CANINE  LOWER  URINARY  TRACT  UROTHELIAL  CARCINOMA:  RELEVANCE  AS  AN  ANIMAL   MODEL   By   Dodd  Sledge             A  DISSERTATION   Submitted  to   Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of     Pathobiology  –  Doctor  of  Philosophy     2014           ABSTRACT   CANINE  LOWER  URINARY  TRACT  UROTHELIAL  CARCINOMA:  RELEVANCE  AS  AN  ANIMAL   MODEL   By   Dodd  Sledge   Lower  urinary  tract  urothelial  carcinomas  are  commonly  diagnosed  neoplasms  in  humans   and  dogs.    Similarities  between  human  and  canine  urothelial  carcinomas  have  been  well   described  in  terms  of  histomorphology  and  clinical  progression.    Further  due  to  strong   breed  predispositions  for  tumor  development,  there  are  likely  heritable  factors  that   regulate  carcinogenesis  in  the  lower  urinary  tract  of  subsets  of  dogs.  This  has  led  to  the   suggestion  that  canine  urothelial  carcinomas  could  be  used  as  a  naturally  occurring  animal   model.    However,  it  is  unclear  what  features  in  canine  urothelial  carcinomas  are  associated   with  prognostic  significance  or  treatment  response.    Further,  while  some  similarities   between  human  and  canine  urothelial  carcinomas  are  known,  what  similarities  or   differences  may  exist  in  terms  of  molecular  features  that  drive  carcinogenesis  are  largely   unknown.  This  dissertation  first  examines  correlations  of  common  urothelial  carcinoma   markers  to  histologic  classification,  grading,  and  degree  of  bladder  wall  invasion  in  dogs   relative  to  the  histologic  classification  scheme  accepted  for  humans  in  order  strengthen  the   stance  that  there  are  biologic  differences  between  proliferative  urothelial  lesions  and   histologic  grades.    Then,  specific  carcinogenesis  pathways  that  have  been  suggested  to  play   roles  in  epithelial-­‐to-­‐mesenchymal  transition  and  that  have  prognostic  significance  in   human  urinary  bladder  urothelial  carcinomas  were  evaluated.  These  included  pathways   that  govern  prostaglandin  E2  regulation,  cadherin  swithching,  and  Wnt  signaling.    Finally,     the  role  of  defective  DNA  mismatch  repair  (MMR)  was  examined.    In  urothelial  carcinomas,   evidence  of  MMR  repair  dysfunction  was  found  and  was  correlated  with  genetic   background  of  the  dogs  from  which  tumors  originated.    Additionally,  canine  lower  urinary   tract  urothelial  carcinoma  cell  lines  were  established  which  differential  MMR  proficiency   and  which  had  also  had  differential  response  to  treatment  similar  to  that  described  in   humans.    These  studies  combine  to  show  that  while  there  are  many  similarities  between   urothelial  carcinomas  in  dogs  and  humans;  there  are  also  many  differences  suggesting  that   while  further  study  of  canine  urothelial  carcinoma  is  warranted,  canine  urothelial   carcinoma  do  not  perfectly  recapitulate  similar  disease  in  humans     ACKNOWLEDGMENTS     I  thank  Bristol-­‐Meyers-­‐Squibb  and  the  American  College  of  Veterinary   Pathologists/Society  of  Toxicologic  Pathologists  coalition  for  funding  my  graduate  stipend.   In  addition,  I  also  thank  all  those  that  contributed  to  the  Michigan  State  University  College   of  Veterinary  Medicine  companion  animal  fund,  which  provided  funding  for  portions  of  the   presented  work.     I  recognize  and  thank  the  members  of  the  dissertation  committee,  Dr.  Matti  Kiupel,   Dr.  Elizabeth  McNiel,  Dr.  Monica  Liebert,  Dr.  James  Resau,  and  Dr.  Richard  Westhouse,  for   their  training,  assistance,  patience,  time,  and  knowledgeable  input  throughout  the  process   of  compiling  this  dissertation.    I  also  recognize  and  thank  the  many  scientists,  veterinary   pathologists  and  veterinary  residents  from  the  Michigan  State  University  Department  of   Pathobiology  and  Diagnostic  Investigation  and  Diagnostic  Center  for  Population  and   Animal  Health  for  their  support.                         iv     TABLE  OF  CONTENTS     LIST  OF  TABLES…………………………………………………………………………...........………………………..viii     LIST  OF  FIGURES………………………………………………………………..……………….………………….............x     KEY  TO  ABBREVIATIONS………………………………………………………….……………………………...…..xiii       CHAPTER  1  Introduction  and  Literature  Review…………………………………………….………………..1     Introduction:  The  dog  as  a  model  for  urothelial  carcinogenesis…………………….………..2     Prognostication  in  canine  lower  urinary  tract  urothelial  carcinomas……………………...6       Outline  of  studies……………………………………………………………………………………………….11       Chapter  2.......................................................................................................................................12       Chapter  3.......................................................................................................................................14       Chapter  4.......................................................................................................................................17       Chapter  5.......................................................................................................................................19     REFERENCES..……………………………………………………………………………………………………22     CHAPTER  2  Differences  in  Expression  of  Uroplakin  III,  Cytokeratin-­‐7,  and  COX-­‐2  in  Canine   Proliferative  Urothelial  Lesions  of  the  Urinary  Bladder……………………………………………...…...35     Abstract……………………………………………………………………………………………………………..36     Introduction…………………………………………………………………..…………………………………..37     Materials  and  methods……………………………………………………………………………………….40       Selection  of  Cases  and  Histologic  Classification.............................................................40   Immunohistochemistry............................................................................................................41   Statistical  Analysis.....................................................................................................................42     Results……………………………………………………………...…...……………………………………..……44       Immunohistochemistry:  UPIII  and  CK7.............................................................................44   Immunohistochemistry:  COX-­‐2.............................................................................................44   Immunohistochemistry:  Activated  caspase  3..................................................................45   Statistical  Analysis.....................................................................................................................46     Discussion………………………………………………………………………………………………………….47     Acknowledgements.................................................................................................................................49     APPENDIX...................................................................................................................................................50     REFERENCES.............................................................................................................................................58     CHAPTER  3  Evaluation  of  15-­‐hydroxyprostaglandin  dehydrogenase  (HPGD),   cyclooxygenase-­‐2  (COX-­‐2),  cadherin,  and  β-­‐catenin  expression  in  canine  urinary  bladder   urothelial  carcinomas...........................................................................................................................................65     Abstract........................................................................................................................................................66       Introduction...............................................................................................................................................67   Materials  and  methods..........................................................................................................................70   v           Selection  of  Cases  and  Histologic  Classification.............................................................70   Immunohistochemistry............................................................................................................70   Statistical  Analysis.....................................................................................................................73   Western  blots  ..............................................................................................................................73   Results..........................................................................................................................................................75   Demographic  information,  histologic  classification,  and  grading  of  urothelial     carcinomas.....................................................................................................................75   Immunohistochemistry:  HPGD..............................................................................................76   Immunohistochemistry:  COX-­‐2.............................................................................................76   Immunohistochemistry:  Cadherins  ....................................................................................77   Immunohistochemistry:  β-­‐catenin.......................................................................................79   Survival  analysis.........................................................................................................................80   Western  blot  analysis  of  human  and  canine  urothelial  carcinoma  cell  lines......81   Discussion...................................................................................................................................................83   Acknowledgments...................................................................................................................................88   APPENDIX...................................................................................................................................................89   REFERENCES.............................................................................................................................................99   CHAPTER  4  Evaluation  of  microsatellite  instability  and  DNA  mismatch  repair  protein   expression  in  canine  urothelial  carcinomas.............................................................................................104     Abstract.....................................................................................................................................................105     Introduction.............................................................................................................................................106     Materials  and  methods.......................................................................................................................109   Evaluation  of  Microsatellite  Instability  in  Canine  Tumors......................................109       Evaluation  of  MMR  protein  expression  in  Canine  Urothelial  Carcinomas.........110       Statistical  analysis...................................................................................................................113     Results........................................................................................................................................................114       Evaluation  of  MSI.....................................................................................................................114   Demographic  information,  histologic  classification,  and  grading  of  urothelial     carcinomas..................................................................................................................115   MLH1,  MSH2,  MSH3,  and  MSH6  Immunohistochemistry.........................................116   Survival  analysis......................................................................................................................117   Discussion.................................................................................................................................................119   Acknowledgements..............................................................................................................................125     APPENDIX.................................................................................................................................................127     REFERENCES...........................................................................................................................................137     CHAPTER  5  Evaluation  of  DNA  mismatch  repair  in  novel  canine  lower  urinary  tract   urothelial  carcinoma  cell  lines.......................................................................................................................143     Abstract.....................................................................................................................................................144     Introduction.............................................................................................................................................145     Materials  and  methods.......................................................................................................................147   Characterization  of  canine  lower  urinary  tract  urothelial  carcinoma  cell     lines................................................................................................................................147   Development  of  xenografts..................................................................................................148   Immunophenotyping  of  primary  tumors,  cell  lines,  and  xenografts....................149   vi       Evaluation  of  MMR  protein  expression  by  Western  blots........................................149     qPCR  for  MMR  genes..............................................................................................................150     Immunohistochemistry  and  morphometric  analysis  for  MSH2  and  MSH6  in     xenografts....................................................................................................................152   Effect  of  chemotherapeutics  on  cell  survival.................................................................153   Results........................................................................................................................................................155   Characterization  of  canine  lower  urinary  tract  urothelial  carcinoma  cell  lines     and  xenografts...........................................................................................................155   Characterization  of  xenografts..........................................................................................156   Evaluation  of  MMR  protein  expression  by  Western  blots........................................157   qPCR  for  MMR  gene  expression..........................................................................................157   Immunohistochemistry  and  morphometric  analysis  for  MSH2  and  MSH6  in     xenografts....................................................................................................................158   Survival  assays..........................................................................................................................158   Discussion.................................................................................................................................................160   Acknowledgments................................................................................................................................164   APPENDIX.................................................................................................................................................165   REFERENCES...........................................................................................................................................189         CHAPTER  6  Conclusions...................................................................................................................................193     Summary  of  findings............................................................................................................................194     Limitations  of  studies  and  unanswered  questions.................................................................197     Future  directions...................................................................................................................................201                       vii     LIST  OF  TABLES     Table  1:  Histologic  Features  of  Proliferative  Urothelial  Lesions  according  to  the  WHO/ISUP                                      Consensus  Classification  System......................................................................................................54     Table  2:  Immunohistochemical  Scoring  of  Uroplakin  III  Expression  in  Canine  Proliferative                                      Urothelial  Lesions  by  Overall  Pattern...........................................................................................55     Table  3:  Immunohistochemical  Scoring  of  Cytokeratin  7  Expression  in  Canine  Proliferative                                      Urothelial  Lesions  by  Overall  Pattern...........................................................................................55     Table  4:  Immunohistochemical  Scoring  of  COX-­‐2  Expression  in  Canine  Proliferative  Urothelial                                      Lesions  by  Overall  Pattern.................................................................................................................56     Table  5:  Immunohistochemical  Scoring  of  Activated  Caspase-­‐3  in  Canine  Proliferative                                      Urothelial  Lesions  by  Overall  Pattern...........................................................................................56     Table  6:  Summary  of  Patterns  of  Immunoreactivity  of  Uroplakin  III,  Cytokeratin  7,  and  COX-­‐2                                      in  Proliferative  Urothelial  Lesions..................................................................................................57     Table  7:  Expression  of  HPGD  in  canine  urothelial  carcinomas  and  normal  urothelium  with                                      respect  to  lesion  classification  and  degree  of  invasion...........................................................96     Table  8:  Expression  of  P-­‐cadherin  and  β-­‐catenin  in  canine  urothelial  carcinomas  and  normal                                      urothelium  with  respect  to  lesion  classification  and  degree  of  invasion.........................97     Table  9:  Significant  Correlative  Results  of  Univariate  and  Multivariate  Analysis  of  Examined                                      Variables  with  Respect  to  Survival  Time  as  Determined  by  p-­‐values  less  than  0.05...98     Table  10:  Distribution  of  microsatellite  instability  in  canine  epithelial  tumors.........................134     Table11:  Distribution  of  microsatellite  instability  in  canine  urothelial  carcinomas  of  the                                          urinary  bladder  classified  by  breed...........................................................................................134     Table  12:  Distribution  of  microsatellite  instability  in  canine  urothelial  carcinomas  of  the                                            urinary  bladder  by  breed  and  repeat  motif..........................................................................135     Table  13:  Distribution  of  %MSI  and  immunohistochemically  evaluated  MMR  protein                                            expression  in  canine  normal  urinary  bladders  and  urothelial  carcinomas  of  the                                            urinary  bladder................................................................................................................................136     Table  14:  TaqMan®  gene  expression  assays  used  for  qPCR...............................................................187       viii     Table  15:  Distribution  of  MSH2  expression  in  canine  urothelial  carcinoma  xenogafts  as                                            evaluated  by  morphometric  analysis  of  immunohistochemistry..................................187     Table  16:  Distribution  of  MSH6  expression  in  canine  urothelial  carcinoma  xenogafts  as                                            evaluated  by  morphometric  analysis  of  immunohistochemistry..................................188         ix     LIST  OF  FIGURES     Figure  1:  Urinary  Bladder;  Dog.  Hyperplastic  urotheluim  with  Uroplakin  III  (UPIII)                                                            Pattern  1.................................................................................................................................................51     Figure  2:  Urinary  Bladder;  Dog.  Hyperplastic  urothelium  with  UPIII  IHC  Pattern  2..................51     Figure  3:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  UPIII  IHC                Pattern  4.................................................................................................................................................51     Figure  4:  Urinary  Bladder;  Dog.  Hyperplastic  urotheluim  with  Cytokeratin  7  (CK7)  IHC                                          Pattern  1................................................................................................................................................52     Figure  5:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  CK7  IHC                                            Pattern    3...............................................................................................................................................52     Figure  6:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  CK7  IHC                                            Pattern  4................................................................................................................................................52     Figure  7:  Urinary  Bladder;  Dog.  Hyperplastic  urotheluim  with  Cyclooxygenase-­‐2  (COX-­‐2)  IHC                                          Pattern  1................................................................................................................................................53     Figure  8:  Urinary  Bladder;  Dog.  Hyperplastic  urotheluim  with  COX-­‐2  IHC  Pattern  2I..............53     Figure  9:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  COX-­‐2  IHC                                            Pattern  3................................................................................................................................................53     Figure  10:  Urinary  bladder,  Dog,  15-­‐hydroxyprostaglandin  dehydrogenase  (HPGD)                                                immunohistochemistry  (IHC)......................................................................................................90     Figure  11:  Urinary  bladder,  Dog,  Cyclooxygenase-­‐2  (COX-­‐2)  IHC.......................................................91     Figure  12:  Urinary  bladder,  Dog,  E-­‐cadherin  IHC.....................................................................................92     Figure  13:  Urinary  bladder,  Dog,  P-­‐cadherin  IHC.....................................................................................93     Figure  14:  Urinary  bladder,  Dog,  β-­‐catenin  IHC........................................................................................94     Figure  15:  Western  blot  comparing  expression  of  HPGD,  COX-­‐2,  E-­‐cadherin,  P-­‐cadherin,                                                N-­‐cadherin,  and  β-­‐catenin  in  human  (RT4  and  UC3)  and  canine  urothelial                                                carcinoma  cell  lines  (AXA,  AXB,  AXC,  and  NK)......................................................................95     Figure  16:  Unmixed  composite  images  and  unmixed  pseudofluorecent  images  derived  from                                                multispectral  imaging  of  MLH1,  MSH2,  MSH3,  and  MSH6  immunohistochemically     x                                                labeled  urothelium  from  a  normal  urinary  bladder  control  and  a  grade  II                                                papillary  urothelial  carcinoma................................................................................................128     Figure  17:  Scatter  plot  depicting  the  frequency  of  microsatellite  aberrations  identified  in                                              canine  gastric  carcinoma  tumor  (N=15),  mammary  tumors  (N=35),  and  urothelial                                              carcinomas  of  the  urinary  bladder  (N=46)..........................................................................129     Figure  18:  Scatter  plot  depicting  the  frequency  of  microsatellite  aberrations  identified  in                                                canine  urothelial  carcinomas  stratified  by  breed.............................................................130     Figure  19:  Scatter  plot  depicting  the  frequency  of  microsatellite  aberrations  identified  in                                                canine  urothelial  carcinomas  stratified  by  phylogenetic  clade..................................131     Figure  20:  Scatter  plots  depicting  immunoreactivity  of  MSH2  and  MSH6  in  canine  normal                                                urinary  bladder  urothelium  and  urothelial  carcinomas  as  determined  by                                                  morphometric  analysis  of  multispectral  imaging............................................................132     Figure  21:  Scatter  plot  depicting  ratio  of  MSH2  and  MSH6  immunoreactivity  in  individual                                                cases  of  canine  normal  urinary  bladder  urothelium  and  urothelial  carcinomas  as                                                determined  by  morphometric  analysis  of  multispectral  imaging..............................133     Figure  22.  Multispectral  imaging  of  MSH2  immunohistochemistry  in  canine  lower  urinary                                                tract  urothelial  carcinoma  xenografts.................................................................................166     Figure  23:  Multispectral  imaging  of  MSH6  immunohistochemistry  in  canine  lower  urinary                                                tract  urothelial  carcinoma  xenografts.................................................................................168     Figure  24:  Photomicrographs  from  the  initial  diagnostic  biopsy  and                                                immunohistochemistry  (IHC)  on  the  papillary  grade  II  urothelial  from  which                                                TYLER  cell  lines  were  derived...................................................................................................170     Figure  25:    Phase  contrast  photomicrographs  of  ANGUS,  KINSEY,  original  TYLER  cell                                                                Lines..................................................................................................................................................171     Figure  26:  Phase  contrast  photomicrographs  of  TYLER1  and  TYLER2  cell  lines  and                                                photomicrographs  of  IHC  for  differentiation  markers  in  TYLER1  and  TYLER2  cell                                                lines.....................................................................................................................................................172     Figure  27:  Photomicrographs  from  a  canine  lower  urinary  tract  urothelial  carcinoma                                                xenograft  derived  from  the  TYLER2  cell  line  showing  two  morphologically  distinct                                                  cell  populations,  hematoxylin  and  eosin  stain...................................................................173     Figure  28:  Photomicrographs  of  IHC  for  differentiation  markers  in  a  canine  lower  urinary                                                tract  urothelial  carcinoma  xenograft  derived  from  the  KINSEY  cell  line................174     Figure  29:  Photomicrographs  of  IHC  for  differentiation  markers  in  a  canine  lower  urinary     xi                                                tract  urothelial  carcinoma  xenograft  derived  from  the  TYLER2  cell  line...............175     Figure  30:  Western  blots  show  relative  decreased  expression  of  MSH2  and  MSH6  in  the                                                TYLER2  cell  line  in  comparison  to  that  of  ANGUS,  KINSEY,  and  TYLER1...............176     Figure  31:  Graph  depicting  results  of  qPCR  for  MLH1,  MSH2,  MSH3,  MSH6,  and  PMS2  in  the                                                canine  lower  urinary  tract  urothelial  carcinoma  cell  lines,  ANGUS,  KINSEY,                                              TYLER1,  and  TYLER2  cell  lines.................................................................................................177     Figure  32:  Graph  depicting  results  of  qPCR  for  MSH2  and  MSH6  in  canine  lower  urinary  tract                                                urothelial  carcinomas  xenografts  derived  from  TYLER1,  and  TYLER2  cell  lines                                                laser  capture  microdissection  separated  from  mouse  tissues.....................................179     Figure  33:  Graph  depicting  results  of  qPCR  for  MSH2  in  laser  capture  microdissection                                                separated  epitheliod  and  discrete  cell  populations  of  canine  lower  urinary  tract                                                urothelial  carcinomas  xenografts  derived  from  TYLER1,  and  TYLER2  cell                                                lines.....................................................................................................................................................181     Figure  34:  Graph  depicting  results  of  morphometric  analysis  of  multispectral  imaging  of                                                immunoreactivity  of  MSH2  and  MSH6  in  canine  lower  urinary  tract  urothelial                                                carcinomas  xenografts  derived  from  KINSEY,  TYLER1,  and  TYLER2  cell                                                lines.....................................................................................................................................................183     Figure  35:  Results  of  XTT  survival  assays  comparing  survival  of  canine  urothelial  carcinoma                                                cell  lines  upon  exposure  to  specific  chemotherapeutics.................................................185         xii     KEY  TO  ABBREVIATIONS     CK7:  Cytokeratin  7   COX-­‐2:  Cyclooxygenase-­‐2     DAB:  3,3’-­‐Diaminobenzidine   GAPDH:  Glyceraldehyde  3-­‐phosphate  dehydrogenase   HPGD:15-­‐hydroxyprostaglandin  dehydrogenase     IHC:  Immunohistochemistry     MMR:  DNA  mismatch  repair   MS:  Microsatellite   MSI:  Microsatellite  instability   PAP:  Prostatic  acid  phosphatase   PGE2:  Prostaglandin  E2     PUNLMP:  Papillary  urothelial  neoplasm  of  low  malignant  potential     qPCR:  quantitative  real-­‐time  PCR   SD:  Standard  deviation   SDS-­‐PAGE:  Sodium  dodecyl  sulfate  polyacrylamide  gel  electrophoresis   SE:  Standard  error     TBST:  Tris-­‐buffered  saline  with  0.1%  Tween  20   UPIII:  Uroplakin  III   XTT:  2,3-­‐Bis-­‐(2-­‐Methoxy-­‐4-­‐Nitro-­‐5-­‐Sulfophenyl)-­‐2H-­‐Tetrazolium-­‐5-­‐Carboxanilide       xiii     CHAPTER  1       Introduction  and  Literature  Review       Dodd  Sledge     Department  of  Pathobiology  and  Diagnostic  Investigation,  College  of  Veterinary  Medicine,   Michigan  State  University,  East  Lansing  MI     1     Introduction:  The  dog  as  a  model  for  urothelial  carcinogenesis   Bladder  cancer  is  a  significant  problem  in  humans.  Based  on  current  trends,  2.4%  of   people   in   the   United   States   are   predicted   to   develop   bladder   cancer   during   the   course   of   their  life.1  An  estimated  74,690  people  have  or  will  be  diagnosed  and  15,580  are  expected   die   due   to   the   disease   in   the   United   States   during   2014.1   In   2008,   bladder   cancer   was   reported  as  the  fourth  most  common  cancer  diagnosis  in  men,  and  the  ninth  most  common   in   women.2   Although   the   majority   (70-­‐80%)   of   bladder   cancers   in   humans   are   organ-­‐ confined  and  considered  “superficial,”  the  recurrence  rate  may  be  as  high  as  50%,  and  as   many   as   25%   of   these   patients   will   progress   to   invasive   disease,   in   spite   of   treatment.3   Another   20-­‐30%   of   patients   have   advanced   bladder   cancer   at   diagnosis.4   Therapies   for   invasive  bladder  cancer  are  minimally  effective.  Even  with  treatment,  the  median  survival   time   is   less   than   2   years   from   initial   diagnosis.4   Little   improvement   in   survival   has   been   observed  in  the  past  30  years,  as  evidenced  by  slowly  increasing  numbers  of  new  cases  and   deaths  per  100,000  people  over  this  time  period.1  From  a  financial  view,  bladder  cancer  is   among   the   costliest   cancers   to   manage   and   treat.5   For   these   reasons,   an   improved   understanding   of   urothelial   carcinogenesis   and   novel,   cost-­‐effective   therapeutic   approaches  are  urgently  needed.   Establishment  and  utilization  of  preclinical  animal  models  beyond  the  typical  rodent   model  that  reflect  the  biology  of  human  cancers  would  have  great  impact  on  drug   development.  Chemically  induced,  transgenic,  and  xenograft  rodent  models  have  been  well   described  and  are  commonly  used  for  the  study  of  cancer;  however,  such  models  of  often   fail  predict  treatment  success  and  to  guide  the  rational  development  of  early  phase  human   trials.6-­‐8  In  general,  dogs  offer  a  cost-­‐effective,  naturally  occurring  model  for  cancer  in     2     which  clinical  trials  are  easily  preformed.    Among  other  factors,  dogs  are  attractive  for  such   studies  because  the  general  types  and  histomorphology  of  canine  tumors  are  similar  to   those  of  humans,  cancer  is  naturally  occurring  in  dogs,  drug  metabolism  is  similar,  dogs   share  environments  with  their  owners  and  often  have  similar  general  lifestyles,  the  larger   size  of  dogs  in  comparison  to  rodents  allows  for  easier  performance  of  many  clinical   procedures,  and  lifespans  of  dogs  are  longer  than  rodents,  yet  still  relatively  short  in   comparison  to  humans.9,  10  In  addition,  the  genetic  diversity  of  dogs  more  closely  mirrors   that  of  humans  than  that  seen  in  laboratory  rodents,  while  individual  breeds  provide   genetic  similarities  and  often  pedigree  information.11  Further,  findings  of  studies  in  dogs   can  be  applied  to  improving  clinical  outcome  not  only  in  human  medicine,  but  also  can  be   used  in  veterinary  medicine.   Many  features  make  canine  lower  urinary  tract  urothelial  carcinomas  attractive  for   study.  Similar  to  humans,  bladder  cancer  is  common  in  dogs.  A  reported  2%  of  malignant   tumors   of   the   dog   originate   from   the   bladder,   and   most   of   these   are   derived   from   the   urothelium.10,   12   Such   tumors   occur   spontaneously   rather   than   necessitating   exposure   to   carcinogens   or   genetic   manipulation.13,   14   Clinical   signs   including   hematuria,   increased   frequency   of   urination,   and   stranguria   are   common   to   both   dogs   and   humans,   as   are   secondary   bacterial   urinary   tract   infections.15   Macroscopic   and   microscopic   findings   are   similar   between   dogs   and   humans.16,   17   Canine   bladder   cancer   typically   follows   a   similar   clinical  course  to  that  reported  in  invasive  bladder  carcinomas  of  humans  suggesting  that   the   pathways   involved   in   the   development   and   progression   of   these   tumors   may   be   homologous.13,   15   In   addition,   there   are   strong   breed   predispositions   for   development   of   these   cancers   in   dogs   with   Scottish   terriers,   West   Highland   white   terriers,   beagles,   and     3     Shetland   sheepdogs   being   overrepresented.13,   14   This   suggests   a   potential   hereditary   component   to   the   development   of   these   tumors   in   a   subset   of   dogs   and   thus,   a   common   molecular  pathogenesis  for  cancer  development.   Studies  of  molecular   features   associated   with   carcinogenesis   are   severely   lacking  in   the  dog;  however,  few  studies  in  canine  urothelial  carcinomas  evaluating  potential  cancer   markers  have  yielded  results  similar  to  that  in  humans.    COX-­‐2  overexpression  is  common   in  both  human  and  canine  bladder  cancer,  as  is  the  expression  of  prostaglandin  E2.10,   15,   18   High   levels   of   p53   expression   has   been   reported   in   a   small   number   of   canine   urothelial   carcinomas,   similar   to   reports   in   humans.10   Basic   fibroblast   growth   factor,   a   proangiotic   factor,  has  been  reported  in  the  urine  of  affected  dogs  and  is  expressed  in  human  urothelial   carcinomas.10  Nuclear  expression  of  survivin,  an  apoptosis-­‐inhibiting  protein,  is  described   in  many  human  and  canine  urothelial  carcinomas,  but  is  not  expressed  in  normal  bladder.19,   20   Telomerase   activity   is   reported   in   90%   of   human   urothelial   carcinomas,   and   has   been   described   in   canine   urothelial   carcinoma   cell   lines   and   in   urine   samples   from   affected   dogs.10       Expression   of   the   receptor   tyrosine   kinase,   epidermal   growth   factor   receptor,   which  is  commonly  observed  in  human  urinary  bladder  cancer,  was  significantly  higher  in   canine   urothelial   carcinomas   in   comparison   to   normal   urotheluim   and   cases   of   polypoid   cystitis.21   β-­‐catenin   and   p63   expression   were   significantly   lower   and   Ki67   expression   higher   in   urothelial   carcinomas   in   comparison   to   normal   urinary   bladder   and   cases   of   polypoid  cystitis.22     While   there   are   numerous   similarities   in   dogs   and   humans   in   terms   of   urothelial   carcinomas,   there   are   also   differences.     