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ABSTRACT

BAYESIAN HIERARCHICAL MODELS FOR ENVIRONMENTAL DATASETS

By

Jason Andrew Matney

This thesis explores the applicability of Bayesian spatial models for predicting the occurrence

of permafrost across Alaska, USA. Exploratory analysis of a large Alaska soil carbon database

suggests the impact of some important environmental covariates on permafrost occurrence is non-

linear. Also, exploratory analysis using non-spatial regression models shows that substantial spa-

tial autocorrelation among residuals exists even after accounting for available covariates. Spa-

tial regression models specifically designed to accommodate non-linearity between covariates and

probability of permafrost are developed and tested. Results show the proposed models provide

improved fit and predictive ability over conventional modeling techniques. Considerations for ap-

plying the proposed models to large spatial domains for creating high-resolution map permafrost

products are also discussed.
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CHAPTER 1

GENERALIZED ADDITIVE PROCESS MODELS FOR ENVIRONMENTAL
CONTROLS OF NEAR-SURFACE PERMAFROST

1.1 Introduction

Recently an influx of high-dimensional spatial data has shifted resources within the scientific com-

munity. Coping with the outgrowth of this development involves an understanding of large, dy-

namic data sets, and the ability to select for signal amongst noise. The origins of these data include

NASA and other sources, and involve orders of magnitude growth in processing power as spatial

ranges increase [8]. The technique employed to accomplish the analysis below will be a Bayesian

hierarchical model, which, when leveraged correctly, will produce an adequate estimate of the

presence or absence of permafrost across the entire span of Alaska, thus relying on large-scale

processing techniques comprised of novel geostatistical developments [8].

Effects of climate change have been shown to be accentuated in the Arctic [24]. Analyzing the

extent of permafrost then yields a signal for assessing the reach and severity of climate change.

Presence and persistence of permafrost is a function of various climate variables, primarily mean

annual temperature, and local scale substrate and topographic characteristics. Permafrost distri-

bution is therefore strongly controlled by soil drainage patterns, but the presence of permafrost

also limits local drainage, affecting organic matter decomposition, and nutrient release to plants,

see, e.g., [19],[20]. Probability of permafrost can also serve as a proxy for determining mean

temperature regime shifts in the Alaskan discontinuous zone. Moreover, permafrost thawing can

potentially exacerbate global climate change by releasing methane and other hydrocarbons [24].

These features of arctic ecosystem shifts underscore the necessity of improving the accuracy of

permafrost estimates.

In addition to topography and drainage, permafrost formation is determined by interactions be-
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tween air temperature and organic layer thickness, see, e.g., [17], [25]. For example, over climatic

gradients, permafrost probability decreases when mean annual temperature (MAT) increases, but

this interaction is mostly limited to loamy and silty soils, whereas coarse textured soils maintain

little permafrost regardless of MAT [17]. Other factors controlling the persistence of frozen soil

include snow depth, vegetation, slope aspect, and fire disturbance, see, e.g., [18],[22]. Given the

complexity of permafrost formation, models that predict permafrost extent are most useful when

they leverage environmental variables that represent soil forming factors and incorporate robust

estimates of uncertainty.

Taking these parameters into account, the following discussion will define and assess the

predictive ability of a non-spatial, spatially-varying intercept, and spatially-varying coefficient

Bayesian regression model [7]. Spatial random effects are specified to accommodate dependence

of model residuals and the non-linear impact of environmental covariates. The independent vari-

ables used in these regression models are mean annual temperature, slope, heatload, and composite

topographic index (CTI). Heatload is a standardized index of incoming solar radiation while CTI is

a catchment wetness index [17]. These covariates were selected for their regular profile, continuity

of deployment, and explanatory prowess.

The central addition in this analysis from past implementations of regression models assessing

permafrost range lies in the ability to explicitly accommodate residual spatial dependence while

also considering the space-varying impact of the covariates [9]. Ignoring spatial dependence and

non-stationarity of covariates can lead to incorrect inference about model parameters and erroneous

predictions [9]. Adding a spatially-varying model intercept via normally distributed spatial random

effects can resolve this source of error by capturing spatial association. Moreover, hierarchical

models are capable of acknowledging uncertainty and dependence across several sources, allowing

for the estimation of richer models.

