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ABSTRACT

SEQUENTIAL PREDICTOR—CORRECTOR

METHODS FOR VARIABLE

REGULARIZATION OF ILL-POSED

VOLTERRA PROBLEMS

By

Thomas L. Scofield

Inverse problems based on first-kind Volterra integral equations appear naturally

in the study of many applications, from geophysical problems to the inverse heat

conduction problem. The ill-posedness of such problems means that a regularization

technique is required, but classical regularization schemes like Tikhonov regularization

destroy the causal nature of the underlying problem and, in general, produce over-

smoothed results. In this paper we investigate a new class of predictor—corrector meth-

ods for regularization in which the original (unstable) problem is approximated by a

parameterized family of well-posed, second—kind Volterra equations. Being Volterra,

these approximating second-kind equations retain the causality of the original prob-

lem.

Lamm (1995) was the first to place these methods in a generalized framework and



to provide a mathematical analysis of their convergence using approximating equa-

tions which were parameterized by a single numeric parameter to regularize problems

with convolution kernels. Here, we extend the analysis to nonconvolution kernels.

Moreover, we use approximating equations whose regularizing parameter is a func-

tion (rather than a single constant), allowing for more or less smoothing at different

points in the (one—dimensional) domain.

We also introduce another class of predictor—corrector methods, one that employs

a penalty term. Here again our regularization parameter is a function, and the ad-

dition of the penalty term does not significantly alter the regularizing equation that

we solved in the above-mentioned class of predictor—corrector methods. Nevertheless,

its presence provides for significantly stronger convergence theorems in comparison

to those we are able to prove for the first class.
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Introduction

We consider the scalar Volterra first-kind integral problem: given a suitable function

f(-) defined on [0,1], find u(-) satisfying for a.e. t 6 [0,1]

Au(t) = f(t), (1)

where

Au(t) ;= [0‘ k(t, s)u(s) d3, a.e. t 6 [0,1].

Problem (1) is an important one, having many applications. One is the inverse heat

conduction problem (IHCP), which in the one-dimensional case can be stated as

follows:

Given f (t) in some appropriate space, find it so that the problem

w(0, t) = u(t),

“1(1) t) = f“),

w(:r,0) = 0,

has a bounded solution 21) = w(:r,t) for :1: E (O, oo),t > 0.



When written in the form of (1), this form of the IHCP has a convolution kernel

k(t, s) = K.(t — s), where

—1/4t
_ 1

“m -W

Another application arises from capillary viscometry (see [12]). The integral equa-

tion takes the form of (1) with k(t, s) = 4(s/t)3, a nonconvolution kernel. Here f (the

known function) is the apparent wall shear rate (itself a measured quantity rather

than the true wall shear rate) and the desired quantity, the reciprocal of u(-), is the

viscosity.

It is well-known that in the typical case for (1) where k a non-degenerate square-

integrable function, one has that R(.A) is not closed, and hence problem (1) is ill-

posed, lacking stability. When using measured data, as is the case in the example

from capillary viscometry (and as is typically the case in all applications), direct

recovery of the actual solution is hopeless. One attempts to overcome the problem’s

instability through some “regularization” method.

Indeed, there are a number of regularization techniques. The best-known is

Tikhonov regularization, which amounts to a constrained minimization performed

upon a suitably—restricted set ’D of admissable functions u() G Ll (U a Hilbert space).

The method is usually transformed into the global minimization problem

{gig “Au — In; + aucuné (2)

through a Lagrange—multiplier type approach, introducing a penalty term, the effect

of which upon the computed solution is relegated by the single positive “regularization

parameter” a. Here L : D —> 9 (g a Hilbert space) is a closed linear operator and

H - “f, H - “g are norms in the spaces .7: (the range space of A, another Hilbert space)

and g respectively. If .C is, say, a derivative operator, then increases (decreases) in a

generally cause greater smoothing (roughness) in the computed solution.



The theory of Tikhonov regularization is a highly-developed one (see, for example,

[5]). To give the flavor of the types of convergence results to be proved later for another

regularization method, we (loosely) summarize results for Tikhonov in the following

theorem:

Theorem 0.1 (Tikhonov Regularization) Under classical assumptions, there is

for each a > 0 a unique minimizer aa(f) of (2). This iia(f) depends continuously

upon f. Moveouer, if f (the “true data”) is replaced by f5 ( “noisy” data) where

Hf” — f|| S 6, then a = 0(6) can be chosen in such a way that ua(5)(f5) —> a as

6—)0.

It is in the sense suggested by this theorem that we say problem (2) is a “regularized

approximation” of (1).

There are undesirable side effects inherent in the application of Tikhonov regular-

ization to our problem. One is that it replaces the original “causal” problem with a

full-domain one. Problem ( 1) is considered causal in that for any t E (O, 1], the solu-

tion u on the interval [0, t] is determined only from values of f on that same interval.

Differentiating problem (2) leads to the necessary condition that the solution satisfies

(A‘A + a£*£)u = A“f.

This problem is, in fact, equivalent to (2) when ’D = D(£). Yet A“f is determined,

in general, using data values from the interval [t, 1] (“future values”), thus destroying

the causal nature of the original problem.

Another side effect arises in the usage of a single regularization parameter when a

priori information calls for a solution that is rough in some areas of the domain and

smooth in others (see, for example, Figure 5.2). While newer regularization methods

based on (2) can provide this type of variability in the solution, they do so outside



of the Hilbert space framework, using a norm in g that is Ll-type, resulting in a

non-differentiable problem. Such formulations are, therefore, difficult and costly to

implement.

A different class of regularization methods, “predictor—corrector” techniques, has

been the focus of study in recent years. One of the earliest of these was developed

by J. V. Beck in the 1960’s for application to the IHCP. In this method, Beck held

solutions rigid for a short time into the future (regularized “prediction”) and then

truncated the prediction to improve accuracy (“correction”). More on this method

can be found in [1]. The method is easy to implement numerically and provides fast

results in almost real-time — that is, the causal nature of the original problem is not

badly compromised.

The method of Beck is a discretization of a special case of the more general class

of predictor—corrector methods considered in [9], [8] and [10]. In what follows, we lay

the groundwork for this class of methods.

We will make the following assumption throughout this work.

Hypothesis 0.1 The kernel k(t, s) from (1) is continuous, and can be extended so

that it is defined on 0 S s S t S T for some T > 1. Along with this extension of our

kernel, we assume that f E L2(O, T) is such that there exists a function (necessarily

unique) it E L2(0,T) satisfying (1) for a. e. t E [0, T].

Thus, for a.e. t 6 [0,1] and a.e. p E [0,T — 1], 2) satisfies

[ow k(t + p, s)u(s) ds = f(t + p).

Splitting the left-hand side of this equation up into the sum of two integrals, we have

(after a change in variables)

fotk(t+p,s)u(s)ds+[0pk(t+p,s+t)u(s+t)ds = f(t+p). (3)



Now let us assume that r : [0, 1] -+ (O, T — 1] is a given continuous function and that

77,. is an associated finite positive Borel measure on [0, ||r||oo]. Let us also assume that

for each t 6 [0,1], f (t + p) is nr-integrable (in the variable p). We note that, should

f be just piecewise continuous, then this last assumption is obtained.

On the set of 1],—integrable functions whose domains include [0, r(t)] we may define

the continuous linear functional firm by

Q::_‘r(t)¢ [011% P)(Pd7lr

Applying firm to both sides of (3) we get that it satisfies

r(t)

/ [k(s)t+p, s)pdsdn.()

r(t)

+/0,(¢)/0puk(t+p,s+t)u(s+t)dsdnr(p) = 0 f(t+Pld77r(P)a (4)

for a. e. t 6 [0,1]. After a change in order of integration in the first term of (4)

(valid by Fubini’s Theorem), we have a term that defines a new integral operator on

L2(0,T), namely

t-

Aru(t) :2 f0 k(t,s;r)u(s) ds, t 6 [0,1],

where

(sass) == [0"” t(t+p, s) twp), (5)

for O S s S t S 1,r(t) E (O,T — 1]. So now (4) becomes

gamma) ds+ for“) Apk(t+p,s+t)u(s+t)dsd17r(p)

= formf(t+p)dnr(p)s (6)



an equation that is satisfied by a() for a.e. t E [0, 1].

The instability in the original problem manifests itself (as we shall see later in

numerical examples) even when the problem is discretized making it a matrix problem

(hence well-posed). We shall see that solutions of such a discretized system tend to be

highly oscillatory, becoming more so as the stepsize in the discretization shrinks. Our

hope is that some change to equation (6) will yield a new equation whose solution

is not so oscillatory, even though this solution will no longer be a. We further hope

that our new equation will serve as a regularizing approximation of the old one —

that is, its solutions approach that of (1) as the parameter controlling the amount of

perturbation shrinks. In [9], Lamm proposed the following equation in place of (6):

[0‘ in, s; isms) as + a(t; r)u(t) = f(t; r), (7)

where

a(t, r) := for“) [Op k(t + p, s + t) ds dnr(p) (8)

and

f(t; 2) := [0”) f(t + p) dnr(p)- (9)

Here r serves as a functional regularization parameter, with r(t) indicating the length

of a future interval for given t. In [9] the author considered only convolution kernels

with a constant r(t) E r, making (7) a generalization of the equation put forth there.

We can view (7) as a perturbation of (1) in the following way. At a fixed t E [0, 1], if

we divide (7) through by r(t) and consider integral expressions of the form

til—t) [ar
m ' dnr(p)

to be average values in some sense, then (heuristically) the resulting equation collapses

to (1) as r(t) —> 0. As motivation for the jump from (6) to (7) we may think of (7)



as holding u() constant (temporarily) on a small interval — i.e., u(s + t) = u(t) for

s E [0,p],p E [O,r(t)].

As (7) is a new equation, we must direct our attention to questions of existence

and uniqueness of solutions. If we have assumptions that are sufficient to give that

a(t; r) 76 O for t 6 [0,1] (for instance, k(t,s) > 0 for 0 S s S t _<_ T and a positive

measure that is nonzero on intervals of the form [O,r], for r > 0), then (7) can be

written as the second-kind equation

t...

u(t)+a‘1(t;r)/ok(t,s;r)u(s)ds = a‘1(t;r)f(t;r). (10)

Now if the function

(a—Iu; s)( (fo'm dnr)

is square-integrable (in t) on [0, 1], then using the terminology found in Chapter 9 of

[6],

K(t, s) 2: a‘1(t; r)h(t, s; r)

is a type L2 kernel on [0, 1] (by Proposition 9.2.7) which has a type L2 resolvent (by

Corollary 9.3.16). So, by Theorem 9.3.6, (7) has a unique solution u(-; r) E L2(0, 1)

if a‘1(t; r)f(t; r) 6 L2(O, 1). (Here the references to numbered results all come from

[6]). Incidentally, it is also true that u(s;r) depends continuously in the norm of

L2(0, 1) on f(qr), and hence on f in, say, L°°(0, 1) for example —— that is, (7) is a

well-posed problem. Henceforth we shall assume this well-posedness.

