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ABSTRACT

INTEGRATING INFORMAL AND FORMAL TECHNIQUES TO

REVERSE ENGINEER IMPERATIVE PROGRAMS

By

Gerald Catolico Gannod

Many well-documented computer failures have been attributed to software. Some of

the most notable incidents include the catastrophic failures of the Theme-25 [l] and the

Ariane 5 spacecraft [2]. A commonly overlooked aspect of these failures has been the fact

that both were the result of an improper reengineering of software from one version to

another.

The failure to correctly analyze software in both the Theme—25 and Ariane 5 resulted

in catastrophic events that led to loss of life and property. These examples vividly illustrate

the need for sophisticated and systematic methods for maintaining software in order to

understand their functionality.

Reverse engineering of program code is the process of examining components

and component interrelationships in order to construct a high-level abstraction Of an

implementation [3]. Reengineering is the process of examination, understanding, and

alteration of a system with the intent of implementing the system in a new form [3].

Software reengineering is considered to be a better solution for handling legacy code

as Opposed to developing software from the original requirements. Since much of the
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functionality of the existing software has been achieved over a period of time, it must be

preserved for many reasons, including providing continuity to current users Of the software.

This research focuses on three primary contributions to the areas of software

engineering and software maintenance. First, we have developed a technique for the

construction of as-built formal specifications from program code using the strongest

postcondition predicate transformer. Second, we have developed a formal technique for

introducing abstraction into as-built specifications with the intent of obtaining design level

specifications. Third, we have used the formal technique to support program understanding

and software reuse activities.
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Chapter 1

Introduction

As the demands placed on software continue to grow, there is an increasing recognition

that software can be error prone. Moreover, the rising cost of software development

has resulted in software systems that are used for longer periods of time, for multiple

purposes, and for increasingly larger customer bases. As a result, there is a need for more

sophisticated and systematic approaches for maintaining software. Our research develops

a new technique for reverse engineering that is mathematically rigorous and applicable to

practical imperative programming languages such as C. As such, this research facilitates

the systematic evolution of software by supporting software maintenance via program

understanding and software reuse. This chapter discusses the motivation for the reverse

engineering technique and gives the contributions of the work.

1.1 Problem Description and Motivation

Many well—documented computer failures have been attributed to software. Some of the

most notable incidents include the catastrophic failures of the Therac-25 [1] and the Ariane
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5 spacecraft [2]. A commonly overlooked aspect of these failures has been the fact that

both were the result of an improper reengineering of software from one version to another.

Theme-25. The Theme-25 is a radiation therapy system that was constructed as a follow-

up to the Theme-20 [1]. In the Therac-20, many hardware safety interlocks were used to

ensure that the radiation dosage was well within the prescribed limits for human exposure.

In the development of the Theme-25 it was determined that many of the safety interlocking

routines that were supported in hardware by the Therac-20 were instead to be supported

in software by the Therac-25. Therefore, the combination of the Therac-ZO software and

hardware were to be reengineered to produce the Therac-25 software. In the course of

developing the new software, many of the safety-critical properties were not preserved and

as a result several fatalities occurred during the use of the Therac-25 [1].

Ariane 5. The Ariane 5 is a spacecraft developed by the European Space Agency as a

follow-up to the highly successful Ariane 4 [2]. During the development of the Ariane 5

software it was determined that “it was not wise to make changes in software which worked

well on Ariane 4” [2]. The result of this stance was that a requirement was retained from

the Ariane 4 software that did not apply to the Ariane 5 software. Consequently, during the

maiden voyage of the Ariane 5, a series of unfortunate events led to the eventual destruction

of the spacecraft.

The failure to correctly analyze software in both the Therac-25 and Ariane 5 resulted

in catastrophic events that led to loss of life and property. These examples vividly illustrate

the need for sophisticated and systematic methods for maintaining software in order to

understand their functionality.
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Reverse engineering of program code is the process of examining components

and component interrelationships in order to construct a high-level abstraction of an

implementation [3]. Reengineering is the process of examination, understanding, and

alteration of a system with the intent of implementing the system in a new form [3].

Software reengineering is considered to be a better solution for handling legacy code

as opposed to developing software from the original requirements. Since much of the

functionality of the existing software has been achieved over a period of time, it must be

preserved for many reasons, including providing continuity to current users of the software.

Current reverse engineering techniques focus on the recovery of high-level design

representations from program code. One class of approaches constructs structural (i.e.,

diagrammatic) information about software while another class of approaches has been used

to recover functional information. These techniques have been largely informal since they

rely on syntactic analysis and pattern matching. While the approaches are invaluable for

aiding program understanding, they fail to provide a level of confidence in the reliability of

software that is typically required for critical systems [4, 5].

Formal methods are techniques that incorporate the use of formal specification

languages, where a formal specification language has a well-defined syntax and semantics.

In addition, formal methods have associated calculation rules that can be used to analyze

specifications in order to verify correctness and consistency. Since the notations have a

formal mathematical basis, formal methods facilitate the use of automated processing.

The primary focus of our research is to apply the use of formal methods to the reverse

engineering of program code in order to rigorously support maintenance and evolutionary

activities. By using formal methods, our approach addresses the need for rigor in the

3
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reverse engineering and reengineering of program code in order to minimize and perhaps

avoid catastrophic events such as the Theme-25 and Ariane 5 cases [1, 2].

Thesis Statement:

Given imperative program code, it is possible to construct an as-builtformal

specification using a semi-automated translation process [6, 7]. When the as-

built specifications are used in tandem with informal specification techniques,

abstract, high-level design specifications can be derived. These designs can

then be used for rigorous analysis and restructuring in order to facilitate

program understanding and software reuse.

1.2 Contributions

This research makes three major contributions to the area of software engineering and,

specifically, software maintenance. First, the strongest postcondition predicate transformer

is used for deriving as-built formal specifications from imperative program code [6]. A

specification is said to be at the as-built level if the specification is at a level of abstraction

just above the original implementation. As a result, an as-built specification may contain an

implementation bias. While these detailed specifications provide a degree of traceability,

a property that is important for facilitating confidence in the consistency and correctness

of the representation, they may be difficult to read. Given a program 5' and a precondition

Q, the strongest postcondition, denoted sp(S, Q), is defined as the strongest condition that

holds after the execution of S, given that S terminates. By defining the formal semantics of

each of the constructs of a programming language, a formal specification of the behavior

of a program written in terms of the given programming language can be constructed [6].

A formal specification constructed in this manner can then be used for a number of

activities such as rigorous software analysis using theorem proving techniques. In order
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to demonstrate the applicability of the strongest postcondition approach to a broad context,

we have defined the formal semantics of a subset of the C programming language [7] and

applied its use in the analysis of a mission control system that is used to translate user

commands for controlling unmanned spacecraft [7].

Second, we show how a formal technique based on specification matching can be

used to introduce abstractions in as-built specifications in order to produce high-level

specifications. Another primary objective of the proposed research is to develop a technique

for introducing abstraction into as-built specifications in order to facilitate their readability.

To this end, we have developed a technique based on generalizing as-built specifications

by constructing partially-ordered sets of specifications that are ordered using specification

matching operations. Consequently, by generalizing as-built specifications, the results

of this research can facilitate several reverse engineering and reengineering activities,

including high-level program understanding.

Third, we have developed a technique for facilitating software reuse that is based on

constructing specification libraries via reverse engineering. Specifically, the process of

constructing an as-built specification and the subsequent generalizations can be used to

populate libraries with software component specifications. When used along with software

reuse technology, this technique can facilitate the construction of new applications using

existing code that may or may not have been intended for reuse.

An important property of formal specification languages is that their syntax and

semantics are well-defined. As such, formal specification languages are amenable to

automated processing [8]. To support the formal reverse engineering technique described in

this dissertation, we have developed several tools that provide assistance to a user during the

5
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reverse engineering process. Specifically, we have developed tools that support the use of

strongest postcondition to derive specifications from program code and derive abstractions

from as-built specifications. In addition, we have developed a theorem prover and first-

order logic syntactic editor that can be used throughout the specification process.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides background

material for software maintenance and formal methods. Our investigations into the use of

strongest postcondition as a formal basis for reverse engineering is described in Chapter 3.

Chapter 4 extends the use of strongest postcondition to include a formal treatment of pointer

variables. The application of strongest postcondition to the C programming language is

presented in Chapter 5. The approach for introducing design abstractions into as-built

specifications is defined in Chapter 6. Chapter 7 presents a reverse engineering framework

that integrates the strongest postcondition technique with the design abstraction technique.

Chapter 8 provides a description of several tools that we have developed to support reverse

engineering. In Chapter 9, we describe the use of our reverse engineering technique to

facilitate software reuse. A survey of related work is presented in Chapter 10, including

the introduction of a new taxonomy for comparing different techniques and their tools.

Chapter 1 1 presents the details of a case study that applies the reverse engineering technique

to a NASA JPL application. Finally, Chapter 12 draws conclusions and discusses remaining

investigations.



Chapter 2

Background

This chapter provides background information for software maintenance and formal

methods for software development. Included in this discussion is the formal model of

program semantics used throughout this dissertation.

2.1 Software Maintenance

One of the most difficult aspects of software maintenance is the analysis of existing

programs in order to determine functionality. This step in re-engineering is known as

reverse engineering. Identifying design decisions, intended use, and domain specific details

are often significant obstacles to successfully re-engineering a system.

Several terms are frequently used in the discussion of re-engineering [3]. Forward

Engineering is the process of developing a system by moving from high-level abstract

specifications to detailed, implementation-specific manifestations. The explicit use of the

word “forward” is used to contrast the process with Reverse Engineering, the process of

analyzing a system in order to identify system components, component relationships, and

intended behavior. Restructuring is the process of creating a logically equivalent system
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at the same level of abstraction. This process does not require semantic understanding

of the system and is best characterized by the task of transforming unstructured code

into structured code. Re-Engineering is the examination and alteration of a system to

reconstitute it in a new form, which potentially involves changes at the requirements,

design, and implementation levels.

There are four types of software maintenance: adaptive, corrective, ped‘ective, and

preventive [9]. Adaptive maintenance is the activity associated with changing code in

order to properly interface with a changing environment. Changing code in order to fix

errors is corrective maintenance. Adding new features in response to user needs is an

example of perfective maintenance, and changing software in order to improve future

maintainability or reliability is known as preventive maintenance. Pressman states that

preventive maintenance is characterized by reverse and re-engineering [9], although, in

fact, any form of software maintenance may involve both activities. For instance, in order

to fix software when performing corrective maintenance, it is important to understand

the current functionality of the program. Reverse engineering techniques can be used

to allow a programmer to recover the design and functionality. Perfective maintenance,

especially in legacy systems, may require a complete re-engineering in order to satisfy new

requirements.

Refinement is the process of making a higher-level specification more concrete and

showing that the new refined specification satisfies the higher-level specification. Given a

high-level specification, called 31, and a refinement of the specification, called 32, we say

that each of these specifications exist at different levels ofabstraction since each provides

a different amount of detail. In the context of a formal specification, a specification s2

8
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satisfies a higher-level specification 31 if it can formally proven that 32 —> 31. That is, in

all cases, 32 is stronger than 31. In the context of structural specifications, a specification

32 satisfies a higher-level specification 31 if the interfaces for 32 are consistent with the

interfaces to 31, and .91 contains the elements of 32.

Abstraction is the process of making a low-level specification 32 less concrete

and showing that the abstracted specification 31 is a generalization of the low-level

specification. In the context of a formal specification, a specification 31 is a generalization

of a lower-level specification 32 if it can formally proven that 32 —> 31 and that 31 71> 32.

That is, in all cases, 31 is weaker than 32. In the context of a structural specification,

an abstracted specification 31 is a generalization of a lower-level specification 32 if the

interfaces for 32 are consistent with the interfaces to .31 and if the elements of 32 are

contained in 31.

From these descriptions it follows that refinement and abstraction are dual concepts.

That is, given a high-level specification 31 and a low-level specification 32, if 32 is a

refinement of 31 then 31 is an abstraction of 32. For example, consider the specification

“2: > y”. Let a refinement of this specification appear as “(as = y + c) A (c > 0)”. Since

c > 0, the term a: = y + c always ensures that a: > y. Therefore ((2: = y + c) /\ (c >

0)) —> (a: > y). In this example, (a: > y) is an abstraction of ((2: = y + c) /\ (c > 0)) and

((3: = y + c) /\ (c > 0)) is a refinement of (:1: > y). For example, consider Figure 2.1 where

the two data flow diagrams depict G1 as an abstraction of G2, where the top diagram

contains the specification G1 and the bottom diagram is the abstracted specification G2.

The dashed lines indicate that the bottom diagram can be replaced by the top diagram. As

such, the implication is that the behavior of G1 is refined by G2.

9



 

 

 

 

  
 

Figure 2.1: G1 as an abstraction of G2

Byrne described the re-engineering process using a graphical model similar to the one

shown in Figure 2.2 [10, 11]. The process model appears in the form of two sectioned

triangles, where each section in the triangles represents a different level of abstraction. The

higher levels in the model are concepts and requirements. The lower levels include designs

and implementations. The relative size of each of the sections is intended to represent the

amount of information known about a system at a given level of abstraction. Entry into

this reengineering process model begins with system A, where Abstraction (or reverse

engineering) is performed to an appropriate level of detail. The next step is Alteration,

where the system is constituted into a new form at a different level of abstraction. Finally,

Refinement of the new form into an implementation can be performed to create system B.

This dissertation describes an approach to reverse engineering that is applicable to the

implementation and design levels. In Figure 2.2, the context for our approach is represented

10
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Figure 2.2: Reverse Engineering Process Model

by the dashed arrow. The motivation for deriving specifications at an implementation-

bound level of abstraction is that it provides a means of traceability between the program

source code and the formal specifications constructed using the techniques described in the

chapters that follow. This traceability is necessary in order to facilitate technology transfer

of formal methods [4, 5]. That is, currently existing development teams must be able to

understand the relationship between the source code and the specifications.

2.2 Formal Methods

Although the waterfall development life-cycle provides a structured process for developing

software, the design methodologies that support the life-cycle (e.g., Structured Analysis

and Design [12]) make use of informal techniques, thus increasing the potential for

introducing ambiguity, inconsistency, and incompleteness in designs and implementations.

In contrast, formal methods used in software development are rigorous techniques for

11
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specifying, developing, and verifying computer software [13]. A formal method consists of

a well-defined specification language with a set of well-defined inference rules that can be

used to reason about a specification [13]. A benefit of formal methods is that their notations

are well-defined and thus, are amenable to automated processing [8].

2.2.1 Levels of Rigor

Rushby defined levels of rigor for describing the degree to which formal methods can be

used [14]. These levels are summarized as follows.

Level 0: No use of formal methods. Examples include all projects that use

diagrammatic notations and no mathematical notation.

Level 1: Use of concepts and notations from discrete mathematics. Examples

include projects that include the use of formal languages to describe data

in data dictionaries.

Level 2: Use of formalized specification languages with some mechanized

support tools such as syntax checkers and pretty printers. Examples

include projects that use specifications languages to describe behavior,

but do not use proof obligations to verify correctness.

Level 3: Use of fully formal specification languages with comprehensive

support environments, including mechanized theorem proving or proof

checking. Examples include any project that involves full specification

and proofs of the specifications using automated tools.

The approach described in this dissertation can be considered to be at level 3 in the

hierarchy of rigor since we are advocating the use of formal specification languages and

support tools for theorem proving.

2.2.2 Program Semantics

The notation Q { S } R [15] is used to represent a partial correctness model of execution,

where, giVen that a logical condition Q holds, if the execution of program S terminates,

then logical condition R will hold. A rearrangement of the braces to produce { Q } S { R },

12
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in contrast, represents a total correctness model of execution. That is, if condition Q holds,

then S is guaranteed to terminate with condition R true.

Aprecondition describes the initial state of a program, and apostcondition describes the

final state. Given a statement S and a postcondition R, the weakest precondition predicate

transformer wp(S, R) describes the set of all states in which the statement S can begin

execution and terminate with postcondition R true, and the weakest liberal precondition

predicate transformer wlp(S, R) is the set of all states in which the statement S can begin

execution and establish R as true if S terminates. In this respect, wp(S, R) establishes the

total correctness of S, and wlp(S, R) establishes the partial correctness of S. The wp and wlp

are called predicate transformers because they take predicate R and, using the properties

listed in Table 2.1, produce a new predicate.

 

wp(S,false) E false

wp(S, A /\ B) E wp(S, A) /\ wp(S, B)

wp(S, A V B) => wp(S, A) V wp(S, B)

wp(S, A —> B) => wp(S, A) —> wp(S, B)

Table 2.1: Properties of the wp predicate transformer

 

The relationship between wp and wlp is the following.

wp(S, R) E wp(S, true) /\ wlp(8, R) (2.1)

This states that the weakest precondition for establishing R as true given the program S is

equivalent to the fact that if .S' terminates then wlp(S, R) is true, and wp(S, true) holds. The

conjunct wlp(S, R) is used to establish correctness and the conjunct wp(S, true) is used to

establish termination. The context for our investigations is that we are reverse engineering

13
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systems that have desirable properties or functionality that should be preserved or extended.

Termination behavior is typically determined by years of program observation. Therefore,

the partial correctness model is sufficient.

2.2.3 Strongest Postcondition

Consider the predicate -rwlp(S, -IR), which is the set of all states in which there exists an

execution of S that terminates with R true. That is, we wish to describe the set of states

in which satisfaction of R is possible [16]. The predicate —vwlp(S, -R) is contrasted to

wlp(S, R) which, is the set of states in which the computation of S either fails to terminate,

or terminates with R true.

An analogous characterization can be made in terms of the computation state space

that describes initial conditions using the strongest postcondition sp(S, Q) predicate

transformer [16], which is the set of all states in which there exists a computation of S that

begins with Q true. That is, given that Q holds, execution of S results in sp(S’, Q) true, if S

terminates. As such, sp(S, Q) assumes partial correctness. Table 2.2 lists some properties

of sp. Finally, we make the following observation about sp(S, Q) and wlp(S, R) and the

relationship between the two predicate transformers, given the Hoare triple Q { S } R [16]:

Q => wlp(S, R)

sp(S, Q) => R

The importance of this relationship is two-fold. First, it provides a formal basis for

translating programming statements into formal specifications. Second, the symmetry of

sp and wlp provides a method for verifying the correctness of a reverse engineering process

that utilizes the properties of wlp and 3p in tandem.

l4



 

sp(S, A A B) E sp(S, A) A sp(S, B)

sp(S, A V B) => sp(S, A) V sp(S, B)

A —> B E sp(S, A) —) sp(S, B)

sp(S, A —+ B) E sp(S, A) —-> sp(S, B)

sp(S,false) E false

Table 2.2: Properties of the sp predicate transformer

 

2.2.4 strongest postcondition vs. weakest precondition

Given a Hoare triple Q { S } R, we note that rap is a backward rule, in that a derivation of a

specification begins with R, and produces a predicate wp(S, R). The predicate transformer

wp assumes a total correctness model of computation, meaning that given S and R, if the

computation of S begins in state wp(S, R), the program S will halt with condition R true.

We contrast this model with the sp model, a forward derivation rule. That is, given

a precondition Q and a program S, sp derives a predicate sp(S, Q). The predicate

transformer sp assumes a partial correctness model of computation meaning that if a

program starts in state Q, then the execution of S will place the program in state sp(S, Q)

if S terminates. Figure 2.3 gives a graphical depiction of the differences between sp and

wp, where the input to the predicate transformer produces the corresponding predicate.

Figure 2.3(a) gives the case where the input to the predicate transformer is “S” and “R”,

and the output to the predicate transformer (given by the box and appropriately named

“wp”) is “wp(S,R)”. The sp case (Figure 2.3(b)) is similar, where the input to the predicate

transformer is “S” and “Q”, and the output to the transformer is “sp(S,Q)”.
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{ Q l i l R } { Q s { R }

wp(S.R) ‘—~ WP Sp > sp(S.Q)

(a) (b)

Figure 2.3: Black box representation and differences between wp and sp: (a) wp (b) sp

 

The use of these predicate transformers for reverse engineering have different

implications. Using wp implies that a postcondition R is known. However, with respect

to reverse engineering, determining R is the objective, therefore wp can only be used

as a guideline for performing reverse engineering [17]. The use of sp assumes that

a precondition Q is known and that a postcondition will be derived through the direct

application of 3p. As such, sp is better suited for reverse engineering.

2.2.5 Formal Methods Applied to Software Reuse

Software reuse is the process of constructing a software system using existing software

components. Jeng and Cheng [18] describe the use of a generality operator as the

formal basis for identifying reusable components via specification matching. Zaremski

and Wing [19] describe several operators for matching queries to components for software

reuse. In addition, Penix and Alexander [20] define the satisfies criterion for component

matching. Table 2.3 lists several of the matching operators. 1 When these operators are

used for software reuse, A is a query specification and R is a library specification.

 

1In this chapter, we assume that the signatures of a query specification and a library specification match.

For details on signature matching, see [21].
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[ Match | Definition R j A )

Exact PIC/P081 (Apre é Rpre) A (lipost <=> Apost)

 

 

 

 

 

Plug-in (Apre => Rpre) A (Rpost => Apost)

Plug—in Post (Rposz => Alast)

Weak Post Rpre => (lipost => Apost)
 

Guarded Plug-in (AP... => R1,...) A ((RE. A R1,...) => AP...)

Guarded Post ((Rvpre A Rpost) => Apost)

Satisfies (Apre => Rpm) A ((Apre A Rpost) => Apost)

 

 

   
 

Table 2.3: Most Match Criterion

 

2.3 Informal Methods

Informal (or semi-formal) methods are software development methods that are based on

the use of techniques that lack the use of rigorous notation. One of the advantages of using

an informal technique is that they are typically based on the use of graphical notations. As

such, the techniques are amenable to high-level discussion, and are, in general, scalable

to large systems. One of the disadvantages of using informal methods is that since the

notations lack mathematical rigor, they are prone to ambiguity. An example of an informal

method is the Object Modeling Technique (OMT) [22].

OMT is a modeling language that is commonly used in industry and academia. OMT

comprises three complementary models, each of which are simple to use and understand.

The object model describes the static, structural aspects of the system. The object model

captures the objects of the system and the relationships between the objects. The dynamic

model depicts the temporal and behavioral aspects of the system. Finally, the functional

model describes the services provided by the system. Respectively, entity-relationship

diagrams, state transition diagrams, and data flow diagrams are used to represent the

object, dynamic, and functional models, and each model is only used to capture a specific

17
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perspective of the system. With recent work [23, 24], rigorous analysis of each of the

models is possible, thus enabling consistency and completeness checks at the model level

prior to the implementation phase.

The specific notations for the object model, functional model, and dynamic model are

summarized in Figure 2.4. In an object model, a rectangle is used to represent a class. A

line connecting two classes indicates that some relationship exists between the two classes.

A closed circle at the end-point of an association denotes a one-to-many relationship.

 

Object Model Notation

l Classl I

I ClassZ I

i B is a subclass of A

B is related to A

 2:
.

There is a_one-to-many

relationship between

B and A

Functional Model Notation

@ ®—>. Flow from A to B

Data Store

Dynamic Model Notation

State 1
 

Guard/Action

l State 2 l

Figure 2.4: OMT Summary
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In the functional model, a circle represents a process entity, a pair of parallel lines

represents a data store, and a rectangle represents an entity external to the current model.

Arcs are used to join the various entities of a functional model, with the arrow indicating a

flow from one entity to another.

In the dynamic model, a rounded rectangle is used to denote a state and arcs indicate

transitions between states. The transitions can be labeled with strings separated by a single

slash ‘/’. The text before a slash defines a guarding condition that must be true in order for

a transition out of a state to occur, and the text after the slash defines the event or action

that is generated by taking the transition.

19



Chapter 3

Using Strongest Postcondition to

Reverse Engineer Programs

Chapter 2 introduced the strongest postcondition predicate transformer sp(S, Q). This

chapter describes our investigations into the use of the strongest postcondition as the formal

basis for reverse engineering [6] through the construction of formal specifications from

programs written in terms of the Dijkstra guarded command language [25]. The primary

result of this chapter is a demonstration of the use of the strongest postcondition to facilitate

the construction of as-built formal specifications from program code for reverse engineering

purposes.

3.1 Basic Constructs

This section describes the derivation of formal specifications from the primitive

programming constructs of assignment, alternation, and sequences. The Dijkstra guarded

command language [25] is used to represent each primitive construct but the techniques are

applicable to the general class of imperative languages. For each primitive, we first describe

the semantics of the predicate transformers wlp and sp as they apply to each primitive and

then, for reverse engineering purposes, describe specification derivation in terms of Hoare

20



 

ll5 I Dr. '. ‘.

mes. Season-..

he .sed to iRdJCCtZC a

3.11 ASSignme

extrasston. The '. . ;

3.22:5 retreats *‘ '
,

MA\

I
. “~,

,~

NIL;- Nm
6- If I \‘

agesszons. Lfien the

3:. res, :tt'xel}.

.. . r
Alfie) ' )6]

\

Jason
13.1 l.

3‘3? p .

‘ V 18 a 10:: x

\E



triples. Notationally, throughout the remainder of this paper, the notation { Q } S { R} will

be used to indicate a partial correctness interpretation.

3.1.1 Assignment

An assignment statement has the form x: = e; where x is a variable, and e is an

expression. The wlp of an assignment statement is expressed as wlp(x : =e, R) = Rfi,

which represents the postcondition R with every free occurrence of :1: replaced by the

expression 6. If 2: corresponds to a vector 'y' of variables and e represents a vector B of

expressions, then the wlp of the assignment is of the form RE, where each y,- is replaced

by E,, respectively, in expression R. The sp of an assignment statement is expressed as

follows [16]

sp(x: =e, Q) = (Elv :: Q: A x = eff), (3.1)

where Q is the precondition, v is the quantified variable, and ‘::’ indicates that the range of

the quantified variable v is not relevant in the current context.

Section 3.1.2 describes two lemmas for eliminating the existential quantification in

Expression (3.1). In the first lemma, if the precondition Q is of the form C A (:1: = u),

where C is a logical expression, then after the textual substitution of variable a: with v in

Q, Expression (3.1) reads as (322 :: C: A (v -—= u) A a: 2 e3). Since (22 = u), the expression

(31) :: C: A (v = u) A a: = e3) is logically equivalent to G: A (u = u) A a: = efi. In the

second lemma, if a: does not appear as a free variable in either the logical expression Q or

the expression e, then (3v :: Q: A a: = efi) is logically equivalent to Q A a: = e. Assuming

21
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we can establish the conditions for satisfying these lemmas, the Hoare triple formulation

for assignment statements is as follows:

{Q} /* precondition */

x := e;

{Q$A(x=ej)} /* postcondition */

where 2) represents the initial value of the variable a: before execution of the statement and

Q is the precondition.

3.1.2 Removing quantification from the specification of assignment

This section describes two lemmas that justify why the existential quantification in

Expression 3.1 can be removed. The first lemma (Lemma 3.1.1) describes the case when

the precondition is in a particular canonical form. The second lemma (Lemma 3.1.2) is a

derivation based on the semantics for assignment described in [16].

One-point simplification

In this section we prove that the quantification in Expression (3.1) can be eliminated when

the precondition has a particular canonical form.

Lemma 3.1.1 (One-Point) Let the precondition Q in Expression (3.1) have theform U A

(a: = n) where U is a logical expression, n is a constant and a: is the variable from the

statement “x := e”. Then

sp(x := e,Q)EUgsz-e:

Proof. The sp derivation is as follows.

sp(x := e,Q) E (322 :: Q: Ax = 6:)

(Substitution of Q with U A (a: = n) )

E (312 :: (UA(:c=n)):Aa: =63)

22



(Textual Substitution)

E(3v::U:A(v=n)Ax=e:)

(Trading [16])

E(Elv:v=n:U,‘fo=e,‘f)

(One-point rule [16] with v = n)

E U: A a: = e:

The fact that the existential quantification can be removed when the precondition Q has

the form UA (:2: = n) is convenient since the canonical form can be derived from parameter

and variable declarations as described in Section 3.1.2. The logical formula U represents

the part of the precondition Q that does not specify the value of x. The extension of the

one-point rule to two points, three-points, or n points provide the more general expression

given by Expression 3.1.

Substitution

In this section we prove that the quantification in Expression (3.1) can be eliminated when

there is no free occurrence of x in expression e and precondition Q.

Lemma 3.1.2 (Substitution) Assume that there are no free occurrences of x in

precondition Q and expression e in the statement x := e. Then

sp(x := e,Q)EQsze.

Proof. The sp derivation is as follows.

sp(x := e,Q) E (322 :: Q: A2: 2 eff)

(no substitutable y in U implies U}; E U)

E (31) :: QAx=e)

(Predicate calculus)

E Q A :1: = e

23
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While the derivation of Q A a: = e is straightforward, the actual application of this case

is less frequent and only occurs in the cases when variables have no initial value.

Establishing the conditions for removing quantification

Lemmas 3.1.1 and 3.1.2 identify the conditions for removing quantification from the

specification of assignment statements. In order to take advantage of these lemmas,

the conditions for removing quantification must be established. Fortunately, there are

two properties of programs that allow for these conditions to be established: parameter

specifications and variable declarations.

An example parameter specification might appear as follows:

proc p (value x; value-result 3;; result 2 );

Using the fact that a: is defined as a value parameter and y is defined as a value-result

parameter, it can be easily deduced that, upon entry into the program p, the parameters

3 and y have some initial value. As such, we can assert that (:1: = X) and (y = Y),

thus establishing the conditions for removing the quantification in the specifications of any

assignment to x or y. To establish the conditions for Lemma 3.1.2, note that during program

execution, a declared variable has no initial value.

3.1.3 Alternation

An alternation statement (also known as a conditional statement) using the Dijkstra guarded

command language is expressed as [25]

24
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if

Bl -—) 51}

|| 13,, —> Sn;

f i;

where B,- —) S,- is a guarded command such that S,- is only executed if logical expression

(guard) B,- is true. The wlp for alternation statements is given by [16]:

wlp(IF, R) E (Vi : B,- : wlp(S,-, R)),

where IF represents the alternation statement. The equation states that the necessary

condition to satisfy R, if the alternation statement terminates, is that given B,- is true, the

wlp for each guarded statement S,- with respect to R holds. The sp for alternation has the

form [16]

sp(IF, Q) E (32 II 8])(Si, B,' A Q». (3.2)

The existential expression can be expanded into the following form comprising a sequence

of disjuncts:

8p(IF. Q) E sp(St. 31 A Q) V - - - V sp(S... Bn A Q). (33)

Expression (3.3) states that after execution of the if- fi statement, one of the disjuncts

sp(S,-, B,- A Q) is true. The form of Expression 3.3 as a sequence of disjuncts illustrates the

disjunctive nature of alternation statements where each disjunct describes the postcondition

in terms of both the precondition Q and the guard and guarded command pairs, given by

Bi and 8., respectively. This characterization follows the intuition that a statement S,- is

25
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only executed if B,- is true. The translation of alternation statements to specifications is

based on the similarity of the semantics of Expression (3.3) and the execution behavior for

alternation statements. Using the Hoare triple notation, a specification is constructed as

follows

{ Q}

if

Bl —> SI;

|| 13,, —+ Sn;

fi;

{3p(sla Bl A Q) V ' ' ' V 3P(Sn, Bn A Q) }

3.1.4 Sequence

For a given sequence of statements SI; . . . ;S,,, the postcondition for some statement

S,- is the precondition for some subsequent statement 8,4,1. The wlp and sp for sequences

follow accordingly. The wlp for sequences is defined as follows [16]:

wlp(Sr ; 82. R) E wlp(Sr. wlp(Sz. R))-

Likewise, the sp [16] is

Sp(Sl;S27Q) E 3p(52,3p(51,Q))- (34)

In the case of wlp, the set of states for which the sequence 81 ; 82 can execute with R

true (if the sequence terminates) is equivalent to the wlp of 81 with respect to the set of

states defined by wlp(Sg, R). For sp, the derived postcondition for the sequence 81:82

with respect to the precondition Q is equivalent to the derived postcondition for $2 with

respect to a precondition given by sp(Sl, Q). The Hoare triple formulation and construction

process is as follows:
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{Q}

51;

{3P(31.Q)}

$2;

{319(32. 319(31. Qll }

3.2 Iterative and Procedural Constructs

The programming constructs of assignment, alternation, and sequence can be combined to

produce straight-line programs (programs without iteration or recursion). The introduction

of iteration and recursion into programs enables more compactness and abstraction in

program development. However, constructing formal specifications of iterative and

recursive programs can be problematic, even for the human specifier. This section discusses

the formal specification of iteration and procedural abstractions without recursion. We

deviate from our previous convention of providing the formalisms for wlp and 3p for each

construct and use an operational definition of how specifications are constructed. This

approach is necessary because the formalisms for the wlp and sp for iteration are defined

in terms of recursive functions [16, 26] that are, in general, difficult to practically apply.

3.2.1 Iteration

Iteration enables the repetitive application of a statement. Iteration, using the Dijkstra

language, has the form

do

B1 —) 81;

H Bn —> Sn;

0d;
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In more general terms, the iteration statement may contain any number of guarded

commands of the form B,- —> S,-, such that the loop is executed as long as any guard B.-

is true. A simplified form of repetition is given by “do B -> S od

In the context of iteration, a boundfienction determines the upper bound on the number

of iterations still to be performed on the loop. An invariant is a predicate that is true

before and after each iteration of a loop. The problem of constructing formal specifications

of iteration statements is difficult because the bound functions and the invariants must

be determined. However, for a partial correctness model of execution, concerns of

boundedness and termination fall outside of the interpretation, and thus can be relaxed.

Using the abbreviated form of repetition “do B —+ S 0d”, the semantics for iteration

in terms of the weakest liberal precondition predicate transformer wlp is given by the

following [16]:

wlp(DO, R) E (Vi :0 S i : wlp(IF5, B V R)), (3.5)

where the notation “IF"’ is used to indicate the execution of “if B —> S fi” 2' times.

Operationally, Expression (3.5) states that the weakest condition that must hold in order

for the execution of an iteration statement to result with R true, provided that the iteration

statement terminates, is equivalent to a conjunctive expression where each conjunct is an

expression describing the semantics of executing the loop 2' times, where i 2 O.

The strongest postcondition semantics for repetition has a similar but notably distinct

formulation [16]:

sp(DO, Q) E -«B A (32' :0 g i : sp(IFi,Q)). (3.6)
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Expression (3.6) states that the strongest condition that holds after executing an iterative

statement, given that condition Q holds, is equivalent to the condition where the loop guard

is false (fiB), and a disjunctive expression describing the effects of iterating the loop some

number of times lc, where h 2 0.

Although the semantics for repetition in terms of strongest postcondition and weakest

liberal precondition are less complex than that of the weakest precondition [16], the

recurrent nature of the closed forms make the application of such semantics difficult.

For instance, consider the counter program “do i < n ——> i := i + 1 ed”. The

application of the sp semantics for repetition leads to the following specification:

sp(do i < n ——> i := i + 1 od,Q)E(iZn)A(3j:03j:sp(IFj,Q)).

The closed form for iteration suggests that the loop be unrolled 1: times, such that

sp(IF", Q) is true. If k is set to n — start, where start is the initial value of variable i,

then the unrolled version of the loop would have the following form:

L i:= start;

2. if

3. i < n --> i:= i + l;

4. fi

5. if

6. i < n -—> i:= i + l;

7. fi

8. .H

9. if

10. i < n —-> i:= i + 1;

1L fi

Application of the rule for alternation (Expression (3.2)) yields the sequence of

annotated code shown in Figure 3.1, where the goal is to derive the specification given

29
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by the expression:

sp(do i < n —) i := i + 1 od,(start<n)A(i=start)).
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{(i = I) A (start < n)}

i:= start;

{ (i = start) A (start < n) }

if i < n -> i:= i + 1 fi

{sp(i := i + 1, (i < n) A (i = start) A (start < n))

2' >= n) A (i = start) A (start < n))

'
A
l
l
l
2
<

i: start + 1) A (start < 17.)) }

= i + 1 fi

{sp(i := i + 1, (i < n) A (i = start + 1) A (start < n))

V

((i >= n) A (i = start + 1) A (start < n))

ai = start + 2) A (start + 1 < n))

V

((i >= n) A (i = start + 1) A (start < n))}

(5((i=start+(n-start—1))A(start+(n—start—1)—1<n))

V

((i >= n)A(i =start+(n—start—2))A(start+(n—start—2) —1 <n))

Ei=n-1)A(n—2<n))}

if i < n -> i:= i + 1 fi

{sp(i:=i+l,(i<n)A(i=n—-1)A(n-2<n))

V

((i>=n)A(i=n—l)A(n—2<n))

6:71)}

Figure 3.1: Annotated Source Code for Unrolled Loop

 

In the construction of specifications of iteration statements, knowledge must be

introduced by a human specifier. For instance, in line 3.2.1 of Figure 3.1 the inductive
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assertion that “2' = start + (n — start — 1)” is made. This assertion is based on a specifier

providing the information that (n — start — l) additions have been performed if the loop

were unrolled at least (n — start — 1) times. As such, by using loop unrolling and induction,

the derived specification for the code sequence is ((n — 1 < n) A (i = n)).

