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ABSTRACT

AN APPLICATION OF FINITE ELEMENT METHOD TO REDUCE

NOISE INSIDE A CAR CAVITY

By

Carlos Eduardo Lopes

Dynamic frequency response is used for different applications in noise vibration

and harshness analysis of mechanical and structural systems subject to external loads

generated by oscillation in some form of periodic motion. This interaction can be noticed

in an automobile compartment, where the interior sound pressure can result from input

forces from the road and from the power train exciting the vehicle compartment panels.

In this study an accurate characterization of this enclosed medium is presented using a

finite element model for an absorbent porous material and its interface with adjacent

acoustical media. The finite element system is based on a theory presented in terms of

static resistivity and the effective density of the porous medium. The model is specifically

developed to analyze the effects of the shape of foam lining on the reduction of sound

pressure level, inside a vehicle interior. Results Show that for a lining of foam that

occupies a restricted volume in an acoustic cavity, the reduction of the level of sound

pressure is related more with the shape of the foam than with the amount of foam

implemented. Better results for the sound pressure level were found for shapes of lining

with 30% to 40 % less foam material applied, as compared to the same restricted volume

full of foam.
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CHAPTER 1

INTRODUCTION

Excessive noise and vibration are among the major problems facing today’s vehicle

designers, and much work has being carried out aimed at improving the understanding of

the relation among noise, source characteristics and insulation. Noise inside a vehicle is

primarily caused by the vibrating surfaces enclosing the passenger compartment. Since

this is a confined space, its air resonances (normally referred to as cavity resonances)

have considerable influences in the noise generation process.

Although elastic porous materials such as foams are widely used in automobile interior

noise control, complete numerical models of these materials have only recently become

available. As a result, it is only now becoming possible to design Optimal foam treatments

numerically.

Early work related to the finite element analysis of sound absorbing materials was

performed for fibrous or rigid porous materials such as glass fiber or open cell foam.

Craggs [1] derived an absorption finite element for an extended reaction limp porous

material and showed that finite size, extended reaction linings behave differently than do

locally reacting liners owing to the transverse propagating modes in a duct. Craggs [2]

subsequently used that element to study both wave propagation in ducts and the response

of small enclosures lined with bulk reacting materials. A much earlier paper by Scott [3]

also showed that at least for sound transmission in ducts the liner is best considered as

having a bulk reaction. Later, Astley and Cummings [4] calculated the modal attenuation



in a uniform flow duct lined in all four side walls with bulk reacting porous materials by

using a finite element analysis, and compared the predicted modal axial attenuation rate,

phase speed and transverse pressure profile with measured data. More recently, Munjal

[5] proposed a finite element model for predicting the reflection characteristics of a

fibrous wedge in an impedance tube. His prediction was compared with the experimental

results and the effects of the wedge dimensions and flow resistivity on the reflection

coefficient were illustrated. In all these previous works, governing differential equations

for porous materials were used that were derived from a generalized Rayleigh model in

which the porous material’s fibers were assumed to have either zero (limp) or infinite

(rigid) stiffness. In either case, only one longitudinal wave is allowed to propagate within

the porous material.

Elastic porous materials such as foams generally differ from limp or rigid glass fiber and

other fibrous materials in the number of wave types that can propagate within them, as

discussed by Bolton [6]. Zwikker and Kosten [7] noted that an elastic porous material

such as partially reticulated foam can convey two longitudinal wave types, while only a

Single longitudinal wave is significant in fibrous media that can be modeled as either limp

or rigid. Analytical wave propagation theories have been developed that can account for

all wave types that propagate within elastic porous materials such as polyurethane foams

as described by Bolton [6]. Those theories can be used to model planar foam treatments

(laterally infinite homogeneous foam layers, for example) owing to the classical plane

wave solution techniques. Based on these theories, in this study a foam finite element

model that can be coupled with acoustic finite elements has been developed. The

behavior of the foam is governed by bulk properties such as resistivity and porosity and



the results of the coupling procedure were verified through a comparison with analytical

and experimental results. The basis for constructing the finite element model is a

variational principle given by Morse and Ingard [8], and the formulation is based on a

generalized Rayleigh model of the absorbing material in which isotropic properties and

rigid fibers are assumed. The output of the finite element is pressure for a two

dimensional model having rigid boundaries. In order to evaluate the effect of the shape of

foam and respective sound pressure level reduction, different distribution Of foam layers

were assumed.

In what follows the equations are those derived from a generalized Rayleigh model of the

material as given by Morse and Ingard [8]. It is assumed that the resistivity is constant

and the effect of the material on the entrapped air is considered by introducing the

porosity of the foam.



CHAPTER 2

MODELING ACOUSTIC PRESSURE RESPONSE

2.1 Acoustic Cavity Theory

A typical acoustic enclosure is sketched in Figure l, a domain 9" filled with a medium

(fluid) that transmits a linear acoustic wave. If the volume of air contained in this

enclosure is excited by a velocity U over the surface S] and all the remaining boundaries

are hard, the equations of conservation of mass and adiabatic gas law for this problem are,

respectively,

3 0
p0 V.U=-—’g on Q (1)

at

and

8_p_13p

at c2 at

where V.U Ediv(U) 3:

U.
U: 0 s1

  

 

Acoustic Cavity (2"

     

52 x

  

  

Open Surface S; i S; i

X=0 Hard Boundary over $2 X=L

Figure l A rectangular acoustic enclosure with a velocity distribution over

the surface 81 and a hard boundary over 82.



