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ABSTRACT

OBJECT-ORIENTED DESIGN OF EMBEDDED SYSTEMS WITH

TRANSLATION TO VHDL

By

Gretel Van Lente Coombs

As embedded systems become more complex, there is an increasing demand for

deveIOpment techniques and tools to manage the complexity. Experiences from the

software engineering industry have shown that diagram-based modeling techniques

are useful in providing a means to represent abstract concepts of a system that can

eventually be refined, in a stepwise fashion, to obtain more detailed design descrip-

tions. Currently, a hardware description language is the most abstract representation

commonly used to model embedded systems. The potential disadvantage of using a

hardware description language at the beginning of the design process is that imple-

mentation decisions can be introduced before requirements are understood clearly.

The objective of this thesis is twofold. First, the thesis introduces an object-

oriented modeling framework for requirements analysis and design of embedded sys-

tems, including a stepwise refinement process. The second objective is to provide a

mapping between the graphical, object-oriented models and VHDL. Given the wide-

range of tool support, VHDL can then be used to check the consistency of the di-

agrams and can be used to simulate the behavior of the system to ensure a clear

understanding of requirements prior to introducing implementation details.
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Chapter 1

Introduction

As embedded systems become more complex, there is an increasing demand for de-

velopment techniques and tools to manage the complexity. Experiences from the

software engineering industry have shown that diagram-based modeling techniques

are useful in providing a means to represent abstract concepts of a system that can

eventually be refined, in a stepwise fashion, to obtain more detailed design descrip-

tions. In contrast, embedded systems are commonly developed with design languages,

such as VHDL [24], VHSIC (Very High Speed Integrated Circuit) Hardware Descrip—

tion Language. The potential disadvantage of using VHDL at the beginning of the

design process is that it forces developers to make numerous implementation deci-

sions before a clear understanding of requirements has been obtained. Therefore it

increases the potential to include errors or inconsistencies in the requirements that

will then be propagated to the implementation and fabrication stages, potentially 10

to 100 times more costly than errors introduced during implementation [16, 17].

Object-oriented design decomposes a system into abstractions based on real world

objects. This decomposition and abstraction process facilitates the creation of under-

standable, maintainable designs. The Object Modeling Technique (OMT) [23] is an

1
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object-oriented design method used widely in industry. OMT displays a system from

three complementary perspectives: structural, behavioral, and services and data flow

captured by the object, dynamic, and functional models, respectively. These three

graphical views enable a visual reduction of the system’s inherent complexity, thus

promoting design understanding and validation.

The objective of this thesis is twofold. First, it proposes an object-oriented mod-

eling framework for requirements analysis and design of embedded systems. This

framework enables developers to start with high-level, abstract (graphical) represen-

tations of an embedded system and, through a stepwise process, gradually add more

details to the graphical models. Wang formalized the OMT notation into commonly

used formal specification languages (LOTOS and ACT ONE [2]) that enabled rigorous

analysis of the OMT diagrams as well as behavior simulation [4, 27] . This formal-

ization provided a bridge between easy to use, graphical design models and formal

methods for software development. Using this work as a foundation, the second ob-

jective addresses the systematic development of embedded systems by providing a

mapping between the graphical, object-oriented models and VHDL. That is, once a

developer creates the graphical models of a system, VHDL can be generated, using

automated techniques. Given the wide range of tool support, VHDL can then be used

to check the consistency of the diagrams and can be used to Simulate the behavior of

the system to ensure a clear understanding of requirements.

Thesis Statement: Using an object-oriented analysis and design technique can

facilitate a stepwise development process for embedded systems, where the object-

oriented models can be used to generate VHDL specifications.

The following is a summary of the contributions of this research project.

0 A process for using an object-oriented modeling technique to describe embedded

systems.
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o A process for developing VHDL specifications from object-oriented graphical

models.

0 A refinement process for evolving high-level requirements into design models

according to the analysis of VHDL specifications.

The remainder of this thesis is organized as follows. Overviews of VHDL and OMT

are given in Chapters 2.1 and 2.2 respectively. A stepwise process for creating OMT

models for embedded systems is described in Chapter 3. An automobile door control

system example is used to illustrate this process. The OMT to VHDL translation

is presented in Chapter 4. Chapter 5 describes analysis that can be applied to the

OMT diagrams via the corresponding VHDL specifications. Chapter 6 describes

related work. Conclusions and future investigations are briefly discussed in Chapter

7. The complete OMT models and generated VHDL for the automotive doors system

and the washing machine system are included in the appendices.



Chapter 2

Background

This chapter overviews VHDL and the Object Modeling Techique (OMT).

2.1 VHDL Overview

VHDL is a hardware description language used worldwide. It is a design language

that was developed to assist in the development, documentation, and exchange of

hardware designs. This chapter covers the main components of a VHDL design,

including only the elements used in the rest of the paper.

A VHDL design entity consists of two basic parts, an entity and an architecture.

The entity defines the porting or the interface of the object to its environment. All

communication must be performed through the ports of an entity. Figure 2.1 is a

template of the entity form.

In order to simulate an entity, a corresponding architecture is needed. An

architecture is considered to be the body of the entity that describes how the design

operates. The architecture describes the function or behavior performed by the

entity and assumes access to all the ports defined in the entity. An entity can have

more than one architecture, each realizing the behavior of the system in different

4



 

entity <entity_identifier> is

port -- Input and Output ports defined in this section

(<identifier): [mode] <type> -- where identifier is name of port

-- mode is In, Out, or InOut

-- type is the type of data using the port

);

end<identifienentity> ;

Figure 2.1: Entity template.

 

ways. These architecture modules have the form shown in Figure 2.2.

 

architecture architecture.type of entity-identifier is

-- any declarations, such as signals or components

begin

--concurrent statements including block statements, procedures, processes.

end [Identifier];

Figure 2.2: VHDL architecture.

 

For example, a multiplexor, like the one shown in Figure 2.3, can have both an

behavioral architecture and a structural architecture. A behavioral architecture shows

the behavior of the entity, with no indication of how the design is implemented. One

approach is to use a process of sequential statements. A structural description shows

the various components and how their ports and Signals are connected together.

 

 

   

D1

output

DO

———>

cntrl

Figure 2.3: A simple 2 input multiplexor.

 

Figure 2.4 is the entity statement that defines the multiplexor in Figure 2.3. The
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port clause is called the interface declaration. D0, D1, and cntrl are all inputs to the

multiplexor and they are all of type bit. The signal output is defined as a bit wide

signal that is associated with an out port.

 

entity mm: is

port

( D0, D1, cntrl : in BIT;

output : out BIT

);

end mux;

Figure 2.4: VHDL mux entity.

 

An architecture that consists of a behavioral description of the functionality

of this multiplexor is Shown in Figure 2.5. The process block allows for sequential

statements written in the style of a programming language to be expressed instead

of concurrent statements. The behavior of the multiplexor is specified logically to

indicate that if ‘cntrl’ is a ‘one’, then the output should be signal ‘Dl’, else ‘D0’ is

placed on the outgoing port.

 

architecture behavior of mm: is

begin -- operational description of behavior

process(DO, Dl, cntrl) -- process and sensitivity list

begin -- sequential statements

IF cntrl = 1 THEN output <= D1;

ELSE output <= DO;

end process;

end behavior;

Figure 2.5: VHDL behavioral architecture for mux.

 

The signals listed in parentheses within the process statement constitute the

sensitivity list. If any of these signals change, then the process begins executing,

reevaluating its output values. The alternate method to initiate a concurrent pro-
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cess is to include a wait statement at the end of the process block. The possible

statements for starting a process or other modules include:

o wait until (condition);

0 wait for period_of.time;

e wait on signaLa, SignaLb, ...;

e or a combination, such as:

wait on controLa until(CLK -— ‘1’) for 5ms;

A structural description of the multiplexor illustrates the ability to hierarchically

combine lower-level entities into more complex designs. Figure 2.6 shows the layout

of the multiplexor (mux) comprising other smaller components. The structural ar-

chitecture found in Figure 2.7 consists of various ‘and’, ‘or’, and ‘not’ gates. These

internal gates have their own previously defined entity/architecture pairs. Each of

these already-defined entities is included as a component in the structural archi-

tecture. Any internal signals needed are also included in the declarative section of

the architecture using a signal statement. In the body of the architecture, the actual

instances of the components are declared. These instances are named followed by the

component type. Then the ports of the component are mapped to the signals of the

entity in which it is contained.

For example, in Figure 2.7 an ‘and_gate’ is declared as a component and then

two ‘and_gate’ instances are instantiated with their ports mapped to various signals

of the mux. These signals include the multiplexor’s ports as well as internal Signals.

A VHDL package, as shown in Figure 2.8, is a collection of declarations. These

declarations are accessible by any entity or architecture. As can be seen in Figure 2.8,

user-defined types and globally declared signals can be defined within a package. A



 

 

 D1 :LI—D Dl__sct

output

DOset

l : cntern'me

   
cntrl  

Figure 2.6: Components of a multiplexor.

 

 

architecture structure of mm: is

component and_gate

port

(in1, in2 : in BIT;

output : out BIT);

end component;

component or_gate

port

(inl, in2 : in BIT;

output : out BIT);

end component;

component not_gate

port

(input : in BIT;

output : out BIT);

end component;

sig-

nal D0_set, D1_set, cntrl_prime : BIT; -- 3 internal signals declared.

begin

and_1 : and_gate port map (in1=>DO, in2=>cntr1_prime,output=>DO-set);

and_2 : and-gate port map (in1=>D1, in2=>cntrl, output=>D1_set);

not_1 : not_gate port map (input=>cntrl, output =>cntr1_prime);

or_1 : or_gate port map (in1=>DO_set, in2=>D1_set, output=>output);

end structure;

Figure 2.7: Mux’s structural architecture.
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package can be referenced by an entity. The phrase ‘use WORK.package_name.all;’

preceding a VHDL entity allows all declarations of the package to be seen by that

entity and any of its architectures.

