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ABSTRACT

Entropy Zero Systems and Morse—Smale Systems

By

Wei Wang

In this thesis, we prove that if f is a real analytic diffeomorphism on a two di-

mensional compact Riemannian manifold, the non—wandering set of f is finite and f

satisfies locally normalized condition, then, f can be 0' (r > O) approximated by a

Morse—Smale diffeomorphism.
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CHAPTER 0

Introduction and Main Result

Let M be a compact Riemannian manifold. f be a C" (r > 0) diffeomorphism on

M. One of the important quantities to describe the complexity of the structure of a

system is topological entropy, which tells roughly how many different orbits f has. A

formal definition of entropy is as follows.

h(f) = lim lim sup

“*0 n—ioo

log s(n, c)

n

where h(f) be the topological entropy of f, 3(n, e) = maxECM{cardinality of E}

and E is a set such that if x, y E E then d(f":r, fky) > e for some k E [0, n). In other

words, h(f) is the asymptotic growth rate of the number of finite length orbits known

with precision 15 as the length goes to infinity.

Topological entropy is a topological invariant and has very nice properties:

1. (Katok—Newhouse—Yomdin Theorem)[5] [8] [13] If the dimension of M is two,

then h(f) is continuous with respect to f in the C°° case.

2. (Bowen)[2] h(f) = h(le), where Q is the non—wandering set of f, Q =

{ml for any neighborhood U, U|m|>0 f'"(U) n U 74 (0}.

3. If the dimension of M is two, then the set of systems with zero entropy is a



closed set.

4. The systems with finite non-wandering set have zero entropy.

5. The system whose non-wandering set contains a horse shoe has positive entropy.

A natural question is what we can say about the systems that have zero entropy.

A Morse-Smale system is a system with following properties: (1). its non—

wandering set is finite and hyperbolic; (2). all the intersections between stable man-

ifolds and unstable manifolds are transversal.

Morse-Smale systems are very important systems. Their structures are well un-

derstood. A interesting question is that whether we can use Morse—Smale systems to

approximate systems with zero entropies?

If the dimension of the manifold M is greater than three, the answer to that

question is no. Dankner [3] constructed a counterexample example in the early 19805.

If the dimension of M is two, Newhouse conjectures that it is true.

Conjecture (Newhouse) 0n the two dimensional compact manifold, the difi'eomor—

phisms with zero entropies are on the boundary of the set of Morse—Smale systems.

In this direction, the earliest important work was done by Newhouse and Palis

[10] in early 19705. They developed the breaking cycle technique and proved that any

diffeomorphism with hyperbolic non-wandering set can be approximated by Q-stable

diffeomorphism. About fifteen years later, Malta and Pacifico [6] generalized this

result by relaxing the condition from hyperbolic non-wandering to hyperbolic limit

set.

As a corollary of their results, we see that, in dimension two, a diffeomorphism

with finite hyperbolic non-wandering set (or limit set) is on the boundary of Morse-

Smale system set. Therefore, the next question is that if we drop the hyperbolic

condition, which is a very strong condition, will the same result hold?



Problem (Newhouse) Can any difieomorphism on the two dimensional compact

manifold with finite non-wandering set be approximated by a Morse—Smale difi’eomor-

phism .9

Definition (locally normalized condition) A diffeomorphism f is called to have locally

normalized condition at a fixed point 0, if it satisfies the following conditions: (1).

in a small neighborhood of o, f can be embedded in an analytic vector field with no

elliptic sectors; (2). there is an invariant analytic curve through 0.

In this paper, we prove the following theorem

Theorem Let M be a two dimensional compact manifold, f be a real analytic difieo-

morphism on M, the no-wandering set of f 9(f) be finite and f satisfy the locally

normalized condition. Then, f can be approximated in C' (r > 0) by a Morse-Smale

difieomorphism.

In chapter 1, we review some basic definitions and facts. Chapter 2—5 is the proof

of above theorem. In Chapter 2, we work with elementary cycles. We will break all the

elementary cycles without causing Q—explosion. Chapter 3 is about advanced cycles.

We will study the local structures around fixed points and remove the advanced cycles

without causing Q-explosion. Systems that have no cycles are discussed in chapter 4.

Chapter 5 concludes this paper.



CHAPTER 1

Preliminary

In this Chapter, we review some basic definitions and facts. Throughout this paper,

we let M be a two dimensional compact manifold, f be an analytic diffeomorphism

on M. (2(f) be the non-wandering set of f, i. e. the set of points with the property

that for every neighborhood U such that Ulml>0 f’"(U) D U 96 (b. When 0(f) is finite,

9(f) = per(f), per(f) is the set of periodic points of f.

Let p E 9(f), we denote the set of points a: such that d(f"a:, f"p) -—> 0(n —> 00),

where n 6 2‘“, by W‘(p). W" (p) is called the stable set of f at p. The stable set

of f'1 at p is called the unstable set of f at p, denoted by W"(p). If Tp(M) can

be split as a direct sum E; 6E; so that T,f(E;) = E}? and Tpf(E3) = E}‘p, where

E; = {22 such that ITpfvl Z Alvl} and E; = {U such that |Tpfv| _<_ A'llvl} for some

constant A > 1, then, p is called a hyperbolic point. Clearly, if p 6 per(f ) and the

two eigenvalues of f at p are not on the unit circle, then p is hyperbolic. If one of its

two eigenvalues lies inside of the unit circle, while the other one lies outside of the

unit circle, then, p is called a saddle. If both eigenvalues lie inside of the unit circle or

outside of the unit circle, then, p is called a node. If one of its two eigenvalues lies on

the unit circle, the other one is not on the unit circle, then p is called a semi-hyperbolic

periodic point.

Let p €per(f), N(p) be a neighborhood of p. Let p be a saddle of a diffeomorphism



f, N(13) be a neighborhood of {2. If, in N(p), f is topologically equivalent to f in

N(p), then, we call p a topological saddle. Similarly, we can define topological node

and topological saddle-node. A semi-hyperbolic point can be a saddle-node or a

topological saddle-node or a topological saddle or a topological node.

By the Invariant Manifold Theorem, when p is a saddle, the stable set W’(p) and

unstable set W“ (p) are both one dimensional manifolds.

A diffeomorphism f is called a Morse-Smale diffeomorphism, if the following pr0p-

erties are satisfied:

1. {2(f) is finite and hyperbolic,

2. the intersections between W“(p) and W3(q) for any points p q in 9(f) are

transversal.

We say that a curve P = {($(t), y(t)),t 6 [0,6]} enters p under f, if

1- ($(0),y(0)) = (0,0),

2. limHo y(t)/z(t) or limt_,o:c(t)/y(t) exists,

ll

”
:
3

A

O "
1

3. P is invariant under f and lim,Hoe f"(:c(t),y(t))

limnsoo f’"($(t), y(t)) = p) for t E (0, 6)-



CHAPTER 2

Elementary Cycles

In this chapter, we consider the diffeomorphisms whose nonwandering sets consist of

finite fixed points and that has only elementary cycles. We will break the elementary

cycles without causing Q—explosion.

In our following discussion, we only consider orientation preserving diffeomor-

phism.

Let 9(f) be the set of all non-wandering points of f in Q(f) which have at least

one non-empty hyperbolic sector, one stable separatrix and one unstable separatrix,

such that one of which must be a separatrix of this hyperbolic sector. We denote a

hyperbolic sector of p by HS(p) and a non-hyperbolic sector by NHS(p)

Definition Let p, q E O(f), S(p) and S(q) be a sector of p and q respectively, and

an unstable separatrix S§(p) C S(p) and a stable separatrix S§(q) C S(q) Then, we

call that sector S(q) follows sector S(p), if following two properties are satisfied:

A A

8

1- S"(P) as (q) 75 0, where 58(4) = 53(4) - {q}, 9‘09) = Ungo f"(52‘(p)), 5‘01) =

Unzo f‘"(S§(q))

A

2. Let z E S"(p)flSs(q), x 6 53(1)), y E S§(q), let D be an arbitrary small

neighborhood of curve segment 7 = [z 2] U [z y]. Then, S(p)flD aé (b and

S(q) n D 75 0, where D is a connected component of D \ 'y.

6



We denote that sector of q, S(q), follows sector of p, HS(p), by S(p) >— S(q) or S(q) -<

S(p) We also have the corresponding notations when the sectors are hyperbolic and

non-hyperbolic sectors.

For any p, q 6 52(f), if there is a series of points p = p0,p1,p2, . . . ,pk = q in Q(f)

such that W“(p,-)nW"(p,-+1) aé 0, i = 0,1,...,k — 1, we call that p > q. If there is

a series points p1,p2, - - - ,p, in 0(f) such that p1 > p2 > > p,, we call it a chain,

denoted by C[p1,p2, . . . ,pz].

Definition A chain [p0, p1, . . . , pk], p, E O(f), is called an elementary chain, if

A

S“(p,-_1) (183(1),) 3£ 0fori=1,2,. . . , k (2.1)

and

S'"(p.-)CHS(p,) fori=1,2,...,k-—1ando=uors (2.2)

In this case, we call that S"(p,) are in this chain, for o = u or s.

