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ABSTRACT

RELAXATION MODEL FOR HOMOGENEOUS TURBULENT FLOWS

by

Steven M. Parks

Turbulent closure for the Reynolds stress is investigated for homogeneous turbulent

flows. The basic structure of the transport equations for the turbulent kinetic energy and

turbulent dissipation is adopted from the standard k-e model of turbulence. An integral

analysis of the Kman-Howanh relation for isotrOpic turbulence yields a prediction for

the destruction-of-dissipation coefficient in the e-equation. This coefficient is applied to

the problem of decaying isotropic turbulence and is shown to be able to quantitatively

reproduce several data sets for the flow available in the literature.

A Green’s function analysis of the equation for the fluctuating velocity and a

subsequent smoothing approximation yields a turbulent pre-closure relating the Reynolds

stress to mean field quantities and an unclosed quantity: the turbulent pre-stress, which is

related to both pressure fluctuations and the fluctuating Reynolds stress. An isotropic pre-

stress closure assumption is introduced and applied to the problem of homogeneous shear.

This closure is found to guarantee realizability a priori and yields a non-zero primary

normal stress difference. Subsequent extension of the closure to an objective, anisotropic

pie-stress accounts for both stress relaxation effects as well as a non-zero second normal

stress difference for homogeneous shear flows.

The case of homogeneous shear flow in a rotating frame of reference is examined due

to its qualitative similarity to a flow in an inertial frame which also includes swirl and/or

streamline curvature. The predominant result is that the combination of shear and rotation

qualitatively changes the nature of the flow. For intermediate relative rotation rates, both I:

and e are growing without bound. For large absolute relative rotation rates, turbulent

production is cut-ofl‘ and both I: and a decay to zero.
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CHAPTER 1

INTRODUCTION

1.1 Background

Turbulence Closure Problem

The ability to predict the low order statistical properties of turbulent flows is an

important area of research. Although the exact equations governing the instantaneous

pressure and velocity fields of constant density, constant viscosity, Newtonian fluids are

known, the field equation for the mean velocity (1'. e. the Reynolds equation) is statistically

unclosed. With E = (u)+r_a' andp = (p)+p'.

3(5)

7+(§)°V(y>+291\(§) =

 

Q - (2_V[152 _ (_ a5) 2 (_ "-"]+vv2<g>-v. (2.!» (1.1)

The statistical correlation p (r_¢'r_¢') is the Reynolds stress and accounts for the transport of

momentum associated with the fluctuating field. In the above equation, the mean fields

and the fluctuating fields are relative to a frame of reference rotating at a constant angular

velocity £2. 9 is related to the temporal connection between the inertial and non-inertial

frames by the following expression

Qa—Q.QT = . 9. (1.2)

I
t
“



In Eq. (1.2), £2 is the rotation dyadic, g. is the permutation triadic, Q is an orthogonal

dyadic operator (to. g . QT = _I), and g is the time derivative of g. The orthogonal

operator 9 defines an arbitrary, time-dependent coordinate transformation:

9 = vx’, (1.3)

where V is the gradient operator in the rotating frame of reference and f. is the position

vector in the inertial frame. For constant density fluids, the mean velocity field also

satisfies the continuity equation:

V- (y) = 0. (1.4)

Eddy viscosity type models for the Reynolds stress presume that the mean velocity. field

and the second order correlation (u'g’) are related by the following model

21:

(143') =- 3:1 - 2V,<§>r (1.5)

where k denotes the kinetic energy per unit mass of the fluctuating field,

21:505-330. (1.6)

and v‘ is a turbulent eddy viscosity coefficient which depends on the local statistical state

of the turbulence. (.38) is the mean strain rate, which is traceless for constant density fluids.

This results in a diffusion-type transport model which permits estimates of the mean field

behavior, provided a model for the scalar eddy viscosity can be specified.

Turbulent flows can be computed directly by solving the continuity and the Navier-
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Stokes equations. Because turbulent fluctuations are three-dimensional, the spatial grid

required for direct numerical simulations is also three-dimensional. The computational

grid must be fine enough to resolve all the physically significant scales of motion. Even

the “simplest” turbulent flows require a four-dimensional discretization (one ill time and

three in space) whose resolution is directly dependent upon the Reynolds number. As the

Reynolds number increases, the grid must become finer because the Size of the small

scales decreases. This reduction in the small scales can be seen by comparing the

Kolmogorov and integral length scales for isotropic turbulence (Tennekes and Lumley,

1972; Hinze, 1975):

( 3/ )1/4

I". = 1+. “Rafi/4,
(1-7)

In the above expression, the dissipation e is defined by

£‘=’V(Vt_¢': (Vg'fl), (1.8)

and the integral length scale is given by the integral of the two-point longitudinal velocity

correlation

r = j (u'L(_J_r, t) u'L(§+f, r) )dr. (1.9)

0

Although direct numerical simulations (DNS) of turbulence are possible, they have

only been performed for simple geometries at relatively low Reynolds numbers. For

instance, Kim et al. (1987) have reported DNS results for fully-developed channel flow at

Reynolds numbers less than 10,000 based on the channel half-width. Such simulations

provide important statistical information which is difficult to observe experimentally.

However, the use of direct numerical simulation for practical engineering flows with



4

complex geometries and/or high Reynolds numbers would require computational power

beyond what is presently available. Thus, improved models capable of predicting the low

order statistical properties for a wide class of turbulent flows remains an intense area of

research.

Turbulence models can yield physical insight into the behavior of the mean field

provided the important qualitative properties of the Reynolds stress are retained. Thus,

turbulence modeling has several distinct advantages over direct simulation. For instance,

because of the intrinsic three dimensional and unsteady nature of turbulent fluctuations,

direct simulation cannot take advantage of simplifying statistical properties. For example,

a flow which is statistically stationary must still be simulated as a transient. Furthermore,

if a specific flow geometry possesses symmetry planes and/or axisymmetric features, the

flow must still be simulated as fully three dimensional. Thus, a Reynolds stress model

which is not overly complex will almost certainly be computationally faster (and thereby

lessiexpensive) than a direct simulation of the same flow.

Realizability

The term realizable as applied to Reynolds stress models relates to whether or not the

eigenvalues of the statistical correlation (u'u’) are non-negative. An important aspect of

this concept relates to invariant mapping, as discussed by Lumley [1978]. Specifically, the

invariants of the anisotropic stress, defined by

(1414')
b= '

'= 2k

 :1, (1.10)

l
e

are computed and cross plotted to form a ”-11! phase plane of permissible turbulent states.

The invariants of b are defined as

11: tr (9 - 5) (1.11)



and

III; tr (_b - -b) . (1.12)

By definition, the first invariant of the isotropic stress is zero (Iztr (:13) = 0).

Therefore, at least one of the anisotropic eigenvalues associated with b is negative.

Because II is the sum of the squares of the anisotropic eigenvalues, the second invariant is

always positive; however, III can be either positive or negative, depending on the local

dynamic state of the turbulent field. There are two key mathematical properties of the

Reynolds stress which restrict all turbulent States to a subset of the ”-111 plane. These

properties are: (l) the trace of the Reynolds stress is twice the total kinetic energy of the

turbulence (see Eq. (1.6)); and, (2) the Reynolds stress dyadic is positive semi-definite,

i.e.,

z - (u'u') - 3 2 0, (1.13)

for any non-zero _z in 153. These two conditions imply that the anisotropic stress is

traceless and its eigenvalues are bounded by 2/3 and -l/3 (see Appendix I). Lumley [1978]

showed that all realizable turbulent states map into a quasi-triangular domain in the [HI]

phase plane, illustrated by Figure 1.1. The portions labeled A, C and E are the vertices of

the domain, while B, D and F are the boundaries. Each of the portions are listed in an

accompanying table and described mathematically with either the coordinates of the

vertices or the equation for the boundaries. If a coordinate pair (1!, III) falls on or within

the boundaries of the L-diagram (where “L” stands for “Lumley”), then this anisotropic

state may be associated with a realizable Reynolds stress. On the other hand, no realizable

anisotropic state can fall outside the L-diagram. Non-turbulent, albeit realizable, states



 

A II

A

B

C

Ila-"(99)

F ”litre-2.2)

D—>

E III

P 

Description of Points on Anisotropy Simplex

 

I Invariant" I Eigemnluu ofthe Reynolds Stress

 

 

  

 

 

 
 

 

    

Name

A 1 Component

B 2 Component Anisotropic II = 2/9 + 211! 1-x x 0s x s 112

c 2 Component Isotropic 1/6 L -1I36 1/2 112

u Oblate Axisymmetric m = -6 (II/6) ”I x x 1-2: 1/3515 112

E 3 Component Isotropic 0 l 0 1/3 1/3 113

F Prolate Axisyrnmetric III = '-6 (II/6) 3’4 x x 1-2: 0 s x 5 1/3  
 

-4

Notes:(1) “n-Component” means that the Rdnolds stress has “n” non-zero eigenvalues.

(2) “Axisymmetric” two of the eigenvalues of the Reynolds stress are equal.

Invariants 0f the anisotropic stress.

Figure 1.1 L-Diagram for Realizable Anisotropic States
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may fall within the L-diagram. Further a priori, model—independent restrictions of the

anisotropic turbulent states within the L-diagram remains an open question for research.

The L-diagram will be employed in this work to represent the local state of turbulence

associated with different turbulent models with different experimental data sets.

k-e Turbulence Model

The most commonly applied turbulence model is the Boussinesq approximation

(defined by Eq. (1.5)). The k—e theory uses an eddy viscosity related to the kinetic energy

and dissipation associated with the fluctuating field:

2
v, = Cuk /e. (1.14)

The universal coefficient Cu is estimawd from plane jet data to be about 0.09 (Launder

and Spalding, 1972). The first models of this type date back to Prandtl (see Speziale,

1991) and use empirical, algebraic models for the specification of the characteristic

turbulent scales. Later models have moved away from this and solve differential equations

to specify the turbulent scales. These are generally termed two-equation models, as they

require two differential equations for the scale-determining parameters. The most

prevalent example of this approach to Reynolds stress modeling is the be model of

Hanjalic and Launder (1972), hereinafter denoted as the standard k-e model. Transport

equations for the turbulent kinetic energy (1:) and the turbulent dissipation rate (a) are used

to compute turbulent time and length scales at each point in the spatial domain:

at . .. __ . 2b7 _ -(r_u_r).V(u) e+v [[v+6k]Vk]’ (1.15)

De 8 , , . _ 82 v,
‘5‘- - -CP-k-(l-‘l-‘ ).V(y) CDI+V [[V+O’c]ve], (1°16)
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While there are many variants on the two-equation model, the standard k-e and its low

Reynolds number derivatives (see Patel, et al., 1984, for an overview) have become the

most widely tested and applied engineering turbulence models. The continuing use of the

standard k-e model is rooted primarily in its relative simplicity combined with its ability to

provide some acceptable predictions.

Some of the computational advantages of the k-e model include the fact that it is

simple to implement into existing flow predictor codes and that there is not much

additional computational demand inasmuch as only two additional scalar transport

equations need be solved simultaneously with the Reynolds equation. Additionally, the k-

6 model has been found to be computationally stable and robust, being largely

independent of the initial guess for field variables. Because of these advantages and

despite its limitations, the k-e model has become the standard against which other models

are judged. The k-e model is, therefore, well documented in a variety of flows and

summarizes a wealth of information. In this respect. any new model ought to be at‘least

comparable to the he model in some basic test flow cases.

One of the many criticisms of the Boussinesq approximation lies in the fact that the

eddy viscosity coefi'rcient is a scalar-valued function that only depends on the mean field

implicitly through I: and 8.. Therefore, at a fixed position in the flow field, Eqs. (1.5) and

(1.10) imply that

= ___B, (1.17)

for all combinations of base vectors 5“ and 513' Eq. (1.17) may fit one of the cross

correlations of the anisotropic stress for simple shear flows, but cannot explain the

anisotropic distribution of kinetic energy among the components of the fluctuating

velocity. Indeed, Kitoh [1991] has shown experimentally that Eq. (1.17) is inconsistent

with the observed behavior of the anisotropic stress for the decay of swirling flow in a
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pipe and concluded that the Boussinesq model was an inadequate closure for complex

flows with strong curvature effects.

Simple Shear Flows

While eddy viscosity models typically make good predictions for two dimensional

mean shear flows (Hanjalic, 1994), they do have many limitations. For example, the

Boussinesq approximation does not predict a normal stress anisotropy for fully developed

channel flows or for homogeneous shear flows. A simple shear flow is defined by

 

d(uz)

V9!) = dy 5,52, (1.13)

where S t d(uz)/dy. For this flow, the Boussinesq model predicts an equipartition of

turbulent kinetic energy among the fluctuating components of the velocity, which is

clearly unphysical. Tavoularis and Corrsin [1981], Tavoularis and Kamik [1989], as well

as Gibson and Kanellopoulos [1987] have all observed normal stress anisotropies for

homogeneously sheared turbulent flows. '

Additionally, the Boussinesq model is unable to explain the transient relaxation effects

observed in return-to-isotropy experiments or the reorganization of turbulent energy

associated with the transient development of homogeneous turbulent shear flows. For

simple mean shear flows, the anisotropic stress associated with the Boussinesq model can

bewrittenas

s=-(%)e1ea+e»

The invariants of the anisotropic stress for this situation follow directly from Eq. (1.19),

viz...
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I = "(5) = 0, (1.20)

2

11 = "(5.5) = (Ci/2) (1:3) , (1.21)

and

III = tr (5- - g) = 0. (1.22)

Experimental studies (see, esp., Choi and Lumley, 1984; LePenven, et al., 1985)

clearly Show that turbulent flows which are initially anisotropic gradually relax towards an

isotropic state when the mean strain rate is removed. The Boussinesq model. however,

predicts that the Reynolds stress responds instantaneously to a sudden change in (3').

Therefore, the intrinsic memory effects observed in low-order statistical properties of

turbulent flows cannot be represented by Eqs. (1.5) and (1.19).

Experimental data for homogeneous shear flows (see, esp., Tavoularis and Kamik,

1989) also exhibit a transient relaxation to a strongly anisotropic asymptotic state. figure

1.2 illustrates the trajectory of the relaxation process on the L-diagram. For simple shear

flows, the accessible realizable states permitted by the Boussinesq theory all lie on the line

III = 0 and OSIISZ/9. Clearly the Boussinesq model cannot form the basis of a

universal closure theory for the Reynolds equation inasmuch as the Boussinesq states are

too restrictive. It is noteworthy that for simple shear flow the Boussinesq model is

realizable for III = 0 and

0 $11 = (cf/2) (ii—")2 5 2/9. (1.23)

With Cu = 0.09, the above inequality for the Boussinesq model implies that the ratio of

turbulent to mean field time scales must be restricted to



IIEtr(=b-=b)

IIIEtr(_b--b-§)

(1/6, —l/36)

Boussinesq States

Isotropic State \

Figure 1.2 Anisotropic States for Homogeneous Shear Flows

(2/9, 0)

A11

 
V

 

(II, III) = (2/3,2/9)

Esp. Data - Homogeneous Shear

O Asymptote

Transient Approach to Asymptote

III
‘

r
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(:83) < 7.4.
(1'24)

8

Thus, application of the Boussinesq model to turbulent flows for which k/e » 7/S would

require Cu to be a function of Sk/e in order to maintain realizability.

Hanjalic [1994] has also noted the poor performance of eddy viscosity type models in

flows with streamline curvature, especially in swirling flows. This is probably related to

the misrepresentation of the underlying mechanism which distributes the kinetic energy of

the turbulence among the three components of the fluctuating velocity. A primary source

of velocity fluctuations in turbulent flows is the convective coupling between the mean

field gradient and the fluctuating field, via, 11' - V (a). If (g) has the following local

structure for a fully developed swirling flow

(g) = (u9)(r)§9. (1.25)

then the local mean field gradient can be written as the sum of the following symmetric

and antisymmetric strain rates

V (11) = 1nd.r(‘(_u0>)[‘,39 +e e +--— (r(u9)) [59e e05} (1.26)

9' ' 2 r dr

Thus, the convective coupling between V (a) and r_r' has two distinct contributions:

u' (u )

° ° (1.27) 

. . d

e -V <14) - u r(;;<ue>)s,- s,~

The r-component, or cross-stream component, of Eq. (1.27) provides a means to shift the

energy into the pressure field, and, thereby, increase the highly anisotropic distribution of

turbulent kinetic energy among the three components of the fluctuating velocity.

The coupling between the fluctuating field and the strain associated with streamline
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curvature does not arise in simple shear flows in inertial frames inasmuch as

S +S
V(u)= — y_e_ez +ezey+ zygz—ggzey], (1.28)

which yields

'oV<>- '(i< >) (129)r_4 u — uy dy uz ez. .

Only streamwise fluctuations induced by the mean field occur for simple shear flows.

However, as implied by Eq. (1.1), velocity fluctuations in non-inertial frames are

produced by convective coupling between the mean field gradient and the rotational strain

rate associated with the frame (see Appendix B). Thus, for simple shear flows in a rotating

frame of reference, velocity fluctuations occur by strearnwise convective coupling and,

most significantly, by cross-stream convective coupling with the rotational strain:

u'-[V(u)+£2] = u' (1(u)+(2)e -u’ Ga (130)
- - = y dy z -z z -y‘ '

Eq. (1.30) assumes that the rotation dyadic is constant and given by

2 = “(5,521.3). (1.31)

where (2 represents the angular velocity of the frame rotation about the x-axis. Thus, as

previously noted by Speziale [1991] and others (Speziale, er al., 1990), an analogous

streamline curvature coupling between the mean field gradient and the fluctuating field

can be achieved by a simple shear flow in a non-inertial frame. This observation provides

a means to study the efficacy of phenomenological turbulent models under relatively

simple kinematic conditions with an anticipation that a turbulence model which performs
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adequately for simple shear in a non-inertial frame may provide a reasonable approach to

flows with strong streamline curvature in inertial frames. The ad hoc basis for this

conjecture stems from a comparison between the velocity gradient in an inertial fiarne (see

Eq. (1.28)) and the velocity gradient in a rotating frame, viz...

V <10 = fiestas] + (i + “Isa-5.9.]- “32>

Thus, the mean field gradient associated with streamline curvature in an inertial frame is

mathematically analogous to the effective mean field associated with a simple shear flow

in a rotating frame provided

59"}(903) and (29%.

r r I'

1.2 Objectives

This research examines a new class of phenomenological models for the Reynolds

stress. The study supports a long-standing goal of turbulence research to achieve a

practical, albeit physical, statistical closure of the Reynolds equation for the mean field

(see Eq. (1.1)). The proposed approach addresses some of the limitations ofeddy viscosity

type models, while maintaining some of their advantages. The following five issues are

central elements of this investigation:

(1) realizability;

(ii) primary and secondary normal stress differences;

(iii) spatial and temporal relaxation, or memory, phenomena;

(iv) frame dependence; and,
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(v) universality.

The Boussinesq model for the Reynolds stress (Eq. (1.5)) which provides closure for the

ubiquitous k—e theory (Hanjalic and Launder, 1972; Speziale, 1991) as well as for the sub-

grid scale model for large scale eddy simulations (Bardina, er al., 1985), misrepresents

some aspects of the above five physical issues. Items (i)-(iv) are fundamental and

necessary for any closure hypothesis which aims for some limited form of universality.

However, the possibility of a low-order, universal closure theory for turbulent flows

remains a Speculative, albeit desirable, goal.

This research is limited to the development of a closure for the normalized Reynolds

stress

t

I
:

< . '). (1.33) 

Previously published experimental data for homogeneously sheared turbulent flows

provides an extensive resource to guide the development (see, esp., Tavoularis and

Kamik, 1989; Tavoularis and Corrsin, 1981; Gibson and Kanellopoulos, 1987). In order to

develop some understanding of the potential applicability of the proposed approach to

flows with streamline curvature, the new theory is used to predict the distribution of

asymptotic states for homogeneously sheared turbulence in a rotating frame of reference.

This study complements a parallel development of this theory for fully developed channel

flows by Weispfennig [1997].

1.3 Methodology

The theoretical approach to closure stems directly from the continuity equation and the
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equation of motion for a constant density, constant viscosity, Newtonian fluid. An explicit

dependence of the Reynolds stress on the reference frame (i.e. Issue (iv) in Section 1.2) is

introduced by a direct analysis of the equation for the fluctuating velocity field relative to

a rotating frame of reference (Chapter 3 and Appendix B). The development introduces

one level of memory into the closure by using a smoothing approximation related to the

relative relaxation of the space-time structure of the turbulence and a convective-diffusive

Green’s function associated with the non-local transport ofmomentum fluctuations by the

mean field. This strategy, which has been previously employed by Petty [1975] and others

(see, esp., Hill and Petty, 1996) for turbulent mass transfer, leads to an algebraic pre-

closure for the Reynolds stress which relates (r_r'_u') to the gradient of the mean field, to a

scalar-field'relaxation time 1R associated with the temporal structure of the turbulence,

and to a statistical correlation hereinafter referred to as the turbulent pre-stress (1R ([I'».

The pre-closure theory in a rotating frame of reference has the following structure

33’; (2'13) -5__1 = cm). (1.34)

where the operator .3 is defined by

£5!+IR(V (u)+£2). (1.35)

The fluctuating vector _f‘ is related to instantaneous fluctuations in the instantaneous

Reynolds stress and to pressure fluctuations:

f'a v . Egan - (5:50]. (1.36)

An inertial frame pre-closure for (u’u’) follows directly from Eqs. (1.34) and (1.35) by

setting!) = 0.
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A phenomenological relaxation model is introduced for the pie-stress and this

approach provides an additional means to further address the physical issues associated

with Items (i) and (iii) in Section 1.2. The pie-stress is formally decomposed into an

isotropic and anisotropic contribution:

R0,):20t

1: _ _ -3— (1.37)

"
a
t

_I+

where the anisotropic pre-stress :1 is both symmetric (1:?! = ET) and traceless

(tr (£1) = 0). This strategy provides an explicit, self-consistent model to relate the

isotropic coefficient a to the mean field properties inasmuch as Eqs. (1.34) and (1.37)

imply that

2t: = trig]: (u'u')-z=i]. (1.38)

Thus, no additional closure hypothesis is nwded to evaluate the isotropic contribution to

the pre-stress. In Chapter 3, the theory is applied to homogeneously sheared turbulence

under the assumption that the anisotropic pre-stress is unimportant. This isotropic pre-

stress theory (IPS-theory) provides a theoretical limit case to compare with the anisotropic

pre-stress theory (APS-theory) developed in Chapter 4 for nontrivial if. However, the

IFS-theory provides a relatively simple extension of the Boussinesq model which

incorporates major issues associated with Items (1), (ii), Crv), and (v). The inability of the

IFS-theory to account for the well-documented phenomena associated with the return-to-

isotropy partly motivates the extension to the APS-theory in Chapter 4.

In Chapter 4, the following property is attached to the anisotropic pie-stress in order to

address Item (v) in Section 1.2:

The anisotropic pre-stress is an objective statistical property ofa turbulentflow
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and any phenomenological closure modelfor {:1 should beframe invariant.

The above assumption has been applied incorrectly to phenomenological models for

(r_r'r_r'), of which the Boussinesq model is a prime example as well as some algebraic

theories proposed by Speziale [1987]. The assumption here is that the operator :1

introduced by the pro-closure provides the necessary frame-dependent effects manifested

by the Reynolds stress. The isotropic pro-stress contains a self-consistent frame

dependence inasmuch as the anisotropic pro-stress is traceless:

tr (5?) = 0. (1.39)

Thus, the above closure hypothesis related to the behavior of the anisotropic pre-stress

implicitly supports the goal of developing a universal closure.

The IPS- and APS-theory are used in Chapter 5 to predict the effect of frame rotation

on the asymptotic states of homogeneous shear. The phenomenological coefficients

introduced by the model are sealed with the turbulent kinetic energy It and the turbulent

dissipation e. The large Reynolds number (ie. kz/vc » l) scalar transport equations are

used to estimate the behavior of k and 6. However, the coefficients in the k-e equations are

recalibrated using the IPS- and APS- closures for the Reynolds stress. The benchmark

flows used to calibrate certain aspects of the theory include:

- homogeneous isotropic decay,

° retum-to-isotropy, and

- asymptotic homogeneous shear.

Experimental data for these flows relative to an inertial frame are used to estimate model

coefficients.
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In Chapter 2, the classical problem of homogeneous isotropic decay is examined to

determine the effect of the turbulent Reynolds number (kz/ve) on the decay process. An

approximate integral analysis of the Karmén-Howarth equation is employed to relate

velocity derivative skewness data to the dissipation coefficient which appears explicitly in

the e-equation (see the coefficient CD in Eq. (1.16)). An extension of the APS-theory

developed hereinafter to flows for which k2/ve at 1 will require a complementary low

Reynolds number k-e theory to calculate the turbulent time scales needed for momentum

transport

Figure 1.3 illustrates the su'ucture of the theory and highlights the specific area of

focus. Presently, the development is incomplete and requires further theoretical work.