 

package user_definitions is

type user_array is array (1 to 12);

type color is (white, blue, red);

sig-

nal ex_signa1 :Bit:=’0’; --makes globally accessible signal

end user_definitions;

use WORK.user_definitions.all; -- Uses the package

entity example is

(port flag : in color); -- Access the package

end example;

Figure 2.8: Example of a VHDL package.

 

A procedure in VHDL is considered a subprogram that may be hierarchically

defined inside packages, entities, architectures, processes or other procedures. The

example in Figure 2.9 shows the key word procedure, followed by a user-defined

name and a list of formal parameters. These parameters consists of 4 parts: object

class (constant, variable or signal), mode (in, out, or inout), type, and default value.

 

procedure calculate

(constant namel : in bit_vector;

variable name2 : in bit := 0;

variable result : out bit ) is

-- any needed declarations

begin

-- any sequential statements

end calculate;

Figure 2.9: Example of a VHDL proce-

dure.

 

VHDL supports numerous approaches for representing system design information.
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Included here are only the elements of VHDL that will be used in the OMT to VHDL

translation process.
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2.2 OMT Overview

The Object Modeling Technique (OMT)[23] is a modeling technique that facilitates

the object-oriented development of a system. The methodology includes steps on

how to perform analysis and design, how to develop the models, and how to refine

the models as part of the development process.

An object-oriented design approach encourages thinking about the conceptual

issues before thinking about the implementation issues. The use of abstraction of

objects and the encapsulation of data and operations within an object are key to

an object-oriented approach. Information about how an operation is implemented is

hidden from the outside world. Only the interfaces to the object are accessible for

easy upgrading and changing. An object-oriented approach encourages the reuse of

objects in other systems and settings.

OMT modeling develops three orthogonal views of a system, expressed in three

different models. These are the object model, the dynamic model, and the functional

model. The object model depicts the system based on its static structure and the

various real world objects, grouped together into classes. The object model also

shows the associations between various classes. This model is important to embedded

systems in order to capture the structure of the various components of the system and

their relationships. The dynamic model depicts behavioral information and shows the

dynamic, changing nature of the system over time. The control aspects of the system

are contained in this model, making it the most important model for an embedded

control system. The last diagram, the functional model, focuses on the data flow

through the system. The data transforms and services of the system are depicted, as

well as the environmental actors that input data into the system.

The remainder of this section describes in further detail, each of the OMT models,
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including example diagrams.

2.2.1 Object Model

The object model shows the various classes of objects that make up a system. The

static and structural aspects of a system are graphically depicted. The objects of the

system, such as the sensors, actuators, and controllers of an embedded system, are

grouped into classes of Similar objects.

The object model in OMT uses a limited set of graphical symbols in Specific ways

to create a class diagram. A description of the various components and symbols of

an object model or class diagram follows.

0 A class is shown as a box in an object model, as shown in Figure 2.10. This box

can be divided into three sections by horizontal lines. The top section contains

the name of the class. The middle section has a list of attributes associated with

this object and the attribute type information. Attributes are data values held

by different objects in a class. The last section contains a list of operations that

are accessible to the outside world that can be performed on this object. These

operations can contain any arguments needed by the operation, as well as an

optional return data type.

 

 

Class Name

   

 

Class Name

 

attribute

attribute: data type

 

operation

operation(argument) 2 return type    

Figure 2.10: Classes are shown as boxes.
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0 An association is denoted by a line between two classes. Figure 2.11 shows

an association line, labeled with a text description, which is considered the

association name.

 

  

Class- I ASSOCIHIIOD Name Class-2

 

      

Figure 2.11: Associations are lines between classes.

 

e A subclass inherits properties, such as attributes, operations, and associations

from its superclass. A triangle placed on the association shows this inheritance

relationship as illustrated in Figure 2.12. A subclass is a more refined version of

the superclass constituting an is-a relationship. Inheritance and generalizations

allow for succinct abstractions, useful both for modeling and for implementation.

Inheritance also allows for the reuse of code during implementation.

 

 

Superclass

   

 

    

Subclass Subclass

      

Figure 2.12: A triangle uses generalization into superclasses and inheritance by sub-

classes.

 

e A diamond denotes an aggregation. A composite object is composed of a number

of aggregate objects as shown in Figure 2.13. These aggregate objects make up

the totality of the composite object.

o Associations can also be annotated by numbers that Show the multiplicity of the
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Composite Class

Aggregate Aggregate

Class Class

   

 

    

      

Figure 2.13: Diamonds are used to Show aggregation.

 

association. See Figure 2.14 for examples. An undecorated line means exactly

one. A filled circle on an endpoint means there are zero or more of these classes.

If there is a number or a number with a plus sign then that number illustrates

the number of objects of this class.

 

  

 

      

  

     

  

 

      

Class Class

Exactly One

Class *— Class

Zero or More

N+

Class Class

N or More

Figure 2.14: Line annotation for association multiplicities.
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2.2.2 Dynamic Model

The dynamic model in OMT shows the changes in state that a system or object goes

through as time proceeds. The dynamic model is based on Harel’s StateCharts [14].

A statechart shows the states of the system or class and the events that cause the

transitions to other states. Control information for a system is illustrated clearly in

dynamic models. Concurrency in a system is also depicted. A system-level dynamic

model is included in OMT development. This is an overall statechart for the whole

system. Individual classes also need individual dynamic models. These are necessary

for every class that has easily understood state transitions. For example, a button’s

dynamic model would be relatively trivial, with two states, ‘on’ or ’off’, and two

transitions. This class necessarily need to be modeled.

The dynamic model notation is similar to other state diagram notations. The

notation used within the states and on the transitions between the states is shown

in Figure 2.15. This notation is discussed below, as well as how to represent state

refinement and concurrency.

 

Notation in States and on Transitions

eventl (attributel) [conditionl] l action]

State! Tl; State2 l

do: activity]

entry/ action2

exit / action3

event / action4

x—_2

 

  

Figure 2.15: The notation for the state diagrams within the dynamic model.

 

e A rounded box represents a state. A state is labeled with a state name. A

state is considered to be the interval when some attributes of interest are stable

and the system is waiting for an event of interest. In OMT, the changing of
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attributes that are not of interest do not force a change of state [23]. This

property enables the creation of more abstract states that increases clarity.

Transitions are shown as arrows that reflect the movement of a system from

one state to the next.

Events cause transitions to other states. The transition arrow is labeled with

the event that causes the state transition. An event is something that occurs

at a particular moment in time. The time in which an event takes place is

instantaneous compared with the granularity of the other things happening in

the system.

Actions are considered instantaneous operations. An action is something that

can be done at a single moment of time. Actions can be done upon entering

a state, when exiting a state, or in response to an event happening while in a

state. While a system is transitioning to another state, an action can also be

triggered. An action is always preceded by a “/” symbol.

An activity is an operation that takes time to complete. In a dynamic model an

activity can be associated with a state. An activity is the operation that is per-

formed while the system is in a state. The syntax for showing the performance

of an activity is to place a “do: activitymame” within the state.

A filled circle represents the start state or starting place for the state diagram.

A guard is a construct placed on a transition. A guard is a condition that must

be satisfied or the transition will not be taken to the next state. Conditions or

guards evaluate to Boolean values and are placed between square brackets after

an event on a transition.
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o Abstractions in the dynamic model facilitate the reading and understanding of

the diagram. Without abstraction, all the states of a system would require

inclusion in a flat statechart. This would be potentially very large and difficult

to read. The two types of abstractions that are available in an object-oriented

design are:

- Hierarchical states:

A state may be refined to show substates of greater granularity. The

state with more generalization is expanded, becoming the superstate that

encapsulates other substates. The state generalization example in Figure

2.16 shows a superstate, represented by a large rounded box, and substates,

shown as smaller rounded boxes within the superstate. These substates

have their own dynamic models that may contain other substates.

 

State Generalization (Nesting):

 

( fl

Superstate

l event2 ‘ l event3

eventl

———>-

  

 

Figure 2.16: The notation for showing hierarchical states within a dynamic model.

 

— Concurrent states:

A dotted line inside a superstate dividing two or more state diagrams is

used to show concurrency. When the superstate in Figure 2.17 becomes

active, because of a transition on eventl, then Substate-l and Substate-3

concurrently become active.
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Concurrent Subdiagrams:

F Superstate I

eventl
<___

k J
  

 

’ l1 eventZ

Figure 2.17: The notation for showing concurrency within a dynamic model.
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2.2.3 Functional Model

Functional models in OMT are data flow diagrams that Show the flow of data among

various processes that transform the data. These processes can be further decomposed

into more detailed data flow graphs. Boxes in the model are considered as actors

interacting with the system. In an embedded system, these actors would be various

sensors and actuators that are in the environment of the system. Any data stores

(e.g. table of initialization values) for the system are also shown on the functional

model.

The notations used in the functional model are Shown in Figure 2.18 and are

described below.

 

Data store

Data3

  

 

Actor_l Process > Actor-2

Datal Data2
      

Figure 2.18: Notation used in the OMT functional model.

 

e Ovals represent processes that transform input data to form output data. In an

embedded system, these transforms are normally quite simple.

0 The arrows of the functional model show the flow and direction of data or signals

as they move through the various processes of the system. These dataflows are

labeled with the name of the data.