Numerical examples (seen later) seem to indicate that our hope that solutions of

(7) are more well-behaved than solutions of (6) is indeed realized. There is still the

question of whether solutions of (7) are good approximations to those of (6), and the

need for a theoretical justification of the continuous dependence of these solutions

upon data. In [9], Lamm proved the following theorem.



Theorem 0.2 ([9]) Let us assume that the kernel k in (1) is a convolution kernel

with k E 61([0,T]) and k(O) > 0. We assume also a constant function r(t) E r

and that f and the measures 1), are such that (7) has a solution u = u(-;r) for all

r E (O,T — 1]. If the true solution a of (1) on [0,T] is in C1, then u(-;r) converges

uniformly on [0,1] to u as r —-) 0. In the presence of noisy data, r = r(6) can be

chosen appropriately for the level 6 of noise so that convergence occurs as 6 —> 0.

In [8], Lamm went on to consider a discretized version of (1), looking at a step

function uAt(t;T; j”) that satisfies (7) with (possibly) noisy data f5 at N = 1/At

collocation points t,- = iAt, i = 1, . . . , N. In this case, both r and At are regularization

parameters. The following theorem was proved.

Theorem 0.3 ([8]) Let k be a convolution kernel in C1 with k(t) > 0 fort 6 [0,1].

Assume that a E W1’°°, that r(t) E r, that f6 E L°°(0,T) and that r is directly

proportional to At. Given a class of measures 77, for which

r(t) == [NH/MW)

(the new right-hand side of (7) corresponding to the function fl) is well-defined for

allt E [0,1], 1' E (O,T — 1], the solution uAt(t; r; f6) converges to u(t) at each of the

collocation points t = t,,i = 1, . . . , N as the noise in the data goes to zero, provided

At is proportional to the square root of that noise.

We seek here to extend these results.

In each special case with “noise-free” data f that we consider, we will look at the

difference

y(t; 1") == u(it; 7") - W), t6 [0,1].

of the solutions to (1) and (7) (i.e., the error), trying to show that this difference goes

to zero in some sense as Ieroo —> 0. Subtracting (6) from (7) we have that y(-;r)



satisfies

[at k(t, s; r)y(s) ds + a(t; r)y(t)

r(t) )0

A [0 k(t + p, 3 + t) [11(3 + t) - fl(t)] d3 d17,.(p),

for a.e. t 6 [0,1]; or, still assuming that a'1(t; r) exists for each t, y(~; r) satisfies

y(t) = —s-1(t;r)/0‘Is(ts;s)y(s)ds+F(t;s), (11)

where

F(t; r) :2 a"1(t; r) form [0p k(t + p, s + t) [u(s + t) — u(t)] ds d7},(p).

We will use equation (11) — the equation solved by y(-; r) —— throughout in showing

that y goes to zero with Hrlloo.

We have assumed throughout the discussion thus far that (1) is a scalar equation.

Nevertheless, the entire analysis to this point can be generalized to vector equations

with very little change. Our arguments in the chapters that follow will not be so

easily generalizable, and we will continue to assume a scalar equation.

Finally, to motivate the need for a specialized argument like the one involving an

approximate identity to be found in Chapter 1, we note that if our (“true”) data f is

such that the “true solution” a E C1[0, T], and if k(t, s) > O for O S s S t g T, then

 (F(t:s)( _<_ am[rm/ut+p,s+t) Is(<.(s))(sdsdn.(p)

..(_)I[%_/Or(t)/Ok((t+p,s+t)d3d77r(.0)

= 00(0),

|
/
\
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and thus

l|F(';r(°))ll S 0(H7‘lloo)-

It might appear, then, that an immediate application of the Gronwall Inequality to

(11) will show that our error goes to zero with [lrllw This would indeed be the case

if we had a uniform bound on

lf(t, 8; r)

u(t; 1")  

as Ilrlloo —> 0. Nevertheless, a close inspection of this expression shows that it is

not reasonable to expect such a bound. For instance, when dnr(p) E dp (Lebesgue

measure) and k(t, s) E 1, we have

k(t, s; r) _ 2

a(t; r) — r(t).

Therefore, it will be necessary to perform a more in-depth analysis upon the error to

show that it goes to zero.



 

CHAPTER 1

The Constant-r Case

First we work to extend the results of [9] to nonconvolution kernels. To obtain results

throughout this paper, we will require assumptions on 7),, k, a, f and f5. The

following will suffice for this chapter, and will be standing assumptions even when

not explicitly mentioned. Often we will require similar, or even identical hypotheses

in other chapters to the ones we state here. When identical, we will simply refer back

to these by number.

Hypothesis 1.1 We assume that Hypothesis 0.1 holds, that k E C1([0, T] x [0,T])

and that k(t, s) > O for O _<_ s _<_ t g T. We also assume that a 6 Cl([O,T]). Having

assumed these, it is without loss of generality that we further assume k(t, t) = 1 for

t E [0, T], for problem (1) can always be divided by k(t,t) yielding a new right-hand

side f (t) /k(t, t) for which the above assumptions hold.

Hypothesis 1.2 The measure 1),, parameterized by r > O is a positive finite Borel

measure on [0, r] satisfying the following condition: if we have a positive integrand

g(t) > 0 fort E (0,r], then we require

[’90) ds,.(p) > 0.

When r is a continuous function on [0, 1] into (0, T— 1], we assume 7), to be a (single)

11
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associated finite positive Borel measure on [0, llrlloo] for which

[0“ g(t) dn(p) > o,

for all x E [rm-n, [eroo], where rm,” :2 min{r(t) : t 6 [0,1]}.

We further assume that, for a measure 77,. of the variety described above, we have

that the quantities

for“) dm 0

0(t; r) u(t; 1‘)

 

are square-integrable on [0,1], where a and f are defined in (8) and (9) respectively.

Hypothesis 1.3 When noisy data f6 is used in place of f, we assume that f6(t) =

f(t) + d(t), where d(-) E L°°(0,T) satisfies Ildllc,o S 6 for some fixed 6 > 0 (here

I] - “0° denotes the L°°(0, T) norm). For n, a family of measures parameterized by

r E (O,T — 1] and satisfying Hypothesis 1.2, we assume that f; d(t + p) dn,(p) is

well-defined for all t 6 [0,1], and that

f; f‘(t + p) dnr(p)

u(t; 1")

 

is square-integrable (in t) on [0,1]. If the measures are parameterized by continuous

functions r : [0, 1] —> (0, T — 1], we assume that for“) d(t + p) dnr(p) is well-defined for

allt 6 [0,1] and that

for“) f“(t + p) dos-(p)

d(t; r)

 

is square integrable on [0,1].

As in [9], we will assume in this chapter that r(t) E r (constant) for t 6 [0,1].

Notice that Hypotheses 1.2 and 1.1 together imply that (7) has a unique solution

u(-; r) E L2(O,T). The goal in the remainder of this chapter is to demonstrate the

convergence of u() solving equation (7) to the solution a of ( 1) in the case of r(t) = r
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a constant. We will do this in the absence of noise in the data, and also for the case

of noisy data.

1.1 Definitions and Preliminary Equations

For t 6 [0,1], r E (O,T — 1] let us define

2 f6“ ft’ [pD1k(t + 6. t + C) + sD2k(t + at + 6)] ds dnr(p)

a. ‘ )3" fl’ ds ds,-(p) ’
 (1.1)

where, for each fixed t 6 [0,1], (p,s) E [0,T—1]x[0,T—1], 5 = £t(p,s) and C = (r(p, s)

are chosen by Taylor’s Theorem so that

k(t + p, s + t) = k(t,t) + lek(t + {,t + C) + ngk(t + £,t + C). (1.2)

Because we assume that k satisfies Hypothesis 1.1, we have that

f6 lite + 8) d8 dvr(p)

ii If d8 dnr(p)

 

[18t,r[ |
/
\

llkllim

27"llklliss|
/
\

0(7‘),

uniformly in t E [0, 1].

Now for r small enough that Iflw] < 1, we have the expansion

  

 

 

1 1

d(t; 7‘) z for $196+ )0, s + t) d8 date)

1

_ it it [k(t, t) + lek(t + t, t + C) + sD2k(t + t. t + 4)] d8 dnr(p)

1 1

— for if d8 dnr(p) ' 1+ fit.)—

1 + 7hr

: f6 pdnr(p)’ (1'3)



M

where 7” = 0(r) uniformly in t E [0,1]. Employing another Taylor expansion, we

have from (5) that

k(t, s; r) = [or [k(t, s) + pD1k(t + 5"”, 3)] dnr(p)

= Mtfi<fldm)+flb$fl,

where

(g(t,s;s)( 3 (til... [0 ptsrv)

forallOStSl.

With these definitions, we write equation (11) (the equation in the error y(t; r) =

u(t;r) — u(t)) as

y(t) = —f———01p2;77:’(p)r/kt, s; r) s);ds+F(t r)

—f0—,1pi;1;—:’(;)—)[(/0 (1%)]: k((t,s)y(s)ds+[otg(t,s;r)y(s) ds

+F(t; r). (1-4)

Employing a technique used in [9] we define

Q Ht<0

¢U¢M= (LO

ift/E, ift Z 0,

f’pdnr p
8(1‘) 2: —--—————°for d77( ),

and convolving both sides of equation (1.4) with w(t, e(r)), we get

/t(t—ss()))ysd()s

f0Pd717———r_(p))/o¢
(t

())/0 (1 + ’Yr,r)9(r, s;r)y(s) d3 dr
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3173/0 ’i/J(t — r, 5(7‘—:)/(:((1+ '77,.)k(, s)y(s) ds dr + w(t,e(r)) * F(t; r)

— f0Pd717r(,0)/o /¢(
t ))(.1+’Y~rr)g(7'

,8;r)dry(s) d3

_—/0f 1Mt — r,5(r 1+ 71,.)k(r, s) d7“y(3) d3 + l/l(t,€(7‘)) * F(t; 7.)

loPd77(p)/o l. W(t‘ T 5(7" 1+ 77,r)g(T73;T) 6179(3) d8

t1 [0 [k(tS)_e_(t-s)/s(r)k(8 3)_/ e—(t—r)/€(r)D1k(7-,3)d'r y(s)ds

_J)

(1.6)——/0/ w(t ))71rk (r, s)dry(s)ds+t/J(t,e(r)) at F(t; r).

Subtracting equation (1.6) from equation (1.4) we get

y(t) = Katmai/(3)013 + H1(t;r), t 6 [0,1], (1.7)

where we define the quantities

O S s S t S 1 (1.8)C(t, s;r) z: Gl(t, s; r) + 02(t, s; r),

with

G1(t,s;r) :: g(t — s,e(r))[1—k(s,s)]—/stw(t—r,e r

G2(ta3i7‘)

._ W[ft—T1))((t— 7' €(T))(1 + 77¢)g(7', S; 7‘) 617' — (1+ 7t,r)g(t13;T)

+—[/. «f(t )),7rrk (T8)dT-%,rk(t,8) ,
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forogsgtgland

H1(t;r) 2: F(t;r) — w(t,5(r)) =1: F(t;r), t E [0,1].