Applications to specific test flows (see the recommendations in Chapter 7) are essential to

detect flaws in the proposed closure. However, the methodology developed as part of this

research provides a clear and unambiguous framework to introduce further improvements

in the proposed low-order closure of the Reynolds stress.
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CHAPTER 2

THE DECAY OF ISOTROPIC TURBULENCE IN AN INERTIAL FRAME

2.1 Introduction

The problem of decaying isotropic turbulence is a classical benchmark flow in the area

of turbulence research. The absence of spatial gradients in any of the mean properties

implies that there are no production or diffusive transport efl’ects. Thus, the turbulence

decays uniformly with the result that

limk=0andlim€=0. (2.1)

{-909 1—900

Because the flow is isotropic and there exists no means to develop an anisotropic stress,

the kinetic energy and the dissipation of turbulence are governed by the following

equations (see Appendix A)

dk

E’T
am

and

if = '2V<[V£'= (VE-Vg')’]>-2v2(IV(Vr_r)1E[V(vr_r')7]).
(2.3)

Although Eqs. (2.2) and (2.3) are formally exact, two unknown statistical correlations

21
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appear in Eq. (2.3). These two terms correspond to the production of dissipation due to

vortex stretching and the destruction of dissipation due to viscous effects, respectively.

The modeling approach for the dissipation equation introduced by Hanjalic and Launder

[1972] assumes that the destruction of turbulent dissipation scales with the local

dissipation. Thus, the following statistical ansatz is used to represent the underlying

physical effect associated with the terms on the right-hand-side of Eq. (2.3):

§=_i co
dt 71)

where to represents a characteristic relaxation time for the dissipation. The conventional

k - e theory further assumes that TD ~ k/e for large turbulent Reynolds numbers.

Extension of this closure to low Reynolds numbers involves the introduction of an

empirical, albeit universal, destruction of dissipation coefficient CD (Re) :

de 22

— = -C R -— . 2.dt D( e) k ( 5)

The utility of decaying isotropic turbulence is that Eqs. (2.2) and (2.5) provide a means of

determining the closure coefficient CD (Re) . Much experimental (Batchelor and

Townsend, 1948; Comte-Bellot and Corrsin, 1971; and Sirivat and Warhaft, 1983) and

numerical (Bardina et al., 1985; Speziale et al., 1987; and Mansour and Wray, 1994) data

are available for the analysis of this model parameter.

Eqs. (2.2) and (2.5) earl be combined to yield the following equation for the turbulent

time scale k/c:

ditUc/e) = CD (Re) - 1. (2.6)

Experimental data available for isotropic decay indicate that the time scale k/e increases
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throughout the decay process, which implies that CD (Re) > 1. Analogously, Eqs. (2.2)

and (2.5) can be combined to yield an equation for the turbulent Reynolds number Re

( s kz/ve),

i = .. E *dt (Re) [CD (Re) 2] Rek. (2.7)

Eq. (2.7) implies that the decay process can occur at a constant Reynolds number Ret

defined by CD (R?) = 2. This critical Reynolds number Re‘ is stable if CD (Re) > 2

for Re < Re. and CD (Re) < 2 for Re > Re. . However, experimental measurements for

isotropic decay indicate that Re decreases throughout the decay process. Therefore, the

dissipation coeflicient CD (Re) , introduced by the closure model given by Eq. (2.5), must

satisfy the following inequality:

1 < CD (Re) < 2. (2.8)

With 1<CD (Re) <2, both It and a decay to zero and remain non-negative (i.e.

realizable). This follows directly by examining Eqs. (2.2) and (2.5) in the k — a plane for

which

de 6 I

— = C R —. 2.9

til: 0( e) k ( )

Figure 2.1 illustrates the set of points consistent with Eq. (2.9) and Ineq. (2.8). The

boundaries of the attainable states are constructed by solving Eq. (2.9) with CD = 1 for

the entire decay process (for the upper boundary) and CD = 2 for the entire decay

process (for the lower boundary). If 1 < CD (Re) < 2, then Eqs. (2.2) and (2.5) predict a

realizable relaxation process for k and 8. consistent with experimental observations, i.e.,
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Figure 2.] Relaxation States for Decaying Isotropic Turbulence (see next page for

legend)



25

Legend for Figure 2.1
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(k, e, g, Re) -9 (0, 0, co, 0).

Figure 2.1 also shows the relaxation states measured experimentally by Batchelor and

Townsend [1948], Comte-Bellot and Cousin [1971], and Sirivat and Warhaft, [1983]. The

DNS results of Bardina et al. [1985] and Speziale et al. [1987] are also indicated. It is

noteworthy that the data partly supports the notion that after some initial transient, the

destruction of dissipation coefficient approaches a universal function of the Reynolds

number.

Using isotropic decay data at high Reynolds numbers (Re > 500, see Comte-Bellot

and Corrsin, 1971), Hanjalic and Launder [1972] estimated the decay coefl‘icient to be

about two. This value was later refined to 1-92 by Launder and Spalding [1974].

Subsequent investigators introduced empirical functions to account for the effect of the

Reynolds number on the coefl‘icient CD. For instance, Hanjalic and Launder [1976]

proposed the following expression

CD = 1.8[1-gexp (—[%]2)], ' (2.10)

whereas Lumley [1978] suggested

18

CD = 1.4+0.49exp[-J;;]. (2.11)

Both of the above empirical expressions for CD employ the final decay coefficient

estimated by Batchelor and Townsend [1948] (Le. CD -) 1.4 as Re 40). The high

Reynolds number asymptote of Comte-Bellot and Corrsin [1971] is used in Eq. (2.10); Eq.

(2.11) incorporates the limit CD —> 1.89 as Re -> oo. Both Eqs. (2.10) and (2.11) assume

that the destruction of dissipation coefficient increases monotonically as the Reynolds

number increases.
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Mansour and Wray [1994] studied decaying isotropic turbulence by direct numerical

Simulation. They computed the skewness of the velocity derivative as well as the

destruction-of-dissipation coefficient, CD. The velocity derivative skewness is defined by

(see p. 58 Monin and Yaglom, 1965):

. =-<@:M(3:11”.

and, as discussed by Tennekes and Lumley [1972], is an important statistical property

related to vortex stretching (also see Monin and Yaglom, 1965):

-2v([vr_r': (Vr_r' . V3371); R—- ail—55“,; (2.13)

Eq. (2.13) will be derived from the classical Karmén-Howarth equation for isotropic

turbulence in Section 2.2. For Re > 100, Mansour and Wray [1994] observed that Sk 4- 0.3

to 0.4. For Re —) 0, Sk = 0. Figure 2.2 shows the effect of Re on the velocity derivative

skewness given by Mansour and Wray [1994] and Tavoularis et al. [1978]. The empirical

representations of CD given by Eqs. (2.10) and (2.11) are also shown for comparison.

The goal of this chapter is to develop a relationship between the destruction-of-

dissipation coefficient CD and the turbulent Reynolds number. In the next section, the rate

of change of dissipation will be formally identified as the difference between two

statistieal properties, viz, the production of dissipation due to vortex stretching and the

destruction of dissipation due to viscosity. For decaying isotropic turbulence, the

dissipation rate exceeds the production rate, with the net result that the dissipation

turnover time (615 Eqs. (2.4) and (2.5)) is positive:

_1. e (n -r) E >0. (2.14)
1‘1)
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The destruction coefficient .0 and the production coefficient P can be related to specific

statistical pr0perties of the flow and possibly provide a means to understand the

underlying behavior of the k - 8 model coefficient CD. It follows directly from Eqs. (2.4),

(2.5), and (2.14) that

CD (Re) = s(Re) —P(Re). (2.15)

A better understanding of CD (Re) is essential for further improvements of the widely

used It — 8 transport equations for turbulent flows.

In Section 2.3, a semi-theoretical approach is used to relate CD and Re. Subsequently,

an integrated form of the Karmén-Howarth equation (hereinafter referred to as the IKH-

equation), which links the double and triple longitudinal velocity correlations, is

employed to develop an approximate relationship between .8 (Re) and 1? (Re) . An

empirical representation for a (Re) , which agrees with experimental results for high and

low Reynolds number asymptotes, permits the velocity derivative skewness factor to be

predicted from the IKH-equation. The adjustable parameters introduced by the

approximation are determined in part from the experimental data summarized by Figure

2.2. In Section 2.6, the non-linear dynamic equations given by Eqs. (2.2) and (2.5) are

solved in the time domain for an arbitrary, albeit realizable, initial state (kg, 80) .

2.2 Local Analysis of the Kurman-Howarth Equation

The Karman-Howarth equation stems directly from the Navier-Stokes equation and

provides the following fundamental relationship between the double and triple

longitudinal velocity correlations for isotropic turbulence (see Karman and Howarth,

1938; Hinze, 1975; and, esp., p. 122 Monin and Yaglom, 1965),



$3”) = 2v (%+;)%(Ru) + (r%+§)im' (2.16)

In Eq. (2.16), ELL (r, t) represents the double longitudinal velocity correlation,

Run, t) = (u'LQr, t) u'L(x+f, r) ), (2.17)

and im (r, t) is the triple longitudinal velocity correlation,

71,10, 1) = (trig, t) u'L(§+f, r) ). (2.18)

Ru (r, t) is an even function of r (z||_r||) and I'LLL (r, t) is an odd function of r.

Therefore, a Taylor series representation of the two correlations can be written as follows,

  

 

- .. 321} 3B
Bu = Bu(0,t)+-21;[ :1] r2+-41-'-[ 1"] r‘+... , (2.19)

' 3’ r20 ' 3" r=0

and

- a i

rm = i'[ ‘3”) r3+... . (2.20)
3. a, '80

An equation for the kinetic energy follows directly from Eq. (2.16) by setting r = 0:

 dB 0 10v 32%” 221
It LL( 9‘) ' 3’2 - (- )

r=0

Because ELL (0, t) = 2k/3 for isotropic turbulence, Eqs. (2.21) and (2.2) imply that

(2.22) 
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With the Taylor microscale 1 defined by the following expression (Tennekes and Lumley,

1972):

 

3253 R (0, r)

[ :L] = "—L-L—3—- , (2.23)

37‘ 7 = 0 2-

Eq. (2.22) can be rewritten as

I} 0, r

e = 15v—L—L—(—) = 3315 . (2.24)
v

2.2 1.2

Eq. (2.21) governs the rate of viscous decrease of the turbulent kinetic energy for an

isotr0pic decay process. The Taylor microscale, or the energy dissipation length scale, is

defined by the double longitudinal velocity correlation; It can also be related to the second

moment of the velocity derivative (see p. 143, Monin and Yaglom, 1965).

Eqs. (2.23) and (2.24) suggest that an equation for the energy dissipation also follows

from the KArmén-Howarth equation (i.e. Eq. (2.16)) by differentiating twice with respect

to r and then setting r = 0. This analysis yields (see p. 144, Monin and Yaglom, 1965)

33 as at

1[ :1”) = Ev[ 1"”) +1 [ 2“] . (2.25)

d‘ 3r 0 3 3r , = 0 3 0r
rs r=0

   

Eqs. (2.23) and (2.24) can be used to rewrite Eq. (2.25) as

2

 

ds 2

2? .. -(s-e)-k-, (2.26)

where

4 a 1‘}
pal._ 7‘ [ :1) (2.27)

15Bum) ar ,30
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r=0

and

P __ -7 Auk—e [firm] (2 28)

- 3/2 3 '

355- (Buton 3'

The first term on the right-hand side of Eq. (2.26) causes a decrease in energy dissipation

due to viscous damping as .8 is always positive, i.e.,

air

[ “] >0. (2.29)

3r4

 

r=0

The second term on the right-hand side of Eq. (2.26) accounts for the “production” of

dissipation by vortex stretching (see p.144 Monin and Yaglom, 1965; and, esp., p. 83

Tennekes and Lumley, 1972). For isotropic turbulence, P is generally positive inasmuch

 

a3i~

[ Lu] <0. (2.30)
3

at r-O

The production term can also be written in terms of the velocity derivative using the

following result (see Appendix F)

)3 2 (again, = ‘G—Z')3>/[<@i)2>]mE-sr (2.31).. 3/

(Ba, (0))

 

Eq. (2.26) shows that the net destruction of dissipation coefficient CD (Re) has two

contributions (see Eq. (2.15)). In the next section, an integral analysis of the Kérman-

Howarth equation is used to estimate the effect of the Reynolds number on the coefficient

CD by using velocity derivative skewness data (see Figure 2.2).



33

2.3 Global Analysis of the Karman-Howarth Equation

Integrating Eq. (2.16) from r = 0 to r = on yields an integrated form of the Karman-

Howarth equation (IKH-equation):

d I ~ "1 ~ "1 -
Egaudr = 8v (1) :51r-(Bu) dr+ 4g :TLudr . (2.32)

The following conditions on the double and triple longitudinal velocity correlations have

been used to obtain Eq. (2.32)

 

al‘iu ..

[8r ] = 0 and (Tm)r=0,~ = 0'
r20,»

With dimensionless velocity correlations defined as

B , t

Bu. 2 —_.LL (r )
(2.33)

an (0, t)

and

I’ , r

T iii—(Ll (2.34)

Tm (0. 0

Eq. (2.32) can be rewritten as

- . - 3/2

52”“- (0, t) 2.11] = £2.23” (0, t) 12 + 4 (Bu (0, t) ) 13. (2.35)

The dimensionless integrals in the above equation are defined as follows:



I1 = jaunt, (2.36)

0

I2 = 15%er d§,and (2.37)

0

I3 = jédeg, (2.38)

0

where g: r/7t. Because I: = 38” (0, r) /2, Eq. (2.35) may also be written as

d _ SW: 32 3/2

5053.11) - T12+f-3:k 13. (2'39)

With 3.2 = lka/c, it follows directly from Eq. (2.6) that temporal changes in the Taylor

microscale are governed by

d2. lOve
_ = c -1 _. 2.40

dt ( D ) 4k ( )

Therefore, because CD > 1 for isotropic decay in an inertial frame of reference, Eq. (2.40)

implies that the integral microscale increases during the decay process. Note, however,

that the rate of change in A decreases inasmuch as the ratio k/s —) co as k and s decay (see

Section 2.1).

Eqs. (2.40), (2.2) and (2.5) can be used to eliminate the Taylor microscale from

Eq.(2.39) with the result that

k d 8 I2 ’3 5Re

C -3 +2- —I I =- -—+— —— . 2.41

( D ) e[drn(1)] 5L, [Ii 3 l ( )

An important assumption regarding the decay process is that the integral I1 depends only



35

on the instantaneous Reynolds number (kz/ve):

r1 = 11 (Re). (2.42)

The above universality hypothesis uncouples Eq. (2.41) from the initial conditions.

Therefore, it follows from Eqs. (2.42) and (2.7) that

25F»; (11)] = 2 2.43

6 dt ( )

 

k dRedl"(Il)] dln(Il)

E[ d: dRe '2(CD-2)dln(Re)'

Eq. (2.41) can now be rewritten as

dlnul) 8 I2 13 ’SRel
(CD-3)+2(CD—2)dln(Re) -— 3|:I—l+;; —3— . (2.44)

The above equation is an integral property of the Kr’umén-Howarth equation and will be

 

subsequently used to develop some understanding of the possible dependence of the

desn'uction-of-dissipation coefficient CD as well as the velocity derivative skewness on

the turbulent Reynolds number for 0 < Re < on.

2.4 Approximate Analysis of the Dissipation and Production Integrals

The previously developed series expansions for the double and triple longitudinal

correlations (see Eqs. (2.19) and (2.20)) can be rewritten in terms of E, .8, and P by using

the definitions given by Eqs. (2.27) and (2.28):

2531 4
B = l-- +— +... 2.4
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and

I 15 P 3

Lu Re l4§ ( )

Figure 2.3 illustrates the behavior of the three functions which determine the integrals I1,

12, and I3. As an approximation, the integrals in Eq. (2.44) will be estimated using a finite

cut-011' separation distance related to the behavior of the dissipation integrand 12 (see

Figure 2.3):

§.

11 {Budg .. gc 6§C+56§‘+"°’ (2.47)

g"1 20.11
.. -51 = _ 312 (j) gagwumg -§c+ mega-.. (2.48)

and

g‘1 15 P
= — —— 313 (j) Erma: ’Re ”get... (2.49)

The cut-off separation distance EC, defined by Figure 2.3, scales with the Taylor

microscale and the dimensionless viscous destruction coefficient,

9 14
— = —. 2. 0

gr ' 2. 53 ( 5 )

The experimental results of Tavoularis and Corrsin [1981] and the direct simulation

results of Mansour and Wray [1994] show that the velocity derivative skewness Sk < no as

Re —) co; therefore, Eq. (2.13) implies that



B . , .
T LL / I"1 three Taylor Series Terms

s. , .1 E
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Figure 2.3 Qualitative Behavior of the Integrands of I1, 12, and I3; Estimation of the

Cut-off Integration Distance fie.
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lim r~sH. (2.51)

Re-Hn

It follows from Eqs. (2.15) and (2.51) that

limCD 60—19 >1 (2.52)

Re—rO

Experimental data of Batchelor and Townsend [1948] at low Reynolds numbers imply that

C; = 1.4; therefore, it follows from the above limits that so = 1.4.

At large Reynolds number, the data of Tavoularis and Corrsin [1981] and the

simulations of Mansour and Wray [1994] (see Figure 2.2) indicate that

lim S =S°° ~O..4 (2.53)

Re -) o-

Therefore, the production of dissipation coefficient increases with the Reynolds number as

follows (see the definition of P given by Eq. (2.13))

7

lim P = —S°°JRe . (2.54)

Re -+- 3.115 "

Because 1< CD < 2, it follows that the asymptotic behavior of .B at large Reynolds

numbers must be as follows

1im 1.11, = s“./R_. (2.55)
lie-too CBS—7.]?S:

where C; ~ 1.8 to 1.9 (see Section 2.1; Comte-Bellot and Con'sin, 1971; and Sirivat and

Warhaft, 1983).

It follows directly from Eq. (2.50) and the asymptotic behavior of the viscous

destruction term that the integral cut-off parameter §c has the following limits at high and
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low Reynolds numbers

lim gc = J5 (2.56)

Re —) O

and

lim §c = 0 (2.57)

Re -) a-

Each of the integral ratios appearing in Eq. (2.44) can be estimated in terms of Q. For

instance, it follows directly from Eqs. (2.47) and (2.48) that

 

20.8 3

’2 -§c 168§C+
T- l 3 , (2.58)

3 5

‘ tip-5933:.

As Re —) co, Eq. (2.50) for EC implies that the ratio 12/1l asymptotically approaches

—2/3 inasmuch as

 

2

-§ . (2.59)

, it)
n” [3] = 451 1 7Re-too 1___+0 _)

1503 2

I1

For Re -) 0, it follows from Eq. (2.38) in the previous section that

lim 1—2 -§(C"-3) (260)

Re—tO ll -8 D ’ .

provided ’3/11 < .. and r11l /dRe < .. for Re -> 0. Therefore, with c; = 1.4, Eq.(2.60)

implies that

’2Km _ =_1. - (2.61)

Re-)0 I1
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Because 0 S EC 5 J2, a linear interpolation for 12/11 as a function of EC will be used

between the two limits given by Eqs. (2.59) and (2.61). Therefore,

I §
_2 = _Z__l._£, (2.62)

11 3 3,];

whichcanalsobewrittenas

I

2 = __2___1. _1‘_‘_. (2.63)
71 3310.1

It follows from Eqs. (2.47) and (2.50) that Il depends on the turbulent Reynolds

number implicitly through EC and, consequently, .8. Thus,

e311. _ [err] 255 (2...,
Il dRe s dRe 11 d8 ' '

It follows from Eqs. (2.47) and (2.50) that

1

”$149). a...)

Me)
For Re —) co, Eq. (2.55) shows that 8 —) on; therefore,

fl

d8

 fl

11

8 dll 1
lim —— = -—. 2.66

For Re-—)0,

.8 dll 1

lim —— = -—a. 2.67

Re—rO[Il d9] 2
( )

The parameter a remains as an adjustable universal parameter. A linear interpolation
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similar to Eq. (2.62) is used for intermediate values of the Reynolds number. Therefore,

.0 d1 1 l: gc]

—— = -- 1+ [a-1]— , (2-63)

I1 d8 2 J5

or, in terms of the viscous destruction coefficient,

s 4’1 1[ 14_]O
__ = —— 1+ 1 2.69,1 am 2 [a- ] m < >

The estimate of 13/11 follows from the approximations expressed by Eqs. (2.47) and

(2.49) along with the integration cut-off distance given by Eq. (2.50).

 

 

— — + ...

I ('_"3 c
7?. .. 15R; , (2.70)

1 5c " 60:: +

The limiting behavior of Eq. (2.70) is not apparent, so the lead term in the numerator is

factored and the remaining ratio is modeled as a universal constant:

'1 Pb (2.71)

JlsRe3b

The parameter b is a constant to be evaluated at the high Reynolds number asymptote. At

 

”
N
I
N

11

infinite Reynolds numbers, Eq. (2.55) implies that

(2.72)

C"
o 16 8
— - 2 = . .

2 15 15 (2 73)
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This gives b = 0.0343 for C; = 1.83.

2.5 Parameter Estimates

The asymptotic states (i.e. Re —> 0 and Re -) on) have been used to approximate the

integral expressions found in Eq. (2.44). Eq. (2.44) may now be used to predict the

intermediate behavior of CD (Re) . A parametric study of CD (Re) with respect to the

empirical parameter in the representation for .8 (Re) will conclude this section. The

selection of .8 (Re) may be judged as acceptable based on the resulting prediction of the

velocity derivative skewness compared to experimental and simulation data for Sk (Re) .

The form of 8 (Re) is specified by the following function:

.8: (C;+7S;°J1?) (C; - Cg) exp [- (Re/Re. ) n] , (2.74)

35

where S: represents the high Reynolds number asymptote for the skewness. Re. and n

are empirical parameters which control the transition for the destruction term between its

high and low Reynolds number asymptotes.

The parameters a, Re. and n are selected to reproduce the trend in S); (Re)

consistent with Eq. (2.44) and the foregoing approximations to I1’ 12, and I3. The

constants, which have been determined as a result of a parametric study, are a = -3.5,

Re’ = 2.2 and n = 1.25. Figure 2.43 shows the behavior of S): (Re) predicted by Eq.

(2.44). By design, the skewness assumes a value of 0.4 at large Reynolds numbers.

Interesting is the prediction that a local maximum of Sr, ”x = 0.52 occurs at Re ~ 5,

which compares favorably with the data for the skewness: Sk, ”3 ~ 0.5 to 0.6 at Re ~ 5

to 10 (Tavoularis et al., 1978; and Mansour and Wray, 1994). All asymptotic and

empirical parameters used to support this analysis are summarized in Table 2.1. Of the ten
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Figure 2.43 Predictions of the IKH-Equation for the Skewness Using it Prescribed

Function for the Destruction of Dissipation ( a = —3.5, Re 2 2.2 and

n = 1.25).
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Table 2.1: Summary of Parameters Used in the Analysis of the IKH-Equation

 

Parameter

  

Value Basis

 

 

 

 

 

 

 

 

 

  

c; High Re data of Comte-Bellot and Corrsin [1972];

direct simulations of Mansour and Wray [1994]

C0D 1.4 Final decay period of Batchelor and Townsend [1948]

s: 0.4 Data of Tavoularis et al. [1978]; direct simulations of

Mansour and Wray [1994]

(12/11) -1 Consistency with C},
0

(12/11) -2l3 Asymptotic behavior of series representations for

'° integral quantities

3 (111 -1/2 Asymptotic behavior of series representations for

[——] integral quantifies

I1 d8

a -3.5 Empirical parameter in (.8/11) (dIl/d8) selected

for consistency with data for skewness

b 0.0343 Consistency with C3

Re’ 2.2 Empirical parameter in 3‘ (Re) selected for

consistency with data for skewness

n 1.25 Empirical parameter in .8 (Re) selected for  consistency with data for skewness
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parameters listed in Table 2.1, seven are derived directly from experimental data and/or

from consistency conditions with the asymptotic behavior of various quantities. Only

three quantities are left as free constants to reproduce the data for the velocity derivative

skewness.

The effects of the parameters a and Re. on the resulting skewness prediction are

shown in Figures 2.4b and 2.4c. In each case, the parameters used in the computations are

the same as those listed in Table 2.1, with the exception of the variable shown in the

figures. Figure 2.4b indicates that the parameter Re. influences both the location (in

terms of Re) and the magnitude of the local maximum in the skewness. Figure 2.4c shows

that the parameter a also influences the magnitude of the local maximum in the skewness

as well as the low Reynolds number behavior of the skewness.

Figure 2.5 illustrates the semi-theoretical prediction of CD (Re) and Figure 2.6 shows

the individual contributions of .8 (Re) and 0’ (Re) to the desn'uction-of-dissipation

coefficient. The curve for .8 (Re) is the empirical prescription described by Eq. (2.74).

The curve for P (Re) is the resulting prediction of Eq. (2.44). Within the context of the

modeled form of the IKH-equation, the local maximum in CD (Re) is a direct

consequence of the transition of .8 (Re) between high and low Reynolds number behavior.

For instance, if CZ — C; = 0 (with all other parameters being the same as given above),

then CD (Re) is constant. As C; - C; increases, however, the non-monotonic behavior

becomes more pronounced. At large Reynolds numbers, the growth of both production

and destruction are pmportional to JE, and CD = .8 — P -9 C3 = 1.83.

