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ABSTRACT

A CONTINUUM-BASED SHELL ELEMENT FOR

LAMINATED COMPOSITES UNDER LARGE DEFORMATION

By

Chienhom Lee

Driving by lack of accuracy of existing finite element programs in analyzing laminated

composites under large deformation, a continuum-based shell element is proposed in this

study. The objective is to develop an accurate but inexpensive (in terms of computer time)

shell element that can solve large scale engineering problems. The new shell element is based

on the Generalized Zigzag Theory to better describe transverse shear stresses and kinky in-

plane displacements through the laminate thickness. It also uses the rate-of-deformation

tensor and the 'h'uesdell rate of Cauchy stress, in an updated Lagrangian sense, to describe

kinematic and kinetic relations for a structure under large deformation. The accuracy of

the proposed shell element is demonstrated by comparing its numerical results with several

well-recognized investigations based on theoretical and experimental approaches.
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Chapter 1

INTRODUCTION

1.1 Motivation

With their superior strength-toweight ratio, stifl'ness tailored-ability, formability, and envi-

ronmental stability, advanced polymer-matrix composite materials have become a key ingre-

dient in the design of future automotive and aircraft components. The complex structural

responses and design versatility associated with such materials provide a strong motivation

for developing a numerical design tool (besides experimental trial-and-errors).

Many finite element programs have been widely used in the automotive and aerospace

industries to investigate structural problems in the context of large deformation. Yet their

lack of accuracy in analyzing laminated composite structures has been well recognized.

The reason is simply because most programs are designed for isotropic materials. On the

other hand, although many laminate theories have been postulated to improve the accuracy

of laminated composite analysis, very few of them have been adopted and introduced to

the finite-element community. The primary reason isAhat they are too sophisticated to

implement. Obviously, in the finite element simulation of laminated composites, there exists



a gap between what has been developed and advanced and what has been actually used.

The motivation behind this thesis, therefore, is to bridge such a gap. In order to achieve

this goal, a shell element is to be formulated to fulfill the accuracy requirements for both

displacement field and stress state and yet retain computational efficiency. The method

of achieving the goal is to first conduct thorough reviews on all existing large deformation

theories used in finite element formulation as well as the latest development of laminate

theories for composite analysis. Compromises between accuracy and efficiency are then

taken in developing a new shell element that has degrees of freedom that are low enough for

reasonable efficiency in computation and yet high enough for acceptable accuracy in results.

Figure 1.1 outlines what need to be considered in order to formulate a laminated com-

posite shell element for large deformation analysis. The following sections provide literature

reviews of existing laminate theories and nonlinear finite element analysis. Also included

are descriptions of the problem-solving methodology and organization of the thesis.

1.2 Laminate Theories

When a laminated composite structure is subjected to out-of-plane loading, accurate trans-

verse stresses are very important in structural design and failure analysis . If a laminated

composite structure is moderately thick or thick, or if it consists of a matrix with low shear

modulus, the transverse shear deformation may not be negligible. In addition, it should

be noted that delamination is a primary damage mode in laminated composites. Both

central delamination and edge delamination occur in laminated composite structures quite

often. In general, central delamination may occur as a result of impact loading [41] and

edge delamination may be attributed to free edge effect [56]. Since the interlaminar stresses

are responsible for delamination, a correct prediction of transverse stresses is critical to



laminated composite analysis. Various laminate theories for composites analysis have been

proposed in the past and are briefly summarized as follows.

(1) First-order Shear Deformation Theory

The First-order Shear Deformation Theory, developed by Reissner [65] and Mindlin [51]

independently, is known as the Reissner-Mindlin (RM) Theory. It relaxed the Kirchhoff-

Love hypothesis that required normals to the mid-plane to remain normal throughout de-

formation. By including two additional rotational degrees of freedom, the normals are then

free to rotate with respect to the mid-plane during deformation. This type of deforma-

tion implies constant transverse shear stresses through the shell thickness. Consequently,

shear correction factors are required for the equilibrium process. The RM Theory provides

accurate displacements and stresses for thin and moderately thick, isotropic structures.

However, as can be seen later, the theory leads to unsatisfactory displacements and stresses

for laminated composites. Nevertheless, the finite element formulation based on RM The

ory is still the most widely used in commercial software for investigating structures made

of conventional metals and composites. The reason is believed to be its high efficiency in

computation resulting from using only five degrees of freedom.

(2) High-order Shear Deformation Theories

Many refined shear deformation theories have been presented to improve the predic-

tion of displacements and stresses (especially transverse stresses) for laminated composites.

Literature reviews regarding these theories can be found in the book by Palazotto and

Dennis [55] and the dissertation by Li [37]. This category of laminate theories is based on

an assumed displacement field that is of high-order polynomial functions of the thickness

coordinate. Accordingly, both the in—plane and transverse displacements are smooth and

continuous through the laminate thickness. In reality, however, the abrupt change of ma-



terial properties across the laminate interfaces usually results in kinky distributions of the

in—plane displacements. Another deficiency of the High-order Shear Deformation Theories is

the prediction of double-valued transverse stresses on the laminate interfaces. This results

from the single-valued strains on the interface being multiplied by difl'erent material prop-

erties in different layers. This deficiency originates in the assumption of continuous in-plane

displacements, resulting in continuous strain distribution through the laminate thickness.

Although this unsatisfactory result can be avoided by a recovering technique based on equi-

librium equations, a theory that can give correct displacement field and stress state based

on constitutive equations is strongly preferred.

(3) Layerwise Theories

In order to resolve the deficiencies of the High-order Shear Deformation Theories, it

may be intuitive to describe each composite laminate as an assembly of individual layers.

Some quasi-threedimensional techniques based on so-called Layerwise Theories were pro-

posed [6, 33, 37, 46]. These theories treated each layer individually and imposed one or

more continuity conditions on the laminate interfaces to preserve the kinky displacement

distributions and continuous shear stress states through the laminate thickness. As a result,

the total number of degrees of freedom were reduced. Li and Liu [38] showed that the afore-

mentioned High-order Shear Deformation Theories were merely simplified cases of the Gen-

eralized Layerwise Theory that they proposed. Despite the high accuracy of displacements

and stresses obtained from the Layerwise Theories, a large number of degrees-of-freedom

proportional to the total number of layers in the laminate was needed. Thus, the theories

are computationally inefficient. This disadvantage is especially true when the layer num-

ber of composite laminates becomes overwhelmingly large. In view of the advantages and

disadvantages of the High-order Shear Deformation Theories and the Layerwise Theories,



a theory that would be a compromise between the numerical accuracy and computational

efficiency is highly desired.

(4) Zigzag Theories

A group of theories called Zigzag Theories, [17, 37, 72, 73], uses a presumed displacement

field for each layer and utilizes interlaminar continuity conditions (displacement, stresses,

or both) to assemble individual layers. The name ”zigzag” is due to their capability of rep-

resenting the kinky distributions of in-plane displacements through the laminate thickness

when the laminated composite is subjected to bending. Similar to the Layerwise Theory, the

Zigzag Theories do not need any shear correction factor; and consequently all the transverse

shear strains and stresses can be calculated based on the constitutive equations.

The Generalized Zigzag Theory (ZIGZAG) presented by Li and Liu [38] indicated that

all other Zigzag Theories were special cases of theirs. As pointed out by Liu and Li [42], the

third-order Generalized Zigzag Theory is a simplified case of the third-order Generalized

Layerwise Theory because the layer-dependent variables were only designated to the wrath-

order and the first-order terms (as opposed to all four terms in the Generalized Layerwise

Theory). Therefore, the total number of degrees of freedom of the Generalized Zigzag

Theory was layer-number dependent. It was then reduced to be layer-number independent

after using the continuity conditions of displacement and interlaminar shear stress. Hence,

the major advantage of the Generalized Zigzag Theory over the Generalized Layerwise

Theory is that the number of degrees of freedom is independent of the number of layers.

Thus, it gives higher computational efficiency. However, it is also because there is no

layer-dependent variables that the Generalized Zigzag Theory is less accurate than the

Generalized Layerwise Theory.

In comparison with the previously mentioned High-order Shear Deformation Theories,



the Generalized Zigzag Theory gives correct kinky in-plane displacement fields and trans-

verse stress states. However, due to the fact that the assumed displacement fields for the

Generalized Zigzag Theory require transverse deflection to be Cl continuous in finite ele-

ment formulation, additional degrees of freedom must be introduced. The same situation

also happens to any of the high-order shear deformation theories. The Generalized Zigzag

Theory is therefore more complicated in formulation and less efficient than the First-order

Shear Deformation Theory.

(5) Quasi-layerwise Theories and Others

Following the same method described in the Generalized Zigzag Theory, Li [37] devel-

oped some Quasi-layerwise Theories with the use of only two layer-dependent variables in

different orders. Although the accuracy in displacements and stresses can be improved

more or less in comparison with the Generalized Zigzag Theory, the Quasi-layerwise Theo-

ries sufl'er numerical deficiency because they are very sensitive to the selection of coordinate

systems. Global-local Superposition and Double-superposition Theories are two other ideas

presented by Li and Liu [39]. The theories utilize the thickness coordinate of a local layer

in combination with the laminate thickness coordinate. As a result, the total number of

degrees of freedom of these theories is independent of the total number of layers in the lam-

inate. Although some of these theories can provide higher accuracy, they are less eflicient

than the Generalized Zigzag Theory because a larger number of degrees of freedom is re-

quired. Table 1.1 summarizes the displacement fields for various laminate theories discussed

herein. The Generalized Zigzag Theory is chosen to be used in this thesis because it results

correct kinky in-plane displacements and continuous transverse stresses. More importantly,

the Generalized Zigzag Theory has a constant number of degrees of freedom.



1.3 Nonlinear Analysis

All laminate theories discussed in the previous section can be used for both linear and non-

linear finite element analyses: A linear analysis is used when deformation is small, material

response is linear, and boundary conditions remain unchanged during the course Of deforma-

tion. In general, nonlinear analysis would be otherwise considered. There are two categories

.....m _

of nonlinearity: material nonlinearity and geometric nonlinearity [8]. Material nonlinearity

is associated with nonlinear elastic or plastic deformations. Geometric nonlinearity occurs

when a structure is subjected to large strains and/or large rotations. In this thesis, the

mainrfocus is on geometrically nonlinear problems under static loading conditions.

The essential feature of geometric nonlinearity is that equilibrium equations must be

written with respect to an instantaneous state [14]. A large deformation problem can be

analyzed using either Lagrangian (material) description or Eulerian (spatial) description.

The Lagrangian description is also called total Lagrangian. When this approach is used,

movements of material particles are described with respect to the original or undeformed

configuration. In other words, regardless how large the strain and rotation are, all displace-

ment differentiations and integrations are performed with respect to the original frame. As

deformation becomes larger and larger, more and more terms (usually nonlinear) must be

added to the strain-displacement relations in order to account for the nonlinearity.

When the Eulerian description is used, movements of material particles are described

with respect to the current or deformed configuration. In actual implementation, the Eu-

lerian approach takes a form that is usually called updated Lagrangian. In this approach,

differentiations and integrations are performed with respect to the deformed configuration.

The current deformed configuration is also used as the reference state prior to the next

increment of the solution. After the incremental solution is obtained, the reference state is



updated and then the solution proceeds to the next increment.

It is noted that although different formulations may exist when using different ap-

proaches (one may be more complicated than another), final solutions to a problem should

be identical. In the total Lagrangian approach, the kinematic relations are always non-

linear because the deformation is usually given by a displacement field. In the updated

Lagrangian approach, deformation can be described either by a displacement field or by a

velocity field (see Section 2.2 for details) [48]. When a velocity field (such as the rate-of-

deformation tensor) is utilized to describe the deformation, the kinematic relations become

linear. When dealing with laminated composites, displacement fields are in general very

complex. Therefore, it is preferred to use linear kinematic relations.

1.4 Formulation for Large Deformation Lea

Although the advancement in the computational techniques for structural analysis is very

significant in the last two decades, the development of finite element formulations for lam—

inated composites subjected to large deformation is very limited. Many commercial pro-

grams such as ABAQUS, LS-DYNA3D, PAM-CRASH, and RADIOSS CRASH, and publi-

cations [2, 11, 24, 68, 78] use the Reissner-Mindlin Theory with various updated Lagrangian

approaches. Most ofthem imply that their large deformation finite element formulations are

valid not only for isotropic materials but also for laminated composites. However, although

its prediction on overall behavior of structures, such as transverse deflections may be ac-

ceptable, the Reissner-Mindlin Theory gives incorrect in-plane displacement and transverse

shear stresses for laminated composites.

As mentioned before, numerous studies have been presented using different lam-

inate theories to improve the accuracy of simulating laminated composites in linear



analysis. However, when their techniques were extended to large deformation anal-

ysis of symmetric or unsymmetric laminated plates and beams subjected to bending,

most of them used a total Lagrangian approach and the von Kdrmén nonlinear strains

[7, 12, 26, 34, 35, 63, 66, 69, 73, 74]. The van Kérmén nonlinear strains are a simplifica-

tion of the Green (Lagrangian) strain tensors with some nonlinear terms eliminated. Most

researchers used them for small rotation and small strain nonlinear problems, although

the theory can be used for moderately large rotations. Liao and Reddy [40] used a three-

dimensional degenerated shell element along with the Green strain tensor and the second

Piola-Kirchhofl' stress tensor, which is a total Lagrangian approach, to study post-buckling

behaviors of stiffened composite shells. Kweon, et a1. [30, 31] also used the Green strain

tensor and the second Piola-Kirchhofl' stress tensor along with the First-order Shear Defor-

mation Theory to study the postbuckling compressive strength of graphite/epoxy laminated

cylindrical panels. In their book, Palazotto and Dennis [55] used a forth-order shear defor-

mation theory, in addition to the Green strain tensor and the second Piola-Kirchhofl' stress

tensor, to formulate a shell element.

1.5 Problem-Solving Methodology

As seen in the previous section, there has been lack of a shell element with computational

efficiency that would accurately describe behaviors of laminated composites under large

deformation (large rotation and large strain). Therefore, a continuum-based shell element

basedpn the Generalized Zigzag Theory is proposed in this thesis. To avoid the complexity

of involving nonlinear strain-displacement relations, the formulation for large deformation

adopts an updated Lagrangian approach based on the rate-of-deformation tensor and the

'I‘ruesdell“ rate of Cauchy stress. The rate-of-deformation tensor is a linear formulation.
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When it is used with the Truesdell rate of Cauchy stress, a symmetric stiffness matrix can

be achieved. More importantly, the rate-of-deformation tensor is not a simplification of any

strain-displacement relations. Hence, it can be used for investigations involving large strain

and/or large rotation. The finite element formulation in this thesis leads to a four-node

shell element, which has seven degrees of freedom at each node. , i If"

The finite element formulation was programmed as a subroutine called LACOS (LAmi-

nated COmposite Shells) using FORTRAN and was then linked to ABAQUS/Standard as a

new addition to its element library. The user defined element is called U101 in the element

library. It follows the naming convention required by ABAQUS/Standard. The elements

of each finite element model are then assembled in global coordinates and solved iteratively

by the ABAQUS/Standard solver. ABAQUS/Standard is a general nonlinear finite element

package that has been developed and maintained by Hibbitt, Karlsson and Sorensen(HKS),

Inc. for more than two decades. The concept of employing user subroutines is to make the

most use of the commercial package’s existing ftmctions, i.e. solver, post-processing, etc.,

while the user is still able to tailor the program for specific applications. The subroutine

developed in this thesis can also be used in other similar finite element packages with slight

modifications.

1.6 Organization of the Thesis

A flow chart of the thesis organization is illustrated in Figure 1.1. We begin in Chapter 2 by

establishing some basic knowledge about objective stress rates and the rate-of-deformation

tensor before we start deriving governing equations. The rate form of static equilibrium

equations is also discussed to show its essential differences from equilibrium equations. In

Chapter 3, derivations of the governing equations for a structure undergoing large defor-
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mation (both large strain and large rotation) are described. In Chapter 4, incremental

displacement fields using the Generalized Zigzag Theory are presented. In Chapter 5, de-

scriptions of finite element formulation for the U101 element are given. In Chapter 6, various

numerical studies are presented to evaluate the performance of U101. Finally, conclusions

and recommendations are given in Chapter 7.
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7. Generalized Higher- M

order Zigzag Theory (4th ”km" y’ 7’) : ”GIL 3’) + ZUI($* y) + 2211411.!)
i=2

order and hi her) (1),(2) -

g k M 1. [2(M+1)-4]+1 G'Obal'
v (:r,y, z—)— 115(3, y) + zv1(:z:, y) + Z 2 v,(:r,y) L003

i=2

wlf-Tayi 2): 1110(1)?!»