1.2 Convergence Using Noise-Free Data

We wish to show that solutions of (7) do well in approximating solutions of (1) as

the equations themselves become more alike — that is, as r —> 0. This, along with

the results in section 1.3 will justify the solving of (7) as a regularization scheme for

(1).

We begin by assuming that the data itself is free of error. Though this is not

likely to be the case in numerical representations on a computer, this is a good first

test-case, as we could never hope to have convergence in the noisy-data case if we

did not have it in the noise—free one. Furthermore, even in those rare instances where

the true data can be represented exactly numerically, the numerical solution process

itself will introduce errors that call for some stabilizing scheme.

Theorem 1.1 Let fink, f and a satisfy Hypotheses 1.2 and 1.1. If there exists a

constant C' 2 1 for which

r T 1'

dr >_/dr)fopflpLC 0 77

for each r > O sufficiently small, then the solution u(-;r) of (7) converges uniformly

on [0,1] tou asr—->O.

To show (ultimately) convergence of y to zero as r —> O, we will use the Gronwall

Inequality on equation (1.7). We will show that Cl and G2 have uniform bounds

(independent of r,t and s), and that H1 —> O uniformly.
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Proof of Theorem 1.1: First, we have that

t

[G1(t,s;r)] g /w(t-r,e(r))|D1k(r,s)]dr
8

t

||k||1.00/e—(t-r)/e(r)d7.

8 7' s

= llkll1,oo(1 _ e-(t-8)/E(r))

-<— “killpo

for O S s g t g 1.

Next, we see that

|G2(t, 3'7‘)|1

S )[fslliitrjg )(1+ Tr r,;srdr+l+ , t,;sr
f‘0——””1”“ l7 |)|.9( )l ( In |)|9( )l

+—’l‘)[)/st(w“ [Wrr]k(, 3)dT+ [7t,r]k(t,8)]

s (list... [A t((t— s,s(r))(1+ (Md. + (1 + mm]

$31—39 [f s(t - mew...) ctr + ml]

5 2mm)... [1+ [3‘ so: - new) ctr] + 1%][ut— s,s(s))(s.,.( ts +17...)

for small enough r, since 7),. = (9(r). Now by assumption we have

so that [77,r]/€(T) 3 C1 for some Cl > 0 independent of r. Thus,

(02(t,s;r)l s (2((k((1,..+clnt((..) [1+ [ts-newss-

< 2(2 + Cl)llkl|1,oo,
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for O S s g t S 1. Thus GI and G2 (and hence G) are bounded uniformly in

Ogsgt31,r>0asr—)O.

Since a E C1[0, T] we argue similarly to the argument found near the end of the

introduction that, for each t E [0, 1],

|F(t;r)| S s+t)l’t‘1(8+t)-’l1(t)ldsdt7r(p)        

.__ Hf]Hp,s+t)(u(<t(s))(sdsdn.(p)

S rIIfltII°°//olc((+p,8+t) dsdnr(p)

_ Tllfl’llooa _
" u(t;r) (t’ I

= 0(7‘),

 

 

which shows that ||F(-, r)||00 = (9(r). Thus,

t

[H1(t;r)| s (IF(-,r)((.. [1+ [0 t(t — s,s(s)) dr

_<_ 2||F(',7‘)||os

= 0(r).

The theorem is now a trivial consequence of the Gronwall Inequality. 2

1.3 Noisy Data

If our data has noise in it then recovery of the “true” a (corresponding to the true f)

becomes hopeless because of the instability of problem (1). In fact, it is likely that

(1) has no solution when f is replaced by a function f6 satisfying Hypothesis 1.3, as
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f" need not be in 72(A). In contrast, for this function f" we can define

f"(t;r) := [hummus/)),

and have that

a(t;r)u(t)+/0tk(t,s;r)u(s)ds = f"(t;r), (1.9)

— equation (7) with f5 in place of f —— has a unique solution u"(t; r) E L2(0, 1).

If we denote by y" the error y" (t) = y" (t; r) := u6(t; r) — u(t), then we find that

y" solves an equation analogous to (11), namely

~1

y(t) = —m/Ok(t,s;r)y(s)ds+F(t;r)+E(t;r), (1.10)

a.e. t E [0,1], where

E(t; r) 2: 

as...) /.'d(t+s)ts(p), te [0,1].

Let us define

km,” :2 min{k(t, s) :0 S s S t S T}.

Then

< f6 |d(t + p)| date)

" it ft k(t + as + t) dsdnAp)

”dlloo . it” do.-

kmig f(I Pdflr (,0)

< —— t 01.

|E(t;r)|
 

 
S
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Convolving (1.9) with w(t, E(T)) and subtracting as before we get that

f(t) = [OI GU, 8; “Flt/6(3) d8 + H(t; T),

where H(t; r) z: H1(t; r) + H2(t; r) with

H2(t; r) 2: E(t;r) — w(t,5(r)) * E(t;r), t E [0,1].

Here G and H1 are as in the last section. Now

 
[H2(t;r)| = [E(t;r)—/0t1/2(t—s,5(r))E(s;r)ds

s (IE(-;r)n.. [1 + [its — s,s(r))ds]

25
S m, t€[0,l].

Thus, if r = r(t)) is chosen so that the quantities

6 _ Jfédnr

e(T) — Iii/16111410)

and r(6) both go to zero as 6 -—> 0, then, since we have H(-) (in place of H1(v))

converging uniformly to zero on [0,1], the argument used to prove Theorem 1.1 still

goes through; that is, we have the following result.

Theorem 1.2 Let 77., k,f, f" and a satisfy Hypotheses 1.2 — 1.3. Suppose also that,

for some C 2 1, the r], satisfy the condition

for/1610.032 é/Ordnr
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for all r > 0 sufficiently small. [fr 2 r(6) is chosen so that both r(6) ——> 0 and

for“) d77r(6)

r 6

foI I Pdnr(6)(,0)

 

as 6 —> 0, then the solution u6(t; r) of (1.9) converges uniformly to a on [0,1] as

6 -—> 0.

We have the following simple corollary.

Corollary 1.1 Let us assume the conditions of Theorem 1.1. If for fixed p E (0,1),

01 > 0 we take r(6) 2 C36”, then u6(t; r) -—> a uniformly on [0,1] as 6 -—> 0.

Proof of Corollary 1.1: Since p E (0,1) it is clear that r((S) —) 0 as 6 —+ 0.

And by assumption we have

asb-—>0. 2

What this theorem and corollary demonstrate is that, in the presence of noisy data,

r cannot be allowed to go to zero too quickly. It must be tied to the level of noise

in the data, providing an adequate level of regularization appropriate for the amount

of noise present. Apparently, the instability of the original problem (1) begins to

manifest itself in the perturbed problem (1.9) as the regularization parameter r ——> 0,

and it is necessary to relegate the extent to which this happens in relation to the

exactness of the data. This is the same kind of phenomenon that is suggested in

Theorem 0.1 concerning the regularization parameter a for Tikhonov regularization.

 



CHAPTER 2

The Variable r() Case

In Chapter 1 we extended the results of [9] to cover nonconvolution kernels. While

this is a significant step, we have our sights set upon more. In particular, our goal is

to extend the method to accommodate a function r() that varies throughout [0,1],

allowing for variable amounts of regularization.

2. 1 Preliminaries

We will use the symbols rm,” and rm“. (or ||r||oo) to denote the minimum and maxi-

mum values of r() on the interval [0,1]. When rn is one in a sequence of functions,

we denote these values by rmmin and rum,” respectively.

For a fixed function r(-) we define

Using this notation, we can write

k(t, s; s) = )0”) (k(t, s) + pate + asp), s)) dn.(p)

= ao(t;r)k(t,8) + form PD1k(t +€s,s(p),8) rim-(p)- (2-2)

22
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It can also be shown exactly like in (1.3) that

l _ 1+')'(t;r)
 

  

  

 

 

Ct(t; T) _ a1(t;r) (23)

where 7(t;r) = O(r(t)) _<_ 0(Tmax) for t E [0,1].

Using these estimates, we write

k(t,s;r) _ a0(t; r) .

d(t; r) — a(t; r) k(t, s) + D(t, s, r)

_ 00(t; T) 00“; Tmin) (“y(t; Tmin)[1 + If(t; rmin)l ,

_ (d(t; r) —————a(t;Tmin) + a1(t; rmin) k(t, s) + D(t, s, r)

= A(t, s; r) + B(t, s; r) + C(t, s; r) + D(t, s; r),

where

“D(tirmin). 3: .4A(t, s,r) a.(t;sm..)“t’3)’ (2 )

ao(t;r) ao(t;rm.-n). ,2 _ __ 2.B(t, s, r) (d(t; r) a“; Tmm) ) k(t, s), ( 5)

00(t; Tmin)7(t; Tmin). ,2 2.C(t, s,r) 01 (t; Tm") k(t, s), ( 6)

Dt- -— I “no“ () d() (27)
(737T) '— m 0 P1(+€t,sP,8)7irP, '

each defined for 0 S s g t g 1. Thus, we write the error equation (1.10) in y6(t)

u5(t; r) — u(t) as

y(t) = — [OI [A(t, s; r) + B(t, s; r) + C(t, s; r) + D(t, s; r)] y(s) ds

+F(t; r) + E(t; r) (2.8)

for t E [0,1].
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We choose to break down B further, writing it as

  

01(t; T) (11(t;7'min)

= [131(t,s;r)+ Bz(t, 8; r) + Ba(t, 8; 7)] k(t, 8),

B(t,s; r) : (a0(t;r)[1+ y(t; r)] a0(t;rm,,,)[1 + y(t; rmin)]) k(t, s)

where, forOS sgtg 1,

r(t) d
WW) ,Z 1.42.

a1(t;7‘)

1 1
B t ; := t; min ——-—__

I
2(137')

“OI T )(a1(t;r)
al(tirmin))

a0(t; 7‘)
ao(t; Tmin)

Bt; Z=——t; -_ timin-3(13T)
al(t;7°)7( T) 31(tifmin)7(

7' I

We intend to convolve the equation (2.8) with w(t,e) defined in (1.5), as in the

proof of Theorem 1.1. In that proof it became clear that, when g() is a bounded

function on [0, 1], then so is

[W - r,t)gmds,

for O _<_ s S t S 1. The first issue, then, will be to get conditions sufficient for a

uniform bound (in t, s and r()) on as many of the elements of the kernel in (2.8) as

possible — namely, on B, C and D.

2.2 Convergence Using Abstract Measures

In Chapter 1 we had a numeric parameter r which served as regularization parameter,

with r ——) O, and to each such r we associated a measure 77,. In this chapter we replace

the constant parameter r with a function r(-), and we will talk about sequences of

such functions going to zero. As before, we associate a single measure 7), to each
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(fixed) function r : [0, 1] —> (O,T — 1].

To show the boundedness of the various quantities in the last section, we will

need to make several assumptions about how the sequence of functions (rn()) and

the associated measures 77,” are chosen.

Hypothesis 2.1 We assume that (rn()) is a sequence of continuous functions on

[0, 1] into (O,T — 1] converging uniformly to 0 as n —+ 00, and that the associated

sequence of measures (1),") is such that 77,." satisfies Hypothesis 1.2 for each n =

1,2,. ... We assume further that these sequences are chosen to satisfy the following

conditions:

(i) The sequence

fIIrnIIOOd

7'71mm

for“"“" pdnr..(p)

 

is bounded.