We denote the elementary chain by C = [HS(p0), HS(p1), . . . , HS(pk)].

Definition If (2.1) and (2.2) are both true for all i E Z”, where p,- = p,- mod(k+1),

then the chain is called an elementary cycle. All the other cycles are called advanced

cycles, and we call that 5" (p,) is in this cycle, for o = u or s.

We denote the elementary cycle by

A = [HS(po),HS(P1), ° ° ' a HS(pk)a HS(p0)]

In the following, we list some simple lemmas which will be used later in this

section.

Lemma 2.0.1 Let p E 6(f) and be a fixed point of f, HS(p) be a hyperbolic sector

A

determined by S’(p) and S"(p), V be a neighborhood of p, let q E VflS’(p), y E



VflHS(p) and J = [q, y] be a C" (r > 0) curve segment. Then, given 5 > 0, there

exists no 6 N such that ifn > no, f"J is e-close to S“(p). D

Definition Let p E 8(f), q E Q(f), HS(p) be determined by S"(p) and Ss(p), we

say that S“(p) is directly accumulated by S“(q) through HS(p), if there exists a are

[93.31] C 5“(Q) flHSOD) and x 6 5’09)-

 

We say that an open set V meeting S"(p) (o = u or s) at x, x E S"(p), if

V = V’ 0 HS(p), where V’ is a neighborhood of x in M.

Lemma 2.0.2 Let p, q be fixed points of f in 8(f), HS(p) and HS(q) be determined

by S"(p) and S"(q) respectively, (a = s, u), HS(p) > HS(q), let V be an open set

meeting S‘(p) at x, x E S‘(p)nHS(p), U be an open set meeting S"(q) at y, y E

S“(q) nHS(q). Then, there exists an integer m > 0 such that f'"(V) H U 9e 0.

Proof:

Let J be a segment in V that is transversal with S" (p) at x. By Lemma 2.0.1,

there exists n1 such that f"1(J) is a -close to S“(p). Let 2 6 S“(p) nS"(q) and N’

be a neighborhood of z in M, such that N = N’ 0 HS(p) 96 0. Then, there exists an

integer m1 such that fm‘J ON 76 0, let fmlJ nN = J’. We know that there exists

n2 such that fn’z E ITS—(i1), since HS(p) > HS(q), we have an open disk D, as in the

definition at page 6, such that z E D, fn’z E D and HS(p) n D, HS(q) n D both are

contained in the same connected component D of D \ 7.

We claim that

f"’(J’) flfianm) aé 0

To prove the claim, If S“(p) = Ss(q), the claim is clear; if S“(p) # S“(q) and

S“(p) directly accumulates on Su(q), then 3 G’ C G such that f"’(G') C HS(q) 0 D,

since f”2(z) E DflHS(q). Note that HS(q)flD is open, so f"2(J)flDflHS(q) 95 0; if



S" (p) 7e S" (q) and S‘(q) is directly accumulates on SS(p), we use the similar argument

to get the claim.

For the situation when f is orientation reversing, we can follow the similar process

as above to prove the claim.

Now, in HS(g), from Lemma 2.0.1. we have

521(1) C U f‘"(U)
n20

therefore

2 e U f-"(U)

n20

so

f"’(J')fl(U f’"(U)) 75 0
n20

this means that there exists m > 0 such that f'"(J’) nU 5i (0, thus f'"(V) n U 76 0,

the lemma is proved. [:1

Definition Let {qj} be fixed points of f in 9(f), HS(qj) be determined by S”(q,-),

(o = s, u) and j = 0, 1, 2, . . . , h. Then, an elementary cycle

A = [HS(QO), HS(QI), ° ° ' v HS(qk)i HS(QDH

(k 2 0) is called a simple cycle if S“(q,-) = S’(q,+1) and HS(q,) > HS(q,-+1), where

i: 0,1,1"? (Ii = (Ii mod(k+1)-

Corollary 2.0.3 Let A = [HS(qo),HS(q1), . . . ,HS(qk),HS(qo)], k 2 0, be a simple

cycle, then, S"(q,-) C 9(f), where S"(q.-) C HS(qi), 0 S i g k, a = s, u.

Proof:

It is enough to prove that S’(qo) C 9(f). For any x E S‘(q0), let V be an open

set meeting S‘(qo) at x. To prove x 6 Q(f), we only have to prove that there is a
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m > 0 such that f’"(V) D V at 0. Since, S“(qk) = S‘(qo), there exists n; such that

f‘"=x E HS(qk) and f‘"’x e Un>0 f“"V. Let U be an Open set such that it meets

S“(qk) at f‘”=x and U C UnZO f""(V). We claim that there is an integer l > 0 such

that

f‘(V)flU#0

therefore,

f'"(V)n(U f"“(V)) 76 0
n>0

it follows that there is a m > 0 such that f'"(V) f) V 75 0.

Now, we prove the claim. Let x1 6 S“(q1)flm, V1 be an open set meeting

S“(q1) at x1. Since, HS((I2) > HS(ql), by Lemma 2.0.2, there is a m1 > 0 such that

fm1(V)flV1 ¢ 0. Since, S"(q1) = S’(q2), there is a n3, > 0 such that fnzlxl E

S’(q2) flHS(q2). Let U1 be an open set contained in fnlel and meeting S"(q2) at

f"=1x1, then, f"“+"=1(V) HUI 75 0. We repeat above process by starting with U1

instead of V1, we find an integer l > 0 such that f‘(V) flU 7£ (D. This proves the

corollary.
[3

Definition An elementary chain C = [HS(qo),HS(q1), ' - -,HS(qk)] is called an im-

proper chain if

HS(QO) >' HS(QI) > * HS(CIk)

If in above definition qo = qk, then it is called an improper cycle.

Corollary 2.0.4 Let q,- be fixed points off fori = 0, 1,2, . . .,k and

A = [HS(Qo),HS(q1), ' - - . HS(qk), HS(qo)l

be an improper cycle. If there are two points q,, q,- on this cycle such that

S“(q,~) fl S‘(qj) 75 (l) and S“(qj) is directly accumulated by S"(q,-) or S”(q,~) is directly
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accumulated by S’(qJ-), then S"(q,-) fl 38(Qj) C 52(f).

Proof:

It is enough to prove this corollary when S“(qj) is directly accumulated by S"((11).

  

Let x E S’(qj)flS"(q,-)flHS(q,-), y E S’(q,-)flS’(q,-), then there exists n,- > 0 such

 

that f‘"J' (x) 6 S“(q,-) 0 HS(q,). Let V be an open set meeting S’(q,-) at x and

V C m, U be an Open set meeting S“(q,-) at f‘"i (x) and U C mmf‘"i(V).

By using the similar argument as in the proof of Corollary 2.0.3 and Lemma 2.0.2,

we find a m > 0 such that f'"(V) 0 U ¢ 0, it follows fm+"i(V) n V 79 (0, this proves

the corollary. C].

Proposition 2.0.5 If dim(M) = 2, f E Diff'(M), Q(f) is finite, then there are no

improper cycles.

Proof:

Let us suppose, by the way of contradiction, that there are improper cycles

and A = [HS(qo),HS(q1),...,HS'(qk),HS(qo)] be one of them. That means that

S“(q.~)flS‘(q.-+1) 75 0 (0 S i < k) and S“(qk) fl S‘(qo) 96 (0 and HS(q,+1) 4 HS(q,),

HS((Io) * 115(le-

If there exists a q,- such that S“(q,-) does not coincides with S’(q,+1). Since HS(q,+1)

follows HS(q,-), then, S"(q,+1)is either directly accumulated by S"(q,-) or S’(q,-) is

accumulated by S’(q,-+1). By Corollary 2.0.4, we know that S’(q,-) fl S“(q.-+1) C 9(f).

However, the set {S’(q,) 0 S“(q,-)} is infinite. It contradicts with the assumption that

9(f) is finite. So we only have to consider the case when S“(q,-) = S‘(q,-+1), 0 _<_ i < k

and S“(qk) = S’(qo), it means that A is just a simple cycle. By Corollary 2.0.3, we

know that in this case S’(q.-) C 9(f). This makes f2(f) infinite. So there are no

improper cycles. Cl

Definition Let q, p E 0(f), S(p) and S(g) be two sectors, we say that S"(q) vis-

its S(p) if there exists a sequence {xn | n = 1,2,...} C S“(q)flS(p), such that
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1iInn—mo xn = 1’-

Definition Let q,p 6 9(f), S“(q) is said to die at p through NHS(p), if for any

A

x E S“(q), the w-limit set of x is {p}.

Let p, g be any two points in 0(f), we call that p is equivalent to q, if there exist

a series of points in (2(f)

p =p0)pl:p21' ' °apk—lapk : q = (Ianla ° - -,QI—1,QI= p

such that for any p,- and q,, the following are satisfied:

Wu(pi)nW8(pi-i-l) ¢ 0) i: 0,1)' "3k —1

Wu(qj)nws(qj+l) :Ié 0: j: 0311"'al _1

Notice that this relation between points in 0(f) is a equivalence relation, therefore,

there is a classification of f2(f) according to this equivalence relation. Let the equiv-

alence classes are {7,}, i = 1,2, . . .,m, then, 9(f) = U? 7,.

