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ABSTRACT

MOLTEN SALT SYNTHESIS OF QUATERNARY
CHALCOANTIMONATES AND THIOPHOSPHATES

By

Jason A. Hanko

We used the now proven molten alkali polychalcogenide flux method to synthesize
new quaternary chalcoantimonate and thiophosphate materials. The chalcoantimonate and

thiophosphate fluxes are formed by the in situ fusion of A;Q/Sb/Q (A = alkali metal; Q =

S, Se) or A,S/P,Ss/S (A = alkali metal) forming highly reactive [beQy]"' and [P,Sy]™
units solubilized in the excess polychalcogenide flux. These molecular building blocks
coordinate to metal ions in a multitude of ways, building extended lattices stabilized by
alkali cations. By examining the coordination chemistry of these systems, we discovered
that the thiophosphate system is best thought of as completely different than the

corresponding selenophosphate systems and different materials are formed under similar

experimental conditions. In the thiophosphate system the P35+ species appears to be stable

under a variety of conditions, and increasing the binary P,Ss5 concentration stabilized
higher nuclearity [P,Sy]™ units. While the Sb5+ species is readily observed in the
chalcoantimonate systems, it is exclusively observed as the discrete tetrahedral unit. The

enhanced stability of the Sb3+ species increases the diversity of the coordination chemistry

displayed by the chalcoantimonate system due to the complicated equilibrium stabilizing

higher nuclearity [Sb,S,]™ units. Changing the Lewis basicity in of the chalcoantimonate

fluxes resulted in the stabilization of recognizable [Sb,S,]™ structural fragments that could

be used as building blocks forming compounds with several potential applications. Several



new [PxSy]"‘ and [beQy]“' units have been synthesized and their coordination chemistry
examined.

In this dissertation, the synthesis, and characterization and properties of several

new silver chalcoantimonates A;AgSbS, (A = K, Rb, Cs), Cs3Ag,Sb3Qg (Q = S, Se),
o,B-RbAg,SbS4, and three new silver-rich gold thioantimonate compounds o,f-

Rb,yAgy(SbsS 9 and Cs,Agy(SbsS g will be discussed. Extending this methodology to
gold, three new compounds, A;AuSbS; (A = Rb, Cs) and RbAugSbsS;y were
synthesized, further proving the generality of the method at accommodate a variety of
metals. Utilizing the corresponding thiophosphate flux a number of new quaternary
compounds A;CuP3Sg (A = K, Rb, Cs), K3CuP,S7, Cs,CuyP,Sq, AAuPS, (A = K,
Rb, Cs), and AAuP,S; (A = Rb, Cs), were discovered. The synthetic work performed
here provides the ground work for systematic synthesis, and further exploration into these

and other systems.
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CHAPTER 1

1. Introduction

Solid-state chemistry is the cornerstone on which numerous aspects of our present
and future technologies will be built. Several commercial applications now entrenched as
“essential” to modern life owe their conception to solid state chemistry. Semiconducting
chalcogenide compounds are viable candidates for a variety of applications such as solar
cells!, IR radiation detection2, electroluminescent displays3, thermoelectric4 and nonlinear
optical’ devices, second generation high density storage batteries®, and catalysis.” These
technologies rely on the refinement of existing solid-state materials or the synthesis of
novel materials with enhanced properties to advance current and future applications.
Therefore, exploratory solid-state synthesis continues to be a highly active area of research.

This field accurately deserves the term "exploratory" because the methods available
to solid-state chemists lack the same level of predictability that synthetic chemists in the
other disciplines sometimes take for granted. The lack of predictability is largely due to the
high reaction temperatures (>800 °C) required by solid-state "heat & beat" syntheses. The
majority of the starting materials are typically solids; very high temperatures are necessary
to ensure sufficient diffusion between the reactants. In most cases, the high reaction
temperatures alone are not enough to ensure a complete reaction. For a reaction to proceed
to completion, the material must be cooled to room temperature, thoroughly ground to
expose fresh surface area, and the subsequently reheated to allow the reaction to proceed.
The elevated temperatures drive the products to the most thermodynamically stable
products, usually binary or ternary compounds. As a result, quaternary compounds are
difficult to form, the preference lying with the more stable binary and ternary compounds.

Motivated by the desire to move way from the high temperatures of classical solid

state synthesis, new low temperature methods such as chemical vapor deposition (CVD),8



solventothermal? and the relatively new supercritical solvent!0 synthesis were developed to
address the problems of diffusion. Of these, the solventothermal method proved to be
conducive to the low temperature synthesis of zeolites!! and a variety of other materials!2-
13, While direct combination and solventothermal methods are an excellent choice for the
synthesis of new materials, they left an intermediate temperature range, between 200 -
800°C, largely unexplored. To explore this regime, the use of a low-melting alkali
polychalcogenide A2Qy flux (A = alkali metal; Q = S, Se, Te) was developed as a new
synthetic method.!4 By utilizing this method, a staggering number of AM/Q (A = alkali
metal; M = transition, main group, or rare earth metal; Q = S, Se, Te) compounds have
been prepared.15 Several of these compounds display interesting structural,!6 thermal,!7
and optical properties.!8.19 The molten polychalcogenide synthetic method proved to be
highly accommodating, allowing the coordination chemistry of transition!%, main group!9-
20, and rare earth metals?! to be investigated without the formation of undesirable
competing phases. This approach can stabilize kinetically stable phases that cannot be
formed by other methods.