For this simple example, we find that the solution is non-trivial when applying the

formal definition of sp(DO, Q). As such, the specification process must rely on a user-

guided strategy for constructing a specification. A strategy for obtaining a specification of

a repetition statement is given in Figure 3.2.

3.2.2 Procedural Abstractions

This section describes the construction of formal specifications from code containing the

use of non-recursive procedural abstractions. A procedure declaration can be represented

using the following notation

proc p ( value 5; value-result g; result ‘2' );

{P}( body >{Q}

where T, y, and 2 represent the value, value-result, and result parameters for the

procedure, respectively. A parameter of type value means that the parameter is used only

for input to the procedure. Likewise, a parameter of type result indicates that the parameter

is used only for output from the procedure. Parameters that are known as value-result

indicate that the parameters can be used for both input and output to the procedure. The

notation ( body ) represents one or more statements making up the “procedure”, while {P}

and {Q} are the precondition and postcondition, respectively. The signature of a procedure

appears as
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1. The following criteria are the main characteristics to be identified during the

specification of the repetition statement:

0 invariant (P): an expression describing the conditions prior to entry and upon

exit of the iterative structure.

0 guards (B): Boolean expressions that restrict the entry into the loop. Execution

of each guarded command, B,- —> S,- terminates with P true, so that P is an

invariant of the loop.

{PA B,}S.‘{P}, fOl'l S 2 S n

When none of the guards is true and the invariant is true, then the postcondition

of the loop should be satisfied (P A -iBB —+ R, where BB = Bl V . . . V B7,

and R is the postcondition).

2. Begin by introducing the assertion “Q A BB” as the precondition to the body of the

loop.

3. Query the user for modifications to the assertion made in Step 2. This guided

interaction allows the user to provide generalizations about arbitrary iterations of

the loop.

4. Apply the strongest postcondition to the loop body S,- using the precondition given

by Step 3.

5. Using the specification obtained from Step 4 as a guideline, query the user for a

loop invariant. Although this step is non-trivial, techniques exist that aid in the

construction of loop invariants [27, 26].

6. Using the relationship stated above (P A -wBB —+ R), construct the specification of

the loop by taking the negation of the loop guard, and the loop invariant.

Figure 3.2: Strategy for constructing a specification for an iteration statement

 

proc p : (input_type)* —> (output.type)“ (3.7)

Where the Kleene star (*) indicates zero or more repetitions of the preceding unit,

inputiype denotes the one or more names of input parameters to the procedure p, and
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output.type denotes the one or more names of output parameters of procedure p. A

specification of a procedure can be constructed to be of the form

{ P: U}

proc p: E0 —> El

(body)

{0: Sp(b0dy. U) AU }

where E0 is one or more input parameter types with attribute value or value-result, and

E1 is one or more output parameter types with attribute value-result or result. The

postcondition for the body of the procedure, sp(body, U), is constructed using the previously

defined guidelines for assignment, alternation, sequence, and iteration as applied to the

statements of the procedure body.

Gries [26] defines a theorem for specifying the effects of a procedure call using a total

correctness model of execution. Given a procedure declaration of the above form, the

following condition holds [26]

, r,“ .. .. “,2 5,5 _ - _

{PRT ' Play A (WW -- Qanv => “Rt—137)} 19(0: b: C) {R} (3-8)

for a procedure call p(‘a, 5, E), where 21', 5, and E represent the actual parameters of type

value, value-result, and result, respectively. Local variables of procedure p used to

compute value-result and result parameters are represented using a and a, respectively.

Informally, the condition states that PRT must hold before the execution of procedure p

in order to satisfy R. In addition, PRT states that the precondition for procedure p must

hold for the parameters passed to the procedure and that the postcondition for procedure p

implies R for each value-result and result parameter. The formulation of Equation (3.8) in

terms of a partial correctness model of execution is identical, assuming that the procedure
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is straight-line, non-recursive, and terminates. Using this theorem for the procedure call,

an abstraction of the effects of a procedure call can be derived using a specification of the

procedure declaration. That is, the construction of a formal specification from a procedure

call can be performed by inlining a procedure call and using the strongest postcondition for

assignment.

A procedure call p(E,5,E) can be represented by the program block [26] found in

Figure 3.3, where (body) comprises the statements of the procedure declaration for p,

{ PR } is the precondition for the call to procedure p, { P } is the specification of the

program after the formal parameters have been replaced by actual parameters, { Q }

is the specification of the program after the procedure has been executed, { QR } is

the specification of the program after formal parameters have been assigned with the

values of local variables, and { R } is the specification of the program after the actual

parameters to the procedure call have been “returned”. By representing a procedure call

in this manner, parameter binding can be achieved through multiple assignment statements

and a postcondition R can be established by using the sp for assignment. Removal of

a procedural abstraction enables the extension of the notion of straight-line programs to

include non-recursive straight-line procedures. Making the appropriate sp substitutions,

we can annotate the code sequence from Figure 3.3 to appear as shown in Figure 3.4 where

a, 3, “'7, E, 5, and 7,5 are the initial values of i, Y (before execution of the procedure

body), 37 (after execution of the procedure body), 2', S, and E, respectively. Recall that

in Section 3.1.2, we described how the existential operators and the textual substitution

could be removed from the calculation of the sp. Applying that technique to assignments

and recognizing that formal and actual result parameters have no initial values, and that
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local variables are used to compute the values of the value-result parameters, the above

sequence can be simplified using the semantics of sp for assignments to obtain the following

annotated code sequence:

{ PR }

237 := 5,5;

{P:PRAT<=5AY:B}

(body)

{ Q }

Vii = EV; _ _

£QR:QA?=E¥AE=—7}

bf := 37,5;

where Q is derived using sp((body), P).

3.3 Example

AUTOSPEC is a tool that has been developed to support the use of strongest postcondition

in the construction of formal specifications from existing program code [6]. In this section

we describe the use of AUTOSPEC to facilitate the analysis of programs.

AUTOSPEC accepts programs as input and using rules such as the ones described in

this chapter, derives a formal specification of the input program. Our current investigations

include extending the AUTOSPEC tool to support the formal strongest postcondition

semantics of the C programming language as described in Chapter 5 [7]. For statements

such as assignments and conditionals, AUTOSPEC is fully automated. When processing

loops, AUTOSPEC allows a user to provide appropriate preconditions and postconditions.

For instance, consider Figure 3.5 which contains output from a session of the AUTOSPEC

system without pointers. The input program
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begin

{ex}
p(2r,5,z)

{R}

end "

begin

declare i, 37, ‘2', fi, if;

end

Figure 3.3: Removal of procedure call p(Ei, b, E) abstraction

 

X := 0;

do

(M > power(2,x)) —> x := x + 1;

0d;

computes the value of the smallest integer :r such that for an input value I, I _<_

2”. The initial precondition to the loop is computed as ((I = 1.0) & (x

O) ). On encountering the loop statement the user is prompted by the string “Enter

Precondition:” to enter a precondition for an arbitrary iteration to the loop.

Figure 3.2 [6] discusses guidelines for specifying the effects of loops. Using these

guidelines, the precondition ((I = 1.0) & (x = i)) is input by the user and

36



 

a? 5.5: __

{It-(36.2? P ,g’Afiaii’AT/J?”
(body)

{Q }

a? := Ev,

. — — . —,E — __ —?r_z_ — ._ —Y’§

£9R. (iyic Qiz Ay — um? A z — V7,Z )}

,C = Y’Z;

_ _ .15 — _Bfé _ _B,E{mam Q m Ab=y,, Ac: 2,,»

Figure 3.4: Code annotation for procedure call

 

the term (I > power (2 , x) ) is automatically generated and conjuncted to the

precondition. The resulting preliminary specification of the postcondition for the loop that

is generated by AUTOSPEC is as follows:

(((I > power(2,as.const2)) & ((I = LO) & (as-const2 = i))) &

(x = (as.const2 + 1)))

where “8:” is the logical connective “”.A The user is then prompted by the string “Enter

Postcondition : ” to enter a postcondition. From the preliminary specification we can

deduce that while the guard is true, (Vi : 0 g i < a: : (I > 2‘)). Furthermore, after

execution completes I g 2“. Therefore, the final specification can be entered as

((I <= power(2,x)) & (forall i : ((0 <= i) & (i < x))

(I > power(2.i))))

which states that after execution of the loop, I 5 2‘c and that for every integer 0 g i < x,

1’>»2i
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shell> as_jr approxI

{ ((I = I_0) & (x = 0)) }

do

(I > power( 2, x)) ->

X:= (X+l):

0d;

Enter Precondition:

((I = I_0) & (x = i))

I ((I = I_0) & (x = 0)) }

do

(I > power( 2, x)) ->

x := (x + 1);

{ (((I > power(2,as_const2)) & ((I = I_0)

(x = (as_const2 + 1))) }

0d;

& (as_const2 = i))) &

{ (((I > power(2,as_const2)) & ((I = I_0) & (as_const2 = i))) &

(x = (as_const2 + 1))) }

Enter Postcondition:

((I <= power(2,x)) & (forall i : ((0 <= i) & (i < x)) : (I > power(2,i))))

Figure 3.5: User Consultation

 

In addition to supporting the ability to have a user provide guidance during the

specification process, AUTOSPEC supports syntactic and semantic verification of the input

entered by users by using an integrated syntax checker and theorem prover.
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Chapter 4

Strongest Postcondition Semantics of

Pointers

Many modern programming languages support the use of pointer variables, including

C and OH. This chapter describes how we extended the strongest postcondition predicate

transformer to include the formal semantics of programs with pointers [28]. The semantics

are defined for a modified Dijkstra language that has been extended to include pointer

variables. The extension of the strongest postcondition semantics to include pointers

facilitates the use of strongest postcondition for reverse engineering a more general set

of programs.

4.1 Pointers

Using terminology of the C programming language [29], a pointer is a variable that

contains the address of a variable. A common use of pointers is the creation of aliases,

which refers to the fact that several names can be used to refer to a single data object.

For instance, the statement “x := @a”, where x is a pointer and a is some data variable,

creates an alias, thus operations involving x and a are synonymous. The notation “*p”

indicates a dereference of the pointer p in order to access the value of the referenced

object. There are four different classes of alias detection: intraprocedural may-alias,
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interprocedural may-alias, intraprocedural must-alias, and interprocedural must-alias. The

term may-alias refers to the fact that given two variables, during some execution of

a program, the variables are aliases for one another. The term must-alias means that

during all executions of the program, the variables will be aliases for one another. The

terms interprocedural and intraprocedural indicate the context of the aliasing, where

interprocedural is global and intraprocedural is local. Compile-time analysis of programs

to detect aliasing has long been recognized as difficult. In fact, it has been proven

that static analysis to detect aliases is undecidable [30]. This research does not address

may/must-aliasing problems directly although the intention in the development of the

formal semantics for pointers is to provide a theoretically rich formalism that can be used

to aid may/must-alias analysis.

In addition to having may/must-alias detection, alias detection techniques can beflow-

sensitive orflow-insensitive. A technique is flow-sensitive if control structures are factored

into the detection algorithm. The techniques that we suggest are flow-sensitive although,

again, we do not directly address alias detection.

4.2 Pointer Semantics

A pointer is a variable that contains the address of some data object. Pointers can be

assigned in a number of different ways including heap allocation and direct addressing of a

variable. For instance, the C-like command “p : = @k” assigns the address of the variable

k to pointer variable p. As such, the pointer variable p points-to variable k. This section

describes the strongest postcondition semantics of pointers.
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4.2.1 Failure of Conventional Assignment Semantics

The strongest postcondition semantics of the assignment statement is as follows. Given a

statement “x := 'e” and a precondition Q:

sp(x :2 e,Q) —_-= (31) :: Q: A a: 2 eff), (4.1)

which states that after the execution of “x := e” there exists some variable U such that

every free occurrence of :1: in Q is replaced with v and x = e3. Section 3.1.2 describes

two lemmas for eliminating the existential quantification in Expression (4.1). In the first

lemma, if the precondition Q is of the form C' A (a: = u), where C is a logical expression,

then after the textual substitution of variable a: with v in Q, Expression (4.1) reads as

(32) :: C:A(v = u)Aa: = eff). Since (2) = u),the expression (32) :: C:A(v = u)A:z: = 6”) is

logically equivalent to C:A(u = u)A:c 2 e3. In the second lemma, if a: does not appear as a

free variable in either the logical expression Q or the expression 6, then (32) :: Q: Ax = 63)

is logically equivalent to Q A a: = e.

In a naive treatment of pointers, we can attempt to apply the semantics of the assignment

statement to pointer variables. However, doing so causes various problems. Consider the

example in Figure 4.1 where p and q are pointer variables, (1 is a typed variable, and e

is a constant. Given the precondition {*q = Y}, where *q is a dereference of an object

and Y is a constant, the strongest postcondition of the statement sequence “p := q; d

:= *p; *p := e” is {d = v Ap = qA *q 2 YA *p = e} when the conventional

semantics for assignment is used for pointer assignments. This specification, derived using

the lemmas in Section 3.1.2, states that after execution of the sequence, d has value v, p
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and q point to the same object, and that the value of *q = Y and *p = e. The problem with

this specification is that while p = q (i.e., pointers p and q refer to the same object), there

is a contradiction in the conjuncts *q = Y and *p = e.

 

{*q=Y}

P 3: q;

((31)::(*q=Y)€Ap=q)E(p=qA*q=Y)(Lemma3.l.2)}

d := *p;

{(3123(p=qA*q=Y)gAd=*p)E(d=*pAp=qA*q=Y)(Lemma3.l.2)}

*p := e;

{(3122:(d=*pAp=qA*q=Y);pA*p=e)E

(d=vAp=qA*q=YA*p=e)(Lemma3.l.2)}

Figure 4.1: A simple pointer example

 

The remainder of this section presents a model for describing the formal semantics

of pointer operations that overcome the problems that occur when using conventional

assignment semantics.

4.2.2 Memory Model

In the C programming language, variables can be allocated from heap storage, registers,

or stack. The model used in this paper for representing memory is cell-based, where the

memory consists of a large number of storage cells. Each cell is named and contains a

value. A diagram of this model is shown in Figure 4.2, where the entries in the column

labeled N indicate the names of the cells, and the entries in the column labeled V indicate

the values. In the diagram, data objects x, y, and 2 have values a, b, and c, respectively. As

a convention we use “n.V”, where n is a cell name, to denote the value of the data object

n. In our example, x.V = a, y.V = b, and z.V = c.
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Figure 4.2: Cell Memory Model

 

4.2.3 Extending the Model for Pointers

A pointer can be assigned by heap allocation, pointer assignment, or alias assignment.

Examples can be found in Table 4.1. Different alternatives for representing the use of

pointers within the context of the cell memory model are available including the use of

indirection where if pointerp points to some variable v, then the value ofp is v.

 

 

 

 

 

 

[Type Example I

heap allocation p := new T

pointer assignment p := q

alias assignment p := @x  
 

Table 4.1: Pointer Assignments

 

Consider the set of data objects N and the set of pointers M that are currently allocated

at some step during the execution of a particular program. Assuming that all the pointers

in M point to data objects (not necessarily distinct) in N, using the equivalence relation
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“_n

where pointer p = q if and only if p and q point to the same object, we can partition

M such that each partition is an equivalence class. As such, any operation on a member

of a particular equivalence class is behaviorally equivalent to performing an operation on

any other member of the same equivalence class. For instance, suppose we have variables

x and y and pointers p, q, r, s, and t. Let pointers p, q, and r point to variable x, and

pointers s and t point to variable y. Since p, q, and r point to the same variable x, they

form one equivalence class, and since 5 and t point to the other variable, they form another

equivalence class.

The equivalence classes within the set of pointers M can be considered to be dynamic

since the execution of a programming statement can possibly rearrange the members of

each set as is the case when pointer variables are either reused in heap allocation or a

pointer assignment. Figure 4.3 depicts the extension of the memory model where there

is an associated equivalence class in M for each memory cell. For consistency sake we

assume that a data object can reference itself and, as such, is a member of the associated

equivalence class. For example, the data object y with pointers s and t has an associated

equivalence class from M with members { y, s, t }. We refer to this equivalence class as

M[1!].

4.2.4 Points-to and Coset

In this section we define the semantics of the points-to relation and the coset function, both

of which are used to formally describe the behavior of pointer operations.

Let M be the set of pointers, N be the set of allocated data objects, and B be the Boolean

type. Figure 4.4 defines the > (pronounced “points-to”) relation. The primary use of the
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Figure 4.3: Pointer Extensions to the Memory Model

 

points-to relation is for making assertions about pointers and their relation to specific data

objects. That is, it asserts that a pointer is in the equivalence class associated to a particular

data object. Informally, the points-to relation is a heterogeneous relation on {M U N} x N.

The first axiom states that when data objects 01 and 02 are both in the set N that 01 > 02 is

true if and only if 01 = 02, where “01 = 02” when 01 and 02 are the same data object. As

such, a data object can only reference itself and never references another data object. The

second axiom states that for a pointer p E M and a data object o E N, p > o if and only

if p E M[a]. That is, p points-to o if and only if pointer p is an element of the equivalence

class of o. Equivalently, a pointer p points to a data object o if it is in the equivalence class

M[0].

The coset function is defined in Figure 4.5. The primary use of the coset function is to

identify a dereferenced object. Informally, the coset function maps pointers to data objects,
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Figure 4.4: The points-to relation

 

where a pointer p maps to a data object o if p E M[o]. If a pointer does not belong to any

equivalence class then the cost function is undefined.

 

coset :M H {N U {undefined}}

coset(p) = {

o ifandonlyifp>o,

undefined otherwise.

Figure 4.5: The coset function

 

4.2.5 Assignment Revisited

Given the definition of the points-to operator and the semantics of the equivalence class

model, we must redefine the sp semantics of the assignment statement for simple (non-

pointer) variables to be consistent with the model. Given a statement “x := e” and a

precondition Q where x is a non-pointer variable and e is an expression, the strongest

postcondition for assignment statements is:
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which states that after the execution of “x := e” there exists some variable 12 such that

every free occurrence of x.V in Q is replaced with v and 2:.V = 6:. Formally, ‘é means:

é 4: Va : (variable(u) A term(u, e) —> 6:.v) A VP 3 (pointer(p) A term(*p, 8)) ‘* egsez(p).v

Informally, the notation é indicates that the expression e is transformed so that every simple

variable u that is a term in e is replaced by u.V, and every pointer dereference *p that is

a term in e is replaced by coset(p).V, where coset(p).V refers to the value of the object

identified by coset(p). This formalization ensures that there is a consistent notation for

referring to the values of data objects.

4.2.6 Heap Allocation

When a pointer is assigned a “value” then that pointer is placed into an equivalence class

such that all the members of the equivalence class point to the same data object. One

method for assigning a value to a pointer is through heap memory allocation. Heap

memory allocation has the form “p := new T” where p is a pointer and T is a data

type. Informally, upon allocation of heap memory, a new data object of type T is created

and the pointer p is used to reference the object. In our model this action is represented

by introducing a new entry 0 in N with an undefined value in V, and adding p to the

equivalence class M[o]. In addition, if p was previously in some equivalence class M[Is], it

is removed from that set. Formally we can state this condition as follows:

sp(p := new T, Q) E (3c : c E N: Q’C’)Ap > o A o.V = undefined, (4.2)
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where o is a new data object. The textual substitution of every free occurrence of p in Q

with the term c E N ensures that p is removed from any equivalence class that it may have

previously been associated, and the assertion p > 0 places p into the equivalence class M[0].

Finally, the term o.V = undefined asserts that the value of the new object o is undefined.

As an example, let precondition Q be {q > 01} and statement S be “q : = new T”. Then

sp(S, Q) E sp(q := new T, q > 01)

(Expression (4.2))

5(3010 E N: (q > 01):) A q > 02 A o2.V = undefined

(Textual substitution of q with c)

5(36166 N:c>01)Aq>02Ao2.V= undefined

(Points-to axiom (Figure 4.4) applied to c > 01)

E (3czce N : c=ol)Aq>o2Ao2.V= undefined

(Trading [16])

2(aczc=01:CE N)Aq>o2A02.V = undefined

(One-point rule [16] with c = 01, 01 E N E true)

E q > 02 A 02.V = undefined

As such, after the execution of the statement “q := new T”, the pointer q points to

some new object 02.

4.2.7 Pointer Assignment

Another way of assigning a value to a pointer is via direct aliasing as in the C-like command

p : = @x”. In terms of the equivalence class model, the pointer alias assignment adds the

pointer p to the equivalence class M[x]. The formal semantics of this command is similar
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to the heap allocation case. Formally the semantics is as follows:

sp(p := @x,Q)E(3c:cEN:Q§)Ap>x. (4.3)

Expression (4.3) states that after executing the statement p : = @x that p>z and that every

free occurrence of p in Q is replaced with c. This relationship ensures that the pointer p is

placed into the equivalence class associated to the variable 2:. As an example, let statement

S be “p : = @x” and let precondition Q be “{p > ol}”. The sp derivation is as follows.

sp(S, Q) E sp(p := @x,p > 01)

(Expression (4.3))

E(30:C€N:(p>01)’c’)/\p>x

(Textual substitution ofp with c)

5(3czcEN:(c>01))Ap>x

(Points-to axiom applied to c > 01)

E(Echc€N:c=ol)Ap>a:

(Trading)

5(3c:c=ol:c€N)Ap>:r

(One-point rule with c = 01, 01 E N E true)

Ep>$

Hence, the pointer p points to the data object as.

The final way that a pointer can be assigned a value occurs when a statement of the

form “p := q” is executed, where p and q are pointers. In the terms of the equivalence

class model, the pointer assignment adds the pointer p to the class that contains pointer q.
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In this case the formal semantics is expressed as

sp(p := q, Q) E (3c : c E N: QZ)Ap > coset(q). (4.4)

Expression (4.4) states that after execution of the pointer assignment, p points to the object

coset(q). For example, let statement S be “p := q” and precondition Q be “{q > 01 A

p > 02}”. Then

sp(S,Q) _=. sp(p := q,q > 01Ap> 02)

(Expression (4.4))

E (3czcE N: (q>olAp>o2)fj)Ap> coset(q)

(Textual substitution ofp with c)

E (3c:c€ N: (q>olAc>02))Ap> coset(q)

(Points-to axiom applied to c > 02))

E (Elczce N: (q>olAc=02))Ap> coset(q)

(Trading)

2 (30:c=o2:c6 NAq>ol)Ap> coset(q)

(One-point rule with c = 02, 02 6 N E true )

E q > 01 Ap > coset(q)

(Definition of coset)

E q > 01 A p > 01

As such, after the execution of “p : = q”, the pointers p and q reference the same data

object.

4.2.8 Value Assignment

In the C programming language, the value of the data object that a pointer references is

accessed using the notation “*p”, where p is a pointer variable. Using the same notation
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convention, an assignment to the data object is achieved using a command of the form “*p

:= e”, where e is an expression. In terms of the equivalence class model, the assignment

of *p sets the value of the data object coset(p) to e. Formally, the semantics of assignment

to a dereferenced data object is as follows:

sp(*p := e, Q) E (32) : v E T : ngset(p).V A coset(p).V = éfiose‘(p)'v) (4.5)

where T is the type of the data object, and v is a value of that type. For instance, if T is the

type integer, then u is some integer. The variable 1) represents the value of the data object

dereferenced by *p prior to the execution of the statement “*p := e”. Informally, the

semantics state that after execution of the statement “*p := e”, *p will have the value

éfimtm‘v. Additionally, Sammy will be true. For example, let statement S be “*p :=

5” and precondition Q be {p > 01 A ol.V = n A ol.V g k}. Informally the precondition

states that p points to object 01, the value of 01 (denoted ol.V) is n, and ol.V _<_ k. The sp

derivation is as follows.

sp(S, Q) E sp(*p := 5,p > 01A ol.V = n A ol.V g k)

(Expression (4.5))

E (322:1) E T: (p > 01 A ol.V = n A ol.V S k)f,°“‘(")‘v A coset(p).V = 5)

(Coset definition and textual substitution of coset(p).V with v)

E(30:06T:p>01/\v=n/\’USkACOS€t(p).V=5)

(Trading)

5 (311:2) €TAv=n:p>olAu S kAcoset(p).V=5)

(One-point rule with v = n)

5p>olAn S kA coset(p).V= 5

(Definition of coset)

Ep>01AnS kAol.V=5
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Hence, after the execution of “*p : = 5”, the data object pointed to by p has value 5.

4.2.9 Value Dereference

99

The command for observing the value of a pointer dereference has the form “x := *p ,

where x is a variable and p is a pointer. In terms of the equivalence class model, the

value dereference *p refers to the value of the data object associated to the equivalence

class containing p. That is, *p refers to coset(p).V. The formal semantics of a value

dereference is as follows:

sp(x := *p, Q) E (322 : v E T : fo'v A a3.V = coset(p).V) (4.6)

where T is the type of the data object, and v is a value of that type. Informally,

Expression (4.6) states that after the execution of a statement with *p on the right hand

side of an assignment, the left hand side of the assignment takes on the value of the object

that has been dereferenced. The term Qfi'V states that every free occurrence of x.V in

Q is replaced with the value of a: previous to executing the statement “x := *p”. As

an example, let statement S be “x := p” and let precondition Q be {p > 01 A ol.V =

n A 2:.V = y}. The sp derivation proceeds as follows.

sp(S, Q) E sp(x := *p,p > 01 A ol.V = n A 11:.V = 3;)

(Expression (4.6))

.=_ (31):?) E T: (p > 01 A ol.V = n A x.V = 103'" /\ $.V = coset(p).V)

(Textual substitution of z.V with v)

E (311:1) ET:p>olel.V=nAv= yAr.V = coset(p).V)
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(Trading)

5(31111} €TAv=yzp>oleLV=nAv =yAr.V ;—_ coset(p).V)

(One-point rule with v = y)

E p > 01 A ol.V = n A :c.V = coset(p).V)

(Definition of coset)

Ep>olel.V=nAx.V =ol.V)

This states that the new value of r.V is equivalent to the value of the data object 01.

4.3 Examples

Figure 4.6 contains three programs for illustrating the pointer semantics described in this

chapter as well as for showing the use of an automated tool for analyzing programs with

pointers. Figure 4.6(a) is the program from Figure 4.1. Figure 4.6(b) is a program for

demonstrating how aliases are resolved using the pointer semantics, and Figure 4.6(c)

shows a program with a conditional statement and how the conditional statement impacts

pointer resolution. The specifications in this section were all automatically generated by

the AUTOSPEC tool.

4.3.1 alias

The alias program is shown in Figure 4.6(a). Figure 4.1 demonstrated the application

of conventional strongest postcondition semantics for assignment to the alias program

and the failure of those semantics to correctly specify the behavior in the context of pointer

use. In this section we describe the semantics of the specification constructed using the

AUTOSPEC tool with support for the pointer semantics presented in Section 4.2.
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program alias( program manyvars() program maxThresh(

inputs: int e; inputs: int e; int x; int y;

int *q;) decl outputs: int *2; )

int 2; int u; int *r;

decl int *q; begin

int d; lced

int *p; if ( x > y ) —> z := @x;

lced begin || ( x <= y ) -> z := @y;

begin fi;

r := @u; *2 := *z + e;

P == q; z := 0;

d := *p; q := @2; end

*p = e; *r = 1;

fig = tr;

end

end

(a) (b) (c)

Figure 4.6: Three Sample Programs: (a) alias (b) manyvars (c) maxThresh

 

Figure 4.7 contains the output of AUTOSPEC when executed using the alias program

as input. The precondition appears as the logical formula enclosed within the curly braces

“{” and “}” following the keyword begin at line 11. It is derived from the parameter

and variable declarations, int e; int *q; , and int d; int *p; , respectively.

Informally, the precondition states that the declared variable d has initial value (d.V)

equivalent to some constant d-0, parameter e has initial value (e . V) equivalent to some

constant e_0, and parameter *q points to some object obj _q. Additionally, the initial

value of obj .q (denoted obj -q . V) is equivalent to some constant q_0. After execution of

the first statement of the program the pointer p points to the object identified by coset(q)

which is specified by the conjunct (p . > coset (q) ) in the specification at lines 13-

14, where “ . >” is the points-to relation.

The final specification of the alias program (lines 19-2 0) is the following:
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1 program alias (

2 inputs :

3 int e;

4 int *q;

5 l

6 decl

7 int d;

8 int *p;

9 lead

10 begin

11 { ((d.V = d_0) & (((obj_q.v = q_0) & (q .> obj_q)) & (e.V = e_0))) }

12 p := q;

13 I (((d.V = d_0) & (((obj_q.v = q_0) & (q .> obj_q)) & (e.V = e_0))) &

14 (p .> coset( q ))) I

15 d := *p;

16 { ((((_cnst2 = d_0) & (((obj_q.v = q_0) & (q .> obj_q)) & (e.V = e_0))) &

17 (p .> coset( q )l) & (d.V = coset( p ).V)) )

18 *p := e;

19 { (((((_cnst2 = d_0) & (((_cnst4 = q_0) & (q .> obj_q)) & (e.V = e_0))) &

20 (p .> coset( q ))) & (d.V = _cnst4)) & (obj_q.v = e.V)) }

21 end

Figure 4.7: Output of AUTOSPEC applied to Figure 4.1

 

(((((-cnst2 = d-O) & (((_cnst4 = q_O) 8: (q .> obj_q)) 8:

(e.V = e-0) )) & (p .> coset( q H) & (d.V = _cnst4)) &

(obj-q.V = e.V))

where “8:” is the logical connective “A”. The specification states that after executing the

alias program, obj -q.V has value e.V such that e.V = e_O and d.V has value

_cnst4 such that _cnst4 = q_0. In addition, pointers p and q are aliases for the same

object obj -q.

4.3.2 manyvars

The manyvars program is shown in Figure 4.6(b). This program demonstrates the

difficulty in understanding programs that use a high degree of aliasing. The program

uses two integer variables and two pointer variables, where the pointers r and q are

used to create aliases of variables 11 and 2, respectively. In addition, a number of

value assignments are made to the primary variables (e.g., z := 0;) and aliases (e.g.,
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* r : = l ; ). Figure 4.8 contains the specification of the manyvars program as generated

by the AUTOSPEC system. The first statement of the program at line 1 l (r : = @u) creates

an alias of variable u and is specified by the conjunct (r . > u) in the expression:

(((u.V = u__0) & (z.V = z_O)) & (r .> u))

at line 12. The fourth statement in the program at line 18 (*r := 1) assigns the value

“1” to the data object identified by coset(r) which, on account of the conjunct (r . >

u) , is the data variable 11. Hence, the conjunct (u . V = 1) appears in the specification at

 

lines 19-20.

1 program manyvars (

2 )

3 decl

4 int 2;

5 int u;

6 int *r;

7 int *q;

8 Iced

9 begin

10 I ((u.V = u_0) & (z.V = z_O)) }

11 r := @u;

12 I (((u.V = u_0) & (z.V = z_O)) & (r .> u)) )

13 z := 0;

14 ( ((((u.V = u_0) & (_cnst2 = z_O)) & (r .> u)) a. (z.V = 0)) }

15 q := @z;

16 { (((((u.V = u_0) & (_cnst2 = z_O)) & (r .> u)) & (z.V = 0)) &

17 (q .> 2)) )

18 *r := 1;

19 { ((((((_cnst5 = u_0) & (_cnst2 = z_O)) & (r .> u)) & (z.V = 0)) &

20 (q .> 2)) & (u.V = 1)) }

21 ‘q := *r;

22 { (((((((_cnst5 = u_0) & (_cnst2 = z_O)) & (r .> u)) & (_cnst7 = 0)) &

23 (q .> 2)) & (u.V = 1)) & (z.V = coset( r ).V)) }

24 end

Figure 4.8: AUTOSPEC applied to the manyvars program

 

The final specification of the manyvars program (lines 2 2-2 3) is the following:

(((((((-cnst5 = u-0) & (_cnst2 = 2.0)) & (r .> u)) &

(-cnst7 = 0)) & (q .> z)) & (u.V = 1)) &

(z.V = coset( r ).V))
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which states that after the execution of the program, 2 . V has a value equivalent to that of

coset (r) .V. Since coset(r) = u, and (u.V = l) , the value of variable 2, denoted

z.V,is 1.

4.3.3 maxThresh

The maxThresh program is shown in Figure 4.6(c). The purpose of this program is to

demonstrate the use of AUTOSPEC in specifying the cases where pointers may reference

many objects rather than just a single object. The max’I‘hresh program sets pointer z to

alias the maximum of two input variables x and y. After determining the maximum, the

program adds a threshold e to the maximum.

Figure 4.9 contains the specification of the maxThresh program as generated by

the AUTOSPEC system. After the execution of the if—fi statement (lines 11-18), the

following (as shown in lines 19-2 0) is true:

((((x.V > y.V) & ((Y.V = y_0) & ((x.V = x_0) & (e.V = e-0)))) &

(z .> x)) | (((x.V <= y.V) & ((Y.V = y-0) & ((x.V = x-0) & (e.V =

e-0)))) & (z .> Y)))

which states that the value of variable x is greater than the value of variable y and the

pointer 2 points to the variable x, or the value of variable y is greater or equal to the value

of variable x and and the pointer 2 points to the variable y.

The final specification of the maxThresh program (lines 2 2-2 4) is as follows:

(((((((.cnst5 > _cnst4) & ((_cnst4 = y-0) & ((_cnstS = x_0) & (e.V

= e-0)))) & (z .> x)) | (((-cnst5 <= _cnst4) 8: ((_cnst4 = y-0) 8:

((-cnst5 = x-0) & (e.V = e_0)))) & (z .> Y))) 8: ((_cnst4 = CV3) |

(-cnstS = CV3))) & (CV3 = -06)) & (coset( 2 ).V = (-06 + e.V)))

This specification states that the value of coset (2) .V is equivalent to the expression

(-06 + e.V) where .06 = CV3 and ((-cnst4 = CV3) I (_cnstS = CV3)).
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program maxThresh (

1 inputs :

2 int e;

3 int x;

4 int y;

5 outputs :

6 int *2;

7 )

8 begin

9 { ((y.V = y_0) & ((x.V = x_0) & (e.V = e_0))) }

10 if

11 (x > y) —>

12 z := 8x;

13 { (((x.V > y.V) & ((y.V = y_0) & ((x.V = x_0) & (e.V = e_0)))) & (z .> x)) }

14 II (x <= y) —>

15 z := @y;

16 { (((x.V <= y.V) & ((y.V = y_0) & ((x.V = x_0) & (e.V = e_0)))) & (z .> y)) l

17 fi;

18 { ((((x.V > y.V) & ((y.V = y_0) & ((x.V = x_0) & (e.V = e_0)))) & (z .> x)) I

19 (((x.V <= y.V) & ((y.V = y_0) & ((x.V = x_0) & (e.V = e_0)))) & (z .> y))) }

20 *z := (*z + e);

21 { (((((((_cnst5 > _cnst4) & ((_cnst4 = y_0) & ((_cnstS = x_0) & (e.V = e_0)))) &

22 (z .> x)) | (((_cnst5 <= _cnst4) & ((_cnst4 = y_0) & ((_cnstS = x_0) &

23 (e.V = e_0)))) & (z .> y))) & ((_cnst4 = CV3) | (_cnstS = CV3))) &

24 (CV3 = _06)) & (coset( 2 ).V = (_06 + e.V))) )

25 end

Figure 4.9: AUTOSPEC applied to the maxThresh program

 

Since the pointer 2 can point to either variable x or variable y, the value (*2 + e) in

the statement at line 21 is dependent on the result of the if— fi statement. As such,

the specification of the conditional value for CV3 is appended to the derivation by the

AUTOSPEC system in order to preserve the one-point property of the specification.
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Chapter 5

Application of Strongest Postcondition

to C Programs

The C programming language is one of the most popular programming languages [29].

Based on the imperative (procedural) programming style, C contains many syntactic

and semantic elements that differentiate it from the Dijkstra guarded command language

including the use of pointers and side-effect expressions. This chapter describes our

investigations into the use of strongest postcondition to define the semantics of the

C programming language [29] based on the semantics we developed for imperative

programs in Chapter 3. The definition of the strongest postcondition semantics for the

C programming language facilitates the reverse engineering of real industrial systems.

5.1 Assignment

Let v be a variable or an assignable expression and e be an expression. An assignment in

the C programming language has the form v E e, where E is an assignment operator (i.e.,

=, +=, *=). There are two roles that an assignment statement can have. The first is the

traditional assignment of a variable with the value of an expression. The second role is as

a side-effect Boolean expression.
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In order to handle the dual role of an assignment statement, two functions are defined.