Remark:

1. The set {71, 72, . . . , 7",} of equivalence classes is naturally partially ordered by

7,- 5 71-, if there exist p.- 6 7,- and q,- 6 7,- such that W“(qj) n W’(p,~) 915 Q).

2. All the cycles (elementary cycles and advanced cycles) in Q(f ) are contained in

7,- fori=1,2,...,m.

3. We say that an equivalence class 7,- is trivial, if 7,- only contains a fixed point.

Let E be the set of all fixed points in 7 whose unstable separatrix does not cross

any stable separatrix of fixed points in 7.
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Definition For any p E 7,- 0 E.(f), we call that S“ (p) is free if

S"(p) C U W’m)

7j<7i

or S“(p) dies at (‘1' through a NHS(q'), where W‘(7j) = UqE’Y, S’(q).

We also have a corresponding definition by interchanging u and 3.

Lemma 2.0.6 Let q2, q be two fixed points off, ql be afixed point in 9(f), Sg(q1) C

m, o = s, u, S"(q1) is directly accumulated by S“ (q) through HS(ql) and S“(q1) =

S"(q2), then, S"(q) will visit S(qo), where S((12) is a sector of q2 such that S(Q2) -<

HS(€11)-

Proof:

Since S"(q1) is directly accumulated by S“(q) through HS(ql). By the definition,

there exists a point x E mmSu(ql) and y 6 HS(ql) flS’ (ql) such that [x, y] C

HS(ql). Let J = [x, y]. By Lemma 2.0.1, we know that there exists no 6 N such

that for any n > no f"J 6 -close S“(q1). Since S“(q1) = S’(q2), hence f"J 5 -close

58(42)-

Let No he a 6-neighborhood of go, then El m > 0 such that f"‘J {1 No # 0. Choose

x5 6 fmJ 0N5, let 6 ——-> 0, then we get a sequence {xo} such that x5 6 S"(q) and

xo —+ go. The lemma is proved. C]

The 2—dimensional curve [‘1 is called to cross 2-dimensional curve F2, if [‘1 fl [‘2 75 0

and 3 a neighborhood V of x 6 1‘1 flI‘2 such that N1 flf‘o 76 (b, No 0 F2 7E (b, where

N1 and N2 are two different connected components of N \ I‘l.

Lemma 2.0.7 Let q, go be fixed points of f, ql be a point in 9(f) and S"(q1) C

HS(ql), o = s, u, ifS'“(q) crosses S‘(q1) and S“(q1) crosses S‘(q2), then S“(q) crosses

Ss(<12)- D



14

In the following discussion, we denote by 7 a non-trivial equivalence class in {7,},

i = 1, 2, . . . ,m, that contains an elementary cycle.

Corollary 2.0.8 There exist points qo,q1 E 7 H E(f) such that

S“(qo)flS‘(ql) 75 (0

and S“(qo) does not cross any Ss(p) for allp E 7.

Proof:

Since 7 is non-trivial and contains an elementary cycle, we have q, p E 7 such

that

S“(Q)flS’(p) at 0

Suppose, by the way of contradiction, that for any go 6 7, if S“(qo) flS‘(q1) 95 0

for some ql 6 7, then, S“(qo) must cross S’(q1). Then, by the definition of 7 and

Lemma 2.0.7, we have that S"(qo) crosses S‘(qo). By Corollary 2.0.4, this implies

S"(qo) nS’(qo) C 0(f). This contradicts the assumption that 9(f) is finite. This

proves the corollary. C]

By above Corollary 2.0.8, we know that E 76 (0, if 9(f) is finite.

For any p E 7, we denote A(p) = {q E 7 such that S"(p) flS’(q) 76 0}.

Lemma 2.0.9 Suppose Q(f) is finite, then there exist points q E EflO(f) andp E 7

such that one of the following properties is satisfied:

1- S"(t1)9‘é 53(1)) and S"(q) 053(1)) 75 0

2. S“(q) = S’(p) and there exists a hyperbolic sector of p, HSz(p), such that a

unstable separtrix S", (p) is free, where 5;" (p) C HSo(p) and S: (p) C HSo(p).
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3. S“(q) = S’ (p) and there exists a non-hyperbolic sector of p, NHS(p), such that

NHS(p) -< HS(q), where S:(q) C HS(q) and S§(p) C NHS(p)

Proof:

Suppose there are no q E E n O(f), p E 7 such that

S“(q) 055(1)) 75 0 and S“(<1)9'é S"(19)

that means that, for any two fixed points p and q in 7, if S“(q) fl S’(p) 75 (l) and S"(q)

does not cross S’(p) then S“(q) = S’(p).

Let po 6 7 n E. If El pl 6 A(po) such that S“(po) == S’(p1) and either (ii) or (iii)

is satisfied by changing po to q and p1 to p, then we are done. If there is no such p1

in A(po), then we can choose a p1 in A(po) such that

S"(po) = $8091) and HS(pl) '< HS(po)

where S§(po) C HS(po) and S§(p1) C HS(pl).

We claim that pl 6 E. In fact, if p1 ¢ 3 then El p 6 7, such that S"(p1) crosses

S‘(p), where S:(p1) C m. By Lemma 2.0.7, we get that S“(po) crosses S’(p),

which contradicts the fact that po 6 2.

Based on point p1, we do the same thing as we just did based on po and repeat

this process n times (or we may have already got (ii) or (iii) and hence, finished the

proof), then we will get an elementary chain

C = [HS(po),HS(p1), ' ° - , HS(pn)l

where HS(pk) 4 HS(pk-1) and S"(pk_1) = S’(pk), k = 1,2,...,n. Because 7 is

finite, n can not go to infinite. So, either we stop at some step by getting a point

p,- such that (ii) or (iii) is satisfied if changing pJ-_1 to q and p,- to p, or we get a
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elementary cycle

A = [HS(po),HS(p1), - ~ - , HS(po)]

Note that A actually is a simple cycle. By Corollary 2.0.3, we know that in this case,

S“(pk) C 9(f), for k = 0, 1,. ..,n. This contradicts the assumption that 9(f) is

finite. The lemma is proved. Cl

Proposition 2.0.10 Suppose that 9(f) be finite, then there exist ql E 7 and go 6 S

such that

S"(qo) 058011) 74 0

Moreover,

I. If S"(qo) = S‘(q1). Then, either S“(q1) is free or there exists a point q2 6 7

such that S“(q1) = S’(q2), HS(Qg) 74 HS(ql) and S’(q2) C NHS(q2), where

S"(q1) C NHS(q1), for o = u or s.

2. If S“(qo) 75 S’(q1). Then, either HS(ql) < HS(qo), S“(q1) is accumulated by

S"(qo) and S“(q1) is free or S“(qo) dies at ql through the NHS(q1) or there exists

q2 such that S“(q1)flS‘(q2) 7E Q) and S“(qo) dies at q2 through NHS(q2).

Proof:

By Lemma 2.0.9, we only have consider the case when 3 q E E and q1 in 7 such

that

S“(r1) US’(ql) at (0

and

SW61)?é 53011)

Now, there are only two possible situations between S“(q) and S"(q1). The first case

is that there is a hyperbolic sector HS(ql) determined by S“(q1) and S‘(q1) through
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which S“(q1) is directly accumulated by S“(q); The second case is that S“(q1) dies at

ql through a non-hyperbolic sector NHS(q1), where 8;?(q1) C NW).

If second case occurs, it is just a part of (ii) of the proposition, then we are done.

Now, let us consider the first situation. If in this case, S“(q1) is free, then it is

a part of (ii) of proposition, we finish. So, we only have to consider the case when

S“(q1) is not free. We claim that in this case, ql 6 B. As a matter of fact, if ql ¢ E,

that is to say that there exists a p E 7 such that S“(q1) crosses S‘(p). By Lemma

2.0.7, S“(q) will cross 8‘ (p), this contradicts the fact that q E 5.

Let q2 E 7 such that S“(q1)flS‘(q2) 9'5 (D. We have to consider following six

possible situations.

Case 1. S"(q1) aé S’(q2), HS(Qz) -< HS(ql) and S“(q1) dies at (12 through NHS(q2),

where S§(q2) Cmand S§(q,-) C m, where o = u, s and i = 1, 2.

Since S“(q1) does not cross S‘(q2), S’(q1) is accumulated by S‘(q2) through

HS(ql); However, by the assumption, we know that S"(q1) is accumulated by S"(q)

through HS(ql) and HS(ql) is determined by S“(q1) and S’(q1). So, S“(q) crosses

S’(q2) in the hyperbolic sector HS(ql), this contradicts the fact that q E 3. Hence,

this case can not occur.

Case 2. S"(q1) 3A S‘(q2), HS(Qg) 74 HS(ql), S"(q1) directly accumulates on

S“(q2) through HS(qo), where Sg(q,-) C m, where o = s, u and i = 1. 2.

Since S“(q1) does not cross S‘(q2), S‘ ((12) will directly accumulate on S‘(q1). By

using the same argument as in (1), we get that S“(q) crosses S“(q2), this contradicts

with the fact that q E E. This means this case can not occur.