While investigating the ternary A/M/Q systems, certain molecular fragments were
found to be stable in this molten reaction medium. This observation resulted in the
utilization of discrete molecular building blocks or recognizable structural fragments to
synthesize new multinary compounds. These molecular units are formed by the in situ
fusion of A2Q/E/Q and contain various [ExQy]™ units (E = main group element) in a molten
polychalcogenide solvent. By this method, the polychalcogenide flux can act as a solvent
by which the previously unexplored coordination chemistry of the highly basic [ExQy]™
units can be investigated. To gain access to this area of chemistry, the polychalcogenide
flux was modified by adding a second main group metal or binary chalcogenide to the
starting AQ/E/Q reactants, increasing the complexity of the reaction system, in the hopes
of forming quaternary AwMxEyQ, compounds. The lower reaction temperature increases

the mobility of the reactants, favoring the probability of stabilizing metastable phases while



preventing the formation of the thermodynamically stable phases. Although
thermodynamic influences cannot be totally avoided, it is clear that by enhancing the
diffusion rate of the reactants, solid-state reactions can be performed at reduced reaction
temperatures, favoring the formation of new multinary materials.

While this discussion has emphasizes the use of molten polychalcogenide fluxes as
a conducive solvent to investigate the coordination chemistry of the various [ExQy]" units,
they are far from “innocent” solvents. The alkali polychalcogenide fluxes allow for the
easy incorporation of alkali metal cations into the anionic [MxEyQ.]" frameworks. The
incorporation of alkali metal can lower the dimensionality of a compound or cause a
structural transformation to a previously unknown structure. The use of these highly
reactive solvents at intermediate temperatures has allowed the dismantling of stable
compounds (i.e. Sb2Q3, and P2Qs) into reactive intermediates for the formation of new
materials.

The multicomponent polychalcogenide flux method was first utilized by the
incorporation of tin!9.22 into the polychalcogenide fluxes, followed by tellurium?3, the
P,Qs glasses (Q = S24, Se25), and most recently germanium?29, all with remarkable results.
The coordination chemistry of chalcometalates such as TeS32-, PySeg?, GeS44- and SnS44-
have been largely ignored in favor of silicate, aluminate, and phosphate species that readily
react in aqueous or other more traditional solvents. By utilizing the low melting alkali
polychalcogenide salts as a reactive solvent the more non-classical chemistry of these
various chalcometalates units can be explored. These non-classical chalcogenide ligands
are more suitable for binding to "softer," chalcophilic metals, in contrast to the oxide-
containing ligands, which prefer "hard," electropositive ions. The molten nature of the
polychalcogenide flux allows rapid diffusion of reactants, promoting crystal growth. Since
the major means of characterization of new solid-state materials is determining the single

crystal X-ray structure, methods that routinely provide well crystallized products are

necessary.






The growing importance of the chalcophosphate class of compounds prompted our
lab to begin investigating this and other related systems via our developing
polychalcometalate method.  Although the preliminary investigation involved the
coordination chemistry of both the polythiophosphate and polyselenophosphate systems,
the emphasis quickly focused on further exploration of the selenophosphate system. The
polyselenophosphate system blossomed into a rich coordination chemistry of the various
[PxSey]™ units with a variety of metal ions leading to a number of new materials whose
structures vary from dense three-dimensional frameworks to molecular species!6. We
were interested in the continued exploration of the polythiophosphate system to develop
this chemistry to a level of maturity similar to that observed in the polyselenophoshate
system. During the course of our investigations, we discovered that the chemistry of the
two systems was completely divergent, and they should be looked upon as two separate
areas.

The first compounds reported from a Ax[PyQ,] flux synthesis were ABiP2S7 (A =
K, Rb)27. The structure consists of corrugated [BiP2S7]™ layers separated by A* ions.
The layers are constructed from Bi3+ ions and multiply bonding [P2S7]4- units forming
irregular eight-membered rings of alternating Bi-S-P atoms. The PS4 tetrahedrons of the
pyrothiophosphate unit coordinate in a bidendate chelation mode to Bi+3 ions and acts as a
bridge to a second Bi*3 ion, forming the top side of the eight-membered ring. The Bi*3
ions are connected at the bottom of the ring by the PS4 tetrahedron of a neighboring
[P2S7]4 unit that acts as a bridge to the two Bi*3 ions, see Figure 1-1. The rings are
linked in two dimensions by P-S-Bi bridges, forming the layer. The layers stack with the
eight-membered rings in registry, forming channels that run along the a-axis. The Bi*3 ion
is in a distorted monocapped trigonal prismatic coordination geometry. The distortion

presumably arises from the stereochemically active 6s2 lone pair of the Bi*3 ion.
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Figure 1-1:  Packing diagram of ABiP,S7 (A = K), as viewed down the a-axis. The
alkali cations have been removed for clarity.



Under these proven conditions, we wished to explore the coordination chemistry of
polythiophosphate and polychalcoantimonate units with transition metals. Because of
sulfur's high affinity to form copper and silver antimony chalcogenide minerals, we
focused our preliminary investigations on the group 11 transition metals in hopes of
obtaining new quaternary alkali polychalcoantimonate compounds.

The exploration of the polychalcoantimonate fluxes looked very appealing because
the vast majority of the known multinary antimony chalcogenide compounds are
minerals,28 containing Sb*3 species in [SbxQy]™ units neutralized primarily by silver
and/or lead cations. The [SbxQy]" frameworks containing the Sb+3 species exhibit a rich
structural diversity due to the stereochemical effect of the inert lone pair and the tendency
for the Sb+3 species to adopt three- 29 four- 30 or five-fold coordination.3! Taking
advantage of the thioantimonate units high affinity for coinage metals, we felt this was a
convenient entry to the largely unexplored area of [MxSbyQ,]" frameworks stabilized by
alkali metal cations.