Given that the non-monotonic behavior of CD (Re) is supported by: (1) the analysis

of the classical Karman-Howarth Equation; and, (2) the numerical simulations ofMansour

and Wray [1994], the following empirical representation of CD (Re) is proposed as an

improvement on the previous expressions developed in the literature (see Figure 2.2),

C"+C“‘(R /R )’ ,

CD: D D e eA [1+C [exp(-p{ln(Re/Rep)2})]:|. (2.75)

1+(Re/ReA)‘
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Figure 2.4b The Effect of Re“ on the Velocity Derivative Skewness (a = —3.5 and

n = 1.25).
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Figure 2.4c The Efi‘ect of a on the Velocity Derivative Skewness (Re. = 2.2 and

n = 1.25).
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Eq. (2.75)

Eq. (2.44), IKH-equation
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Figure 2.5 Predictions of the IKH-Equation for the Destruction of Dissipation

Coefficient
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Figure 2.6 Predictions of the IKH-Equation for the Production of Dissipation Using a

Prescribed Function for the Destruction of Dissipation.
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In Eq. (2.75), ReA determines the Reynolds number at which the decay coefficient

approaches its high Reynolds number asymptote and s is a sharpness parameter for this

approach. Equivalently, ReP determines where CD (Re) achieves its local peak and p

relates to the sharpness of this peak. The quantity C. determines the value of CD at the

local maximum. The following parameters have been selected in order to reproduce the

local maximum and minimum in CD (Re) illustrated by Figure 2.5: ReA = 5, s = 0.4,

ReP = 1.5, p = 0.65,and C' = 0.054.

2.6 Transient Isotropic Decay

With CD (Re) expressed by Eq. (2.75), Eqs. (2.2) and (2.5) may be employed to

compute an isotropic decay process for any arbitrary initial conditions given by 1:0, 80,

and Re0 (kg/veg). These equations have been integrated using a fourth order Runge-

Kutta integration algorithm (Carnahan et al., 1969; see also Appendix H). For an

appropriate Specification of the initial conditions, this calculation can be used to reproduce

the isotropic states which correspond to the experiments of Batchelor and Townsend

[1948], Comte-Bellot and Cousin [1971], and Sirivat and Warhaft [1983] (see Figure 2.1).

Figures 2.7a-2.7g present the results for the seven experimental data sets used in this

chapter. The results are given as a crossplot of the turbulent kinetic energy vs. the

dissipation. Eqs. (2.2) and (2.5) imply that

. (2.58)

2
4
%

m
i
n
-

_1-

CD

The local slope of the computed line compared to the slope of the data points gives an

indication as to the quality of the specification of CD (Re) . In general, the reproduction of
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Figure 2.7a Model Computations for the Isotropic Decay Data of Batchelor and

Townsend [1948] (U = 150 cm/s, Reo = 7.58)
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Figure 2.7b Model Computations for the Isotropic Decay Data of Batchelor and

Townsend [1948] (U = 643 cm/s, Rea = 42.6)
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Figure 2.7c Model Computations for the Isotropic Decay Data of Batchelor and

Townsend [1948] (U = 1286 cm/s, Reo = 83.7)
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Figure 2.7d Model Computations for the Isotropic Decay Data of Comte-Bellot and

Corrsin [1971] (U= 10 m/s, Rea = 354)
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Figure 2.7e Model Computations for the Isotropic Decay Data of Comte—Bellot and

Corrsin [1971] (U= 10 m/s, Rea = 769)
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Figure 2.7f Model Computations for the Isotropic Decay Data of Sirivat and Warhaft

[1983] (U= 340 cm/s, Rea = 139)
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Figure 2.7g Model Computations for the Isotropic Decay Data of Sirivat and Warhafi

[1983] (U = 630 cm/s, Rea = 262)
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the data sets is quite good. Specifically, the initial decay stages of each of the seven data

sets is well represented, although some sets show deviation from the computations at

points farther along in the decay process. This is not surprising, however, as the degree of

homogeneity and isotropy of the flow worsens at larger downstream positions in the wind

tunnel (Comte-Bellot and Corrsin, 1971). Of particular note are the two cases which

represent the extrema for the experimental Reynolds numbers. Figure 2.7c represents the

highest Reynolds number data of Comte-Bellot and Cousin [1971] (Rea = 769). The

slope of the calculation is slightly higher than that of the data, indicating that CD is

relatively low, and perhaps approaches its asymptote too slowly. Figure 2.7a represents the

low Reynolds number data of Batchelor and Townsend [1948] (Rea = 7.58). Here, the

representation of the data is excellent throughout the entire decay process. The good

agreement of the data sets which span two decades of Rea is an indication that Eq. (2.75)

is a quantitatively good expression for CD.

Figures 2.7b and 2.7i present the results of the same calculations, but compared with

the direct simulations of Bardina et al. [1985] and Speziale et al. [1987]. The solid line

shows the results of the computations using the data at tea/k0 = 0 as the initial

conditions, whereas the dashed line shows the results using the simulation data at

tea/k0 = l as the initial state for the solution of Eqs. (2.2) and (2.5). What is most

noteworthy about these two simulations is the fact that the initial decay period is very

poorly characterized, while the final decay is well reproduced. This, however, does not

necessarily mean that the model for CD (Re) is poor. Rather, the limitations of direct

simulations are brought into question. Huang and Leonard [1994] address this problem.

They indicate that, during the initial stages of a direct simulation, the maximum resolvable

wavenumber 75m“ of the turbulent energy spectrum (E (72)) is relatively small. Thus,

although the larger, energy-containing eddies (i.e. low wavenumber I?) may be well

characterized, the smaller, dissipative eddies (i.e. high wavenumber I?) are not. Without an

accurate characterization of both the energy-containing and dissipative eddies, the decay
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Figure 2.7h Model Computations for the Isotropic Decay Simulations of Speziale, et al.

[1987] (Reg = 35.1)
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Figure 2.7i Model Computations for the Isotropic Decay Simulations of Bardina, et al.

[1985] (Reg 2 45.4)
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transient is clearly suspect. Huang and Leonard explain, however, that in,“ increases

during the course of the simulation. Therefore, at longer times, both types of eddies are

accurately represented and the quality of the decay transient is much more reliable.

Figure 2.8 presents the decay of the turbulent kinetic energy in the time domain for

three different initial Reynolds numbers: Rea = 10, 100, 1000. The kinetic energy

normalized by its initial value is plotted versus the dimensionless decay time

(I = re0/ka). It is noted that the small differences among the three cases are manifested

only in the long time behavior. The curves follow the trends expected from the nature of

Eqs. (2.2) and (2.5): At higher Reynolds numbers, CD is higher and causes the turbulent

dissipation to decay more rapidly, causing the turbulent kinetic energy to persist longer.

2.7 Conclusions

The integral form of the Karman-Howarth equation for isotropic turbulence provides a

semi-theoretical prediction for the destruction coefl'icient CD in the equation for the

turbulent scalar dissipation. Integral expressions containing the double and triple velocity

correlations are estimated using Taylor series representations of the velocity correlations

and a characteristic cut-ofl' integration length. A modeling hypothesis is made which

assumes that the ratio of the integral quantities is correctly represented, although the

absolute magnitudes of the integrals may not be.

Empirical parameters which are chosen to reproduce experimental data for the

velocity derivative skewness in decaying isotropic turbulence predict that CD spans its

upper and lower limits in a non-monotonic fashion. This is unlike previous approaches to

this problem, which have simply bridged the two limiting cases with some monotonic,

empirical function. The non-monotonic behavior CD (Re) is seen in some direct

simulations of this flow. The resulting prediction for CD (Re) is able to reconstruct the





 

1.0

k/ko

Re 2 l()()()
0

100

10

O] l l i A l l l l I I
 

0.0 1.0 2.0 3.0 4.0 5.0

Figure 2.8 Predicted Transient Decay ofthe Turbulent Kinetic Energy as a Function of

Initial Turbulent Reynolds Number
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various experimental and direct simulation data available in the literature.

Within the context of the modeled form of the IKH equation, the non-monotonicity of

CD (Re) is a direct consequence of the fact that CD varies between two different upper

and lower Reynolds number limits. For C3- (3; = 0, CD (Re) would be a constant

function, while the local maximum in CD (Re) becomes more pronounced as C; - C;

increases.

The disparity between the calculations and the initial stages of decay in direct

simulations illustrates that care must be taken when treating direct simulation data. Only

the longer-time simulation data resolve both the large and small turbulent scales and

provide meaningful data for comparison.



CHAP'I'ER3

ISOTROPIC PRES-STRESS CLOSURE THEORY FOR

HOMOGENEOUSLY SHEARED TURBULENCE

3.1 Introduction

Homogeneously sheared turbulence has the interesting feature that the turbulent time

scale k/e approaches a constant finite value as the flow develops (Tavoularis and Corrsin,

1981; Gibson and Kanellopoulos, 1987; Rohr er al., 1988; and, Tavoularis and Kamik,

1989), although the kinetic energy I: and the dissipation 2 associated with the velocity

fluctuations continuously increase as 2 —) co. Figure 3.1 summarizes the asymptotic state

attained by this flow for which the shearrate S is approximately constant. The existence of

this state requires that the transport equations governing the turbulent kinetic energy and

the scalar dissipation rate satisfy the following model-independent condition

ldk lde

lim -— = lim -— . 3.1

z-t~|:kdz] z-t-oLtdz] ( )

For homogeneous shear flows at high turbulence Reynolds numbers (It2 » vs), the k-e

equations (Hanjalic and Launder, 1972) are

 

(gum-35 = -(g'g'>:V(y)-€. (3.2)
2

dc (2.2.)‘VQQ 2
(Hz) (0);; - -CP 1P -CD-‘E;. (3.3)

(uz) (0) is the axial component of the mean velocity along the centerline of the flow field.

“up and 1'0 represent, respectively, turbulent time scales associated with the production of
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Quantity Asymptotic StateT

Turbulent kinetic energy k = (r_t' - g')/ 2 co

Turbulent dissipation rate a = v(Vg': Vg'T) oo

Turbulent Reynolds number ReI = kz/ve 00

Time scale ratio Sk/e 4.16

(u'u') +0236 0 0

Normalized Reynolds stress R = ’2; 0 +01% —0.l65

   0 -0. 165 + 0.568

 

: These numbers represent the average of cases A, B, and C from Tavoularis and Kamik [1989].

Figure 3.1 Asymptotic State for Homogeneously Sheared Turbulent Flows
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dissipation and the destruction of dissipation. The standard k—e theory of turbulence

assumes that IP = ID = k/e and that CP and CD are constants independent of the local

state of turbulence. According to Eq. (3.1), an asymptotic state of turbulence is predicted

by Eqs. (3.2) and (3.3) provided the ratio of production to dissipation satisfies (Speziale,

1991)

(3.4)  

. -<§'£'>=V<e> _ Cn-l

211ml 2 ]'c,-1’

Eqs. (3.2) and (3.3) are also consistent with experimental data for homogeneous decay

provided CD = 1.83 (see, esp., Comte-Bellot and Corrsin, 1971; Mansour and Wray,

1994; and Chapter 2 of this dissertation).

The Reynolds stress can be written as the sum of an isotropic and an anisotropic stress

(Speziale, 1991)

'( '5') = 3359211), (3.5)

where f = QT and tr (2) = 0. For a strictly homogeneous flow with S = 0, the

anisotropic stress 2 is zero. Because (r_r'l_r') is a non-negative operator, the eigenvalues

associated with the Reynolds stress are non-negative (Schumann, 1977). Moreover,

because

tr(r_¢'_lf') = 2k>0, (3.6)

at least one eigenvalue of (l_¢'_r_¢') must be non-zero and positive. This means that the

normaliwd components of the turbulent kinetic energy are confined to the energy simplex

illustrated by Figure 3.2. The homogeneous shear data (Tavoularis and Kamik, 1989)

summarized by Figure 3.2 show that this flow produces a positive primary normal stress

difference,
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lim [(u'zu'z) - (u'yu'y)

a 0.377,

2k ]

as well as a negative second normal stress difference,

lim [(uw’) — “in"? 2-0040.

z -) co 2]:

 

The anisotropic stress {2 has two non-trivial invariants: II = tr (_b - _b) and

111 = tr (9 - I) - g) . Lumley [1978] has shown that all realizable turbulent states—(II, 11])

must fall .on_ or within a two dimensional domain illustrated by Figure 3.3. The

experimental data for homogeneous shear approach the asymptotic state given by

In?” (11.1”) a (0.138, 0.0174) .

For a constant density fluid, the Boussinesq model for the anisotropic stress is (Hinze,

1959 and Brodkey, 1967)

up = -ve[V(g)+V(g)'] = -2v¢<__s). (3.7)

Q) represents the mean strain rate dyadic and ve is a scalar valued eddy viscosity. For

V: > 0, Eq. (3.7) implies that the kinetic energy is irreversibly transferred from the mean

field to the fluctuating field inasmuch as

—(_rg'_r§'):V(g) = 2ve(§): (.3) >0 (3.8)

for all turbulent flows. This feature partly justifies the use of Eq. (3.7) as an approximate

model for the anisotropic stress. However, for homogeneous shear flows, Eq. (3.7) also

predicts an equipartition of kinetic energy among the components of the fluctuating

velocity as well as a zero third invariant for 5 (i.e., [1150). These results clearly

contradict the experimental measurements summarized by Figures 3.2 and 3.3. Thus, as

previously noted by Speziale [1991], the Boussinesq model qualitatively misrepresents the

underlying mechanism associated with the flux ofmomentum due to velocity fluctuations.



111 = —o(11/6)3/2
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111 = 6(11/6)3/2

Asymptotic State:

(0.0174, 0.138)

Region of Developing

States: 2 < g < 26

III
 

Isotropic State: (0, 0)

Figure 3.3 Anisotropy Invariant Diagram with Transition States for Homogeneously

Sheared Turbulence
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The proposed pro-closure representation of the Reynolds stress supports a long-

standing goal of turbulence research to achieve a practical statistical closure of the mean

field equations and, thereby, complements other algebraic turbulent closure models for the

anisotropic stress _I? (see, esp., Speziale, 1991; Taulbee, 1989; Reynolds 1989; and,

Hanjalic, 1994). The development of homogeneously sheared turbulent flows towards an

asymptotic state provides a critical experimental test flow to partially guide the evaluation

of the proposed theory.

The objective of this chapter is to develop this new pre-closure for the Reynolds stress.

In Section 3.2, an analysis of the governing equations for the fluctuating velocity yields a

relationship between the Reynolds stress, mean field quantities, and the pre-stress (see Eq.

(1.37)). A simplifying assumption is made regarding the isotropic nature of the pre-stress

in Section 3.3, which is found to directly impact Issues (i) and (ii) from Section 1.2. The

asymptotic state of homogeneously sheared turbulent flows is used to calibrate universal

model parameters and the transient approach to this asymptote is examined.

3.2 Pre-closure Theory

The fluctuating velocity associated with a constant density, Newtonian fluid satisfies

the following equation (Monin and Yaglom, 1965)

any) = 12' . (3.9)

where

11"“! ° V<B>+f . (3.10)

and



71

f'a V . [%!+r_4'r_t' - (r_t'r_¢')] . (3.11)

The convective-diffusive operator (2) depends on the mean velocity field (3) and the

kinematic viscosity of the fluid, v:

(r) gait”; (g). v -vV2. (3.12)

Eq. (3.9) is exact and emphasizes that fluctuations in momentum (i.e. pr_t') are produced

within the flow domain by (l) a convective coupling between the mean velocity gradient

and the fluctuating velocity; (2) pressure fluctuations; and, (3) fluctuations in the

instantaneous Reynolds stress, g'g' - (l_t'r_r'). Momentum fluctuations are transported by

viscous fluctuations in the molecular stress and by mean field convection.

An exact, albeit formal, representation of the fluculating velocity can be written in

terms of a Green’s function (Morse and Feshbach, 1953) associated with the linear

differential operator (2). For statistically stationary flows in an unbounded domain, ‘

t

l_t' (5, t) = - j diIdWG) (a, t [3,?)5135). (3.13)

.... v

For 0 S t -? 4‘ "it -§E"2/v, the Greens’ function is spatially peaked in a frame of reference

moving with the local mean velocity; however, as t -t -) no, viscous momentum transport

causes the Green’s function to relax to zero over the entire spatial domain. For an

unbounded spatial domain, the Green’s function satisfies the following integml property

lei/(G) (a, t [3,?) = 1. ' (3.14)

v

The analog of Eq. (3.13) for a passive scalar field has been previously used by Hill and

Petty [1996] and many others.

A formal representation for the Reynolds stress follows by either pre- or post-

multiplying Eq. (3.13) by the fluctuating velocity u' (f, t) and then forming the ensemble
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average to obtain

1

05:3) = - I Mari/(G) 0;. t pg?) (g' (5. 012' (52. E) > =

_. V

t

- I 1209(ny pg?) (5' (33):; 0;. t) >. (3.15)

... v

Eq. (3.15) relates the Reynolds stress to the Green’s function and to the symmetric space-

time correlation defined by

(513:. 01:13.7”; (2' (5. t) 5' (5.?) )- WEN- (£15. 01133)) =

.. _ r - _ _ -

VQI) ~(t_¢'(§. 014' (3. OH 0'05. 0 55' (at. t) )- (3.16)

All the components of (51' (5,?) l_t' (it, t)) relax to zero for either It-tlrtfl or

||§—J_'E" » (H, where I” (~k/c) and 1H (~k3/2/e) represent finite turbulent time and

length scales, respectively. The physical hypothesis that I” <,oo and tH< co partially

motivates the use of a spatial smoothing approximation to simplify the non-local

representation of the Reynolds stress given by Eq. (3.15).

A spatial Taylor series expansion of 11' (S, t) about (it, 3) gives

it. (59;) = é.(§’;) + (5-5) ° VI... (59;)

as; (5-3) (5—3) :vvy (5,?) + (3.17)

Inserting Eq. (3.17) and Eq. (3.14) into Eq. (3.15) gives the following representation for

the Reynolds stress in terms of the spatial moments of the Green’s function

t fl

0314') = - I aft (Lt'(§.?)t_¢'(§.t))+ 2; 53‘” (am-3) (3.18)

-¢° i=1
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where

53‘" =- [Idiot—3) (G)0_r.t '33)] - (vy (15011150) (3.19)
V

and

5 ‘2’ a g [Jolie—3) (5 -3) (G) (at. t I30]: (We (55);; (5. t) ). (3.20)

v

— The temporal correlation 1.1 (n) (it, t-?) involves the nth spatial moment of the Green’s

function contracted with the nth order gradient of the fluctuating field 5'. For t = ‘i, all of

the spatial moments of (G) (J_r, t [13,?) are zero; however, these moments become non-

zero on a time scale associated with the viscous transport of momentum. The foregoing

expansion of Eq. (3.15) exploits the ides that the Green’s function (G) (3:, t '3, 3) acts like

a spatial delta distribution on a time scale for which turbulent correlations become

uncorrelated.

For turbulent flows at large Reynolds numbers (i.e. 1” ct Iii/v), the spatial moments

of the Green’s function are assumed to remain small over the finite time scale for which

turbulent fluctuations are temporally correlated. This hypothesis motivates the use of a

spatial smoothing approximation which reduces Eq. (3.18) to the following statistically

stationary approximation

(g'g' s-l (5' (My (5. 0 )dr = -J (g' (5. t) y (5.?) )dt. (3.21)

0 0

where 1 E t-t. Eq. (3.21) gives a representation of the Reynolds stress in terms of the

temporal history of the turbulence. As previously noted, the autocorrelation

(_I_r' (3,?)13' (it, t)) must be a symmetric dyadic-valued 'Operator. This follows directly

from the fundamental representation of l_r' in terms of [1' , the source of momentum

fluctuations.
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Eq. (3.21) can be simplified further by assuming that there exists a scalar-valued

memory function m (5,1) with a finite cut-ofl' time such that

(if (13.?) g' (5. t) ) = (11' (3:. t) g' (at. t) )m (gr. I) . (3.22)

Thus, Eq. (3.21) can be represented by

(£1?) = 4p(1114') = 43051:). (3.23)

where the relaxation time In is a phenomenological coefficient dependent on the temporal

structure of the turbulence:

“CR 5 1mg, 1:) d1 . (3.24)

0

For statistically stationary flows, the integral time scale TR depends on the local statistical

properties of the turbulence k and e, the mean velocity gradient (S a I] V (_u)||), and the

viscosity of the fluid. Dimensional reasoning suggests that

t = C S , (3.25)

where CR is a dimensionless function of kS/e and the turbulent Reynolds number kz/ve.

It follows from Eq. (3.10) that Eq. (3.23) can be written as

(2"!) = -1r<t'1_¢'>-1rV<e>T~<2'2'> = ~¢r<etl-tr<2'e'>- V<e>- (326)

Algebraic equations for the turbulent correlations ([14’) and (u'f) follow by pre- and

post-multiplying Eq. (3.13) by I'(§, t) and taking the ensemble average. The previously

anployed spatial smoothing approximation for large turbulent Reynolds numbers and the

use of the memory ansatz expressed by Eq. (3.22) yields the following result for the
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symmetric correlation (If):

mm = -<tl«'>-r.(r'-_«'>- W) = -<2'[HRV<E>T' (at). (3.27)

In the above expression, IR is assumed to be the same relaxation time as defined by Eqs.

(3.24) and (3.25). The idea that a single scalar relaxation function can be used to

characterize the temporal structure of all low-order, space-time correlations is a significant

unifying step towards a practical closure theory.

Eqs. (3.26) and (3.27) can be combined to yield the following pre-closure

representation of the Reynolds stress

LI+1RV(u)]T-(t_r'r_¢')- [puma] = rig!) (3.2s)

Eq. (3.28) is called the pre-closure hereinafter because it relates the Reynolds stress to

three aspects of the flow field: (1) the spatial gradient of the mean field; (2) the relaxation

time TR; and, (3) the unclosed turbulent pre-stress, fig?) . For small dimensionless

relaxation times:

NR ask" We)" r 1, (3.29)

the pre—stress approaches the Reynolds stress. Like the Reynolds stress, the pre-stress is a

non-negative operator, and, thereby, has only non-negative eigenvalues.

Eq. (3.11) could be used to formally relate the turbulent pro-stress to other unknown

statistical correlations involving spatial gradients of the fluctuating pressure and the

divergence of fluctuations in the instantaneous Reynolds stress. Alternatively, a

phenomenological theory for the pro-stress could be deveIOped analogous to Eq. (3.5) by

first writing 112, (ff) as the sum of an isotropic pre-stress and an anisotropic pro-stress

1: ([f) a 2&1” 2kg , (3.30)
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Like the anisotropic stress 9, the anisotropic pre-stress g is both symmetric (g = LIT)

and traceless (tr (H) = 0). The isotropic pre-stress coefficient a must satisfy the

following normalization condition

titrQ'f’) = 2a = 2k+ 25mg): vq.) ”,2, [tr (V(g)T- (Leg)- V(_t_l))]. (3.31)

As the relaxation group NR increases, the isotrOpic and anisotropic parts of the pre-stress

should make significant contributions to the distribution of kinetic energy among the

components of the fluctuating velocity as well as to the shear components of the Reynolds

stress. Eqs. (3.28), (3.30), and (3.31) provide an alternative closure strategy to previously

developed approaches based on the anisotropic part of the Reynolds stress.

In this paper, the efficacy of using Eq. (3.28) with

(3.32)

ll
m II

II
Q

will be explored. This assumption provides a closure model for the normalized Reynolds

stress

< '5')

2

 

(3.33)

H
z

a
r
t

A non-trivial model for L! is presented in Chapter 4 of this work. Weispfennig [1997] has

also considered non-trivial models for the anisotropic pre-stress.

3.3 Isotropic Pre-stress Theory

For homogeneous shear and £1 = 9, Eqs. (3.28)-(3.30) reduce to the following set of

equations for the components of the normalized Reynolds stress
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Rn = 3 + NR2 ’
(3.34)

1

W = 2 ’ (3'35)
3+NR

1+1th2

Rzz = 2 , (3.36)

3 + NR

and

-N
R

R: 2. an)
3 + NR

The relaxation group NR is defined by NR I IRS. The isotropic pre-stress coefl‘icient a is

given by

3
2.

3+NR

 

or

— = 3.38k ( )

The above set of equations, hereinafter termed the isotropic pre-stress (IPS-) theory,

approaches the Boussinesq theory (see Eq. (3.7)) for NR « 1 inasmuch as

r r . . . .
Rn = Ryy = Rzz = 3, Ryz = -5NR, and a = k. The eddy vrscoslty coefficrent forthls

limiting case is the same as the standard k-e theory, via,

2
2 1:

lim v = -C —. 3.39

111,—» 0 ‘ 3 R e ( )

For NR » l, the IPS-theory shifts the kinetic energy to the axial component of the

fluctuating velocity with the result that Rn = R” = l/NR2 and Ru -+ 1. Eq. (3.37)

predicts that the shear component of the Reynolds stress becomes inversely proportional

to the relaxation number, Ryz = -1/NR, and Eq. (3.38) gives or/k = 3m),2 for NR » 1.
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Eq. (3.37) shows that a maximum in —lryz (i.e. 1/./1_2) occurs at NR = J3.

Furthermore, Eqs. (3.25) and (3.37) together with NR = IRS imply that

 

 

. . kz‘m‘z) 40-(uyuz) CF: dy (1)

where

2C

c = R . (3.41)

11 3+le2

Thus, the IFS-theory predicts that the eddy viscosity coefficient cu decreases as the

relaxation group increases, provided CR is modeled as a universal constant. This non-

linear dependence on the mean shear field is fundamentally different than the behavior

presumed by the k-e theory, which employs a constant eddy viscosity coefficient.