Case 3. S“(q1) 9E S‘(q2), HS(Qz) K HS(ql), S“(q1) dies at go through a non-

hyperbolic sector NHS(q2) of go, where S: (Q2) C NHS(q2) and S: (q,-) C HS(q,-), where

o=s, uandi=l, 2.

Since S“(q1) is directly accumulated by S“(q) through HS(ql), S“(q) will visit

NHS(q2), therefore, S“(q) will die at qo. This proves the proposition in this case.
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Case 4- S"(€h) = 53(92), HS(42) 74 H5011), Where 5:011) C HS((II), 5:012) C

H5012)-

Let S“(q2) be the unstable sepratrix of go such that

5:012) C HS(Q2)

If there exists a hyperbolic sector HSo(q2) of go such that

5:012) Cmand 3:012)mm= 0 (23)

Let 52"(q2) be the unstable sepratrix of qo such that

52"(42) Cm

Then, since, HS(qo) 74 HS(ql), S;"(q2) is free.

If there is no hyperbolic sector of q2 satisfying (3), then, there exists a non-

hyperbolic sector NHS(q2) of go such that NHS(q2) -< HS(ql). Since S“(q1) is directly

accumulated by S"(q) and S“(q1) = S’(q2), S“(q) will visit NHS(q2). So S“(q) will

die at q; through NHS(q2) This proves the pr0position in Case 4.

Case 5. S“(q1) 7e S’(q2), HS(q2) < HS(ql) and S“(q1) accumulates directly on

S"(q2), where S"(q2) C m, o = s, u.

We know that if S“(q2) is free then we are done. Now, suppose S"(q2) is not free,

Then, S’ (q2) must not cross any unstable separatrix of fixed point in 7. In fact, if there

exists a po such that S"(q2) cross 8’ (po), then, S’(q2) will be directly accumulated by

S’(po) through HS(go). So, S“(q1) crosses S’(po). This contradicts the assumption

that S“(q1) does not cross any stable separatrix in 7. Now, we start with go as we

did with ql, repeating our analysis from Case 1 to Case 6. This procedure must be

stopped at one of two situations (a) and (b) listed below or else we get contradiction.
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(a). we get a fixed point q,- and q,+1 in 7 such that S“(q,-) does not cross any

unstable separatrix in 7. S“(q,-) = S’(q,-+1) and either S‘(q,-+1) is free or there exists

q,-+2 such that S“(q,-+1) = S‘(q,~+2) and HS(q,+2) does not follow HS(q,+1), q,-+2 has

a non-hyperbolic sector NHS(q,-+2) such that NHS(q,-+2) 4 HS(q,+1) and S;‘(q,-+2) C

W.

(b). we get two fixed points q, and q,-+1 in 7 such that either HS(q,-+1) follows

HS(qg) and S“(q,-+1) is accumulated by S“(q,-) and S“(q,-+1) is free or S"(q,) dies at

Q,“ through a non-hyperbolic sector NHS(q,-+1) or there exist q,-+2 such that S“(q,-) 0

S’ (q.-+1) ¢ 0 and S"(q,-) dies at q,+2 through the non-hyperbolic sector NHS(q,-+2).

If (a) or (b) happens, then, let go = q,-,q1 = q,-+1,q2 = q,-+2, we prove the propo-

sition. If our above procedure is not stopped at (a) or (b), then, we get a improper

chain. Since the number of fixed points in 7 is finite, we actually get a improper cycle

A = [HS(q), HS(ql), - . ~ , HS(q)] By Proposition 2.0.5, we know that it is impossible.

Case 6. S"(q1) = S’(q2) and HS(qo) < HS(ql).

If S“(q2) is free, then we are done. If S“(q2) is not free, it must not cross any

stable separatrix in 7. As a matter of fact, if there exists a p E 7 such that S"(q2)

crosses S’(p), then S’(q2) is directly accumulated at S‘(p) through HS(qo). Since

S"(q2) = S’(q1) and S“(q) accumulated on S“(q1), S“(q) will visit HS(qo), hence

S“(q) must intersect with S‘ (p). It contradicts with the assumption that Su (q) does

not cross any stable separatrix. Now, we base on go to repeat our process as we did

from Case 1 to Case 6. By using the same argument as in Case 5, we then finish the

proof of this proposition. D

Theorem 2.0.11 Suppose that 9(f) is finite, then, f can be approximated in

Diff'(M) by a diffeomorphism g which has no elementary cycles and 0(g) is finite.

Proof:

We take on {7,}, for i = 1,2, . ..,m, a simple ordering compatible with _<_, so
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that 71 S 72 S 3 7",. Suppose that for 1 S j < l 7,- either is trivial or does

not contain elementary cycles. Let p,q E 7, given by Proposition 2.0.10. We can

perform an arbitrary small Cr perturbation of f such that 7, remains same, while,

S"(p) fl S‘(q) = (0. Moreover, there is no new intersections with Su (p) and such that

each free unstable separatrix S"(p’) of p’ E 71-, for 1 S j g l remains free. (see

Theorem B in [10]). Continue this process, we can achieve an arbitrary small 0’

perturbation of f which has the same non-wandering set as f and has one more free

unstable separatrix. Finally, we will obtain a diffeomorphism g, 0' close to f, such

that (2(g) = 0(f) and g has no elementary cycles. This proves the theorem. Cl



CHAPTER 3

Advanced Cycles

In this chapter, we consider the diffeomorphism that has advanced cycles, we will

remove all the advanced cycles without causing Q-explosion.

Let p be a fixed point of f, N be a neighborhood of p, f be analytic in N. We

denote by J; (f) the first jet of f at p. In the following sections, we will discuss the

local structures of f in a small neighborhood of p, when JFKf) has different Jordan

forms.

Suppose 9(f) is finite. Let

3:1 1

Fft = p E Q(f) such that J;(f) has Jordan form

0 :tl

l 0

F; = p 6 Q(f) such that J;(f) has Jordan form

0 :l:1

e21rai 0

F3 = p 6 Q(f) such that J1](f) has Jordan form

0 e—21rai

where (1 ¢ Z

Let A1 = [po,p1,...,pk] be an advanced cycle in Q(f), S"(p,~), (a = u,s), be

21
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separatrices that are in A1, that is S“(p.-) 058(1):“) 75 0, for i = 0,1,. ..,k — 1, and

S“(pk) flS‘(po) 95 0. We denote by 91 the set

91 = {p 6 A such that S"(p) and S’(p) are not in a same sector }

In the following discussion, we always assume that the diffeomorphism is orienta-

tion preserving and satisfies locally normalized condition unless we explicitly specify

others.

3.1 When p E Fft

Without lose generality, we only consider the case when p E F1+ .

Theorem 3.1.1 (1) Let 0 be a singular point of a real analytic vector field

<y+m»; +mug;

where X(x, y) = o(\/x2 + y?) and Y(x, y) = o(\/x7 + y?). Then, 0 can only be either

saddle or node or center or focus or saddle-node or 55(0) consists of a hyperbolic

sector and an elliptic sector, where 55(0) is a 6-neighborhood of 0. El

Combine the locally normalized condition, Corollary 3.0.13 and Theorem 3.1.1,

we have

Proposition 3.1.2 Let p E Fli. Then, p E (21 if and only ifp is a topological saddle-

node and S“(p) and S"(p) are not in a same sector, where S“(p) and S" (p) are in the

advanced cycle. Cl
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3.2 When p 6 F3

Lemma 3.2.1 Let f be an analytic diffeomorphism, o = (0,0) be its fixed point.

Suppose the

62nd: 0

J30) = _
0 e—21rai

where (1 ¢ Z, then, there is an analytic map h, and an analytic diffeomorphism 9

such that hf = gh, g is

(x, y) ——) (x cos 27rd + y sin 27rd, —x sin 277a + ycos 27m + ¢(x, y))

where 45 is analytic and ¢(0, 0) = 0, ¢(x, y) = o(\/x2 + y’).

Proof:

Since

1 e21rai 0

Jo (f) =
0 e-21rm'

By Taylor Theorem, f can be written as:

(x, y) —> (x cos 27m + ysin 27m + fix, y), —x sin 27m + y cos 21m + $(x, y))

with i5(x, y) and $(x, y) are the series with degree greater than 1.