A variety of synthetic routes have been reported to synthesize ternary alkali
antimony (poly)chalcogenide compounds, with high temperature direct combination32 and
solventothermal synthesis33 being the most successful. The compounds Cs;SbsSg and
CsSbS¢34 represent the first examples of thioantimonate compounds synthesized using the
polythioantimonate fluxes. The structure of CsSbS¢ is one-dimensional with SbS;
rhombic units linked into a chain by bridging (Ss)?- ligands, see Figure 1-2. Each Sb atom
is bonded to four S atoms with distances that are typical for a four-coordinate SbS4 species

with a stereochemically active lone pair.



Figure 1-2:  The anionic chains of CsSbSe. The alkali cations have been removed for
clarity. Large open balls; S, shaded balls; Sb.



The geometry about the Sb atoms is trigonal bipyramidal with the lone pair in an
equatorial position exerting the expected distortions from an ideal trigonal bipyramidal
coordination. The structure of Cs;Sb4Sg is two dimensional containing of the same Sb;S;
rhombi observed in CsSbSg, but now they are linked by trigonal pyramidal [SbS3]3- units
that connect the rhombi into chains running along the [110] direction. These chains are
then linked into layers via (S2)2- ligands that bridge [SbS3]3- units from neighboring
chains. The Sb atoms in both of the [SbxSy]™ units have a mixture of long and short
contacts to neighboring S atoms, see Figure 1-3. The Sb(1) atom has a square pyramidal
geometry of S atoms with the lone pair presumably occupying the opposite axial site. The
Sb(2) atom coordination is best described as distorted trigonal bipyramidal with three
normal distances and one longer distance. Within the anionic layers of Cs;SbgSg are 14-
membered rings that stack in registry from layer to layer, forming tunnels that run along the
C - axis.

The first reported quaternary alkali antimony sulfide compound was KHgSbS3.35
The structure consists of discrete pyramidal [SbS3]3- units comer sharing to four-
coordinate Hg+2 cations is a sea-saw geometry, forming a two - dimensional compound
separated by K+ cations, see Figure 1-4. The first examples of a quaternary alkali antimony
chalcogenides incorporating the tetrahedral [SbS4]4- unit, prepared in supercritical

ammonia, were only recently reported36.



Figure 1-3: A single anionic layer of Cs3SbsSg as viewed down the ¢ - axis. Large
open balls; S, shaded balls; Sb. The alkali cations have been removed for
clarity.
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Figure 1-4:  (A) A view of a single [HgSbS3]™ layer, with labeling. (B) Packing
diagram of KHgSbS3 as viewed down the a - axis, with labeling.
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2. Nature of the Chalcophosphate Fluxes

A typical reaction involves the combination of A2Q/M/P2Qs/Q in various ratios.
The reactants are elemental metal M, alkali chalcogenide A>Q (A = alkali metal cation), the
binary P2Qs (Q = S, Se) and elemental chalcogen Q (Q =S, Se, Te). The flux formation is
the result of the self-redox reaction of A7Q reacting with n amounts of Q (Q = S, Se, Te)
forming A2Qp+1 ligands that act as a reactive solvent. Reactions between the metals and
the molten Qx2- ligands are performed in situ. The most direct way to incorporate an
additional main group metal into these systems is to add the elemental main group metal
into the reaction mixture. For the chalcophosphate systems the binary P2Qs compound
was chosen to provide a preoxidized phosphorous source into the reaction mixture. Since
the two systems have divergent chemical properties the polyselenophosphate and
polythiophosphate systems; the methods will be described in general and differences
between the two systems will be described as needed.

A typical reaction mixture consists of A2Q/M/P2Qs/Q in various stochoimetric
ratios. The powdered reagents are loaded, in a dry box under inert atmosphere, into a glass
vial and thoroughly mixed to ensure a homogeneous mixture. The resulting mixture is
loaded into a Pyrex or quartz tube which serves as the reaction container. The choice of
reaction container depends on the desired reaction temperature, Pyrex tubes are routinely
used for intermediate temperature reactions (200°C - 550°C), while quartz tubes are used
for high temperature reactions (= 550°C). The tubes are evacuated to a pressure of ~1x10-
3 torr and flame sealed. The sealed tubes are loaded into a computer controlled furnace and
then subjected to a preprogrammed heating profile. Upon heating, the A2Q/P2Qs/Q fuse
together, forming a Ax[PyQ;] flux in which the coordination chemistry of the various
[PxQy]™ units can be explored with a variety of metal ions. Although the redox chemistry

that occurs is quite complex, and the exact composition of the resulting molten fluxes
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remains unknown, one can gain insight by applying the basic principles learned from the
polychalcogenide chemistry.
In molten polychalcogenide systems, the (Qx)?" ligands exist in a variety of lengths

by undergoing a complicated self-redox equilibrium as shown in Scheme 1.

Scheme 1
_ _—
/Q a 2. Q 2-
Ql 2 Q | Q/
\ Q Q
Q

Scheme 1 shows an elementary example; another example is the initial flux
formation reaction, where Q2- reacts with n equivalents of Q forming the starting Q(n+1)2'
flux. The actual equilibrium is far more complicated than the examples presented here and
is still not completely understood. The various (Qx)? ligands serve a dual purpose, the
terminal chalcogenide atoms have a formal oxidation state of negative one, while the
internal chalcogenide atoms are all formally neutral, keeping with the Zintl concept. This
produces a basic, yet oxidizing media in which the metal is solubilized by a redox reaction
with the internal chalcogenide atoms of the various polychalcogenide ligands in the flux,
forming M+ ions and breaking the (Qx)?- ligands into smaller chalcogenide fragments by
reducing a Q-Q bond.