If a harmonic form e j‘" for p is assumed then the fluctuating component of density aplat

can be eliminated, leading to the equation

V.U = — I“; p (2)

p06

 

where U is the particle velocity, p is the acoustic pressure, p0 is the ambient equilibrium

density and c is the speed of sound. The application of Newton’s second law to the

element mass leads to the equation

”VP=PU=IWP0U (3)

If the velocity U is eliminated between equations (2) and (3), the result is the Helmholtz

equation for the domain (2“

2
4

VIP-[1:1 p=0 H

l

The boundary conditions are

1- A uniform velocity applied at the open end

9-K:U ej’" for (Jc,y)eESl

x

2- A normal velocity U.n = O at the hard wall

Vpn=0 for (x, y) 6 S2

where n is the outward normal to the boundary



2.2 Formulation of an Acoustic Finite Element

An acoustic finite element is derived from a variational principle whose stationary values

lead to the wave equation and the conditions prevailing at the boundary. A suitable

functional F, whose first variation leads to the Helmholtz equation (4), is shown (eq. (5))

2

F=éj [(VP-VP)’[2) 102] 4A (5)

9‘ C

where w is frequency, c is the speed of sound and p is pressure. Equation (5) is used as

the basis of a finite element formulation [3]. Within the domain the pressure is discretized

using:

4

p(x,y) = X 12.. N..- (x.y)

where each Ne; (x,y) is a (bilinear) shape function associated with the i-th degree of

freedom of element e, a four node quadrilateral and pe, is the nodal pressure.

Substituting this approximation into the functional yields

1
F = 251235. -P.]p. (6)

where the sum is understood in the sense of assembly,

  

8N. 8N. 8N. 3N.
S ..= __' I __' I

“"1 flax 3x+3y ay

and

CWW



The stationary values of F in equation (6), give the finite element equations for the

undamped problem

(ISI—IPIXp}=0 (7)

where [P] is the kinetic energy matrix and [S] is the strain energy matrix resulting from

the assembly of the element matrices Pc and Sc, respectively.

2.3 Energy Dissipation

Damping causes energy losses in the system and also phase differences in the pressure at

various locations. The complete description of the pressure then requires information on

the phase angle as well as the amplitude. The usual way to approach this problem is by

means of a complex notation for p, as discussed by Craggs [9]. Thus the discretized form

of the damped wave equation is

(-[P]+ jprCI+ISI)p = 0

(8)

with boundary conditions

—Vp.n =jwp U at x=O

Vp.n=0 ath=S2

The damping matrix [C] for the acoustic cavity was assumed to be of the form

[C]=Ot[P]+B[S] (i.e., Rayleigh damping), where a and B are known coefficients that will

be adjusted experimentally.



2.4 Results for the Acoustic Finite Element Model

In order to verify the finite element model we compared its output with analytical results.

The dimensions of the model were defined based on a variation of the experiment

conducted by A. J. Hull [10], which will be described in detail in Section 3.4. One of the

main reasons for choosing the geometry of this experiment is because A. J. Hull

performed his experiment with a layer of foam at the end of the tube, measuring the

response of the cavity with foam and plotting the results. These results will be used in

section 3.5 to validate the approach for the assembly air-foam in the finite element model

(clearly, the geometry in the experiment is axisymmetric while the finite element is not.

Nevertheless, results from the experiment can be used to calibrate the finite element

model). In addition, the dimensions of the experiment can be compared with one segment

from the floor up to the roof of a vehicle interior and the results from this present study

can be extended to characterize the noise and its reduction inside the vehicle. Lastly, the

experiment is still available at the Laboratory of Acoustics and can be setup in the future

to validate all the results from this study

1.52 m

 

0.427 m Y
 

   

 

 
 

Speaker Response Hard Wall

Measurement

Microphone

     
 

   

Figure 2 Laboratory Setup for End Pressure Excitation Experiment



The setup used a 76 mm circular PVC schedule 40 duct, 1.52 m long, driven by a 254

mm diameter speaker as sketched in Figure 2. The response of the tube was measured in

the experiment with a microphone at a location (x,y)=(0.4267,0.0037). The natural

frequencies for this setup can be obtained analytically solving the wave equation. In this

particular case, Since no internal damping has been assumed, the ideal standing wave

response resulting from a reflective boundary condition is infinite at a natural frequency

where C: 321.4 [m/s], L==1.524 [m] and n=0,1,2,...

Each value of n represents the normal mode of vibration with the natural frequency

determined from the equation. The theoretical calculations for evaluating the natural

frequencies at different mode shapes were performed and shown in Table 1

Table 1 Analytical Natural Frequencies for the Setup

 

 

 

 

 

 

 

Mode Frequency [Hz]

1 O

2 105.45

3 210.89

4 316.34

5 421.78

6 527.23    
 



These results will be used to compare the accuracy of the results obtained from the finite

element model. The finite element model has the same dimensions as in the experiment,

as well as the same boundary conditions.

A schematic for the finite element model is shown in Figure 3
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Figure 3 Finite Element Model for the Experiment

Since the speaker acts as a piston in the setup, the model was defined with a uniform

input of volume velocity U em in the open end of the acoustic cavity. The 2D finite

element model was discretized using 12 elements in Y direction and, in order to study the

convergence of the model, 7, 14, 28, 35 and 42 elements were used along the X direction.

All the test cases were performed using rectangular four node elements, with one degree

of freedom per node. The values of the absolute pressure at the node, representing the

microphone position (0.427 m from the speaker) and a150 Hz forcing frequency are

given in Table 2.

10



Table 2 Absolute Pressure Values for Different Mesh Sizes

 

 

 

 

 

 

  

Mesh P [N/mz] at (0.427, 0.037) [m]

12 x 7 3.231812 e—3

12 x14 3.151551 e—3

12x28 3.131725e—3

12 x 35 3.130641 e—3

12 x42 3.130514 e—3

 

As seen from Table 2 , the solution converges to a pressure about 3.13x10'3[N/m2], which

is roughly reproduced by the 12x28 element mesh. The computational effort required for

the analysis with the 12x28 is more moderate as compared to the 12x35 and 12x42

element meshes, with a good accuracy. Therefore, the 12 x 28 element mesh is sufficient

for this work and will be used to perform further analyses. Based on this mesh, the natural

frequencies are shown in Table 3, proving once more that the finite element model is in

good agreement with analytical results shown in Table 1.