8. Quasi-layewvise

Theory (third order) (1),(3) kII’Zy’F2514;

] 3 . 7 Global-

[ vk(x,y,z)—- funny) Local

I ' =0

1 w(:r,y, 2'): “10(1: y:

9. Global-local n 3 ~

(third order) (1),(4) :0 Globa,_

n i 11

Way. 2): (£10mvm($ y)++(€k) ”UM-7&9) +22 ill-(Iris!) Loca'

i=0

1003,9374) = wll(mt y)

10. Double Superposition m n 3 .

Theory (third order) (1)|(5) uktra y, z) 2 (£16) 115422.11) + (6k) 15543373!) + ($01)“???in 'I' :0 2111,,(1:

n. 3 . Global-

"U"($.y. 2)= (Eklmvm(at y)+ (5.) vibe, y) + (éklpvflay) + ZZ‘vl-(ziy) 13 Local

Mani/,2) = wo(rr,y)

(1) k=number of layers (2)M = number of terms in the polynominal (3) k=0 in any two out of four terms

(4) m.n=1,1,2, or 3; math (5)m,n,p=1,2, or 3; mensp  
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Chapter 2

LARGE DEFORMATION

ANALYSIS

2.1 Introduction

Once the Generalized Zigzag Theory is chosen as the displacement field, there are many

different ways of establishing kinematic and kinetic relations for large deformation analy-

sis. Careful considerations must be given and choices must be made before we start the

development of governing equations and the subsequent formulation of a shell element that

deals with laminated composites. In this chapter, we introduce the principle of objectivity

(or material frame indifference) for stress rate and the rate-of-deformation tensor. This will

enable us to describe the motion of a particle in a continuum at any instant of time during

the process of a large deformation. Numerous studies have been done on this topic, for

example, Fung [19] and Malvern [48]. Here, we only outline some of the important concepts

needed for future use. Since the rate form of static equilibrium equations is quite different

from the equilibrium equations themselves, one section is devoted to present different ways

14



of obtaining the rate form of static equilibrium equations.

2.2 Descriptions of Kinematic Relations

When dealing with geometrically nonlinear problems, numerous measures of strain are avail-

able. However, most theoretical works and computer programs utilize the following three

kinematic relations:

1. The Green strain tensor (also called the Lagrangian strain tensor)

.

hi)" I’ll/'44 (11’ it") 3“,}

.. ... 1' all“ an] auk auk , ”We 1‘ \1

6'] - 2 (an + BXi + 0X.’ 6X1) : It ii" If -. " ”2.1)

  

2.. The Almansi strain tensor (also called the Eulerian strain tensor)

. . _ (I ~ affix"
'5; = .1. _% + 22]. _ flg‘i 1- 3 i I (2.2)

J 2 ij 6223' 633' 8221'

3. The rate-of-deformation tensor (also called the stretching tensor or the velocity strain

“3 ‘. '2 .t- i}

tensor)

D” = . y _ _.L 2.3
, U 2 (6171' + 6.733) ( )

In Eq.(2.l), X.- are components of Lagrangian coordinates. They are also called material

coordinates because they describe the material particles with respect to the original or

undeformed configuration. An approach is called total Lagrangian when the Lagrangian

coordinate system is used to describe the motion of a particle. In Eqs.(2.2) and (2.3), 2:.

are components of Eulerian coordinates. They are also called spatial coordinates because

they describe the material particles with respect to the current or deformed configuration.

An approach is called updated Lagrangian when the Eulerian coordinate system is used to

describe the motion of a particle. The two sets of coordinates are related by

$3 = X3 + 113 (2.4)
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where u,- are components of a displacement vector.

It is noted that both the Green and Almansi strain tensors have nonlinear, coupling

terms. The rate-of-deformation tensor is linear, but it is not derived by removing nonlinear

terms from the Green or Almansi strain tensors. It is also noted that the rate-of-deformation

tensor is calculated from velocity fields while the Green and Almansi strain tensors are

calculated from displacement fields. The rate-of-deformation tensor expresses a change of

the displacement vector from the current state to the next state along the loading history.

Remark 2.1

The von Kcirmdn nonlinear strains used in many large deformation finite element formula-

tions is a simplified, special case derived by removing some nonlinear terms from the Green

strain tensor. It is mostly used for small rotation and small strain nonlinear problems.

2.3 Rate of Deformation

In this thesis, we choose the rate-of-deformation tensor in Eq.(2.3) as the kinematic relations

for large deformation analysis. When dealing with complex displacement fields for laminated

composites such as the Generalized Zigzag Theory, it is preferred to use linear kinematic

relations. More importantly, the rate-of-deformation tensor is not a simplification of any

strain-displacement relations and, hence, can be used for problems involving large strains

and/or large rotations.

The following is a brief introduction of the rated-deformation tensor. Since our focus

in the current study is on the instantaneous motion of a continuum, we describe the motion

of a typical particle P inside the continuum by choosing the spatial description and use

velocity of the particle as functions of its instantaneous position ($1,132, 1:3) in space.

As shown in Figure 2.1, we consider two infinitesimal neighborhood particles P1 and P2
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with instantaneous coordinates x and x + dx respectively. The relative motion of the two

particles from one time instant t to another time instant t+ At can be completely described

by a tensor quantity called velocity gradient (LU) defined as follows.

511i
L,- = —

J 62:,-

E U331 (2.5)

Lij in Eq.(2.5) can be additively decomposed into two tensors

L3} = 031' + WU (2.6)

where

1 T 1
Do = EILij + Lg) = 505,1 + v1.1) 5 Um) (2-7)

1 T 1
Wu = 5(L3'J' - Lij) = ‘2-(vm‘ - 12,-,3) E inJ] (2.8)

Dij = Dj,‘ and Wij = -Wj3' (2.9)

The symmetric tensor ng is called the rate-of-deformation tensor, and the skew-symmetric

tensor W3,- is called the spin tensor.

The rate-of-deformation tensor 0,-1- is a well defined quantity; it vanishes when the

continuum performs a rigid-body motion. Therefore, it is an objective quantity. On the

other hand, when there is no rigid body motion, the spin tensor Wij becomes zero.

2.4 Descriptions of Kinetic Relations

In describing the kinetic relations, a frame indifference (also called objectivity) condition

must be satisfied. When using a stress or strain tensor to describe the response of a material,

it must be frame indifferent; otherwise, no constitutive relation measured from physical

material tests can be established to accomplish the calculation of material response. In

addition, a condition called energy conjugate must also be fulfilled. A stress is ”energy
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conjugate" to the strain if its scalar product with that strain gives equivalent work (energy)

to that in a reference frame [15].

Although the Cauchy stress is the energy conjugate to the time integration of the rate-

of-deformation tensor, neither its material nor time derivative is frame indifferent [19]. The

Cauchy stress a,-j(;r1, .132, 2:3, t) is a time-dependent stress field in a continuum and is referred

to a fixed reference coordinate system. It is a true measure of the stress state inside the

deformed continuum. The material derivative of the Cauchy stress

(1122212912,,
dt 6t 62:,"

(2.10)

indicates the time rate change of a typical stress component at a particle of the contin-

uum. For a stressed continuum performing rigid body rotation, neither the time’dgr‘iyative

(dag/(9t) nor the material derivative (dagj/dt) of the Cauchy stress vanishes identically.

This can be seen in an example illustrated in Figure 2.2 [19]. A bar is subjected to simple

tension and rigid body rotation about the z axis. At one instant, when the bar is parallel to

y-axis, a; = 0 and ory 91$ 0. At another instant, when the bar is parallel to z-axis, 0; ¢ 0 and

0,, = 0. Accordingly, a rigid body rotation changes the stress tensor while the stress state

is unchanged inside the bar. Thus, neither Bag/3t nor dog-J- /dt can serve as an appropriate

stress rate measure to be related simply to the rate-of-deformation Dij- In other words, it

is impossible to establish a constitutive relation between Djj and dUij/dt (or 80,-]- /8t). This

is why an objective stress rate must be introduced.

2.5 Measure of Objective Stress Rate

As described by Prager [57], the objective stress rate must vanish when a stressed continuum

performs a rigid body motion. Apparently, this restriction is not severe enough to lead to
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a unique definition of objective stress rate. A variety of definitions of stress rate have been

proposed in the literature on mechanics of continua. Among the many frame-indifferent

stress rates of the Cauchy stress, the Jaumann (also called Zaremba—Jaumann-Noll) rate

and Truesdell rate of Cauchy stress are commonly used. Although many lecturers have

contgbhtedfitheirweffofts in discussing the superiority of one stress rate to the others, [16,

18, 20, 23, 50, 57, 58], the results were inconclusive. Theoretically, the result of using

any one of them should be identical from a continuum mechanics point of view. However,

depending on formulations and applications, one stress rate may be more suitable than the

other. In this thesis, the Truesdell rate of Cauchy stress is used. When it is used with

the rate-ofigformation tensor in an updated Lagrangian approach, a symmetric stiffness

matrix can result in the finite element formulation.

In the following, the Truesdell rate and Jaumann rate of Cauchy stress are briefly in-

troduced.

(1) Truesdell Rate of Cauchy Stress

The relationship between the symmetric second Piola-Kirchoff (2nd PK) stress tensor

and the Cauchy stress tensor is given by [49]

W

S3)" = JF‘EIO’HFJI (2.11)

where ng is the second Piola-Kirchoff stress defined with respect to the material coordinates

(X1,X2,X3), Irij is the deformation gradient, and J = det (Fl-J). Using the method of

consistent linearization shown in Appendix A, we have

Elsijl = ElleizllakliFfil)+J£[Fg;llakl(Fj-[ll

+ J(F;;l)c[a,.,](1r]7‘) + J(F,;‘)a,.,c[FJ;1] (2.12)
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Now choose the frame of reference X to be the instantaneous motion x, then

J=1 and (17,;1)=5,,- (2.13)

and from Eqs.(A.9) and (A.ll)

cw] = Auk). and emf = —Au,,,- (2.14)

Hence .. '~ f .-

d i '
C(Sij] éf Vafj = A0,] + Unguch - O'uAUjJ — Anglo)!- (2.15)

or 11’ l1 . I

A031 = Vafij - aUAukyc + (7ngij + Aui,(0’(j (2.16)

where Vafj is the Truesdell rate of Cauchy stress and Am,- is the Cauchy stress rate.

(2) Jaumann Rate of Cauchy Stress

Let us consider a field of flow with velocity components v.- attached to a rectangular

Cartesian frame of reference (1:1, 2:2, :33). For convenience of discussion, we follow Fung’s

work [19] and take the origin of the coordinate system at a generic point P in the flow

field. Let (3’1, 1’2, 23) be another rectangular Cartesian frame of reference that has the

same origin at P and rotates with the continuum at an incremental rotation (spin tensor)

W, where the components of ng are

_1 912. %) -1693 m) _l(% 211.2)
W23-2(6$3 632 ,W31—2 6:121 61:3 ,W12—2 01:2 811 (2.17)

Let x: coincide with x,- at any instant of time t. Then the stress tensor at P is 0:1-(t) = cry-(t).

Referring to the rotating axes x: at a later instant of time t+dt, let the stress at the particle

P be denoted by o{j(t + dt). Then the Jaumann rate of Cauchy stress is defined as

l
V = . —- ’.. —— I..a dltiLnO dt[0,](t + dt) 0,1(t)] (2.18)
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Now, the coordinates 1:; and 1:, are related by

87- . 8 -

.L‘: = r,- + ,—,'—rkdt = (0,), + idt) 1:)c (2.19)

- dzrk(hi);

1

an -

Decomposing the velocity gradient tensor 8113/62). in the equation above into the rate-of-

deformation tensor(D,-J-) and the spin tensor (WU) using Eq.(2.6), we obtain

2:; = (6,), + Wyatt)“ (2.20)

where 0,1 = 0 for rigid body rotation. The stress tensor at particle P at the instant t + dt,

with reference to the fixed coordinates 2:1, is

0,,(1 + dt) = a,,-(t) + 33% (2.21)

Transforming the stress tensor of Eq.(2.21) through the coordinate transformation Eq.(2.20)

into the 2;; axes, we obtain

ago + dt) = (5,, + W,,dt)(6,, + qudt) [0mm + 3351111]
d

d0}! 2

Accordingly, from Eq.(2.18), we obtain

da-
V __ U , . . .

Remark 2.2

The use of the Jaumann rate is to view the stress-strain relation from the standpoint of an

observer in a moving material frame relative to which the local rotation vanishes. In other

words, the Jaumann stress rate provides an objective measure of the change in stress viewed

from a frame rotating with the material.
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Remark 2.3

The generalized Hooke’s law can be applied as the stress-strain relation between the Jaumann

stress rate and the rate of deformation in the coordinates aligned with the material principal

directions, assuming the material is linear elastic. The engineering constants are Young ’3

moduli, Poisson’s ratios, and shear moduli that are measured from simple tests such as

uniarial tension or pure shear tests.

2.6 Rate Form of Static Equilibrium Equations

52,. . + [25. -. o
)i)

At any instant of time, without considering the body force and acceleration of a continuum,

equilibrium requires that the total force acting on the body must vanish, that is

/t3'dS = / agjnJ-dS = 0 (2.24)

S S

where S is surface of the body and the traction t,- = aijnj with n, being a unit normal to

the surface. The divergence theorem allows Eq.(2.24) to be written as

[951W=0 (“13.3 i (2.25)
V 631' i

This equation must be valid for an arbitrary volume V (every portion of the body is in

equilibrium), thus, we obtain the familiar stress equations of equilibrium

803' Z’

6121'

= 0 (2.26)

As given in Lee [36] and Osias and Swedlow [52], to maintain the deforming body in equi-

librium during a loading history, it is required that the time rate of the net applied force

be zero. Thus, we have the material derivative of Eq.(2.24) as

d . -
Eds t,dS) = /S(t,-dS+t,-dS) =0 (2.27)
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Applying the divergence theorem to Eq.(2.27) again will lead to the stress rate equations

of equilibrium. Alternatively, we can take the material derivative of Eq.(2.26) directly (also

 

/ Q

n (rt (\\,

use Eq.(2.10)), that is f}, elf-i ’3',” ’

d aaij) 820” 6203']-

T ‘— = = 0 2.28
dt ( 6171' Bias,- + 82382;, vk

( )

Eq.(2.28) leads to the following equation provided that 01“,]- is continuous because 0,-NC)

becomes zero when total stress equilibrium 0,5,]- = 0, i.e.

 

d 6031' 00.3”)

_ __ = _.l :0 2.29

3’61 0, l: 1.. J 1'11 3:'\ 93‘; v

Usin E . 2.10) ain, we have ...»ml :2. ...,- -~’—- .- .waii» ‘ . :- ‘ " ”' ag Q( as ..-... M ,1) ,2,“ l . ..

($33)) _ 60,35 _ 620,3 v _ 30’ng __ 0 (2 30)

6t ,3- - ax, dzkdzj : 6.1:), 8.7:; _ °

(a. ) . ..
{3“ r} , .C - ‘ ‘h 3 *"

Finally, we have i 4) {$72} ,) ’ 5U": Vi“)

1°11 -2‘1‘192 =0 ..‘IbeggL : o (2.31)

6.7:,- 62:), dxj

This equation is in a rate form, and, thus, it governs the stress field irrespective of defor-

mation magnitude and material structure. Satisfaction of Eq.(2.31) not only implies total

39).} '- 9 .

stress equilibrium but also assures that, given an equilibrated stress field, equilibrium is

maintained in the presence of time varying loading [36].



24

Ah

  

3
"

‘Hk v+dv

Figure 2.1 Illustration of relative motion between two particles in space
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Figure 2.2 Illustration of time and material derivatives of Cauchy stress

under a rigid body rotation



Chapter 3

GOVERNING EQUATIONS

3.1 Introduction

Starting from equations of motion, a variational approach is performed to convert the gov-

erning equations into variational equations. Since the variational equations are nonlinear,

linearization based on Tayler’s expansion is required to simplify the nonlinear equations,

‘1 -(

resulting in linear approximation of the variational equations. Subsequently, the fiuesdell

rate of Cauchy stress and the rate-of-deforifiation tensor are introduced into the formulation

to form the final linearized variational equations. Once the linearization formulation is com-

pleted, a finite element method can be used to convert the linearized variational equations

into finite element formulation, which will lead to a symmetric stiffness matrix. The stiffness

matrix can be used in a Newton-Raphson iteration scheme. Therefore, nonlinear solutions

can be obtained systematically by using many small linear increments. This procedure is

consistent with an updated Lagrangian scheme [8]. It is noted that the procedure presented

herein is general and not restricted to any type of deformation (finite or infinitesimal) or

structure (bulky or thin-walled).