These contributions serve to inform the following research objectives. We wish to broadly im-

prove the prediction accuracy of statistical models commonly used in geostatistical research while
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also increasing the precision of our predictions. We accomplish this by working in a regression

context to assess probability of permafrost and showing that the non-linear impact of covariates is

accommodated via a gaussian process. This is a novel application of these methods and is akin to

approaches taken in the Generalized Additive Model (GAM) literature, see, e.g., [26]. Flexible,

function-based parameters will be shown to allow slope coefficients to change based on the value

of the covariate. We also aim to update on the current methodological approaches by demonstrat-

ing how model fit and prediction improves upon capturing the residual dependent pattern. We

plan to produce value-added applications for the spatial modeling community by composing high-

resolution data products with associated uncertainty. These products will help us answer our core

research question; which variables explain the variability in permafrost and how certain are we of

those explanatory relationships?

The format of the manuscript is as follows. Section 1.2 provides an overview of the motivat-

ing data and exploratory analysis. Section 1.3 details the proposed model setup, Subsection 1.3.1

discusses implementation details including prediction and interpolation, whereas our model assess-

ment approach is defined in Subsection 1.4.2. The permafrost analysis is offered in Section 1.4.

Finally, Section 1.6 concludes the manuscript with an eye toward future work.

1.2 Permafrost data

We considered permafrost presence and absence data for 4646 sample locations across the U.S.

state of Alaska (Figure A.1). These data were drawn from the Alaska soil carbon database de-

scribed in Johnson et al. [16], and the National Resources Conservation Service (NRCS) pedon

dataset for Alaska (NASIS 2010). The sample locations often follow natural features, such as a

ridge line or river bed, mirroring the typical terrain found along the Alaskan discontinuous zone.

These data identify presence/absence of permafrost within the first meter from the surface. Data

were collected between 1998 and 2008 and only the most recent measurement was considered for
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each location.

As described in Section 1.1, both broad scale climate and local scale soil variables contribute

to permafrost formation. In the subsequent analyses, covariates include mean annual temperature

(MAT), percent slope (SLOPE), a heat load index (HLI), and a soil wetness index called compound

topographic index (CTI). MAT, shown in Figure A.3(b), was extracted from the 2 km Parameter-

Elevation Regression on Independent Slopes Model for the years 1961-1990 (PRISM) [6]. SLOPE,

HLI, and CTI, were calculated using a 30 m spatial resolution digital elevation model (DEM) [12].

Following Balice et al. [1], HLI was calculated as cos(aspect π/180)) where higher values indicate

more northerly slopes. CTI serves as a proxy for soil wetness and is a function of both the slope and

contributing area per width orthogonal to the flow direction [13]. Previous research suggests that

CTI is useful for mapping permafrost in interior Alaska [21]. Figures A.3(a), figHLI, and figCTI

show maps of SLOPE, HLI, and CTI, respectively. The 2 km SLOPE variable was resampled using

a cubic convolution algorithm to match the 30 m spatial resolution of the DEM derived variables

[17].

1.2.1 Exploratory data analysis

Figure A.2 provides a summary of the empirical probability of permafrost occurrence and each

covariate. Each histogram bar contains 100 observations; hence, greater bar width reflects greater

sparsity of observations across an interval of the given covariate. The height of each bar is the

average over the observed zeros and ones within the given interval. These figures are useful for

exploring how covariate values might influence permafrost formation. Figure A.2(a) suggests the

probability of permafrost generally increases with increasing slope from 0 to ∼5%. Beyond ∼5%

the probability of permafrost decreases with increasing slope. This change from a positive to

negative relationship was also identified by Johnson et al. [17]. For the extremes in observed MAT,

Figure A.2(b) shows the expected trend between temperature and permafrost—lower mean annual

temperature results in higher probability of permafrost. However, for intermediate temperatures,
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the histogram suggests some counter-intuitive trends. For example, warming from ∼-5 to -3◦C

results in a moderate increase in permafrost occurrence, which is then followed by the expected

approximately exponential decrease in permafrost beyond -3◦C. Figure A.2(c) suggests there is

very little relationship between HLI and permafrost, except, perhaps, on the most northerly facing

sites where there is a slight increase in the probability of occurrence. Similarly, Figure A.2(d)

shows little evidence of differentiation of permafrost occurrence across CTI values.

The exploratory analysis suggests that SLOPE, MAT, and perhaps HLI might impact the per-

mafrost formation in a nonlinear way over their range of values. The strongest signal for nonlinear-

ity is seen in percent slope and intermediate values of MAT. These observations encourage further

exploration using a model framework that is able to estimate these potential patterns.

