow changes character; both k and € become decaying functions
and Np—o (see below). The minimum value of the relaxation group is
N;’ min = 0-834, which occurs at Q/S = —0.5; the maximum value of the relaxation
group is N, ... =1.27, occurring at Q/S = 0.26 and Q/S =-1.26.

Figures 5.4 and 5.5 complement Figure 5.3 in that they show the components of the
asymptotic Reynolds stress as a function of /S and the corresponding behavior on the
turbulent energy simplex. Figure 5.4 shows the redistribution effects due to the isotropic
pre-stress and the rotation coupling outlined in Section 5.2. As |Q/ S| increases, the terms
(Q/S) 2N:Rzz and (1+Q/9) 2NIZQR yy BTOWs causing the isotropic pre-stress to transfer
turbulent energy to the rotation axis. Similarly, the redistribution term arising due to
rotation (~ (£2/5) NRRyz) causes a net transfer of energy to Rzz from Ryy when Q/5>0

and vice versa when €2/ < 0. Both figures indicate that the solution is symmetric about

the point Q/8 = —0.5. Specifically, the following properties are noted:
R (Q/S) =R _(-Q/S-1), (5.32)

R”(Q/S) =R, (-Q/5-1), (5.33)
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and
Ryz(Q/S) = Ryz (-Q/5-1). (5.34)

It follows directly from Egs. (5.32)-(5.34) and the property R_, + Ryy +R = 1 that the

anisotropy invariants share the same symmetry property:

Q/ss) = n(-Q/8-1), (5.35)
and

I (Q/8) = 11 (-Q/s-1). (5.36)
These results stem from the isotropic pre-stress assumption and the fact that

A(Q/S) = AT(-Q/5-1). (5.37)

Eq. (5.37) notwithstanding, subsequent introduction of an anisotropic pre-stress will be
seen to destroy the symmetry properties possessed by the IPS theory.

Figure 5.6 shows the transient behavior at infinite Reynolds numbers of N for three
values of /8. The initial conditions correspond to N; = 1. The results illustrate that
two different flow regimes occur: an asymptotic regime (described by Eq. (5.4)) and a
decay regime (described by Eq. (5.5)). For Q/S = -0.5, N R approaches a constant value
in about ten dimensionless time units. For Q/S = 1.0 and -2.0, however, N, grows
monotonically without bound.

The relative growth rates of the turbulent quantities k, €, and Re follow directly from
Eqgs. (3.2) and (3.3):
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Figure 5.6 Transient Response of the Relaxation Group for Homogeneously Sheared
Turbulence in a Rotating Frame (IPS-Theory).
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== -1, 5.38
k dt Cr (5:38)
T 2C

ode _ _2CPNeRy (5.39)
€ dt Cr b

and
T 2(2 C )N R
DdRe _ P (2"CD) . (5.40)

Re dt CR

In the above equations, T;, = k/€. In the absence of turbulent production (i.e. N RR),z =0)
Eqgs. (5.38)-(5.40) describe the decay problem presented in Chapter 2. If an asymptotic
state obtains (see Eq. (5.26)), then all three of the above parameters approach the same
limit given by

(5.41)

(22) - (25) - (o) - 05
k dt/, € dt Re dt Cp—1"~

For the IPS-parameters listed in Table 3.1, the dimensionless asymptotic growth rate is
1.024. The relative growth rates in the asymptotic regime are shown in Figure 5.7.

Figure 5.7 shows that, after approximately ten dimensionless time units, k, €, and Re
achieve their limiting growth rates. Similarly, Figure 5.8 indicates that roughly the same
amount of time is required for the Reynolds stress components to reach their asymptotic
values. As expected, (NkRyz) . is reproduced exactly (see Eq. (5.26)). The initial values
for the Reynolds stress components are determined by the isotropic portion of the pre-
stress; a specification of values for N; and /S causes an instantaneous reorganization
of an isotropic turbulent state to an anisotropic turbulent state defined by Egs. (5.10)-
(5.14) with H = 0.

Figures 5.9 and 5.10 show the transient behavior of the turbulent time scales and the
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Figure 5.9 Relative Growth Rates of Turbulent Statistics in the Decay Regime (IPS-
Theory; Ny = 1.0; Q/S = +1.0 and +2.0).
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Figure 5.10  Relaxation of the Reynolds Stress Components in the Decay Regime (IPS-
Theory; NOR = 1.0; Q/S = +1.0 and +2.0; R’ = I_Q(N‘;, Q/S), ¢f Egs.
(5.10)-(5.14)).
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Reynolds stress in the decay regime (2/S = +1.0, =2.0). &, &, and Re ultimately decay
with time (i.e. negative growth rates at large development times). This occurs because
N RRyz — 0 in the decay regime (as seen in Figure 5.10). The asymptotic decay rates for k,
€, and Re follow directly from Egs. (5.38)-(5.40) by setting N RR),z = ( These asymptotes
are indicated in Figure 5.9 by the dashed lines. Although N, — oo in the decay regime,
Ryz remains realizable and decays more rapidly than N, grows, such that the product is
also approaching zero. Additionally, it is seen that the effect of rotation in the decay
regime is to asymptotically shift the turbulent energy into the energy component along the

axis of frame rotation:

R, -1, (5.41)

Ryy -0, (5.42)
and

Ru —0. (5.43)

For an isotropic pre-stress, it follows directly from Eqgs. (5.11) and (5.41) that

%‘ -3 (5.44)

in the decay regime. Thus, Eq. (5.41) implies that (u' u' )= 2k — 0. Eq. (5.12) with
H__ = 0 and Eq. (5.44) together with the observation that N, RRyz — 0 yield the following

limiting behavior for R y’

2
R, —>1-(Q/5)’NeR,,. (5.45)
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Since Ryy — 0, the product N;Rzz must be approaching a constant in the decay regime in
order to balance the first term on the right-hand-side of Eq. (5.45). Thus, in the decay
regime for large values of N R Eq. (5.45) reduces to

Ruqm. (5.46)
Similarly, Eqgs. (5.13) and (5.44) combine to give
R,—1- (1+Q/5)’NeR (5.47)
in the decay regime. Thus, for large values of N, Eq. (5.47) implies that
5 (5.48)

1+ N

It follows directly from Eq. (5.14) that R),z = 0 for the limiting behavior expressed by Egs.
(5.46) and (5.48). Thus, Schwarz’s inequality is satisfied.
For decaying homogeneously sheared turbulence, Egs. (5.46) and (5.48) provide a

prediction for the distribution of turbulent energy in the plane of rotation:

Re _ (1+/5)°

(5.49)
Ry  (ass)?

For the two relative rotation rates presented in the decay regime (i.e. +1.0,-2.0), the
transient ratio of Ra/R” approaches 4.0 and 0.25, respectively, which is in accord with
Eq. (5.49).

Figures 5.11 and 5.12 address the issue of realizability of the IPS-theory for rotating

homogeneous shear. Figure 5.11 shows all of the states within the asymptotic regime (i.e.
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Figure 5.11  Anisotropy Invariants for the Asymptotic States of Homogeneously

Sheared Turbulence in a Rotating Frame (IPS-Theory).



150

047
Trajectory
a
b
C
d
037
l——
I o2t —
Lf—
74
0.1t
Invariant Shaded area: states inaccessible to
Boundary asymptotic homogeneous shear.
O 0 1 1 1 1 | 1 1 1 1 1 ]
-0.03 0.00 0.03 0.06 0.09
11
Figure 5.12  Anisotropy Invariants for the Decaying States of Homogeneously Sheared

Turbulence in a Rotating Frame (IPS-Theory).



151

~1.26 < /S <0.26). Each point within the L-diagram is parameterized by at least one
pair of (Q2/S,N z) » With the exception of the two shaded areas. These regions contain no
IPS-trajectories which relax to an asymptotic state. Trajectories on the L-diagram
represent lines of constant /S, along which the various points are parameterized by N,.
Due to the symmetry of the IPS-theory about /S = —0.5 (see, esp., Egs. (5.35) and
(5.36)), each trajectory corresponds to two values of the relative rotation rate. The
trajectories for /S and —Q/S -1 are identical. All trajectories are realizable and are
attracted to the highlighted line in the figure, which represents the locus of asymptotic
states for —1.26 < /5 < 0.26. The arrows indicate the path that the anisotropy invariants
take as they approach the asymptote.

Figure 5.12 is the analog of Figure 5.11 for the decaying homogeneous shear states
(2/5>0.26 and Q/S <-1.26). For the decaying states, only one region of the L-
diagram is inaccessible. As indicated in Figure 5.10, the decaying states all relax towards a
one-component turbulence asymptote, with all of the turbulent energy aligned along the
rotation axis. All states between the isotropic state and the one-component limit remain
realizable.