First, in order to describe the semantics of the traditional use of assignment, an evaluation

function A: S —-> T is defined, where S is the set of syntactically valid expressions, and T

is the range of the result given by evaluating the expression e. If s E S is a non-assignment

expression, then in general .A(s) = 3. If, however, 3 is an assignment statement, such

as “x *= n”, the function .A would be evaluated as A(x *= n) = x x n, where n is

a variable of the same type as x. Table 5.1 defines the semantics of the function A on a

few sample assignment operators. The left column of the table indicates which assignment

operator is being performed and the right column indicates the value of the assignment as

applied to v and e. For instance, for the operator =, the table states that A(v=e) = A(e),

and that A(v+=e) = v + A(e).

A more general form of the function .A can be defined as A(b) = b, where b is a non-

assignment expression. The interpretation is that the evaluation A on any expression has

the value of the expression. For example, consider “A(x + y + z)”. The expression “x

+ y + z” is a non-assignment expression, therefore A(x + y + z) = x + y + 2. For

a discussion of the remaining expression constructs, see Appendix A. Using the definition

of A, we can define the strongest postcondition of an assignment in the following manner:

Definition 5.1 (Assignment Semantics)

Let Q be the precondition, u be the quantified variable, and ’ indicate that

the range ofthe quantified variable i) is true. Then the strongest postcondition

ofan assignment is

sp(x E e, Q) _=_ (3r) :: Q: Ax = A(x 2 e:)).

Definition 5.1 states that after the execution of an assignment statement, there exists some

value v such that the textual substitution of every free occurrence of x with v in Q keeps

6O



 

 

 

 

 

 

 

 

Operation Evaluation

’0 ’5 e A

= 4(6)

*= v x A(e)

/ = fl

+= v + A(e)

—= r) — A(e)

%= 2) mod A(e)     
 

Table 5.1: Evaluation of A on sample C assignment operators

 

Q true, and x takes the value of the evaluation A on x 2 e3. This means that after the

execution of an assignment statement, the precondition Q must still be true with respect to

the value that the variable x had before the assignment, and the assignment must be valid.

The second function that is used to define the effects of an assignment statement is the

logical valuation function V : S —> B, where S is the set of valid expressions, and B is

the Boolean type. Note that S includes general expressions and assignment expressions.

The purpose of V is best motivated by an example. Consider the sequence of code given

in Figure 5.1. Informally, the semantics of this code sequence is that if the guard is true,

execute S1, otherwise execute S2. However, the guard is worth noting since the expression

is not a logical one, but rather an assignment expression. The semantics in this case are

dependent on the side-effect of executing the statement v = e. Using the evaluation

function A, function V is defined as follows:
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where T and F are Boolean constants true and false, respectively. In general, for some

arbitrary expression b, V is defined as:

T ' AbV(b)= 1f ()750

F if A(b) = 0 .

Although the side-effects of an assignment statement have no effect on the assignment

itself, the side-effects do impact other operations as was shown in the example in Figure 5.1.

The use of V will be important for defining the semantics of alternation statements with

side—effects in Sections 5.2 and 5.3.

 

if (v = e) {

Sl

} else {

82

Figure 5.1: An Assignment statement as a guard

 

5.2 Altemation

The alternation statement for C programs can take two forms:

if B{ if B {

S 51

} and } else

32

We refer to these statements as C-IFl and C-IF2, respectively. If the guard of an

alternation statement has no side-effects, then the semantics of the alternation statement

is as follows:
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Definition 5.2 (Conditional Semantics without Side-effects)

Let Q be the precondition for the conditional statement, and B be the guard.

Then C- IFl and C- IF2, have thefollowing semantics, respectively.

sp(C—IFl, Q) E sp(S, B A Q) V sp(skip, -B A Q)

2 sp(S, B A Q) v (-.B A Q) (5.1)

sp(C-IFZaQ) E Sp(31,B/\Q)V Sp(Sg,fiB/\Q). (52)

The specification of sp(C-IFl, Q) states that after execution of C-IFl either sp(S, B A

Q) is true (i.e., S was executed) or (-~B A Q) is true (guard B was false). Similarly, the

specification of sp(C— IFl, Q) states that after execution of C— IF2 either sp(Sl, B A Q) is

true (i.e., SI was executed) or 313(32, 3B A Q) is true (guard B was false and statement 82

was executed).

If the restriction of having alternation statements without side-effects in the guards

is removed, then the semantics of the alternation statement has a different meaning.

Informally, if there is a side-effect in the guard B, then the execution of an alternation

is analogous to “executing” B, followed by the execution of the alternation using the

evaluation of B. More formally, let B be a guard of an alternation statement (C—IFl for

instance) such that the evaluation of B causes a side-effect, and let V(B) represent the

truth value of B. Execution of the alternation statement is equivalent to the execution of the

following, respectively:

B; B,

if V(B) { if V(B) {

S 81

} } else
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We refer to the alternation statements (the i f statement with the replacement of B by V(B))

as C—IFl, and C-IF2,, respectively. The semantics of C- IF, are as follows:

Definition 5.3 (Conditional Semantics with Side-effects)

Let Q be the precondition for the conditional statement, and B be a guard

with side-effects. Then C-IFl, and C-IF2, have the following semantics,

respectively.

3p(C-IF1, sp(B, 62))

E sp(S,)?(B) Asp(B,Q))V (nV(B)/\sp(B,Q)) (5.3)

sp(C-IFl,, Q)

sp(c-IF2,,Q) E sp(C-IF2,sp(B,Q))

5 819(51, V(B) A sp(B, 62)) V sp(Sz, nV(B) A sp(B, 62))-

(5.4)

Expression (5.3) states that after execution of C- IFl, either sp(S, BAQ) is true (i.e., S was

executed) or the valuation of (-1B A Q) is true (the valuation of the guard V(B) was false).

Similarly, the Expression (5.4) states that after execution of C-IF2 either sp(Sl, B A Q)

is true (i.e., 81 was executed) or 3p(82, 3B A Q) is true (the valuation of B was false and

statement 82 was executed).

S.3 Circuit Expressions

Expressions in the C programming language have a circuit property that cause a logical

expression to be true or false before the entire expression has been completely evaluated.

For instance, suppose the expression (v == 5) && (n == 10) is to be evaluated,

and at the time of execution v has the value 3. According to the definition of C, the

logical value of the expression (v =2 5) && (n == 10) is determined to be false

immediately after the evaluation of the subexpression (v == 5) .



In the instances when the evaluation of an expression has no side-effects, the circuit

property has no impact on the semantics of a program. That is, for instance, the semantics

of the alternative structure C-IFl has the form given by Expression (5.1) (as opposed

to the form given by Expression (5.3)). The existence of a side-effect requires that we

define the semantics of expression evaluation in the presence of the circuit property. The

following definitions define the syntax and semantics of logical expressions in the presence

of side-effects

Definition 5.4 (Atomic Expression)

Any variable, constant, orfimction is an atomic expression. Let a and ,6 be

atomic expressions. Then thefollowing are atomic expressions

 

 

Expression Meaning

(0 == ) a equals fl

(0) ! = fl) 0 does not equal [3

(a < B) a is less than fl

(0 <= fl) a is less than or equal to fl

(01 > B) a is greater than fl

(0) >= 3) a is greater than or equal to 3

Definition 5.5 (Logical Expression)

An atomic expression is a logical expression. Let a and fl be logical

expressions. Then thefollowing are logical expressions

Expression Meaning

(a as 8) aandfl

(0 || 5) aorfl

(la) not a

 

 

Definition 5.6 (Circuit Expression Semantics)

Let a and fl be logical expressions such that one or both of oz and fl have

side-efiects. The evaluation of (la) have the usual semantics, respectively. The

evaluation of (oz && fl) and (al | H) has thefollowing semantics.

sp(a && B, Q) E sp(a; (3,1401) AQ) Vsp(a, nV(a) A62) (55)

sp(a ll AQ) E sp(a;fl,-'V(a)/\Q)Vsp(a,V(a)/\Q) (5.6)
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Definition 5.4 describes the syntax for atomic logical expressions in the C programming

language and Definition 5.5 describes the general form for logical expressions.

Definition 5.6 describes the semantics of two kinds of logical expressions: those formed by

conjunction and those formed by disjunction. Expression (5.5) states that the semantics of

evaluating an expression of the form (a && fl) is equivalent to either executing the sequence

0; fl, given that V(a) A Q is true, or executing a given that -»V(a) A Q holds. Informally,

this means that either both subexpressions a and fl are evaluated if V(a) is true, or only a

is evaluated since the falsity of V(a) forces the entire expression (01 && fl) to be false.

Expression (5.6) states that the semantics of evaluating an expression of the form

(a ll fl) is equivalent to either executing the sequence a; B, given that --V(a) A Q is

true, or executing a given that V(a) A Q holds. Informally, this means that either both

subexpressions a and [3 are evaluated if 3V(a) is true, or only a is evaluated since V(a)

true forces the entire expression a ll fl to be true.

5.4 Sequence

Sequences of statements in the C programming language have the form 51 ; . . . ; Sn. The

appropriate semantics using sp is as follows:

sp(SI;SZ;Q) E sp(8293p(slrQ))' (57)

This formulation is identical to the semantics for sequences in the Dijkstra language [6].

Additionally, since the impact of side-effects are specified by the corresponding sp
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formalisms for assignment, alternation, and iteration, this characterization of the semantics

of sequence is sufficient.

5.5 Iteration

In the C programming language, the iteration construct can take one of the following forms:

while (B) { do { for (expr1;expr2;expr3) {

S; S; S;

} } while (B) }

where B is the guard expression and expr; represent for iteration expressions. This

section describes the strongest postcondition semantics for the while, do-while, and

for iteration constructs of the C programming language. For the do—whi 1e and for

constructs, transformations using the whi 1e semantics are provided.

5.5.1 while

When no side-effects are present, the while iteration construct has the following

semantics:

Definition 5.7 (While Semantics without Side-effects)

Let Q be the preconditionfor the while statement and B be the guard. Then

the semantics ofthe whi 1e statement is asfollows:

sp(while,Q) = -IB A (32' : O S i : sp(C—IFli, Q)),

Definition (5.7) states that if the execution of the while statement terminates then

the guard B is false and the result of applying the rule sp(C-IFl, Q) 2' times is true.

This construction is used given that an iteration statement can be considered a series

of alternation statements, where the guard for the alternation is given by the guard of

the iteration and the number of alternation statements that are included in the series is
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determined by the guard. Clearly, it is not decidable to determine how many alternation

statements to include in the series. Notationally, sp(C- IF 1‘, Q), where 2' is the number of

iterations, means that sp is recursively applied to the result of sp(C- IFl, Q). For instance,

sp(C- IFlj , Q) has the following derivation:

sp(C—IFlj,Q) a sp(c-IF1,sp(c-IF11"1,Q))

sp(C-IFl,sp(C—IF1,sp(C-IFlj’2,Q)))

In the case when the guard of the whi le statement has a side-effect, the semantics are

similar to executing the following construct:

B;

while (V(B)) {

S;

B;

}

where V is the valuation function described previously. The corresponding sp semantics of

the whi1e statement with side-effects (denoted whi 1e,) is

Definition 5.8 (While Semantics with Side-effects)

Let the body of the statement C-IFl consist of “S; B; ” as given by the

transformation ofthe whi1e statement to accountfor the side-efi’ect, and let

Q be the precondition. Then the semantics ofthe whi 1e statement with side-

efi’ects is

sp(while,,Q) = -1V(B) A (32' : 0 S 2' : sp(C-IFl‘, sp(B, Q))).

Definition (5.8) states that if the execution of the while statement terminates then the

valuation of the guard B is false and the result of applying the rule sp(C- IFl, Q) 2' times

is true.
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5.5.2 do-whila

The semantics of the do—whi 1e statement are similar to the whi le statement, where the

guarding condition appears after the loop body. Using the whi 1e construct, do-while

can be written as the following:

8:

B;

while (V(B)) {

S;

B;

The corresponding formal specification of the semantics of the do—while statement is

given by Definition (5.9)

Definition 5.9 (Do-While Semantics with Side-effects)

Let the body of the statement C-IFl consist of “S; B”, and the efi’ects

of executing “S; B” before entering the loop be given by the precondition

argument 0fsp(C- IFl‘, sp(B, sp(S, Q)))-

8p(do-whi1e., Q) E sp(whi 1e... 810(5, Q))

uV(B) A (32' :0 _<_ 2' : sp(C-IFl‘, sp(B, sp(S, Q)))).

This specification states that after the execution of a do-while statement, the valuation of B

is false, and the body of the loop is executed i times.

5.5.3 for

Recall that the for construct in C has the form

for (expr1;expr2;expr3) {

S;

}
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The semantics of the for iteration statement is that the first expression (exprl ) is executed

(evaluated) once, the second expression (expr2) is evaluated before each iteration, and the

third expression (expr3) is evaluated after each iteration. These semantics, defined in terms

of the whi 1e construct, are represented by the following:

exprI;

expr2;

while (V(expr2)) {

S;

expr3;

expr2;

The resulting formal specification of the semantics of the for command using the sp

semantics for whi 1e is the following:

Definition 5.10 (For Semantics with Side-effects)

Let the body ofthe statement C— IFl consist of “S; expr3; expr2; Then the

semantics ofthe for statement is asfollows

8p(for.. Q) E sp(while., sp(ezpfi , 62))

E fiV(expr2) A (32' : O S i : sp(C-IFl‘, sp(exprZ, Q))).

This definition states that after the execution of the for loop, the logical valuation of expr2

is false, and the loop body is executed i times where the initial precondition to the loop is

given by sp(expr2, Q).

5.6 Functions

Functions in the C programming language can serve two basic purposes. A function can

be a pure valuefunction, where the purpose is to compute and return a simple value based

on the parameters. Alternatively, a function can be a procedure, where the purpose is to
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perform a number of encapsulated tasks. Table 5.2 contains a taxonomy of functions based

on the properties of variables, side-effects, values returned, and parameters.

 

 

 

 

  

Function Class

Property Procedural Pure valued

variables global, local local

side-effects yes no

parameters value, value-result, result value

values returned multiple single  
 

Table 5.2: A Taxonomy of Programming Language Functions

 

The variables property describes the kinds of variables that are used by a function. The

side-efiects property indicates whether the class of functions produces side—effects. The

types of parameters and the number of values that are returned by a function are described

by the parameter and values returned properties, respectively. Pure valued functions are

characterized by the use of local variables, in that the functions produce no side-effects,

the parameters are value parameters, and the functions return a single value. Note that

a procedural function can effectively serve the role of a pure valued function if it can be

ensured that the functions produce no side-effects. This property implies that the number

of values must be singular.

A function in the C programming language has a signature (or prototype) of the form

R f(D), where ’R is the return type, and D is the input type of function f. For example,

a function max could have a signature “int max (int , int) ;”. Given a variable “x”

of type R, a parameter “a” of type D, and an assignment operator 2’, a call to the function

f hasthe forrn“xC‘-:’ f (a)”.
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Let f be a pure valued function. The effect of calling the function is that a value is

returned and assigned to the variable x. The corresponding sp semantics for the function

call is given by the following definition

Definition 5.11 (Function Call Semantics)

Let Q be the precondition. The semantics ofthefunction call is thefollowing:

sp(x’é f(a),Q) = (32) ::Q:A:I:=A(x%’ f(a:)).

This definition states that after the execution of an assignment statement using a function

call, there exists some value v such that the textual substitution of x with v in Q is true, and

x takes the value of the evaluation A on x C-_‘-’ f (afj) . Note that in the case where a pure

valued function is called but not assigned that sp(f (a) a Q) = Q.

5.7 Procedural Abstractions

This section describes the construction of formal specifications from code containing the

use of procedural abstractions. In C, a signature for a procedure has the form 7?. p(D),

Where ’R is the type returned by the return statement in the procedure p, and D is the

list of input types to p. The code for a procedure has the following form:

R MD?) {

DL

Sp

}

Where D1, is a list of comma delimited type-parameter pairs, DL is a list of declarations,

and Sp is a sequence of programming statements.
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5.7.1 Parameters

Parameters for a procedure call, as stated in Table 5.2, can be value or value-result

parameters, respectively. A parameter of type value means that the parameter is used

only for input to the procedure. Parameters that are known as value-result indicate that

the parameters can be used for both input and output to the procedure. A value parameter

declaration has the general form “datatype q”, where datatype is the type of the

parameter, and q is the name of the parameter. A parameter declared in this manner

is visible in the scope local to the procedure being called. A value-result parameter

declaration has the general form “datatype *q”, where *q is a pointer variable. Any

Operation performed in a parameter declared in this manner has scope that is beyond the

local procedure.

5.7-2 Procedure Call Semantics

In Section 3.2.2 we described the sp semantics for procedure call. In C, a procedure call

13(5, 5) can be represented by the sequence of statements found in the righthand column of

Figure 5.2, where 8,, is the body of the procedure p, Q is the precondition, and R is the

POStCondition to the procedure call to p. In addition, annotations Qp, R1,, and RpR represent

the Precondition to the procedure call after the binding of actual parameters to formal

ParaHIeters, the postcondition to the procedure, and the postcondition after the procedure

“realms”, respectively. By representing a procedure call in this manner, parameter binding

can be achieved through assignment statements and a postcondition R can be established

by uSing the sp for assignment.
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main () {

main () { /*Q*/

11:01;

/*Q*/ 17:5;

p('d,b) /*Q,,*/

/*R*/ Sp.

/*R,*/

} T=E

/*R1,R*/

(by;

/*R*/

}

(a) (b)

Figure 5.2: Removal of procedure call abstraction: (a) before (b) after

Figure 5.3 depicts the code annotations for a procedure call given the use of inlining to

addeve parameter binding. Since 53‘ and y are formal parameters there are no occurrences of

53' and y in Q, and as such we can apply Lemma 3.1.2. The final annotation is summarized

by the following definition.

Definition 5.12 (Procedure call Semantics)

Let Q be the precondition, f and y be formal parameters, 5 and b be actual

parameters, B be the variables local to p used to compute the results of the

value-result parameters, and S, be the body of the procedure. Then the

semantics ofthe procedure call are:

sp(p('d,b),Q) E sp(Sp,QAE=EAy=b) Abzfi

This definition states that the semantics of a procedure call is a conjunction of the

application of sp on the precondition Q A f = a A " = b and the result of the binding of b

to a Value, 8, computed within the procedure.
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Chapter 6

Design Abstractions

The derivation of abstract specifications from as-built specifications facilitates the

construction of a description of a system at a level of abstraction that is higher than both

source code and as-built specifications. As such, high-level reasoning and understanding

of specifications can be enabled by the existence of abstract specifications. In this chapter,

we describe a technique for identifying abstract behavior in specifications. Specifically,

we define an approach for deriving abstract specifications from as-built specifications

by requiring that the derived abstraction and the as-built specification satisfy a matching

relation.

6.1 Specification Matching and Software Reuse

Many approaches have been suggested for the retrieval of components from reusable

component libraries, ranging from classification of search criteria [19, 20] to retrieval [31,

32, 33] and library structuring [34]. Jeng and Cheng describe the use of analogy and

generality [18, 35] as the basis for matching functions. Zaremski and Wing have proposed

a technique for signature [21] and specification matching [19]. Fischer et al. have described
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an approach for retrieval of reusable components using filters to narrow the search

spaces [32, 33]. The approach described in this chapter differs from these approaches

in that we are using specification matching for reverse engineering as opposed to retrieval

of reusable components.

Mili et al. describe an approach for structuring component libraries using refinement

orderings [34]. Their approach uses relational specifications as the formalism for

describing software components, and structures libraries using relational definitions of

refinement. Our approach incorporates their ideas on the structure of libraries using partial

order relations although our focus is on axiomatic specifications, rather than relational

specifications. In addition, our primary goal is to use partial order matching operators

to generalize specifications for purposes of reverse engineering.

Other approaches to reverse engineering focus on the construction of specifications,

both informal and formal, and are based on the identification ofplans [36], the construction

of high-level structural specifications such as data flow and call diagrams [37], or

transformation of programs into specifications [38, 39]. Of these techniques, the approach

proposed by Baxter and Mechlich [39] is the most closely related. They suggest an

approach to reverse engineering using “backward transformation” where a series of

transformations (semantic preserving rewrite rules), similar to those used in forward

transformation, are used in an inverse manner. The use of a library is extensive in this

approach where the contents of the library are semantic preserving transformations. In

the remainder of this chapter we describe an approach that derives abstract behavior by

preserving a match relation between generalized and as—built specifications. As such, we

do not rely on the existence of a domain library to provide specification matches.
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6.2 Abstraction Matching

In this section we describe an approach for software reverse engineering that is based on

the use of specification matching.

6.2. 1 Approach

Given a library of axiomatic (pre- and postcondition) specifications describing software

components, these approaches use a plug-in or generality criteria [18, 19] to identify

components in the library that match a query specification. The plug-in match is defined as

follows:

Definition 6.1 (Generality (Plug-in) Match [31]) Let q be a query

specification with precondition qpm and postcondition qpos, and I be a library

specification with precondition lpn and postcondition I’m. Specifications q

andl match (denoted byl j q) if

(qpre —-) lpre) A (IPOSI —I) quSt)'

Informally, this definition means that the library component I is a refinement (i.e., more

specific) than q, or conversely, that q is an abstraction of I. In both interpretations,

any program whose behavior is described by q will be satisfied by l and as such, 1

can be used as an implementation for the query given by q. Many different criteria for

matching query specifications with software components have been identified [20, 19] and

all vary in the degree of component modification required to use a library component as an

implementation for a given query.

In Chapters 3, 4, and 5 we described the use of strongest postcondition to construct

formal as-built specifications from program code. Although as-built specifications facilitate

traceability between code and specifications, they may be difficult to use for high-level
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reasoning since they contain an implementation bias. Therefore, a rigorous technique for

deriving a more abstract functional specification is desired.

Let I be a program with specification 2' such that the precondition is ipm. The

conesponding postcondition (denoted ipost) can be derived using the strongest postcondition

(e.g., by using sp(I,ip,¢)) [6]. Let I be a specification in a specification library with

precondition lprc and postcondition lpost. Suppose 2' j l, then I is a generalization or

abstraction of 2'. Conversely, i is a refinement of I. This means that any behavior described

by l is satisfied by i and as such, program I can be used as an implementation for the

specification given by l. The following definition summarizes this idea.

Definition 6.2 (Abstraction Match) Let I be a program with specification i

such that the corresponding precondition and postcondition are i,m and tpost,

respectively, and let I be an axiomatic specification with precondition [We and

postcondition I‘m). A match is an abstraction match if i j I, so that

(le —> ipn.) A (ipos, -—> lp0,,).

The importance of the abstraction match is that if a specification 1 exists that is well-

understood in terms of its abstract high-level behavior, then any specification 2' that can

be shown to satisfy an abstraction match relationship, where i j I, has the same abstract

behavior as the specification 1. In terms of reverse engineering, this fact provides a means

for introducing abstraction into a specification 2' via the identification of specification l.

6.2.2 Specification Libraries

Specification libraries have been used in the area of automated program construction to

describe theories about specific problem domains [40]. In addition, specification libraries

have been used as a means for collecting components into reuse libraries [20, 19]. This
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section describes the use of partial order relations to organize specification libraries and

describes several properties that facilitate analysis of specifications based on semantic

commonality and difference.

Partial Order Relations

In some cases, the matching criteria given in Table 2.3 define a partial order relationship

between specifications A and R. The following lemmas and definitions reinforce this idea.

For the proofs of these lemmas, please refer to Section B.

Lemma 6.2.1 (Equivalence) The exact pre/post match is reflexive, symmetric,

and transitive (i. e., the exact pre/post match is an equivalence relation).

Using exact pre/post match as the equivalence relation for anti—symmetry, the following

lemma holds.

Lemma 6.2.2 (Plug-In) The plug-in match is reflexive, anti-symmetric, and

transitive (i.e., the plug-in match is a partial order relation).

Definition 6.3 (Weak Equivalence) Let A and R be axiomatic specifications.

Then define the relation:

Apost 4:} Izpost

to be weak equivalence, where (it is logical equivalence.

The intuition behind weak equivalence is that specifications A and R are equivalent if

their postconditions are logically equivalent. As such, their output behaviors are the same

while the relationship of their input behaviors is unknown. Using weak equivalence as the

equivalence relation for anti-symmetry, the following lemma holds.

Lemma 6.2.3 (Plug-In Post) The plug-in post match is a weak partial order

relation.
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Library Structure

Mili et al. [34] have suggested that libraries be structured based on refinement orderings.

Furthermore, they describe a number of properties and measures for managing and

retrieving components from libraries that are structured using refinement orderings [34,

41]. Since the plug-in and the plug-in post matches are (weak) partial order relations,

specification libraries can be structured as partially ordered sets with the matching operators

serving as the partial order (refinement) relation.

The convention used in this chapter for library specifications, given in Figure 6.1, is

based on the Larch interface language [42] syntax. In this convention, domainsort and

rangesort are the input and output types of a given function, respectively. The locals

keyword lists the variables defined within the scope of the specification, if applicable. The

requires keyword is used to indicate the precondition of the given function. The ensures

keyword describes the postcondition of a given function. Finally, the modifies keyword

lists the variables that are modified by the function.

 

spec name ( (var: domainsort)‘ ) —> var: rangesort

locals (var: domainsort)’

requires precondition

modifies variables

ensures postcondition

Figure 6.1: Syntax of Library Specifications

 

Figure 6.2 shows the set of “Sqr” specifications that describe the square root function.

The specification Sqr0 allows negative roots as output whereas Squ ensures that the

positive roots are returned. The specifications Squ and Sqr3 return undefined values when
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the input value is less than zero. These two specifications differ in that they allow (Sqr2) or

disallow (Sqr3) negative roots. The specification Sqr4 returns root = 0 when the input is a

negative number, and a positive root for positive inputs.

 

spec Sqr0(:r:real) —+r:real spec Squ (:rzreal) ——+r:real

requiresa:_>_0 requireerO

ensures r2=x ensures rZOAr2=x

specSqr2(:r:real) -—>r:real spec Sqr3 (a::real) —->r:real

requirestrue requirestrue

ensures (xZOAr2=:c)V ensures (mZOA(rZOAr2=:r))V

(:r<0Ar=undefined) (x<0Ar=undefined)

spec Sqr4 (a: : real) —+ r: real spec Squos (a: : real) —+ r: real

requirestrue requirestO

ensures (zZOArzzr)V ensures r_>_0

($<0Ar=0)

Figure 6.2: Square Root Specification Library “Sqr”

 

As a partially ordered set on the plug-in relation, the library in Figure 6.2 has the

structure given by the Hasse diagram of Figure 6.3, where the specification at the head

of the arc is more general than the specification at the tail of the arc. As such, Squ is

more general than Squ, and Squ is more general than Sqr3. The structure of this library

suggests that there are three different ways to construct a square root function. The first

way requires that the inputs to the function be a positive real number. The second way

to construct a square root function is to produce an undefined value when the input is a

negative real number. The final way to construct a square root function is to return the

value zero when a negative real is used as input.

Structuring a library as a partially ordered set has many applications including the

fact that it provides a means for partitioning libraries based on behavioral differences as

82



 

Figure 6.3: Square Root Library as a partial order

 

in the example above. In addition, the partial order structure facilitates inserting new

specifications into a library and helps increase the efficiency of the retrieval process [31].

An interesting activity for analyzing libraries that are structured using partial order relations

is to determine if the library has certain lattice-like properties [34, 41]. In particular, it is of

interest to determine the least upper bound (lub) and greatest lower bound (glb) for given

specifications, if they exist, since the lub can be used to identify common behavior and the

glb can be used to identify compositional behavior. Given a partially ordered set, where an

ordered pair (L, j) indicates the set and the ordering operator, respectively, the following

interpretations for the lub and glb of two specifications 51 E L and 52 E L can be made,

where we denote the lub for SI and 52 as S1 (‘1 32, and the glb as SI U 82:

Definition 6.4 (Behavioral Commonality [41]) Let T = SI ('1 $2, if it exists.

Then T captures the behavior common to 51 and 5;.

Definition 6.5 (Behavioral Composition [41]) Let B = 31 U 52. if it exists.

Then B captures the composition ofbehaviorfor SI and 32.

If specifications SI and 52 are related such that 51 j S; or 82 1 SI, then the following

definition is of particular interest:
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Definition 6.6 (Semantic Difference [41] ) Let 51 and 52 be specifications

such that 51 j 82. Then the semantic difference between SI and 82 (denoted

S1 e 32) is the most general specification E such that

SQUEjSl.

Definition 6.6 states that some specification E, is the semantic difference between 51

and $2 in the case that the meet of 52 and E is more specific than SI. As an example,

consider the specifications for Squ and Squ, where Squ j Squ when using the plug-in

post relation. Figure 6.3 shows the Hasse diagram for (Sqr, jpip), where jptp is the plug-in

post relation. The semantic difference is the specification E such that

(Squ L) E) j Squ

When we substitute the specification names with the corresponding postconditions, we get

the following expression:

(root2 =r)l_JE j (rootZ OAroot2 =r).

Using the Hasse diagram in Figure 6.3 we find that Squos satisfies the conditions for B

such that

(root2 = 7') LJ (root 2 0) j (root 2 O A root2 = r),

In fact,

(root2 = r) U (root 2 0) E (root 2 0 A root2 = r).

That is, the meet of root2 = r and root _>_ 0 is equivalent to (root 2 0 A root? = r).

Therefore, Squos is the semantic difference between Squ and Squ .
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6.3 Specification Generalization

Many of the techniques that utilize formal specifications to specify and retrieve reusable

components from component libraries attempt to identify candidate components by

searching the library for those components that satisfy specific match criterion. Similarly,

as stated by Definition 6.2, if we have a library specification that is an abstraction match

for an as-built specification, then the library specification is a generalization of the as-built

specification. However, it is possible that an abstraction match does not exist for a given

as-built specification. In this case, some other technique must be used to derive abstractions

of the as-built specification. In this section we describe an approach to reverse engineering

based on preserving the partial order relationship between an as-built specification and a

derived abstraction of that as-built specification.

6.3.1 Basic Approach

Consider an axiomatic specification I that consists of precondition I1m and postcondition

1pm. Assuming that the relation 5 is a partially ordered matching operator, we would like

to identify an axiomatic specification A such that I j A. That is, we would like to identify

a specification A that is an abstraction of I in a manner that does not involve matching

specifications in a library. In fact, we can identify such a specification by modifying I so

that we have a specification I’ that satisfies the relationship that I j I’. If, for instance, j

is a plug-in match operator, then by either strengthening the precondition 1m, weakening

the postcondition 1pm, or both, we produce a specification I’ that satisfies the property that

I j I’. A modification of I’ to produce a specification I" that satisfies the property I’ j I”

provides another level of abstraction such that I j I’ _<_ I”.
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A likely situation is shown in Figure 6.4, where a specification I has been decomposed

into several different specifications, each describing a different behavior such that the

composition of their behaviors is the original specification I. In addition, several of these

specifications can be decomposed into other specifications, each at a different level of

abstraction.

 

 

Figure 6.4: Specification Generalization

 

Using a brute force approach for specification generalization can result in the

construction of an exponential number of specifications, all of which satisfy the partial

order constraints ofthe original specification. For instance, the program in Figure 6.5 shows

a typical bubble sort program with logical annotations contained within the curly braces

‘{’ and ‘}’. The annotations, constructed using the strongest postcondition semantics by

a prototype system called AUTOSPEC [43], use the notation ‘8" to indicate a logical and

(‘A’), ‘exists’ to indicate an existential quantification, and ‘ foral 1’ to indicate a general

quantification. In addition, the notation v.V represents the value of a variable v. The

axiomatic specification for the program is as follows:
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spec BubbleSort (a[] : int, n : int) ——> root : real (6.1)

locals i,j,t : int

requirosn = |a|

modifiesa

ensures (i 2 n) A (j S n) A perm(a_1,a) A

(3n:15ugn:( =a_1[u])) A

(Vk : 1 5 k < n:

(Vr : k + 1 < r S n : a_1['r] Z a_1[7‘ —1])),

where the ensures clause (postcondition) states that after the execution of the program, the

variable i is greater than or equal to the size of the array a, the variable j is less than or

equal to the size of the array a, the variable t has some value equivalent to some element

of the array, all the elements of the array are ordered in ascending fashion, and the final

array is a permutation of the original array. Given the five conjuncts in Specification (6.1),

it is possible to construct at least thirty-one different specifications that satisfy the partial

order property of the abstraction match operator.

In order to handle the complexity of this situation we make the assumption that the

reverse engineering programmer is guiding the abstraction process. In order to support

this process we are developing a support tool called SPECGEN that visually displays

the partially ordered sets of specifications that are constructed using the specification

generalization technique. In the following sections, we describe several guidelines that

can be used to construct abstractions from a specification. The remainder of this section

discusses the guidelines from the point of view of weakening the postcondition and

strengthening a precondition.
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Weakening the postcondition

Let I be a specification with precondition I,“ and postcondition [post and let I’ be a

specification such that 1;,“ H Im and [Wu ——) I’ As such, I j I’, since
post '

((Ipre H IP78) A (11’0“ —§ 1:20.90)

=> (6.2)

((Ipre —* Ipre) A (Ipost _’ Egon»-

Expression (6.2) provides a basis for deriving abstractions from a specification by

weakening a postcondition Ipost to produce a postcondition I’post. Several options are

available for weakening the postcondition including those listed in Table 6.1, which

includes delete a conjunct, add a disjunct, A to V transformation, and A to —>

transformation.

 

 

 

 

 

 

 

| Operation )1 IP03, [1’10“

Delete a conjunct A A B A C A A C

Add a disjunct A A B (A A B) V C

A to —> A A B A —> B

/\ to V A /\ B A V B        

Table 6.1: Weakening the postcondition

 

Delete a coniunct. Given a specification in conjunctive form (not necessarily a

normal form), deletion of a conjunct weakens a specification by removing additional or

constraining conditions. For example, consider Figure 6.6, where the specification abcde

represents the ensures clause of the specification in Expression (6.1). In the Hasse diagram,

the vertex label ’xy’ represents the logical conjunction :1: A y. Each successive level of

abstraction is derived by deleting a conjunct from the lower levels of abstraction. Below

are guidelines that can be used to identify the appropriate conjunct for deletion.
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Local Scope: If a conjunct specifies behavior that is local to a procedure and

has no impact on the output variables of the system, then that conjunct is

a candidate for deletion. Examples include specifications of the value of

a loop index or temporary variables.

Independence: If a conjunct specifies some behavior that is logically

independent of the remaining conjuncts, then that conjunct is a candidate

for deletion. As an example, consider the expression (a: = c) A (c =

y) A (z = n). The conjunct (z = n) is independent of the conjuncts

(a: = c) and (c = y).

Preservation: If a conjunct captures some behavior that must be expressed in

the higher level specification, the remaining conjuncts are candidates for

deletion. Refer again to Figure 6.7 where the conditions a and e have

been selected as behaviors to be preserved. The remaining specifications

in the partial order indicate refinements between the as-built specification

and the specification ce.

These guidelines are by no means comprehensive. Ultimately, a maintenance engineer

using this approach must decide whether to delete a specific conjunct in a specification

Add a disjunct. Given a specification in any form, adding a disjunct weakens a

specification by generalizing or increasing the scope of the specification. The addition of a

disjunct should be used in very few instances since the new disjunct potentially introduces

superfluous behavior that may not be reflected in the original system.

Conjunction to implication or disjunction transformations. Given a specification in

conjunctive form (not necessarily a normal form), transformation of the conjunction to an

implication or disjunction provides a logical weakening of the specification and facilitates

manipulation of the specification using several standard equivalence transformations.

Our ongoing investigations include determining the usefulness of these transformation

techniques to derive specification abstractions.
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Strengthening the precondition

Let I be a specification with precondition Im and postcondition 1,0,. and let I’ be a

specification such that 1",,e —«) I,“ and 1pm H 111,0”. As such, I j I’, since

((11... —’ Ipre) A (Ipost H [$050)

=> (63)

((Ipre _’ Ipre) A (Ipost —-) 11,2030)-

Expression (6.3) provides a basis for deriving abstractions from a specification by

strengthening a precondition Im to produce a precondition 1””. Weakening a

postcondition has many advantages over strengthening a precondition in the context of
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Figure 6.7: Bubble Sort Specification Abstraction (postcondition)

 

deriving abstractions from specifications. The primary advantage is a consequence of

the reverse engineering activity in that we are interested in deriving a specification of the

behavior of a program. This behavior is captured in the specification of the postcondition

rather than the precondition. The utility of strengthening the precondition is that it provides

a mechanism for identifying a narrower set of conditions that can be used to constrain

the domain of input. The available techniques for strengthening the precondition include

adding a conjunct and deleting a disjunct.
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Add a conjunct. Given a specification in a conjunctive (not necessarily normal) form,

adding a conjunct to the precondition provides further conditions that are required in order

for the specification to achieve the desired behavior.

Delete a disjunct. Given a specification in any form, deleting a disjunct will make the

precondition more specialized (e.g., less general) in the initial conditions required to satisfy

a behavior.