0 The actors are shown as rectangles in the functional model. Actors are active

agents that drive the flow of the data. Actors actively produce data for the



20

system, as well as consume data produced by the system.

0 The data stores of the system are indicated by a pair of parallel horizontal lines.

The name of the data store is contained between these lines. Data stores are

passive objects that store data for later use.

Functional models are hierarchical in nature. At the most abstract level, level 0,

the whole system’s functional model is depicted by only one oval representing the

entire system’s processing. This process can then be refined into subprocesses that

show more and more levels of detail. Successive functional models Show more details

and are numbered 0, 1, 2, etc.

The basics of OMT have been presented in this chapter. The next chapter will

specifically Show how OMT can be used for embedded systems’ modeling. Later in

this thesis will be presented an approach for taking the OMT models of embedded

systems and translate them into VHDL.



Chapter 3

OMT Analysis and Modeling of

Embedded Systems.

Humans typically use abstraction to handle complexity. When analyzing a complex

system, different views of the system can be abstracted and modeled. With the use

of precise notation and an iterative method, abstract models can be systematically

refined.

Using OMT, three models are developed for a system: the object model, dynamic

model, and functional model. Working from a problem statement, and with feedback

from the customer, the requirements and specifications for a new system can be

systematically determined. Each of the three models will consist of multiple diagrams,

each showing more details at subsequent levels of refinement.

The primary model is the object model that depicts the static aspects of the

system, that is, the objects and the relationships between the objects; the notation

is similar to entity-relation diagrams. However, because of the nature of embedded

systems, the dynamic model is essential for showing the behavior of the system, with

state changes showing events and control captured in state diagrams. The functional

21
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models will be relatively simple, because most embedded systems have few data trans-

forms. Data Flow diagrams that depict data flows and data transformations (pro-

cesses) are used for the functional model. However, the system-level functional model

is helpful for visualizing the data and control signals flowing into the processes.

The analysis and modeling processes consists of the following steps:

1. Develop a high-level object model.

2. Develop a system-level dynamic model.

3. Develop a system-level functional model.

4. Verify consistency among the three models.

5. Refine and add details to the object model.

6. Develop a dynamic model for every object, unless it is trivial, and refine.

7. Refine data transformation processes in the functional model.

Details of how these steps can be applied to an application are described in the

remainder of this chapter.

3.1 Automobile Door System

An automobile door system is used as an example throughout this thesis. The fol-

lowing is a brief description of the system and its required functionality.

Automobiles can be designed with automatic windows, locks, and a keyless entry

fob [28]. This example will design an automobile doors system to handle input from

door panels, as well as an optional keyless fob. All doors have window controls, both
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up and down. Both front doors have automatic door lock and unlock controls. The

driver’s door has a window lock and unlock control that disables the other doors’

window controls.

The lock button on the fob unit will honk the vehicle’s horn once and blink the

vehicle’s light twice. This notifies the driver that the ‘lock’ has taken effect. If a door

is ajar anywhere in the vehicle, the fob lock is disabled. An ‘unlock’ by the fob unit

unlocks just the driver’s door, if the doors are locked. A second ‘unlock’ from the fob

unit will unlock the remaining locks in the vehicle.

The door system should be able to be implemented without the keyless fob and/or

without back doors. These diflerent configurations must be handled without redesign-

ing the system.

3.2 High-level Object Model

When starting a design process, an object model should be developed first, Showing

the objects of the system grouped together in classes. This model shows the static

structure of the system. The deveIOpment process begins with the designer looking

for the “nouns” within the problem description that represent real world objects.

Frequently these objects are pieces of equipment in the system that interact with a

controller. These normally can be grouped into two major classes of objects, sensors

and actuators. Sensors are any objects that give feedback to the system, such as

buttons, knobs, thermometers, etc. Actuators are objects that the system influences,

such as indicator lights, motors, and valves. Sometimes there is also an user interface

that might be made up of both sensors and actuators, such as an appliance’s panel

for user input and for indication of cycle selection and sequencing.

In addition to sensor and actuator objects, a controller object is a key element
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of the system. This controller object manages the signals that are coming from

the environment and makes decisions based on the signals and their orders. Many

times the state of the system must be considered before responding to an input. For

example, the event of changing the power level on a microwave is handled differently

depending on whether the microwave is idle or cooking. The controller object class

decides which actuators should be activated and chooses the proper state transitions.

These three major groups of classes, sensors, actuators, and controllers, as well as

the possible user interface object should be placed in a high-level object model. The

lines between classes in the object model represent associations. An object model

for embedded systems has the general form seen in Figure 3.1. The system is a

composite object (Shown by a diamond on an association) made up of an aggregation

of the user-interface, sensor, controller, and actuator classes. The fact that there

could be multiple user-interfaces, sensors, and actuators is depicted by a filled circle

indicating zero or more of these objects.

 

 

Embedded System

O
I l 1

User Interface Sensor Controller Actuator

   

  
  

 

            

Figure 3.1: The door system’s high-level object model.

 

The controller class might also be a composite object, made up of several different

controllers that handle different input and output. The amount of coupling or sharing

of data and control between these controllers can influence the decision to divide them

(if loosely coupled) or to keep them together (if strongly coupled). An example of
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multiple controller classes for the automotive door system is seen in Figure 3.2.

 

 

Door System

5

User Interface Sensor Controller Actuator

   

    
 

         
   

 

  l
Window Door Lock Window Loch

System System System

   

         

Figure 3.2: Object Model showing multiple controllers.

 

Under the sensors and the actuators, additional classes may be identified. These

classes should group together objects that have similar characteristics and properties.

Superclasses (indicated by the triangle connector), such as the sensor class, may

be refined into other subclasses (that inherit the attributes and operations of the

superclass) such as toggles and switches. For the automotive door system in Figure

3.3, actuators are initially identified as the multiple window motors, the door locking

mechanism, the light flashing actuator, and the horn.

Some real world objects can be both sensors and actuators. For example, a motor

can be an actuator because a controller can turn it on or off. However, it can also be

a sensor if it sends some internal values to the controller, like motor torque. These

objects must be identified and i'nherit attributes and operations from both sensor and

actuator objects. This is true of the window motor in the door system, Shown in

Figure 3.4.
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Figure 3.3: Object Model showing actuator refinement.
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Figure 3.4: Object model Showing an object that is both sensor and actuator.
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An optional user—interface might be shown as an aggregation of any sensors and

actuator included on the interface. In the doors system, only sensors, specifically

buttons, are included on the door panels. The normal door panel is a back seat panel

with only window controls. The front passenger’s door panel is a subclass of the

normal door panel with door lock buttons added. The driver’s door-panel inherits

these buttons as well as the window lock and unlock buttons.

The number of instances of each object must be noted on the object model. If

there are many buttons, a filled circle will be placed at the endpoint of its associa-

tion, such as the sensors in Figure 3.2. If there is only one door ajar sensor, then

an undecorated line is adequate. If a specific number of an object class is known, it

should be noted at the endpoint of the association.

The following are helpful tips on the creation of an object model [6]:

Understand the problem. Domain research might be necessary.

Keep the model simple at first and refine the objects later.

Choose class name carefully.

DeveIOp a data dictionary containing a written description of all the classes,

attributes, and operations.

Try to have only binary relationships.

Do not worry about multiplicities on the first iteration.

Document the reasons behind the model.

Refine until complete and correct.
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3.3 System-level Dynamic Model

After an object model has been developed, a system-level dynamic model Should be

constructed. This dynamic model is a state diagram of the sequence of states that

the objects in the system will undergo as they receive different events and stimuli.

The development of a scenario is helpful to identify the actions and the states

that a system goes through in the course of its execution. A scenario shows the par-

ticular events that happen during one specific execution of a system. For example, a

dishwasher scenario would consist of the ‘start’ button being pushed, cycle informa-

tion buttons being checked, timers being set, rinse/wash/rinse/dry being executed,

indication lights being activated, and the system being shut-off.

Many systems at a high-level have the form found in Figure 3.5 showing an idle

state (shown as a rounded rectangle) and a running state. The transitions (arrows)

between these states are labeled with the events that move the system from one high-

level state to another. The running state is considered an abstract state because it

encapsulates several substates within it. Abstract states are expanded gradually in

later refinements to Show more detail. The starting state called the start state is

indicated by a small filled circle pointing to the state in which the state chart starts.

For example, the start state of the dynamic model in Figure 3.5 is the idle or off state.

 

’On’ button pushed

A

.'—‘[ Idle or off state ] [ Running state ]

V

Cycle Complete Event

Figure 3.5: General System-level dynamic model.

 

System-level concurrency in the system should be identified. Concurrency refers to
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the condition when two different objects can receive events at the same time without

interacting [23]. An automobile door system has concurrency because doors Should

be able to be locked at the same time as multiple windows are moving up and down.

Each concurrent controller object should have its own state diagram. This inherent

concurrency is shown by the dashed lines and multiple state diagrams in Figure 3.6.

Each of the three concurrent sections contains a high—level statechart [14] for the

three corresponding controllers. Guarding conditions (shown inside square brackets)

are placed on some of the transitions, such as disallowing a transition if the window

lock is on. An abstract state can contain entry and exit actions, as well as an activity

to be performed while in the state.

While creating a dynamic model, the following tips may be helpful [6].

0 Use scenarios to begin the construction of a dynamic model.

Only create state diagrams for objects that have meaningful behavior.

Let the application decide on the granularity of events, actions, and activities.

Use superstate abstraction and nesting of substates within a superstate to im-

prove readability.

To simplify reading make use of entry and exit actions for multiple transitions.

Look for possible race conditions, where two different concurrent objects can

begin execution, with nondeterministic outcomes for the system.