26
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3.2 Differential Equations

Consider components of a displacement vector u,(:r1,.i:2,.r3, t) that satisfies the equations

of motion

(90" ..

6—2 + bi = P’Ui

3]

(3.1)

throughout the interior of the body which has a current volume V over the time interval

t E (0, T), and is subjected to the following conditions:

displacement (essential) boundary condition

“i = 91(1'1I32I173I t) 00 F951

traction (natural) boundary condition

h,(:rl,;rg,:r3, t) = Ugjflj on F)“,

and initial conditions

ui(X1IX2IX3I0) = "9(X1IX2IX3l

11,-(X1,X2,X3,0) = v?(X1.X2.X3)

where

129’. Ul‘h‘. = 5

P93 nf‘h, = 0

and S is the surface of the continuum.

Some variables appeared in Eqs.(3.1) through (3.5) are defined as follows:

X,- are components of the material coordinates,

(3.3)
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2:,- are components of the spatial coordinates and r, = X, + u,(;r1,:r2, x3, t),

adj-($132,123, t) are components of the Cauchy (true) stress tensor,

b3($1,'132,$3, t) are components of the body-force vector per unit volume,

p(;r(,.r2, x3, t) is the mass density, and

n, are components of the unit normal vector relative to the boundary 1‘)“.

Since the dot over a variable represents time differentiation, 11.- indicates velocity of a ma-

terial point and ii,- acceleration of the same point. Furthermore, the indices i and j denote
Vrufl 4"

Cartesian coordinates relative to a fixed reference frame and they range from 1 to 3. Re-

peated indices imply a summation over the range.

3.3 Variational Formulation

The variational form of the equations of motion, Eqs.(3.1), can be written as follows

/ 5111' (% + bi - p113)dv = 0 (3.6)

V 6221'

where rim is an arbitrary weight function and must satisfy the homogeneous form of the

essential boundary conditions, i.e., T" i if"; 4 J ,_J _\ 3.1%... ii'i'i‘ 7'12]

J 7 ‘3' i it;

611.,- = 0 on F9.. (3.7)

U

Integrating by parts of Eqs.(3.6) leads to {V w

662:.- ' '
6u,de+/6u,hdf‘ f6—0‘,-jdV =/ 6u,pu,dV (3.8)

v

It is noted that Eq.(3.8) is a result of transferring differentiation of u.“ to 611,, thus

equalizing the continuity requirement on u.- and 6a,- and weakening the requirement on u,- [5].

Now, instead of obtaining an analytical solution to Eq.(3.1), we try to find a numerically

approximated solution by using Eq.(3.8) and its associated boundary conditions.

L
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3.4 Variational Equations

In this stage, it is to find u3(.r(,.r2,.r3, t) that satisfies the variational equation

F“‘(u.) — F‘"‘(u.-) = Mm.) (3.9)

where, by referring to Eq.(3.8) in the previous section,

.‘x’ .‘ ..t. ,,.

.HT‘” " /'

'Fext(u3') = [6a,b32I/+/6mh3dP (3.10)

V I‘

- adu-
Fmtu“) = [v—a-iljfjdv

(3.11)

M(1'1,-) = / 6u3pi23dV (3.12)

v i

{_"I

Some remarks regarding the above equations are listed below.

1. Components of the variational displacement vector 6113- should satisfy appropriate

continuity conditions and

(M3 = 0 on [‘93. (3.13)

2. Eq.(3.9) is subjected to the following initial conditions

u.(XI.X2. X301 = u9(XI, X2. X3)

am. X2. X3») = «I’m. X223). (3.14)

3. The traction boundary conditions have been absorbed in the variational process as

the surface contribution (fr) in Eq.(3.10).

3.5 Linearization of Variational Equations

The governing equation, Eq.(3.9), of a continuum undergoing large deformation (both large

strain and large rotation) is generally nonlinear. The consistent linearization procedure

described in Appendix A can be used to find the linear approximation of the equation.
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Taking the function .7: in Appendix A and recalling Eq.(3.9) yields

J:(.Ev+l)— Fexttl}u+l)_ ant(I:)+l) _ N[(le+l) = 0 (315)

The linearized variational equations can be written as

arm] + airy“) + ElMl

= Fezt(x:’) - p"‘(:c§’) — M(:i§:’) (3.16)

Now, if we restrict the derivation to a static case and ignore the contribution of the body-

force, we let

arm] '= 0,

12,-i=0,"-

£[M] = 0 and

M(:‘i§§’) = 0 V (3.17)

Eq.(3.16) is then reduced to

£lF‘"‘1 = We?) - We?) (3.18)

Therefore, only £[F‘n‘] in Eq.(3.18) needs to be further discussed.

By using Eq.(3.11), Eq.(3.18) becomes

66a.-

var,-

8—6u3 6__in‘

Vo a—Xk a—_j

_3_6u3- __1 -1 -1

[V0 {slimc (vr + r,J rioIJ-ir' + r,” a132(1)}31/0 (3.19)

grim] = c —o.-,-dv]

=£

 

In Eq.(3.19), we introduce W = JdI/b, where V0 is the original (initial) volume of the

continuum. By defining

cm] “.5! A0,,- ‘ (3.20)
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and using Eqs.(A.9) and (A.11 ), we obtain )7”? ‘

g A 06 - 6A V
cm“) =/V a;;{ 5;; 6;——2Ff10a” +1"; [A0,] +ij0'3-Auu}dv (3.21)

Using

6611i F_1 _ 66713"

6X,c km '- 63m

BAum _1 _ BAum

6X1 F” — (931- (3.22)

we obtain '1‘ ~. C , ..

'nt Vaa—iut 0v

1:.[17'1 ] = —j{AO,j + 0vJ-Aukk- U,kAuj,k}dV (3.23)

As explained in Chapter 2, the Cauchy stress rate Aaij is not an objective measure of

stress; it cannot be involved in any constitutive equation directly. Therefore, Eq. (3.23) is
...-a...—

not useful unless the Cauchy stress rate is further specified. Later1n this section, we will

u-”

revisit the definition of the Truesdell rate of Cauchy stress defined in Eq.(2.16).

Recall Eq.(2.5)

L" - —— = 12,-,1- (3.24)

In a static loading condition, the terms ”time increment” and ”velocity” really indicate,

respectively, an increment along the loading path and the corresponding increment of dis-

placement (Aw). Therefore, we rewrite the velocity gradient, rate-of-deformation tensor

and spin tensor in Eqs.(2.5), (2.7) and (2.8), respectively, as follows

4 t

L,, ; 952-1-: uw- (3.25)

0,,- = ~21-(L.-,- +L5) = é-(Auw- + Au“) 2 Aum, (3.26)

W”- -;-(L,-j — L3,) = -21-(Au,-,, — A111,.) 2 (Sum-3 (3.27)

Let‘s define the Truesdell kinetic relations as

Va‘11 = CitjklAuUcJ) (3-28)
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where Cf)“ is determined experimentally or transformed accordingly. Here we transform

the constitutive equation Cf)“ from the generalized Hookie’s law C,J“ by using the following

formula

1

C12“ = Cijkl + 0:35“ — ~2-(Uyk5jz + 0351* + 03955“ + ayldik) (3.29)

The detailed derivation of the above formula is given in Appendix. C. From Eqs.(2.16) and

(3.28), we have ;

rt 3 ,1
u 1

A011 = gum“), — 3Auw¢ + afiAuJ-J + Auuaf’j (3.30)

\~../ 1"“ «1. «WW-"‘5"
./

Now let's recall the final form of £[F‘m] from Eq.(3.23) and denote

A0,?)- = A0,} + dig-Auk; — akauJ-Jc (3.31)

Then Eq.(3.23) becomes 5““ )

- 6611,-
"t —— _ !.£[F‘ ]— V 6:15]- Aa,JdV (3.32)

By substituting Eq.(3.30) into Eq.(3.3l)

A0,”). CuljklAWkJ) + Anglo};- + aflAuJ-J — akauj,k

= C‘s-“Au“,l) + Ufa-Au” (3.33)

. f "

.1- ‘ -.

Therefore, ’ ‘ , .. \

£[F”“‘] = / 511,-‘jC’fJ-HAuQJflV + / 611,-,1-03’1Auudv (3.34)

v v

Later in the finite element formulation, the first term of Eq.(3.34) will lead to the

material stiffness matrix K"m“ . For most of engineering materials we are going to discuss

later, 01‘th possesses both minor and major symmetries, i.e.,

t _ c _ c _ t

CW - jikl - 01ch - 01m: and

01'th = Cltclij (3.35)
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Therefore, only symmetric part of (Suw- is required, i.e.,

. 1 - -

duh,” = §(O’Ug,j + OUJ'J) (3.36)

Hence, the computation of Km“ is quite similar to those of small deformation analysis.

The second term of Eq.(3.34) will lead to the geometrical stiffness matrix K980'". Since

the components of the a}; possess major symmetry, a symmetric K9”" will be obtained from

finite element formulation. From Eqs.(3.10), (3.11), (3.18) and (3.34), the final linearized

q:
variational equation becomes , fin , ,7

1

w
b.“.(

[V 611“J)C:jk,Au(kJ)dV+ [V 6n.,,-ag,Au,,,dV = 1

0614, v

. [F 61“,:th — [V (9.7:; 0,-1-dV
(3'37) \ (‘1',

\\

3.6 Cauchy Stress Update \ (\

., )

J 1
In the previous sections, both displacement and stress components are expressed as incre- J

mental forms when a consistent linearization approach is taken to approximate the varia- A)

tional equations. As discussed in Chapter 2, the Cauchy stress rate. cannot be calculated

directly because it is not objective. On the contrary, the Truesdell rate Of Cauchy stress can

be evaluated via a suitable constitutive equation. Certainly, this cannot be accomplished J

until the displacement increment is identified. Once the Truesdell rate is obtained, Eq.(2. 16)

can be used to calculate the Cauchy stress rate. It is noted that both Cauchy stress and

Cauchy stress rate are referred to a fixed reference frame during deformation. Therefore,

once the Cauchy stress rate is obtained, it is to be added to the Cauchy stress that has been

accumulated over previous increments to become the current Cauchy stress.
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3.7 Newton-Raphson Iteration

The Newton-Raphson iteration scheme is used for incremental solutions. A step-by-step

solution procedure using the equations presented in the previous sections is described below.

1. In the beginning of current increment, a set of trial displacement increments Au, is

assumed.

2. The Truesdell constitutive equation is calculated using Eq.(3.29). A.

1

i -

3. The rate-of-deformation and velocity gradient tensors are identified using Eqs.(3.26)

and (3.25), respectively.

4. The Cauchy stress rate is evaluated using Eq.(3.30).

5. Every term in Eq.(3.37) is then calculated.

6. If the residual (right-hand side of Eq.(3.37)) satisfies the convergency criterion (see

Appendix D), update the Cauchy stress by using 0:3.“ = 01’]- + Aagj, and start the

next increment.

7. If the convergency criterion is not satisfied, solve the system of simultaneous equations,

Eq.(3.37), for a displacement correction vector Au?

8. Let Au? = Am + A115.

9. Repeat the steps starting from Step 3 by using Au? as the new displacement incre-

ment, instead of Au...



Chapter 4

INCREMENTAL

DISPLACEMENT FIELD

4.1 Introduction

An incremental displacement field based on the Generalized Zigzag Theory is presented

in this chapter. It needs to be established before the rate-of-deformation and velocity

gradient tensors can be evaluated. The major advantage of the Generalized Zigzag theory

as described in Chapter 1 is that its variables are independent of the total number of layers

for a composite laminate. The theory was originally proposed by Li & Liu [38] in studying

infinitesimal deformation of a composite laminate. In order~ tobe used for large deformation

'“‘ fi‘h».

analysis, the linear displacement field must be written in an incremental form, The major

“...—0.,”

difference between the infinitesimal deformation and the large deformation analyses is due to )

the fact that, in discussing infinitesimal deformation, the spatial coordinate system always

coincides with the material coordinate system in a continuum. However, in dealing with

‘0“

large deformation, the two coordinate systems must be described separately.

35
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4.2 Displacement Field

Shown in Figure 4.1 for a continuum, when a particle at position P at time t is deformed to

a new position P’ at time t + At, components of the displacement increment of the particle

at time t can be expressed as follows.

mm, .11. z) = Aug(x.y) + Au’nx, y): + Au2(:1:.y)22 + AU3($. y)z3 (4.1)

Awe-.31. z) = 150303131) + Avfix. y). + Aw,M + Av31x,y>z3 (4.2)

Aw"(ar.y.2) = Awo(:r.y) (43)

where 2:, y, z are spatial Cartesian coordinates of the particle P at the instant of time t,

k is a layer-number index, where the bottom layer corresponds to k = 1,

Aug, A123 and Awo are translational displacement components in 11:, y, and 2 directions,

respectively,

Au’f and Avic are first-order rotational displacement components about y and z axes, re-

spectively, and

Au,- and Av,- (z' = 2, 3) are higher-order rotational displacement components about y and z

axes, respectively.

4.3 Displacement Continuity Conditions

Imposing displacement continuity condition at each laminate interface, we have, for let”

1.1

  

 

 

layer where k = 2, ..... , n with n being the total number of layers,

Au"—1 Au’c

z=zk 3:31:

Av""1 = Auk

z=zk z=zk

Awk“ = Aw" = Awo (4.4)

2:74,,  
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By using Eqs.(4.1),(4.2) and (4.3), Eqs.(4.4) can be written as

A116E — A11(§'l = (Au'f'1 — Au’f)zk

A116c — A116"l = (Av’f—l — Avflzk

If we let

Au}, = Auo and A716 = Aug

Eqs.(4.5) become, for k=2,3, ..... , n,

k . .

Ausc = Auo + X:(Au{-1 — Au{)zj

i=2

k .

A116c = Avo + X:(Av{"l — Av{)zj

i=2

Now let’s introduce the kinetic relations for the k“ layer of the laminate,

r. " 0 L11 (7/-.. .i ._ 2.7., . _

‘1 {0m} = [0"]{0}

where

T
k k k I: I: k k

{4 >} 4011.01.14 >.~r.s.).4.).4.)} .

[0"] is the constitutive equation, i.e.

(

r .

051 01‘2 01‘3 0 0 Cfs

sz C22 023 0 0 056

[Ck] _ Cfs 023 C33 0 0 03:6

0 0 0 Cf, 0 0

oooocgso

  €ch 656 03:6 0 0 C36

l

f

I I I, .’

Au") fall“; 6‘ "

(4.7)

(4.8)

(4.10)



(

38

and {D} it the rate-of-deformation tensor, 2

8Auk/82:

BAvk/ay

BAwk/Bz

{D} = l > (4.11)

6A1)"/32: + aAwk/By

BAu"/6z + BAw"/8:1:

  1 BAuk/By-l-dAvk/Bz )

Remark 4.1

Later in the development of a finite element, the (2:,y,z) coordinate system will be so chosen

that it coincides with the coordinate system of each element. The coordinates (1:,y,z) in

general do not coincide with the material principal directions for each lamina.

Remark 4.2

In Eq.(4.10), 025 = 0 implies that the out-o ~plane shear moduli, G13 and 053, are equal. As

can be seen in the following derivation, when interlaminar shear stress continuity conditions

are imposed, it will cause strong coupling between in plane displacement components if

0:5 7‘ 0.