Define h as a transformation

~

(£5.31) —+ ($,y+§‘l(f—2’§%)

Since a 5! Z, h is well defined and is analytic. Moreover, it is invertible, its inverse is

($.31) —+ (my + X(x, y))
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where

X(x, y) sin 2m + #70:, y + X(x, y)) = 0

Consider hfh'l, we have

hfh‘l = hf(x,y + X(x.y))

..—.. h(x cos 27rd + ysin 27m + T(% y),

—x sin 27rd + y cos 27m + (b133, y))

= (x cos 27m + y sin 27m, —x sin 27m + y cos 27m + (1501831))

where

X(x, y) sin 2m + 213(23, :1 + X(x, y)) = 0fire, 31)

¢*(x, y) = X(x, 31) cos 2m + 65(x, y + x(x, y)) = 0

and

(Me, :1) = X(x, 31)
~

¢(x cos 2m: + sin(27ra)x"‘ (x, y), —x sin 21m + cos(27roz)x*(x, y)
 

sin 27m

where x*($, y) = y + X(x, ii)-

Let g = hfh_1. We can directly check that ¢(x, y) is as desired. This proves this

lemma. E]

Proposition 3.2.2 Let f be analytic in a neighborhood of a fixed point p, and

1 e21rai 0

J. (f) =
0 e—21rai
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where 0: ¢ Z. Then, there is no separatrix in N.

Proof:

Without lose generality, we let p = 0(0, 0) be a fixed point of f. Then, by Lemma

3.2.1, f is analytically conjugate with f:

(x, y) ——> (x cos 27m: + ysin 27m, —x sin 27rd: + ycos 27rd + ¢(x, y))

where ¢(x, y) is analytic and ¢(x, y) = o(\/x2 + yg).

Suppose, by the way of contradiction, that there is a separatrix I‘ =

{(x,y) such that A(x, y) = 0}. By the definition of separatrix, we know that either

go
géOOr Moofib.

 _(,00)

Let us first consider the case when g—ylo 96 0. Then, I‘ can be written as

(00)

= h(x). By Corollary 3.0.14, h(x) is analytic. Suppose its Taylor expansion is

= its

Since fI‘ = r, we have that

— sin(21ra)x + cos(27ra)u(x) + ¢(x, to» = u(cos(27ra)x + sin(27ra)u(x))

or

¢(x, to» = u(cos(27ra)x + sin(27ra)u(x)) + sin(27ra)x — cos(27ra)u(x) (3.1)

Let ¢(x,u(x))= 2”,, b,-x. Since ¢(x, y) = o(\/x2 + ya), we have that bo = 0 and

bl = 0. Therefore, equation (5) becomes

00

2: b,-~'x ———Z(a,-(cos (21ra)x + sin(27roz)u(x))’ + sin(27ra)x — cos(27ra) Z a,x‘

i=2 i=1 i=1
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by comparing the coefficients of first order term in both sides of above equation, we

have

alx cos 27ch: + afx sin 27m + x sin 27m — xal cos 27m = 0

that is

(a2 + 1) sin 27m = 0

since (1 ¢ Z, sin 27m 75 0, therefore, we get a contradiction, This means that I‘ does

not exist.

76 0, we use the similar argument as above to prove this
 

Q
For the case when 61: (0’0)

pr0position. [3

Corollary 3.2.3 F3ne(f) = (D, i.e. points in F3 can not appear in the advanced

cycles. [:1

3.3 When p E F;

In this section, we only consider the case when p E F}, For the case when p 6 F2“,

the argument is similar.

Proposition 3.3.1 Suppose f be an analytic diffeomorphism with O = (0 0) as its

fixed point in an open neighborhood N(O) of 0 and F = {(x y)|f(x y) = 0} be a

0' curve entering 0. If the first jet J2)(f) of f at 0 is E, the unit 2-dimensional

matrix and I‘ is invariant under f, then there exits a C" diffeomorphism h and a C"

diffeomorphism

~

g = ($.31) —> (x + @(x, 21), 310+ we, y))) (3-2)

(0.0) —
such that f o h = h o g and h(O) = 0, where C(04)) 2 133(00) = 0 and 33.5

 

a~ :

By (0.0)
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Proof: By the definition of invariant curve entering a fixed point, we know that

(1)030(”3mm

3 ( 0) 75 0. By Implicit Function Theorem, f (x, y) = 0 has an unique

 

in equation f(x y)-— 0 eitherQ-i6:” 75 0. Without loss generality,

   suppose tha

solution y = h(x) and u(0) = 0, h(x) E 0’. So I‘ = {(x,u(x)) | x e I}, I is a

appropriate interval. Since the first jet J5(f) of f is E, f has the following form:

(MI) —> (e + We, 31), y + We. 31))

where <p(0, 0) = y(o, 0): 0 and M
6(x y) |(0,0) = 02x2- Both 90(13, y), 1,!)(x, y) are analytic.

Note that under f, the image of curve I‘ is the set

f1” = {(se(e,u($) + x), #103,110?) + y)) | I 6 I}

Since 1" is invariant under f, we have that

We, ”(30) + Me?) = 11000:, h(x» + 2?) (3-3)

for any x E I.

Consider function F,,.(y) = y + 112(x, y) — h(x + 90(15, y)). It is a Cr function for

 

 

x E I.

no) = now» + 52% _ ( )(y — M17»

1 am, 2 2
5 6y? mm (11 - u(:v)) + 003/ - u($)| )

 

From (3.2), we know Fx(u(x)) = 0 for any x E I. So

162F

6E” (y — M17» + 5 6y?-Fe(y) = a
  

(y - 74:13))2 + 00.11 — WEN?)

y=u(x)  y=u(x)
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Let

6F,

0y

1 62F,

2 (9y2

  

(My) =

  
(y - 1103)) + 001/ - u(x)l)

y=#(e) y=u(x)

then

Fe(y) = (y - #($))Ge(y)

Define h as (x, y) ——> (x,y — u(x)), then h‘1 is (x,y) ———> (x,y + u(x)) and h is

a Cr diffeomorphism. So

hefeh’1(x,y) = hef($,y+#($))

= h(x + $003.31 + M33», 31 + #(1') + We. 31 + M33)»

= (x+<p(x,y+u(x)), (New)

where (PCB, 31) = y + Me) + We, 31 + 71(3)) - lute + We, y + MID)-

Note that Fz(y) = y + i/J(x, y) - h(x + 90(x, y)). We have

(New) = Fe(y + 11(3))

= (y + h(x) - u($))(Ge(y + M55»)

= yGe(y + 11(3))

So,

h e f e h‘l(x, y) = (x + We, 31 + 1103)), yGe(y + u($)))

Let @(Ly) = $03.21 + 11(3)), they) = Ge(y + 11(3)) - 1 and g = he f e h“- We

have

9 : (17, y) --> (x + 6506,31), y(1+ {5(23, y))

and em, 0) = 112(0, 0) = 0.
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- _ 6F _ 60 0, a o, _
Slnce, 00(0) _ Eek:0 _ 1+ #[FO — m0) 1gp yzo _ 1, thus

123(0, 0) = 00(0) — 1 = 0

and also, we have

6” 8 6

:93 =5:- +.—: 00:1
‘7‘ (0.0) 1’ (0.0) y (0.0)

695 690
_ = _ = 0

By (0.0) By (0.0)

The proposition is proved. [:1

Definition Let f be a C’ (r > m) function defined on a neighborhood N = (xo —

A xo +A) of xo. If f(‘)(xo) = 0 for i = 0, - - -,m— 1 and f(m)(xo) aé 0, then xo is called

a zero point of f with multiplicity m. If m = 1, we call xo a simple zero point of f.

Corollary 3.3.2 Let f be a C" (r > m) function on N = (xo — A, xo + A), xo be its

zero point with multiplicity m, then

f(x) = (x — xo)"‘<I>(x) (3.4)

where <I>(x) is a continues function in N and <I>(xo) # 0. Cl

Lemma 3.3.3 Let f be a C" (r > 771) function on N = (xo — A, xo + A), xo be its

zero point with multiplicity m. Let f be a 0' function such that

d(f,f) <8

where d( , ) is the 0’" topology in Cm(N, R), then f has at most m zero points in a

neighborhood of xo.

Proof:
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Since f(m)(xo) 74 0, without lose generality, we suppose that f(m)(xo) > k > 0.

By the continuity of f, there exist a 6 > 0 such that f’"(x) > k > 0 for all x E I =

(xo — 6 xo + 6). Because d(f, f) < e, we have

fim) (x) > W” — e > k — e > 0 (3.5)

for all x E I.

Now suppose f(x) has m + j zero points in I (j > 1). By Roll Theorem, we know

that f(1)(x) has m + j — 1 zero points in I, f”) (x) has m + j — 2 zero points in

I, and so on. After m steps, we get that f(m) (x) has j zero points in I. This is a

contradiction. The lemma is proved. CI

Lemma 3.3.4 Let f be a C" (r > m) function on N = (—A A) and x = 0 be its zero

point with multiplicity m, then for any 6 6 (0 A), A E (0 A), there exits a C" function

f such that

~

1- d(f, f) < 5

2. f has exactly m different zero points in the interval I = [0 6)

Proof:

By Corollary 3.3.2, f(x) = xm<I>(x), where <I>(x) is a continuous function and

<I>(0) 79 0. Without lose generality, we suppose that <I>(0) > 0, then there exist a

positive number Am_1 such that 0 < Am_1 < 6 < A and <I>(x) > 0 for all x E (0 Am_1).

Choose a number 17",-1 in the interval (0 Am-1), we have

f(Tlm—l) = 77::—1¢(77m~1) > 0



31

So we can choose a number fim._1 satisfying 0 < Bm_1 < 17m_1<I>(17m_1) such that for

any |am_1| < ,Bm_1 we have

(Jim—177,113+ "m—IQOIm—l) : 7771::i (am—1 + 77m-lq)(7lm—1))

> 773::l(—16m—1 + 77m—1(p(77m—1))

> 0

Define a function

f1 (x) = am_1xm_1 + x'"<I>(x) = xm‘1(am_1 + x<I>(x))

when x is small enough, the sign of function f1 (x) is determined by the sign of

am_1. Choose am_1 < 0, we have that there exists a positive number Am_2 such that

0 < Am_2 < 17m_1 and f1 (x) < 0 for all x 6 (0 Am_2).