From the preceding results, it is apparent that a rotation of frame coupled with a mean
shear has two significant effects. First, for small absolute relative rotation rates in the
asymptotic regime, rotation causes two redistribution effects among the normal
components of the Reynolds stress via the isotropic pre-stress: Ra « R” and
(R”, Ru) — R_, . In this case, however, the flow retains the same qualitative character it
had in the inertial frame: both k and & grow without bound, but at the same relative rates.
However, at larger absolute relative rotation rates, the effect of frame rotation drastically
affects the turbulent structure. Large rotation rates have the effect of completely cutting
off turbulent production due to coupling of the mean shear and Reynolds stress (i.e.
NRRyz — 0 rather than NRRyz — constant). This causes the turbulence to decay and,

thereby, to transform into a one-component turbulence with R, — 1. Itis noteworthy that
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either asymptotic or decay trajectories by the IPS-model remain within the L-diagram,
although some of the L-states are only attainable in one of the two regimes. All states
predicted by the IPS-theory are realizable.

5.5  Anisotropic Pre-Stress Theory for Rotating Homogeneous Shear

The extension of the model predictions for the APS-theory follows directly from the
procedure outlined for the IPS-theory. The phenomenological model for the anisotropic
pre-stress was developed in Chapter 4. Again, no additional unknown closure terms and/or
phenomenological parameters arise in the rotating frame (relative to the inertial frame), so
the parameters in Table 4.1 allow the complete description of the rotating homogeneous
shear flow.

Eq. (5.25) for the evolution of the relaxation parameter applies as it did previously.
However, the asymptotic invariant for the product N RRyz is now given by

Cp(Cp-1)

(—NRRyZ)a = _2_(CP_—1)- = 0.186. (5.50)

The previous approach for determining the asymptotic states by solving the initial value
problem remains valid; however, instead of having one differential equation for N,
coupled with a set of algebraic equations, additional differential equations are required to
determine the anisotropic pre-stress H. Since the model for H is frame invariant, the
govemning equations have the same form as before (see Egs. (4.42), (4.45)-(4.47), and
(4.50)-(4.52)). Specifically, the four components of the anisotropic pre-stress are governed
by the following set of ordinary differential equations:

dH

2
De,—z—g‘ + (1+q)H, -ZaDeH = 0, (5.51)
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group. The boundaries of the asymptotic regime are shifted (~1.56 < /5 <0.19 in the
asymptotic regime), but, more significantly, the symmetry about Q/S = —0.5 no longer
occurs.

Figures 5.14 and 5.15 show how the components of the Reynolds stress and the
anisotropic pre-stress are distributed in the asymptotic regime. Figure 5.15 indicates that,
even though the phenomenological equation governing g is frame indifferent, the implicit
dependence of LI upon the frame due to the coupling with the relaxation group causes the
pre-stress anisotropy to vary with /5. From Egs. (5.11)-(5.14), it is seen that the
anisotropic pre-stress serves to systematically increase the levels of Rzz and Ryz' while
R and R” are systematically decreased. These trends directly result in the destruction
of the symmetry property that existed for the IPS-theory about the point Q/S = -0.5.

Figures 5.16 and 5.17 show the asymptotic states for the APS-theory on the energy
simplex and the L-diagram. The locus of asymptotic states on the energy simplex further
illustrates the asymmetry of the energy distribution illustrated by Figure 5.14.
Qualitatively, the trend of redistributing the turbulent kinetic energy into the component of
the Reynolds stress along the rotation axis is seen again at the boundaries of the
asymptotic regime. The broken symmetry is less pronounced on the L-diagram, although
it is seen slightly due to the fact that points along the locus of asymptotic states are no
longer parameterized by two values of €Q/S; for the APS-theory, each point is
characterized by a unique value of Q/S.

The trajectories for the APS-theory are not presented in the same detail as for the IPS-
theory. The purpose of these calculations was to demonstrate the qualitative differences
between the asymptotic and decay regimes. The transition between these two regimes is
controlled by the behavior of the product N RRyz (see Egs. (5.38)-(5.40)). Although the
asymptotic growth rates of k, € and Re have different numerical values for the two
theories (a value of 0.374 vs. 1.024, see Eq. (5.41)), the qualitative features of the flow

remain unchanged. Figure 5.18 shows the effect of rotation on the relaxation group N, for
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Figure 5.16  Distribution of the Energy Components for Homogeneously Sheared
Turbulence in a Rotating Frame (APS-Theory).
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Figure 5.18  Transient Response of the Relaxation Group for Homogeneously Sheared
Turbulence in a Rotating Frame (APS-Theory, Np = 1.0; H® = 0).






161

Q/§ = -2.0,-0.5, 1.0. As before, the stable trajectory approaches its asymptote in
roughly ten time units, while the two cases in the decay regime exhibit unbounded growth.
The lack of symmetry is also evidenced in this plot by the different growth rates of N, for
the two cases /S = —2.0 and +1.0.

5.6 Conclusions

Both the IPS- and APS-theories predict two distinct regimes for homogeneously
sheared turbulence in a rotating frame of reference. In an intermediate range of relative
rotation rates, i.e. (Q/S) . <Q/S< (Q/S), .. an asymptotic regime is observed in
which both the turbulent kinetic energy and dissipation grow without bound, but at the
same relative rates. In this regime, the isotropic portion of the pre-stress serves to
redistribute the components of the Reynolds stress as a function of /S and NRRyz
approaches a constant independent of /.

For Q/5< (Q/S),,;, and Q/S> (Q/S)
predict a qualitative change in the nature of the flow. The presence of large absolute

max® e two closure theories examined
relative rotation rates completely eliminates turbulent production (i.e. NRRyz — 0 for
large development times, rather than NRRyz — constant ). Thus, the turbulence becomes
uniformly decaying, with all of the turbulent energy being aligned along the axis of
rotation.

The nature of the pre-closure operator é combined with the isotropic pre-stress
assumption yields a symmetry property for the asymptotic state about Q/S = -0.5.
Subsequent introduction of an anisotropic pre-stress with non-zero normal stress
differences breaks this symmetry property.

The IPS-theory is shown to predict only realizable states for —ce < /S <o and is

seen to span the entire L-diagram of anisotropic stress invariant pairs. Certain regions of
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the L-diagram are only accessible to the asymptotic or decaying turbulent regimes. The

asymptotic states of the APS-theory are verified a posteriori to be realizable.



CHAPTER 6

CONCLUSIONS

The concept of realizability was addressed for each of the homogeneous flows studied
herein. Specifically, it was desired to construct a turbulence model which would only
predict realizable turbulent states. Where possible, this quality was verified a priori. When
the nature of the governing equations did not permit such an analysis, the realizability of
the turbulent states was verified a posteriori.

For the problem of isotropically decaying turbulence, the decay coefficient C,, in the
dissipation equation was selected to generate a realizable decay process for 0 < Re < co.
Specifically, if 1 < Cp, (Re) <2, both k and € are decaying and non-negative. In the final
form of the model, Cp (Re) ranges between 1.4 and 1.83, guaranteeing a realizable
decay. Similarly, the algebraic nature of the pre-closure when applied with the isotropic
pre-stress assumption yielded a Reynolds stress tensor which was realizable for all values
of the relaxation group 0 <N <o, This is due to the fact that the preclosure has the
property that, given non-negative eigenvalues for the pre-stress, the Reynolds stress will
also have non-negative eigenvalues. Thus, since the eigenvalues for the IPS-theory are
always positive, realizability is preserved for all turbulent states characterized by a given
value of N g+ With the anisotropic pre-stress theory, however, the coupling of the ODEs
for the anisotropic pre-stress H and the algebraic pre-closure equations for R did not
present a priori evidence that t;xe solutions are always realizable. However, it was found

by computation that the transient and asymptotic states were always realizable for all
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realizable initial conditions tested (i.e. 0 < N‘;! < 10).
A semi-theoretical treatment of the Karman-Howarth equation for isotropic turbulence
yielded a prediction of the dissipation destruction coefficient C,(Re). The predicted

1.4 based on the final

destruction coefficient utilizes two limiting values: C;, (0)

decay data of Batchelor and Townsend (1948); and, C/, () 1.83 based on the high
Reynolds number data of Comte-Bellot and Corrsin (1971). Notable is the fact that the
predicted form of the dissipation destruction coefficient does not exhibit a monotonic
progression between the two limits, as is the case in other, empirical approaches to this
problem (see Hanjalic and Launder, 1976; Lumley, 1978). This functional form was then
applied to various experimental and direct simulation data sets and was found to be
capable of quantitatively reproducing the decay process over a wide range of initial
turbulent Reynolds numbers: 7.5 <Re _ <750.

The application of the isotropic pre-stress theory to the problem of homogeneously
sheared turbulence was found to yield a significant improvement compared to
Boussinesg-type turbulence models in that it predicts a non-zero primary normal stress
difference as a direct result of the pre-closure theory. Specifically, the primary normal
stress difference receives contributions from both the isotropic and anisotropic portions of
the pre-stress (see Eq. (4.38)). Thus, even though H=0 in this case, the isotropic pre-
stress contribution (a./k) provides a non-trivial primary normal stress difference. The
development times required for the turbulence to approach its asymptotic state are in close
agreement with those times found in experimental treatment of homogeneous shear, being
on the order of 10 dimensionless developmental time units (zS/ <uz)). The prediction of a
non-zero second normal stress difference was not possible without some contribution
from the anisotropic portion of the pre-stress (see Eq. (4.39)).