In   humans,   men   develop   urothelial   carcinomas   twice   as   often   as   women;   however   in   dogs,   females   are   nearly   twice   as   likely   to   be   affected     4     as   males.1,   10,   12,   15   In   dogs,   the   vast   majority   of   bladder   cancers   occur   within   the   trigone   area,  while  in  humans  occurrence  is  more  randomly  distributed  throughout  the  bladder.15   This   difference   is   interesting,   as   it   has   classically   been   proposed   that   the   trigone   is   embryologically   distinct   from   the   remainder   of   the   urinary   bladder   originating   from   the   mesoderm  derived  Wolffian  ducts;  however,  more  recent  studies  have  suggested  that  the   trigone  develops  from  endoderm  similar  to  the  rest  of  the  bladder.23,   24  More  importantly,   in   situ   carcinomas   are   only   rarely   identified   in   dogs,   while   they   are   by   far   the   most   commonly   recognized   form   of   urothelial   carcinoma   in   humans.13,   14,   25   This   fact   limits   the   dog  as  a  model  suggesting  that  not  all  pathways  leading  to  urothelial  carcinomas  in  humans   are   active   in   the   dog;   however,   the   dog   can   still   serve   as   an   excellent   model   for   invasive   human  urothelial  carcinomas.           5     Prognostication  in  canine  lower  urinary  tract  urothelial  carcinomas   Naturally   occurring   lower   tract   urothelial   carcinomas   comprise   a   significant   proportion   of   canine   neoplasms;   however,   discrete   criteria   for   prognostic   evaluation   and   targeted   treatment   options   are   lacking.     Up   to   90%   of   canine   urothelial   tumors   of   the   urinary   bladder   are   diagnosed   as   malignant,   most   are   highly   invasive,   and   many   metastasize  to  regional  and  distant  sites.26  Radical  cystectomy  is  considered  the  treatment   of  choice  for  invasive  human  urothelial  carcinomas,  which  are  similar  to  those  occurring  in   the   dog.10   This,   however,   is   rarely   feasible   in   pet   dogs.   Because   complete   surgical   resection   is  rarely  achievable  in  dogs  and  30-­‐50%  of  these  cancers  metastasize,  most  animals  die  of   their   disease.14   Although   affected   dogs   are   frequently   treated   with   chemotherapy,   these   cancers   respond   inconsistently.   However,   the   choice   of   chemotherapeutic   for   urothelial   carcinomas   has   traditionally   been   empirical   rather   than   being   targeted   and   based   on   scientific   evidence.14,   27   Most   dogs   are   treated   with   chemotherapy   and   nonsteroidal   anti-­‐ inflammatory  drugs,  which  tend  to  be  palliative  and  not  curative.  Recently,  multimodality,   bladder-­‐preserving   strategies   for   invasive   human   bladder   cancer   have   been   shown   to   be   very  effective  in  certain  patients,  although  such  approaches  have  not  been  optimized.28     The  prognostic  significance  of  clinico-­‐demographic  features  has  been  evaluated  in   multiple  studies.  In  general,  correlations  of  individual  with  prognostic  measures  in  such   studies  have  been  inconsistent  and  sometimes  contradictory.  This,  however,  may  be  due  to   low  sample  sizes  within  individual  studies,  differences  in  treatment,  differences  in  what   prognostic  measure  was  used,  or  differences  in  grouping  of  cases  for  analysis.    Most   commonly,  studies  have  employed  survival  time  as  the  main  prognostic  indicator,  but     6     survival  time  can  be  highly  influenced  by  treatment,  euthanasia,  and  other  factors.    Few   studies  have  examined  other  measures  of  prognosis  such  as  progression  free  interval.   In  general,  basic  demographic  information  such  as  age,  sex,  and  breed  are  unlikely   to  influence  prognosis;  however,  reports  vary.  In  one  study,  sex  was  associated  with   survival  time  with  spayed  females  surviving  significantly  longer  than  castrated  males.29  In   another  study,  there  was  no  difference  in  survival  time  when  sex.30  One  study  found  a   negative  correlation  between  breed  and  survival  time  with  at-­‐risk  breeds  having  shorter   survival.31  Other  studies  have  found  no  significant  association  between  survival  time  and   breed.15,  29,  32  Age  at  diagnosis  has  been  suggested  to  not  be  associated  with  survival  time  in   multiple  studies.  29,  30  In  addition,  patient  weight  at  the  time  of  diagnosis  was  not  associated   with  survival  in  at  least  one  study.32   Features  such  as  tumor  location  as  it  relates  to  potential  uretheral  obstruction,   clinical  stage,  and  surgical  respectability  are  likely  to  influence  clinical  outcome,  but   correlation  of  prognostic  measures  with  such  factors  has  varied  between  study.   Ultrasonographic  evidence  of  wall  involvement,  heterogeneity  of  masses,  and  location  of   tumors  within  the  trigone  had  significant  negative  associations  with  survival  time.33  In   addition,  urethral  involvement  has  been  suggested  to  have  a  significant  negative   association  with  survival  in  multiple  studies.31,  34  However,  other  studies  have  found  no   association  between  survival  time  and  location  of  the  tumor  or  urethral  involvement.  35,  36   One  study  found  negative  associations  between  progression  free  interval  and  presence  of   metastasis  at  the  time  of  presentation  and  negative  associations  between  survival  time  and   the  presence  of  distant  metastasis.31  Other  studies  in  which  clinical  staging  was  preformed   found  no  statistical  association  between  survival  time  and  variable  features  including  T     7     stage,  N  stage,  M  stage,  or  presence  of  nodal  or  other  metastasis.15,  30,  32,  37  In  terms  of   surgical  resection,  a  statistically  significant  longer  survival  time  was  associated  with   complete  resection  compared  to  only  incomplete  resection,  and  in  another  study,  surgical   debulking  prolonged  survival,  but  did  not  prolong  progression  free  survival.34,  38   Multiple  histologic  grading  schemes  have  been  proposed  largely  based  on  systems   developed   for   use   in   humans.   In   1995,   Valli,   et   al.,   described   a   classification   and   grading   system   for   use   in   canine   bladder   and   urethral   cancer.   17   This   scheme   was   based   on   the   1986   version   of   the   World   Health   Organization   classification   and   grading   scheme   for   proliferative  urothelial  in  human  bladder  cancer.39  In  2006,  Patrick,  et  al.,  showed  that  the   canine   urothelial   carcinomas   could   be   classified   according   to   the   updated   World   Health   Organization/International   Society   for   Urologic   Pathology   consensus   system   used   for   classifying  and  grading  proliferative  urothelial  lesions  in  humans,  as  reported  in  1998  and   updated  in  2004.16,  40,  41  More  recently,  Knapp  et  al.,  suggested  a  simplified  two-­‐tier  version   of  grading  classifying  urothelial  carcinomas  as  either  high  or  low  grade.15       While   histologic   classification   and   grading   likely   have   relevance,   the   prognostic   significance   is   unclear.     In   application,   Valli   et   al.   found   that   there   were   significant   correlations   with   tumor   grade   and   depth   of   invasion,   tumor   grade   and   presence   of   metastases,  and  peritumoral  desmoplasia  and  metastases.17  Regarding  survival  time,  Valli,   et   al.,   also   found   significant   correlations   between   survival   and   tumor   grade   when   comparing   grade   2   and   3   to   grade   1   tumors,   but   no   significant   difference   in   survival   between   grades   2   and   3.17   Further,   there   were   also   no   significant   differences   between   survival  and  type  of  invasion  (tentacular  or  broad)  or  macroscopic  tumor  architecture  (flat   or   papillary).17   Two   independent   studies   employing   Valli’s   system   of   grading   found   no     8     significance   between   histologic   grades   of   urothelial   carcinoma;   however,   overall   architecture  was  not  specifically  examined  in  either  study,  analysis  in  one  study  compared   a   combination   of   grades   1   and   2   to   grade   3,   and   the   other   study   only   included   and   thus,   only   compared   grades   2   and   3.29,   35   No   studies   have   specifically   evaluated   the   prognostic   significance  of  histologic  classification  and  grading  as  described  by  Patrick,  et  al.,  or  Knapp,   et  al.   Aside  from  grading,  individual  histologic  factors  have  rarely  been  evaluated  with   respect  to  prognostic  significance.    The  presence  of  necrosis  within  urothelial  carcinomas   was  negatively  statistically  associated  with  survival  time  in  one  study.33  Other  studies  have   found  no  significance  correlation  between  survival  time  and  mitotic  index  or  lymphatic   invasion  29,  33   Few  studies  have  evaluated  the  prognostic  significance  of  molecular  markers  with   regards  to  canine  urothelial  carcinomas,  and  the  few  such  studies  that  have  attempted  to   correlate  molecular  markers  with  prognosis  have  often  not  found  statistical  significance.     The  expression  of  p63  is  an  exception  as  low  p63  levels  have  been  associated  with  vessel   invasion,  metastasis,  and  short  survival  time.22  No  statistical  significance  was  detected   between  survival  time  and  immunoreactivity  for  the  chemotherapy  resistance  markers  P-­‐ glycoprotein  and  glutathione-­‐S-­‐transferase  π,  or  factor  VIII-­‐related  antigen,  which  was   used  as  a  marker  for  angiogenesis.29  Expression  of  epidermal  growth  factor  receptor  was   not  significantly  associated  with  vessel  invasion,  lymph  node  metastasis,  or  survival  time  in   canine  urothelial  carcinomas.21     Based  on  the  relatively  sparse  and  disparate  results  of  studies  examining  prognosis   with  regards  to  demographic,  clinical,  histopathologic  and  molecular  features,  it  is  clear     9     that  additional  studies  are  needed.    Prognostication  of  cancer,  especially  in  veterinary   medicine,  from  a  diagnostic  and  pathologic  perspective  has  classically  relied  on   classification  and  grading  based  on  histopathologic  criteria.    More  recently,  there  has  been   a  paradigm  shift  to  move  beyond  H&E,  and  to  improve  general  prognostication  and   prediction  of  treatment  response  by  exploiting  the  molecular  constitution  of  a  given  tumor.     Molecular  features  that  could  be  exploited  to  better  prognosticate  canine  urothelial   carcinomas  likely  exist;  however,  a  better  understanding  of  the  pathways  that  drive   carcinogenesis  is  obviously  required.          10     Outline  of  studies   Optimization  of  therapy  for  canine  urothelial  carcinomas  and  acceptance  of  the  dog   as   a   model   for   urothelial   carcinogenesis   is   hampered   by   a   lack   of   understanding   of   the   inherent   features   that   affect   prognosis   and   knowledge   of   the   molecular   constitution   of   individual   tumors.   Numerous   studies   have   examined   associations   of   canine   urothelial   carcinomas   with   risk   factors   for   development   and   response   to   specific   treatments;   however,   relatively   few   have   examined   markers   of   prognostication   or   molecular   features   that   underlie   carcinogenesis   of   these   cancers.   While   it   is   clear   that   similarities   between   lower   urinary   tract   urothelial   carcinomas   in   humans   and   dogs   exist   in   terms   of   general   histomorphology  and  clinical  progression,  it  is  less  clear  whether  the  molecular  pathways   that  drive  carcinogenesis  are  the  same.  An  understanding  of  the  pathologic  basis  for  lower   urinary   tract   cancer   in   dogs   is   needed   from   a   prognostic   and   treatment   perspective   in   veterinary   medicine   and   to   further   establish   the   dog   as   a   relevant   model   for   human   disease.           Given   these   facts   the   main   aims   of   the   studies   presented   in   this   dissertation   are   as   follows:   • To   demonstrate   biologic   and   prognostic   significance   for   histomorphologic   classification  and  grading  of  canine  lower  urinary  tract  urothelial  carcinomas   • To   evaluate   components   of   specific   carcinogenesis   pathways   in   canine   lower   urinary  tract  urothelial  carcinomas  with  the  goal  of  identifying  molecular  prognostic   markers  and  therapeutic  targets    11     To  compare  and  contrast  urothelial  carcinogenesis  in  the  lower  urinary  tract  of  dogs   • to   that   reported   in   humans   with   the   goal   of   better   establishing   the   dog   as   a   relevant   model  for  human  disease     Studies  are  laid  out  in  four  chapters  followed  by  a  conclusion  that  presents  a   summary  of  findings  and  discussion  of  limitations  and  future  directions.  The  background   and  goals  of  each  chapter  are  briefly  described  here,  and  expanded  upon  within  the   chapters  themselves.       Chapter  2     Chapter   2   examines   the   biologic   significance   of   the   histologic   classification   and   grading  of  canine  lower  urinary  tract  urothelial  carcinoma  with  respect  to  the  distribution   of   a   set   of   immunohistochemical   markers   that   have   been   associated   with   differentiation   and/or   prognosis   in   humans.   The   central   hypothesis   for   this   work   was   that   there   are   significant   differences   in   the   expression   of   the   evaluated   markers   between   histologic   classifications   and   grades   of   proliferative   urothelial   lesions.     The   goal   in   examining   this   hypothesis   was   to   provide   rationale   for   use   of   this   classification   and   grading   system   in   dogs;   however,   this   study   was   limited   by   the   fact   that   follow-­‐up   information   regarding   outcome  was  not  available.   The  World  Health  Organization  (WHO)/International  Society  of  Urologic  Pathology   (ISUP)   Consensus   Classification   System   published   in   1998   and   updated   in   2004   has   been   demonstrated   to   be   significantly   associated   with   clinical   outcome   in   humans.42-­‐50   While   Patrick,   et   al.,   demonstrated   that   canine   proliferative   urothelial   lesions   could   easily   be    12     classified   according   to   the   system   based   on   histomorphology,   the   significance   of   this   system   in   terms   of   prognostication   in   dogs   remains   unclear.16   To   further   characterize   differences   between   histologic   classification   and   grade   beyond   histomorphology,   we   examined   the   expression   of   uroplakin   III,   cytokeratin   7,   COX-­‐2,   and   caspase   3   in   a   set   of   canine  proliferative  urothelial  carcinomas  including  neoplastic  and  non-­‐neoplastic  lesions.     Uroplakin  III  and  cytokeratin  7  are  expressed  by  urothelium  and  used  as   differentiation  markers  for  diagnostic  purposes  in  dogs.51-­‐60  In  humans,  loss  of  UPIII   expression  is  frequently  seen  in  metastatic  sites  of  high-­‐grade  tumors  and  is  associated   with  lymphovascular  invasion,  stage,  and  grade.60,  61  No  such  associations  have  previously   been  found  in  dogs;  however,  studies  have  not  focused  on  the  distribution  pattern  of   expression  as  was  evaluated  in  this  case  series.       The   expression   of   the   inducible   enzyme   COX-­‐2   and   the   subsequent   production   of   prostaglandin   E2   have   significant   roles   in   carcinogenesis,   including   immunosuppression,   inhibition   of   apoptosis,   increasing   the   metastatic   potential   of   neoplastic   epithelial   cells,   promoting   drug   resistance,   and   stimulating   angiogenesis.62-­‐67   Numerous   studies   have   variably   shown   significant   correlations   between   COX-­‐2   expression   and   tumor   grade,   invasion,  metastasis,  and  survival.68-­‐75     Caspase-­‐3   is   an   executioner   protein   that   is   activated   by   both   the   intrinsic   and   extrinsic   pathways   of   apoptosis.76-­‐78   Due   to   the   fact   that   this   protein   is   activated   late   in   the   apoptotic   pathway,   immunohistochemical   detection   of   activated   caspase-­‐3   has   been   used   to  evaluate  apoptotic  rate.79,  80  In  human  bladder  cancers,  expression  of  caspase-­‐3  has  been   suggested  as  to  have  prognostic  significance.81-­‐83        13     Chapter  3   Chapter   3   investigates   the   potential   relationship   between   mechanisms   governing   prostaglandin  E2   regulation  and  epithelial-­‐to-­‐mesenchymal  transition  in  terms  of  cadherin   expression   and   Wnt   signaling   in   canine   lower   urinary   tract   urothelial   carcinomas.   As   canine  urothelial  carcinomas  are  often  highly  invasive  and  metastasis  is  common,  it  is  likely   that  these  tumors  often  undergo  epithelial-­‐to-­‐mesenchymal  transition  during  progression,   gaining  the  ability  to  invade.  Based  on  studies  in  human  urothelial  carcinomas,  it  has  been   suggested   that   loss   expression   of   15-­‐hydroxyprostaglandin   dehydrogenase   (HPGD)   is   associated  with  loss  of  E-­‐cadherin  expression  and  development  of  an  invasive  phenotype.   Our   central   hypothesis   for   this   study   was   that   altered   expression   of   COX-­‐2   and   PGDH   in   canine  urothelial  carcinomas  is  associated  with  aberrant  expression  of  adhesion-­‐associated   cadherin  proteins,  higher  histologic  grade,  invasion,  and  shorter  survival  times.     Prostaglandins   are   inflammatory   mediators   implicated   in   avoidance   of   apoptosis,   angiogenesis,   cellular   proliferation,   invasion   and   metastasis   in   cancer.66,   84-­‐88   COX-­‐2   is   an   inducible  enzyme  that  is  up  regulated  in  a  variety  of  inflammatory  and  neoplastic  processes   and   that   acts   in   the   production   of   prostaglandins.   Increased   expression   of   COX-­‐2   by   neoplastic   cells   has   been   associated   with   worsening   prognosis.66,   89   As   numerous   COX   inhibitors   are   available,   COX-­‐2   is   a   prime   therapeutic   target   in   many   cancers.   Unfortunately,   COX-­‐2   inhibition   has   been   associated   with   side   effects   including   life-­‐ threatening  cardiovascular  effects,  best  recognized  in  association  with  the  infamous  drug,   Vioxx.90  HPGD,  on  the  other  hand,  inactivates  prostaglandin  E2.10  Decreased  expression  of   HPGD  results  in  increased  amounts  of  prostaglandin  within  tissues  and  has  been  associated   with   worsening   prognosis   in   cancers.91,   92   Further,   a   recent   study   showed   specific   single-­‐  14     nucleotide  polymorphisms  within  the  HPGD  gene  were  associated  with  both  increased  risk   of   colon   cancer   development   and   decreased   expression   of   HPGD   in   the   colon   overall.93   Developing   a   better   view   of   the   prostaglandin   pathways,   the   consequences   of   altered   expression,   and   how   this   impacts   treatment   response   could   lead   to   the   development   of   better  clinical  strategies  to  address  canine  urothelial  cancer.     The   cadherins   are   a   group   of   membrane-­‐associated   molecules   involved   in   cell-­‐cell   adhesion.   As   such,   these   proteins   play   integral   roles   in   embryogenesis   and   development,   cellular   polarity,   and   carcinogenesis.94   E-­‐cadherin   is   a   primary   mediator   of   cell-­‐cell   adhesion  in  epithelial  cells  and  is  strongly   expressed  in  the  urothelium  of  the  bladder.  N-­‐ cadherin   is   predominately   expressed   by   mesenchymal   cells   in   adults,   but   is   expressed   by   epithelial   cells   during   embryogenesis.   P-­‐cadherin   is   most   prominently   expressed   in   the   placenta,  but  is  also  expressed  by  basal  cells  of  stratified  epithelia.  Decreased  expression  of   E-­‐cadherin  and  increased  expression  of  other  cadherins  (termed  cadherin  switching)  result   in   decreased   strength   of   cell-­‐cell   adhesions   and   an   increased   propensity   for   cellular   migration.94-­‐96   In   terms   of   carcinogenesis,   cadherin   switching   is   observed   in   epithelial   to   mesenchymal   transitions   and   has   been   associated   with   increased   invasiveness   and   metastasis.  94-­‐97       Because   cadherins   form   associations   with   other   proteins   within   cells,   they   are   integrally   linked   to   intracellular   signaling   and   trafficking.   β-­‐catenin   binds   to   the   cytoplasmic  tail  of  cadherin  molecules.  In  this  capacity  it  functions  in  cell-­‐cell  adhesion,  but   it   is   also   involved   in   a   variety   of   signaling   pathways   including   some   that   are   involved   in   carcinogenesis,  such  as  the  Wnt  pathways.95,   98,   99  While  loss  of  cadherin  expression  alone   has   not   been   shown   to   directly   result   in   intracellular   signaling,   altered   expression   of    15     cadherins  has  been  shown  to  amplify  or  buffer  the  effects  of  such  pathways.95,  98,  99  This  is   thought   to   be   due   to   loss   of   the   association   and   sequestration   of   β-­‐catenin   in   cadherin   junctional  complexes  as  cadherin  expression  is  lost.     It  has  recently  been  shown  that  cadherin  expression  is  integrally  linked  to  HPGD.  HPGD   expression   was   shown   to   increase   in   expression   with   urothelial   differentiation   and   inhibition   of   PGDH   expression   resulted   in   disruption   of   E-­‐cadherin   expression   at   cell-­‐cell   junction   in   cell   lines.100   In   non-­‐small   cell   lung   cancer   of   humans,   it   was   shown   that   exogenous   prostaglandin   can   decrease   E-­‐cadherin   expression,   and   that   such   changes   are   mediated   by   the   specific   transition   repressors,   ZEB1   and   Snail.101   In   squamous   cell   carcinomas,  administration  of  prostaglandin  E2  or  prostaglandin  receptor  agonists  lead  to   decreased   expression   of   E-­‐cadherin   and   internalization   of   this   molecule   into   the   cytoplasm.102     Changes   in   the   expression   of   all   of   the   above   mentioned   molecules   have   been   reported   in   urothelial   carcinomas   and   many   are   targets   for   treatment   making   them   of   particular   interest   for   further   study.   COX-­‐2   over   expression   has   been   described   in   a   significant   number   of   urothelial   carcinomas   of   humans   and   increasing   expression   is   associated   with   invasiveness,   metastasis,   and   increased   mortality.84,   89   Previous   studies   of   COX-­‐2   expression   have   yielded   similar   results   in   dogs.86   Treatment   studies   with   COX-­‐2   inhibitors,   however,   have   met   mixed   results.   In   vitro   studies   have   suggested   that   treatment   of   urothelial  carcinoma  cell  lines  with  such  compounds  can  result  in  decreased  invasiveness   and   decreased   tumor   grade.103   Results   of   in   vivo   studies   vary   with   only   a   proportion   of   studies  showing  a  decreased  risk  for  tumor  development.87,  103-­‐105  PGDH  has  been  shown  to   be  important  in  urothelial  differentiation  and  its  expression  is  decreased  in  malignancies.    16     E-­‐cadherin  and  B-­‐catenin  expression  is  often  down  regulated  in  urothelial  carcinomas.106,   107   Such   down   regulation   is   associated   with   higher   degrees   of   neoplastic   infiltration.107   Mutations   in   E-­‐cadherin   genes   are   rarely   implicated   in   carcinogenesis.98   Rather,   silencing   of  E-­‐cadherin  expression  is  most  often  an  epigenetic  change.  As  such,  numerous  classes  of   drugs  have  been  suggested  to  up  regulate  E-­‐cadherin  expression.98  N-­‐cadherin  expression   has   been   shown   to   be   up   regulated   in   urothelial   carcinomas   and   in   bladder   cancer   cell   lines.85  The  compound  (-­‐)-­‐epigallocatechin-­‐3-­‐gallate,  which  is  found  in  green  tea,  has  been   associated  with  down  regulation  of  N-­‐cadherin  and  decreased  migration  in  bladder  cancer   cell  lines.85  Increased  P-­‐cadherin  expression  has  been  associated  with  a  significantly  worse   bladder   cancer-­‐specific   survival   and   a   more   malignant   and   invasive   cancer   phenotype   in   humans.106       Chapter  4   Chapter   4   examines   the   potential   role   of   DNA   mismatch   repair   (MMR)   in   carcinogenesis   of   canine   lower   urinary   tract   urothelial   carcinomas   through   evaluation   of   microsatellite   instability   and   expression   of   MMR   proteins.   Hereditary   deficiency   of   MMR   in   humans   is   associated   with   syndromes   of   cancer   development   throughout   the   body,   but   MMR   is   often   defective   in   sporadic   cancers   as   well.     Based   on   the   fact   that   MMR   repair   deficiency   is   hereditary   in   humans   and   that   there   are   strong   breed   predispositions   for   cancer  in  dogs,  we  hypothesized  that  deficiencies  in  MMR  contributed  to  carcinogenesis  of   hereditary  cancers  in  dogs  including  urothelial  carcinomas.  To  evaluate  MMR  in  dogs,  we   examined   the   prevalence   of   microsatellite   instability   (MSI)   in   a   set   of   cancer   types   that   have   breed   predispositions   including   urothelial   carcinomas.   After   demonstrating   MSI   in    17     urothelial  carcinomas,  we  subsequently  evaluated  MMR  protein  expression.   The   DNA   mismatch   repair   (MMR)   system   participates   in   a   variety   of   cellular   processes.   Most   notably,   this   system   is   responsible   for   post   replication   recognition   and   repair  of  base-­‐base  mismatches  and  the  resolution  of  insertion  and  deletion  loops  that  can   occur  in  repetitive  regions  of  DNA.108-­‐112  Accordingly,  deficiencies  in  this  system  can  lead  to   increased   rates   of   point   and   frame   shift   mutations   throughout   the   genome.   Such   mutations   can   lead   to   loss   of   function   changes   in   tumor   suppressors   or   gain   of   function   changes   in   tumor  oncogenes.113-­‐117  In  addition,  the  MMR  system  also  participates  in  a  variety  of  other   processes   including   DNA   damage   recognition   signaling,   promoting   cell   cycle   arrest   and   apoptosis,   homologous   recombination,   meiotic   recombination,   and   other   DNA   repair   pathways.108,   109,   111,   118   Given   the   varied   roles   played   by   MMR   in   maintenance   of   DNA   integrity  and  signaling,  it  is  not  surprising  that  defects  in  MMR  facilitate  carcinogenesis  and   affect  response  to  treatment.     MMR   function   has   most   often   been   evaluated   through   analysis   of   microsatellites.   Microsatellites   are   regions   of   nucleotide   repeats   located   throughout   the   genome.   These   areas   are   prone   to   polymerase   slippage   during   replication   leading   to   formation   of   small   insertion   and   deletion   loops.119   If   not   recognized   and   repaired   by   MMR,   buildup   of   frame   shift   mutations   occurs   within   microsatellites.112,   118   In   cancers   with   defects   in   the   MMR   system,  a  high  percentage  of  microsatellites  have  recognizable  mutations.  Such  buildup  of   mutations   within   microsatellites   is   termed   microsatellite   instability   (MSI)   and   is   considered  a  “signature”  for  MMR  dysfuntion.118,  120     In  terms  of  prognosis,  MMR  deficient  cancers  are  generally  associated  with  a  more   favorable   clinical   outcome   than   those   that   are   MMR   proficient.121-­‐125   In   colorectal    18     carcinomas,  for  example,  MMR  deficient  tumors  are  associated  with  longer  survival  times   and   a   decreased   risk   of   metastasis   compared   to   those   that   are   proficient.124   The   reason   for   this  difference  in  prognosis  is  likely  multifactorial.  Inherently,  cancers  with  defects  in  MMR   are  genetically  less  stable  that  those  with  intact  MMR  leading  to  an  increase  in  DNA  lesions,   which   promotes   cell   cycle   arrest   and   apoptosis   signaling.126   Also,   there   is   evidence   that   MMR   deficient   cancer   cells   are   often   highly   immunogenic.   This   is   proposed   to   occur   due   to   production  of  atypical  proteins  generated  through  frameshift  mutations  resulting  in  T  cell   mediated  immune  responses  directed  against  the  cancer  cells.127  Additionally,  it  has  been   shown  that  several  genes  associated  with  antitumor  immune  responses  are  over  expressed   in  MMR  deficient  cancers  and  cell  lines.126   Urinary  carcinomas  of  the  urinary  bladder  represent  one  of  the  many  cancer  types   in   which   a   significant   percentage   of   tumors   have   been   reported   to   show   defects   in   MMR   in   humans.  Development  of  urothelial  carcinomas  of  the  urinary  bladder  has  been  associated   with   both   hereditary   and   spontaneously   developing   MMR   deficiency.   High   MSI   and   a   particular   form   of   MSI   known   as   elevated   microsatellite   instability   at   selected   tetranucleotide   repeats   (EMAST)   have   been   described   in   urothelial   carcinomas.121   Differential   expression   of   MMR   proteins   including   MSH2,   MSH3,   and   MLH1   has   been   associated  with  urothelial  carcinoma  grade  and  clinical  outcome  in  humans.121,  125,  128       Chapter  5     Chapter   5   describes   the   characterization   of   canine   lower   urinary   tract   urothelial   carcinoma   cell   lines   and   the   evaluation   of   their   MMR   capacity.     Further,   chapter   4   also   describes  the  assessment  of  sensitivity  to  chemotherapeutic  therapy  in  vitro  as  influenced    19     by  variable  MMR  proficiency.       The   potential   application   of   MMR   as   a   therapeutic   target   is   highlighted   by   the   differences   observed   in   prognosis   and   the   response   to   treatment   between   cancers   of   the   same  type  that  differ  in  MMR  capacity.  Having  shown  in  chapter  3  that  MSI  and  decreased   expression  of  the  MMR  protein,  MSH2,  is  common  in  canine  lower  urinary  tract  urothelial   carcinomas,   we   hypothesized   that   variance   in   MMR   would   be   reflected   by   differences   in   response   to   chemotherapeutics.   To   investigate   this   hypothesis,   four   canine   urothelial   carcinoma  cell  lines  were  established  and  characterized  with  the  goal  of  generating  in  vitro   canine   urothelial   carcinoma   models.   We   were   able   to   show   that   one   such   cell   line   had   decreased   relative   expression   of   MMR   proteins   and   genes,   and   considered   this   line   MMR   deficient.     Based   on   this,   we   preformed   survival   assays   exposing   MMR   proficient   and   deficient   cell   lines   to   a   panel   of   chemotherapeutics   to   show   that   there   are   differences   in   response  to  treatment,  thus  highlighting  MMR  proficiency  as  a  target  for  selective  therapy.   The   effects   of   MMR   deficiency   on   chemotherapeutic   response   are   complex.   MMR   deficiency   is   capable   of   conferring   either   drug   resistance   or   sensitivity   according   to   the   drugs   mechanism   of   action.123,   129-­‐137   For   example,   MMR   deficiency   results   in   drug   resistance   to   the   fluorinated   pyrimidine   analog   5-­‐FU   as   well   as   certain   alkylating   agents   including  the  SN1  methylators,  temozolomide  and  dacarbazine.123,  129,  134,  135,  137  In  contrast,   MMR  deficient  cells  are  highly  sensitive  to  many  of  the  interstrand  cross-­‐linking  alkylators,   including   CCNU   and   mitomycin   C.129,   137   There   have   also   been   reports   of   differences   in   response   of   cancers   with   varying   MMR   capacity   to   some   drugs   within   the   same   class.   Resistance  has  been  reported  to  platinum  containing  compounds  cisplatin  and  carboplatin   in  MMR  deficient  cancers,  while  no  such  resistance  has  been  reported  to  oxaliplatin.123,  134      20     The   differential   effect   of   the   MMR   system   in   response   to   drugs   probably   reflects   the   ability   of   the   MMR   machinery   to   participate   in   a   number   of   alternative   DNA   damage   processing/signaling   pathways.   In   the   case   of   simple   methylated   bases   in   the   DNA   molecule,  it  has  been  proposed  that  MMR  may  be  involved  in  triggering  apoptosis  through   either  futile  repair  attempts  or  through  conversion  of  the  alkylated  base  to  a  lethal  lesion   such  as  a  double  strand  break.137  In  contrast,  an  increased  sensitivity  to  cytotoxins  can  be   observed   if   defective   MMR   results   in   failure   to   repair   certain   types   of   DNA   lesions.   For   example,   certain   interstrand   cross-­‐links   are   recognized   by   the   MMR   system   and   repair   is   thought   to   occur   through   MMR   mediated   homologous   recombination.129   Cells   deficient   in   MMR  do  not  effectively  repair  these  cross-­‐links  and  are  extremely  sensitive  to  agents  that   induce  such  these  lesions.     Additionally,  there  has  been  a  great  deal  of  recent  attention  to  the  targeting  of  DNA   repair   defective   tumor   cells   through   inhibition   of   coordinating   DNA   repair   systems.   Such   an  approach  has  been  termed  synthetic  lethality.133  The  basis  for  this  paradigm  is  that  due   to   molecular   redundancies,   cells   may   tolerate   loss   of   function   of   a   single   pathway   that   participates  in  DNA  repair.  However,  when  another  coordinating  pathway  is  inhibited,  the   result  is  cell  death.  New  evidence  suggests  that  inhibition  of  particular  DNA  polymerases  is   synthetically  lethal  in  cells  that  have  MMR  defects.133    Also,  drugs  that  are  known  to  cause   oxidative  damage  such  as  methotrexate  have  been  suggested  to  have  a  potential  synthetic   lethal  relationship  with  deficiencies  in  MMR.123        21                             REFERENCES          22     REFERENCES     1.  SEER  stat  fact  sheets:  bladder  cancer.  Available  from  URL:   http://seer.cancer.gov/statfacts/html/urinb.html  [accessed  Nov  5,  2014].   2.  Jemal  A,  Siegel  R,  Ward  E,  et  al.  Cancer  statistics,  2008.  CA  Cancer  J  Clin.  2008;58:  71-­‐96.   3.  Sugano  K,  Kakizoe  T.  Genetic  alterations  in  bladder  cancer  and  their  clinical  applications   in  molecular  tumor  staging.  Nat  Clin  Pract  Urol.  2006;3:  642-­‐652.   4.  Herr  HW,  Dotan  Z,  Donat  SM,  Bajorin  DF.  Defining  optimal  therapy  for  muscle  invasive   bladder  cancer.  J  Urol.  2007;177:  437-­‐443.   5.  Riley  GF,  Potosky  AL,  Lubitz  JD,  Kessler  LG.  Medicare  payments  from  diagnosis  to  death   for  elderly  cancer  patients  by  stage  at  diagnosis.  Med  Care.  1995;33:  828-­‐841.   6.  Kummar  S,  Kinders  R,  Rubinstein  L,  et  al.  Compressing  drug  development  timelines  in   oncology  using  phase  '0'  trials.  Nat  Rev  Cancer.  2007;7:  131-­‐139.   7.  Cekanova  M,  Rathore  K.  Animal  models  and  therapeutic  molecular  targets  of  cancer:   utility  and  limitations.  Drug  Des  Devel  Ther.  2014;8:  1911-­‐1922.   8.  Mak  IW,  Evaniew  N,  Ghert  M.  Lost  in  translation:  animal  models  and  clinical  trials  in   cancer  treatment.  Am  J  Transl  Res.  2014;6:  114-­‐118.   9.  Knapp  DW,  Waters  DJ.  Naturally  occurring  cancer  in  pet  dogs:  important  models  for   developing  improved  cancer  therapy  for  humans.  Mol  Med  Today.  1997;3:  8-­‐11.   10.  Knapp  DW,  Glickman  NW,  Denicola  DB,  Bonney  PL,  Lin  TL,  Glickman  LT.  Naturally-­‐ occurring  canine  transitional  cell  carcinoma  of  the  urinary  bladder  A  relevant  model  of   human  invasive  bladder  cancer.  Urol  Oncol.  2000;5:  47-­‐59.   11.  Lindblad-­‐Toh  K,  Wade  CM,  Mikkelsen  TS,  et  al.  Genome  sequence,  comparative  analysis   and  haplotype  structure  of  the  domestic  dog.  Nature.  2005;438:  803-­‐819.   12.  Mutsaers  AJ,  Widmer  WR,  Knapp  DW.  Canine  transitional  cell  carcinoma.  J  Vet  Intern   Med.  2003;17:  136-­‐144.   13.  Knapp  DW,  Glickman  NW,  Denicola  DB,  Bonney  PL,  Lin  TL,  Glickman  LT.  Naturally-­‐ occurring  canine  transitional  cell  carcinoma  of  the  urinary  bladder  A  relevant  model  of   human  invasive  bladder  cancer.  Urologic  oncology.  2000;5:  47-­‐59.   14.  Mutsaers  AJ,  Widmer  WR,  Knapp  DW.  Canine  transitional  cell  carcinoma.  Journal  of   veterinary  internal  medicine  /  American  College  of  Veterinary  Internal  Medicine.  2003;17:   136-­‐144.    23     15.  Knapp  DW,  Ramos-­‐Vara  JA,  Moore  GE,  Dhawan  D,  Bonney  PL,  Young  KE.  Urinary   bladder  cancer  in  dogs,  a  naturally  occurring  model  for  cancer  biology  and  drug   development.  ILAR  J.  2014;55:  100-­‐118.   16.  Patrick  DJ,  Fitzgerald  SD,  Sesterhenn  IA,  Davis  CJ,  Kiupel  M.  Classification  of  canine   urinary  bladder  urothelial  tumours  based  on  the  World  Health  Organization/International   Society  of  Urological  Pathology  consensus  classification.  J  Comp  Pathol.  2006;135:  190-­‐199.   17.  Valli  VE,  Norris  A,  Jacobs  RM,  et  al.  Pathology  of  canine  bladder  and  urethral  cancer  and   correlation  with  tumour  progression  and  survival.  J  Comp  Pathol.  1995;113:  113-­‐130.   18.  Knottenbelt  C,  Mellor  D,  Nixon  C,  Thompson  H,  Argyle  DJ.  