We select 17m_2 E (0, Am_2), then

f1(77m—2) = am—ln$:% + n2_2¢(nm—2) < 0

Choose ,6m_2 such that

f1(77m—1)

m—2

111-2

0 < [Hm—2 <

  

then, for any number am_2 satisfying Iam_2| < fim_2, we have

m- - f -

arm—2171..-; + f1(771) = 77173—3 (am—2 + 497732—12

m-2

< 77773:; (lam-2 + Il;(7%31_)_)

m-2

< 0
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Define function

f2($) = am—2IBm—2 + am_1xm"l + xm<I>(X)

Choose am_2 > 0, when x is small enough, say, |x| < Am__3, we have

f2($) = mm'zmm—z + arm—1x + 3322(3) > 0

Choose 17m_3 E (0, Am-3) then f2(17m_3) > 0.

Continue this process, we get a function

fm_1(x) = alx + (12x2 + - - - + ozm_1x"’—l + x'"<I>(x)

where

lail = (_1)2i+1,i : 1’._.,m_ 1
 

lai] < 161')

i

and a sequence

0<17m<Am<~~<n2<A2<n1<A1<6<A

with the following properties:

fm—1(77m) > 0, fm-1(T]m_1) < 0 If m lS Odd

fm_1(17m) < 0, fm_1(nm_1) > 0 if m is even

Let

Ila?) = fm—1($) = 01517 + 02232 + ° - - + (:1,,,.1:1:"’_1 + xm<I>(x)

Claim f(m,_1) > 0, fine.) < 0 for 1' = 0,1,- u, ['32:]

Proof of the claim.
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Let fl = max{5m—1,' "131}

~

“7721—1) = O117721—1 + ° ' ° + 021—1773;: + ' ' ' + am_1n§?:1‘+ ”3-1207290

= a11721_1+--- + 02917735] + f21—1(7721—1)

Since f2,_1(n2,-_1) < 0 and [01021—1 +1 - ~+a2,-_117§f:]| < fiAm_1, we can choose 5 small

enough such that fiAm._1 < I f2,-_1(n2,-_1)| for all i, then

~

“7721—1) < flAm—l + f2i—1(772i—1) < 0

~

By using the same argument, we can prove that f (172,-) > 0. The claim is proved.

From the above discussion, we know that f(x) has at least one zero point in each

interval (17,“, 17,-) i = 1, - - - ,m — 1. Since 0 is a zero point of f, f(x) has at least m

distinct zero points in the interval [0, 6).

By Lemma 3.3.3, we know that f has at most m zero points. So f has exactly m

distinct zero points in the interval [0, 6).

Now we finish the proof of this lemma by showing d(f, f) < 5.

Since

alx + 02x2 + - - - + ozm_1x"“1 + x'"<I>(x)

W
I

A

H
v

II

= (111: + (121:2 + - - - + am_lx"‘“ + f(x)

then

flea) = flee) + 1.1... +---+ (m —1)(m — 2) -~(m — k)0"“"“‘0m-1
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thus

[f(k)($) — f(k)($)l = Imak + . . . + (m _1)(m _ 2) , , , (m _ k)$m-k—lam_l

< Kfi

where K is a constant and k = 1, ~ - - , m.

~

Let [3 = e/K, we have that d(f, f) < e. This finishes the proof of lemma. [:1

Lemma 3.3.5 Let f be the function defined in Lemma 5.13, then all the zero points

Z(f) of f are simple zero points.

Proof:

Suppose f has a zero point xo 6 Z(f) which is not simple. That means that it

has a multiplicity greater than 1, say, m > 1. By Lemma 3.3.4, we know that for

any 5 > 0 and 6 > 0, there exists a C" function, say, 7, such that in the interval

(xo — 6, xo + 6), we have that d(f, f) < e. f has m distinct zero points in the interval

(xo — 6/2, xo + 6/2). Since Z(f) is finite, we can choose 6 small enough such that

20') no. - i
6

21 $0+—2') :{$0}

Define a function

~

(x) xEN\(xo—6,xo+6)

g(x) = 7(3) 17 6 ($0 — %, $0 + %)

h(x) (LEO—(5, $0+0)\($0— %, Tod-g)

where h(x) is a 0' function which makes g(x) to be C" function on N and d(f, g) < e

forxe (xo—6, xo+6)\(xo— %, xo+g).

We get that

d(9,f) S 61(91):) +d(f~, f) < 5
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but g has m + k — 1 > m zero points in a small neighborhood of 0, it contradicts

Lemma 3.3.4. This lemma is proved. D

Proposition 3.3.6 Let g be the C" diffeomorphism

(0:, y) —> (a: + 9003,31), y(1+ 10(10, y)))

where <p(0,0) = W010) = 0 M] a(p6zyl(o0): (00) =0, N be a neighborhood of

0(0,0). Then, for any 5 > 0, 6 > 0, there exists a C" difi‘eomorphism y with the

following properties:

1. d(g,§) < e

2. The fixed point set Fix(§) E N of y is finite,

3. Fmy) is semi-hyperbolic or hyperbolic, The hyperbolic manifolds of semi-

hyperbolic fixed points are contained in x axis.

Proof:

Consider function F(x) = <p(x, 0). By Taylor Theorem, we have

F(x) —_- F(O) + F’(0)x + éF”(0)x2 + - - - + $F(m)(0)xm + 0(x’")

Since, F(O) = <p(0, 0) = 0, F’(0)= iii—MM0) =0, we suppose that F(‘)(0) = 0, i =

1,2, - --,m — 1 and F(m) 9e 0 (m > 1). Let a... = %F(m>(0), then

F(x) = amxm + 0(x'")

this means that x = 0 is a zero point of F(x) with multiplicity m. By Lemma 3.3.4,

we have a function

m—l

G(x) = 2 tax" + F(x)

k=l
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such that d(F, G) < e and G(x) has m distinct zero points in (0,6). We denote them

by0=$o<$1<$2< °'°<.’Em_1 <6.

Now, let

3

=2}0"ka +<p(xy)

Define y as a following two dimensional map

(it. y) —> (:0 + We, 11), 110+ «h(x, y)))

then 9’ is a C" diffeomorphism and d(g,g) < 5. Moreover, g has 111 different fixed

points in N. They are

P0 = (010)1P1 : ($110)1P2 = ($210)1°°'1Pm—l = (mm—110)

Note that these are all the fixed points g has in N.

We claim that all these fixed points are hyperbolic or semi-hyperbolic. That is to

say that the first jets JP (g) ofg at each fixed points 13,-, for i-— 0,1, ,m - 1, have

0

the Jordan form , where |A| 7t 1 and o = 0 or 1.

0 fl

Proof of the claim:

  

  

1+ g; g2
31(9) = (x0) *1 (x..0)

O 1 + wt“) 0)

E 2122'

= 1 + 812 (Ibo) 6y ($130)

0 1 + l/l($i, 0)

By Lemma 5.13, glam“ 76 0. Let A--— 1+
   

w.0), fl = 1 + w(x,-,0), thus J,},(§) has

A 0

the Jordan normal form , where o = 0 or 1. This finishes the proof of the

Oh
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claim and the of proof the proposition. [:1

3.4 Removing advanced cycles

Lemma 3.4.1 Let f has only advanced cycles, then, f can be approximated by an

analytic difieomorphism f~ such that the following are satisfied:

1. f has only advanced cycles,

~

3. For any p, q in 9(f), if S"(p)flS’(q) 75 (0, then, S“(p) and S‘(q) intersect

transversely.

Proof:

Let p, q 6 CU) such that S“(p) flS’(q) at (0. Let x E S"(P) nS‘(q) and N“(p) be

a fundamental neighborhood for Su (p) that contains x. In N“(p), we make a small

perturbation, as in [10], such that S" (p) intersects S’(q) transversely at x. We denote

by f the new diffeomorphism. Since f has only advanced cycles, this operation does

not change the non-wandering set of f. This proves this lemma. [:1

Theorem 3.4.2 Let f be an analytic diffeomorphism and Q(f) consist offinite fixed

points. If f only has advanced cycles, then, f can be approximated in C’ (r > 0) by

a diffeomorphism with no cycle and finite non-wandering set.

Proof:

This theorem can be proved more clearly, if we work with vector fields instead of

directly with map by using the techniques developed by Poincare-Bendixson. That

proof will appear else where.
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By Lemma 3.4.1, we can suppose that all the intersections between stable sep-

aratrices and unstable separatrices are transversal. So, small perturbations do not

destroy these connections.

Since f only has advanced cycles, 7,, for i = 1, 2,. . . , m, only contains advanced

cycles. Suppose that 7, is trivial for 1 5 i < j. Let A = [qo,q1, . . . , p, . . . ,p,,] be a

advanced cycle in 7,, where p 6 Ann, or p E A 092.