6.3.2 Example

Consider once again the example in Figure 6.5 and the corresponding postcondition

specification in Expression (6.1). In this section we focus on constructing an abstraction

of the specification by weakening the postcondition. Since the specification is in a

conjunctive normal form, it is appropriate to use the delete a conjunct strategy to construct

an abstraction. In a completely brute force approach we would derive four abstractions for

each of the five produced in the first step. However, we advocate a user-driven process that

relies on a user to decide the direction of the abstraction steps. Figure 6.6 depicts the brute

force application of the delete a conjunct strategy, where the expression “abcde” at the

bottom of the graph represents the specification of Expression (6.1), where “a” represents

the conjunct (i _>_ n), “b” represents the conjunct (j S n), “c” represents the conjunct

perm(a_1, a), “d” represents the conjunct (Elu : 1 S u g n : (t = a-1[u])), and “e”

represents the conjunct (Vk : 1 _<_ k < n : (Vr : k + 1 < r g n : a_1[r] 2 a_1[r —1])).

In the first step, the “a” conjunct can been deleted since the “a” conjunct involves

a specification of the value of an iteration variable. Deleting one conjunct from the

specification “bode” results in four different specifications. Using the same reasoning as
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in the previous step, we consider only the specification that excludes the conjunct “b”.

Figure 6.8 shows the partially ordered set of specifications that result from deleting “a”

and “b” where the resulting specification is “cde” which states that the output array is a

permutation of the input array, that the variable t takes the value of some element of the

array, and the array is ordered in increasing value. At this point, three abstractions are

possible. However, the conjunct (Elu : 1 g u g n : (t = a_1[u])) specifies information

about the temporary variable t, and as such we consider only the specification ce, which is

equivalent to:

perm(a-1, a)A

(Vk:15k<n:(Vr:k+1<r$nza-1[r] Za_1['r—1])).

This specification states that after execution of the program, the output array is a

permutation of the input array, and that the array is ordered in increasing value.

By focusing attention on a few conjuncts, the complexity of the task of constructing

specification abstractions can be reduced since many of the other possible abstractions

for the original as-built specification can be removed from consideration. In addition, by

using a few simple support tools, the difficulty of deriving the abstractions can be greatly

reduced.

6.4 Application to a JPL Ground-based Flight System

In our previous investigations we described a technique for analyzing C programs using

the strongest postcondition predicate transformer [7]. In addition, we have defined the

semantics of pointers and pointer operations in terms of sp [43]. In this section we present

a case study that applies the sp technique for C programs to a module from a ground-
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based mission control system used by the NASA Jet Propulsion Laboratory. The system is

responsible for the translation of user commands into appropriate spacecraft mnemonics,

enabling users to modify spacecraft mission operations. This particular module takes

a sequence of elements from a file and returns an index to a subsequence of elements

Specified by begin and end indices. In our previous investigations, we described the sp

semantics for C [7] and pointers [43]. Those semantics were used to construct the / *AS

AS * / annotations for the code contained in this section.

6.4-1 Code Analysis

First Code Sequence. Appendix C contains a program listing of a module that takes

a sequence of elements from a file and returns an index to a subsequence of elements
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specified by begin and end indices. These elements correspond to message fragments used

for spacecraft control. The annotations for the code in Appendix C were constructed using

the sp semantic rules for the C programming language.

One code sequence of interest is the code for lines 4 8 - 82, which appears as follows:

if (lskip_gcmd_sfdu(fd, L2))

{

inform_user(

"line %d: copy failed: bad SFDU header (%s)",

body_1ineno, file);

dontoutput = 1;

close(fd);

if (params->cmdcntl) master_unlock();

return(NULL);

}

The purpose for this code sequence is to abort processing if the file header is corrupted.

The precondition for this block is

(fd >= 0 & fd = FHO & begin = BO & end = E0 & file .> F0),

which makes assertions about the initial values of several variables and pointers, where the

& is the logical connective ‘A’. The specification states that fd has the initial value FHO,

and that the value is greater than or equal to 0. The specification also states that the variables

begin and end have the values ED and E0, respectively. Finally, the specification states

that the pointer f i la points to some object F0.

The following annotation describes the behavior of the code when the conditional path

is taken in the case that skip_gcmd_s fdu evaluates to zero:
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(params->cmdcntl != 0 & master_unlocked() &

closed(fd) & dontoutput = 1 &

skip.gcmd_sfdu(fd, L2) = 0 &

fd >= 0 & fd = FHO & begin = BO &

end = E0 & file .> F0) |

(params->cmdcnt1 = 0 & closed(fd) &

dontoutput = 1 & fd >= 0 &

skip_gcmd-sfdu(fd, L2) = O & fd = FHO &

begin = BO & end = E0 & file .> F0),

which is equivalent to

((params->cmdcnt1 l: 0 & master_unlocked()) |

params->cmdcnt1 = O ) &

closed(fd) & dontoutput = 1 &

skip_gcmd.sfdu(fd, L2) = 0

& fd >= 0 & fd = FHO & begin = B0

& end = E0 & file .> F0 .

This specification states that in addition to the precondition being true, the file FHO

is closed, the variable dontoutput is set to 1, and depending on whether the

params->cmdcnt1 has the value 0, the master key is unlocked. In this system,

processing is regarded as having failed whenever the variable dontoutput is set to a non-

zero value. This specification recurs throughout this code when certain failure conditions

mernet

The postcondition annotation at lines 84 — 8 5 asserts the following:

skip.gcmd.sfdu(fd, L2) != O 8. fd >= 0 &

fd = FHO & begin = BO & end = E0 & file .> F0 ,

Which states that in addition to the precondition being true, that the function

Skip.gcmd-s fdu evaluates to a non-zero value. This specification is reasonable since

the body of the statement in question ends with a return statement. As such, the program

only proceeds past the conditional statement if skip_gcmd_s fdu evaluates to a non-zero

Value.
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Due to space constraints, some annotations were omitted due to the similarity of some

blocks of code. For instance, annotations for the code sequence from lines 4 8 - 8 2 are very

similar to the annotations that would appear for the code blocks at lines 8 7 - 9 3, 9 8 - 1 0 6,

and 115-123.

Second Code Sequence. Another interesting sequence of code appears in Figure 6.9 and

occurs at lines 113-123. One of the activities that can be performed is to analyze the

postcondition at lines 12 5 - 1 3 4 using the specification generalization technique described

in Section 6.3. First, we can rewrite the specification into an equivalent form by factoring

terms so that the specification appears as follows:

((130 = -l 8. end = gcmd_hdr.elem_count) I

(end <= gcmd_hdr.elem_count & end != -1 8. (64)

end = E0)) & params—>sc = gcmd_hdr.SC & '

get-gcmd_hdr(fd, gcmd_hdr) != O &

skip_gcmd-sfdu(fd, L2) != 0 & fd >= 0 &

fd = FHO & begin = B0 & file .> F0 .

This specification states that the constant E0 is equal to -1 and end =

gcmd.hdr . elenLcount: or that end = E0, end <= gcmd_hdr . elenLcount, and

end ! = - 1. In addition, several conditions regarding the input header are true as well as

conditions that describe the input file. At this point the specification is in a form suitable

to apply the delete a conjunct strategy. Figure 6.10 shows the possible abstractions for

the specification when we delete the file related conjuncts. Successive application of

the strategy leads to the abstraction of the behavior described by Expression 6.4. This

SPBCification corresponds to the specification ‘a’ in the Hasse diagram in Figure 6.10 and

aWears as follows:
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( (E0 = -—1 & end = gcmd.hdr.elem.count) |

(end <= gcmd_hdr. elerrtcount & end != —1 & end = E0) ) ,

which states that E0 = - 1 and the variable end has the value gcmd_hdr . elenLcount,

or, end = E0, end != —1 and end <= gcmd_hdr.e1em.count. Essentially, this

states that if this point in the program has been reached, the variable end has a value that is

less than or equal to gcmd_hdr . e1em.ccunt and not equal to — 1. This behavior creates

an issue that must be addressed since behavior for the case when end < — 1 may not be

what is expected.

 

108. /*AS (params—>sc = gcmd_hdr.SC &

109. get_gcmd_hdr(fd, gcmd_hdr) != 0 & file .> F0 &

110. fd >= 0 & fd = FHO & begin = B0 & end = E0 &

111. skip_gcmd_sfdu(fd, L2) != 0 )AS*/

112. /* make sure the file has enough elements */

113. if (end == —1)

114. end = gcmd_hdr.e1em_count;

115. else if (end > gcmd_hdr.elem_count)

116. I

117. inform_user("line %d: copy: not enough elements \

118. in GCMD file (%s)',body_lineno, file);

119. dontoutput = 1;

120. close(fd);

121. if (params->cmdcntl) master_unlock();

122. return(NULL);

123. l

124.

125. /*AS

126. (E0 = —1 & end = gcmd_hdr.elem_count &

127. params—>sc = gcmd_hdr.SC & E0 = E0 & file .> F0 &

128. get_gcmd_hdr(fd, gcmd_hdr) != 0 & fd = FHO &

129. skip_gcmd_sfdu(fd, L2) != 0 & fd >= 0 & begin = B0 )

130. I

131. (end <= gcmd_hdr.e1em_count & end != -1 & begin = B0 &

132. params->sc = gcmd_hdr.SC & end = E0 & file .> F0 &

133. get_gcmd_hdr(fd, gcmd_hdr) != 0 & fd = FHO &

134. skip_gcmd_sfdu(fd, L2) != O & fd >= 0 ) AS*/

135.

Figure 6.9: Code Sequence: Lines 108—135
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Third Code Sequence. The final annotation that is of interest is found on lines 4 04 - 42 0

of the program in Appendix C. The annotation, also found in Figure 6.11, shows

the annotation for the program after a simplification step that factors conjuncts from a

disjunction.

Informally, this specification makes assertions about a chain of elements and the

relationship between the requested subsequence of elements and the elements read from

a file. The following specification abstraction can be derived by applying the delete a

conjunct strategy to the annotation, where we focus specifically on the conjuncts that

cOntain a reference to the variables begin and end:



(forall k : 1 <= k < begin : freed(e1em.k)) &

(forall k : end < k < gcmd.hdr.e1em.count

freed(e1em_k)) &

elem.end->next .> NULL 8: (65)

orig-e1em .> coset(elembegin) & '

(forall k : begin <= k < end

elech->next .> coset(elem_k+1) & zeroed(e1em_k))

The specification states that all the elements outside the bounds specified by the begin and

end indices have been freed, that the pointers orig-e1em and elem_begin refer to the

same object, and that all the elements within the begin and end bounds form a chain.

 

closed(fd) &

(forall k : end < k < gcmd.hdr.elem_count : freed(e1em_k)) 8:

ep .> coset(elem.gcmd.hdr.elem_count) &

elem .> coset(ep) &

e1em.end->next .> NULL &

orig.e1em .> coset(elerrLbegin) s.

checksurrLgcmd.chain(gcmd.hdr, ObjOcnstl) = O &

e1em.gcmd.hdr.elem_count .> NULL &

(forall k : 1 <= k < begin : freed(elem_k)) &

(forall k : begin <= k < end :

elerrtk->next .> coset(elem.k+1) & zeroed(e1em_k)) &

((E0 = -1 8: end = gcrnd.hdr.elem_count) |

(end <= gcmd..hdr.e1em_count s. end != -1 & end = E0)) &

pararns->sc = gcderdr.SC s.

get.gcmd.hdr(fd, gcmd.hdr) != 0 &

skip.gcmd.sfdu(fd, L2) != 0 &

fd >= 0 8.

id = FHO &

begin = BO &

file .> F0 .

Figure 6.11: Code annotation: Lines 404—420

 

6.4.2 Discussion

The analysis of the code in Appendix C has led to several observations that

empirically validate the appropriateness of the delete a conjunct strategy for specification

generalization of sp specifications. First, the specifications that are constructed using sp

are conjunctive in nature due to the semantics of the assignment statement. As such,
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application of the delete a conjunct strategy facilitates the analysis of specifications of

program code by decomposing those specifications into smaller, more manageable pieces.

Second, analysis of annotations that occur within the code (as opposed to only analyzing

the final postcondition) is an important activity for understanding the behavior of programs.

As an example, our analysis of the code from lines 108-135 and the corresponding

specification in Expression 6.4 facilitated the identification of behavior in the program

that must be analyzed further in order to determine the impact of inconsistent inputs.

Finally, although the reverse engineered specifications describe logical abstractions, some

mechanism must be provided in order to describe the abstractions using natural language.

For instance, instead of providing the specification in Expression (6.5) to a user, it would

be desirable to state that since the procedure returns a subsequence of a list of elements,

that the abstract behavior corresponds to a list subsequence cliche or plan [44], where a

plan describes common or canonical program behavior.
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Chapter 7

Reverse Engineering Framework

The previous chapters have discussed several techniques that we have developed in order

to support reverse engineering. In this chapter we integrate the strongest postcondition

technique with the specification generalization technique to form a single process. In

addition, we describe how informal methods can be used for high-level concept discovery

and how our formal reverse engineering technique can be used to supplement program

understanding by facilitating formal reasoning.

7.1 Combining Informal and Formal Approaches

Due to the mathematical nature of formal specification languages, formal methods have

been perceived as time consuming and tedious. However, since the languages are well-

defined, formal methods have been found to be amenable to automated processing. Semi-

fOl'rnal methods are techniques for specifying system requirements and design using

hierarchical decomposition. Many semi-formal methods use notations that are graphical,

thus facilitating ease of use in their application. The drawback to semi-formal methods

is that the notations are typically imprecise and ambiguous. This section describes an
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approach to reverse engineering that combines the use of semi-formal and formal methods

in order to benefit from the complementary advantages of both approaches.

7.1.1 Structured Analysis

Although the recent trend in software development has been to build systems using object-

oriented technology, a majority of existing systems has been developed using imperative

programming languages, such as C, FORTRAN, and COBOL. The procedural structure

of these languages makes them amenable to the techniques offered by the Structured

Analysis and Design Technique (SADT) [12]. In SADT, the focal point is the procedure or

function. The analysis stage centers around high-level descriptions of the functionality of

the system. During the design phase, the refinement and decomposition of the high-level

descriptions of functions yields more detailed descriptions of functions and procedures that

incorporate implementation details. Finally, during the implementation phase, functions

and procedures identified during design are decomposed into more specific functions.

When using SADT for reverse engineering activities, the structure of an implementation

is abstracted into low-level graphical descriptions functions known as call graphs or

structure charts. These graphs depict the calling hierarchy of functions within a system.

Further analysis of source code involves analyzing the data that flows to and from various

functions by constructing data flow diagrams. Our approach is to construct various

graphical descriptions of a program, in most cases automatically, and then use those

descriptions as a guide for constructing formal specifications.

In general, the construction of the graphical descriptions proceeds in two phases. In

the first phase, a high-level model is constructed that is based on information gathered
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from user manuals or high-level design descriptions. In the case that these documents do

not exist, it is appropriate to incorporate user interviews, and if possible, empirical testing

to determine high-level behavior. In the second phase, a low-level model in the form of

call graphs and/or control-flow graphs is constructed. Several tools exist that support the

construction of such models as is described in Chapter 10.

7.1.2 A note about formal techniques and large systems

One of the limitations of our technique is that the specifications that are constructed can

grow to be exponential in size with respect to the input program. Given this limitation,

the appropriateness of using formal methods in the context of large systems must be well-

understood. That is, the use of formal methods for reverse engineering, as is the case

with all applications of formal methods, must be targeted to those contexts where it has

the highest payoff; namely critical systems [4, 5]. However, in the reverse engineering of

software, we can extend the context a bit further to include the parts of a software system

that are deemed “critical”. In order to determine those critical portions of the software,

several factors must be taken into account, including call graph and flow graph complexity.

7.1.3 Applying formal techniques

The motivation of using both semi-formal and formal methods is two-fold. First, it is

desirable to take advantage of the benefits of the complementary techniques. Second, by

using a semi-formal technique to guide the formal technique, organization of the formal

specifications will be based on the structure of an implementation. As such, in the case

where formal specifications are warranted, the specifications can be directly associated with
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a graphical entity, while those parts of a module that do not require rigorous descriptions

can be left unspecified (formally), with the descriptions of these modules being left to the

semi-formalisms.

We propose that three phases be followed when formally specifying a module:

1. Local Analysis

2. Use Analysis

3. Global Analysis

During the local analysis phase, the calling hierarchy of a module is constructed and a

skeletal formal specification is built using the rules presented in Chapters 3, 4, and 5, with

the sp predicates left as parameterized transforms, that is, the transformations for sp are

unevaluated. The objective at this stage is to gain a high-level understanding of the logical

complexity of the given code. The second step, use analysis, is a recursive step where the

three phases are applied to the functions and procedures used by the original module. This

phase is characterized by the fact that the semantics of the used functions and procedures

are determined before they are used by the original module. However, in many cases, where

the semantics are either well-defined or the semantics are not critical, an unevaluated sp

predicate can be used. For example, given a statement S and a precondition Q, where the

semantics of S are well-defined, instead of evaluating the transformation, we use sp(S, Q)

to represent the logical expression describing the semantics. In the global analysis phase,

the final step, the use analysis information is combined with the local analysis information

to obtain a global description of the original module. The global description, an expanded

form of the skeleton formal specification constructed during the first phase, elaborates

upon the semantics of a module by integrating the specifications constructed during the
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use analysis into the skeleton. This activity corresponds to removing the encapsulation

provided by a procedure or function call. The following definition summarizes the method

described above.

Definition 7.1 (Structure Based Analysis Method)

Let M be a program with statements m1, . . . ,mk, and P = {P1 . . .Pn} be

the set ofprocedures called by M. In addition, let Q be the precondition for

M. A statement m,- is in P if there is a procedure p,- in P such that program

M calls p,- at line 2' ofM.

Method R(M, Q)

I. (a) Apply sp(m1;... ;th)

(b) For each i such that m,- 6 {P1, . .. ,Pn}

33‘3P(mi.319(m1; - - - ;mi-1.Q)) -'= “sp(m,,sp(m1;... ; mi-1.Q))”-

(We refer to the right hand side as the skeleton.)

2. For each p 6 {P1,... ,Pn}, apply R(p,Qp), where Qp is the

precondition to the procedure p.

3. Replace skeletonsfrom Step Ib with results ofStep 2.

7.1.4 Abstraction

After constructing an as-built formal specification using the process described in

Section 7.1.3, an abstraction of the specification can be constructed using the approach

described in Chapter 6. In addition, we have found it appropriate to apply the abstraction

steps during intermediate steps of the method in Definition 7.1 in order to aid in reducing

the logical complexity of the specifications. As such, we can modify the structure based

method to be the following.

Definition 7.2 (Structure Based Analysis Method (Abstraction))

Let M be a program with statements m1, . .. , rm, and P = {P1...P,,} be

the set ofprocedures called by M. In addition, let Q be the precondition for

M. A statement m,- is in P if there is a procedure p,- in P such that program

M calls 17,- at line i ofM.
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Method R’(M, Q)

I. (a) Apply sp(m1;. .. ;mk, Q). Abstraction method may be used after

each application of sp.

(b) For each i such that m,- 6 {P1, . .. , Pu}

set sp(m,, sp(ml; - -- ; Int—1.62)) -'= "317(mi. sp(ml; - -- ;mt—r. Ql)

(We refer to the right hand side as the skeleton.)

2. For each p 6 {P1,... ,Pn}, apply R(p,Qp), where Q, is the

precondition to the procedure p.

3. Replace skeletonsfrom Step Ib with results ofStep 2.

4. Apply the abstraction method to thefinal specification.

7.1.5 Process Summary

The entire combined process for the reverse engineering of programs can be summarized

as follows:

Definition 7.3 (Informal and Formal Reverse Engineering Method)

1. Construct an informal high-level model ofthe software

2. Construct an informal low-level model ofthe software

3. Apply R’ to a module M, where M is chosen using some selection

criteria.

One of the primary difficulties in the process is the determination of the criteria that

can be used for Step 3. The criteria that we have used include the identification of critical

procedures by examining the call graph constructed in Step 2. Our selection of critical

procedures is typically based on choosing those vertices with a large difference between

the in-degree and out-degree. Other criteria that can be used include keyword search and

data structure usage.
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7.2 An Example

In this section, we demonstrate the use of the combined formal and informal approach

to reverse engineer modules from a mission control ground-based system at the NASA

Jet Propulsion Laboratory. The purpose of the code is to translate user commands into

spacecraft commands. The entire system consists of several thousand lines of code.

However, in many instances, it is more appropriate to analyze more critical sections.

This example focuses on a sequence of code in order to illustrate the derivation of the

specifications of modules that contain representative logic and programming constructs.

7.2.1 Local Analysis

Figure 7.1 gives the code for the translate procedure. Using AUTOSPEC, an initial

semi-formal analysis of the translate code yields a call graph as depicted in Figure 7.2,

where the rectangles indicate functions, and the labels correspond to the function names

given by the index to the right of the graph. From this initial analysis, we find

that the translate function uses five functions including initializednterpreter,

processbinarybutput, inform_user, processrnnemonicinput, end_cmdx1t,

and process_carg. The translate function has four different modes: initialize,

translate, control argument assignment, and error. For this analysis, we focus on the

translate function in the translate mode (XLT). Thus, we are ignoring the initialization,

control argument, and default modes in this analysis. These modes correspond to the

INIT, CARG, and default cases of the switch statement, respectively. Therefore, we

are left with specifying the while statement depicted in Figure 7.3, where labels have

been attached to the programming constructs for convenience in the following discussion.
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struct msg *translate (int op, char *args)

I

extern int dontoutput;

static struct project_parameters *pp;

struct msg *mp = NULL;

switch (op)

{

case INIT: /* initialize the interpreter */

pp = initialize_interpreter();

break;

case XLT: /* interpret a message */

while (args[0] != ’\0’)

{

if (process_mnemonic_input(&args, pp))

{

if (mp == NULL)

mp = process_binary_output(pp)t

else

{

mp—>next = process_binary_output(pp);

mp = mp->next;

}

}

else

dontoutput = 1;

}

break;

case CARG: /* set a value for a control argument */

process_carg(&args, pp);

break;

default:

inform_user('internal error: bad op in translate");

end_cmdxlt(CMD_ERROR);

}

return(mp);

Figure 7.1: Translate Source Code
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Figure 7.2: Translate

 

Informally, the translate function in the translate mode is responsible for building a

list of spacecraft instructions corresponding to interpreted commands by calling a function

called processbinarybutput.

 

while (erg-[0] l- '\0')

11 (pm.ll_pnmn1¢_1nput (aura-,1») )

f

1! (up -- mu.)

so SI SI 4 ID - Pm..._b1nlry_output(pp) ,

a 01..

Slb ‘
lit-nut . mos-Jinu-Laucpuupp) ,

ID I noun;

)

i

82 also

flatware: . 1’

)

Figure 7.3: Translate Source 'Code
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A local analysis (first step) of the code in Figure 7.3 using the sp rule for the while

statement yields the following specification:

'1(args [O] != ’\0’)/\(3i :0 s i : sp(SOi,Q)), (7.1)

where the expression (args [ 0] != '\0 ') has no side-effects, and Q is the precondition

to the statement SO. This specification states that after the while statement has been

executed, the args array has a ’\0 ’ as the first entry, and the statement SO has been executed

some number of iterations. Unfortunately, the specification in (7.1) is not very informative

outside of identifying that the program uses an iterative construct. As such, an expansion

of sp(SO, Q) is warranted.

Using the labels shown in Figure 7.3, a specification of sp(SO, Q) is given by

sp(SO, Q) = sp(Sl, V(B) A sp(B, 0)) V (7.2)

sp(SZ, nV(B) A sp(B, 62))

where B corresponds to processmemonicinput (&args , pp). This specification

states that after executing the statement SO, it will be true that either 81 was executed or 82

was executed, where the semantics are determined by the preconditions V(B) /\ sp(B, Q)

and -IV(B) A sp(B, Q), respectively. So, in this case, either the if statement (81) was

executed or the assignment statement (82) was executed. This specification states that the

precondition sp(processmnemonic-input (&args,pp),Q) to the statement SO may

contain a side—effect. This fact is made explicit by the use of the valuation function V.
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Note that if the function processmnemonicinput has no Side-effect then

sp(processmnemonic-input (&args,pp),Q) = Q.

Further expansion of sp(Sl, V(B) A sp(B, Q)) and sp(SZ, -:V(B) A sp(B, 62)) yield

sp(Sl, V(B) A 819(3, 62)) = sp(Sla, (mp = NULL) A V(B) A sp(B, 62)) V (7.3)

sp(Slb, (mp aé NULL) A V(B) A sp(B, Q)),

and

sp(SZ,-1V(B)Asp(B,Q)) = sp(dontoutput = 1,-cV(B)Asp(B,Q)) (7.4)

= (dontoutput = 1) A (fiV(B) A sp(B, Q))f,“"“""“"“t

respectively, where v is the value of dontoutput before executing 82. Expression (7.3)

states that given that the expression ‘V(B) A sp(B,Q)’ is true, either 813 has been

executed or Slb has been executed, each depending on the added condition that either

(mp = NULL), or (mp 7L NULL), respectively. On the other hand, Expression (7.4) states

that given that the expression ‘fiV(B) A sp(B, Q)’ is true, execution of 82 results in the

assignment of ‘1’ to the variable ‘dontoutput’.

The preliminary skeleton of the logical specification of the translation module can

be constructed by substituting the Expressions (7.3) and (7.4) back into the original

Expression (7.2) such that
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sp(SO, Q) = sp(Sla, (mp = NULL) A V(B) A sp(B, Q)) V (7.5)

sp(Slb, -1(mp = NULL) A V(B) A sp(B, Q)) V

(dontoutput = 1) A (fiV(B) A sp(B, 62))?"th

which states that in every iteration, one of three actions is executed, namely one of Sla,

Slb, or 82 (dontoutput = 1).

At this point in the analysis, since Sla and Slb are statements that depend on the

specification of functions and procedures that are used by translate, it is appropriate to

begin a use analysis (second stage) for the translate function, where in this case, the

function processbinaryputput is analyzed.

In summary, during the local analysis phase for translate, a graphical representation

of the function was created with the intention of determining the calling hierarchy for the

function. Next, a logical analysis was performed using a top-down approach that uses

encapsulation with the intent of determining the logical complexity.

7.2.2 Use Analysis

Use analysis involves the specification of functions that are used by a given object of study.

In our example, given that the object of study is the translate function, use analysis

involves specifying the functions used by translate. In this section we describe the

function processbinary.output.

Figure 7.4 contains the source code for processbinarynutput. The use

analysis for this function involves three steps, each corresponding to the steps

followed for translate. That is, we perform local, use, and global analyses on
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processbinary-output. The remaining analysis of processbinaryputput is

similar to the process used to analyze translate. However, in the interest of

simplifying the analysis we shall ignore many of the details involved with analyzing

processbinaryputput and focus primarily on the output characteristics. Note that the

strict application of the rules for sp requires a line by line construction of a specification.

Here, we informally construct the specification with the understanding that all of the

information can and should be constructed rigorously. Our main objective in this example

analysis is to provide enough information about processbinary-output to be able

to describe translate in a sufficient manner without having to perform a full analysis

of the entire command translation system. Again, we note that the code used in this

chapter is taken out of context. Therefore, it is unreasonable to specify this code without

these constraints. Therefore, the specification given in this section is used primarily to

show how a true specification of processbinary-output might be used to describe the

translate function.

Consider the code given in Figure 7.4 for processbinaryputput. Three statements

determine whether or not the output of the function is defined, labeled by I, J, and K,

respectively. Line I, for instance, has the interpretation that if space could not be allocated

for the return object, then the routine aborts, while line J forces the routine to return a NULL

object due to some other error. Finally, the line K indicates a successful return of an object.

Therefore, we can construct the following specification for processbinaryputput:
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struct msg *process_binary_output (struct project_parameters *pp)

{

extern U16 *stem_entry;

U16 code;

U16 *ep;

struct msg *mp;

control_list;

(U16 *)stack_base;

(U32 *)min_S;m
2
1
0

1

mp = (struct msg *)malloc(sizeof(struct msg) + MAX_MSG_BYTES);

if (m == NULL)

{

warn(”process_binary_output: \

out of memory (malloc failed)\n");

end_cmdxlt(-1);

}

/* —1 for length field, written over later */

PUSHL(mp->msg_bits - 1);

ep = get_entry(get_U32_Q());

P = ep + 1;

do

{

code = *P++;

if ((code < 1) || (code > 32))

{

warn('bad code");

end_cmdxlt(-l);

}

(*output_rtn[code])();

} while (code != RFMS);

mp->next = NULL;

mp->msg_len = *(mp->msg_bits - 1);

if (mp->msg_1en > pp->maxdmsg_bits)

{

fail(TOO_MANY_BITS, NULL, NULL);

free(mp);

return(NULL);

}

mp->msg_num = 0;

copy_space_filled(", mp->start, sizeof(mp->start));

copy_space_filled(", mp—>open, sizeof(mp->open));

copy_space_filled(", mp->close, sizeof(mp->close));

copy_space_filled(get_stem_and_title(stem_entry). mp->comment,

sizeof(mp->comment));

mp->chksum = chksum(mp->msg_bits, FLD_LEN_OF(mp->msg_1en)*2);

return(mp);

Figure 7.4: Process Binary Output Source Code
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sp(wam; endxmdxlt, (mp = NULL) A Q) V

sp(fail; free; retum(NULL), (mp->msg-len > pp->max.msg_bits) A (mp 75 NULL) A Q)) V

sp(retum(mp), (mp->msg-len S pp—>max.msg_bits) A (mp 75 NULL) A Q)

(7.6)

which states that after executing processbinaryputput either warn and end-cmdxl t

were executed, the routine returned a NULL object, or the routine returned a valid object.

Again, we stress that this specification is incomplete and only specifies a small slice of the

functionality of the routine.

7.2.3 Global Analysis

The final step in the analysis is to take the specification in Expression (7.6) and integrate it

back into the skeleton specification of Expression (7.5). This specification is as follows

sp(so, Q) = ((mp = NULL) V (mp = n)) V (7.7)

(((mp->next = NULL) V (mp->next = u)) A (mp = mp->next)) V

(dontoutput = 1) A (nV(B) A sp(B, Q)):mmtput

where u is some new object. This specification states that after executing SO, the variable mp

has either the value NULL or points to some new object, or mp->next has the value NULL

or points to some new object with mp pointing to mp->next. Finally, if neither of those

cases holds, it must be that dontoutput = 1. Recall that Expression (7.1) describes

the behavior of the XLT mode for translate and that the XLT mode uses an iterative

construct. As such, Expression (7.7) states that after each iteration, a chain of messages

7

is constructed or the dontoutput flag is set to ‘1 . Note that in this specification we

make the assumption that the pointer assignment behaves like a variable assignment. In
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this case, this assumption has no impact on the specification since no reference is made to

the allocated data objects outside of simple assignments.

7.2.4 Discussion

At a high-level, the specification in Expression (7.7) states that while in the XLT

mode, each iteration of the loop adds to a chain of messages or results in an error

condition. The refinement of the specification of the XLT mode from Expression (7.1)

to Expression (7.7) represents just a small portion of what would be required to obtain

a specification of an entire system. As described in Section 7.1.2, it is not feasible

to derive specifications for the entire system. Formal specifications of critical sections

of software, however, are merited and having such formal, concise specifications can

facilitate formal program understanding since the specifications are behavioral rather than

imperative. The specification in Expression (7.7) does provide a somewhat higher-level of

understanding of the corresponding program code. Nonetheless, the resulting specifications

still reflect significant implementation bias. However, the “as-built” specifications provide

a mechanism for traceability of the reverse engineering process, particularly as the higher-

level representations become more abstract. That is, for technology transfer purposes,

it is important for system maintainers to understand the starting point for the formal

specification process for reverse engineering.
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Chapter 8

Tool Support

One of the attractive properties of formal methods is that formal languages with well-

defined syntax and semantics facilitate the use of automated support tools. In this chapter,

we describe the development of several tools that have been designed to support the formal

reverse engineering techniques presented in this dissertation.

8.1 Overview

Chapter 10 describes several tools that have been developed to support reverse engineering

activities. In this chapter, we describe the development of a suite of reverse engineering

tools that have been designed to support the formal reverse engineering techniques

presented in this dissertation. The suite consists of four tools:

AUTOSPEC: AUTOSPEC is a tool that is used to support the construction of

specifications using the semantics of the strongest postcondition predicate

transformer.

SPECGEN: SPECGEN is a tool that is used to support the derivation of abstract

specifications from as-built specifications.

SPECEDIT: SPECEDIT is a specification editor that is used to support the

construction of syntactically correct specifications.
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TPROVER: TPROVER is a tableau theorem prover that is used to verify the

consistency of specifications that are modified by a user.

Figure 8.1 shows the inter-relationships that exist between the various tools in the suite

in the form of a data flow diagram. In addition, the diagram shows the relationship between

the tools in the suite and external tools that we have used to aid in the analysis of software

during the reverse engineering process. In the diagram, external tools are shown as dashed

circles.
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Figure 8.1: Tool Suite

 

The overall process for using the tools begins with a pre-processing step whereby

the SUIF Compiler [45] is used to generate an intermediate format based on the C

programming language. The AUTOSPEC system takes the SUIF generated code as input
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and based on user input, generates source code annotations. During the analysis, the user

can provide assistance to the AUTOSPEC system via the use of the SPECEDIT specification

editor. In addition, the TPROVER theorem prover can be used to verify user modifications

to the generated specifications. Finally, after as-built specifications have been constructed

using the AUTOSPEC tool, the SPECGEN tool can be used to generate abstractions that can

be visualized using the Visualization of Compiler Graphs (VCG) tool [46].

8.2 AUTOSPEC

The (Semi-)Automated Specification system, or AUTOSPEC, was originally developed

in order to demonstrate the feasibility of our initial investigations into reverse

engineering [17]. Written in an object-oriented variant of Prolog, the original

prototype facilitated the application of user-directed heuristics to construct predicate logic

specifications from Dijkstra guarded command language programs [17]. Since then, several

different variations and refinements of the AUTOSPEC system have been developed, each

with the intention of investigating some aspect of the research described in this dissertation,

including the analysis of programs using strongest postcondition semantics [6], and the

analysis of pointer semantics [43]. In this section, we describe the most recent version of

AUTOSPEC that has been refined from previous versions in order to handle more complex

languages and a wider variety of programs.

8.2.1 Design

The high-level design of the AUTOSPEC system is shown in Figure 8.2. The AUTOSPEC

system interacts with three different environmental entities: the User, a specification editor
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called SPECEDIT, and a theorem prover called TPROVER. The specification editor and

theorem prover are described in Sections 8.4 and 8.5, respectively. The AUTOSPEC system

reads a file, and based on various interactions with the user and external tools, generates

formal specifications based on the use of strongest postcondition, and annotates the original

source code with those specifications. Direct user interaction with the AUTOSPEC system

comes in the form of decisions about how a source file analysis should proceed. The

user also interacts with the AUTOSPEC system indirectly via the use of the SPECEDIT

and TPROVER systems.
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Figure 8.2: Level 0 AUTOSPEC Model

 

The design of the AUTOSPEC system follows the same general architecture of many

compiler and static analysis systems [47]. That is, the design of the AUTOSPEC system

consists of a parsing component that reads a source file and creates an abstract syntax

tree, an analysis component that is used to construct specifications from the program,

and an output component that writes the results to an appropriate output file. Figure 8.3

contains the level 1 data flow diagram of the AUTOSPEC system. The Parse, SP, and
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Output processes correspond to the parsing, analysis and output components, respectively.

In addition to the standard compiler-oriented components, the AUTOSPEC system has a

component for interacting with the user (i.e., a user interface). Data in the AUTOSPEC

system is centered primarily around the Abstract Syntax Tree and program statements. In

addition to statements, flow of data in the AUTOSPEC system consists of specifications

and annotations, where annotations are specifications that are tied to specific program
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Figure 8.3: Level 1 Data Flow Diagram of AUTOSPEC

 

The primary component of the AUTOSPEC system is the analysis, or SP component.

The SP component consists of several procedures that are responsible for constructing

specifications from programming constructs. The formal specifications that are generated
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by the SP component correspond directly to the semantic definitions given throughout this

dissertation. In addition to constructing specifications, the SP component is responsible for

launching the TPROVER and SPECEDIT applications when user input is required.

8.2.2 Implementation

The AUTOSPEC system was developed primarily as a means for supporting the analysis

of source code using strongest postcondition. The AUTOSPEC system was originally

developed to support the Dijkstra guarded command language. Since that language is used

primarily for theoretical development and analysis, it was decided that in order to show

the applicability of our approaches to real systems, support for a commonly-used language

must be included in the subsequent implementations of AUTOSPEC. The remainder of this

section describes the implementation of a C variant of the AUTOSPEC system.

SUIF Compiler

The Stanford University Intermediate Format (SUIF) library is a suite of routines that

were developed to support research for optimizing and parallelizing compilers [45].