Table 3 Natural Frequencies from the finite element model

 

 

 

 

 

 

 

 

Mode Frequency [Hz]

1 0

2 105. 39

3 210. 45

4 314. 84

5 420.25

6 525.20   
II

 



The finite element analysis was conducted for the range of 0 to 800 Hz as described by

A. J. Hull [10] and at (x,y)=(0.427,0.037), the output from the finite element model is

shown in Figure 4. The position for the measurement is chosen to coincide with the

experimental results from [10]. This experimental results will be used later in the analysis

to compute values for damping coefficients 0t and B.
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Figure 4 Frequency Response from the Finite Element Model
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CHAPTER 3

MODELING POROUS ABSORPTION MATERIAL

3.1 Rigid Porous Absorbing Material

The model of the absorption material is based on the classical theory given by Zwikker

and Kosten [7] and Morse and Ingard [8]. For the ideal foam, it is assumed that the

material is rigid and therefore, it does not move with the air. The absorption then arises

from the viscous forces acting at the air-solid interface and not from any damping within

the material itself. At a microscopic level, the flow through the pores is extremely

complicated, as the velocity varies across the section. Because of this, an isotropic

material is assumed and the governing equations are written in terms of the mean

velocity, based on the equations derived for propagation through a narrow tube (Figure 5).
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Figure 5 Exaggerated cross-sectional view of a foam layer with oriented interface
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In the present theory there are three important physical properties that will influence the

absorption: porosity 0, structure factor K and flow resistivity R. It is also important to

understand the concept of main pores for the ideal foam, which are uninterrupted

microscopic tubes that cross the entire foam ( real foams are also composed by non-

communicating air gaps). If there are n parallel main pores of radius r distributed over a

cross section of unit area, porosity can be written as nfltr2 and usually varies from 0.80

(wood-fiber plates) to 0.95 (felt, sponge rubber) as tabulated in reference [7]. In the

equation of motion, porosity also can be taken as the volume of air in the main pores per

unit of volume of foam. The structure factor K is equal to the ratio of the total air contents

to that of the main pores, and is essentially greater thanl, usually from 3 to 9. The

example shown in Figure 5 has structure factor equal to 1, since there are only main pores

and they are oriented with the same direction as the macroscopical pressure-gradients.

Resistivity is known as the characteristic impedance or resistance of the foam and varies

from 2500 to 50000 [rayls/m]. Also in this section, absorption effects are introduced by

making the assumption that the lining is locally reacting, since the sound velocity in this

medium is two or three times smaller than in air. The advantage of this approach is that

the lining can be represented without having to increase the number of degrees of

freedom and the finite element method can be applied to model the absorption material

as well as the air. This will also have the added advantage of allowing the material lining

to have an irregular geometry.

14



3.2 Equations for a Porous Medium

In this section, equations are derived from a generalized Rayleigh model of material as

given by Morse and Ingard [8]. It is assumed that the material is isotropic and the solid

phase is rigid. The effect of the material on the entrapped air is considered by introducing

the porosity Q. It is assumed that the input is of the form eiw’, in which case the equation

governing the acceleration of the fluid through the pores is

- j W!)

V.U = 2 p (9)

p0 ca

 

Continuity requires that

—Vp=(jwpa+R )U (10)

where U is the mean velocity of fluid passing through the pores, c, is the speed of

propagation and p, is the effective density of the air inside the pores, defined as

Pa=PoK

If U is eliminated from (9) and (10) then the governing equation may be expressed as

1 1

C C poca

Comparing (1 l) with (4), we recognize that the behavior of the absorption material is

 

similar to that for air, but includes the effects of resistivity, porosity and structure factor,

15



as postulated in reference [1 1]. The discretized form of the equation (1 1) equivalent to (7)

for air alone is

{Is 1-1P..Il{p.}= (jpw+R>{Q..} (12)

where Qm is the volume velocity, [8] is as before and [Pm] is the global dynamic matrix,

obtained from the assembly of the element matrices

(Pm),- =[[%]2KO+{at}: :2 HINiNIdA

This matrix is valid also in the limit where the porosity approaches 1, the structure factor

 

approaches 1, and the resistivity approaches zero, which coincide with the analysis of air

alone, equation ( 7). When air and absorption systems are linked together it is assumed

that there is a small volume of incompressible fluid at each node point in the connection

and further that the dimensions of this volume are small compared with the wavelength.

3.3 Validation and Results for the Coupled Model Air-Foam

To validate the finite element model as well as the coupling procedure between air and

foam elements, the experiment conducted by A. J. Hull [10] is now modeled. In his work,

Hull built a system model as of a one-dimensional hard-walled duct, excited by pressure

input at one end and a partially reflective boundary condition at the other end represented

by a complex boundary impedance. The partially reflective condition in the duct allows

some energy to be dissipated at the end while the rest is reflected back into the system.

The system used a 0.0762 circular PVC schedule 40 duct that was 1.524 m long driven by

16



a 0.254 m diameter speaker. The impedance of a piece of 57 mm thick packing foam

inserted in the termination end was tested. Speaker input pressure was measured in the

exit plane of the input speaker with a half inch microphone (input reference microphone)

attached to a digital signal analyzer. The response of the tube was measured at 0.427 m

with another microphone (response measurement microphone) attached to the signal

analyzer. This experiment, used as a reference for the validation of the finite element

approach is sketched in Figure 6

1.524 m

 

0.427m Y
 

   

   
 

 

   

     

 

 

A - Reference B - Response 0.057 m of Foam

Measurement Measurement

Microp. P(0,t) Microp. P(x,t)

Excitation Speaker

   

Figure 6 Laboratory Setup for End Pressure Excitation Experiments

The finite element model used is sketched in Figure 7. The 2D mesh was built using 12

elements along the Y direction and 28 elements along the X direction, as suggested by the

analysis in Chapter 2 . Elements are rectangular with one degree of freedom per node.

The finite element model is sketched in Figure 7

I7
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A (x,y)=(0.427, 0037)

 

28 X 12 Mesh

 

Node at Input

Reference

Microphone

   

Node at Response 1 Layer of Foam

Measurement

Microphone

 

Elements at the

end      

Figure 7 Finite Element Model for the Laboratory Setup

The volume of air is excited by a volume velocity field Q = jpcoU.