4.4 Interlaminar Shear Stress Continuity Conditions

Impose the following interlaminar shear stress continuity conditions:

k-l k,5: ) = T52)

  2:33 2:21:

(4.12)
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By using Eqs.(4.8), (4.9), (4.10), and (4.11), Eqs.(4.l2) become

1'

Cf,“ 0 Bank-1 /32 + aAwk-l/ay

o (3;,-1 aAuk-l/az+aAwk~l/ax m
-

-k

p

CL 0 BAvk/Bz + BAwk/By

0 0:5 6Auk/8z + BAw"/6:1:
h z=Zk 

By expanding Eq.(4.13), we obtain, for k = 2, 3, ..., n,

Cf4Av’f - CfIIAvl '1 = 29kzkAv2 + 39kngv3 + GkAwW

CfisAu’lc — Cg‘s'lAul'f‘1 = 2kakAu2 + 3kagAu3 + QkAwm

where

Q); = 0:51 —C§5 and 9k = Cit-1‘ 0:4

Giving the following new definition,

Au} = Aul and A1211 = A121

Eq.(4.14) can be rewritten as 3,4 - (68 ’11 :1? ,

Au’f = FfAul + F§Au2 + FfAus + 5'wa0;

Av'f = L’fAm + L§Av2 + L§Av3 + Limo...

where, for k = 1,

1",1 =1, F2l =0, F31=O, I1"),l =0

11:1, 11:0, L§=O, 11:0

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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and, for k = 2,3, ..... , n,

F," =akFl‘l L" =bkL’f"‘

F; = 0.sz ‘1 + 2(Qk/C§5)zk L" = 6.15-1+ 2(e,./Cf,)z,c

F; = 6.17;“ + 3(nk/c§5)zg Lf‘ = 3.154 + ask/0:92; (4-19)

Ff = 6.17;“1 + (121/cg.) L: = b11211“ + (eh/Cf.)

a). = ngl/Cgs, bk = Cir/Ch

4.5 Free Surface Shear Stress Conditions

In most laminated composite studies, surface shear stresses are set free. By imposing the

free shear stress conditions on the top and bottom surfaces of the composite laminate, we

have

=0

z=3n+l

1.35;) = 71(2)

  2:21

= 0 (4.20)

z=zn+l

I

T.1(:z) = Tag?)

  2:21

By using Eqs.(4.8) and (4.16), Eqs.(4.20) can be expressed as

  

' 1
D11 D12 [3112 [ E11 E12 A01 '

= (4.21)

D21 D22 A113 1 E21 5'22 A100,:

. F )

F11 F12 A02 H11 H12 A01

, = (4.22)

F21 F22 A113 1. H21 H22 . Away

where

Du = 23n+1+ Ft? 012 1‘ 32,2”,14- F? 021 = 2251 022 = 32%

E11=—F1n E12=—(Fr+l) E21=—l. E22=—l

(4.23)

F11 = 22714-1 + L3 F12 = 3Z§+1+ L3 F2): 221 F22 = 32?

H11=-L? H12=-(2+l) H21=—1 H22=-l
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Solving Eq.(4.21) and (4.22) for A112, A113, Avg, and Avg, we obtain

A‘UQ = AlAu1+ AgAwoJ, A113 == 81AU1+ BgAwOJ

Avg = ClAvl + CQAw0,y, A173 = DlA‘Ul + DgAwoy (424)

where

A1 = (471m(EllD22 - E21012) A2 = (3557(512022 - E22012)

31: 73:7);(321011- 311021) 32 = (3.2117(322011‘ E12021)

(det)1 = 011022 - 021012 7‘ 0

CI = 7%”:(3115'22 - ”211712) 02 = W(H12F22 ‘7 H22F12)

D1 = W(H21F11- H11F21) D2 = min—,(H22F11- H12F21)

(4802 = 17111722 - F21F12 9‘ 0 (4.25)

Substituting Eqs.(4.24) into Eqs.(4.17), we have

Au’f = RfAui +R’2‘Awo,;

Av’f = 054v) + ogawW (4.26)

Substituting Eqs.(4.26) into Eqs.(4.7), we have

Aug = Aug + SfAul + S§Awo,z

Avg .—. Avo+P1kAvl +P2"Awo,y (4.27)

where, for k=1,

R}=1, 174:0, 0{=0, 021:0

(4.28)

511:0, 521:0, 103:0, P21=0

and, for k=2,3...... ,n,

M=W+m@+&%,%=fi+hw+&%

011: = L’f + 6'ng + DlLk, 0" = L: + 6'ng + Dng
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k k

51:2(81-1-81)4. sip-~14).
(=2 (:2

k k

Pf = 2(01-1 — 00-2,, P; = 2(05-l — 0.3).;7 (4.29)

(:2 (:2

Finally, substituting Eqs.(4.24), (4.26) and (4.27) into Eqs.(4.1), (4.2) and (4.3), we have

' .

the final incremental displacement field , . y 55:",

Ankh. y. z) = Auo(r, y) + (51‘ + R'fz + AIZ2 + Blz3lA"1($1!/)

 

+ (537 + R52 + A222 + 8223) [W (4.30)

Av" (1:, y, z) = Avo(:r, y) + (Pfc + O’fz + 0122 + Dlzs)Av1(x, y)

+ (P; + Oé‘z + 02.22 + 0223) [W] (4.31)

Awk(:r, y, z) = Awo(:r, y) (4.32)

It is noted from Eqs.(4.1), (4.2), (4.3), (4.30), (4.31) and (4.32) that the total number

of variables in the incremental displacement field have been reduced from layer-number

dependent to layer-number independent (seven variables in the final form).

I Remark 4.3"

When we use the free surface shear stress conditions, some errors will be introduced. The

error may come from the following two aspects:

1. The applied load may not necessarily perpendicular to the laminate ’s top and bottom

surfaces in the beginning of the loading history.

2. During deformation, the applied load may not be always perpendicular to the lami-

nate’s top and bottom surfaces.

However, if free surface shear stress conditions are not imposed, the total number of inde-

pendent variables in the incremental displacement field will increase from seven to nine.
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Figure 4. 1 Coordinate systems for a laminate shell



Chapter 5

FINITE ELEMENT

FORMULATION

5.1 Introduction

The purpose of this chapter is to establish a solution procedure for general three-dimensional

shell problems by spatially discretizing the governing equations derived in Chapter 3 via

a finite element method. It is to transform the linearized variational equations into a

system of linear algebraic equations by using the assembly of construction-identical element

. - _

contributions.

Once a linearization formulation is completed, the introduction of finite elements into

the governing equations is merely a matter of selecting appropriate interpolation functions

to approximate the unknown variables element by element. While the choice of appropriate

interpolation functions and associated integration schemes, eg. full, reduced, or selectively

reduced integrations, are still topics of many ongoing research endeavors, we do not attempt

to settle the matter here. Instead, we start with a four-node, quadrilateral shell element

44
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using a four-point integration scheme, and each node has seven degrees of freedom. In

fact, the linearized governing equations we have formulated can be used with any new shell

elements once they become available.

Due to the dissimilarity between laminated composites and isotropic materials, a method

called Zigzag Jacobian is proposed. The purpose of this technique is to emphasize the fact

that the in-plane displacements of laminated shells are in a zigzag fashion through the

laminate thickness. It is different from the Reissner-Mindlin theory, which assumes linear

displacements through laminate thickness. Through the calculation of the Zigzag Jacobian

matrix, kinematics of laminated shells can be expressed more precisely. Although the Zigzag

Jacobian matrix requires nodal displacements at each element on the interfaces, it can be

done in a postprocessing procedure. Hence, the total number of degrees of freedom for each

element will not change.

5.2 Incremental Strains

Recall Eqs.(4.30), (4.31), and (4.32) in the previous chapter, the incremental displacement

equations can be rearranged as

 

  

  

  

Auk = (Aug + SlAul + SkaAwo) + (RfAu1+aRgaA-—-w—o)z

+ (AlAu1+ .42Mfg) +(BAu1+ 3263:") 23 (5.1)

Av" = (Avg + PfAv1+Paa;v°)+(0fAv1+ 01332:“) 2

+ (ClAvl + C263:):22) +(DAv) + 02883300 23 (5.2)

Awk = A100 (53)



46

Define a new vector {Ack } by rearranging the entries of the rate-of-deformation tensor in

Eqs.(4.11) as

BAuk/B'J:

6A1)"/6y

v

A

C
)
!

.
L
b

v{A‘Ek} = BAuk/dy + BAN/6:1:

3A1)" /32 + 613w"/8y

  t BAuk/az +0Awk/Bx J

Combining Eqs.(5.1), (5.2), (5.3), and (5.4), it yields

{Ask} = {ACO}+{A70}+{AK1}Z + {Arc2}z2 + {Arc3}z3 (5.5)

where

0A:g + 55613:, + S; 628ng

2

%m+stfi%r+ss%%#+%m+Pr%m+Pé%-atm > (56)

A{A60}

0

 0

{A70} = 4 0 > (5.7)

  



{M}

{AKQ}

{A53}

A
;

 

 
\
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31:63:. + RI; ('92ng

0f 465‘; + 05 fiflygw

an an 62;
Rffit+offiu+(ag+0§)fi >

2C1Av1 + 2025—3551

 2A1Au1+2Agi‘3—xm

AlaA:l +1426;ng

Clam), +C26263wg

211% +01% + (A2+02)Q3-$§n l

301Av1+3023~é§n

 331m” + 332%?

310A!“ 4.320262%

D1 6A0] +0232?“

3175““ + 01 The: + (32 + Dz) #19sz

0

v

0  
5.3 Incremental Displacement Gradients

Incremental displacement gradients can be expressed as follows:

7 V

6Au£c/6:r

vv (...) away

  1 BAuf/62

J 1': 1,2,3

(5.9)

(5.10)

(5.11)



where

Let

where

V (Auk)

{Aw0}

{Awl}

{sz}

{A1273}
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 1 Aug Aw"

aAu"/8:r

aAu"/6y

BAuk/az

{Awo} + {Awl}z + {A5172}:a2 + {At.:73}z3

r

= 4

 

f

121%!) + 35%?“

R’f 0m + 3562A?

1 2A1Au1+ 2.422%:3m J

l A1135“ ”2%!“

141%“ + fig-5W

1 381Au1 + 382%?

318A:l +826;ng

310A!“ +8262Awn

0

‘

V

8Aun +Sk6Aul +Sk02‘9Aw

137"“ + Sfifi‘i + 35779;“sz

R’fAul + #513?

v

 

v

 

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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Similarly,

BAvk/Bz

V(A"k) = BAvk/By

6Avk/Bz

{A1100} + {Awl }z + {A<p2}~’-2 + {1-‘-w3}2r3

where

0A? + Pram. + Pga’Awn

2
0Avg + PlkaAv] + P5362100{Ac/)0}

ofAm + 045-510“

V

0A0 I: 02A

of ‘46: + 02 48203

011: 3A0] + 0; 0233109

2012151 + 202%?“ J

v{M1} =

 
Cl 6A1); + 02 62wa

{Acp2} = Cl 8A1); + 02 023100

301131;, + 302%20

013A:1 +0219;wa W

3 _

{AW } "' 0181951- +02% v

0  
and

' 6Aw"/6:r

V (Awk) = BAwk/ay l = {A190}

 BAw"/6z 1

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)



where

$955322

6.:

{A190} = 5%.), (5.24)

0

5.4 Finite Element Description of Displacements

Here, we introduce a two-dimensional quadrilateral element and use bilinear shape functions

to describe the unknown displacements within each element [28], i.e.

4

Auo = ZNAEWHAUOL

0:1

4

A111 = ZNa(£a7l)(Aul)a

0:1

4

A‘vo = ZNaKJIHAvola

0:1

4

Am = ZN.(£,n)(Av1), (525)
0:1

where the bilinear shape function Nu is for the a"l node in the element. Figure 5.1 delineates

a typical element and shape functions for corresponding nodes. The natural coordinates 6

and n have values between -1 and l. The nodal unknowns (Auo)a, (Au1)a, (Avo)a, and

(Av1)a are for the at" node.

Since Awo, BAwo/Bz, and BAwo/By are involved in Eqs.(5.1), (5.2), and (5.3) as degrees

of freedom, shape functions with C1 continuity are required for Awo. The so-called Hermite

cubic shape functions [55] are required for describing Awo, i.e.

4

Awo = Z Ha(£.n)qa (526)

0:1



where

 

{(Awola, ( (5.2s)

Descriptions of Ha are outlined in Figure 5.1. By substituting Eqs.(5.25) and (5.26) into

Eqs.(5.1) through (5.3), we have

({XUQ}+{XU1}Z+{XU2}22+{XU3}23) {Au}(28x1)

({XVO} +{Xv112 + {XI/2122 + {XVa} 23) Mum...)

{XW0}(1x28){Au}(23X1)

(5.29)

(5.30) .

(5.31)

Similarly, we can rewrite other equations with use of Eqs.(5.25) and (5.26). From Eqs.(5.6)

through (5.10), we have

{
x

= [MA](5x2s){A"}(28x1)

= [MBl(5x28){A”}(28x1)

= [MDll(5x28){A"}(2sx 1)

= [MD2l(5x28){Au}(28x1)

= [MD3l(5x28){Au}(28x1)

[GUol(3x28){A“}(2sx1)

[GU1](3X28) {A“}(28x 1)

[GU2l(3x28){A“}(28x 1)

[GU3l(3x28) {A“}(28x 1)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



From Eqs.(5.19) through (5.22), we have

{515°}(3xu = [GVO](3x23){Au}(28xU (5.41)

{Atpl}(3xl) — [GV(](3X28){Au}(23x1) (5.42)

{Afihhu = [0%](3X28){Au}(28x1) (5.43)

{MLM = [6161(34281{Au}(23x1, (5.44)

. Finally, from Eq.(5.24), we have

{A190}(3X1) = [GW0](3X28){Au}(28x1) (5.45)

where

{Au}T= {(Auo),, (Avon. (4240),. (414),. (4121),, (5%). (0%).

(414)., (Ave)... (A1402, (4141).. (4111),, (19.5%),. (1%),

(4141)., (41:013. (4140)., (Anna, (A120,. (£350), (£3541),

(Am)... (4220)., (4140).. (4211).. (4121)., (13%),. (%“),}

(5.46)

Detailed components of {XUO}, {XUI}, {XU2}, {XU3}, {XVo}, {XVl}, {XVg}, {XV3},

{XW0}a [MA], [M3]: [M01], [M02]: [M03], [GUola [G01], [GI/2]: [GU3], [CV0], [Cl/1],

[GVQ], [6V3], and [GW3] are shown in Appendix B. It should be noted that the subscript

numbers outside the parenthesis in the above equations indicate the dimension of the array.

Hence, the incremental strains and increment displacement gradients in Eqs.(5.5), (5.13),

(5.18), and (5.23) can be rewritten, respectively, as

{Ark} = ([MA]+[MB]+[M01]Z+[MDQ]Z2+[MD3]Z3){AU} (5.47)

V(Auk) = ([0110) + [011,12 + [GU2]22 + (0031.23) {Au} (5.48)

V(Av") = ([Gvo]+[GV,]z+[GV2]z2+[GV3]z3){Au} (5.49)

V5515") = [GWo]{Au} (5.50)
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5.5 Description of Geometry

Under the Reissner-Mindlin theory, a straight line normal to the mid-plane of a shell is

straight but not necessarily normal to the mid-plane after deformation. However, as shown

at the bottom of Figure 5.2, a straight line normal to the mid-plane of a composite laminate

before deformation is neither normal to the mid-plane nor a straight line after deformation.

Instead, it becomes a zigzag line. As explained previously, this phenomenon is due to the

difference of material properties across the laminate interfaces. It is also noted that each

segment of the zigzag line is generally not straight inside each layer.

By combining the nodal displacements and shape functions presented in the previous

section, it is possible to describe the displacements anywhere within an element. Similarly,

it requires a method to mathematically delineate the geometry of an element so that the

coordinates of any point within the element can be characterized. Intuitively, one will

think of using a consistent way for both the kinematics and the geometry. This is how

isoparametric elements are utilized. Apparently, for laminated shells, the isoparametric

concept needs some modifications. The following description for the geometry of a laminate

shell element is proposed. The method is called Zigzag Jacobian. It is different from

the traditional Reissner-Mindlin way of constructing a Jacobianmatrix and is specifically

daigned for laminated shells with a zigzag displacement field.

First of all, segments of the zigzag line through the laminate thickness are assumed

linear for individual layers. Although in reality, each line segment is of a high-order curve,

it is not too far away from a linear line assumption because the thickness of each layer

is usually very thin. The coordinates (2:, y, z) of a point anywhere within an element is



expressed below.

:1: xi“

4

1 + C

y = Na(€»U)T yg‘l'l

0:1

 J

0
1

p
—
d

V

As shown in Figure 5.2, a = 1,2,3, 4 are the local nodal numbers for a typical element. The

interface number k is counted from the bottom free surface, and (E, n, C) are coordinates of

a natural coordinate systems. In addition, Na(£, n) is the same bilinear shape functions as

used in the previous section, and (:rfi,y,’,‘, 2],“) is the nodal coordinates for the a"I node at

the 16‘" interface. The nodal coordinates are to be found after solving the assembled finite

element equations for unknown displacements.