(ii) The sequence

IIrnIIoo dnrn

0""0"‘"‘ )0 dnr. (p)

 

ll nlloo

is bounded.

We can now prove the following theorem.

Theorem 2.1 Assume that k, f and a satisfy Hypothesis 1.1. Suppose we have a

sequence of continuous functions rn : [0, 1] —> (O,T — 1] (so rmmin > O for each

n) converging uniformly to zero and (77,") is a corresponding sequence of measures

satisfying Hypothesis 2.1. Then u(t; rn), the solution of

fotk(t,s;rn)u(s)ds+oz(t;r,,)u(t)=ff;(t Tn),

converges uniformly to a on [0, 1] as n —> 00. Moreover, if f5" satisfies Hypothesis 1.3

for (6,, ), a sequence of positive numbers converging to zero, then the solution it""(t; r")
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[OI k(t, s; rn)u(s) ds + d(t; r,,)u(t) = [OIIIIII f6n(t + p) dry,“ (p)

converges uniformly to it on [0, 1], provided that r,,(-) = r,,(-; 6”) is chosen so that the

quantities

fIITnIIoo d,”771‘s;

I" Tn.min W 0

f0 pdnrn(p)

 

and ||rn||oo —+ 0 as n —> 00.

As in chapter 1, the first assertion is really a corollary of the second, arising from

the special case where 6,, = 0 and E(t; r,,) E 0 for all n. Note that, in that instance,

the condition about rn(-, 6”) being chosen to have the expression above converge to

zero is really no condition at all. Thus, we will prove only the second assertion.

Throughout the proof we will suppress the n, writing simply r or r() for a function

that comes from the sequence. Whenever a bound is asserted, it will be emphasized

that this bound is independent of 71..

Proof of Theorem 2.1: We know that the difference y(t; r) = u(t; r) — u(t)

satisfies (2.8). Taking

0.1(t; Tmin)

5 = E Tmi = ,

I II) 0003; 1‘min)

(note that 5(rmm) is independent of t) we convolve (2.8) with w(t, E(rm,,,)) to get

(It/(t — s s )

_ k(_7_',__s,r) . .

_ / 1))(t 7150;”T—)— y(s)dsdr+7,b(t,e) 1 [E(t,r) + F(t,r)]

= —/oI [I 1))(t k(IIIc)7(r8Ir'I))dT y(s)ds+1b(t,e)*[E(t;r)+F(t;r)].

Subtracting this equation from equation (2.8) we get

y(t) = [OI C(t, s; r)y(s) ds + H.(t; 7) + H2(t; 7). (2.9)
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where

G'(t, s; r)

:= f: w(t — r,€)[A(r, s; r) + B(7', 3; r) + C(r, s; r) + D(r, s; r)] dr

+2/2(t — 3,5) — A(t, s; r) — B(t, s; r) -— C(t, s; r) -— D(t, s; r) (2.10)

and

H1(t;r) := F(t;r)—i,b(t,e)*F(t;r), (2.11)

H2(t;r) := E(t; r) — w(t,e) =1: E(t; r), (2.12)

for t E [0,1].

As mentioned earlier, the boundedness of

t

B(t,s; r) —/ 1))(t — r,e)B(r, s; r) dr

hinges upon the boundedness of B itself, which in turn rests upon the boundedness

of B1, 82 and 83. We have

Tmuz d 1'

Bl(t13; 7.) S rizrm T, i

0 )0 dnr (p)

 

which is bounded (uniformly in n) by Hypothesis 2.1(i). Next we have

. _ Tmin Lit: Pdllr (p)
[3205, S, r)] — (/0 dTlr) (fJIIIPdnr(p))( ormin pdanPll

( gendn. r )( f.',;':;'dn. )

Jm‘"pdnr(p) "III Jm‘“pdnr(p) I

the first factor of which is bounded by Hypothesis 2.1(ii), and the second factor by
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 (i) (both uniformly in n). To get, finally, that B(t, s; r) is bounded, we have

frmaz dnr

B(t,s;r _ r

I I II o'""‘pdnr(p

 

) I‘llt; 7) + ’70:; Tminll a

which is bounded (uniformly in n) by Hypothesis 2.1(ii) and the fact that there exists

a Cl > 0 for which |'y(t; r)] S Clrmax uniformly in t E [0, 1], n = 1,2,. . ..

One shows that C(t,s;r) has a uniform bound independent of t,s and r (one

bound for all n) just as we showed it for B3. For D, we have

1+ (t,r)

(D(t.s.s)( s ——"’t——'0III’ plel(,p,t+t..() s)(tn.(p)

|
/
\

IIkII1,ooI1 + l7(t; r)|l.

which shows that D also has a uniform bound in t, s and r independent of n.

With A(t, s; r) = %k(t, s), we perform an integration by parts (details like those

11 (1.6)) to get  
w(t — s, e) — A(t, s; r) + [I w(t — r,€)A(r, s; r) (17'

 

[I w(t — r, 5)D1k(r, 3) dr

S ||k||1,oo-

  

Thus, our kernel G is bounded (uniformly in t, s and r, independent of n).

One shows that H1(t;r,,) goes to zero uniformly as ||rn||oo —-> 0 just as it was

shown in the constant-r case for Theorem 1.1. Also, as in the constant-r case, the

expression

form.7110: dnrn

fo ""“"pdnr.(p)

comes out of looking at the bound on H2(t; rn), and the convergence of this expression

 

to zero is a sufficient condition to get that ||H2(-; r,,(-))||,,o —+ O uniformly as 6 —+ 0.
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Now the result follows from the Gronwall inequality. 2

Theorem 2.1 is, in fact, a generalization of Theorems 1.1 and 1.2. For, if each

rn(-) is a constant function, then the terms of the sequence in Hypothesis 2.1(i) are

all zero. Also, (ii) reduces to the condition

7‘ tr 1"

dr >—/ 1')fopn(p)_c 0dn

stated in Theorem 1.1.

2.3 Application to Specific Measures

As an application of theorem 2.1, suppose that, for each continuously differentiable

r : [0, 1] —> (O,T — 1] we take 77, to be a weighted Lebesgue measure of the form

dn,(p) = w(p)dp, where we assume that w : [0,T — 1] ——> (0,00) is in L°° with

0 < wmin _<. w(p) S “cellos, for P E [0,T - 1]-

Suppose now that r() = r,,() is one in a sequence of continuous functions sat-

isfying Hypothesis 2.1 with associated measure as described above. Looking at the

expression from condition (i) in that hypothesis, we see that

Irma: LU(p) dp < 2IIC‘JIIOOIIrmax _' Tmin)
rmin

form" WIP) dp — wminrrInin

 

Thus, condition (i) under these types of measures comes down to the existence of

some M1 > 0 (independent of n) for which

Tn,max '— Tn,min S All?"2 (213)n,min ’

for all n.
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From Hypothesis 2.1(ii) we take the expression

It“: w(p) dp T < 2llwlloor3n...

.IIOIImIII ”(pl dp — wminrgm'n

 

Hence condition (ii) requires that there be an M2 > 0 such that

M< M2 (2.14)

Tn,min

for alln= 1,2,....

We thus have the following corollary.

Corollary 2.1 Assume that k, f, it and r,, satisfy the conditions of Theorem 2.1, and

that dnrn = w(p) dp for each n as described above. If there exist constants M1, M2 >

0 so that the conditions in (2.13) and (2.14) are satisfied for all n, then u(t;rn)

converges uniformly to a on [0, 1] as n —-) 00. Moreover, if f"" satisfies Hypothesis

1.3 for (6”), a sequence of positive numbers converging to zero, then the solution

“In (t; Tn) 0f

[OI k(t, s; r,,)u(s) ds + d(t; rn)u(t) = [OIIIIII f5n (t + p) dry," (p)

converges uniformly to a on [0, 1], provided that r,,(-) = rn(-; 6,,) is chosen so that the

quantities

5nII7In(';6n)IIoo

2

Tn,min

—>0
 

and ||r,,(-;6,,)||oo —> 0 as n —> 00.

The condition in (2.13) deserves some scrutiny. It says, basically, that the func-

tions rn are becoming constant at the square of the rate at which they are converging

to zero. The convergence proved in Corollary 2.1 is asymptotically the same type of

 



31

convergence as proved in Theorem 1.1. Nevertheless, for 6 > 0 (which is generally

the case), r() need not be constant.



CHAPTER 3

Penalty Predictor—Corrector

Methods

In Chapter 2, we proved a convergence result for the class of predictor—corrector

methods that has been the main focus of this work so far. While some conditions

under which this convergence was shown are quite general — the main one being

that r(t) is allowed to vary, providing varying amounts of regularization throughout

the domain — others were somewhat limiting. While not ruling out the use of truly

variable r(-) in the (usual) case of noisy data, Hypothesis 2.1(i) seems to limit the

variation allowed in the (functional) regularization parameter r(-), at least in the limit

as the noise level converges to zero. In fact, as seen in Corollary 2.1 for a particular

choice of measure, the limiting behavior of r() must be, in some sense, like a constant.

The goal of obtaining convergence results under less stringent conditions on the

sequence r,,(-) of functions remains an open problem. Motivated by this, we explore a

new class of regularizing methods that we dub Penalty Predictor—Corrector methods

for their similarity to the earlier class. In contrast to the results in Chapter 2, we

find for this new class of methods that we do not need to constrain the variation on

the regularization parameter r() as the noise level goes to zero.

32
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3.1 Motivation for the Method

Let us assume for the moment that, at some fixed t E [0,1], r(t) > 0 and u() is

a known function on [0, t). We assume also that u(t; r) > 0. We may then seek a

constant c that solves

r(t) 2

mm/

cER o

foIk(t+p,s)u(s)ds+c/opk(t+p,s+t)ds—f(t+p) dp
 

+c2p(t; r). (3.1)

This minimization problem harkens back to equation (2), where the set D consists of

constant extensions of u(), and the norm in .77 is an LZ-norm on [t, t + r(t)]. Taking

% of this expression, we get the necessary condition on a solution c that

[[0,—(t) [0” k(t + p, s + t) ds w(t, p) dp + (u(t; 7.)] c

+ [OIIII [OI k(t + p, s)u(s) ds w(t, p) dp = [OIIII f(t + p)w(t, )0) dpi (3-2)

where

p

w(t,p) :=/0 k(t+p,s+t) ds.

For the moment, let us say that this process has been carried out at t = t,-. This

solution c is, in the sense of Tikhonov regularization, the best constant to represent

u() on the interval [t,, t,- + r(t,)]. In [11], the authors deal with a discretization of the

problem and, under supposition that r(t,) = rAt for some integer r > 0, they find the

best step function (represented as a vector in R') to approximate u() on [t,, t.-+r(t,-)].

They follow this prediction of the solution into the future with a correction, retaining

only the first component of this vector as the value of the approximate solution 721(3)

on [t,, t,- + At] and discarding the rest of the vector. Because theirs is a discretization

of the problem, they can move on to the next ‘t’-value, namely t,-+1 = t.- + At and
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repeat the process on the interval [t,+1,t,-+1 + r(t,+1)]. As At shrinks, the retained

value from the vector is used in the definition of it on correspondingly shorter intervals

at each step.