3.4 System-level Functional Model

After the object model has been constructed, a system-level functional model can be

developed. This development can happen concurrently with the construction of the
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Figure 3.6: System-level dynamic model for door system.
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dynamic model. The data flows (represented by labeled arrows) of the system are

captured in these functional models, also called data flow diagrams. The services of

the system are also displayed as processes (drawn as ovals).

Development starts with one single process oval in a diagram. The actors (rep-

resented by rectangles) of the system will be the environmental objects, that is the

sensors and actuators of the system. A sample of a typical system-level functional

model for an embedded system is Shown in Figure 3.7.

in ut A ou ut

Figure 3.7: System-level functional model of an embedded system.

 

  

     
 

 

Next, refine the sensors and actuators and show all the specific data or Signals

that are flowing within the diagram. This data will often be control signals, but in

the functional model this information is thought of as data. This diagram, showing

all the sensors and actuators and data, is called the system-level functional model.

An actual system-level functional model for an automotive door controller is shown

in Figure 3.8.

The next refinement of the functional model Should correspond to the controllers

that were identified in the object model. For example, in the automotive door system,

three classes of controllers were identified, as shown in Figure 3.10 These controllers,

the window system controller, the door lock controller and the window lock controller

should each have corresponding processes in the functional model. The sensors will

provide input to one or more of these subprocesses and the actuators will receive

output from one or more of these processes. It is possible for internal data to flow

from one process to another, such as the window lock state data from the window
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Figure 3.8: System-level functional model of an automotive door system.
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lock process to the window controller process in Figure 3.9.
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Figure 3.9: Refined functional model of an automotive door system.

 

3.5 Further Refinement of the Models.

The modeling process continues with iterative refinements of all three models. Careful

review of the models will enable the detection of incompleteness or inconsistencies

between the three models that can be rectified before proceeding to the next iteration.

This includes additions to the object model to reflect actions on the dynamic model

and the data flows in the functional model. More detailed associations can also be
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added to the object model in order to Show which objects interact.

3.5.1 Consistency between Models

Any changes necessitated by the development of the functional and the dynamic

models should be reflected in a refinement of the object model. Specific things to

review include:

0 Each controller on the object model must have a process on the functional model

as well as a state diagram within a dynamic model.

0 All the actors in the functional model Should be identified as sensors or actuators

in the object model and vice versa.

0 The data that is flowing from the actors in the system-level functional model

should be added as attributes or operations to the object model.

—- Sensors from the object model that are observers should have data reflected

in the functional model, shown as attributes with Boolean data type in

those sensors’ class objects. For example, in the door system, the door

ajar sensor has the attribute of type ‘Boolean’ associated with its state,

‘door ajar.’

-— Sensors that are sending objects will have an operation relating to the

data. If no parameters are sent to the controller, then this data will be

control data and will be of type ‘bit.’ For example, if the window toggle

on the door panel has the up() operation, this relates to a specific data

flow in the functional model.

- Actuators are receiving objects. They reflect the data of the functional

model in their operations. For example the automobile horn object will
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have a honkO operation.

0 Data going from the processes in the functional model to the actors should be

reflected in the operations of the controllers. For example, the window lock

system can ‘lock()’ or ‘unlockO’. These are associated with the window locking

mechanisms ‘lock()’ and ‘unlock()’.

A refined object model showing attributes and operations for the automotive door

system can be found in Figure 3.10. The key refinements include identification of

specific Operations done by the sensors, actuators, and controllers and the addition

of attributes of objects which sense state information.

3.5.2 Associations

Associations need to be added to the object model to Show the communication inter-

action between objects. All sensors inherit the association with the controller class

labeled ‘sends information to’ on the object model. Similarly, the processor has an as-

sociation to the actuator superclass that is inherited by all the actuators. Any other

specific associations should be added, such as the association between the window

system and the window lock system labeled ‘gets state from.’

3.5.3 Refinement of Dynamic and Functional Models

The dynamic model should undergo several levels of refinement. These levels would

show the details of the state changes for each object. Refinement is necessary for

all controller objects. Each controller object will have its own dynamic model. The

system-level dynamic model will contain some abstracted superstates that need to

be refined into another dynamic model. Transitions between these states will also

be labeled with events that trigger state changes. The actions that the controller
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object triggers need to be specified on the transitions or upon entry and exit of the

states. Activities done while in each state must also be refined. An illustration of

state refinement within a dynamic model can be seen in the doors system. The state

locked within the door lock system from the system-level dynamic model (Figure 3.6),

is refined in Figure 3.11. The one superstate on the system-level model is expanded

to Show three substates and the actions that are related to each.

The functional model might also need further refinement. At this point, each

controller should have a corresponding process bubble on a level-one functional model

(as shown in Figure 3.9 for the doors system.) If there are calculations or other

algorithmic-type processing of data, further refinement of the process bubbles for each

process will be needed. These refined functional models will correspond to actions

and activities that are shown on the dynamic models. Many embedded systems have

minimal data processing, so further refinement at this point might not be necessary.

This chapter has presented the concepts and principles used to model an embedded

system with OMT. This OMT model now can be translated into VHDL. A translation

technique is presented in the following chapter that can do this translation. Once

the system has been translated to VHDL, various tools can be used to analyze the

embedded system.
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Chapter 4

OMT to VHDL Translation

Process

This section presents a group of rules for deriving VHDL Specifications from OMT di-

agrams, developed using the process presented in the previous chapter. A VHDL [22]

design entity consists of two basic parts, an entity and an architecture. The entity

defines the porting or the interface of the object to the rest of the world. In order to

simulate an entity, a corresponding architecture is needed that is considered to be the

body of the entity. The architecture describes the function or behavior performed by

the entity and assumes access to all the ports defined in the entity. Accordingly, the

rules are decomposed into two groups that respectively describe how specific parts of

OMT diagrams can be used to generate both the structural representation of OMT

in VHDL as well as the behavior representation as shown in Figure 4.1. The rules are

followed by a design process that uses the rules, but also indicates where developer

input is needed to fill in portions of the VHDL specifications. Before the rules and

process are presented, a brief description of how to transform a hierarchical dynamic

model into a flattened state chart is given.
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OMT MODELS VHDL

 

Object Model i Structural Representation of System

(including entity/architecture pairs,

components, ports, port types. port maps)

Functional ModelN

Behavioral Representation of System

/(including capturing state information and

Dynamic Model a procedure for capturing data transformations)

Figure 4.1: A View of the OMT to VHDL translation process.

 

4.1 Flattening the Dynamic Model

The dynamic model in OMT has the strength of being constructed hierarchically

with substates nested within superstates. This is helpful for initial design, to handle

complexity, and to allow for incremental refinement. However, for the translation

process the hierarchy must be removed.

Any hierarchical state chart has a corresponding flattened state chart. Any dy-

namic model in OMT also has a corresponding flattened state chart that shows all

its states at the some level. The basic concept is to take the deepest substate and its

state chart, which will be flat, and place it in the next higher state chart, removing

the superstate. This bottom up approach eventually results in a totally flat state

machine.

In Figure 4.2 there is a 3-state dynamic model labeled H with two super states

labeled SS1 and SS3. Each of these super states has its own state chart enclosed in

a dashed circle. Within SSl there is a superstate labeled SS1c. A state chart of the

substates in SSlc is seen at the bottom of the figure. To change H into F, a flattened

state chart, several steps must be taken. First, for each state 8 within H, one can

compute the set of G(s) of all the “ground” states that are the deepest substates
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within s. For this example, the ground states would consist of all the states labeled

with a single S. None of these ground states are super states. The set of states in F

is the union of G(s) for all states 3 in H.

Next, the transitions for the new flattened state chart must be computed. Each

transition in a OMT dynamic model is labeled with an event e. Every transition t in

H will have a source state, which might be hierarchical, which we will call source(t).

Each transition will also have a destination state, also possibly hierarchical, which

we will call sink(t). These sources and sinks can be identified by the events on the

transitions. The same event and direction will identify the substate within the super

state for this transition. The transition set in F can be computed from the transition

set in H as follows:

For every transition t in H, add the transitions:

{ (u,v) —— u in G(source(t)) & v in G(sink(t)) }

to the transition set of F.

This results in transitions from the deepest “ground” source state within a super-

state to the deepest “ground” sink state. The flattened state chart F for this example

is shown in Figure 4.3.

Any concurrency that is present in the dynamic models must not be removed.

This concurrency is important to stay in the model representation. VHDL is able to

handle this concurrency directly.

4.2 Rules for deriving VHDL from OMT

The notations from the three OMT models are translated to various parts of a VHDL

specification. The portion of the OMT model that is targeted by a rule is italicized,

and the corresponding VHDL component is underlined. The assumption is that
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Figure 4.3: Flattened state chart F, equivalent to state chart H.
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high-level object, functional, and dynamic models have been created according to the

process presented in Chapter 3.

The rules for creating the structure of an embedded system from the various

notations of the object and functional model are explained below.

OMT-S1

OMT-32

OMT-S3

OMT-S4

Every controller class in the object model will have a VHDL entity/architecture
 

template created for it.

Aggregation of controller objects (specified with a diamond) translate into

VHDL components of the aggregate objects within the composite controller’s
  

structural architecture.

A data flow on the functional model becomes a port name for the VHDL entity

for a controller. The direction of the data flow will determine if an in or out port

is made.

An attribute type found on a sensor or actuator class object within the object

model will become the port types for a port within the VHDL entity for the

controller that interfaces with this sensor or actuator.

The rules for converting behavior of the system, as shown in the dynamic and

functional models, into behavior architectures in VHDL follow. As before, the OMT

diagram components are italicized and the generated VHDL component is underlined.