Cohort  study  of  COX-­‐1  and   COX-­‐2  expression  in  canine  rectal  and  bladder  tumours.  J  Small  Anim  Pract.  2006;47:  196-­‐ 200.   19.  Rankin  WV,  Henry  CJ,  Turnquist  SE,  et  al.  Comparison  of  distributions  of  survivin  among   tissues  from  urinary  bladders  of  dogs  with  cystitis,  transitional  cell  carcinoma,  or   histologically  normal  urinary  bladders.  Am  J  Vet  Res.  2008;69:  1073-­‐1078.   20.  Rankin  WV,  Henry  CJ,  Turnquist  SE,  et  al.  Identification  of  survivin,  an  inhibitor  of   apoptosis,  in  canine  urinary  bladder  transitional  cell  carcinoma.  Vet  Comp  Oncol.  2008;6:   141-­‐150.   21.  Hanazono  K,  Fukumoto  S,  Kawamura  Y,  et  al.  Epidermal  Growth  Factor  Receptor   Expression  in  Canine  Transitional  Cell  Carcinoma.  J  Vet  Med  Sci.  2014.   22.  Hanazono  K,  Nishimori  T,  Fukumoto  S,  et  al.  Immunohistochemical  expression  of  p63,   Ki67  and  beta-­‐catenin  in  canine  transitional  cell  carcinoma  and  polypoid  cystitis  of  the   urinary  bladder.  Vet  Comp  Oncol.  2014.   23.  Tanaka  ST,  Ishii  K,  Demarco  RT,  Pope  JCt,  Brock  JW,  3rd,  Hayward  SW.  Endodermal   origin  of  bladder  trigone  inferred  from  mesenchymal-­‐epithelial  interaction.  J  Urol.   2010;183:  386-­‐391.   24.  Viana  R,  Batourina  E,  Huang  H,  et  al.  The  development  of  the  bladder  trigone,  the  center   of  the  anti-­‐reflux  mechanism.  Development.  2007;134:  3763-­‐3769.   25.  van  der  Meijden  AP.  Bladder  cancer.  BMJ.  1998;317:  1366-­‐1369.   26.  Meuten  D.  Tumors  of  the  Urinary  System.  Tumors  in  Domestic  Animals  4th  ed.  Ames,   IA:  Iowa  State  Press,  2002:509-­‐546.   27.  Henry  CJ,  McCaw  DL,  Turnquist  SE,  et  al.  Clinical  evaluation  of  mitoxantrone  and   piroxicam  in  a  canine  model  of  human  invasive  urinary  bladder  carcinoma.  Clinical  cancer   research  :  an  official  journal  of  the  American  Association  for  Cancer  Research.  2003;9:  906-­‐ 911.    24     28.  McDougal  W,  Shipley  W,  Kaufman  D,  al  e.  Cancer  of  the  Bladder,  Ureter,  and  Renal   Pelvis.  In:  Devita  VJ,  Lawrence  T,  Rosenberg  S,  editors.  Cancer:  Principles  and  Practice  of   Oncology.  Philadelphia,  PA:  Lippincott  Williams  &  Wilkins,  2008:1358-­‐1384.   29.  Rocha  TA,  Mauldin  GN,  Patnaik  AK,  Bergman  PJ.  Prognostic  factors  in  dogs  with  urinary   bladder  carcinoma.  J  Vet  Intern  Med.  2000;14:  486-­‐490.   30.  McMillan  SK,  Boria  P,  Moore  GE,  Widmer  WR,  Bonney  PL,  Knapp  DW.  Antitumor  effects   of  deracoxib  treatment  in  26  dogs  with  transitional  cell  carcinoma  of  the  urinary  bladder.  J   Am  Vet  Med  Assoc.  2011;239:  1084-­‐1089.   31.  Schrempp  DR,  Childress  MO,  Stewart  JC,  et  al.  Metronomic  administration  of   chlorambucil  for  treatment  of  dogs  with  urinary  bladder  transitional  cell  carcinoma.  J  Am   Vet  Med  Assoc.  2013;242:  1534-­‐1538.   32.  Henry  CJ,  McCaw  DL,  Turnquist  SE,  et  al.  Clinical  evaluation  of  mitoxantrone  and   piroxicam  in  a  canine  model  of  human  invasive  urinary  bladder  carcinoma.  Clin  Cancer  Res.   2003;9:  906-­‐911.   33.  Hanazono  K,  Fukumoto  S,  Endo  Y,  Ueno  H,  Kadosawa  T,  Uchide  T.  Ultrasonographic   findings  related  to  prognosis  in  canine  transitional  cell  carcinoma.  Vet  Radiol  Ultrasound.   2014;55:  79-­‐84.   34.  Norris  AM,  Laing  EJ,  Valli  VE,  et  al.  Canine  bladder  and  urethral  tumors:  a  retrospective   study  of  115  cases  (1980-­‐1985).  J  Vet  Intern  Med.  1992;6:  145-­‐153.   35.  Cerf  DJ,  Lindquist  EC.  Palliative  ultrasound-­‐guided  endoscopic  diode  laser  ablation  of   transitional  cell  carcinomas  of  the  lower  urinary  tract  in  dogs.  J  Am  Vet  Med  Assoc.   2012;240:  51-­‐60.   36.  Nolan  MW,  Kogan  L,  Griffin  LR,  et  al.  Intensity-­‐modulated  and  image-­‐guided  radiation   therapy  for  treatment  of  genitourinary  carcinomas  in  dogs.  J  Vet  Intern  Med.  2012;26:  987-­‐ 995.   37.  Arnold  EJ,  Childress  MO,  Fourez  LM,  et  al.  Clinical  trial  of  vinblastine  in  dogs  with   transitional  cell  carcinoma  of  the  urinary  bladder.  J  Vet  Intern  Med.  2011;25:  1385-­‐1390.   38.  Robat  C,  Burton  J,  Thamm  D,  Vail  D.  Retrospective  evaluation  of  doxorubicin-­‐piroxicam   combination  for  the  treatment  of  transitional  cell  carcinoma  in  dogs.  J  Small  Anim  Pract.   2013;54:  67-­‐74.   39.  Mostofi  K,  Ito  N,  Weinstein  R.  Paathology;  the  need  for  standardization  of  pathological   examination  and  reporting.  Developments  in  Bladder  Cancer.  New  York,  NY:  Alan  R.  Liss,   Inc,  1986:66-­‐83.   40.  Epstein  JI,  Amin  MB,  Reuter  VR,  Mostofi  FK.  The  World  Health   Organization/International  Society  of  Urological  Pathology  consensus  classification  of    25     urothelial  (transitional  cell)  neoplasms  of  the  urinary  bladder.  Bladder  Consensus   Conference  Committee.  The  American  journal  of  surgical  pathology.  1998;22:  1435-­‐1448.   41.  Eble  J,  Sauter  G,  Epstein  JI,  Sesterhenn  IA.  World  Health  Organization  classification  of   tumours.  Pathology  and  genetics  of  tumours  of  the  urinary  system  and  male  genital  organs.   Lyon:  IARC  Press,  2004.   42.  Alsheikh  A,  Mohamedali  Z,  Jones  E,  Masterson  J,  Gilks  CB.  Comparison  of  the  WHO/ISUP   classification  and  cytokeratin  20  expression  in  predicting  the  behavior  of  low-­‐grade   papillary  urothelial  tumors.  World/Health  Organization/Internattional  Society  of  Urologic   Pathology.  Modern  pathology  :  an  official  journal  of  the  United  States  and  Canadian   Academy  of  Pathology,  Inc.  2001;14:  267-­‐272.   43.  Oosterhuis  JW,  Schapers  RF,  Janssen-­‐Heijnen  ML,  Pauwels  RP,  Newling  DW,  ten  Kate  F.   Histological  grading  of  papillary  urothelial  carcinoma  of  the  bladder:  prognostic  value  of   the  1998  WHO/ISUP  classification  system  and  comparison  with  conventional  grading   systems.  Journal  of  clinical  pathology.  2002;55:  900-­‐905.   44.  Pan  CC,  Chang  YH,  Chen  KK,  Yu  HJ,  Sun  CH,  Ho  DM.  Constructing  prognostic  model   incorporating  the  2004  WHO/ISUP  classification  for  patients  with  non-­‐muscle-­‐invasive   urothelial  tumours  of  the  urinary  bladder.  Journal  of  clinical  pathology.  2010;63:  910-­‐915.   45.  Pan  CC,  Chang  YH,  Chen  KK,  Yu  HJ,  Sun  CH,  Ho  DM.  Prognostic  significance  of  the  2004   WHO/ISUP  classification  for  prediction  of  recurrence,  progression,  and  cancer-­‐specific   mortality  of  non-­‐muscle-­‐invasive  urothelial  tumors  of  the  urinary  bladder:  a   clinicopathologic  study  of  1,515  cases.  American  journal  of  clinical  pathology.  2010;133:   788-­‐795.   46.  Pich  A,  Chiusa  L,  Formiconi  A,  Galliano  D,  Bortolin  P,  Navone  R.  Biologic  differences   between  noninvasive  papillary  urothelial  neoplasms  of  low  malignant  potential  and  low-­‐ grade  (grade  1)  papillary  carcinomas  of  the  bladder.  The  American  journal  of  surgical   pathology.  2001;25:  1528-­‐1533.   47.  Samaratunga  H,  Makarov  DV,  Epstein  JI.  Comparison  of  WHO/ISUP  and  WHO   classification  of  noninvasive  papillary  urothelial  neoplasms  for  risk  of  progression.   Urology.  2002;60:  315-­‐319.   48.  Schned  AR,  Andrew  AS,  Marsit  CJ,  Zens  MS,  Kelsey  KT,  Karagas  MR.  Survival  following   the  diagnosis  of  noninvasive  bladder  cancer:  WHO/International  Society  of  Urological   Pathology  versus  WHO  classification  systems.  The  Journal  of  urology.  2007;178:  1196-­‐ 1200;  discussion  1200.   49.  Vardar  E,  Gunlusoy  B,  Minareci  S,  Postaci  H,  Ayder  AR.  Evaluation  of  p53  nuclear   accumulation  in  low-­‐  and  high-­‐grade  (WHO/ISUP  classification)  transitional  papillary   carcinomas  of  the  bladder  for  tumor  recurrence  and  progression.  Urologia  internationalis.   2006;77:  27-­‐33.    26     50.  Yin  H,  Leong  AS.  Histologic  grading  of  noninvasive  papillary  urothelial  tumors:   validation  of  the  1998  WHO/ISUP  system  by  immunophenotyping  and  follow-­‐up.  American   journal  of  clinical  pathology.  2004;121:  679-­‐687.   51.  Wu  XR,  Lin  JH,  Walz  T,  et  al.  Mammalian  uroplakins.  A  group  of  highly  conserved   urothelial  differentiation-­‐related  membrane  proteins.  The  Journal  of  biological  chemistry.   1994;269:  13716-­‐13724.   52.  Wu  XR,  Kong  XP,  Pellicer  A,  Kreibich  G,  Sun  TT.  Uroplakins  in  urothelial  biology,   function,  and  disease.  Kidney  international.  2009;75:  1153-­‐1165.   53.  Tot  T.  Cytokeratins  20  and  7  as  biomarkers:  usefulness  in  discriminating  primary  from   metastatic  adenocarcinoma.  European  journal  of  cancer.  2002;38:  758-­‐763.   54.  Vojtesek  B,  Staskova  Z,  Nenutil  R,  et  al.  A  panel  of  monoclonal  antibodies  to  keratin  no.   7:  characterization  and  value  in  tumor  diagnosis.  Neoplasma.  1990;37:  333-­‐342.   55.  Soslow  RA,  Rouse  RV,  Hendrickson  MR,  Silva  EG,  Longacre  TA.  Transitional  cell   neoplasms  of  the  ovary  and  urinary  bladder:  a  comparative  immunohistochemical  analysis.   International  journal  of  gynecological  pathology  :  official  journal  of  the  International   Society  of  Gynecological  Pathologists.  1996;15:  257-­‐265.   56.  Espinosa  de  los  Monteros  A,  Fernandez  A,  Millan  MY,  Rodriguez  F,  Herraez  P,  Martin  de   las  Mulas  J.  Coordinate  expression  of  cytokeratins  7  and  20  in  feline  and  canine  carcinomas.   Veterinary  pathology.  1999;36:  179-­‐190.   57.  Ramos-­‐Vara  JA,  Miller  MA,  Boucher  M,  Roudabush  A,  Johnson  GC.  Immunohistochemical   detection  of  uroplakin  III,  cytokeratin  7,  and  cytokeratin  20  in  canine  urothelial  tumors.   Veterinary  pathology.  2003;40:  55-­‐62.   58.  Moll  R,  Laufer  J,  Wu  XR,  Sun  TT.  [Uroplakin  III,  a  specific  membrane  protein  of   urothelial  umbrella  cells,  as  a  histological  markers  for  metastatic  transitional  cell   carcinomas].  Verhandlungen  der  Deutschen  Gesellschaft  fur  Pathologie.  1993;77:  260-­‐265.   59.  Parker  DC,  Folpe  AL,  Bell  J,  et  al.  Potential  utility  of  uroplakin  III,  thrombomodulin,  high   molecular  weight  cytokeratin,  and  cytokeratin  20  in  noninvasive,  invasive,  and  metastatic   urothelial  (transitional  cell)  carcinomas.  The  American  journal  of  surgical  pathology.   2003;27:  1-­‐10.   60.  Gruver  AM,  Amin  MB,  Luthringer  DJ,  et  al.  Selective  immunohistochemical  markers  to   distinguish  between  metastatic  high-­‐grade  urothelial  carcinoma  and  primary  poorly   differentiated  invasive  squamous  cell  carcinoma  of  the  lung.  Archives  of  pathology  &   laboratory  medicine.  2012;136:  1339-­‐1346.   61.  Matsumoto  K,  Satoh  T,  Irie  A,  et  al.  Loss  expression  of  uroplakin  III  is  associated  with   clinicopathologic  features  of  aggressive  bladder  cancer.  Urology.  2008;72:  444-­‐449.    27     62.  Gately  S,  Li  WW.  Multiple  roles  of  COX-­‐2  in  tumor  angiogenesis:  a  target  for   antiangiogenic  therapy.  Seminars  in  oncology.  2004;31:  2-­‐11.   63.  Wendum  D,  Masliah  J,  Trugnan  G,  Flejou  JF.  Cyclooxygenase-­‐2  and  its  role  in  colorectal   cancer  development.  Virchows  Archiv  :  an  international  journal  of  pathology.  2004;445:   327-­‐333.   64.  Wang  D,  Dubois  RN.  Prostaglandins  and  cancer.  Gut.  2006;55:  115-­‐122.   65.  Wang  MT,  Honn  KV,  Nie  D.  Cyclooxygenases,  prostanoids,  and  tumor  progression.   Cancer  metastasis  reviews.  2007;26:  525-­‐534.   66.  Greenhough  A,  Smartt  HJ,  Moore  AE,  et  al.  The  COX-­‐2/PGE2  pathway:  key  roles  in  the   hallmarks  of  cancer  and  adaptation  to  the  tumour  microenvironment.  Carcinogenesis.   2009;30:  377-­‐386.   67.  Liu  B,  Qu  L,  Tao  H.  Cyclo-­‐oxygenase  2  up-­‐regulates  the  effect  of  multidrug  resistance.   Cell  biology  international.  2010;34:  21-­‐25.   68.  Margulis  V,  Shariat  SF,  Ashfaq  R,  et  al.  Expression  of  cyclooxygenase-­‐2  in  normal   urothelium,  and  superficial  and  advanced  transitional  cell  carcinoma  of  bladder.  The   Journal  of  urology.  2007;177:  1163-­‐1168.   69.  Mohammed  SI,  Knapp  DW,  Bostwick  DG,  et  al.  Expression  of  cyclooxygenase-­‐2  (COX-­‐2)   in  human  invasive  transitional  cell  carcinoma  (TCC)  of  the  urinary  bladder.  Cancer   research.  1999;59:  5647-­‐5650.   70.  Shirahama  T.  Cyclooxygenase-­‐2  expression  is  up-­‐regulated  in  transitional  cell   carcinoma  and  its  preneoplastic  lesions  in  the  human  urinary  bladder.  Clinical  cancer   research  :  an  official  journal  of  the  American  Association  for  Cancer  Research.  2000;6:   2424-­‐2430.   71.  Komhoff  M,  Guan  Y,  Shappell  HW,  et  al.  Enhanced  expression  of  cyclooxygenase-­‐2  in   high  grade  human  transitional  cell  bladder  carcinomas.  The  American  journal  of  pathology.   2000;157:  29-­‐35.   72.  Ristimaki  A,  Nieminen  O,  Saukkonen  K,  Hotakainen  K,  Nordling  S,  Haglund  C.   Expression  of  cyclooxygenase-­‐2  in  human  transitional  cell  carcinoma  of  the  urinary   bladder.  The  American  journal  of  pathology.  2001;158:  849-­‐853.   73.  Shirahama  T,  Arima  J,  Akiba  S,  Sakakura  C.  Relation  between  cyclooxygenase-­‐2   expression  and  tumor  invasiveness  and  patient  survival  in  transitional  cell  carcinoma  of   the  urinary  bladder.  Cancer.  2001;92:  188-­‐193.   74.  Shariat  SF,  Matsumoto  K,  Kim  J,  et  al.  Correlation  of  cyclooxygenase-­‐2  expression  with   molecular  markers,  pathological  features  and  clinical  outcome  of  transitional  cell   carcinoma  of  the  bladder.  The  Journal  of  urology.  2003;170:  985-­‐989.    28     75.  Wadhwa  P,  Goswami  AK,  Joshi  K,  Sharma  SK.  Cyclooxygenase-­‐2  expression  increases   with  the  stage  and  grade  in  transitional  cell  carcinoma  of  the  urinary  bladder.  International   urology  and  nephrology.  2005;37:  47-­‐53.   76.  Cohen  GM.  Caspases:  the  executioners  of  apoptosis.  The  Biochemical  journal.  1997;326   (  Pt  1):  1-­‐16.   77.  Porter  AG,  Janicke  RU.  Emerging  roles  of  caspase-­‐3  in  apoptosis.  Cell  death  and   differentiation.  1999;6:  99-­‐104.   78.  Grutter  MG.  Caspases:  key  players  in  programmed  cell  death.  Current  opinion  in   structural  biology.  2000;10:  649-­‐655.   79.  Stadelmann  C,  Lassmann  H.  Detection  of  apoptosis  in  tissue  sections.  Cell  and  tissue   research.  2000;301:  19-­‐31.   80.  Abu-­‐Qare  AW,  Abou-­‐Donia  MB.  Biomarkers  of  apoptosis:  release  of  cytochrome  c,   activation  of  caspase-­‐3,  induction  of  8-­‐hydroxy-­‐2'-­‐deoxyguanosine,  increased  3-­‐ nitrotyrosine,  and  alteration  of  p53  gene.  Journal  of  toxicology  and  environmental  health.   Part  B,  Critical  reviews.  2001;4:  313-­‐332.   81.  Karam  JA,  Lotan  Y,  Karakiewicz  PI,  et  al.  Use  of  combined  apoptosis  biomarkers  for   prediction  of  bladder  cancer  recurrence  and  mortality  after  radical  cystectomy.  The  lancet   oncology.  2007;8:  128-­‐136.   82.  Karamitopoulou  E,  Rentsch  CA,  Markwalder  R,  Vallan  C,  Thalmann  GN,  Brunner  T.   Prognostic  significance  of  apoptotic  cell  death  in  bladder  cancer:  a  tissue  microarray  study   on  179  urothelial  carcinomas  from  cystectomy  specimens.  Pathology.  2010;42:  37-­‐42.   83.  Mitra  AP,  Castelao  JE,  Hawes  D,  et  al.  Combination  of  molecular  alterations  and  smoking   intensity  predicts  bladder  cancer  outcome:  A  report  from  the  Los  Angeles  Cancer   Surveillance  Program.  Cancer.  2013;119:  756-­‐765.   84.  Gee  J,  Lee  IL,  Grossman  HB,  Sabichi  AL.  Forced  COX-­‐2  expression  induces  PGE(2)  and   invasion  in  immortalized  urothelial  cells.  Urol  Oncol.  2008;26:  641-­‐645.   85.  Muller-­‐Decker  K,  Furstenberger  G.  The  cyclooxygenase-­‐2-­‐mediated  prostaglandin   signaling  is  causally  related  to  epithelial  carcinogenesis.  Mol  Carcinog.  2007;46:  705-­‐710.   86.  Ono  M.  Molecular  links  between  tumor  angiogenesis  and  inflammation:  inflammatory   stimuli  of  macrophages  and  cancer  cells  as  targets  for  therapeutic  strategy.  Cancer  Sci.   2008;99:  1501-­‐1506.   87.  Taylor  JA,  3rd,  Pilbeam  C,  Nisbet  A.  Role  of  the  prostaglandin  pathway  and  the  use  of   NSAIDs  in  genitourinary  malignancies.  Expert  Rev  Anticancer  Ther.  2008;8:  1125-­‐1134.    29     88.  Taylor  JA,  3rd,  Ristau  B,  Bonnemaison  M,  et  al.  Regulation  of  the  prostaglandin  pathway   during  development  of  invasive  bladder  cancer  in  mice.  Prostaglandins  Other  Lipid  Mediat.   2009;88:  36-­‐41.   89.  Shariat  SF,  Matsumoto  K,  Kim  J,  et  al.  Correlation  of  cyclooxygenase-­‐2  expression  with   molecular  markers,  pathological  features  and  clinical  outcome  of  transitional  cell   carcinoma  of  the  bladder.  J  Urol.  2003;170:  985-­‐989.   90.  Fosbol  EL,  Gislason  GH,  Jacobsen  S,  et  al.  Risk  of  myocardial  infarction  and  death   associated  with  the  use  of  nonsteroidal  anti-­‐inflammatory  drugs  (NSAIDs)  among  healthy   individuals:  a  nationwide  cohort  study.  Clin  Pharmacol  Ther.  2009;85:  190-­‐197.   91.  Celis  JE,  Ostergaard  M,  Basse  B,  et  al.  Loss  of  adipocyte-­‐type  fatty  acid  binding  protein   and  other  protein  biomarkers  is  associated  with  progression  of  human  bladder  transitional   cell  carcinomas.  Cancer  Res.  1996;56:  4782-­‐4790.   92.  Gee  JR,  Montoya  RG,  Khaled  HM,  Sabichi  AL,  Grossman  HB.  Cytokeratin  20,  AN43,  PGDH,   and  COX-­‐2  expression  in  transitional  and  squamous  cell  carcinoma  of  the  bladder.  Urol   Oncol.  2003;21:  266-­‐270.   93.  Thompson  CL,  Fink  SP,  Lutterbaugh  JD,  et  al.  Genetic  variation  in  15-­‐ hydroxyprostaglandin  dehydrogenase  and  colon  cancer  susceptibility.  PLoS  One.  2013;8:   e64122.   94.  Stemmler  MP.  Cadherins  in  development  and  cancer.  Mol  Biosyst.  2008;4:  835-­‐850.   95.  Jeanes  A,  Gottardi  CJ,  Yap  AS.  Cadherins  and  cancer:  how  does  cadherin  dysfunction   promote  tumor  progression?  Oncogene.  2008;27:  6920-­‐6929.   96.  Wheelock  MJ,  Shintani  Y,  Maeda  M,  Fukumoto  Y,  Johnson  KR.  Cadherin  switching.  J  Cell   Sci.  2008;121:  727-­‐735.   97.  Gloushankova  NA.  Changes  in  regulation  of  cell-­‐cell  adhesion  during  tumor   transformation.  Biochemistry  (Mosc).  2008;73:  742-­‐750.   98.  Howard  EW,  Camm  KD,  Wong  YC,  Wang  XH.  E-­‐cadherin  upregulation  as  a  therapeutic   goal  in  cancer  treatment.  Mini  Rev  Med  Chem.  2008;8:  496-­‐518.   99.  Nowak  M,  Madej  JA,  Dziegiel  P.  Expression  of  E-­‐cadherin,  beta-­‐catenin  and  Ki-­‐67   antigen  and  their  reciprocal  relationships  in  mammary  adenocarcinomas  in  bitches.  Folia   Histochem  Cytobiol.  2007;45:  233-­‐238.   100.  Tseng-­‐Rogenski  S,  Lee  IL,  Gebhardt  D,  et  al.  Loss  of  15-­‐hydroxyprostaglandin   dehydrogenase  expression  disrupts  urothelial  differentiation.  Urology.  2008;71:  346-­‐350.    30     101.  Dohadwala  M,  Yang  SC,  Luo  J,  et  al.  Cyclooxygenase-­‐2-­‐dependent  regulation  of  E-­‐ cadherin:  prostaglandin  E(2)  induces  transcriptional  repressors  ZEB1  and  snail  in  non-­‐ small  cell  lung  cancer.  Cancer  Res.  2006;66:  5338-­‐5345.   102.  Brouxhon  S,  Kyrkanides  S,  O'Banion  MK,  et  al.  Sequential  down-­‐regulation  of  E-­‐ cadherin  with  squamous  cell  carcinoma  progression:  loss  of  E-­‐cadherin  via  a  prostaglandin   E2-­‐EP2  dependent  posttranslational  mechanism.  Cancer  Res.  2007;67:  7654-­‐7664.   103.  Mohammed  SI,  Bennett  PF,  Craig  BA,  et  al.  Effects  of  the  cyclooxygenase  inhibitor,   piroxicam,  on  tumor  response,  apoptosis,  and  angiogenesis  in  a  canine  model  of  human   invasive  urinary  bladder  cancer.  Cancer  Res.  2002;62:  356-­‐358.   104.  Gee  J,  Lee  IL,  Jendiroba  D,  Fischer  SM,  Grossman  HB,  Sabichi  AL.  Selective   cyclooxygenase-­‐2  inhibitors  inhibit  growth  and  induce  apoptosis  of  bladder  cancer.  Oncol   Rep.  2006;15:  471-­‐477.   105.  Mutsaers  AJ,  Mohammed  SI,  DeNicola  DB,  et  al.  Pretreatment  tumor  prostaglandin  E2   concentration  and  cyclooxygenase-­‐2  expression  are  not  associated  with  the  response  of   canine  naturally  occurring  invasive  urinary  bladder  cancer  to  cyclooxygenase  inhibitor   therapy.  Prostaglandins  Leukot  Essent  Fatty  Acids.  2005;72:  181-­‐186.   106.  Bryan  RT,  Atherfold  PA,  Yeo  Y,  et  al.  Cadherin  switching  dictates  the  biology  of   transitional  cell  carcinoma  of  the  bladder:  ex  vivo  and  in  vitro  studies.  J  Pathol.  2008;215:   184-­‐194.   107.  Kashibuchi  K,  Tomita  K,  Schalken  JA,  Kume  H,  Takeuchi  T,  Kitamura  T.  The  prognostic   value  of  E-­‐cadherin,  alpha-­‐,  beta-­‐  and  gamma-­‐catenin  in  bladder  cancer  patients  who   underwent  radical  cystectomy.  Int  J  Urol.  2007;14:  789-­‐794.   108.  Harfe  BD,  Jinks-­‐Robertson  S.  DNA  mismatch  repair  and  genetic  instability.  Annual   review  of  genetics.  2000;34:  359-­‐399.   109.  Hsieh  P,  Yamane  K.  DNA  mismatch  repair:  molecular  mechanism,  cancer,  and  ageing.   Mechanisms  of  ageing  and  development.  2008;129:  391-­‐407.   110.  Iyer  RR,  Pluciennik  A,  Burdett  V,  Modrich  PL.  DNA  mismatch  repair:  functions  and   mechanisms.  Chemical  reviews.  2006;106:  302-­‐323.   111.  Jiricny  J.  The  multifaceted  mismatch-­‐repair  system.  Nature  reviews.  Molecular  cell   biology.  2006;7:  335-­‐346.   112.  Preston  BD,  Albertson  TM,  Herr  AJ.  DNA  replication  fidelity  and  cancer.  Seminars  in   cancer  biology.  2010;20:  281-­‐293.   113.  Chung  H,  Young  DJ,  Lopez  CG,  et  al.  Mutation  rates  of  TGFBR2  and  ACVR2  coding   microsatellites  in  human  cells  with  defective  DNA  mismatch  repair.  PloS  one.  2008;3:   e3463.    31     114.  Kim  CJ,  Lee  JH,  Song  JW,  et  al.  Chk1  frameshift  mutation  in  sporadic  and  hereditary   non-­‐polyposis  colorectal  cancers  with  microsatellite  instability.  European  journal  of   surgical  oncology  :  the  journal  of  the  European  Society  of  Surgical  Oncology  and  the  British   Association  of  Surgical  Oncology.  2007;33:  580-­‐585.   115.  Miquel  C,  Jacob  S,  Grandjouan  S,  et  al.  Frequent  alteration  of  DNA  damage  signalling   and  repair  pathways  in  human  colorectal  cancers  with  microsatellite  instability.  Oncogene.   2007;26:  5919-­‐5926.   116.  Fernandez-­‐Peralta  AM,  Nejda  N,  Oliart  S,  Medina  V,  Azcoita  MM,  Gonzalez-­‐Aguilera  JJ.   Significance  of  mutations  in  TGFBR2  and  BAX  in  neoplastic  progression  and  patient   outcome  in  sporadic  colorectal  tumors  with  high-­‐frequency  microsatellite  instability.   Cancer  genetics  and  cytogenetics.  2005;157:  18-­‐24.   117.  Hampson  R.  Selection  for  genome  instability  by  DNA  damage  in  human  cells:  unstable   microsatellites  and  their  consequences  for  tumourigenesis.  Radiation  oncology   investigations.  1997;5:  111-­‐114.   118.  Jascur  T,  Boland  CR.  Structure  and  function  of  the  components  of  the  human  DNA   mismatch  repair  system.  International  journal  of  cancer.  Journal  international  du  cancer.   2006;119:  2030-­‐2035.   119.  Eckert  KA,  Hile  SE.  Every  microsatellite  is  different:  Intrinsic  DNA  features  dictate   mutagenesis  of  common  microsatellites  present  in  the  human  genome.  Molecular   carcinogenesis.  2009;48:  379-­‐388.   120.  Umar  A,  Boland  CR,  Terdiman  JP,  et  al.  Revised  Bethesda  Guidelines  for  hereditary   nonpolyposis  colorectal  cancer  (Lynch  syndrome)  and  microsatellite  instability.  Journal  of   the  National  Cancer  Institute.  2004;96:  261-­‐268.   121.  Catto  JW,  Azzouzi  AR,  Amira  N,  et  al.  Distinct  patterns  of  microsatellite  instability  are   seen  in  tumours  of  the  urinary  tract.  Oncogene.  2003;22:  8699-­‐8706.   122.  D'Errico  M,  de  Rinaldis  E,  Blasi  MF,  et  al.  Genome-­‐wide  expression  profile  of  sporadic   gastric  cancers  with  microsatellite  instability.  European  journal  of  cancer.  2009;45:  461-­‐ 469.   123.  Hewish  M,  Lord  CJ,  Martin  SA,  Cunningham  D,  Ashworth  A.  Mismatch  repair  deficient   colorectal  cancer  in  the  era  of  personalized  treatment.  Nature  reviews.  Clinical  oncology.   2010;7:  197-­‐208.   124.  Jacob  S,  Praz  F.  DNA  mismatch  repair  defects:  role  in  colorectal  carcinogenesis.   Biochimie.  2002;84:  27-­‐47.   125.  Mylona  E,  Zarogiannos  A,  Nomikos  A,  et  al.  Prognostic  value  of  microsatellite   instability  determined  by  immunohistochemical  staining  of  hMSH2  and  hMSH6  in    32     urothelial  carcinoma  of  the  bladder.  Acta  pathologica,  microbiologica  et  immunologica   Scandinavica.  2008;116:  59-­‐65.   126.  di  Pietro  M,  Sabates  Bellver  J,  Menigatti  M,  et  al.  Defective  DNA  mismatch  repair   determines  a  characteristic  transcriptional  profile  in  proximal  colon  cancers.   Gastroenterology.  2005;129:  1047-­‐1059.   127.  Schwitalle  Y,  Kloor  M,  Eiermann  S,  et  al.  Immune  response  against  frameshift-­‐induced   neopeptides  in  HNPCC  patients  and  healthy  HNPCC  mutation  carriers.  Gastroenterology.   2008;134:  988-­‐997.   128.  Kawakami  T,  Shiina  H,  Igawa  M,  et  al.  Inactivation  of  the  hMSH3  mismatch  repair  gene   in  bladder  cancer.  Biochemical  and  biophysical  research  communications.  2004;325:  934-­‐ 942.   129.  Casorelli  I,  Russo  MT,  Bignami  M.  Role  of  mismatch  repair  and  MGMT  in  response  to   anticancer  therapies.  Anti-­‐cancer  agents  in  medicinal  chemistry.  2008;8:  368-­‐380.   130.  Cejka  P,  Stojic  L,  Marra  G,  Jiricny  J.  Is  mismatch  repair  really  required  for  ionizing   radiation-­‐induced  DNA  damage  signaling?  Nature  Genetics.  2004;36:  432-­‐433.   131.  Flanagan  SA,  Robinson  BW,  Krokosky  CW,  Shewach  DS.  Mismatched  nucleotides  as  the   lesions  responsible  for  radiosensitization  with  gemcitabine:  a  new  paradigm  for   antimetabolite  radiosentizers.  Molecular  cancer  therapeutics.  2007;6:  1858-­‐1868.   132.  Hart  JR,  Glebov  O,  Ernst  RJ,  Kirsch  IR,  Barton  JK.  DNA  mismatch-­‐specific  targeting  and   hypersensitivity  of  mismatch-­‐repair-­‐deficient  cells  to  bulky  rhodium(III)  intercalators.   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America.  2006;103:   15359-­‐15363.   133.  Martin  SA,  Lord  CJ,  Ashworth  A.  Therapeutic  targeting  of  the  DNA  mismatch  repair   pathway.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for   Cancer  Research.  2010;16:  5107-­‐5113.   134.  Pors  K,  Patterson  LH.  DNA  mismatch  repair  deficiency,  resistance  to  cancer   chemotherapy  and  the  development  of  hypersensitive  agents.  Current  topics  in  medicinal   chemistry.  2005;5:  1133-­‐1149.   135.  Sargent  DJ,  Marsoni  S,  Monges  G,  et  al.  Defective  mismatch  repair  as  a  predictive   marker  for  lack  of  efficacy  of  fluorouracil-­‐based  adjuvant  therapy  in  colon  cancer.  Journal   of  clinical  oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology.  2010;28:   3219-­‐3226.   136.  Takahashi  T,  Min  Z,  Uchida  I,  et  al.  Hypersensitivity  in  DNA  mismatch  repair-­‐deficient   colon  carcinoma  cells  to  DNA  polymerase  reaction  inhibitors.  Cancer  letters.  2005;220:  85-­‐ 93.    33     137.  Valentini  AM,  Armentano  R,  Pirrelli  M,  Caruso  ML.  Chemotherapeutic  agents  for   colorectal  cancer  with  a  defective  mismatch  repair  system:  the  state  of  the  art.  Cancer   treatment  reviews.  2006;32:  607-­‐618.                  34     CHAPTER  2       Differences  in  Expression  of  Uroplakin  III,  Cytokeratin-­‐7,  and  COX-­‐2  in  Canine   Proliferative  Urothelial  Lesions  of  the  Urinary  Bladder       Dodd  Sledge1,  Daniel  J.  Patrick2,  Scott  D.  Fitzgerald1,  Yan  Xie3,  Matti  Kiupel1     1:  Department  of  Pathobiology  and  Diagnostic  Investigation,  College  of  Veterinary   Medicine,  Michigan  State  University,  East  Lansing  MI     2:  MPI  Research,  Mattawan,  MI       3:  Pharmanet/i3,  Haslett,  MI  (YX)              35     Abstract   The  expression  of  immunohistochemical  markers  that  have  been  used  in  diagnosis   and/or  prognostication  of  urothelial  tumors  in  humans  (uroplakin  III  (UPIII),  cytokeratin-­‐7   (CK7),  cyclooxygenase-­‐2  (COX-­‐2),  and  activated  caspase  3)  was  evaluated  in  a  series  of  99   canine   proliferative   urothelial   lesions   of   the   urinary   bladder   and   compared   to   the   lesion   classification   and   grade   as   defined   by   the   WHO/ISUP   Consensus   System.   There   were   significant   associations   between   tumor   classification   and   overall   UPIII   pattern   (P=1.49x10-­‐ 18),   loss   of   UPIII   (P=1.27x10-­‐4),   overall   CK7   pattern   (P=4.34x10-­‐18),   and   COX-­‐2   pattern   (P=8.12x10-­‐25).  In  addition,  there  were  significant  associations  between  depth  of  neoplastic   cell  infiltration  into  the  urinary  bladder  wall  and  overall  UPIII  pattern  (P=1.54x10-­‐14),  loss   of   UPIII   (P=2.07x10-­‐4),   overall   CK7   pattern   (P=1.17x10-­‐13),   loss   of   CK7   expression   (P=0.0485),   and   COX-­‐2   pattern   (P=8.23x10-­‐21).   There   were   no   significant   associations   between  tumor  classification  or  infiltration  and  caspase-­‐3  expression  pattern.              36     Introduction     Proliferative   lesions   of   the   urothelium   of   the   canine   urinary   bladder   range   from   benign   polyps   and   papillomas   to   carcinomas   with   varying   metastatic   potential.   Also,   inflammatory   conditions   such   as   polypoid   cystitis   can   form   tumor-­‐like   masses   within   the   urinary   bladder   that   can   be   confused   with   urothelial   neoplasms.   Classification   of   urothelial   proliferative   lesions   and   histologic   grading   of   urothelial   carcinomas   is   key   to   accurate   prognostication  and  treatment  selection.  A  classification  and  grading  scheme  based  on  the   1986   World   Health   Organization   classification   scheme   for   human   urinary   bladder   and   urethral   cancer   was   proposed   in   1995   for   use   in   evaluating   urothelial   neoplasms   in   dogs   based   on   pattern   of   growth,   nuclear   atypia,   and   degree   of   infiltration   into   the   urinary   bladder  wall.50  In  the  initial  description  of  this  system’s  use  in  dogs,  significant  correlations   between   tumor   grade   and   depth   of   infiltration,   the   presence   of   metastases,   and   survival   time   were   found.   However,   a   subsequent   smaller   study   failed   to   find   a   significant   correlation   between   grade   and   prognosis.41   To   our   knowledge,   this   scheme   is   not   widely   used   in   dogs   and   has   been   replaced   in   human   medicine   by   more   modern   classification   schemes.   There   remains   a   need   for   a   clear,   reproducible,   and   well-­‐accepted   classification   and  grading  scheme  for  urothelial  proliferative  lesions  in  dogs.   Currently,   the   most   widely   accepted   scheme   for   classification   and   grading   of   proliferative   urothelial   lesions   in   humans   is   the   World   Health   Organization   (WHO)/International  Society  of  Urologic  Pathology  (ISUP)  Consensus  Classification  System   published   in   1998   and   updated   in   2004.6,7   In   multiple   studies,   the   WHO/ISUP   Consensus   Classification   system   has   been   demonstrated   to   be   significantly   associated   with   clinical   outcome.2,32-­‐34,37,42,43,51,59   It   has   long   been   known   that   canine   urothelial   neoplasms   are    37     similar  to  urothelial  neoplasms  in  humans  in  terms  of  morphology,  biologic  behavior  and   response  to  chemotherapy.14,18,19,27,28,59  Recently,  Patrick  et  al.  examined  the  potential  use   of   the   WHO/ISUP   Consensus   Classification   System   in   classifying   canine   proliferative   urothelial   lesions.36   In   that   study,   the   authors   demonstrated   that   the   histomorphology   of   proliferative  urothelial  lesions  was  homologous  between  dogs  and  humans,  and  that  canine   lesions   could   easily   be   classified   according   to   the   system;   however,   data   regarding   the   prognostic   relevance   of   classification   system   remains   lacking.   Additional   study   of   the   biologic   differences   between   classifications   and   grades  of   proliferative   urothelial   lesions   in   dogs  is  needed.   Uroplakins   comprise   a   group   of   membrane-­‐associated   proteins   expressed   by   urothelial   cells   that   are   important   for   cell-­‐to-­‐cell   adhesion   and   maintenance   of   water   impermeability.57,58   These   proteins   form   a   plaque-­‐like   complex   along   the   apical   membrane   of   the   umbrella   cells   that   form   the   most   superficial   layer   of   the   urothelium.57   Cytokeratin   7   (CK7)  is  a  cytokeratin  expressed  by  simple  epithelium  as  well  as  differentiated  urothelial   cells   and   a   variety   of   carcinomas   in   humans   including   those   of   urothelial,   pancreatic,   cholangiolar,   and   ovarian   origin.49,52   Uroplakin   III   (UPIII)   and   CK7   are   used   in   both   dogs   and   humans   as   diagnostic   markers   of   urothelial   differentiation   in   primary   tumors   and   metastases.8,13,31,35,39,47  In  humans,  loss  of  UPIII  has  been  associated  with  several  prognostic   features.13,25     The  inducible  enzyme  COX-­‐2  and  the  resulting  production  of  prostaglandin  E2   have   been  ascribed  significant  roles  in  carcinogenesis,  including  immunosuppression,  inhibition   of  apoptosis,  increased  metastatic  potential  of  neoplastic  epithelial  cells,  promotion  of  drug   resistance,   and   stimulation   of   angiogenesis.9,11,23,54-­‐56   Numerous   studies   have   shown    38     significant   correlations   between   COX-­‐2   expression   and   tumor   grade,   infiltration,   metastasis,  and  survival.21,24,30,40,44-­‐46,53  Concordantly,  a  decreased  risk  for  urinary  bladder   cancer   development   has   been   seen   in   humans   undergoing   long-­‐term   non-­‐steroidal   anti-­‐ inflammatory  therapy  and  in  vitro  and  in  vivo  studies  have  suggested  potential  use  of  COX-­‐ 2  inhibitors  in  treatment.3,5,10,29,53  In  humans  and  dogs,  COX-­‐2  is  not  expressed  by  normal   urothelium  of  the  urinary  bladder.17,24  Substantial  expression  of  COX-­‐2,  however,  has  been   observed  in  transitional  cell  carcinomas.17,20,22     Caspase  3  is  an  effector  or  executioner  caspase  that  is  activated  by  both  intrinsic  and   extrinsic   apoptosis   signaling   pathways   to   cleave   multiple   cellular   structural   and   repair   proteins.4,12,38   Due   to   the   fact   that   this   protein   is   activated   late   in   the   apoptotic   pathway,   immunohistochemical  detection  of  activated  caspase-­‐3  has  been  used  to  evaluate  apoptotic   rate.1,48  In  human  urinary  bladder  cancers,  expression  of  caspase-­‐3  has  been  suggested  to   have  prognostic  significance.15,16,26   The  goals  of  the  current  study  were  twofold:  1)  to  evaluate  the  expression  of  UPIII,   CK7,   COX-­‐2,   and   caspase   3   in   non-­‐neoplastic   and   neoplastic   proliferative   lesions   of   the   canine   urothelium   of   the   urinary   bladder,   and   2)   to   correlate   the   observed   patterns   of   expression   of   each   of   these   markers   with   specific   lesion   classification   and   grade   as   defined   by  the  WHO/ISUP  Consensus  Classification  System.                39     Materials  and  methods   Selection  of  Cases  and  Histologic  Classification   A   series   of   99   formalin-­‐fixed,   paraffin-­‐embedded   proliferative   urothelial   lesions   from   99   dogs   that   had   been   submitted   as   diagnostic   cases   were   selected   from   the   tissue   archives   of   the   Michigan   State   University,   Diagnostic   Center   for   Population   and   Animal   Health   (DCPAH).   Of   these   99,   93   had   previously   been   classified   and   where   applicable   graded   using   the   WHO/ISUP   Consensus   Classification   System.36   Six   additional   diagnostic   cases  that  presented  to  DCPAH,  including  additional  low-­‐grade  neoplasms,  were  included   in   the   study   set.   For   grading   of   these   additional   samples,   5   µm   sections   of   all   samples   were   routinely  processed  and  stained  with  hematoxylin  and  eosin  for  microscopic  examination.   Proliferative   urothelial   lesions   were   categorized   according   to   the   WHO/ISUP   Consensus   Classification  System  as  previously  described  and  summarized  in  Table  1.36  For  urothelial   carcinomas,   the   degree   of   infiltration   into   the   urinary   bladder   wall   was   scored   as   no   infiltration,   infiltration   into   the   substantia   propria,   or   infiltration   into   the   tunica   muscularis.   Of   the   99   proliferative   urothelial   lesions   examined,   44   were   non-­‐neoplastic   and   categorized  as  either  urothelial  polyps  or  polypoid  cystitis.  Of  the  55  neoplasms,  there  were   two  urothelial  papillomas  and  one  papillary  urothelial  neoplasm  of  low  malignant  potential   (PUNLMP).   The   remainders   of   the   urothelial   neoplasms   were   papillary   urothelial   carcinomas   of   varying   grade.   Low-­‐grade   (grade   1)   papillary   urothelial   carcinomas   were   rare  with  only  2  being  included  in  the  set.  Both  of  these  had  some  degree  of  infiltration  into   the   urinary   bladder   wall   with   one   sample   having   infiltrative   clusters   of   neoplastic    40     urothelial   cells   within   the   muscularis.   Papillary   carcinomas   infiltrated   at   least   into   the   substantia  propria  in  49/52  (94%)  and  into  the  muscularis  in  21/52  (40%)  of  cases.     Immunohistochemistry   Five   µm   sections   of   all   samples   were   processed   for   immunohistochemistry   and   labeled  with  a  mouse  monoclonal  anti-­‐UPIII  antibody  (1:5,  RDI,  Fitzgerald  Industries  Intl,   Concord,   MA,   USA),   a   mouse   monoclonal   anti-­‐CK7   antibody   (1:75,   Dako   Cytomation,   Carpentaria,   CA,   USA),   a   rabbit   polyclonal   anti-­‐COX-­‐2   antibody   (1:100.   Cayman   Chemical   Company,   Ann   Arbor,   MI,   USA),   or   rabbit   polyclonal   anti-­‐activated   caspase-­‐3   antibody   (1:5,000,   RDI,   Fitzgerald   Industries   Intl,   Concord,   MA,   USA).   