In order to capture this second normal stress difference as well as to reproduce the
relaxation effects seen in the return-to-isotropy experiments, the anisotropic portion of the

pre-stress was modeled phenomenologically with an objective convected time derivative
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which included both pre-stress relaxation and linear mean strain coupling effects. This
allowed the exact reproduction of the experimentally observed asymptotic state, which
was not possible with the isotropic pre-stress assumption. It was found that coupling of the
relaxation and linear strain-coupling effects resulted in the fact that both were required in
order to reproduce a non-zero second normal stress difference. Additionally, the
combination of these two effects results in a transient approach to the asymptotic state
which exhibits oscillatory behavior. These oscillations stem from the choice of the
convected derivative parameter —Jg <a< JZ; , which results in imaginary eigenvalues for
the system of equations governing the decay process.

The expression of the pre-stress 12 (ff" in terms of an isotropic portion (2a./3) I and
an anisotropic portion ZkLI results in two qualitatively different responses to an external
mean shear. The isotropic portion, which is determined algebraically and is derived from
the pre-closure without any additional closure hypothesis, results in a “fast” response to an
external mean shear. The decision to include the phenomenological effect of relaxation in
the model for the anisotropic pre-stress, however, results in a “slow” response to a mean
shear, causing the turbulence to evolve transiently through time.

The application of the pre-closure theory to homogeneously sheared turbulence in a
rotating frame of reference was found to predict two qualitatively different asymptotic
states as a function of the ratio of the frame rotation rate to the mean shear rate (£2/.5). For
intermediate /S (i.e. —1.26 < L2/ < 0.26 for the IPS-theory), the turbulence maintains
the character it displays in the inertial frame: both k and &€ grow without bound and
k/€ — constant. At large values of |Q/S| (i.e. Q/S>0.26 and Q/S<-1.26 for the
IPS-theory), however, the turbulence changes to a uniformly decaying process. This
exchange is caused by a concentration of turbulent energy along the axis of rotation,
which effectively eliminates turbulent production, leaving only turbulent destruction
effects. Additionally, the IPS-theory is found to yield realizable predictions for all

—oo < L2/ § < oo, again owing to the character of the pre-closure which preserves the trait
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of positive eigenvalues in the pre-stress.

The qualitative features mentioned above apply equally to both the isotropic and
anisotropic formulations for the pre-stress. Small quantitative differences exist, such as
the exact values of /S which delineate the boundaries between the asymptotic and
decay regimes. For instance, the asymptotic regime for the APS-theory exists over the
range —1.56 < Q/§ < 0.19, which is similar to the range for the IPS-theory given above.
The salient difference between the two theories lies in the symmetry property exhibited by
IPS-theory about /S = —0.5 which is not present in the APS-theory. This is due
exclusively to the fact that the pre-stress is no longer isotropic (i.e. H= 0) and its
components provide contributions to the Reynolds stress components which are not all
equal.

A major portion of this work has been dedicated to the development and evaluation of
two closure hypotheses for the pre-closure theory developed in Chapter 3. The isotropic
pre-stress (IPS-) theory was initially investigated because it introduced no additional
closure hypotheses. This was then extended to an anisotropic pre-stress (APS-) theory in
order to capture relaxation effects as well as a second normal stress difference for simple
shear flows. In retrospect, however, each of the two closure theories has its own
distinctive advantages and disadvantages.

For instance, the IPS-theory represents a significant improvement over the traditional
Boussinesq approach; in a simple shear flow, the IPS-theory is uniformly realizable and
predicts a non-zero primary normal stress difference. Relative to the APS-theory, the
algebraic character of the IPS-theory may make it more attractive for use in practical
applications. Although a 3x3 matrix inversion must be performed at each discrete point in
a given domain, no additional differential equations beyond the four required for the
continuity equation and the equation of motion are needed. This is a computational
advantage compared to both the APS-theory as well as other traditional second-order

Reynolds stress modeling approaches, which require the solution of an additional six
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differential equations in the most general case. Additionally, the algebraic nature of the
IPS-theory lends itself more readily to theoretical analysis. For instance, it is possible to
demonstrate a priori that the IPS-theory predicts only realizable states for homogeneous
shear flows and that the entire Lumley diagram is accessible to the theory, with each point
therein being parameterized by one or more pairs of values for (N, Q/S).

In contrast the APS-theory expands upon the predictive capabilities of the IPS-theory
by providing additional degrees of freedom in terms of model parameters which allow it to
capture more physical effects. For example, the phenomenological model for the
anisotropic pre-stress is able to reproduce both the relaxation effect seen in return-to-
isotropy as well as the second normal stress difference exhibited in homogeneous shear
flows. As mentioned above, however, this improved predictive capabilities come at the
cost of additional differential equations for each of the six anisotropic pre-stress
components. Not only would this greatly increase the computational burden for more
complex flow simulations, but, from a theoretical standpoint, also makes analysis and

interpretation of results more complicated.



CHAPTER 7
RECOMMENDATIONS
7.1  Further Study

The analysis of the K4&rm4n-Howarth equation involved the semi-empirical expression
of several integral properties of the double and triple longitudinal velocity correlations.
While there is not the expectation that the absolute values of the integrals themselves are
necessarily correct, the working hypothesis is that the integral ratios, as they appear in the
analysis of the Kdrm4n-Howarth equation, are reasonably well characterized. Either direct
simulation or experimental measurements of isotropically decaying turbulence could be
applied in order to estimate the extent to which these integral properties are adequately
represented, provided that both the double (B, ) and triple (T, ,, ) longitudinal velocity
correlations are accurately determined (cf. Egs. (2.36)-(2.38)).

With this simulation and/or experimental data, the validity of the modeled ratios 1, /1,
(see Eq. (2.63)) and 13/ 1 1 (see Eq. (2.71)) which appear in the modeled form of the IKH-
equation (Eq. (2.44)) may be verified directly, as the parameters Re, #, and 8 can all be
derived from the velocity correlation data. The variation of the integral parameter I; with
the turbulent Reynolds number (or, equivalently, within the context of this theory, the
destruction coefficient 8) can be verified by integrating Eq. (2.69):

J
In(I /1, ) = -%j[u (a—l)J%]dln 5. (7.1)

3
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Ultimately, the degree to which the integral approximations applied in the theory do or do
not agree with experimental values will either lend support to this approach or suggest
further avenues for research, in terms of the manner in which the integral ratios are
modeled.

The process of return-to-isotropy could be further addressed, as it has been analyzed
only for the case of a positive third invariant (the state observed for homogeneous shear in
an inertial frame) and has been modeled as a universal constant. There exists a larger body
of experimental data which may suggest that either: (1) the time constant for decay is a
function of the local turbulent state such that C, = C, (11,111, Re) ; and/or, (2) the decay
process should include both linear and non-linear relaxation effects (Sarkar and Speziale,
1990; Speziale, 1991). |

The dissipative time scale in the e-equation has been modeled as T, o k/¢€. This
formulation is not capable of explaining the effect of a slower rate of decay of an isotropic
turbulence in a rotating frame of reference. Specifically, direct simulations of this flow
(Bardina et al, 1985; Speziale et al., 1987) indicate that an increasing rate of frame
rotation has a pronounced effect in that it reduces the turbulent dissipation €, causing the
turbulent kinetic energy k to persist over a longer period of time. This flow is governed by
a system of two ordinary differential equations, one each for k and €. The equation
governing the turbulent energy (see Eq. (2.2)), however, is exact and has no explicitly
frame-dependent terms. Therefore, this increased persistence of turbulent energy must be
localized to the modeled equation for the turbulent dissipation (see Eq. (2.4)). It is thus
suggested that the e-equation be revisited and the characteristic time scale T, be modified

to include frame-dependent effects.
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7.2  Further Application

The work contained herein was primarily aimed towards achieving Objectives (i)-(iv)
in Section 1.2. That is, theoretical problems were selected such that each of these four
issues could be isolated or built upon based on previous results within the dissertation. For
example, the flows of isotropic decay and return-to-isotropy allow the determination of
the model parameters C,, and C,, respectively, independent of all other model
parameters. With this basis, the application of the APS-theory to homogeneous shear flow
then allows the final calibration of model parameters to achieve the goal of accurately
representing both the primary and secondary normal stress differences.

Objective (v), i.e. universality, however, is not addressed directly in this work. This
question can be answered through the further application of the APS-theory to other test
flows with a subsequent comparison of the predictions with known results. Of course, the
extent to which the mean field and turbulent quantities agree with experimental values is
important. However, other questions also arise. For example, for a given flow, what
restrictions, if any, are required to ensure realizability or to ensure that the pre-closure
operator é (see Eq. (4.1)) is invertible. Of course, an additional test of universality is the
application of the theory to a practical application of engineering significance. Since this
study was, in part, motivated by the poor performance of the Boussinesq theory in flows
with streamline curvature, a cyclone would be an ideal case for testing the developed
model.