We are considering the full continuous problem. Following after the discussion in

the last paragraph, we might (in the limit) take our approximation u(t) = c (just at

that particular t value). Identifying u(t) with c, then, (3.2) becomes (after a change

in order of integration)

[fOIIII [0p k(t + p, s + t) ds w(t, p) dp + u(t; r)] u(t)

t r(t) r(t)

which is a special case of the more general equation

[form [0" k(t + P, 3 + t) ds dnt,,(p) + u(t; r)] u(t)

+ [OI foIII) k(t + 10.8) d771,r(10) 21(8)“ 2 foIIII f (t + p) d777,.(p).

If we define a(t;r),k(t,s;r) and f(t;r) using (8), (5) and (9), respectively, corre-

sponding to the measure m, (for each t E [0,1]), then this equation becomes

foIIII’SiIII‘ISId“ WW) +#(t;7‘)IU(t) = f(tn‘), (3.3)

an equation that closely resembles (7). The appearance of the new function u(t; r)

has to do with the difficulties we encountered in the variable-r(t) case. If we make

a wise choice for this )1 — say, one that when added to u(t; r) makes for something

like a constant (in t) coefficient c = c(r) of u(t) (of course, not so much of a constant

that we lose the benefits of our function r(-) over the constant parameter r used in
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Chapter 1) — our hope is the solution of (3.3), or of

[OI k(t, s; r)u(s) ds + c(r)u(t) = f(t; r), (3.4)

(assuming that one exists) will converge to the solution of (1) as r,,(-) —> 0, and that

it will do so under less stringent conditions than those we required in Chapter 2.

3.2 Convergence of Solutions

In the last section we motivated a new penalty predictor-corrector type method. We

proposed the introduction of a function u(t; r) into the perturbed equation of the

predictor-corrector methods we studied earlier, hinting that we could do so in such

a way as to give ourselves a new perturbed equation in the classic second-kind form

— that is, where the coefficient of the u(t)-term was constant. As we shall see, the

function )2 that we will use in the results of this chapter is not actually intended to

make this coefficient into a constant. Here, rather, we have chosen )1 so that the

problem reduces to one quite similar to the one we analyzed in Chapter 1. The

comparison of equation (3.1) to (2) together with results from earlier chapters should

make us expect convergence in the noise-free case only as r(-), and simultaneously

p, go to zero. We may also expect that, in the presence of error in the data, both

functions must somehow be tied to the amount of error in order to get convergence

as the error goes to zero.

For this reason, it is reasonable to tie the two parameters together. Let p E

(O, 1 /2]. Given a continuous function r : [0, 1] —> (0, T — 1] and a finite Borel measure

77, on [0, |[r||oo], we will set

r(t)

u(t;r) == llt‘ll’éo 0 dm- (3-5)
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With this definition for u, it follows again from the results in [6] to which we referred

in the introduction that equation (3.3) has a unique solution u(t; r) if Hypotheses 1.1

— 1.2 are met with d(t; r) + u(t; r) in place of d(t; r).

Theorem 3.1 Suppose that k satisfies the assumptions made in Hypothesis 1.1. As-

sume that f is such that a continuous solution a of (1) exists on [0,T] with 11(0) = 0.

Let (rn()) be a sequence of continuous functions with r,, : [0, 1] —) (O,T — 1], r,, ——> 0

uniformly, and assume that the measures 17,.“ satisfy Hypothesis 1.2. If u(t;rn) is

given as in (3.5) (where r,, replaces r), then the solution u(t;rn) of (3.3) converges

uniformly to u(t) as n —+ 00.

To prove this theorem, we will need a lemma, the truth of which is asserted in

[3] but not proved there. It asserts that our function w(t,e) defined in (1.5) is an

approximate identity in the space C ([0, TI), at least in a certain sense.

Lemma 3.2 Suppose that g : [0, T] —+ R is a continuous function satisfying g(O) = 0.

Then

was) . g(t) == [OI t(t — s,s)g(s) ds

(w as defined in (1.5)) converges uniformly to g(t) on [0, T] as 5 -—> 0+.

The proof is fashioned after that for a similar assertion in [4]. Because we want

to use the variable 5 in another, more traditional sense during this proof, we elect

to use the symbol 7) (in no way related to the measures called by the same name in

other parts of this work) as the second argument for the function 11).

Proof of Lemma 3.2: . Let 5 > 0. By the uniform continuity of g on [0, T]

there exists a number 6 > 0 such that, for each t E [0, T], O S s S min{6, t},

|9(t - 8) - g(t)! S

(
\
D
I
O
'
)
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Taking s = t, we note that this last condition along with the assumption that g(O) = 0

implies that |g(t)| S 5/2 for t E [0,6]. If we define

then

WM) * g(t) - g(t)l

Thus, for t E [0,6],

flnltl z: LII/((3)77) d3 =1— (ft/II,

5 Wt. 7)) * g(t) - 7517(t)9(tll + l9(t)llfin(t) - 1|

s [0‘ ()(s, s)(g(t — s) — g(t)) ds + (g(t))e-W

WM) sg(t) — g(t)) < 5 (”mswfig

and, for t E [6, T],

|w(t,n) * g(t) - WM
/06 M3, 77)]g(t — s) - g(t)] d3

+/6Iv(s,17)|g(t — s) - g(t)| ds + mm (53ng (9‘7”)

§+ 3||gllsse“’/I’

E

for all 77 2 77(6) sufficiently small. 2

In proving Theorem 3.1, we will take r() to be one element in the sequence (rn(-))

of functions.
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Proof of Theorem 3.1: From (6) we see that the true solution it of (1) satisfies

[or 120,3; T)ft(s) ds + [u(t; r) + u(t; r)] u(t)

= f(t;s)—[III’fIt(t+p.s+t)(t-t(s+t)-t1(t)1dsdn.(p)+s(t;r)s(t), (3.6)

for t E [0,1]. Setting y(t; r) : u(t; r) — u(t), we get that y(t; r) solves

 

 

_1 t,. ..

y(t) = u(t;r)ww) f0 k(t,s;r)y(s)ds+F(t;r), tE [0,1], (3.7)

where

F(t; ,r) ;= 0"" It k(t + p, s + t) [tt(s + t) - 11(t)] dsdw) — u(t; r)t‘t(t).

u(t; T) + u(t; T)

As in (2.2), we write

~

t(t.s;s) = [0I") (k(t. s) +pD.t(t+e,.(p).s)1 dn.(s)

= (form dn,) [k(t, s) + H(t, s; r)], t E [0,1], (38)

where, for 0 g s g t g l, we have

f6“) lek(t + 51,.(p). S)dnr(p)l
[H(t,s;r)| = r(t) ,

f0 dllr

pdnrbo)

foIIIIdnr

S ||k||1,oo||Tlloo-

 
 

T(t)

S ||k||1.oo O
 

Employing a Taylor expansion as in (1.3), we also write

a(1t; T) = [In pdtM/T) + h(t; T),
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for t E [0, 1], where

W) p

h(t;r) := [0 f0 [pD1k(t+€,t+C)+sDzk(t+€,t+C)l dsdn.(p).

 

 

Then

r(t) ~

u(t;r) = ((71):. (/ dos) he; 1).
0

where

[h(t )] I IIII d ()+h(t );T = ,. )0 7lrp ;T

||T|II<§o(foIIIdnr) °

 

 

1 ’ r(t) 3 r(t)

. ((71)..[/ ds.)+—nt(1.,../ pIdnr(p)[
urns (10“) dnr) . o 2 o

__ 3

s ((71);? [1 + §l|kll1.oollTllos]

= 0(HTHIQ”)

Using our definition for u from (3.5), we then have for NHL» sufficiently small that

  

1 1 1

u(t; 7) + u(t; 7) _ ”rug. 70"“) an. 1 + h(t; r)

1 + 7,,(t; r)
 

,. , (3.9)

llTll’o’s foIII dnr

where ”u(t; T) = 0(IITIILT”) 88 MI» -> 0-

Returning to equation (3.7), we employ (3.8) and (3.9) to get that

y(t) = —I+|——-—|————:'|I|,,O:IIII [OI [k((t, s) H(,t(s;r)] y(s)ds+F(t;r)

—_— ;“1p—/0Ik(t,s)y(s) ds -—III/OIG(t, s; r)y(s) ds + F(t; 7"), t5 [0713-10)

llT so
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where, forOS sgtg 1,

[G(t,3;7‘)[ : IIT——I[—|p Ik(t7 5071?“; II) +H(t7 '3,1") I1 +7P(t7 T)“

= 0(llTlléoI'I)

Since p E (0,1/2], G is bounded (at least) for all 0 S s S t S 1.

Now as in previous chapters, we will convolve (3.10) with 7/7(t, s(r)) and subtract

the result from (3.10). In this instance, we take c(r) = ||rllgo, and the result is

y(t) = [OI K(t, s; r)y(s) ds + F(t; r) — 7/7(t,e(r)) at: F(t; r), (3.11)

where

K(,t s; r) :=/I w(t — r, 6(7‘ )G(r, s; r) dr - C(t, s; r) — /8Iw(t — r,e(r))D1k(r, 3) dr.

Here the suppressed details are much like those seen when applying this convolution

technique in previous chapters. We see that, for 0 _<_ s S t S 1,

|K(t, 8;T)| S leGlloo + ||k||1,oo,

showing that K is bounded.

Next we look at the terms of

III” f0” k(t + p, s + t) [71(8 + t) - 176)] d8 (177(0) + a(t; T)T‘t(t)

III II : 0t(t; T) + u(t; T)

— u(t). 

First, we have from (3.9) for all t E [0, 1] that

it“) it k(t + p. s + t) [77(8 + t) — e(t)] ds dn.(p)|

a(t; T) + u(t; T)
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2llklloollt’tllso JIIIpdnr(p)

“ d(t; T) + u(t; T)

S 2I1+u(t;T)I|Iklloollftlloo||Tlch;I

 

= 0(HTIICIQII)

Likewise, for all t E [0, 1],

a(t; T)

s(t;s) + WW) 5 [1+ u(t;r))nsnmnsnsp.
 

Thus,

F(t; T) - 1W, 5(7)) * F(t; T) = (Mt, 5(7)) * (E(t) - E(t) + 0(llTlléJ")

And, by Lemma 3.2

(170.5(7)) * W) - W) = 7W, ||Tllio) * (1(0- W)

converges to zero uniformly as NHL» —> 0.

With these observations about the boundedness of the kernel K and the uniform

convergence of

wakF—FI

to zero, we may apply the Gronwall Inequality to (3.11) to get the desired result. 2

We note here that, should we replace our expression for u(t; r) in (3.5) with a

constant multiple of it (say, multiplied by some c > 0), then the proof of Theorem 3.1

still goes through. Evidently, though, the proof fails if u(t; r) E 0, as the presence of

a nonzero constant added to h(t; r) = O(|]r||1"’ in the denominator in (3.9) after the

IITII’;o f5“) dn, has been factored out is crucial.
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As in earlier chapters, we need to know that the convergence asserted in Theorem

3.1 will happen in the presence of noisy data. As before, the proof does not change

much from the “pure data” case.