Deparaffinization,   antigen   retrieval,  immunohistochemical  labeling  with  3,3’-­‐diaminobenzidine  (DAB)  chromogen  and   counterstaining   with   hematoxylin   were   performed   on   the   Bond   maXTM   Automated   Staining   System   (Vision   BioSystemsTM,   Leica,   Bannockburn,   IL,   USA)   using   the   BondTM   Polymer  Detection  System  (Vision  BioSystemsTM,  Leica,  Bannockburn,  IL,  USA).  Sections  of   normal  canine  urothelium  were  similarly  labeled  as  positive  controls  for  UPIII  and  CK7.  A   canine   squamous   cell   carcinoma   known   to   express   COX-­‐2   and   a   lymph   node   with   large   numbers   of   activated   caspase-­‐3-­‐positive   cells   were   respectively   used   as   positive   controls   for   these   antibodies.   For   negative   controls,   homologous   non-­‐immune   sera   or   buffer   replaced  primary  antibodies.   Immunoreactivity  for  UPIII  and  CK7  was  scored  according  to  overall  pattern  within   the  urothelium  and  partial  loss  of  immunoreactivity.  Immunoreactivity  for  UPIII  and  CK7  in   positively  labeled  cells  was  variably  perimembranous,  predominately  cytoplasmic  without   distinct  perimembrane  labeling,  or  associated  with  both  the  membrane  the  cell  membrane   and   the   cytoplasm.   Specifically,   for   overall   pattern   of   UPIII   and   CK7   immunoreactivity    41     within   the   urothelium:   pattern   1   was   defined   by   labeling   limited   to   the   most   superficial   layer  of  cells  (Fig.  1  and  4),  pattern  2  was  defined  by  labeling  extending  to  the  middle  layer   of   the   urothelium   (Fig.   2),   pattern   3   was   defined   by   cells   labeling   throughout   the   full   thickness   of   the   urothelium   (Fig.   5),   and   pattern   4   was   defined   by   immunoreactivity   that   was  patchy  and  randomly  distributed  (Fig.  3  and  6).  Partial  loss  of  immunoreactivity  was   noted   when   greater   than   50%   of   epithelial   cells   were   immunonegative   and   there   were   areas   within   the   proliferative   urothelium   with   no   immunopositive   cells   in   at   least   2   contiguous  high  power  (400X)  fields.       Immunoreactivity   for   COX-­‐2   and   activated   caspase   3   was   classified   according   to   overall   pattern   within   the   urothelium.   Cells   immunoreactive   for   COX-­‐2   had   diffuse   cytoplasmic   to   perinuclear   labeling.   Cells   immunoreactive   for   activated   caspase   3   had   diffuse   or,   more   often,   finely   granular   labeling   within   the   cytoplasm   and/or   nucleus.   In   pattern   1   for   these   markers,   immunoreactivity   was   limited   to   the   superficial   1-­‐3   cell   layers   (Fig.  7).  In  Pattern  2,  cells  were  labeled  throughout  the  full  thickness  of  the  urothelium  (Fig.   8).   In   pattern   3,   immunoreactivity   was   patchy   and   randomly   distributed   throughout   the   proliferative   urothelium,   but   greater   than   15%   of   neoplastic   cells   were   positively   labeled   (Fig.  9).     For   each   marker,   any   section   that   completely   lacked   immunoreactivity   was   excluded   from   analysis,   as   it   could   not   be   determined   whether   this   was   true   loss   of   expression  or  was  artifactual.     Statistical  Analysis   Statistical  Analysis  Software  (SAS)  version  9.1.3  (2002,  SAS  Institute  Inc,  Cary,  NC)   was  used  for  the  data  analysis.  Fisher  exact  test  was  used  to  test  the  association  between    42     grade   or   degree   of   infiltration   and   the   pattern   of   immunoreactivity   for   all   evaluated   markers  and  loss  of  immunoreactivity  for  UPIII  and  CK7.  For  all  statistical  analyses,  lesions   were   categorized   as   follows:   non-­‐neoplastic   lesions   (urothelial   polyps   and   polypoid   cystitis),   low-­‐grade   neoplasms   (urothelial   papillomas,   papillary   urothelial   neoplasms   of   low  malignant  potential,  and  grade  1  urothelial  carcinomas),  grade  2  urothelial  carcinomas,   and  grade  3  urothelial  carcinomas.  Significance  was  set  at  P=0.05.                                      43     Results   Immunohistochemistry:  UPIII  and  CK7   The   urothelium   of   control   urinary   bladders   and   areas   of   normal   urothelium   in   tumor  samples  demonstrated  strong  expression  of  UPIII  and  CK7  diffusely  throughout  the   superficial   layers   (umbrella   cells).   This   distribution   of   immunolabeling   typified   UPIII   and   CK7  pattern  1.     In   the   hyperplastic   urothelium   of   polyps   and   polypoid   cystitis,   expression   of   UPIII   and  CK7  was  generally  limited  to  the  superficial  (umbrella)  cell  layers  (UPIII  pattern  1;  CK7   pattern   1)   or   extended   only   to   the   mid-­‐portion   of   the   urothelium   (UPIII   pattern   2).   Only   one   urothelial   polyp   had   UPIII   pattern   4   and   none   had   CK7   pattern   4.   The   PUNLMP   and   urothelial   papillomas   demonstrated   UPIII   pattern   3   and   CK7   pattern   2   or   3.   With   few   exceptions,   papillary   carcinomas   of   all   grades   demonstrated   patchy   randomly   distributed   UPIII  expression  consistent  with  pattern  4.  Partial  loss  of  UPIII  expression  was  not  detected   in  any  grade  I  papillary  carcinoma  and  in  only  one  grade  II  papillary  carcinoma.  In  contrast,   14/33   (42%)   grade   III   papillary   carcinomas   had   partial   loss   of   expression   of   UPIII.   More   grade   II   and   III   carcinomas   had   a   CK7   pattern   3,   than   had   a   UPIII   pattern   3   (11/50   CK7   pattern   3   cases   compared   to   3/50   UPIII   pattern   3   cases).   The   majority   (71%)   of   grade   II   and   III   urothelial   carcinomas,   however,   had   a   CK7   pattern   4   similar   to   that   observed   for   UPIII.   Only   grades   II   and   III   urothelial   carcinomas   had   significant   loss   of   CK7   expression   (Tables  2  and  3).   Immunohistochemistry:  COX-­‐2     The   squamous   cell   carcinoma   from   the   digit   of   a   dog   used   as   a   positive   control   demonstrated   strong   positive   cytoplasmic   and   mainly   perinuclear   immunoreactivity   for    44     COX-­‐2  in  30%  of  neoplastic  cells.  There  was  no  positive  immunoreactivity  for  COX-­‐2  in  any   part   of   the   normal   urothelium   from   control   urinary   bladders;   however,   in   the   superficial   layers  of  non-­‐proliferative  urothelium  adjacent  to  proliferative  lesions,  there  were  often  a   small  percentage  (less  than  10%)  of  COX-­‐2  positive  cells.     In   all   proliferative   lesions,   at   least   10%   of   proliferative   urothelial   cells   exhibited   positive   COX-­‐2   immunoreactivity.   In   urothelial   polyps   and   polypoid   cystitis,   COX-­‐2   expression   in   the   proliferative   urothelium   was   usually   restricted   to   the   superficial   layers   (COX-­‐2  pattern  1)  or  was  less  commonly  full  thickness  (COX-­‐2  pattern  2).  Only  one  polyp   had   randomly   distributed   and   patchy   expression   of   COX-­‐2   (COX-­‐2   pattern   3).   The   PUNLMP   and   the   two   papillomas   demonstrated   COX-­‐2   pattern   1   while   the   grade   I   papillary   carcinomas   exhibited   either   pattern   2   or   3.   All   high-­‐grade   (grades   II   and   III)   papillary   urothelial  carcinomas  in  which  COX-­‐2  expression  was  detected  exhibited  COX-­‐2  pattern  3   (Table  4).   Immunohistochemistry:  Activated  caspase  3   Approximately   10%   of   cells   in   the   lymph   node   used   as   a   positive   control   for   activated  caspase  3  had  positive  finely  granular  labeling  of  the  cytoplasm  and/or  nucleus.   In  the  normal  urothelium  of  control  urinary  bladders  and  adjacent  to  proliferative  lesions,   immunoreactive   cells   comprised   less   than   10%   of   the   total   urothelium   and   were   largely   limited   to   the   superficial   1-­‐2   cell   layers.   The   total   percentage   of   caspase   3   immunoreactive   cells   ranged   from   10-­‐40%   in   all   other   proliferative   lesions;   however,   there   was   no   appreciable   variation   in   the   percentage   of   positive   cells   between   different   tumor   types.   Immunoreactivity   for   activated   caspase   3   was   most   commonly   noted   in   the   superficial   most   cell   layers   of   all   proliferative   lesions   (caspase   3   pattern   1),   but   was   also   seen   both    45     diffusely   throughout   the   urothelium   (caspase   3   pattern   2)   and   in   a   randomly   distributed   patchy  distribution  (caspase  3  pattern  3)(Table  5).     A   summary   of   the   predominant   patterns   of   immunoreactivity   for   UPIII,   CK7,   and   COX-­‐2  observed  in  each  proliferative  urothelial  lesion  classification  is  presented  in  Table  6.   Statistical  Analysis   Using   Fisher’s   exact   test   there   were   significant   associations   between   tumor   classification   and   overall  UPIII   pattern   (P=1.49x10-­‐18),   loss   of   UPIII   (P=1.27x10-­‐4),   overall   CK7  pattern  (P=4.34x10-­‐18),  and  COX-­‐2  pattern  (P=8.12x10-­‐25).  Also  by  Fisher’s  exact  test,   there   were   significant   associations   between   depth   of   neoplastic   cell   infiltration   and   overall   UPIII   pattern   (P=1.54x10-­‐14),   loss   of   UPIII   (P=2.07x10-­‐4),   overall   CK7   pattern   (P=1.17x10-­‐ 13),   loss   of   CK7   expression   (P=0.0485),   and   COX-­‐2   pattern   (P=8.23x10-­‐21).   There   were   no   significant  associations  between  tumor  classification  and  loss  of  CK7  or  caspase-­‐3  pattern.     There   were   also   no   significant   associations   between   depth   of   infiltration   and   caspase-­‐3   expression.                      46     Discussion   In   the   current   study,   strong   differences   in   expression   of   UPIII,   CK7,   and   COX-­‐2   were   observed   between   urothelial   polyps   and   cases   of   polypoid   cystitis,   urothelial   papillomas   and   papillary   urothelial   neoplasms   of   low   malignant   potential,   and   papillary   carcinomas.   However,  no  association  was  observed  between  the  expression  of  activated  caspase-­‐3  and   tumor  classification,  grade,  or  depth  of  infiltration  into  the  urinary  bladder  wall.   Overall,   urothelial   polyps   and   cases   of   polypoid   cystitis   predominately   had   expression   of   UPIII   and   CK7   that   either   was   limited   to   the   superficial-­‐most   cell   layers   (UPIII/CK7   pattern   1)   or   extended   to   the   middle-­‐most   cell   layer   (UPIII/CK7   pattern   2).   Urothelial   papillomas   and   a   papillary   urothelial   neoplasm   of   low   malignant   potential   had   UPIII  and  CK7  expression  throughout  the  full  thickness  of  the  urothelium  or  extending  at   least  up  to  the  middle-­‐most  cell  layer.  The  majority  of  papillary  carcinomas,  in  contrast,  had   randomly  distributed   patchy   immunoreactivity  for  UPIII  and  CK7  (UPIII/CK7  pattern  4).  In   addition,  there  was  often  partial  loss  of  UPIII  and  CK7  expression  in  high-­‐grade  carcinomas   that  invaded  into  the  urinary  bladder  wall.     Based   on   the   association   with   infiltration   into   the   urinary   bladder   wall,   loss   of   UPIII   and   CK7   in   urothelial   carcinomas   may   suggest   a   lack   of   differentiation   or   epithelial-­‐ mesenchymal   transition   in   that   favors   infiltration.   In   humans,   loss   of   UPIII   expression   is   frequently   seen   in   metastases   of   high-­‐grade   tumors   and   has   been   associated   with   lymphovascular   infiltration,   stage,   and   grade.13,25   Loss   of   cell   membrane   adhesion   molecules   may   also   result   in   an   increased   propensity   for   metastasis   in   dogs;   however,   information   on   clinical   outcome   including   presence   of   metastasis   and   survival   was   not   available  for  the  examined  canine  tumor  set.  The  observed  significant  loss  of  UPIII  and  CK7    47     in   many   high-­‐grade   carcinomas   suggests   that   when   used   as   diagnostic   markers   on   small   specimens,  some  urothelial  carcinomas  might  not  be  positively  labeled.   There   was   a   clear   difference   in   the   location   of   COX-­‐2-­‐positive   cells   within   the   urothelium   between   non-­‐neoplastic   and   neoplastic   lesions   as   well   as   between   papillary   urothelial   carcinomas   with   different   degrees   of   infiltration   into   the   urinary   bladder   wall.   Urothelial   polyps,   cases   of   polypoid   cystitis,   urothelial   papillomas,   and   the   one   PUNLMP   exhibited   expression   of   COX-­‐2   in   the   superficial   layers   of   the   urothelium   (COX-­‐2   pattern   1)   or   rarely   diffusely   throughout   the   urothelium   (COX-­‐2   pattern   2).   In   contrast,   papillary   carcinomas  had  a  randomly  distributed,  patchy  pattern  of  COX-­‐2  expression  (COX-­‐2  pattern   3).   Previous  studies  of  COX-­‐2  in  canine  urinary  bladder  urothelium  have  focused  on  the   difference  in  COX-­‐2  expression  between  normal  urinary  bladder  and  urothelial  carcinomas,   and   reported   differences   as   a   percentage   of   COX-­‐2   positive   cells.   In   the   current   study,   COX-­‐ 2  immunoreactivity  was  observed  in  the  majority  of  non-­‐neoplastic  and  neoplastic  lesions,   often   in   a   relatively   high   percentage   of   cells,   precluding   the   use   of   percentage   of   positive   cells  as  a  differentiating  criterion.  In  one  previous  immunohistochemical  study,  only  30/52   (58%)   canine   TCC   demonstrated   COX-­‐2   expression   by   IHC.22   In   another   study   of  18   canine   TCC,  all  tumors  expressed  COX-­‐2  and  three  showed  more  than  30%  of  cells  to  be  positive   for   COX-­‐2.20   The   reasons   for   discrepancy   between   these   studies   in   terms   of   the   numbers   of   cases  and  number  of  cells  within  a  given  case  that  are  positively  labeled  for  COX-­‐2  may  be   due  to  the  low  number  of  cases  examined  in  each  study,  differing  methods  of  fixation  and   processing  of  the  tissues,  differences  in  immunohistochemical  methods  including  the  anti-­‐ COX-­‐2  antibody  used,  or  inter-­‐observer  variation.      48     To   our   knowledge,   COX-­‐2   expression   has   not   been   previously   evaluated   in   non-­‐ neoplastic   proliferative   urothelial   lesions   of   the   urinary   bladder   in   dogs.   In   contrast   to   normal  urothelium  from  urinary  bladders  used  as  controls,  all  urothelial  polyps  and  cases   of   polypoid   cystitis   had   expression   of   COX-­‐2.     Urothelial   polyps   and   polypoid   cystitis   are   often  associated  with  mucosal  irritation  such  as  might  occur  with  cystoliths.  Expression  of   COX-­‐2   often   throughout   the   superficial   portion   or   full   thickness   of   the   proliferative   urothelium   of   non-­‐neoplastic   lesions   observed   in   the   current   study   might   represent   a   consequence  of  such  surface  irritation.     Overall,   there   were   distinct   differences   in   the   patterns   of   UPIII,   CK7,   and   COX-­‐2   expression  in  canine  urothelial  proliferative  lesions  of  the  urinary  bladder  as  defined  and   categorized  by  the  WHO/ISUP  Consensus  Classification  System.  As  the  cases  included  in  the   study  set  were  comprised  of  diagnostic  samples,  reliable  follow-­‐up  data  regarding  clinical   outcome   was   not   available.   Definitive   prospective   studies   of   the   clinical   outcome   using   these   markers   and   the   WHO/ISUP   Consensus   Classification   System   in   dogs   remain   lacking,   but   this   study   encourages   the   continued   prognostic   evaluation   of   the   WHO/ISUP   Consensus   Classification   system   and   of   these   immunohistochemical   markers   in   canine   proliferative  urothelial  lesions.   Acknowledgements   The   work   described   in   this   manuscript   comprised   a   portion   of   Dr.   Sledge’s   PhD   graduate   program   for   which   a   fellowship   was   provided   from   Bristol-­‐Meyers   Squibb   through   the   American   College   of   Veterinary   Pathologists/Society   of   Toxicological   Pathologists  Coalition.      49                           APPENDIX                          50     Figure  1:  Urinary  Bladder;  Dog.  Hyperplastic  urotheluim  with  Uroplakin  III  (UPIII)  Pattern  1:   Immunolabeling  (brown)  is  limited  to  the  superficial  1-­‐2  cell  layers.  3,3’-­‐Diaminobenzidine   (DAB)  chromogen,  hematoxylin  counterstain.   Figure   2:   Urinary   Bladder;   Dog.   Hyperplastic   urothelium   with   UPIII   IHC   Pattern   2:   UPIII   is   expressed   strongly   by   all   but   the   most   basal   cell   layers.   DAB   chromogen,   hematoxylin   counterstain.   Figure   3:   Urinary   Bladder;   Dog.   Papillary   urothelial   carcinoma   grade   II   with   UPIII   IHC   Pattern  4:  UPIII  expression  is  randomly  distributed  throughout  the  neoplasm.  Individual  or   small   clusters   of   neoplastic   cells   strongly   express   UPIII,   while   numerous   islands   of   neoplastic  cells  lack  expression.  DAB  chromogen,  hematoxylin  counterstain.              51     Figure   4:   Urinary   Bladder;   Dog.   Hyperplastic   urotheluim   with   Cytokeratin   7   (CK7)   IHC   Pattern   1:   Strong   expression   of   CK7   is   limited   to   the   superficial   1-­‐2   cell   layers.   DAB   chromogen,  hematoxylin  counterstain.   Figure  5:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  CK7  IHC  Pattern   3:  CK7  is  strongly  expressed  by  all  cell  layers.  DAB  chromogen,  hematoxylin  counterstain.   Figure  6:  Urinary  Bladder;  Dog.  Papillary  urothelial  carcinoma  grade  II  with  CK7  IHC  Pattern   4:  CK7  expression  is  patchy.  While  most  cells  have  strong  expression  of  CK7,  individual  or   small  groups  of  neoplastic  cells  randomly  distributed  throughout  the  mass  lack  expression.   DAB  chromogen,  hematoxylin  counterstain.                    52     Figure   7:   Urinary   Bladder;   Dog.   Hyperplastic   urotheluim   with   Cyclooxygenase-­‐2   (COX-­‐2)   IHC   Pattern   1:   Immunolabeling   for   COX-­‐2   is   limited   to   the   superficial   1-­‐2   cell   layers.   DAB   chromogen,  hematoxylin  counterstain.     Figure   8:   Urinary   Bladder;   Dog.   Hyperplastic   urotheluim   with   COX-­‐2   IHC   Pattern   2:   COX-­‐2   is   strongly   expressed   by   cells   throughout   all   cell   layers.   DAB   chromogen,   hematoxylin   counterstain.   Figure   9:   Urinary   Bladder;   Dog.   Papillary   urothelial   carcinoma   grade   II   with   COX-­‐2   IHC   Pattern   3:   Cells   that   strongly   express   COX-­‐2   are   randomly   distributed   throughout   the   neoplastic  cell  population.  DAB  chromogen,  hematoxylin  counterstain.      53     Table   1:   Histologic   Features   of   Proliferative   Urothelial   Lesions   according   to   the   WHO/ISUP   Consensus  Classification  System*   Classification   Mitoses   Histologic  Characteristics   Non-­‐neoplastic   Lesions   Polyp/Polypoid   Cystitis         Rare  and  confined  to   the  basal  cell  layers   Neoplastic  Lesions     Exophytic  protrusions  of  mucosa  and   supporting  fibrovascular  stroma  lacking  true   papillary  fronds;  often  associated  with   stromal  edema  and  inflammation;  may  occur   as  single  fibroepithelial  polyp  or  in  multiples   as  polypoid  cystitis       Urothelial   Papilloma   Rare  and  confined  to   the  basal  cell  layer   PUNLMP**   Rare  and  confined  to   the  basal  cell  layer   Papillary   carcinoma            Grade  I     <6  cell  layers  lining  papillary  fronds;  orderly   arrangement  of  cells;  nuclei  are  uniform  in   size,  shape,  and  chromatin  staining   >6  cell  layers  lining  papillary  fronds;  orderly   arrangement  of  cells;  nuclei  are  uniform  in   size,  shape,  and  chromatin  staining       Infrequent  and   Orderly  appearance  with  recognizable   limited  to  the  basal   variation  in  architectural  or  cytological   1/2  of  the  epithelium   features  at  low  magnification;  mild   anisokaryosis  with  variable  chromatin   staining            Grade  II   Low  to  moderate   Overall  disorderly  appearance  with   numbers  throughout   retainment  of  some  degree  of  polarity;   all  levels  of  the   irregular  clustering  and  disorganization  of   urothelium  with   cells;  moderate  anaplasia;  moderate   possible  atypia   anisokaryosis  with  prominent  nucleoli  and   clumped  chromatin            Grade  III   High  numbers   Complete  loss  of  polarity;  irregular  clustering   throughout  all  levels   and  disorganization  of  cells;  marked   with  common  atypia   pleomorphism,  anisocytosis,  and   anisokaryosis;  prominent  nucleoli  and   clumped  chromatin   *Adapted  from  descriptions  made  by  Patrick  et  al.  200636   **Papillary  urothelial  neoplasm  of  low  malignant  potential    54     Table  2:  Immunohistochemical  Scoring  of  Uroplakin  III  Expression  in  Canine  Proliferative  Urothelial  Lesions  by  Overall  Pattern   Classification     Pattern  1   Pattern  2   Pattern  3   19/44   20/44   Polyp/Polypoid  Cystitis   (43%)   (46%)   3/44  (7%)   Urothelial  Papilloma   0   0   1/1  (100%)   PUNLMP*   0   0   1/1  (100%)   Papillary  Carcinoma                      Grade  I   0   0   0          Grade  II   1/17  (6%)   0   1/17  (6%)          Grade  III   2/33  (6%)   0   2/33  (6%)   *Papillary  urothelial  neoplasm  of  low  malignant  potential   Pattern  4   Loss   1/44  (2%)   1/44  (2%)   0   0   0   0           2/2  (100%)   0   15/17  (88%)   1/17  (6%)   27/33  (82%)   14/33  (42%)         Table  3:  Immunohistochemical  Scoring  of  Cytokeratin  7  Expression  in  Canine  Proliferative  Urothelial  Lesions  by  Overall  Pattern   Classification   Pattern  1   Pattern  2   Pattern  3   Pattern  4   Polyp/Polypoid  Cystitis   16/44  (36%)   25/44  (57%)   3/44  (7%)   0   Urothelial  Papilloma   0   1/2  (50%)   1/2  (50%)   0   PUNLMP*   0   0   1/1  (100%)   0   Papillary  Carcinoma                          Grade  I   0   1/2  (50%)   0   1/2  (50%)          Grade  II   2/17  (12%)   0   5/17  (29%)   10/17  (59%)          Grade  III   0   1/33  (3%)   6/33  (18%)   25/33  (76%)   *Papillary  urothelial  neoplasm  of  low  malignant  potential    55   Loss   0   0   0       0   2/17  (12%)   1/33  (3%)     Table  4:  Immunohistochemical  Scoring  of  COX-­‐2  Expression  in  Canine  Proliferative  Urothelial   Lesions  by  Overall  Pattern   Classification   Pattern  1   Pattern  2   Polyp/Polypoid  Cystitis   32/44  (73%)   11/44  (25%   Urothelial  Papilloma   1/2  (50%)   1/2  (50%)   PUNLMP*   1/1  (100%)   0   Papillary  Carcinoma                  Grade  I   1/2  (50%)   0          Grade  II   0   0          Grade  III   0   0   *Papillary  urothelial  neoplasm  of  low  malignant  potential   Pattern  3   1/44  (2%)   0   0       1/2  (50%)   17/17  (100%)   33/33  (100%)               Table   5:   Immunohistochemical   Scoring   of   Activated   Caspase-­‐3   in   Canine   Proliferative   Urothelial  Lesions  by  Overall  Pattern     Classification   Pattern  1   Pattern  2   Pattern  3   Polyp/Polypoid  Cystitis   27/44  (61%)   13/44  (30%)   4/44  (9%)   Urothelial  Papilloma   1/2  (50%)   0   1/2  (50%)   PUNLMP*   1/1  (100%)   0   0   Papillary  Carcinoma                      Grade  I   1/2  (50%)   0   1/2  (50%)          Grade  II   10/16  (63%)   3/16  (19%)   3/16  (19%)          Grade  III   22/30  (73%)   4/30  (13%)   4/30  (13%)   *Papillary  urothelial  neoplasm  of  low  malignant  potential       56     Table  6:  Summary  of  Patterns  of  Immunoreactivity  of  Uroplakin  III,  Cytokeratin  7,  and  COX-­‐2   in  Proliferative  Urothelial  Lesions   Classification   Uroplakin  III   Polyp/Polypoi 89%  had   d  Cystitis   expression  limited   to  cells  in  the   superficial-­‐most   cell  layer  (pattern   1)  or  extending  to   the  middle-­‐most   layer    (pattern  2)   Urothelial   All  cases  had   Papilloma/PU expression   NLMP*   throughout  all  cell   layers  (pattern  3)   Papillary   Carcinoma          Grade  I   Cytokeratin  7   93%  had  expression   limited  to  cells  in  the   superficial-­‐most  cell   layer  (pattern  1)  or   extending  to  the   middle-­‐most  layer   (pattern  2)   COX-­‐2   98%  had  expression   limited  to  the   superficial  1/3  of  cell   layers  (pattern  1)  or   throughout  all  cell   layers  (pattern  2)   All  cases  had   expression  that   extending  to  the   middle-­‐most  layer  of   the  urotheluim   (pattern  2)  or   throughout  all  cell   layers  (pattern  3)   83%  had  randomly   21%  had  expression   distributed,  patchy   throughout  all    cell   expression  (pattern   layers  (pattern  3);   4)   68%  had  randomly   distributed,  patchy   expression  (pattern   4)   No  significant  loss   No  significant  loss  of   of  expression  was   expression  was   observed   observed   All  cases    had   expression  limited  to   the  superficial  1/3  of   cell  layers  (pattern  1)   or  throughout  all  cell   layers  (pattern  2)          Grade  II   6%    had  significant   12%  had  significant   areas  of  expression   areas  of  expression   loss   loss          Grade  III   42%  had   significant  areas  of   expression  loss   3%  had  significant   areas  of  expression   loss     *Papillary  urothelial  neoplasm  of  low  malignant  potential     57   98%  had  randomly   distributed  and   patchy  expression   (pattern  3)   50%  had  expression   limited  to  the   superficial-­‐most  1/3   of  cell  layers  (pattern   1);  50%  had   randomly  distributed,   patchy  expression   (pattern  3)   All  cases  had   randomly  distributed,   patchy  expression   (pattern  3)   All  cases  had   randomly  distributed,   patchy  expression   (pattern  3)                           REFERENCES                           58     REFERENCES     1.   Abu-­‐Qare  AW,  Abou-­‐Donia  MB.  Biomarkers  of  apoptosis:  release  of  cytochrome  c,   activation  of  caspase-­‐3,  induction  of  8-­‐hydroxy-­‐2'-­‐deoxyguanosine,  increased  3-­‐ nitrotyrosine,  and  alteration  of  p53  gene.  J  Toxicol  Environ  Health  B  Crit  Rev.  Jul-­‐Sep   2001;4(3):313-­‐332.   2.   Alsheikh  A,  Mohamedali  Z,  Jones  E,  Masterson  J,  Gilks  CB.  Comparison  of  the   WHO/ISUP  classification  and  cytokeratin  20  expression  in  predicting  the  behavior  of  low-­‐ grade  papillary  urothelial  tumors.  World/Health  Organization/Internattional  Society  of   Urologic  Pathology.  Mod  Pathol.  Apr  2001;14(4):267-­‐272.   3.   Castelao  JE,  Yuan  JM,  Gago-­‐Dominguez  M,  Yu  MC,  Ross  RK.  Non-­‐steroidal  anti-­‐ inflammatory  drugs  and  bladder  cancer  prevention.  Br  J  Cancer.  Apr  2000;82(7):1364-­‐ 1369.   4.   Cohen  GM.  Caspases:  the  executioners  of  apoptosis.  Biochem  J.  Aug  15  1997;326  (  Pt   1):1-­‐16.   5.   Dhawan  D,  Jeffreys  AB,  Zheng  R,  Stewart  JC,  Knapp  DW.  Cyclooxygenase-­‐2   dependent  and  independent  antitumor  effects  induced  by  celecoxib  in  urinary  bladder   cancer  cells.  Mol  Cancer  Ther.  Apr  2008;7(4):897-­‐904.   6.   Eble  J,  Sauter  G,  Epstein  JI,  Sesterhenn  IA.  World  Health  Organization  classification   of  tumours.  Pathology  and  genetics  of  tumours  of  the  urinary  system  and  male  genital   organs.  Lyon:  IARC  Press;  2004.   7.   Epstein  JI,  Amin  MB,  Reuter  VR,  Mostofi  FK.  The  World  Health   Organization/International  Society  of  Urological  Pathology  consensus  classification  of   urothelial  (transitional  cell)  neoplasms  of  the  urinary  bladder.  Bladder  Consensus   Conference  Committee.  Am  J  Surg  Pathol.  Dec  1998;22(12):1435-­‐1448.   8.   Espinosa  de  los  Monteros  A,  Fernandez  A,  Millan  MY,  Rodriguez  F,  Herraez  P,  Martin   de  las  Mulas  J.  Coordinate  expression  of  cytokeratins  7  and  20  in  feline  and  canine   carcinomas.  Vet  Pathol.  May  1999;36(3):179-­‐190.   9.   Gately  S,  Li  WW.  Multiple  roles  of  COX-­‐2  in  tumor  angiogenesis:  a  target  for   antiangiogenic  therapy.  Semin  Oncol.  Apr  2004;31(2  Suppl  7):2-­‐11.   10.   Gee  J,  Lee  IL,  Jendiroba  D,  Fischer  SM,  Grossman  HB,  Sabichi  AL.  Selective   cyclooxygenase-­‐2  inhibitors  inhibit  growth  and  induce  apoptosis  of  bladder  cancer.  Oncol   Rep.  Feb  2006;15(2):471-­‐477.     59     11.   Greenhough  A,  Smartt  HJ,  Moore  AE,  et  al.  The  COX-­‐2/PGE2  pathway:  key  roles  in   the  hallmarks  of  cancer  and  adaptation  to  the  tumour  microenvironment.  Carcinogenesis.   Mar  2009;30(3):377-­‐386.   12.   Grutter  MG.  Caspases:  key  players  in  programmed  cell  death.  Curr  Opin  Struct  Biol.   Dec  2000;10(6):649-­‐655.   13.   Gruver  AM,  Amin  MB,  Luthringer  DJ,  et  al.  Selective  immunohistochemical  markers   to  distinguish  between  metastatic  high-­‐grade  urothelial  carcinoma  and  primary  poorly   differentiated  invasive  squamous  cell  carcinoma  of  the  lung.  Arch  Pathol  Lab  Med.  Nov   2012;136(11):1339-­‐1346.   14.   Henry  CJ,  McCaw  DL,  Turnquist  SE,  et  al.  Clinical  evaluation  of  mitoxantrone  and   piroxicam  in  a  canine  model  of  human  invasive  urinary  bladder  carcinoma.  Clin  Cancer  Res.   Feb  2003;9(2):906-­‐911.   15.   Karam  JA,  Lotan  Y,  Karakiewicz  PI,  et  al.  Use  of  combined  apoptosis  biomarkers  for   prediction  of  bladder  cancer  recurrence  and  mortality  after  radical  cystectomy.  Lancet   Oncol.  Feb  2007;8(2):128-­‐136.   16.   Karamitopoulou  E,  Rentsch  CA,  Markwalder  R,  Vallan  C,  Thalmann  GN,  Brunner  T.   Prognostic  significance  of  apoptotic  cell  death  in  bladder  cancer:  a  tissue  microarray  study   on  179  urothelial  carcinomas  from  cystectomy  specimens.  Pathology.  Jan  2010;42(1):37-­‐ 42.   17.   Khan  KN,  Knapp  DW,  Denicola  DB,  Harris  RK.  Expression  of  cyclooxygenase-­‐2  in   transitional  cell  carcinoma  of  the  urinary  bladder  in  dogs.  Am  J  Vet  Res.  May   2000;61(5):478-­‐481.   18.   Knapp  DW,  Glickman  NW,  Denicola  DB,  Bonney  PL,  Lin  TL,  Glickman  LT.  Naturally-­‐ occurring  canine  transitional  cell  carcinoma  of  the  urinary  bladder  A  relevant  model  of   human  invasive  bladder  cancer.  Urol  Oncol.  Mar-­‐Apr  2000;5(2):47-­‐59.   19.   Knapp  DW,  Glickman  NW,  Widmer  WR,  et  al.  Cisplatin  versus  cisplatin  combined   with  piroxicam  in  a  canine  model  of  human  invasive  urinary  bladder  cancer.  Cancer   Chemother  Pharmacol.  2000;46(3):221-­‐226.   20.   Knottenbelt  C,  Mellor  D,  Nixon  C,  Thompson  H,  Argyle  DJ.  Cohort  study  of  COX-­‐1  and   COX-­‐2  expression  in  canine  rectal  and  bladder  tumours.  J  Small  Anim  Pract.  Apr   2006;47(4):196-­‐200.   21.   Komhoff  M,  Guan  Y,  Shappell  HW,  et  al.  Enhanced  expression  of  cyclooxygenase-­‐2  in   high  grade  human  transitional  cell  bladder  carcinomas.  Am  J  Pathol.  Jul  2000;157(1):29-­‐35.   22.   Lee  JY,  Tanabe  S,  Shimohira  H,  et  al.  Expression  of  cyclooxygenase-­‐2,  P-­‐glycoprotein   and  multi-­‐drug  resistance-­‐associated  protein  in  canine  transitional  cell  carcinoma.  Res  Vet   Sci.  Oct  2007;83(2):210-­‐216.     60     23.   Liu  B,  Qu  L,  Tao  H.  Cyclo-­‐oxygenase  2  up-­‐regulates  the  effect  of  multidrug  resistance.   Cell  Biol  Int.  Jan  2010;34(1):21-­‐25.   24.   Margulis  V,  Shariat  SF,  Ashfaq  R,  et  al.  Expression  of  cyclooxygenase-­‐2  in  normal   urothelium,  and  superficial  and  advanced  transitional  cell  carcinoma  of  bladder.  J  Urol.  Mar   2007;177(3):1163-­‐1168.   25.   Matsumoto  K,  Satoh  T,  Irie  A,  et  al.  Loss  expression  of  uroplakin  III  is  associated  with   clinicopathologic  features  of  aggressive  bladder  cancer.  Urology.  Aug  2008;72(2):444-­‐449.   26.   Mitra  AP,  Castelao  JE,  Hawes  D,  et  al.  Combination  of  molecular  alterations  and   smoking  intensity  predicts  bladder  cancer  outcome:  A  report  from  the  Los  Angeles  Cancer   Surveillance  Program.  Cancer.  Feb  15  2013;119(4):756-­‐765.   27.   Mohammed  SI,  Bennett  PF,  Craig  BA,  et  al.  Effects  of  the  cyclooxygenase  inhibitor,   piroxicam,  on  tumor  response,  apoptosis,  and  angiogenesis  in  a  canine  model  of  human   invasive  urinary  bladder  cancer.  Cancer  Res.  Jan  15  2002;62(2):356-­‐358.   28.   Mohammed  SI,  Craig  BA,  Mutsaers  AJ,  et  al.  Effects  of  the  cyclooxygenase  inhibitor,   piroxicam,  in  combination  with  chemotherapy  on  tumor  response,  apoptosis,  and   angiogenesis  in  a  canine  model  of  human  invasive  urinary  bladder  cancer.  Mol  Cancer  Ther.   Feb  2003;2(2):183-­‐188.   29.   Mohammed  SI,  Dhawan  D,  Abraham  S,  et  al.  Cyclooxygenase  inhibitors  in  urinary   bladder  cancer:  in  vitro  and  in  vivo  effects.  Mol  Cancer  Ther.  Feb  2006;5(2):329-­‐336.   30.   Mohammed  SI,  Knapp  DW,  Bostwick  DG,  et  al.  Expression  of  cyclooxygenase-­‐2  (COX-­‐ 2)  in  human  invasive  transitional  cell  carcinoma  (TCC)  of  the  urinary  bladder.  Cancer  Res.   Nov  15  1999;59(22):5647-­‐5650.   31.   Moll  R,  Laufer  J,  Wu  XR,  Sun  TT.  [Uroplakin  III,  a  specific  membrane  protein  of   urothelial  umbrella  cells,  as  a  histological  markers  for  metastatic  transitional  cell   carcinomas].  Verh  Dtsch  Ges  Pathol.  1993;77:260-­‐265.   32.   Oosterhuis  JW,  Schapers  RF,  Janssen-­‐Heijnen  ML,  Pauwels  RP,  Newling  DW,  ten  Kate   F.  Histological  grading  of  papillary  urothelial  carcinoma  of  the  bladder:  prognostic  value  of   the  1998  WHO/ISUP  classification  system  and  comparison  with  conventional  grading   systems.  J  Clin  Pathol.  Dec  2002;55(12):900-­‐905.   33.   Pan  CC,  Chang  YH,  Chen  KK,  Yu  HJ,  Sun  CH,  Ho  DM.  Constructing  prognostic  model   incorporating  the  2004  WHO/ISUP  classification  for  patients  with  non-­‐muscle-­‐invasive   urothelial  tumours  of  the  urinary  bladder.  J  Clin  Pathol.  Oct  2010;63(10):910-­‐915.   34.   Pan  CC,  Chang  YH,  Chen  KK,  Yu  HJ,  Sun  CH,  Ho  DM.  Prognostic  significance  of  the   2004  WHO/ISUP  classification  for  prediction  of  recurrence,  progression,  and  cancer-­‐ specific  mortality  of  non-­‐muscle-­‐invasive  urothelial  tumors  of  the  urinary  bladder:  a   clinicopathologic  study  of  1,515  cases.  Am  J  Clin  Pathol.  May  2010;133(5):788-­‐795.     61     35.   Parker  DC,  Folpe  AL,  Bell  J,  et  al.  Potential  utility  of  uroplakin  III,  thrombomodulin,   high  molecular  weight  cytokeratin,  and  cytokeratin  20  in  noninvasive,  invasive,  and   metastatic  urothelial  (transitional  cell)  carcinomas.  Am  J  Surg  Pathol.  Jan  2003;27(1):1-­‐10.   36.   Patrick  DJ,  Fitzgerald  SD,  Sesterhenn  IA,  Davis  CJ,  Kiupel  M.  Classification  of  canine   urinary  bladder  urothelial  tumours  based  on  the  World  Health  Organization/International   Society  of  Urological  Pathology  consensus  classification.  J  Comp  Pathol.  Nov   2006;135(4):190-­‐199.   37.   Pich  A,  Chiusa  L,  Formiconi  A,  Galliano  D,  Bortolin  P,  Navone  R.  Biologic  differences   between  noninvasive  papillary  urothelial  neoplasms  of  low  malignant  potential  and  low-­‐ grade  (grade  1)  papillary  carcinomas  of  the  bladder.  Am  J  Surg  Pathol.  Dec   2001;25(12):1528-­‐1533.   38.   Porter  AG,  Janicke  RU.  Emerging  roles  of  caspase-­‐3  in  apoptosis.  Cell  Death  Differ.   Feb  1999;6(2):99-­‐104.   39.   Ramos-­‐Vara  JA,  Miller  MA,  Boucher  M,  Roudabush  A,  Johnson  GC.   Immunohistochemical  detection  of  uroplakin  III,  cytokeratin  7,  and  cytokeratin  20  in   canine  urothelial  tumors.  Vet  Pathol.  Jan  2003;40(1):55-­‐62.   40.   Ristimaki  A,  Nieminen  O,  Saukkonen  K,  Hotakainen  K,  Nordling  S,  Haglund  C.   Expression  of  cyclooxygenase-­‐2  in  human  transitional  cell  carcinoma  of  the  urinary   bladder.  Am  J  Pathol.  Mar  2001;158(3):849-­‐853.   41.   Rocha  TA,  Mauldin  GN,  Patnaik  AK,  Bergman  PJ.  Prognostic  factors  in  dogs  with   urinary  bladder  carcinoma.  J  Vet  Intern  Med.  Sep-­‐Oct  2000;14(5):486-­‐490.   42.   Samaratunga  H,  Makarov  DV,  Epstein  JI.  Comparison  of  WHO/ISUP  and  WHO   classification  of  noninvasive  papillary  urothelial  neoplasms  for  risk  of  progression.  Urology.   Aug  2002;60(2):315-­‐319.   43.   Schned  AR,  Andrew  AS,  Marsit  CJ,  Zens  MS,  Kelsey  KT,  Karagas  MR.  Survival   following  the  diagnosis  of  noninvasive  bladder  cancer:  WHO/International  Society  of   Urological  Pathology  versus  WHO  classification  systems.  J  Urol.  Oct  2007;178(4  Pt  1):1196-­‐ 1200;  discussion  1200.   44.   Shariat  SF,  Matsumoto  K,  Kim  J,  et  al.  Correlation  of  cyclooxygenase-­‐2  expression   with  molecular  markers,  pathological  features  and  clinical  outcome  of  transitional  cell   carcinoma  of  the  bladder.  J  Urol.  Sep  2003;170(3):985-­‐989.   45.   Shirahama  T.  Cyclooxygenase-­‐2  expression  is  up-­‐regulated  in  transitional  cell   carcinoma  and  its  preneoplastic  lesions  in  the  human  urinary  bladder.  Clin  Cancer  Res.  Jun   2000;6(6):2424-­‐2430.     62     46.   Shirahama  T,  Arima  J,  Akiba  S,  Sakakura  C.  Relation  between  cyclooxygenase-­‐2   expression  and  tumor  invasiveness  and  patient  survival  in  transitional  cell  carcinoma  of   the  urinary  bladder.  Cancer.  Jul  1  2001;92(1):188-­‐193.   47.   Soslow  RA,  Rouse  RV,  Hendrickson  MR,  Silva  EG,  Longacre  TA.  Transitional  cell   neoplasms  of  the  ovary  and  urinary  bladder:  a  comparative  immunohistochemical  analysis.   Int  J  Gynecol  Pathol.  Jul  1996;15(3):257-­‐265.   48.   Stadelmann  C,  Lassmann  H.  Detection  of  apoptosis  in  tissue  sections.  Cell  Tissue  Res.   Jul  2000;301(1):19-­‐31.   49.   Tot  T.  Cytokeratins  20  and  7  as  biomarkers:  usefulness  in  discriminating  primary   from  metastatic  adenocarcinoma.  Eur  J  Cancer.  Apr  2002;38(6):758-­‐763.   50.   Valli  VE,  Norris  A,  Jacobs  RM,  et  al.  Pathology  of  canine  bladder  and  urethral  cancer   and  correlation  with  tumour  progression  and  survival.  J  Comp  Pathol.  Aug   1995;113(2):113-­‐130.   51.   Vardar  E,  Gunlusoy  B,  Minareci  S,  Postaci  H,  Ayder  AR.  Evaluation  of  p53  nuclear   accumulation  in  low-­‐  and  high-­‐grade  (WHO/ISUP  classification)  transitional  papillary   carcinomas  of  the  bladder  for  tumor  recurrence  and  progression.  Urol  Int.  2006;77(1):27-­‐ 33.   52.   Vojtesek  B,  Staskova  Z,  Nenutil  R,  et  al.  