The cyclone as a centrifugal separator has a wide variety of separation and
classification functions. A generic cyclone with its relevant dimensions is shown in Figure
7.1. A classical application for a cyclone is the separation of particulate solids from a gas
or liquid medium. Another example is the use of a hydrocyclone for liquid/liquid
separations. For this application, there generally exists a relatively small centrifugal
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Figure 7.1 Qualitative Sketch of a Hydrocyclone Centrifugal Separator
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driving force due to the small density difference between the two liquid phases (typically
~ 0.2 g/ml). While it is generally true that the ability to accurately predict the interior flow
patterns may aid in cyclone design, this capability is more important in the liquid/liquid
separator. The large density difference in a solid/fluid cyclone can yield acceptable
separation efficiencies for a wide range of operating parameters. Because this density
difference is so small for the liquid/liquid application, however, it is important to be able
to characterize the interior flow within the hydrocyclone in order to potentially maximize
the separation driving force provided by the interior flow.

There are several characteristics common to cyclone flows. In general, they are all
high Reynolds number flows with a significant swirl component. This swirl flow is a
Rankine-type vortex with a forced vortex structure along the cyclone core and a free-like
vortex structure in the outer region. Although the flow may be adequately characterized as
axisymmetric, an undulating axial velocity profile combined with toroidal recirculation
zones makes for a fully three-component flow field.

Despite the challenges that swirling flows present towards modeling, there exists a
need for a practical engineering model which can accurately predict not only mean field
quantities, but also turbulence quantities. An accurate turbulence model is instrumental in
providing much of the information required to predict hydrocyclone separation
efficiencies. Specifically, a converged solution to a turbulent flow problem provides both
information concerning the mean field velocities and pressure as well as the six
components of the Reynolds stress. The role of these terms becomes apparent when one
examines the equation govemning the acceleration of a dispersed phase particle (in a

Lagrangian frame; Brodkey, 1967):

dv i y_
mige = S0 Vp e Sy V. @2)

In the above equation, v is the dispersed phase velocity and u the continuous phase
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velocity. Similarly, m, = (1td3 pP;)/6 and m_ = (1*:«13 p.) /6 represent, respectively,
the mass of a spherical volume of diameter d for the dispersed and continuous phase.

Eq. (7.2) relates the acceleration of the dispersed phase particle acceleration to the
Stokes’ drag force, the fluid pressure gradient, and the added mass effects. Eq. (7.2) does
not include the Basset term, nor does it account for particle-particle interactions or drop
coalescence/break-up/deformation. The application of Eq. (7.2) allows one to compute
dispersed phase trajectories as a function of particle size which further permits the
prediction of separation efficiencies given an inlet feed size distribution.

Eq. (7.2) is written for the instantaneous particle and continuous phase velocities, but a
turbulence model yields mean field quantities. There are two ways to proceed from this
starting point. Integration of the particle trajectory equations several times for a given
initial position and particle size would allow the formation of an ensemble mean
collection probability. In this case, the instantaneous fluid velocity at a given location for a
given component is computed in an ad hoc manner as the mean plus a random fluctuation
proportional to the rms value of the fluctuations. This is the approach of Boysan, et al
(1982) and Hargreaves and Silvester (1990). An alternate method entails the Reynolds
averaging of Eq. (7.2) in order to form the equation for the mean particle acceleration. In
this case, there arises the following term which is not a result of the turbulence model

predictions and must therefore be further modeled:
v Vu) = )V @@+ V). (7.3)

From Eq. (7.2), the role of the individual mean velocity components upon the
separation is evident. Among the three mean velocity components, a good quantitative
prediction of the tangential velocity (u) is key, as the separation force is proportional to
the swirl velocity, squared. The axial velocity (uz) is also influential in that it largely

determines the residence time of a dispersed phase particle in the cyclone which correlates
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with the time available for separation. The radial velocity (u,) is important in that it is the
reference velocity against which the drift velocity is computed and can also have an effect
on recirculation flows that can either work for or against the separation. With accurate
computations of the complete mean velocity field, one can estimate dispersed phase
trajectories as a function of particle size in order to evaluate a cyclone’s performance
given a dispersed phase of a specified density and size distribution. Determination of the
mean pressure distribution in the cyclone facilitates the computation of the power

requirement for pumping the fluid through the unit operation.
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Appendix A:Navier-Stokes Equations in a Rotating Frame of Reference

The goveming equations which are applied in turbulent flow situations stem directly
from the instantaneous continuity equation and the Navier-Stokes equations. These are
based on a mass and a momentum balance on an infinitesimal fluid element, respectively
(Bird, et al., 1960). In a rotating frame of reference, the terms representing the centrifugal

and Coriolis forces which arise may be referenced from Greenspan (1968):

V.i‘ = 0 (A‘l)
and

Du 2

— +2Qxu =-VP +vV-u. (A2)

Dt — - r -

In Eq. (A.2), the substantial derivative is the instantaneous substantial derivative, ie.
D/Dt=9d/dt+u- V. In the Navier-Stokes equation (Eq. (A.2)), it is important to note
that body forces (such as gravity) are not shown. Secondly, a homogeneous density is
assumed, such that P, is actually the kinematic reduced pressure, defined by

P = (%’) - (%)-% @xr) - (@x7). (A3)

Eqgs. (A.1) and (A.2) can be written in terms of mean field quantities by introducing
the Reynolds decomposition. Explicitly, for the pressure and velocity, this decomposition

is

u=(u+u (A4)
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and
p=(@)+p. (A5)

These expressions may be subsequently inserted into the instantaneous equations and then
averaged as per Hinze (1975). This results in the final govéming equations: the mean

continuity equation
V.- (u) =0, (A6)

and the Reynolds-averaged equation of motion

D(u)
Dt

+2Qx (u) = =V(P ) +VVi(u)=V - (u). (A7)

In Eq. (A.7), the term D/Dt now represents the substantial time derivative associated
with the mean velocity field: D/Dt=49/dt+ (u)- V. The last term in Eq. (A.7) is the
Reynolds stress. These equations represent a system of four scalar equations for ten
unknowns: mean velocity (3), mean pressure (1), and the symmetric Reynolds stress
tensor (6). It is this unclosed nature of the goveming equations which necessitates
turbulence modeling. That is, given a phenomenological or theoretical expression for the
Reynolds stress in terms of mean field quantities, Egs. (A.6) and (A.7) would be closed.
In this example, a transport equation has been developed for the mean velocity, but
contains unspecified second-order moments. In general, were an equation for an arbitrary
n®-order moment to be developed, it would contain unknown moments of order (n+1).
The derivation for the transport equation for second-order moments is given in Appendix

B.
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Appendix B:Reynolds Stress Equations in a Rotating Frame of Reference

The derivation for the equation governing the Reynolds stress ({u'u')) begins with the
equation for the fluctuating velocity (x'). This equation is formed by subtracting the
Reynolds-averaged equation from the instantaneous (i.e. Navier-Stokes) equation:

Du' p' 2
T)‘;--G-ZQ xu' = -V-‘; +vVu'+ V. (uu)-u'-Vu' —u' - V{(u). (B.1)

The fluctuating velocity equation may then be rearranged with all of its terms on one side

and written in general operator form:
Lw) =0. (B.2)

The equation in this form is the source of both the equations for the Reynolds stress as
well as the turbulent kinetic energy and the turbulent dissipation (see Appendix C for the

dissipation). The second order transport equation is formed by taking the following

moment:

wlew) +Lww) = 0. ®.3)
The resulting equation is

D(,'i',"") +20x W) +2(@x wWu) " = -[Ww)-V @)+ (@w)- V@)

+@' (Vu'+VuT))-g-V- ((Wu'u')+ (p'u'D)+ (p'y'{)T) +vV2(u'n'). (B.4)

The second term on the LHS of Eq. (B.4) represents a redistribution effect due to the
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Coriolis terms in the equation for the velocity. On the RHS of Eq. (B.4), the terms are,
respectively: (1) turbulent production due to coupling with the mean shear; (2) pressure-
strain redistribution; (3) viscous dissipation; (4) turbulent transport; and, (5) molecular
diffusion.

While this research does not apply the Reynolds stress transport equation directly, it

does serve as the basis for the k-equation. The turbulent kinetic energy is defined as
2k= (u' - u). ®.5)

Thus, the contraction of the Eq. (B.4) yields the k-equation.