Theorem 3.1 Along with all of the assumptions in Theorem 3.1, we also assume that

f6" satisfies Hypothesis 1.3 with respect to the measures 77,.” for (6"), a sequence of

positive numbers converging to zero. Iffor some c > 0, q E (0,2) we have ||r,,|]oo = 06"
n’

then the solution u"’1 (t; r,,) of

IIT(t,s;sn)u(s)ds+ (s(t;r.) +11(t;s.)1u(t) = IIIIII76"(t+p)dn..(p)

converges uniformly to a as n -—) 00.

Proof of Theorem 3.1: As in the proof of Theorem 3.1 we form the difference

y(t; r) = u"(t; r) —u(t) (here we are suppressing the dependence upon n), convolve the

equation for y with 717(t, ||rllgo) and subtract to get equation (3.11) with the additional

terms

E(t; T) - (W’s—“(TD * E(t; T),

where

 

T(t)

E(t;T) — f0 d(t + )0) 012(10)-

But, from (3.9),

|1+7p(t;T)| re
 

I ( )I ||r||€o foIIIIdUr 0 ( ,0) 77 (P)

(5

5 mil + I’YpItirlll-

Since p E (0,1/2], it is clear that ||E(; r)||,,0 —+ O (and hence E— 7/7* E) for any choice

of q E (0,2). 2



CHAPTER 4

The Discretized Problem

Most problems of type (1) are solved numerically on a computer, and nearly always

with some error introduced as a result. It is impractical, in general, to represent a

function on [0, 1] (or any interval) perfectly. Most likely, the functions involved are

known only by samplings at specific times, and represented on a machine as vectors.

One numerical approach to problem (1) without using a special regularization

technique is to simply partition the interval [0, 1] into N subintervals [t,-,t,+1], i =

0, . ..N — 1, each of width At = l/N and to seek constants a,,i = 0,. . .,N — 1, so

that the step function

N—l

u(t) = a aiXiIt)

satisfies (1) at the collocation points t = t,, i = 1,. . ., N. In this discretized form,

(1) becomes a lower-triangular matrix problem with nonzero diagonal elements (un-

der suitable conditions upon the kernel) and as such is well-posed. Nevertheless,

the instability of (1) (the infinite-dimensional problem) manifests itself even in this

discretized setting, with the condition number of the matrix growing as At shrinks.

Often it is necessary to keep the value of N so small that solutions are hardly of any

use in order to keep those solutions from becoming highly oscillatory. We will not

delve deeply into these issues, but more can be found in [10].

43
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Thus, in considering a discretized version of problem (1), it makes sense for us

to also consider a discretization of some perturbed, well-posed problem that we will

solve in lieu of it. In this chapter, we will consider a discretized form of the penalty

predictor-corrector equation (3.3) (with penalty function u(t; r) for t E [0, 1]) and

show that the solution of this equation converges to the true solution of (1) at collo-

cation points as the grid size shrinks. Further (in contrast to the continuous theory

in Chapter 3), our convergence theory will also apply to the case of p(-; r) E 0. The

significance of this result is that we will obtain convergence of solutions of standard

discretizations of equation (7) in the case of regularization parameters r() that are

not limited by a variability constraint such as that given in Hypothesis 2.1(i).

4.1 The Setup

We assume that [0, 1] has been partitioned up into N (a positive integer) subintervals

[t,, t,+1] where t,- = iAt, i = 0,. . ., N— 1, At = 1/N. We further assume that k, a and

f satisfy Hypothesis 1.1. So we have a satisfies (1) at each t E [0, 1]; in particular, at

t=t,~,i=1,...,N.

We take as our perturbation of (1) the equation (3.3) for u(t; r) 2 0, namely

[OI [E(t, s; r)u(s) ds + [u(t; r) + u(t; r)]u(t) = f(t; r). (4.1)

where for now, we take r(-) to be a continuous function on [0, 1] into (0, T — 1].

In discretizing (4.1) we seek constants (to, . . . , aN_1 so that the step function

N-l

u(t; At) = 5: (1.7).-(t) (4.2)
i=0

satisfies (4.1) at each of the points t1, . . . ,tN. Here (25,- is the indicator function on the
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half-open interval (t,, t,+1] for i = 1,. . . ,N — 1

1, ifte(tiati+1l

(0,“) I: {

0, otherwise,

and (to is the indicator function on the closed interval [t0, t1]. Substituting (4.2) into

(4.1) and setting t = tj+1 gives us

j n+1 ~ ~

2011/ k(tj+173;7‘)d3+ [0(tj+1;7‘) +#(tj+1;7")laj = f(tj+1;7‘) (4-3)

i=0 If

for j = 0, . . . , N —1. (Notice that we have taken to writing r,- for r(tj).) Equation (4.3)

can be written as a lower-triangular matrix system (in the a,’s) where the diagonal

elements

9+1 Tj+1

/; /(I) k(tJ'I‘l +p7
3) dnr(p) d3+a(tj+l;7‘)

+H(tj+l;T)

JI

are all positive if we assume that k > 0, u(t; r) 2 0 and 7), satisfies Hypothesis 1.2.

Under these assumptions, constants (to, . . .,aN_1 do exist (uniquely) so that (4.2)

satisfies (4.1) at tj, j = 1,...,N.

In previous chapters we have talked about convergence of an approximate solution

to the true solution as a (function) parameter r() —> 0. In the discretized setting,

we also want to see what happens as At —7 0, and we will link these two parameters

together.

Hypothesis 4.1 Let 'y : [0,1] —> (0,00) be a piecewise-continuous func-

tion. We will assume that r() := 7(-)At.

Because of this assumption, it makes sense to write p(t,-;7, At) in place of p(t,-;r)

for j = 0,. . . , N — 1. We will adopt a notation pj(At), suppressing the dependence

upon '7. Likewise, in place of 77, we will write 77737 (also suppressing the measure’s

dependence upon 7).
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Let us then define constants cj(At) = c,-(p, At) by

c,-(At) 2: “(J’I)+“J(AII, j=0,...,N—1, (4.4)

00031”)

 

where a” is defined as in (2.1) for V = 0,1. (Note that the a,,(t;r,-),a(tJ-;r) depend

ultimately upon '7 and At by Hypothesis 4.1, but they do so through the r,-.) Using

these, (4.3) can be written as

tH—l ~ -

Z (11 fl k(tj+1, S; 7‘) d3 + a0(t,-+1; r)cj+1(At)aj = f(tj+1; 7").

i=0

Alternatively, if dnAt is a positive Borel measure satisfying Hypothesis 1.2 and f6

satisfies Hypothesis 1.3 with respect to dnAt, then with f" in place of f in (4.1) there

is a unique step function u(-; At, f5) (whose dependence upon .7 is suppressed) of the

form (4.2) satisfying

 

j t1+1 k(tj+1 3") Ii“ JIIIt‘H 'I' P)
a- ——I—i——ds+c- Ata- = f I d , 4.5

12:; I ./t.- a0(tj+1; r) III( I I o ao(tj+1;r) IIAIIPI I I

forj=0,...,N—- 1.

We will use a differencing technique similar to that used in [8] to analyze conver-

gence. To this end, we make a shift in the indices j in (4.5) to get that u(t; At, f")

satisfies

tt'+1k(t,s;r T1 5t-+

201/ —3——Ids +CjIAtlaj—l = Mdnmp),
t.- ao(tj;1‘) 0 0003317")

for j = 1, . . . , N. Subtracting this equation from (4.5) yields

t1+1 [k(t,-+1, s; r)

c- At 07- +
J+l( ) J tj a0(tj+1;r)

03-01(3) ds
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= __1__T)_ [OI’II [f(tj+1+ p) + d(t-+1 + 9)] dnAt(P)
GOItj+1;

IIIaoIth; 7) [0 I [f(t)- + P) + d(tj + Pl] d’WIp) + ”(AIM—I

Iii/II“ [w
__ k(tj,8;7')

GOItj+li T) ao(tj; T)

a,<t,-(s) ds, (4.6)

720 t

which holds for j = 1,. . .,N — 1. We have seen in (3.6) that the true solution it

satisfies

foIk(t,;usr)((s)ds+/0IIII/OIIk(t(tt+p,s+)[u(s+t)—u(t)]dsdnm(p)

+[0t(t; T) +u(t;T)lfl(t) = Of(t+p)al77m()0)+/t(1t;T)’t’t(T)s (4-7)

for all t E [0, 1]. If, as we did above, we evaluate (4.7) at t = t,- and divide through by

a0(t,-; r), and then subtract the resulting equation from the one arising from evaluation

at t = tj+1 and division by a0(t,-+1; r), we get

 

 

 

Cj+1()Mt(tj+1) + [:III I—)——a(:’;:;IITI] 17(3) 018

--/."‘ (1.51::’ ‘—(—9l 77717777“)
—/0IIII/Ik(tj+1 +p,s+t,-+1)IIIIII +5581;SII’IIII d8 dump)

+/OII/0I k(t,+p,s+t,-) IIIIZOIétINfIIIAIdsdn(p)

+/0I’II Wit At( )- 0I%E%dvm(p)

+u7+1(At)—0(itfiI,—IT-)-#2(A1*) ,,II(II.I;IT)’ III'III

forj = 1, . . . , N — 1. Subtracting (4.6) from (4.8) gives us

Cj+1(At) (s(t.+1)— as) + [,I“ I—(T—TIH) — sitter ds
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z _f'“i(£2+_1:fld Mp) + ['3 Mme) +cj<At>w<tj> — (17—11
. aoltj+1~; 7") ~ aoltj; 7‘)

— g (I [——’:f:g;j:j;3l — ——’:f:g,’jf,)] [71(3) — men .13

 
”+1 P 71(8 + t-+1) - W -+1)

— kt- + , +t- J 3 d d
A A (3+1 p 3 3+1) aO(tj+1;T) '3 "At(p)

 

r,- p ' . c(s + t,) — u(tj)

+/0 f0 k(t] + M + t3) aw”) ds d77At(p)

ii(7541) g(t.)
+- At——’—-—— .At——’—. 4.9MJ+I( Ia0(tj+1;r) IuJ( )00(tj; 7‘) ( )

By a Taylor expansion we can write

21(15) = fill/3+1)+(t-tj+1)71I(Zj(t)), (4-10)

for some 2,-(t) between t and tj+1. Thus for t E (tj, tj+1] we have

u(t) — ajasjm = At 77 + I Xf‘sz-(m , 

forj=0,...,N—1,where

”H(t‘ 1) — (1‘
fij .: J+At J. 