The results from the finite element model are shown in Figures 8, 9, 10 and 11. Figures 8

and 9 show the ratio of absolute pressure at A ((x,y)=(0.427, 0.037)) to absolute pressure

at B ((x,y)=(0, 0.037)) for the finite element model and experiment, respectively. Figures

10 and 11 show the phases differences at the same locations, also for the finite element

model and experiment. Results in Figures 9 and 11 also show the analytical results for the

experiment based on a mathematical model of a long, thin duct with a speaker at one end

and a partial reflective termination end, as discussed in [10].
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The accuracy of the simulated finite element model can be seen comparing Figures 8, 9,

10 and 11, where the relative magnitude of absolute pressure as well as the phase angle

closely match the experimental and analytical results. At this point, the output from

experimental data is used to define the values of damping coefficients (0t and [3) for the

finite element model. Since the foam at the end was modeled with the same

characteristics as in the experiment, it is assumed that the same level of damping relative

to the foam is transferred to the cavity. The extra damping necessary to make the response

of the finite element model match the experiment is obtained setting

Ot=(w/c)'2*0.000001 and [3 = 0.000001.

Since the FEM model has been formulated and validated for a range of frequencies, we

will now proceed to analyze the influence of different shapes of foam in the reduction of

noise in the acoustic cavity.
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CHAPTER 4

ANALYSIS AND RESULTS

4.1 Analysis and Results for Different Shapes of Foam

In this chapter we demonstrate the potential utility of the foam finite element model to

explore the influence of the shape of a layer of foam on the response of the system.

To study this problem, the same geometry as used in the experiment by A. J. Hull [10 ] is

used to model the finite element problem, but now with an extra extension at the end of

the tube which will be filled with foam in layers of different shapes.

This extension was 0.381 [m] long with the same diameter (0.075 [m]) as the PVC tube

and was discretized using 12 elements in the width (Y) and 7 elements in the length (X)

direction. The objective is to analyze the influence of different shapes of foam layers,

keeping the dimensions of the extension constant. This geometry is shown in Figure 16

A wide variety of foam material is commercially available such as polypropilene,

polystirene, fiber glass, each having different properties. Typically, resistivity varies from

2500 up to 50000 [Rayls/m], porosity from 0.5 up to 0.95 , structure factor usually from 3

to 9 and densities from 6 up to 30 [Kg/m3]. In the present model we perform the analysis

just using a particular type of foam, since the goal is not to analyze the influence of

different properties of the foam materials, but instead to study the effect of different layer

geometries of the same type of foam. The present analysis has been performed with a

foam of the type of Polyurethane Flexible with the following characteristics:

resistivity =2500 [Rayls/m] porosity = 0.9 density = 6 [Kg/m3] Structure factomZ
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This foam is the most common which is economical and easy to use. The finite element

for the model with extension is sketched in Figure 12.

Figure 13 shows the arrangement in scale and different geometries of the foam layer.
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Figure 12 Finite Element Model for the variation of the laboratory setup
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In the following section we shall study the efficiency of each foam layer shown in Figure

16 on the reduction of noise. In order to evaluate the performance of each layer of foam,

three performance parameters where used. In the first one, for each shape of foam layer,

the maximum value of absolute pressure inside the cavity is plotted for the frequency

range from 0 to 800 Hz. The second parameter measures the maximum value of absolute

pressure for each shape in ranges of 100 Hz. This allows us to define the maximum sound

pressure level in the cavity for each range of frequency. Last, the average pressure for the

cavity for the range frequency of 0 to 800 Hz gives the overall influence of the shape of

foam layer in the reduction of noise level.

1 - Maximum Absolute Pressure

We computed the maximum values of absolute pressure for input frequencies ranging

from 0 up to 800 [Hz]. These values are independent of the location in the acoustic

cavity. This can be mathematically represented as

(1’1 (W) =( 13313” II p..(x. y) H
I.

where Ipwl is the absolute pressure in the acoustic cavity as a result of a periodic excitation

at frequency w.
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Figure 14 Maximum absolute pressure for each shape of foam layer

Figure 14 shows that when foam is added, peaks in the response are shifted to the left,

indicating the effect of damping introduced by the foam. Comparing results for the

different shapes, we observe that shapes 5, 6, 7 show a substantial decrease in the

pressure values. Table 4 shows the maximum absolute pressure for frequencies in

different ranges.
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Table 4 Maximum Absolute Pressure for Input frequencies in Different Ranges

 

Maximum Absolute Pressure in Range [10" N/mz]

 

 

 

 

 

 

 

 

 

  

Range Shape of Foam Layer

[Hz] No Foam r 2 3 4 s 6 7 s

“”100 129.34 230.13 124.77 124.26 124.62 164.95 147.13 147.15 150.07

100400 520.55 238.85 133.08 132.52 132.89 74.23 94.06 94.05 136.98

W300 274.81 188.46 125.50 125.00 125.31 68.21 81.03 81.03 125.96

300400 238.98 139.55 104.05 103.78 103.93 61.13 70.76 70.75 103.85

““500 182.09 104.28 83.77 83.70 83.72 54.81 61.51 61.52 83.64

500*” 138.94 79.12 67.26 67.34 67.26 49.56 53.29 53.29 67.30

“0‘70” 108.66 65.12 58.07 58.05 58.05 44.79 47.42 47.40 58.04

700'“ 77.86 54.58 50.54 50.51 50.52 42.02 43.21 43.20 50.51          
From the results it can be clearly seen that we get highest values of absolute pressure for

the whole range of frequencies for the case without foam. This suggests that addition of

foam, as expected, is an effective remedy for reduction of noise in the acoustic cavity.

The maximum pressure values for shapes 2, 3 and 4 are similar. This may be attributed to

the fact that the mesh is not sufficiently refined to capture significant differences between

the pressure values. Shape 5 seems to be the most cost-effective geometry since it results

in minimum pressure levels for all frequencies with 40% less foam applied.

2 - Sound Pressure Level (SPL)

The most widely used method in the field of acoustics to measure accurately the noise

intensity in an acoustic cavity is the sound pressure level (SPL). It relates the measured

absolute pressure with the quietest sound that can be heard by the average person. The
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mathematical formulation is shown.

1 [dB]SPL= 20]og,0[

/
20x10"6

where

T: max [max lpw(x,y)|]

we Range,- (x,y)efl,

and

Rangeflm8 =[(i — 1) * 100,i * 100]

The values of sound pressure level for different layers of foam have been plotted as

shown in figure below, using the frequencies range in Table 4.
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Figure 15 Sound Power Level for each shape of foam layer

Again, Figure 15 Shows that shape 5 shows the maximum amount of reduction in noise
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level throughout the acoustic cavity for the entire range of frequencies

3- Average Pressure

This function (1)2 averages the overall behavior of the acoustic cavity for all frequencies.