OMT-Bl Every dynamic model for a controller needs a behavioral architecture that con-

tains the following items:

(a) A type declaration called state-type that can contain the enumerated values
 

of all states in the dynamic model.

(b) Two variables of type state-type called Present_State and State.
 

(c) The start state in the dynamic model will be the initial value of both the

Present-State and the State variable.

 



OMT-B2

OMT-B3

OMT-B4

OMT-BS

OMT-B6

OMT-B7

44

(d) A process is constructed within the behavioral architecture to force sequen-

tial execution of control.

All events that cause transitions from one state to another within the dynamic

model will be included in a wait statement or sensitivity list for this architec-
 

ture’s main process. A change to one of these signals will happen when an event

happens. This event will start the associated process executing.

Each state in dynamic model will be included in a CASE statement that senses

the Present_State variable. The CASE statement will keep track of what the

present state is and if a transition to a new state is allowed.

Transitions between states are controlled by ‘If’ statements within the Case State-

ment for each state. If the correct event has happened, then the code to handle

a new state can be entered.

A guard on a transition is also included in the same If statement. The If statement

will include the event that causes the transition and any guard statement that

will keep that state from being entered. They will be conjuncted together.

For Transition on completion of a state, or a transition that is not labeled with an

external event, a done event will be introduced into the VHDL code. A change

to this done event will also be included in the the sensitivity list for the event
 

handling process. This signal will be changed by the state that exits without an

event; that is, the signal corresponds to an event completion. This signal will be

toggled within the CASE statement for that state.

Actions on transitions in the dynamic model, unless they are atomic actions, will

be defined as VHDL procedures with any parameters associated with the action
 

passed to the procedure. Actions on entry and exiting of a state will also be

handled as a VHDL procedure call. Atomic actions consist of a simple change of
 

a signal or variable value.
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OMT-B8 Activities within a state in the dynamic model will be added within that

state’s process from algorithmic information from the functional model.
 

4.3 VHDL Translation Process

Given the above rules for deriving VHDL specifications from OMT diagrams, the

complete VHDL specification is created using the following process, where rule usage

and user input are explicitly indicated.

1. Create an entity/architecture template for the whole system with the entity

name coming from the name of the object model’s system aggregate object as

shown in Figure 4.4 for the door system. (Use Rule OMT-SI.)

(a) Developer clarifies all multiplicity in object model. For example, determine

whether there are two or four windows in the system.

(b) Developer supplies names for any objects with multiplicity in the object

model (i.e., supplies instance names). For example, the names

Back-RtWindowSystem and BackLeftWindowSystem could be supplied.

(c) Developer specifies if there is any interaction between multiple objects of

the same class. On the object model this would be a circular association

from an object back to itself. An example would be a set of bit adders

that are hooked together into a larger adder.

2. Add the port names and direction (in or out) to the system entity. (Use

Rule OMT-S3.)

(a) Each data flow found on the high-level functional model will be a port, as

shown in Figure 4.5.
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(b) Create multiple ports for data flows from multiple objects (actors) that

have been identified in step (1a).

(c) Create unique names by concatenating the sensor or actuator name with

the data flow name behind the name from the developer obtained in

step (1b), to create unique names.

3. Identify the port types for all ports, refining the object model to add any addi-

tional attributes or operations identified. (Use Rule OMT-Sl.) (See Figure 4.6

)

4. If a controller is an aggregation of other controllers, reflect this aggregation with

more entities. (Use Rule OMT-S2.)

(a) Refine the object model to reflect this aggregation with a diamond on the

association.

(b) Refine functional model with a process bubble corresponding to each ag-

gregate controller and correct placement of signals.

(c) Create entity/architecture templates for each aggregate controller.

(d) Add new controllers as components to the composite controller. Any multi-

ple instances of components will have had names supplied by the developer

in step (1a). Concatenate these names to the controller name.

(e) Create any internal signals that are shown in the refined functional model

as coming from one controller process to another. For example, the data

flow, window lock state, leaves the Window Lock Process and enters the

Window Process (Figure 3.9), so it would need an internal signal declared

for it.
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(f) Create ports within the aggregate controllers from the refined functional

model. Port names will be the concatenation of the aggregate controller

and the data flow name. The direction can be determined by the direction

of the arrow in the functional model.

(g) Port mapping for the components within a composite controller can be

determined by using the functional model and matching the concatenated

signal names. Developer confirmation will be needed in the matching of

the semantics of the signal names and the data flows on the functional

model.

5. Refine the dynamic model to show new aggregate objects.

The behavior of the system is added to the VHDL architectures in the following

procedural steps. Please see Figure 4.8 for an example of a behavior architecture.

6. Refine functional model and dynamic model for each controller object.

7. Use the dynamic model for determining the structure of the controller objects’

behavioral architecture.

(a) Create a type declaration called state_type. (Use Rule OMT-BI.) It should

contain the enumerated values of all the states in the dynamic model.

(b) Create two signals to contain the present state of the diagram as well as

one for the next state. (Use Rule OMT-BI.)

(c) Create two concurrent processes within the behavior architecture for this

controller object. One will accept all the events that happen in the system

and will initiate the state change. The other process will handle the actual

states, to what states they transition, as the actions and activities related

to these states. (Use Rule OMT-BI.)
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((1) Add all the events on the transition on the dynamic model to the sensitivity

list for the event handling process. (Use Rule OMT-B2.)

(e) Create a CASE statement in the state changing process that checks the

value of the last state. Based on the last state, a group of if-else-statements

will be placed directing the process to the next ’state.’ (Use Rule OMT-

B3.)

(f) The ’If’ statements within the ‘CASE’ statement will contain the events

and guards for that transition conjuncted together. (Use Rules OMT-Bl,

OMT-B4.)

(g) Add additional signals to handle the cases of circular state changes and

state changes that happen on completion of an activity, not because of an

event. (Use Rules OMT-B6.)

8. Before leaving a state section, the name of the present state should be placed

in the ‘present state’ variable.

9. Write any needed procedures to handle any actions. (Use Rule OMT-B7)

10. Fill in activities within the state processes. (Use Rule OMT-B8)

11. Compile or analyze each behavior entity as it is completed.

12. Compile or analyze any composite controller when its aggregate parts are ana-

lyzed correctly.
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entity Door_System is

port ( );

end Door_System;

architecture structural of Door_System is

begin

end structural;

Figure 4.4: Main entity and architecture templates for Automotive Door System.

 

 

entity Door_System is

--port info. added this step.

port (

--in port signals

Foblock : in ;

FobUnlock : in ;

DoorAjar : in ;

BkatllindowHotorDown : out ;

BkatllindovHotor : out);

Hornlionk :

end DoorSystem;

Figure 4.5: Ports added to Door_System entity from the Functional Model and the

number of instances from the Object model.

 

 

entity Door_System is

--port info. added this step.

port (

--in port signals

Foblock : in BIT ;

FobUnlock : in BIT;

DoorAjar : in BOOLEAN;

BkatllindowHotorDown : out BIT;

BkatllindovMotorStop : out BIT);

Hornlionk : out BIT);

end Door_System;

Figure 4.6: Input port type information added.
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architecture structural of Door_System is

component VindorLSystem

end component;

component Door_Lock.System

end component;

component HindOILLoclLSystem

end component;

begin

driverJrindow : Hindewfiystem

port map 0;

pass_window : HindomSystem

port map 0;

end structural;

Figure 4.7: Component information added to the declarative section of the structural

architecture.
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ARCHITECTURE behavioral OF WindowSystem IS

TYPE State_type IS (Idlestate, NindowNovingUpState, WindovMovingDownState);

SIGNAL PresentState : State_type <= Idlestate;

SIGNAL State : State_type := Idlestate;

BEGIN

StateChanging : PROCESS

BEGIN

HAIT ON HSHindowDovn, HSHindowUp,HSHotorTorque;

PresentState <= State;

CASE PresentState IS

WHEN Idlestate =>

If ((HSHindouUP = ’1’ )and (HSNindovLockState = FALSE))

THEN

WSWindovHotorStoP <8 ’0’;

USHindowMotorUp <= ’1’;

State <= HindewflovingUpState;

ELSEIF ((HSHindovDown = ’1’) and (USHindowLockState = False))

THEN

WHEN WindowHovingDownState =>

IF ((WSHotorTorque = ’1’) or (WSHindowDown= ’0’))

THEN

HSHindowMotorDown <= ’0’;

USHindowHotorStop <= ’1’;

State <8 Idlestate;

END IF;

END CASE;

END PROCESS;

Figure 4.8: Behavior architecture for a controller.

 



Chapter 5

VHDL Analysis

Once the OMT models have been developed, the corresponding VHDL modules can

be analyzed using numerous existing tools. The results of compiling of the generated

VHDL code will find naming inconsistencies, syntax problems, and also whether all

the signals declared in the system were actually used. Also the typing of all ports

will be automatically checked.

Once each module has been compiled correctly, the system can be given a specific

configuration and its behavior can be simulated. Input testing files can be generated

manually to check various system conditions and behaviors. These input files will

correspond to the input signals coming from the environmental actors or sensors.

The test scenarios will show changing signal values over time.

The result of this simulation using the input files will be a series of outputs for

the system’s actuators. The input/output pairs are compared to see if the system

has the expected behavior. The VHDL simulation cycle is explained in further detail

in Section 5.1.

More formal analysis of VHDL systems is also possible. In addition to behavior

simulation, different properties of the system can be checked, such as timing and
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well-formedness. Several tools that can handle VHDL are described in Section 5.2.

The results of applying the VHDL simulation environment to the Automotive Doors

System is presented in Section 5.3.