A  panel  of  monoclonal  antibodies  to  keratin   no.  7:  characterization  and  value  in  tumor  diagnosis.  Neoplasma.  1990;37(3):333-­‐342.   53.   Wadhwa  P,  Goswami  AK,  Joshi  K,  Sharma  SK.  Cyclooxygenase-­‐2  expression   increases  with  the  stage  and  grade  in  transitional  cell  carcinoma  of  the  urinary  bladder.  Int   Urol  Nephrol.  2005;37(1):47-­‐53.   54.   Wang  D,  Dubois  RN.  Prostaglandins  and  cancer.  Gut.  Jan  2006;55(1):115-­‐122.   55.   Wang  MT,  Honn  KV,  Nie  D.  Cyclooxygenases,  prostanoids,  and  tumor  progression.   Cancer  Metastasis  Rev.  Dec  2007;26(3-­‐4):525-­‐534.   56.   Wendum  D,  Masliah  J,  Trugnan  G,  Flejou  JF.  Cyclooxygenase-­‐2  and  its  role  in   colorectal  cancer  development.  Virchows  Arch.  Oct  2004;445(4):327-­‐333.   57.   Wu  XR,  Kong  XP,  Pellicer  A,  Kreibich  G,  Sun  TT.  Uroplakins  in  urothelial  biology,   function,  and  disease.  Kidney  Int.  Jun  2009;75(11):1153-­‐1165.   58.   Wu  XR,  Lin  JH,  Walz  T,  et  al.  Mammalian  uroplakins.  A  group  of  highly  conserved   urothelial  differentiation-­‐related  membrane  proteins.  J  Biol  Chem.  May  6   1994;269(18):13716-­‐13724.     63     59.   Yin  H,  Leong  AS.  Histologic  grading  of  noninvasive  papillary  urothelial  tumors:   validation  of  the  1998  WHO/ISUP  system  by  immunophenotyping  and  follow-­‐up.  Am  J  Clin   Pathol.  May  2004;121(5):679-­‐687.                     64     CHAPTER  3       Evaluation  of  15-­‐hydroxyprostaglandin  dehydrogenase  (HPGD),  cyclooxygenase-­‐2   (COX-­‐2),  cadherin,  and  β-­‐catenin  expression  in  canine  urinary  bladder  urothelial   carcinomas     Dodd  Sledge1,  Elizabeth  A.  McNiel2,  Nicole  J.  Madrill3,  Monica  Liebert4,  Matti  Kiupel1     1  Department  of  Pathobiology  and  Diagnostic  Investigation,  Diagnostic  Center  for   Population  and  Animal  Health,  Michigan  State  University,  Lansing  MI    University,  Lansing,  MI     2  Tufts  Cummings  School  of  Veterinary  Medicine  and  Molecular  Oncology  Research   Institute,  Boston,  MA,   3  College  of  Veterinary  Medicine,  Michigan  State  University,  East  Lansing,  MI   4  Department  of  Urology,  University  of  Michigan,  Ann  Arbor,  MI             65     Abstract   There  likely  are  links  between  prostaglandin  regulation,  cadherin  switching,  and  Wnt   signaling  in  the  carcinogenesis  of  urinary  bladder  urothelial  carcinomas.  Cadherin   switching  is  described  and  decreased  expression  of  15-­‐hydroxyprostaglandin   dehydrogenase  (HPGD),  which  metabolizes  prostaglandin  E2,  is  associated  with  loss  of  E-­‐ cadherin  expression  in  human  urothelial  carcinomas.  Aberrant  expression  of  β-­‐catenin,  an   integral  part  of  Wnt  signaling,  is  associated  with  changes  in  prostaglandin  E2  and  cadherin   expression  in  other  carcinomas.  Using  the  dog  as  a  model,  the  expression  of  HPGD,   cyclooxygenase-­‐2  (COX-­‐2),  β-­‐catenin,  and  E-­‐,  P-­‐,  and  N-­‐cadherin  was  evaluated  in  canine   normal  urinary  bladders  and  urothelial  carcinomas,  and  urothelial  carcinoma  cell  lines.   Using  immunohistochemistry,  normal  canine  urinary  bladders  and  low  grade,  noninvasive   canine  urothelial  carcinomas  expressed  HPGD  in  superficial  epithelial  cells,  lacked  COX-­‐2,   and  expressed  E-­‐  and  P-­‐cadherin  and  β-­‐catenin  along  cell  membranes.  In  comparison,  a   significant  proportion  of  high  grade,  infiltrative  urothelial  carcinomas  exhibited  loss  of   HPGD,  increased  COX-­‐2,  decreased  P-­‐cadherin,  and  aberrant  localization  of  β-­‐catenin   expression  within  neoplastic  cells.  E-­‐cadherin  was  expressed  in  all  canine  urothelial   carcinomas  regardless  of  HPGD  expression.  N-­‐cadherin  was  not  expressed  in  normal  or   neoplastic  canine  urothelium.  Western  blots  demonstrated  that  none  of  the  canine   urothelial  carcinoma  cell  lines  expressed  HPGD  or  N-­‐cadherin,  but  all  expressed  E-­‐  and  P-­‐ cadherin.  In  contrast,  human  urothelial  carcinoma  cell  lines  examined  in  parallel  had  loss  of   HPGD  had  loss  of  E-­‐  and  P-­‐cadherin  expression  and  gain  of  N-­‐cadherin  expression.  These   data  suggest  that  while  these  pathways  may  be  related  in  both  canine  and  human  urothelial   carcinomas,  regulation  is  somewhat  different  between  dogs  and  humans.     66     Introduction   Increased  expression  of  prostaglandin  E2  (PGE2)  has  been  associated  with   carcinogenesis  in  many  epithelial  tissues  and  has  specifically  been  implicated  in  avoidance   of  apoptosis,  angiogenesis,  cellular  proliferation,  invasion,  and  metastasis  in  cancer.1-­‐6  The   overall  expression  of  PGE2  within  a  given  tissue  is  dependent  on  the  rates  of  its  synthesis   from  arachadonic  acid  and  its  metabolism  by  15-­‐hydroxyprostaglandin  dehydrogenase   (HPGD).  Carcinogenesis  research  concerning  PGE2  has  most  intensely  focused  on  the   synthesis  side  of  expression.  Specifically,  cyclooxygenase-­‐2  (COX-­‐2),  an  inducible  enzyme   that  metabolizes  arachidonic  acid  to  the  PGE2  precursor  prostaglandin  H2,  has  been  shown   to  be  upregulated  in  carcinomas  arising  in  numerous  tissues  including  the  urothelium  of   the  urinary  bladder.2,  7  More  recently,  a  loss  of  HPGD  has  been  documented  in  various   carcinomas  suggesting  that  a  decrease  in  PGE2  degradation  also  plays  a  role  in   carcinogenesis.8,  9  The  exact  mechanisms  that  drive  PGE2  associated  carcinogenesis  are   unclear  and  likely  multifactorial,  but  there  is  some  evidence  that  changes  in  PGE2   regulation  are  related  to  cadherin  expression  and  the  Wnt  signaling  pathway  through   changes  in  β-­‐catenin  expression.10-­‐12   Cadherins  are  membrane-­‐associated  proteins  that  mediate  cell-­‐cell  and/or  cell-­‐ matrix  interactions.  Loss  of  cadherins  typically  expressed  by  epithelial  cells  such  as  E-­‐  and   P-­‐cadherin  and/or  switching  of  the  expression  of  cadherins,  often  to  N-­‐cadherin,  have  been   associated  with  increased  invasiveness,  increased  metastatic  potential,  and  an  overall   epithelial-­‐mesenchymal  transition  in  many  types  of  carcinomas.13-­‐16  Regulation  of  cadherin   expression  has  recently  been  linked  to  the  regulation  of  PGE2  in  some  types  of  carcinomas   including,  but  not  limited  to  urothelial  carcinomas,  squamous  cell  carcinomas,  and  non-­‐   67     small  cell  lung  cancer.17-­‐19   In  addition  to  the  potential  effects  altered  metabolism  of  PGE2  has  on  cadherin   expression,  alterations  in  prostaglandin  regulation  may  affect  urothelial  carcinogenesis   through  the  Wnt  signaling  pathway.  While  numerous  factors  can  affect  Wnt  signaling,  the   end  result  of  Wnt  signaling  is  the  accumulation  and  translocation  of  β-­‐catenin  into  the   nucleus  where  it  interacts  with  transcription  factors  resulting  in  the  expression  of  cancer   associated  genes.  β-­‐catenin  is  normally  sequestered  along  the  cell  membrane  due  to  its   association  with  intracellular  portions  of  cadherins.    Although  loss  of  cadherin  expression   alone  cannot  lead  to  Wnt  signaling,  changes  in  cadherin  expression  can  free  β-­‐catenin  from   its  normal  membrane  localization  favoring  its  accumulation  within  the  cytoplasm  and   nucleus.3,6  Thus,  aberrant  expression  of  PGE2  due  to  either  increased  production  or   decreased  degradation  may  lead  to  increased  Wnt  pathway  signaling  in  association  with   changes  in  cadherin  expression.     In  urothelial  carcinomas  of  humans,  it  has  recently  been  shown  that  decreased   expression  of  HPGD  and  increased  PGE2  expression  are  associated  with  a  more  invasive   phenotype  and  worse  prognosis  making  this  neoplasm  ideal  for  the  study  of  the  role  of   aberrant  prostaglandin  regulation  in  carcinogenesis.12,  19  Interestingly,  decreased   expression  of  HPGD  in  neoplastic  cells  has  been  associated  with  loss  of  E-­‐cadherin.  Given   such  loss  of  E-­‐cadherin  in  urothelial  carcinomas,  it  is  reasonable  to  postulate  that  cadherin   switching  driven  by  alterations  in  prostaglandin  regulation  occurs  in  the  development  of   urothelial  carcinomas.  Also,  it  is  plausible  that  changes  in  both  prostaglandin  expression   and  cadherin  expression  would  affect  Wnt  signaling  through  changes  in  β-­‐catenin   expression.       68     Dogs  are  recognized  as  outstanding  models  for  many  human  diseases  including   some  cancers.20  Specific  to  the  current  study,  dogs  spontaneously  develop  bladder  cancers   that  histologically  resemble  human  bladder  cancers  and  that  have  a  similar  clinical   course.21,  22  23  Given  their  similarity  to  human  urothelial  carcinomas  in  both  morphology   and  progression,  it  is  plausible  that  canine  urothelial  carcinomas  have  features  of   carcinogenesis  homologous  to  those  in  humans.  As  such,  dogs  may  prove  pivotal  in  studies   into  specific  pathways  of  urothelial  carcinogenesis  as  well  as  provide  a  nonhuman  model   for  therapeutic  manipulation.  To  investigate  the  significance  of  prostaglandin  regulation   pathways,  cadherin  switching,  and  Wnt  signaling  in  canine  urothelial  carcinomas  and   potential  applicability  of  the  dog  as  a  model  for  these  specific  carcinogenesis  pathways,  we   evaluated  the  expression  of  HPGD,  COX-­‐2,  E-­‐cadherin,  P-­‐cadherin,  N-­‐cadherin,  and  β-­‐ catenin  in  canine  urothelial  carcinoma  cell  lines  and  in  ex  vivo  tissues.                       69     Materials  and  methods   Selection  of  Cases  and  Histologic  Classification   A  series  of  36  dogs  that  were  diagnosed  with  urothelial  carcinomas  at  either  the   Michigan  State  University  Veterinary  Teaching  Hospital  or  the  University  of  Minnesota   Veterinary  Teaching  Hospital  through  biopsy  were  selected  for  inclusion  in  the  study  based   on  owner  consent,  availability  of  clinical  history,  and  availability  of  paraffin-­‐embedded,   formalin-­‐fixed  diagnostic  samples.  For  each  urothelial  carcinoma  case,  descriptive   information  was  obtained  from  medical  records  and  periodic  follow-­‐up  questionnaires   including  age  at  diagnosis,  breed,  sex,  survival  time  from  the  date  of  diagnosis,  the  reported   cause  of  death,  and  any  treatment  employed.  In  addition,  bladder  samples  from  10  healthy   dogs  that  were  used  for  veterinary  student  teaching  purposes  were  harvested  in  10%   buffered  formalin  and  routinely  processed  for  histologic  examination.  Five  µm  sections  of   all  samples  were  routinely  processed  and  stained  with  hematoxylin  and  eosin.  Urothelial   proliferative  lesions  were  classified  and  graded  according  to  the  WHO/ISUP  Consensus   Classification  System  as  previously  described  in  canine  urothelial  tumors.22  In  addition,  the   degree  of  invasion  of  all  carcinomas  into  the  wall  of  the  urinary  bladder  was  scored  as  no   invasion,  invasion  into  the  substantia  propria,  or  invasion  into  the  muscularis.     Immunohistochemistry   Immunohistochemistry  (IHC)  was  used  to  evaluate  the  expression  of  HPGD,  COX-­‐2,   β-­‐catenin,  and  E-­‐,  N-­‐,  and  P-­‐cadherin  in  normal  canine  urinary  bladder  and  canine   urothelial  carcinomas.  Five  µm  sections  of  all  formalin-­‐fixed,  paraffin-­‐embedded  tissues   were  processed  for  immunohistochemistry  and  labeled  with  a  rabbit  monoclonal  anti-­‐ HPGD  antibody  (1:100,  Sigma-­‐Aldrich,  St.  Louis,  MO,  USA),  a  rabbit  polyclonal  anti-­‐COX-­‐2     70     antibody  (1:100.  Cayman  Chemical  Company,  Ann  Arbor,  MI,  USA),  a  rabbit  monoclonal   anti-­‐β-­‐catenin  antibody  (1:1000,  Abcam,  Cambridge,  MA,  USA),  a  mouse  polyclonal  anti-­‐E-­‐ cadherin  antibody  (1:300,  BD  Biosciences,  San  Jose,  CA,  USA),  a  mouse  monoclonal  anti-­‐N-­‐ cadherin  (1:100,  Invitrogen,  Life  Technologies,  Grand  Island,  NY,  USA),  or  a  mouse   monoclonal  anti-­‐P-­‐cadherin  antibody  (1:100,  NovoCastra,  Leica  Biosystems,  Buffalo  Grove,   IL  USA).  For  HPGD,  β-­‐catenin,  and  E-­‐,  N-­‐,  and  P-­‐cadherin,  deparaffinization,  antigen   retrieval,  immunohistochemical  staining  and  counterstaining  was  performed  on  a  Bond   maX™  Automated  Staining  System  (Leica  Biosystems,  Buffalo  Grove,  IL,  USA)  using  the   Bond™  Polymer  Refine  Detection  System  (Leica  Biosystems,  Buffalo  Grove,  IL,  USA),  which   employs  a  3,3’  diaminobenzidine  tetrahydrochloride  (DAB)  chromogen  detection  system.   For  COX-­‐2,  deparaffinization,  antigen  retrieval,  immunohistochemical  staining  and   counterstaining  was  preformed  on  a  Benchmark  XT™  autostainer  (Ventana,  Tucson,  AZ,   USA)  using  and  an  Enhanced  Alkaline  Phosphatase  Red  Detection  Kit  (Ventana)  that  uses   an  indirect  biotin  streptavidin  and  Fast  Red  chromogen  detection  system.    Retrieval  for   HPGD  was  accomplished  by  incubation  for  20  minutes  with  EnVision™  FLEX  Target   Retrieval  Solution,  Low  pH  (Dako,  Carpinteria,  CA).    Retrieval  for  β-­‐catenin  and  E-­‐  and  N-­‐ cadherin  was  accomplished  using  heat  induced  epitope  retrieval  and  incubation  with   Bond™  Epitope  Retrieval  Solution  1  (Leica  Biosystems)  for  20  minutes.    Retrieval  for  P-­‐ cadherin  was  accomplished  using  heat  induced  epitope  retrieval  and  incubation  with   Bond™  Epitope  Retrieval  Solution  1  (Leica  Biosystems)  for  20  minutes.    Positive  controls   using  appropriate  canine  tissues  were  ran  in  parallel  to  cases  for  each  of  the  IHC  protocols   as  follows:  normal  bladder  for  HPGD,  squamous  cell  carcinoma  for  COX-­‐2,  haired  skin  and   normal  bladder  for  β-­‐catenin  and  E-­‐cadherin,  heart  for  N-­‐cadherin,  and  uterus  for  P-­‐   71     cadherin.  For  negative  controls,  homologous  non-­‐immune  sera  or  buffer  replaced  primary   antibodies.   For  each  case,  immunoreactivity  for  HPGD  was  scored  by  the  percentage  of   positively  labeled  cells  and  the  location  of  immunoreactivity  within  urothelium  (Fig.  10).     Specifically,  percentage  of  urothelium  expressing  HPGD  was  categorized  as  none,  <5%,  5-­‐ 15%,  15-­‐30%  or  >30%.  Location  of  HPGD  was  categorized  as  Pattern  1  when  limited  to  the   superficial  1-­‐3  cell  layers  and  diffuse  throughout  these  cell  layers;  Pattern  2  when   superficial,  but  patchy  within  the  urothelium  with  <80%  of  the  total  superficial  urothelium   being  labeled;  Pattern  3  when  diffuse  throughout  the  full  thickness  of  urothelium;  or   Pattern  4  when  randomly  distributed  patchy  areas  of  immunoreactivity  with  <80%  of  the   total  urothelium  being  labeled.    Immunoreactivity  for  COX-­‐2  was  scored  by  percentage  of   positive  cells  with  expression  being  categorized  as  none,  <5%,  5-­‐15%,  15-­‐30%  or  >30%   (Fig.  11).    For  E-­‐  and  P-­‐cadherin,  immunoreactivity  was  scored  by  location  within   urothelium  and  within  cells,  intensity  of  immunolabeling,  and  degree  of  loss  (Fig.  12  and   13).    Location  of  E-­‐  and  P-­‐  expression  was  categorized  as  membrane  associated,   cytoplasmic  only,  or  mixed  cytoplasmic  with  strong  membrane  labeling.    Intensity  was   subjectively  categorized  as  weak,  moderate,  or  strong.  Loss  of  E-­‐  and  P-­‐cadherin  expression   was  categorized  as  no  loss,  patchy  loss,  or  extensive  loss.    For  analysis,  aberrant  P-­‐cadherin   expression  was  defined  as  extensive  loss  of  expression  or  cytoplasmic  expression.  For  N-­‐ cadherin,  only  presence  or  absence  of  immunoreactivity  within  the  urothelium  was   evaluated.    β-­‐catenin  expression  was  scored  by  percentage  of  cells  within  each  lesion  with   membrane,  cytoplasmic,  mixed  membrane  and  cytoplasmic,  and  nuclear  expression  (Fig.     72     14).    Aberrant  β-­‐catenin  expression  within  a  given  case  was  defined  as  >  or  =  to  40%  of  cell   showing  cytoplasmic  labeling  or  >  or  =  to  10%  of  cells  showing  nuclear  labeling.   Statistical  Analysis   Chi  square  tests  performed  with  SPSS  statistical  software  (Somers,  NY,  USA)  was   used  to  evaluate  correlations  between  histologic  classifications,  degree  of  anaplasia,  depth   of  infiltration,  and  immunohistochemical  expression  of  examined  markers.  SPSS  statistical   software  (Somers,  NY)  was  also  used  to  analyze  correlations  between  survival  time  of   canine  urinary  carcinomas  and  clinico-­‐demographic  data,  histologic  classification  and   grading,  and  immunohistochemical  expression  of  examined  markers  using  Kaplan-­‐Meier   estimators  with  log  rank  tests,  and  univariate  and  multivariate  Cox  proportional  hazard   modeling.  For  all  statistical  analysis,  significance  was  defined  as  p<0.05.   Western  blots   In  order  to  1)  validate  antibody  use  in  dogs  and  2)  establish  an  in  vitro  model  for   future  studies,  IHC  and  Western  blotting  were  used  to  evaluate  expression  of  these   molecules  in  a  variety  of  normal  canine  tissues  and  canine  and  human  urothelial  carcinoma   cell  lines.    Eight  canine  urothelial  carcinoma  cell  lines  (ANGUS,  AXA,  AXC,  KINSEY,  K9TCC,   NK,  TYLER1,  TYLER2)  and  seven  human  urothelial  carcinoma  cell  lines  (RT4,  UC2,  UC3,   UC6,  UC12,  UC14,  5637)  were  cultured  in  100mm  plates  in  1:1  DMEM/F12  media  with  10%   fetal  bovine  serum,  l-­‐glutamine,  and  penicillin/streptomycin.    Cells  were  harvested  using  a   cell  scraper  and  protein  was  subsequently  isolated  through  incubation  with  RIPA  buffer.     Total  protein  for  each  was  quantitated  using  Pierce™  BCA  Protein  Assay  Kit  (Thermo   Scientific,  Rockford,  IL,  USA),  a  Victor  X3  microplate  reader  (PerkinElmer,  Shelton,  CT  USA)   reading  absorbance  at  750nm,  and  comparison  to  a  dilution  series  of  bovine  serum     73     albumin.    Equally  loaded  proteins  isolates  were  separated  using  SDS-­‐PAGE.    For  PGDH,   COX-­‐2  blots,  proteins  were  separated  using  12%  gels  (BioRad,  Hercules,  CA,  USA).    For  E-­‐,   N,  and  P-­‐cadherin  and  ß-­‐catenin  blots,  proteins  were  separated  using  7.5%  gels  (BioRad,   Hercules,  USA).    Percision  Plus  Protein™,  Dual  Color  (BioRad,  Hercules,  USA)  was  used  for   protein  standards.    Proteins  were  transferred  to  nitrocellulose  by  electroblotting.     Following  washes  in  TBST,  blots  were  blocked  using  3%  bovine  serum  albumin.    Blots  were   incubated  overnight  with  the  primary  antibodies  used  for  IHC  at  respective  concentrations   of  1:000,  1:500,  1:200,  1:5000,  1:1000,  1:200  for  HPGD,  COX-­‐2,  ß-­‐catenin,  and  E-­‐,  N-­‐  and  P-­‐ cadherin  in  3%  powdered  milk.    Following  washes  in  TBST,  blots  were  accordingly   incubated  for  2  hours  with  either  1:2000  goat  anti-­‐rabbit  IgG  or  1:7500  goat  anti-­‐rabbit  IgG   secondary  antibody  (Santa  Cruz  Biotechnology,  Dallas,  TX,  USA).  Following  washes  in  TBST,   blots  were  developed  using  a  chemiluminescence  detection  system  (Thermo  Scientific,   Rockford,  IL,  USA)  and  using  Amersham  Hyperfilm™  MP  autoradiography  film  (GE   Healthcare,  Little  Chalfont,  BM,  UK).    Blots  were  subsequently  stripped  for  1  hour  using   Western  blot  stripping  solution  (Thermo  Scientific,  Rockford,  IL,  USA).    Following  washes   in  TBST  and  blocking  in  3%  BSA,  blots  were  incubated  overnight  with  goat  anti-­‐GAPDH   primary  antibody.      Following  washes  in  TBST,  blots  were  incubated  for  2  hours  with   donkey  anti-­‐goat  secondary  antibody  (Santa  Cruz  Biotechnology,  Dallas,  TX,  USA).   Following  washes  in  TBST,  blots  were  developed  using  a  chemiluminescence  detection   system  (Thermo  Scientific,  Rockford,  IL,  USA)  and  chemilumiescence  was  detected  using   Amersham  Hyperfilm™  MP  radiographic  film  (GE  Healthcare,  Little  Chalfont,  BM,  UK).         74     Results   Demographic  information,  histologic  classification,  and  grading  of  urothelial  carcinomas   For  dogs  diagnosed  with  urothelial  carcinomas,  the  mean  age  at  initial  diagnosis   was  10.5  years  of  age  (2.0  SD)  with  a  range  of  6.7  to  17.1  years  of  age.  Affected  dogs   included  4  intact  females,  21  spayed  females,  and  11  castrated  males.  Represented  breeds   included  5  Scottish  Terriers,  2  West  Highland  White  Terriers,  7  Beagles,  7  Shetland   Sheepdogs,  and  14  dogs  of  other  breed  or  mixed  breed.    For  the  32  cases  in  which   information  regarding  treatment  was  available,  7  had  no  treatment,  2  had  only  local   resection  of  the  mass,  17  were  treated  with  only  piroxicam,  and  6  were  treated  with   piroxicam,  surgical  resection,  and  systemic  chemotherapy  which  variably  included   adriamycin,  cyclophosphamide,  and/or  mitoxantrone.    Two  animals  were  alive  at  the  end   of  study,  1  animal  died  from  causes  unrelated  to  the  urinary  carcinoma,  30  reportedly  died   or  were  euthanized  as  a  result  of  progressive  disease  related  to  the  urinary  bladder  tumors,   and  3  were  lost  to  follow-­‐up.       Of  the  36  urothelial  carcinomas,  8  were  diagnosed  as  infiltrating  carcinomas,  which   had  no  appreciable  exophytic  papillary  component,  but  instead  primarily  infiltrated  into   and  expanded  the  bladder  wall.    The  remaining  28  cases  were  papillary  carcinomas,  the   vast  majority  of  which  (24  of  28)  were  high  grade  (grade  II  or  III).    Invasion  of  high-­‐grade   papillary  carcinomas  into  the  bladder  wall  was  common  with  9  of  24  having  invasion  into   the  substantia  propria  and  7  of  24  invading  into  the  muscularis.    For  all  carcinomas,  the   mean  survival  time  was  326  days  with  a  standard  deviation  of  341  and  range  of  0  to  1225   days.    For  infiltrative  carcinomas,  the  mean  survival  time  was  173  days  with  a  standard   deviation  of  223  days  and  range  of  0  to  365  days.    For  papillary  carcinomas,  the  mean     75     survival  time  was  370  days  with  a  standard  deviation  of  359  days  and  range  of  0  to  1225   days.   Immunohistochemistry:  HPGD   There  was  diffuse  to  rarely  patchy  superficial  immunoreactivity  for  HPGD  consistent   with  a  HPGD  Pattern  1  or  2  in  all  but  one  of  ten  examined  control  bladders  from  normal   dogs.    The  percentage  of  urothelial  cells  that  were  immunoreactive  for  HPGD  was  highly   variable  between  control  bladders  ranging  from  <5  to  >30%.    The  vast  majority  of   urothelial  carcinomas  had  either  extensive  lack  of  immunoreactivity  (14/36)  or  had   Pattern  4,  patchy  immunoreactivity  randomly  scattered  throughout  the  tumors  (14/36)   with  the  total  percent  of  cells  expressing  HPGD  ranging  from  <5  to  >30%,  similar  to  that   seen  in  control  bladders  (Table  7).       Comparing  urothelial  carcinomas  and  urothelium  from  normal  controls,  there  was   no  significant  difference  between  the  overall  percent  of  cells  within  the  urothelium   expressing  HPGD  (p=0.205),  but  there  was  a  significant  difference  between  the  patterns  of   HPGD  expression  (p<0.0001).      Examining  only  urothelial  carcinomas,  there  was  no   significant  correlation  between  percentage  of  cells  within  the  urothelium  expressing  HPGD   and  classification  as  infiltrative  or  papillary  (p=0.094),  degree  of  anaplasia  (p=0.70),  or   depth  of  invasion  into  the  bladder  wall  (p=0.547).    There  was  also  no  significant  correlation   between  pattern  of  HPGD  expression  and  classification  as  infiltrative  or  papillary   (p=0.121),  degree  of  anaplasia  (p=0.484),  or  depth  of  invasion  into  the  bladder  wall   (p=0.109).   Immunohistochemistry:  COX-­‐2     76     Less  than  5%  of  cells  within  the  urothelium  expressed  COX-­‐2  in  all  of  the  normal   control  urinary  bladders  and  8  of  10  had  no  appreciable  immunoreactivity  for  COX-­‐2.    In   contrast,  25  of  36  urothelial  carcinomas  had  5%  or  greater  urothelial  cells  with  expression   of  COX-­‐2  and  14  of  these  had  more  than  30%  of  urothelial  cells  with  immunoreactivity.       Comparing  urothelial  carcinomas  and  urothelium  of  normal  controls,  there  was  a   significant  difference  between  the  overall  percent  of  cells  within  the  urothelium  expressing   COX-­‐2  (p<0.001).    Examining  only  urothelial  carcinomas,  there  were  statistically  significant   associations  between  COX-­‐2  expression  and  degree  of  anaplasia  (p=0.048)  and  depth  of   invasion  into  the  urinary  bladder  wall  (p=0.017),  with  COX-­‐2  often  being  expressed  in  high   percentages  of  neoplastic  urothelial  cells  in  urothelial  carcinomas  with  anaplasia  grades  2   and  3,  and  in  carcinomas  with  invasion  into  the  muscularis  of  the  urinary  bladder.  There   was  no  significant  correlation  between  percentage  of  cells  within  the  urothelium   expressing  COX-­‐2  and  classification  of  the  urothelial  carcinomas  as  infiltrative  or  papillary   (p=0.481).   Immunohistochemistry:  Cadherins     All  normal  control  bladders  had  strong  to  rarely  moderate  (1/10  cases),   membranous  immunoreactivity  for  E-­‐cadherin  and  no  significant  loss  of  expression.  The   majority  (25/36)  of  urothelial  carcinomas  had  membranous  immunoreactivity  for  E-­‐ cadherin,  5/36  had  predominately  cytoplasmic  immunoreactivity,  and  2/36  had  both   membranous  and  cytoplasmic  immunoreactivity.    Twenty-­‐nine  of  36  urothelial  carcinomas   had  moderate  to  strong  immunoreactivity,  and  3  had  only  weak  immunoreactivity.    Six   urothelial  carcinomas  had  significant  loss  of  E-­‐cadherin  expression  that  was  most  often   patchy  (5/6  cases),  and  rarely  extensive  (1/6  cases).       77     All  ten  normal  control  urinary  bladders  had  strong  membranous  immunoreactivity   for  P-­‐cadherin  and  no  significant  loss  of  expression.  The  majority  (26/36)  of  urothelial   carcinomas  had  membranous  immunoreactivity  for  P-­‐cadherin,  1/36  had  predominately   cytoplasmic  immunoreactivity,  and  4/36  had  both  membranous  and  cytoplasmic   immunoreactivity.    Twenty-­‐four  of  36  urothelial  carcinomas  had  moderate  to  strong   immunoreactivity,  and  7  had  only  weak  immunoreactivity.    Twenty-­‐one  urothelial   carcinomas  had  significant  loss  of  P-­‐cadherin  expression  that  was  most  often  patchy   (14/21  cases  with  significant  loss),  and  rarely  extensive  (7/21  cases).    Defining  P-­‐cadherin   as  aberrant  when  there  was  extensive  loss  of  expression  or  cytoplasmic  expression,  no   normal  control  urinary  bladders  had  aberrant  P-­‐cadherin  expression  (Table  8).    Four  of  7   (57%)  infiltrating  urothelial  carcinomas  had  aberrant  P-­‐cadherin  expression  compared  to   2/23  (9%)  of  papillary  urothelial  carcinomas  with  aberrant  expression.   There  was  no  expression  of  N-­‐cadherin  in  urothelial  carcinomas,  within  tumor   adjacent  well-­‐differentiated  urothelium,  or  within  the  urothelium  of  normal  urinary   bladder  control  samples.   Comparing  urothelial  carcinomas  and  normal  urothelium,  there  was  no  significant   difference  between  the  overall  E-­‐cadherin  pattern  (p=0.26),  E-­‐cadherin  strength  (p=0.24),   degree  of  E-­‐cadherin  expression  loss  (p=0.38),  P-­‐cadherin  pattern  (p=0.31),  or  aberrant  P-­‐ cadherin  expression  (p=0.139).    There  were,  however,  significant  differences  between   urothelial  carcinomas  and  urothelium  of  normal  controls  in  terms  of  P-­‐cadherin  expression   strength  (p<0.001)  and  degree  of  P-­‐cadherin  expression  loss  (p=0.013).     Examining  only  urothelial  carcinomas,  there  were  no  significant  associations   between  histologic  classification  of  urothelial  carcinomas  as  infiltrative  or  papillary  and  E-­‐   78     cadherin  expression  pattern  (p=0.622),  strength  of  E-­‐cadherin  immunoreactivity   (p=0.629),  or  degree  of  E-­‐cadherin  expression  loss  (p=0.829);  degree  of  anaplasia  and  E-­‐ cadherin  expression  pattern  (p=0.684),  strength  of  E-­‐cadherin  immunoreactivity   (p=0.489),  or  degree  of  E-­‐cadherin  expression  loss  (p=0.563);  or  depth  of  invasion  into  the   urinary  bladder  wall  and  E-­‐cadherin  expression  pattern  (p=0.431),  strength  of  E-­‐cadherin   immunoreactivity  (p=0.060),  or  degree  of  E-­‐cadherin  expression  loss  (p=0.273).    There   were  statistically  significant  associations  between  histologic  classification  of  urothelial   carcinomas  as  infiltrative  or  papillary  and  P-­‐cadherin  expression  pattern  (p=0.014),  degree   of  P-­‐cadherin  expression  loss  (p=0.011),  and  aberrant  P-­‐cadherin  expression  pattern   (p=0.012);  however,  there  were  no  significant  associations  between  histologic   classification  of  urothelial  carcinomas  as  infiltrative  or  papillary  and  strength  of  P-­‐cadherin   immunoreactivity  (p=0.280);  degree  of  anaplasia  and  P-­‐cadherin  expression  pattern   (p=0.659),  strength  of  P-­‐cadherin  immunoreactivity  (p=0.333),  or  degree  of  P-­‐cadherin   expression  loss  (p=0.334);  or  depth  of  invasion  into  the  urinary  bladder  wall  and  P-­‐ cadherin  expression  pattern  (p=0.148),  strength  of  P-­‐cadherin  immunoreactivity   (p=0.416),  or  degree  of  P-­‐cadherin  expression  loss  (p=0.357).     Immunohistochemistry:  β-­‐catenin   None  of  the  ten  normal  urinary  bladder  control  samples  had  aberrant  expression  of   β-­‐catenin,  while  18/33  urothelial  carcinomas  had  aberrant  expression  (Table  8).    This   difference  in  aberrant  labeling  for  β-­‐catenin  between  normal  urinary  bladder  controls  and   urothelial  carcinomas  was  statistically  significant  (p=0.002).    Evaluating  only  urothelial   carcinomas,  there  were  significant  differences  in  aberrant  β-­‐catenin  expression  between     79     carcinomas  classified  as  infiltrating  or  papillary  (p=0.032),  but  no  significant  correlations   with  anaplasia  grade  (0.102)  or  invasion  into  the  bladder  wall  (p=0.084).   Survival  analysis     Correlations  between  survival  time  and  clinico-­‐demographic  data  or  expression  of   immunohistochemically  examined  markers  in  urothelial  carcinomas  as  defined  above  were   evaluated  using  Kaplan-­‐Meier  statistics,  and  univariate  and  multivariate  analyses.    For   clinico-­‐demographic  data,  treatment  groups  were  defined  as  none,  only  local  resection,   only  piroxicam,  and  combination  of  piroxicam,  surgical  resection,  and  systemic   chemotherapy;  breed  groups  were  defined  as  Scottish  Terriers,  West  Highland  Whites,   Beagles,  Shetland  Sheepdogs,  and  other  breeds;  and  sex  was  defined  as  female,  spayed   female,  and  castrated  male  (there  were  no  intact  males  in  the  data  set).   Using  Kaplan-­‐Meier  estimators  and  log  rank  tests,  there  was  no  significance   difference  in  survival  time  between  groups  receiving  different  treatment  (p=0.578),  breed   (p=0.739),  sex  (p=0.497),  anaplasia  grade  (p=0.239),  degree  of  infiltration  into  the  bladder   wall  (p=0.230),  percentage  of  COX-­‐2  expressing  cells  within  tumors  (p=0.231),  E-­‐cadherin   pattern  (p=0.103),  E-­‐cadherin  strength  (p=0.726),  E-­‐cadherin  loss  (p=0.401),  P-­‐cadherin   strength  (p=0.963);  P-­‐cadherin  loss  (p=0.830).    There  were  significant  differences  in   survival  time  comparing  histopathologic  classification  of  urothelial  carcinomas  as   infiltrating  or  papillary  (p=0.017),  percentage  of  HPGD  expressing  cells  (p=0.010),  HPGD   expression  pattern  (p=0.042),  P-­‐cadherin  pattern  (p<0.001),  aberrant  P-­‐cadherin   expression  (p=0.010),  and  aberrant  β-­‐catenin  expression  (0.004).      Examining  those  factors   that  had  significant  correlations  with  survival  time,  Kaplan-­‐Meier  estimators  showed   estimated  50%  cumulative  survival  times  of  237  days  (58.2  SE)  for  papillary  urothelial     80     carcinomas  compared  to  23  days  (28.8  SE)  for  infiltrating  urothelial  carcinomas;  of  482   days  (224.4  SE)  for  urothelial  tumors  that  had  any  cells  expressing  HPGD  compared  to  183   days  (74.9  SE)  for  urothelial  carcinomas  that  had  complete  lack  of  HPGD  expression;  of  618   days  for  urothelial  carcinomas  with  HPGD  Pattern  2  expression  and  539  days  (330.7  SE)   for  HPGD  Pattern  1  compared  to  258  (205.0  SE)  for  HPGD  Pattern  4  and  183  days  (73.9  SE)   for  urothelial  carcinomas  with  lack  of  HPGD  expression;  of  267  days  (104.4  SE)  for   urothelial  tumors  with  P-­‐cadherin  Pattern  1  compared  to  1  day  (1.1  SE)  for  urothelial   tumors  with  P-­‐cadherin  pattern  2  or  3;  of  258  days  (152.7  SE)  for  urothelial  carcinomas   with  non-­‐aberrant  P-­‐cadherin  expression  compared  to  1  day  (6.7  SE)  for  urothelial   carcinomas  with  aberrant  P-­‐cadherin  expression;  and  of  618  days  (292.2  SE)  for  urothelial   carcinomas  with  non-­‐aberrant  β-­‐catenin  expression  compared  to  62  days  (120.9  SE)  for   urothelial  carcinomas  with  aberrant  β-­‐catenin  expression.   Using  univariate  analysis  to  evaluate  correlations  between  survival  time  and  clinic   pathologic  information  or  expression  of  immunohistochemically  examined  markers  in   urothelial  carcinomas,  there  were  significant  correlations  between  survival  time  and   histologic  classification  as  infiltrating  or  papillary,  percentage  of  HPGD  expressing  cells,   pattern  of  HPGD  expression  within  tumors,  percentage  of  COX-­‐2  expressing  cells,  pattern  of   P-­‐cadherin  expression,  and  aberrant  expression  of  β-­‐catenin  (Table  9).  In  multivariate   analysis  including  only  the  factors  listed  above  that  had  statistical  significance  in  univariate   analysis,  only  percentage  of  HPGD  expressing  cells  and  pattern  of  P-­‐cadherin  expression   retained  statistical  significance  (Table  9).   Western  blot  analysis  of  human  and  canine  urothelial  carcinoma  cell  lines     81     All  antibodies  yielded  bands  of  expected  molecular  weight  in  normal  canine  tissues   demonstrating  the  applicability  of  these  antibodies  for  use  in  the  dog.  Representative   results  of  Western  blots  are  presented  in  Figure  6.    None  of  the  examined  canine  urothelial   carcinoma  cell  lines  expressed  HPGD.    While  expression  varied  mildly  between  canine   urothelial  carcinoma  cell  lines,  all  examined  cell  lines  retained  E-­‐  and  P-­‐cadherin   expression  and  failed  to  express  N-­‐cadherin  (Figure  15).  Human  urothelial  carcinoma  cell   lines  that  expressed  HPGD  (RT4,  UC14)  also  expressed  E-­‐  and  P-­‐cadherin,  but  failed  to   express  N-­‐cadherin.  Conversely,  human  urothelial  carcinoma  cell  lines  that  did  not  express   HPGD  (UC2,  UC3,  UC6,  UC12,  5367)  had  no  expression  of  E-­‐  and  P–cadherin  expression,  but   expressed  N-­‐cadherin.  All  canine  and  human  urothelial  carcinoma  cell  lines  expressed  COX-­‐ 2  and  β-­‐catenin  with  mild  variations  in  expression  between  cell  lines.                     82     Discussion   Overall,  normal  canine  urinary  bladders  and  low  grade,  noninvasive  canine   urothelial  carcinomas  typically  expressed  HPGD  in  superficial  epithelial  cells,  expressed  no   COX-­‐2,  and  predominately  expressed  E-­‐  and  P-­‐cadherin  and  β-­‐catenin  along  cell   membranes.  In  contrast,  a  significant  number  of  high  grade  urothelial  carcinomas  had  loss   of  HPGD  and  increased  COX-­‐2  expression.  In  such  tumors,  P-­‐cadherin  was  occasionally  lost   or  was  expressed  aberrantly  in  the  cytoplasm  and  β-­‐catenin  was  aberrantly  localized   within  the  cytoplasm  or  nucleus,  while  membrane-­‐associated  E-­‐cadherin  expression   remained.  N-­‐cadherin  was  not  expressed  by  canine  normal  urothelium  or  urothelial   carcinomas.   In  humans,  HPGD  has  been  shown  to  be  important  in  urothelial  differentiation  and   its  expression  is  decreased  in  urothelial  malignancies.12,  19  In  canine  urothelial  carcinomas   of  the  current  study,  while  expression  of  HPGD  in  urothelial  carcinomas  was  not  correlated   with  histologic  classification,  grading,  or  depth  of  invasion  into  the  bladder  wall,  there  was   an  association  between  HPGD  expression  and  prognosis  in  terms  of  survival  time  post   diagnosis.    COX-­‐2  overexpression  has  been  described  in  a  many  urothelial  carcinomas  of   humans  and  increased  expression  is  associated  with  invasiveness,  metastasis,  and   increased  mortality.1,  7,  24,  25  Previous  studies  of  COX-­‐2  expression  have  yielded  similar   results  in  dogs.4  Consistent  with  these  reports,  there  were  positive  correlations  between   COX-­‐2  expression  and  degree  of  anaplasia  and  depth  of  invasion  into  the  urinary  bladder   wall  in  urothelial  carcinomas;  however,  COX-­‐2  expression  was  not  correlated  with  survival   time.  These  data  suggest  that  pathways  regulating  prostaglandin  E2  are  altered  in  canine   urothelial  carcinomas,  and  that  such  alterations  likely  play  roles  in  progression.     83     Decreased  expression  of  E-­‐cadherin  and  increased  expression  of  other  cadherins,  or   cadherin  switching,  result  in  decreased  strength  of  cell-­‐cell  adhesions  and  an  increased   propensity  for  cellular  migration.14-­‐16  In  terms  of  carcinogenesis,  cadherin  switching  is   observed  with  epithelial-­‐to-­‐mesenchymal  transition  and  has  been  associated  with   increased  invasiveness  and  metastasis.13-­‐16    Epithelial-­‐to-­‐mesenchymal  transition  has  been   well  described  in  human  bladder  cancers  and  has  been  suggested  to  involve  decreased  E-­‐ cadherin  expression  and  gain  of  N-­‐cadherin  and  P-­‐cadherin  expression.26-­‐32  Increased  P-­‐ cadherin  expression,  in  particular,  has  been  associated  with  a  significantly  worse  bladder   cancer-­‐specific  survival  and  a  more  malignant  and  invasive  cancer  phenotype  in  humans.29,   33   In  5/36  canine  urothelial  carcinomas  of  the  evaluated  tumor  set,  there  was  loss  of   preimembranous  association  of  E-­‐cadherin  expression  with  translocation  of  E-­‐cadherin   expression  into  the  cytoplasm,  and  in  6/36  cases  there  were  significant  areas  of  E-­‐cadherin   expression;  however,  differences  in  E-­‐cadherin  expression  were  not  statistically  significant   between  normal  urothelium  and  urothelial  carcinomas,  or  between  various  histologic   classification,  grading,  or  depth  of  invasion  into  the  bladder  all.    