800

<I>2=I I "pw(x,y)||dAdw

0 am,

The results for each layer are shown in Table 5

Table 5 Average Pressure for each Layer of Foam

 

 

 

 

 

 

 

 

 

 

Layer of Foam (1)2 [N/sec]

No Foam 3.481x10r

1 3.092 x105

2 2.906 x103

3 2.905 x10T

4 2.906 x105

5 2.687 x105

6 2.739 x105

7 2.740 x105

8 2.909 x105     
This performance measure again shows that layer 5 is the most efficient and effective use

of foam material.
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The ratio of the performance (D2 of each layer of foam with respect to a no foam design is

shown in Figure 16.
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Figure 16 Average pressure for each shape of foam layer

Figure 16 again verifies the superiority of shape 5. It also Shows that shapes 6 and 7,

which have reasonably low ratios are good options. Although the use of more material

involved in these shapes may increase costs, ease of manufacturing may compensate and,

overall, shapes 7 and 8 may turn out to be comparable to shape 6 in terms of cost-

efficiency.
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CHAPTER 5

CONCLUSIONS

In this work we have formulated a finite element model to study the influence of foam

treatment in the reduction of noise level. Early work in this field by Craggs followed the

same approach to evaluate the performance of reactive mufflers. However, Craggs

implemented his model only for a planar foam geometry, analyzing foams with different

physical properties such as resistivity and porosity. In this study, we developed a finite

element model based on Craggs’ technique and analyze the model for different foam

geometries keeping the physical properties of the material constant. In addition, we

explored the relation between the shape of the foam layer and the reduction of noise level

in an acoustic cavity. In order to verify the accuracy and efficiency of the model, a

comparative study was made with analytical and experimental results. This study shows

that the results obtained from our model closely match with experimental results, thus

proving the validity of the model.

The results show that the sound pressure level in an acoustic cavity can be reduced with

addition of foam material in a restricted volume inside the cavity. This reduction is

related more to the shape of lining , than to the amount of foam material used, with better

results found for shape of foams (Figure 13) with 30% to 40% less absorption material

than the same restricted volume full of foam. The results suggested that the reduction of

sound pressure level in the cavity with foam is of the order of 10 dB (Figure 15) for

shapes 5, 6, 7 in some range of frequencies. This physically represents a noise level,
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which is half the original noise in the cavity without foam, and it is clearly perceptible to

the human hearing.

Factors not addressed in this thesis are the investigation of non isotropic foams and

different properties such as resistivity and tortuosity. Future topics should include this

analysis as well as the setup of the experiment in order to validate all the results from the

finite element model.
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APPENDICES

APPENDIX A

A Subroutine for input the general characteristics of the acoustic cavity and foam
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%General characteristics for Acoustic Cavity and Foam

format long

% This program works for Rectangular elements with 1 dof per node

% Data shared with FEM program

global ynumbel+1 numel numfix numload bigstif ndf neqs neqm gieq ieqm

jeq condu plate rayls xbe xpla connec fixlist loadlist loadval densitym

alfa tknel gjeq eqden omgi ps sk vecfoam percred nodref cnfo elefo...

fobet foalf presec premic resinc rowsp pk force disp pknel lnel anelm

xnel numel nel coun inel psnel pcsnel pisp ms cs numnopla xdimens...

xnumbel freqmed pcs mz numepl passo connecpl betad omgf capac leng timet

alfafo betafo vecbeta vecalfa rowsbot

ndf=1;

% Medium characteristics

ydimens=input('Width of the Medium [mm]');

ynumbel=input('Number of elements in Y direction');

xdimens=input('Length of the Medium [mm]');

xnumbel=input('Number of elements in X direction“);

rowsbot=input('Length of the extension [mm] );

xdimens=(xdimens+correc)/1000;%input('Lenght of the Medium');

rowsbot=floor(rowsbot/(xdimens/xnumbel));

xnumbel=xnumbe1+rowsbot

% Data for a particular example

numepl=xnumbel*ynumbel; %number of elements in the medium

numnopla=(xnumbel+1)*(ynumbel+l);

elefo=zeros(1,numepl);

numfix=5;

numload=ynumbe1+1;

bigstif=0;

xpla=zeros(2,numnop1a);

connecpl=zeros(4,numepl);

nodepressl=(.43688/(xdimens/xnumbel));

premic=numnopla-(floor(nodepressl)*ynumbe1+1)-((ynumbel+1-l)/2)

diferposit=.43688-(floor(nodepressl)*(xdimens/xnumbel))

lastell=numepl-(floor(.43688/(xdimens/xnumbel))*numel);

row_after_mic=lastell-numel+1:lastell

nodepressZ=(.69088/(xdimens/xnumbel));

presec=numnopla-(floorlnodepreSSZ)*ynumbel+1)-((ynumbel+1-1)/2)

laste12=numepl-(floor(.69088/(xdimens/xnumbel))*nume1);

row;behind_secp=laste12-numel+1:1aste12

rob=(lastell+1aste12)/2;

row_between=rob-numel+1:rob

pause

foalf=zeros(1,numep1);

fobet=zeros(1,numepl);

vecfoam=zeros(l,numep1);

chekfo=(1:numep1);

resimet=2500;%[Resistivity in rayls/meter]

resinc=resimet;

resit=(resinc);
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pors=.9;%Porosity

tort=2;%Tortuosity (Structure Factor)

typefoam=input('None (1) Botton(2) Wall(3) Botton+Wall(4)

Triang.@Botton(5) Randon(6) Begin(7)=’)'

if(typefo ==1) %None

vecfoamzzeros(l,numepl);

end

if(typefoam==2) %Botton

row=rowsbot%input(’How many rows of foam @ Botton ?’)

row=1

rowsp=row

vecfoam=zeros(1,numepl);

for ty=1:row*numel

vecfoam(ty)=1;

foalf(ty)=pors*resit

fobet(ty)=tort*pors;

chekfo(ty)=0;

end

end

if(typefoam==3) % Wall

row=input(’How many rows of foam in the Wall ?’)