5.1 VHDL Simulation

Event-driven simulation is the stimulus-response paradigm used in VHDL simulators

[22]. The VHDL event-driven simulation cycle defines the dynamic semantics of

VHDL. A VHDL Simulator is a software program running a VHDL description that

responds to a series of inputs. The simulator computes the output. The input/output

behavior of an accurate VHDL model reflects the same input/output behavior of the

associated actual hardware [21].

Event-driven Simulation is based on the concept that actions are initiated when

events or signals change value. More than one signal can change value at one sim—

ulation time unit. The model responds to these changes by running processes that

in turn will change more signals’ values in the future. The simulation time is then

advanced to the next event or input, and the model repeats until there are no more

events [10].

When simulation begins, a VHDL module is first initialized. See Figure 5.1 for

a diagram of the simulation cycle used by VHDL simulators. During initialization,

the initial value of each declared signal is computed. There is an assumption that

this value has persisted for an infinitely long duration of time in the past. The initial

signal value may explicitly be defined or the signal is assigned the default value that

is associated with the signal or port type. Based on these signals’ initial values, each

process in the model is executed until there are no more signal changes to evaluate.

After all these activities take place, the model is considered to be initialized.
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At this point the event cycle begins. These event cycles continue until there are

no more changes to signals, i.e., no more events. If there is a non-terminating process,

such as a clock, the Simulation typically terminates after a user-specified amount of

time has passed [10].
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Figure 5.1: Simplified diagram of VHDL simulation cycle [10].

 

Mixed-level simulation is allowed where different VHDL components of the system

are defined at different levels of abstraction and are simulated together. Lower levels

of abstraction have more timing details and have more functional parallelism. These

take longer to simulate compared to higher-level abstract components. Often simu-
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lation is done on one lower-level unit of interest, combined with more abstract-level

components. This arrangement allows for faster simulation.

5.2 Other Analysis Tools

VHDL specifications can be translated into Typed Decision Graphs [18] (a variant

of Binary Decision Diagrams [5]) for various verification tests [9]. Thus VHDL code

can be transformed into a form where proofs of well-formedness can be generated to

recognize problems with bus conflicts, improper asynchronous loops, and incorrect

references to signals [19].

Several tools can analyze standard VHDL modules during system level design

to verify timing aspects of complex systems. An example is the Dynamic Stimulus

Generation and Response Validation (DSGRV) [3]. Hierarchical formalized timing

diagrams [11] compose time specifications for a system. A waveform editor called

Shadow, developed by Bell Research, is used to generate these timing diagrams in

a graphical environment [11]. The timing specifications are used to generate inputs

to the VHDL simulator and the tool is able to automatically compare the simulated

outputs with the expected outputs.

5.3 Analysis of Automobile Door System

Th automotive door system was developed using OMT analysis as presented in Chap-

ter 3 to create object, dynamic, and functional models. These models are given in

their entirety in Appendix A. The OMT to VHDL translation process as presented in

Chapter 4 was used to generate VHDL entities and architectures, found in Appendix

B. These VHDL components were compiled and simulated using the tool WorkView
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Oflice [29], which includes a VHDL analyzer or compiler, and a VHDL simulator.

5.3.1 Static Analysis

When the VHDL entities and architectures were compiled, several types of errors

and warnings were generated. The most common were signal name inconsistencies,

which would not be a problem if this VHDL generation process were automated.

Type inconsistencies were found. Several of these were Boolean data types that were

defined as bit types at a corresponding port. Improper structure of ’if then else if’

statements were flagged. Also the absence of needed punctuation and key words were

found. The most important problem revealed by the static analysis was the changing

of the same Signal by several concurrent processes. This resulted in a restructuring

of a rule in the OMT to VHDL translation process.

5.3.2 Dynamic Analysis

During the simulation of the automotive doors system, several design flaws were

revealed, forcing sharper thinking about the true requirements of the system. The

first case of finding a flaw related to the action of locking all the vehicle’s doors.

All types of locks were placed into one state in the dynamic model. Locks from the

keyless fob unit entered this state, as well as lock requests for the driver and passenger

doors. During model refinement, the actions of blinking the lights and honking the

horn were added to this state from the original requirements for a lock request from

the fob. However, the lock requests that come from the driver and the passenger

doors were not supposed to cause these actions. The developer did not see this flaw

with a visual inspection of the models. However, the simulation within the VHDL

simulator environment did reveal this requirements error. This design flaw needed to
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be corrected, not only in the VHDL door lock behavioral architecture, but also in the

OMT dynamic models and accompanying documentation.

The second design flaw was associated with the transitions from various states in

the window system. As originally modeled, more events caused transitions than could

physically be the case. For example, the Window Moving Up State in the system-

level dynamic model had three transitions leaving that state. One was for torque

limit reached. One transition occurred when the up toggle released. And the last

transition was for window toggle down pushed. During simulation, the result showed

an inconsistency. On closer inspection, the developer realized that the up toggle

released event would always precede the window toggle down pushed event because of

the physical nature of a window toggle. Therefore, the window toggle down pushed

transition was removed from the dynamic model for the window system and the

translation process was re-executed, resulting in VHDL that generated the expected

results.

Also pin-pointed during the dynamic analysis was the incompleteness of the mod-

eling of some needed events within the dynamic model. During simulation, the system

became trapped in a state and never transitioned from that state. For example, all

of the states within the Door Locking Mechanism Control dynamic model needed to

have an unlock accomplished event to cause a transition from these states. These

events were added to the dynamic model. Also, several states in the dynamic models

needed explicit events upon entry to these states. The events were implied by the

state names, such as UnLock Driver, but the states needed explicit events Specified,

such as entry/unlock Driver Door. The addition of these events resulted in more

complete and accurate models.

The creation of OMT models for the automotive door system and the use of the

translation process presented in Chapter 5, followed by the use of a VHDL simulator
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resulted in more complete models for the system. Also the requirements for the

system were able to be Simulated and checked.



Chapter 6

Related Work

This chapter overviews other projects that address the formalization of OMT models,

the object-oriented design of embedded systems, or the generation of VHDL modules

from graphical models.

6.1 The Formalization of OMT models

The notation of the object model for OMT was analyzed by Bourdeau and Cheng [4].

A-schemata, or analysis object schemata, was used to represent the object models.

Larch Shared Language was used to change this A-schemata into a algebraic specifi-

cation. The result of their work is that the semantics of the OMT object model are

now well-defined.

The formalization of the remaining OMT models was continued by Wang and

Cheng [27]. The dynamic[26] and functional models[25] were integrated formally

with the object model. Algebraic specification, as well as process algebras, were

used. LOTOS and ACT ONE [2] were the target specification languages. A rigorous

design process was also defined. As a result, rigorous analyses can be applied to a

specification and the OMT models can be checked.

59



60

6.2 Object-oriented design of VHDL modules

Chung and Kim[8] proposed an object-oriented design of VHDL components. Stan-

dard VHDL is extended with additional fields to represent the constructs of object-

oriented inheritance in their research. Libraries of previously designed modules can be

reused while managing version control. N0 specific process for developing a high-level

design is proposed nor is a graphical modeling of components used.

6.3 Generation of VHDL from Graphical Models

BetterState [1] supports the automatic generation of executable VHDL code from

either StateCharts [14] or PetriNets, but it does not support the depiction or the

specification of the structural or data flow aspects of the system. This approach [1]

only handles the control portions of a system and cannot handle any data transforma-

tions. Only architecture units are created in VHDL, not the corresponding entities.

The VHDL code must also be supplied for all events and transitional actions. An

object-oriented design of embedded system is also not supported by BetterState.

SpecCharts [12, 13] is a high-level specification language designed specifically for

modeling embedded systems’ requirements. SpecCharts has two forms: state tran-

sition diagrams and an equivalent textual form that is an extension of VHDL. The

state diagrams capture control information but do not show any data transformations

or structural information about the system.

Translation of CASCADE [20] control graphs, similar to Petri Nets, into VHDL

is proposed in [15]. CASCADE control graphs can be represented graphically or

textually but cannot capture data transformations.

What distinguishes our research from the approaches discussed above is:
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1. A process for object-oriented modeling of embedded systems in terms of a com-

monly used graphical modeling technique.

2. The specific object-oriented approach includes explicit depiction of data trans-

formations and system structure.

3. A specific process and rules for translating object-oriented diagrams into stan-

dard VHDL entity and architecture specifications.



Chapter 7

Conclusions and Future Work

As the complexity of embedded system increases, new design and development tech-

niques are necessitated. Object-oriented design and graphical modeling help to pro-

vide high-level abstractions based on real world objects. Using a modeling technique

such as OMT, allows the designer to explore requirements before committing to any

implementation details.

The modeling of an embedded system in OMT has been described and illustrated

with the deveIOpment of graphical models for an automotive door system. Rules

for formalizing OMT into VHDL are presented, as well as a stepwise development

process.

This translation process was applied to an embedded system, the automotive door

system. The automotive door system has been used throughout this document to help

illustrate the modeling and translation process.

One of the initial results of the translation process is finding missing items in

the OMT models. The identification and correction of this missing information re-

sults in a more thorough documentation of the system. For example, some states in

the dynamic model had actions within them that were not explicitly specified, just
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implicitly assumed. Also, consistency between names on the various diagrams were

checked by the translation process. This forced clarification of possible design and

requirements inconsistencies.

The translation process itself was reasonably straightforward. One of the most

difficult aspects was the existence of multiple objects of the same class in the system

and in the resulting VHDL code. The need for well thought out naming conventions

was illustrated. The possible addition of an instance diagram that explicitly shows

all the objects in the system might be helpful. Explicit instantiation of actors within

the system-level functional model would also be a possible improvement.