1.3 Generalized additive process models

As detailed in Section 1.2, the presence or absences of permafrost in the first meter of the surface

along with a set of covariates were recorded at a set of locations S = {s1, . . . ,sn} within the study

area, where n=4646. At generic location s, we assume the response variable y(s), where y(s) = 1

when permafrost is observed and 0 otherwise, follows a Bernoulli distribution and consider the

model:

π(y(s) |η(s))∼ Ber(p(η(s))), (1.1)

where p(η(s)) =

η(s))/(1+η(s))) is the probability of permafrost at s and

η(s) = β0 +
p

∑
k=1

gk(xk(s);θ k)+w(s), (1.2)

where β0 is the intercept and gk(·) is some function that involves the kth covariate xk(s) and

associated vector of parameters θ k, and w(s) provides spatial adjustment (with structured depen-

dence) to the intercept. Here, we assume w(s) follows a Gaussian process with mean zero and
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covariance function Cw(·;θ w). For any two locations, say si and s j, we specify Cw(si,s j;θ w) =

σ2
wρ(si,s j;φw), where θ w = {σ2

w,φw} and ρ(·;φw) is a correlation function with φw controlling

the correlation decay and σ2
w representing the spatial variance. The function ρ(·;φw) could be any

valid spatial correlation function, see, e.g., Cressie [5], Chilés and Delfiner [4] or Finley et al. [8].

Here, we use an exponential function such that Cw(si,s j;θ w) = σ2
w

-φw||si− s j||), where ||si− s j|| is the Euclidean distance between locations si and si.

If we assume a constant relationship between the probability of permafrost and the kth covariate

then gk(xk;θ k) = xkβk resulting in common linear and additive intensity ∑
p
k=1 xk(s)βk. However,

the exploratory data analysis results presented in Section 1.2.1 suggest that several of the covari-

ates might have non-constant, or non-linear, impact on the probability of permafrost. For example,

the probability of finding permafrost might increase with slope in the interval between ∼0.4-4%

but then decrease with increasing slope beyond ∼4%, Figure A.2(a). Exploratory results also

suggested the occurrence of permafrost might increase at a non-constant rate as mean annual tem-

perature changes. Given these observations and findings from other studies noted in Section 1.1,

we wish to explore a more flexible specification of gk(·) that is able to accommodate non-linear

impacts of the covariate on the probability of permafrost. Examples of such specifications abound

in the Generalized Additive Model (GAM) literature, where penalized regression splines are used

to approximate these unknown functions, see, e.g., Hastie and Tibshirani [15] and Wood [26].

In our setting a Bayesian modeling framework is attractive given our desire to include hierarchi-

cal spatial random effects and interest in predictive inference. Here we take an approach similar to a

GAM specification, but rather than using a penalized regression spline, the unknown function gk(·)

is approximated using a predictive process over the covariate values, see, e.g., [2]. Specifically, for

a given covariate observed at n locations we consider a set of mk knots x∗k = {x∗k,1,x
∗
k,2, . . . ,x

∗
k,m}

that are distributed over the covariate’s range and m << n (in the subsequent development we

suppress the covariate subscript index k to reduce clutter). We assume a Gaussian process over

the knots g∗ ∼ MV N(0,C∗(θ)), where g∗ is a m× 1 vector and C∗(θ) is a m×m correlation
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matrix with i, jth element C(x∗i ,x
∗
j ;θ) = ρ(x∗i ,x

∗
j ;θ). Here, again, we consider an exponential

correlation function such that ρ(x∗i ,x
∗
j ;θ) =−φ ||x∗i − x∗j ||) where θ = {σ2,φ}. Analogous to the

2-dimensional spatial predictive process defined by Banerjee et al. [2], interpolation to any covari-

ate value, say x0, is given by g(x0;θ) = c>(x0;θ)C∗(θ)−1g∗, where c(x0;θ) is the m×1 vector of

correlations between the value to be interpolated and the knots, i.e., C(x0,x∗j ;θ) for j = 1,2, . . . ,m.

1.3.1 Implementation

To complete the Bayesian model specification, we assign prior distributions to the model param-

eters and inference proceeds by sampling from the posterior distribution of the parameters. For

sub-models 1 and 2, we assumed β follows a MV N(µβ ,Σβ ) prior with mean vector µβ = 0 and

diagonal covariance matrix Σβ with elements equal to 10000. The variance parameters σ2’s for all

models were assigned inverse-Gamma, IG(a,b), priors. With a shape hyperparameter of a = 2 the

IG prior distribution mean is equal to the scale b and has an infinite variance (see, e.g., IG definition

in Gelman et al. [10]. Exploratory data analysis was useful for setting process specific b values.