Developed by the Stanford University Compiler Group, the objective of the SUIF compiler

is to provide an extensible support system for a wide variety of compiler-oriented

investigations [45].

The motivation for using the SUIF compiler suite of tools is as follows. First, the SUIF

compiler provides a library of routines for parsing and accessing source code information

via the use of an abstract syntax tree representation of SUIF code. Second, by using the

SUIF compiler, we are able to take advantage of several built-in features including the

use of annotations to document programs, and source code iterators for traversing the
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abstract syntax trees. In addition, the SUIF library has extensive support for symbol tables.

Finally, by using the SUIF compiler we are able to leverage the experience of an established

community of users.

The SUIF library focuses on the organization of input files into abstract syntax trees

based on the structure of the C programming language. SUIF also supports the analysis

of Fortran programs and contains support for programming constructs, such as loops,

conditionals, and assignments. These constructs are translated into an intermediate format

that is decomposed into semantically equivalent SUIF constructs. In addition, the SUIF

libraries support the use of symbol tables as well as convenience functions that can be used

to traverse source code.

SUIF also supports the use of source code annotations. In the context of the

AUTOSPEC system, these SUIF code annotations are used to attach strongest postcondition

specifications to particular programming statements. After analyzing the source code, these

annotations can be translated into comments and annotated to the original source code.

In the AUTOSPEC system we use the SUIF tools as follows. First, the SUIF compiler

scc is used to generate a SUIF intermediate file from the original source code. Second, the

SUIF library of tools is used by the AUTOSPEC system in order to manipulate the SUIF

intermediate file. Third, the symbol table and source code traversal functions are used

to access the abstract syntax trees for the input source code in order to generate formal

specifications based on the semantics of the strongest postcondition. Fourth, the annotation

facility is used to associate formal specifications with specific source statements. Fifth and

final, a tool called s20 is used to translate the SUIF source code into equivalent C source

code with annotations.
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Interface

The interface for the AUTOSPEC system was constructed using the Tcl/I‘k language [48].

In addition, we used the C++ language to provide the interconnection between Tcl/I'k and

the SUIF libraries. The interface is organized primarily around the input source code. The

main window, as shown in Figure 8.4, is used to display the source code for a user-selected
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Figure 8.4: AUTOSPEC Main Window

The analysis of the source code includes three distinct phases. The first phase focuses

on allowing a user to select analysis breakpoints, thus providing the user with a means

for indicating where they prefer to provide input to the analysis. Selecting (i.e., “double-
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clicking”) a particular programming statement indicates that the analysis of the current

procedure should be interruptedjust before processing of the selected statement. Figure 8.5

shows the interface with a selected statement shown in italics. During an execution of the

system, the selected statement appears italicized in blue.
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Figure 8.5: AUTOSPEC A Selection in the Main “Window

The second phase of the analysis is the specification phase. In this phase, AUTOSPEC

constructs a formal specification of the procedure by using the strongest postcondition

semantics described in this dissertation. As each analysis breakpoint is encountered,

AUTOSPEC pauses, as depicted in Figure 8.6, and allows the user to modify the current

annotation (i.e., the precondition for the next statement). The modification of the

specification is performed by using the SPECEDIT specification editor, which is described

in Section 8.4. Using the SPECEDIT system, the user modifies the precondition and can
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optionally launch a theorem prover that can be used to check the consistency between the

user-defined specification and the system-defined specification. We developed the theorem

prover to support the tableau proof method [49]. In Section 8.5 we describe the design and

implementation of this prover.
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Figure 8.6: Launching SPECEDIT from AUTOSPEC

The final phase of the analysis is the post-specification phase. During this phase, the

user is free to select and modify any annotation that is displayed in the main window.

In addition, we are planning on providing a mechanism where the user can modify a

specification, replay the analysis, and incorporate the changes into the analysis.
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8.3 SPECGEN

The AUTOSPEC system focuses on the construction of as-built specifications. Once

the specifications have been constructed using the AUTOSPEC system, the specifications

need to be generalized into higher-levels of abstraction. The Specification Generalization

system, or SPECGEN, was developed in order to aid in the construction of abstract

specifications from as-built specifications.

8.3.1 Design

The high-level design for the SPECGEN system is shown in Figure 8.7. The SPECGEN

system interacts with two environmental entities: the User, and the visualization tool

VCG [46]. Upon launching, the SPECGEN system reads a specification from a file (SpecFile

in Figure 8.7), and based on user decisions, constructs abstractions that can be visualized

in the form of a partial-order diagram. The partial-order diagram, depicted in Figure 8.7 as

the GraphFile, is then displayed using the VCG tool.
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Figure 8.7: Level 0 SPECGEN Model
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Figure 8.8 shows the level 1 data flow diagram for the SPECGEN system. The

internal structure of the SPECGEN system consists of three major components: a parser,

a user interface, and an abstraction engine. The parser is a standard Lex and Yacc [50]

parser that has been constructed for checking the syntax of first-order logic specifications.

Section 8.6 describes the parser in more detail. The user interface is the primary mechanism

for mediating interaction between the user and the abstraction engine. The abstraction

engine is responsible for constructing high-level specification generalizations based on the

techniques described in Chapter 6.
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Figure 8.8: Level 1 SPECGEN Model

 

8.3.2 Implementation

The implementation of the SPECGEN system has two major components. The first

component is the abstraction engine, which is responsible for deriving symbolic
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abstractions from an input specification. The second component is the user interface,

which provides a mechanism for facilitating user-driven specification generalization. In

this section we describe each of these components in detail.

Prolog

The abstraction engine was written using SWI-Prolog [51] interconnected with a number of

C routines. The primary motivation for using Prolog was to take advantage its inferencing

and backtracking capabilities. The small number of routines (approximately 20) and their

size (10-15 lines each), easily justified our choice of language in this case.

The Prolog routines are primarily responsible for deriving partial-orderings of

specifications as well as pruning and expanding the orderings based on user input. By

using a library of C routines that support integration of C and Prolog, it became a

straightforward process to build the system along with a graphical user interface that

facilitated visualization and manipulation of the specification generalizations by a user.

Interface

The user interface for SPECGEN includes two different components. The first component is

the direct user manipulation component that allows a user to load, manipulate, and analyze

specifications using the abstraction engine. Written using Tcl/Tk [48], this component

facilitates specification generalization by allowing a user to select specification components

of interest, to exclude or mask out certain specification components, and to generate

all possible abstractions. For instance, Figure 8.9(a) depicts the SPECGEN system with

the top portion containing the conjuncts of a conjunctive normal form expression. The

buttons labeled “Delete Conjuncts”, “Preserve Conjuncts”, “Focus”, and “Generate All”
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allow a user to derive different levels of abstraction with differing levels of detail from a

specification. Figure 8.9(b), shows the results of an analysis, where a specification has

been generalized using SPECGEN and the resulting partial—ordering visualized using a tool

called VCG.
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Figure 8.9: SPECGEN Interface and Output

 

The second component of the user interface is the visualization component. In this

component we take advantage of an existing system called VCG [46], a system that supports

the visualization of graphs. VCG provides many functions for graph layout and placement,

issues that are well beyond the scope of our investigations. One of the shortcomings

of using VCG, however, is that it lacks a mechanism for providing feedback to external
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systems such as the main SPECGEN system. As such, as part of our future investigations,

we plan on extending the functionality of SPECGEN to incorporate an internal visualization

facility.

8.4 SPECEDIT

One of the advantages of using formal methods is that their notations are mathematically

based. As such, these notations are amenable to automated processing and reasoning.

One of the tools that can be constructed to support any particular formal specification

language is a syntactic checker or parser. An associated tool along the same lines of a

checker is a syntactic editor. In this section we describe the design and implementation of

a specification editor that we have developed in order to facilitate user interaction with the

AUTOSPEC and SPECGEN systems.

8.4.1 Design

Figure 8.10 shows the high-level data flow diagram model for the SPECEDIT system. The

SPECEDIT system interacts primarily with the user to construct or modify specifications,

and allows the user to save the specifications to files for later modification or for

incorporation into other tools that use first-order logic as an input language.

Figure 8.11 contains the data flow diagram for the SPECEDIT system. The internal

design of the SPECEDIT system has two primary components: aparser and a user interface.

The user interface facilitates the construction of a syntactically correct specification in two

ways. First, the user interface has a graphical interface that allows users to construct

specifications using a point and click method. The user interface also has a text-based
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interface that allows a user to type in a specification. The parsing component is responsible

for two different activities. First, the parser is responsible for checking the syntax of pre-

existing specifications that are contained in input files. The parser is also responsible for

checking the syntax of user modifications that are made using the text-based interface for

the system.

8.4.2 Implementation

The Specification Editing system, or SPECEDIT, was developed in order to facilitate

specification modification during the analysis phase of the AUTOSPEC system. The main

objective in constructing the SPECEDIT system was to provide a way of ensuring syntactic

correctness during the modification of a specification. This correctness is ensured in one of

two ways: by construction, or by verification. Correctness of construction is facilitated by

providing a mechanism whereby a user can click on various syntactic elements and replace

them with valid substitutions. For instance, Figure 8.12, shows the conjunctive formula
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Figure 8.11: Level 1 SPECEDIT Model

 

“p(a:) A Formula”. The italicized font for p(:l:) indicates that the term has been selected

using a mouse click. By double-clicking on the “Formula” conjunct in the upper window

of SPECEDIT, the user can choose to substitute the conjunct with either an atomic formula,

a conjunction, disjunction, implication, or quantification. Since substitutions can only be

made with valid substitutions, the final specification is syntactically correct by construction.

The second way of ensuring syntactic correctness that is supported by SPECEDIT is

to verify correctness using a syntactic checker or parser. In the lower window of the

SPECEDIT interface there is a specification modification window that can be used by a

user to type in a desired specification. By clicking on the “OK” button, a user directs the

SPECEDIT system to run the syntactic checker on the specification in the lower window. If
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Figure 8.12: SPECEDIT

the specification is syntactically correct, the specification is loaded into the upper window

and the user is free to modify the specification in either window.

8.5 Theorem Prover

Many of the interactions between a user and the AUTOSPEC system involves the

modification of a specification by a user and the re-introduction of the modified

specifications into the current analysis or program annotation. In order to verify that

the specification modifications made by a user are logically consistent with the system-

generated specifications, we have constructed a simple theorem prover. In this section we

describe the design and implementation of the theorem prover TPROVER.

8.5.1 Design

Figure 8.13 depicts the high-level design of the TPROVER system. Except for file

interactions and user guidance, the TPROVER system is entirely self-contained. The
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TPROVER system takes as input a source file containing a first-order logic specification to

be proved. Using guidance provided by a user for reasoning about quantified expressions,

the TPROVER system determines whether or not the specification is valid.
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Figure 8.13: Level 0 TPROVER Model

 

Figure 8.14 shows the internal structure of the TPROVER system. The primary

components of the system are: the parse component, the prover component, and the user

consult component. The parse component is a Lex and Yacc generated parser that is used to

translate first-order logic specifications into an abstract syntax tree. The prover component

uses the information in the abstract syntax tree to generate a proof tree based on the tableau

proof technique. For certain proof rules in the tableau method, ground terms must be

identified in order to continue processing. In these instances, the consult component is

used to interact with the user in order to identify an appropriate ground term for the proof

method.
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Figure 8.14: Level 1 TPROVER Model

 

8.5.2 Implementation

with C++.

The main proof engine in the TPROVER system was constructed using C++. The proof

engine construction was facilitated by the existence of the formula class library described

in Section 8.6. The graphical user interface was constructed using Tcl/Tk interconnected

The TPROVER system takes as input the name of a file containing a logical expression.

Based on the logical rules described in Section 8.5.1, the TPROVER system will generate

a proof tree. For propositional logic and certain expressions of the first order logic, the

theorem prover is automatic. For the remaining classes of valid input, user direction is
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required. In the latter case, the TPROVER system acts as a tableau proof editor. In the

former case, the TPROVER system acts as a theorem prover.

Figure 8.15 shows the main window of the TPROVER system. The upper sub-window is

the main prover window. In this window the proof tree is constructed and displayed to the

user. The lower sub-window is the proof information window. In this window the user is

provided information about the current proof. Specifically, during times of user interaction,

the proof information window contains data about the current entry in the proof tree. To aid

in proof comprehension, the vertices in the proof trees are displayed with different colors,

each indicating a different state of processing.

8.6 Formula Class Library

Each of the support tools described in this chapter rely heavily upon the use of a class

library that we have developed to facilitate the manipulation of first-order logic expressions.

This Formula class library is a collection of classes that organize logical expressions

according to an inductive definition of first-order logic [49].

Figure 8.16 shows the object model for the Formula class library. The superclass

“Formula” is the base class for the entire library. Each of the subclasses BinaryFormula,

NegatedFormula, QuantifiedFormula, and AtomicFormula represent the different syntactic

elements of first-order logic. In addition, the AtomicFormula class has three subclasses

(i.e., BinaryAtomic, UnaryAtomic and Literal).

The atomic classes in the Formula class library, with the exception of the Literal class,

are aggregations of Term objects. The Term objects correspond to terms in first-order logic.
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Figure 8.15: Example TPROVER Session

The implementation of the Term classes include specific classes to represent variables,

constants, and functions.

The Formula class library was implemented using the C++ programming language.

In addition, a standard formula parser was constructed using the Lex and Yacc parser

construction system. This parser is used by every tool in the AUTOSPEC tool suite as a

means for checking the syntax of file and user input.
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Chapter 9

Application of Reverse Engineering to

Support Software Reuse

One of the methods that is used to explicitly reduce the effort needed to develop

software is to reuse existing code. In the case of the Ariane 5, the software for the Ariane 4

was reused and resulted in catastrophic loss [2]. In this chapter we discuss the application

of reverse engineering to the area of software reuse in order to facilitate the construction of

software component libraries.

9.1 Overview

Historically, the use of software components-off-the-shelf (COTS) has been limited to

complete applications. The introduction of object-oriented programming, design patterns,

and other new development techniques have focused on the creation and reuse of finer

grained units such as software COTS, but the wide-scale use of such components in the

same manner as hardware integrated components has been limited. As a development

technique, software reuse is a process of constructing a software system using existing

software components. Formal approaches to software reuse rely heavily upon specification

matching criterion, where a search query using formal specifications is used to search a

library to identify components that can be used for reuse purposes. Jeng and Cheng [35, 31]
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addressed the use of formal methods and component libraries to support software reuse, and

Chen and Cheng [52, 53] investigated the construction of software based on architectural

specifications. One of the primary difficulties of using a formal approach for software reuse

that makes use of formally specified components is that creation of the formal specification

indices is not explicitly addressed.

In this chapter, we present an approach for combining software reverse engineering and

software reuse to support populating specification libraries for the purposes of software

reuse. In addition, we discuss the results of our preliminary investigations into the use of

tools to support an entire process of populating and using a specification library to construct

a software application.

9.2 A Software Reverse Engineering and Reuse Framework

Many software reuse approaches depend on the assumption that a library of reusable

components is available for use. There are two techniques for populating these libraries

with reusable code. The first technique is to construct components with the intention of

placing them into code repositories. Examples of these repositories are the Microsoft

Foundation Classes [54] as well as libraries for standard problem domains such as

mathematics, graphics, and networking. The second technique for populating code

repositories is by identifying existing code as potential candidates for reuse, and then

packaging that code into a library. In either case, a primary concern is the mechanisms used

for indexing, identifying, and retrieving the components from the libraries [31, 19, 20, 32].

This chapter describes how a formal approach to reverse engineering can be integrated

with a formal approach to software reuse in order to support after-the-fact construction and
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use of reusable code libraries. Figure 9.1 gives an overview of the reverse engineering and

software reuse framework in the form of a data flow diagram. The diagram shows two

distinct components within the framework: the Reverse Engineering component, indicated

by the process circle labeled “RevEgr Suite”, and the Reuse component, indicated by the

process circle labeled “Reuse Suite”. Two integrating factors within this framework provide

the linkage between the two components; the User and the Specification Library. The user

is required to direct the reverse engineering and the reuse processes, and the specification

library is the common medium and repository between the RevEgr Suite and the Reuse

Suite.

 

 

User

   

    

     
 

Problem Definitions,
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Figure 9.1: The Reverse Engineering and Reuse Framework

 

“Within this framework, a user can analyze source code and construct formal

specifications that can be used to index the source for reuse purposes. This reverse

engineering and population activity facilitates the reuse part of the framework, namely

the search, identification, and packaging of components into new systems. We next discuss
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the specific techniques and tools that are used to support the reverse engineering and reuse

aspects of the framework, respectively.

9.2.1 Reverse Engineering

Figure 9.2 contains a data flow diagram that depicts our investigations into reverse

engineering as a two-stage process, where the AUTOSPEC process bubble represents our

investigations with strongest postcondition, and SPECGEN process bubble represents our

investigations into abstraction. During the entire process the User provides guidance and

decisions in order to reduce the complexity of the specifications and abstractions.

 

 

   

Code

 

Figure 9.2: Reverse Engineering Component

 

Within the context of software reuse, our reverse engineering technique provides a

means for constructing module specifications using pre- and postconditions.

9.2.2 Software Reuse

A software architecture is defined to be a configuration of components and connectors [55,

56, 57]. Software architectures describe the overall organization of a software system in

terms of its constituent elements, including computational units and their interrelationships.
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Chen and Cheng [52, 53] have developed an approach to software reuse that is based

on the use of software architectures. The approach involves a three-stage process where

a software system is specified, components are selected, and then packaged into the final

system. During the specification phase, a software architecture specification is used to

describe the target system. Given this specification, a user can select components from

a library of components that potentially satisfy the requirements of the target system.

Using specification and component matching, components that meet the constraints of the

target system are then validated and packaged to form the final target system. One of the

assumptions that is made by the approach is that a library of components is available. In

order to validate this assumption, we advocate the use of our reverse engineering approach

to populate component libraries with specifications of existing program code.

Figure 9.3 depicts the framework for the reuse investigations described by Chen and

Cheng [52, 53]. In the diagram, each of the stages described above is represented by

the Arch Design, Selectflllatch, and Package processes. The Specification Library data

store represents the combination of specifications and associated program code. These

specifications can be constructed using the reverse engineering technique described in this

dissertation. The System data store represents the final output of the reuse framework and

consists of a packaged component. To support this framework, Architecture Based Reuse

and Integration Environment (ABRIE) system has been developed [53].

9.3 Example

In this section we discuss an example that illustrates the use of the integrated reverse

engineering and reuse framework. First, we populate a library, using reverse engineering
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techniques, with component specifications. Then we demonstrate the process of specifying

an application and searching the specification and component library for suitable reusable

code. Finally, we show the process of packaging components into the final application.

9.3.1 Populating the Library

Figure 9.4 shows the source code for an array implementation for a queue abstract data

type. The source code, written using the C programming language, implements a circular

queue so that the head and tail of the queue can “wrap” around the lowest and highest

indices of the array, as shown in Figure 9.5.

The queue data structure consists of three parts: an index to the front, or head of the

queue, an index to the end, or tail of the queue, and an array that is used to store the elements

of the queue. The queue source code contains several functions that correspond to the

operations typically associated with queues including enqueue, dequeue, new-queue,

head, and is_empty. The abstract behavior of these operations is as expected, where
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typedef int QDATA;

#define MAXSIZE 100

struct queue {

int head;

int tail;

QDATA datalMAXSIZEl;

};

typedef struct queue Queue;

/‘ Operations */

int is_empty(const Queue);

QDATA head(const Queue);

QDATA dequeue(Queue 'lt

int enQueue(Queue *, QDATA *);

Queue 'new_queue()t

void printQ(Queue);

Queue *new;queue()(

Queue *ner;

ner =

(Queue *)malloc(sizeof(Queue));

ner->head = 0;

ner->tail = 0;

return ner;

}

int is_empty(const Queue qli

return (q.head == q.tail);

int enQueue(Queue *q, QDATA *e){

int tail;

int head;

if ((q—>tail — q—>head) == MAXSIZE)

{

printf(‘Full\n');

return 0;

) else (

q->data[q—>tail % MAXSIZE] = *e;

q->tail = q—>tail + 1;

return 1;

}

QDATA dequeue(Queue *qli

int temp;

if (tis_empty('Q)){

temp = q->head % MAXSIZE;;

q—>head = (q->head + 1);

return q->data[temp];

} else {

return 0;

l

}

QDATA head(const Queue q){

return q.data[q.head % MAXSIZE];

Figure 9.4: Queue Source Code

 

 

 
Figure 9.5: Circular Queue Diagram
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enqueue adds a new element to the end of the queue, dequeue removes the element at

the front of the queue, new_queue creates a new queue, head returns the element at the

front of the queue, and i s-empt:y checks to see if the queue contains any elements.

As described in Section 9.2.1, construction of a specification that is suitable for

populating a component specification library involves two primary steps: 1) construction

of an as-built specification, and 2) derivation of a high-level abstraction. Using the sp

semantics of the C programming language [58], the complete as-built specifications of the

source code in Figure 9.4 can be constructed as shown in Appendix D (Figure D.l), where

the symbols ‘&&’ and ‘ | | ’ are used to indicate the logical connectives and (A) and or (V),

respectively. In addition, the symbol ‘ . >’ is the points-to operator [43] for reasoning about

pointers and pointer Operations.

For the purposes of illustration, the remainder of this section will focus on the analysis

of the enQueue procedure. Figure 9.6 shows the as-built specification of the enqueue

procedure as derived by the AUTOSPEC tool. Informally, the as-built specification of the

enQueue procedure states that prior to the execution of the procedure, the pointer e points

to an object _param4, the value of _param4 is _pVa15, and the pointer q points to an

object _param3 such that the tail component of _param3 has the value _pVal4. In

addition, the specification states that after execution of the procedure, one of two conditions

is true. The first condition describes the behavior when the queue is full in which case the

difference between the values _param3 . tai l . V and _param3 . head . V is equal to the

maximum size of the queue. Here, the return value of the procedure is 0, indicating a

failure. The second condition describes the behavior when there is room to place an item
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on the queue. In this case, the return value of the procedure is 1, the index to the tail is

incremented, and the data element is added to the queue data array.

 

spec int enQueue(Queue *q, QDATA *e)

requires

(((e .> _param4) &&

(_param4.V == _pVa15)) &&

((q .> _param3) as

(_param3.tai1.V == _pVal4)))

modifies

q (_param3)

ensures

((((((e .> _param4) && (_param4.V == _pVa15)) &&

((q .> _param3) && (_param3.tai1.V == _pVal4))) &&

((_param3.tai1.V - _param3.head.V) == MAXSIZE)) &&

(return.V = 0)) ||

(((((((e .> _param4) && (_param4.V == _pVa15)) &&

((q .> _param3) && (_param3.tai1.V == _pVal4))) &&

(!((_pVal4 — _param3.head.V) == MAXSIZE))) &&

(_param3.data[(_pVal4 % MAXSIZE)].V = _param4.V)) &&

(_param3.tai1.V = (_pVal4 + 1))) &&

(return.V = 1)))

Figure 9.6: Output generated by AUTOSPEC for the enQueue procedure

 

While the specification in Figure 9.6 is accurate with respect to the original source

program, the level of detail can inhibit high-level reasoning. As described in Section 6, one

technique that can be used to derive an abstraction of an as-built specification is to weaken

the postcondition by using the delete a conjunct strategy. For the enQueue example, we

must first put the ensures clause into a conjunctive form, as shown in Figure 9.7. In this

form, the enQueue specification has four conjuncts that specify that (a) e points to the

object _param4, (b) _param4 .V has value _pVa15, (c) q points to _param3, and (d)

the disjunctive statement:
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((((_param3.tai1.V = _pVal4) &

((_param3.tai1.V — _param3.head.V) = MAXSIZE)) &

(return.V = 0)) ||

(((((as_const9 = _pVal4) &

(!((_pVa14 - _param3.head.V) = MAXSIZE))) &

(_param3.data[as_const9 % MAXSIZE].V = _param4.V)) &

(_param3.tai1.V = (as_const9 + 1))) &

(return.V = 1)))-

Figure 9.8(a) shows the results generated by the SPECGEN tool when applied to the

specification in Figure 9.7. One of the operations that can be performed by the tool is

to generate all the possible abstractions of a specification based on preserving one or

more of the conjuncts in the specification. The representation of the specifications that

are generated by preserving conjuncts is called a focus graph. In our example, we are

interested in preserving the conjuncts (b) and (d) and deleting conjuncts (a) and (c) due

to the independence property stated in Section 6. Figure 9.8(b) shows the focus graph for

the example, where the vertex labeled “abcd” indicates that conjuncts (a), (b), (c), and

(d) are conjuncted. This vertex corresponds to the original specification in Figure 9.7.

The remaining vertices in the graph represent the possible abstractions that are formed by

deleting conjunct (a), (c), or both.

 

(e .> _param4) && (_param4.V = _pValS) && (q .> _param3) &&

((((_param3.tai1.v = _pVal4) &

((_param3.tail.v - _param3.head.V) = MAXSIZE)) &

(return.V = 0)) ||

(((((as_const9 = _pVal4) &

(!((_pVa14 - _param3.head.V) = MAXSIZE))) &

(_param3.data[as_const9 % MAXSIZE].V = _param4.V)) &

(_param3.tai1.V = (as_const9 + 1))) &

(return.V = 1)))

Figure 9.7: The enQueue ensures clause in a conjunctive form
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Using the information provided by SPECGEN, several transformations of the

specification in Figure 9.7 can be performed that simplify and introduce abstraction into

the postcondition. First, based on the focus graph in Figure 9.8(b), conjuncts (a) and (c)

are deleted due to the independence criteria. After the deletion of conjuncts (a) and (c),

we can perform a textual substitution of all references to the _param3 identifier with a

more descriptive symbol, like Q. Finally, given that the term as_const9 has the value

_pVal4 and in the precondition for the specification _param3 . tail .V == _pVal4,

we can replace as_const9 with the term Q . tail“, which represents the pre-value for

the tail component of the queue (i.e., the value of the tail component before execution of the
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procedure). Given these transformations, the abstraction for the enQueue procedure can

be derived as shown in Figure 9.9. Informally, the specification states that after execution

of the procedure, the return value is set to 0 when the difference between the head and tail

of the queue is the maximum array size. When the difference between the head and tail is

not the maximum array size, then the element E is added to the array at the tail index, the

tail index is incremented, and the return value is set to 1.

 

spec int enQueue(Queue *q, QDATA E)

requires

((q .> Q) &&

(Q.tai1 == Q.tail“))

modifies

Q.tail, Q.data

ensures

((((Q.tail - Q.head) = MAXSIZE) &&

(return = 0)) ||

((((!((Q.tai1‘ - Q.head) = MAXSIZE)) as

(Q.data[Q.tail“ % MAXSIZE] = E)) &&

(Q.tail' = (Q.tai1“ + 1))) &&

(return = 1)))

Figure 9.9: The enQueue abstraction

 

A process similar to the one used for enQueue can be applied to derive abstractions

for the remainder of the queue as-built specifications. For the purposes of combining the

reverse engineering suite with the reuse suite, the resulting specifications must be translated

into the syntax for the ABRIE system. The reason for the differences between the syntax of

the AUTOSPEC and ABRIE specification languages is historical. Our initial investigations

for deriving specifications for programs focused on the analysis of the Dijkstra guarded

command language [6]. As such, a general Larch Interface Language variant [42] was

developed. The expansion of the AUTOSPEC tool to support the C programming language
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has since prompted a need to modify the tools to generate Larch C (LCL) specifications,

an activity that we are currently performing. In contrast, ABRIE was not developed for a

specific programming language, but was intended to be tailorable to a given language. As

such, Chen and Cheng used a generic procedure-oriented syntax for the Larch Interface

Language. However, since the output formats for the AUTOSPEC and SPECGEN systems

and the input format for the ABRIE system are all based on the Larch interface language

(all contain header information and the requires, modifies and ensures clauses), the actual

step for preparing the procedure specifications generated by AUTOSPEC and SPECGEN

to the library format for the ABRIE system is straightforward and can be facilitated with

automated tools. Appendix D.2 contains the module specification in the ABRIE syntax that

was constructed for the example described in this section.

9.3.2 Specifying an Application

In the following discussion, we describe how a solution to the Josephus problem [59] can

be specified and assembled from reusable components in ABRIE. In particular, we show

how the formal specifications generated by the reverse engineering process can be used to

semantically determine the reusability.

The Josephus game can be described as follows: N people, numbered 1 to N, are sitting

in a circle. Starting at person 1, a hot potato is passed. After M passes, the person holding

the hot potato is eliminated, the circle closes ranks, and the game continues with the person

who was sitting after the eliminated person picking up the hot potato. The last remaining

persons wins. Given N and M, the Josephus problem is to determine who will win.
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Figure 9.10 shows the structure of a solution to the Josephus problem that uses a queue

to represent people sitting in a circle. The solution is specified in ABRIE. Component

 

 

  

 

Figure 9.10: Architecture of a solution to Josephus problem

 

master simulates the game, and calls queue operations provided by component queue.

The two components are connected through three connectors of procedure calls. As

shown in the “Component Property” window of Figure 9.10, component queue has three

ports, each of which defines and provides a queue operation. Figure 9.11 shows the

textual specification of the architecture. As shown in Figure 9.11, component master is

implemented using a C source file ijnain.c. Component queue needs to be implemented

and will be the focus of the reuse activities. The required behaviors of its ports have been

specified. In the next subsection, we discuss how a library component can be selected based

on these behavioral specifications to implement the queue interface.
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Architecture jp

Components

Module master

Ports

ProcDef main() ( }

ProcInvoc createQueue() return Queue* ( }

ProcInvoc addToQueue(Queue*,int) return Bool ( }

ProcInvoc delFromQueue(Queue*) return int ( }

Implementation

source('/user/r02/chengb/chenyong/JP', 'jpflmain.c')

End

Module queue

Ports

ProcDef queate() return Queue* {

uses auxTheories;

ensures result.head=0 /\ result.tai1=0;

}

ProcDef qInsert(Queue* q,int i) return Bool (

uses auxTheories;

modifies q;

ensures (q.tai1—q.head = MAXSIZE => result = false)

/\ (q.tail‘ -q.head‘ ~= MAXSIZE

=> ( result = true

/\ q.tail' = q.tail“ + 1

/\ q.data[mod(q.tail“, MAXSIZE)] = i));

l

ProcDef qDelete(Queue* q) return int {

uses auxTheories;

requires q.head‘ ~= q.tail‘;

modifies q;

ensures result=q.data[mod(q.head“, MAXSIZE)]

/\ q.head'=q.head‘+1;

}

End

Connections

CallProc pcl

Roles

Caller -> master . createQueue

Definer —> queue . queate

End

CallProc pc2

Roles

Caller -> master . addToQueue

Definer —> queue . qInsert

End

CallProc pc3

Roles

Caller —> master . delFromQueue

Definer -> queue . qDelete

End

End

Figure 9.11: Architecture specification
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9.3.3 Component Reuse

ABRIE incorporates a library manager for organizing and managing existing components.

Components are classified and retrieved based on their interfaces (i.e., types and ports).

When implementing an abstract component (interface) in an architecture, a single click on

the reuse button in the “Component Property” window (see Figure 9.10) triggers ABRIE

to search for the current library (which is loaded through the library manager). All

components of the same type as the query interface will be presented to the user. Based on

their specifications, the user selects one candidate for further evaluation. Figure 9.12 shows

the scenario of matching the library component circqueue for satisfying interface queue.
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Figure 9.12: Component Matching

 

In order to determine the reusability of circqueue, we need to establish a mapping

from the ports of the target component queue to those of circqueue so that each operation

specified in queue can be implemented by a corresponding operation in circqueue. As

shown in Figure 9.12, we conjecture that qDelete can be matched (implemented) by
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dequeue, qInsert by enQueue, and queate by new_queue. Given a match, specification-

based proof obligations may be generated to validate the matching.

As exhibited in the mapping between circqueue and queue, naming conflicts, such

as qDelete of queue and dequeue of circqueue, may exist between a query specification

and the reused component. Resolving these mismatches is one of the tasks of the

packaging process. Figure 9.13 shows the wrappers generated by ABRIE for resolving the

naming conflicts between circqueue and queue, where wrappers are generated based on the

established port mappings. The packaging process also checks connectors and generates

 

// _circqueue_wrapper.cc

// Generated by ABRIE for wrapping component circqueue

#include 'auxTypes.h"

extern int dequeue(Queue *);

int qDelete(Queue *q) {

return dequeue(q);

}

extern Bool enQueue(Queue *, int);

Bool qInsert(Queue *q, int i) {

return enQueue(q,i);

}

extern Queue* new_queue();

Queue *queate() {

return new_queue();

}

Figure 9.13: Wrappers generated by ABRIE for resolving narrring conflicts

 

their implementation, as well as a system construction file (a makefile) that describes how

an executable system is produced.
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Chapter 10

Related Work

10.1 Introduction

Software maintenance has long been recognized as one of the most costly phases in

software projects [9]. A software system is termed a legacy system if that system has a long

maintenance history. Many techniques have been suggested for the maintenance of legacy

software as is clearly indicated by the number of surveys that have been used to catalog

these techniques [60, 61, 62]. Due to the increasing visibility of the Year 2000 Problem

(e.g., Y2K) ‘ many more tools have been suggested and subsequently catalogued [63].

Given the large number of tools, identifying one appropriate for the goals of an

individual organization can be difficult. Currently, the information gathered on software

maintenance tools focuses on surface characteristics for the given tools. That is, the

gathered information typically lists the languages that are supported and the type of by-

products (i.e., artifacts) generated from analyzing the input software with the particular

 

lThe Y2K problem refers to the potential failure of systems due to the use of a two-digit encoding for the

year field in software systems.
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tool. For instance, Bellay and Gall [62] describe capabilities related to usability, parsing

speed, type of by-product, editing facilities, and report generation. Based on feedback and

interaction with industry, it is our claim that in addition to these surveys, it is also useful

to have an analysis of the actual by-products (i.e., function reports, call graphs, data flow

diagrams) in order to gain an understanding of the value of the by-products.

In this chapter, we describe a framework for analyzing software reverse engineering

and design recovery tools and techniques. VVrthin this framework we provide a context by

which software reverse engineering and design recovery tools can be classified according

to the underlying approach used to analyze software, and we define several criteria for

comparing and contrasting tools according to the semantic quality of their by-products.

10.2 Background

Chapter 2 described background information about the area of software maintenance

and reverse engineering. In the context of software maintenance, we define a structural

abstraction to be a description of a software system that is based on the syntactic properties

of a programming language. For example, encapsulation of a sequence of programming

statements into a module is a structural abstraction. We contrast structural abstraction with

the term functional abstraction. A functional abstraction is a description of a software

system that is based on the semantics of a program. That is, a functional abstraction

describes program behavior. For instance, if a sequence of statements is grouped into a

module, the high-level description of the function of that module is a functional abstraction.

Recent work in the area of reverse engineering has focused on both the derivation of

structural and functional abstractions from program code.
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10.2.1 Evaluation of Software Technology

Brown and Wallnau [64] describe a framework for evaluating software technology that

is based on two primary goals: (1) understanding how the evaluated technology differs

from other technologies, and (2) understanding how these differences address the needs of

specific usage contexts. In order to achieve these goals, Brown and Wallnau suggest a three

phase process for technology evaluation. These phases are:

1. Descriptive modeling

2. Experiment design, and

3. Experiment evaluation

The descriptive modeling phase is used to create a context for candidate technologies.

A descriptive model is a description of the assumptions concerning features and their

relationship to usage contexts [64]. Two types of descriptive models are the technology

genealogy and the problem domain habitat. The technology genealogy describes the

historical context for a given technology, and a problem habitat describes how the features

of a given technology can be used as well as what the benefits of their use will be.

The experiment design phase involves three primary activities: (1) comparitive feature

analysis, (2) hypothesis formulation, and (3) experiment design. In this phase, the goals are

to develop a set of hypotheses about the added value of a technology that can be established

by experiments, and to identify the experiments that are used to substantiate or refute the

hypotheses [64].

The final phase, experiment evaluation, involves performing experiments to confirm or

refute the hypotheses. Brown and Wallnau identify a few different classes of experiments

that can be useful in evaluating hypotheses [64]. These experiment categories include:
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0 Model problems: narrowly defined problems that are easily addressed by the

candidate technologies. Model problems allow alternative technologies to be directly

compared.

0 Compatibility studies: experiments that study how well candidate technologies

operate when combined

0 Demonstrator studies: full scale trial applications of a technology

0 Synthetic benchmarks: standard contrived problems that can be used to evaluate the

differences between candidate technologies

In this chapter, we analyze several reverse engineering support tools using an

assessment technique that is similar to the Brown and Wallnau “Technology Delta

Framewor ”. Specifically, we present the results of the descriptive modeling phase,

where we describe a hierarchical genealogy of reverse engineering techniques. In

addition, we define several semantic dimensions that are used to qualitatively evaluate

some representative reverse engineering support tools, an activity that corresponds to

constructing a reference model in the experiment design phase in the technology delta

framework. Next, we describe the informal and formal techniques for reverse engineering,

respectively. Finally, we provides a comparative analysis of all of the techniques.