One area of future research revolves around an interesting dilemma of the pro-

posed translation technique, as well as any translation technique. How can there be

verification that a specification language has captured the meaning of a model. Also,

how can the completeness, correctness, and consistency of the technique be proven.

OMT is presented by Rumbaugh with a syntax, but without an exact semantics for

the models and their symbols. The meaning given to the elements of the OMT model

has been previously researched by Wang and Cheng [4, 27]. See Section 6.1 for more

information about their approach. Their understanding of the meaning of the OMT

notation was the foundation of this work. Their work also had to wrestle with the

problem of how to prove that the semantics assigned to the syntax was accurate.

The issue does not stop once there is an agreed upon semantics for the OMT syntax.

How can anyone be assured that the actual Specification of this meaning is accurately

defined in the target language, in this case VHDL? How can it be proven formally

that the semantics of the language is completely and correctly captured?

The completeness, correctness and consistency of the OMT to VHDL translation

presented in this thesis has not been studied in depth. If the general understanding of

what is meant by a model is not reflected in the resulting VHDL code, the translation
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rules themselves could be flawed, rather than the original design itself. However, this

research still has much validity as a process bringing more formality to the design of

embedded systems.

In the future, more case studies of embedded systems Should be developed with this

design technique, including extending the model refinement process through actual

fabrication. The automation of this translation process is also a logical step for

this work. Work is underway to extend VisualSpecs [7], a graphical environment

that supports the construction of the OMT models and generates the corresponding

formal specifications, to support this VHDL translation process and to interface with

existing VHDL analysis and simulation tools.



APPENDICES



Appendix A

Automotive Door System: OMT

Models

This appendix cOnsists of the OMT models for the automotive door system. First

presented is the completed object model in Figure A.1. This is followed by the system-

level dynamic model in Figure A2 and refined dynamic models for various superstates

on the system-level model. Figure A6 is the system-level functional model for the

doors system. Finally, a refinement of the functional model, that shows the processes

divided in relationship to the processes defined in the object model, is presented in

Figure A.7.
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Figure A.1: Object model for door system
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Figure A.2: System-level Dynamic Model
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Appendix B

Automotive Door System: VHDL

Entity/Architectures

Contained in this appendix are all the VHDL entity and architecture modules needed

for a four-door automotive door system. These VHDL modules were generated from

the OMT models in Appendix A using the translation process presented in this thesis.

Figure B.1 Shows the various entities and the related architectures for this system.

The Door System has a structural architecture made of components consisting of the

three sub-systems; The Window System, the Window Lock System, and the Door

Lock System.

The entities for the Door System, the Window System, the Window Lock System

and the Door Lock System are presented first. The entities are followed by the struc-

tural architecture for the Whole door system. Then comes the behavioral architectures

for the three subsystem.
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Figure 8.1: A view of the entities and architectures in the Automotive Door System.

 



 

-- A Four Door System is being built.

-- Names supplied are Driver, Pass, Bth, Bkat

-- Multiple objects are WindowSystem (4), NindowMotor (4),

-- WindowUp (4), WindowDown (4), WindowStop (4),

-- DoorLock (2 for Driver and Pass),

-- DoorUnLock (2 for Driver and Pass).

  

 

-- The DoorSystem is the main entity for the whole door system.

-- It contains ports for all the data flowing into and out of

-- the system. This includes all the signals and data from any

-- sensors and control flow and data to any actuators.

 

 

 

ENTITY DoorSystem IS -- The main entity for the whole system

PORT

(

-- In Ports -- -- Ports for the dataflow coming from sensors

 

-- NindowToggle signals (X4)

DriverHindowToggleUp : IN BIT;

PassHindowToggleUp : IN BIT;

BthWindowToggleUp : IN BIT;

BkatHindowToggleUp : IN BIT;

DriverWindowToggleDown : IN BIT;

PassWindowToggleDown : IN BIT;

BthHindowToggleDown : IN BIT;

BkatHindowToggleDown : IN BIT;

-- Window lock signals from driver door panel

WindowLock : IN BIT;

WindowUnlock : IN BIT;

-- Fob button signals from fob unit

Foblock : IN BIT;

Fobunlock : IN BIT;

-- Door locks (X2)

DriverDoorLock : IN BIT;

PassDoorLock : IN BIT;

DriverDoorUnLock : IN BIT;

PassDoorUnLock : IN BIT;

-- Door Ajar sensor input

Doorajar : IN BOOLEAN;

-- Driver Door Locked sensor input
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DriverDoorLocked : IN BOOLEAN;

-- Window Hotors’ torque signal (X4)

DriverHotorTorque : IN BIT;

PassNotorTorque : IN BIT;

BthNotorTorque : IN BIT;

BkatMotorTorque : IN BIT;

 

-- Out Ports -- -- Ports for the dataflows going to actuators

 

-- window Motors’s signals (X4)

DriverUindowMotorUp : OUT BIT;

PassNindowMotorUp : OUT BIT;

BthWindowMotorUp : OUT BIT;

BkatUindowMotorUp : OUT BIT;

DriverHindowHotorDown : OUT BIT;

PassUindowMotorDown : OUT BIT;

BthHindowNotorDown : OUT BIT;

BkatHindowMotorDown : OUT BIT;

DriverHindowMotorStop : OUT BIT;

PassHindowMotorStop : OUT BIT;

BthHindowHotorStop : OUT BIT;

BkatWindowMotorStop : OUT BIT;

--Door Locking Mechanisms signals

DoorLocking : OUT BIT;

DoorUnLocking : OUT BIT;

DoorUnLockingDriver : OUT BIT;

-- Light Flashing mechanism’s signal

LightFlash : OUT BIT;

-- Horn Honking signal

HornHonk : OUT BIT

);

END DoorSystem; -- end of the main door system
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-- WindowSystem is a controller

-- for one particular window, that senses

-- roll up and roll down request as well as

-- if the motor is torquing. The WindowSystem

-- decides if the window motor should be moved

-- up or down or stopped.

 

ENTITY WindowSystem IS -- Entity for window system controller

port

(

--in ports -- --dataflows into window system from some sensors

------------- for one window.

HSHindowLockState: IN Boolean; --T locked and F for unlocked.

WSWindowUp: IN BIT;

WSNindowDown: IN BIT;

WSMotorTorque: IN BIT;

-- out ports -- --ports to this window’s actuators

NSWindowMotorUp: OUT BIT;

NSHindowMotorDown: OUT BIT;

HSWindowMotorStop: OUT BIT

);

END NindowSystem;
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WindowLock System is a controller

-- that senses lock and unlock requests for

-- the driver or the passenger and sets an

internal global Window lock state variable to True or False.

ENTITY WindowLockSystem IS

port

(WLSlockReq : IN BIT;

WLSUnlockReq : IN BIT;

WLSWindowLockState: OUT BOOLEAN --T locked and F for unlocked.

);

END WindowLockSystem;

 

 



  

-- DoorLockSystem is an entity for a controller that receives

-- input from the driver door panel, the passenger door panel,

-- and the keyless fob unit.

-- Output from this controller goes to three actuators that

-- 1. look all doors, 2. unlock all doors, 3. unlock driver door.

 

ENTITY DoorLockSystem IS

port

( --in ports --

DLFobLock : IN BIT;

DLFobUNLock : IN BIT;

-- Door Lock (X2)

DLDriverDoorLock: IN BIT;

DLPassDoorLock: IN BIT;

 

DLDriverDoorUnLock: IN BIT; --added during testing

DLPassDoorUnLock: IN BIT; --added during testing

DLDoor_ajar : IN BOOLEAN;

DLDriverDoorLocked : IN BOOLEAN;

--out ports —-

DLDoorLockingLock : OUT BIT;

DLDoorLockingUnLock : OUT BIT;

DLDoorLockingDriverUnLock : OUT BIT;

DLHornHonking : OUT BIT;

DLLightFIashing : OUT BIT

);

END DoorLockSystem;
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This is a structural architecture module for the Door_System

It is made up of components consisting of four WindowSystems,

a DoorLockSystem, and a WindowLockSystem.

Components are declared, then specific components

are instantiated. The port map defines what signals from the

main door-system are mapped to or become the signals inside

of the components.

WindowLockStateGlobal is one internal global signal that

was declared to hold the state of the window lock system.

_——_ .— ——_—__—---'-----

ARCHITECTURE structural of Door_System IS

COMPONENT WindowSystem

PORT

( --in ports --

WSWindowLockState : IN Boolean; --T locked and F for unlocked.

WSWindowUp : IN BIT;

WSWindowDown : IN BIT;

WSMotorTorque : IN BIT;

-- out ports --

WSWindowMotorUp : OUT BIT;

WSWindowMotorDown : OUT BIT;

WSWindowMotorStop : OUT BIT;

);

END COMPONENT:

 

COMPONENT WindowLockSystem

PORT

(WLSlockReq : IN BIT;

WLSUnlockReq : IN BIT;

WLSWindowLockState: OUT BOOLEAN --T locked and F for unlocked.