The addition of P2Qs renders the Lewis acid-base equlibria described above even
more complex. The P2Qjs reacts with the molten polychalcogenide ligands to form various

Ax[PyQ,] units. The previously solvated metal cations are then coordinated by the basic
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[PyQ]™ units or (Qx)™ ligands forming soluble intermediates; acting as potential nucleation
sites for the growth of single crystals. These fluxes, being liquids, allow rapid diffusion of
these intermediates, via a dissolution-reprecipitation process, promoting the growth of
high-quality single crystals. This process of single crystal growth, commonly called a
mineralizer effect, is particularly effective since the flux can redissolve small or poorly
formed crystallites and redeposit the material onto larger well-formed crystallites or form
new nucleation sites. Since the major means of characterization of new solid-state materials
is determining the single crystal X-ray structure, methods that routinely provide well
crystallized products are necessary.

The composition of the AoQ/M/P2Qs/Q mixture is a very important variable that can
be easily manipulated. Changes in the AQ/M/P2Qs/Q flux composition can alter the
basicity of the flux, dramatically changing the coordination chemistry of the various
[PxQy]™ units with metal ions. The guiding principles for changing the Lewis basicity of
the polychalcophosphate flux are:

(I) The elemental chalcogenide concentration is inversely proportional to the

Lewis basicity of the flux.

(II) The amount of A;Q is directly proportional to the basicity of the flux. (III)
After extensive experimental observations, the amount of P2Qs was determined to be
critical in controlling the Lewis basictiy of the resulting flux, stabilizing various [PxQy]™
units. Increasing the P2Qs concentration (increasing the Lewis acidity) to the point where
the elemental sulfur dilutant was removed, favoring the formation of nuclearity [PxSy]™
units, containing the P*5 species.

(IV) The size of the cation plays a significant role in the dimensionally of the
resulting [MxPySz]"~ framework. An example of the cation effect is observed in the
structures of AzAgyP2Seg (A = K, Cs)25b  When the [AgyP;Seg]?n~ framework is
stabilized by Cs* cations, a chain structure of alternating ethane-like [P2Seg]4- units bound

to Agy+2 dimers are observed, see Figure 1-5A. However, substitution of the larger Cs*
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cations by the smaller K* cations results in a dramatic structural change, stabilizing a three-
dimensional [Ag;P;Se¢]2"~ framework. This novel yet complicated three-dimensional
tunnel framework consists of AgSe4 tetrahedrons linked to [P2Seg]4- units forming K+
filled channels that run along the crystallographic a - axis, see Figure 1-5B. The [P2Seg]4"
units are assembled into layers that are connected by the AgSey4 tetrahedrons into a dense
three-dimensional network. The [P2Seg]4 units bridge four Agt ions in two different
binding modes, see Figure 1-5C. Surprisingly, no Ag* - - -Agt contacts were observed,

which could not have been predicted based on the structure of CspAgsP2Ses.



Figure 1-5:  (A) View of a single [Ag,P,Seg]2"" chain, with labeling. (B) Unit cell of
K,Ag,P,Seg as viewed down the a - axis. (C) A Portion of the
[Ag,P;Seg]2n- framework, highlighting the [P,Seg]2" binding modes.
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Throughout our exploration of the chalcophosphate fluxes we have observed a
significant difference between the selenophosphate and thiophosphate systems. While the
thiophosphate flux appears to favor the P5+ species, the selenophosphate flux displays a

tendency to favor the reduced P+4 species. The stability of the reduced P+4 species is

consistent with the lower oxidizing power of the Se,2- ligands compared to S,2- ligands.

The Lewis basicity of the chalcophosphate flux controls the nature of the [P,Qy]™
units observed. In the selenophosphate system, the basicity is controlled primarily by
changing the A3Se concentration, while in the thiophosphate system, the Lewis basicity is
controlled by varying the P2Ss concentration. The tetrahedral [PQ4]3- (Q = S, Se) unit is
observed in both systems under highly basic conditions (high A2Q or low P3Ss). Although
the [P2Seg]4 unit is repeatedly observed under Lewis acidic conditions (low A3Q), other
reduced phosphorous species have also been reported.37 Further increasing the Lewis
acidity, as observed in the synthesis of K2CuyP4Seq0,38 condenses two [P2Seg]4- units
together via bridging selenides and forms a [P4Se0]4- unit containing a cyclohexane-like
ring.

In the thiophosphate system, increasing the Lewis acidity of the flux (increasing the
P2Ss concentration), favors the formation of higher nuclearity [PxSy]" units. To further
explore these phosphorous-rich conditions the elemental sulfur was removed from the
reaction. A molten thiophosphate flux still forms by the combination of A3S and P>Ss, but
the oxidative properties are different. With the lack of the elemental sulfur, a portion of the
thiophosphate flux now must be sacrificial to oxidize the coinage metal. The exact
influence of these phosphorous-rich conditions is not understood. Phosphorous-rich
reactions produced ACuP3S9 (A = K, Rb)39 and Cs;CuP3S9%0 a one-dimensional
compound with an unprecedented acentric helical packing arrangement of the anionic
framework. Increasing both the P2Ss and Cs,S concentrations lead to the synthesis of