% = —@uw):V(w-e-V- G w)u)+ ('u)) +vVik. (B.6)

Each of the terms on the RHS of Eq. (B.6) are the scalar analogs of the terms in Eq. (B.4).
An advantage of the k-equation is that the pressure-strain term, which is the focus of most
second order modeling approaches, is identically equal to zero due to incompressibility.
The only term which is unclosed is the diffusion term, being generally modeled with some
form of gradient hypothesis (Hanjalic and Launder, 1972). It is also important to note that,
although the Reynolds stress equation is frame dependent, there is no explicit appearance
of the frame rotation rate in the kinetic energy equation. This is important, as it implies

that rotation only serves to redistribute turbulent energy rather than to create or destroy it.
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Appendix C:Turbulent Dissipation Equation in a Rotating Frame of
Reference

The second variable required as a turbulent scale-determining parameter is the scalar
dissipation rate. Similar to the Reynolds stress equation, the dissipation equation is based
on the equation for the fluctuating velocity. In this case, however, an alternate moment is

formed (Speziale, 1991):
2v(VuT:vL (u)) = 0. (C.1)

This yields the following equation for the scalar dissipation rate:

De 2
e = Pe—d>e+De+vV €. (C.2)

In Eq. (C.2), the fourth term on the RHS is the molecular transport term, while P,, @,
and D, represent production, destruction, and turbulent diffusion of dissipation. Their

exact expressions are

P, =-2v(VuT - Vu'+Vu' - Vul):V (u)-2ver[ (wVu'): (VVu)T]
—2v([Vu': (Vu' - V) T]), (C.3)

@, = 2vir(VVu': (VVu)T), (C4)
D, =-vV-(u'(Vu'-VuT))-2vV . (Vp'. Vu'). (C.5)
In the dissipation equation, there is no explicit frame dependance, providing that the

dissipation is isotropic. In contrast to the Reynolds stress and k-equations, virtually all of

the terms in the dissipation equation must be modeled. Typically, what is done is to
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assume that each of the given processes in the dissipation equation are analogous to their
k-equation counterpart, scaled by an empirical coefficient and a characteristic turbulent

time scale (Hanjalic and Launder, 1972).
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Appendix D:Objectivity of Convected Time Derivatives

The generalized convected derivative is (Denn, 1990; Joseph, 1990):

5, oA ,
5 (@) ==+ () VA-(W) - A-A- (W)-a[($)-A+A- (5)], @)

where a assumes any value within in the range —~<a<oo and A is any objective

operator:

* A-0T. (D.2)

[l
1
o
(PN
o

(S) is the symmetric, objective portion of the velocity gradient and (W) is the
antisymmetric, frame-dependent portion of the velocity gradient (Bird, et al, 1977):

()" = 0-(5)-0" and D3)
W =g-W-0"+0-¢0, (D4)

where O is a time dependent, proper orthogonal (i.e. det (Q) = +1) coordinate

transformation tensor and Q its time derivative:

0 T _ I (D.5)

hQ

Eq. (D.1) in a rotating frame of reference is written as

8: . 8 . . V. .
5 @) =5 @) +@ VA

—(LV)‘T’Q. -é. ) (2,). _a[(g). -é. +é. ) (5).] - (D6)
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Each of the four terms on the RHS of Eq. (A.6) are summarized below:

2 agh =g (S| o040+ a0 )

IV:a[Q-($)-0"-0-4-0"+0-4-0"-0-(5)- 0"] =
a[g- ((5)-A+4-(s) - 0"]. ©.10)

Combining Egs. (D.6) - (D.10) yields

s, 5
a * a T
—(A)=0-1—(A) |0, A1
W) -2 mw) g 1
and the convected time derivative § /¢ is thus objective for any choice of the parameter

—o0 < g<oo,
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Appendix E:

Tables of Referenced Data
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Table E.1: Summary of Isotropic Decay Data; Batchelor and Townsend [1948];

M=0.635cm (grid mesh)
U=150cm/s U = 643cm/s U = 1286cm/s
M U2 M U2 M MU?
20 8.81x 104 20 4.85x 100 60 1.84x 104
40 3.15x 104 40 5.86x 1074 80 1.46x 10
60 2.12x 10 60 3.01 x 10 100 1.19x 107
80 1.49x 10 80 199 x 10% 120 1.00x 104
100 1.17x 10* 100 1.50x 104 140 8.56 x 1073
120 9.41x 103 120 123x10% 160 7.33x 1075
140 7.44x 107 140 9.76 x 107 180 6.39x 107
160 6.11x 1073 160 821x 107 200 5.58x 1073
180 527x 107 180 7.06x 1075 220 4.81x103
200 4.68x 10 200 596x 1073 240 424x 107
220 401x 107 220 496 x 107 260 3.72x 107
240 455x10° | .
260 436x 107

Note: This table has been generated by digitizing the data graphs in the text and
determining the coordinates of the data points.
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Table E.2: Summary of Isotropic Decay Data; Comte-Bellot and Corrsin [1971];

U,=10m/s

M(cm) UM | tyms (cmss) | €(cm?/s) Rey, Re'
5.08 42 22 | 440 | 716 | 760 |

98 12.8 633 65.3 640

171 8.95 174 60.7 553
— 254 | 45 | 205 7540 48.6 354 |

120 10.6 731 41.1 253

240 6.75 145 38.1 218

385 5.03 48.5 36.6 201

t.This column has been appended to the ongmal Table 4 of Comte-Bellot and Corrsin
[1971] using the isotropic relation (3/20) Re7~ = Re.
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Table E.3: Summary of Isotropic Decay Data; Sirivat and Warhaft [1983];
M=2.5c¢m (grid mesh)

U = 340 cm/s U = 630cm/s
M e(cm?/s) | k(em??) M e(cm?s) | k(cm?/s?)
40 389 - 40 2670
50 224 50 1670
60 165 60 1090
70 125 70 796
80 88.8 80 615
90 74.1 90 473
100 56.4 100 381
110 49.4 110 285
125 332 125 192

Note: This table has been generated by digitizing the data graphs in the text and
determining the coordinates of the data points.
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Table E.4: Summary of Isotropic Decay Data of Speziale et al. [1987]; Re,, = 35.1

T(= £/k,) ko
™ o000 | 1o |
0.083 0919
0.167 0.842
0.250 0.774
0.333 0.716
0417 0.665
0.500 0.625
0.667 0.545
0.833 0.435
1.000 0.435
1.167 0.393
1.333 0.356
1.500 0.323
1.667 0.293
1.833 0.266
2.000 0.242
2.167 0.221
2333 0.203

Note: This table has been generated by digitizing the data graphs in the text and
determining the coordinates of the data points.
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Table E.S: Summary of Isotropic Decay Data Bardina et al. [1985]; Re, = 45.4

T (= tg,/k,) k/k,
0.000 1.000
0.050 0.951
0.100 0.906
0.200 0.821
0.300 0.747
0.400 0.680
0.500 0.620
0.600 0.567
0.800 0.477
1.000 0.405
1.250 0.335
1.500 0.281
1.750 0.240
2.000 0.208
2.500 0.163
3.000 0.134
3.500 0.115
4.000 0.100

Note: This table has been generated by digitizing the data graphs in the text and
determining the coordinates of the data points.
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Table E.6: Homogeneous Shear Flow Data (Tavoularis and Kamnik “A”, 1989)

. Tret Ry Ry, Ry Ry, Sk Ngt
8.0 00 | 0276 | 0223 | o0s01 | -0.168 | 409 | 0792
10.0 20 | 0273 | 0220 | 0506 | 0.167 | 4.10
12.0 40 | 0270 [ 0218 | 0512 | -0.167 | 412
140 60 | 0268 | 0215 | 0517 | -0.167 | 413
16.0 80 | 0265 | 0213 | 0523 [ -0.167 | 4.14
180 | 100 | 0262 | 0210 | 0528 | -0.166 | 4.15
200 | 120 | 0259 | 0208 | 0533 | -0.166 | 4.16
220 | 140 | 0256 | 0205 | 0539 [ -0.166 | 4.7
240 | 160 | 0253 | 0203 | 0544 | -0.165 | 4.8
260 | 180 | 0250 | 0200 | 0550 | -0.165 | 4.19

M: 254 mm
U 13 mss
S: 845

t: Initial Np, selected by minimizing the error in the initial state for the Reynolds stress
components.
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Table E.7: Homogeneous Shear Flow Data (Tavoularis and Kamik “D”, 1989)

T Tref Ry, Ry, Ry Ry, Sk/e

1.0 0.0 0274 | 0295 | 0431 | -0.188 | 4.12
3.0 2.0 0273 | 0267 | 0460 | -0.183 | 4.29
5.0 4.0 0272 | 0241 | 0488 | -0.178 | 4.48
7.0 6.0 0271 | 0214 | 0516 | 0173 | 4.69
8.0 7.0 0270 | 0200 | 0.530 | -0.170 | 4.81

M: 25.4 mm

Up: 13 mss

S: 38451

Y. Initial Npg, selected by minimizing the error in the initial state for the Reynolds stress
components.



Table E.8: Homogeneous Shear Flow Data (Tavoularis and Kamik “G”, 1989)