10.2.2 Previous Surveys

The Air Force Software Technology Support Center (STSC) published a two volume report

that compiles information about hundreds of tools that are available for reengineering

purposes [61]. While the report lists many tools, the descriptions of the tools are

often limited to high-level properties, such as supported languages and vendor contact

information. Similar surveys by Zvegintzov [60, 63] also collect descriptions of

Reengineering and Y2K tools with the same shortcomings of the STSC report. However,
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the Y2K survey [63] does classify the tools based on their intended capabilities. For

instance, some of the categories used to group tools are based on whether the tools

support activities such as inventory analysis (e.g., identification of the executable software

inventory), recovering sourcefrom object (e.g., analysis of binaries in the case that source

is not available) , and conversion (e.g., identification ofcode and data structures that require

modification).

A recent survey by Bellay and Gall [62] compares four reverse engineering tools using

several criteria that are used to analyze the effectiveness of the input parsers, the by-

product representations, the editing and browsing capabilities, and the general usability

of the tools. While the survey in this chapter does provide a more in-depth view of tools

when compared to the previous surveys, it focuses primarily on tool properties as opposed

to the characteristics and qualities of the tool by-products.

Our approach to surveying and analyzing software reverse engineering and design

recovery tools and techniques is meant to provide a framework for assessing the quality

and usability of the by-products. As such, this survey provides a complementary approach

to the assessment and comparison of tools such as those contained in the surveys described

above.

10.3 Taxonomy

In order to classify automated and semi-automated reverse engineering techniques, we

have developed the hierarchical taxonomy shown in Figure 10.1. At the highest level, the

techniques can be subdivided into two classes: informal andformal. Informal approaches

are those methods that rely on pattern matching and user-driven clustering based on
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the syntactic structure of code. The pattern matching and clustering approaches are

considered informal because either the representations that are constructed are informal, or

the consistency between the design specification and the source code cannot be rigorously

verified. Nonetheless, the informal techniques do provide a means for deriving abstractions

about the general function of a program. Theformal approaches are those techniques that

are based on using some type of formal analytical method for deriving a specification from

source code. The basis for the formal techniques are grounded in mathematical logic so that

each step can be formally verified. The primary difference between the informal techniques

and the formal techniques is the use of formal specification languages that have well-

defined syntax and semantics. In addition, the formal techniques have associated inference

rules that can be used to construct proofs in order to rigorously verify the correctness of

each step of the reverse engineering process. The remainder of the section describes each

of the categories shown in Figure 10.1.

Various reverse engineering and program understanding techniques can be evaluated

and classified using the taxonomy in Figure 10.1. The utility of classifying tools using

this taxonomy is that it provides a means for determining the current trends in supporting

reverse engineering and design recovery, and aids in identifying the areas that require

further investigation. In Sections 10.5.1 and 10.5.2 we describe several representative

techniques and classify them accordingly. As a notational convention, a numerical tag

follows the name of each approach to indicate the classification of the technique within the

taxonomy. For instance, a tool “foo” might fall in class “2” to indicate that the technique is

an informal, plan-based, commercial tool. The annotations at the leaves of the classification

hierarchy in Figure 10.1 associate each tag to a location in the classification.
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Research FXR
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Figure 10.1: A Taxonomy of Reverse Engineering Techniques

 

10.3.1 Informal Techniques

In the context of reverse engineering and program understanding, a technique is classified

as informal if the methods used to recover designs from source code is based on pattern

matching or analysis of syntactic structures as opposed to semantic structures. The

informal techniques can be decomposed into two additional subcategories: plan-based

and parsing-based. The plan-based techniques rely primarily on using pattern matching

to identify clichés or plans within source code and have been a major focus in both

research and commercial organizations. A program plan is a description of a computational

unit contained within a program where a computational unit performs some abstract

function [44]. A program plan can be localized or de-Iocalized in the sense that the code

recognized as satisfying the plan can be located in contiguous (localized) or non-contiguous
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(dc-localized) sequences of code [65]. To date, most plan-based approaches have been

developed by research organizations [36, 66, 67], although some industrial adoption of this

approach is occurring [68].

A parsing-based approach is one in which a program is analyzed using the properties

of the syntactic structure of a language. In general, the parsing-based approach is used

to construct a high-level structural abstraction of the source code. These abstractions

typically come in the form of data flow diagrams or some other graphical representation

of the design. A significant number of commercial tools use a parsing-based technique for

supporting reverse engineering [69, 70], and research organizations continue to investigate

the use of advanced parsing-based approaches [37, 71].

10.3.2 Formal Techniques

Formal methods for software development are analytical techniques for assuring, by

construction, that a derived specification is correct with respect to some other specification.

A reverse engineering technique is formal if the steps of the method have a formal

mathematical basis. When applied to reverse engineering, a formal method takes as input a

source program (a low-level specification) and derives a formal specification. In the formal

context, reverse engineering techniques can be subdivided into two categories: techniques

that use a knowledge-base or transformation library to derive formal specifications from

code, and techniques that use derivation or translation to derive formal specifications from

code.

A transformation is a means for changing a specification from one form to another

while preserving the semantics of the specification. In the context of programs, a program
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transformation is a means for changing a program from one form to another while

preserving the semantics of the program. Each program transformation is typically used to

change a group of programming statements at a time, where the group is determined by the

author of the particular transformation.

Transformation is contrasted with translation, where a translation is also a means for

changing a program from one form to another while preserving semantics but at an atomic

level of granularity. The primary difference between transformation and translation is the

degree to which high-level knowledge about a problem domain or programming language

is incorporated into the transformation or translation rules. In the case of transformation,

the rules typically involve transforming aggregations of programming statements into

simpler, equivalent sequences of statements (as is the case in restructuring transformations)

or concise formal specifications. In many cases, a large library of transformations is

required to capture the many different possible code constructions. Translation, in contrast,

involves much simpler rules that are based on single atomic statements such as assignments,

conditionals, and iteratives, thus requiring fewer rules. A program compiler can be

considered a translator since each program statement is translated into an equivalent binary

form. In the context of program reverse engineering, a translation technique is one that

translates a program into an equivalent formal specification.

Research into the use of formal methods for reverse engineering has addressed both the

use of transformation [72, 73] and translation [6]. Industrial adoption of such techniques

has begun but is limited [39, 74].
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10.4 Semantic Dimensions

A by-product is an artifact that is constructed by a reverse engineering tool as a result of

analyzing program code. One way to evaluate the by-products of a tool or technique is

to simply list the formats and representations that are produced by a particular tool. For

instance, one tool might produce reports about the data structure formats, as well as visual

representations such as callgraphs and data flow diagrams. While this knowledge about a

tool is extremely helpful, it is of equal importance to understand the nature of these by-

products and to evaluate a tool based on this information. In order to analyze the value

of the by-products of the various tools, we define four semantic dimensions: distance,

accuracy, precision, and traceability. These measures enable a software maintainer to

evaluate a tool based on the level of importance placed on the consistency between an

abstract representation as compared to a given implementation.

10.4.1 Semantic Distance

The semantic distance describes the number of levels of abstraction that separate an input

and an output of a particular technique. The semantic distance is a relative distance, since

no absolute measure of abstractness can reasonably be developed. Instead, a subjective

measure based on the level of algorithmic detail must be considered.

As a rule of thumb, the greater the semantic distance, the more abstract the by-product.

Suppose, for instance, we translated source code from FORTRAN to C. Since there is no

difference in the level of abstraction between the two representations, the semantic distance

is low or non-existent. On the other hand, if we reverse engineer source code from C into

a data-flow diagram representation, the semantic distance is higher. At the extreme, we
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might reverse engineer source code from C into a description of the concept of the program;

a transformation that would result in the highest degree of semantic distance.

A concept related to the semantic distance is the inter-step distance that measures

the semantic distance between each intermediate step of a technique. For example, if

a reverse engineering technique is comprised of three steps, where each step produces

a representation that is more abstract than the previous step, the semantic distance that

separates each step in the technique is the inter-step distance.

10.4.2 Semantic Accuracy

The semantic accuracy describes the level of confidence that a specification is correct with

respect to the input (i.e., source code). Many of the by-products derived from an analysis

of syntactic information rarely have a low semantic accuracy. That is, the information

that is recovered from the source code is accurate with a high degree of confidence. In

contrast, the techniques that derive by-products based on semantic information may not be

as accurate. For instance, those techniques that are based on the plan abstraction approach

may rely on the assumption that plans are not interleaved [65], and, as such, may ignore

the effect of cancellation or composition in their description of a particular sequence of

software. That is, two or more program plans may be identified in the same sequence of

code, but their combined effects may not be well-understood and thus, the accuracy of the

design abstraction may be reduced.

One of the factors that impacts the semantic accuracy of a given technique is the number

of analysis stages and the inter-step distances between the stages. This is due to the fact that
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an abstraction omits certain information that is embedded in a lower-level representation.

The composition of these stages results in an increased potential for a loss of accuracy.

10.4.3 Semantic Precision

Semantic precision describes the level of detail of a specification and the degree that the

specification is formal. Figure 10.2 depicts a precision hierarchy for a set of tool by-

products. A formal specification is the most precise given the well-defined syntax and

semantics associated with this form of description. The least precise by-product is natural

language due to its potential for ambiguity. A more precise specification is apt to be more

amenable to automated analytical processing while a less precise specification better suited

for discussions between programmers.

 

A)

Formal Specification

8 .8

E g Graphs/Diagrams

3 g
3 2 Pseudocode

v Natural Language  
Figure 10.2: Precision Hierarchy

 

10.4.4 Semantic Traceability

Semantic traceability describes the degree that a specification can be used to reconstruct

an equivalent program. Semantic traceability highly depends on the semantic accuracy

and semantic precision of the end by-product since the accuracy will contribute to the
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degree to which the original program and the new program correspond semantically, and

the precision will contribute to the degree that the representation is free of ambiguity.

Furthermore, the semantic precision will impact the amount of semantic information that

can be used to construct the new program. For instance, a formal specification might

have a high degree of semantic traceability while a graphical design has a low degree of

semantic traceability. The ability of a programmer to reproduce a working system varies

greatly between a formal specification and a graphical design since semantic information

is contained in the formal specification while, in general, only syntactic information is

contained in a graphical design.

10.4.5 Discussion

Ideally, a design derived from program code has a balance between all of the semantic

dimensions. A large semantic distance may produce a more abstract specification but if

that specification lacks accuracy and precision, there is a low degree of confidence that

the specification captures the actual functionality of the source code. On the other hand, a

specification with a high degree of precision and traceability that lacks a reasonably large

semantic distance may be difficult to understand. In the end, it is the software maintenance

programmer that must weigh the goals of a project against the relative advantages and

disadvantages offered by the by-products of the various techniques in order to make the

appropriate decision for a particular project or organization.
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10.5 A Representative Tools Survey

In this section, we survey a number of tools that can be used to support reverse engineering

and design recovery. Several of the tools are commercially available systems while a

number of other tools are systems that are currently being developed as part of research

activities. There are far too many reverse engineering and design recovery systems

available to enumerate them all in this context. Instead, we have selected a number of

representative tools that exhibit several of the properties discussed earlier. The survey is

decomposed into two broad categories that correspond to the taxonomy in Section 10.3:

informal and formal-based techniques. Within each category, additional criteria are used to

describe the various techniques and tools.

10.5.1 Informal Techniques

This section describes different informal approaches that have been applied to reverse

engineering and design recovery. As a convention, the name of each approach is followed

by a numerical tag corresponding to the classification hierarchy given in Figure 10.1.

Plan-Based Approaches (IPLR and IPLC Classes)

A program cliché is a commonly used sequence of code that performs some specific

function. The term plan is used to refer to the knowledge representation for describing

clichés [44]. Typically a plan contains an event section for describing the conditions that

must exist in order for an instance of the cliché to be present.

An example plan is shown in Figure 10.3 [36]. The plan has two sections: an event

section (consists of), and a constraints section (such that). The event section is as described
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above. The constraints section provides additional conditions for evaluating the events

within a specific context of the program. Essentially, the plan in Figure 10.3 states that

if the events of reader, eof—test, and repeater are recognized with respect to the

constraints, then the concept READ-PROCESS-ALL-VALUES has been recognized.

 

READ-PROCESS-ALL-VALUES( value: ?value, PROCESS: ?body)

consists of

reader: FETCH-INPUT-VALUE(RESULT: ?inp-res, VALUES: ?value)

eof—test: NOT-EQUAL(OP1: ?inp—res, 0P2: EOF)

repeater: LOOP(TEST: ?test, BODY: ?body)

such that

contained—in(reader, ?test)

contained-in(eof—test, ?test)

data—dep(eof-test, reader, ?inp—res)

Figure 10.3: Example Plan

 

Many of the plan-based techniques use a three step process that involves parsing the

program, identifying the events, and matching the events with the plans contained in a plan

library. The variations, to be described in the next few sections, are often related to the

methods used to construct the plans to either make the techniques faster, more efficient, or

convey some other view of the design of a system.

Cobol/SRE (IPLR, IPLC). The Cobol System Renovation Environment, or CobollSRE,

is a toolset developed by the Andersen Consulting Center for Strategic Technology

Research [66, 75]. The approach used in Cobol/SRE is based on the use of program plans

with the intent of identifying abstract concepts in code. These abstract concepts can be

classified as programming concepts, architectural concepts, and domain concepts [75].

While programming concepts can be automatically determined by parsing, architectural
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and domain concepts require knowledge about architecture and domains to be encoded

into a plan library.

In the Cobol/SRE approach, concepts in programs are recognized by decomposing

programs into their equivalent abstract syntax tree and performing syntactic pattern

matching against the cliche library. Higher level concepts are recognized via a method of

substitution whereby constraints (or sub-concepts) for a high-level concept are instantiated

with previously recognized lower level concepts. In addition, Cobol/SRE has features that

support flow analysis, slicing (a decomposition technique that extracts program statements

that are relevant to the scope of a particular computation from a program [76]), complexity

analysis, and anomaly detection.

Cobol/SRE allows users to determine which program segments to analyze and which

rules to use. Criteria for selection of segments include selection using condition-based

slicing [76], forward slicing [76], and ripple-effect analysis [76]. Upon completion of the

recognition process, a window lists which concepts were recognized. Other information,

including which rules were used in recognizing the concepts, is available for user analysis

purposes. The toolset has been applied to a commercial production control system

consisting of approximately 8000 COBOL modules.

 

 

 

 

 

COBOL/SRE Summary.

Name COBOL/SRE

Class Informal-Plan-Research/Commercial

By-Products Code decomposed into commented segments

Language COBOL

Operating System Unix    
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DECODE (IPLR). DECODE uses a plan-based approach to provide an environment

for supporting the cooperative understanding of programs via the construction of an

object-oriented design from COBOL code [36]. The program understanding system is

used to recognize as much of the program as possible with the programmer filling in

where DECODE fails. Based on the COBOL/SRE approach, DECODE uses three major

components to support program understanding: an automated program recognizer (APU),

a knowledge base for storing information about a given program, and a design notebook for

allowing a user to edit retrieved designs as well as construct queries for answering questions

about the designs.

The DECODE technique has three primary steps: an automated understanding

step, a user-driven, machine-aided understanding step, and a query step. In the

automated understanding step, the APU is used to identify the existence of both low-level

(incremental) and design level or design-oriented concepts in a system. To support this

activity, plans are extended to have links to high-level conceptual design elements. In

addition, special associations such as specializations and implications are allowed.

In cases where the APU is only able to understand parts of a system, DECODE aids

the programmer in understanding the remainder by use of a structured notebook. This

activity works by allowing a programmer to browse through the code and the initial design.

Once the user recognizes new design concepts, those concepts can be added to the design

and the code can be linked to the new design element. Once an appropriate design has

been constructed, queries about the design and program can be made. DECODE supports

queries about the function of certain sections of code, the location of code corresponding

to the design, and the status of the design (e.g., has the design been completed?)
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The graphical user interface of DECODE consists of many elements including a code

browser and a design-editor, which provides a graphical depiction of the extracted design.

 

 

 

 

 

DECODE Summary.

Name DECODE

Class Informal-Plan-Research

By-Products Graphical Design Representation

Language C, COBOL

Operating System Unix    

LANTeRN (IPLR). The “Loop ANalysis Tool for Recognizing Natural concepts” or

LANTeRN is an approach that uses a multi-step process to construct predicate logic

annotations for loops [67]. The analysis process translates and normalizes loop programs

into forms that are amenable to matching various components of loops. A knowledge base

or plan library is used to identify stereotypical loop events, where events are in the form of

basic events and augmentation events.

A basic event (BE) is a fragment of a loop that forms the control aspect of a loop. These

are typically made up of conditions, enumerations, and initializations, where a condition is

a clause of the loop guarding condition, the enumeration is the segment of code that ensures

that data flows into the condition, and the initializations are the statements responsible

for the initializations of the variables into the loop condition. Augmented events (AE)

make up the remaining components of the loop body. The AE’s are subdivided into two

subcategories: the body and the initialization. The initialization is the set of statements used

to initialize the variables contained in the loop body, while the body is all other statements

in the loop not associated to data flow into the loop conditions.
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Upon analysis of the events contained within a loop, a pattern matching library is used

to characterize the loop. When a match of a rule antecedent occurs, the corresponding

formal specification is constructed by using the consequent of the fired rule. These

consequents have information such as preconditions, postconditions, and invariants.

The structure of the plan library is based on a classification of stereotypical loops. This

classification is based on the characterization of the structural forms of loop conditions

(i.e., single condition vs. multiple condition), the loop bodies, and the variables used to

determine the loop conditions. LANTeRN uses these characterizations in order to identify

the appropriate rules to apply a loop program. In order to facilitate efficiency, many rules

are abstracted and generalized into a hierarchy of plans.

The approach taken by the LANTeRN system moves in the direction of making plan-

based approaches more formal in that the final product of the loop analysis activity is

the construction of a formal specification. However, while the activity produces a formal

specification, there is no formal basis for the verification that the specification of the plan

matches the true semantics of a loop that is being analyzed.

 

 

 

 

 

LANTeRN Summary.

Name LANTeRN

Class Informal-Plan-Research

By-Products Formal specification (axiomatic)

Language Pascal

Operating System NA     

Xinotech (IPLC). Xinotech is an interactive environment that is based on the use of a

meta-language called the Xinotech Meta-Language, or XML [68]. The Xinotech approach
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is based on the plan, or cliche approach described earlier. The process used for analyzing

software is comprised of steps that are used to translate source code into the intermediate

XML representation, apply concept or plan recognition techniques, and then represent

the design of the system using multiple textual and graphical views. In addition, the

Xinotech system provides support for several different methodologies for analysis and code

transformations.

The Xinotech approach is characterized primarily by the extensive use of meta-

languages. These meta-languages are general purpose languages that make the Xinotech

tool applicable to many different source languages through translation into the XML

language. Plan-based transformations in Xinotech are specified using the Xinotech Plan

Abstraction Meta-Language (XPAL) and allow Xinotech to make transformations of code

into higher level abstractions. Features of Xinotech include the ability to support many

views or models of a particular system.

 

 

 

 

 

Xinotech Summary.

Name Xinotech

Class Informal-Plan-Commercial

By-Products Textual and graphical designs

Language Several

Operating System Unix, Windows     

Parsing-Based Approaches (IPAR and IPAC Classes)

Many commercial tools have been developed to address software maintenance issues.

In general, these tools are typically parser-based. The by-products of these techniques

generally consist of call graphs and flow diagrams although many other representations
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exist and are produced by these systems. This section describes three commercially

available systems and two systems developed by research organizations.

Refine (IPAC). The Software Refinery and Refine Language Tools by Reasoning Systems

have been the basis for many reverse and re—engineering tools [77]. By supporting such

features as user extensions, Refine-based tools have grown in popularity.

The Refine Language tools support reverse and re-engineering efforts for programs

written in various programming languages including Ada, C, COBOL, and FORTRAN.

Features of the Refine tools include interactive source code browsing, generation of various

reports such as structure charts and identifier (i.e., variable) definitions. A major feature

of the Refine tools is the open architecture that allows users to tailor Refine to specific

language dialects.

Refine Language tools, when combined with the Software Refinery, provide an

environment for producing reverse and re-engineering applications through the use of a

three part process of loading code into an object database, selecting code and operations to

be applied to the code, and executing the operations. The Software Refinery is divided into

three tools that support this process and allow users to construct custom re-engineering

tools: DIALECT, REFINE, and INTERVISTA. These tools are used to support parsing,

symbolic computation, and user interface construction, respectively.

The Refine-based tools have been used in a number of well-documented instances for

building reverse and re-engineering applications [78]. In addition, the Refine-based tools

have been used to support many research—oriented activities [75].
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Refine Summary.

 

 

 

 

 

 

Name Refine

Class Informal-Parsing-Commercial

By-Products Graphical views

Language Several

Operating System Unix   

McCabe Visual Reengineering Toolset (IPAC). The McCabe Visual Reengineering

Toolset (VRT) provides a graphical environment for supporting code analysis [70]. The

VRT tools combine metric, complexity, and static information to aid in many reengineering

tasks.

The key feature of the McCabe VRT is the production of graphical views of a

program including structures charts that are combined with information about various

complexity measures of a system (e.g., cyclomatic). In addition, McCabe VRT supports the

identification and elimination of redundant and dead code. Other features include testing

aids for determining logic and data complexity tests.

One of the strongest characteristics of the McCabe VRT is the number of languages

(over 15) that are supported, including Ada, COBOL, C, C++, and ASM370. These tools

operate on numerous platforms and operating systems.

 

 

 

 

 

McCabe VRT Summary.

Name McCabe VRT

Class Informal-Parsing-Commercial

By-Products Text and Graphical views

Language Several

Operating System Unix, Windows    
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Imagix 4D (IPAC) Imagix 4D is a graphical tool for supporting program understanding

through the use of multiple views of a system [69]. The main features include a 3

dimensional view of the software structure on an xyz-axis and supports hypertext browsing

of source code.

Imagix 4D uses a static syntactic analysis technique of various software sources

including code and makefiles to build a database of information about a subject system.

Structure charts, control flow, data usage, and inheritance information is used to aid the

user in the analysis process, and support for multiple views enables a user to analyze the

system based on data types, file dependencies, and function calls. Imagix 4D allows a user

to automatically construct documents from information gathered during analysis. Imagix

4D supports C and C++ source code and runs on Sun workstations.

 

 

 

 

 

Imagix 4D Summary.

Name Imagix 4D

Class Informal-Parsing-Commercial

By-Products Text and Graphical views

Language C, CH-

Operating System Unix    

Rigi (IPAR). Rigi is a parsing-based tool that focuses on constructing structural

abstractions by facilitating the management of the complexity of a graph derived from

source code [37]. Rigi uses a three step process to support program understanding. The first

step, parsing, constructs a representation suitable for proceeding to the second step, graph

construction and visualization. The initial graph (e.g., a call graph) can be passed through

filters that allow a user to select the subsystems of interest. The final step, an interactive and
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iterative one, allows a user to reduce the complexity of the graphs by collapsing vertices in

the graph into functional groups, and supports the hierarchical browsing of the graph.

The underlying approach in Rigi for automatically constructing subsystems and

functional groups is a bottom-up technique. The strength of Rigi is the use of composition

operations based on well-established software engineering concepts such as coupling and

cohesion that aid in the construction of graphical specifications that depict either the calling

hierarchy of a system or some other view of that hierarchy, such as subsystems and abstract

data types. Rigi has been applied to a number of real projects including applications from

IBM, NASA, and a commercially available system called Doctor’s Practice Management

 

 

 

 

 

System [79].

Rigi Summary.

Name Rigi

Class Informal-Parsing-Research

By-Products Graphically-oriented design

Language C, C++, COBOL

Operating System Unix, Windows, Linux     

Reflexion Models (IPAR). A Software Reflexion Model is a model that is used to

represent differences between an engineer’s high-level model and a corresponding low-

level model of the original source code [71]. This approach consists of three major steps:

1. High-level model definition

2. Source (low-level) model extraction from the source

3. Definition of a declarative mapping between the high-level model and low-level

model

4. Computation of a refiexion model
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Steps 1 and 3 are performed by the software maintenance programmer while automated

tools can be used to perform steps 2 and 4. The by-products of this approach consist

of high-level, low-level, and reflexion models. The representation used in these models

depends entirely upon the software maintenance programmer as well as the tools used

to construct the low-level source model. A reflexion model is represented by a graph

that closely resembles a high-level model provided by a user. The primary modules of

the high-level model are retained and arcs between the modules (typically represented by

rectangles or circles) indicate whether or not flows between the modules are consistent (or

inconsistent) with the user-defined mapping.

The primary value of the reflexion models is the capability to communicate to the

software maintenance programmer the differences between the perceived structure of the

system (i.e., the high-level model) and the actual structure of the system (i.e., the source

model). A tool to support this approach, called RMTool, has been used to analyze C and

C++ source code, but the tool (and approach) is not limited to these languages. The size of

the programs analyzed range in size with the largest being an industrial system with over a

 

 

 

 

 

million lines of code [80].

RMTool Summary.

Name RMTool

Class Informal-Parsing-Research

By-Products Graphically-oriented design, Reflexion model

Language Primarily C. Easily retargetted.

Operating System Unix, Windows NT     
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10.5.2 Formal Techniques

This section describes the different formal approaches that have been applied to reverse

engineering and design recovery.

Transformation (FTR and FTC Classes)

Program transformations have been used primarily for forward engineering and the

development of programs [81, 82, 83, 40]. A program transformation is a semantic

preserving operation where a part of a program is replaced with a semantically equivalent

construct. When applied in forward engineering, a transformation may replace a high-

level specification with an implementation of the specification. In reverse engineering,

transformations are generally aimed at replacing sequences of code with semantically

equivalent formal specifications.

In general, the theoretical foundations of transformations are based on proving the

equivalence of the components of a transformation. For instance, if a construct a is to

be replaced with some other construct 3, the black box behavior of a and [3 must be proven

to be equivalent with respect to the initial and final states. Transformations can be at the

same level (as is typical with a restructuring transformation), refinements (commonly found

in program synthesis), or abstractions (which are appropriate for reverse engineering).

The main difference between a transformation and a program plan is that the

transformations are semantically preserving, meaning that a part being replaced during

a transformation is provably equivalent to the part it is being replaced by. A program plan,

on the other hand, is a knowledge representation and recognition rule from which claims

about correctness cannot be formally verified.
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Maintainer’s Assistant (FIR). The Maintainer’s Assistant [84] is a reverse engineering

environment used for reverse engineering program code into formal specifications using

semantics-preserving transformations. The primary feature of the Maintainer’s Assistant

is the use of a formally defined wide spectrum language. A wide spectrum language

is a multi-purpose language that combines low-level programming constructs such as

assignment, alternation, and iteration with high-level formal specification constructs. In the

context of the wide spectrum language wsl, several transformations have been developed

for supporting software maintenance activities [84].

An example transformation, called a loop inversion [84], is as follows. Assuming that

the statements 81 and 82 have no exits, a code sequence “do SI; 82 0d” can be inverted

to “SI; do 82; 81 0d”. The library of semantic preserving transformations used by the

Maintainer’s Assistant plays a major role in the reverse engineering process, where the

system keeps track of information about the applicability of a particular transformation.

The program transformation process is a user-driven activity where a programmer browses

through code with a graphical interface and chooses when to apply transformations. The

final by-product of the Maintainer’s Assistant is a formal specification written in the wsl

language [85]. As such, the specification can consist of several statements expressed at

different levels of abstraction. As such, the specification may retain the sequential style of

the original program.

The Maintainer’s Assistant toolset was initially developed to support the IBM370

Assembler language and a subset of BASIC and has been applied to portions of the IBM

CICS product. In addition, the system has been expanded to support the reverse engineering

of concurrent programs [86].
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Maintainer’s Assistant Summary.

 

 

 

 

 

 

Name Maintainer’s Assistant

Class Formal-Transformational-Research

By-Products First-order logic (WSL) specification

Language WSL, IBM370 Assembler

Operating System Unix   

Design Maintenance System (FTC). Baxter and Mehlich [39] describe an approach

to reverse engineering that is based on the idea that reverse engineering consists of the

“backwards” application of program transformations. In order to construct a library

of transformations, the approach records the transformations that are used to instantiate

program plans in a forward transformation system. The approach advocates design

maintenance as the primary means for maintaining a system, thus avoiding the need to

continually reverse engineer a system over its lifetime.

While the primary emphasis in this approach is the use of a transformational engine,

plan recognition technology is used extensively as a means for retrieving “clues” about

various aspects of the input code [39]. That is, program plans are used to guide the

transformation process. The approach, supported by a domain based transformation system

called the Design Maintenance System or (DMS) has been used to analyze source code

written in Motorola 6809 assembler code.

 

 

 

 

 

DMS Summary.

Name Design Maintenance System

Class Formal-Transformational-Commercial

By-Products NA

Language NA

Operating System NA    
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REDO (FTR). The REDO Project [73] produced tools for reverse engineering COBOL

program code into Z and Z“ specifications. The technique involves a three step process

where:

e COBOL programs are translated into an intermediate language called UNIFORM,

0 Functional abstractions are derived from UNIFORM code, and

e Simplifying transformations are applied to the functional abstractions and objects are

derived by combining functions.

Therefore, the REDO approach can be considered to be a hybrid between translation

and transformation techniques although the primary reverse engineering activity is

transformational.

In order to derive high-level abstractions from the UNIFORM code, a data-flow analysis

is performed in order to identify data variables and functions associated to various data

structures. The technique also attempts to find logically connected pieces of single entry

and single exit code as a means for identifying abstract functional units. Transformations

are then applied to these abstractions in order to derive object-oriented specifications using

 

 

 

 

 

Z++ [73].

REDO Summary.

Name REDO

Class Formal-Transformation/'I‘ranslanon-Research

By-Products Z++ Specification

Language COBOL

Operating System Unix    
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Translation (FXR and FXC Classes)

Formal translation is the process of deriving semantically equivalent representations

of atomic programming constructs using the formal semantics of a language. The

primary difference between a translation and a transformation is the level of granularity

of the translation. A translation occurs at the atomic level and is associated directly

to programming constructs, whereas a transformation may involve longer sequences.

As a result, translation is more accurate and traceable (i.e., reproducible). However,

translation often produces by-products with a smaller semantic distance between code and

specification, resulting in a representation that contains an implementation bias.

Peritus Software Services (FXC). Peritus Software Services is an organization that

specializes in the support of software evolution activities. Many of their techniques

focus on the application of weakest precondition for logical code analysis. The weakest

precondition predicate transformer wp(S, R) is defined as the set of all states in which the

statement S can begin execution and terminate with postcondition R true, meaning that

given S and R, if the computation of S begins in state wp(S, R), then the program S will

halt with condition R true.

The Pertitus Code Analyzer (PCA) is a tool that has been developed to support

the Peritus approach to logical code analysis [74]. The approach used by the PCA

system is a three step process. First, the input source code is translated into the Peritus

Intermediate Language (PIL). Second, the PIL program is analyzed using several static

analysis techniques including slicing. In addition functions are highlighted and identified

for further processing. Finally, the code is analyzed using logical analysis techniques based
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on the use of wp. The logical analysis step is the primary reverse engineering and design

recovery activity, where the analysis of the source is decomposed into four parts including

the analysis of (1) terminating, non-iterating code, (2) terminating, iterating code, (3) non-

terminating execution of independently terminating programs, and (4) multi-tasking code.

PCA Summary.

 

 

 

 

 

 

Name Peritus Code Analyzer

Class Formal-Translation-Commercial

By-Products First—order logic specifications

Language COBOL, C, RPG, PL/I

Operating System NA    

AUTOSPEC (FXC). The AUTOSPEC suite of tools use a formal translation-based

approach to derive formal specifications. For a complete description of the AUTOSPEC

tools, please refer to Chapter 8.

AUTOSPEC Summary.

 

 

 

 

 

  

Name AUTOSPEC

Class Formal-Translation-Research

By-Products Formal Specification, Graphically-oriented diagram

Language Dijkstra, C

Operating System Unix, Linux  
 

10.6 Comparison

In this section we evaluate the different approaches by comparing them based on surface or

informational criteria as well as the semantic dimensions of the tool by-products.
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10.6.1 Comparison Criteria

The criteria to be used in comparing the different approaches are subdivided into two

groups: informational and evaluational. The informational criterion are a high-level

list of surface characteristics, such as source language, platform, and technique. These

criterion serve to provide a quick glance index to the reader and a means for quickly

finding more information about a system if so desired. The evaluational criteria are a

list of detailed characteristics that allow a user to evaluate the differences between the

respective approaches. These characteristics include extensibility, high-level abstractions,

formal specifications, metrics, standard diagrams, precision level, and traceability level.

10.6.2 Informational Criteria

Informational criteria provide a quantitative means for measuring each of the tools

described in this chapter. That is, each of the criteria can be used as a feature “checkbox”

for a tool. In this paper we use a small set of informational criteria consisting of Languages,

Platforms, and Techniques. Bellay and Gall [62] list several other criterion of this type. The

language criteria indicate the languages supported by a particular tool. The languages that

the various tools support range from C, C++, COBOL, ADA, and FORTRAN. Platform

criteria are used to indicate on which hardware platforms the tools can execute. The

platforms include support for PC, Sun, IBM RS6000, HP, and Macintosh. The approach

(e.g., informal/formal, plan/parsing, etc.) is also used to further classify each technique.

The survey by Bellay and Gall covers many more characteristics that are informational in

nature [62].
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10.6.3 Evaluational Criteria

The evaluational criteria provide a more in-depth means for categorizing different tools.

These criteria provide a means for differentiating tools according to the by-products. The

by-products include structure charts, flow diagrams, data dictionaries, metrics, complexity

measures, and formal specifications. Another type of evaluational criteria is the Open

Interface characteristic which indicates whether a tool has an application programming

interface (API) to allow users to build applications. In addition, we compare the

characteristics of the by-products by indicating whether the tool produces structural or

functional abstractions. In addition, the evaluational criterion describe the by-products

using the four semantic dimensions described in Section 10.4 (i.e., distance, accuracy,

precision, and traceability).

10.6.4 A note about by-products

Tool by-products are the artifacts generated by tools as a result of program analysis. Using

the informational and evaluational criteria, different inferences can be made about the value

of a tool with respect to the by-products. For instance, a formal specification is a form of by-

product that has the properties of being precise, and in general, traceable. However, formal

specifications are not generally perceived to be user-friendly (that is, they may require

some specific background education). Additionally, structure charts are user-friendly,

precise, and traceable but lack high-level abstraction. In the remainder of this section

we evaluate the primary by-products of each tool. We also provide an evaluation of the

by-products along each of the semantic dimensions described in Section 10.4. Inferences

about usability, productivity, etc. are all dependent on the final end users.
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10.6.5 Informational Comparison

In this section we compare a number of tools based on the informational criteria

listed above. In addition to evaluating the tools described earlier, we also include the

Logiscope [87], Ensemble [88], and PAT [89] toolsets in the comparison. An index of

tools is provided in Table 10.1. Tables 10.2 and 10.3 summarize the tools based on the

informational criteria.

 

Commercial Tools Research Tools

SR = Software Refinery PA = PAT

VR = McCabe VRT CS = COBOL/SRE

4D = Imagix 4D DE = DECODE

XI = Xinotech Research LT = LANTRN

LS = Logiscope MA = Maintainer’s Assistant

EN = Ensemble Software RE = REDO Toolset

R1 = Rigi

AS = AutoSpec

Table 10.1: Tool Index

 

Table 10.2 compares commercially available tools using the informational criteria.

This table shows that C and COBOL are the most widely supported languages among

commercial tools and that the McCabe VRT tool supports the largest number of languages.

Among platforms, Sun is the most widely supported, although in this comparison we make

no distinction between the Solaris and SunOS Operating Systems. Again, the McCabe

VRT tool supports the largest number of platforms. Among the techniques used, parsing-

based is the most popular. Of note is the fact that the Software Refinery supports the use of

transformations although the built-in tools do not use formal transformation as an analysis
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technique. Finally, of all the commercial tools, only the Xinotech tool uses a plan-based

approach.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SR VR 4D XI LS EN

C O O C C C

C++ C C C

go COBOL O O O O O

E“ ADA e e e e

FORTRAN . . . .

Other C C C

PC 0 0

Sun C C C C C

5 IBM RS6000 C C

5 HP C C

Macintosh

Other C C

Plan-Based O

.3: Parsing-Based C C C C C

E 4!

3 Transformation .

Translation          
Table 10.2: Comparison of Commercial Tools by informational criterion

 

Table 10.3 compares research tools using the informational criterion. This table shows

that, like the commercial tools, C and COBOL are the most widely supported languages.

Of the research tools, Rigi supports the largest number of languages (COBOL, C, C++).

