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ABSTRACT

Rigorous Field Analysis of Superconducting Magnets and the Influence on

Nonlinear Dynamics in Particle Accelerators

By

Michael Lindemann

The nonlinear dynamics of particles in modern accelerators are governed by the

fields of the guiding and focusing superconducting magnets. While for the linear de-

sign of the lattice it is suflicient to treat the fields by a rather coarse approximation,

a thorough analysis of the magnetic fields is necessary in order to study the nonlinear

effects. As an example, the Large Hadron Collider (LHC) is studied, using detailed

field data for the High Gradient Quadrupoles in the interaction region. The influence

of the resulting nonlinearities on the dynamics is analysed via high-order maps deter-

mined with Differential Algebraic (DA) techniques and the code COSY INFINITY.

Normal form methods are utilised to determine amplitude dependent tune shifts as

well as resonance strengths. It is shown that the end effects change the nonlinear

characteristics of the lattice significantly.

This made a rigorous treatment of the fields desirable, which is presented in the second

part. Using DA-techniques the Taylor expansion of the field is calculated. Based on

this expansion two analytical algorithms to determine the multipole content of the

field are developed.
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Chapter 1

Introduction

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) will be the next accelerator to be built at CERN

in Geneva. One of the the main goals of LHC is to study the actual mechanism

for symmetry breaking in the electroweak sector of the standard model. This phe-

nomenon is associated with the nature of the Higgs mechanism, the existence of the

Higgs particle and the origin of mass.

The LHC poses unprecedented challenges in terms of accelerator physics :

High Luminosity

In the LHC the energy available in the collisions between the constituents of the

protons, the quarks and gluons, will reach the 8 TeV range, which is about 10 times

that of the Fermilab Tevatron. In order to maintain an equally effective physics

program at a higher energy E the luminosity of a collider which is proportional to

the number of collisions per second, should increase in proportion to E2. This is

because the cross section of the particle decreases like 1/E2. Whereas in past and

present colliders the luminosity culminates around L = 1032cm"2s‘1, in the LHC it

2
is expected to reach L = 1034cm‘ 8—1. The luminosity is given by the formula [27]

1



L 1 7 [£][Nkf]F (1.1)
= EB: 45,,

where 'y is the energy of the protons divided by their rest energy, ,8“ is the value of

the betatron function, corresponding to the width of the beam at the collision point,

N is the number of protons in the k bunches, 6,, is the invariant transverse emittance,

f is the revolution frequency and F is a reduction factor due to the finite crossing angle

which is 0.9 for the LHC. In formula (1.1) 7 is limited by the bending magnet field

and 6* is similarly largely determined by the available technology of high gradient

quadrupole lenses. The first bracket is proportional to the beam-beam parameter

which is limited by the electromagnetic interaction of colliding bunches. The second

bracket is proportional to the beam current, which has to be chosen very large. This

will be achieved by filling each of the two rings, in which the particles are rotating

in opposite direction, with 2835 bunches of 1011 particles each. The resulting large

beam current 1;, = 0.53A is particularly challenging in a machine made of delicate

superconducting magnets operating at cryogenic temperatures.

Furthermore it is necessary to decrease B“ in order to reach the luminosity goal.

This requires the use of High-Gradient Quadrupoles in the interaction region. These

quadrupoles combine relatively short length, large aperture, and short focal length

with a rather peculiar configuration of the return coils, all of which enhances the

relevance of their fringe field effects. This is why a substantial part of this work will

deal with the influence of the fringe fields on the nonlinear dynamics of the particles.

Longterm Stability

The nonlinear components of the guiding and focusing magnetic fields of the machine

are also very important for the question of long term stability. The beams will

be stored at high energy for about 10 hours. During this time the particles make



four hundred million revolutions around the 26.7 km circumference of the machine.

Meanwhile the amplitude of their oscillations around the central orbit should not

increase significantly, because this would dilute the beams and degrade luminosity.

1.2 Methods and Tools

In this section we present the main methods used in this work. The goal is to provide

the reader with a basic intuitive understanding of these tools. We follow closely and

summarise [1], [2] and [3]. The methods are discussed in a broader context in [4].

1.2.1 Coordinates and Maps

Usually when studying dynamics, the time t plays the role of the independent variable,

and we study the motion of positions 57' and velocities 27 or momenta 15' as coordinates.

Using the Lagrange mechanism, it is easy to transfer to new coordinates, in particular

the coordinates that describe the relative motion around the reference orbit. Further-

more, instead of using If , we usually use the arc length 3 along the reference orbit as

independent variable.

For the understanding of the motion in relative coordinates, let us assume we have

studied and understood the motion of the reference orbit. In the case when there is no

field at all, this reference orbit will merely follow a straight line. Furthermore, there

are a host of devices used in accelerators that have fields, but along one given straight

line, all the fields vanish, and the device is lined up in such a way that the reference

particle follows this line. Another important device uses magnetic fields, and along

the reference orbit one tries to hold them constant, in which case the reference orbit

is circular, at least within the element. In all other cases, it is usually necessary to

numerically integrate the reference orbit.



We assume the position and momenta of the reference particle are 17,8f(s), firef(3)

are known. As a technical detail, let us also assume that for no point 3, we have

13'";f(3) II é; , i.e. the motion is never pointing straight up,which for most real acceler-

ators is no limitation whatsoever. Let furthermore pt be smaller than the minimum

radius of curvature that the reference orbit experiences in the section of the machine

that we want to study. We now consider a ”flexible tube” of radius pt centred around

the reference orbit, and restrict the particles that we want to describe to only those

within the tube. Again, for practical devices this hardly represents a limitation; in

the LHC, for example, the ”tube” would be more than 4 km wide, much larger than

the region required by the beam particles.

For any particle within the tube, there is now a closest point on the reference

orbit; because only particles within the tube are allowed, this point is indeed unique.

Let s be the arc length at this point, and Fref(s) the position of the reference particle

on the reference orbit. Then the relative coordinates of the point F are obviously

F — Fref(s).

Let now 6', be a unit vector in the direction of 118;. Consider now the plane

perpendicular to 6,. Of all the unit vectors in this plane, let é'y be the one with the

largest ”upward” component; because fire, and hence (2', are not allowed to go straight

up, this vector is well defined. Finally choose a third vector é} as e; = 6,, x é}.

Because 6,, has maximum ”upward” component, 6,, has vanishing upward component

and hence lies in the horizontal plane.

Denote now by x the component of F— Fref(s) in the direction of (3'3, and by y the

component of 1" — 77,8):(3) in the direction of 63,. Similarly, define p3 and py to be the

momentum components in the directions é’x and é’y.

Furthermore, denote by 6 the relative difference between the total (kinetic plus



potential) energy E of the particle under consideration and the reference energy E0,

i.e. 6 = (E - E0)/E0. Finally, introduce a space-like variable I to be the time of

flight t minus the time of flight to of the reference particle, multiplied by a constant

k of dimension ”velocity”, i.e. l = k (t — to) . Then we form the vector 2 of particle

optical coordinates as

f 1" )
y

'* [2 [C(t—to)

Z = 1.2

0’ =px/p0 ( )

b=py/po  
\5=(E-Eo)/Eo)

where p0 is some previously chosen scaling momentum; a natural choice may be to

select the momentum of the reference particle at the beginning.

Note that due to the definition of Z, the reference particle itself corresponds to

Z = 0, and hence the vector 2 does indeed describe the relative motion.

The entire action of a beam physics device can now be expressed by how it ma-

nipulates the coordinates in the vector Z. In fact, usually a set of initial conditions

20 at position so uniquely determines the future evolution and hence 2 at any later

position 3, so we can define a function relating the initial conditions at so to the

conditions at 3 via

2(3) 2 M (30, s) (Z(so))

The function M (.90, s), which formally summarises the entire action of the system,

is of great importance for the description and analysis of beam physics systems. It is

often called the transfer function, the transfer map, or simply the map of the system.

Note that the transfer functions satisfy the relationship

M (81,32) 0M (30,31) 2 M (50:32):



which merely says that transfer maps of systems can be built up from the transfer

maps of the pieces.

Since M describes the motion in relative coordinates, we always have

M(6)=6

Furthermore, since by the very definition of a beam, the coordinates of Z are

”small”, M is usually only weakly nonlinear; because of this, it is often represented

by its Taylor series expansion. In the following section we will present the differential

algebraic methods which allows for the computation of the Taylor series expansion

very efficiently.

1.2.2 Differential Algebras

In this section we will provide the mathematical background of the theory of differ-

ential algebras required for the study of nonlinear particle dynamics via the Taylor

series representation of maps.

Historically, the treatment of functions in numerics has been done based on the

treatment of numbers; and as a result, virtually all classical numerical algorithms

are based on the mere evaluation of functions at specific points. As a consequence,

numerical methods for differentiation, which are so relevant for the computation of

Taylor representations of the map, are very cumbersome and prone to inaccuracies

because of cancellation of digits, and not useful in practice for our purposes.