By definition, the Jacobian matrix can be expressed in the following form:
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(5.52)

(5.53)

(5.54)



Therefore, the Jacobian matrix can be rewritten as follows. The summation notation is

omitted in the following matrices with an understanding that repeated indices indicate

summation over the range.

 

. %l%§xfi+l Q(%’al_;§yfi+1 Qa'lié‘l—igzgfl ‘

[J] = %IY’11_12~§$§+1 871371125ka §%1%$z5+1

_ O O 0 ‘

L£1_1_2_g$1.5++1 %.._1%gyg+1 agglggzgfl .

+ 4.111442441414111 %.1_-.,.

_ 0 0 0 .

’ 0 0 0 I

+ 0 0 0

.. Na G.) k+1 N (“9115“ N 6) H1.

I 0 0 0 -

+ 0 0 0

 
LGNEgé ($:+1 +5515) Qflyvégé (115“ + 11:) Li( k+1+ zit)

= 441141-14) 4141142) 14411114)

_ 0 0 0 .

an; g ($12“ _1.k) a): §(yg+1 _ 115) 61: g ( 5+1 21:) I

+ 6N % (3):“ _ 35) EN g (3,131“ _ 31:) 6N % (4+1 _ 2:) (5.56)  



Finally, we have
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5.6 Stiffness Matrices and Force Vectors

 

 

I :(411+ 4) 4-(411 +14) :(411+ 4)

%(;r’2‘+1+.r’2‘) %(y.§“+y§) %(z§+l+z§) +

:(4+1+4) :(y:+1+y:) :(z:+1+4)

4(4114-4) :(y:+1+y:) :(4+1+4),

4(411 - 4) 4( 1+1— 41:) 4(4111— 4) ‘

14(1-4) :(411-4) :(41-4) (5.57)

:(411- 4) 4(1):“ - 4) (4+1— 4)

_ 4(22’11-25) %(y§+‘-yf) 5(ZIH-25‘) J

'5 5.1 4‘ 14‘

3% 3'3 36 ‘ £5 ’

_%§ 32‘ 3%, (50-,

g; ,

[J]'1< % ) (5.58)

1 a": .

Recall the linearized variational equation, Eq. (3.37). For each element, the governing equa-

tion can be expressed as

'5':

. y}; I I)

I

} t .

*4.

/

)

Li‘sgleICt(k)]{A€k}dV+£V(6uk)T[U]V(Auk)dV +

/ V(6v")T[a]V(Av")dV-1- / V(6w'=)T[a]V(Aw’1)dv =
V V

£{6uf}{h}dF+/“/{6ek}T{a}dV



57

In the above equation, {a} is the Cauchy stress vector, i.e.

{0} = {OlaayaT3y1Ty21TZI}Ta (5.60)

[a] is the Cauchy stress matrix, i.e.

0’: Try 72::

[a]: Txy 0y Tyz a (5.61)

  _ sz rm 0 J

and [C‘m] is the Truesdell constitutive equation (recall Eq.(3.29)) for the 16‘“ layer.

(1) Internal Force Vector

Substituting Eq.(5.47) into the second term on the right-hand side of Eq.(5.59), components

of the internal force vector can be expressed as

{F1111} = [V ([MA1T + [MB]T + [MD1]Tz + [MD2]722 + [M031Tz3) {a}dV (5.62)

(2) Materaial Stiffness Matrix

Substituting Eq.(5.47) into the first term of the left-hand side of Eq.(5.59), components of

the material stiffness matrix can be expressed as

[KW‘] = [V ([MA1T + [MB]T+ [M0,]Tz+ [M02152 + [M031Tz3) [0‘0”]

([MA] + [MB] + [510,12 + [M02122 + [1403123)41/

/ [MA]T[C‘(")][MA]dV+ / [MA]T[C‘("’][MB]dV
V V

+ /V[MB]T[C‘("’][MA]dV+ /V[MB]T[C‘“‘)][MB]dV

+ / [MDI]T[C‘(k’]z[MA]dV+ / [MDI]T[C‘(")]2[MB]dV
V V

+ / [MA]T[C‘<’1>]z[MD,]dV+ / [MB]T[C‘<’1)]z[MD,]dV

V V

+ [V [M0,]T[ct<k1122[MD,]dv+ [V[M02]T[c‘<k1)z?[MA)dv
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+ /V[MDQ]T[C‘("’]22[MB]dV+ /V[MA]T[C‘(“]22[MDgldV

+ L[MB]T[C‘(k’]z2[MDg]dV + [V[MD(]T[C‘(")]z3[MDg]dV

+ [v [M02]T[C‘<’1’]z3[MD,]dV+ [V [M03]T[C‘<’1)]z3[MA]dV

+ /V[M03]T[C‘(")]z3[MB]dV+ /V[MA]T[C"(")]23[MD;;]dV
+ /V[MB]T[C‘("’]23[MD3]dV+ /V[MDI]T[C‘(")]24[MD;;]dV

+ [V [M03]T[C‘(’°)]z4[MDl]dV + [V [M02]T[c‘<'1)]z4[M02)dv

+ [v [MDg]T[C‘(")]25[MDg]dV + [Imogficflknémoflw

+ [V [M03]T[C"(")]25[M03]dV (5.63)

(3) Geometric Stiffness Matrix

Substituting Eqs.(5.48), (5.49), and (5.50) into the last three terms on the left-hand side of

Eq. (5.59), components of the geometric stiffness matrix can be expressed as

[K911111111 = [V ([GU0]T + [00,]Tz + [00211122 + [GU3]Tz3) [a]

([0110] + [GU1]z + [002122 + [GU3]23) av

+ [V ([GVolT + [014]?) + [014)Tz'1 + [GV;]T23) [a]

([GVO] + [014); + [014122 + (014,123) 41/

+ /V[GWO]T[a]dV

= [V [GU0]T[a][GUo]dV+ [v [GU0]T[a]z[GU1]dV

+ / [GU1]T[a]z[GUo]dV+ / [GU1]T[0]22[GU1]dV
V V

+ / [GU0]T[a]z2[GU2]dV+ / [GU2]T[a]22[GUo]dV
V V

+ j;[GUo]T[a]z3[GU3]dV + /V[GU3]T[a]z3[GUo]dV

+ / [GU1]T[a]z3[GU2]dV+ / [GU2]T[0]23[GU1]dV
V V

+ / [GU2]T[a]z4[GU2]dV+ / [GU,]T[a]z4 [0031.117
V V
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+ /V[GU.3]T[0]2“[GU(]dV+ /V[GU2]T[a]zS[GU3]dV

+ /,,[GU31T1rrlzslGU214V + /V[GU3]T[0]26[GU3]dV

+ /V[GV0]T[0][GVo]dV+ /V[GV0]T[a]z[GV(]dV

+ / [CV1]T[a]z[GVo]dV+/ [GVO]T[a]22[GV2]dV
V V

+ / [0V2]T[a]22[GI/b]dV+ / [GVl]T[a]22[GV(]dV
V V

+ /V[GVo]T[a]z3[GV3]dV+ /V[GV3]T[a]z3[GI/b]dv

+ / [GVI]T[a]z3[GV2]dV+ / [GVg]T[a]z3[GV1]dV
V V

+ / [GVI]T[a]z4[GV3]dV+ / [Gv3]T[a]z4[Gv,)dv
V V

+ / [GI/2]T[a]z‘[GV2]dV+ / [GVg]T[a]z5[GV3,]dV
V V

+ / [GVg]T[a]z5[GV2]dV+ / [0V3]T[o]z6[GV3]dV
V V

+ [v [GWO]T[0][GWo]dV (5.64)

(4) External Force Vector

The first term on the right-hand side of Eq.(5.59) can be written in the following form:

[r {6111‘} {h}dr‘ = [S (aukh, + 5015, + 6wkhz) 115‘ (5.65)

where h;, h,,, and h, are tractions in the element 1:, y, and 2 directions, respectively, and S‘

is current top and bottom surface areas. By using Eqs.(5.29), (5.30), and (5.31), components

of the external force vector become

{Fm} = / (({xvo}T + {XU,}Tz + {2(a)}T 22 + {XU3}T 23) h,
S.

+ ({XVo}T + {XV1}T Z + {XV2}T 22 + {XV3}T 23) h”

+ {XW0}T 5,)45' (5.66)
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Figure 5.2 Illustration ofelement and natural coordinate systems

for a typical element



Chapter 6

NUMERICAL STUDIES

6.1 Introduction

Following the formulation of using the Generalized Zigzag Theory for large deformation

analysis in the previous chapter, a finite element program named LACOS (LAminated

COmposite Shells) was programmed using FORTRAN. It was then linked to the commercial

software ABAQUS/Standard as a new addition to its element library. This particularly

user-defined element was called ”U101”, which followed the naming convention required by

ABAQUS/Standard. Several case studies are performed in this chapter. The case studies

are conducted not only to validate the U101 element but also to evaluate the new element

in various applications. The entire chapter is divided into two major parts: linear solutions

and nonlinear solutions.

Linear solutions are acceptable in many structural mechanics problems. Linear problems

that have analytical solutions play a primary role in the validation of a finite element for-

mulation based on a new theory. These linear problems not only help identify programming

errors but also help filter numerical problems such as shear locking.

62
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Nonlinear solutions in laminated composite analysis occur when structures are either

subjected to large deformation or made of special, laminate stacking-sequences such as

unsymmetric and angle—ply laminates. In the second part of this chapter, both experimental

and analytical cases resulting in nonlinear solutions are examined. All the calculations of

study cases were performed on a HP/C200 workstation with double-precision arithmetic.

6.2 Cross-Ply Laminate Under Cylindrical Bending

As discussed in Chapter 4, the present work is based on the Generalized Zigzag Theory

(ZIGZAG). Since there exists an exact solution for a simply supported, cross-ply laminate

subjected to sinusoidal transverse-pressure, it is the first objective of this study to compare

the theoretical solutions from ZIGZAG with those from other laminate theories. The linear

solutions were presented by Pagano [53] by solving the problem based on a plane strain

assumption. The results are expressed in terms of displacements and stresses through the

laminate thickness.

Among the various laminate theories available, the Interlaminar Shear Stress Conti-

nuity Theory (ISSCT) [32] represents a class of layerwise theories with the total number

of unknown variables dependent on the number of layers. It therefore requires very high

computational time in solving the variables by finite element or other numerical methods.

A third-order shear deformation theory presented by Lo, Christensen and Wu [44, 45]

represents a family of ”global” (instead of layerwise) theories that use high-order polynomi-

als to describe the displacement fields through the laminate thickness, namely High-order

Shear Deformation Theories (HSDT). Like ZIGZAG and HSDT, theFirskorderSIiéTar De-

formation Theory (FSDT)_also has five unknown variables and has been now commonly
_. A c‘.u.—-v

.1.‘I

used in commercial software such as ABAQUS, LS—DYNA3D, PAM-CRASH, and RADIOSS
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CRASH. The theoretical solutions to the Pagano's problem based on the ZIGZAG, ISSCT,

HSDT, and FSDT can be obtained by followingthe Navier solution procedure using double-

. adm-

‘ '- ~n”-or—a~~"‘""

Fourier series.

u
“

'5.

“ta—... w.“ »-°

A simply supported, [0/90/0] laminate under cylindrical bending is taken as a case

study. The distributions of in-plane displacement is shown in Figure 6.1 for various laminate

theories. The composite laminate of the length-to-thickness ratio equal to 4 is used in this

study. As shown in the figure, the in-plane displacement distributions are measured at the

end of the laminate. The values are normalized by a factor involving elastic constants,

thickness of laminate, and the intensity of applied pressure. The kinky patterns from

ZIGZAG and ISSCT are clearly illustrated and match with the elasticity solution closely.

The solution from HSDT is a smooth cubic polynomial curve deviating from the elastic

solution. Also shown in the figure is the result from FSDT, which is only a straight line of

a constant slope.

The distribution of the in-plane normal stress through the laminate thickness is depicted

in Figure 6.2. Again, solutions from ZIGZAG and ISSCT follow the elasticity solution

closely, while HSDT gives much smaller values near the interfaces and FSDT detours to the

opposite side of the elasticity solution. It is noted that due to dissimilar material properties

(in the sense of different fiber orientations) between adjacent layers, the in-plane normal

stress distribution is not continuous through the thickness.

The distributions of the transverse shear stress at the laminate end is shown in Fig-

ure 6.3. In this case, ISSCT still matches the elasticity solution very well, while ZIGZAG

gives a continuous distribution with certain inaccuracy. However, the distributions of the

transverse shear stresses from both HSDT and FSDT are discontinuous through the lami-

nate thickness.

or“,
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It is clear from the above examples that ISSCT and ZIGZAG present reasonably accurate

results when compared to the linear elastic solutions. However, the results from HSDT and

FSDT are inaccurate, especially in the transverse shear stresses. Although ZIGZAG is less

accurate than ISSCT, it becomes clear that ZIGZAG is a better choice when considering

both numerical accuracy and computational efficiencies.

Remark 6.1

As the ratio of length-to-thickness of a laminate increases, e. g. a thin laminate, the difl'er-

ence of transverse shear stress between ZIGZAG and elasticity becomes insignificant.

As an example for the above statement, the maximum error for ZIGZAG is 5.4% (shown

in Figure 6.4) for the ratio of length-to-thickness equal to 10, while 30% for the ratio of

length-to-thickness equal to 4.

The above example of cylindrical bending is investigated again by using U101 elements

with a 10x1 mesh. The results in displacements and stresses are compared with the theoret-

ical solutions from ZIGZAG. The purpose of this study is to evaluate the U101 element and

to estimate its feasibility in solving more complicated structural problems where theoretical

solutions can not be obtained.

Shown in Figure 6.5 are the in-plane displacements. Excellent agreements exist between

the finite element results at the integration points and the corresponding theoretical solu-

tions of ZIGZAG. The finite element solution and the theoretical solutions are expressed

by filled circles and a solid line, respectively. Excellent agreement can also be found in

Figures 6.6, 6.7 and 6.8 for comparisons of in-plane normal stress, transverse shear stress

and transverse deflection, respectively.
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Figure 6. l In-plane displacement distribution of a S=4,

[0/90/0] laminate under cylindrical bending



67

 

 

 

Elasticity

  
 

b

 

 

 

 

 

 

 
 

         
 

[0/90/01 cross-ply laminate

S=L/h=4

L : 254.0 mm : 10.0 inch

E11 = 6.9 GPa :1x10° psi

52 : 172.5 GPa : 25x10° psi

0112 : 3.45 GPa : 0.5x10° psi

G123 :1.3s GPa : 0.21110" psi

V12 = v23 = 0.25

 
10. 15. 20.

q = QoSiM-xE)

 

  "-fifi...............J
 

  

L >

 

Figure 6.2 In-plane normal stress distribution of a S=4,

[0/90/0] laminate under cylindrical bending
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Figure 6.3 Transverse shear stress distribution of a S=4,

[0/90/0] laminate under cylindrical bending
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Figure 6.4 Transverse shear stress distribution of a 8:10,

[W90/0] laminate under cylindrical bending
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theoretical solutions of in-plane displacement distribution
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6.3 Bending of Rectangular Laminate

The finite element program is next applied to a square plate made of isotropic material and

subjected to uniformly distributed transverse-pressure. Due to the biaxial symmetry of the

structure, only one quarter of the plate was modeled and symmetric boundary conditions

were imposed. Three different mesh densities (2x2, 4x4, and 8x8) were investigated for

convergency. Also, three length-to—thickness ratios (S = a/h = 5, 10 and 100) were exam-

ined for she-ailgclging. The normalized, central deflection is summarized in Table 6.1. The

material properties and the method of normalization are also given in the table.

ABAQUS/S4R [2, 3] is a four-node, doubly curved, reduced integration shell element

with'hourglass control and is based on the First-order Shear Deformation Theory (FSDT).