“Other” languages are also more widely supported than FORTRAN and ADA due to the

fact that most research tools use source languages that resemble production languages with

the caveat that translation to and from production languages from the research languages is
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theoretically possible. Among platforms, Sun is supported the most, with the Rigi system

supporting the largest number of platforms (Unix, Windows). The approaches used by the

research tools are divided mainly into two groups: those approaches that use plan-based

techniques, and those approaches that use some formal technique. Only the Rigi system

uses a parsing-based technique.
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Table 10.3: Comparison of Research Tools by informational criterion

 

Parsing-based techniques are the most widely used technique among the commercial

tools, which reflects the fact that the parsing techniques are more mature. The research

tools focus on the use of plans or formal methods, although the plan-based technique has
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been adopted by the commercial tool offered by Xinotech. A possible conjecture is that the

plan-based approach is becoming more mature and is beginning to be adopted by industry.

10.6.6 Evaluational Comparison

Evaluational criteria provide a more qualitative means for comparing the various

approaches. Tables 10.4 and 10.5 summarize the by-products produced by each

tool, grouped by commercial tools and research tools, respectively. Tables 10.6 and

10.7 summarize the characteristics of the by-products using the criterion described in

Section 10.6.3. Again, these tables are grouped by commercial and research tools,

 

 

 

 

 

 

 

 

 

respectively.

SR VR 4D XI LS EN

Structure Charts .1 C C C C

Flow Diagrams C C C

Data Dictionaries C C C C

Metrics C C C

Complexity Measures C C C

Formal Specifications

Other C C C

Open Interface C C         
 

Table 10.4: Comparison of Commercial Tools by By-products

 

Table 10.4 shows the by-products of the various commercial tools. Among commercial

tools, creation of structure charts is the most widely supported activity and the McCabe

VRT and the Ensemble tools create the largest number of by-products. The Software
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Refinery and Xinotech tools provide support for user-defined applications via their

programmer interfaces. Of all the commercial tools, none support the construction of

formal specifications, and only the Xinotech tool creates functional abstractions in the form

of recognized program plans.

 

 

 

 

 

 

 

 

 

PA CS DE LT MA RE R1 AS

Structure Charts C C

Flow Diagrams C

Data Dictionaries

Metrics C C

Complexity Measures

Formal Specifications C C C C

Other C C C

Open Interface C           
Table 10.5: Comparison of Research Tools by By-products

 

Table 10.5 shows the by-products of the various research tools. Most research

approaches focus on the creation of either formal specifications or some other functional

abstraction with only the Rigi tool supporting the creation of structural by-products and

abstractions.

Overall, the main difference between the commercial and the research tools is

the nature of the by-products. That is, the research by-products focus on creating

functional abstractions whereas the commercial by-products focus on generating structural

abstractions, as shown in Tables 10.6 and 10.7. Specifically, Table 10.6 shows that

only the Xinotech tool produces functional abstractions while Table 10.7 shows that
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only the Rigi tool produces structural abstractions. Tables 10.6 and 10.7 also show the

difference between commercial and research tools with respect to the semantic dimensions

(i.e., distance, accuracy, precision, and traceability) of the by-products. In the table,

“H” indicates high, “M” indicates medium, and “L” indicates low so that an H in the

distance row for a tool means that the by-products have a high semantic distance. The

commercial by-products tend to have a low semantic distance but are very accurate in their

representations. On the other hand, the research tools have a high degree of semantic

distance but the accuracy tends to suffer. A few of the research tools also focus on higher

precision but few do well in terms of traceability and accuracy.
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Table 10.6: Comparison of Commercial Tools by evaluational criterion
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Table 10.7: Comparison of Research Tools by evaluational criterion
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Chapter 11

Case Study

Several of the examples that we have presented throughout this dissertation have been self-

contained entities that demonstrated a particular aspect of formal analysis. In this chapter

we present a case study that applies all of the methods for reverse engineering described in

this dissertation to a software system used by the NASA Jet Propulsion Laboratory.

11.1 Overview

In this section we provide an overview of the case study system and outline the objectives

of the analysis.

11.1.1 System Overview

The Command Subsystem provides access and facilitates the command and control of

spacecraft via a user interface. The system supports the control of multiple spacecraft and

provides real-time feedback about the status of radiating commands at each operational

point during the uploading of commands to the spacecraft [90]. In addition, the Command

subsystem supports command file reformatting and direct access to project databases.
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The overall Command process is a six-step sequence as follows [91]:

1. A user accesses the Command Subsystem and prepares a mnemonic

command file.

2. The system translates the mnemonic file to binary format.

3. The binary file is converted into a format required by the Deep Space

Network (DSN) for radiation (i.e., transmission).

4. The Command file is transferred to the DSN for radiation to the

spacecraft.

5. The user can then control and monitor the command file from the

workstation.

6. Exit.

The command translation module of the command subsystem is responsible for two

of the items in the sequence, namely items 2 and 3. Figure 11.1, taken from the

Multimission Ground Data System User’s Guide for Workstation End Users [91] provides

a flowchart of the Command process. The overall size of the command translation

subsystem is approximately five thousand lines of code while the overall command system

is approximately fifty thousand lines of code. The command translation system has an

interesting history that motivates the analysis of the software. The system was originally

developed to support the control of a specific set of spacecraft. Every time a new mission

is developed (for example, the 1997 Cassini mission to Saturn), the software is updated

to handle the translation of spacecraft specific mnemonics. Given the constant change

associated with the system, the analysis of the command translation software justifies its

study using reverse engineering techniques.

11.1.2 Analysis Objectives

In this chapter, we analyze the command translation subsystem in order to demonstrate the

use of a combined informal and formal technique for reverse engineering. The primary
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Figure 11.1: Steps for Preparing, Transferring, and Radiating a Command file

objective of the case study is to illustrate how a formal method can be used along with

informal methods to derive information about the functionality of a software system.
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The application of formal methods to large systems has yet to be effectively

demonstrated. However, formal methods have been shown to yield the highest payoff when

applied to systems that are critical in nature. In the area of reverse engineering, the highest

payoff for formal methods occurs not when applied to an entire system, but rather when

applied to a critical part of a system. In this Chapter, we apply our technique to a portion

of the command translation system that is responsible for processing user mnemonics

(messages). The failure of the translation system can have several impacts including

erroneous messages being transmitted to spacecraft. Our objective is to investigate various

properties of the system such as termination and translation failure.

11.2 Project-Specific Process

Reengineering projects often have project-specific process models that are used to direct

the re-analysis and re-development of software [92]. For this case study we used a process

that involved the following steps:

1. High-level informal analysis

2. Low-level informal analysis

3. Formal analysis

This process is identical in every respect to the framework described in Section 7. At

the macroscopic level this process is not project-specific. However, at the microscopic level

this process has many elements that are specific to the project. For instance, in this case

study, the high-level informal analysis was facilitated by the existence of documentation

that was written by the original developers of the software. In many other projects, the

existence of documents as a resource for high-level analysis can not be assumed.
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One of the assumptions that was made concerning the existing documents was that

constant modifications to the software were not reflected in the documentation. Due to this

lack of document maintenance, it was assumed that only a certain level of detail from the

documents could be determined to be reliable.

The low-level informal analysis was based on the construction of source models (i.e.,

call graphs) in order to recover structural information about the system. Using some

standard visualization tools, the source models were used to determine potential points of

failure. In this context, we use the phrase point offailure to mean those parts of the source

model where there is a large difference between the in-degree and out-degree of a vertex

in the graph. The reason that these vertices of the graph are interesting is that the high

out-degree means that a procedure invokes many other procedures and thus is potentially

a critical procedure. High in-degree vertices in a graph indicate that a procedure is called

often and thus is also a potentially critical procedure.

The formal analysis follows a top-down, bottom-up approach as described in Chapter 7.

In the analysis we focused primarily on issues of mnemonic translation and spacecraft

message construction. Our intent was to examine properties of process termination

and process failure. With process termination, we were interested in determining what

conditions were required for ensuring that the translation process terminates and for process

failure, we were interested in determining what conditions force the translation process to

fail.
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11.3 High-Level Analysis

The first step in the process was to construct a high-level model that described the

overall functionality of the command translation software system. Our primary source

of information for constructing the high-level models were the User’s Guide [91], the

Software Specifications Document [93], and the Detailed Capabilities and Adaptation

Guide [90]. The purpose of the User’s Guide and Software Specifications Document

are self-evident. The Detailed Capabilities and Adaptation Guide provided an executive

overview of the functionality of various parts of the command system.

One of our main assumptions in deriving high-level models from the documents listed

above was that the User’s Guide and Detailed Capabilities and Adaptation Guide were

sources of high-level information and, hence, could be viewed as reliable since conceptual

information rarely changes over the lifetime of a product. For the Sofiware Specifications

Document we assumed that, contrary to the view held towards the User’s Guide and

Detailed Capabilities and Adaptation Guide, the documentation would progressively

become less accurate as more detailed implementation information was encountered. This

assumption is based on the fact that the software document had few revisions from the

initial writing and so the correspondence between the document and the source code as the

models moved closer to the implementation would decrease.

11.3.1 Context Overview

Before any translation operations can occur during on-line commanding, a communicator

must be allocated and connected to be a user at a command workstation. Allocation to a

communicator is performed by a member of the Data System Operations Team (DSOT)
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and is restricted to users at specific workstations who are authorized to command specific

spacecraft. A Communicator is an abstract entity that relates a spacecraft to specific

radiation facilities. Figure 11.2 depicts an object model of the relationship between a

Communicator and various entities and concepts. In particular, a Communicator Table

is an aggregation of many Communicators. When a Communicator is allocated by a DSOT

member, the Command Control processor places that Communicator in the Communicator
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Figure 11.2: Communicator and Related Data Structures

 

Two abstract data objects depicted in Figure 11.2 are Available and Allocated. These are

used to model the fact that resources (i.e., communicators) are either available or allocated.

In the case of allocation, it is possible that an allocated communicator may not be present

in the Communicator table if there is not enough room in memory. Finally, the ternary

relationship between the Communicator, Spacecraft, and Radiation Facility shows that

these entities have some dependent relationship, namely that the Communicator is used

to allocate the resources for communicating to a Spacecraft via some Radiation Facility.
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Another entity depicted in Figure 11.2 is the Workstation data object. The relationship

between Workstation and Radiation Facility models the fact that a Workstation connects-to

a Radiation Facility in order to send a command file for radiation to a spacecraft. This

connection can be either Logical or Physical in the case where a Command Translation

(defined later) is either performed on-line or off—line, respectively. A Workstation also has

a relation to a Project where a Workstation can be designated as being project-specific or

multimission.

11.3.2 Command Translation

Figure 11.3 contains the context diagram for the command translation software subsystem.

This diagram contains one process (bubble) labeled “command translate”, an external

entity (rectangle) labeled “command control”, and three data stores (parallel lines) labeled

“MasterFile Table”, “Communicator Table”, and “Directive Table”. The collector (circle)

is used to abstract the inputs to command translate into one flow (are).
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Figure 11.3: Command Translation Context Diagram
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The Command Control process invokes and passes a communicator index to the

Command Translate process. The Command Translate process uses this index to determine

what operation is to be performed by indexing the Directive Table. The communicator

index is also used to access project files via indirect access through the Communicator Table

and the MasterFile Table. Once the appropriate project files are determined, Command

Translate will perform the desired operation as indicated by the Directive Table. If final

output is written to new output files, the MasterFile Table is updated to reflect the creation

of the new files. Otherwise, no changes are made. Upon completion, Command Translate

writes a return code that is accessed by the Command Control process.

Figure 11.4 contains the data flow diagram for the command translation software

subsystem. This diagram is a refinement of Figure 11.3, where the dashed rectangle

represents the command translate process bubble of Figure 11.3.
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Figure 11.4: Command Translation Data Flow Diagram

 

207



The Translate Control process uses the communicator index in two ways: first,

Translate Control uses the communicator index to reference the Directive Table in order

to determine the operation to be performed, and second, Translate Control uses the

communicator index to resolve the file names of input files and configuration files.

Once the project files have been located, translate control invokes the appropriate

process (either the interpret process or the convert process) for performing the desired

operation. The interpretation process, and similarly conversion, reads mnemonic input

and translates that input into appropriate binary commands. The translation is based on

formats specific to each project. Interpretation (conversion) of mnemonics (binary inputs)

proceeds until either all of the items within an input file have been processed, an error is

encountered, or the user issues a cancel.

Once the mnemonic or binary input has been processed either an output file has been

created and stored in the project directory, the MasterFile table is updated to reflect the

change. If the processing resulted in an error or a cancel, no updates are made. In either

case, a return code is written and accessed by the Command Control process.

Figure 11.5 contains the object model for the command translation data structures. The

Communicator Table is an aggregation of many Communicator Entries. The qualified

relation Communicator Index between User and Communicator Table indicates that the

Communicator Table is accessed using the Communicator Index. This allows for access to

a Communicator Entry, which is used to access the MasterFile Table. A MasterFile Table

is an aggregation of many Project MasterFile entries and are indexed via the qualified

association Project Id. The Project MasterFile entries are then used to access Project

Command Files through the qualified association Project Dir.
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Figure 11.5: Major Data Structures for Command Translation

 

Figure 11.6 contains the object model of Project Command Files. This model is used

to describe the different kinds of files that may be located in a Project Directory. Included

in this model are the Translation Files that come in the form of input and output files. The

Command Files entry shows a multiple inheritance from input and output, thus indicating

that Command Files can be the output of mnemonic translation and the input to binary file

reformatting. The Project Translation entry is a file that is used during translation.
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Figure 11.6: Project Files Model for Command Translation
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At this point in the analysis of the command translation system we had determined

that the primary function of the command translation system is to perform interpretation

and conversion of mnemonic and command input files. In addition, we had determined

that the command translation system reads a directive file in order to determine the mode

of operation for the system. The latter fact provided an important clue regarding how to

proceed with the low-level analysis of the source code in that we could use this information

as a means for focusing our analysis effort to specific operating modes.

11.4 Low-Level Analysis

The software for the command system was organized into several directories that were

partitioned by subsystem. Accordingly, the command translation system resided in a single

directory. We began our analysis by first using a combination of tools ranging from call

graph browsers to source file editors. In addition we used the unix command “grep” to

perform keyword searches.

The first step involved the construction of the call graph for the main procedure for

the command translation system. Figure 11.7 shows the call graph for the top level of the

command translation system. One of the cues that was used for identifying procedures to

be analyzed was procedure names. In the case of the command translation system, we were

interested in analyzing translation. As such, we focused our investigations on the translate

procedure, shown in the middle of the column to the right of main in Figure 11.7.

Figure 11.8 shows the source code for the translate routine of the command

translation subsystem. The corresponding call graph is given in Figure 11.9. During the

informal analysis, the source code and call graph were used in tandem in order to help
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identify procedures that required further study. For instance, the source code in Figure 11.8

consists of a switch statement with three cases: (1) INIT, (2) XLT, and (3) CARG.

These cases correspond to different operating modes for the software for initialization,

translation, and command file copying, respectively. In our analysis we were interested

in the XLT or translation mode and so two functions, processrnnemonicinput and

processbinaryputput were tagged as requiring further study.

The next step in the process was to generate and analyze the call graph for the

processmemonicinput procedure. The call graph, shown in Figure 11.10, led to

the observation that the processrnsg procedure controls a majority of the mnemonic
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struct msg *translatetop. args)

int op;

char 'args;

extern int dontoutput;

static struct project_parameters *pp;

struct msg *mp = NULL;

switch (op)

{

case INIT: /* initialize the interpreter '/

pp = initialize_interpreter();

break;

case XLT: /‘ interpret a message ‘/

while (args[0] != '\0’)

i

if (process_mnemonic_input(&args, pp))

{

if (mp == NULL)

mp = process_binary_output(pp)i

else

(

mp->next = process_binary_output(pp)t

mp = nip->next;

}

}

else

dontoutput = 1;

}

break;

case CARG: /' set a value for a control argument */

process_carg(&args. pp):

break;

default:

inform_user('internal error: bad op in translate'):

end_cmdxlt(CMD_ERROR)i

}

/’ only translation returns a value;

return NULL on error or no value */

return(mp);

Figure 11.8: Translate source code

 

input processing. Specifically, given that the processmsg has a large difference between

the out-degree and in-degree, with the out-degree dominating, it led us to identify

processmsg as a critical procedure.

To simplify the analysis, we used the VCG [46] tool to aid in the visualization and

analysis of the call graphs. Specifically, the VCG tool allowed us to abstract various

functions into entities that are contained within the same by source file, as shown in

212



 

     

 

loee.brecltet

meelect

Figure 11.9: Translate source model

 

Figure 11.11. By folding the graph in this manner, much of the visual complexity was

removed, thus providing a level of structural abstraction.

At this point in the study of the command translation system we were able to begin

formulating questions to be answered by the formal specification phase of the analysis. For

instance, a quick analysis of the processmsg procedure, shown in Figure 11.12, revealed

that a loop is executed until the value of the variable sp->msg.complete = 1. Using this

information, we were interested in determining when the value of sp->msg.complete
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Figure 11.10: Process Mnemonic subgraph

 

changes from 0 to 1. In addition, given that the return value of the processmsg procedure

is the negation of sp->fai led, we were also interested in determining what conditions

needed to be present in order for sp->msg_complete = 1 and sp-failed = 1 or

sp—fai led = 1. These cases would indicate that the message was syntactically correct

and that the processing either failed or succeeded. Specifically, we were interested in the

case where the message was constructed correctly but the processing still failed.
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Figure 11.11: Alternative view of Process Mnemonic subgraph 
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O static void (*rtn[])() =

{ (void (*)())0, read_lookup_argument, read_numeric_argument,

read_argument_group, read_stem, read_any_stem, read_command,

begin_subroutine, end_argument_group_subroutine,

end_stem_subroutine, end_command_subroutine,

end_message_subroutine, begin_select, end_select,

begin_branch, end_branch, begin_repeat, end_repeat,

open_bracket, close_bracket, push_pointer

1;

int process_msg(ep, tp, sp, parms)

016 *ep;

struct tokens *tp;

struct interp_state *sp;

struct project_parameters *parms;

U16 code;

/* check to see if this message is excluded at this site */

if (ep[l]&SITE_BIT)

{

sp->fai1ed = 1;

fail(EXCLUDED_MSG, tp, sp);

return(O);

}

P = ep + 3 + ep[2]; /* move P to input processing instrs */

Sp—>msg_1eve1 = 1; /* we are at the message level */

sp->msg_complete = 0; /* the message isn’t complete */

/* interpret instructions until we have a message */

while (lsp->msg_complete)

{

/* on failure, a new value for P

will be on top of the stack */

if (sp->failed)

P = (016 *)STACK(0);

code = *P++;

(*(rtnlcodel))(tp.sp.parmS);

}

return(lsp->failed);

Figure 11.12: processrnsg source code
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11.5 Formal Analysis

Prior to the formal analysis of the command translation system, the following details about

the functionality had been determined via the informal analysis of the source code:

0 The sequence of calls from originating from the translate

procedure and proceeding to processrnnemonicinput and finally to

processrnsg constitutes a “critical pa ” of execution.

e The processmsg routine terminates only when the variable

Sp->msg_complete variable is set to the value 1.

e The routine end-cmdxl t is invoked by every one of the begin-* routines

(among others) as shown in Figure 11.10. This led to the conjecture that

end-cmdx1t is a critical procedure.

Using this information, we formulated the following questions to be answered by the

formal analysis:

e What are the conditions for terminating the translation process.

0 What are the routines that exhibit representative behavior for successful

and unsuccessful translation? That is, given known termination

condition for the routine processntsg, what routines establish

Sp->msg.comp1ete = 1?

o Are there other terminating paths that bypass processrnsg?

In an attempt to answer these questions, we analyzed several procedures

that potentially had an impact on the issues outlined above. That is, we

analyzed the processrnnemonicdnput, processrnsg, and end-cmdxlt procedures,

as well as the procedure named end_message_subroutine. We identified

end_message_subroutine as a routine of interest after using the grep command to locate

the places in the code where the variable Sp->msg.comp1ete was assigned a value of l.
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11.5.1 Analysis of processmemonic-input

Appendix E contains the source code for the processmnemonicinput procedure. The

most important sequence of the procedure appears in Figure 11.13. In lines 2-11 the

do-while loop contains several assignment statements and a call to the processmsg

procedure. The call is used to guard a break statement that, in essence, provides another

termination condition for the loop. As such, the terminating condition for this loop is the

following:

(process_msg(ep, tp, sp, params) = 1) V (ep 2 collecti0n[249]). (11.1)

Expression 11.1 states that either the processmsg routines returns 1, or the ep pointer

takes the value of the 250th element of the collection array. The significance of the

number 249 (or 250, depending on the perspective point of view) is that the ep pointer is

used as a cursor to refer to the current position in a message. When the entire input has

been processed, the ep pointer is moved to the adjacent memory locations until, finally, it

refers to the next element in the collection array. The more interesting aspect of the

terminating condition in Expression 11.1 is the term process_msg(ep, tp, sp, params) = 1.

In this case, we need to analyze the processmsg procedure in order to determine when

processmsg returns 1.

11.5.2 Analysis of processmsg

Consider again Figure 11.12. At line 41, the statement return( ! sp—>fai led) indicates

that the program returns the negated value of the sp—>fai1ed variable. Since line 6

of the program in Figure 11.13 states that sp->failed = 0, it is reasonable for us

to infer that (coset(sp) .failed = 0) is a precondition for the processmsg procedure.
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0, ep = get_first_entry(248); /* 248 contains the message entries */

1.

2. do {

3, tp->token_index = tp—>t;

4, Q = control_list;

5, sp—>num_of_commands = 0;

5, sp->failed = 0;

7, sp->cmd_delimiter_deferred = O;

8.

9, if (process_msg(ep, tp, sp, parms))

10, break;

11 } while ((ep = get_next_entry(ep)) != collection[249]);

12.

13, if (sp->failed)

14, generate_error_msg(sp, tp);

15.

16. *Strp = S:

17, stem_entry = sp->stem_name;

18.

19, return(!sp->failed);

Figure 11.13: Source code sequence for processmemonicinput

 

Given this precondition, consider lines 26 - 39. Line 28 establishes the condition that

sp—>msg.complete = 0, so in the initial iteration of the 100p, (coset(sp).failed =

0) A (coset(sp).msg-complete = 0). Using strongest postcondition, then, to formally

specify the loop, we obtain the following postcondition (as generated by AUTOSPEC):

/* AutoSpec:

'(((coset(sp).msg_comp1ete.v == 1) /\

((((((R_i-1 /\

(coset(sp).fai1ed.v != 0)) /\ (as_const8 = S[0])) \\/

((R_i—1 /\

(!(coset(sp).failed.v != 0))) /\

(suif_tmp0 .> coset(P))) /\

(P.V = ((2 * 1) + suif_tmp0.V))) /\

(code.V = coset(suif_tmp0).V))) /\

sp(rtn[(int)code](tp, sp, parms), R_i))" */

where the term R_i is used to represent the ith iteration of the loop. The specification states

that message processing is complete and that either the message processing failed or it was
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successful. The term (last line) sp (rtn[ (int) code] (tp, sp, parms) , Kit) is the

specification of the various calls to the procedures listed in lines 1-7 in Figure 11.12. In

order to determine if after the loop is executed that indeed (coset(sp).msg_complete.V =

l), we must analyze the various procedures.

11.5.3 Analysis of endrnessagesubroutine

Figure 11.14 contains the annotated source code for the end_messagesubroutine

procedure. After performing a grep search for the references to the variable

sp->msg-complete, it was determined that in only one location throughout the code is

the value of sp->msg_comp1ete set to 1.

The original specification for the end_message_subroutine procedure as generated

by AUTOSPEC is as follows:

/* AutoSpec:

'(((((((((parms .> _paramS) /\ (_param5.V == _pVa16)) /\

(((sp .> _param4) /\ (_param4.V == _pVa15)) /\

((tp .> _param3) /\ (_param3.V == _pVal4)))) /\

(S.V = ((4 * 1) + as_const4))) /\

(coset(sp).msg_comp1ete.v = 1)) /\

(1(as_const6 != 0))) /\ (get_next_token(tp.V) != 0)) /\

(coset(sp).fai1ed.v = 1)) \/

((R_1 /\ (!(coset(sp).failed.v != 0))) /\

(!(get_next_token(tp.V) != Q))))" */

Since we were interested in conditions related to message processing completion and

failure, we were able to use the SPECGEN system to derive an abstraction based on deleting

conjuncts. The resulting postcondition specification of the end_messagesubroutine

procedure is as follows:
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extern void enddmessage_subroutine(tp, sp, parms)

struct tokens *tp;

struct interp_state ‘sp;

struct project_parameters *parns;

{

S = (unsigned int *)((char *)S + 4 * 1);

sp—>msg_complete = 1;

/' AutoSpec:

R_1: (((((parms .> _paramS) /\ (_param5.V == _pVal6)) /\

(((sp .> _param4) /\ (_param4.V == _pVa15)) /\

((tp -> _param3) /\ (_param3-V == _pVal4)))) /\

(S.V = ((4 * 1) + as_const4))) /\ (coset(sp).msg,complete.v = 1)) '/

if (sp->failed != 0) {

return;

}

/* AutoSpec:

“((R_1 /\ (coset(sp).failed.v != 0)) \/

(R_1 /\ (!(coset(sp).failed.v != 0))))' */

if (get_next_token(tp) != (void *)0) {

sp->failed = 1;

fail('End of message expected', tp, sp);

1

/* AutoSpec:

'((((R_1 /\ (!(as_const6 != 0))) /\ (get_next_token(tp.V) != 0)) /\

(coset(sp).failed.v = 1)) \/

((R_1 /\ (!(coset(sp).fai1ed.v != 0))) /\

(!(get_next_token(tp.V) != Q))))" */

return;

/* AutoSpec:

'(R_1 /\ ((((!(as_const6 != 0)) /\

(get_next_token( tp.V ) != 0)) /\ (coset(sp).failed.v = 1)) \/

((!(coset(sp).failed.v != 0)) /\ (!(get_next_token( tp.V ) != 0)))))' */

l

/* AutoSpec:

I'(coset(sp).msg_cornplete.v = 1) /\

((((!(as_const6 != 0)) /\

(get_next_token( tp.V ) != 0)) /\

(coset(sp).failed.v = 1)) \/

((!(coset(sp).£ailed.v != 0)) /\

(!(get_next_token( tp.V ) != Q)))) */

Figure 11.14: Annotated source code for endJnessagesubroutine
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/* AutoSpec:

I'(coset(sp).msg_complete.V = l) /\

((((!(as_const6 != 0)) /\

(get_next_token( tp.V ) != 0)) /\

(coset(sp).failed.V = 1)) \/

((coset(sp).failed.V = 0) /\

(!(get_next_token( tp.V ) != Q)))) */

This specification states that after executing this procedure, (coset(sp).msg-complete. V =

I) and that either (coset(sp).failed. V = I) or (coset(Sp).failed.V = 0). In the case that

(coset(sp).failed V = I), the getmextJoken procedure returned a non-zero value, indicating

the message stream buffer was not empty. Conversely, in the case that (coset(sp).failed.V =

0), the message processing was successfully completed.

The completion of the above specification allowed us to answer the question concerning

the conditions for the termination of the translation process. In doing so, it was determined

that in the event the end_messageJubmutine never appears on the message stack, the

pmcesansg procedure can potentially run forever (or at least until there is a message stack

overflow).

11.5.4 Analysis of end-cmdxlt

Given our earlier observation about the termination ofproceSSJnsg, we proceeded to analyze

whether or not other conditions can cause the procesansg to terminate.

In the command translation source code there are several macros that are used to access

the message stack. One such macro is given in Figure 11.15. The code contained in this

macro, upon accessing the stack, will generate a failure condition and terminate the entire

program if the stack overflows. The importance of this macro is that several routines called
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by processmsg utilize this stack macro. As such, if the failure conditions are met, then

the procedure end-cmdxlt will be called.

 

#define POPM(m) S+=(int)(m); \

if (((U16 *)S<W) II (S>min_S)) \

{ \

fai1("stack overflow", NULL, NULL); \

end_cmdxlt(-1); \

Figure 11.15: The POPM Macro

 

The formal specification of the end_cmdxlt is shown in Figure 11.16. The most

important aspect of this routine is that it terminates the entire program if invoked. As such,

the final specification of the program is “false”, indicating that the routine will never

reach line X in the code. Given this fact, the command translation system, specifically the

processmsg procedure and subsequently the, processmemonicinput procedure,

will terminate either by a successful (or partially successful) completion of a message

translation, or by an eventual termination via the end_cmdxlt procedure.

11.6 Discussion

In the process of performing the case study, several discoveries concerning the structure and

functionality of the command translation system were gathered. In addition to revealing

functional properties of the system software, the case study allowed us to discover several

non-functional properties regarding the code. In this section, we summarize the case study

analysis.
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o, extern void end_cmdx1t(int n) {

1, if (params->cmdcntl != 0) l

2, inform_user(1);

3. comm_tb1_ptr->alloc[comm_index].x1t_pid = 0;

4, xltdir—>new = O;

5. if (smclose('directive') == DTS_ERROR) (

6. fprintf(stderr.

7, 'translate: closing directives shared memory failed\n');

8. l

9.

10. /‘ AutoSpec:

ll. I'((((n.\.l = _paramO) /\ (coset(params).cmdcntl.v != 0)) /\

12. (coset(comm_tb1_ptr).alloc[comm_index].V = 0)) /\

13. (coset(xltdir).new.v = 0)) */

14.

15. if (dereg_app1('SFOC CMD', 'com_ws', SHM_ALLOC) == RES_ERROR) (

16. fprintf(stderr,

17. "translate: deregistration with SMC failed: %s\n',

18. smc_errlist[smc_errno]);

l9. }

20.

21 /* AutoSpec:

22 '((((n.V = _paramO) /\ (coset(params).cmdcntl.v != 0)) /\

23 (coset(comm_tbl_ptr).alloc[comm_index].v = 0)) /\

24. (coset(xltdir).new.v = 0)) *l

25.

26. if (master_detach_proj(-l) == —1) (

27. fprintf(stderr,

28. 'translate: cannot detach from masterfile: %s\n',

29. master_strerror(master_errno));

30. l

31.

32. /* AutoSpec:

33. "((((n.v = _paramO) /\ (coset(params).cmdcnt1.v != 0)) /\

34. (coset(comm_tb1_ptr).alloc[comm_index].v = 0)) /\

35. (coset(xltdir).new.v = 0)) 1'/

36.

37. l

38.

39. /* AutoSpec:

40. '((((n.V = _paramO) /\ (coset(params).cmdcnt1.v != 0)) /\

41. (coset(comm_tb1_ptr).alloc[comm_index].v = 0)) /\

42 (coset(xltdir).new.v = 0)) \/

43 ((n.v = _paramO) /\ (!(coset(params).cmdcnt1.v != 0)))" *l

44

4S. exit(n);

46.

47. /' AutoSpec: false */

48.

49, return;

50. 1

Figure 11.16: Annotated source code for end_cmdxlt

 

Command translation. The command translation system provides two types of

command file interpretation: user mnemonic translation and command file conversion.

In addition, it was determined that the command translation system relies heavily upon
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communicating with other Command subsystems via the use of system files. From a low-

level perspective, the processmnemonicinput and processmsg procedures are two

of the most critical procedures in the system. These procedure either directly or indirectly

control the command translation process and they constitute a critical path of execution.

Termination. The termination of the command translation process depends heavily upon

the termination of the processmsg procedure. The process_msg procedure terminates

in one of two ways; gracefully or by fault.

Global Variables and Macros. The command translation system relies heavily upon

the use of global variables and macros. While the source code is visually compact, the

functional complexity seemed to increase with each encounter of one of these constructs.

11.7 Lessons Learned

Several lessons about our reverse engineering approach were learned while performing the

case study described in this chapter. This section summarizes these lessons.

11.7.1 Combined Analysis Technique

The utilization of a combined informal and formal process enhanced the usefulness of both

the informal and formal techniques. The informal analysis provided a structured method

for early discovery and organization of the functionality of the system. During the low-level

analysis, the informal techniques provided valuable information and cues regarding where

to focus the formal analysis. The formal analysis facilitated the functional understanding

of the underlying logic embedded in many of the structural models derived during the

low-level analysis. In addition, given many of the questions that arose after the informal
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analysis, the formal technique provided a method for understanding certain properties of

the code.

11.7.2 Tools

The availability of tools greatly facilitated the analysis process both during the informal

and the formal phases of analysis. However, while the tools were invaluable, they need

to mature in regards to the functionality that they provide, especially in regards to user

interface concerns.
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Chapter 12

Conclusions and Future Investigations

Consider the following scenario:

ProgrammerX developed some software 6-18 months ago to handle activity Y.

In the process ofdeveloping the software, programmer X used some standard

semi-formal design notation until he felt he understood problem Y. Then he

wrote the software, adjusting thefunctionality ofthe various routines when new

sub-cases for problem Y were discovered. Today, programmer X has learned

that he needs to modify the system to incorporate new requirements. As he

traverses the code, he realizes that he does not recall thefimctionalityfor some

ofthe routines.

Most programmers most likely can recall at least one such similar experience. The

presenting of the above scenario clearly points out the widespread need for reverse

engineering and design recovery. The techniques that are available range from ad-hoc

to mathematically rigorous methods. In this chapter we summarize the results of our

investigations and suggest future investigations.

12.1 Summary of Contributions

In this section we summarize our contributions to the field of software engineering and

software maintenance.
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12.1.1 Strongest Postcondition

To date, the primary use of the strongest postcondition predicate transformer has been for

the study of issues related to the theories underlying the semantics of programming [16].

In this dissertation we demonstrated how the strongest postcondition can be applied to the

problems of reverse engineering and design recovery. In doing so, we have introduced the

use of a formal technique for reverse engineering that is based on a derivational approach

for program analysis. The technique incorporates the use of the strongest postcondition

to transform an operational specification (i.e., a program) into a behavioral specification

in terms of predicate logic expressions. In addition, we have applied the use of strongest

postcondition to the definition of the semantics of the C programming language in order to

demonstrate the applicability of such an approach to real languages and systems.

12.1.2 Abstraction

The construction of abstract specifications, or generalizations, from as-built specifications

has primarily been focused on the use of transformation [72]. Starting with as-built

formal specifications that are constructed from programs using the strongest postcondition,

our approach facilitates deriving abstractions based on translation and the preservation of

various ordering criteria. The end result is a specification that is a logical abstraction of the

as-built specification. As a result, our approach ensures consistency and retains traceability

between high-level abstractions and low-level as-built specifications. In addition, the

results of this research can be used to support program understanding.
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12.1.3 Support for Reuse

Many formal software reuse approaches depend on the assumption that a library of reusable

components is available for use. This assumption, however, may not be reasonable under

many conditions since the techniques used to develop the components may not have been

based on formal methods. In this dissertation, we have demonstrated how a formal reverse

engineering technique can be used to generate specification-based indices for existing

components in order to populate component libraries.

12.2 Future Investigations

Our future work will explore three major areas: Reverse Engineering, Software Reuse,

Software Reengineering. and Software Testing.

12.2.1 Reverse Engineering

One of the objectives of the research described in this dissertation was to explore the

feasibility of developing a rigorous approach to the problem of reverse engineering. Our

philosophy was based on a breadth approach in that the intent was to develop techniques

that could be used as part of an overall reverse engineering process. Along the way, several

different issues were identified that merit further study and investigation.

Loops. Abd-El-Hafiz [67] describes a knowledge-based approach for constructing

specifications of looping constructs. Several other reverse engineering approaches make

no explicit mention of a formal or informal treatment of loops. Our approach to loops was

to provide a series of guidelines that can be applied during the loop specification process.

In order to provide a more rigorous, and perhaps more automated, method for handling
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loops, we intend to investigate the use of techniques such as abstract interpretation [94],

and approximation algorithms for loop analysis.

Pointers. Several approaches have been suggested for handling pointer variables [95].

Our approach assumes a single level of indirection, which is appropriate for a moderately-

sized class of programs, but requires extension to several levels of indirection in order to

be applicable to a wider class of programs.

Fully integrated informal and formal approaches. While our approach incorporates

the use of both informal and formal methods, a fully integrated approach in the respect

that formal specifications are hidden from users has not yet been realized. For example,

it would be desirable to allow a user to construct a series of diagrams that describe the

structure of the system and then have the system construct a formal specification based on

those diagrams. Similar work has been developed for the area of software requirements

engineering and design [96]. Our intention is to investigate the feasibility of such an

approach in the area of software maintenance and reverse engineering.

Tool environments. One of the most valuable assets that a programmer can have is

access to a set of tools that support software maintenance. In addition to the tools that we

have described in this dissertation, we intend to investigate how the use of several classes

of tools such as those described in Chapter 10 can be combined into a single software

maintenance environment. The intent is to determine how the relative advantages of each

complementary reverse engineering approach can be used to provide a programmer with as

much information as possible during the software maintenance process.
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12.2.2 Software Reuse

In Chapter 9, we described our initial investigations into the support of software reuse

via reverse engineering. Our future investigations in this area will focus on further

demonstration of the use of our formal reverse engineering technique as a means for

populating component libraries. Specifically, we intend to investigate how non-functional

architectural information (e.g., is the module a pipe, filter, client, server, etc.) can be

extracted from code in order to enrich the module specification in such a way that enhances

the abilities of software reuse search engines.