The IFS-theory and the Boussinesq theory also predict qualitatively different results

for the invariants of the anisotropic stress. For homogeneous shear,

2 2 2 2
II = bu + by, + bzz + 2byz (3.42)

and

_- 3 3 3 2
III — b1”r + by, + bzz-3bnbyz. (3.43)

For the Boussinesq theory, Eqs. (3.7) and (3.39) imply that but = by), = bzz = 0, and

byz = -NR/3. (3.44)

Therefore, for this special case, Eqs. (3.42) and (3.43) yield

II
2 2

B = all], and 1118 = 0. (3.45)
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Because the third invariant is zero, it follows directly from Figure 3.3 and Eq. (3.45) that

realizable Boussinesq turbulent states are restricted to NR e [0, l] .

It follows directly from Eqs. (3.5) and (3.34)-(3.37) that the IFS-theory yields the

following results for the components of the anisotropic stress

 

 

 

 

 

2

NR

bu = — 2 , (3.46)

3 (3 + NR )

2

NR

b” = 2 , (3.47)

3 (3 + NR )

bZZ = —2byy , (3.48)

and

-N

fl = R 2. (3.49)

3 + NR

The invariants II and III for this theory can be written as

2

II = — (3.50)
[PS 2

3 3 + NR

and

9 + 2111,,2 NR2 3
III[PS = 2 2 . (3.51)

9NR 3 +NR

As the relaxation number goes to zero, Eqs. (3.50) and (3.51) give the isotropic pair

(”J”) = (0,0); as NR-Mo, (”,1”) = (2/3,2/9); and, for NR = 1,

(II, III) = (1/6, 11/576) . Figure 3.4 shows the locus of realizable homogeneous

shear states predicted by the IPS-theory for 0 S NR S co. The asymptotic state measured by



8O

  
Locus Qf Invariant Domain
[PS-States

Boundary

Asymptotic State:

NR = 1 (0.0174. 0.138)

Boussinesq

Regime

 
III
 

Figure 3.4 Anisotropy Invariants Predicted by the [PS-Theory for Homogeneously

Sheared Turbulence
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Tavoularis and Kamik [1989] is also shown on Figure 3.4. Clearly, the IFS-theory

represents a significant improvement over the classical algebraic Boussinesq theory for

which IIIB = 0 for all homogeneous shear states (ch Figure 1.2).

The spatial development in the relaxation group is determined by the transport

equations for k and e. Eqs. (3.2) and (3.3) can be combined to yield the following non-

linear, ordinary differential equation for NR

dNR
71—? = 2NRRyz(CP- 1) + CR(CD— 1). (352)

where the dimensionless development time g is defined by

§ = 25/ 04,) (0) . (3.53)

and Ryz is given by Eq. (37). As é approaches infinity, Eq. (3.52) reduces to the

asymptotic condition given by Eq.(3.4). '

3.4 Parameter Estimates

Although Figure 3.4 shows that the IFS-theory gives an improved prediction of the

anisotropic invariants compared to the Boussinesq theory, the experimentally observed

asymptotic state is nevertheless unattainable. Figure 3.5 illustrates a selection strategy for

the asymptotic value of NR which minimizes the relative error between the asymptotic

experimental state (112.1112) and the locus of attainable states consistent with the IPS-

theory. Therefore, with

”-11: 2 III-III: 2 m

A={ .H—A .In 11“

 

N; is selected to minimize A (see Figure 3.5). This procedure yields N; = 0.945,
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R; = 12;), = 0.257, R; = 0.486, and -R;z = 0.243. With N; = CR(Sk/8)a, the

relaxation coefficient CR = 0.227 for (Sk/e) a = 4.16, as reported by Tavoularis and

Kamik [1989] (see Figure 3.1).

The existence condition for an asymptotic state (see Eqs.(3.4) and (3.52)) provides an

additional equation for the model coefficient CP:

cR(cD- 1)

C=1
P

(3.55) 

a

zisljyiyz

Eq. (3.55) implies that c, = 1.41 for CD = 1.83 and My;z = -0.229. Table 3.1 gives

a summary of the model parameters for the IPS-theory. Table 3.2 gives the predicted

properties of the asymptotic state for homogeneously sheared flows.

3.5 Results and Discussion

Eq. (3.52) with Ryz given by Eq. (3.37) was solved numerically using a fourth order

Runge-Kutta algorithm (Camahan, et al., 1969; see also Appendix H) with a variable time

step. The three model parameters C1,, CD, and CR are assumed to be universal constants

independent of Sk/e. Figure 3.6 shows that the relaxation group NR ( 5 1R5)

monotonically approaches its asymptotic limit for a wide range of initial states

(0 S N; S 10). The development time for NR a N; depends on the initial conditions. For

an isotropic initial condition (i.e. N; = 0), the asymptotic state is approached for

developmental times on the order of ten. However, for highly anisotropic initial conditions

(N; = 10), the approach to the asymptote requires § ~ 30.

Figure 3.7 shows the response of the normal components of the normalized Reynolds

stress subjected to an isotropic initial state (5 = {/3 and N; = 0). Like the relaxation

group, an asymptotic state is attained for §-10 to 30, depending on the initial turbulent

state. This result is comparable to the development times observed experimentally by

Tavoularis and Cousin [1981] and is sensitive to the initial state of turbulence. The
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Table 3.1: Parameter Estimates for the IFS-Theory

 

 

 

 

 

Parameter Estimate Basis

TTIsotropic Decay (Comte-Bellot and Cousin, 1971;

Mansour and Wray, 1994; see Chapter 2)

C}: 1.41 Existence condition for k-e equations

CR 0.227 Optimization of anisotropy invariants    



Table 3.2: Predictions of Asymptotic Statistical Properties for
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Homogeneously Sheared Turbulence

Property [PS-Theory Experimental

NR I 0.945 WAT

kS/e N/A* 4.16

Rx: 0.257 0.236

R», 0.257 0.196

Ra 0.486 0.568

-R),z 0.243 0.165

II 0.153 0.138

III 0.0162 0.0174   
 

l Data point not applicable to this entry.
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Figure 3.6 The Effect of the Development Time on the Relaxation Group for

Homogeneously Sheared Turbulence
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Figure 3.7 The Efi'ect of the Development Time on the Distribution of Kinetic Energy

for Homogeneously Sheared Turbulence ( — [PS-theory; experimental

data (Tavoularis and Kamik, 1989): D R”; A Ryy; 0 R22)
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asymptotic state for the IFS-theory is as close to the data as allowed by the optimization of

the model parameter CR (see Figure 3.5). For an anisotropic pre-stress (g at Q), the

invariants of the Reynolds stress anisotropy can be reproduced exactly (see Chapter 4).

The IFS-theory clearly does not predict a second normal stress difl‘erence, and the

predicted primary normal stress difference, R; — R3), = 0.229, is significantly smaller

than the experimental estimate of 0.372 (see Figure 3.2). These predictions, however, can

easily be improved by using a phenomenological theory with a non-trivial anisotropic pre-

stress. For instance, it follows directly from Eqs. (3.28), (3.29), and (3.30) that

let

R11 = g-k-+Hxx , (3.56)

R -1“ H 357
yy-EZ+ yy’ (' )

and

R —1°‘ H 2NR N2 3587.2-33+ zz- Ryz_ RR)?" (°)

Eqs. (3.56) and (3.57) stem directly from the pre-closure and imply that an anisotropic

pre-stress is a necessary condition for a non-zero second normal stress difference.

Eqs. (3.57) and (3.58) also show that the primary normal stress difi'erence arises from

two distinct physical effects: (1) the primary normal difference sz—Hyy; and, (2) the

convective coupling between the transverse velocity fluctuations and the mean field

gradient.

d(uz)

L‘" VQ‘) = u'y dy fz'
(3.59) 

This fluctuating field is directly responsible for the two statistical correlations (u'zu'y)S

and (u'yu'y)S, which, as indicated above, make the Reynolds stress anisou'opic even if the

pre-stress is isotropic.
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The normalization of the pre-stress (Eq. (3.31)) gives the following expression for

or/k (see Eq. (3.31))

a _ 2
.1; - 1+2NRRyz+NRRyy. (3.60)

For an isotropic pre-stless, Ryz = —NRR”, and Eq. (3.60) reduces to

a — 1 N 361
7" " + RRyz’ ( ' )

With this result, Eqs. (3.56)-(3.58) can be re-written in canonical form:

 

Rn = %(1-t8) , (3.62)

l

R” = 3(1-0) , (3.63)

and

1

R22 = "3"(14'2w), (3.64)

where

was N - (u'zu'y)S_. RRyz _ 4R 2k , (3.65)

It follows from Eq. (3.25) that the above expression for a can be rewritten as

- CR (u'zu'y)S

28 °
(3.66)

 

Thus, the ratio of production to dissipation of turbulent kinetic energy (see Eq. (3.2))

determines the redistribution of energy among the velocity fluctuations. It follows from
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Eq. (3.4) (see also Eq. (3.55) and Table 3.1) that

 

CR CD—l
lim 0 = — = 0.229. (3.67)

Eqs. (3.62)-(3.64) predict a non-zero primary normal stress difl‘erence and a zero second

normal stress difference:

R -R =0 , R —R =0. (3.68)

For the IFS-theory, Figure 3.7 and Eqs. (3.62)—(3.64) show how at redistributes the energy

produced by the coupling between the shear component of the Reynolds stress and the

mean gradient. The experimental data of Tavoularis and Kamik [1989] show the same

qualitative trend as the theory but, clearly, Ryy - Rn a9 0.

Figure 3.8 illusu'ates the possibility that the shear component of the Reynolds stress

may not approach its asymptotic state monotonically. The figure also shows that -Ry'z has

a maximum value at NR = J3. Because N; = 0.945 < J3, the monotonic behavior of

the relaxation group towards its asymptote causes the shear stress to relax monotonically

for initial states characterized by N; < J3. On the other hand, for N; > J3, -Ryz

increases to a local maximum and then decreases to its asymptotic value for development

times greater than ten. If N; > 2.7, the transient shear component of the Reynolds stress

overshoots its asymptotic state at some finite time (see Figure 3.8). This complex transient

response may have the appearance of a quasi-asymptotic condition, but Figure 3.8 shows

that Ryz requires § > 30 to attain its ultimate asymptotic state for highly anisotropic initial

conditions.

The maximum in —Ryz occurs because of two competing physical processes. For small

values of NR, the IFS-theory approaches the Boussinesq (or gradient) transport regime for

which (u'yu'z) ~ S; for large values of the relaxation group, the shear component of the

Reynolds stress approaches the so—called equilibrium transport regime:
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Figure 3.8 The Effect of the Development Time on the Shear Component of the

Normalized Reynolds tress for Homogeneously Sheared Turbulence (a:

N; = 0.2;b: N; = 3;c: N; = 5.0;d: N; = 0.945, —R‘;Z = 0.243)
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2k 28lim . . =__=__.
3.69Sun yu Z) ”R CRS ( )

Eq. (3.69) shows that, in the equilibrium regime, the production of turbulent energy,

-(u'yu'z)S, is proportional to the dissipation of turbulent energy. This non-linear transport

regime arises because the energy in the transverse fluctuations (u'yu'y) decreases

significantly as NR increases due to the redistribution of energy by (2 (see Eqs. (3.63) and

(3.68)). Thus, the [PS-theory for homogeneously sheared turbulent flows yields a shear-

thinning eddy viscosity (see Eqs. (3.40) and (3.41)) which bridges the gradient transport

regime (NR -) 0) with the equilibrium transport regime (NR —-) no):

-(u'yu'z) 2CR k2

”W =W“? = amt?

 (3.70)

For some simple shear flows, the relative time scale NR may span a wide range of values;

Therefore, both transport regimes may occur in the same flow field, albeit at difl'erent

spatial locations.

3.6 Conclusions

As a direct consequence of the pre-closure theory given by Eq. (28), a non-zero

primary normal stress difference obtains regardless of the closure hypothesis for the pre-

stress; however, a non-zero second normal stress difference requires the existence of a

non-trivial anisotropic pre-stless.

For positive I: and e, the IPS-theory predicts realizable turbulent states for 0 S NR S co,

whereas realizable states for the Boussinesq theory occur only for OSNRS 1. This

theoretical result obtains for the IPS-model because the pro-closure relates the Reynolds

stress to a pre-stress having only non-negative eigenvalues. For the special case of an

isotropic pro-stress, all the eigenvalues of the pre-stress are all equal to a/3k (> 0).

The IFS-theory with CR interpreted as a universal constant predicts two distinct
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transport regimes bridged by an effective eddy viscosity which depends on tRS. For

“IRS « l, a gradient transport regime occurs (i.e. (u'yu'z) ~S); whereas, for 1R5 » 1, an

equilibrium transport regime occurs (i.e. (u'yu'z) ~ US).

The time required for the turbulence to achieve an asymptotic state is strongly

dependent on initial conditions. The developmental times needed to reach an asymptotic

state based on the IPS-theory agree qualitatively with experimental observations.



CHAPI'ER4

ANISOTROPIC PRE-STRESS THEORY FOR

HOMOGENEOUSLY SHEARED TURBULENTFLOWS

4.1 Introduction

In Chapter 3, an algebraic pre-closure theory for the Reynolds stress from an analysis

of the equation of motion for statistically stationary turbulent flows was developed. A

spatial smoothing approximation and the use of a memory ansatz for turbulent temporal

correlations were key elements in the development of the following pre-closure theory for

the Reynolds stress

first): = 1:01) . <49

where

g -.-=. [9113(9)] . (4.2)

Eq. (4.1) relates the Reynolds stress to the gradient of the mean velocity, the relaxation

time IR, and the turbulent pre-stress. For large turbulent Reynolds numbers (i.e. k2 » vs),

the relaxation time is assumed to scale with the characteristic eddy tumover time k/e,

1:

TR = CR; ’
(4.3)

where It represents the kinetic energy of the turbulent fluctuations (2k 501' . 3'» and 8

represents the dissipation of turbulent kinetic energy (a §v(V l_¢': (V u') T)). The model

94
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coefficient CR is assumed to be independent of turbulent and mean field statistical

properties.

The turbulent pre-stress I:([f) depends on statistical correlations related to pressure

fluctuations and fluctuations in the instantaneous Reynolds stress,

I EEK-(WE) . (4.4)

With f defined by

. p'
E O —I , 4.5f V [P=+£] ( )

it follows that the correlation (ff) can be expressed as

' .. 11' E.’ 11' .0r) - <V(p)V(p)>+<V(p)(v 3))

+<(V~{)V(%')>+<(Vo{)(‘73)). (4.6)

Although a closure for the pre-stress could be developed by analyu'ng the statistical

correlations appearing in Eq. (4.6), the approach eruployed in Chapter 3 was based on an

alternative strategy which incorporated a direct decomposition of the pre-stress into

isotropic and anisotropic components:

2 2“! 2w 4TR I") 3 ?: + = . ( .7)

The anisotropic pre-stress 2kg is symmetric and traceless. Because tr(u'r_¢') = 2k,

Eq.(4.1) requires that the isotropic coefficient a be determined by the following equation

20: = ting) = 2k+21R(l_¢'_u'):V(u)+‘t:tr(V(u)T- (gig). vat» . (4.3)
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Eq. (4.8) provides a means to relate the isotropic coefficient or to the mean field and the

specific closure hypothesis for the anisotropic pre-stress fl .

In Chapter 3, the implications of an isotropic pre-stress (IPS-) theory, for which

H = 0, were examined. Eqs. (4.1) and (4.7) were applied to a homogeneously sheared

turbulent flow (i.e. S a d<u7)/dy = constant, see Figure 3.1). The evolution of the

turbulent time scale k/e was computed using the k — e theory of turbulence (Hanjalic and

Launder, 1972). For homogeneous shear flows at high Reynolds numbers, the equations

governing the turbulent kinetic energy and dissipation simplify to

 

(uz)(())%I—( = —<li'u'):V<u)—8 , (4.9)

(Z

de <g'g'>IV<y> s

049(0)); 2 —CP 1P _CDT—D , (4.10)

where IP : tD = k/e. ('p and CD are constants independent of the local state of

turbulence. The [PS-theory predicts a positive first normal stress difference and a shear

thinning eddy viscosity coefficient which bridges the more traditional gradient transport

regime for which (u'yu'z) ~ S with an equilibrium transport regime for which

(u'yu'z)~ l/S . However, the [PS-theory erroneously predicts that the second normal

stress difference is zero for homogeneously sheared turbulence. Moreover, the algebraic

pre-closure theory with an isotropic pre-stress cannot explain retum-to-isotropy

experiments for homogeneous turbulent flows (Choi, 1983; Choi and Lumley, 1984; and,

LePenven, etal., 1985).

Therefore, the purpose of this chapter is to further demonstrate the utility of Eqs. (4.1)

and (4.7) by using an anisotropic pre-stress (APS-) model. In Section 4.2, an APS-model

for the pre-stress which incorporates a phenomenological relaxation process consistent

with the return-to-isotropy phenomena is introduced in accordance with Issue (iii) of

Section 1.2. Retum-to-isotropy data are used to determine the phenomenological

relaxation parameter. The extension of the closure model to an anisotropic pre-stress also

serves to address the limitation of the IPS-theory, which had a zero second normal stress
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difference (see (ii) in Section 1.2). The asymptotic state of homogeneous shear is used as

in Chapter 3 to determine the APS-model constants. The non-algebraic nature of the APS-

theory does not permit an a priori evaluation of realizable turbulent states; however, the

realizability of the transient computations are verified a posteriori.

4.2 Anisotropic Pre-stress Theory

Eq. (4.1) can be generalized to a class of non-inertial frames rotating at a constant

angular velocity relative to an inertial frame by replacing the frame-dependent V(u)

operator with V. (14.)4'9. where u. is the instantaneous velocity in the non-inertial

frame and 52 represents the anti-symmetric temporal connection between the inertial and

non-inertial—frames (Bird et al., 1977):

a— . g, (4.11)

I
I
D

where g is an orthogonal dyadic-valued operator (i.e. g - QT = I) and g is the time

derivative. Thus, the pre-closure theory for the Reynolds stress contains an explicit

dependence on the frame of reference through the operator :1 defined by Eq. (4.2).

Unlike the Reynolds stress, the theory deve10ped here assumes that the anisotropic

pre-stress £1 (= 2kg) is an objective property of the motion associated with the mean

field and should not depend on the reference frame. Whence, the anisotropic pre-stress in

a non-inertial frame can be related to the anisotropic pre-suess in an inertial frame by the

following expression (Mase and Mase, 1992)

T. (4.12)

II
a
t

i
t

It

l
u
g

II
i
t

"
(
0

With this hypothesis, a frame indifferent closure model is proposed for Iii. Thus, an APS-

closure theory combines the pre-closure equation for the Reynolds stress (see Eqs. (4.1)
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and (4.7)) and the following linear relaxation model for the anisotropic pre-stress

{1+ rut—g (Mild = 0(9). (4.13)

For large turbulence Reynolds numbers, the phenomenological parameters 2. and B are

assumed to scale with k and e:

k

e

and

B=uc-. on)

C3 and CA are universal model coefficients. In the above equation, the mean strain rate

dyadic (_S) is defined by

29)=V@H«V@»K (4M)

and the mean vorticity dyadic (2') is defined by

2(3) = V(y)- (V(y))T- (4.17)

(11V) can also be written as

<W)=

m
m '( ) . (4.18)

where (1v) is the mean vorticity, (r_v) = V x (u), and g is the permutation triadic.

if is an objective time derivative defined by (see Joseph, 1990; Denn, 1990; Bird et

al., 1977; and Appendix D):
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53(3) ‘33; (g) +<y)-V§-(;V>T-£1-§-(3)-a[(§)-§+£1-(§)]- (4.19)

With a = 0, Eq. (4.19) reduces to the corotational Jaumann derivative. For a = 1 and

a = -1, Eq. (4.19) yields the upper and lower convected derivatives of Oldroyd,

respectively. Appendix D demonstrates that the operator 51(3) is objective for

—oo < a < +oo. Physically, the Jaumann derivative represents the—temporal changes in the

pre-stress relative to a frame of reference moving with the local mean velocity and

rotating with an angular velocity equal to the mean vorticity. Note that Eqs. (4.13) and

(4.19) maintain the symmetry and the contraction properties of the anisotropic pre—stress,

i.e.,

and (4.20)

“
:
1

II

"
a
t

"
3
7
‘

”
I
t

II C

4.3 Anisotropic Homogeneous Decay

For homogeneous turbulence with no mean shear, the anisotropic pre-stress £1 equals

the anisotropic stress 2kb and Eqs. (4.1), (4.8), and (4.13) imply that

(g'g')s -2§k:1+§ (4.21)

and

For this flow, the kinetic energy is governed by the following equation (see Eq. (2.2))

195 = -5 . (4.23)
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For anisotropic homogeneous decay, the relaxation coefficient CA associated with the

anisotropic pre-stress can be estimated from retum-to-isotropy data (Choi, 1983; Choi and

Lumley, 1934; and, LePenven, et al., 1985). With 57 = 2kg, it follows from Eq. (4.22)

that

-— (H) = _——g. (4.24)

Eq. (4.24) shows that the pie-stress retums to an isotropic state provided C). < 1. For

homogeneous, shear-free flows, the anisotropic pre-stress _I_I is equivalent to the

anisotropic stress b:

(5'!) 1
- —I . 4.25

2]: 3'— ( )

 

u
r
n

r
i
g
.

With the second invariant of the anisotropy tensor defined as

II = tr (_b - b) , (4.26)

it follows directly from Eqs. (4.24) and (4.25) that

541(11) = 2(l-CA)

II. .

8 dt Cat (4 27)

 

Combining Eqs. (4.23) and (4.27) yields

d(II) _ 2(1-Cr)l_l
dk .. _c, k (4.28)

If C1 is taken to be a constant, it then follows from Eq. (4.28) that
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II = II (1‘— )", (4.29)

where

2 (l — C1)

n 5 _C—_. (4.30)

1

Eq. (4.29) provides a convenient means for comparing the above theory with retum-to-

isotropy data. In Eq. (4.29), kc and IIa are reference values taken as the first data point for-

which the gradient of the mean field has been effectively removed. Figure 4.1 shows the

retum-to-isotropy data of Choi and Lumley [1984] and of LePenven et al. [1985], which

are summarized in Tables E.11-E13 of Appendix E. In Figure 4.1, only data with a

positive third invariant (III > 0) are chosen, as they more closely represent the

homogeneous shear flow of interest. In order to model CA for a wider class of flows (Issue

(v) in Section 1.2), CA could be viewed as a universal function of the invariants II and III

(cf Sarkar and Speziale, 1990 and Lumley, 1978). However, in this work. C). is assumed

to be a constant.

The solid line in Figure 4.1 indicates the trajectory of the linear APS-theory in the [Mr

phase plane for C1 = 2/3 (i.e. n = 1). It is apparent from Figure 4.1 that most of the

long time decay data are consistent with a decay exponent of unity. The long time data

may deviate from the solid line due to the fact that the initial reference state is not truly

homogeneous and/or shear free. The data in Figure 4.1 can also be correlated by using a

phenomenological closure model which assumes that the pressure-strain rate correlation

in the second-order moment equation for the Reynolds stress is proportional to the

anisotropic stress (Launder et al., 1975),

.S.

——<pp-) = —2kC12§. (4.31)

The phenomenological coefficient Cl is often referred to as the Rotta constant. A value of

C2 = 2/3 in the APS-theory is equivalent to C1 = 3 (cf Speziale, 1991).
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4.4 Homogeneously Sheared Turbulence

For homogeneously sheared turbulence,

 

 

v (10“) 432
(E) - dy fyfzr ( ° )

and

(14"!)
5= 2]: = Rnfxg +R”reg, +Rzzfzfz +Ry2,55; +Rzy_ez_ey. (4.33)

The pre-closure theory (see Eqs. (4.1), (4.2), (4.7), and (4.8)) applied to homogeneous

shear yields the following relationships between the components of the Reynolds stress

and the components of the pre-stress:

10t

Rn = -3- I + H” , (4.34)

R - ”+11 435
yr " ‘3'; yr ’ (' )

2a

R = 1--—+Hzz 4. 6a 3k ( 3)

and

Ryz = -NRRyy+Hyz. (4.37)

In Chapter 3, the above set of equations were examined for the special case H= 0

(IFS-theory). Eqs. (4.35) and (4.36) imply that the first normal stress difference1s given

by
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R -R =1—%+H —H . (4.38)

The second normal stress difference follows by subtracting Eq. (4.34) from Eq. (4.35):

R” —Rn = H” —H“ . (4.39)

Eq. (4.39) shows that. if R” —Rn :6 0, then the pre-stress must have an anisotropic

component which has a second normal pre-stress difference. Eq. (4.38), however, shows

that the isotropic portion of the pre-stress causes a primary normal stress difference in the

Reynolds stress even if the anisotropic part of the pre-stress is zero. Thus, as previously

noted by Parks et al. [1997] (also see Chapter 3), the primary role of the isou'opic pre-

stress is to redistribute the kinetic energy of turbulent fluctuations among the velocity

components subject to the normalization requirement that tr (5) = 1. For homogeneous

shear, Eq. (4.8) reduces to

or

Z = 1+2NRRyz+N2RRyy , . (4.40)

where

Sk
NRsrRS = C4? . (4.41)

The phenomenological role of the isotropic pre-stress is clearly indicated by Eqs. (4.34)-

(4.36). On the other hand, the underlying statistical aspects of the flow which cause a are

expressed in Eq. (4.40) and the contraction of Eq. (4.6).