The element also considers finite membrane strain and thickness change. As shown in the

previous study, elements based on FSDT do not have correct displacement and stress cal-

culations through the laminate thickness, especially in-plane displacements and transverse

shear stresses. When reasonable transverse stresses are desired, the ABAQUS/S4R element

uses in-plane stresses and equilibrium equations to recover them. The four-node, 28 degree-

of-freedom element formulated by Palazotto and Dennis [55] is a fully integrated element

based on a fourth-order shear deformation theory. Also shown in the table are the closed-

form, Navier solutions generated by Reddy [62]. Reddy’s results were based on a third-order

shear deformation theory. Again, it should be pointed out that recovering techniques for

transverse shear stresses through equilibrium equations have been used by Palazotto and

Dennis and Reddy. It can be seen from Table 6.1 that the difference of transverse deflection

between U101 and Reddy’s closed-form solution is within 1% when an 8x8 mesh is used.

Based on a study of various length-to-thickness ratios, U101 does not present any shear

locking when the thickness of laminate decreases.
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As a second example, the same structure is made of a zero-degree, orthotropic laminate.

By using an 8x8 mesh, the normalized, central deflection and stresses of three length-to-

thickness ratios are shown in Table 6.2. The material properties and normalization factor

are also given in the table. The three-dimensional elasticity solutions were given by Srinivas

and Rao [67]. Reddy's closed-form solutions [62] were also given for comparison. In general,

the solutions from U101 agree very well with the three-dimensional elasticity results.

The difference of the transverse deflection between U101 and three-dimensional elasticity

is within 1%. The results from the Classical Laminate Theory (CLT) are also given in the

table. It is shown that error increases as the length-to-thickness ratio increases because

of the negligence of the shear deformation effect. In other words, CLT is not suitable for

thick composite laminates. The in—plane stress 0,, is taken at an integration point near

the center of the laminate, while the transverse shear stress or: is chosen at an integration

point near the laminate boundary. The stresses from U101 do not perform as well as the

transverse deflection when compared with the three-dimensional elasticity solutions. It is

believed that mesh refinement near the stress sampling locations is required because stress

gradients around these regions are very large, especially when the laminate is thin [55]. The

difference is also believed to be due to the fact that the stresses from U101 are recorded at

integration points, not exactly at the boundary.

The next case deals with a simply-supported [0/90/0], rectangular laminate under si-

nusoidal transverse-pressure. The normalized transverse-deflections at the center of the

laminate are summarized in Table 6.3 for four different length-to-thickness ratios. Also

given in the table are material properties, loading conditions, and the normalization factor.

The threedimensional elasticity solutions were given by Pagano [54]. An 8x8 mesh was

used in the finite element solutions based on U101, ABAQUS/S4R and Palazotto and Den-
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nis [55]. It is observed from Table 6.3 that U101 outperforms ABAQUS/S4R and Palazotto

and Dennis, and even Reddy’s closed-form solutions at small length-to-thickness ratios. The

superiority diminishes when the laminate becomes thin.



Table 6.1 Normalized, central transversedeflection of a simply supported, isotropic,

77

square laminate under uniform transverse-pressure

 

 

 

 

     
 

 

 

 

 

 

 

   
 

 

 

 

       

S=a/h Mesh 0101 A8AQUS/S48 Palazotto& Reddy'

Dennis

2x2 0.0314 0.0450 0.0240

100 4x4 0.0430 0.0448 0.0425

8118 0.0441 0.0444 0.0443 0.0444

I 2x2 | 0.0428 | 0.0478 0.0481 I

10 | 41141 0.0458 | 0.0488 0.0488 |

] 8x8] 0.0484 | 0.0488 ] 0.0487 | 0.0487

| 2x2 ] 0.0500 ] 0.0549 | 0.0538 |

5 | 4114 | 0.0525 ] 0.0539 | 0.0538 ]

| 8x8 | 0.0538] 0.0538 J 0.0536 ] 0.0535

"’ theoretical solutions A y

Simply supported

1‘ '''''''t'''''' 7

isotropic material : ]

E = 68.9 GPa ‘01 l '3

8 . °I ' 1:
=10.0x10 p81 5, '8.

v -03 8' ' a
‘ ' 3' symmetry ] g
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, _>.~ I 2‘ x
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Table 6.2 Normalized deflection and stresses of a simply supported, orthotropic,

square laminate under uniform transverse-pressure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

S = a / h

20 10 7.143

U101 10394 686.7 190.6

ABAQUS/S4Fl 10486 691 .4 191 .9

W Palazotto 8. Dennis 10448 689.8 191.7

Reddy‘ 10450 689.5 191.6

SD Elasticity' 10443 688.6 191.1

CLT' 10250 640.7 166.8

U101 138.9 34.34 17.47

ABAQUS/S4Fl 142.8 35.34 17.81

c Palazotto 81 Dennis 144.6 36.12 18.41

Reddy‘ 144.3 36.01 18.34

3D Elasticlty' 144.3 36.02 18.35

U101 10.23 5.11 3.63

ABAQUS/S4R 10.27 5.12 3.64

1: Palazatto 81 Dennis 8.66 5.07 3.70

Reddy' 10.85 5.38 3.81

30 Elasticity' 10.87 5.34 3.73    
 

" theoretical solutions

orthotropic material [0]

15,, : 143.82 GPa : 20.83 x 10° psi

52 : 75.43 GPa : 10.94 x 10° psi

V12 = 0.44

8,2 : 42.08 GPa = 8.1 x 10° psi

1313 : 25.58 GPa : 3.71 x 10° psi

8123 = 25.58 GPa : 3.71 x 10° psi

a / b = 1.0 n

8 x 8 mesh

uniform pressure = q

normalized results:

W : 23.2x1o°w,/qh

o = oy (0,0.h/2) / q

1: = ryz (0,-b/2, 0) / q

 

simply supported

a



Table 6.3 Normalized, central transverse-deflection of a simply supported,

rectangular [0/90/0] laminate under sinusoidal transverse-pressure

 

 

 

 

 

       
 

 

 

 

 

 

 

 

 

         

 

S = a/ h U101 ABAQUS/S4Fl Palazotto 81 Reddy‘ 30 Elasticity"

Dennis

4 2.742 3.164 2.647 2.641 2.82

10 0.912 0.936 0.864 0.862 0.919

20 0.604 0.613 0.595 0.594 0.610

100 0.503 0.509 0.507 0.507 0.508

" theoretical solutions

[0/90/0] laminate

E1, : 258.8 GPa : 37.5 x 10° psi 1 y

522: 10.3 GPa : 1.5x 10° psi

v12 = 0.25 simply supported

G12 : 5.2 GPa : 0.75 x 10° psi {'““““

613 = 2.1 GPa = 0.3 x 10° psi I E‘

8 . '0 I o ‘3

623:2.1 GPa=0.3x 10 ps1 g. E 1:

a = 203.2 mm = 8.0 inch 8:] g. 5%.

b = 609.6 mm = 24.0 inch 3 I a >

3 X 3 mesh ~31 symmetry ] 2'5 x

sinusoidal pressure = ,5] 1%

q,sin[11(x+a/2)/a] sin[n(y+b/2)/b] : :

normalized deflection = l ]

100w,h352/ qoa‘ '1 _________________1

simply supported

a
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6.4 Shear Locking

Shear locking is a condition in which the element stiffness is immensely overestimated for any

reasonable mesh density, thus yielding near-zero solutions [68]. It is observed that some fully

integrated, Co shell elements that are based on the First-order Shear Deformation Theory

are vulnerable to the shear-locking phenomenon [80].

Using a straight beam as an example, the deflection of a thin beam should only be

governed by the bending stifl'ness matrix because the transverse shear deformation is neg-

ligible. However, in the case of shear locking as the beam becomes slender, the traverse

shear stiffness matrix grows in relation to the bending stiffness matrix as a result of enforc-

ing the constraint of zero transverse shear strain. Accordingly, the traverse shear stiffness

matrix acts as a penalty function that yields near-zero transverse-deflection. Even if more

elements are used in this case, every additional element usually brings equal amounts of

degrees of freedom and constraints when the full integration scheme is used. Therefore,

using more elements will not help alleviate the problem. The proceeding arguments can

also be expanded to plate problems.

The U101 element does not have a shear-locking problem. The key reason is that the

Hermite cubic shape functions are used in the U101 element to describe the transverse

deflection 10. Using the straight beam case as an example again, the U101 element has Aw,

Aw,3, and A111 as degrees of freedom at each node; hence, the constraint of transverse shear

strain is imposed on A111,; and Aul but not directly on the transverse deflection Aw. The

aforementioned case presented in Table 6.1 was used again to verify, to some extent, this

claim. The new length-to—thickness ratio was chosen as 1000 ( =a/h) for the U101 element

via an 8x8 mesh, while the other conditions were kept the same. The result from the U101

element is 98.8% of the' theoretical solution by Timonshenko and Woinowsky-Krieger [71].
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6.5 Patch Tests

The patch test was first given by Irons [9, 25]. Many authors have emphasized the impor-

tance of this test [8, 14, 21, 22, 79]. The consensus is as follows.

1. Passing the patch test is a sufficient condition to convergency but not a necessary

condition. Under a convergent situation, the behavior of the real structure can be

reproduced as the size of element decreases.

2. It is important to use irregular element shapes in constructing a patch because one 6-

nite element formulation may pass the patch test in certain special mesh configuration

but not in others.

In the patch test, the elements are assembled in such a way that at least one node

is completely surrounded by elements. In performing the test, a displacement field that

provides an arbitrary state of constant strain, or a consistent nodal loading, is applied to the

boundary nodes. Nodes not on the boundary are neither loaded nor restrained. Solutions

for degrees of freedom of all nodes that are not prescribed are sought, and the strains (or

stresses) in all elements are computed. The element passes the patch test if the resulting

displacements at the internal nodal points correspond with the applied displacement field

and the computed strains and stresses at every point in every element agree with analytical

values to the limit of computer accuracy [14, 21].

As given in Table 6.4, the U101 element passed the membrane patch test. However, the

U101 element did not pass the bending patch test when using the same mesh configuration.

The failure in passing the bending patch test is believed to be caused by the mixed approach

used in the U101 element [55]. That is, the U101 element uses the nonconforming Hermite

cubic shape functions for the variables of Aw, AwJ, and Awm while bilinear shape functions
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for the variables of Au, Av, Aul, and Am. The reason for using the mixed approach is

because Aw needs C l continuity, while Au, Av, A111, and Avl need only C'0 continuity. In

the bending patch, a pure bending mode is created, either by prescribing rotational degrees

of freedom or by applying bending moments. It is impossible to have zero transverse

shear strain when for example Aw; and A111 are interpolated differently. One way the

problem may be conquered is to reduce the continuity requirement of Aw from C1 to C0 by

artificially imposing a certain type of constraint on transverse shear strains, e.g. ”discrete

Kirchhoff” [21]. The consequence of passing the membrane and failing the bending patch

tests can be also viewed from the convergency point. The convergency is guaranteed for

the U101 element under a membrane loading; however, it may or may not converge under

bending. As can seen in the previous cases and later examples, the U101 element has not

shown any unconvergency problem under bending conditions.



Table 6.4 Results of membrane patch test

 

 

    

coorcflnates Woretical solutfins U101 solutions

node (x,y) (U,V)x10’° (U,V)x10'3

. 1 (0.04, 0.02) (005?0.04) (0.05, 0.04)

2 (0.18, 0.03) (0.195, 0.120) (0.195, 0.120)

3 (0.16, 0.08) (0200,0180) (0.200, 0.160)

4 (0.08, 0.08) (0.120, 0.120) (0.120, 0.120)   

linear, elastic material

E1, : 1.0 x 10°

V12 = 0.25

h = 0.001

at all exterior nodes:

0 : 10°(x + y/2)

v : 10'°(y + x/2)

at all nodes:

W = 0

AV
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6.6 Large Deflection Effects in Unsymmetric Cross-ply Com-

posite Laminates

Due to the existence of bending-stretching coupling, nonlinear deflection occurred even

when an unsymmetric composite laminate is under a small loading. Sun and Chin [70]

presented some theoretical solutions for an unsymmetric cross-ply laminate subjected to

uniform transverse-pressure. Their analysis was based on the Kirchoff-Love hypothesis, in

which the effects of transverse shear deformation were not taken into account. They also

used a large deformation theory in von Kc’irmén sense. Accordingly, a special, linear ordinary

differential equation with constant coefficients was solved using a plane strain assumption

for a. laminate under a pin-pin boundary condition.

The relation between the uniform pressure and the normalized, maximal transverse-

deflection is shown in Figure 6.9 for a length-to—thickness ratio 5 of 225. The uniform

pressure ranges from 0 to 68.95 kPa (10 psi). The theoretical solution of Sun and Chin

is illustrated as a solid line. The solutions from U101, ISSCT (Interlaminar Shear Stress

Continuity Theory [32]), and ABAQUS/S4R are all based on the finite element analysis of

a, 10351““mesh It is observed in the figure that the results are consistent with one another

because the effect of transverse shear deformation can be neglected in the thin laminate. It

is also noticed that the solutions from a positive loading and a negative loading are difl'erent.

In addition, the in-plane total reaction force at the pinned end is calculated and shown in

Figure 6.10. Again, because a large 3 of 225 is used, good agreements are found among all

solutions.

The same structure was subjected to higher pressure of up to 6.89 MPa (1000 psi). The

relations between the uniform pressure and the normalized transverse-deflection are shown
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in Figure 6.11. It is noted that the results split into two groups when the pressure is higher

than 2.76 MPa(400 psi). The results from U101 and ABAQUS/S4R are in one group, while

the rest are in the other. The largest difl'erence in transverse deflection between the two

groups is about 2.6% when the pressure is 6.89 MP8 (1000 psi). This result may be due to

the use of different large deformation theories. It is noted that U101 and ABAQUS/S4R

use an updated Lagrangian approach, while both ISSCT and Sun and Chin use a total

Lagrangian approach with von Kdrmdn nonlinear strains, which is a simplied version of the

full-term Green strains. The difl'erence among the curves from the negative loading is not

noticeable.

The next study investigates a similar structure with a smaller length-to-thickness ratio

S, i.e. 11.25. The uniform transverse-pressure ranges also from 0 to 6.89 MPa (1000 psi).

This loading is in fact small because the laminate is ”thicker” now. The purpose of this study

is to examine the efl'ect of transverse shear deformation. It can be seen from Figure 6.12

that the transverse deflection from Sun and Chin is smaller than the rest of the theories

that consider transverse shear deformation. The difference can be as much as 27.5% at a

positive loading of 6.89 MPa (1000 psi). Some interesting observations can be found from

the same case for the in-plane, total reaction force shown in Figure 6.13. When the loading

is positive, the reaction force remains negative. Until the the loading reaches 3.45 MPa

(500 psi), the reaction force starts to increase positively. It eventually becomes positive.

A negative reaction force in this study actually indicates that the laminate pushes the end

supports instead of pulling them.

The last set of curves are given in Figure 6.14 in which a positive transverse-pressure

of 68.95 kPa (10 psi) is applied to the same structure using various length-to-thickness

ratios (S=L/h). The largest transverse-deflections from all finite element formulations are
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normalized by the corresponding theoretical results from Sun and Chin. By doing so, the

results of Sun and Chin are actually a horizontal line of 1.0 in Figure 6.14. Again, due to

the effect of transverse shear deformation, larger transverse-deflections were found in U101,

ISSCT, and ABAQUS/S4R for thicker laminates. However, these results approach Sun and

Chin’s solution as the laminate becomes thinner.
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Figure 6.9 Small load vs. transverse deflection curve of

a S=225, [0/90] unsymmetric laminate



88

 

 

 

 

    
 

 

  
         

9198')

-10. -8. -6. -4. -2. 0. 2. 4 6. 8 10.

2670. -6

2225. .5

1780. .4

3

1335. .3313
X

x

z

890. .2

—— Sun&Chin

445-05 e-- «e U101 .1

A----A lSSCT

B---El A8AQUS/S4ri

0. i I L
0  

-68.9 ~55.2 -41.4 -27.6 43.8

[0/90] cross-ply laminate

E11:137.9 GPa : 20.0 x 10° psi

E22 : 9.7 GPa :1.4 x 10° psi

G12=623=G13= 4.8 GPa : 0.7 x 10°psi

V12 = 0.3

L = 228.6 mm = 9 inch

h = 1.02 mm = 0.04 inch

S = L I h = 225

mesh = 10 x 1

Nx = total in-plane force at

supported end

0.0 13.8 27.6 41.4 55.2 68.9

9 (RP!)

 

 

 ¢
\
¢
—
-

 

313381.
 