);

END COMPONENT:

 

COMPONENT DoorLockSystem

PORT

( --in ports --

DLFobLock : IN BIT;

DLFobUNLock : IN BIT;

-- Door Lock (X2)

DLDriverDoorLock: IN BIT:
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DLPassDoorLock: IN BIT:

DLDoor_ajar : IN BOOLEAN;

DLDriverDoorLocked : IN BOOLEAN;

--out ports --

DLDoorLocking : OUT BIT;

DLDoorUnLocking : OUT BIT;

DLDoorUnLockingDriver : OUT BIT;

DLHonkHonking : OUT BIT;

DLLightFlashing : OUT BIT

);

END COMPONENT;

-- internal signal needed as seen on refined functional model

SIGNAL WindowLockStateGlobal : Boolean;

BEGIN

-- Window system instances -(X4)--names supplied by deve10per

DriverWindowSystem : WindowSystem

PORT MAP ( WSWindowLockState => windowlockstateglobal,

WSWindowUp 8) DriverWindowToggleUp,

WSWindowDown => DriverWindowToggleDown,

WSMotorTorque => DriverMotorTorque,

-- out ports --

WSWindowMotorUp => DriverWindowMotorUp,

WSWindowMotorDown => DriverWindowMotorDown,

WSWindowMotorStop => DriverWindowMotorStop

PassWindowSystem : WindowSystem

PORT MAP ( WSWindowLockState => windowlockstateglobal,

WSWindowUp => PassWindowToggleUp,

WSWindowDown => PassWindowToggleDown,

WSMotorTorque => PassMotorTorque,

-- out ports --

WSWindowMotorUp => PassWindowMotorUp,

WSWindowMotorDown => PassWindowMotorDown,

WSWindowMotorStop => PassWindowMotorStop

);

BthWindowSystem : WindowSystem

PORT MAP ( WSWindowLockState => windowlockstateglobal,

WSWindowUp => BthWindowToggleUp,

WSWindowDown => BthWindowToggleDown,

WSMotorTorque => BthMotorTorque,

-- out ports --
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WSWindowMotorUp => BthWindowMotorUp,

WSWindowMotorDown => BthWindowMotorDown,

WSWindowMotorStop => BthWindowMotorStop

);

BkatWindowSystem : WindowSystem

PORT MAP ( WSWindowLockState => windowlockstateglobal,

WSWindowUp => BkatWindowToggleUp,

WSWindowDown => BkatWindowToggleDown,

WSMotorTorque => BkatMotorTorque,

-- out ports --

WSWindowMotorUp => BkatWindowMotorUp,

WSWindowMotorDown => BkatWindowMotorDown,

WSWindowMotorSt0p => BkatWindowMotorStop

);

LockSys: DoorLockSystem

PORT MAP ( DLFobLock => Foblock,

DLFobUNLock => Fobunlock,

-- Door Lock (X2)

DLDriverDoorLock=> DriverDoorLock,

DLPassDoorLock=> PassDoorLock,

DLDoor_ajar => Doorajar,

DLDriverDoorLocked => DriverDoorLocked,

--out ports --

DLDoorLocking => DoorLocking,

DLDoorUnLocking => DoorUnLocking,

DLDoorUnLockingDriver => DoorUnLockingDriver,

DLHonkHonking => HornHonk,

DLLightFlashing => LightFlash

);

WindowSys : WindowLockSystem

PORT MAP (WLSlockReq => WindowLock,

WLSUnlockReq => WindowUnLock,

WLSWindowLockState => windowlockstateglobal

);

END structural; -- and structural architecture of Window System
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-- The behavior architecture for the WindowSystem entity is

-- presented in this section.

-- Input Events: WSWindowDown, WSWindowUp,WSMotorTorque

-- Outputs: WSWindowMotorUp, WSWindowMotorStop, WSWindowMotorDown

ARCHITECTURE behavioral OF WindowSystem IS

TYPE State_type IS (Idlestate, WindowMovingUpState,

WindowMovingDownState);

SIGNAL PresentState : State_type := Idlestate;

SIGNAL State : State_type := Idlestate;

BEGIN

StateChanging : PROCESS

BEGIN

WAIT ON WSWindowDown, WSWindowUp,WSMotorTorque;

PresentState <= State;

CASE PresentState IS

WHEN Idlestate =>

If ((WSWindowUP = ’1’ )and (WSWindowLockState = FALSE))

THEN

WSWindowMotorSt0p <= ’0’;

WSWindowMotorUp <= ’1’;

State <= WindowMovingUpState;

ELSE IF ((WSWindowDown=’1’)AND(WSWindowLockState=False))

THEN

WSWindowMotorStOp <= ’0’;

WSWindowMotorDown <= ’1’;

State <= WindowMovingDownState;

END IF;

END IF;

WHEN WindowMovingUpState =>

IF ((WSMotorTorque = ’1’) or (WSWindowUp = ’0’))

THEN

WSWindowMotorUp <= ’0’;

WSWindowMotorStOp <= ’1’;

State <= Idlestate;

END IF;

WHEN WindowMovingDownState =>

IF ((WSMotorTorque = ’1’) or (WSWindowDown= ’0’))

THEN

WSWindowMotorDown <= ’0’;

WSWindowMotorStop <= ’1’;

State <= Idlestate;



83

END IF;

END CASE;

END PROCESS;

END behavioral;
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-- The behavior architecture for the WindowLockSystem entity is

-- presented in this section.

-- Inputs: WLSLockRequIT - mapped to LockReg. A ’1’ causes window

-- lock, if WLSWindowLockSTate is False (not locked)

-- WLSUnLockRequit - mapped to UnlockReq.

-- A ’1’ causes windows to unlock,

-- if WLSWindowLockSTate is False (not locked)

-- Output: WLSWindowLockState:boolean - True if windows are locked

-- - False if windows are not locked.

ARCHITECTURE behavioral of WindowLockSystem IS

  

TYPE state-type IS (LockedState, UnlockedState);

SIGNAL State : state_type := UnlockedState;

SIGNAL PresentState : state_type := UnlockedState;

BEGIN

StateChanging : PROCESS

BEGIN

WAIT until (WLSLockReq = ’1’ OR WLSUnlockReq = ’1’);

PresentState <= State;

CASE PresentState IS

WHEN LockedState =>

IF (WLSUnlockReq = ’1’) THEN -- enter unlock state

WLSWindowLockState <= False; -- entry action

State <= UnlockedState;

END IF;

WHEN UnlockedState =>

IF (WLSLockReq = ’1’) THEN --enter lock state

WLSWindowLockState <= True; -- entry action

State <= LockedState;

END IF;

END CASE;

END PROCESS;

END behavioral;
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-- The behavior architecture for the DoorLockSystem entity is

-- presented in this section.

-- Input Events: DLFobUnlock, DLFobLock, DLDriverDoorLock,

-- DLPassDoorLock

-- Outputs: DLDoorLockingLock, DLHornHonking, DLLightFlashing

-- DLDoorLockingDriverUnLock, DLDoorLockingUnLock

ARCHITECTURE behavioral OF DoorLockSystem IS

 

TYPE state-type IS (IdleState, UnlockDriverState,

UnlockAllState, LockAllState,NotifyDriverState);

SIGNAL State : state-type := IdleState;

SIGNAL PresentState : state_type := IdleState;

SIGNAL Done_Event : BIT;

BEGIN

StateChanging : PROCESS

BEGIN

WAIT ON Done_Event;

WAIT until (DLFobUnlock = ’1’ or DLFobLock = ’1’ or

DLDriverDoorLock = ’1’ OR DLPassDoorLock = ’1’ );

presentstate <= State;

CASE presentState IS

WHEN IdleState =>

IF ((DLFobUnlock = ’1’) and (DLDriverDoorLocked = True))

THEN

DLDoorLockingLock <= ’0’;

DLDoorLockingDriverUnLock <= ’1’;

State <= UnlockDriverState;

IF (Done_Event = ’0’) THEN --toggle Done_event

Done_Event <= ’1’; --needed for completion event

Else

IF (Done_Event = ’1’) THEN

Done_Event <= ’0’;

END IF;

END IF;

ELSE

IF (((DLFobUnlock = ’1’) and (DLDriverDoorLocked = False))

or (DLDriverDoorUnLock = ’1’) or (DLPassDoorUnLock = ’1’))

THEN

DLDoorLockingLock <= ’0’;

DLDoorLockingUnLock <= ’1’;

State <= UnlockAllState;
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IF (Done_Event = ’0’) THEN --togg1e Done_event

Done-Event <= ’1’; --needed for completion event

Else

IF (Done_Event = ’1’) THEN

Done_Event <= ’0’;

END IF;

END IF;

Else

IF ((DLFobLock = ’1’) and (DLDoor_ajar =False)) THEN

DLHornHonking <= ’1’;

DLLightFlashing <= ’1’;

State <= NotifyDriverState;

IF (Done_Event = ’0’) THEN --toggle Done_event

Done_Event <= ’1’; --needed for completion event

Else

IF (Done_Event = ’1’) THEN

Done_Event <= ’0’;

END IF;

END IF;

ELSE

IF ((DLDriverDoorLock = ’1’) or (DLPassDoorLock = ’1’))

THEN

DLDoorLockingUnLock <= ’0’;

DLDoorLockingLock <= ’1’;

State <= LockAllState;

IF (Done_Event = ’0’) THEN --toggle Done_event

Done_Event <= ’1’; --needed for completion event

Else

IF (Done_Event = ’1’) THEN

Done_Event <= ’0’;

END IF;

END IF;

END IF;

END IF;

END IF;

END IF;

WHEN LockAllState =>

State <= IdleState;

WHEN NotifyDriverState =>

DLDoorLockingUnLock <= ’0’;

DLDoorLockingLock <= ’1’;

State <= LockAllState;

IF (Done_Event = ’0’) THEN --toggle Done_event

Done_Event <= ’1’; --needed for completion event
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Else

IF (Done_Event = ’1’) THEN

Done_Event <= ’0’;

END IF;

END IF;

State <= LockAllState;

WHEN UnlockAllState =>

State <= IdleState;

WHEN UnlockDriverState =>

State <= IdleState;

END CASE;

END PROCESS;

END behavioral;

j
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