The method of differential algebra is based on the observation that it is possible

to extract more information about a function than its mere values, specifically its

Taylor expansion. We define the operation T to be the extraction of the Taylor

coefficients of a pre—specified order n of the function. In mathematical terms, T is an



equivalence relation, and the application of T corresponds to the transition from the

function to the equivalence class comprising all those functions with identical Taylor

expansion to order n. Obviously Taylor coefficients of order n for sums and products

of functions as well as scalar products with reals can be computed from those of the

summands and factors. This means that the set of equivalence classes of functions can

be endowed with well-defined operations, leading to the so—called Truncated Power

Series Algebra [12],[13].This led to a method to extract maps to any desired order

from a computer algorithm that integrates orbits numerically. Similar to the need

for algorithms within floating point arithmetic, the development of algorithms for

functions followed, including methods to perform composition of functions, to invert

them, to solve nonlinear systems explicitly, and to introduce the treatment of common

elementary functions [6], [3].

However, very soon afterwards it became apparent [1] that this only represents

a half-way point, and one should proceed beyond mere arithmetic operations on

function spaces of addition and multiplication and consider their analytic operations

of differentiation and integration. This resulted in the recognition of the underlying

differential algebraic structure and its practical exploitation.

In passing we note that in order to avoid loss of order, in practice the derivations

have the form 8 2: h-d/dzri, where his a function with h(0) = 0. As a first consequence,

it allowed to construct integration techniques to any order that for a given accuracy

demand are substantially faster than conventional methods [3]. Subsequently, it was

realized that the differential algebraic operations are useful for a whole variety of

other questions connected to the analytic properties of the transfer map [6]. It was

possible to determine arbitrary order generating function representations of maps [7],

[3] and normal form methods [8], [9] could be performed to arbitrary order. [3] On

the practical end, based on the latter concept, there are also several improvements



regarding methods of computational differentiation [10],[11].

In order to show how this method works in practice , we first address the simplest

case of differential algebras, the structure 1D1.

The Structure 1D1

Consider the vector space R2 of ordered pairs (a0, a1), a0, a1 6 R in which an addition

and a scalar multiplication are defined in the usual way:

(00,611) + (130,61) 2 (Clo + b0,a1+ b1) (1.3)

t-(ao,a1) = (t - a0,t - a1) (1.4)

for a0, a1, b0, b1 6 R. Besides the above addition and scalar multiplication a multipli-

cation between vectors is introduced in the following way:

(ao,a1)-(b0,b1) = (0.0 ° ()0, (10 ° b1+ 01' ()0) (1.5)

for a0, (11, b0, b1 6 R. With this definition of a vector multiplication the set of ordered

pairs becomes an algebra, denoted by 1D1.

Note that the multiplication is the same one would obtain by multiplying (a0 +

a1 - 11:) and (be + b1 - :13) and keeping terms linear in x.

In the same way than in the case of complex numbers, one can identify (a0, 0) as

the real number do. Where in the complex numbers, (0,1) was a root of -1, here it

has another interesting property:

(0,1) - (0,1) = (0,0) (1.6)



which follows directly from equation (1.5). So (0,1) is a root of 0. Such a property

suggests thinking of d = (0,1) as something infinitely small, small enough that its

square vanishes. Because of this we call d = (0,1) the differential unit. The first

component of the pair (a0, a1) is called the real part, and the second component is

called the differential part.

It is easy to verify that (1,0) is a neutral element of multiplication, because

according to equation (1.5)

(1,0) - (a0,a1) = (a0,a1) - (1,0) = (ao,a1) (1.7)

It turns out that (a0, a1) has a multiplicative inverse if and only if no is nonzero;

so 1D1 is not a field. In case (10 ¢ 0 the inverse is

(a0,a1)"1=(aiO,—:—é) (1-8)

Using equation (1.5) it is easy to check that in fact ((10, a1)“1 - (amal) = (1,0).

The space 1D1 is a subspace of the field R“ introduced in Nonstandard Analysis

[8],[9]. Besides the usual real numbers, R“ contains a variety of infinitely small and

infinitely large quantities. The outstanding result of the theory of Nonstandard Anal-

ysis is that differentiation becomes an algebraic problem: a function f is differentiable

if and only if for any arbitrarily small quantity 6, the real part of the quotient

f(z+6)—f(x)

a

 (1.9)

is independent of the choice of the specific 6. Thus, given any differentiable function

f, we can compute its derivatives by just evaluating the formula for a special choice

of 6. We choose 6 = d = (0, 1) and thus obtain
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fl$+®-f@)

d

D[f(x + d) — f(x)] = D[f(:c + d)] (1.10)

WW): Rl

we)

 ]or

where R denotes the real part and D denotes the differential part. In the last step

use has been made of the fact that f (:17) has no differential part. Hence differential

algebras are useful to compute derivatives directly, without requiring an analytic

formula for the derivative and without the inaccuracies of numerical techniques.

The computation of derivatives shall be illustrated in an example using the fol-

lowing function:

 

 

1

flfl=$+l (LU)

The derivative of the function is

_1,_ — 1

Suppose we are interested in the value of the function and its derivative at x=2.

We obtain

flfl=§.flm=—— am)

Now take the definition of the function f in equation (1.11) and evaluate it at

2 + d = (2,1). One obtains:
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_ 1

— (211)+(%1_%)

_ 1

_ (31%)

= «2%
= (E,-%) (1.14)

As we can see, after the evaluation of the function the real part of the result is

just the value of the function at :1: = 2, whereas the differential part is the derivative

of the function at a: = 2.

This is exactly what was to be expected from the theory of Nonstandard Analysis.

However, for the sake of not relying on the quite advanced techniques of this relatively

new field of mathematics, we also present an elementary but less elegant proof of the

result.

By our choice of the starting vector (2,1), initially the vector contains the value

I (2) of the identity function I : a: ——> :1: in the first component and the derivative of

I'(2) = 1 in the second component.

Now assume that in an intermediate step two vectors of value and derivative

(g(2), g’(2)) and (h(2), h’(2)) have to be added. According to (1.3) one obtains (g(2)+

h(2), g’ (2) + h’ (2)) But according to the rule for the differentiation of sums, this is

just the value and derivative of the sum function (g + h) at :1: = 2.

The same holds for the multiplication: Suppose that two vectors of value and

derivatives (9(2), 9’ (2)) and (h(2),h’ (2)) have to be multiplied. Then according to

(1.5) one obtains (g(2) - 11(2), 9(2) - h’(2) + g’(2) - 11(2)). But according to the product

rule, this is just the value and derivative of the product function (g - h) at :r = 2.

The evaluation of the function f at (2,1) can now be viewed as successively
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combining two intermediate functions g and h, starting with the identity function

and finally arriving at f. At each intermediate step the derivative of the intermediate

function is automatically obtained as the differential part according to the above

reasoning.

An interesting side aspect is that with the search for a multiplicative inverse in

equation (1.8) one has derived a rule to differentiate the function f (:r) = 1/:r without

explicitly using calculus rules.

After discussing the algebra 1D1 and its virtues for the computation of derivatives,

we now address the most general differential algebra, the structure “D”. It will

eventually allow us to arithmetically compute partial derivatives of functions of 12

variables through order n.

The Structure an

We define N(71,12) to be the number of monomials in 12 variables through order n.

We will show that N(n, v) = %)—' = C(n + 11,12) where C(z',j) is the familiar bino-

mial coefficient. First note that the number of monomials with exact order n equals

N(71,1) — 1). This is true because each monomial of exact order n can be written

as a monomial with one variable less times the last variable to such a power that

the total power equals 71. Thus we have N(n,v) = N(n — 1,12) + N(n,v — 1): the

number of monomials in 12 variables through order n equals the number of monomials

of one order less plus the ones of exact order n. This recursive relation is satisfied by

C(n + 11,12). Since also obviously C(l + 1,1) = 2 = N(1,1), the formula follows by

induction.

Now assume that all these N monomials are arranged in a certain manner order by

order. For each monomial M we call 1M the position of M according to the ordering.

Conversely, with M1 we denote the Ith monomial of the ordering. Finally, for an I
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with M1 = 11:? ~... 45:," we define F, 2 2'1! - . M.

We now define an addition, a scalar multiplication and a vector multiplication on

R” in the following way:

(0.1,...,aN)+(b1,....bN) = (0.1+ b1, ..., (IN + bN) (1.15)

t' (0.1,...,0.N) = (t-a1,...,t-aN) (1.16)

((1.1, ...,CLN) ' (b1, ....bN) '2 (61,...,CN) (1.17)

where the coefficients 0,- are defined as follows:

 (1.18)

To help clarify these definitions, let us look at the case of two variables and second

order. In this case, we have n = 2 and v 2: 2. There are N 2 C(2 + 2,2) = 6

monomials in two variables, namely

1, :12, y, 23:6, my, 111/ (1-19)

As an example, using the ordering in (1.19), we have Izy = 5 and M3 = y. Using

the ordering in (1.19), we obtain for CI through as in equation (1.18):

C1 = al-bl

C2 = al-b2+a2-b1
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al-b3+a3-blC3

C4 = 2-(a1~b4/2+a2-b2+a4-b1/2)

C5 = a1°b5+a2-b3+a3-b2+a5-b1

66 = 2'(0.1°b6/2+a3°b3+0.6'b1/2) (1.20)

On "D” we introduce a third operation 8,:

8,,(a1, ...,aN) = (01,...,cN) (1.21)

with

Ci: { 0 if M,- has ordern (122)

WWW) else

So 6,, moves the derivatives around in the vector. Suppose a vector contains the

derivatives of the function f, then applying 8,, to it one obtains the derivatives of

5655 through one order less. With this third operation, "DU becomes a Differential

Algebra as defined in [12].