If p 6 F13. By Proposition 3.1.2, p is a topological saddle-node and the stable

separatrix S3 (p) and unstable separatrix Su (p) which are in cycle A are not in a same

sector. Choose a small neighborhood N(p) of p such that N(p) fl 9(f) = 0. In N(p),

we make a small perturbation to split topological saddle-node p into a topological

saddle p1 and a topological node p2. This perturbation does not break old separatrix

connections and no new separatrix connection is created. So, Q-explosion does not

occur. While, cycle A = [qo,q1, . . . ,p, . . . ,pk] becomes A’ = [qo,q1, . . . ,p1,p2, . . . ,p,,]

which no longer is a cycle, because p2 is a topological node. We denote by f1 the new

diffeomorphism. Then, f1 has less advanced cycles than f and 9(f1) remains finite.

If p 6 F2. Let N(p) be the neighborhood of p as above, Su (p) be an unstable

separatrix in A. Since A is an advanced cycle, the separatrix of p which is in the

same sector as S“(p) must be free, we denote it by S" (p) By Proposition 3.3.1

and Proposition 3.3.6, we can choose a coordinate system in N(p) such that S“(p)

is a part of x-axis. We then make a small perturbation in N(p) so that p is split

into several hyperbolic or semi-hyperbolic points {p,p1,p2. . . . ,p,}, all these points

are in x-axis and the two of the hyperbolic separatrices of each point are part of

x-axis. We denote by S3(p) the image of S" (p) under this perturbation and denote

by S“'(p)(9£ the image of S“ (p) under this perturbation) the separatrix of p which is

also in a same sector of p as Sv"(p). Then, S‘" (p) is also a part of x-axis. Notice that

S‘ (p) remains free and no seapratrix connection is broken. No new cycle is created.
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If {p, p1, p2, . . . , p1} contains a node, then we are done. We find a diffeomorphism

f1 which is close to f and has less advanced cycles than f and its non-wandering set

remains finite.

If {p, p1, p2, . . . , p1} does not contains node. We choose a point y E S“, (p) and let

N" (p) be a fundamental neighborhood for S", (p) that contains y. Since S3(p) is free,

we can make a perturbation in N“ (p) to break x-axis at y, as in [10]. Therefore, the

cycle A is broken. This operation does not make Q-explosion. We denote by f1 the

new diffeomorphism. Then, we have that f1 has less one advanced cycle than f and

(2(f1) remains finite. This proves this theorem. [:1

As a corollary of the proof of above theorem, we have

Corollary 3.4.3 Let f be an real analytic diffeomorphism, 9(f) be finite and f sat-

isfy locally normalized condition, let P be a fixed point of f. Then, there is a neigh-

borhood of P, N(p), and a difi’eomorphism 9 such that g is 1: close to f, (2(g) is finite,

g only has hyperbolic or semi-hyperbolic fixed points in N(p) and g has no cycles in

N(P)



CHAPTER 4

No Cycles

In this chapter, we discuss the diffeomorphism that has no cycles. We will approxi-

mate it by a Morse—Smale diffeomorphism.

Let f be a diffeomorphism on M, its non-wandering set 0(f) be finite. If for

any chain C[p1,p2, - - - , p;] in 0(f), p,- 7é p,- for i 76 j, we call that f satisfies no cycle

condition or f has no cycles.

Corollary 4.0.4 If f has no advanced cycles and elementary cycles, then f satisfies

no cycle condition. Cl

Lemma 4.0.5 Suppose that f 6 Diff’ (M), (r > 0), and 9(f) is finite, then

U W"(p) = U W309) = M

peflm p601!)

Proof:

We first prove that Upeflm W“(p) = M.

It suffices to prove that M C Unemf) W"(p).

Since 9(f) is finite, we can let {2(f) = {0(p1),0(p2),---,0(p,,)}, where 0(p,)

denotes the periodic orbit of periodic point p.- and 0(1),) 00(pj) = (b for i ¢ j. Let

N,- be a neighborhood of 0(p,) such that Nian = Q) for i 31$ j. N = Uf=1N,-. Let

40
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x be any point in M — 9(f), then x is not a periodic point, it follows that {f""x}

must be an infinite sequence. Since M — N is closed, hence it is compact, and

(M — N) 09(f) = (b, {f‘mx} can not stay in M - N for all m > 0, thus there exists

an integer K > 0 such that f"mx E N for m > K. Note that N,- an = 0 for i aé j,

there must be a large integer L 2 K > 0 such that when m > L, f""x are contained

in one particular Nk, it follows that a—limit set a(x) of x is contained in M, 0 9(f),

that is a(x) C N], nfl(f), hence, x E W"(0(pk)). So, M C UpeQU) W“(p).

To prove UPGQU)W’(P) = M, we substitute f for f"1 and repeat the above

argument. Ci

Let

01 = {10 E 9(f) such that W"(P) no} = {p}}

01 consists of all the sinks of f on M

92 = {p E 0(f) — {21 such that W“(p) flu, 79 (i

and W“(P) (WW) - 01) = 0}

Ole = {p E 9(f) - U 9,- such that W"(p)fl U Q, 75 (b

i<k KI:

and WW) “(90) - U at) = (0}

i<lc

Lemma 4.0.6 Suppose 9(f) be finite, then for any p, q E 0(f),

W“(p) 00(q) 79 (0 if and only if W"(p) flW’(0(q)) # 0

Proof:

Suppose W"(p)flW‘(0(q)) 76 0. Let x E W"(p)flWs(O(q)), then {fnx} 6

W“(p) for n > 0. Since x E W’(0(q)), the w-limit set of x w(x) E 0(q), it follows
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that f"x —-> g 6 0(q), (n —-) 00). So a E Wu—(p), thus, Wm 0(q) 96 0.

SupposeWF] 0(q) 51E 0. Let U be a small neighborhood of 0(q) such that

U09(f) = {0(q)}. Suppose, by the way of contradiction, that W“(p) fl W’(0(q)) =

0, then, there is no x in W“(p) flU such that f"x E U for all n > 0. Since

W00(q) 75 (b, W"(p) flU must be an infinite set.

Consider set D = f(W"(p) 0U) flU—W“(p) nU. Since D090) = (0, W"(p)nD

is a finite set. Let W"(p) 0 D = {x1,x2, . . . ,xk} and n,- be the largest number such

that f“‘x, E U, then there are at most total 2le n,- points in W“(p)flU, it contradicts

the fact that W"(p) (1 U is infinite. this proves the lemma. Cl

Lemma 4.0.7 Suppose f 6 Diff" (M), (r > 0). Let 0(f) be finite and satisfy the no

cycle condition. Then, there exists an integer N > 0 such that Q], 76 (l) for k S N and

Q], = 0 for k > N.

Proof:

By the definition of Oh, we know that $21 75 0.

Now we prove (to 75 (0.

Let S = {p 6 Q(f) such that W“(p)nW‘(fll) 3f (0} = {p1,p2, . . . ,p,}. Suppose,

by the way of contradiction, that 92 = (0, then, for each i = 1, 2, . . . , 3, there exists a

periodic points q, E 9(f) — 91 such that

W"(pt) flW‘(q.-) 75 (0

Consider pl 6 S. W"(p1) nW’(q1) 79 Q), q1 6 Q(f) — {21. If ql E S, by relabeling the

points in S, we can let ql be p2.

Now we suppose that ql ¢ S. Since ql ¢ 01, W“(q1) # (b. By Lemma 4.0.5,

there is a periodic point (12 E 9(f) such that W"(q1) flW’(q2) 3:4 (0. Since q] ¢ S,

go 5! $21. If go 6 S, by relabeling the points in S, we can let p2 = go. If (12 e’
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S, we continue above process. Note that $2(f) is finite, we must have a series of

periodic points p1,q1,q2, . . .,qn E Q(f) such that qn = p2 and W“(p1)flW’(q1) at (0,

W"(q,-) nW‘(q,-+1) 72 (b for i = 1, 2, . . .,n — 1, it means that p1» p2.

We substitute p1 by p2 and repeat above argument, then, we have either p2 > p1

or p2 > p3. If p2 > p1 occurs, a cycle appears, this contradicts the fact that f satisfies

the no cycle condition. So, we must have p1 >— p2 > p3. Continue this process,

because S is finite, we must encounter a cycle, which is a contradiction. This proves

02 7t (ll.