Further,  no  correlations   between  E-­‐cadherin  expression  and  survival  time  were  found.  In  contrast  to  E-­‐cadherin,   differences  in  P-­‐cadherin  expression  between  normal  urotheluim  and  urothelial   carcinomas  and  between  infiltrative  and  papillary  urothelial  carcinomas  had  statistical   significance.    In  addition,  loss  of  P-­‐cadherin  expression  and  aberrant  P-­‐cadherin  were   negatively  associated  with  survival  time.    The  absence  of  N-­‐cadherin  expression  in  all   examined  canine  urothelial  carcinomas  and  within  canine  urothelial  carcinoma  cell  lines   contrasts  with  our  findings  in  human  urothelial  cell  lines  and  previous  reports  in  human     84     urothelial  carcinomas.    These  data  suggest  that  while  there  may  be  some  alteration  in   cadherin  expression  in  canine  urothelial  carcinomas,  cadherin  switching  as  has  it  been   described  in  human  urothelial  carcinomas,  does  not  occur.  Despite  this  difference  between   humans  and  dogs,  aberrant  expression  or  loss  of  P-­‐cadherin  likely  plays  a  role  in  the   clinical  outcome  of  canine  urothelial  carcinomas.   In  human  bladder  cancer,  up-­‐regulation  or  more  specifically  altered  distribution  of   expression  with  nuclear  localization  of  β-­‐catenin  has  been  suggested  to  be  a  prognostic   indicator  which  has  been  variably  negatively  associated  with  grade,  stage,  survival,  and/or   recurrence.10,  34-­‐40  Aberrant  expression  (increased  cytoplasmic  and/or  nuclear  expression)   of  β-­‐catenin  was  common  in  canine  urothelial  carcinomas,  and  in  particular,  in  infiltrating   urothelial  carcinomas.  Further,  aberrant  β-­‐catenin  expression  was  strongly  associated  with   decreased  survival  time  of  dogs  with  urothelial  carcinomas  by  univariate  statistical   analysis,  but  lost  significance  with  multivariate  analysis.     It  has  recently  been  shown  that  cadherin  expression  in  normal  urotheluim  and   urothelial  carcinomas  is  integrally  linked  to  prostaglandin  E2  regulation  pathways.  In  rats,   partial  bladder  outlet  obstruction  results  in  increased  expression  of  COX-­‐2  and  decreased   expression  of  E-­‐cadherin,  which  was  subsequently  remediated  by  COX-­‐2  inhibitors.41  In   human  urothelial  carcinomas,  a  negative  correlation  between  COX-­‐2  and  E-­‐cadherin   expression  has  been  suggested  with  high  grade  tumors  often  having  both  high  levels  of   COX-­‐2  expression  and  decreased  E-­‐cadherin  expression  or  reduced  membranous   association  of  E-­‐cadherin  expression.10    Further,  in  vitro  studies  have  shown  that  treatment   with  COX-­‐2  promoters  can  result  in  reduced  E-­‐cadherin  expression  and  that  knockdown  of   COX-­‐2  results  in  increased  E-­‐cadherin  expression.10  PGDH  expression,  on  the  other  hand,     85     was  shown  to  increase  in  expression  with  urothelial  differentiation,  and  inhibition  of  PGDH   expression  resulted  in  disruption  of  E-­‐cadherin  expression  at  cell-­‐cell  junction  in  cell   lines.12     In  addition,  because  cadherins  form  associations  with  other  proteins  within  cells,   they  are  integrally  linked  to  intracellular  signaling  and  trafficking.  β-­‐catenin  binds  to  the   cytoplasmic  tail  of  cadherin  molecules.  In  this  capacity  it  functions  in  cell-­‐cell  adhesion,  but   it  is  also  involved  in  a  variety  of  signaling  pathways  including  some  that  are  involved  in   carcinogenesis,  such  as  the  Wnt  pathways.14,  42,  43  While  loss  of  cadherin  expression  alone   has  not  been  shown  to  directly  result  in  intracellular  signaling,  altered  expression  of   cadherins  has  been  shown  to  amplify  or  buffer  the  effects  of  such  pathways.14,  42,  43  Given   the  associations  between  prostaglandin  E2  regulation  pathways  and  cadherin  expression,   there  are  likely  also  associations  between  such  pathways  and  β-­‐catenin  regulation.  In  high   grade  human  urothelial  carcinomas,  expression  of  β-­‐catenin  has  been  positively  correlated   with  COX-­‐2  expression.10  Rather  than  being  only  a  consequence  of  altered  prostaglandin  E2   regulation,  altered  β-­‐catenin  expression  and  Wnt  signaling  may  also  drive  alterations  in   prostaglandin  E2  regulation.    Recent  work  has  suggested  that  β-­‐catenin  expression  is   inversely  related  to  the  expression  of  HPGD  at  least  in  intestinal  epithelium  and  within   colorectal  tumor  cell  lines.11   In  canine  urothelial  carcinoma  cell  lines,  expression  of  HPGD  and  COX-­‐2  was  not   associated  with  cadherin  switching  or  obvious  differences  in  β-­‐catenin  expression.  In   canine  urothelial  carcinoma  cell  lines,  there  was  no  appreciable  expression  of  HPGD  and   variable,  but  often  strong  expression  of  COX-­‐2.    E-­‐cadherin  and  P-­‐cadherin  were  expressed   in  all  canine  cell  lines,  while  there  was  no  appreciable  expression  of  N-­‐cadherin.  In  contrast     86     to  canine  urothelial  carcinomas  and  urothelial  carcinoma  cell  lines,  cadherins  were   differentially  expressed  in  human  urothelial  cell  lines  and  cadherin  expression  pattern  was   correlated  with  HPGD  status.  Specifically,  in  examined  human  urothelial  carcinoma  cell   lines,  those  cell  lines  that  expressed  HPGH  also  expressed  E-­‐cadherin  and  P-­‐cadherin.    Lack   of  HPGD  expression  in  human  urothelial  carcinoma  cell  lines  was  consistently  associated   with  gain  of  N-­‐cadherin  expression.    Thus,  while  canine  urothelial  carcinoma  cell  lines   appear  similar  to  human  urothelial  carcinomas  in  terms  of  the  common  loss  of  HPGD   expression  and  expression  of  COX-­‐2,  they  are  dissimilar  in  the  lack  of  associated  overt   cadherin  switching.   While  the  results  of  this  study  are  intriguing  and  statistical  correlations  between   many  factors  and  survival  time  appear  strong,  this  study  is  limited  by  the  relative  low   number  of  cases  and,  in  particular,  the  low  number  of  low  grade  urothelial  carcinomas.   High  grade  urothelial  carcinomas  are  far  more  commonly  diagnosed  in  dogs  than  low  grade   tumors  accounting  for  the  low  number  of  low  grade  tumors  in  the  examined  set.  This  may   be  due  to  an  actual  lower  rate  of  occurrence  in  canine  populations  or  diagnosis  of  urothelial   neoplasms  only  late  in  the  course  of  disease  when  larger,  more  aggressive  tumors  affect   micturition  or  cause  other  clinical  disease.  Further,  euthanasia  is  common  in  veterinary   medicine  and  is  especially  common  in  animals  with  urothelial  carcinomas  due  to  the   negative  prognosis  historically  associated  with  such  tumors,  the  effects  on  micturition,  the   common  non-­‐respectable  nature  such  tumors  at  the  time  of  diagnosis,  and  client  choice  due   to  financial  or  homecare  constraints.   Despite  the  inherent  limitations,  this  work  shows  that  expression  of  HPGD,  COX-­‐2,   cadherins,  and  β-­‐catenin  is  altered  in  at  least  subsets  of  canine  urothelial  carcinomas;     87     however,  the  patterns  of  alterations  is  different  than  that  previously  described  in  humans   or  observed  in  human  cell  lines  in  the  current  study.  This  suggests  that  while  human  and   canine  urothelial  carcinoma  may  be  similar  in  terms  of  clinico-­‐pathologic  features,  drivers   of  carcinogenesis  and  progression  of  these  tumors  may  differ  between  humans  and  dogs.     While  COX-­‐2  and  HPGD  have  been  suggested  to  be  correlated  with  features  of  epithelial-­‐to-­‐ mesenchymal  transition  such  as  cadherin  switching  in  humans,  such  may  not  be  the  case  in   dogs.    As  the  molecular  pathways  which  were  evaluated  in  this  study  have  potential  as   therapeutic  targets,  developing  a  better  understanding  why  such  there  are  differences   between  dogs  and  humans  and  how  this  impacts  treatment  response  through  additional   study  could  lead  to  the  development  of  better  clinical  strategies  to  address  canine  and   human  urothelial  cancers.     Acknowledgments   Special  thanks  are  due  to  Dr.  Deborah  Knapp  of  Purdue  University  for  contributing  5   of  the  8  canine  urothelial  carcinoma  cell  lines  evaluated  in  this  study.  Dr.  Sledge’s  graduate   program  was  funded  by  Bristol-­‐Meyers-­‐Squibb  through  the  American  College  of  Veterinary   Pathologists/Society  of  Toxicologic  Pathologists  coalition.                   88                         APPENDIX                     89     Figure  10:  Urinary  bladder,  Dog,  15-­‐hydroxyprostaglandin  dehydrogenase  (HPGD)   immunohistochemistry  (IHC).  Immunoreactivity  (brown  labeling)  was  defined  by   cytoplasmic  and/or  nuclear  labeling  and  categorized  by  the  percentage  of  positively   labeled  urothelial  cells  and  the  overall  pattern  of  immunoreactivity  within  the  urothelium.   Immunoreactivity  is  distributed  diffusely  throughout  100%  of  cells  in  superficial  1-­‐2  cell   layers  of  the  urothelium  consistent  with  HPGD  Pattern  1  in  the  urinary  bladder  of  a  healthy   control  dog  consistent  with  Pattern  1  (A).  In  a  grade  I  (low  grade)  papillary  carcinoma,   there  is  immunoreactivity  in  20%  of  the  total  neoplastic  urothelial  cells  and   immunoreactivity  is  patchy  and  randomly  distributed  throughout  <80%  of  cells  in  the   superficial  most  1-­‐2  cell  layers  consistent  with  HPGD  Pattern  2  (B).  In  a  grade  III  (high   grade)  invasive  carcinoma  extending  into  the  muscularis,  there  is  lack  of  appreciable  HPGD   immunoreactivity  (C).  3,3’-­‐Diaminobenzidine  (DAB)  chromogen,  hematoxylin  counterstain.                 90     Figure  11:  Urinary  bladder,  Dog,  Cyclooxygenase-­‐2  (COX-­‐2)  IHC.  Immunoreactivity  (red)   was  defined  by  cytoplasmic  labeling  and  categorized  by  the  percentage  of  positive   urothelial  cells.  Urothelium  from  the  urinary  bladder  of  a  healthy  control  dog  (A)  and   neoplastic  urothelium  of  a  grade  1  (low  grade)  papillary  carcinoma  (B)  lack  appreciable   immunoreactivity.    There  is  strong  immunoreactivity  for  COX-­‐2  in  >30%  of  neoplastic  cells   of  a  grade  III  (high  grade)  invasive  carcinoma  with  infiltration  of  the  muscularis  (C).   Indirect  biotin  streptavidin  and  Fast  Red  chromogen,  hematoxylin  counterstain.                               91     Figure  12:  Urinary  bladder,  Dog,  E-­‐cadherin  IHC.  Immunoreactivity  (brown)  was   subjectively  categorized  as  weak,  moderate,  or  strong;  assessed  according  to  the   predominant  pattern  within  urothelial  cells  as  membrane  associated,  intracytoplasmic,  or   mixed  membranous  and  cytoplasmic;  and  categorized  by  degree  of  loss  as  no  loss,  patchy   loss,  or  complete  loss.    In  urothelium  from  the  urinary  bladder  of  a  healthy  control  dog,   there  is  strong  membrane  associated  immunoreactivity  throughout  the  full  urothelial   thickness  and  no  loss  (A).  While  there  is  strong  membrane  associated  immunoreactivity  in   superficial  cell  layers  in  a  grade  II  (high  grade)  papillary  carcinoma  with  substantia  propria   infiltration,  the  predominant  pattern  is  moderate  cytoplasmic  immunoreactivity  with   patchy  areas  of  loss  (B).    In  a  grade  III  (high  grade)  invasive  carcinoma  with  infiltration  into   the  muscularis,  there  is  strong  membrane  associated  immunoreactivity  in  90%  of   neoplastic  cells  and  patchy  loss  (C).  DAB  chromogen,  hematoxylin  counterstain.                     92     Figure  13:  Urinary  bladder,  Dog,  P-­‐cadherin  IHC.  Immunoreactivity  (brown)  was   subjectively  categorized  as  weak,  moderate,  or  strong;  assessed  according  to  the   predominant  pattern  within  urothelial  cells  as  membrane  associated,  intracytoplasmic,  or   mixed  membranous  and  cytoplasmic  labeling;  and  categorized  by  degree  of  loss  as  no  loss,   patchy  loss,  or  complete  loss.    In  urothelium  from  the  urinary  bladder  of  a  healthy  control   dog,  there  is  strong  membrane  associated  immunoreactivity  throughout  the  full  urothelial   thickness  and  no  loss  (A).    In  a  grade  I  (low  grade)  papillary  carcinoma,  there  is  moderate   to  weak  membrane  associated  immunoreactivity  and  patchy  loss  in  the  basal  cell  layers   (B).    In  a  grade  III  (high  grade)  invasive  carcinoma  with  infiltration  into  the  muscularis,   there  is  predominant  moderate  intracytoplasmic  immunoreactivity  with  patchy  loss  (C).   DAB  chromogen,  hematoxylin  counterstain.                       93     Figure  14:  Urinary  bladder,  Dog,  β-­‐catenin  IHC.  Immunoreactivity,  the  percentage  of  cells   with  membrane,  cytoplasmic,  mixed  membrane  and  cytoplasmic,  and  nuclear   immunoreactivity  (brown)  was  assessed.      In  urothelium  from  the  urinary  bladder  of  a   healthy  control  dog,  there  is  membrane  associated  immunoreactivity  in  100%  of  cells  and   no  cytoplasmic,  mixed  membrane  and  cytoplasmic,  or  nuclear  immunoreactivity  (A).    In  a   grade  I  (low  grade)  papillary  carcinoma,  there  is  membrane  associated  immunoreactivity   in  90%  of  cells,  cytoplasmic  immunoreactivity  in  10%  of  cells,  and  no  mixed  membrane  and   cytoplasmic  or  nuclear  immunoreactivity  (B).  In  a  grade  III  (high  grade)  invasive   carcinoma  with  infiltration  into  the  muscularis,  there  is  primary  cytoplasmic   immunoreactivity  in  85%  of  cells  and  nuclear  immunoreactivity  in  15%  of  cells  (C).  DAB   chromogen,  hematoxylin  counterstain.                           94     Figure  15:  Western  blot  comparing  expression  of  HPGD,  COX-­‐2,  E-­‐cadherin,  P-­‐cadherin,  N-­‐ cadherin,  and  β-­‐catenin  in  human  (RT4  and  UC3)  and  canine  urothelial  carcinoma  cell  lines   (AXA,  AXB,  AXC,  and  NK).    None  of  the  examined  canine  urothelial  carcinoma  cell  lines   expressed  HPGD,  all  retained  E-­‐  and  P-­‐cadherin  expression,  and  failed  to  express  N-­‐ cadherin.  Human  urothelial  carcinoma  cell  lines  that  expressed  HPGD  (RT4)  also  expressed   E-­‐  and  P-­‐cadherin,  but  failed  to  express  N-­‐cadherin.  Conversely,  human  urothelial   carcinoma  cell  lines  that  did  not  express  HPGD  (UC3)  had  no  expression  of  E-­‐  and  P– cadherin  expression,  but  expressed  N-­‐cadherin.  While  expression  varied,  COX-­‐2  and  β-­‐ catenin  were  expressed  by  all  canine  and  human  urothelial  carcinoma  cell  lines.       95     Table  7:  Expression  of  HPGD  in  canine  urothelial  carcinomas  and  normal  urothelium  with  respect  to  lesion  classification  and   degree  of  invasion           Classification   Normal  urothelium   Infiltrative   carcinoma   Papillary  carcinoma   Percentage  of  urothelial  cells  expressing  HPGD   None       1/10   (10%)   5/8  (63%)   9/28   (32%)            Grade  I   1/4  (25%)            Grade  II   6/16   (38%)            Grade  III   2/8  (25%)       Degree  of  Invasion   No  invasion   Substantia  propria   Muscularis             3/12   (25%)   6/12   (50%)   5/12   (42%)   <5%       2/10   (20%)   3/8   (38%)   5/28   (18%)   5-­‐15%       1/10   (10%)   15-­‐30%       3/10   (30%)   >30%       3/10   (30%)   -­‐   2/16   (13%)   3/8   (38%)   -­‐   6/28   (21%)   1/4   (25%)   3/16   (19%)   2/8   (25%)   -­‐   4/28   (14%)   1/4   (25%)   2/16   (13%)    1/8   (13%)   -­‐   4/28   (14%)   1/4   (25%)   3/16   (19%)     3/12     (25%)   1/12   (8%)   4/12   (33%)     2/12     (17%)   2/12   (17%)   3/12   (25%)     2/12     (17%)   2/12   (17%)   -­‐           2/12   (17%)   2/12   (17%)   -­‐   -­‐   96   Pattern  of  HPGD  expression   Pattern   Pattern   Pattern  1   2   3   Pattern  4                   8/10   1/10   (80%)   (10%)   -­‐   -­‐   1/8   2/8   -­‐   (13%)   -­‐   (25%)   3/28   1/28   15/28   (11%)   (4%)   -­‐   (54%)   1/4   2/4   (25%)   -­‐   -­‐   (50%)   2/16   1/16   7/16   (13%)   (6%)   -­‐   (44%)   6/8       -­‐   -­‐   (75%)                       3/12   3/12     2/12     4/12   (25%)   (25%)   (17%)   (33%)   6/12   6/12   (50%)   -­‐   -­‐   (50%)   5/12   7/12   (42%)   -­‐   -­‐   (58%)     Table  8:  Expression  of  P-­‐cadherin  and  β-­‐catenin  in  canine  urothelial  carcinomas  and  normal  urothelium  with  respect  to  lesion   classification  and  degree  of  invasion           Classification   Normal  urothelium   Infiltrative  carcinoma   Papillary  carcinoma            Grade  I            Grade  II            Grade  III       Degree  of  Invasion   No  invasion   Substantia  propria   Muscularis   P-­‐cadherin   Nonaberrant   Aberrant           10/10  (100%)   3/7  (43%)   23/25  (92%)   4/4  (100%)   13/14  (93%)   6/7  (86%)           12/12  (100%)   8/10  (67%)   6/10  (60%    β-­‐catenin   Nonaberrant   Aberrant           -­‐   4/7  (57%)   2/25  (8%)   -­‐   1/14  (7%)   1/7  (14%)           -­‐   2/10  (17%)   4/10  (40%)               97   10/10  (100%)   1/8  (12%)   14/25  (56%)   3/4  (75%)   8/14  (57%)   3/7  (43%)           7/12  (58%)   6/10  (60%)   2/11  (18%)   -­‐   7/8  (88%)   11/25  (44%)   1/4  (25%)   6/14  (43%)   4/7  (57%)           5/12  (42%)   4/10  (40%)   9/11  (82%)     Table  9:  Significant  Correlative  Results  of  Univariate  and  Multivariate  Analysis  of  Examined  Variables  with  Respect  to  Survival   Time  as  Determined  by  p-­‐values  less  than  0.05   Univariate  Analysis   Variable     Histologic  Classification   HPGD:  %  of  positive  cells   HPGD:  tissue  localization   COX-­‐2:  %  of  positive  cells   P-­‐cadherin:  cellular  localization   β-­‐catenin:  aberrant  expression   Multivariate  Analysis   p-­‐value   0.018   0.006   0.044   0.042   <0.001   0.008   Variable     HPGD:  %  of  positive  cells   P-­‐cadherin:  cellular  localization                                     98   p-­‐value   0.026   0.003                                           REFERENCES                           99     REFERENCES     1.  Gee  J,  Lee  IL,  Grossman  HB,  Sabichi  AL.  Forced  COX-­‐2  expression  induces  PGE(2)  and   invasion  in  immortalized  urothelial  cells.  Urol  Oncol.  2008;26:  641-­‐645.   2.  Greenhough  A,  Smartt  HJ,  Moore  AE,  et  al.  The  COX-­‐2/PGE2  pathway:  key  roles  in  the   hallmarks  of  cancer  and  adaptation  to  the  tumour  microenvironment.  Carcinogenesis.   2009;30:  377-­‐386.   3.  Muller-­‐Decker  K,  Furstenberger  G.  The  cyclooxygenase-­‐2-­‐mediated  prostaglandin   signaling  is  causally  related  to  epithelial  carcinogenesis.  Mol  Carcinog.  2007;46:  705-­‐710.   4.  Ono  M.  Molecular  links  between  tumor  angiogenesis  and  inflammation:  inflammatory   stimuli  of  macrophages  and  cancer  cells  as  targets  for  therapeutic  strategy.  Cancer  Sci.   2008;99:  1501-­‐1506.   5.  Taylor  JA,  3rd,  Pilbeam  C,  Nisbet  A.  Role  of  the  prostaglandin  pathway  and  the  use  of   NSAIDs  in  genitourinary  malignancies.  Expert  Rev  Anticancer  Ther.  2008;8:  1125-­‐1134.   6.  Taylor  JA,  3rd,  Ristau  B,  Bonnemaison  M,  et  al.  Regulation  of  the  prostaglandin  pathway   during  development  of  invasive  bladder  cancer  in  mice.  Prostaglandins  Other  Lipid  Mediat.   2009;88:  36-­‐41.   7.  Shariat  SF,  Matsumoto  K,  Kim  J,  et  al.  Correlation  of  cyclooxygenase-­‐2  expression  with   molecular  markers,  pathological  features  and  clinical  outcome  of  transitional  cell   carcinoma  of  the  bladder.  J  Urol.  2003;170:  985-­‐989.   8.  Celis  JE,  Ostergaard  M,  Basse  B,  et  al.  Loss  of  adipocyte-­‐type  fatty  acid  binding  protein   and  other  protein  biomarkers  is  associated  with  progression  of  human  bladder  transitional   cell  carcinomas.  Cancer  Res.  1996;56:  4782-­‐4790.   9.  Gee  JR,  Montoya  RG,  Khaled  HM,  Sabichi  AL,  Grossman  HB.  Cytokeratin  20,  AN43,  PGDH,   and  COX-­‐2  expression  in  transitional  and  squamous  cell  carcinoma  of  the  bladder.  Urol   Oncol.  2003;21:  266-­‐270.   10.  Jang  TJ,  Cha  WH,  Lee  KS.  Reciprocal  correlation  between  the  expression  of   cyclooxygenase-­‐2  and  E-­‐cadherin  in  human  bladder  transitional  cell  carcinomas.  Virchows   Arch.  2010;457:  319-­‐328.   11.  Smartt  HJ,  Greenhough  A,  Ordonez-­‐Moran  P,  et  al.  beta-­‐catenin  represses  expression  of   the  tumour  suppressor  15-­‐prostaglandin  dehydrogenase  in  the  normal  intestinal   epithelium  and  colorectal  tumour  cells.  Gut.  2012;61:  1306-­‐1314.   12.  Tseng-­‐Rogenski  S,  Lee  IL,  Gebhardt  D,  et  al.  Loss  of  15-­‐hydroxyprostaglandin   dehydrogenase  expression  disrupts  urothelial  differentiation.  Urology.  2008;71:  346-­‐350.     100     13.  Gloushankova  NA.  Changes  in  regulation  of  cell-­‐cell  adhesion  during  tumor   transformation.  Biochemistry  (Mosc).  2008;73:  742-­‐750.   14.  Jeanes  A,  Gottardi  CJ,  Yap  AS.  Cadherins  and  cancer:  how  does  cadherin  dysfunction   promote  tumor  progression?  Oncogene.  2008;27:  6920-­‐6929.   15.  Stemmler  MP.  Cadherins  in  development  and  cancer.  Mol  Biosyst.  2008;4:  835-­‐850.   16.  Wheelock  MJ,  Shintani  Y,  Maeda  M,  Fukumoto  Y,  Johnson  KR.  Cadherin  switching.  J  Cell   Sci.  2008;121:  727-­‐735.   17.  Brouxhon  S,  Kyrkanides  S,  O'Banion  MK,  et  al.  Sequential  down-­‐regulation  of  E-­‐cadherin   with  squamous  cell  carcinoma  progression:  loss  of  E-­‐cadherin  via  a  prostaglandin  E2-­‐EP2   dependent  posttranslational  mechanism.  Cancer  Res.  2007;67:  7654-­‐7664.   18.  Dohadwala  M,  Yang  SC,  Luo  J,  et  al.  Cyclooxygenase-­‐2-­‐dependent  regulation  of  E-­‐ cadherin:  prostaglandin  E(2)  induces  transcriptional  repressors  ZEB1  and  snail  in  non-­‐ small  cell  lung  cancer.  Cancer  Res.  2006;66:  5338-­‐5345.   19.  Tseng-­‐Rogenski  S,  Gee  J,  Ignatoski  KW,  et  al.  Loss  of  15-­‐hydroxyprostaglandin   dehydrogenase  expression  contributes  to  bladder  cancer  progression.  Am  J  Pathol.   2010;176:  1462-­‐1468.   20.  Starkey  MP,  Scase  TJ,  Mellersh  CS,  Murphy  S.  Dogs  really  are  man's  best  friend-­‐-­‐canine   genomics  has  applications  in  veterinary  and  human  medicine!  Brief  Funct  Genomic   Proteomic.  2005;4:  112-­‐128.   21.  Knapp  DW.  Animal  models:  naturally  occuring  canine  urinary  bladder  cancer.  In:  Lerner   SP,  Schoenberg  MP,  Sternberg  CN,  editors.  Textbook  of  Bladder  Cancer.  Oxon,  UK:  Taylor   and  Francis,  2006:171-­‐178.   22.  Patrick  DJ,  Fitzgerald  SD,  Sesterhenn  IA,  Davis  CJ,  Kiupel  M.  Classification  of  canine   urinary  bladder  urothelial  tumours  based  on  the  World  Health  Organization/International   Society  of  Urological  Pathology  consensus  classification.  Journal  of  comparative  pathology.   2006;135:  190-­‐199.   23.  Knapp  DW,  Ramos-­‐Vara  JA,  Moore  GE,  Dhawan  D,  Bonney  PL,  Young  KE.  Urinary   bladder  cancer  in  dogs,  a  naturally  occurring  model  for  cancer  biology  and  drug   development.  ILAR  J.  2014;55:  100-­‐118.   24.  Ke  HL,  Tu  HP,  Lin  HH,  et  al.  Cyclooxygenase-­‐2  (COX-­‐2)  up-­‐regulation  is  a  prognostic   marker  for  poor  clinical  outcome  of  upper  tract  urothelial  cancer.  Anticancer  Res.  2012;32:   4111-­‐4116.   25.  Tabriz  HM,  Olfati  G,  Ahmadi  SA,  Yusefnia  S.  Cyclooxygenase-­‐2  expression  in  urinary   bladder  transitional  cell  carcinoma  and  its  association  with  clinicopathological   characteristics.  Asian  Pac  J  Cancer  Prev.  2013;14:  4539-­‐4543.     101     26.  Yun  SJ,  Kim  WJ.  Role  of  the  epithelial-­‐mesenchymal  transition  in  bladder  cancer:  from   prognosis  to  therapeutic  target.  Korean  J  Urol.  2013;54:  645-­‐650.   27.  Paliwal  P,  Arora  D,  Mishra  AK.  Epithelial  mesenchymal  transition  in  urothelial   carcinoma:  twist  in  the  tale.  Indian  J  Pathol  Microbiol.  2012;55:  443-­‐449.   28.  Omran  OM.  CD10  and  E-­‐cad  expression  in  urinary  bladder  urothelial  and  squamous  cell   carcinoma.  J  Environ  Pathol  Toxicol  Oncol.  2012;31:  203-­‐212.   29.  Bryan  RT,  Atherfold  PA,  Yeo  Y,  et  al.  Cadherin  switching  dictates  the  biology  of   transitional  cell  carcinoma  of  the  bladder:  ex  vivo  and  in  vitro  studies.  J  Pathol.  2008;215:   184-­‐194.   30.  Bryan  RT,  Tselepis  C.  Cadherin  switching  and  bladder  cancer.  J  Urol.  2010;184:  423-­‐ 431.   31.  Khorrami  MH,  Hadi  M,  Gharaati  MR,  Izadpanahi  MH,  Javid  A,  Zargham  M.  E-­‐cadherin   expression  as  a  prognostic  factor  in  transitional  cell  carcinoma  of  the  bladder  after   transurethral  resection.  Urol  J.  2012;9:  581-­‐585.   32.  Jager  T,  Becker  M,  Eisenhardt  A,  et  al.  The  prognostic  value  of  cadherin  switch  in   bladder  cancer.  Oncol  Rep.  2010;23:  1125-­‐1132.   33.  Wang  P,  Lin  SL,  Zhang  LH,  et  al.  The  prognostic  value  of  P-­‐cadherin  in  non-­‐muscle-­‐ invasive  bladder  cancer.  Eur  J  Surg  Oncol.  2014;40:  255-­‐259.   34.  Baumgart  E,  Cohen  MS,  Silva  Neto  B,  et  al.  Identification  and  prognostic  significance  of   an  epithelial-­‐mesenchymal  transition  expression  profile  in  human  bladder  tumors.  Clin   Cancer  Res.  2007;13:  1685-­‐1694.   35.  Clairotte  A,  Lascombe  I,  Fauconnet  S,  et  al.  Expression  of  E-­‐cadherin  and  alpha-­‐,  beta-­‐,   gamma-­‐catenins  in  patients  with  bladder  cancer:  identification  of  gamma-­‐catenin  as  a  new   prognostic  marker  of  neoplastic  progression  in  T1  superficial  urothelial  tumors.  Am  J  Clin   Pathol.  2006;125:  119-­‐126.   36.  Hu  X,  Ruan  Y,  Cheng  F,  Yu  W,  Zhang  X,  Larre  S.  p130Cas,  E-­‐cadherin  and  beta-­‐catenin  in   human  transitional  cell  carcinoma  of  the  bladder:  expression  and  clinicopathological   significance.  Int  J  Urol.  2011;18:  630-­‐637.   37.  Kashibuchi  K,  Tomita  K,  Schalken  JA,  Kume  H,  Takeuchi  T,  Kitamura  T.  The  prognostic   value  of  E-­‐cadherin,  alpha-­‐,  beta-­‐  and  gamma-­‐catenin  in  bladder  cancer  patients  who   underwent  radical  cystectomy.  Int  J  Urol.  2007;14:  789-­‐794.   38.  Kashibuchi  K,  Tomita  K,  Schalken  JA,  et  al.  The  prognostic  value  of  E-­‐cadherin,  alpha-­‐,   beta-­‐,  and  gamma-­‐catenin  in  urothelial  cancer  of  the  upper  urinary  tract.  Eur  Urol.  2006;49:   839-­‐845;  discussion  845.     102     39.  Moyano  Calvo  JL,  Blanco  Palenciano  E,  Beato  Moreno  A,  et  al.  [Prognostic  value  of  E-­‐ cadherina,  beta  catenin,  Ki-­‐67  antigen  and  p53  protein  in  the  superficial  bladder  tumors].   Actas  Urol  Esp.  2006;30:  871-­‐878.   40.  Urakami  S,  Shiina  H,  Enokida  H,  et  al.  Epigenetic  inactivation  of  Wnt  inhibitory  factor-­‐1   plays  an  important  role  in  bladder  cancer  through  aberrant  canonical  Wnt/beta-­‐catenin   signaling  pathway.  Clin  Cancer  Res.  2006;12:  383-­‐391.   41.  Erdogru  T,  Celik-­‐Ozenci  C,  Seval  Y,  et  al.  The  restorative  effect  of  a  selective   cyclooxygenase-­‐2  inhibitor  on  urothelial  cell-­‐cell  interactions  after  partial  bladder  outlet   obstruction  in  rats.  BJU  Int.  2005;95:  664-­‐669.   42.  Howard  EW,  Camm  KD,  Wong  YC,  Wang  XH.  E-­‐cadherin  upregulation  as  a  therapeutic   goal  in  cancer  treatment.  Mini  Rev  Med  Chem.  2008;8:  496-­‐518.   43.  Nowak  M,  Madej  JA,  Dziegiel  P.  Expression  of  E-­‐cadherin,  beta-­‐catenin  and  Ki-­‐67   antigen  and  their  reciprocal  relationships  in  mammary  adenocarcinomas  in  bitches.  Folia   Histochem  Cytobiol.  2007;45:  233-­‐238.                                 103     CHAPTER  4       Evaluation  of  microsatellite  instability  and  DNA  mismatch  repair  protein  expression   in  canine  urothelial  carcinomas     Dodd  Sledge1,  Matti  Kiupel1,  James  H.  Resau2,  Kristin  Feenstra2,  Alecia  E.  Agner3,  Baolin   Wu4,  Nicole  J.  Madrill3,  Heidi  Parker5,  Deborah  W.  Knapp6,  James  R.  Mickelson7,  Elaine  A.     Ostrander5,  Elizabeth  A.  McNiel8     1Diagnostic  Center  for  Population  and  Animal  Health,  Michigan  State  University,  Lansing,   MI   2  Van  Andel  Institute,  Grand  Rapids,  Lansing,  MI   3  College  of  Veterinary  Medicine,  Michigan  State  University,  East  Lansing,  MI   4   Division   of   Biostatistics   and   5   Department   of   Veterinary   and   Biomedical   Sciences,   University  of  Minnesota,  Twin  Cities,  MN;     6  Department  of  Veterinary  Clinical  Sciences,  Purdue  University,  West  Lafayette,  IN;     7  National  Human  Genome  Research  Institute,  National  Institutes  of  Health,  Bethesda,  MD.   8  Tufts  Cummings  School  of  Veterinary  Medicine  and  Molecular  Oncology  Research   Institute,  Boston,  MA,         104     Abstract     Microsatellite   Instability   (MSI),   defined   as   the   accumulation   of   frameshift   mutations   in   nucleotide   repeat   sequences   of   DNA   microsatellites,   is   considered   a   signature   for   dysfunction   in   the   DNA   mismatch   repair   (MMR)   system.   We   investigated   MSI   in   canine   tumors   with   breed   predispositions,   using   a   panel   of   22   microsatellites   from   15   different   canine   chromosomes.   Genotypes   derived   from   tumor   DNA   and   normal   DNA   from   blood   were  compared  and  the  percentage  of  unstable  microsatellites  were  calculated.  Our  results   demonstrated  that  MSI  is  more  frequent  among  canine  urothelial  carcinomas  of  the  urinary   bladder  compared  to  other  canine  malignancies  including  gastric  carcinoma  and  mammary   tumors,   and   is   common   within   specific   breeds   and   phylogenic   clades   of   dog   suggesting   likely  genetic  predispositions.  Further,  we  investigated  the  expression  of  the  MMR  proteins,   MLH1,   MSH2,   MSH3,   and   MSH6,   in   a   set   of   36   canine   urothelial   carcinomas   of   the   lower   urinary  tract  and  10  urinary  bladders  from  unaffected  dogs  using  morphometric  analysis  of   immunoreactivity   as   determined   by   multispectral   imaging.   These   studies   confirmed   consistent   expression   of   MMR   proteins   in   normal   canine   urothelium.   While   there   was   no   significant   decrease   in   expression   of   other   MMR   proteins,   expression   of   MSH2   was   significantly   decreased   in   urothelial   carcinomas   in   comparison   to   that   in   urothelium   of   unaffected  urinary  bladders.  These  investigations  demonstrate  likely  MMR  dysfunction  in   subsets  of  canine  lower  urinary  tract  urothelial  carcinomas.     105     Introduction   The   DNA   mismatch   repair   (MMR)   system   participates   in   a   variety   of   cellular   processes.   Most   notably,   this   system   is   responsible   for   post   replication   recognition   and   repair  of  base-­‐base  mismatches  and  the  resolution  of  insertion  and  deletion  loops  that  can   occur   in   repetitive   regions   of   DNA.1-­‐5   It   has   been   estimated   that   the   fidelity   of   DNA   replication   is   improved   by   the   MMR   system   50-­‐1000   fold   over   that   seen   with   the   replication   machinery   alone.2,   3   Accordingly,   deficiencies   in   this   system   can   lead   to   increased   rates   of   point   and   frame   shift   mutations   throughout   the   genome.   Such   mutations   can   lead   to   loss   of   function   changes   in   tumor   suppressors   or   gain   of   function   changes   in   tumor   oncogenes.6-­‐10   In   addition,   the   MMR   system   also   participates   in   a   variety   of   other   processes   including   DNA   damage   recognition   signaling,   promoting   cell   cycle   arrest   and   apoptosis,   homologous   recombination,   meiotic   recombination,   and   other   DNA   repair   pathways.1,  2,  4,  11  Given  these  varied  roles  played  by  MMR,  it  is  not  surprising  that  defects  in   MMR  facilitate  carcinogenesis.  It  has  long  been  known  in  humans  that  hereditary  defects  in   MMR   promote   carcinogenesis   in   a   variety   of   tissues   including   the   colon,   endometrium,   stomach,   skin,   prostate,   and   urinary   tract.11-­‐13   However,   defects   in   MMR   have   also   been   reported   in   a   wide   number   and   variety   of   spontaneously   occurring   cancers   suggesting   a   wide  role  in  cancer  development.1,  14-­‐16   The   MMR   system   is   composed   of   a   set   of   highly   conserved   proteins.4,   11   Five   proteins,   including   MSH2,   MSH3,   MSH6,   MLH1,   and   PMS2,   provide   the   backbone   of   the   MMR   machinery.   Initial   DNA   damage   recognition   may   be   accomplished   by   either   MSH2-­‐ MSH6   heterodimers   (MutSα)   or   MSH2-­‐MSH3   heterodimers   (MutSβ).11   The   MutS   heterodimers   are   then   capable   of   recruiting   the   MLH1-­‐PMS2   heterodimer,   MutL,   which     106     initiates  the  assembly  of  other  proteins  involved  in  excising  the  lesion,  re-­‐synthesizing  DNA   and   ligating   the   gaps.   Failure   to   repair   DNA   errors   may   result   in   signaling   for   cell   cycle   arrest   and/or   apoptosis.   Deficient   expression   or   abnormalities   in   any   of   these   proteins   result   in   a   mutator   phenotype   in   which   DNA   mutations   can   accumulate   in   a   variety   of   genes.6-­‐10     MMR   function   has   most   often   been   evaluated   through   analysis   of   microsatellites.   Microsatellites   are   regions   of   nucleotide   repeats   located   throughout   the   genome.   These   areas   are   prone   to   polymerase   slippage   during   replication   leading   to   formation   of   small   insertion   and   deletion   loops.17   If   not   recognized   and   repaired   by   MMR,   buildup   of   frame   shift   mutations   occurs   within   microsatellites.5,   11   In   cancers   with   defects   in   the   MMR   system,  a  high  percentage  of  microsatellites  have  recognizable  mutations.  Such  buildup  of   mutations   within   microsatellites   is   termed   microsatellite   instability   (MSI)   and   is   considered  a  “signature”  for  MMR  dysfunction.11,  18     Cancer   is   common   in   pet   dogs.     Increased   risks   for   development   of   specific   carcinomas   within   certain   breeds   suggests   that   inheritable   defects   may   underlie   carcinogenesis   in   affected   breeds.19-­‐21   Thus,   breed   predispositions   for   specific   cancers   provide   an   opportunity   to   investigate   potential   differential   genetic   mechanisms   of   carcinogenesis,   including   those   associated   with   MMR.   Given   the   diversity   of   cancer   phenotypes   associated   with   MMR   dysfunction,   we   hypothesized   that   mutation   in   MMR   could   underlie   some   of   the   cancer   susceptibility   in   dogs.   To   investigate   this   hypothesis,   we   evaluated   for   MSI   in   canine   epithelial   tumors   that   may   have   a   genetic   basis   including   gastric,   mammary,   and   urothelial   carcinomas.   Following   identification   of   a   high   rate   of   MSI   in   canine   urothelial   carcinomas,   the   expression   of   MLH1,   MSH2,   MSH3,   and   MSH6   was     107     evaluated   in   such   tumors   using   immunohistochemistry   and   compared   to   that   of   normal   urothelium,  rates  of  MSI,  histomorphologic  features  of  the  tumors,  and  survival  time.                                         108     Materials  and  methods   Evaluation  of  Microsatellite  Instability  in  Canine  Tumors   This  study  was  approved  by  the  University  of  Minnesota  Institutional  Animal  Care   and  Use  Committee.  Pet  dogs  with  diagnoses  of  gastric  carcinoma,  mammary  tumor,  or   urothelial  (transitional  cell)  carcinoma  of  the  urinary  bladder  were  identified  through  the   University  of  Minnesota  Veterinary  Medical  Center  and  Diagnostic  Laboratory,  and  through   referring  veterinarians.       Upon   owner   consent,   blood   samples   from   each   dog   were   collected   in   7.5%   EDTA   containing   tube   (Monoject®,   Tyco   Healthcare,   Mansfield,   MA)   and   refrigerated   at   4°C.   Tumor  samples  were  collected  either  at  the  time  of  diagnostic  biopsy,  therapeutic  surgical   excision,   or   necropsy.   DNA   was   isolated   from   blood   samples   and   tumor   tissue   using   commercially   available   DNA   extraction   kits   (Purgene,   Gentra   Systems,   Inc,   Minneapolis,   MN)   using   manufacturer   recommendations.   DNA   was   stored   at   -­‐80°C   pending   microsatellite  PCR.       A   panel   of   22   MS   repeats   including   10   tetra-­‐,   11   di-­‐,   and   one   mononucleotide   repeats,   which   were   located   on   15   different   canine   chromosomes,   was   used   to   evaluate   MSI.   With   the   exception   of   the   mononucleotide   repeat,   which   we   identified,   the   microsatellite  sequences  and  corresponding  PCR  primers  for  their  amplification  have  been   reported   previously.22   An   18   nucleotide   tail   sequence   was   added   to   the   5’   end   of   each   reverse   primer   using   previously   described   methods.23   The   microsatellite   sequences   were   PCR  amplified  from  tumor  and  normal  (from  blood)  DNA  in  15  μl  reactions  including  12.5   ng   of   DNA,   1.5   mM   MgCl2,   1   µM   of   the   forward   primer   and   0.3   µM   of   the   reverse   primer   with  tail,  156  nM  of  a  fluorescent  dye-­‐labeled  primer  complimentary  to  the  tail  sequence,     109     300   µM   of   each   dNTP   (Fisher   Scientific,   Pittsburg,   PA)   and   1.5   U   Taq   Polymerase   (HotStarTaq®,   Qiagen,   Valencia,   CA).       The   PCR   program   consisted   of   20   min   at   95°C,   40   cycles  of  1  min  at  94°C,  1  min  at  56°C,  2  min  at  72°C,  and  a  final  extension  step  of  10  min  at   72°C.    