While in 1D1, d = (0,1) was an infinitely small quantity, here we have a whole

variety of infinitely small quantities that have the property that high enough powers

of them vanish. We give special names to the ones in components I belonging to

first order monomials, denoting them by dMI. In the example of 2D2, we have

dx = (0, 1,0, 0,0,0) and dy = (0, 0,1,0, 0, 0). It then follows from the theory of

Nonstandard Analysis that instead of equation (1.10) we obtain

f(:1:+d:1:,y+dy) =

(191 5’1 62f 52f 32% )
’6x’6y’632’6z6y’0y2 ,y

 (1.23)
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In the general case of v variables and order n, after evaluating f in the differential

algebra one obtains:

ai1+i2+...+ivf

 

. . . = CI 1' 1’ (1.24)

8:12:11 83:32 . . .8333! (.11......,,v)

where I x11. -:1:‘”) is the index of the monomial (£13211 - - 1:2”), as defined in the
1 ... v

beginning of the section.

Important Functions on Differential Algebras

In this section we will generalise standard functions like exponentials, logarithmic

and trigonometric function to differential algebra. As we will see below, virtually all

functions existing on a computer can be generalised in a straightforward way.

We start our discussion by noting that for any differential algebra vector of the

form (0, a1, ..., (IN) E nDv, i.e. with a zero in the component belonging to the zeroth

order monomial, we have the following property:

(0,111, ...,aN)‘ = (0,0, ....,0) for z‘ > n (1.25)

which follows directly from the definition of the multiplication in “D” defined in

equation (1.17).

Let us begin our discussion of special functions with the exponential function

exp(:r). Assume we have to compute the exponential of a differential algebra vector

that has already been created by previous operations. First we note that the func-

tional equation exp(:1: + y) = exp(a:) . exp(y) also holds in Nonstandard Analysis. As

we will see, this facilitates the computation of the exponential considerably.

exp[(a0,a1,a2,...,aN)] = exp(a0)~exp[(0,a1,a2,...,aN)]



 

 

i=0 2'

n 01 a 1'“, i

: exp(a0)-Z( “1 a; a”) (1.26)

i=0 '

In the last step use has been made of equation (1.25) which entails that the sum

has to be taken only through order n and thus allows the computation of the root

in finitely many steps. Hence the evaluation of the real number exponential exp(a0)

which internally on a computer requires a power series summation and hence cannot

be done accurately, is more subtle then the rest of the operations in differential

algebra.

A logarithm of a differential algebra vector exists if and only if an > 0. In this

case one obtains

a a

log[(a0,a1,a2,...,aN)] = log[a0- (1+(0,a—-1,—2-,...—N

0.0 0.0 (1.0

00.1 (12 (IN -

= (log(a0)0 .0 +1)"+11.—,—,...,—z

) :(—ano 00 00)

n

- 1 0,1 02 (IN -

= 1 ,0,...,0 —1'+1— 0,—,——,...,—'(og<a.> Hg ) z.( a. a0 a0)

(1.27)

Again use has been made of the fundamental property of the logarithm log(m-y) =

log(:1:) + log(y) which transforms directly into Nonstandard Analysis and leads to

simplifications by virtue of equation (1.25).

As the last example, we will derive a formula for the root function. Even though

there is a direct method to compute roots by solving a set of linear equations for the

coefficients of the root, we present here a technique based on power series following
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an approach similar to the exponential and logarithm. The root has the following

power series expansion:

 

V 1+ ”3 : :81)” '23. 1711.?(Jag) f “'28)

Using this formula and the definitions of addition and multiplication (1.15), (1.17),

one directly obtains for the square root of a differential algebra vector:

 

\/((C110, 01, 0.2, (IN)

= +(0_1_2_Ha_Nr-1+(\/ ,)
€10

 

= fig.:(_::1°23o-uu(2i—j3) .(0__a1 11—2 ....fli)‘
 

 

4...(2Z) 0.0 (1.0 0.0

--3 ...-(21—3) a1 a2 aN -
=

. — _ 000 1 1'2\F 2(— 2 4 (2,.) (.a0.a0, .ao) ( 9)

Using the addition theorems for sine and cosine, one obtains formulas with finite

sums in a quite similar way; in general, suppose a function f has an addition theorem

of the form

f(a + b) = 90(0) (1'30)

and ga(b) can be written in a power series, then by the same reasoning its differential

algebraic extension is computable exactly in only finitely many steps. In practice it

turns out that this can be done for all commonly supported functions in a FORTRAN

computer environment.
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1.2.3 Computation of Transfer Maps

Differential Algebras can be used very efliciently to compute the transfer map of

particle optical systems in its Taylor series representation.

To illustrate this, let us start the discussion with a very simple example, the

midplane motion in a 90° homogenous bending magnet. Let :17,- and a,- = sin(a,~)

denote the initial distance and scaled transverse momentum relative to the reference

trajectory. Then we are interested in the values :17, and a, = sin(ozf). Since the

trajectories in the magnet are circles, we can readily infer:

A = R sin(oz,-) = R a,-

B = R(1—cos(a.-))+:1:,°=R(l—y/l—a?)+:1:,-

. B

of = s1n(af)= -E

:r, = A—R (1—cos(af))=A—R (1— (/1—a}) (1.31)

These equations allow the computation of the final coordinates :1:ha, in terms

of the initial coordinates 12,, a,. However, taking these equations and performing all

operations in differential algebra allows us to obtain all derivatives of 51:}, a, with

respect to 33,-, a,. These so obtained derivatives, evaluated at x, = 0, a,- = 0, are then

the expansion coefficients of the map. For the sake of clarity, let us explicitly show

how :13, and of are computed.

Using the ordering in (1.19) and identifying the variable a with y, we obtain using

the arithmetic defined in equations (1.15), (1.16) and (1.17)

:r,- = (0,1,0,0,0,0)
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a,- = (0,0,1,0,0,0)

A = (0,0,R,0,0,0)

B = (0,1,0,0,0,R)

1

(If 2 (0,—§,0,0,0,—1)

1

z, = (0,0,R,——I§,0,0) (1.32)

As a quick check, the fact that the second component of :13, is zero implies that

g3. : 0 and hence (x,x) = 0 which is a well known property of 90° bends.

In case an additional particle optical element is to follow this bending magnet,

one does not have to start all over evaluating this new element at :12,- = (0, 1, 0, 0, 0,0),

a,- = (0,0, 1,0, 0,0), but one can start already with 51:, and af of equation (1.32).

This way one can save the usually quite involved concatenation process and increase

performance significantly.

In the general case in which no closed solution of the problem exists, there is

still a way to computationally relate the final to the initial coordinates, by numer-

ical integration of the equations of motion. In this case, the final coordinates are

still computed from the initial coordinates using standard arithmetic and functions,

however the relations are more complex than in the case of the homogeneous sector.

Now performing all these operations in differential algebra automatically gives all

desired derivatives of the transfer function, regardless of the form of the equations

of motion. Still there are more elegant DA-based schemes for numerical integration,

which are described in [3].
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1.2.4 Time Shifts and Resonance Strengths

We study the Poincare section of an accelerator lattice. In the linear approximation

the particles move on ellipses, called invariant ellipses in this section. This is shown

for example in [5]. The average angles in the :1: —- a and y — b plane by which the

particles rotate during one revolution around the accelerator ring are called the tunes

of the system. They usually depend on the distance of the particle from the reference

particle in :1: — a respectively y — b plane, which is called the amplitude, as well as on

parameters like the chromaticity. The tunes are of prime importance for the stability

analysis of a lattice, as a low order resonance between them entails instability of the

particles. The tune shifts with amplitude and parameters are an outcome of the DA

Normal Form algorithm described in [3], as well as the resonance strengths, which

tell how sensitive the system is to a certain resonance. Given the emittance of the

beam we can use the nonlinear tune shifts to calculate the tune foot print. This is

the region in the two dimensional tune space which is occupied by the beam. There

should be no low order resonances with high resonance strength in the tune foot print.