CszCuzP2S6,39 a thiophosphate compound containing a reduced P+4 species in the ethane-
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like [PZS6]4' unit. This unprecedented observation suggests that slight changes in the

Lewis acidity, via specific CspS/P,Ss ratios, may stabilize the reduced P+4 species.
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3. Nature of the polychalcoantimonate fluxes

The methodology of the polychalcoantimonate fluxes is very similar to the
polychalcophosphate fluxes. A typical reaction involves the combination of A2Q/M/Sb/Q in
various ratios, just as in the polychalcophosphate system, the only difference is the choice
of antimony source. In the thioantimonate system, elemental Sb was experimentally
observed to give the best results, while in the selenoantimonate system, the binary SbaSe3
compound with a preoxidized Sb source is used. The reactions temperatures employed by
the thioantimonate reactions (280 - 500°) were not sufficient to dismantle the SbySe3
framework. The elevated reaction temperatures utilized by the selenoantimonate system (2
500°C ) were required to dismantle the SbySe3 extended framework. Upon heating, the
A2Q/Sb,Q3/Q fuse together, forming a Ax[SbyQ;] flux in which the coordination chemistry
of the various [SbxQy]™ units can be explored with a variety of metal ions.

The addition of Sb or the binary SbsSe3; renders the Lewis acid-base equlibria
described above even more complex. The Sb or the binary SbySe3 reacts with the molten
polychalcogenide ligands to form various Ax[SbyQ] units, which can coordinate to the
solvated metal cations forming a variety of [MyxSbyQ.]" frameworks, stabilized by alkali
cations.

The composition of the A2Q/M/Sb2Q3/Q mixture is a significant variable that can be
easily manipulated. Changes in the A2Q/M/SbQ3/Q flux composition can alter the basicity
of the flux resulting in dramatic changes in the coordination chemistry with metal ions.

A comparison of this system to the polychalcophosphate fluxes provides insight
into the structural and chemical complexity of the two systems. The polychalcoantimonate

system follows the experimentally observed trend of the polychalcophosphate system;16
basic conditions (increase A>Q) favor the tetrahedral [EQ4])3- unit (E =P, Sb; Q= S, Se)
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and acidic conditions (decrease A7Q) favors a reduced species. In the basic system, the
[SbQ4)3- unit is observed as the discrete tetrahedral species, while the [PQ4]3- unit (Q = S,
Se), exhibits a complex condensation equilibrium. Examples include [P;S7]4- 24b,
[p339]3- 39,40, [P,Segl4- 24b and [P;Seg)4-.25¢

For the polychalcophosphate system, Lewis acidic conditions (decreasing A2Q or
increasing the chalcogenide concentration) favor the stabilization of the reduced P+4 species
which is readily observed in the ethane - like [P2Qg]4- unit (Q = S, Se). The stability of the
reduced P+4 species is consistent with the lower oxidizing power of the Se,2- ligands
compared to S,2- ligands. In the case of the Se,2- ligands, the lesser oxidative power of
the Se atoms cannot oxidize the P atoms to the highly oxidized P5+ species, resulting in the
stabilization of [PxQy]" units containing P4+ species due the excess of polychalcogenide
ligands in the flux. Conceptually, stabilizing a [SbxSy]™" unit containing the Sbét is
possible but it has yet to be reported.

Under Lewis acidic conditions, the pyramidal Sb3+ species is the only variable
oxidation state species observed. Although there is not enough experimental data to predict
the exact nature of these [beSy]n' units, Lewis acidic conditions can stabilize a variety of
species, such as the tetrahedral [SbQ4]3- , pyramidal [SbS3]3- , and various oligomeric
[beSy]n' units. In the thioantimonate fluxes increasing the Sb concentration stabilizes
oligomeric [SbxSy]"" units, containing the Sb+3 species, increasing the repertoire of
[beSy]n‘ units available for the formation of new extended frameworks.

The advantages to the thiophosphate and chalcoantimonate flux methods over
traditional high temperature reactions are:

(I) The use of intermediate reaction temperatures (280 - S550°C) allows the
stabilization of metastable phases and the isolation of new [PxSy]"" and [SbxQy]™ units.

(II) The dual nature of the polychalcogenide fluxes, as an reactive solvent and a
minrealizer, provides a mechanism for the formation of high quality crystalline materials,

critical for the crystal structure determination and any potential applications.
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(IIT) The tunable Lewis basicity of the fluxes allows for the stabilization of a
specific [PxSy]“' and [beQy]“' unit, or a completely unexpected unit.

(IV) The [PxSy]“' and [beQy]n' units readily bind with a variety of metals with a
ever increasing repertoire of bonding modes.

(V) The ease of isolation of highly pure materials due to the residual flux's high
solubility in common organic solvents.

The [PxSy]“' and [beQy]"‘ units were thought to be the critical factor in
determining the structure. They are typically thought of as molecular or ologomeric
building blocks that bond to coinage metal cations in the polychalcogenide flux, building

extended frameworks stabilized by alkali metal cations. The growing diversity of the

phases synthesized owe their conception to the great diversity of the [PxSy]“' and
[SbxQy]™" units observed and the staggering number of different binding modes displayed
by these units. A unique feature of the thioantimonate system is the stabilization of novel
[MxSbySz]"" frameworks that are dominated by the coinage metal chalcogen framework,
not by the thioantimonate unit. This is a completely unexpected result, suggesting that an
entirely new area of this chemistry can be explored. Even with this result, the
thiophosphate and chalcoantimonate systems is critical for designing new materials since
the [PxSy]“' and [beQy]“' units can be controlled by manipulating the Lewis basicity of
the flux. To give a better indication of the great variety of binding modes of the [SbxQy]™
units we have constructed Tables 1-1 and 1-2. Table 1-1 summarizes the synthetic
conditions that have stabilizes the various [PxSy]“' and [beQy]“‘ units discovered
throughout the course of this dissertation. Table 1-2 lists the [SbxQy]"" units observed
and an example of the binding mode displayed by these units. The vast majority of results
shown in this table were unknown before the start of this research. Even more
importantly, these two systems should be thought of as completely different systems, even
when [PxSy]“‘ and [SbxQy]™" units are similar the resulting chemistry is rarely even