vecfoam=zeros(1,numepl);

wall=numel;

while(wall<=numepl)

for ty=1:row

vecfoam(ty+wall-numel)=1;

vecfoam(wall—ty+l)=1;

foalf(ty+wall-nume1)=pors*resit;

fobet(ty+wall-nume1)=tort*pors;

foalf(wall-ty+1)=pors*resit;

fobet(wall-ty+1)=tort*pors;

end

wall=wall+numel;

end

end

if(typefoam==4)% Botton and wall

row=input(’How many rows of foam in the Wall and Botton ?’)

vecfoam=zeros(1,numepl);

for ty=1:row*numel;

vecfoam(ty)=1; %Apply at the Botton

end

wall=numel*(row+1);

while(wa11<=numep1)

for ty=1:row

vecfoam(ty+wall-numel)=1; % Apply left wall

vecfoam(wall-ty+1)=1; % Apply right wall

end

wall=wa11+nume1;

end

end

if(typefoam==5) % Triangular @ Botton
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row=input('How many rows of foam at Botton ?');

vecfoam=zeros(1,numepl);

if(row>1)

for ty=1:row*numel

vecfoam(ty)=1; %Apply at the Botton

foalf(ty)=pors*resit; fobet(ty)=tort*pors;

end

end

wall=numel*(row+l);

rat=numel/2;

con=1;

while(con<rat)

for ty=1:rat-con

vecfoam(ty+wall-nume1+con)=1; % Apply left wall

vecfoam(wall-ty-con+1)=1; % Apply right wall

foalf(ty+wall-numel+con)=pors*resit;

fobet(ty+wall-numel+con)=tort*pors;

foalf(wall-ty—con+1)=pors*resit;

fobet(wall-ty-con+1)=tort*pors;

ty=ty;

con=con;

end

con=con+1;

wall=wall+numel;

end

end

if(typefoam==6) % Randon

bata=pors*tort;

casel=input(’Which Case to study ?’);

if (casel==1) % 7 rows Full at Botton

nufie1=7*12;%Total of foam elements

vecapf=[1:84];%Vector with applyed foam

end

if (casel==2) % Thick toot

nufiel=60;%Total of foam elements

vecapf=[1:36,39:4:83,40:4:84];%Vector with applyed foam

end

if (casel==3) % Thin toot

nufiel=60;%Total of foam elements

vecapf=[1:36,38:2:84];%Vector with applyed foam

end

if (casel==4) % Irregular toot

nufiel=60;%Total of foam elements

vecapf=[1:36,37:12:73,40:12:76,43:12z79,44:12:80,47:12:83,48:12:84];%Vec

tor with applyed foam

end

if (casel==5) % Dif. lenght toot

nufiel=36;%Total of foam elements

vecapf=[1:12,13:2:35,37:6:79,39:6:57]%Vector with applyed foam

pause

end
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if (casel==6) % Triangular

nufiel=54;%Total of foam elements

vecapf=[1:24,26:35,39:46,52:57,65:68,78:79];%Vector with applyed foam

end

if (casel==7) % Triangular Invert

nufiel=54;%Total of foam elements

vecapf=[1:24,25:29,37:40,49:51,61:62,?3,32:36,45:48,58:60,7l:72,84];%Vec

tor with applyed foam

and

if (casel==8) % Long teet

nufiel=42;%Total of foam elements

vecapf=[2:2:84];%Vector with applyed foam

end

if (casel==9) % 1 Row in the middle — For T.Loss only

nufiel=8;%Tota1 of foam elements

vecapf=[l36:l43];%Vector with applyed foam

end

for kr=1:nufiel

numbel=vecapf(kr)

fobet(numbel)=bata;%input(’Beta value for the element ?');

foalf(numbel)=pors*resit/(150*1.21);%(13386*4.344e—5);

vecfoam(numbel)=1; % Apply foam in the element

chekfo(numbel)=0; % Show which element

end % for elements

end

%vecfoam(1:96)

pause

if(typefoam==7) %Beggining of the medium

row=3;%input('How many rows of foam @ Begin ?’)

vecfoam=zeros(1,numepl);

for ty=(numepl—row*numel+1):numepl

vecfoam(ty)=1;

end

end

% Nodal coordinates based on nodal definition

yposi=xdimens;

cont=1;

for k=1:numnopla;

xp1a(1,k)=xbe(1,cont);

xpla(2,k)=yposi;

if(cont==ynumbel+l);

yposi=yposi-(xdimens/xnumbel);

cont=0;

end
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cont=cont+1;

end

contel=0;

con=l;

tkel=l;

dens=1.21;

alf=0.000001;

bet=0.000001;

% Element Conductivity

condu=[321.4,0;0,321.4;]’;

for k=1:numepl;

% Element connectivity definition

%connec=[1,2,S,4;2,3,6,5;4,5,8,7;5,6,9,8]'

connecpl(1,k)=contel+k+ynumbe1+l;

connecpl(2,k)=contel+k+ynumbel+1+1;

connecpl(3,k)=contel+k+1;

connecpl(4,k)=contel+k;

elementonaconnc=k;

connecpl(1:4,k);

con=con;

contel=contel;

%pause

if(connecp1(3,k)/Ynumbel+1==con)

contel=contel+l;

con=con+1;

end

% Tickness

tkne1(k)=tkel;

% Element Density

density(k)=dens;

% Element alfa & beta (alfaXmass matrix and betaXstiffness matrix)

alfa(1,k)=alf;

alfa(2,k)=bet;

end

% Medium equilibrium Density

dens=1.21;

eqden=1.21;

% Medium Speed of sound

capac=321.4;

% Adiabatic Bulk modulus

betad=20.55172;% 1bf/in2 or 141700 N/m2

% Areas

areasO=[S;S;S;5];
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% Total number of equations

neqm=numnopla*ndf;

% One single FEM evaluation

[f0,g]=trufoam(areasO);

rayls=2500;

betafo=1;

alfafo=2500

cnfo=0;%Number of elements in the medium that are foams

for ke=1znumepl % Select only foam elements

if(vecfoam(ke ==1)

cnfo=cnfo+1;

elefo(cnfo)=ke; %vector with wich element is foam

end

end
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APPENDIX B

Subroutine for global matrix assembly and solution of the equations



function[f,g]=trufoam(areasO)