1.2.5 Fields and Potentials

As a significant part of this thesis will be devoted to the calculation of magnetic fields

an introduction to this topic, especially with respect to the terms used later on , is

in order. We will restrict ourself to systems with straight reference orbit, because the

quadrupoles with which we will deal are falling in this class. Many elements with a

straight reference orbit possess a certain rotational symmetry around the axis of the

reference orbit, and it is most advantageous to describe the potential in cylindrical

coordinates with a z-axis that coincides with the reference orbit. We first begin by

expanding the r and 0‘) components of the potential in Taylor and Fourier series,
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respectively; the dependence on the cylindrical z coordinate, which here coincides

with the particle optical coordinate s, is not expanded. So we have

hi)f: M,” )COS ([05 + 0!:[)7‘k (1.33)

(:0

In cylindrical coordinates, the Laplacian has the form

AV:

2 2
13(7‘3V) 18V 8__8V:0; (1.34)

1' Br 81“ 1‘2 8052

By inserting the Fourier-Taylor expansion of the potential, we obtain the following

recursion relation

Ml(2n)(8)

Ml+2n,z(8) = n (1.35)

H (l2 — (1+ 211)?)

v=l

 

The Mu(s) are free parameters as are the 911,0 The M1,) that cannot be obtained

by the above recursion are zero. The number I is called the multipole order, as it

describes how many oscillations the field will experience in one 27r sweep of 05. The free

term M1,)(s) is called the multipole strength, and the term 01,, is called the multipole

phase. Apparently, frequency 1 and radial power k are coupled : The lowest order in

r that appears is l, and if the multipole strength is s-dependent, the powers I + 2,

l + 4, will also appear. These terms that are induced by the s—dependence of the

multipole strength M1,,(s) via equation (1.35) are called pseudo-multipoles. For a

multipole of order I, the potential has a total of 21 maxima and minima, and is called

a 2l-pole. Often Latin names are used for the 21 poles, and we have the following

table: For a quadrupole the potential is quadratic, so the resulting field B is linear.

Indeed, the quadrupole is the only s-independent element that leads to linear motion

similar to that in glass optics, and thus has great importance. In practice, of course,

s-dependence is unavoidable: the field of any particle optical element has to begin and

end somewhere, and it usually does this by rising and falling gently with s, entailing

s-dependence. This actually entails a crux of particle optics: even the quadrupoles,
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Leading Term in V Name

M0,0(3) COS (00,0)

M1,1(s) cos (05 + 01,1)1' Dipole

M2,2(s) cos (20‘) + 02,2) 7'2 Quadrupole

M3,3(s) cos (3(1) + 03,3)1‘3 Sextupole

( ) ( )1”4

( ) ( )7‘5

 

MM 3 cos 4¢+04,4 Octupole

M5,5 3 cos 505 + 05,5 Decapolem
t
h
I
—
‘
O
N

     

the ”linear” elements, have nonlinear effects at their edges, requiring higher order

correction. The region in which the field falls off from its value in the magnet body

to zero is called the fringe field region. Chapter 4 will be devoted to studying the

eflect of fringe fields on the beam dynamics.



Chapter 2

The AT to COSY Converter

In order to make use of the capabilities of COSY INFINITY for dynamics studies in

the LHC we first had to produce the lattice description in the COSY language. The

LHC lattice is available from [19] in the optics output format of MAD version 8 [20].

This output is created by MAD using the OPTICS command giving a flat sequence

of elements that can be translated to COSY easily. For this purpose we wrote the

program given in figure 2. The output created by the OPTICS command is also

called AT output, because it explicitly contains the position of each element. We will

therefor refer to the conversion tool as the AT to COSY Converter . It is important

to note the limitations of the program. First it is only designed to translate particle

optical elements. This means that it is not possible to process a MAD-program that

performs an analysis task, like the computation of tunes, using AT to COSY and

obtain a program that does the same in COSY. Secondly we restricted the program

to those elements actually occuring in the LHC lattice version 5.0. These are Drifts,

Quadrupoles, Bends, Sextupoles. RF Cavities, Octupoles, Markers and Multipoles

are converted to drifts of respective length. This limitation will be remedied by the

SXF to COSY Converter described in the next chapter.
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ipoles are

t

t

l

S

* Michael Lindemann

' 11/24/97

w

* The Program takes the optics output cre

ated by MAD

* and converts it to COSY Input.

t

' Translated are drifts, quadrupoles, ben

ds, sextupoles.

i
RfCavities, Octupoles, Markers and MUlt

converted to drifts of according length

Program nacoqy

character text(7)‘24

double precision zahll?)

double precision angle,Pi

character zeile'200

integer a,b,n,status,max

Pi=3.141592653589793

max=10000

open (UNIT=10 , FILE: ' double2.da1' ,

IOSTATtstatus,STATUS='OLD‘,ERR=1000

open (UNIT=11 , file: 'double2_f77.fox ' , for

m: ' fonnatted' ,

I

t

10

20

$ STATUS: ' UNKNOWN ' )

wri te (11 , ’(A)') 'PROCEDURE RING; '

READI10,'(A)’) zeile

if Izeile(1:1).NE.")

n=0

do while (n<max)

n=n+1

a=l

do 60 j=1.7.1

DO While (zeile(a:a).EQ.' '

goto 10

.AND. IC

HAR(zeile(b:b)) .NE. 13)

40 a=a+1

if (zeile(a:a).EQ." .AND. ICHAR(ze

ilela:a)) .NE. 13) goto 40

b=a

' DO While (zeile(b:b) .NE. ' ' .AND.

ICHAR(zeile(b:b)) .NE. 13)

50 b=b+1

if (zeile(b:b) .NE. " .AND. ICHAR(

zeile(b:bll .NE. 13) goto 50

text(j)=zeile(a:b)

a=b

60 continue

! Conversion to float

do 70 j=3,7,1

read (text(j).'(62¢l6)') zah1(j)

70 continue

if (textll) . EQ. '"MARKER"') then

write (11, '(ALAIO,A3.A4.¢24.16,A)') ' {' ,

text(2),’ ]', 'dl',0,’$

else

if (text(1) .EQ. '"QUADRUPOLE"') then

write (11, '(A2,AIO.A3.A4.A8.¢24.l6.A)') ' ['

,textlZ),'}', 'nqk'

,text(4),zah1(6)/zah1(4).’005$

else

if (textll) .EQ. '"SEXTUPOLE”') then

write (11, '(A2.AIO.A3,A4.A8.e24.l6,A)' ) ' l ’

,text(2),' )', 'nmk'

$ ,textl4),zah1(7)/zah1(4)/2,’0057

else

if (text(1).EQ.'”OCTUPOLE"') then

write (11,'(A40.AIO,A4)') ' [OCTUPOLEsct

Iodfifl',text(2),')'

wri ca (11 , ’(A2,AIO.A3.A4.c24.l6.A) ' l ' l ' .

dil'

$

  

text(2).'l‘.

$

text(2).'l'.

S

(2). zahllS). 'l

1

ngle/2,‘

$

2),zahl(5),’)'

i

Id] 1

.zahl(4).':’

else

if (text(1) .EQ. '"MULTIPOLE"') then

write (11, '(A40.AIO.A4)') '{MULTIPOLEse

itodrifr '.text(2) .' 1'

write (11, '(AZAIO.A3,A4.¢24.I6.A)') ' l',

textIZ).'l‘. ’dl'

$ .zahl(4).':'

else

if (text(1) .EQ. '"RFCAVITY")

write (11, '(A40.Al0.A4)')

then

' l RFCAVITY sell

write (11, '(A2.AIO.A3.A4.624.16.A)') ' l' .

dl '

odrift’,text(2),' } '

textIZ),'l‘ '

$ , zahl (4) . ';'

else

if (text(1) .EQ. '"DRIFT"') then

wri ted1 (11 , ' (A2.A10.A3.A4,e24.16.A) ' )

. 23111 (4) . ':'

else

if (textll) .EQ. '“RBEND”') then

if (zah1(5).GT.O) then

angle=zahl(5)/Pi*180

write (11 , ’(A2.Al0,e24.l6.A3)') ' l' , text

.{1'

write (11, ’(e24.16)’) Pi

write (11,'(A4.e24.l6.e24.16.A6)') '

,zahl(4),angle,'005'

write (11, ’(e24.l6,A4.e24.l6,A5)') a

o l

,angle/2,'0;'

else

angle=-zah1(5)/Pi*180

write (11, '(A)') ' lnegativebend I]

write (11. ’(A2.A10.e24.l6.A3)') ' [' ,textl

write (11,’(924.16)’) Pi

write (11,’(A)') 'cbr

wri te (11 , ’(A4,e24.16.e24.l6.A6) ' )

1d“ I

,zahl(4),angle,'005'

wri te (1 1 , ’ (e24.16.A4.c24.l6,A5) ' )

angle/2

$ .‘0',angle/2,'O;'

write (11, '(A)') 'cb;'

endif

else

write (11, '(A30,A10.Al)') ' (warning

:unknown element ' ,

$ textIl),'}'

print " . ’ warning : unknown clement!‘ .

text(1)

max=max+1

end if

end if

end if

end if

end if

end if

end if

end if

read (10,'(A)', IOSTAT=status,end=1000

) zeile

if (n.LT.max) goto 20

1000 print '

if (status.EQ.-1) then

print " , ' complete file converted ‘

endif

print *, max

write(11,'(A)’)

close (10)

close (11)

end

' cndprocedure; ‘

 
 

Figure 2.1: The AT to COSY converter

 



Chapter 3

The SXF to COSY Converter

3. 1 Introduction

At the “Berkeley National Laboratory Workshop on the Unified Accelerator Libraries

and US-LHC software” a new machine file format was proposed [30]. This format is

meant to be a general lattice description language and is intended to facilitate the

c00peration between different groups and the comparison of results obtained with

different codes. The language was named Standard Exchange Format and abbreviated

as SXF. The language specifications were developed by F.Pilat et al.. The SXF to

COSY converter can be used online at our web page [18] where the current SXF

specifications are also available.