The APS-theory presented here assumes that the anisotropic pre-stress is governed by

the phenomenological model given by Eq. (4.13). With {:1 = 2kg, Eq. (4.13) can be

written in dimensionless form as
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<1+4>§+*[¥-§<I=¥>!] = 139% (449

where the temporal operator _IL! is defined by Eq. (4.19) with :1 replaced by __I_l. In the

aboveequation,

le

sl-— . 4.434 k0: ( )

and

1: _ka

— — Vk. 4.44D: -ar +(u-) ( )

For homogeneous shear, the normal components of the anisotropic pre-stress satisfy

the following set of ordinary differential equations

 

 

       

 

 

      

(1an

e‘ d§ m-Z-s-aDeIHyz = 0, (4.45)

dHyy

e, dg’ Hyy+(§ +1)DeHe, fl: (4.46)

and

D dH“+(1+)H + “—1 D H -—0 447
ct}? 4 :2 3 8: yz " - ( ' )

Note that the sum of Eqs. (4.45)-(4.47) preserves the anisotropy property, tr (:1) = 0. In

the above equations, the dimensionless development time is defined as

E; = zS/<u,>(0) . (4.48)

The turbulent Deborah number De, introduced in the dimensionless formulation
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compares the phenomenological relaxation time for the anisotropic pre-stress with the

characteristic time of the mean field:

De525: CE. (4.49)

e

The parameter q (see Eq. (4.43)) compares the characteristic relaxation time for the

anisotropic pre-stress with the characteristic turnover time of the turbulent h'netic energy.

The off-diagonal components of the anisotropic stress satisfy the following ordinary

difl‘erential equations

dey

e, da’ 0 , (4.50)

 

 

      

dez

e! dgz

 

=,0 (4.51)        

and

dHyz Det CDC, 1 [CS

t d: 701,, -16Iy)+ (sz+Hyy) = 438. (4.52)

 

  

        

4.5 Asymptotic Homogeneous Shear

As the dimensionless development time increases, the above set of equations predict

the existence of an asymptotic state provided

168’ Its

lim — = (—) (on. (4.53)

Thus, with q -> q“ < co, De, -) De,“ < co, and (kS/e) a < co, the above set of equations

imply that (see Appendix G) H; = 0, H; = 0
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DeaHa

a = 35'- ‘ ". (4.54)
3 1+qa

DeaHa

W -(1+3) ‘ ", (4.55)

3 l+q

DeaHa

H“ = (1—3)—‘—’—‘. (456)

a 3 1+q“

and

c (1+q“)oe°

H“ = B ‘ . (4.57)
yz 2C a 2 a 2 2

1(1+q) +(Det) (l-a /3)

It follows from Eq. (4.43) and (4.9) that

le
a —— = -1 , 4. 84 4“” CM ) (5)

where 4’ represents the ratio of production to dissipation of turbulent kinetic energy:

 

-(u' u' )S

r s —’—?—. (4.59)
8

Eqs. (4.9) and (4.10) imply that

CD-l

glimP=tPa=C 1' (4.60)
409 P-

Thus, the asymptotic value of q can be related to the model parameters in the s—equation

and to the relaxation coefficient C1:
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Ca (CD " Cr)
lim = a: . (4.61)

to} q CP-l
 

It follows directly from Eqs. (4.54), (4.55), and (4.57) that a negative second normal

stress difference develops for the APS-theory provided CBC). > 0 (assuming -J3 < a < 1)

 

 

inasrnuchas

a a Ha Ha DefHa

Riv-Rn: yy- n=-(1-a)l a yz:

+9

_ C C 2

(12“) B ‘ (“is"). (4.62)

a
02 a2 2

(1+q) + (D2,) (l—a /3)

The APS-theory at large turbulent Reynolds numbers contains six phenomenological

coefficients: CD, CD CR, C13’ C13 and a. Isotropic, homogeneous decay requires

CD = 1.83 (see Chapter 2). Anisotropic, homogeneous decay (i.e. retum-to—isotropy)

requires C1 = 2/3 (see Figure 1). ‘

The statistical properties of asymptotic homogeneous shear measured by Tavoularis

and Kamik [1989] can be used to estimate Cp CR, CB’ and a. For instance, as § —> on,

(I?) = 4.16, (4.63)

a

and

ng—R; = —0.040. (4.64)

The invariants II and III associated with the anisotropic stress _b have also been measured.

These parameters are given by (also see Eq.(4.30)):

II = tr (:b ~ 9) (4.65)
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and

III = tr (£2 - _b - b) . (4.66)

For g—m, the data of Tavoularis and Kamik [1989] imply that 11: = 0.138 and

111: = 0.0174.

The existence condition for an asymptotic solution (see Eq. (4.60)) can be rewritten as

 

kS CD ‘ 1

—2R" (—) = . (4.67)

’1 e a CP—l

A consistent set of model parameters (CB CR, CB’ a) can be identified for which Eqs.

(4.38), (4.63), (4.64), and (4.67) are satisfied exactly and which also exactly reproduces

the experimental values for the asymptotic normalized Reynolds stress components. It is

found that C? = 1.60, CR = 0.271, CD = 0.174,and a = -2/3.Table 4.1 summarizes

these parameters

4.6 Transition States for Homogeneously Sheared Turbulence

The component equations for the anisotropic pre-stress depend on the development of

the time scale k/e. Because the mean strain rate is constant (S is a constant) the k- and 8-

equations can be combined into a single equation for the dimensionless relaxation group

(see Eq. (3.52)):

dNR
T:- = ZNRRyZ(CP-l) +CR(CD-1)’ (4568)

where NR = CRSk/e. The development of the Reynolds stress towards an asymptotic

state can be calculated by solving Eq. (4.68) along with Eqs. (4.45)-(4.47) and (4.50)—

(4.52). The transient calculations assume that an initially isotropic, homogeneous
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Table 4.1: Parameter Estimates for the APS-Theory

 

 
 

 

 

 

 

 

 

 

Parameter Estimate Basis

CD 1.83 Isotropic Decay (Comte-Bellot and Corrsin, 1971;

Mansour and Wray, 1994; see Chapter 2)

Cp 1.60 Existence condition for k-e equations

CR 0.271 , , .

Reproduction of asymptotic state for

Cg 0.174 homogeneous shear (Tavoularis and Kamik,

a -213 1989)

C1 213 Retum to isotropy data (III > 0; Choi and Lumley,  1983; LePenven et aL, 1985)
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turbulence is subjected to an instantaneous increase in the mean shear. Therefore,

0 for g < 0

N = (4.69)

N; for§ = 0.

Because NR = 0 for § < 0, the Reynolds stress and the pre-stress are isotropic; however,

once NR = N2, the Reynolds stress and the isotropic part of the pre-stress respond

instantaneously and attain a state consistent with the IPS-theory:

£1 for §< 0

(4.70)

n
:
5

II

R0 for§ = 0,

where 13" is the normalized IPS-Reynolds stress for N§>0 and _H" = 0. Thus 5°

satisfies

4;" ~g=———I. (4.71)

The operator 40 is defined by Eq. (4.2) with NR = N2. Thus, Eq. (4.70) defines the initial

state of turbulence for which the pro-stress is isotropic and the Reynolds stress has a

degree of anisotropy commensurate with the initial relaxation parameter N2. Because

5" = 9, it follows from Eqs. (4.50) and (451) that ny = 0, and H” = 0 for §>o.

The uansient behavior of the components of the anisotropic pre-stress together with the

relaxation group NR were determined by numerical integration using a fourth-order

Runge-Kutta integration algorithm (Camahan, et al., 1969; see also Appendix H).

Figure 4.2 shows the transient response of the relaxation parameter NR as a function of

its initial value (with 0 < N; < 10). Unlike the IPS-theory, the approach to the asymptote

is not necessarily monotonic; as the turbulence nears the asymptotic state, oscillation in
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Figure 4.2‘ The Effect of the Development Time on the Relaxation Group for

Homogeneously Sheared Turbulence
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the Reynolds stress components (ch Figures 4.3 and 4.4) can cause the first term on the

right-hand-side of Eq. (4.68) to generate oscillations in dNR/dE. Approximately ten

developmental time units are required to reach the asymptote, with more being required

for larger values of NOR.

Figures 4.3 and 4.4 present the transient development of the turbulence from an initial

state characterized by N; = 0.7 . This initial value of NR is selected to closely represent

initial states (in terms of the invariant pair (II, 111)) from the experimental dataThese

figures present the individual components of the normalized Reynolds stress and the

anisotropic pre-stress, respectively. The development times are on the order of ten to

twenty units. Compared to the IFS-theory, the salient difference is an exact representation

of the asymptotic values of the Reynolds stress through a non-zero secondary normal

stress difl'erence.

From Eqs. (4.34)-(4.37), it is apparent that oscillations in transient development of the

Reynolds stress components are directly related to similar oscillations in the components

of the pre-stress anisotropy H. As such, it is instructive to investigate the equations

governing the transient behavior of the anisotropic pre-stress as well as the individual

terms which contribute its transient evolution. Eqs. (4.52) and (4.47) may be recast as the

following by dividing each term by Det:

dH
yz 1 p (1+q) 1 a

—_ =-—---———-—-—-H -- H -H -- H +H 4.2
at; 2c2t Det fl 2( 22 yr) 2( n w) ( 7)

and

(4.73) 

dez _ (1+q)H _ (g_

l .

d§ De, zz 3 ’7

Figures 4.5 and 4.6 show the contributions to the development of dHyz/d§ and

dez/d§, respectively, for the simulation shown in Figure 4.4. In Figures 4.5 and 4.6, the

solid line represents the net time derivative and the thin lines represent the individual

contributions to the not time derivative. From Eq. (4.72), it is evident that an initially
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isotropic turbulence (i.e. _H = 0) would remain isotropic in the absence of the linear

strain-coupling coefl‘icient—( CB).and the linear relaxation coefficient (Cab Since both of

these coefficients are modeled as constants, the term gCfl/C1 provides a constant source

of anisotropy in the pre-stress, causing the shear component of If to develop more rapidly

than the normal components (cfi Figure 4.4). Once a significant component Hyz has

developed, it serves as a means to develop normal pie-stress anisotropies (cfi Eqs. (4.45)—

(4.47)). From Figure 4.5, it is seen that, once appreciable normal pre-stress anisotropies

have been developed, they serve to balance the anisotropy source term iCB/C1 for the

component Hyz. For the normal pre-stress anisotropies, the ultimate asymptotic value

obtained represents a balance between a growth term (proportional to Hyz) and an

exponential decay term (proportional to the component itself). Figure 4.6 shows this

representative behavior for the component Hzz'

The source of the oscillations may be determined by investigating the governing

equations for the anisotropic pre-stress components in the following matrix form:

11' (4.74)ll

n
u
,

.
s
.
+

1
e
-

where the tensors and vectors in Eq. (4.74) are defined as follows:

ldHyy/dg

= dez/dE , (4.75)

_dHyz/d§_

3
: I

  

(4.76)

I
:
-

II
I

a

  

b a 0 (4.77)
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and

 

a

0: 0 “-3-1

9e 0 or -;+1. (4.78)

-a+1-a-1 a

l. 2 2 ..  

In Eq. (4.78), a is the parameter associated with the convected time derivative (see Eq.

(4.19)) and (1 denotes the term -(1 +q) /Det. Note that the component H” does not

appear in the above equations as it is not independent (due to the anisotropic pre-stress

being traceless) and has been eliminated from the system of equations.

With the system of equations expressed in the form given by Eq. (4.74), the solution to

the characteristic equation for the matrix 9 yields the eigen values of :13. Positive

eigenvalues indicate that the asymptotic solfition to Eq. (4.74) is not stable, while the

reverse is true for negative eigenvalues. In the event of imaginary eigenvalues, the

solution exhibits oscillatory behavior (Camahan er al., 1969). The characteristic equation

for the matrix 3 is:

det (g - 2.!) = 0. (4.79)

Eqs. (4.78) and (4.79) yield the following cubic equation:

(a—x)l(a-A)2-¢(a)1 = o. (4.80)

where the parameter 4) (a) denotes the following collection of terms

«a=(i-1)(2:—1-)+(i+1)(;‘)-

By inspection, the roots to Eq. (4.80) are
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2.1: or

7.2 = ot-JS . (4.82)

1.3 = 0+4];

Since a < 0 (i.e. q > —1) for all points during the transient simulation, this represents a

contribution to a stable asymptotic state. For -./3 < a < 4/3, 4) (a) < 0, meaning that 2.2

and 2.3 are a complex conjugate pair, as the value for a selected in these simulations is

-2/3. Thus, since the real parts of the eigenvalues are all negative, the asymptotic state is

stable. However, since two of the eigenvalues have non-zero imaginary parts, the

approach to the asymptote will exhibit oscillations.

The isotrepic and anisotropic parts of the pie-stress represent two different responses

of the turbulence to an extemal force. The isotropic portion of the pre-stress causes an

instantaneous response to a mean shear, immediately reorganizing the Reynolds stress to

an anisotropic state. Subsequently, the components of the anisotropic pre-stress relax

towards their asymptotic values as illustrated on the invariant phase plane by Figure 4.7

and on the A-hyperplane by Figure 4.8. On a very short timescale, the turbulence relaxes

towards the isotropic state, but then reverses direction and approaches the asymptote. As it

nears the asymptote, the oscillations in the components of the pre-stress (see Figure 4.4)

result in the two trajectories in Figures 4.7 and 4.8 approaching the asymptote in a

contracting orbit.

4.7 Conclusions

The presented anisotropic closure for the pre-stress extends the predictive capabilities

of the IPS-theory for the case of homogeneous shear due to the interaction of a linear

dependence on the mean strain rate and a frame invariant relaxation effect. Both effects

are required to generate a non-zero second normal stress difference as well as an improved

primary normal stress difference. The fact that experimentally observed values of the
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Figure 4.7 Transient response of Isotropic Turbulence to a Sudden Increase in the

Mean Strain Rate (N; = 0.7): Anisotropy Invariants
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second normal stress difference are negative requires that the phenomenological

parameter Cl3 > 0. The choice of a convected time derivative in the phenomenological

model for the anisotropic pre-stress is required in order to have a non-trivial second

normal stress difference in the absence of non-linear terms in the mean strain rate.

Moreover, an interpolated convective derivative (with a _=_ —2/ 3) is specifically chosen to

represent the finite memory associated with the anisotropic pre-stress (Issue (iii), Section

1.2), inasmuch as it is able to exactly reproduce the experimentally observed asymptotic

Reynolds stress components.

The turbulent pre-stress exhibits two qualitatively different means of reacting to an

external driving force, such as mean shear. The isotropicportion of the pre-stress causes

an instantaneous reorganization of the turbulence in response to the imposition of the

mean shear. This state is equivalent to the state predicted by the [PS-theory at a given

value of the relaxation parameter. Note that this rapid effect results in a non-zero primary

normal stress difference, although the second normal stress difference remains zero.

Conversely, the anisotropic portion of the pre-stress reacts slowly to an imposed mean

shear. The time scale for this reaction is related by the turbulent Deborah number, De,. The

anisotropic pre-stress causes the second normal stress difference and partly influences the

primary normal stress difference.

As the IPS-theory is realizable for all NR given a positive turbulent kinetic energy and

dissipation, the initial state of these transient calculations is always realizable. The

turbulence predicted by the APS-theory remains realizable during the entire transient

approach to the asymptotic state. Similar to the [PS-theory, the developmental times for

the turbulent statistics to reach their asymptotic values depend on the initial conditions and

are comparable to those seen experimentally



CHAPTERS

HOMOGENEOUSLY SHEARED TURBULENCE

IN A ROTATING FRAME OF REFERENCE

5.1 Introduction

‘ Homogeneously sheared turbulence relative to a rotating frame of reference provides a

critical test for Reynolds stress closure theories. Figure 5.1 shows a schematic of this flow.

The mean velocity gradient is constant within the non-inertial frame:

(5.1)V (y) = 55,32.

where S is a constant and both 5’ and 5: represent mutually perpendicular unit vectors in

the non-inertial frame. For this problem, turbulent fluctuations couple with the mean

velocity gradient and the rotational tensor, def’med by

(5.2)2 = £19 = Wigs-5,5,).

where g) (.=. 951) is the rotation vector, 5: is the permutation triadic, and Q is the scalar

rotation rate. The impetus for investigating flows within a rotating frame of reference

stems from the following observations drawn in Section 1.1:

the superposition ofaframe rotation upon a simple mean shear generates a cross-

stream turbulent production term analogous to the cross-stream turbulent

production which arises in inertialframeflows with streamline curvature.
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Figure 5.1 Schematic for Homogeneously Sheared Turbulence in a Rotating Frame.
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Previous authors (Spen'ale and Mhuiris, 1989; Speziale, et al., 1990) have investigated

rotating homogeneous shear flows using two-equation models and second order closures.

They report that asymptotic homogeneous shear states exist for a finite range of the

relative rotation rate (Q/S),

-—oo < (fl/S) m." < Q/S < (SI/S)m< co. (5.3)

The asymptotic states are attained for large development times (t E z/ (“2) (0)) and have

the following limiting behavior

lim (k, e, g) —> (on, on, constant) . (5.4)

t-too

For (SI/S) < (fl/S)”. and (fl/S) > (SI/Sm", the flow changes qualitatively

inasmuch as the turbulent kinetic energy It and the dissipation e decay rather than grow,

i.e.,

‘lim. (1:, e, g) -> (0, 0, oo) . (5.5)

The standard k-e model of turbulence is frame indifferent due to the fact that no

explicit frame-dependent terms appear in the k- and e-uansport equations (see Appendix B

and C) and the fact that the basic Boussinesq approximation for the Reynolds stress is

frame-indifferent. Therefore, the k-e model incorrectly predicts no influence of Q on the

low-order statistical properties of homogeneous shear. However, the Hi theory does

predict a mean field dependence on the rotation because of the Coriolis terms in the

Reynolds equation (see Eq. (1.1)). Moreover, second-order closure models for the

Reynolds stress (see Appendix B) also include explicit Coriolis effects and, thereby,

account for the influence of Q on low-order flow statistics. However, closure models for
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the statistical correlations which appear in the second-moment equation for (5'1!) are

often assumed to be frame indifferent. For example, the [RR-model of Launder et al.

[1975] relative to a rotating frame of reference reduces to the following equation for

statistically stationary rotating homogeneous shear flows:

d(u'u')

 <u,)<0) 2; +051»)- [v (50+ 23] + [v (10+ 23]" <35) =

2 e

--3-g=I-Cli=b

+C2 (<1!!!) ° [V <9) +2] + [‘7 (E>+§]T' (5'2) - § (2'10” <10!) (59)

The convective coupling of the Reynolds stress with the mean velocity gradient and the

rotation dyadic on the left-hand-side of Eq. (5.6) arises naturally with a change of frame.

The terms on the right-hand-side account for two distinct physical processes: (1) an

isotropic destruction of the Reynolds stress due to turbulent dissipation of energy; and, (2)

a redistribution of energy among the components of the fluctuating velocity. Because

(u'u'):__f=l E 0 and tr (b) E 0, a contraction of the two redistribution terms is identically

zero. Thus, these terms do not explicitly influence the energy balance (cf Eq. (1.15))

which follows directly from the trace of Eq. (5.6):

(uz)(0) 1w - u') = -2(u'u'):V (n)—2e. (5.7)
dz - - - - -

Eq. (5.7) has the same form and physical interpretations as its inertial frame counterpart.

Clearly, changes in the kinetic energy of the fluctuating field for homogeneous shear

occur because of turbulent production and turbulent dissipation. The last two terms on the

right-hand-side of Eq. (5.6) account for the slow and thefast redistribution of energy due

to the pressure-strain rate conelation.



128

Application of the LRR-model to return-to-isotropy experiments in an inertial frame

(see Section 4.3) reduces to the same dynamic model as the APS-theory. With a Rotta

coefficient C1 = 3.0, the LRR-predictions and the APS-predictions (for CR = 2/3) are

indistinguishable when applied to the relaxation of homogeneous turbulence to an

isotropic state. However, these two closure strategies predict significantly different

responses in non-inertial frames.

In this chapter, the APS-theory is applied to rotating homogeneous shear flows and the

results provide a basis to compare the LRR-model and the APS-model (see Section 5.5).

The standard k-e transport equations are employed to determine the turbulent time scale

(i.e. k/e) for both the LRR- and APS-models. However, recent research (see Speziale et

al., 1987) suggests that the scalar dissipation equation should also have an explicit

Coriolis effect. Earlier DNS results for isotropic decay by Bardina et al. [1985] and by

Speziale et al. [1987] wem to support this view. However, this fundamental question is

not addressed in this dissertation. Instead, the explicit Coriolis effects in the operator 3

(see Eq. (4.2)) are evaluated and compared with the LRR-model.

5.2 Pre-closure Theory

The turbulent pro-closure for rotating homogeneous shear is the same as that

expressed by Eqs. (4.1), (4.2) and (4.7), with the exception that the velocity gradient in the

inertial frame (cf Eq. (4.2)) is replaced with the sum of the mean velocity gradient in the

non-inertial frame and the rotation dyadic (see Section 4.1). Thus, the turbulent pre-

closure for rotating homogeneous shear is

§T° (1414'); = 201

_ 714mm, (5.8)
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where

ésg+tR(V (9+2) = {+NR[(1+%)nyz-%fzfy] . (5.9)

The trace of Eq. (5.8) utilizing Eq. (5.9) yields the following expression for the

isotropic portion of the pre-stress:

o‘-121v 921v: 192N2R 510
Z ' + RRyz+ 3" RRzz+ +37 R Y)’ ° (' )

Eqs. (5.8) along with (5.9) and (5.10) gives the following component equations for the

pre-closure:

R — 1“ 1
xx - 32+Hxx’

(5.1 )

lot a o 2 2
R” — a; +Hyy+2§NRRyz- (E) NRRZZ’ (5.12)

lot a o 2 2
1222 = 5? +sz-2-S7NRRfl-2NkRyz-(l +3) NRR”, (5.13)

and

n o o a
[-1+§(1+E)N;](—Ryz) = Hyz+§NRRu- (1+?)NRR”. (5.14)

Note that Eqs. (5.10)-(5.14) reduce to Eqs. (4.40) and (4.34)-(4.37) for Q = 0.

As was observed in Chapter 3, the isotropic portion of the pre-stress (Eq. (5.10))

serves to redistribute energy among the normal components of the Reynolds stress. Each

of the last three terms on the right-hand-side of Eq. (5.10) is found in the normal

component equations with equal magnitude, but opposite sign. In Chapter 3, it was noted
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that the term ZNRRyz shifts energy from R” and Rn to the streamwise component Ru.

Conversely, the final two terms in Eq. (5.10) cause a redistribution due to coupling with

the frame rotation to remove energy from R” and Rzz’ which subsequently transfers it to

the axis of rotation, i.e. to er The term 2 (Q/S) NRR),z also arises in the component

equations for R” and R22’ but with opposite sign. These relate directly to the source/sink

terms for velocity fluctuations due to coupling with the rotation dyadic (see Eq. (1.30)).

Because they are of opposite sign, energy transfers from R” to Ru (or vice versa,

depending on the direction of rotation).

The mathematical nature of the operator fl is important in that, if its determinant were

zero, then there would be no algebraic connection between the Reynolds stress and the

statistical correlations responsible for the pre-stress (see Eq. (4.7)). For homogeneous

shear flows, the determinant of g is

det (g) = 1 +1112?- (1 + 552). (5.15)

From Eq. (5.15), it is apparent that det (i) could only possibly be negative for

-l < Q/S < O. In this range, it follows directly that NR < 2 is a sufficient condition for

det (g) > 0. For the asymptotic state associated with a particular value of Q/S, it would

be possible to verify a posteriori that det (1:1) > 0. However, for a transient calculation in

the range -1 < Q/S < 0, there would exist some upper bound above which an initial

condition for NR could not be specified:

9 Q
-l/2

NR’W=[(-§)(1+—)] 22, for -1<o/S<o. (5.16)
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5.3 Coriolis Redistribution of Turbulent Energy for Homogeneous Flows

In the absence of a mean shear, the pre-closure still predicts a frame dependence on the

Reynolds stress due to rotation. With S = 0 and NR = IRS, Eq. (5.9) reduces to:

II
> Il

l

.
N +1122 =;I+1:RQ eez -e ey]. (5.17)

- .1—

From Eq. (5.10), it follows directly that the isotropic portion of the pre-stress is given by

a
-
I
Q

= 1+ (239) 2 (Ryymu). (5.18)

For isotropic turbulence in an inertial frame, 3 = 9 and a/k = 1, since 2 = :1. As 0

changes from zero (either positive or negative), the anisotropic pre-stress remains zero in

the absence of any mean field deformation process. However, this isotropic part of the-pre-

stress changes according to Eq. (5.18) and the operator 5 depends on the rotational rate 0.

Therefore, with S = O, Eqs. (5.8) and (5.17) lead to the following component equations

for the pre-closure:

1

R1): = adv/k,
(5.19)

2 _ I

Ryy-t- (1R0) Ru - ga/k, (5.20)

1912+ (11.9%)?” = got/k, (5.21)

and

Ryz = 0. (5.22)

Eqs. (5.20) and (5.21) combine with Eq. (5.18) to give
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1

R = R = -—-—- . (5.23)

’y 12 3+ (1R9)2

This implies that

1+ (11,0)2
)3 =

(5.24)

3+ (rko)2

since Rxx+Ryy+Rzz = 1.