191

2.0
4.0 2.0 0323 | 0256 | 0461 | -0.162
6.0 4.0 0345 | 0244 | 0471 | -0.158
8.0 6.0 0367 | 0232 | 0480 | -0.153
10.0 8.0 0389 | 0220 | 049 | -0.148

M: 254 mm

U, 13 m/s

S: 39951

Y. Initial Np selected by minimizing the error in the initial state for the Reynolds stress

components.
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Table E.9: Homogeneous Shear Flow Data (Tavoularis and Kamik “TC”, 1989)

5.0
7.0 2.0 0.287 0.202 0.511 -0.145 5.99
9.0 4.0 0.285 0.197 0.518 -0.143 6.10
11.0 6.0 0.282 0.194 0.524 -0.141 6.22
12.8 7.8 0.280 0.190 0.530 -0.140 6.33
y: 30.5 mm
Uy 12.4 m/s
S: 46.8 s

t. Initial Npg, selected by minimizing the error in the initial state for the Reynolds stress
components.
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Table E.10: Homogeneous Shear Flow Data (Tavoularis and Karnik “L”, 1989)

T Tef | Ra | Ry | Ry Ry | see
2.0 00 | 0297 | 0265 | 0438 | -0.161 | 3.02
4.0 20. | 0285 | 0250 | 0464 | -0159 [ 3.06
6.0 40 | 0273 | 0236 | 0491 | -0158 [ 3.09
8.0 60 | 0261 | 0222 | 0517 | -0.155 [ 3.3
825 | 625 | 0260 | 0220 | 0520 | -0155 | 3.4

il: 25.4 mm
Us13m/is
S: 29571

Y. Initial Npg, selected by minimizing the error in the initial state for the Reynolds stress
components.
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Table E.11: Return to Isotropy Data: Choi and Lumley [1984] (Plane Distortion)

WU x 10° by by
1.76 0.151 0.139
1.51 0.131 0.119
133 0.126 -0.108
119 0.116 -0.095
1.07 0.107 0.086

0.966 0.100 0.077
0.884 0.097 -0.068
0.784 0.090 -0.067
0.704 0.094 -0.069
0.636 0.090 -0.062
0.580 0.086 0.054

1 Data not available; only normal components were measured.
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Table E.12: Return to Isotropy Data: Choi and Lumley [1984] (Axisymmetric Expansion)

2K x 103 by bys
0.665 0.196 0.117
0613 0.189 0.112
0575 0.185 -0.110
0.541 0.175 0.103
0510 0.177 20.101
0.483 0.171 0.099
0.457 0.163 -0.091
0.427 0.163 -0.093
0.400 0.163 0.094
0376 0.160 0.093
0356 0.154 0.091
0.339 0.150 -0.091
0.324 0.146 -0.083

1 Data not available; only normal components were measured.



196

Table E.13: Return to Isotropy Data: LePenven et al. [1985] (Positive Third Invariant)

2KU2x 10° by by /g
0.238 0.183 -0.045 0.0548
0.229 0.181 -0.046 0.0532
0.216 0.179 0.049 0.0516
0.207 0.174 -0.050 0.0480
0.193 0.167 -0.053 0.0439
0.182 0.164 -0.049 0.0426
0.167 0.159 -0.052 0.0396
0.159 0.158 -0.054 0.0387
0.148 0.154 -0.052 0.0369
0.139 0.154 -0.055 0.0364
0.134 0.150 -0.053 0.0349

1 Data not available; only normal components were measured.
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Appendix F:Relation of Homogeneous, Isotropic Turbulent Production to the
Velocity Derivative Skewness

Eq. (2.31) presents a relationship between the velocity derivative skewness and the
Taylor microscale, along with properties of the double and triple velocity correlations. The

velocity derivative skewness is

s @@

The mean of the velocity derivative squared can be related to the second derivative of the
double velocity correlation (see p.145, Monin and Yaglom, 1965):

&),

r=0

Eqgs. (2.23) and (F.2) can be combined further to yield the following result, namely,

@2

Similarly, the mean of the velocity derivative cubed is related to the third derivative of the
triple longitudinal velocity correlation (see p.145 Monin and Yaglom, 1965):

<@§')3> = (33:';“) . E4)

r r=0

It follows directly from Egs. (F.1), (F.3), and (F.4) that

) G s e

(B (0)) r=




198

which is the result expressed by Eq. (2.31). Furthermore, the combination of Egs. (F.5)
and (2.28) yield the relationship between turbulent production in homogeneous, isotropic
turbulence and the velocity derivative skewness (cf. Eq. (2.13)):

p = —=5,JRe. E6)
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Appendix G:Asymptotic State for Homogeneous Shear

This appendix details the algebra required to express the asymptotic values of the
anisotropic pre-stress components for homogeneously sheared turbulence (as given in
Egs. (4.54)-(4.57)). The asymptotic values for the normal components of the anisotropic
pre-stress follow directly from Eqgs. (4.45)-(4.47) by setting the derivatives with respect to

€ equal to zero:
(l+qa)H:x—§aDe‘“H;z =0, (G.D)
(1+q)H" +( +1)De“11“ =0, (G.2)
and
(1+g*) H? + G - 1)De;'H;z = 0. G3)

Rearranging Egs. (G.1)-(G.3) yields the relations given in Eqgs. (4.54)-(4.56):

2aDeaHa

II- 3 l+qa ’ (G.4)
De*H’

=_(1+£) v, 3 (G.5)

yy 3 l+qa

and

De“Ha

= l—-)_. G.6

) ©9)

Similarly, Eq. (4.72) combines with Egs. (G.5) and (G.6) to give the expression for the

asymptotic value of the shear component of the anisotropic pre-stress:
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- I i G
= , 7
TN e

D e a yz ( 1 + qa)
whence, upon rearrangement, becomes

Cy (1+¢%)De,’

_ , G3)
" 20 14+ (D (1-d¥/3)

which is identical to the asymptotic result given in Eq. (4.57).
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Appendix H:Computer Program Listings
H.1  Program TRANS.BAS

The program TRANS.BAS is written Microsoft QuickBasic™. Its function is to
integrate the initial value problem posed for the case of homogeneous shear flow. For the
IPS-theory, the differential equation for Ny is solved, as are the algebraic pre-closure
equations for R. With the extension of the model to include an anisotropic pre-stress, four
additional ditf-erential equations are solved for the components of H. Initial conditions as
well as program control parameters are read as input through the‘t.ile HOMG_SHE. INI.
Transient output data is directed to a user-specified file and the final time step is output to
the file SUMMARY . TXT.

Variable Listing

a convected derivative parameter a
ak a/k

B holding matrix for Gauss-Jordan inversion
Ccd,Cp Cp Cp

cr,cb,cl G, B’ G,

De relaxation group N

Deb, Del (Cp/2CR) Ng: (C,/CL) N,
Det dN./dg

dt, f£dt  AE, variable step size parameter
g Q/S

H,Hold anisotropic pre-stress H, holding variable for old values
Ht dH/d§
d,qq parameter g (see Eq. (4.43)); (1+g)/De,
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R normalized Reynolds stress R
ske Sk/¢€
t, told dimensionless time &, holding variable for old time

Program Listing

REM full relaxation model with H + lambda*DH/Dt = beta*<S> (D/Dt: Mixed Objective Derivative)
REM full inversion of coefficient matrix to solve R given H and N_R

REM transient calculation

' Variables

DIM R(3, 3) AS DOUBLE ‘reynolds stress

DIM B(3, 4) AS DOUBLE ‘transformation tensor to be inverted
DIM H(3, 3) AS DOUBLE ‘anisotropic pre-stress

DIM Hold (3, 3) AS DOUBLE ‘anisotropic pre-stress

DIM dt, t, told, fdt AS DOUBLE ‘time variables

DIM De, Deb, Del AS DOUBLE ‘Deborah numbers

DIM Deold AS DOUBLE

DIM ak AS DOUBLE ‘alpha/k

DIM ske AS DOUBLE ‘Sk/eps

DIM g AS DOUBLE ‘Omega/S (relative rotation rate)

‘ Time derivatives of variables

DIM Ht (3, 3, 4) AS DOUBLE ‘anisotropic pre-stress time derivative
DIM Det(4) AS DOUBLE ‘Deborah number time derivative

DIM cr, cb, cl AS DOUBLE ‘rr model constants

DIM Cd, Cp AS DOUBLE ‘eps-egn constants

DIM q, qq AS DOUBLE

DIM a AS DOUBLE ‘conv. derivative parameter

DIM i, j, k, 1 AS INTEGER
DIM m, n AS LONG
DIM buff AS STRING

DIN model AS STRING ‘identifier for IPS/APS model

' Read initial values for H, De:
OPEN °d:\data\msu\hamg she\homg_she.ini® FOR INPUT AS #1
‘read model type (IPS/APS)
LINE INPUT #1, buff$: model$ = UCASES(LEFTS(buff$, 3))