3.2 The Converter

3.2.1 General Features

The SXF to COSY Converter is written in PERL. The source code is given in Ap-

pendix A. As the SXF language is still evolving, it is very likely that the converter

will have to be adapted to future changes of the language standard. This made it

very important to optimise the code for ease of reading and modifying.

25
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3.2.2 Description

In order to facilitate the understanding and changing of the program in the future we

give a brief description of how the translation is done. We will especially stress the

points where differences between COSY and SXF make the translation less transpar-

cut.

The AT attribute

The AT attribute in SXF gives the position of the middle of the element. As COSY

does not allow an AT command this is emulated by drifts, keeping in mind that the

drift should only extend to the beginning of the element but not to the middle of it.

The bends

There are two bends allowed in SXF, the rectangular bend RBEND and the sector

bend SBEND. Because they are in most cases equivalent the use of rectangular bends

is deprecated. As described in the MAD-Manual [20] and in the MAD Physics Manual

[21] these two elements only differ by the local reference system in which the entrance

and exit angles are measured. This results in the addition of half the bending angle

to entrance and exit angles for the rectangular bend. By doing this both rectangular

and sector bends can be translated to the COSY command DIL. The direction of

the bend is determined by the sign of the bending angles. For positive angles the

direction is clockwise. The bending direction is changed for negative angles using

COSY’s CB command.

Another important point concerning the rectangular bends is that there are two

ways of specifying their length. One can either use I, the end to end length of the

element, or arc, the length along the circular orbit. arc and l are redundant since
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they satisfy

kl [0] /2

sin(kl[0]/2) (3'1)

arc=l

where kl[0] is the bending angle. If I is given it is converted to arc using this formula.

If I and arc are given, I is ignored.

Multipoles

SXF allows dipoles, quadrupoles, sextupoles and octupoles as well as a general mul-

tipole. Each of these elements can contain a list of multipole strengths with not only

the strength corresponding to the name of the element nonzero. This means that

one might even specify a quadrupole by calling the element dipole in SXF with zero

dipole strength and nonzero quadrupole strength. In this sense the element specifier

is redundant (and the SXF to COSY converter translates all multipole elements to

a general multipole in COSY. The information given in the element specifier is pre-

served as a comment. Following the convention that dipoles are usually described as

bends, a dipole component in multipoles is not supported at this point. If a dipole is

specified by using a multipole an error message is issued.



Chapter 4

Beam Dynamics Studies

4. 1 Introduction

Accelerator lattices are usually described by the position, length and field strength

in the main body of their elements. The field of the magnets is considered to change

from zero to the value in the main field at the magnet entrance and drop again to

zero at the magnet exit. Although this approximation is widely used in beam physics

it is very unrealistic. Using COSY INFINITY it is possible to take into account the

effect of the exact shape of the magnetic field at the ends of the magnet. To do this

the magnet is split into a main section in which the field is independent of the particle

optical coordinate s, and an s-dependent element representing the fringe field. The

fringe field map, which has finite length, is composed with two negative drifts, to

produce a zero-length insertion [14].

28
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4.2 Magnetic Field Data

4.2.1 Introduction

We have seen in section 1.2.5 that in the curl and divergence free region the most

general form of the potential in cylindrical coordinates can be written as

 

V = Z Z Mk,((8) (208(105 + 0k,()1'k (4.1)

k=0 [=0

with

Ma") S

M..2.,1(s) = , ‘1‘ ( ) (4.2)
H (l2 — (l + 211)?)

11:1

The Ml,1(s) are free parameters as are the 01,). In the magnetic case 91.1 = —7r/2 is

chosen by convention. The Mk) that cannot be obtained by the above recursion are

zero. For ease of notation we define

Bz(8) = Ml,z(S) COS(61’()

141(8) 1‘ M1’1(8)Sln(01,1) (4.3)

Using these equations we can rewrite 4.1 as

B" 8(4)

V = sin(2¢)r2(Bg(s) + #653273 + %r4 + . . .)

A3(8) 2 Ag”
 

 

 

— cos(2¢)r2(A2(s) + 7' + 77A + . . .)

311(3) 3(4)

+ sin(6¢)'r6(BG(s) + 6 r2 + jS—r" + . . .)

A"(S) 24(4)

— cos(6¢)r6(A6(s) + 6 r2 + i1‘4 + . . .)

c of

BM 8(4)

+ sin(10¢)r1°(B10(s) + —10—('flr2 + —leO—T4 + . . .)

A” s A“)
——10()r2+——10r4+...)+...— cos(10¢)r1°(A10(s) + f
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where the coefficients (1,0,. . . , f can be calculated from 4.2. So we can calculate the

components of the magnetic field

av

31" ‘5;

II , (4)

282(5)? + 3—B;r4 + . . .) - —2 sin(2¢))r(Bg(s) +

n A(4)

Mr2+3—;—r4+...)+...+2 cos(2¢)r(A2(s) +

1 6V

B¢'- ‘rst

———B§I(S)r2 + gig?“4 + . . .)

a

- 2cos(2¢)r(Bo(s) + b

(4)

£213)-152+Air“+...)+...-—2 sin(2¢)r(A2(s) + 0

G. Sabbi defines the quantities 6,, in [23]. In the notation introduced above 62 and 66

are given by

 

 

__ B” 8(4)(S) 1

b = B 2—2— 2 —2—— 42(3) ( 2(8) + a 1" +3 b 'r + )B2(So)

— " B(4)(s) 1 1‘
_ _6 2 __6_ 4 __ 4

b0(8) — (380(8) + 4 C 7' + 5 d T . . . 82(30) 1‘0) (4.4)

where so is chosen sufficiently inside the magnet, such that the derivatives of Bn(s)

with respect to s vanish. Taking a look at the definition of B,, in (4.3) reveals that

62 can be written as

 

II M(4)(5) 1

22 2 22 4

’r +3—’—r +...

b )M2,2(S0)

 52(8) = (M2,2(3)+2
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M" M“)

6’6 r2 + 5———6’6(3)1'4 + 1 (1)4 (4'5)
6(8) ( 6,6(5) C

d
M23090) 70

4.2.2 Fitting

We model M2,2(s) such that equation (4.5) is approximately satisfied for the given

radii r = 5, 10,20, 30 mm. In order to calculate 62 from M23 via (4.5) we calculate

the out-of—plane expansion of the field by the recursion relation (4.2). This is done

in COSY INFINITY using the differential algebraic approach. As the model class we

choose Enge functions with 6 parameters namely

1

1+ exp (a1 + 112(5) + 113(3)2 + + a6(§)5)

 

M2,2(S) = (4.6)

where s is the Cartesian distance to the field boundary. The quantity d is the full

aperture, respectively twice the radius, of the quadrupole. For the fitting procedure

we use the nonlinear optimisers implemented in COSY INFINITY. It has proven

useful to obtain the initial values for the Enge coefficients by calculating coefficients

such that the resulting Enge function passes exactly through six data points. To do

this we calculate the solution of a system of six linear equations.

In the optimisation process we shift M2,2(s) such that the effective field boundary

coincides with the origin. This means we have to satisfy the equation

0 s

f 1— M230) ds = f ’ Mme) 113 (4.7)
3,- 0

where s,- is sufficiently inside the magnet, such that M2,2(s,-) % 1, and s, is suffi-

ciently outside the magnet, such that M2,2(sf) a: 0 .

In order to access the quality of the fit we compare in figure 4.1 the B, component

of the field in the return end of the magnet as calculated by COSY with the 62 as
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calculated by ROXIE for different radii. The same comparison is given for the lead

end in figure 4.2. This comparison is valid , because the field generated by the M2,2(s)

via equation (4.2) is a pure quadrupole field. In the figures 4.1 and 4.2 the ROXIE

values are given by the line while the result of the COSY calculation is given by dots.

In each case the origin of the z-axis is chosen as defined in [29]. The z-axis is directed

outwards from the magnet body. The iron yoke starts at z = -—15 cm for the lead

end, at z = —5 cm for the return end. The vertical axis gives the magnetic field in

units of 104/62, where 62 is the quadrupole strength in the main body at the given

radius. The plots show clearly that for the region up to r = 20 mm the fitting agrees

very well with the simulated measurements. This is reassuring because the beam

stays within approximately 1' = 17 mm . On the other hand it is obvious from the

plot for r = 30 mm that this method does not work reliably any more for larger radii,

especially because the rather peculiar shape of the fringe field at r = 30 can not be

modelled accurately by an Enge function.

Nevertheless there is a way of calculating the real multipole content of the field

more accurately using the differential algebraic approach which will be described in

chapter 5.

4.3 Lattice Description

In our analysis we use the LHC lattice model Version 5.0, which is available from [19].

We used the AT to COSY converter to translate the lattice description given in the

@-output format of MAD 8.0 to COSY language.