closely related.
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This dissertation focuses on the synthesis, characterization, and properties of
several new thiophosphates and chalcoantimonates. The chemistry revolved around the
coinage metals because of their highly chalcophilic nature and because the quaternary
thiophosphate and chalcoantimonate chemistry was largely unexplored. The exploratory
synthetic work performed here lays the ground work for the systematic synthesis and

further exploration into this chemistry.
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Table 1-1. Synthetic conditions for the different [PyQz]" and [SbyQ_]"-units.
(M = metal, A7Q = alkali chalcogenide).
M/P,Ses/ AxSe/Se  Pnt/ligands References
1/1-3/1-2/10 P4+ / [P2Seg]* 16
1/1.52/3-4/10 P5+/ [PSes]*, [PSes]*, [P2Ses]* 16, 24b, 25¢
1/2-3/2/10 P5+/ [P2Seq]%, [P2Seg]*- 16, 25¢
1/1/2710 P3+/ [P3Seg]*- 37
M/PySs/ AS /S P+ / ligands References
1/1.5-3/2-4/4-12 P5+/ [PS4]3-, [P2S7]4 24b
1/3/2/4 P4+ / [P2Se]4, 24a
1/2-3/2/- P5+ [P3S9)* 39,40
1/3/3/- P4+ / [P2S6]%, 39
M/Sb/A3S/S Sb+ / ligands References
1-2/1/2/8 Sb5+ / [SbS4]3- 36,43
1/15/1/8 Sb5+/ Sb3+ [SbS4]3-, [SbaS4]% 36,43
34/1/2/8-16. Sb3+ / Sb3+ [SbS4]3-, [SbS3]3- 36,43
2/1/21/8 Sb3+/ [SbsS7]% 49
M/Sb/ AjSe/ Se Sb* / ligands References
4/1/1/16 Sb3+/ [SbyQg]4- 48
2/1/2/8 Sb3+ / [SbySes)4- 50
1/3a Sb3+/ [SbSe;]-, {[SbSez]}22- 51

aThe Sb and A,Se, source was the ternary compound Rb3SbSes.
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Table 1-2. Structure and coordination examples of the various [SbxQy]™ units.
Q .
| [SbS4]3- in A2AuSbS4 (A = Rb, Cs)40
a /Stth _ [SbS4]3- in Cs3AgaSb3Sg36:43
_ Q—M [SbSes)3- in Cs3AgySb3Seg36.43
" /S \Sb-_““s \M [SbS4]3- in KpAgSbS,436:43
\ S/ ‘S/
M .
\\ M [SbS4]3- in KAg;SbS,436
M/S \Sb |\\S/\
oo M
N s \/
M/ M
|
S S~
s M [SbS4]3 in RbyAgSbS36:43
M
M
| M |
M—S, S/
) \
/Sb" M [SbS4]?- in a-RbAg,SbS436:43
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(Cont.)




Table 1-2. (Continued)

[SbS4]3- in B-RbAgySbS445

[SbS4]3- in 0, B-Cs;AgSbS436:43

[SbS4]3- in CsAgo0SbsS 946

[SbS3]3- in NapCuSbS344

(Cont.)
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Table 1-2. (Continued)
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Table 1-2. (Continued)

Ma., /Sbﬁs\’M [SbS3]3- in Cs3Ag,Sb3S752
S ]
M
d\
M M M
Sb —
\(S/ ‘\S/S\b S\ S (SbaS71% in CsAgSbaSy2
T8 d
S
M ,\ sv”
\S _—Sb
M// é Q\<M [SbSe3]3- in Cu3SbSe333
v M/hﬂ\;M M [SbSe3]3- in Ag3SbS354
M M M
EI \ y
|
VNI Sy
M. Q/Sb\Q——M [SbSe4]?- in Cu3SbSes5s
M( \ h’ .",M [SbS4]3- in Cu3SbS436
M
M
M\?/
Sb, Sb [SbS;]™- in AgSbS,59
\GS/ \S e \ s
| T AN
M M M

(Cont.)




27

Table 1-2. (Continued)

M
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) 3-j 61
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CHAPTER 2

Chemistry of Silver in Molten Alkali Metal Polychalcoantimonate Fluxes.
Synthesis and Characterization of the Quaternary Compounds A;AgSbS,4 (A
=K, Rb, Cs), and Cs3Ag,Sb3Qs (Q = S, Se).
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1. Introduction

Over the past several years, we have demonstrated that molten salt
(poly)chalcogenide syntheses at intermediate temperatures (200-500°C) can produce a
wide range of new multinary compounds.! During these investigations, it was discovered
that certain molecular fragments are stable in this molten reaction medium. This
observation led to an interesting twist to this chemistry, namely the utilization of
molecular building blocks in the synthesis of new solid-state lattices. These building
blocks are formed by the in situ fusion of A,Q/E/Q to form AxE,Q, species. (A =K, Rb,
Cs; E = main group element, and Q = S, Se). By this method, the polychalcogenide flux
can act as a solvent in which the coordination chemistry of the highly basic [Eny]“'
ligands can be investigated. This approach was first explored in the tin system2, followed
by tellurium3, the P,Qs glasses (Q = S4, Se’), and most recently germanium®, all with
surprisingly good results. In this context, we explored the coordination chemistry of
polychalcoantimonate ligands with transition metals, particularly group 11 metals .