Using this and dividing through by At, (4.9) becomes

 

‘2' 0003341; 7‘) - 00051413") At

_ . . __1_ ”I‘m _ ”M
— CJ(At)IBJ—l At {A 006541;?) d77At(P) ‘/(I) aoztjfl') dnAt(P)

r1+1 P 11 8 + t' — 27, t‘

+/ / k(tj+1 + P, 3 + tj+1) I III) , I III) d3 d77At(p)
o o a0(tj+1,r)

— [0II foIk(t,- + p, s + t;-)IIII" I I) _ IIII’I deflAt(P)}

tJ-IIIct- - t1:lEt—,; —t-

[Cj+1(At)+/ I IIIIIIIIIIdIIl 51+], I IIII IIIII IIIIaI(Zj(S))dS

 

 

 

00(tj; 7‘)

II—I II“ 1203341 8’7‘) E(tj 3°7‘)] [ 3-73.“

g1." [ ao(tj+1;1‘)
a0(tj; r) ’6 At ( ( ))

 mi, [unmafi — #j(At)II(::ITI)l , (4.11)
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forj=1,...,N—1.

Finally, we define the quantities (for which the dependence upon 7 is suppressed)

tj+1 k(tj+1, S; 7')

 

 

1),-(At) :2 cj+1(At)+/tj a0(tj+1;r)ds, (4.12)

w,(At) :2 %, (4.13)

E705. At) == D,- (1m) MI“WdnAe(p)

—/0II%,—E§dnm(p)l, (4.14)

v.14) 7: m [33:11") .. 3:55;?) 7., (4.15)

Z,(At) = 13—11%, (4.16)

where

 

'1'“ p 17(3 + tj+1) — 7105341)

R] (At) A [0 k(t1+l + pa 8 + t]+1) ao(tj+1;7') S d77At(p)

rJ- ”t. _‘t.

-/0 [OIWJ- +p,s+tj)III I III III II dsdnAAp)
 

aolthT)

1‘1 tH-l [E(tqq 8'7') k(t 3II’I)
+ / —J_;;___;14— s—h i743 “

12:?) t.- [ao(tj+1;7I) “00137) I III I III

IJI‘H III‘I:(tj-+-113;I’II) —I
—_ _ t. . d

+/th a0(tj+1;r) ('3 3+1)” (23(8)) 3

i1(tj)ML+,1,(At)— (4.17)_ . At ,

“1+“ )aoaJ-m) ao<t77r>

for z' = 0,. ..,j — 1, j = 1, . . . , N — 1. With these expressions, (4.11) can be written

JI-l 1

fl,- = W7(At)flj_1—AtZVJ-,7(At)fi. — —E-(6, At) — z.(At), (4.18)

i=0 At II II

forj=1,...,N—1.
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Now if we evaluate (4.5) at j = 0 and (4.7) at t = t1 (dividing through the

resulting equation by a0(t1; r)) and then subtract the two equations, we get

 

 

1

so = —EE0(6, At) — Zo(At), (4.19)

where

,_ I‘ Hipsfl‘)
D0(At) .— C1(At) +./O mds, (4.20)

E0(61At) := DozAt) /0IIII gfi} d77At(p)a (421)

,_ R0(At)

with

1 r1 P ° _ _

Row“) 1: (1001”,) [[0 j; k(tl + P,3 +151) [u(s + t1) — “(t1)ld3d77At(P)

+/0I1Ic(t1,s;r)(s — t1)u'(zo(s)) ds — p1(At)a(t1) . (4.23)

4.2 Conditions for Convergence

In the last section we defined expressions that arose out of a “differencing” approach

to the solutions a and u(t; At, f5). While the quantities themselves are somewhat

different, the purpose they serve is the same as similarly-defined expressions in [8].

The next theorem and proof also come from [8]. We provide the proof here for

convenience.

Theorem 4.1 Assume that point evaluations of the solution a to (1) make sense,

and that dnAt, f5, 1: and ,u satisfy the conditions discussed above. Suppose positive
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numbers w, M, v and z exist such that

Wj(At) < w, J =1,. ,N — 1,

V,,,-(At) s v, i=0,...,j—1,j=1,...,N—1,

6

E-6At < M— '= N 1
)(1 ) AtI .7 0: i a

Zj(At) _<_ 2, j = 0,. ,N — 1,

uniformly in At > 0, with w 6 (0,1). If At = At(6) = m/d for afirced c > 0, then the

solution u(t; At, f5) of (4.5) converges to a at the collocation points t,, j = 0, . . . , N(6)

{N(6) = 1/At(6)) as 6 —> 0. This convergence is at the best possible rate with respect

to 6; that is,

(u(t); At, fI) — w.» s KW + 0(6),

forj = 1,. . . ,N(6), as 6 —¥ 0, where K is a positive constant independent ofci and

At.

Proof of Theorem 4.2: Arguing as in [8] we define constants B,- = B,(At, 6),

j = 0, ...,N — 1 satisfying

1

B = —M0 At2 (5+2,

1‘1 1

Bj = WBj—l'l'AthBi'l'fiMéI—l'zy j=1,...,N—1.

i=0

If we assume that At = At(6) is chosen so that 6/At2(6) remains bounded as 6 —-) 0,

then the coefficients in the relations above are bounded. It is easily verified that these

B,- satisfy the second-order difference equation

1

B0 = fiMd‘l’Z,

B1 = (w+Atv)Bo+—I——M6+z,

At2
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B,- = (1+w+Atv)B,-_1 -wB,-_2, j: 2,...,N— 1.

By the theory of difference equations we find that

Bj = CIin +0273,

forj =0,...,N—1. Here

T1 = 1+1—f-JAt+O(At2),

’1)

T2 = w [1— mAt] + 0(At2),

ML

01(5, At) = Iii—fift— + 0(At),

6

02(5, At) = —w 1111?? + 0(At).

From the definitions of the B,- it is clear that each B,- > O, and that r1 > 12 > 0.

Since 02 < 0 for At sufficiently small, we have

B,- = 01(6,At)7{+02(6,At)r2j

= C1(6, At) [1+ l—l—At + 0(At2)]I
—w

s 201(5,At)e$p(-1—2:ILE) ,

and thus taking At(6) = cx/d gives us that the B,- have a uniform bound for j =

0,. . . , N — 1, independent of N. A simple induction argument gives that

l/leSBja j=0,...,N—1,
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showing that

Ia, - H(tj+1)| S 2C1(5,At)Atexp(1—_II—w) —) 0

as 6 (and hence At(6)) goes to 0. 2

Theorem 4.2 Suppose that k, a and f satisfy Hypothesis 1.1, that we have measures

nAt = 77,13, for At > O (sufficiently small) that satisfy Hypothesis 1.2, and that f5

satisfies Hypothesis 1.3 with respect to these measures. Assume also that Hypothesis

4.1 holds, and that ||y||oo < kmin/Hklloo. If we take

pj(At) :2 ca0(tj;r)Atq,

for c 2 0, q 2 1, then the conclusions of Theorem 4.1 hold concerning the convergence

of u(t; At, f6) to a as 6 —> 0 at the best possible rate with respect to 6, provided

At = At(6) = cx/g.

Proof of Theorem 4.2: From our assumptions, we have that Dj(At) > 0 for

each j = 0,. . . , N — 1. Furthermore, we have for each of these j that

  

 

 

1 = ao(tj+1; 7")

Dj(At) a(t,-+1; 7‘) + #j+1(At) + fthIII f(lIIII k(th + P13) d7)At(p)d3

00(t1'+1; 7‘)

fthII foIIIII k(th + P13)d77At(P) d3

1

< . 4.24

_ kminAt I I

From this we see that

 

1 'j 1 1 '2‘

|EJ-(6,At)| 3 II / I d77At(,0) +—/ d77At(p)

kminAt aoltj+1;7”) 0 0003;?) 0

26

kminAt I
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for j = 1, . . . , N — 1, and likewise we have the same bound for IE0(6, At)|. We can

thus take M (in the statement of Theorem 4.1) to be M = 2/kmm.

In (2.2) we showed that

k(t, s; r) = a0(t; r)k(t, s) + [OIIII lek(t + €3,¢(p), s) dnm(p). (4.25)

Thus,

g(t)-“s;r) _ k(t-s;r)t4+1

A ao(tt+1;T) (u(t;-7r)

ti rj D k t. + s _ , d

5 [II (|k(tj+1,s)—k(tj,s)|+f° Pl 1 (a 57:10)) 3)! mp)

II
00(tjar)

+ f(iIIII PlD1k(tj+1 + €3,t,-+1(P)a3)l d77At(p)) ds

00(tj+1;7‘)

ti+l

ft. [ID1k(t,-+§,,t,(At),s)|At
+||k||1,oo(rj+rj+1)] ds

3 llkll1,oo(1+ 2|I7H00)At2.

 

ds

  

 

 

|
/
\

This along with (4.24) shows that we may bound the Vj,,-,i = 0,...,j — 1,j =

1,...,N—1by

kl 00

” '1’ (Hahn...)
kmin

 '1}:

Turning to the Z], we see that by (4.24) we need only show that each of the terms

of the Rj is 0(At2). We have that the first term

 
'1'“ ” u(s+tI+l) ”(t +1)

k t- t- J 3 d d
/0 f0 (3+1+P,3+ 1+1) ao(t,-+1;r) s nA,(p)

 

k 0° '1'“

_ “ ” / / sIu(z.(t.+1+s))ldsdnm(p)
00(t1+1;r

llklloollfi’llIoo

|
/
\

rj+l

a0(t,+1.,., 7341/0 pdnAt(p)
J 1

S llklloollfi'lloollvllioAtI,
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for j = 1,. . . , N — 1. The first term of R0 is handled similarly, as is the second term

in the expression for R], j = 1,. . .,N —- 1.

Our work in bounding the V,,- also shows that

 

:[JIII [k(t,-+1,s;r) _ k(t,,s;r)] (s _ t,-+1)u'(z,-(s))ds

i=0 a0(t,-+1; 7") 0005;“; 7")   
~

j 1'+1 ,s; r If: 73., ;

a’llooAtZI/I ——III " _II _I. II
,_ tt 00(tj+1;7‘ 0005317")

< llkllimllfl'lloofl+2l|7||oo)NAItI’

dsl
/
\

  

llkl|1,oo||fi'lloo(1 + 2|l7|loo)AtI,

which takes care of the summation term of the R], j = 1, . . . , N — 1. The fourth term

for these same values of j is handled similarly, as is the second term in the expression

for R0.

Using our definition for the p,, we handle the remaining terms from the expression

for the Rj, j = 1,...,N— 1 as follows:

 u.+.(At>i((J—“—)—— ut<At>af(Ij) = c|fi(tt+t)-fi(tt)lAt"
tJ+1i7I )

g cllu’llooAtq“.

Since q 2 1, this term is (at least) 0(At2). The final term in the expression for R0

can be written as

C [11(t1) - 11(0)] At”,

since we assume 11(0) 2 0, and is then handled the same way.

Next, we have that

CAN)

ft?“ k(tj+1, s; r) ds

 

Wj(At) =

 

Cj+1(At)+
000111;?)
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Cj(At)

cj(At) + [cj+1(At) — cj(At)] + 1 ft?“ h(t,~+1, s; r) ds
00(tj+1;7‘)

1

1+KjI

 

 

 

forj=1,...,N—1,where

1 1 t1+1 ~
K. :: —_ . _ . —/ . 'J cj(At) (c,+1(At) c,(At) + ao(tj+1; r) t- k(t,+1, s, r) d3)

1 (0(tj+1;7I)+ tit—“(Av _ @6117“) + tit-(At)

(2)-(At) ao(tt+t;r) ao(tt;r)

 
 

1 t1+1 rj+1

,) ft, [0 k(tj+l+p13)d77At(p)d3)
00(tj+1;

: 1 (0105141; 7') “99:21
Cj(At) +cAt

ao(tj+1;7‘) 00%;?)