In the present study the ring is subdivided in three regions, the two inner triplets

left and right of the interaction point 5, for which the detailed field data described

above is available, and the rest of the ring. The layout of the triplets, which are mirror-
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Figure 4.1: Comparison of the quadrupole component of the field in the return end

as computed by COSY and ROXIE at different radii. From top left to bottom right:

r=5mm,r=10mm,r=20mmandr=30mm.
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Figure 4.2: Comparison of the quadrupole component of the field in the lead end as

computed by COSY and ROXIE at different radii. From top left to bottom right:

=5mm,r=10mm,r=20mmandr=30mm.
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symmetric with respect to the interaction point, is shown in figure 4.3. The High

Gradient Quadrupoles are denoted by Q. The elements between them are multipole

correctors. For details about the LHC naming convention refer to [22].

We study the seventh order map for the triplets, with and without fringe fields,

while the rest of the ring is treated in its linear approximation. Using this approach

we can study the nonlinear effects of the fringe fields in the triplets, which is the

most critical part of the lattice, as explained earlier. There are no main field errors

considered.

<—————— towards the IP

   

 

          

Q1 Q2A Q2B Q3 DI
/

- :fll I I I-

'\

BPM beadend MCBX bl/nl MCQS 213 MCBX IIl/hl /

Lead end

MCDD hh MCDDS .10 MCDD bl»

Figure 4.3: Layout of the left low-[3 triplet.

4.4 Results

4.4.1 Tune Shifts

We computed the amplitude dependent tune shifts with and without fringe fields.

The result is given in table 4.1 for the :1: — a plane and in table 4.2 for the y — b plane.
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The tables show two effects. First, the nonlinear tune shifts increase considerably.

Secondly, the center tune decreases by 6 . 10'3. This can be corrected using the trim

quadrupoles in the LHC lattice. But even after refitting the center tune to its original

value, the nonlinear tune shifts are considerably bigger with fringe fields than without

fringe fields. In fact they are still of the same order of magnitude as without refitting

 

 

     

the tune.

without fringe fields with fringe fields order exponents

original center tune refitted

.310000 .303921 .310000 0 0 0 0 0

58.5018 592.429 610.796 2 2 0 0 0

20.45303 873.057 902.598 2 0 0 0 2

8352.403 1889188 2191916 4 4 0 0 0

-3360.344 -13279249 —13536156 4 2 0 2 0

9216.0682 11570624 12740611 4 0 0 4 0

13692934 —399181479286 —422995493944 6 6 0 0 0

—51336671 88048290859 96863534946 6 4 0 2 0

124626604 -1035625378625 -1159771282208 6 2 0 4 0

-15542851 1394274127638 1515548018372 6 0 0 6 0

 

Table 4.1: Tune Shifts in the :1: -— a plane with and without fringe fields.

 

 

    

without fringe fields with fringe fields order exponents

original center tune refitted

.320000 .313929 .320000 0 0 0 0 0

20.4538 873.058 902.600 2 2 0 0 0

58.5018 589.143 610.797 2 0 0 0 2

-1680.1 -7496999 —7667610 4 4 0 0 0

18432.1 24842663 272712816 4 2 0 2 0

11342.9 2181737 2516249 4 0 0 4 0

-17112223 1289593405561 1373994850952 6 6 0 0 0

124626604 -11277831999539 4259605227516 6 4 0 2 0

-46628554 4712527272105 5749819744288 6 2 0 4 0

13545598 —399572595609 -427111891097 6 0 0 6 0 
 

Table 4.2: Tune shifts in the y — b plane with and without fringe fields.
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The tune footprints shown in figure 4.4 clearly demonstrate the significance of the

fringe field effects.

Compared to the previous study done by F. Méot et. al. [26], the center tune

change shown here is about 20 times larger. Yet we notice the fact that the two

studies use different sets of Enge coeflicients. Specifically, in the Méot study the

detailed shape of the fringe field was not considered but assumed to be similar to

that of other standard quadrupoles. In reality, however, the end fields used here look

much worse.

As the interaction region 1 has the same design as the interaction region 5, one

can apply the fringe fields to the triplets in the interaction region 1 as well. The

result is that as expected the center tune shift grows by a factor of two, while the

nonlinear tune shifts are still of the same order of magnitude. In the tables 4.3 and

4.4 we compare the tune shifts for the :1: —- a and y — b plane respectively.

 

 

     

without fringe fields with fringe fields order exponents

in IR 5 in IR5 and IR1

.310000 .303921 .297997 0 0 0 0 0

58.5018 592.429 1127.460 2 2 0 0 0

20.45303 873.057 1721.358 2 0 0 0 2

8352.403 1889188 6319767 4 4 0 0 0

-3360.344 -13279249 -48466669 4 2 0 2 0

9216.0682 11570624 32720546 4 0 0 4 0

13692934 -399181479286 -624020378914 6 6 0 0 0

-51336671 88048290859 4464097212016 6 4 0 2 0

124626604 -1035625378625 -8236728752799 6 2 0 4 0

-15542851 1394274127638 3983026534205 6 0 0 6 0

 

Table 4.3: Tune shifts in the :1: — a plane with fringe fields in IR 5 and in both IR1

and IR5
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Figure 4.4: Tune footprint without fringe fields (top) and with fringe fields (bottom).
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without fringe fields with fringe fields order exponents

in IR 5 in IR5 and IR1

.320000 .313929 .307799 0 0 0 0 0

20.4538 873.058 1721.360 2 2 0 0 0

58.5018 589.143 1203.404 2 0 0 0 2

—1680.1 -7496999 -25882333 4 4 0 0 0

18432.1 24842663 68831273 4 2 0 2 0

11342.9 2181737 1386369 4 0 0 4 0

-17112223 1289593405561 3872032968262 6 6 0 0 0

124626604 -11277831999539 -8509355582662 6 4 0 2 0

46628554 4712527272105 4516085446489 6 2 0 4 0

13545598 -399572595609 -791311504674 6 0 0 6 0       
Table 4.4: Tune shifts in the y — b plane with fringe fields in IR 5 and in both IR1

and IR5

4.4.2 Resonance Analysis

In order to further investigate the changes in the dynamical behavior of the system we

study the resonance strength. The detailed result is given in the tables 4.5 and 4.6.

Horn table 4.5 one can see the significant increase in the resonance strengths when we

take into account the effect of fringe fields. From table 4.6 one can see that refitting

the tune to its nominal value does not affect the resonances very much. To compare

the resonance strengths with and without fringe field, we calculate the logarithm of

the average absolute value of the resonance strengths for every order. The result is

given in figure 4.5. It shows clearly that the resonance strength increases by at least

one order of magnitude on average, and even more for higher orders.
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Resonance Strength

without fringe fields with fringe fields order exponents
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Table 4.5: Resonance strengths with and without fringe fields.
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Resonance Strength

without refitting with refitting order exponents
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Table 4.6: Resonance strengths with and without refitting the linear tune.
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Figure 4.5: Average logarithmic resonance strength for orders 3 to 7. The values are

given by squares for the case without fringe fields and circles for the case with fringe

fields.



Chapter 5

Differential Algebraic Field

Calculation

5. 1 Introduction

So far the method of treating the fringe fields has one important shortcoming. The

real multipoles, which we have to know for for beam dynamics studies as they permit

the calculation of the field at any given point, have to be extracted from the available

data, which is in fact a sum of real and pseudo multipoles. This extraction can not

be achieved analytically but has to be done by fitting. This problem is remedied

by calculating the magnetic field in COSY using the DA method, which allows an

analytical scheme for the extraction of multipoles that is exact to machine precision.

5.2 Magnetic Field Calculation by ROXIE

5.2.1 Introduction

The magnetic field calculations for the LHC High Gradient Quadrupoles presented

in [23] and [24] are performed by ROXIE [25]. ROXIE uses a set of line currents

from the magnet model, specified by their starting and ending point in 3 dimensions

and the current they carry. The magnet is subdivided into two sections, the straight
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section and the end field. The end of the straight section is given by the end of the

iron yoke. This is also the origin of the coordinate system used in ROXIE. The end

region extends from the origin to positive 2 values.

5.2.2 Image Currents

The high gradient quadrupole magnets are surrounded by an iron yoke with a cylin-

drical inner bore. It serves two purposes: the fringe field outside the coil is greatly

reduced and the field on the beam axis is enhanced by 10-20 percent.

The influence of the iron yoke is analysed using the method of image currents

assuming that the iron is not saturated and the permeability 11 is uniform. Then for

a current I inside a hollow iron cylinder of radius R the effect of the iron on the inner

field is equivalent to that of an image current II, located at the radius r, :

I [1. —' 1

. R2

The current I' is parallel to I. It thus increases the inner field.

It is important to notice that ROXIE calculates image currents only for the

straight section.

5.3 Magnetic Field Calculation in COSY

5.3.1 Introduction

G. Sabbi has implemented an output format in ROXIE that writes the positions and

strength of all line currents, including the straight, image and end currents to a file.