PCR   products,   with   DNA   size   standards,   were   evaluated   using   capillary   electrophoresis  on  the  CEQ  8000  Genetic  Analysis  System  (Beckman  Coulter,  Inc,  Fullerton,   CA)  and  chromatograms  subsequently  were  analyzed  using  the  system  software.  Genotypes   were  manually  verified.  Any  ambiguous  results  in  which  PCR  products  were  of  poor  quality   or  when  genotypes  were  inconsistent  were  repeated  to  confirm  instability.     For   each   tumor   MSI   was   evaluated   as   %MSI,   which   was   defined   for   each   case   as   the   %   of   evaluated   MS   loci   in   which   there   was   detectable   variation   in   MS   length   in   at   least   one   allele   between   DNA   isolated   from   tumors   and   DNA   isolated   from   blood.   Tumors   with   >   25%   MSI   were   classified   as   high   level   MSI   (MSI-­‐H),   tumors   with   10%   >   MSI   <   25%   were   classified   as   exhibiting   low   level   MSI.   Tumors   with   <10%   MSI   were   considered   stable   (MSS).     For   urothelial   carcinomas,   comparisons   of   %MSI   were   made   between   breeds   and   phylogenic  clade.    For  statistical  evaluation  with  respect  to  breed,  4  breeds  with  a  reported   high   relative   risk   for   development   of   bladder   cancer   (Scottish   terrier,   West   Highland   white   terrier,  Shetland  sheepdog,  and  beagle)  were  evaluated  as  independent  groups  while  dogs   of  other  breed,  which  included  17  unique  breeds  and  mixed  breed  dogs,  were  categorized   into  a  single  group.20,  24,  25  For  statistical  evaluation  with  respect  to  phylogenetic  clade,  dogs   were  of  specific  breed  grouped  into  phylogenetic  clade  according  to  previous  description  of   genetic   diversity   amongst   purebred   dogs   or   evaluated   as   a   separate   category   if   of   mixed   breed.26     Evaluation  of  MMR  protein  expression  in  Canine  Urothelial  Carcinomas     110     A  series  of  36  dogs  that  were  diagnosed  with  urothelial  carcinomas  at  either  the   Michigan  State  University  Veterinary  Teaching  Hospital  or  the  University  of  Minnesota   Veterinary  Teaching  Hospital  through  biopsy  were  selected  for  inclusion  in  the  study  based   on  owner  consent,  availability  of  clinical  history,  and  availability  of  paraffin-­‐embedded,   formalin-­‐fixed  diagnostic  samples.    For  each  urothelial  carcinoma  case,  descriptive   information  was  obtained  from  medical  records  and  periodic  follow-­‐up  questionnaires   including  age  at  diagnosis,  breed,  sex,  survival  time  from  the  date  of  diagnosis,  the  reported   cause  of  death,  and  any  treatment  employed.  In  addition,  bladder  samples  from  10  healthy   dogs  that  were  used  for  veterinary  student  teaching  purposes  were  harvested  in  10%   buffered  formalin  and  routinely  processed  for  histologic  examination.  Five  µm  sections  of   all  samples  were  routinely  processed  and  stained  with  hematoxylin  and  eosin.  Urothelial   proliferative  lesions  were  classified,  and  papillary  carcinomas  were  graded  according  to   the  WHO/ISUP  Consensus  Classification  System  as  previously  described  in  canine   urothelial  tumors.27  In  addition,  the  degree  of  invasion  of  all  carcinomas  was  scored  as  no   invasion,  invasion  into  the  substantia  propria,  or  invasion  into  the  muscularis.     Immunohistochemistry  (IHC)  was  preformed  to  evaluate  MSH2,  MSH3,  and  MSH6,   and  MLH1  expression  in  normal  canine  bladder  and  canine  urothelial  carcinomas  using   commercially  available  antibodies  which  were  shown  be  efficacious  for  use  in  dog  tissues   by  Western  blot  (see  chapter  4).  Five  µm  sections  of  all  formalin-­‐fixed,  paraffin-­‐embedded   tissues  were  processed  for  immunohistochemistry  and  labeled  with  a  mouse  monoclonal   anti-­‐MLH1  antibody  (1:200,  BD  Biosciences,  San  Jose,  CA,  USA),  a  rabbit  polyclonal  anti-­‐ MSH2  antibody  (1:100.  Santa  Cruz  Biotechnology,  Dallas,  TX,  USA),  a  rabbit  polyclonal  anti-­‐ MSH3  antibody  (1:100,  Abcam,  Cambridge,  MA,  USA),  a  mouse  monoclonal  anti-­‐MSH6     111     antibody  (1:500,  BD  Biosciences,  San  Jose,  CA,  USA).  For  MLH1  and  MSH6,   deparaffinization,  antigen  retrieval,  immunohistochemical  staining  and  counterstaining   was  preformed  on  a  Benchmark  XT™  autostainer  (Ventana,  Tucson,  AZ,  USA)  using  an   Enhanced  Alkaline  Phosphatase  Red  Detection  Kit  (Ventana)  that  uses  an  indirect  biotin   streptavidin  and  Fast  Red  chromogen  detection  system.    Retrieval  for  MLH1  and  MSH6  was   accomplished  with  20  minutes  of  incubation  with  Cell  Conditioning  1  solution  (Ventana).   For  MSH2,  deparaffinization,  antigen  retrieval,  immunohistochemical  staining  and   counterstaining  was  preformed  on  a  Dako  Link  48  Autostainer  (Carpinteria,  CA,  USA)  using   a  LSAB2  kit  (Dako),  which  employs  a  3,3’  diaminobenzidine  tetrahydrochloride  (DAB)   chromogen  detection  system.    For  MSH3,  deparaffinization,  antigen  retrieval,   immunohistochemical  staining  and  counterstaining  was  performed  on  a  Bond  maX™   Automated  Staining  System  (Leica  Biosystems,  Buffalo  Grove,  IL,  USA)  using  the  Bond™   Polymer  Refine  Detection  System  (Leica  Biosystems),  which  employs  a  3,3’   diaminobenzidine  tetrahydrochloride  (DAB)  chromogen  detection  system.  Retrieval  for   MSH2  and  MSH3  was  accomplished  using  heat  induced  epitope  retrieval  and  incubation   with  Bond™  Epitope  Retrieval  Solution  1  (Leica  Biosystems)  for  20  minutes.  Sections  of   normal  urinary  bladder  used  as  positive  controls  were  run  in  parallel  to  cases  for  each  of   the  IHC.    For  negative  controls,  homologous  non-­‐immune  sera  or  buffer  replaced  primary   antibodies.     For  all  cases,  seven  randomly  picked  areas  from  each  slide  immunohistochemically   labeled  for  the  respective  MMR  proteins  listed  above  were  imaged  using  a  CRi  Nuance   multispectral  imaging  system  (Woburn,  MA,  USA).  The  resulting  image  cubes  were   converted  to  optical  density  units,  then  mathematically  unmixed  to  separate  chromagen     112     labeling  from  counterstain  using  spectral  libraries  generated  from  imaging  of  only   hematoxylin  stained  or  immunohistochemically  labeled  and  hematoxylin  counterstained   control  specimens.  Colocalized  immunoreactivity  was  assessed  as  positive  pixels  per  image   using  constant  thresholds  for  detection  using  the  multispectral  imaging  system  software.   The  component  images  of  the  image  cubes  were  then  pseudocolored,  converted  to   pseudofluorescent  format,  and  unmixed  for  counting  of  nuclei,  which  was  done  using   Imagine  morphometric  analysis  software  (Van  Andel  Research  Institute  (Grand  Rapids,  MI,   USA)  (Figure  16).  For  statistical  analysis  results  were  evaluated  for  each  case  as  mean   number  of  positive  pixels  per  nucleus.   Statistical  analysis   All  statistical  analysis  was  preformed  using  SPSS  statistical  software  (Somers,  NY).   Permutation  F  tests  were  used  to  evaluate  MSI  data  as  a  continuous  variable.  Fisher’s  exact   tests  were  used  to  evaluate  categorical  treatment  of  MSI  with  tumors  defined  as  MSI-­‐H,   MSI-­‐L  or  MSS  as  described  above.  Mann-­‐Whitney  U  tests  and  Kurskal-­‐Wallis  tests  were   used  to  evaluate  correlations  between  breed,  sex,  histologic  classification,  degree  of   anaplasia,  and  depth  of  infiltration,  and  immunohistochemical  expression  MMR  proteins  as   morphometrically  evaluated  by  nuance  spectral  imaging.  Regression  was  used  for  pairwise   comparisons  of  %MSI  and  immunohistochemical  expression  of  MMR  protein.    Correlations   between  survival  time  of  canine  urinary  carcinomas  and  clinico-­‐demographic  data,   histologic  classification  and  grading,  and  immunohistochemical  expression  of  MMR   proteins  were  evaluated  using  ANOVA.  For  all  statistical  analysis,  significance  was  defined   as  p<0.05.         113     Results   Evaluation  of  MSI     The  results  of  scoring  MS  aberrations  in  canine  epithelial  tumors  are  depicted  in   Figure  17  and  Table  10.  While  MS  aberrations  were  uncommon  in  gastric  carcinoma  and   most  mammary  tumors,  both  the  percentage  of  aberrant  MS  in  individual  tumors  and  the   frequency  of  tumors  classified  as  MSI-­‐H  were  significantly  increased  in  canine  urothelial   carcinomas  of  the  urinary  bladder.  Despite  a  higher  prevalence  of  MSI  in  canine  TCC,  the   distribution  of  %MSI  was  wide,  ranging  from  0%  to  92%  of  MS  loci  being  affected  in   individual  tumors.       There  was  variation  in  the  magnitude  and  frequency  of  %MSI  in  canine  urothelial   within  all  evaluated  breed  groups;  however,  there  were  differences  in  overall  %MSI   between  breed  groups.  Specifically,  MSI  was  greater  in  urothelial  carcinomas  from  Scottish   terriers  and  West  Highland  white  terriers,  less  pronounced  in  Shetland  sheepdogs,  and   uncommon  in  Beagles  (Figure  18  and  Table  11).  In  permutation  F  tests  comparing  these  4   breeds  and  excluding  all  other  breeds,  differences  in  MSI  were  statistically  significant   (p=0.037);  however,  statistical  significance  was  lost  when  MSI  instability  was  compared   between  the  4  breeds  along  with  a  category  including  all  other  breeds  (p=0.092).  Using   Fisher’s  exact  test  to  compare  the  categorical  distribution  of  tumors  as  MSS,  MSI-­‐L,  and   MSI-­‐H  according  to  breed,  there  were  statistically  significant  differences  whether   comparing  only  the  four  high  risk  breeds  (p=0.016),  or  all  breed  categories  (p=0.017).   Further,  there  were  significant  differences  in  MSI  expression  between  dog  phylogenetic   clades,  (Figure  19).  Specifically  dogs  in  clade  5  had  high  levels  of  MSI  in  comparison  to  dogs   from  other  clades.     114     MSI  was  observed  in  tetranucleotide  repeats  and  shorter  repeats  including  mono-­‐   and  dinucleotide  repeats  in  carcinomas  urothelial  carcinomas.  (Table  12).  Permutation  F-­‐ tests  showed  significant  differences  in  %MSI  for  short  repeats  whether  comparing  only  the   four  high  risk  breeds  (p=0.016),  or  all  breed  categories  (p=0.042);  however,  there  was  no   significant  difference  between  %MSI  for  tetranucleotide  repeats  whether  comparing  only   the  four  high  risk  breeds  (p=0.116),  or  all  breed  categories  (p=0.158).  Fisher  exact  tests   revealed  significant  differences  in  category  of  MSI  in  the  short  repeats  among  breed   categories  whether  comparing  only  the  four  high  risk  breeds  (p=0.017),  or  all  breed   categories  (p=0.050).    In  contrast,  no  statistical  association  could  be  identified  between  MSI   category  in  tetranucleotide  repeats  and  breed  (p=0.390  for  only  high  risk  breeds,  p=0.455   including  all  breed  categories).     Demographic  information,  histologic  classification,  and  grading  of  urothelial  carcinomas   For  dogs  diagnosed  with  urothelial  carcinomas,  the  mean  age  at  initial  diagnosis   was  10.5  years  of  age  (2.0  SD)  with  a  range  of  6.7  to  17.1  years  of  age.  Affected  dogs   included  4  intact  females,  21  spayed  females,  and  11  castrated  males.  Represented  breeds   included  5  Scottich  terriers,  2  West  Highland  white  terriers,  7  Beagles,  7  Shetland   Sheepdogs,  and  14  dogs  of  other  purebred  or  mixed  breed.    For  the  32  cases  in  which   information  regarding  treatment  was  available,  7  had  no  treatment,  2  had  only  local   resection  of  the  mass,  17  were  treated  with  only  piroxicam,  and  6  were  treated  with   piroxicam,  surgical  resection,  and  systemic  chemotherapy  which  variably  included   adriamycin,  cyclophosphamide,  and/or  mitoxantrone.    Two  animals  were  alive  at  the  end   of  study,  1  animal  died  from  causes  unrelated  to  the  urinary  carcinoma,  30  reportedly  died     115     or  were  euthanized  as  a  result  of  progressive  disease  related  to  the  urinary  bladder  tumors,   and  3  were  lost  to  follow-­‐up.       Of  the  36  urothelial  carcinomas,  8  were  diagnosed  as  infiltrating  carcinomas,  which   had  no  appreciable  exophytic  papillary  component,  but  instead  primarily  infiltrated  into   and  expanded  the  bladder  wall.    The  remaining  28  cases  were  papillary  carcinomas,  the   vast  majority  of  which  (24  of  28)  were  high  grade  (grade  II  or  III).    Invasion  of  high-­‐grade   papillary  carcinomas  into  the  bladder  wall  was  common  with  9  of  24  having  invasion  into   the  substantia  propria  and  7  of  24  invading  into  the  muscularis.    For  all  carcinomas,  the   mean  survival  time  was  326  days  with  a  standard  deviation  of  341  and  range  of  0  to  1225   days.    For  infiltrative  carcinomas,  the  mean  survival  time  was  173  days  with  a  standard   deviation  of  223  days  and  range  of  0  to  365  days.    For  papillary  carcinomas,  the  mean   survival  time  was  370  days  with  a  standard  deviation  of  359  days  and  range  of  0  to  1225   days.   MLH1,  MSH2,  MSH3,  and  MSH6  Immunohistochemistry       Nuclear  expression  was  observed  in  urothelium  for  all  evaluated  MMR  protein   markers.  For  all  cases,  mean  with  standard  error,  median,  and  range  of  %MSI  and   expression  of  MMR  proteins  MLH1,  MSH2,  MSH3,  and  MSH6  in  terms  of  positive  pixels  per   nucleus  as  determined  by  IHC  and  Nuance  spectral  imaging  are  reported  in  Table  13.    The   expression  of  MLH1,  MSH2,  MSH3,  and  MSH6  and  %MSI  and  were  not  normally  distributed   amongst  cases.       Overall,  while  there  was  variation  in  the  expression  of  MMR  proteins  in  both   urothelium  of  normal  urinary  bladders  and  urothelial  carcinomas  of  the  urinary  bladder,   the  mean  expression  of  MSH2  was  lower  in  urothelial  carcinomas  than  in  urinary  bladders,     116     and  the  mean  expression  of  MSH6  was  higher  in  urothelial  carcinomas  than  in  normal   urinary  bladders  (Figure  20).    Also,  the  mean  ratio  of  MSH2  to  MSH6  was  lower  in   urothelial  carcinomas  than  it  was  in  normal  urinary  bladders  (Figure  21).  Using  Mann-­‐ Whitney  U  tests,  there  were  significant  differences  between  urothelial  carcinomas  and   normal  urinary  bladder  samples  in  terms  of  %MSI  (p=0.003),  the  expression  of  MSH2   (p=0.001),  and  the  expression  of  MSH6  (p=0.003).  However,  there  was  no  significant   difference  between  urothelial  carcinomas  and  normal  urinary  bladder  samples  in  terms  of   the  expression  of  MLH1  (p=0.886)  or  the  expression  of  MSH3  (p=0.470).    There  were  also   no  significant  differences  between  infiltrating  carcinomas  and  papillary  carcinomas  in   terms  of  %MSI  (p=0.921)  or  the  expression  of  MLH1  (p=0.116),  MSH2  (p=0.562),  MSH3   (p=0.204)  or  MSH6  (0.751).    Further,  using  Kreskas-­‐Wallis  tests  and  examining  only   urothelial  carcinoma,  there  were  no  significant  differences  (p>0.05)  between  breed,  sex,   degree  of  cellular  anaplasia,  and  degree  of  invasion  into  the  urinary  bladder  wall,  and   expression  of  MLH1,  MSH2,  MSH3,  or  MSH6.   In  regression  analysis  evaluating  all  cases  including  normal  urinary  bladders  and   urothelial  carcinomas,  there  were  no  significant  correlations  between  %MSI  and   expression  of  MLH1  (p=0.408),  MSH2  (p=0.263),  MSH3  (p=0.799),  or  MSH6  (p=0.463).     Excluding  normal  urinary  bladders,  there  remained  no  significant  correlations  between   %MSI  and  expression  of  MLH1  (p=0.343),  MSH2  (p=0.518),  MSH3  (p=0.629),  or  MSH6   (p=0.192).   Survival  analysis     Using  Cox  regression,  there  were  no  significant  correlations  in  urothelial  carcinoma   between  survival  time  and  %MSI  (p=0.547),  MLH1  (p=0.446),  MSH2  (p=0.740),  MSH6     117     (p=0.262),  age  at  diagnosis  (p=0.290),  breed  (p=0.723),  sex  (p=0.485),  treatment   (p=0.0633),  histologic  classification  of  urothelial  carcinomas  as  papillary  or  infiltrating   (p=0.129),  degree  of  anaplasia  (p=0.054),  degree  of  invasion  into  the  bladder  wall   (p=0.185).    Expression  of  MSH3,  however,  was  associated  with  survival  time  (p=0.022).       Using  Kaplan-­‐Meier  estimators  and  log  rank  tests,  there  was  no  significant   correlation  between  survival  time  and  MSI  as  categorized  as  stable,  low,  or  high  (p=0.283);   breeds  (p=0.704);  sex  (p=0.476);  histologic  classification  as  papillary  or  infiltrating   (p=0.120);  cellular  anaplasia  (p=0.132);  degree  of  invasion  into  the  bladder  wall  (p=0.307);   or  MSH3  expression  when  grouping  cases  by  having  >  or  <  the  mean  MSH3  expression.   There  was,  however,  a  significant  correlation  between  survival  time  and  treatment   (p=0.017).                         118     Discussion   These   investigations   demonstrated   common,   but   not   universal   occurrence   of   MSI   in   canine  urothelial  carcinomas.  Variation  in  frequency  and  magnitude  of  MSI  in  these  cancers   was   correlated   with   genetic   background   in   terms   of   breed   and   phylogenetic   clade   suggesting   likely   divergent   pathways   of   urothelial   carcinogenesis.   There   were   significant   differences   in   the   expression   of   the   MMR   proteins,   MSH2   and   MSH6,   between   canine   urothelial  carcinomas  and  normal  urinary  bladder  as  evaluated  by  IHC  and  morphometric   analysis  using  multispectral  imaging.  However,  variance  in  MMR  protein  expression  did  not   correlate   with   presence   or   degree   of   MSI,   breed,   or   histomorphologic   features   of   urothelial   carcinomas.     Neither   MSI   nor   the   expression   of   MMR   proteins   excluding   MSH3   was   associated  with  survival  time.   Urinary  carcinomas  of  the  urinary  bladder  represent  one  of  the  many  cancer  types   in   humans   in   which   a   significant   percentage   of   tumors   have   been   reported   to   show   defects   in   MMR.   Development   of   such   tumors   has   been   associated   with   both   hereditary   and   spontaneously   developing   MMR   deficiency.   While   often   occurring   spontaneously,   development   of   bladder   cancers   associated   with   defective   MMR   also   has   been   well   described   as   part   of   the   Lynch   syndrome.   The   Lynch   syndrome   is   a   hereditary   predisposition   for   cancer   development   defined   by   somatic   mutation   in   MMR   genes.12   A   wide   range   of   cancers   has   been   described   in   patients   with   Lynch   syndrome,   the   most   extensively   studied   and   widely   reported   of   these   is   hereditary   nonpolyposis   colorectal   carcinoma.1-­‐4,  15  A  recent  study  of  Lynch  syndrome  families  from  4  nations  including  the  US   demonstrated   that   the   urinary   tract,   including   the   kidney,   renal   pelvis,   ureter,   and   bladder,   had  the  highest  organ  system  specific  cancer  risk  after  the  colon  and  endometrium.28     119       The  importance  of  MMR  dysfunction  and  MSI  in  urothelial  carcinomas  of  the  upper   urinary   tract   is   well   accepted   in   human   medicine.29-­‐39   Studies   of   the   MMR   in   urothelial   carcinomas   of   the   urinary   bladder,   however,   have   yielded   variable   and   sometimes   contradictory   data.   Cancers   developing   from   urothelium   of   the   upper   urinary   tract   frequently   have   been   associated   with   MMR   defects   and   often   exhibit   MSI.29-­‐39   Although   urinary   carcinomas   of   the   upper   urinary   tract   represent   the   most   common   urinary   tract   cancers   reported   with   Lynch   syndrome,   bladder   cancers   also   occur   in   people   harboring   heritable   MMR   defects.40-­‐43   Lynch   syndrome   associated   bladder   cancer   represents   a   very   small   proportion   of   bladder   cancers;   however,   data   from   numerous   studies   over   the   last   two   decades   indicate   that   a   substantial   subset   of   bladder   cancers   exhibit   MSI   suggesting   that  spontaneous  development  of  MMR  defects  in  urothelial  carcinogenesis  is  common.   44,   45     It  has  previously  been  suggested  that  due  to  the  similarities  of  urothelial  carcinomas   of   the   urinary   bladder   in   dogs   and   humans,   that   these   canine   cancers   could   be   used   as   a   research   model.20,   24   Similar   to   humans,   urothelial   carcinomas   of   the   urinary   bladder   comprise   a   significant   proportion   of   canine   neoplasms.   Urothelial   carcinomas   have   a   similar   histomorphologic   appearance   in   dogs   and   humans.   20,   24,   27   In   fact,   it   has   recently   been   suggested   that   canine   urothelial   carcinomas   could   be   classified   and   graded   according   to   the   World   Health   Organization/International   Society   of   Urologic   Pathology   consensus   classification   system,   which   was   developed   for   use   in   human   pathology.27   Papillary   and   invasive   carcinomas   are   prevalent   in   dogs   and   follow   a   similar   clinical   course   to   those   reported   in   humans   suggesting   that   the   pathways   involved   in   the   development   and   progression  of  these  tumors  may  be  homologous.20,   24  Further,  particular  breeds  including     120     the  Scottish  terrier,  West  Highland  white  terrier,  the  Shetland  Sheepdog,  and  Beagle,  have   significantly   increased   risk   of   developing   urothelial   carcinomas,   making   easier   the   study   of   the   genetic   basis   of   carcinogenesis   in   dogs.20,   24,   25   One   difference   between   human   and   canine  urothelial  carcinomas  is  that  in  situ  carcinomas  only  rarely  identified  in  dogs  while   they  are  by  far  the  most  commonly  recognized  form  of  urothelial  carcinoma  in  humans.24,   25,  46   This,   however,   may   be   due   to   the   fact   that   bladder   tumors   are   generally   recognized   in   dogs   only   in   late   stages   of   disease   when   they   are   large   enough   to   cause   significant   functional  problems.       In   the   current   study,   there   was   a   high   incidence   of   MSI   in   canine   urothelial   carcinomas   in   comparison   to   other   tumors   with   strong   breed   predispositions   (gastric   carcinomas   and   mammary   tumors).   Further,   MSI   in   canine   urothelial   carcinomas   was   correlated   with   breed,   with   the   phylogenetically   related   breeds   Scottish   terrier   and   West   Highland   white   terrier   often   having   high   MSI.26   Statistical   correlations   were   particularly   strong  when  comparing  only  the  four  breed  groups  with  high  relative  risk  for  development   of   urothelial   carcinomas.   The   relatively   higher   p-­‐value   obtained   in   permutation   tests   when   breeds   not   predisposed   for   urothelial   carcinomas   was   included   in   analysis   as   an   additional   category   can   be   explained   by   the   higher   variability   of   MSI   in   tumors   derived   from   this   genetically  heterogeneous  group  composed  of  17  other  purebreds  and  mixed  breed  dogs.     In   humans,   evidence   suggests   that   tumors   of   different   types   with   high   MSI   may   differ  in  the  type  MS  repeat  affected.  In  human  upper  urinary  tract  urothelial  carcinomas,   MSI   in   mono-­‐   and   dinucleotide   repeat   MS   is   common   and   usually   associated   with   defective   DNA   mismatch   repair   (MMR).47,   48   While   the   underlying   mechanisms   of   development   and   significance   are   poorly   understood,   MSI   in   tetranucleotide   repeats,   termed   EMAST     121     (elevated  microsatellite  alterations  at  select  tetranucloetides),  is  common  in  human  lower   urinary  tract  urothelial  carcinomas,  while  MSI  in  mono-­‐  or  dinucleotide  repeats  is  rare.48,  49   Differences  in  the  type  of  MS  affected  in  specific  tumors  may  indicate  that  while  MSI  occurs   in   many   different   tumor   types,   the   mechanisms   underlying   MSI   development   within   particular   types   of   tumors   varies.   In   the   currently   evaluated   canine   urothelial   carcinoma   set,   MSI   was   observed   in   MS   composed   of   both   tertranucleotide   and   short   mono-­‐   and   dinucleotide   repeats.     While,   there   was   no   statistical   associations   between   MSI   in   tetranucleotide   repeat   motifs   and   dog   breed,   there   were   associations   between   both   magnitude   and   frequency   of   MSI   in   short   (mono-­‐   and   dinucleotide)   repeats   with   the   phylogenetically   related   breeds   of   West   Highland   white   terrier   and   Scottish   terrier   being   most   prominently   represented.   This   suggests   that   not   only   are   these   breeds   predisposed   for  development  of  MSI,  but  that  the  mechanisms  behind  such  development  are  similar.     We   also   hypothesized   that   the   degree   of   MSI   in   individual   canine   urothelial   carcinomas  would  be  correlated  with  the  expression  of  MMR  proteins.    Several  studies  have   investigated  expression  of  MMR  proteins  in  bladder  cancer  using  immunohistochemistry  in   humans.44,   50-­‐55   MMR   IHC   appears   to   correlate   fairly   well   with   MMR   functional   status   in   human  colon  cancers  and  similar  findings  are  likely  in  other  tumors.56,  57  Multiple  studies  of   MMR  IHC  in  human  bladder  cancer  report  common  loss  or  decreased  expression  of  MMR   proteins   including   MLH1,   MSH2,   MSH6,   and   MSH3   in   subsets   of   tumors.40,   42,   50-­‐54,   58   The   percentage   of   bladder   cancers   reported   to   exhibit   MMR   deficiency   according   to   IHC   evaluation  of  MMR  proteins  varies  between  studies,  ranging  from  0-­‐69%.40,   42,   50-­‐54,   58  Such   seemingly   variable   prevalence   may   be   attributable   to   many   factors   including   the   particular     122     proteins  evaluated  and  the  histopathologic  tumor  subtypes  included  in  the  study,  as  well  as   technical  differences  in  the  performance  and  scoring  of  IHC.       In   the   canine   urothelial   carcinomas   of   the   urinary   bladder   of   the   current   study,   lower   expression   of   MSH2   and   higher   expression   of   MSH6   were   in   comparison   to   that   of   normal   urothelium   from   unaffected   urinary   bladders.   Such   relatively   low   expression   of   MSH2   and   high   expression   of   MSH6   was   often   concurrent   within   individual   urothelial   carcinomas,   and   there   were   strong   statistical   differences   between   the   ratios   of   MSH2   to   MSH6  when  comparing  urothelial  carcinomas  to  normal  urinary  bladders.  The  expression   of   MLH1   and   MSH3   was   not   significantly   different   between   canine   urothelial   carcinomas   in   comparison  to  that  of  normal  urothelium  from  unaffected  control  bladders.     Interestingly,   the   expression   of   neither   MSH2   nor   MSH6   in   canine   urothelial   carcinomas   was   associated   with   the   frequency   or   degree   of   MSI.   In   fact,   decreased   MSH2   and   increased   MSH6   expression   relative   to   that   in   normal   urinary   bladders   were   found   more   frequently   in   canine   urothelial   carcinomas   than   was   high   MSI.   Given   the   lack   of   correlation   between   MMR   protein   expression   and   MSI,   it   is   not   surprising   that   no   association   was   found   between   MMR   protein   expression   and   breed,   which   was   strongly   associated  with  MSI.    The  exact  significance  of  this  disjunction  between  variations  in  MMR   protein   expression   and   MSI   is   unclear.     It   is   possible   that   IHC   for   MMR   proteins   is   more   sensitive   in   identifying   variations   in   the   MMR   repair   pathway,   but   that   these   variations   are   not  functionally  significant  and  therefore  do  not  result  in  MSI.    It  is  also  possible  that  the   relative  small  pool  of  MS  evaluated  in  this  study  compared  to  the  total  number  of  MS  in  the   genome  was  not  completely  reflective  of  MMR  function.  In  human  colon  cancer,  there  has     123     been  considerable  controversy  in  deciding  how  best  to  evaluate  tumors  for  defective  MMR:   microsatellite  analysis  or  IHC57,  59.  It  seems  that  both  methods  have  limitations.       With   the   rare   exception   of   MSH3   survival   correlating   with   survival   time,   there   not   appreciable   correlations   between   MSI   or   MMR   protein   expression   and   survival   time   or   histomorphologic   features   of   canine   urothelial   carcinomas   including   classification   as   primary   infiltrative   or   papillary,   histologic   grade,   or   depth   of   invasion   into   the   urinary   bladder   wall.     The   significance   of   the   correlation   between   MSH3   expression   and   survival   time  is  unclear,  especially  given  that  there  was  no  statistical  difference  in  MSH3  expression   between  urothelium  of  normal  bladders  and  urothelial  carcinomas.    Overall,  these  findings   suggest   that   while   the   loss   of   MMR   in   certain   bladder   cancers   is   clear,   the   significance   of   such   losses   is   less   certain.   In   humans,   an   assortment   of   correlations   between   clinical   and   pathologic   variables   and   MMR   status   has   been   reported;   however,   there   is   not   universal   agreement   as   to   which   variables   correlate   with   MMR   or   the   direction   of   the   correlation   (positive  or  negative).  For  instance,  one  study  reports  the  loss  of  MLH1  and  MSH2  is  most   common  in  high  grade  and  invasive  tumors50,  whereas  another  study  associates  MMR  loss   with   noninvasive,   well-­‐differentiated   tumors53.   Further,   differential   expression   of   MMR   proteins  including  MSH2,  MSH3,  and  MLH1  has  been  associated  with  urothelial  carcinoma   grade   and   clinical   outcome.16,   48,   60   In   seeming   contradiction,   several   studies   indicate   that   loss  of  MMR,  even  in  invasive  tumors  may  indicate  a  better  prognosis  similar  to  what  has   been  reported  in  colon  cancers.50,  53,  54   The  current  study  was  limited  by  the  relative  low  number  of  cases  and,  in  particular,   the  low  number  of  cases  of  each  breed  and  the  low  number  of  low  grade  urothelial   carcinomas.  High  grade  urothelial  carcinomas  are  far  more  commonly  diagnosed  in  dogs     124     than  low  grade  tumors  accounting  for  the  low  number  of  low  grade  tumors  in  the  examined   set.  This  may  be  due  to  an  actual  lower  rate  of  occurrence  in  canine  populations  or   diagnosis  of  urothelial  neoplasms  only  late  in  the  course  of  disease  when  larger,  more   aggressive  tumors  affect  normal  micturition  or  cause  other  clinical  disease.  Further,   euthanasia  is  common  in  veterinary  medicine  and  is  especially  common  in  animals  with   urothelial  carcinomas  due  to  the  negative  prognosis  historically  associated  with  such   tumors,  the  effects  on  micturition,  the  common  non-­‐resectable  nature  and  high  number  of   cases  with  metastases  of  such  tumors  at  the  time  of  diagnosis,  and  client  choice  due  to   financial  or  homecare  constraints.  Treatment  was  also  not  standardized  between  animals.     It  is  likely  that  variation  in  treatment  affected  survival  time,  especially  given  that  treatment   was  one  of  the  few  variables  examined  in  this  study  that  correlated  with  survival  time.     Despite   inherent   limitations,   this   study   does   suggest   that   canine   urothelial   carcinomas   have   potential   as   a   model   for   further   evaluation   of   the   MMR   system   with   respect   to   carcinogenesis.     This   work   demonstrates   that   MSI   can   be   observed   in   spontaneous   canine   tumors.   Further,   the   frequent   occurrence   of   MSI   and   the   variation   in   expression   of   MMR   proteins   in   canine   urothelial   carcinomas   of   the   urinary   bladder   compared  to  canine  epithelial  tumors  from  other  tissues  suggests  that  MSI  may  contribute   to  urothelial  carcinogenesis  in  the  dog,  and  that  there  is  likely  an  inheritable  propensity  for   MMR   dysfunction   in   specific   breeds.   The   clinical   implications   of   deficiencies   in   MMR   in   canine   urothelial   carcinomas   are   less   clear   as   neither   MSI   nor   MMR   protein   expression   correlated  with  survival  time  or  histomorphologic  features  often  associated  with  prognosis.         Acknowledgements     125     These  studies  were  supported  in  part  by  grants  from  the  National  Cancer  Institute   (K08-­‐CA89530,  R03_CA101030)  and  a  comparative  medicine  grant  from  the  University  of   Minnesota  College  of  Veterinary  Medicine.  Portions  of  the  described  work  comprised  part   of  Dr.  Sledge’s  PhD  training,  which  was  funded  by  Bristol-­‐Meyers-­‐Squibb  through  the   American  College  of  Veterinary  Pathologists/Society  of  Toxicologic  Pathologists  coalition.                                     126                 APPENDIX                           127     Figure   16:   Unmixed   composite   images   and   unmixed   pseudofluorecent   images   derived   from   multispectral   imaging   of   MLH1,   MSH2,   MSH3,   and   MSH6   immunohistochemically   labeled   urothelium   from   a   normal   urinary   bladder   control   and   a   grade   II   papillary   urothelial   carcinoma.     MLH1   and   MSH6   IHC:   Indirect   biotin   streptavidin   and   Fast   Red   chromogen,   hematoxylin   counterstain.   MSH2   and   MSH3   IHC:   3,3’-­‐Diaminobenzidine   (DAB)   chromogen,   hematoxylin  counterstain.         128     Figure   17:   Scatter   plot   depicting   the   frequency   of   microsatellite   aberrations   identified   in   canine   gastric   carcinoma   tumor   (N=15),   mammary   tumors   (N=35),   and   urothelial   carcinomas  of  the  urinary  bladder  (N=46).  Each  circle  represents  an  individual  tumor.    The   horizontal  bar  associated  with  each  dataset  indicates  the  mean  %MSI  for  the  group.  Many   urothelial  carcinomas  have  high  %MSI  defined  by  25%  of  evaluated  MS  having  instability,   while  only  few  mammary  tumors  and  no  gastric  carcinomas  have  high  %MSI.    In  addition,   the  mean  %MSI  for  urothelial  carcinomas  is  higher  than  that  of  other  evaluated  tumors.               129     Figure   18:   Scatter   plot   depicting   the   frequency   of   microsatellite   aberrations   identified   in   canine   urothelial   carcinomas   stratified   by   breed.   Each   circle   represents   an   individual   urothelial  carcinoma.    The  horizontal  bar  associated  with  each  dataset  indicates  the  mean   %MSI  for  the  group.  The  two  dashed  horizontal  lines  indicate  the  level  for  MSI-­‐L  and  MSI-­‐H   classification.  Variation  in  the  fraction  of  MS  with  instability  within  individual  breed  groups   is  common;  however,  in  comparison  to  other  breeds,  MSI-­‐H  is  common   in   West   Highland   white  terriers  and  Scottish  terriers.                 130     Figure   19:   Scatter   plot   depicting   the   frequency   of   microsatellite   aberrations   identified   in   canine   urothelial   carcinomas   stratified   by   phylogenetic   clade.     Each   circle   represents   an   individual  urothelial  carcinoma.    The  horizontal  bar  associated  with  each  dataset  indicates   the   mean   %MSI   for   the   group.   The   dashed   horizontal   lines   indicate   the   level   MSI-­‐H   classification.  Variation  in  the  fraction  of  MS  with  instability  within  individual  phylogenetic   groups  is  common;  however,  MSI-­‐H  is  common  phylogenetic  clade  5,  which  includes  West   Highland  white  terriers  and  Scottish  terriers.             131     Figure   20:   Scatter   plots   depicting   immunoreactivity   of   MSH2   and   MSH6   in   canine   normal   urinary   bladder   urothelium   and   urothelial   carcinomas   as   determined   by   morphometric   analysis   of   multispectral   imaging.   Each   circle   represents   an   individual   case.   Horizontal   bars   associated   with   each   dataset   indicate   the   mean   relative   expression   of   MSH2   or   MSH6   for   each   group.   While   there   is   variation   in   relative   expression   of   MSH2   and   MSH6   in   both   normal   urothelium   and   urothelial   carcinomas,   the   mean   relative   expression   of   MSH2   is   lower   in   urothelial   carcinomas,   than   in   normal   urothelium   (A),   and   the   mean   relative   expression  of  MSH6  is  higher  in  urothelial  carcinomas,  than  in  normal  urothelium  (B).                 132     Figure   21:   Scatter   plot   depicting   ratio   of   MSH2   and   MSH6   immunoreactivity   in   individual   cases  of  canine  normal  urinary  bladder  urothelium  and  urothelial  carcinomas  as  determined   by   morphometric   analysis   of   multispectral   imaging.   Each   circle   represents   an   individual   case.   Horizontal   bars   associated   with   each   dataset   indicate   the   mean   ratio   of   MSH2   and   MSH6  for  each  group.  While  there  is  variation  in  the  ration  of  MSH2  to  MSH6  expression  for   individual   cases   in   both   normal   urothelium   and   urothelial   carcinomas,   the   mean   ratio   of   MSH2  to  MSH6  is  lower  in  urothelial  carcinomas,  than  in  normal  urothelium.                 133     Table  10:  Distribution  of  microsatellite  instability  in  canine  epithelial  tumors   MSS   MSI-­‐L   MSI-­‐H     Tumor   type   No.   tumors   (%)   No.  tumors   (%)   No.  