The process correlation decay parameters φ ’s followed a Uniform, Uni f (a,b), with support over

the covariate’s range. The support for the spatial decay parameter φw in sub-models 2 and 4 had

support between 10 and 2500 km.

Using notations similar to Gelman et al. [10], the posterior distribution of the model parameters

p(Ω |y), where y = {y(s1),y(s2), . . . ,y(sn)}> and Ω is all the model parameters, is proportional to

p

∏
k=1

p(θ k)×p(θ w)×N(β0 |µ0,σ
2
0 ) (1.3)

×
p

∏
k=1

N(g∗k |0,C
∗
k(θ k))×N(w |0,Cw(θ w))

×
n

∏
i=1

P(y(si) = 1 |x(si),Ω)y(si)(1−P(y(si) = 1 |x(si),Ω))1−y(si),

where P(y(si) = 1) = p(η(si)).
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An adaptive Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) algorithm was used

to draw posterior samples from Ω, see, e.g, [23]. MCMC samplers were implemented in C++

and Fortran and leveraged Intel’s Math Kernel Library threaded BLAS and LAPACK routines

for matrix computations. All analyses were conducted on a Linux workstation using two Intel

Nehalem quad-Xeon processors.

1.4 Permafrost data analysis

1.4.1 Candidate models

Following the exploratory analyses detailed in Section 1.2.1 and the specification of w(s) and g(·)

we consider the following candidate specifications for η(s) in (1.1):

Sub-model 1: β0 +
p

∑
k=1

xk(s)βk,

Sub-model 2: β0 +
p

∑
k=1

xk(s)βk +w(s)

Sub-model 3: β0 +
p

∑
k=1

gk(xk(s);θ k),

Sub-model 4: β0 +
p

∑
k=1

gk(xk(s);θ k)+w(s)

1.4.2 Model fit and predictive performance

Sub-models of (1.1) were assessed using both a formal model fit criterion and predictive qualities.

We used the popular Deviance Information Criterion (DIC), to rank models in terms of how well

they fit the data, see, e.g., [3]. This criterion is the sum of the Bayesian deviance (a measure of

model fit) and the effective number of parameters pD (a penalty for model complexity). Here,

lower DIC indicates better fit. In addition to DIC, models’ predictive performance was assessed
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using a split-set validation approach. Here, 75% of the observations were used to estimate candi-

date models’ parameters and the remaining 25% were used for subsequent prediction. Following

Gneiting and Raftery [14], models were ranked based on scoring rules calculated using the holdout

set observed and predicted values. A scoring rule provides a summary measure for evaluating a

probabilistic prediction given the predictive distribution and the observed response. In our setting

the scoring rule function is S(r, i), where r = (p(η(s)),1− p(η(s))) and i is the index of the ob-

served response, i.e., either 0 or 1. Given the posterior predictive distribution mean and observed

response at the n0 = 1161 holdout locations, we calculated a mean score Ŝ = ∑
n0
j=1 S(r j, i j)/n0.

We considered the following scoring rules:

Zero-one: S(r, i) =


1, if ri = max{r1,r2}

0, otherwise

Quadratic: S(r, i) = 2ri−
2

∑
j=1

r2
j −1

Spherical: S(r, i) =
ri(

∑
2
j=1 r2

j

)1/2

Logarithmic: S(r, i) = logri.

For these rules, larger scores indicate superior predictive performance. That is, for the zero-one

and spherical rules, scores closer to 1 indicate greater predictive performance, whereas for the

quadratic and logarithmic rules, scores closer to 0 suggest improved performance. We also note,

that with the exception of the zero-one, all of these scoring rules are strictly proper—a quality

desirable in assessment of probabilistic prediction, see, e.g., [14] for more details.

Three MCMC chains were run for 25000 iterations each. The most demanding model required

∼1 hour to complete a single MCMC chain. Convergence was diagnosed using the CODA package

in R by monitoring mixing of chains and the Gelman-Rubin statistic [11]. Satisfactory convergence

was diagnosed within 10000 iterations for all models. Posterior inference was based on a post
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burn-in sub-sample of 15000 iterations (5000 from each chain).