By repeating above argument, we finally can find a N > 0 such that SIN consists

of all the sources of f on M. This proves the lemma. Cl

Corollary 4.0.8 Suppose the f 6 Diff' (M), r > 0, 0(f) be finite and f sat-

isfy no cycle condition. Let Q, = {0(p1),0(p2),...,0(pk,)}, where 0(pj) is the

periodic orbit of periodic point p,- and 0(pj) fl 0(p1) = 0 for j 7’: I. Then,

W:(0(p.-)> nwswm» = 0 forj e z. :1

Corollary 4.0.9 Suppose the f E Diffr (M), r > 0, 0(f) be finite and f satisfy no

cycle condition. Then

N

9U) = U 9:.

k=l

where Q,- 76 Q,- fori # j. C]

Corollary 4.0.10 Suppose the f 6 Diff’ (M), r > 0, 0(f ) be finite and f satisfy no

cycle condition. Then W"(Q,-) nil, 31$ (0 if and only if i 2 j C]

Lemma 4.0.11 (Smale) [7] Suppose F be a compact f—invariant set and Q be a

compact neighborhood of F such that nm>0 f'"(Q) = F. Then there is a compact

neighborhood V of F such that V C int(Q) and f(V) C int(V). Cl
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Definition A series of compact subset Mk, Mk_1, . . . , M1, Mo of M is called a filtra-

tion of M associated with f if

M=Mk3Mk_13-~3M13Mo=0

and

f(Mi) C int(Mt)

We denote it by [Mb Mk-1, . . . , M1, Mo].

Lemma 4.0.12 Suppose f E DiffT (M), (r > 0), (2(f) be finite and f satisfy no cycle

condition. Then, there exists a filtration [MN,MN_1, . . . ,M1,Mo] of M associated

with f such that

Q, C lflt(Mi—Mi_1)

9.- = r] f’(Mt-Mt_1)

-—oo<j<oo

wherei=1,2,...,N.

Proof:

From Corollary 4.0.9 and Corollary 4.0.10, we have that Q(f) = Ufil (It and

WHO,- = 0 fori < j. So, mnfll = {21. Let Q1 be a compact

neighborhood of (21 such that Qlfluj>1f2j = Q(f). Then, if x E nngo f"Q1,

then, fmx E Q1 for m > 0, it follows that the a—limit set d(x) of x is in

Q1, i.e. a(x) 6 Q1090) = 91, thus x E W“(Ql) = 91. So, we have that

(21 = “1120 anI. By Lemma 4.0.11, there is a compact neighborhood M1 of 91 such

that o, c M1 Cint(Q1),Q1 c nnzo f"M1 c nnzo f"Q1 = 52,, and f(Ml) Cint(M1).
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Let Q2 be a compact neighborhood of W“(S22). Since

W"(Q2) H U 91' = ‘5

j>2

we can let Q2 be such that Q2 0 U,” Q,- = 0. We claim that

n f"(Q2UM1) = U W“(Qt)

n20 152

In fact, let x E flnzof"(Q2UM1), then, fmx E Q2UM2 for all m > 0, hence,

d(x) 6 (Q2UM2) 09(f) = {21 U522, it follows that x E U152 W“(Q,-). So,

0 f"(anMi) = U W“(Q,) C int(Ql UMI)

n20 1'52

By Lemma 4.0.11, there is a compact neighborhood M2 of U152 W“(Q,—) such that

f(Mo) C int(Mo) and U152 WWI.) C M2 C int(QIUMI). We can suppose that

M1 C M2. As a matter of fact, if M1 ¢ M2, we can substitute M2 by M2 U(M1 - M2).

Now we check M2 has the required properties. First, we note that since 92 C

lIlt(M2) and M1 002 C Q1 0522 = (0, we have 02 C int(Mo — M1). Because 92 is

invariant under f, 522 C (Lam-<00 fj(M2 — M1), on the other hand, ifx 6 fl,- fj(M2 —

M1), then d(x) C (M2 — M1)flQ(f) = 92 and w(x) C {22, x E W“(Qg) nW’mo) =

fig. S0, 92 = fl_°°<J-<oo fj(M2 — M1).

By repeating above process, we can find a series of compact set (0 = Mo C M1 C

M2 C - - - C MN = M which have the required properties. This proves the lemma. Cl

Let Q,- = {0(p1), 0(p2), . . . , 0(pk,)} and [MN, MN_1, . . . , M1, Mo] be the filtration

in above lemma. Then, we have
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Lemma 4.0.13 There exist a series compact subsets of M,-

M,‘_1 =Mio C Mil C Miz C "'C Mg,” =M,‘

such that

f(M,,) c int(M,,)

0(1),) C lDt(MiJ.—Mij_l)

0(pj) = fl fn(Mij — Mij-l)

—oo<n<oo

mej=LGqh.

Proof:

From Corollary 4.0.8, we know that for i ¢ j, W“(0(p,-)) flW‘(0(p,-)) = (0 and

for j = 1,2, . . . ,k,, W09,- = 0(pj). Let Q be a compact neighborhood of

Wsuch that Qfl(UJ->1 0(pj)) = 0 and Q U M,_1 C M,-.

We claim that nnZO f"(QUM-_1) = UjSi-l W"(Qj) UW“(O(p1)). In fact, if x E

nngo f"(QUM-_1), then f‘mx E QUM,_1, a(x) C (QUM,_1) 00(f), it follows that

z e the.-. We.) uwuiom». So

flf"(QUMt—1)= U W"(91)UW"(0(101))
n20 jgt—l

By Lemma 4.0.11, there is a compact neighborhood M,, C int(Q U M-_1) such that

M,-_1 C M,, C M, and f(M,,) C int(M, ). By using the similar argument as in

the proof of Lemma 4.0.12, we have that 0(p1) C int(M,-l — M,_1) and 0(p1) =

n-oo<n<oo f"(Mit — MM)-

Repeating above process, we can find M,,, M,3, . . . , M
ik‘.

that have the required

properties listed in Lemma 4.0.13. This proves the lemma. [:1
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Let 9(f) = {0(q1), 0(q2), . . . , 0(qn)}, where 0(q,) is the periodic orbit of periodic

point q,~, 0(q,) fl 0(Qj) = 0. Suppose f have no cycle condition. Then, by combining

Lemma 4.0.14 and Lemma 4.0.13, we have

Proposition 4.0.14 There is a filtration of M associated with f,

[M,,, Mn_1, . . . , Ml, Mo]

such that

0(q,-) C lIlt(M,' — Mi._1)

C(41) = fl f"(Mi — MM)

-oo<n<oo

wherei=1,2,...,n. E]

Theorem 4.0.15 Let f be a diffeomorphism on M, 0(f) be finite and f satisfies no

cycle condition. Then, for any 6 > 0, there exists a Morse-Smale diffeomorphism g

on M such that d(f, g) < 6.

Proof:

Let (2(f) = {0(q1), 0(q2), . . . , O(q,,)}. By relabeling the periodic points in 9(f),

we can suppose that q,- be a hyperbolic periodic point for i < ko and q,- be a degenerate

or non-hyperbolic periodic point for i 2 ko. Let [Mn,}lI,,_1,...,Ml,Mo] be the

filtration defined in Proposition 4.0.14, then 0(qko) C int(M,co — Mko_1). Let V be

neighborhood of 0(qko) such that 0(qko) C V C int(M,co — Mk0—1)- By Corollary

3.4.7, we know that for any 6 > 0, there is a diffeomorphism h defined on V such that

h has no non-hyperbolic periodic points in V and d( f Iv , h) < e.



48

We define

h(x) x E V

gt(x) = h(x) x 6 (Mt, — M,,_1) — V (41)

f(x) (I! E M - (Mk0 — Mk0_1)

where h(x) is a diffeomorphism which makes g(x) as smooth as required. It follows

that d(f, g1) < e on M and {2(g1) contains less degenerate periodic points than

9(f). Continue this process, we can find a diffeomorphism g such that g has no

non-hyperbolic periodic points on whole M and d(f, g) < 6. Moreover, 52(5)) remains

finite and satisfy the no cycle condition.

Now, we prove that y can be approximated by a Morse-Smale diffeomorphism.

Let p, q E 0(g) such that W“(p) (‘1 W" (q) 75 (0 and the intersection is not transversal.

Let x E W“(p)r1W’ (q) and Nu(p) be a fundamental neighborhood for W"(p) at x. In

N(p), we make a small perturbation such that the intersection becomes transversal.

Because 5; has no cycles, this operation does not cause Q-explosion. We denote

by g] the new diffeomorphism, then, Sl(g"1) is finite and hyperbolic and there are

less non-transversal connections between stable manifolds and unstable manifolds

than in the case of 9. Continue above process, since C(91) is finite, we finally can

find a diffeomorphism g with finite, hyperbolic 9(g) which is close to f and all the

connections between its stable manifolds and unstable manifolds are transversal. This

proves the theorem. CI



CHAPTER 5

Conclusion and Remarks

Combine Theorem 2.0.11, Theorem 3.4.2 and Theorem 4.0.15, we have

Theorem 5.0.16 Let M be a two dimensional compact manifold, f be an analytic

diffeomorphism on M, its no-wandering set 9(f) be finite and f satisfy locally nor-

malized condition. Then, f can be approximated in C" (r > 0) by a Morse-Smale

diffeomorphism. C]

There is a long way to go to study the structures of systems that have zero en-

tropies and to prove or disprove Newhouse conjecture. Following the path presented

in this paper, we first have to remove the real analytic and locally normalized condi-

tions, and then consider the diffeomorphisms that have finite Birkhoff centers instead

of non—wandering sets, and then do further study. Also, we may study this problem

from other angles. For instance, we may try to connect the structures of entropy zero

systems with the non-exponential correlation decay under an invariant measure. In

one word, this is a fascinating but very hard problem to work with.
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