 

 

 

Figure 6.10 Small load vs. in-plane force curve of

a S=225, [0/90] unsymmetric laminate
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a S=225, [0/90] unsymmetric laminate
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Figure 6. 12 Large load vs. transverse deflection curve of

a S=11.25, [0/90] unsymmetric laminate
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Figure 6.13 Large load vs. in-plane force curve of

a S=11.25, [0/90] unsymmetric laminate
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6.7 Comparison of Laminates Under Large Deformation with

Experimental Data

There are very few articles in the literature that investigate laminated composites under

large bending-deflection using experimental approaches. The tests done by Zaghloul [74]

and Kennedy [76, 77] in the early 708 presented some expermental data for symmetric

and unsymmetric laminates subjected to large transverse-deflection, The symmetric and

unsymmetric laminates were made of an epoxy matrix and unidirectional glass fabrics by

a hand-lay-up process. Both clamped and simply-supported boundary conditions were

performed in the tests. A uniform, transverse air-pressure was also applied to both square

and rectangular laminates placed in an air chamber. The maximal transverse-deflection at

the center of the laminate was measured with a mechanical dial-gauge.

In addition to the experimental work, Zaghloul and Kennedy also presented a simple

phenomenological method [74, 75] to determine the laminate constants from the properties

of fiber and epoxy. The calculated constants were then employed in a set of governing

nonlinear equations, which were then solved by a finite difference technique. The governing

equations were based on a plain stress condition and also accounted for the Kirchhoff-Love

hypothesis and von Kc’irmdn nonlinear strains.

Three studies were performed using U101 and ABAQUS/S4R with a 12x12 biaxially

symmetric mesh. The first study was for a square [60]4 orthotropic laminate with clamped

boundaries. The maximal transverse-deflections (normalized by the laminate thickness)

and the setup of the study are shown in Figure 6.15. It is found that the transverse

deflection from U101 is about 6% less than the experimental data at 13.8 kPa (2 psi), while

ABAQUS/S4R is about 9% less.
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The second study is for a square [0/90]2 laminate with simply supported boundaries. The

results of the normalized, central deflection are depicted in Figure 6.16. In addition to U101

and ABAQUS/S4R, the numerical results obtained by Zaghloul using the aforementioned

finite difference method is also presented. Again, all the numerical results tend to have

less deflection than the experimental data. At 7.6 kPa (1.1 psi), the central deflection of

ABAQUS/S4R is 6.5% less than that of the experimental data, followed by U101 8.0% less,

and Zaghloul’s 13.6% less. As mentioned above, Zaghloul’s formulation was based on the

Kirchhofl-Love hypothesis, which did not consider transverse shear deformation.

The third study is for a square {—604/604] laminate with clamped boundaries. By

following the same setup as used in Figures 6.15 and 6.16, the normalized, central deflections

are shown in Figure 6.17, in which ABAQUS/S4R and U101 have 7.2% and 9.5% less

deflections than the experimental data, respectively.

In establishing the comparison between the experimental data and the numerical results,

the testing setup and specimen fabrication should be carefully examined and their differences

should be identified. Although Zaghloul [74] gave quite detailed descriptions regarding the

testing setup and specimen fabrication, there were some unclear aspects. For example, there

were not enough details to support that the boundary conditions used in the numerical

analysis could truly represent those used in the experiments. Besides, the accuracy of

air-pressure measurements in the experiment was unknown. With these issues in mind,

the numerical results within 90% accuracy of the experimental data should be considered

satisfactory.
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Figure 6.15 Normalized, central transverse-deflection of

a [60l4 laminate under uniform pressure
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Figure 6.16 Normalized, central transverse—deflection of

a [0/90]2 laminate under uniform pressure
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Chapter 7

CONCLUSIONS AND

RECOMMENDATIONS

7.1 Conclusions

This thesis shows the problem-solving methodology improving the accuracy and efficiency of

the finite element simulation of composite laminates under large deformation. An updated

Lagrangian approach is employed to analyze structures subjected to large deformation using

the rate-of-deformation tensor and the Truesdell rate of Cauchy stress. The Generalized

Zigzag Theory (ZIGZAG) presented by Li and Liu [38] is used to account for the laminated

composites. Although it can provide excellent linear solutions, ZIGZAG has never been

used for finite element formulation. Furthermore, there has never been an attempt to

combine the updated Lagrangian approach and any Zigzag Theories for large deformation

of laminated composites.

The conclusions of this thesis are listed below:

1. A general procedure of deriving the governing equations for structures undergoing
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large deformations (large rotations and large strains) was established. The procedure

was an updated Lagrangian approach, which utilized the Truesdell rate of Cauchy

stress tensor and the rate-of-deformation tensor. This procedure was general enough

that it was not limited to any specific type of displacement fields.

. A set of incremental displacement components was successfully derived from the Gen-

eralized Zigzag Theory (ZIGZAG). Although the theory described the displacements

of laminated composites layer by layer, the total number of unknown variables re

mained constant, i.e. independent of layer number.

. Based on the ZIGZAG, a four-node shell element (designated as U101) was formulated.

It had seven degrees of freedom at each node. The kinky in-plane displacements

through the laminate thickness could be naturally displayed. All stress calculations

were based on constitutive equations. The transverse shear stresses were continuous

through the laminate thickness; no shear correction factor was necessary, and no

recovering process through equilibrium equations was required.

. An innovative method of constructing the Jacobian matrix was demonstrated. The

Zigzag Jacobian provided a consistent way of describing both kinematics and geometry

within each element.

. Extensive benchmark problems were presented by using the U101 element. The pur-

pose of the studies was to investigate the performance and to gauge the accuracy of

the element. The element gave excellent convergency and accuracy in problems that

dealt with isotropic and laminated composites under linear and nonlinear deforma-

tions. In addition, the element ofl'ered reasonable agreement with some experimental

data without any shear locking problem. Although it did not pass a bending patch
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test, there was no sign of convergency problems.

7.2 Recommendations

To bring the U101 element presented herein to more complete fruition, the following topics

are recommended for future studies:

P
l

. Lower continuity requirement for transverse displacement Aw: Instead of using the

C 1 Hermite cubic shape function, one may want to use only the C0 continuity shape

function for Aw. The use of shape functions of the same order for all degrees of

freedom seems to be more consistent in logic.

Damage models for delamination analysis: Delamination is a primary damage mode

in laminated composites. Implementation of a damage model capable of identifying

delamination is critically important to laminated composite analysis.

Buckling and post-buckling analyses: Improving the buckling resistance is a challenge

task in designing shell-type composite structures. A standard setof benchmark prob-

lems should be given to evaluate the capability of the U101 element in buckling and

post-buckling analysis. The inclusion of a damage model into the U101 element is a

prerequisite in this study.

A selectively reduced integration scheme: The U101 element uses a four-point Gauss-

Legendre integration scheme. If the number of integration points can be reduced while

the degree lof accuracy is maintained, the computation time can be greatly shortened.

Triangular element: For a composite structure with irregular boundaries, triangular

elements are better than rectangular elements in describing the boundaries.
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6. Dynamic analysis: Impact response is an important concern in laminated composite

analysis. Dynamic analysis is necessary when inertia efl'ect has to be considered.

7. Independent finite element program: The U101 element is currently implemented

as a subroutine in ABAQUS/Standard. Every time the program is to be executed,

the FORTRAN subroutine needs to be compiled and linked to the main code. This

process is very time consuming. Besides, the utilization of data storage space is not

optimized. If the element is to become more versatile, a stand-alone program would

be desired.
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APPENDIX A

CONSISTENT LINEARIZATION

The meaning of consistent linearization here is to use a systematic process to obtain linear

approximation of a set of nonlinear equations within a small neighborhood of some known“—

approximate solution to the nonlinear problem.

Let us consider the motion of a material(in this case, it is also equal to the mesh motion)

is given by

at]? = X,- +uf, (A.1)

and the new motion is

1:?“ = z¥+Aui 1, 111"”?

= X,“ +111: ‘1' A211, i, H ‘ (A2)

in which the superscript v is interpreted as the increment ”counter”.

Now consider an abstract nonlinear function, .7, of components of a vector field If“,

that satisfies the following nonlinear equation
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0+1

1'
Assuming that f(.r ) is sufficiently smooth (i.e. differentiable) in the neighborhood of a

given (known) ” point”, 232’, it maybe expanded in a Taylor series about If to obtain

\/ 1'1
-, .1 1 ’3 ...A.

\

J:(.'r'-’+1) = 3311:?) + 527(33 + cAu,~) + RU?) (AA)

' s=0

in which the sum of first two terms of the right hand side of Eq.(A.4) is the linearized part

of .7: and it is a measure of the rate of change of .77 in the direction of Au, at the point :rf.

And R is the remaining higher order term, which by Taylor‘s theorem vanishes faster than

the linearized part as Au,- —> 0. c is a scale parameter. Denoting the second right-hand-side

term by

as d 1' ‘ \11

£121.: =’ Ensure/Au.) 11 A (4.5)
e:

By neglecting the R term and employing Eqs.(A.3), (AA) and (A.5), we obtain the following

linear approximation (locally) to the original nonlinear problem - Eq.(A.3)

—£lfl.1=i=(x:’) ' " .4 (As)

where the only unknown is Au,-, all other quantities being evaluated at the known reference

point :62.

Iterative use of Eqs.(A.6) and (A.2) may be identified with the Newton-Raphson solution

algorithm, where Eq.(A.6) is used to computer the iterative change (Au,-) and Eq.(A.2)

updates the solution between increments. To simplify subsequent writing, the subscript 2:}?

is dropped with an understanding that

Elf] = [ti-Fix? (A-7)

The following few examples of [[7] will be helpful for the later derivation.

1. the deformation gradient, F1]- : 0x1/6Xj,

_ BAu,d 6 2:? + (Am)

£[Ej] = { ( } (“-0 — an2% 8X,-  
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2. the Jacobian, J = det (F11),

 

 

 

 

_ d 6(1):) + €A111))}

1:11] _ 11. {det( an (:0

= JvAum-

ram” (11.9)
6231‘

3. inverse of the deformation gradient, F51,

FF-l = 1

£[F]F‘1 + F£[F'1] = o

£[F‘1] = —F'1£[F]F‘1 (A.10) -

Therefore, the components of [.[F‘l] are:

aAu-1 _ -1 k —l



APPENDIX B

SOME SPECIAL MATRICES

FOR FINITE ELEMENT

FORMULATION

[XU0] is a 1 by 28 vector and its non-zero components are listed as follows, for 1' = 1, 2, 3, 4:

XU0(1,7(1' — 1) +1) = N,-

XU11(1,7(1'-1)+ 3) : S§(3'H11/62:)

XU11(1,7(1' — 1) +4) : st,

XU11(1,7(1' — 1) + 6) = S; (min/as)

XU11(1,7(1' — 1) + 7) : S§(6’H1‘3/6:r)

[XU1] is a 1 by 28 vector and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

XU1(1,7(1' — 1) +3) 35(37'11'1/53)

XU1(1,7(i — 1) +4) = R’fN,
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XU1(1, 7(1‘ - 1) + 6) = R}; (min/62:)

XU1(1,7(1' — 1) + 7) R}; (67-113/82)

[XU2] is a 1 by 28 vector and its non-zero components are listed as follows, for i = l, 2, 3, 4:

XU2(1,7(1' — 1) +3) = A2(6’H1‘1/03:)

XUQ(1,7(1' — 1) + 4) : A1N,

XU2(1, 7(1' - 1) + 6) 142(67-[12/6x)

XU2(117(i - 1) + 7) = A2 (Wis/393)

[XU3] is a 1 by 28 vector and its non-zero components are listed as follows, for 1' = 1,2,3, 4:

XU3(1,7(1° — 1) +3) = 32(3711'1/02')

XU3(1,7(3-1)+4) = BlN,’

XU3(1, 7(1' — 1) + 6) = 82(31112/02)

XU3(1,7(1° - 1) +7) 32 (3716/53l

[XV0] is a 1 by 28 vector and its non-zero components are listed as follows, for 1' = 1,2, 3,4:

XV11(1,7(1' - 1) +2) N,-

xv;,(1, 7(1' — 1) + 3) = P2k(3H1'1/3y)

XV11(1,7(1' — 1) + 5) PfN,

XV11(1,7(1' — 1) + 6) = P2’°(61112/69)

xvo(1, 7(1' — 1) + 7) = P41681869)

[XV1] is a 1 by 28 vector and its non-zero components are listed as follows, for i = 1, 2, 3,4:

XV1(1, 7(1' — 1) + 3) = 05(6811/017)
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XV,(1,7(i—1)+5) = 01w,

XV1(1,7(1' — 1) + 6) : 05(67-(12/611)

xv1111711- 1) + 7) = 05(31113/09)

[X V2] is a 1 by 28 vector and its non-zero components are listed as follows, for r' = 1, 2, 3, 4:

XV2(117(i-1)+3) = 02(67111/611)

XV2(1, 7(1' - 1) + 5) = C1N,

XV2(117(i-1)+6) 02(31112/311)

XV2(117(1'- 1)+ 7) 02(67111'3/311)

[X V3] is a 1 by 28 vector and its non-zero components are listed as follows, for r' = 1, 2, 3, 4:

XV.3(117(1-1)+ 3) = 02(37‘1'1/311)

XV3(1, 7(11— 1) + 5) = 0,111,-

XV3(117(i-1)+6) = 02(37'11'2/311)

XV3(1, 7(1' - 1) + 7) D2 (Wis/611)

[XW0] is a 1 by 28 vector and its non-zero components are listed as follows, for r' = 1, 2, 3, 4:

XWo(1,7(i — l) + 3) = 7111

XW0(1,7(i — 1) + 6) = H12

XWo(l,7(i - 1) + 7) = H13

[MA] is a 5 by 28 matrix and its non-zero components are listed as follows, for i = 1,2,3, 4:

MA(1,7(1’ — 1) + 1) = 6N,/62:

MA(1, 7(1' — 1) + 3) S; (027i11/322)
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MA(1,7(i - 1) +4) -_— sf (BM/61:)

MA(1,7(1' — 1) + 6) = S; (ems/as?)

MA(1,7(z' — 1) + 7) = s; (ems/as?)

MA(2,7(z'—1)+2) = 6N,/8y

MA(2,7(i—1)+3) = P2"(627-l,-1/6y2)

MA(2,7(i—1)+5) = Pf(aN,-/ay)

MA(2,7(i-1)+6) = P2" (yum/6112)

MA(2,7(i—1)+7) = P2"(827-t,-3/6y2)

MA(3,7(i—1)+1) = away

MA(3,7(i-1)+2) = (am/as

MA(3,7(2' —— 1) +3) = S§(62H.-1/626y)+P2"(62H,1/6$0y)

MA(3,7(z'—-1)+4) = sf(aN,-/ay)

MA(3,7(i—1)+5) = Pf(aN,-/as)

MA(3,7(1‘ - l)+6) = s§(a’u,2/axay) +12; (ems/assay)

MA(3,7(i—1)+7) = s; (62%,;3/63631) +192" (cams/assay)

[MB] is a 5 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4;

MB(4, 7(i — 1) + 3) (05+1)(3’Hil/3y)

MB(4,7(1' — 1) + 5) = ofN,

MB(4,7(1' - 1) + 6) = (0;‘ + 1) (mas/6y)

MB(4, 7(i — 1) + 7) (05 + 1) (ans/as)

MB(5,7(1' - 1) + 3) (R1; + 1) (Wu/3.7:)

MB(5, 7(1’ — 1) + 4) = R’fN,
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MB(5,7(z'—l)+6) = (R$°+1)(8’Hi2/6x)

MB(5,7(z'—1)+7) = (R,§+1)(6Hss/ax)

[M01] is a 5 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

MD,(1,7(i-1)+3) R; (027-13'1/632)

MD,(1, 7(1’ — 1) + 4) 77': (am/as)

MD,(1, 7(1' — 1) + 6) 12’; (ems/as?)

MDI(1,7(17 — 1) + 7) R; (fuss/as?)

M01 (2, 7(i - 1) + 3) 0!,c (emu/By?)

MD,(2, 7(i — 1) + 5) 0’: (BM/By)

MD1(2,7(1‘ - 1) + 6) 0!; (ems/61y”)

MD,(2, 7(i — 1) + 7) 0!; (ems/6y?)