1.5 Results and discussion

Candidate model parameter estimates and fit criteria are provided in Table A.1. For sub-model 1,

posterior summaries suggest that SLOPE, MAT, and CTI are useful for explaining variability in

permafrost occurrence, i.e., regression coefficient 95% credible interval (CI) exclude zero. The

addition of spatial random effects to sub-model 1—reducing spatial correlation among the model

residuals—causes CTI in sub-model 2 to become not significant. The addition of the spatial ran-

dom effects also improves model fit as indicated by the lower DIC for sub-model 2 compared to

that of sub-model 1.

Sub-models 3 and 4 relax the assumption of a constant change in the log odds of permafrost

occurrence for a unit increase in the corresponding covariate, holding the other covariates constant

at a given value. The DIC values for the non-spatial sub-models 1 and 3, suggests the Gaussian

additive process model’s increased flexibility results in improved fit to the observed data. Similar

improvements to data fit are seen when moving from sub-model 2 to 4.

Covariate specific process parameters σ2’s and φ ’s as well as the functional form of the co-

variates’ impact on permafrost occurrence did not differ substantially between sub-models 3 and

4. The regression coefficient posterior summaries for sub-model 4 are shown in Figure A.7. Here,

the median and associated 95% CI band for the SLOPE coefficient, Figure A.7(a), are consistent

with patterns observed in the univariate exploratory analysis Figure A.2(a). Specifically, slight

increases in slope from flat areas to ∼3% increase the probability of permafrost formation. This

positive relationship continues, but at a decreasing rate from ∼3 to 10% slope. Moderate slopes

of ∼12% have a negative impact on formation of permafrost. Beyond ∼12%, slope explains little

variability in permafrost occurrence. Based on univariate analyses similar to those presented in

Section 1.2.1, Johnson et al. [17] attribute the non-linear impact of slope on permafrost forma-
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tion to changes in soil texture, i.e., percent silt, clay, and sand, at various topographic positions.

Soil texture at a given slope determines water holding capacity and subsurface flow, both of which

influence the formation and persistence of permafrost.

The posterior summary for the MAT coefficient is given in Figure A.7(b). As expected, there is

a negative relationship between temperature and permafrost occurrence. This trend is clear when

looking at the temperature extremes where the CI band does not include zero. Figures A.1 and

A.3(b) show that permafrost formation in areas with MAT from∼-8 to 0◦C is highly variable. This

variability translates into a coefficient value indistinguishable from zero within the corresponding

range within Figure A.7(b). This region of moderate below zero mean annual temperature covers

the majority of the mid-latitude region of the study area.

Figures A.7(c) and A.7(d) confirm patterns seen in the univariate exploratory data analysis that

suggested HLI and CTI are not very useful for discerning between the presence or absence of

permafrost. The exception is some marginal support for increased permafrost occurrence on only

the most northerly locations, as indicated in Figure A.7(c) by a positive coefficient at the largest

HLI values.

DIC and parameter estimates suggest the flexibility of the proposed additive Gaussian process

models do improve fit to the observed data. However, the improvement in fit could be the result

of overfitting the observed data and hence result in reduced predictive performance. We assess the

degree of overfitting using the split-set validation described in Section 1.4.2. The resulting holdout

set prediction scores are given in Table A.2 for each candidate model. Here, larger scores indicate

superior predictive performance. Results are consistent with model DIC values and suggest the

additional complexity of sub-models 2 and 4 is warranted. Further, the addition of the spatial

random effects improve model prediction. Although less appealing from a theoretical perspective,

see, e.g., [14], the zero-one scoring rule can be interpreted simply as the prediction success rate.

Moving from the sub-model 1 to 4 increases prediction accuracy from 58 to 75%.

Two 200 x 200 pixels clips at a 30 x 30 m resolution are included as examples of the mapped
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permafrost probabilities. The locations of the clips span ecologically diverse regions of Alaska,

and can be identified in Figure A.4. Clips 1, taken from the southwestern portion of the state and

6, taken from the Alaskan north, were used in the mapping. Both sub-Model 3 and sub-Model 4,

representing nonspatial and spatial models, respectively, were then employed to produce the asso-

ciated plots and compared based on their variance and predictive ability. The results demonstrate

how the spatial random effect applies a local adjustment to the predictions, reducing the probability

of permafrost in relation to the nonspatial model across both sites. The comparison of the variance

maps demonstrate greater variance with the addition of spatial random effects. However, the in-

creased variability is not sufficient enough to decline to the select the spatial model as superior in

both fit and prediction.