‘read initial H
LINE INPUT #1, buff$
FOR i =1T03
INPUT #1, H(i, 1): INPUT #1, H(i, 2): INPUT #1, H(i, 3)
NEXT 1

‘read other parameters
LINE INPUT #1, buff$: INPUT #1, De
LINE INPUT #1, buff$: INPUT #1, g
LINE INPUT #1, buff$: INPUT #1, 4t, fdt, tmax
LINE INPUT #1, buff$: INPUT #1, mprint
LINE INPUT #1, buff$: INPUT #1, outfile$
CLOSE #1

' Specify model parameters
SELECT CASE model$

CASE *"1PS*
cr = .2278
cb = 08
cl = 0#
Ccd = 1.83¢4
Cp = 1.41%



a = 08

CASE °APS°®

cr = .27068
cd = .17429

cl = .66666666666666664

Cd = 1.83%
Cp = 1.604¢

a = -.67889999999999994%

CASE ELSE
PRINT °No valid model specified; program aborted®: END

END SELECT

Open data file for output

OPEN °d:\data\msu\homg_she\® + (outfile$) FOR OUTPUT AS #1
USING *#8.004,

PRINT 81,

Begin time integration

CcLs
t = 08
ns=0

‘determine initial Reynolds stress

IF (model$ = °IPS°®) THEN
H(1, 1) = O#: H(1, 2) = O#: H(1, 3) = OF
H(2, 1) = O8: H(2, 2) = O#: H(2, 3) = OF
H(3, 1) = O8: H(3, 2) = Of: H(3, 3) = 08

END IF

GOSUB 1000

‘4th order RK loop

DO

‘output

g

IF ((n / nprint) = INT(n / nprint)) THEN

PRINT ¢;

De; R(2,
PRINT #1, USING °*#88.4889%,

PRINT #1, USING °#8.0000%,

PRINT #1, USING
PRINT #1, USING

END IF

‘save old values

Deold = De

Hold (1, 1) = H(1, 1)
Hold (2, 2) = H(2, 2)
Hold (3, 3) = H(3, 3)
Hold (2, 3) = H(2, 3)
told = t

‘ist integration step

ch. 00000,
“h.00000,

2); R(2, 3)

1t

®) De;

*; R(1, 1); R(2, 2); R(3, 3); R(2, 3)
*; H(1, 1); H(2, 2); H(3, 3); H(2, 3)

Det(1) = (2% * De * R(2, 3) * (Cp - 1#)) + (cr * (Cd - 1¥))
De = Deold + .58 * dt * Det (1)

IF (model$ = °APS°®) THEN

Del = (cl / cr) * De

q = Del * (-28 * R(2, 3) - cr / De)
Qg = (1% + q)

He (1,

Ht (2, 2,
Ht (3, 3,

H(1,
H(2,
H(3,
H(2,
H(3,
END IF

‘determine Reynolds stress for step 1
GOSUB 1000

1, 1) =

1)
2)
3)
3)
2)

1) =
1) =

/ De

-qq * H(1, 1) + (28 * a /
-qq * H(2, 2) - H(2, 3) *
-qq * H(3, 3) - H(2, 3) *
Ht(2, 3, 1) = -qq * H(2, 3) + (cb / cl /

= Hold(1,
= Hold(2,
= Hold(3, 3)
= Hold(2,

= H(2,

3)

1

1)
2)

3)

‘2nd integration step

+ 4+ 4+

.54
.54
.54
.58

dc
ac
.14
ac

.
*
*
*

He (1,
He (2,
He (3,
He (2,

38) * H(2, 3)
(a /7 3% + 13)
(a/ 38 -19)
28) + .58 * H(3, 3) * (-1% - a) + .58 * H(2, 2) * (1% - a)

1, 1)
2, 1)
3, 1)
3, 1)

Det(2) = (28 * De * R(2, 3) * (Cp - 1#)) + (cr * (Cd - 1#))
De = Deocld + .58 * 4t * Det(2)



IF (model$ = °APS°®) THEN
Del = (cl / cr) * De
q = Del * (-28 * R(2, 3) - cr / De)
Qq = (1% + q) / Del

Ht(1, 1, 2) = -q@ * H(1, 1) + (284 * a

He (3, 3, 2) =« -q@ * H(3, 3) - H(2, 3)

/
He(2, 2, 2) = -q@ * H(2, 2) - H(2, 3) *
*
/

Ht(2, 3, 2) = -q@ * H(2, 3) + (cb / cl

H(1, 1) = Hold(1, 1)

H(2, 2)
H(3, 3)
H(2, 3)
H(3, 2)
END IF

‘determine Reynolds stress for step 2

GOSUB 1000

+ .58 * 4t *
Hold(2, 2) + .59 * At *
Hold(3, 3) + .58 * at *
Hold(2, 3) + .58 * 4t *
H(2, 3)

*3rd integration step

Ht(1,
He (2,
Rt (3,
Ht (2,

38) * H(2, 3)
(a / 38 « 1%)
(a /7 38 - 1%)
28) + .58 * H(3, 3) * (-18 - a) + .54 * H(2, 2) * (1% - a)

1, 2)
2, 2)
3, 2)
3, 2)

Det(3) = (20 * De * R(2, 3) * (Cp - 1#)) + (cr * (Cd - 1#))
De = Deold + 4t * Det (3)

IF (model$ = °APS°®) THEN
Del =« (cl / cr) * De
q = Del * (-2% * R(2, 3) - cr / De)
qq = (1% + q) / Del

He(1, 1,
Ht (2, 2,

H(1, 1)
H(2, 2)
H(3, 3)
H(2, 3)
H(3, 2)
END IF

‘determine Reynolds stress for

GOSUB 1000

3) = -q@ * H(1, 1) + (2% * a / 3%) * H(2, 3)
3) = -q@ * H(2, 2) - H(2, 3) * (a / 3§ + 18)
Ht(3, 3, 3) = -q@ * H(3, 3) - H(2, 3) * (a / 38 - 19)
Ht(2, 3, 3) = -qq * H(2, 3) + (cb / cl / 28) + .50 * H(3, 3) * (-14 - a) + .58 * H(2, 2) * (18 - a)

Hold(1, 1) + at * Ht(1, 1, 3)
Hold(2, 2) + dt * Ht(2, 2, 3)
Hold(3, 3) + dt * Ht (3, 3, 3)
Hold(2, 3) + dt * Ht (2, 3, 3)
H(2, 3)

step 3

*4th integration step

Det(4) = (28 * De * R(2, 3) * (Cp - 1#)) + (cr * (C4d - 1}))

IF (model$ = °APS°®) THEN
Del = (cl / cr) * De
q = Del * (-2 * R(2, 3) - cr / De)
qq = (1% + q) / Del

Ht(1, 1,
He (2, 2,
Ht (3, 3,

4) =
4) =
4) =

He(2, 3, 4) =

END IF

-Qq@ * H(1, 1) + (24 * a / 3%) * H(2, 3)
-q@ * H(2, 2) - H(2, 3) * (a/ 38 + 1%)
-Qq@ * H(3, 3) - H(2, 3) * (a / 3% - 19)
-qq * H(2, 3) + (cb / cl / 28) + .58 * H(3, 3) * (-1% - a)

‘4th-order RK-step

ns=n+1

t=t+ a

De = Decld + (dt / 68) * (Det(1) + 24 * Det(2) + 20 * Det(3) + Det(4))
IF (model$ = °APS®) THEN
H(1, 1) = Hold(1, 1) + (dat / 64) *
H(2, 2) = Hold(2, 2) + (dt / 6§) *
H(3, 3) = Hold(3, 3) + (dt / 64) *
H(2, 3) = Hold(2, 3) + (at / 64) *
H(3, 2) = H(2, 3)

END IF

(He(1,
(Ht (2,
(He (3,
(Ht(2,

‘detemine Reynolds stress for step 4
GOSUB 1000

at = dt * fac

tracedH « H(1, 1) + H(2, 2) + H(3, 3)

1, 1)
2, 1)
3, 1)
3, 1)

+ 28
+ 28
+ 28
+ 28

* Ht(1,
* Ht(2,
* Ht(3,
* Ht(2,

1,
2,
3,
3,

2)
2)
2)
2)

+
*
+
+

2%
2¢
24
2%

+ .58 * H(2, 2) * (1% - a)

Ht(1, 1, 3)
Ht (2, 2, 3)
Ht (3, 3, 3)
Ht (2, 3, 3)

+ Ht (1,
+ Ht(2,
+ Ht(3,
+ He(2,

1,
2,
3,
3,

4))
4)
q)
4)



IF (ABS(traceH) > .000001) THEN
PRINT °H not traceless: °; traceH
EXIT DO

END IF

LOOP UNTIL (t > tmax)

' final output
PRINT t; De; R(2, 2); R(2, 3)
PRINT #1, USING “#84.888, °*; ¢,
PRINT #1, USING *#8.88088, °; De;
PRINT #1, USING °*#.8884848, *; R(1, 1); R(2, 2); R(3, 3); R(2, 3),
PRINT #1, USING °d.00888, °; H(1, 1); H(2, 2); H(3, 3); H(2, 3)
CLOSE #1