We use this information to calculate the magnetic field in COSY.
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5.3.2 Line Currents

From the Biot-Savart law we can calculate the magnetic field contribution of an

infinitesimally short line current

6le

dB: 1

#0 47rr3

 (5.3)

In order to calculate the magnetic field of a line current of finite length we have to

integrate along the line, which is for that purpose parametrised by

r6) = r. + 30?. — F.) (5.4)

where r, and r,- are giving start and end of the line current in three dimensions. Then

the magnetic field of a line current is given by

B = kl / 111(3) X,F(S)ds (5.5) 

using the definition k = [lo/4W 2 10‘7. As we are integrating along a straight line,

Kl 2 00(3) is constant. It is Kl = Fe — 7",. The remaining integral is easily solved by

substituting (5.4) into (5.5).
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For ease of notation we define

  

a. = |7=',|2, b = 2 (r, . 51), c = [51V (5.6)

Then the magnetic field is given by

- 2b 2(b + 20)

B = kIAl x 7, — 5.7

T (\f6(b2—4ac) \/a+b+c(b2-4ac)) ( )

The actual implementation of this formula is subtle. We observe for example, that in

the case F, H Al both the denominator and the numerator in (5.7) vanish. Calculating

the limit 0 -—> 0, where 0 denotes the angle between F, and A7, analytically, shows

that in fact for this case the constant part of the field vanishes. Nevertheless this

is problematic for high order calculations, as equation (5.7) becomes numerically

unstable for small 0. More numerical issues related to the application of the Biot-

Savart law are discussed in [31] and [32].

5.3.3 Implementation in COSY

Using the formula derived in the previous section and evaluating it in DA using COSY

we are able to calculate the Taylor expansion of the magnetic field produced by a line

current distribution. We implemented the formula in a new COSY function LINEFLD

which calculates the y-component of the magnetic field in the midplane. LINEFLD

has to be called with two parameters, the x and z coordinate of the position in the

midplane where the field should be calculated. It reads the line current distribution

from the file LCD.DAT in the COSY directory. The format for LCD.DAT is very

simple. It contains only numbers, one number per line. The first line specifies the

total number of currents in this file. After that 7 lines always specify one line current

in the format x,,y,,z,,Al,,Aly,Alz,I, where I is the current . It is important to

notice that the units meter and ampere have to be used.
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The results of the function LINEFLD have been tested against ROXIE and were

found to be correct. We checked both the the absolute field value at a given point,

including the x- and z-component that are not returned by LINEFLD, and the field

gradient. The gradient is a natural result of the computation of the field using

differential algebra, namely the term in the expansion of the By that is linear in

x. During the comparison a typo was discovered in [23]. The correct value for the

gradient in the magnet body is 18.22 T/m/kA and not 0.1822 T/m/kA as given in

the paper. This has been acknowledged by G. Sabbi.

In future the detailed field information shall be used for beam dynamics simula-

tions. I will outline in the following section how this can be done in COSY.

Creating a new Element

The first way is to create a new partical optical element. An element can be specified

by giving an explicit formula. In out case the formula is in fact a subroutine that

reads the positions and strengths of the line currents from a file and calculates the

resulting field. As the implementation of new elements in COSY is not documented

in the manual, I will give a brief prescription here.

All of the following changes are to be made in COSY.FOX. First you should create

a new procedure with the name of your new elements. In this case we call it LCD for

Line Current Distribution.

PROCEDURE LCD L D ; { Line Current Distribution }

NSDP := -6 ; LOFF :2 2 ; CE 2: ’LCD’ ;

SDELE 0 L L/500 L/10 L D ; ENDPROCEDURE ;

The new element has two parameters, length L and aperture D. The variable

NSDP determines which field formula is taken to calculate the matrix of the S-



48

Dependent ELEment SDELE. LOFF = 2 indicates that the formula for the field

in the midplane is given, while LOFF = 1 means that we supply the field on the

Optical axis. These formulas are specified in the procedure POTXZ. We create a new

entry for NSDP corresponding to the value we chose in LCD.

ELSEIF NSDP=-6 ; { LINE CURRENT DISTRIBUTION }

BY:=LINEFLD(X,Z) ;

General Element

The second way of making use of our additional fringe field information is to employ

COSY’S general element GE. We want to demonstrate this with a simple example.

The program given in figure 5.3.3 compares a quadrupole implemented with GE

to the standard quadrupole element in COSY.

include ’COSY' ;

procedure run ;

variable 3 1000 100 ;

variable h 1000 100 ;

variable v 1000 100 ;

variable w 1000 100 ;

variable i 1 ;

0v 2 2 O ;

rpp 1000 ;

um 3

loop i 1 6 ;

s(i):=i-1 ;

h(i):=0 ;

v(i):=0 ;

w(i):=DA(1)*DA(3) ;

endloop ;

GE 6 3 s h v w ;

pm 5 :

um 1'

mg 5 1/100 .01 ;

pm 6 I

endprocedure ; { run }

run; end ;

Figure 5.1: Demonstration of the general element GE in COSY
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For a basic introduction to GE refer to [17]. The DA-vectors W are giving the

magnetic field at the respective point specified in S. For a quadrupole the potential is

proportional to :1: y. The coordinates are sorted :13, a, y, b, s, 6, so this proportionality

is specified by setting W(1') :2 DA(1) =1: DA(3), where DA(1) and DA(3) are the first

and third DA-base vector respectively.

From the definition of W it follows that the magnetic field at the pole tip of a

quadrupole of aperture D is equal to D. So the specified general element and the

following standard quadrupole are identical.

It is important to notice that for elements with curved optical axis H(1) contains

the DA vector describing the local curvature of the optical axis. This DA vector can

be obtained in the following way. Locally the magnetic field can be assumed to be

constant. Then we can use the well known equation for the radius of the circular

orbit of a particle carrying the charge q in a magnetic field B

_ p

or using the definition Xm = p/q

B
H = _

509Xm ( )

The value of Xm is available as a global variable in COSY which is initialised as

soon as the energy, mass and charge of the particle under study are specified.

5.4 Extraction of the Multipole Content

For beam dynamics studies it is essential to extract the multipole components from

the field calculation.
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We use the expression for the scalar magnet potential in the curl- and divergence-

free region given in equation (1.33). By expanding the cosine and noting that a

”normal” quadrupole magnet has 92,2 = —7r/2 , we can define the normal and skew

components of the potential by the fact that they reach the maximum, respectively

vanish at —71/2

bk,[(8) = —Mk,1(8)SlIl0k,1

ak,1(s) = Mk,((S)COS6k’l

After the expansion in normals and skews the potential becomes

VB 2 — Z (bk,¢(s) sinlqb + ak,1(s) cos lo) 1:" (5.10)

lc,l=0

Using equation (1.35) it is easy to see that the functions bk,z(s) and ak,¢(s) are related

by recurrence relations

2 1.5311(3)

Hfizl (l2 — (l + 2u)2)

 

bl+2n,l(3) (5.11)

all others being zero, and the same for the skews. We recall that the terms that contain

s—derivatives are called pseudo-multipoles while the others are called multipoles. To

analyse the multipole content of the field usually B, is evaluated at a certain radius

and different 43 values and then a numerical Fourier analysis is performed. Obviously

this approach does not allow to separate real and pseudo-multipoles as for this task

you need both the 1‘ and the (15 dependence of B,. This information is available in the

Taylor expansion of 8,.

5.4.1 Analytical Fourier Transform

The DA-based field calculation yields the Taylor expansion of the Cartesian com-

ponents of the field depending on :1:, y and s. We can now use the transformation
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formulas from Cartesian to cylindrical coordinates to get B, and B, Obviously it is

sufficient to study one of them, so we focus on B,. We recall that

B, = B, cos 05 + 3, sin (b (5.12)

Inserting in the Taylor expansions for B, and By and using :1: = r cos (1), y = 1' sin 05

gives us B, as a function of r and (b in the form of

B, = Z Ti+j sini ¢cosl 43 lCiJ cos 05 + dio’ sin 05] (5.13)

131'

where 13,-,3- and did are the coefficients of the term proportional to ziyj in the Taylor

expansion of B, and B, respectively. We then use the representation of powers of

trigonometric functions in terms of functions of multiples of the argument [33] and

the formulas for products of trigonometric functions to perform an analytic Fourier

transformation of equation (5.13) with respect to the angle, while at the same time

we also preserve the Taylor expansion with respect to the radius that was already

achieved before.

5.4.2 Example

We demonstrate this method for the LHC High Gradient Quadrupoles. The field

calculations for these magnets presented in [23] and [24] are performed by ROXIE

[25]. The calculation is based on a set of line currents which are generated from the

magnet model shown in figure 5.2 and 5.3. Only the part of the coil extending beyond

the edge of the iron yoke is shown. G. Sabbi has implemented an output format in

ROXIE that writes the positions and strengths of all line currents, including the

straight, image and end currents to a file. We use this information to calculate the

magnetic field in COSY.

In [23] G. Sabbi defines E and calculates it for the lead and return end of the

magnet. For the definition of H see equation (4.4). Unlike the computation of M”
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Figure 5.2: Model for the High Gradient Quadrupole’s lead end [23].