1.6 Summary

We proposed a set of generalized additive process models to accommodate non-constant relation-

ships between covariates and the probability of permafrost. The functional forms of these relation-

ships were estimated using low-rank Gaussian predictive process models. The proposed modeling

framework also accommodates the addition of spatial random effects to reduce spatial correlation

among model residuals. Compared with a conventional logistic regression model, the increased

flexibility afforded by the functional regression coefficients and spatial random effects improved

both model fit to observed data and prediction at unobserved locations. Further, inference about

covariates explanatory power at different values provides insights into environmental controls on

permafrost formation and, perhaps, persistence under anticipated climate change. For example,

one might explore how different temperature warming scenarios influence the extent and location

of permafrost.

Future work will focus on developing statewide permafrost probability maps with associated

uncertainty. Executing the prediction algorithm detailed in Section 1.3 is tractable for a few thou-
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sand locations. However, applying this algorithm to millions of locations, e.g., over the extent

of Alaska, is computationally onerous due to the required cubic order matrix operations. We are

currently exploring both model-based and computing solutions to this challenge. Additionally we

will consider how variable interactions could be accommodated in this model framework.

13



APPENDIX

14



Sub-model
Parameter 1 2 3 4
β0 -0.97 (-1.21, -0.77) -2.04 (-2.96, -1.47) -0.23 (-1.57, 0.92) -1.00 (-4.05, 0.85)
βSLOPE -0.04 (-0.06, -0.02) -0.072 (-0.099, -0.049) – –
βMAT -0.20 (-0.24, -0.17) -0.37 (-0.51, -0.29) – –
βHLI 0.0003 (-0.0012, 0.0021) 0.0003 (-0.0020, 0.0023) – –
βCT I -0.0025 (-0.0050, -0.0001) -0.0008 (-0.0039, 0.0023) – –
σ2

SLOPE – – 0.41 (0.18, 1.01) 0.47 (0.19, 1.23)
σ2

MAT – – 3.62 (1.53, 9.40) 4.79 (1.76, 14.97)
σ2

HLI – – 0.21 (0.11, 0.47) 0.25 (0.12, 0.63)
σ2

CT I – – 0.91 (0.33, 2.79) 0.55 (0.20, 1.81)
σ2

w – 3.84 (2.54, 5.79) – 4.88 (3.51, 8.22)
φSLOPE – – 0.194 (0.086, 0.312) 0.170 (0.087, 0.309)
φMAT – – 0.196 (0.152, 0.409) 0.199 (0.151, 0.418)
φHLI – – 0.032 (0.020, 0.058) 0.034 (0.020, 0.059)
φCT I – – 0.082 (0.033, 0.117) 0.075 (0.033, 0.116)
φw – 0.022 (0.016, 0.024) – 0.023 (0.020, 0.024)
pD 5.08 119.03 35.67 257.14
DIC 4497.70 3546.97 4191.64 3230.50

Table A.1: Candidate model parameter posterior distribution percentiles 50 (2.5, 97.5) and model fit criterion. Sub-models 3 and
4 fit using m = 50 equally spaced knots.
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Sub-model Zero-one Quadratic Spherical Logarithmic
1 0.58 -0.46 0.73 -0.65
2 0.74 -0.35 0.80 -0.52
3 0.67 -0.41 0.76 -0.59
4 0.75 -0.33 0.81 -0.50

Table A.2: Candidate model predictive performance using scoring rules summaries, Ŝ, calculated
using posterior predictive distribution mean and observed values at 1072 holdout locations.
Sub-models 3 and 4 fit using m = 50 equally spaced knots.
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Figure A.1: Locations where permafrost presence and absence was recorded across the U.S. state
of Alaska.
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Figure A.2: Exploratory data analysis of the relationship between predictor variables and
observed probability of permafrost. The height of each histogram bar was calculated using 100
observations. Wider bars represent sparser distributions of data.
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Figure A.3: Covariates used to explain permafrost occurrence.
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Figure A.4: Locations where permafrost presence was predicted over 200x200 pixel, 30x30 m
resolution clips.
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Figure A.5: Probability permafrost, Sub-models 3 and 4.
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(a) nonspatial variance - site 1 (b) spatial variance- site 1

(c) nonspatial variance - site 6 (d) spatial variance - site 6

Figure A.6: Probability permafrost variance, Sub-models 3 and 4.
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Figure A.7: Sub-model 4 regression coefficient estimates using m = 50 equally spaced knots.
Black dotted line is the coefficient posterior median and gray region delineates the associated
95% credible interval. Black points along the red zero line indicate the location of predictive
process knots across the covariate support. Rug dashes along the x-axis correspond to observed
covariate values.
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