12.2.3 Reengineering

Reverse engineering is the first stage of the reengineering lifecycle. The existence

of formal specifications that have been recovered from code can be used to facilitate

several reengineering activities. For instance, in our previous investigations we presented

an approach for identifying and formally specifying objects that may be embedded in

imperative program code [97]. Other potential applications of reengineering that are can

be facilitated by the results of a reverse engineering phase are system modification and

system re-implementation, where modification refers to changing a system to add new

functionality and re-implementation refers to preservation of functionality during activities

like system retargetting. In the case of system modification, a formal specification can

be used as a means for verifying that modifications to various parts of a system have no

adverse impact on the functionality of other parts of a system.

Our future investigations in the area of software reengineering will focus on addressing

several issues:
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Object-Oriented Systems. The increasing popularity of programming languages such as

C++ and Java continue to force software organizations to make decisions regarding future

deveIOpment. In order to support the transition of current systems that have been written

using imperative languages such as C and Fortran, we intend to investigate how the results

of the formal reverse engineering approach can be used to facilitate a paradigm shift to

object-oriented languages.

Impact analysis. Impact analysis is the study of the effects of software change on

systems [98]. One of the primary tenets of software reengineering is that some form of

change is imposed on a system to produce a new system. The use of impact analysis has

been used to determine how changes affect the remainder of the system. We intend to

investigate how formal specifications can be used to facilitate the impact analysis process.
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Appendix A

Semantics of C Expressions

This section describes the expression semantics of the C programming language using the

functions .A and V defined in Section 5.1.

A.1 Assignment Operators

Let v be a variable or an assignable expression‘ and e be an expression.

Let 7 be an assignable object with an n-bit integer vector such that it has the following

bitwise evaluation:

«4(7) = (70, 71,72, . .. an) (A.1)

where the components 7,- take the value of 0 or 1 and let m be some integer. The definition

of the semantics of the bitwise assignment operators <<=, >>=, &=, " =, and | =, rely on the

use of the representation in Expression A. 1. As was the case with the non-bitwise operative

assignment expressions:

 

1In terms of the C grammar, an assignable expression is a unary-expression, posq‘ix-expression, or

primary-expression.
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N _ T ifA(v’_-‘—.’- (3)950

v(”=e)‘{F ifA(ve'

 

 

 

 

 

 

e) = o ’

where g is one of <<=, >>=, &=, "=, and | =. Table A.1 defines the evaluation semantics

of the bitwise operative assignment expressions.

(mr’Ym-i-lr'” 97n101102an'10m) ifO < m S n

AW <<=m) = (70, 71,72,--- r771) ifmSO

0 ifm > n

(01,02r'“ a0m170171i°H film-l) ifO < m S n

A(v >>= m) = (70.71.72,... ,7") ifmSO

0 ifm > n

A(v&=7) = «4(1))&A('7)

A(v “=7) = «4"(v) «4(7)

A(v |= 7) = (v) | «4(7)  
 

Table A.1: Bitwise Operative Assignment Operators

 

A.2 Logical Operators

Let a and H be expressions. The logical operators | | and && are used to form logical

expressions that are commonly used within the guards of conditional statements. Table A.2

describes both the evaluational and logical semantics of the operators.

A.3 Bitwise Operators

Let 'y and 1,!) be objects with integer values that have the following bitwise representations:

“4(7) = (70,71,727 ' ° ' r711)

A(zp) : ($0,801) $2: ° ° ' awn)
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”a ' ' m = in 88 3:33.173...

““0"” = 3288183:

a...) = mgmm:

“W = 32853223: 
 

Table A.2: Logical Operators

where the components 7; and d),- take the value of 0 or 1. Table A.3 summarizes the

semantics of the bitwise operators.

 

 

 

  

_ T if3i:0§i§n:7,-=lV¢,-=l

V(le) _ F ifVi:O_<_iSn:7,-=0Ar,[2,-=O

A(v | 11)) = AWN/1011) 7e

,, T if3iz03ignzfy, 21;,-

VW W {F ifVi:OSiSn:7,-=1/J,-

MTV/J) = A(V)“v4(¢)

T if3i:0$i$n:7,~=1/1,-=1

V(7&¢) F ifVizogisn:(7,7é¢,)v(*y,-=r/J,-=O)

A(vscv) = AWN/1W)
 

Table A.3: Bitwise Operators

A.4 Equality and Relational Operators

Leta and ,8 be expressions. The logical evaluation of the equality and relational operators

have the following semantics:

_ T 'f A(a)QA(fl)9é0

V(aQfl)-{F ifA(a)Q./1(fl)=0 '

where Q is one of ==, ! =, >, <, >=, and <=. The equality and relational operators have the

semantics shown in Table A.4.
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“4“”: > = {3 2:11:33

MW") = {3 2:522:33

AW) = {3:58:33

“W = {3. 2:32:23:

“mm = {3 1:38:33

“W” = {31:58:33
 

Table A.4: Equality and Relational Operators

A.5 Shift Operators

Let 'y be an object with an integer value such that it has the following bitwise representation:

A(fy) : (70:71:72: ° - ° ’77:)

where the components 7,- take the value of O or 1 and let m be some integer. The logical

evaluation of the shift operators has the following semantics:

__ T ifA('me);£0

W79 )_{F ifA(7Qm)=0'

where {2 is one of << and >>. Table A5 describes the semantics of the shift operators.

A.6 Additive and Multiplicative Operators

Let a and ,6 be expressions. The logical evaluation of the additive and multiplicative

operators have the following semantics:
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<7ma7m+lin°97nr013023°urom> if0<mSn

A(7<<m) = (“rooms-n.7,.) ifmSO

0 ifm>n

(017023"')0m7701,717°"77771—1) if0<mSW

A(7 >>m) = (70,71,72a--'27n> ifm_<_0

0 ifm>n  
 

Table A5: Shift Operators

_ T ifA(aQfl);£0

”film—{F ifA(arw)=0’

where Q is one of +, -, *, / , and %. Table A.6 gives the evaluation semantics of the additive

and multiplicative operators.

 

 

 

 

 

 

A(a + £3) — «4(0) + A(fl)

A(a - 5) = A(a) - A(fl)

A(a * fl) = A(a) >< A(fl)

A(a / a) = 31(2)

A(a % a) = A(a) mod A(fl)  
 

Table A.6: Additive and Multiplicative Operators
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Appendix B

Partial Order Lemmas

This appendix states and proves a number of lemmas regarding partial-order and weak

partial-order relations. These lemmas substantiate the notion that the abstraction match

operator is a partial-order relation. As such, the abstraction technique described in

Chapter 6 is well-founded.

B.1 Lemma 1

The exact pre/post match is reflexive, symmetric, and transitive (i.e., the exact pre/post

match is an equivalence relation).

Proof. By definition, the exact pre/post relation with respect to two specifications A and B

(denoted A jet B) is (Are H 8,”) A (Amt H Bpost). The following shows that jet is

reflexive:

AjexA

(definition of j“ )

E (A,m H Apre) A (Apost H Apost)

((X H X) 5 true)

E true A true

((true A X) E X)

E true
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It is also straightforward to show that jet is symmetric so that (A j“, B) ——> (B j” A),

as shown below:

AjezB

(definition of j“ )

E (Apre H Bpre) A (Apost H Bpost)

(commutativity of H)

E (Bpre H Apre) A (Bpost H Apost)

(definition of in )

E BiexA

Finally, the proof for the transitivity of 56,, so that ((A j” B)A(B _<_” C)) —> (A jet C)

is as follows:

(A:..B) A (B:..A)

(definition of j” )

E (Am H Em) A (AW, H B,,,,) A (Bm H Cm) A

(Bpost H Cpost)

(definition of H, substitution of Bpre with Am, and BM,

With Apost)

.2.- (Am H Am) A (Am, H Am.) A (A,m H Cm) /\

(Apost H Cpost)

((X H X) E true, (trueAX) E X)

E (Am H Cm) A (Am, H 0pm)

(definition of jet)

5 AjexC

Since :5“ is reflexive, symmetric, and transitive, jam is an equivalence relation. D

B.2 Lemma 2

The plug-in match is reflexive, anti-symmetric, and transitive (i.e., the plug-in match is a

partial order relation).

Proof. By definition, the plug-in relation with respect to two specifications A and B

(denoted B jp, A) is (A,m —> Em) A (Bpou —-> Amt). The following shows that
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jp, is reflexive:

A jp, A

(definition of jp, )

E (Ame —> Ame) A (Apes, ——> APO“)

((X —> X) E true)

E true A true

((true A X) E X)

E true

The following proof shows that im- is antisymmetric so that ((3 5,0,- A) A (A :5,”- B)) —>

A for BI

((8 a... A) A (A :5..- B»

(definition of 5,”)

E (Ame -> B1,“) A (Bpost —> Amt) A (BM, —> Ame) A

(Apost “i Bpost)

(associativity of A)

E (Am —+ Em.) A (BM —+ Am) A (Amt —+ BM.) A

(Bpost _’ Avast)

(((X —> Y) A(Y-—>X)) E (X H Y))

_=_ (A,m H Bpre) A (Apes, H Bpost)

(definition of :5”)

E A jea: B

Finally, the following proof shows that 3,, is transitive so that ((B 5?, A) A (C jp; B)) —>

C jp,‘ A!

((3 ipz‘ A) A (C in 3))

(definition of j”)

5 (Am —> B”) A (BM, —> Amt) A (BM ——) Cm) A

(Cpost —> Bpost)

(associativity of A)

E (A,m —> BM) A (B,m ——> Cm) A (CW, —) Em“) A

(Bpost _l Apost)

(((X —> Y) A (Y —+ Z)) —> (X H Z))

=> (Apre H Cpre) A (Cpost H Apost)

(definition of 5,”)
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EijiA

Since jp, is reflexive, antisymmetric, and transitive, 3,, is a partial order relation. [:1

B.3 Lemma 3

The exact pre/post match is reflexive, symmetric, and transitive (i.e., the exact pro/post

match is an equivalence relation).

Proof. By definition, the plug-in post match with respect to specifications A and B

(denoted B jpip A) is (BM, —> APO“). Since the logical operator —> is reflexive,

antisymmetric, and transitive, jm, is a partial order relation.
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Appendix C

Application Program

This section contains the source code for the example discussed in Section 6.4. The

application is a C program that is part of a mission control ground-based system used by

the NASA Jet Propulsion Laboratory. The system is responsible for the translation of user

commands into appropriate spacecraft mnemonics, enabling users to modify spacecraft

mission operations. This particular module takes a sequence of elements from a file and

returns an index to a subsequence of elements specified by begin and end indices. In our

previous investigations, we described the sp semantics for C [7] and pointers [43]. Those

semantics were used to construct the / *AS AS* / annotations for the code contained in

this section.

0. /*

1. * Inputs: file (file to read from)

2. * begin (first element to copy)

3. * end (last element to copy)

4. * Outputs: none

5. * Externally read: body_lineno (for errors)

6. * so (to translate to mission ID)

7. * Externally modified: dontoutput (errors)

8. * Returns: the elements copied (NULL on error)

9. *

10. * This routine does the actual work of opening and parsing the GCMD

11. * file, finding the elements. and returning the appropriate ones.

12. 1"/

13. struct gcmd_elem *doGCMDCopy(char *file, int begin, int end)
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

int fd;

U16 L2;

struct gcmd_hdr gcmd_hdr;

int i;

register j;

struct gcmd_elem *orig_elem;

struct gcmd_elem *elem;

struct gcmd_elem *ep;

extern int body_1ineno;

/* open the file */

/*AS (begin = BO & end = 80 & file .> F0) AS*/

fd = open_copy_file(file, &L2, CMD_DSN):

/*AS (fd = FHO & begin = BO & end E0 & file .> PC) AS’/

if (fd < 0)

{

}

/*AS (fd < 0 & fd = FHO & begin = BO & end E0 & file .> F0) AS*/

dontoutput = 1:

/*AS (dontoutput = 1 &

fd < O & fd = FHO & begin = BO & end E0 & file .> F0) AS*/

return(NULL):

/*AS false AS*/

I'AS (fd >= 0 & fd = FHO & begin = BO & end = 80 & file .> F0) AS*/

if (lskip_gcmd_sfdu(fd. L2))

{

/*AS (skip_gcmd_sfdu(fd, L2) = 0 &

fd >= 0 & fd = FHO & begin = BO & end = EO & file .> F0) AS*/

inform_user('line %d: copy failed: bad SFDU header (%s)',

body_lineno, file);

/*AS (skip_gcmd_sfdu(fd, L2) = O &

fd >= 0 & fd = FHO & begin = 80 & end = E0 & file .> F0) AS*/

dontoutput = 1;

/*AS (dontoutput = 1 & skip_gcmd_sfdu(fd, L2) = O &

fd >= 0 & fd FHO & begin = 80 & end = EO & file .> F0) AS*/

close(fd);

/*AS (closed(fd) & dontoutput = 1 & skip_gcmd_sfdu(fd, L2) = O &

fd >= 0 & fd = FHO & begin = BO 5 end = 30 & file .> F0) AS*/

if (params->cmdcntl) master_unlock();

/'AS (params->cmdcnt1 != O & sp(master_unlock(),

closed(fd) & dontoutput = 1

& skip_gcmd_sfdu(£d, L2) = 0 & fd >= 0 & fd = FHO &

begin = BO & end = 80 a file .> F0)) |

(params->cmdcntl = O & closed(fd) & dontoutput = 1 &

skip_gcmd_sfdu(fd, L2) = O &

fd >= 0 & fd = FRO & begin = BO & end = E0 & file .> F0) AS*/

return(NULL);

/*AS false AS*/
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82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

}

/*AS (skip_gcmd_sfdu(fd, L2) != 0 &

fd >= 0 & fd = FHO & begin = BO & end = E0 & file .> F0) AS*/

if (!get_gcmd_hdr(fd, agcmd_hdr))

{

dontoutput = 1;

close(fd);

if (params->cmdcnt1) master_unlock();

return(NULL);

}

/*AS (get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO & end = BO & file .> F0) AS*/

if (params~>sc != gcmd_hdr.SC)

{

inform_user('line %d: copy: invalid spacecraft in GCMD file (%s)',

body_lineno, file);

dontoutput = 1;

close(fd);

if (params->cmdcnt1) master_unlock();

return(NULL);

}

/*AS (params~>sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO & end =

/* make sure the file has enough elements */

if (end == -1)

end = gcmd_hdr.elem_count;

else if (end > gcmd_hdr.elem_count)

{

BO & file .> F0) AS*/

inform_user('line %d: copy: not enough elements in GCMD file (%s)'.

body_lineno, file);

dontoutput = 1;

close(fd);

if (params->cmdcntl) master_unlock();

return(NULL);

1

/*AS

(£0 = —1 & end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != 0 & ski _g

fd >= 0 & fd = FHO & begin = BO & E0 = E

|

(end <= gcmd_hdr.elem_count & end != -1 &

params—>sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != 0

fd >= 0 & fd = FHO & begin = B0 end =

/* read in the elements */

orig_elem = NULL;

cndLsfdu(fd, L2) != O &

0 a file

EO & file

.> F0)

& skip_gcmd_s£du(fd, L2) != 0 &

& .> F0) AS*/

/*AS orig_e1em .> NULL & ((30 = -1 & end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd, L2) != 0 &

fd >= 0 & fd = FHO & begin = BO & E0 = E

I

(end <= gcmd_hdr.elem_count & end != -1 &

params->sc = gcmd_hdr.SC &

O & file .> F0)

get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != 0 &

fd >= 0 & fd = FHO & begin = BO & end =

for (i = 1; i <= gcmd_hdr.e1em_count; i++)
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150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

/*AS 01 AS*/

if (orig_elem == NULL)

{

/*AS 01 & orig_e1em .> NULL AS*/

orig_e1em = get_elem(fd);

/*AS Qi & orig_e1em .> ObjO AS*/

elem = orig_e1em:

/*AS Qi & orig_e1em .> ObjO & elem .> coset(orig_elem) AS*/

else

/‘AS !(orig_e1em .> NULL) & 01 AS*/

elem->next = get_e1em(fd);

/*AS !(orig_e1em .> NULL) & Qi & elem—>next .> Obji AS*/

elem = elem—>next;

/*AS !(orig_e1em .> NULL) & Qi & elem—>next .> Obji &

elem .> coset(elem->next) AS*/

}

/*AS (orig_e1em .> ObjO & Qi & elem .> coset(orig_e1em)) |

(!(orig_e1em .> NULL) & Qi & elem->next .> Obji &

elem .> coset(elem->next)) AS*/

if (elem == NULL)

{

dontoutput = 1;

close(fd);

if (params—>cmdcnt1) master_unlock();

for (elem = orig_e1em; elem != NULL; elem = ep)

{

ep = elem->next;

free(e1em);

}

return(NULL);

}

/*AS !(elem .> NULL) &

(orig_e1em .> ObjO & Qi & elem .> coset(orig_elem)) |

(!(orig_e1em .> NULL) a Qi & elem->next .> Obji &

elem .> coset(elem->next)) AS*/

/* make sure the data isn't corrupted */

if (elem_chksum(e1em) != elem->chksum)

{

inform_user('line %d: copy: checksum failed for element %d (%s)',

body_lineno, 1, file);

dontoutput = l;

close(fd);

if (params->cmdcntl) master_unlock();

for (elem = orig_e1em; elem != NULL; elem = ep)

{

ep = elem->next;

free(e1em);

}
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218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

return(NULL);

}

/*AS (elem_chksum(elem) = elem- >chksum) & !(elem .> NULL) &

(orig_elem .> ObjO & Qi & elem .> coset(orig_elem)) I

(!(orig_e1em .> NULL) & Qi & elem—>next .> Obji &

elem .> coset(elem—>next)) AS*/

/*

' 0 fields not to be copied;

* note: proj, SC, chksum, id,

* in collapse_e1em_chain();

*/

elem->remaining_rad_time = 0;

elem—>gsoc = O;

elem->chksum = O;

e1em->e1em_num = 0;

file. and elem_num are filled in

for (j = 0; j < (sizeof(elem->mccc)/sizeof(e1em->mccc[0])); j++)

elem->mccclj] = 0;

/*AS zeroed(elem) &

(e1em_chksum(elem) = elem—

(orig_elem .> ObjO & Qi &

>chksum) & !(elem .> NULL) &

elem .> coset(orig_elem)) l

(!(orig_e1em .> NULL) & Qi & elem->next .> Obji &

elem .> coset(elem—>next)) AS*/

)

/*AS (forall k : 1 <= k < gcmd_hdr.e1em_count :

e1em_k->next .> coset(elem_k+1) & zeroed(elem_k)) &

orig_e1em .> ObjO & elem_1 .> coset(orig_elem) &

((E0 = -1 s end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr)

fd >= 0 & fd = FHO & begin

I

(end <= gcmd_hdr.elem_count

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr)

fd >= 0 & fd = FHO & begin

elem->next = NULL;

& skip_gcmd_sfdu(fd, L2)

& EO = E0 & file .> F0)

skip_gcmd_sfdu(fd, L2)

end = E0 & file

l
l

0
0

R
7
8
"

/*AS elem_gcmd_hdr.elem_count .> NULL &

(forall k : 1 <= k < gcmd_hdr.elem_count :

elem_k->next .> coset(elem_k+1) & zeroed(e1em_k)) &

orig_e1em .> ObjO & elem_1 .> coset(orig_elem) &

((E0 = -1 & end = gcmd_hdr.elenLcount &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr)

fd >= 0 & fd = FHO & begin

I

(end <= gcmd_hdr.e1em_count

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr)

fd >= 0 & fd = FHO & begin

/* check the file checksum */

!= O & skip_gcmd_sfdu(fd, L2)

= BO & 80 = E0 & file .> F0)

& end != -1 a

!= O & skip_gcmd_sfdu(fd, L2)

= BO & end = E0 & file

if (!checksumggcmd_chain(agcmd_hdr, orig_e1em))

{

1:08:

!= O &

.> FO)) AS*/

!= 0 &

!= O &

.> FO)) AS*/

inform_user('line %d: copy: checksum failed on GCMD file (%s)',

body_lineno, file);

dontoutput = 1;

close(fd);

if (params—>cmdcntl) master_unlock();

for (elem = orig_e1em; elem !=

{

ep = elem->next;

NULL; elem = ep)
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286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

free(e1em);

}

return(NULL);

}

/*AS checksumggcmd_chain(gcmd_hdr, orig_e1em.

elem_gcmd_hdr.elem_count .> NULL &

V) = 0 &

(forall k : 1 <= k < gcmd_hdr.e1em_count :

elem_k->next .> coset(elem_k+1) & zeroed(elem_k)) &

orig_e1em .> ObjO & elem_l .> coset(ori

((80 = -1 s end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

g_elem) &

get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO & E0 = E0 & file .> FO)

I

(end <= gcmd_hdr.e1em_count & end != -1 &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO & end = E0 & file .> FO)) AS*/

/‘ free any initial unneeded elements */

for (i = 1, elem = orig_e1em; i < begin: i++)

1

ep = elem->next;

free(elem);

elem = ep;

}

/*AS checksumbgcmd_chain(gcmd_hdr, orig_e1em.

elem_gcmd_hdr.elem_count .> NULL &

V) = 0 &

(forall k : 1 <= k < begin : freed(elem_k)) &

(forall k : begin <= k < gcmd_hdr.elem_count :

elem_k->next .> coset(elem_k+1) & zeroed(e1em_k)) &

orig_e1em .> NULL & elem_1 .> coset(ori

((E0 = -1 s end = gcmd_hdr.e1em_count &

params->sc = gcmd_hdr.SC &

g_elem) &

get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO 5 80 =

I

(end <= gcmd_hdr.e1em_count & end != -1

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd. gcmd_hdr) !

fd >= 0 & fd = FHO & begin = B

l
l

0
0

m
m

end =

orig_e1em = elem;

/*AS orig_e1em .> coset(elem_begin) &

checksum_gcmd_chain(gcmd_hdr, ObjOcnstl)

e1em_gcmd_hdr.e1em_count .> NULL &

BO & file

E0 & file

= 0 &

(forall k : 1 <= k < begin : freed(elem_k)) &

(forall k : begin <= k < gcmd_hdr.elem_count :

.> F0)

skip_gcmd_sfdu(fd, L2) != 0 &

.> F0)) AS*/

elem_k->next .> coset(elem_k+1) & zeroed(elem_k)) &

((E0 = -1 s end = gcmd_hdr.e1em_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_s£du(fd, L2) != 0 &

fd >= 0 & fd = FHO & begin = BO & E0 =

I

(end <= gcmd_hdr.e1em_count & end != -1

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) ! &

fd >= 0 & fd = FHO & begin = B & end =

/* zero out the first element copied, only */

elem->delay = 0;

while (i++ < end)

elem = elem->next;
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ED & file

E0 & file

.> FO)

skip_gcmd_sfdu(fd, L2) != O a

.> F0)) AS*/



354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393

394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

ep = elem;

elem = elem—>next;

ep->next = NULL;

/*AS ep .> coset(elem_end) & elem .> coset(elem_end->next) &

elem_end->next .> NULL & orig_e1em .> coset(elem_begin) &

checksunLgcmd_chain(gcmd_hdr, ObjOcnstl) = 0 &

elem_gcmd_hdr.elem_count .> NULL &

(

(

(

l

(

forall k : 1 <= k < begin : freed(elem_k)) &

forall k : begin <= k < gcmd_hdr.elem_count :

elemgk->next .> coset(elem_k+l) & zeroed(elem_k)) &

(E0 = -1 & end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd. L2) != O &

fd >= 0 & fd = FHO & begin = BO & E0 = E0 & file

end <= gcmd_hdr.elem_count & end != -1 &

params—>sc = gcmd_hdr.SC &

.> F0)

get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd, L2) != 0 &

fd >= 0 & fd = FHO & begin = BO & end = E0 & file

/* free any terminal unneeded elements */

while

1

ep =

(i++ <= gcmd_hdr.elem_count)

elem->next;

freelelem);

elem = ep;

}

/*AS ( forall k : end < k < gcmd_hdr.elem_count :

.> FO)) AS*/

freed(e1em_k)) &

ep .> coset(elem_gcmd_hdr.elem_count) & elem .> coset(ep) &

e1em_end—>next .> NULL & orig_e1em .> coset(elem_begin) &

checksum_gcmd_chain(gcmd_hdr, Obj0cnst1) = O &

elem_gcmd_hdr.e1em_count .> NULL &

(

(

(

I

(

close(

forall k : 1 <= k < begin : freed(e1em_k)) &

forall k : begin <= k < end :

e1em_k->next .> coset(elem_k+1) & zeroed(elem_k)) &

(£0 = -1 & end = gcmd_hdr.elem_count &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) !

fd >= 0 & fd = FHO & begin =

O & sk

BO & E0 = EO & file

end <= gcmd_hdr.elem_count & end != —1 &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd. gcmd_hdr) !

fd >= 0 & fd = FHO & begin =

fd);

/*AS closed(fd) &

( forall k : end < k < gcmd_hdr.elem_count :

O &

BO & end = E0 & file

ip_gcmd_sfdu(fd, L2) != O &

.> F0)

skip_gcmd_sfdu(fd. L2) != 0 a

.> F0)) AS*/

£reed(elem_k)) &

ep .> coset(elem_gcmd_hdr.elem_count) & elem .> coset(ep) &

elem_end->next .> NULL & orig_e1em .> coset(elemeegin) &

checksunLgcmd_chain(gcmd_hdr, ObjOcnstl) = O &

elem_gcmd_hdr.elem_count .> NULL &

(

(

(

forall k : 1 <= k < begin : freed(e1em_k)) &

forall k : begin <= k < end :

e1em_k->next .> coset(elem_k+1) & zeroed(elemLk)) &

(E0 = -1 s end = gcmd_hdr.e1em_count & params->sc

!= O & skip_gcmd_sfdu(fd, L2) != O && get_gcmd_hdr(fd, gcmd_hdr)

fd >= 0 & fd = FHO & begin =

= gcmd_hdr.SC

BO & EO = EO & file .> F0)

(end <= gcmd_hdr.elem_count & end != —1 &

params->sc = gcmd_hdr.SC &

get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != O &

fd >= 0 & fd = FHO & begin = BO & end = EO & file
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.> F0)) AS*/



422. if (params—>cmdcntl) master_unlock();

423.

424. /'AS

425. (params—>cmdcnt1 != O & sp(master_unlock(),

426. closed(fd) &

427. (forall k : end < k < gcmd_hdr.elem_count : freed(e1em_k)) &

428. ep .> coset(elem_gcmd_hdr.elem_count) & elem .> coset(ep) &

429. elem_end->next .> NULL & orig_e1em .> coset(elem_begin) &

430. checksum_gcmd_chain(gcmd_hdr, ObjOcnstl) = 0 e

431. elem_gcmd_hdr.elem_count .> NULL &

432. (forall k : 1 <= k < begin : freed(e1em_k)) &

433. (forall k : begin <= k < end :

434. elem_k—>next .> coset(elem_k+1) & zeroed(elem_k)) &

435. ((E0 = -1 s end = gcmd_hdr.e1em_count &

436. params->sc = gcmd_hdr.SC &

437. get_gcmd_hdr(fd, gcmd_hdr) != 0 & skip_gcmd_sfdu(fd, L2) != O &

438. fd >= 0 & fd = FHO & begin = BO & E0 = E0 & file .> F0)

439. I

440. (end <= gcmd_hdr.elem_count & end != -1 &

441. params—>sc = gcmd_hdr.SC &

442. get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd, L2) != 0 &

443. fd >= 0 & fd = FHO & begin = BO & end = E0 & file .> F0))))

444. |

445. (closed(fd) &

446. (forall k : end < k < gcmd_hdr.elemLcount : freed(elenLkJ) &

447. ep .> coset(elem_end) & elem .> coset(elem_end->next) &

448. elem_end->next .> NULL & orig_e1em .> coset(elem_begin) &

449. checksum_gcmd_chain(gcmd_hdr, ObjOcnstl) = 0 a

450. e1em_gcmd_hdr.elem_count .> NULL 8

451. (forall k : 1 <= k < begin : freed(e1em_k)) &

452. (forall k : begin <= k < end :

453. elem_k—>next .> coset(elemLk+1) & zeroed(elem_k)) &

454. ((E0 = -1 & end = gcmd_hdr.elem_count &

455. params—>sc = gcmd_hdr.SC &

456. get_gcmd_hdr(fd, gcmd_hdr) != O & skip_gcmd_sfdu(fd. L2) != 0 a

457. Ed >= 0 & fd = FHO & begin = BO & E0 = EO & file .> F0)

458. |

459. (end <= gcmd_hdr.e1em_count & end != -1 &

460. params->sc = gcmd_hdr.SC &

461. get_gcmd_hdr(fd, gcmd_hdr) 1: 0 & skip_gcmd_sfdu(fd, L2) != O a

462. Ed >= 0 & fd = FHO & begin = BO & end = E0 & file .> F0)))

463.

464. return(orig_elem);

465. l
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Appendix D

Software Reuse Specifications

This appendix contains the as-built specifications of the queue library and the

corresponding library specification as presented in Section 9.3.

D.1 As-built specification for the Queue source code

Figure D.1 shows the as-built specifications for the queue source code as they

were constructed by the AUTOSPEC system. The figure contains five specifications

corresponding to the dequeue, enQueue, new_queue, head, and is-empty

operations. The format for the specifications, based on the Larch interface language [42] is

shown in Figure 6.1.
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spec QDATA dequeue(Queue *q)

locals

int temp

requires

(q .> _param2) &&

(_param2.tail.v = _pVal3.tail) &&

(_param2.head.v = _pVa13.head)

modifies

q (_param2)

ensures

(q .> _param2) &&

(_param2.tai1.v = _pVal3.tail) &&

((as_const2 == _pVa13.head) &&

(is_empty(_param2.V) != 1) &&

(temp.v == (as_const2 % MAXSIZE)) &&

(_param2.head.v = (as_const2 + 1)) &&

(return.V = _param2.data[temp.V]))

I I

((_param2.head.v = _pVal3.head) &&

(!(is_empty(_param2.V) != 1)) &&

(return.V = 0))

spec QDATA head(const Queue q)

requires

(q.V = _paraml) &&

(q.tail.v == _pVa13.tai1) &&

(q.head.V == _pVal3.head)

ensures

(q.V = _paraml) &&

(q.tail.v = _pVal3.tail) &&

(q.head.V = _pVa13.head)

(return.V = q.data[(Q-head.v % MAXSIZE)])

spec Queue *new_queue()

requires

true

ensures

(ner.V .> o) &&

(o.head.V = O) &&

(o.tail.v = 0) &&

(return.V = ner.V)

spec int enQueue(Queue *q, QDATA *e)

requires

(((e .> _param4) &&

(_param4.V == _pVa15)) &&

((q .> _param3) &&

(_param3.tail.v == _pVal4)))

modifies

q (_param3)

ensures

((((((e .> _param4) &&

(_param4.V == _pVa15)) &&

((q .> _param3) &&

(_param3.tail. == _pVal4))) &&

((_param3.tai1.V -

_param3.head.v == MAXSIZE)) &&

(return.V = 0)) I]

(((((((e .> _param4) &&

(_param4.V == _pVa15)) &&

((q .> _param3) &&

(_param3.tail.v == _pVal4))) &&

(!((_pVa14 - _param3.head.V) ==

MAXSIZE))l &&

(_param3.data[(_pVal4 % MAXSIZE)].V =

_param4.V)) &&

(_param3.tail.v = (_pVal4 + 1))) &&

(return.V = 1)))

spec int is_empty(const Queue q)

requires

(q.V = _paramO)

ensures

(q.V = _paramO) &&

(return.V = (q.head.V == q.tail.V))

Figure D.1: AUTOSPEC output of as-built specifications for queue source code
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D.2 Circular Queue Library Specification

Figure D.2 shows the library specification for the queue source code. The format for the

specifications is based on the Larch interface language [42] and is used by the ABRIE

system as a means for storing specifications and references to supporting source code.

 

Module CircularQueue

Ports

ProcDef dequeue(Queue* q) return int {

uses auxTheories;

requires true;

modifies q.head;

ensures

(q.head‘ ”= q.tail‘ /\ q.head' = q.head‘ + 1 /\

result = q.data[mod(q.head‘,MAXSIZE)l)

\/

(q.head' = q.head‘ /\ q.head‘ = q.tail‘ /\ result = O);

}

ProcDef enQueue(Queue* q, int e) return int (

uses auxTheories;

requires true

modifies q.tail, q.data;

ensures

(q.tail - q.head = MAXSIZE) /\ result = O)

\/

(q.tail‘ - q.head‘ ”= MAXSIZE /\

q.data'[mod(q.tail‘,MAXSIZE)] = e /\

q.tail' = q.tail‘ + 1 /\

result = 1);

}

ProcDef head(Queue q) return int (

uses auxTheories;

requires true;

ensures result = q.data[mod(q.head‘,MAXSIZE)];

}

ProcDef is_emptY(Queue q) return Bool {

uses auxTheories;

requires true

ensures result = (q.head == q.tail);

)

ProcDef new;queue() return Queue' {

uses auxTheories;

requires true;

ensures o.head = O /\ o.tai1 = 0 /\ result = o;

}

Implementation

source ('/user/r02/chengb/gannod/Research/Cichueue/queue/'.'queue.c')

End

Figure D.2: Circular Queue Library Specification
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Appendix E

processmemonicinput Source

Code

This appendix contains the source code for the processmemonic-input procedure.

The purpose of this procedure is to parse an input stream and to invoke the processmsg

translation routine.

int process_mnemonic_input(strp, parms)

char '*strp;

struct project_parameters *parms;

char *3 = *strp;

struct tokens tokens;

struct tokens *tp = atokens;

struct interp_state state;

struct interp_state *sp = &state;

int len;

U16 *ep;

/* set up token list */

bzero(tp, sizeof('tp));

tp->end_token = tp->t - 1;

/* copy special character list into token list */

strcpy(", tp->special_chars);

if (parms->field_delimiter != '*') /* '*' indicates none specified */

sprintf(tp->special_chars, '%s%c',

tp->specia1_chars. parms—>field_delimiter);

if (parms->command_delimdter != '*')

sprintf(tp—>specia1_chars, '%s%c'.

tp->specia1_chars, parms->command_de1imiter);

if (parms->message_delimiter != '*')

sprintf(tp->special_chars, '%s%c',

tp->special_chars, parms->message_delimiter);

if (parms->left_bracket != '*')

sprintf(tp->specia1_chars, '%s%c',

tp->specia1_chars, parnB->left_bracket);

if (parms->right_bracket != '*’)

sprintf(tp->special_chars, '%s%c',

tp->specia1_chars, parms—>right_bracket);

/* initialize interpreter state ‘/
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sp->fail_token = NULL;

sp->fail_reason = NULL;

sp—>msg_entry = NULL;

sp->stem_name = NULL;

stem_entry = NULL;

/* tokenize the input str ‘/

while (*5 != ’\0’)

{

char *cp = 3;

char 'delim;

/* skip initial blanks */

while (isspace(*cp))

cp++;

S = CD;

/‘ find the end of the token */

delim = find_delim(s, tp->special_chars);

cp = delim;

/' calculate length */

if (cp == 3)

len = 0;

else

{

while (isspace(‘-—cp))

cp++;

len = cp — s;

}

save_tok(s. len);

if (*delim == '\0')

{

s = delim;

break;

}

else if (*delim == parms—>message_delimiter)

{

s = delim + 1;

break; /* complete msg */

1

else if (*delim == parms—>field_delimiter)

{

s = delim + 1;

if ('8 == '\0') /* last (default) argument */

{

save_tok(s. 0);

l

}

else /' command delim or bracket */

(

save_tok(delim, 1);

s = delim + 1;

if (*delim == parms->right_bracket)

(

if (*3 == pamms->command_delimiter)

{

save_tok(s. l);

S++;

}

)
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/* analyze the token stream */

ep = get_first_entry(248); /* 248 contains the message entries */

do

{

/* set globals to initial values */

tp->token_index = tp->t;

Q = control_list;

Sp->num_of_commands = 0;

sp—>failed = 0;

sp->cmd_delimiter_deferred = 0;

if (processdmsg(ep. tp, sp, parns))

break;

) while ((ep = get_next_entry(ep)) != collectionl249J);

/‘ if we didn't find any match in 248, generate error message */

if (sp—>failed)

generate_errordmsg(sp, tp);

#ifdef DEBUG2

else

if (strlen(*strp) > RESP_LN - 20)

inform_user('parsed line: '%.*s...", RESP_LN-20, *strp);

else

informLuser('parsed line: '%s", *strp);

#endif

*strp = s;

/* save the stem name for the comment in the message output */

stem_entry = sp->stem_name;

return(!sp->failed);
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