 

Figure 5.3: Model for the High Gradient Quadrupole’s return end [23].
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which requires only a DA-computation of order l—l to be exact to machine precision,

it requires an infinite series to calculate 6,. Nevertheless, as you can see from the

figures 5.4 and 5.5 the agreement of 62(3) given in [23] and the DA-based computation

is already extremely good in order 9.

   
 

    
 

Figure 5.4: Comparison of b; in the lead end as computed by the differential algebraic

field calculation in COSY and as given in [23] for different radii. From top left to

bottom right : r = 5 mm, 1' = 10 mm, r = 20 mm and r = 30 mm.

5.4.3 Differential Algebraic Multipole Extraction

It is possible to extract the multipole content of magnetic fields by Differential Alge-

braic methods directly in a very elegant way that is arbitrary in order. We define

oo 0(2n)(8)

b n
=;‘+2’(8)2n=,§,n3=0212—(1+2u)2)’"

2n
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Figure 5.5: Comparison of (32 in the return end as computed by the differential alge-

braic field calculation in COSY and as given in [23] for different radii. From top left

to bottom right : r = 5 mm, r = 10 mm, 1' = 20 mm and r = 30 mm.



 

oo oo (2")

(law (3) 2n

gazwmdsfizn=znnIII/:1 —(l +2102 )

Inserting this into equation (5.10) yields

VB 2 — Z (f,(r, s) sin l¢ + 91(7', 3) cos M9) 7" (5.14)

[:0

The magnetic field components in cylindrical coordinates can be calculated using the

well known formulas

_ 0V3

3' _ "55__ 1 V3

Bl» — r 645

_ _8__VB

B3 79—3

resulting in the expressions

B,(r,¢,s) 2: §0(r,s)+

M
8

(150", s) sinlcf) + §,(1~,3) coslqs) 7.1—1

~

ll 1

B¢(r,¢,s) = :[H[l(f(,—(rs)cosl¢ g,(r,s)sinl¢)]rll

Bs(r,q§,s) = Z(f,(7“, s)sinl¢+g,(r, s)cosl¢)r

:0

where prime denotes derivative with respect to s, and

 

 

* °° n °° (1+ 2n)b‘§"’(s) n

W = 2H0 2;. was.”

.. (7‘ 3) — i“ + 2700. (8)72"...__ f: (l + 2n)a§2n)(s) 7‘2"

91 , — "=0 l+2n,l n=oHE—1(l'“’- (l +2102 )

It can be seen that every multipole strength, except for l = 0, is multiplied by



7“”. For the special case I = 0, we get

00 k _

B,(r,s) = —Z(—1)_k+1-2————2klk!k!a((,2§)(s)r2k 1 (5.15)

B¢(7‘,S) = 0

°° 1

33(738) = -I§)(-1)““ma$€+”(s)r2k

In the DA picture, the field calculations are done locally, as a Taylor expansion of

the field with respect to Cartesian coordinates x, y, 3. Hence, we need the equations

relating the cylindrical and Cartesian components of the magnetic field.

Bx(r, 05, s) = B, (r, <15, 3) cos 43 — B¢(r, 05, s) sin 05

By(r, 03, s) : B,(r, <0, 3) sin 03 + B¢(r, 05, 3) cos (b

and Bs(r,¢, s) is unchanged. Obviously, if we evaluate the above equations in the

midplane (y = 05 = 0), then

Br(7', ¢ = 0’ 3) erx: Bx(xa y = 0a 3)

B¢(r, 45 = 0, s) In—n: By(x, y = 0, s)

We know that the Cartesian components of the fields from the DA calculation in the

midplane

oo

Bx(:c, y = 0, s) = §0(:r, s) + 2.6105, s) - 331—1

(:1

By(:r,y=0,s) = Elf1(:c,s)

This is all the information we need to extract the multipole strengths up to the order

of calculation, because, as previously mentioned, any multipole strength of order I is

multiplied by 23‘“. Starting at l = 1, a1,1(s) is extracted as the x-independent part of

Bx, and analogously b1,1(s) from By. Evaluating a1,1(s) and b1,1(s) at s = 0 yields the

skew and normal dipole component. From a1,1(s) and b1,1(s) the functions f1 (1:, s),
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g1 (:13, 3) are generated up to the order of calculation and subtracted from B$(x, y =

0, s), respectively By(:r, y = 0, s). This cancels the pseudo-multipoles generated by

the s-dependence of a1,1(s) and b1,1(s), which otherwise would make the distinction

between sextupole terms and pseudo-dipole terms impossible. The procedure can be

iterated for the higher order multipoles, up to the order of calculation. After the k—th

step, the remainder of the field components should contain just (k +1)-th and higher

order multipoles.

However, there is an additional problem in the case of solenoidal fields (case I = 0).

In this case we have an (10,0(3) in the potential, but its contribution vanishes from

the field components BI and By, so the function §o(x, 3) cannot be generated from

the information available in B;c and By. Here comes to the rescue the B, component,

which evaluated at a: = y = 0 yields (133(3). From this function we can calculate

ao,o(s) up to a constant and generate the l = 0 contribution to Bx, §o(z, 3). Once

this is subtracted from B1,, the method works as previously described, starting with

1:1.

Finally, two notes: the method relies on the fact that the magnetic field can be

generated by a magnetic scalar potential that satisfies the Laplace equation. Hence,

it is important that the field is really curl-free. If the fields are calculated from

line currents by the Biot-Savart law, that means that the model should consist only

of closed circuits to ensure the curl is vanishes. Secondly, in the region where the

magnetic field is not s-dependent, the functions f; and g; are the real multipoles

and it is If, = f; and lg, = 57,, an assumption that is sometimes made even for the

s-dependent region.

The method has been implemented in the code COSY Infinity, and in the following

we will present results for two examples : a toy-model consisting of a single square
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current-loop, and a realistic model of the LHC interaction region quadrupole’s fringe

region.

5.4.4 Example

First we demonstrate the algorithm using an easy example. We study the magnetic

field of a square current 100p of side length 20 cm, orientated parallel to the x, y plane

centered around the s-axis at s = 10 cm. The current is 10 kA clockwise, looking

along the s—direction. We calculate the field expansion around 1" = 0. Due to the

symmetry of this arrangement, only the 4k multipoles are allowed, where k E N. In

table 5.1 we show the skew multipoles and compare the result of the DA-Extraction

with the analytical Fourier Transform. The normal multipoles vanish. Table 5.2 gives

the derivatives of the solenoidal component (10,0 of the field. It should be noticed that

according to equation (5.16) from BT only the even order derivatives of 0,0,0 can be

obtained via Fourier transformation.

 

 

l DA-Extraction Analytical Fourier Transformation

1 0 0

2 0 0

3 0 0

4 04677606347601 04677606347601

5 0 0

6 0.8052817671947803E—13 0

7 0 0

8 -94.0084410633 -94.0084410633     

Table 5.1: Skew multipoles as obtained by the DA-based extraction scheme in com-

parison with the results of the analytical Fourier transformation at s = 0.

For the second example we look at the end fields of the LHC High Gradient

Quadrupoles again. In order to apply the DA-Extraction in this case we have to

make sure that the line currents used in the magnet model form closed loops as
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n DA-Extraction Analytical Fourier Transformation

1 0.2309401076758502E—01

2 -0307920143566 -0.307920143566

3 3.849001794594

4 -12.83000598197 - 1283000598198

5 -2035.694282476

6 11632538757 11632538757

7 -3789128.433348

8 1297256160401 - 129725378827    
 

Table 5.2: S-Derivatives of the solenoid component of the field as obtained by the

DA-based extraction scheme in comparison with the results of the analytical Fourier

transformation at s = 0. n denotes the order of the derivative.

explained earlier. In table 5.3 we show the resulting normal and skew multipoles in

the lead for z = 0. The coordinate system is as defined in [23].

 

 

multipole strength DA-Extraction Analytical Fourier Transformation

b2 8270972386 8270972386

()6 28371.07332 28371.07796

a2 01043500051 01043500051

a6 -11935.21351 -11935.42465    
 

Table 5.3: Comparison of the allowed multipoles in the lead end at z = 0cm in the

coordinate system defined in [23] calculated by the DA-Extraction and the analytical

Fourier transformation.

Finally, we show in the figures 5.6 and 5.7 a comparison of 62, 66, 52, 56 given in [23]

with the respective real multipoles as computed by our algorithm for the radii r = 5

mm and r = 20 mm. As before the values from [23] are given by the line and our

values are given by dots. One can see that while there is very good agreement for r = 5

mm there are substantial differences especially for the skew components at r = 20

mm. We chose 1‘ = 20 mm because this is close to the new LHC reference radius

r = 17 mm. Presumably this is the only radius for which magnet measurements will
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become available in the future. The plots 5.6 and 5.7 show, that one can in general

not assume that the 6,, and 5,, measured at the reference radius are equal to the real

multipoles.

10000'
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Figure 5.6: Comparison of the normal multipoles bu (top) and b5,6 (bottom) with 52

respectively be in the lead end for r = 5 mm (left) and r = 20 mm (right).
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Figure 5.7: Comparison of the skew multipoles 02,2 (top) and (16,6 (bottom) with 62

respectively 66 in the lead end for r = 5 mm (left) and r = 20 mm (right).
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