1 9+1 "J'+1

/ / k(tj+1+p,s)dnm(p)ds)
7‘) tj 0a0(tj+1;

1 0034.1; 7‘) d(tj; 7‘) )

— —— + lem.-..N
CAN) (000141; 7‘) 00%; 7”)

1 llklloo foII pdnAtOO) )
0 — + kminAt

c,-(At) ( ao(t,-; r)

At

'(At)

— cAt‘l
 

 

I
V

 

I
V

 

I
V

(—llkllooll7ll00 + kmin) '

“
(
'
3

Now we have assumed that

kmin

llklloo’

 

llvlloo <

which means that there exists an L > 0 such that

 

 

 

LAt

K- >

I — Cj(At)

_ La0(t,-; 7‘)At

— OIII {k(tj +pas+tj) dnAt(p) (13+ cao(t,-;r)Atq

> 110.0(6), T)At

_ llklloo foII pdvAt(p) + cao(t,-; r)Atq

L
>

‘ llklloollvlloo + 0M“
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L

llklloollvlloo + 0’

 

since At 3 1 and q 2 1. Thus, if we define w 2 [1+ L/(llkllooll'yll00 + CH“, then we

haveWJ-(At)$w<1forallj=1,...,N—1. 2

One surprising thing about this theorem is that the proof goes through with

the constant c = O, and thus with u(t; r) E 0. Recall that in the continuous case

(see Chapter 3) we could not prove convergence with u(t; r) E 0 without restricting

the variability of r(t) in the limit as the noise level goes to zero (as in Chapter

2). This shows that, at least in the case of the discretized problem, the penalty

predictor-corrector class of methods we have analyzed here is a generalization of the

predictor-corrector class of methods we discussed in Chapters 1 and 2.

The condition assumed in Theorem 4.2 that

kmin

Nelle:>

 

llvlloo <

is used at the end of the proof in order to get the existence of an L > O for which

kmin _ llklloolh'lloo > L,

and, ultimately, an upper bound to E [0, 1) upon the Wj. A closer inspection shows

that what is really necessary is an L > 0 for which

O“(15341;7‘) _ d(tjfl‘)

ao(tJ-+1; r)At ao(tj; r)At

 
+ kmin > L.

We exploit this observation to arrive at several corollaries.

Corollary 4.1 If we assume all of the stated conditions of Theorem 4.2, replacing

only the condition ll’yll00 < kmm/Hklloo with the assumption that the function 7 in
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Hypothesis 4.1 is constant, then the conclusions of Theorem 4.2 hold.

Proof of Corollary 4.1: If we take L = kmin, then

1
g < 1

1+ L/(llklloollilloo + C)

 

WAN)

forj=1,...,N—1. 2

Corollary 4.1 gives us a chance to compare the generality of Theorem 4.2 with

the one found in [8] (summed up in Theorem 0.3). This result is more general both

in that it allows for nonconvolution kernels and in the few requirements placed upon

the measures, as Theorem 0.3 is proved only for special types of measures.

Corollary 4.2 Let us assume all of the stated conditions of Theorem 4.2, replacing

only the condition ll'yllCO < kmin/“klloo with the assumptions that '7 E C1 and the

following condition (like in Theorem (1.1)). there exists a constant C 2 1 such

that, for each At > 0 {sufficiently small) and each a: E [Tminarmax] (that is, x/At E

[7mina 7max])2

 

.1” x .1:

/ pdmp) 2 — / cm... (4.26)
o C o

If

ll7lloo< min 4 ,

“NICO-5%”

Then the conclusions of Theorem 4.2 hold.

Note that, should a positive C exist so that (4.26) is satisfied, it necessarily the

case that C 2 1. This is because

5‘3 fox d77At

fox P d77At(p)

1’3 fox dnAt

5’3 fox dnAt'

C
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Proof of Corollary 4.2: Forj = 1, . . . , N — 1 we have

  

 

  

  

u(tjn‘) k . fdj p_dnm(p)

“D(tfi") — mm 0” din:

kmin’YjAt

_ ——C.

Also,

d(tjfl)
__ < . .

00(tj;1‘) — IIkIIW7JAt

Thus

(r(th; T) a(tj; T) kmin7j+1

—— kmin Z ———koo' kmin

a0(tj+l;T)At
ao(tj;1‘)At +

C H H 7] +

kmin kmin

= C (7j+1_7j)+7j( C - “k“oo) +kmin

kmin kmin

z c ”Y'(€2'>At+w( C —Hkn..)+k......

Now kminlly’lloo/C is bounded, and so the first term above can be made as small as

needed as At —> 0. Thus, if

 
k in

m g — Ilklloo) + k..... > o,

for each j = 1, . . . , N — 1, the conclusion holds. Our assumption above upon the size

of ll’ylloo is sufficient to imply this. 2



CHAPTER 5

Numerical Results

In Chapter 4 we described a collocation scheme which uses no special regularization

method in its attempt to find a step-function solution that matches the data at N

discrete points. We emphasize the word “special”, because the act of discretization so

as to consider a finite-dimensional problem in place of the original infinite-dimensional

one is itself a regularizing process. Nevertheless, we claimed that without a relatively

large stepsize, such solutions become highly oscillatory. Figure 5.1, supports this

assertion.

To produce the results in Figure 5.1, a convolution kernel of k(t) E 1 was used

along with a known true u(t) = t, so that the true data is f (t) = t2/2. A random

amount of noise not exceeding 10‘2 (making for a relative error of 2%) was then

added to f to produce noisy data, which then was used (in place of f) in the colloca-

tion process described above. The resulting approximate solution from four different

stepsizes corresponding to N = 8, 15, 25 and 45 subintervals of [0, 1] is plotted against

the known true solution, with the approximate solution plotted in dashing. The ap-

proximate solution, which we said was a step function, has not actually been plotted

as such. Instead, the constant interval in the solution has been condensed down to
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Figure 5.1. Simple Collocation at Various Stepsizes
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a point, with these points then being joined by straight lines. The other numerical

examples we include in this work are obtained and displayed in similar fashion.

In the Introduction we claimed that, using standard Tikhonov regularization, it

is difficult to find a value for the parameter a that provides for a smooth solution in

certain sections of the domain and a rough one in others. We demonstrate this with

an example using a discretized Tikhonov scheme. In Figure 5.2 we have discretized

[0,1] into 40 subintervals and used this scheme for four different choices of oz, a =

0 (equivalent to the discretized scheme of Figure 5.1), 10‘11,5 x 10—10, and 5 x

10‘9. In this example, the “spike” function that is the solid graph in each of the

four plots was numerically integrated against the kernel k(t) = t2 to obtain the

quasi-true f. Random noise not exceeding 10‘6 was then added to the data, with

Tikhonov regularization then being applied to the resulting perturbed data to obtain

the (dashed) approximate solutions.

We note that, at a = 10‘“, the approximate solution recovers the spike quite

well, but the smooth sections of the true solution are correspondingly rough in the

approximate one. As a is increased, this roughness is smoothed out nicely, but at the

expense of recovering the spike. This is a tendency that is found in all regularization

methods, that as the regularization parameter is increased solutions tend to become

oversmoothed.

In Figure 5.3 we have applied our discretized method (with ,a E 0) to the same

problem as that in Figure 5.2 to allow for comparison of its success against that of

Tikhonov. Three of the plots are for constant "y(t), with these values set at 1,2 and

3. In the fourth plot, we have set 7 to 5 through most of the domain, but it equals 1

in the region of the spike.
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Figure 5.2. Tikhonov Regularization for Several oz Values
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Figure 5.3. Tikhonov Regularization for Several a Values
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The relationship between Figures 5.4 and 5.5 is analogous to that between Figures

5.2 and 5.3. The true solution is a step function (though our plotter renders it

as looking continuous). We have again discretized to 40 subintervals, numerically

integrated the true solution against the kernel k(t) = t, added relative error in the

amount of around 0.05%, and applied a regularization process to this perturbed data,

using Tikhonov at several values of a in Figure 5.4 and our method in Figure 5.5.
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Figure 5.4. More Tikhonov Solutions
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Figure 5.5. More Solutions using Predictor-Corrector Scheme
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this new class of methods to be a generalization of the earlier class. It is our hope

that we may be able to show this in the case of the infinite-dimensional (continuous)

problem as well.

In order to demonstrate the practical value of these methods, we provided numer-

ical examples of computed solutions plotted against known true solutions. Of course,

the purpose of any regularization technique is to find approximate solutions for prob-

lems the solutions of which are not known. One might reasonably ask (regardless

of the particular regularization technique of which we are speaking) how we are to

choose the correct value for the regularization parameter. Why, after all, would we

know that 5 x 10‘10 is a better value for (1 than 5 x 10‘9 in the example of Figure

5.2 if we did not have the true solution with which to compare it?

This is a difficult question to address mathematically. In the case of Tikhonov

regularization, at least, we have discrepancy principles that provide somewhat sat-

isfactory answers. To summarize one known as the Morozov Discrepancy Principle,

we assume that we have perturbed data f6 for the true f in (1) with an estimate on

the noise Hf” — f H; S 6. It is an established fact that the minimization problem (2)

usin f5 for f has a unique solution it" for each a > 0, and that the “discrepancy”
g a

”Alli - f6“;r

is monotone in a. The Morozov Discrepancy Principle says that the correct value of

a is the one for which the discrepancy equals 6 (see, for example, [5] or [7] for further

information on this topic). It is an open problem how to select the regularization

parameter r() for the predictor-corrector method described in Chapters 1 and 2,

or how to select the regularization parameters for the penalty predictor-corrector

methods of Chapters 3 and 4. A sequential type of discrepancy principle seems the

natural choice for these types of regularization methods, so that the proper value of
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r,- is chosen at the ith step in the discretized process. We hope that, after further

work, we may be able to get a satisfactory answer to this question.

Finally, the convergence proofs in this work have consistently been under the

hypothesis that k(t, s) > 0 for all t, s. In the case of a convolution kernel, even just the

weaker assumption that k(O) 75 0 is sufficient to quantify the degree of ill-posedness

in problem (1) as being of first-order in that a single differentiation of (1) would lead

to a well-posed second-kind equation. We call such a kernel 1-smoothing. While

problems with 1-smoothing kernels are certainly ill-posed, there are many problems

which do not fall under this classification, having u-smoothing kernels (i.e., kernels

for which

k(O) = k’(0) = ... = Jew-”(0) = 0, Wm) 7e 0,

so that the problem (1) becomes a well-posed second-kind equation after u differenti-

ations) for integer u > 1. In the case of the IHCP, the kernel is infinitely-smoothing in

that no amount of differentiation ever leads to a well-posed equation. We seek a more

general theory that applies to problems in some (or all) of these types of problems as

well.
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