Thus, the noninertial pre-closure theory for the Reynolds stress predicts a

redistribution of turbulent kinetic energy among the components of the fluctuating

velocity in the absence of any mean field deformation. As the characteristic time scale for

the turbulence becomes large compared to the time scale for rotation (i.e. Itkfll » l), the

turbulence approaches a one-component state (cfi Figure 1.1), with the turbulent energy

aligned along the axis of rotation. This redistribution process is symmetric about

1R0 = 0 and is summarized in Figure 5.2. It is also noted that Eqs. (5.23) and (5.24)

express a realizable turbulent state for all IRQ 5 [-oo, oo] .

The goal of this chapter is to apply the noninertial pre-closure theory to

homogeneously sheared turbulence (see Issue (iv), Section 1.2). The asymptotic states for

both the IPS- and APS- theories are examined along with the effect of rotation on the

qualitative nature of the turbulence. The symmetry about (2 = 0 predicted by Eqs. (5.23)

and (5.24) will be broken by the presence of S > 0.

5.4 Isotropic Pre-Stress Theory for Rotating Homogeneous Shear

Similar to the approach taken in Chapters 3 and 4, the consequences of the IFS-theory

are considered prior to evaluating the APS-theory. Thus, for the following analysis in this
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Figure 5.2 Coriolis Redistribution of Turbulent Kinetic Energy for Homogeneous

Flows
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section, H = 0. For the problem of rotating homogeneous shear, no new

phenomenological parameters are introduced, so the results may be computed directly

from the parameters outlined in Table 3.1.

The asymptotic states for the IFS-theory are determined by solving the initial value

problem for the relaxation group NR at a fixed value of Q/S. Since the evolution

equation for NR does not explicitly introduce frame-dependent effects, the governing

equation is the same as Eq. (4.68):

dNR

1E- : 2NRRyz(CP—1)+CR(CD—l) . (5.25)

If asymptotic states exist (i.e. dNR/d§ -) 0), then it follows directly from Eq. (5.25) that

NRR” does not depend on Q/S inasmuch as:

lim (-NRR ) = CR(CD_1) = 0230 (526)
g..- fl 2(CP—l) ' ' '

 

The above numerical result assumes that the IPS parameters listed in Table 3.1 are

universal. With RM = l-Ryy-Rzz and g = Q, Eqs. (5.ll)-(5.l4) may be reduwd to

three coupled algebraic equations for R”, R”, and R”. During the transient calculations,

the coefficient matrix for equations relating these three components is inverted using a

Gauss-Jordan elimination technique (Camahan et al., 1969). Although there is no explicit

dependence on Q/S in the equation for NR, the asymptotic state N; does depend on

Q/S due to the Reynolds stress components. The initial state used to compute the

approach to the asymptotic states is the inertial frame asymptote:

N; = 0.945. (5.27)

The initial value problem was solved using a fourth order Runge-Kutta integration scheme

(Camahan et al., 1969; see also Appendix H).
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With H = 0, Eqs. (5.12) and (5.13) may be expressed as follows:

C C [R ] 1 Q/S
11 12. ’2 = ( )-2NR ( ) (528)

R yz ’ '(C21C22) Rzz l 1+Q/S

where

(211 = €22 = 2, (5.29a)

Q 2

C12 = l+N§(—§) , (5.2915)

and

Q 2

c21 = 1+N§(1+—S-) . (5.29c)

For g —) no, NRRyz approaches 0.230 as indicated above. Therefore, the determinant of

the coefficient matrix in Eq. (5.28) must be non-zero:

det(£) = 4-[1+N§(%)2][1+Ni(l+%)2]#0 . (5.30)

For a fixed value of Q/S, there exists an N; such that the condition det (9 = 0 is met;

this identifies states for which asymptotic states do not exist. Thus, the limits on Q/S for

which an asymptotic state cannot exist is determined by the intersection of N; and N2.

Both N; and N; depend on ms. The solution to Eq. (5.30) for det (g) = 0 is

 

  (111;)2: (”4” 2[-11J1+ 124’ 2], (5.31)

2(1+Q/S) (1+¢)

where
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= (1+Q/S) 2

¢‘[ (Ir/S) ]

Note that only the positive root from Eq. (5.31) is considered, as N; (SI/S) is a real-

valued quantity.

Figure 5.3. presents the results of the IPS-asymptotic states for N2. These results are

qualitatively similar to other second-order closure models. The IPS-theory predicts

unbounded growth of k and 8 over the range -l.26 < 0/S < 0.26. A similar behavior is

predicted by the second-order closure of Launder et al. [1975] for —0.11 < Q/S < 0.39.

Outside of this range, the flow changes character; both It and 8 become decaying functions

and NR —-) no (see below). The minimum value of the relaxation group is

N; m." = 0.834, which occurs at Q/S = —0.5; the maximum value of the relaxation

group is N;ma 1.27, occurring at 9/5 5 0.26 and ms 5 -l.26.

Figures 5.4 and 5.5 complement Figure 5.3 in that they show the components of the

asymptotic Reynolds stress as a function of Q/S and the corresponding behavior on the

turbulent energy simplex. Figure 5.4 shows the redistribution effects due to the isotropic

pre-stress and the rotation coupling outlined in Section 5.2. As IQ/SI increases, the terms

(Q/S) zNiku and (1 + Q/S) 2N2Ryy grow, causing the isotropic pre-stress to transfer

turbulent energy to the rotation axis. Similarly, the redistribution term arising due to

rotation (~ (SI/S) NRR”) causes a net transfer of energy to Rzz from R” when Q/S > 0

and vice versa when (2/S < 0. Both figures indicate that the solution is symmetric about

the point 9/S = -0.5. Specifically, the following properties are noted:

Raul/S) = R3 (-Q/S— 1) , (5.32)

Ryy(Q/S) = Rzz (-Q/S- 1), (5.33)
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Asymptotic Homogeneous Shear (IFS-Theory)
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and

Ryz (Q/S) = Ryz (-Q/S— 1) . (5.34)

It follows directly from Eqs. (5.32)-(5.34) and the property Rxx + Ryy + Rzz = 1 that the

anisotropy invariants share the same symmetry property:

”(Q/S) = II (—Q/S - 1) , (5.35)

and

III (Q/S) = III (-Q/S — l) . (5.36)

These results stem from the isotropic pre-stress assumption and the fact that

g (Q/S) = {Hz/s — 1) . (5.37)

Eq. (5.37) notwithstanding, subsequent introduction of an anisotropic pre-stress will be

seen to destroy the symmeuy properties possessed by the IPS theory.

Figure 5.6 shows the transient behavior at infinite Reynolds numbers of NR for three

values of ms. The initial conditions correspond to N; = 1. The results illustrate that

two different flow regimes occur: an asymptotic regime (described by Eq. (5.4)) and a

decay regime (described by Eq. (5.5)). For 0/S = -0.5, NR approaches a constant value

in about ten dimensionless time units. For 0/S = 1.0 and -2.0, however, NR grows

monotonically without bound.

The relative growth rates of the turbulent quantities k, e, and Re follow directly from

Eqs. (3.2) and (3.3):
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 __ = .. -1 , 5.38

k d: CR ( )

1 2C R

.295 _._ __£N_£_YE_C , (5.39)
6 dt CR D

and

321‘: = — 2(2—CP)NRRy

Re (It CR

 ‘ - (2 — CD) . (5.40)

In the above equations, ‘0 a k/e. In the absence of turbulent production (i. e. NRRyz = 0)

Eqs. (5.38)-(5.40) describe the decay problem presented in Chapter 2. If an asymptotic

state obtains (see Eq. (5.26)), then all three of the above parameters approach the same

limit given by

r t r C -C

(.1292?) = (.2515) = (.2213) = D P, (5.41)
1: dt 8 dt a Re dt 0 CP-l

 

For the IT’S-parameters listed in Table 3.1, the dimensionless asymptotic growth rate is

1.024. The relative growth rates in the asymptotic regime are shown in Figure 5.7.

Figure 5.7 shows that, after approximately ten dimensionless time units, k, e, and Re

achieve their limiting growth rates. Similarly, Figure 5.8 indicates that roughly the same

amount of time is required for the Reynolds stress components to reach their asymptotic

values. As expected, (NRR”) 0 is reproduced exactly (see Eq. (5.26)). The initial values

for the Reynolds stress components are determined by the isotropic portion of the pre-

stress; a specification of values for N; and Q/S causes an instantaneous reorganization

of an isotropic turbulent state to an anisotropic turbulent state defined by Eqs. (5.10)-

(5.14) with :1 = 9.

Figures 5.9 and 5.10 show the transient behavior of the turbulent time scales and the
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Reynolds stress in the decay regime (Kl/S = +1.0, -2.0). k, e, and Re ultimately decay

with time (i.e. negative growth rates at large development times). This occurs because

NRRN -> 0 in the decay regime (as seen in Figure 5.10). The asymptotic decay rates for k,

e, and Re follow directly from Eqs. (5.38)—(5.40) by setting NRR” = 0 These asymptotes

are indicated in Figure 5.9 by the dashed lines. Although NR -) co in the decay regime,

Ryz remains realizable and decays more rapidly than NR grows, such that the product is

also approaching zero. Additionally, it is seen that the effect of rotation in the decay

regime is to asymptotically shift the turbulent energy into the energy component along the

axis of frame rotation:

Rx -> 1, (5.41)

R” —> O, (5.42)

and

Rzz —-) 0. (5.43)

For an isotropic pre-stress, it follows directly from Eqs. (5.11) and (5.41) that

9 —> 3 (5.44)
k

in the decay regime. Thus, Eq. (5.41) implies that (u'xu‘x) —> 21: -) 0. Eq. (5.12) with

Hn = 0 and Eq. (5.44) together with the observation that NRR” -—) 0 yield the following

limiting behavior for R”,

2

R” ->1- (tr/S) NfiRzz. (5.45)
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Since R” -) 0, the product NRRzz must be approaching a constant in the decay regime in

order to balance the first term on the right-hand-side of Eq. (5.45). Thus, in the decay

regime for large values of NR, Eq. (5.45) reduces to

1

R —> ————. (5-46)

“ (tr/$21)];

Similarly, Eqs. (5.13) and (5.44) combine to give

2 2
Ru -) 1 — (1+Q/S) NRRyy (5.47)

in the decay regime. Thus, for large values of NR, Eq. (5.47) implies that

1 .
_,

(5.48) R .

” (1 +Q/S)2Ni

It follows directly from Eq. (5.14) that Ryz a 0 for the limiting behavior expressed by Eqs.

(5.46) and (5.48). Thus, Schwarz’s inequality is satisfied.

For decaying homogeneously sheared turbulence, Eqs. (5.46) and (5.48) provide a

prediction for the distribution of turbulent energy in the plane of rotation:

R 2
i = (l-I-Q/S) . (5.49)

Ryy (fl/S)2

 

For the two relative rotation rates presented in the decay regime (i. e. +1.0, -2.0), the

transient ratio of Rzz/Ryy approaches 4.0 and 0.25, respectively, which is in accord with

Eq. (5.49).

Figures 5.11 and 5.12 address the issue of realizability of the IPS-theory for rotating

homogeneous shear. Figure 5.11 shows all of the states within the asymptotic regime (i.e.
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—1.26 < Q/S < 0.26). Each point within the L-diagram is parameterized by at least one

pair of (Q/S, NR) , with the exception of the two shaded areas. These regions contain no

IPS-trajectories which relax to an asymptotic state. Trajectories on the L-diagram

represent lines of constant 52/S, along which the various points are parameterized by NR.

Due to the symmetry of the IPS-theory about Q/S = —0.5 (see, esp., Eqs. (5.35) and

(5.36)), each trajectory corresponds to two values of the relative rotation rate. The

trajectories for Q/S and —Q/S — 1 are identical. All trajectories are realizable and are

attracted to the highlighted line in the figure, which represents the locus of asymptotic

states for -1.26 < 0/S < 0.26. The arrows indicate the path that the anisotropy invariants

take as they approach the asymptote.

Figure 5.12 is the analog of Figure 5.11 for the decaying homogeneous shear states

(Q/S>0.26 and Q/S<-1.26). For the decaying states, only one region of the L-

diagram is inaccessible. As indicated in Figure 5.10, the decaying states all relax towards a

one-component turbulence asymptote, with all of the turbulent energy aligned along the

rotation axis. All states between the isotropic state and the oneccomponent limit remain

realizable.

From the preceding results, it is apparent that a rotation offrame coupled with a mean

shear has two significant effects. First, for small absolute relative rotation rates in the

asymptotic regime, rotation causes two redistribution effects among the normal

components of the Reynolds stress via the isotropic pre-stress: Rzz <—> R” and

(Ryy, Ru) —) Rn. In this case, however, the flow retains the same qualitative character it

had in the inertial frame: both It and a grow without bound, but at the same relative rates.

However, at larger absolute relative rotation rates, the effect of frame rotation drastically

affects the turbulent structure. Large rotation rates have the effect of completely cutting

off turbulent production due to coupling of the mean shear and Reynolds stress (i.e.

N R -) 0 rather than NRR),z -) constant). This causes the turbulence to decay and,
R yz

thereby, to transform into a one-component turbulence with Rn -) 1. It is noteworthy that
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either asymptotic or decay trajectories by the IPS-model remain within the L-diagram,

although some of the L-states are only attainable in one of the two regimes. All states

predicted by the IPS-theory are realizable.

5.5 Anisotropic Pre-Stress Theory for Rotating Homogeneous Shear

The extension of the model predictions for the APS-theory follows directly from the

procedure outlined for the IPS-theory. The phenomenological model for the anisotropic

pro-stress was developed in Chapter 4. Again, no additional unknown closure terms and/or

phenomenological parameters arise in the rotating frame (relative to the inertial frame), so

the parameters in Table 4.1 allow the complete description of the rotating homogeneous

shear flow.

Eq. (5.25) for the evolution of the relaxation parameter applies as it did previOusly.

However, the asymptotic invariant for the product NRR” is now given by

CR(CD- 1)

(-N ) =
RR” a 2 (CP— 1)
 

= 0.186. (5.50)

The previous approach for determining the asymptotic states by solving the initial value

problem remains valid; however, instead of having one differential equation for NR

coupled with a set of algebraic equations, additional differential equations are required to

determine the anisotropic pre-stress Li. Since the model for g is frame invariant, the

governing equations have the same form as before (see Eqs. (4.42), (4.45)—(4.47), and

(4.50)-(4.52)). Specifically, the four components of the anisotropic pro-stress are governed

by the following set of ordinary differential equations:

(11!
XI

4’;

 

2

Der + (l +q) Hn-gaDe‘Hyz = 0, (5.51)
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group. The boundaries of the asymptotic regime are shifted (-1.56 < Q/S < 0.19 in the

asymptotic regime), but, more significantly, the symmetry about 9/S = —0.5 no longer

occurs.

Figures 5.14 and 5.15 show how the components of the Reynolds stress and the

anisotropic pre-stress are distributed in the asymptotic regime. Figure 5.15 indicates that,

even though the phenomenological equation governing g is frame indifl‘erent, the implicit

dependence of £1 upon the frame due to the coupling with the relaxation group causes the

pre-stress anisotropy to vary with Q/S. From Eqs. (5.11)-(5.l4), it is seen that the

anisotropic pre-stress serves to systematically increase the levels of Rzz and RN, while

Ru and Ryy are systematically decreased. These trends directly result in the destruction

of the symmetry property that existed for the IPS-theory about the point 0/S = -0.5 .

Figures 5.16 and 5.17 show the asymptotic states for the APS-theory on the energy

simplex and the L-diagram. The locus of asymptotic states on the energy simplex further

illustrates the asymmetry of the energy distribution illustrated by Figure 15.14.

Qualitatively, the trend of redistributing the turbulent kinetic energy into the component of

the Reynolds stress along the rotation axis is seen again at the boundaries of the

asymptotic regime. The broken symmetry is less pronounced on the L-diagram, although

it is seen slightly due to the fact that points along the locus of asymptotic states are no

longer parameterized by two values of Q/S; for the APS-theory, each point is

characterized by a unique value of Q/S.

The trajectories for the APS-theory are not presented in the same detail as for the IPS-

theory. The purpose of these calculations was to demonstrate the qualitative differences

between the asymptotic and decay regimes. The transition between these two regimes is

controlled by the behavior of the product NRR,z (see Eqs. (5.38)-(5.40)). Although the

asymptotic growth rates of k, e, and Re have different numerical values for the two

theories (a value of 0.374 vs. 1.024, sec Eq. (5.41)), the qualitative features of the flow

remain unchanged. Figure 5.18 shows the effect of rotation on the relaxation group NR for
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Turbulence in a Rotating Frame (APS-Theory).
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Q/S = —2.0, —0.5, 1.0. As before, the stable trajectory approaches its asymptote in

roughly ten time units, while the two cases in the decay regime exhibit unbounded growth.

The lack of symmetry is also evidenced in this plot by the different growth rates of NR for

the two cases Q/S = —2.0 and +1.0.

5.6 Conclusions

Both the IPS- and APS-theories predict two distinct regimes for homogeneously

sheared turbulence in a rotating frame of reference. In an intermediate range of relative

rotation rates, i.e. (Q/S) m." < Q/S < (Q/S) MI, an asymptotic regime is observed in

which both the turbulent kinetic energy and dissipation grow without bound, but at the

same relative rates. In this regime, the isotropic portion of the pre-stress serves to

redistribute the components of the Reynolds stress as a function of Q/S and II/RRyz

approaches a constant independent of Q/S.

For Q/S< (Q/S) m." and Q/S> (Q/S) I'm, the two clusure theories examined

predict a qualitative change in the nature of the flow. The presence of large absolute

relative rotation rates completely eliminates turbulent production (i.e. NRRyz —> 0 for

large development times, rather than NRR” -> constant). Thus, the turbulence becomes

uniformly decaying, with all of the turbulent energy being aligned along the axis of

rotation.

The nature of the pre-closure operator A combined with the isotropic pre-stress

assumption yields a symmetry property for the asymptotic state about (US = —0.5.

Subsequent introduction of an anisotropic pre-stress with non-zero normal stress

differences breaks this symmetry property.

The IPS-theory is shown to predict only realizable states for -oo < Q/S < co and is

seen to span the entire L-diagram of anisotropic stress invariant pairs. Certain regions of
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the L—diaglam are only accessible to the asymptotic or decaying turbulent regimes. The

asymptotic states of the APS-theory are verified a posteriori to be realizable.



CHAPTER 6

CONCLUSIONS

The concept of realizability was addressed for each of the homogeneous flows studied

herein. Specifically, it was desired to construct a turbulence model which would only

predict realizable turbulent states. Where possible, this quality was verified apriori. When

the nature of the governing equations did not permit such an analysis, the realizability of

the turbulent states was verified a posteriori.

For the problem of isotropically decaying turbulence, the decay coefficient CD in the

dissipation equation was selected to generate a realimble decay process for 0 < Re < co.

Specifically, if 1 < CD (Re) < 2, both It and e are decaying and non-negative. In the final

form of the model, CD (Re) ranges between 1.4 and 1.83, guaranteeing a realizable

decay. Similarly, the algebraic nature of the pre-closure when applied with the isotropic

[ire-stress assumption yielded a Reynolds stress tensor which was realizable for all values

of the relaxation group 0 <NR< no. This is due to the fact that the pie-closure has the

pr0perty that. given non-negative eigenvalues for the pre-stress, the Reynolds stress will

also have non-negative eigenvalues. Thus, since the eigenvalues for the IPS-theory are

always positive, realizability is preserved for all turbulent states characterized by a given

value of NR. With the anisotropic pre-stress theory, however, the coupling of the ODEs

for the anisotropic pre-stress {I and the algebraic pie-closure equations for 1:? did not

present a priori evidence that the solutions are always realizable. However, it was found

by Conlputation that the transient and asymptotic states were always realizable for all

163
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realizable initial conditions tested (i.e. 0 < N; < 10).

A semi-theoretical treatment of the Kérmén-Howarth equation for isotropic turbulence

yielded a prediction of the dissipation destruction coefficient CD (Re). The predicted

destruction coefficient utilizes two limiting values: CD (0) = 1.4 based on the final

decay data of Batchelor and Townsend (1948); and, CD (00) = 1.83 based on the high

Reynolds number data of Comte-Bellot and Corrsin (1971). Notable is the fact that the

predicted form of the dissipation destruction coefficient does not exhibit a monotonic

progression between the two limits, as is the case in other, empirical approaches to this

problem (see Hanjalic and Launder, 1976; Lumley, 1978). This functional form was then

applied to various experimental and direct simulation data sets and was found to be

capable of quantitatively reproducing the decay process over a wide range of initial

turbulent Reynolds numbers: 7.5 < Rea < 750.

The application of the isotropic pre-stress theory to the problem of homogeneously

sheared turbulence was found to yield a significant improvement compared to

Boussinesq-type turbulence models in that it predicts a non-zero primary normal stress

difference as a direct result of the pre-closure theory. Specifically, the primary normal

stress difference receives contributions from both the isotropic and anisotropic portions of

the pre-stress (see Eq. (4.38)). Thus, even though if = Q in this case, the isotropic pre-

stress contribution (or/k) provides a non-trivial primary normal stress difference. The

development times required for the turbulence to approach its asymptotic state are in close

agreement with those times found in experimental treatment of homogeneous shear, being

on the order of 10 dimensionless developmental time units (25/ (uz)). The prediction of a

non-zero second normal stress difference was not possible without some contribution

from the anisotropic portion of the pre-stress (see Eq. (4.39)).

In order to capture this second normal stress difference as well as to reproduce the

relaxation effects seen in the return-to-isotropy experiments, the anisotropic portion of the

pre-stress was modeled phenomenologically with an objective convected time derivative
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which included both pre—stress relaxation and linear mean strain coupling effects. This

allowed the exact reproduction of the experimentally observed asymptotic state, which

was not possible with the isotropic pre-stress assumption. It was found that coupling of the

relaxation and linear strain-coupling effects resulted in the fact that both were required in

order to reproduce a non-zero second normal stress difference. Additionally, the

combination of these two effects results in a transient approach to the asymptotic state

which exhibits oscillatory behavior. These oscillations stem from the choice of the

convected derivative parameter —J3 < a < J3, which results in imaginary eigenvalues for

the system of equations governing the decay process.

The expression of the pre-stress I: (_ff‘) in terms of an isotr0pic portion (2(1/3)! and

an anisotropic portion 2kg results in two qualitatively different responses to an external

mean shear. The isotropic portion, which is determined algebraically and is derived from

the pro-closure without any additional closure hypothesis, results in a “fast” response to an

external mean shear. The decision to include the phenomenological effect of relaxation in

the model for the anisotropic pre-stress, however, results in a “slow” response to a mean

shear, causing the turbulence to evolve transiently through time.

The application of the pre-closure theory to homogeneously sheared turbulence in a

rotating frame of reference was found to predict two qualitatively different asymptotic

states as a function of the ratio of the frame rotation rate to the mean shear rate (52/S). For

intermediate 52/S (i.e. -1.26 < Q/S < 0.26 for the IPS-theory), the turbulence maintains

the character it displays in the inertial frame: both It and a grow without bound and

k/e -9 constant. At large values of IQ/SI (i.e. Q/S > 0.26 and Q/S < -l.26 for the

IPS-theory), however, the turbulence changes to a uniformly decaying process. This

exchange is caused by a concentration of turbulent energy along the axis of rotation,

which effectively eliminates turbulent production, leaving only turbulent destruction

effects. Additionally, the IPS-theory is found to yield realizable predictions for all

—oo < Q/S < co, again owing to the character of the pre-closure which preserves the trait
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of positive eigenvalues in the pre-stress.

The qualitative features mentioned above apply equally to both the isotropic and

anisotropic formulations for the pre-stress. Small quantitative differences exist, such as

the exact values of Q/S which delineate the boundaries between the asymptotic and

decay regimes. For instance, the asymptotic regime for the APS-theory exists over the

range —I.56 < 0/S < 0.19, which is similar to the range for the [PS-theory given above.

The salient difference between the two theories lies in the symmetry property exhibited by

IPS-theory about Q/S = -0.5 which is not present in the APS-theory. This is due

exclusively to the fact that the pre-stress is no longer isotropic (i.e. :1 $9) and its

components provide contributions to the Reynolds stress components which are not all

equal.

A major portion of this work has been dedicated to the development and evaluation of

two closure hypotheses for the pre-closure theory developed in Chapter 3. The isotropic

pre-stress (IPS-) theory was initially investigated because it introduced no additional

closure hypotheses. This was then extended to an anisotropic pre-stress (APS-) theory in

order to capture relaxation effects as well as a second normal stress difference for simple

shear flows. In retrospect, however, each of the two closure theories has its own

distinctive advantages and disadvantages.

For instance, the IPS-theory represents a significant improvement over the traditional

Boussinesq approach; in a simple shear flow, the IPS-theory is uniformly realizable and

predicts a non-zero primary normal stress difference. Relative to the APS-theory, the

algebraic character of the IPS-theory may make it more attractive for use in practical

applications. Although a 3x3 matrix inversion must be performed at each discrete point in

a given domain, no additional differential equations beyond the four required for the

continuity equation and the equation of motion are needed. This is a computational

advantage compared to both the APS-theory as well as other traditional second-order

Reynolds stress modeling approaches, which require the solution of an additional six
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differential equations in the most general case. Additionally, the algebraic nature of the

IPS-theory lends itself more readily to theoretical analysis. For instance, it is possible to

demonstrate a priori that the IPS-theory predicts only realizable states for homogeneous

shear flows and that the entire Lumley diagram is accessible to the theory, with each point

therein being parameterized by one or more pairs of values for (NR’ Q/S) .