% Data shared with main program

global ynumbel+1 numel numfix numload bigstif ndf neqm condu betadm

pisp eqden passo pcs fnodal xpla connec connecpl fixlist loadlistm force

neqs loadval density alfa tknel omgi omgf pk ps pk dispm numnopla ms cs

sk vecfoam pknel psnel pcsnel lnel anel gieq gjeqm

ieq jeq xnel numepl nel mz leng ynumbel fobet foalf presec premicm

resinc rowsp ydimens rowsbot

resinc=resinc

pk=zeros(neqm,neqm);

ps=zeros(neqm,neqm);

pcs=zeros(neqm,neqm);

pfk=zeros(neqm,neqm);

pfsa=zeros(neqm,neqm);

pfsb=zeros(neqm,neqm);

pfcs=zeros(neqm,neqm);

flux=zeros(numnopla,l);

disp=zeros(neqm,l);

zisp=zeros(neqm,1);

relat=zeros(neqm,1);

mbig=zeros(neqm+neqs,neqm+neqs)i

bcon=zeros(neqm,neqs);

pknel=zeros(4*ndf,4*ndf);

psnel=zeros(4*ndf,4*ndf);

pcsne1=zeros(4*ndf,4*ndf);

xne1=zeros(2,4);

fobeta=1;

foalfa=1;% for alfa and beta values when medium alone

for nel=1:numepl;

gera=1;

passw=0;

if(vecfoam(ne1)==1)

density(nel)=6;

passw=1;

fobeta=fobettnel);

foalfa=foalf(nel);

end

% Information about element "nel" of the medium

elemento=nel;

node1=connecpl(1,nel);

node2=connecpl(2,nel);

node3=connecpl(3,nel);

node4=connecpl(4,ne1);

xnel(1,1)=xp1a(1,node1);

x1=xpla(1,node1);

xnel(2,1)=xpla(2,node1);

y1=xpla(2,node1);

xnel(1,2)=xpla(1,node2);

x2=xp1a(1,node2);

xnel(2,2)=xpla(2,node2);

xne1(1,3)=xpla(1,node3);

xnel(2,3)=xpla(2,node3);

xnel(1,4)=xpla(1,node4);
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xnel(2,4)=xpla(2,node4);

y2=xpla(2,node4);

alfel=alfa(l,nel);

betel=alfa(2,nel);

dnel=density(nel);

tnel=tknel(ne1);

% Build element matrix pknel

sknel=trusspl(xne1,anel,dnel,tnel,alfel,betel,condu);

% Assemble the element matrix into

% global stiffness matrix pk

for k=1:4;

nodei=connecpl(k.nel);

for idof=1zndf;

ieq=(k-l)*ndf+idof;

gieq=(nodei—l)*ndf+idof;

for j=1:4;

nodej=connecpl(j,nel);

for jdof=1zndf;

jeq=(j—1)*ndf+jdof;

gjeq=inodej-1)*ndf+jdof;

%Mounting matrices for connection medium + foam

% Creates foam matrix alone

if (passw ==1) %

pfk(gieq,gjeq)=pfktgieqlgjeq)+(pkneliieq.ieq));

result=pkne1<ieq,jeq);

pfsa(gieq.gjeq)=pfsaigieq.gjeq)+(psneltieq.jeq));

pfgs(gieq.gjeq)=pfcstgieq.gjeq)+(pcsnel(ieq.jeq));

en

% Creates medium matrix alone

if (passw ==O)

pkigieq.gjeq)=pkigieq.gjeq)+pknel(ieq.jeq);

pstgieq.gjeq)=psigieq.gjeq)+psneliieq,jeq);

pcs(gieq.gjeq)=pcs(gieq.gjeq)+pcsnel(ieq.jeq);

end

end

end

end

end

end

% Eigenvalues

%tem=eig(pk,ps);

%tem=sqrt(tem);

%tem=sort((tem))/(2*pi);

%for k=1=neqm

%k=k

%tem(k)

%pause

%end

% Solve Harmonic function
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cnt=1;

esp=1;

ploto=10;

cnt=1;

analysis=l;% (1) Frequency for a given node (2) Pressure for a given

flux=zeros(numnop1a,1); % flux vector

veloc=6.2e-9;

for k=numnopla~ynumbel+1+l:numnopla-l

flux(k,1)=veloc; % Apply speaker effect at the start

end

fomid=numnopla-(ynumbel+1*5)—((ynumbel+l-l)/2);

%while wf>0

% Pressure
 

if(analysis==2)

wf=10;

while wf>0

tyeste=2

wf=input(’Initial Frequency');

%Change next equation to return to the original problem

foa=((((wf/321.4)“2))*pfsa)+((i*wf/321.4)*pfsa*(foalfa))+(pfk);

foa=foa*((i*eqden*wf)/(i*eqden*wf+(resinc)));

med=((-((wf)“2))*ps)+(i*wf*pcs)+(pk);%/eqden/betad

a=foa+med;

d=flux*(i*eqden*wf);

f=a\d;

sum=0;

conti=l;

for col=1:neqm;

disp(cnt,col)=abs(f(col));%/(321.4*eqden);

end

premic

pres_mic=f(premic)

pres_mic=disp(1,premic)

pres_beh=disp(1,presec)

end

end

% Frequency
 

if(analysis==1)

sumger=0

omgi=input(’Initial Frequency’);

omgf=input('Final Frequency’);

passo=input(’Passo');

for wf=omgi:passo:omgf

wf=wf

ymaxi=0;

ymini=10;
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sum=0;