During the past two decades, a number of solid-state ternary alkali metal
antimony (poly)chalcogenide compounds have been synthesized by either high
temperature direct combination reactions’ or solventothermal synthesis.® Recently,
Cs3SbgSg and CsSbS¢? were synthesized by the now proven molten polysulfide flux
method. The vast majority of the quaternary antimony chalcogenide compounds are
minerals, !0 containing [SbxQy]"- framework neutralized primarily by silver and/or lead
cations. In most of these mineral examples, the antimony exists as Sb*3 species in
pyramidal coordination. The [SbxQy]" frameworks containing the Sb*3 species exhibit a
rich structural diversity due to the stereochemical effect of the inert lone pair and the

tendency for Sb to adopt three!!- fourl2- or five-fold coordination’8. The first reported
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quaternary alkali antimony sulfide compound was KHgSbS3.13 The structure consists of
discrete pyramidal [SbS3]3- units linked together by distorted tetrahedral Hg2+ cations
forming a two - dimensional compound separated by K* cations. The first examples of a
quaternary alkali antimony chalcogenides incorporating the tetrahedral [SbS4]4- unit,
prepared in supercritical ammonia, were only recently reported!4. Because of the high
stability of copper and silver antimony chalcogenide minerals!3, we investigated the
group 11 transition metals in hopes of obtaining new quaternary alkali
polychalcoantimonate compounds.

Here we report the synthesis, structural characterization, optical, and thermal
properties of the new solid-state alkali quaternary polychalcoantimonates, A2AgSbS4 (A
= K, Rb, Cs) and Cs3AgsSb3Qg (Q = S, Se). Complementing the small number of
isostructural compounds, synthesized in supercritical ammonia, recently reported by
Kolis, er. al.14 The Cs3AgySb3Qg (Q = S, Se) represent a rare example of a mixed

valence antimony compound with both Sb3+ and Sb3+ centers in the same structure.

2. Experimental Section

2.1. Reagents

The reagents mentioned in this study were used as obtained unless noted
otherwise: (i) antimony powder 99.999% purity, -200 mesh, Cerac Inc., Milwaukee, WI;
(i) silver powder 99.95% purity, -325 mesh Alfa AESAR Group, Seabrook, NH; (iii)
cesium metal, analytical reagent, Johnson Matthey/AESAR Group, Seabrook, NH; (iv)
rubidium metal, analytical reagent, Johnson Matthey/AESAR Group, Seabrook, NH; (v)
potassium metal, analytical reagent, Aldrich Chemical Co., Milwaukee, WI; (vi) sulfur

powder, sublimed, J.T. Baker Chemical Co., Phillipsburg, NJ; (vii) N,N-
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dimethylformamide (DMF) reagent grade, EM Science, Inc., Gibbstown, NJ; (viii)
diethyl ether, ACS anhydrous, EM Science, Inc., Gibbstown, NJ.

2.2 Syntheses.

A3S (A =K, Rb, Cs) and Cs,Se were prepared by reacting stoichiometric amounts
of the elements in liquid ammonia as described elsewhere.!®¢ All manipulations were

carried out under a dry nitrogen atmosphere in a Vacuum Atmosphere Dri-Lab glovebox.

Preparation of K;AgSbS4 (I). An amount of 0.164g (1.50 mmole) K,S, 0.054g
(0.50 mmole) Ag, 0.092g (0.75 mmole) Sb, and 0.128g (4 mmole) S were thoroughly
mixed and transferred to a 6-ml Pyrex tube which was subsequently flame-sealed in
vacuo (~10-3 Torr). The reaction mixture was heated to 400°C over 12 hrs in a computer-
controlled furnace. It was isothermed at 400°C for 4 days, followed by cooling to 100°C
at a rate of 4°C/hr and then to room temperature in 1 hour. The air and moisture sensitive
product was isolated by dissolving the K5Sx and any Kx[SbySz] flux with DMF under
inert atmosphere to obtain orange-yellow crystals in 46% yield based on Sb. Quantitative

microprobe analysis on single crystals gave K gAgSbSy s (average of three acquisitions).

Preparation of Rb2AgSbS4 (II). An amount of 0.102g (0.50 mmole) Rb,S,
0.027g (0.25 mmole) Ag, 0.031g (0.25 mmole) Sb, and 0.080g (2 mmole) S were
thoroughly mixed and transferred to a 6-ml Pyrex tube which was subsequently flame-
sealed in vacuo (~10-3 Torr). The reaction mixture was heated to 350°C over 12 hrs in a
computer-controlled furnace. It was isothermed at 350°C for 4 days, followed by cooling
to 110°C at a rate of 4°C/hr and then to room temperature in 1 hour. The product, which

is air and water stable, was isolated by removing the excess flux as in (I) to obtain yellow
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to yellow-orange crystals in 52% yield based on Sb. Quantitative microprobe analysis of

single crystals of the two crystals gave Rb; 9Ag; 1SbS4 7 (average of three acquisitions).