MD1(3, 7(i - 1) + 3) (R2 + 02) (awn/assay)

MD,(3, 7(i — 1) + 4) R1 (aNi/By)

MDI(3,7(1' — 1) + 5) 01 (am/as)

MDI(3,7(1' — 1) + 6) (R2 + 02) (62Hi2/616y)

MDI(3, 7(1‘ — 1) + 7) (122 + 02) (0271,3/62637)

M01 (4, 7(1' — 1) + 3) 202(67i,1/6y)

MD,(4, 7(i — 1) + 5) 20m,-

MDI(4,7(1' — 1) + 6) 202 («ms/61y)

MD,(4, 7(i — 1) + 7) 202 (mas/By)

MD,(5, 7(i — 1) + 3) 242 (Wu/31:)

MD,(5, 7(i — 1) + 4) 24,117,

_
=
4
f
n
-
h

.
I
n
.
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MD,(5, 7(i — 1) + 6) = 2A2(67ii2/6:1:)

MDl(5, 7(1’ - 1) + 7) 2A2(6'H,3/6:c)

[M02] is a 5 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4;

M02(1,7(i - 1) + 3) = A2(82H,1/6:122)

MDg(1,7(i — 1) + 4) = A1 (BM/62:)

M02(1,7(i—1)+6) = A2(62H,2/8:22)

MDg(1,7(i—1)+7) = A2 (6271,3/6262)

M02(2,7(i-1)+3) = 02(627111/6172)

MDg(2,7(i—1)+5) = 01(6N,/6y)

M02(2,7(i—1)+6) = 02(6211a/ay2)

M02(2,7(i—1)+7) = Cg (awn/By?)

M029, 7(1— 1)+3) = (A2+Cg) (6271,1/83631)

MD2(3,7(z'—1)+4) = A1(6N,-/6y)

MDo(3,7(i-1)+5) = C1 (am/as)

MDg(3,7(i-— 1) +6) = (A2+cs)(0274a/asay)

MDg(3,7(l'-1)+7) = (A2+Cg)(627-l,3/6x6y)

MDs(4,7(i—1)+3) = mamas/as)

M02(4,7(i—1)+5) = 301117,-

MDg(4,7(i—1)+6) = 302(3'Hi2/3y)

M02(4,7(i—1)+7) = mamas/637)

M02(5,7(i—1)+3) = woman/as)

MDQ(5, 7(1. - 1) +4) = 381N,’
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M0245, 7(t' - 1) + 6) 33.2 (ans/as)

MDQ(5, 7(i — 1) + 7) 382(8711'3/32')

[MD3] is a 5 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

M03(1,7(i—1)+3) = 32(62H,1/as2)

MD3(1,7(1’ — 1) + 4) = B, (BM/017:)

MD3(1,7(i-1)+6) = 82(62H,2/6x2)

MD3(1,7(i—1)+7) = 32(62H,3/as2)

MD3(2,7(z'—1)+3) = 02(627'141/31/2)

MD3(2,7(1'—1)+5) = 01(8Ni/0y)

M03(2,7(i—1)+6) = 02 (ems/19y?)

MD3(2,7(z‘—1)+7) = 02(62Ha/ay2)

MD3(3,7(i—1)+3) = (32-1-02) (62Hi1/6$8y)

MD3(3,7(i—1)+4) = 31(0Ni/6y)

MD3(3,7(z'—1)+5) = 01 (BM/82:)

MD3(3,7(1'— 1)+6) = (32+Dg)(82'H,-2/6$0y)

MD3(3, 7(i — 1) + 7) = (132 + D?) (yum/3361;)

[0%] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

GUO(1,7(i — 1) +1) = aNi/az'

0110(1, 7(i — 1) + 3) = s; (82Hi1/Bx2)

GUo(l, 7(i — 1) + 4) sf (am/as)

GU0(1,7(i-1)+6) = S§(62‘Hi2/622)



GU0(1,7(2' - 1) + 7)

GU0(2,7(1' - 1) + 1)

GU0(2, 7(1 — 1) + 3)

GU0(2,7(1' - 1) + 4)

GU0(2,7(1' — 1) + 6)

0710(2, 7(1' — 1) + 7)

GU0(3,7(1' — 1) + 3)

GU0(3,7(1' — 1) + 4)

GU0(3,7(1' — 1) + 6)

GU0(3, 7(i — 1) + 7)

GU1(1,7(i — 1) + 3)

GU1(1,7(1' - 1) +4)

GU1(1,7(1' — 1) + 6)

GU,(1,7(i — 1) +7)

GU1(2,7(1' — 1) + 3)

GU1(2,7(1' — 1) +4)

GU1(2,7(1' — 1) + 6)

GU1(2,7(i -‘1)+ 7)

GU1 (3, 70‘ — 1) + 3)

GU1(3,7(i - 1) +4)

GU1(3,7(i — 1) +6)
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s; (ems/as?)

away

55 (6271,1/61631)

31‘ (04/1/01!)

5; (ems/assay)

s; (02Hi3/616‘y)

R: (min/51‘)

R’fN,

n: (alts/ax)

R; (811,3/32)

[GU1] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1,2, 3, 4:

R”; (ems/as?)

R’i (aNs/az)

R1; (awn/as?)

77!; (6211.3 /6:7:2)

R; (ems/am»)

R’i‘ (aNs/ay)

a; (627-10/6$6y)

77!; (6211.3/asay)

2,42 (6%,, /as)

24,117,-

2A2 (Wu/513)



GU1(3,7(i - 1) + 7)
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2A2 (3711'3/31')

[GUg] is a 3 by 28 matrix and its non-zero components are listed as follows, for z' = 1, 2, 3, 4:

GU2(1,7(2' — 1) + 3)

GU2(1,7(z’ — 1) +4)

GU2(1,7(1' — 1) +6)

GU2(1,7(i — 1) + 7)

GU2(2,7(i — 1) + 3)

GU2(2,7(i — 1) + 4)

GU2(2,7(1’ — 1) + 6)

GU2(2,7(£ — 1) + 7)

GU2(3,7(¢' - 1) + 3)

GU2(3,7(1‘ — 1) + 4)

GU2(3, 7(1‘ - 1) + 6)

GU2(3,7(1' — 1) + 7)

A2 (3277,, was?)

A, (am/as)

A2 (8211.2#35:?)

A2 (wags/as?)

A2 (62H,,/asay)

Al (BM/5‘11)

A2 (62%2/31'817)

A2 (62%3/83331)

332 (87-11,, /as)

33,37,-

332 (8%2/02)

3B2 (Was/31?)

[GU3] is a 3 by 28 matrix and its non-zero components are listed as follows, for 3' = 1,2, 3,4:

GU3(1,7(1‘ — 1) +3)

GU3(1,7(1' — 1) +4)

GU3(1,7(1' — 1) +6)

GU3(1,7(2' - 1) +7)

GU3(2,7(1‘ - 1) + 3)

GU3(2,7(2' — 1) + 4)

Ba (6271,1/6222)

B, (6N,- /3:1:)

82 (ems/as?)

32 (cams/as?)

B2 (02%,1/826‘y)

Bl (EM/By)



GU3(2,7(i — l) + 6)

GU3(2,7(i — 1) + 7)

G'Vo(1,7(i — 1) + 2)

GVo(1,7(i — 1) + 3)

G‘Vo(1,7(i — 1) + 5)

GVo(1,7(i — 1) + 6)

GVO(1,7(1’ — 1) + 7)

GV0(2,7(1' — 1) + 2)

GVo(2,7(i — 1) + 3)

GVo(2,7(i — 1) + 5)

G'Vo(2,7(i — 1) + 6)

GV0(2, 7(i — 1) + 7)

GVO(3,7(i - 1) + 3)

GV0(3,7(1' — 1) + 5)

GVO(3,7(1’ — 1) + 6)

GVo(3, 7(1’ — 1) + 7)

Gv,(1,7(i — 1) +3)

Gv,(1,7(i — 1) +5)
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B2 (32%2/3’3511)

82 (ems/assay)

[GVO] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

6N,/6:r

P2" (6271,1/61631)

Pf (BM/61:)

P; (32717.5 /62:8y)

P2" (ems/assay)

6N,/6y

P2" (ems/6y?)

Pt" (3Ni/0y)

P2" (wuss/0y?)

P2" (ems/as?)

0% (Wit/6y)

0’,‘N,~

02‘ (3711-2/617)

0; (Wm/3y)

[0V1] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

05 (027ii1/6x2)

0’: (aNs/ax)

 



GV,(1,7(i — 1) +6)

GV,(1,7(1’ — 1) + 7)

GV,(2,7(i — 1) + 3)

GV,(2,7(2’ — 1) + 5)

GV,(2,7(i — 1) + 6)

GV,(2,7(1' — 1) + 7)

GV,(3,7(i - 1) + 3)

GV,(3, 7(1' — 1) + 5)

GV,(3,7(i — 1) + 6)

GV,(3, 7(i — 1) + 7)

GVg(1,7(i — 1) + 3)

GV2(1,7(i - 1) + 5)

GV,(1,7(i — 1) +6)

GV2(1,7(1' — 1) + 7)

GV2(2,7(1‘ - 1) + 3)

GV2(2,7(i — 1) + 5)

GV2(2,7(1' — 1) + 6)

GVa(2,7(i - 1) + 7)

GV2(3,7(1’ — 1) + 3)

GV2(3,7(1' — 1) + 5)

GV2(3,7(i-— 1)+ 6)
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202 (Wu/3y)

2011)],-

202 (3710/53!)

202 (37173/By)

[GV2] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

02 (ems/assay)

c, (BM/82:)

02 (yum/62261;)

ca (6211,,/asay)

cs (6211,1/63/2)

C'i (BM/011)

C2 (6217,,/6y2)

C2 (6271,3/83/2)

302 (6717,, /0y)

30,117,-

302 (3710/33!)
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GV2(3.7(i - 1) + 7) = 302137113/311)

[0V3] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1, 2, 3, 4:

GV3(1,7(i—1)+3) = 02 (62H,1/6x6y)

GV3(1,7(1‘ — 1) + 5) = D, (BM/3x)

GV3(1,7(i—1)+6) = 02 (6271,2/6z8y)

GV3(1,7(i—1)+7) = 02(6277a/asay)

GV3(2,7(i—1)+3) = 02(0’7111/6172)

GV3(2,7(i—1)+5) = 01(6Ni/6y)

GV3(2,7(i—1)+6) = 02(02’Hi2/6y2)

GV3(2, 7(t' — 1) + 7) = D2 (Emit/6772)

[GWo] is a 3 by 28 matrix and its non-zero components are listed as follows, for i = 1,2, 3, 4:

GWo(1,7(i—1)+3) = (ma/as

GWo(1,7(1’-1)+6) = ems/6s

GWo(1,7(i—1)+7) = (ma/as

GWo(2,7(i-1)+3) = (NM/6y

GWo(2,7(1‘—1)+6) = alts/6y

GWo(2, 7(i — 1) + 7) Wis/3y
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APPENDIX D

ABAQUS/Standard.

CONVERGENCY CRITERIA

D.1 The Solution of Nonlinear Problems

While the commercial program ABAQUS/Standard is still evolving, the objective of this

chapter is to document the convergency criteria used in the current thesis. The description

of convergency criteria is reproduced from ABAQUS/Standard User’s Manual [2] Sec.8.2.1.

ABAQUS/Standard (ABAQUS in subsequent writing) uses a direct, Gauss elimination

method to solve a system of simultaneous linear algebraic equations. Usually, many sets of

simultaneous linear algebraic equations must be solved to obtain nonlinear solutions.

The nonlinear load-displacement curve for a structure is shown in Figure D.1. The

objective of the analysis is to determine this response. In a nonlinear analysis the solution

cannot be calculated by solving a single system of nonlinear equations, as would be done in

a linear problem. Instead, the solution is found by specifying the loading as a function of

time and incrementing time to obtain the nonlinear response. Therefore, ABAQUS breaks
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the simulation into a number of load increments and finds the approximate equilibrium

configuration at the end of each load increment. Using the Newton-Raphson method, it

often takes ABAQUS several iterations to determine an acceptable solution to each load

increment.

D.2 Steps, Increments, and Iterations

1. The time history for a simulation consists of one or more steps. The user defines

the steps, which generally consist of an analysis procedure option,_loading options,

and output request options. Different loads, boundary conditions, analysis procedure

options, and output requests can be used in each step.

2. An increment is part of a step. In nonlinear analyses each step is broken into in-

crements so that the nonlinear solution path can be followed. The user suggests the

size of the first increment, and ABAQUS automatically choose the size of the sub-

sequent increments. At the end of each increment the structure is in (approximate)

equilibrium and results are available for writing to the restart, data, or results files.

3. An iteration is an attempt at finding an equilibrium solution in an increment. If

the model is not in equilibrium at the end of the iteration, ABAQUS tries another

iteration. With every iteration the solution that ABAQUS obtains should be closer

to equilibrium; however, sometimes the iteration process may diverge - subsequent

iterations may move away form the equilibrium state. In that case ABAQUS may

terminate the iteration process and attempt to find a solution with a smaller increment

size.



m1

D.3 Convergency

Consider the internal (nodal) forces, I, and the external force, P, acting on a body. The

internal load acting on a node are caused by the stresses in the elements that are attached

to that node. For the body in equilibrium, the net force acting at every node must be zero.

Therefore, the basic statement of equilibrium is that the internal force I, and the external

force, P, must balance each other:

P—I=0 (on

The nonlinear response of a structure to a small load increment, AP, is shown in Figure

D.1. ABAQUS uses the structure’s tangent stiffness, K0, which is based on its configuration

at no, and AP to calculate a displacement correction, ufi, for the structure. Using ufi, the

structure’s configuration is updated to no. ABAQUS then calculates the structure’s internal

force, Ia, in this updated configuration. The difference between the total applied load, P,

and I0 can now be calculated as

\ m=P—n (0»

where R, is the force residual for the iteration.

If Ra is zero at every degree of freedom in the model, point a in Figure D.1 would

lie on the load deflection curve and the structure would be in equilibrium. In a nonlinear

problem Ra will never be exactly zero, so ABAQUS compares it to a tolerance value. If

Ra is less than this force residual tolerance at all nodes, ABAQUS accepts the solution as

being in equilibrium. By default, this tolerance value is set to 0.5% of an average force

in the structure, averaged over time. ABAQUS automatically calculates this spatially and

time-averaged force throughout the simulation.

If 1‘2a is less than the current tolerance value, P and Ia are considered to be in equilibrium
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and ua is a valid equilibrium configuration for the structure under applied load. However,

before ABAQUS accepts the solution, it also checks that the largest displacement correction,

112, is small relative to the total incremental displacement, Ana = no — no. If u: is greater ,

than a fraction (1% by default) of the incremental displacement, ABAQUS performances

another iteration. Both convergence checks must be satisfied before a solution is said to

have converged for that load increment.

If the solution from an iteration is not converged, ABAQUS performs another iteration

to try to bring the internal and external forces into balance. First, ABAQUS forms the

new stiffness, K0, for the structure based on the updated configuration, it“. This stiffness,

together with the residual Ra, determines another displacement correction, ufi, that bring

the system closer to equilibrium (point b in Figure D.1). ABAQUS calculates a new force

residual, Rb, using internal forces from the structure’s new configuration, ub. Again, the

largest force residual at any degree of freedom, [24,, is compared against the force residual

tolerance, and the displacement correction for the second iteration, 113, is compared to the

increment of displacement, Aub. If necessary, ABAQUS performs further iteration.

D.4 Automatic Incrementation Control.

By default, ABAQUS automatically adjusts the size of the time increments to solve non-

linear problems efficiently. The user needs to suggest only the size of the first increment

in each step of the simulation, after which ABAQUS automatically adjusts the size of the

increments. If the user does not provide a suggested initial increment size, ABAQUS will

attempt to apply all of the load defined in the step in a single increment. For highly non-

linear problems, ABAQUS will have to reduce the increment size repeatedly to obtain a

solution.
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The number of iterations needed to find a converged solution for a time increment will

vary depending on the degree of nonlinearity in the system. With the default incrementation

control, the procedure works as follows. If the solution has not converged within 16 iterations

or it the solution appears to diverge, ABAQUS abandons the increment and starts again

with the increment size set to 25% of its previous value. It then attempts to find a converged

solution with this smaller load increment. If the solution still fails to converge, ABAQUS

reduces the increment size again. This process is continued until a solution is found. If the

time increment becomes smaller than the minimum defined by the user or more than five

attempts are needed, ABAQUS stops the analysis.

If the increment converges in fewer that than iterations, this indicates that the solution

is being found fairly easily. Therefore, ABAQUS automatically increases the increment size

by 50% if two consecutive increments require fewer that 5 iterations to obtain a converged

solution.
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Figure D.1 First and second iteration of an increment
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