In contrast the APS-theory expands upon the predictive capabilities of the IPS-theory

by providing additional degrees of freedom in terms of model parameters which allow it to

capture more physical effects. For example, the phenomenological model for the

anisotropic pre-stress is able to reproduce both the relaxation effect seen in return-to-

isotropy as well as the second normal stress difference exhibited in homogeneous shear

flows. As mentioned above, however, this improved predictive capabilities come at the

cost of additional differential equations for each of the six anisotropic pre-stress

components. Not only would this greatly increase the computational burden for more

complex flow simulations, but, from a theoretical standpoint, also makes analysis and

interpretation of results more complicated.



CHAPTER 7

RECOMMENDATIONS

7.1 Further Study

The analysis of the KArman-Howarth equation involved the semi-empirical expression

of several inteng properties of the double and triple longitudinal velocity correlations.

While there is not the expectation that the absolute values of the integrals themselves are

necessarily correct, the working hypothesis is that the integral ratios, as they appear in the

analysis of the Kennan-Howarth equation, are reasonably well characterized. Either direct

simulation or experimental measurements of isotropically decaying turbulence could be

applied in order to estimate the extent to which these integral properties are adequately

represented, provided that both the double (Bu) and triple (Tm) longitudinal velocity

correlations are accurately determined (cfi Eqs. (2.36)-(2.38)).

With this simulation and/or experimental data, the validity of the modeled ratios 12/I1

(see Eq. (2.63)) and 13/11 (see Eq. (2.71)) which appear in the modeled form of the IKH-

equation (Eq. (2.44)) may be verified directly, as the parameters Re, P, and .8 can all be

derived from the velocity correlation data. The variation of the integral parameter I1 with

the turbulent Reynolds number (or, equivalently, within the context of this theory, the

destruction coefficient .8) can be verified by integrating Eq. (2.69):

J

(“II/11,0) = g I [1+ (a—l) IfilIdMfl). (7.1)

J
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Ultimately, the degree to which the integral approximations applied in the theory do or do

not agree with experimental values will either lend support to this approach or suggest

further avenues for research, in terms of the manner in which the integral ratios are

modeled.

The process of retum-to-isotropy could be further addressed, as it has been analyzed

only for the case of a positive third invariant (the state observed for homogeneous shear in

an inertial frame) and has been modeled as a universal constant. There exists a larger body

of experimental data which may suggest that either: (1) the time constant for decay is a

function of the local turbulent state such that C1. = C,L (II, III, Re) ; and/or, (2) the decay

process should include both linear and non-linear relaxation effects (Sarkar and Speziale,

1990; Speziale, 1991). ‘

The dissipative time scale in the e-equation has been modeled as 10 cc k/e. This

formulation is not capable of explaining the effect of a slower rate of decay of an isotropic

turbulence in a rotating frame of reference. Specifically, direct simulations of this flow

(Bardina et al., 1985; Speziale er al., 1987) indicate that an increasing rate of frame

rotation has a pronounced effect in that it reduces the turbulent dissipation e, causing the

turbulent kinetic energy I: to persist over a longer period of time. This flow is governed by

a system of two ordinary differential equations, one each for k and e. The equation

governing the turbulent energy (see Eq. (2.2)), however, is exact and has no explicitly

frame-dependent terms. Therefore, this increased persistence of turbulent energy must be

localized to the modeled equation for the turbulent dissipation (see Eq. (2.4)). It is thus

suggested that the e-cquation be revisited and the characteristic time scale 1:D be modified

to include frame-dependent effects.
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7.2 Further Application

The work contained herein was primarily aimed towards achieving Objectives (1)-(iv)

in Section 1.2. That is, theoretical problems were selected such that each of these four

issues could be isolated or built upon based on previous results within the dissertation. For

example, the flows of isotropic decay and return-to-isotropy allow the determination of

the model parameters CD and C , respectively, independent of all other model

parameters. With this basis, the application of the APS-theory to homogeneous shear flow

then allows the final calibration of model parameters to achieve the goal of accurately

representing both the primary and secondary normal stress differences.

Objective (v), i.e. universality, however, is not addressed directly in this work. This

question can be answered through the further application of the APS-theory to other test

flows with a subsequent comparison of the predictions with known results. Of course, the

extent to which the mean field and turbulent quantifies agree with experimental values is

important. However, other questions also arise. For example, for a given flow, what

restrictions, if any, are required to ensure realizability or to ensure that the pre-closure

operator 11 (see Eq. (4.1)) is invertible. Of course, an additional test of universality is the

application of the theory to a practical application of engineering significance. Since this

study was, in part, motivated by the poor performance of the Boussinesq theory in flows

with streamline curvature, a cyclone would be an ideal case for testing the developed

model.

The cyclone as a centrifugal separator has a wide variety of separation and

classification functions. A generic cyclone with its relevant dimensions is shown in Figure

7.1. A classical application for a cyclone is the separation of particulate solids from a gas

or liquid medium. Another example is the use of a hydrocyclone for liquid/liquid

separations. For this application, there generally exists a relatively small centrifugal
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driving force due to the small density difference between the two liquid phases (typically

~ 0.2 g/ml). While it is generally true that the ability to accurately predict the interior flow

patterns may aid in cyclone design, this capability is more important in the liquid/liquid

separator. The large density difference in a solid/fluid cyclone can yield acceptable

separation efficiencies for a wide range of operating parameters. Because this density

difi‘erence is so small for the liquid/liquid application, however, it is important to be able

to characterize the interior flow within the hydrocyclone in order to potentially maximize

the separation driving force provided by the interior flow.

There are several characteristics common to cyclone flows. In general, they are all

high Reynolds number flows with a significant swirl component. This swirl flow is a

Rankine-type vortex with a forced vortex structure along the cyclone core and a free-like

vortex structure in the outer region. Although the flow may be adequately characterized as

axisymmetric, an undulating axial velocity profile combined with toroidal recirculation

zones makes for a fully three-component flow field.

Despite the challenges that swirling flows present towards modeling, there exists a

need for a practical engineering model which can accurately predict not only mean field

quantities, but also turbulence quantities. An accurate turbulence model is instrumental in

providing much of the information required to predict hydrocyclone separation

efficiencies. Specifically, a converged solution to a turbulent flow problem provides both

information concerning the mean field velocities and pressure as well as the six

components of the Reynolds stress. The role of these terms becomes apparent when one

examines the equation governing the acceleration of a dispersed phase particle (in a

Lagrangian frame; Brodkey, 1967):

d? "’r _ _
m4; = 3nud(y-g)-B:Vp+? ————vtVu . (7.2)

In the above equation, y is the dispersed phase velocity and It the continuous phase
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velocity. Similarly, md = (rtd3pd) /6 and me = (ndspc) /6 represent. respectively,

the mass of a spherical volume of diameter d for the dispersed and continuous phase.

Eq. (7.2) relates the acceleration of the dispersed phase particle acceleration to the

Stokes’ drag force, the fluid pressure gradient, and the added mass effects. Eq. (7.2) does

not include the Basset term, nor does it account for particle-particle interactions or drop

coalescence/break-up/deformation. The application of Eq. (7.2) allows one to compute

dispersed phase trajectories as a function of particle size which further permits the

prediction of separation efficiencies given an inlet feed size distribution.

Eq. (7.2) is written for the instantaneous particle and continuous phase velocities, but a

turbulence model yields mean field quantities. There are two ways to proceed from this

starting point. Integration of the particle trajectory equations several times for a given

initial position and particle size would allow the formation of an ensemble mean

collection probability. In this case, the instantaneous fluid velocity at a given location for a

given component is computed in an ad hoc manner as the mean plus a random fluctuation

proportional to the rms value of the fluctuations. This is the approach of Boysan, et al.

(1982) and Hargreaves and Silvester (1990). An alternate method entails the Reynolds

averaging of Eq. (7.2) in order to form the equation for the mean particle acceleration. In

this case, there arises the following term which is not a result of the turbulence model

predictions and must therefore be further modeled:

(y- V y) = (y)- V (50+ (3' - V11). (73)

From Eq. (7.2), the role of the individual mean velocity components upon the

separation is evident. Among the three mean velocity components, a good quantitative

prediction of the tangential velocity (”9) is key, as the separation force is proportional to

the swirl velocity, squared. The axial velocity (uz) is also influential in that it largely

determines the residence time of a dispersed phase particle in the cyclone which correlates
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with the time available for separation. The radial velocity (ur) is important in that it is the

reference velocity against which the drift velocity is computed and can also have an effect

on recirculation flows that can either work for or against the separation. With accurate

computations of the complete mean velocity field, one can estimate dispersed phase

trajectories as a function of particle size in order to evaluate a cyclone’s performance

given a dispersed phase of a specified density and size distribution. Determination of the

mean pressure distribution in the cyclone facilitates the computation of the power

requirement for pumping the fluid through the unit operation.



APPENDICES
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Appendix AzNavier-Stokes Equations in a Rotating Frame of Reference

The governing equations which are applied in turbulent flow situations stem directly

from the instantaneous continuity equation and the Navier-Stokes equations. These are

based on a mass and a momentum balance on an infinitesimal fluid element, respectively

(Bird, et al., 1960). In a rotating frame of reference, the terms representing the centrifugal

and Coriolis forces which arise may be referenced from Greenspan (1968):

vi; = 0 (A.1)

and

Du 2

-—'+20xa = -VP +vV u. (A.2)
Dr - - ' ’ ‘

In Eq. (A.2), the substantial derivative is the instantaneous substantial derivative, i.e.

D/Dt E a/3t+ rt - V. In the Navier-Stokes equation (Eq. (A.2)), it is important to note

that body forces (such as gravity) are not shown. Secondly, a homogeneous density is

assumed, such that P, is actually the kinematic reduced pressure, defined by

P = 0%): (%)—%(S_2x[) . (9x5). (A.3)

Eqs. (A1) and (A.2) can be written in terms of mean field quantities by introducing

the Reynolds decomposition. Explicitly, for the pressure and velocity, this decomposition

is

y = < )+u' (A.4)
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and

’p = <p>+p'. (45>

These expressions may be subsequently inserted into the instantaneous equations and then

averaged as per Hinze (1975). This results in the final governing equations: the mean

continuity equation

V - (g) = 0, (A.6)

and the Reynolds-averaged equation of motion

DQ‘) 2 . .
t +29x(g) = -V(Pr)+vV (y)—V-(r_rr_4). (A.7)
 

In Eq. (A.7), the term D/Dt now represents the substantial time derivative associated

with the mean velocity field: D/Dt53/3t+ (g) - V. The last term in Eq. (A.7) is the

Reynolds stress. These equations represent a system of four scalar equations for ten

unknowns: mean velocity (3), mean pressure (1), and the symmetric Reynolds stress

tensor (6). It is this unclosed nature of the governing equations which necessitates

turbulence modeling. That is, given a phenomenological or theoretical expression for the

Reynolds stress in terms ofmean field quantifies, Eqs. (A.6) and (A.7) would be closed.

In this example, a transport equation has been deve10ped for the mean velocity, but

contains unspecified second-order moments. In general, were an equation for an arbitrary

rim-order moment to be developed, it would contain unknown moments of order (n+1).

The derivation for the transport equation for second-order moments is given in Appendix

B.
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Appendix BzReynolds Stress Equations in a Rotating Frame of Reference

The derivation for the equation governing the Reynolds stress ((r_r'r_r')) begins with the

equation for the fluctuating velocity (11'). This equation is formed by subtracting the

Reynolds-averaged equation from the instantaneous (i. e. Navier-Stokes) equation:

Du.
pr 2

3.7-+29)“; = _V;+vv 51+V. (E'fl.)-E.°V_lf'
-E"V(y). (B,1)

The fluctuating velocity equation may then be rearranged with all of its terms on one side

and written in general operator form:

.£ (t_r') = 0. (13.2)

The equation in this form is the source of both the equations for the Reynolds stress as

well as the turbulent kinetic energy and the turbulent dissipation (see Appendix C for the

dissipation). The second order transport equation is formed by taking the following

moment:

(gut (g') +4 (105') = 9. 03.3)

The resulting equation is

D32”! )+ 29 x (5"!)‘1’ 2 (9 X (5'50) T = -[(t_4'l_t')- V (9+ ((5'2'1'VIEiirJ 

+ <p' (V g' + Vg'T) > —_c- V - (<_'g'g'>+ <p'_'I>+ 02143)") +VV2(5'I_4')- (B.4)

The second term on the LHS of Eq. (B.4) represents a redistribution effect due to the
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Coriolis terms in the equation for the velocity. On the RHS of Eq. (B.4), the terms are,

respectively: (1) turbulent production due to coupling with the mean shear; (2) pressure-

strain redistribution; (3) viscous dissipation; (4) turbulent transport; and, (5) molecular

diffusion.

While this research does not apply the Reynolds stress transport equation directly, it

does serve as the basis for the k-equation. The turbulent kinetic energy is defined as

21: E (l_r' - 14'). (B.5)

Thus, the contraction of the Eq. (B.4) yields the k-equation.

21: = _<g'g'>:v (y)—e—V- <§<<2"2'>2'>+ <p'9'» +vV2k- (23-6)

Each of the terms on the RHS of Eq. (B6) are the scalar analogs of the terms in Eq. (B.4).

An advantage of the k-equation is that the pressure-strain term, which is the focus of most

second order modeling approaches, is identically equal to zero due to incompressibility.

The only term which is unclosed is the diffusion term, being generally modeled with some

form of gradient hypothesis (Hanjalic and Launder, 1972). It is also important to note that,

although the Reynolds stress equation is frame dependent, there is no explicit appearance

of the frame rotation rate in the kinetic energy equation. This is important, as it implies

that rotation only serves to redistribute turbulent energy rather than to create or destroy it.
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Appendix CzTurbulent Dissipation Equation in a Rotating Frame of

Reference

The second variable required as a turbulent scale-determining parameter is the scalar

dissipation rate. Similar to the Reynolds stress equation, the dissipation equation is based

on the equation for the fluctuating velocity. In this case, however, an alternate moment is

formed (Speziale, 1991):

2V<V1_1'T:Vr£(l_l')) = 0. ((2.1)

This yields the following equation for the scalar dissipation rate:

De 2

E = Pe-¢8+De+vV a. (C2)

In Eq. (C.2), the fourth term on the RHS is the molecular transport term, while Pa, the,

and De represent production, destruction, and turbulent diffusion of dissipation. Their

exact expressions are

P = -2v(vt_r'2. vg' +Vl_t' - vt_r°2):v (a)—2vrr[(r_r'vg'): (VVg')T]

-2v([vt_r': (vg' - vt_r') 7]), (c3)

(D = 2v2tr(V Vr_r': (V Vg') T), (C.4)

D = —vv. (t_r'(Vr_r'-Vr_r'T))—2VV- (vp'-Vt_r'). (c.5)

In the dissipation equation, there is no explicit frame dependance, providing that the

dissipation is isotropic. In contrast to the Reynolds stress and k-equations, virtually all of

the terms in the dissipation equation must be modeled. Typically, what is done is to
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assume that each of the given processes in the dissipation equation are analogous to their

k-equation counterpart, scaled by an empirical coefficient and a characteristic turbulent

time scale (Hanjalic and Launder, I972).
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Appendix DzObjectivity of Convected Time Derivatives

The generalized convected derivative is (Denn, 1990; Joseph, 1990):

60 8A T
E(§)a—§+(y)-V§-(1V) -§-§-<LV)-al(§)-§+§-(§)l. all)

where a assumes any value within in the range -oo<a<oo and :1 is any objective

operator:

II
> II

m
g

II
a
.' - - =QT. (D2)

(S) is the symmetric, objective portion of the velocity gradient and (_lj’) is the

antisymmetric, frame-dependent portion of the velocity gradient (Bird, et al., 1977):

(>‘ =__Q-(=)-QTand (13.3)

< >‘ =g-< ghgog. . 03.4)

where Q is a time dependent, proper orthogonal (i.e. det (2) = +1) coordinate

transformation tensor and Q its time derivative:

,9' T :1 (135)

"
(
Q

Eq. (DJ) in a rotating frame of reference is written as

5; . a . . . .

E"; ”at": )+<g> Wig.

-<!)0T.§c -§o . (g). —a[(§)‘ .fic +4. . <§)c] . (D6)
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Each of the four terms on the RHS of Eq. (A.6) are summarized below:

I= 3(9-4-9’) =9-[3<A)]-9’+9-¢-9’+94-9a am

IVHaLQ <S>QQA-Q+_Q-gQ’-Q-<§>-Q’]=

aLQ ((911.1149)-Q’] (v.10)

Combining Eqs. (D.6) - (13.10) yields

8; . 5,. T

s—tlfi ) = g I—(A)]Q (D11)
8:-

and the convected time derivative Sa/St is thus objective for any choice of the parameter

-°°<a<°°.
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Appendix E:

Tables of Referenced Data
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Table E]: Summary of Isotropic Decay Data; Batchelor and Townsend [1948];

 

 

 

 

 

 

 

 

 

 

 

         
 

      
 

M=0.635cm (grid mesh)

U = 150 cm/s U = 643ch U = 1286ch l

W W2 W W2 W W2

20 8.81 x 104 20 4.85 x10' 60 1.84x 10

40 3.15 x 104 40 5.86 x 10‘2 80 1.46 x 104

60 2.12 x 10*1 60 3.01 x 10‘4 100 1.19 x 104

80 1.49x10'4 80 1.99 x10'4 120 1.00x 10'4

100 1.17 x 104 100 150 x 10'4 140 8.56 x 10"

120 9.41 x 10'5 120 123 x 10'4 160 7.33 x 10'5

140 7.44x10'5 140 9.76x10'5 180 639x105

160 6.11 x 10:5 160 8.21 x 10'5 200 5.58 x 10'5

180 5.27 x 10'5 180 7.06 x 10:5 220 4.81 x 10'5

200 4.68 x 10'5 200 5.96 x 10'5 240 4.24 x 10'5

220 4.01 x 10-5 220 4.96 x 10'5 260 3.72 x 10'5

Eats89ans,. 240 455 x 10‘5 =....

,I, 260 4.36 x 10'5 
 

Note: This table has been generated by digitizing the data graphs in the text and

determining the coordinates of the data points.
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Table E.2: Summary of Isotropic Decay Data; Comte-Bellot and Corrsin [1971];

 

 

 

 

 

 

 

 

 

U0=10mls

M(cm) (10m um,(cm/s) c(cm2/s3) Re;I ReI

5.08 ==4_2—_==—__§_2T—§__T 71.6 769

98 12.8 633 65.3 640

171 8.95 174 60.7 553
=——_—__———==_——_= =

2.54 45 20.5 7540 48.6 354

120 10.6 731 41.1 253

240 6.75 145 38.1 218

385 5.03 48.5 36.6 201       
 

I:This column has been appended to the original Table 4 of Comte-Bellot and Corrsin

[1971] using theisotropic relation (3/20) Re; = Re.
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Table E3: Summary of Isotropic Decay Data; Sirivat and Warhaft [1983];

M=2.5cm (grid mesh)

U = 340 cm/s U = 630cm/s

e (cm2/s3) k(cn12/s2) e (cm2/s3) k (cm2/s2)

40 389 40 2670

50 224 50 1670

60 165 60 1090

70 125 70 796

80 88.8 80 615

90 74.1 90

100 56.4 . 100 381

110 49.4 110 285

125 33.2 125 192 
Note: This table has been generated by digitizing the data graphs in the text and

determining the coordinates of the data points.
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Table EA: Summary of Isotropic Decay Data of Speziale et al. [1987]; Rea = 35.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

I (= tea/k0) k/ko

0.000 1.000

0.083 0.919

0.167 0.842

0.250 0.774

0.333 0.716

0.417 0.665

0.500 0.625

0.667 0.545

0.833 0.435

1.000 0.435

1.167 0.393

1.333 0.356

1.500 0.323

1.667 0.293

1.833 0.266

2.000 0.242

2.167 0.221

2.333 0.203  
Note: This table has been generated by digitizing the data graphs in the text and

determining the coordinates of the data points.
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Table E5: Summary of Isotropic Decay Data Bardina et al. [1985]; Rea = 45.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

‘t (= tea/k0) k/ko

0.000 1.000

0.050 0.951

0.100 0.906

0.200 0.821

0.300 0.747

0.400 0.680

0.500 0.620

0.600 0.567

0.800 0.477

1.000 0.405

1.250 0.335

1.500 0.281

1.750 0.240

2.000 0.208

2.500 0.163

3.000 0.134

3.500 0.115

4.000 0.100  
Note: This table has been generated by digitizing the data graphs in the text and

determining the coordinates of the data points.

 



Table E.6: Homogeneous Shear Flow Data (Tavoularis and Kamik “A”, 1989)

 

 

 
 

 

 

 

 

 

 

 

        

 

 

1 tier Rx, R». Rzz Ryz Sk/‘a NR1

8.0 0.0 0.276 0.223 0.501 41.168 4.09 0.792

10.0 2.0 0.273 0.220 0.506 -0.167 4.10

12.0 4.0 0.270 0.218 0.512 -0.167 4.12

14.0 6.0 0.268 0.215 0.517 -0.167 4.13

16.0 8.0 0.265 0.213 0.523 -0.l67 4.14

18.0 10.0 0.262 0.210 0.528 -0.166 4.15

20.0 12.0 0.259 0.208 0.533 -0.166 4.16

22.0 14.0 0.256 0.205 0.539 41.166 4.17

24.0 16.0 0.253 0.203 0.544 -0.165 4.18

26.0 18.0 0.250 0.200 0.550 41.165 4.19

g: 25.4 mm

Uc: 13 m/s

5: 84 s'1

 

Ir: Initial NR selected by minimizing the error in the initial state for the Reynolds stress

components.
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Table E.7: Homogeneous Shear Flow Data (Tavoularis and Kamik “D”, 1989)

 

 

   
 

 

 

 

       
 

1.0

3.0 2.0 0.273 0.267 0.460

5.0 4.0 0.272 0.241 0.488

7.0 6.0 0.271 0.214 0.516

8.0 7.0 0.270 0.200 0.530

M: 25.4 mm

Uc: 13 m/s

s: 38.4 s'1

1: Initial NR selected by minimizing the error in the initial state for the Reynolds stress

components.



Table E8: Homogeneous Shear Flow Data (Tavoularis and Kamik “G”, 1989)

 

1'

2.0

1ire!

0.0

Rx:

0.301

R)?

0.268

Rzz

0.45 1

 

4.0 2.0 0.323 0.256 0.461

 

6.0 4.0 0.345 0.244 0.47 l

 

8.0 6.0 0.367 0.232 0.480

 

'
-

J
'

.
.
_
:
;
.

O
I

a

O
.
3

r
‘

4
‘
-

.-
.~

‘
.-
:-
.

.
.

:r
z-

.-
.

r-
"

:3
.

.

2
'
.
"

:
1
-

I
I
I
. .

o:
-:
-.

'-
:-
.~
't
:-
"

an: ‘
nnnnnnn

OI
ooooooo

" .x;:§:-:1

.