Preparation of Cs2AgSbS4 (III). An amount of 0.298g (1 mmole) Cs;S, 0.054g
(0.50 mmole) Ag, 0.062g (0.50 mmole) Sb, and 0.128g (4 mmole) S were thoroughly
mixed and transferred to a 6-ml Pyrex tube which was subsequently flame-sealed in
vacuo (~10-3 Torr) and heated as in (II). The product, which is air and water stable, was
isolated by removing the excess flux as in (I) to obtain yellow crystals in 63% yield based
on Sb. Quantitative microprobe analysis on single crystals gave Cs; sAgSbS, s (average

of three acquisitions).

Preparation of Cs3Ag,Sb3Sg (IV). An amount of 0.164g (0.55 mmole) Cs;S,
0.054g (0.50 mmole) Ag, 0.092g (0.75 mmole) Sb, and 0.128g (4 mmole) S were
thoroughly mixed and transferred to a 6-ml Pyrex tube which was subsequently flame-
sealed in vacuo (~10-3 Torr). The reaction mixture was heated to 280°C over 12 hrs in a
computer-controlled furnace. It was isothermed at 280°C for 4 days, followed by cooling
to 100°C at a rate of 2°C/hr and then to room temperature in 1 hour. The product, which
is air and water stable, was isolated by removing the excess flux as in (I) to obtain red
crystals in a 72% yield based on Sb. Quantitative microprobe analysis on single crystals
gave a atomic ratio of Cs;,AgSb; sS3 5 (average of three acquisitions). Reactions at
280°C were contaminated with a small amount, ~5%, of Ag3SbS3. Increasing the

reaction temperature to 350°C produced (IV) in a pure form.

Preparation of Cs3Ag,;Sb3Seg (V). An amount of 0.104g (0.30 mmole) Cs,Se,
0.032g (0.30 mmole) Ag, 0.055g (0.45 mmole) Sb, and 0.126g (1.60 mmole) Se were
thoroughly mixed and transferred to a 6-ml Pyrex tube which was subsequently flame-

sealed in vacuo (~10-3 Torr). The reaction mixture was heated as in (IV). The product,
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which is air and water stable, was isolated by dissolving the excess flux as in (I) to obtain
black crystals in a 75% yield based on Sb. Quantitative microprobe analysis on single

crystals gave an atomic ratio of Cs| 3Ag) 2Sbj 3Se4 45 (average of three acquisitions).

2.3 Physical Measurements

Powder X-ray Diffraction . Analyses were performed using a calibrated Rigaku-
Denki/RW400F2 (Rotaflex) rotating anode powder diffractometer controlled by an IBM
computer, operating at 45 kV/ 100 mA and with a 1°/min scan rate, employing Ni-filtered
Cu radiation. The calculated powder patterns for (I) - (II) and (V) were prepared with
the CERIUS2? software.l7 Tables of calculated and observed XRD patterns are
summarized in Tables 2-1 to 2-4, respectively.

Infrared Spectroscopy . Infrared spectra in the far-IR region (600-50 cm-1), were
recorded in 4 cm-! resolution on a computer controlled Nicolet 750 Magna-IR Series II
spectrophotometer equipped with a TGS/PE detector and a silicon beam splitter . The
samples were ground with dry Csl into a fine powder and pressed into translucent pellets.

Raman Spectroscopy . Raman spectra were recorded with a BIO-RAD FT Raman
spectrometer with a Spectra-Physics Topaz T10-106¢ 1.064 nm YAG laser running at 11
amps. The samples were ground into a fine powder and loaded into melting point
capillary tubes.

Solid State UV/Vis/Near IR Spectroscopy. Optical diffuse reflectance
measurements were performed at room temperature using a Shimadzu UV-3101PC
double beam, double monochromator spectrophotometer. The instrument is equipped
with integrating sphere and controlled by a personal computer. BaSO4 was used as a
100% reflectance standard for all materials. Samples were prepared by grinding them to

a fine powder and spreading them on a compacted surface of the powdered standard
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material, preloaded into a sample holder. The reflectance versus wavelength data output
can be used to estimate the band gap of the material by converting reflectance to
absorption data as described earlier.!8

Single crystal optical transmission spectroscopy. Room temperature single
crystal optical transmission spectra were obtained on a Hitachi U-6000 Microscopic FT
Spectrophotometer mounted on an Olympus BH2-UMA metallurgical microscope over a
range of 900 to 380 nm. Crystals lying on a glass slide were positioned over the light
source and the transmitted light was detected from above.

Differential Thermal Analysis (DTA). DTA experiments were performed on a
computer-controlled Shimadzu DTA-50 thermal analyzer. Typically a sample (~ 20 mg)
of ground crystalline material was sealed in quartz ampoules under vacuum. A quartz
ampoule of equal mass filled with Al,03 was sealed and placed on the reference side of
the detector. The sample was heated to the desired temperature at 10 °C/min, isothermed
for 10 minutes, and finally cooled to 50 °C at the same rate. Residue of the DTA
experiment was examined by X-ray powder diffraction. To evaluate congruent melting
we compared the X-ray powder diffraction patterns before and after the DTA
experiments. The stability/reproducibility of the samples were monitored by running at
multiple cycles.

Semiquantitative microprobe analyses. The analyses were performed using a
JEOL JSM-6400V scanning electron microscope (SEM) equipped with a TN 5500 EDS
detector. Data acquisition was performed with an accelerating voltage of 20kV and
twenty second accumulation time.

Single crystal X-ray Crystallography. Intensity data for (I), (IlI) and (V) were
collected on a Rigaku AFC6 diffractometer, using /20 scans. Intensity data for (II) was
collected on a Nicolet p3 four circle diffractometer using 0 scans. Data for (II), (III) and
(V) were collected at -100° C while th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>