% Proposed by Craggs K X M matrices
 

%Change next equation to return to the original problem

foa=((-((wf/lSO)“2))*pfsa*fobeta)+((i*wf/150)*pfsa*(foalfa))+(pfk/4);

foa=foa*((i*eqden*wf)/(i*eqden*wf+(resinc)));

med=((—((wf)“2))*ps)+(i*wf*pcs)+(pk);%/eqden/betad

a=foa+med;

d=flux*(i*eqden*wf);

f=a\d;

sum=0;

lowli=(rowsbot+1)*ynumbel+1;% Define the valid nodes out from foam

for col=1:neqm;

disp(cnt,col)=abs(f(col));%abs(f(col));%Absolute Pressure

zisp(cnt,col)=(f(col));

check=rowsbot*ynumbel+1;

if(cnt>1)

if(col>lowli)

sum=sum+disp(cnt,col);

end

end

end % for col

if(cnt>1)

maxreal(cnt)=max(rea1(zisp(cnt,lowli:neqm)));%max real of each

frequency

maximaglcnt)=max(imag(zisp(cnt,lowlizneqm)));%max imag of each

frequency

maxabs(cnt)=max(disp(cnt,lowlizneqm));%max absolute value of each

frequency

end

sumger=sumger+(wf*sum);

cnt=cnt+1;

end %for frequency

end %Analysis 1

% Max Max real, Imag part and absolute values

maxmxre=max(maxreal)

maxmxim=max(maximag)

maxmsabs=max(maxabs)

performance=sumger

pause

mreal=maxreal’

size(maxreal)

pause

mimag=maximag’

size(maximag)

pause

mabs=maxabs’

size(maxabs)

pause



wfg=1500/passo;

%for wfg=1:(omgf-omgi)/passo

gnt=1;

for k=1:ynumbel+1

for l=1:ynumbel+1

X(k11)=[k];

Y(k,l)=[11;

cel(k,l)=disp((wfg),gnt);

cnt=gnt+l;

end

end

[X,Y]=meshgrid(x,y);

surf(x,y,cel)

title(’Pressure Distribution’);

xlabe1('col of nodes’);

ylabel('row of nodes');

modeshape=cel;

modeshape=modeshape’

pause

%axis([1 ynumbel+1 1 ynumbel+1])

%pause

contour(x,y,cel)

pause

ploto=input(' Surf(1) Frequency/node(2)

% Surf Plot

or Exit(0)’);

 
 

if(ploto==l)

gnt=1

for k=1:ynumbel+1

for l=1:ynumbel+1

x(k,l)=[k];

Y(k.1)=[ll;

cel(k,1)=disp(1,gnt);

gnt=gnt+1;

end

end

size(cel);

surf(x,y,cel)

axis([1 ynumbel+1 1 ynumbel+1 ])

xlabel('row of nodes');

ylabel('col of nodes’);

zlabel('Pressure');

title('Wave Pressure Distribution');

tYU=1;

end

%
 

if(ploto==2)

node=lOOO

% Selection and response for a given node

while ploto>0

node=input(’Node to plot');

dgof=1;

col=(node);

w_init=omgi

w_finis=omgf

x=omgi:passo:omgf;
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y=1:neqm;

[X,Y]=meshgrid(x,y);

wft=omgi;

for row=1:((omgf—omgil/passo)+1;

p(row)=disp(row,col);

nref=(numnopla-((ynumbel+1—1)/2));

ph(row)=angle(zisp(row,col)/zisp(row,nref))*(360/2/pi);

q(row)=(disp(row,col)/disp(row,nref));

end

performance=sumger

xeix=floor((omgi:passo:omgf)/(2*pi));

plot(xeix,q);

axis([0 800 O 4])

relatpre=q;

relatpre=relatpre’

pause

plot(xeix,ph):

axis([0 800 -200 200])

phase=ph;

phase=phase’

pause

plot(xeix,p);

axis([0 800 0 1e-2])

absolpres=p;

absolpres=absolpres'

pause

plot(xeix,20*loglO(p/2e-5));

axis([0 800 0 70])

db=20*loglO(p/2e-S);

db=db'

pause

plot(q);

title(’Medium -- Phase Angle’);

xlabelt'Frequency [rad/s]’);

ylabel('Phase');

%axis([omgi (omgf-omgil/Passo 0 4])

end

end
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APPENDIX C

Subroutine for the strain energy, kinetic energy and damping matrices of the element.
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function [pknel]=trusspl(xne1,ane1,dnel,tnel,alfel,betel,condu)

global pknel lnel psnel pcsnel tknel capac mz betad eqden

% Make element stiffness matrix: rectangular element

% xnel(1,i): ”x“ coordinate of node i. i=1,2

% xnel(2,i): ”y“ coordinate of node i. i=l,2

% anel: element area

% enel: element Young's modulus

% dnel: element density

dx=abs(xnel(1,2)—xnel(1,1));

dy=abs(xnel(2,4)-xnel(2,1));

cond1=condu(1,1);

cond2=condu(1,2);

cond3=condu(2,2);

anel=dx*dy;

% Medium Element Stiffness Matrix

eil=tnel;

sx=cond1*dy/(6*dX);

sy=cond3*dx/(6*dY):

pknel(1,1)=2*sx+2*sy:

pknel(1,2)=—2*sx+sy;

pknel(1,3)=—sx-sy;

pknel(1,4)=sx—2*sy;

pknel(2,1)=-2*sx+sy;

pknel(2,2)=2*sx+2*sy;

pknel(2,3)=sx-2*sy;

pknel(2,4)=-sx-sy;

pknel(3,1)=-sx-sy;

pknel(3,2)=sx-2*sy;

pknel(3,3)=2*sx+2*sy;

pknel(3,4)=-2*sx+sy;

pknel(4,1)=sx-2*sy;

pknel(4,2)=-sx—sy;

pknel(4,3)=-2*sx+sy;

pknel(4,4)=2*sx+2*sy;

pknel=pknel*dne1*cond1;

%Medium Element Mass Matrix

mz=anel*dnel/(36);

psnel(1,1)=4;

psne1(1,2)=2;

psnel(1,3)=1;

psnel(1,4)=2;

psnel(2,1)=2;

psnel(2,2)=4:

psnel(2,3)=2;

psne1(2,4)=1;

psnel(3,1)=1;

psnel(3,2)=2;

psnel(3,3)=4;

psnel(3,4)=2;

psnel(4,1)=2;

psnel(4,2)=1;

psnel(4,3)=2;

psnel(4,4)=4;

psnel=mz*psnel;

% Medium Damping Matrix

pcsnel=(alfel*psnel)+(betel*pknel);
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