' Write asymptotic results to a summary file
OPEN °d:\data\msu\hamg_she\summary.txt*® FOR APPEND AS #1
PRINT #1, USING °*#8.8088, °; g:
PRINT #1, USING °*#48.888, *; ¢,
PRINT #1, USING °*#4.88088, °; De;
PRINT #1, USING °#.48888, °; R(1, 1); R(2, 2); R(3, 3); R(2, 3),
PRINT #1, USING *#.80088, *; H(1, 1); H(2, 2); H(3, 3); H(2, 3)
CLOSE #1

END
1000 * campute R from H
* Compute initial B (coefficient matrix)

B(1, 1) = 38 - ((18 + g) * De) ~ 2%
B(1, 2) = 28 * (g * De) ~ 2%
B(1, 3) = -(68 * g + 28) * De

B(2, 1) = 20 * ((18 « g) * De) ~ 2%
B(2, 2) = 3% - (g * De) ~ 2%
B(2, 3) = (68 * g + 44) * De

B(3, 1) = (18 + g) * De
B(3, 2) = -g * De
B(3, 3) =184 - g * (1% + g) * De "~ 2%

' Compute initial B (known vector)
B(1, 4) = 1% + 38 * H(2, 2)
B(2, 4) = 14 + 38 * H(3, 3)
B(3, 4) = H(2, 3)

* Gauss-Jordan Elimination
FOR k =1 T0 3
FOR j = 4 TO k STEP -1
B(k, j’ = B(k, j) / B(kx, k)
NEXT J
FOR{ =1T03
IF ({ © k) THEN
FOR j = 4 TO k STEP -1
B(i, J) = B{i, J) - (B(i, k) * B(k, J))
NEXT J
END IF
NEXT 1
NEXT k

' Note: post-inversion, 1st three columns are identity matrix,
' and the 4th column is the solution vector.

R(2, 2) = B(1, 4)
R(3, 3) = B(2, 4)
R(1, 1) = 1# - R(2, 2) - R(3, 3)
R(2, 3) = B(3, 4)

' Verify realizability of R:
IF (R(2, 3) ~ 2 > R(2, 2) * R(3, 3)) THEN
PRINT °Schwarz inequaltiy not satisfied.®: END
END IF
IF (R(1, 1) < 0) THEN
PRINT °Rxx negative®: END
END IF
IF (R(2, 2) < 0) THEN
PRINT °Ryy negative*®: END
END IF
IF (R(3, 3) < 0) THEN
PRINT °Rzz negative®: END
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END IF

R(3, 2) = R(2, 3)

RETURN

H.2  Program IPS_ROT.BAS

The program IPS_ROT.BAS is written in Microsoft QuickBasic™. It solves the

algebraic pre-closure equations for R given values for N, and Q/S. Program control

parameters are read as input through the file IPS_STAT. INI. Output data is directed to

a user-specified file.

Variable Listing

The variables used are the same as listed in Section H.1.

Program Listing

REM IPS-model calculations for turbulent states as a function of Omega/S
REM full inversion of coefficient matrix to solve R given H and N_R
‘ Variables

DIM R(3, 3) AS DOUBLE ‘reynolds stress

DIM B(3, 4) AS DOUBLE ‘transformation tensor to be inverted

DIM H(3, 3) AS DOUBLE ‘anisotropic pre-stress

DIM De AS DOUBLE ‘Relaxation Group

DIM Del, De2 AS DOUBLE ‘Relaxation Group, initial/final

DIM DeDel AS DOUBLE ‘delta Relaxation Group

DIM g AS DOUBLE ‘Omega/S (relative rotation rate)

DIM cr, cb, cl AS DOUBLE ‘rr model constants

DIM
DIM
DIM
DIM
DIM
DIM

Cd, Cp AS DOUBLE ‘eps-eQn constants

i, 3, X, 1 AS INTEGER

m, n AS LONG

buff AS STRING

nstep AS INTEGER

model AS STRING ‘identifier for IPS/APS model

' Read initial values for gamma:
OPEN °d:\data\msu\homg_she\ips_stat.ini® FOR INPUT AS #1

‘read other parameters

LINE INPUT #1, buff$: INPUT 81, g
LINE INPUT #1, buff$: INPUT #1, Del, De2, DeDel, fDe



LINE INPUT #1, buff$: INPUT #1, outfile$
CLOSE #1

' Specify model parameters
' CASE "IPS°®

cr = .2274

cb = 08

cl = 0#

Cd = 1.83%

Cp = 1.41%

a = 0f

H(1, 1) = O#: H(1, 2) = O#: H(1, 3) = OF%
H(2, 1) = O#: H(2, 2) = O#: H(2, 3) = 08
H(3, 1) = 0#: H(3, 2) = 0#: H(3, 3) = 0F%

' Open data file for output
OPEN °d:\data\msu\homg she\*® + (outfile$) FOR OUTPUT AS #1
PRINT #1, USING °*48.488, *; g

De = Del
DO
GOSUB 1000
PRINT De; R(2, 2); R(2, 3)
PRINT #1, USING °*#8.0888, °; De;
PRINT #1, USING *#.88888, °; R(1, 1); R(2, 2); R(3, 3); R(2, 3)
De = De + DeDel
DeDel = DeDel * fDe
LOOP UNTIL (De > De2)

CLOSE #1
END
1000 ‘' compute R from H
' Compute initial B (coefficient matrix)

B(1, 1) = 3% - ((1# + g) * De) ~ 2%
B(1, 2) = 24 * (g * De) ~ 2%
B(1, 3) = -(68 * g + 28) * De

B(2, 1) =28 * ((18 + g) * De) ~ 2%
B(2, 2) = 3% - (g * De) ~ 2%
B(2, 3) = (6% * g + 48) * De

B(3, 1) = (1% + g) * De
B(3, 2) = -g * De
B(3, 3) =18 - g * (1% + g) * De ~ 2%

' Compute initial B (known wvector)
B(1, 4) = 1% + 3% * H(2, 2)
B(2, 4) = 1% + 38 * H(3, 3)
B(3, 4) = H(2, 3)

' Gauss-Jordan Elimination
FORk =1 1T0 3
FOR j = 4 TO k STEP -1
B(k, j) = B(x, J) / B(k, k)
NEXT j
FOR i =1 T03
IF ({1 © k) THEN
FOR j = 4 TO k STEP -1
B(i, J) = B(i, J) - (B(i, k) * B(kx, J))
NEXT J
END IF
NEXT i
NEXT k

' Note: post-inversion, 1st three columns are identity matrix,
. and the 4th column is the solution vector.
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R(2, 2) = B(1, ¢4)
R(3, 3) = B(2, 4)
R(1, 1) = 18 - R(2, 2) - R(3, 3)
R(2, 3) = B(3, 4)

Verify realizability of R:
IF (R(2, 3) ~ 2 > R(2, 2) * R(3, 3)) THEN
PRINT °*Schwarz inequaltiy not satisfied.®: END
END IF
IF (R(1, 1) < 0) THEN
PRINT °*Rxx negative®: END
END IF
IF (R(2, 2) < 0) THEN
PRINT °Ryy negative®: END
END IF
IF (R(3, 3) < 0) THEN
PRINT °*R2z negative®: END
END IF

R(3, 2) = R(2, 3)

RETURN
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Appendix I: Properties of the Eigenvalues of the Reynolds Stress
As mentioned in Chapter 1, the Reynolds stress (u'u') has the following properties:
(u'-u'y = 2k, @)
and
2 (') 220. | €2)

More specifically, the trace of the Reynolds stress is twice the turbulent kinetic energy and
the Reynolds stress is positive semi-definite. Since the normalized Reynolds stress is
defined as

(u'u')
R=s——, 3
R== (L3)
Eq. (I.1) implies that the trace of the normalized Reynolds stress is unity:
tr(R) = 1. 14)

However, the trace of a tensor operator is also an invariant property of that operator which

equals the sum of the eigenvalues:
tr(R) =1-= KR'1+XR’2+7LR’3, @L5)

where A g ; is the i eigenvalue of the operator 5 The positive, semi-definite nature of
the Reynolds stress expressed by Eq. (I.2) implies that each of the eigenvalues of the
Reynolds stress (u'u') is non-negative. This character yields the following condition upon

the values kR’ i
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0<h, <1, (L6)

since each of the eigenvalues is non-negative and the sum of the eigenvalues is one.
The condition given by Eq. (1.6) yields information concerning the eigenvalues of the

anisotropy tensor b, defined as

b=R-3L L)
It follows directly from Eq. (1.7) that
1
Ao i = Api= 3 (L8)

where Kb ; is the it eigenvalue of the operator b. Combination of Egs. (I.6) and (I.8)
yields the result stated in Chapter 1: '

1 2
—1 <A, 3 (L9)
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