 

10.0  8.0  0.389  0.220  0.490  

 

     

 

alga-32.;- ”arrears: :- =--=:t'c. ~22
. - - 2.4:.9'4 -:=.- - .:

 

Ll: 25.4m

U :13 m/s

5: 39.9 s-1

1: Initial NR selected by minimizing the error in the initial state for the Reynolds stress

components.
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Table E9: Homogeneous Shear Flow Data (Tavoularis and Kamik "TC”, 1989)

 

 

  
 

 

 

 

       

 

 

5.0

7.0 2.0 0.287 0.202 0.511 -0.145 5.99

9.0 4.0 0.285 0.197 0.518 -0.l43 6.10

11.0 6.0 0.282 0.194 0.524 -0.141 6.22

12.8 7.8 0.280 0.190 0.530 -0.140 6.33

if: 30.5 mm

Uc: 12.4 Ms

S: 46.8 s'1

 

1: Initial NR selected by minimizing the error in the initial state for the Reynolds stress

components.
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Table E.10: Homogeneous Shear Flow Data (Tavoularis and Kamik “L”, 1989)

 

  

2.0

  

 

 

 

4.0 2.0 . 0.285 0.250 0.464 -0.159 3.06

6.0 4.0 0.273 0.236 0.491 -0.158 3.09

8.0 6.0 0.261 0.222 0.517 -0.155 3.13

 

8.25 6.25 0.260 0.220 0.520 -0.155 3.14       
 

if: 25.4 mm

Uc: 13 Ms

S: 29 .1"1

1: Initial NR selected by minimizing the error in the initial state for the Reynolds stress

components.
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Table E11: Return to Isotropy Data: Choi and Lumley [1984] (Plane Distortion)

zit/112x103 b22 1233 11231 II

1.76 0.151 -0.139

1.51 0.131 -0.119

1.33 0.126 41.108

1.19 0.116 -0.095

1.07 0.107 41.086

0.966 0.100 -0.077

0.884 0.097 -0.068

0.784 0.090 -0.067

0.704 0.094 -0.069

0.636 0.090 -0.062

0.580 0.086 -0.054 
I Data not available; only normal components were measured.
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Table E12: Retum to Isotropy Data: Choi and Lumley [1984] (Axisymmetric Expansion)

2HU2x103 1122 1’33 b231 11

0.665 0.196 -0.117

0.613 0.189 41.112

0575 0.185 -0.110

0.541 0.175 .0103

0.510 0.177 41.101

0.483 0.171 -0.099

0.457 0.163 -0.091

0.427 0.163 -0.093

0.400 0.163 -0.094

0.376 0.160 -0.093

0.356 0.154 -0.091

0.339 0.150 -0.091

0.324 0.146 -0.083 
'1 Data not available; only normal components were measured. _
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Table E.l3: Retum to Isotropy Data: LePenven et al. [1985] (Positive Third Invariant)

 

 

 

 

 

 

 

 

 

 

 

2klU2x103 b22 by

0.238 0.183 0.045

0.229 0.181 -0.046

0.216 0.179 -0.049

0.207 0.174 -0.050

0.193 0.167 -0.053

0.182 0.164 -0.049

0.167 0.159 -0.052

0.159 0.158 0.054

0.148 0.154 -0.052

0.139 0.154 .0055

0.134 0.150 -0.053   
 

1 Data not available; only normal components were measured.

 

0.0532

 

0.0516

 

0.0480

 

0.0439

 

0.0426

 

0.0396

 

0.0387

 

0.0369

 

0.0364

  0.0349
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Appendix F: Relation of Homogeneous, Isotropic Turbulent Production to the

Velocity Derivative Skewness

Eq. (2.31) presents a relationship between the velocity derivative skewness and the

Taylor microscale, along with properties of the double and triple velocity correlations. The

velocity derivative skewness is

The mean of the velocity derivative squared can be related to the second derivative of the

double velocity correlation (see p.145, Monin and Yaglom, 1965):

(Giff) = (3:5?) . (E2)

r r=0

 

Eqs. (2.23) and (F.2) can be combined further to yield the following result, namely, ‘

<G—.‘:”>=) 

Similarly, the mean of the velocity derivative cubed is related to the third derivative of the

triple longitudinal velocity conelation (see p.145 Mania and Yaglom, 1965):

(8%.)3) = [33:];LL) 0.
(E4)

r r:

 

It follows directly from Eqs. (El), (E3), and (E4) that

7.3 3,2 (33:?) =(@_:)3<)/[ (g:)2)]3/2=_s
k, (E5)

(Enron r=o

 



198

which is the result expressed by Eq. (2.31). Furthermore, the combination of Eqs. (ES)

and (2.28) yield the relationship between turbulent production in homogeneous, isotropic

turbulence and the velocity derivative skewness (cf Eq. (2.13)):

w = ————Sk4/R_e. (E6)
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Appendix GzAsymptotic State for Homogeneous Shear

This appendix details the algebra required to express the asymptotic values of the

anisotropic pre-stress components for homogeneously sheared turbulence (as given in

Eqs. (4.54)-(4.57)). The asymptotic values for the normal components of the anisotropic

pre-stress follow directly from Eqs. (4.45)-(4.47) by setting the derivatives with respect to

 

 

§ equal to zero:

(1+ q“) H; - ganefy‘y'z = 0, ((3.1)

a a a

(1+q )H;y+ (5+1)Det H; = O, (6.2)

and

(1+ q“) ng+ (g —1)Det"H;‘Z = 0. (G3)

Rearranging Eqs. (G. l)-(G.3) yields the relations given in Eqs. (4.54)-(4.56):

De “H“

”1‘. = a ‘ ". (0.4)
3 l + q“

0 Def”;
H:y—-(l+§) ”q“, (G5)

and

De “H“
a : yz

= 1 - — —. ((3.6)
u ( 3) l + q“

Similarly, Eq. (4.72) combines with Eqs. (6.5) and (6.6) to give the expression for the

asymptotic value of the shear component of the anisotropic pre-stress:



2(1)

  

 

C a De a 2 De 0

0 = 1J_£1_:_Z_).H‘z- ' H:z+-a— ‘ [1:2, (0.7)

2“; De,“ ’ (1+q“) 3 (1+q“)

whence, upon rearrangement, becomes

11" C5 (1+ qa)De‘a
yz = 2 (0.8)

C1(1+qa)2+ (Det“)2(l-a2/3) ’

which is identical to the asymptotic result given in Eq. (4.57).
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Appendix H:Computer Program Listings

H.1 Program TRANS . BAS

The program TRANS . BAS is written Microsoft QuickBasicT“. Its function is to

integrate the initial value problem posed for the case of homogeneous shear flow. For the

IPS-theory, the differential equation for NR is solved, as are the algebraic pre-closure

equations for 5. With the extension of the model to include an anisotropic pre-stress, four

additional differential equations are solved for the components of 51. Initial conditions as

well as program control parameters are read as input through the file HOMG_SHE . INI.

Transient output data is directed to a user-specified file and the final time step is output to

the file SUMMARY . TXT.

Variable Listing

a convected derivative parameter a

ak a/k

B holding matrix for Gauss-Jordan inversion

Cd , Cp CD’ C1,

cr, cb, c1 CR, CB’ C21

De relaxation group NR

Deb, Del (CB/ZCRMI ; (CA/CR) NR

Det dNR/d§

dt , fdt Afi, variable step size parameter

9 Q/S

H , Hold anisotropic pre-stress _I:_I, holding variable for old values

Ht (lg/d: ‘-

q, qq parameter q (see Eq. (4.43)); (l + q) /Det
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R normalized Reynolds stress 5

ske Sk/a

t , told dimensionless time é, holding variable for old time

ngram Listing

REM full relaxation nodel with H + lanbda'ui/Dt - beta'<S> (D/Dt: Mixed Objective Derivative)

REM full inversion of coefficient natrix to eolve R given it and NJ

REM transimt calmlati on

' Variables

DIM

DIN

DIN

DIN

DIM

DIN

DIN

DIN

DIN

DIN

1H3, 3) AS DOUB

3(3, 4) AS DOUB

H(3, 3) AS DOUB

L8

LE

LE

Hold(3, 3) AS DWBLE

dt, t, told, tdt AS 00181.8 'tine variables

De. Deb, Del AS DWBLE

Deold AS DCIJBLB

alt AS 1130818

nice as DOUBLE

9 AS 00181.18

'reynolds stress

'transtornation tensor to be inverted

'aninotropic pre-strees

'aniaotropic pre-strees

' Deborah nubers

' alphan:

'Slt/eps

'(hega/s (relative rotation rate)

' Tine derivatives or variables

DIN

DIN

DIN

DIN

DIM

DIN

DIM

DIN

DIN

DIN

lit-(3. 3. 4) AS NOBLE

Dnt(4) A8 WUBL

cr. cb. cl AS DdJBLB

Cd, Op AS nouar.

q, qq AS 00181.8

a as norms

1. 3. k. 1 A8 INPEIER

n. n AS tone

but! as grams

mdel AS $111118

'anieotropic pre-strenn tine derivative

'Deborah number tine derivative

'rr nodal constants

'eps-eqn constants

' conv. derivat ive par-eter

'identitier for IPS/APS nodal

' Read initial values for H, De:

OPEN 'd:\data\rasu\hang_she\hong-she.ini' FOR INPUI' AS 01

'read nodal type (IPS/APS)

LINE INPUI‘ ll, butts: nodels - UCASE$(IBPT$(hrtt$, 3))

'read initial ll

LINE INPUT .1.

FOR 1 s 1 '10 3

tufts

INPUT .1. NH. 1): INPUT .1. “(1, 2): INPUT I1, H(i, 3)

DEXTI

'read other paraneters

LIB INPUT .1.

LIFE INPUT .1.

LI“ INPUI‘ .1.

1.118 INPUT .1.

LIB INPUT .1.

(II-CBS .1

' Specify nodal paraetere

tufts:

N115:

1:1!th

kit‘s:

halts:

SELECT CASE ”601$

C538 'IPS'

er I .227.

Ch I 0.

C1 I 0.

Cd 3 1.83.

Op - I.d1.

INPUI‘ 01. De

INPUI' 01. 9

INPUr ll, dt. tdt, tnax

INPUT l1, mrint

INPUI‘ 01. outtiles



a I 0.

CASE 'APS'

CI 0 .2706.

ch I .1762.

cl I . 66666666666666660

C6 I 1.83.

q; - 1.604.

a I —. 6788999999999999.

CASE ELSE

PRINT 'No valid nodel specified; program aborted'x BID

BID SELECT

' Open data tile for output

OPEN 'd:\data\nsu\hang_she\' + (outtileS) FOR GJTPUT AS 01

PRINT .1. [SING 'MJM.

' Begin tine integration

CLS

t-O.

DIO

'deternine initial Reynolds stress

I!“ (Indnls I 'IPS') THEN

“(1. 1) I 0.811(1. 2) I OI:H(1.

11(2, 1) I 09: 11(2, 2) I 0.: 11(2,

1H3, 1) I 0018(3, 2) I OI: 1H3, 3)

BID IF

(DNS 1000

'4tb order RK loop

DO

' output

I? ((n / nprint) I INT(n / nprint))

2): N2. 3)

'1 tr

PRINT tr Der R(2.

PRINT .1. 08116 “0.0.0...

.: g

PRINT 01. 08119:: 'DJIMI.

mo IF

'save old values

Deold I DO

l-lold(1, 1) I 11(1, 1)

$160. 2) I 1H2. 2)

8016(3, 3) I 11(3, 3)

Hold(2, 3) I 8(2. 3)

told-t

'lst integration step

3)

3)

'r DI)

.1 R(10

'I "(10

I 0.

I 0.

I 0.

max

1): 8(2. 2): M3. 3): R12. 3):

1): “(2. 2): “(3. 3): H(2. 3)

0812(1) I (2. ' D. ‘ R(2, 3) ' (Cp - 1.)) «t» (cr ' (C6 - 1I))

De I 00016 + .5. ' 6t ' Det(1)

IF (”691$ I 'APS') THEN

Del . (cl lcr) ' De

q.Del'(-20'R(2.3)-cr/De)

qq-(lI+q)/Del

mu. 1. 1) I -Q ' H(1. 1) 4 (2| ' l /

m(20 20 1) - 'm . "(2! 2)

Ht(3o 3: 1) ' 'Qq . "(3r 3) ' “(20 3) '

+ (Cb / cl IHt(2, 3, 1) I -qq ' 11(2, 3)

NH, 1) I 11016“. 1)

H(2. 2) I “016(2, 2)

11(3, 3) I “016(3. 3)

8(2, 3) I “016(2)

"(3, 2) I "(2' 3)

BID IF

3)

4

a

+

'0-

.SI

.5.

.SI

.5.

6

t

O

0

6t

6t

6t

6t

- “(2.

O

O

O

O

Ht(1,

Nt(2.

1111(2).

Btu,

‘deternine Reynolds stress for step 1

@918 1000

' 2nd integration step

3)‘

3|) ‘ 11(2, 3)

(a / 30 + 1!)

(a / 3| - 10)

2.) + .50 ' l-l(3, 3) ' (-1. - a) + .50 " H(2, 2) ' (1O - a)

1, 1)

2, 1)

3, 1)

3, 1)

Dat(2) I (2. ' D. ' R(2, 3) ' (Cp - 1.)) + (or ' (Cd - 19))

D. I D0016 e .5. ' 6t ' D0t(2)



IF (models I 'APS') THEN

Del I (cl I or) ' De

q I Del ' (-2| ' R(2. 3) - cr / De)

qq - (1. + Q) I Del

Ht(1, 1. 2) I -qq ' Hti, 1) + (2| ' a /

Ht(2. 2, 2) I -qq ' H(2, 2) - H(2, 3) '

Htt3, 3, 2) I -qg ' H(3, 3) - H(2, 3) '

Htt2. 3, 2) I -qq ' H(2, 3) + (cb / cl /

H(1, 1) I Hold(1, 1) + .50 ' dt ' Ht(1,

H(2, 2) I Hold(2, 2) + .50 ' dt * Httz,

H(3. 3) I Hold(3. 3) + .S| ‘ dt ' Ht(3.

H(2, 3) I Hold(2. 3) + .5| ' dt ' Ht(2.

8(3. 2) I "(2. 3)

END IF

'deternine Reynolds stress for step 2

(12803 1000

'3rd integration step

3|) ' H12. 3)

(a / 3| + 1|)

(a / 3| - 1|)

2|)

1.

2.

3.

3.

+

2)

2)

2)

2)

Det(3) I (2| ' De ' R(2, 3) ' (Cp - 1|)) + (cr ° (Cd - 1|))

De I Deold + dt ' Det(3)

IF (Ind-IS I 'APS') THEN

Del I (cl / cr) ' De

q I Del ' (-2| * 8(2. 3) - cr / De)

ctr-(10+q)

Nt(1. 1.

Ht(2. 2,

Ht(3. 3.

H(1.

N(2.

H(3.

“(2,

H(3.

END IF

3.

1)

2)

3)

3)

2)

3)

3)

3)

I “016(1.

I H016(2,

I 8016(3,

I “016(2,

I "(2. 3)

/ Del

1)

2)

3)

3) +
+
+
+

I -qq * H(1, 1) + (2| ' a

3) I -qq ' H(2. 2) - "(2. 3)

I -qq ' 8(3, 3) - 8(2, 3)

I -qq 0 th. 3) + (ch I c1

' Nt(1. 1, 3)

' Ht(2.

dt

6t

6t * Ht(3. 3. 3)

6t

2. 3)

' Nt(2, 3. 3)

'deternine Reynolds stress for step 3

00308 1000

'4th integration step

/ 3|) ‘ H(2. 3)

‘ (a / 3| + 1|)

' (a / 3| - 1|)

/ 2|) e .5| ' “(3. 3) ' (-1| - a) e .S| ' H(2. 2) ° (1| - a)

Det(4) I (2| ’ DI ' 3(2. 3) ‘ (Cp - 1|)) + (ct ' (C6 - 1|))

I? (nodels I 'APS') THEN

Del I (cl I or) ' De

q I Del ' (-2| ' R(2, 3) - cr / De)

qq I (ll + q) / Del

Ht(1. 1.

Ht(2. 2.

Ht(3p 3'

4) I -qq ' H(1. 1) + (2| ’ I / 3|) ' "(2, 3)

4) I -qq ' 11(2, 2) - 11(2. 3) ' (a / 3| e 1|)

4) I —qq ' 11(3, 3) - H(2, 3) ‘ (a I 3| - 1|)

Ht(2. 3. 4) I -qq ' H(2, 3) + (Cb / cl / 2|) + .5| ' "(3. 3) ’ (-1| - a) + .S|

END IF

'Ath-order RK-step

n I n + 1

t I t + 6t

De I Deold #3 (6t I 6|) ' (Det(l) + 2| ' Det(2) e 2| ' Det(3) + Dec(4))

I? (”6015 I 'APS') THEN

H(1. 1) I Hold(1. 1)

“(2, 2) I Hold(2, 2)

H(3, 3) I Hold(3. 3)

H(2, 3) I Hold(2. 3)

H(3,

END IF

2) - 3(2. 3)

O

+

+

+

(dt I 6|)

(dt I 6!)

(dt I 6|)

(dt / 6|)

0

O

O

0

(“C(1.

("C(2.

(Ht(3.

("C(Z.

'deternine Reynolds stress for step 4

00808 1000

6C I 6t ' fdt

traceH I “(1. 1) + H(2, 2) + H(3. 3)

1.

2.

3.

3.

1)

1)

1)

1)

+ 2|

+ 2|

+ 2|

+ 2|

D

O

O

.

Nt(1.

Ht(2,

Nt(3,

Nt(2.

1. 2)

2. 2)

3, 2)

3, 2) 4
+
+
+

2|

2|

2|

2|

' Ht(1.

' Ht(2.

' Ht(3,

‘ Ht(2.

.S| ‘ H(3, 3) ' (-1| - a) + .S| ' H(2. 2) ' (1| - a)

' H(2, 2) ' (1| - a)

1.

2.

3.

3.

3)

3)

3)

+ Ht(1.

+ Ht(2.

+ Ht(3.

+ Ht(2.
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I? (ABS(traceH) > .000001) 'IHl-Jl

PRINT '11 not traceless: '3 trace)!

EXIT DO

END IF

LOOP UNTIL (t > tmx)

' final output

PRINT 1:; De) R(2. 2): R(2. 3)

PRINT |1. USING '|||.|||. '1 tr

PRINT |1. [SING '||.|||||. ') De)

PRINT |1. USING '|.|||||. '1 R(1. 1): NZ. 2): M3. 3): R(2. 3);

PRINT |1. (SING '|.|||||. “311(1. 1): ll(2. 2); HO. 3); H(2, 3)

CLCBE |1

' Write asymptotic results to a sunary tile

OPai 'd:\data\msu\hmg_she\sunary.txt' FOR APPEND AS |1

PRINT |1. 081K: '||.|||. '1 g:

PRINT |1. [BIN '|||.|||. '3 t)

PRINT |1. usrnc '||.|||||. '1 Der

PRINT I1. 081“: '|.|||||. 'r R(1. 1): R(2. 2): R(3. 3)1R(2. 3):

PRINT |1, 081m '|.|||||. '1 H(l. 1); R(2, 2)) H(3. 3): "(2. 3)

CLCSE |1

END

1000 ' canpute R Iran H

° Comute initial 8 (coefficient natrix)

8(1. 1) I 3| - ((1| + g) * D) “ 2|

3(1. 2) I 2| ' (g ' DO) “ 2|

8(1. 3) I -(6| ‘ g + 2|) ' De

8(2. 1) I 2| ' ((1| + g) ' De) 2 2|

3(2. 2) I 3| - (g ' De) “ 2|

3(2. 3) I (6| ' g + 4|) ' De

8(3. 1) I (I. + 9) ' 0.

3‘3, 2) I -g . D.

8(3. 3) I 1| - a ' (1| + 9) ' De A 2|

' Corpute initial 8 (lmown vector)

8(1, 4) I 1| + 3| ' M2. 2)

8(2. 4) I 1| «1» 3| ' RD. 3)

3(3. 4) 8 “(2. 3)

' Gauss-Jordan Elinination

170R k I 1 '10 3

non j - 4 '10 1: area -1

NR. 1) - 30!. 1) l 30:. k)

NEXT)

FOR 1 I 1 '10 3

IF (i o k) THEN

FOR) I 4 'no 1: STEP -1

3(1. 1) I 8(1. 1) - (8(1. k) ' 30!. 1))

BXTj

END IF

NEXT 1

NEXT k

' Note: post-inversion. 1st three colums are identity natrix.

' and the 4th colt-n is the solution vector.

N2. 2)

M3. 3)

N1. 1)

R(2. 3)

3(1. 4)

3(2. 4)

1| - R(2. 2) - M3. 3)

3(3. 4)

' Verify realizability of R:

I? (R(2, 3) " 2 > R(2. 2) ' R(3. 3)) MN

PRINT 'Schuerz inequaltiy not satisfied.': END

DID IF

IF (RM. 1) < 0) THEN

PRINT 'Raot negative': END

an) IF

I? (R(2. 2) < 0) 'D-IEN

PRINT 'Ryy negative“: END

END IP

1? (R0. 3) < 0) mar

PRINT 'Rsz negative': END
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END IF

R(3. 2) I R(2. 3)

RETURN

H.2 Program IPS_ROT. BAS

The program IPS_ROT. BAS is written in Microsoft QuickBasicm. It solves the

algebraic pre-closure equations for _R given values for NR and Q/S. Program control

parameters are read as input through the file IPS_STAT . INI. Output data is directed to

a user-specified file.

Variable Listing

The variables used are the same as listed in Section H.1.

Program Listing

RER IPS-model calwlations tor turbulent states as a tunction or Ortega/S

REN tull inversion of coefficient natrix to solve R givm H and N_R

' Variables

DIN R(3. 3) AS DOUBIE 'reynolds stress

01)! R(3. 4) AS DOUBLE 'transtornation tensor to be inverted

DIN R(3. 3) AS DOUBLE 'anisotropic pre-stress

01)! 0e AS mUBIB 'Relaxation Group

011! Del. De2 AS 00181.8 'Relaxation Group, initial/final

DIN DeDel AS 00131.8 'delta Relaxation Group

01)! g AS 00101.8 'aaega/S (relative rotation rate)

0111 cr, cb. cl AS 00181.8 'rr nodal constants

01)! Cd. C9 A8 mUBLE 'eps—eqn constants

DIN i. j, 1:. 1 AS INTEGER

01)! n. n AS tom

01)! but! AS STRIN:

DIN nstep AS INTESER

DIN nodel AS 5mm: 'identitier for IPS/APS nodel

' Read initial values for gunner

OPEN 'd:\data\nsu\horng_she\ips_stat.ini' FOR INPUT AS |1

'read other paraeeters

LINE INPUT |1. butts: INPUT |1. g

LINE INPUT |1. butts: INPUT |1. Del. De2. DeDal. {De



LINE INPUT |1. buffs: INPUT |1. outfileS

CLOSE |1

' Specify model parameters

' CASE 'IPS‘

er I .227|

Ch I 0|

Cl I 0|

Cd I 1.83|

0p I 1.41|

a I 0|

R(1. 1) I 0|: B(1. 2) I 0|: H(1. 3) I 0|

R(2. 1) I 0|: “(2, 2) I 0|: "(2, 3) I 0|

R(3. 1) I 0|: R(3. 2) I 0|: R(3. 3) I 0|

' men data file for output

OPEN 'd:\data\msu\hang_she\' + (outfileS) FOR OUTPUT AS |1

PRINT |1. USING °||.|||. '3 a

DeIDei

00

GOSUB 1000

PRINT De: R(2. 2): R(2. 3)

PRINT |1. USING '||.||||. '1 De:

PRINT |1. USING '|.|||||. 'r R(1. 1): R(2. 2): R(3. 3): R(2. 3)

DeI0e+0eDel

DeDel I DeDel ' fDe

LOOP UNTIL (De > D02)

CLOSE |1

END

1000 ' canpute R frat: H

' Compute initial 3 (coefficient matrix)

B(1. 1) I 3| - ((1| + g) ‘ De) “ 2|

B(1. 2) I 2| ' (g ‘ De) “ 2|

B(1. 3) I -(6| ' g + 2|) ' De

8(2. 1) I 2| ' ((1| + g) ' De) 2 2|

8(2. 2) I 3| - (0 ‘ DO) “ 2|

8(2. 3) I (6| ‘ g + 4|) ' 0e

8(3. 1) I (1| + q) ' De

B(3.2)I-g'0e

8(3.3)I1|-g'(1|+g)'0e‘2|

' Coupute initial 3 (known vector)

B(1. 4) I 1| + 3| * R(2. 2)

R(2. 4) I 1| + 3| ' R(3. 3)

3(3. 4) I R(2. 3)

' Gauss-Jordan Elimination

FOR I: I 1 '10 3

FOR 1 I 4 '10 1: STEP -1

30!. 1) I 30!. 1) / 30!. k)

NEX'Tj

FOR 1 I 1 '10 3

I? (i o 1:) THEN

FOR 1 I 4 To 1: STEP -1

B(1. 1) I B(1. 1) - (B(1. k) ' B(k. 1))

NElt'Tj

END 11?

NEXT i

NEXT 1:

' Note: post-inversion. 1st three columns are idmtity matrix.

' and the 4th colunn is the solution vector.
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R(2. 2) I B(1. 4)

R130 3) . 3(2: 6)

R(1. 1) I 1| - R(2. 2) - R(3. 3)

R(2. 3) I 3‘3: ‘1

Verify realizability of R:

I? (R(2. 3) ‘ 2 > R(2. 2) ' R(3. 3)) THEN

PRINT 'Schuarz inequaltiy not satisfied.': END

END IF

IF (R(1. 1) < 0) THEN

PRINT 'Rxx negative': END

END IF

IF (R(2. 2) < 0) THEN

mm'r 'Ryy negative': END

END IF

IF (R(3. 3) < 0) THEN

PRINT 'Rzz negative': END

END IF

R(3. 2) I R(2. 3)

RETURN
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Appendix I: Properties of the Eigenvalues of the Reynolds Stress

As mentioned in Chapter 1, the Reynolds stress (g'g') has the following properties:

(5' 14') = 2k. (L1)

and

:0 (2'2) ' .z 2 0- V (12)

More specifically, the trace of the Reynolds stress is twice the turbulent kinetic energy and

the Reynolds stress is positive semi-definite. Since the normalized Reynolds stress is

defined as

 

(u'u')
R E ’ ’ , 3= 2k (1 )

Eq. (1.1) implies that the trace of the normalized Reynolds stress is unity:

tr (5) = 1. (14)

However, the trace of a tensor operator is also an invariant property of that operator which

equals the sum of the eigenvalues:

"(5) =1=AR1+KR2+ART (1.5)

where AR i is the ith eigenvalue of the operator 5. The positive, semi-definite nature of

the Reynolds stress expressed by Eq. (1.2) implies that each of the eigenvalues of the

Reynolds stress (r_¢'r_¢') is non-negative. This character yields the following condition upon

the values 1R i:
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031mm. (1.6)

since each of the eigenvalues is non-negative and the sum of the eigenvalues is one.

The condition given by Eq. (1.6) yields information concerning the eigenvalues of the

anisotropy tensor _b, defined as

9= MI. (L?)

It follows directly from Eq. (1.7) that

l

7m..- = ’m's’ (1.8)

where Ab, i is the ith eigenvalue of the operator {2. Combination of Eqs. (1.6) and (1.8)

yields the result stated in Chapter 1: '

l 2

‘39:»,553- (1.9)
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