Tumors  (%)   GC   14  (93%)   1  (7%)   0  (0%)   MT   28  (80%)   3  (9%)   4  (11%)   TCC   16  (36%)   16  (36%)   13  (28%)   GC  =  Gastric  carcinoma;  MT  =  Mammary  gland  tumor;  TCC  =   Transitional  cell  carcinoma  of  the  bladder;  MSS  =   microsatellite  stable;  MSI-­‐L  =  at  least  10%  MSI;  MSI-­‐H  =  at   least  25%  MSI.         Table11:  Distribution  of  microsatellite  instability  in  canine  urothelial  carcinomas  of  the   urinary  bladder  classified  by  breed   #  of   Tumors   #  MSS   #  MSI-­‐L   #  MSI-­‐H    Mean  %MSI   Westie   3   0   0   3   43.7%  (±  28.2%)   Scottie   6   1   1   4   37.1%  (±  30.7%)   Sheltie   6   3   3   0   10.9%  (±  10.7%)   Beagle   4   3   1   0   4.8%  (±  6.7%)   Other     26   7   13   6   22.8%  (±  25.1%)   Breed   MSS  =  microsatellite  stable;  MSI-­‐L  =  at  least  10%  MSI;  MSI-­‐H  =  at  least  25%  MSI.         134     Table  12:  Distribution  of  microsatellite  instability  in  canine  urothelial  carcinomas  of  the   urinary  bladder  by  breed  and  repeat  motif   Breed   Mean  %MSI   Mean  %MSI   Di/Mono   Mean  %MSI   Tetra   Westie   43.7%  (±  28.2%)   52.8%  (±  21.0%)   30.1%  (±  41.8%)   Scottie   37.1%  (±  30.7%)   32.2%  (±  29.3%)   45.7%  (±  36.1%)   Sheltie   10.9%  (±  10.7%)   9.4%  (±  8.9%)   13.0%  (±  17.8%)   Beagle   4.8%  (±  6.7%)   4.2%%  (±  8.3%)   5.6%  (±  6.4%)   Other     22.8%  (±  25.1%)   21.4%  (±  25.0%)   25.6%  (±  26.4%)   %  MSI  =  mean  percentage  of  MS  markers  demonstrating  instability  for  all  tumors   and  all  MS  markers;  Mean  %MSI  Di/Mono  =  Mean  %MSI  for  di-­‐  or  mononucleotide   repeats  only;  Mean  %MSI  Tetra  =  Mean  %  MSI  for  tetranucleotide  repeats  only.     Standard  deviation  is  given  in  parentheses.                     135     Table  13:  Distribution  of  %MSI  and  immunohistochemically  evaluated  MMR  protein   expression  in  canine  normal  urinary  bladders  and  urothelial  carcinomas  of  the  urinary   bladder       Mean   Median   Minimum   Maximum   %MSI                    All  cases   14.4%  (±3.2%)   9.5%   0%   89.0%      Normal  urinary  bladder   1.7%  (±1.7%)   0%   0%   8.0%      All  urothelial  carcinomas   17.4%  (±3.7%)   13.6%   0%   89.0%          Infiltrating  carcinomas   27.2%  (±16.0%)   11.8%   5.0%   89.0%          Papillary  carcinomas   14.9%  (±2.5%)   14.0%   0%   38.0%   MLH1  (postive  pixels  per  nucleus)                  All  cases   740.3  (±113.6)   618.5   7.1   2268.0      Normal  urinary  bladder   775.5  (±225.2)   755.5   26.6   1245.0      All  urothelial  carcinomas   695.4  (±111.0)   492.9   0.2   2268.0          Infiltrating  carcinomas   571.1  (±229.2)   466.3   15.0   1353.9          Papillary  carcinomas   797.4  (±158.0)   653.1   7.1   2268.0   MSH2  (postive  pixels  per  nucleus)                  All  cases   351.0  (±75.9)   209.7   1.7   1629.1      Normal  urinary  bladder   750.2  (±235.6)   768.2   189.2   1492.6      All  urothelial  carcinomas   328.8  (±67.6)   175.8   1.7   1629.1          Infiltrating  carcinomas   164.8  (±52.1)   134.8   46.8   343.2          Papillary  carcinomas   301.5  (±91.2)   157.0   1.7   1629.1   MSH3  (postive  pixels  per  nucleus)                  All  cases                  Normal  urinary  bladder   1410.0  (±197.9)   1291.9   684.0   2566.0      All  urothelial  carcinomas   1179.6  (±125.9)   1107.8   102.0   2662.0          Infiltrating  carcinomas   915.8  (±248.7)   714.6   200.0   2133.0          Papillary  carcinomas   1264.0  (±144.5)   1143.9   102.0   2662.0   MSH6  (postive  pixels  per  nucleus)                  All  cases   570.7  (±96.2)   399.3   27.8   2490.0      Normal  urinary  bladder   255.6  (±60.6)   256.0   112.4   399.3      All  urothelial  carcinomas   603.2  (±94.9)   417.1   1.9   2490.0          Infiltrating  carcinomas   746.8  (±243.7)   1054.0   27.8   1225.8          Papillary  carcinomas   619.8  (±131.4)   450.5   41.0   2490.0   %  MSI  =  mean  percentage  of  MS  markers  demonstrating  instability  for  all  tumors  and  all  MS   markers;    Standard  deviation  for  means    is  given  in  parentheses.           136                           REFERENCES                           137     REFERENCES     1.  Harfe  BD,  Jinks-­‐Robertson  S.  DNA  mismatch  repair  and  genetic  instability.  Annual  review   of  genetics.  2000;34:  359-­‐399.   2.  Hsieh  P,  Yamane  K.  DNA  mismatch  repair:  molecular  mechanism,  cancer,  and  ageing.   Mechanisms  of  ageing  and  development.  2008;129:  391-­‐407.   3.  Iyer  RR,  Pluciennik  A,  Burdett  V,  Modrich  PL.  DNA  mismatch  repair:  functions  and   mechanisms.  Chemical  reviews.  2006;106:  302-­‐323.   4.  Jiricny  J.  The  multifaceted  mismatch-­‐repair  system.  Nature  reviews.  Molecular  cell   biology.  2006;7:  335-­‐346.   5.  Preston  BD,  Albertson  TM,  Herr  AJ.  DNA  replication  fidelity  and  cancer.  Seminars  in   cancer  biology.  2010;20:  281-­‐293.   6.  Chung  H,  Young  DJ,  Lopez  CG,  et  al.  Mutation  rates  of  TGFBR2  and  ACVR2  coding   microsatellites  in  human  cells  with  defective  DNA  mismatch  repair.  PloS  one.  2008;3:   e3463.   7.  Kim  CJ,  Lee  JH,  Song  JW,  et  al.  Chk1  frameshift  mutation  in  sporadic  and  hereditary  non-­‐ polyposis  colorectal  cancers  with  microsatellite  instability.  European  journal  of  surgical   oncology  :  the  journal  of  the  European  Society  of  Surgical  Oncology  and  the  British   Association  of  Surgical  Oncology.  2007;33:  580-­‐585.   8.  Miquel  C,  Jacob  S,  Grandjouan  S,  et  al.  Frequent  alteration  of  DNA  damage  signalling  and   repair  pathways  in  human  colorectal  cancers  with  microsatellite  instability.  Oncogene.   2007;26:  5919-­‐5926.   9.  Fernandez-­‐Peralta  AM,  Nejda  N,  Oliart  S,  Medina  V,  Azcoita  MM,  Gonzalez-­‐Aguilera  JJ.   Significance  of  mutations  in  TGFBR2  and  BAX  in  neoplastic  progression  and  patient   outcome  in  sporadic  colorectal  tumors  with  high-­‐frequency  microsatellite  instability.   Cancer  genetics  and  cytogenetics.  2005;157:  18-­‐24.   10.  Hampson  R.  Selection  for  genome  instability  by  DNA  damage  in  human  cells:  unstable   microsatellites  and  their  consequences  for  tumourigenesis.  Radiation  oncology   investigations.  1997;5:  111-­‐114.   11.  Jascur  T,  Boland  CR.  Structure  and  function  of  the  components  of  the  human  DNA   mismatch  repair  system.  International  journal  of  cancer.  Journal  international  du  cancer.   2006;119:  2030-­‐2035.   12.  Lynch  HT,  de  la  Chapelle  A.  Hereditary  colorectal  cancer.  The  New  England  journal  of   medicine.  2003;348:  919-­‐932.     138     13.  Thibodeau  SN,  Bren  G,  Schaid  D.  Microsatellite  instability  in  cancer  of  the  proximal   colon.  Science.  1993;260:  816-­‐819.   14.  Hsu  HS,  Wen  CK,  Tang  YA,  et  al.  Promoter  hypermethylation  is  the  predominant   mechanism  in  hMLH1  and  hMSH2  deregulation  and  is  a  poor  prognostic  factor  in   nonsmoking  lung  cancer.  Clinical  cancer  research  :  an  official  journal  of  the  American   Association  for  Cancer  Research.  2005;11:  5410-­‐5416.   15.  Jacob  S,  Praz  F.  DNA  mismatch  repair  defects:  role  in  colorectal  carcinogenesis.   Biochimie.  2002;84:  27-­‐47.   16.  Kawakami  T,  Shiina  H,  Igawa  M,  et  al.  Inactivation  of  the  hMSH3  mismatch  repair  gene   in  bladder  cancer.  Biochemical  and  biophysical  research  communications.  2004;325:  934-­‐ 942.   17.  Eckert  KA,  Hile  SE.  Every  microsatellite  is  different:  Intrinsic  DNA  features  dictate   mutagenesis  of  common  microsatellites  present  in  the  human  genome.  Molecular   carcinogenesis.  2009;48:  379-­‐388.   18.  Umar  A,  Boland  CR,  Terdiman  JP,  et  al.  Revised  Bethesda  Guidelines  for  hereditary   nonpolyposis  colorectal  cancer  (Lynch  syndrome)  and  microsatellite  instability.  Journal  of   the  National  Cancer  Institute.  2004;96:  261-­‐268.   19.  Dobson  JM.  Breed-­‐predispositions  to  cancer  in  pedigree  dogs.  ISRN  Vet  Sci.  2013;2013:   941275.   20.  Knapp  DW,  Ramos-­‐Vara  JA,  Moore  GE,  Dhawan  D,  Bonney  PL,  Young  KE.  Urinary   bladder  cancer  in  dogs,  a  naturally  occurring  model  for  cancer  biology  and  drug   development.  ILAR  J.  2014;55:  100-­‐118.   21.  Seim-­‐Wikse  T,  Jorundsson  E,  Nodtvedt  A,  et  al.  Breed  predisposition  to  canine  gastric   carcinoma-­‐-­‐a  study  based  on  the  Norwegian  canine  cancer  register.  Acta  Vet  Scand.   2013;55:  25.   22.  Guyon  R,  Kirkness  EF,  Lorentzen  TD,  et  al.  Building  comparative  maps  using  1.5x   sequence  coverage:  human  chromosome  1p  and  the  canine  genome.  Cold  Spring  Harb   Symp  Quant  Biol.  2003;68:  171-­‐177.   23.  Oetting  WS,  Fryer  JP,  Oofuji  Y,  et  al.  Analysis  of  tyrosinase  gene  mutations  using  direct   automated  infrared  fluorescence  DNA  sequencing  of  amplified  exons.  Electrophoresis.   1994;15:  159-­‐164.   24.  Knapp  DW,  Glickman  NW,  Denicola  DB,  Bonney  PL,  Lin  TL,  Glickman  LT.  Naturally-­‐ occurring  canine  transitional  cell  carcinoma  of  the  urinary  bladder  A  relevant  model  of   human  invasive  bladder  cancer.  Urologic  oncology.  2000;5:  47-­‐59.     139     25.  Mutsaers  AJ,  Widmer  WR,  Knapp  DW.  Canine  transitional  cell  carcinoma.  Journal  of   veterinary  internal  medicine  /  American  College  of  Veterinary  Internal  Medicine.  2003;17:   136-­‐144.   26.  Parker  HG,  Kim  LV,  Sutter  NB,  et  al.  Genetic  structure  of  the  purebred  domestic  dog.   Science.  2004;304:  1160-­‐1164.   27.  Patrick  DJ,  Fitzgerald  SD,  Sesterhenn  IA,  Davis  CJ,  Kiupel  M.  Classification  of  canine   urinary  bladder  urothelial  tumours  based  on  the  World  Health  Organization/International   Society  of  Urological  Pathology  consensus  classification.  Journal  of  comparative  pathology.   2006;135:  190-­‐199.   28.  Watson  P,  Vasen  HF,  Mecklin  JP,  et  al.  The  risk  of  extra-­‐colonic,  extra-­‐endometrial   cancer  in  the  Lynch  syndrome.  Int  J  Cancer.  2008;123:  444-­‐449.   29.  Bai  S,  Nunez  AL,  Wei  S,  et  al.  Microsatellite  instability  and  TARBP2  mutation  study  in   upper  urinary  tract  urothelial  carcinoma.  Am  J  Clin  Pathol.  2013;139:  765-­‐770.   30.  Blaszyk  H,  Wang  L,  Dietmaier  W,  et  al.  Upper  tract  urothelial  carcinoma:  a   clinicopathologic  study  including  microsatellite  instability  analysis.  Mod  Pathol.  2002;15:   790-­‐797.   31.  Ehsani  L,  Osunkoya  AO.  Expression  of  MLH1  and  MSH2  in  urothelial  carcinoma  of  the   renal  pelvis.  Tumour  Biol.  2014;35:  8743-­‐8747.   32.  Eltz  S,  Comperat  E,  Cussenot  O,  Roupret  M.  Molecular  and  histological  markers  in   urothelial  carcinomas  of  the  upper  urinary  tract.  BJU  Int.  2008;102:  532-­‐535.   33.  Hartmann  A,  Zanardo  L,  Bocker-­‐Edmonston  T,  et  al.  Frequent  microsatellite  instability   in  sporadic  tumors  of  the  upper  urinary  tract.  Cancer  Res.  2002;62:  6796-­‐6802.   34.  Ho  CL,  Tzai  TS,  Chen  JC,  et  al.  The  molecular  signature  for  urothelial  carcinoma  of  the   upper  urinary  tract.  J  Urol.  2008;179:  1155-­‐1159.   35.  Mongiat-­‐Artus  P,  Miquel  C,  Van  der  Aa  M,  et  al.  Microsatellite  instability  and  mutation   analysis  of  candidate  genes  in  urothelial  cell  carcinomas  of  upper  urinary  tract.  Oncogene.   2006;25:  2113-­‐2118.   36.  Roupret  M,  Azzouzi  AR,  Cussenot  O.  Microsatellite  instability  and  transitional  cell   carcinoma  of  the  upper  urinary  tract.  BJU  Int.  2005;96:  489-­‐492.   37.  Roupret  M,  Catto  J,  Coulet  F,  et  al.  Microsatellite  instability  as  indicator  of  MSH2  gene   mutation  in  patients  with  upper  urinary  tract  transitional  cell  carcinoma.  J  Med  Genet.   2004;41:  e91.     140     38.  Roupret  M,  Fromont  G,  Azzouzi  AR,  et  al.  Microsatellite  instability  as  predictor  of   survival  in  patients  with  invasive  upper  urinary  tract  transitional  cell  carcinoma.  Urology.   2005;65:  1233-­‐1237.   39.  Roupret  M,  Hupertan  V,  Seisen  T,  et  al.  Prediction  of  cancer  specific  survival  after   radical  nephroureterectomy  for  upper  tract  urothelial  carcinoma:  development  of  an   optimized  postoperative  nomogram  using  decision  curve  analysis.  J  Urol.  2013;189:  1662-­‐ 1669.   40.  Catto  JW,  Meuth  M,  Hamdy  FC.  Genetic  instability  and  transitional  cell  carcinoma  of  the   bladder.  BJU  Int.  2004;93:  19-­‐24.   41.  Skeldon  SC,  Semotiuk  K,  Aronson  M,  et  al.  Patients  with  Lynch  syndrome  mismatch   repair  gene  mutations  are  at  higher  risk  for  not  only  upper  tract  urothelial  cancer  but  also   bladder  cancer.  Eur  Urol.  2013;63:  379-­‐385.   42.  Volanis  D,  Papadopoulos  G,  Doumas  K,  Gkialas  I,  Delakas  D.  Molecular  mechanisms  in   urinary  bladder  carcinogenesis.  J  BUON.  2011;16:  589-­‐601.   43.  Wadhwa  N,  Mathew  BB,  Jatawa  SK,  Tiwari  A.  Genetic  instability  in  urinary  bladder   cancer:  An  evolving  hallmark.  J  Postgrad  Med.  2013;59:  284-­‐288.   44.  Saetta  AA,  Goudopoulou  A,  Korkolopoulou  P,  et  al.  Mononucleotide  markers  of   microsatellite  instability  in  carcinomas  of  the  urinary  bladder.  Eur  J  Surg  Oncol.  2004;30:   796-­‐803.   45.  Vaish  M,  Mandhani  A,  Mittal  RD,  Mittal  B.  Microsatellite  instability  as  prognostic  marker   in  bladder  tumors:  a  clinical  significance.  BMC  Urol.  2005;5:  2.   46.  van  der  Meijden  AP.  Bladder  cancer.  BMJ.  1998;317:  1366-­‐1369.   47.  Amira  N,  Rivet  J,  Soliman  H,  et  al.  Microsatellite  instability  in  urothelial  carcinoma  of  the   upper  urinary  tract.  J  Urol.  2003;170:  1151-­‐1154.   48.  Catto  JW,  Azzouzi  AR,  Amira  N,  et  al.  Distinct  patterns  of  microsatellite  instability  are   seen  in  tumours  of  the  urinary  tract.  Oncogene.  2003;22:  8699-­‐8706.   49.  Watson  MM,  Berg  M,  Soreide  K.  Prevalence  and  implications  of  elevated  microsatellite   alterations  at  selected  tetranucleotides  in  cancer.  Br  J  Cancer.  2014;111:  823-­‐827.   50.  Catto  JW,  Xinarianos  G,  Burton  JL,  Meuth  M,  Hamdy  FC.  Differential  expression  of   hMLH1  and  hMSH2  is  related  to  bladder  cancer  grade,  stage  and  prognosis  but  not   microsatellite  instability.  Int  J  Cancer.  2003;105:  484-­‐490.   51.  Kassem  HS,  Varley  JM,  Hamam  SM,  Margison  GP.  Immunohistochemical  analysis  of   expression  and  allelotype  of  mismatch  repair  genes  (hMLH1  and  hMSH2)  in  bladder   cancer.  Br  J  Cancer.  2001;84:  321-­‐328.     141     52.  Kawakami  T,  Shiina  H,  Igawa  M,  et  al.  Inactivation  of  the  hMSH3  mismatch  repair  gene   in  bladder  cancer.  Biochem  Biophys  Res  Commun.  2004;325:  934-­‐942.   53.  Mylona  E,  Zarogiannos  A,  Nomikos  A,  et  al.  Prognostic  value  of  microsatellite  instability   determined  by  immunohistochemical  staining  of  hMSH2  and  hMSH6  in  urothelial   carcinoma  of  the  bladder.  APMIS.  2008;116:  59-­‐65.   54.  Rubio  J,  Blanes  A,  Sanchez-­‐Carrillo  JJ,  Diaz-­‐Cano  SJ.  Microsatellite  abnormalities  and   somatic  down-­‐regulation  of  mismatch  repair  characterize  nodular-­‐trabecular  muscle-­‐ invasive  urothelial  carcinoma  of  the  bladder.  Histopathology.  2007;51:  458-­‐467.   55.  Yamamoto  Y,  Matsuyama  H,  Kawauchi  S,  et  al.  Biological  characteristics  in  bladder   cancer  depend  on  the  type  of  genetic  instability.  Clin  Cancer  Res.  2006;12:  2752-­‐2758.   56.  Dietmaier  W,  Wallinger  S,  Bocker  T,  Kullmann  F,  Fishel  R,  Ruschoff  J.  Diagnostic   microsatellite  instability:  definition  and  correlation  with  mismatch  repair  protein   expression.  Cancer  Res.  1997;57:  4749-­‐4756.   57.  Shia  J.  Immunohistochemistry  versus  microsatellite  instability  testing  for  screening   colorectal  cancer  patients  at  risk  for  hereditary  nonpolyposis  colorectal  cancer  syndrome.   Part  I.  The  utility  of  immunohistochemistry.  J  Mol  Diagn.  2008;10:  293-­‐300.   58.  Bonnal  C,  Ravery  V,  Toublanc  M,  et  al.  Absence  of  microsatellite  instability  in   transitional  cell  carcinoma  of  the  bladder.  Urology.  2000;55:  287-­‐291.   59.  Zhang  L.  Immunohistochemistry  versus  microsatellite  instability  testing  for  screening   colorectal  cancer  patients  at  risk  for  hereditary  nonpolyposis  colorectal  cancer  syndrome.   Part  II.  The  utility  of  microsatellite  instability  testing.  J  Mol  Diagn.  2008;10:  301-­‐307.   60.  Mylona  E,  Zarogiannos  A,  Nomikos  A,  et  al.  Prognostic  value  of  microsatellite  instability   determined  by  immunohistochemical  staining  of  hMSH2  and  hMSH6  in  urothelial   carcinoma  of  the  bladder.  Acta  pathologica,  microbiologica  et  immunologica  Scandinavica.   2008;116:  59-­‐65.                   142     CHAPTER  5       Evaluation  of  DNA  mismatch  repair  in  novel  canine  lower  urinary  tract  urothelial   carcinoma  cell  lines     Dodd  Sledge1,  Elizabeth  A.  McNiel2,  Nicole  J.  Madrill3,  James  H.  Resau4,  Matti  Kiupel1     1  Department  of  Pathobiology  and  Diagnostic  Investigation,  Diagnostic  Center  for   Population  and  Animal  Health,  Michigan  State  University,  Lansing  MI    University,  Lansing,  MI;     2  Tufts  Cummings  School  of  Veterinary  Medicine  and  Molecular  Oncology  Research   Institute,  Boston,  MA,   3  College  of  Veterinary  Medicine,  Michigan  State  University,  East  Lansing,  MI   4  Van  Andel  Institute,  Grand  Rapids,  Lansing,  MI         143     Abstract   The  DNA  mismatch  repair  system  plays  important  roles  in  DNA  post  replication  repair,   damage  recognition  signaling,  apoptosis,  and  meiotic  recombination.  Consequently,  defects   in  MMR  are  associated  with  carcinogenesis  in  a  variety  of  tissues  and  have  been  shown  to   affect  response  of  cancers  to  chemotherapy.  Recently,  we  have  shown  that  many  canine   lower  urinary  tract  urothelial  carcinomas  have  deficiencies  in  MMR.  In  order  to  further   investigate  the  role  of  MMR  in  carcinogenesis  and  the  significance  of  MMR  deficiency  in  the   dog,  4  novel  lower  urinary  tract  urothelial  carcinoma  cell  lines  from  3  dogs  established   from  primary  cultured  cells.  Characterization  of  all  cell  lines  including  immunophenotyping   for  markers  of  urothelial  differentiation  was  consistent  with  an  urothelial  origin.  MMR  gene   expression  in  each  cell  line  was  evaluated  using  qPCR  and  protein  expression  was   evaluated  using  Western  blots.  Further,  MMR  gene  expression  was  evaluated  in  mice   xenografts  derived  from  the  canine  cell  lines  using  qPCR  on  laser  capture  microdissection   samples  of  tumor  and  MMR  protein  expression  was  evaluated  using   immunohistochemistry.    One  of  the  four  cell  lines,  TYLER2,  had  decreased  gene  and  protein   expression  of  MSH2  and  MSH6,  which  form  portions  of  the  MMR  pathway.    XTT  survival   assays  were  subsequently  used  to  evaluate  differences  between  the  cell  lines  in  sensitivity   to  a  panel  of  chemotherapeutics.    In  comparison  to  other  cell  lines  including  one  derived   from  the  same  primary  tumor,  TYLER2  had  relative  resistance  to  carboplatin  and   sensitivity  to  oxaliplatin,  thiotepa,  and  methotrexate.         144     Introduction   Urothelial  carcinomas  of  the  urinary  bladder  comprise  a  significant  proportion  of   canine  neoplasms  and  have  historically  been  associated  with  a  poor  prognosis.  Because   complete  surgical  resection  is  rarely  achievable  and  30-­‐50%  of  these  cancers  metastasize,   most  animals  die  of  their  disease.1,  2  Although  frequently  treated  with  chemotherapy,  these   cancers  respond  inconsistently;  however,  the  choice  of  chemotherapeutic  for  urothelial   carcinomas  has  traditionally  been  empirical  rather  than  based  on  scientific  evidence.2,  3     It  is  clear  that  the  molecular  constitution  of  cancer  in  one  individual  can  differ   considerably  from  that  of  cancers  in  others  despite  the  fact  that  the  cancers  may  have  a   similar  morphology  and  anatomic  localization.  In  other  words,  cancers  even  of  the  same   histologic  origin  can  be  molecularly  unique.  Thus,  in  therapeutic  terms,  a  standardized   treatment  prescription  fails  to  address  this  diversity.  In  recent  years,  there  has  been   considerable  interest  in  determining  ways  to  exploit  the  particular  molecular  constitution   of  a  given  tumor  to  improve  therapeutic  outcomes.  One  feature  that  differs  between  tumors   that  may  be  exploited  through  targeted  therapy  is  DNA  repair  capability,  including  the   functionality  of  their  DNA  mismatch  repair  system  (MMR).       The  MMR  machinery  participates  in  a  variety  of  cellular  processes.  Most  notably,  this   system  is  responsible  for  post  replication  repair  of  base-­‐base  mismatches  and  the   resolution  of  insertion  and  deletion  loops  that  can  occur  in  repetitive  regions  of  DNA.4  The   MMR  system  also  participates  in  a  variety  of  other  processes  including  DNA  damage   recognition  signaling,  apoptosis,  meiotic  recombination,  and  other  DNA  repair  pathways.4   Given  these  varied  roles  played  by  MMR,  it  is  not  surprising  that  defects  in  MMR  facilitate   carcinogenesis.  Similarly,  it  is  not  surprising  that  defects  in  MMR  have  significant  effects  on     145     response  of  cancers  to  therapy.  The  reported  effects  of  MMR  deficiency  on   chemotherapeutic  response  are  complex.    Depending  on  the  mechanism  of  action  for  a   given  chemotherapeutic,  MMR  deficiency  may  confer  either  drug  resistance  or  sensitivity.       Microsatellite  Instability  (MSI),  which  is  defined  as  the  accumulation  of  frame  shift   mutations  in  nucleotide  repeat  regions  of  DNA  (called  microsatellites)  is  considered  a   “signature”  for  MMR  dysfunction.4,  5  In  previous  investigations,  we  demonstrated  that  MSI   is  frequent  in  canine  urothelial  carcinomas  of  the  urinary  bladder  and  has  strong   associations  with  breed  and  phylogenetic  clade  (data  presented  in  Chapter  3).    In  addition,   we  showed  that  expression  levels  of  MSH2  and  MSH6  as  evaluated  by   immunohistochemistry  differed  in  canine  urothelial  carcinoma  from  that  observed  in   normal  canine  urotheluim  (data  presented  in  Chapter  3).    Such  frequent  MSI  and   alterations  MMR  protein  expression  suggests  MMR  dysfunction  is  common  in  canine   urothelial  carcinomas  and  may  be  heritable.  The  exact  cause  and  significance  of  MMR   dysfunction  in  canine  urothelial  carcinomas  remains  unclear.    However,  based  on  reports   of  differential  response  of  MMR  proficient  and  MMR  deficient  cancers  to  treatment  in   humans,  it  is  likely  that  MMR  status  could  also  affect  treatment  response  in  dogs  with  lower   urinary  tract  urothelial  carcinomas.         For  the  current  study,  we  aimed  to  establish  in  vitro  and  xenograft  models  for  further   study  of  MMR  dysfunction  in  canine  lower  urinary  tract  urothelial  carcinomas.    More   specifically,  we  aimed  to  evaluate  the  expression  of  components  of  the  MMR  pathway  at  the   gene  and  protein  level  in  lower  urinary  tract  urothelial  carcinoma  cell  lines  and  xenografts,   and  to  correlate  differences  in  such  expression  to  treatment  response.         146     Materials  and  methods     All  work  done  with  canine  tissues  or  with  xenografts  was  preformed  with  approval   from  the  Michigan  State  University  Institutional  Animal  Care  and  Use  Committee.   Characterization  of  canine  lower  urinary  tract  urothelial  carcinoma  cell  lines   With   owner   consent   for   inclusion   into   the   study,   four   canine   cells   lines   (ANGUS,   KINSEY,   TYLER1   and   TYLER2)   were   generated   from   primary   cell   culture   of   urothelial   carcinomas   of   the   lower   urinary   tract.     ANGUS   was   derived   from   a   papillary   grade   III   urothelial   carcinoma   of   the   urinary   bladder   with   invasion   into   the   muscularis   of   a   10-­‐year-­‐ old   neutered   male   Scottish   terrier,   KINSEY   was   derived   from   an   infiltrating   urothelial   carcinoma  of  the  urinary  bladder  with  invasion  into  the  substantia  propria  of  a  12-­‐year-­‐old   spayed   female   Australian   Shepherd,   and   TYLER   cell   lines   were   derived   from   a   single   papillary   grade   II   urothelial   carcinoma   with   invasion   into   the   muscularis   of   the   prostatic   urethra  of  an  8-­‐year-­‐old  neutered  male  Beagle.  All  animals  were  referred  to  the  Michigan   State   University,   Veterinary   Medical   Center,   East   Lansing,   MI   for   treatment   of   primary   bladder   disease.   Diagnoses   of   urothelial   carcinomas   were   made   based   on   results   of   histopathologic   examination   and   evaluation   of   immunohistochemical   markers   at   the   Diagnostic  Center  for  Population  and  Animal  Health,  Lansing,  MI.     For  ANGUS  and  TYLER  cell  lines,  neoplastic  cells  were  initially  isolated  from  macerated   fresh   samples   of   each   tumor   taken   from   routine   diagnostic   biopsy.   For   KINSEY,   cell   lines   were   derived   from   cell   pellets   derived   from   centrifugation   of   7mL   of   urine   taken   by   cystocentesis.    The  resulting  cell  pellet  was  suspended  in  media  and  plated  on  cell  culture   plates.    For  all  cell  lines,  neoplastic  cells  were  grown  on  uncoated  cell  culture  plates  in  1:1   DMEM/F12  media  (Life  Technologies,  Grand  Island,  NY,  USA)  supplemented  with  10%  fetal     147     bovine  serum,  l-­‐glutamine,  and  penicillin/streptomycin  in  a  37°C  humidified  CO2  incubator.   For  subculturing,  cells  were  harvested  from  culture  plates  using  0.05%  or  0.25%  Trypsin-­‐ EDTA  (Life  Technologies).   Over   multiple   passages,   two   unique   cellular   morphologies   were   identified   in   the   original   TYLER   cell   line,   which   were   separated   by   selective   trypsinization   over   several   passages.   For   selective   trypsinization,   mixed   cell   populations   were   incubated   with   0.05%   Trypsin-­‐EDTA   at   37°C   for   1-­‐3   minutes.     Cells   easily   released   from   attachments   on   cell   plates   by   such   light   trypsinization   were   removed   by   light   rinsing   of   plates   with   culture   media.     Easily   trypsinized   cells   were   subsequently   subcultured   separately   from   more   adherent  cells  resulting  in  establishment  of  two  morphologically  distinct  cell  lines,  TYLER1   and  TYLER2.   In   addition   subclones   of   TYLER1   and   TYLER2   were   established   through   serial   dilution.     Single   colonies   derived   from   dilution   of   cell   suspensions   plated   on   96   well   plates   were   identified   at   day   3   post   plating.     Subclones   were   established   from   these   single   cell   colonies   through  subsequent  expansion.   Development  of  xenografts     Xenografts  were  established  in  athymic  nude  mice  by  subcutaneous  injection  of  106   cells  in  200ul  of  sterile  media  lacking  FBS  and  antibiotics  over  the  flank.    Tumor  volume   was  evaluated  twice  per  week  and  animals  were  euthanized  using  CO2  when  tumor  volume   was  >0.5cm3  or  when  there  grossly  obvious  ulceration  of  the  skin  over  tumors.  Fresh   samples  of  xenograft  tumors  were  flash  frozen  in  liquid  nitrogen  and  saved  at  -­‐80°C.       Additional  fresh  tissue  samples  were  frozen  over  dry  ice  in  optimum  cutting  temperature   (OCT)  media  and  samples  were  stored  at  -­‐80°C.    Remaining  tumor  samples  were  fixed  for     148     24-­‐48  hours  in  10%  buffered  formalin  and  routinely  processed  for  histopathologic   examination.     Immunophenotyping  of  primary  tumors,  cell  lines,  and  xenografts     For  each  of  the  four  cell  lines,  cells  were  removed  from  75%  confluent  cell  culture   plates  with  a  cell  scraper  into  culture  media.    After  pelleting  of  cells  under  centrifugation,   cells  were  suspended  in  3ml  of  10%  buffered  formalin.    Following  6  hours  of  fixation,  cells   were  pelleted  under  centrifugation,  and  the  resulting  cell  pellet  was  routinely  processed   into  paraffin  blocks.     Markers  of  differentiation  were  evaluated  in  paraffin-­‐embedded  primary  tumors,   cell  lines,  and  xenograft  samples  using  immunohistochemistry  for  MNF116,  E-­‐cadherin,  P-­‐ cadherin,  N-­‐cadherin,  Cytokeratin  7,  uroplakin  III,  Prostatic  acid  phosphatase  (PAP),  and   vimentin.  Previously  described  protocols  were  used  for  IHC,  with  the  exception  that  for   mouse  derived  primary  antibodies,  blocking  of  nonspecific  binding  to  the  mouse  tissues   was  accomplished  by  preincubating  primary  antibody  with  secondary  antibody  and  mouse   serum  prior  to  use  (see  chapters  1  and  2).   Evaluation  of  MMR  protein  expression  by  Western  blots   Western  blotting  was  used  to  evaluate  expression  of  MLH1,  MSH2,  MSH3,  and  MSH6   in  a  cell  lines  along  with  a  variety  of  normal  canine  tissues.  Cell  lines  were  harvested  at   75%  confluence  using  a  cell  scraper.  Protein  was  subsequently  isolated  through  incubation   with  RIPA  buffer.    Total  protein  was  quantitated  using  Pierce™  BCA  Protein  Assay  Kit   (Thermo  Scientific,  Rockford,  IL,  USA),  a  Victor  X3  microplate  reader  (PerkinElmer,  Shelton,   CT  USA)  reading  absorbance  at  562nm,  and  comparison  to  a  dilution  series  of  bovine   serum  albumin.    Proteins  were  separated  using  SDS-­‐PAGE.    For  MLH1  and  MSH2,  proteins     149     from  each  sample  were  separated  using  10%  gels  (BioRad,  Hercules,  CA,  USA).    For  MSH3   and  MSH6,  proteins  from  each  sample  were  separated  using  7%  gels  (BioRad).  Precision   Plus  Protein™,  Dual  Color  (BioRad)  was  used  for  protein  standards.    Proteins  were   transferred  to  nitrocellulose  by  electroblotting.    Following  washes  in  TBST,  blots  were   blocked  using  3%  powdered  skim  milk  and  incubated  overnight  with  primary  antibodies  in   3%  powdered  skim  milk  as  follows:  1:200  mouse  monoclonal  anti-­‐MLH1  antibody  (BD   Biosciences,  San  Jose,  CA,  USA),  1:1500  rabbit  polyclonal  anti-­‐MSH2  antibody  (Santa  Cruz   Biotechnology,  Dallas,  TX,  USA),  1:3000  rabbit  polyclonal  anti-­‐MSH3  antibody  (1:100,   Abcam,  Cambridge,  MA,  USA),  1:500  mouse  monoclonal  anti-­‐MSH6  antibody  (1:500,  BD   Biosciences).  Following  washes  in  TBST,  blots  were  accordingly  incubated  for  2  hours  with   either  1:7500  goat  anti-­‐mouse  IgG  or  1:10,000  goat  anti-­‐rabbit  IgG  secondary  antibody   (Santa  Cruz  Biotechnology)  as  appropriate.  Blots  were  developed  using  a   chemiluminescence  detection  system  (Thermo  Scientific)  and  using  Amersham  Hyperfilm™   MP  autoradiography  film  (GE  Healthcare,  Little  Chalfont,  BM,  UK).    Blots  were  subsequently   stripped  for  1  hour  using  Western  blot  stripping  buffer  (Thermo  Scientific).    Following   washes  in  TBST  and  blocking  in  3%  bovine  serum  albumin  (BSA),  blots  were  incubated   overnight  with  1:2000  goat  anti-­‐β-­‐actin  primary  antibody  in  3%  BSA.      Following  washes  in   TBST,  blots  were  incubated  for  2  hours  with  donkey  1:7500  anti-­‐goat  secondary  antibody   in  3%  BSA  (Santa  Cruz  Biotechnology,  Dallas,  TX,  USA),  developed  as  described  above.     qPCR  for  MMR  genes   Cell  lines  were  harvested  at  75%  confluence  using  .05%  or  .25%  Trypsin-­‐EDTA.  Cell   lysis,  degradation  of  genomic  DNA,  and  reverse  transcription  of  RNA  to  cDNA  was     150     accomplished  using  TaqMan®  Gene  Expression  Cells-­‐to-­‐Ct  kits  (Life  Technologies,  Grand   Island,  NY,  USA)  using  manufacturer’s  instructions  and  104  cells.         For  xenografts,  laser  capture  microdissection  (LCM)  was  used  to  isolate  neoplastic   canine  urothelial  carcinoma  cells  from  mouse  tissues.  In  TYLER1  and  TYLER2  xenografts,   epithelioid  portions  of  tumors  were  harvested  separately  from  portions  with  more  discrete   cell  morphology.    Briefly,  serial  sections  of  OCT  embedded  frozen  xenografts  blocks  were   made  with  a  cryostat  microtome  using  RNase-­‐free  techniques.    Following  brief  fixation  in   methanol,  staining  with  hematoxylin,  and  dehydration  in  alcohol,  tissue  sections  were  kept   in  xylene  to  maintain  dehydration  until  LCM  was  performed.    Laser  capture   microdissection  (LCM)  using  an  Arcturus  PixCell  IIe  (Arcturus  Engineering,  Mountain  View,   CA,  USA)  with  targeted  regions  of  tumors  being  captured  with  CapSure®  Macro  LCM  caps   (Life  Technologies).    RNA  was  isolated  from  captured  regions  using  an  Arcturus  Paradise   Plus  RNA  Extraction  and  Isolation  Kit  (Life  Technologies)  following  the  manufacture’s   instructions.    Reverse  transcription  was  accomplished  using  High-­‐Capacity  cDNA  Reverse   Transcription  Kits  (Life  Technologies)  using  manufacturer’s  instructions.   Quantitative  real-­‐time  PCR  was  performed  using  a  StepOnePlus™  Real-­‐Time  PCR   System  (Applied  Biosystems,  Grand  Island,  NY,  USA)  using  commercially  available   TaqMan®  gene  expression  assays  for  MLH1,  MSH2,  MSH3,  MSH6,  PMS2,  β-­‐actin,  and   HPRT1,  and  a  custom  designed  TaqMan®  gene  expression  assay  for  GAPDH  (Applied   Biosystems)  (Table  14).  Studies  were  performed  with  technical  triplicates  and  were   repeated  twice  with  independent  RNA  isolation  and  generation  of  cDNA  between  studies.   The  baseline  and  threshold  for  detection  was  set  by  the  StepOnePlus  software,  with   threshold  Ct  being  defined  as  the  number  of  cycles  at  which  the  detection  of  fluorescent     151     signal  exceeded  the  automatically  set  threshold.  For  cell  lines,  relative  quantitation  of   target  gene  expression  was  evaluated  using  the  ∆Ct  method  using  comparison  of  a   compilation  of  control  genes  including  GAPDH,  β-­‐actin,  and  HPRT1.  For  xenografts,  only   expression  of  MSH2  and  MSH6  genes  was  evaluated,  and  analysis  of  relative  expression  of   target  genes  was  made  to  only  GAPDH  expression.  Relative  quantitation  of  gene  expression   between  different  cell  lines  or  xenografts  was  performed  using  the  delta-­‐delta  Ct  (∆∆Ct)   method.   Immunohistochemistry  and  morphometric  analysis  for  MSH2  and  MSH6  in  xenografts   Immunohistochemistry  (IHC)  was  preformed  to  evaluate  MSH2  and  MSH6   expression  in  xenografts  using  the  antibodies  described  above  for  Western  blots.  Five  µm   sections  of  all  formalin-­‐fixed,  paraffin-­‐embedded  tissues  were  processed  for   immunohistochemistry.  For  MSH2,  deparaffinization,  antigen  retrieval,   immunohistochemical  staining  and  counterstaining  was  preformed  on  a  Dako  Link  48   Autostainer  (Carpinteria,  CA,  USA)  using  a  LSAB2  kit  (Dako),  which  employs  a  3,3’   diaminobenzidine  tetrahydrochloride  (DAB)  chromogen  detection  system.    Retrieval  for   MSH2  was  accomplished  using  heat  induced  epitope  retrieval  and  incubation  with  citric   buffer  for  20  minutes.  For  MSH6,  deparaffinization,  antigen  retrieval,   immunohistochemical  staining  and  counterstaining  was  preformed  on  a  Benchmark  XT™   autostainer  (Ventana,  Tucson,  AZ,  USA)  using  an  Enhanced  Alkaline  Phosphatase  Red   Detection  Kit  (Ventana)  that  uses  an  indirect  biotin  streptavidin  and  Fast  Red  chromogen   detection  system.    Blocking  of  nonspecific  binding  to  the  mouse  anti-­‐MSH6  antibody  to   mouse  tissues  was  accomplished  by  preincubating  primary  antibody  with  secondary   antibody  and  mouse  serum  prior  to  use.  Retrieval  for  MSH6  was  accomplished  with  20     152     minutes  of  incubation  with  Cell  Conditioning  1  solution  (Ventana).  Sections  of  normal   urinary  bladder  were  used  as  positive  controls  and  run  in  parallel  to  cases  for  each  of  the   IHC.    For  negative  controls,  homologous  non-­‐immune  sera  or  buffer  replaced  primary   antibodies.     With  the  exception  of  TYLER1  and  TYLER2,  seven  randomly  picked  areas  from  each   slide  immunohistochemically  labeled  for  the  respective  MMR  proteins  listed  above  were   imaged  using  a  CRi  Nuance  multispectral  imaging  system    (Woburn,  MA,  USA).  For  TYLER1   and  TYLER2,  imaging  was  selectively  performed  to  isolate  regions  with  epithelial  and   discrete  cell  morphology.    The  resulting  image  cubes  were  converted  to  optical  density   units,  then  mathematically  unmixed  to  separate  chromogen  labeling  from  counterstain   using  spectral  libraries  generated  from  imaging  of  only  hematoxylin  stained  or   immunohistochemically  labeled  and  hematoxylin  counterstained  control  specimens.   Colocalized  immunoreactivity  was  assessed  as  positive  pixels  per  image  using  constant   thresholds  for  detection  and  the  multispectral  imaging  system  software.  The  component   images  of  the  image  cubes  were  then  pseudocolored,  converted  to  pseudofluorescent   format,  and  unmixed  for  counting  of  nuclei.    Such  counting  was  done  using  Imagine   morphometric  analysis  software  developed  at  the  Van  Andel  Research  Institute  (Grand   Rapids,  MI,  USA)  (Figures  22  and  23).  Final  results  of  morphometric  analysis  of   immunoreactivity  were  reported  as  the  mean  number  of  positive  pixels  per  nucleus  for   each  evaluated  sample.   Effect  of  chemotherapeutics  on  cell  survival   Survival  curves  were  generated  for  the  each  of  the  four  cell  lines  in  response  to  a  panel   of   therapeutic   agents   using   XTT   assay   kits   (Trevigen,   Gaithersburg,   MD,   USA)   following   the     153     manufacturer’s   instructions.   Evaluated   chemotherapeutics   included   cisplatin,   carboplatin,   oxaliplatin,   methotrexate,   thiotepa,   lomustine   (CCNU),   paclitaxel,   cytarabine,   and   gemcitabine.   Briefly,   2x104   cells   of   each   cell   line   were   incubated   with   a   range   of   concentrations   of   each   cytotoxic   agent.   Following   incubation   with   XTT,   a   terazolium   compound  that  is  converted  to  a  formazan  dye  within  viable  cells,  absorbance  was  assessed   using   a   Victor   X3   microplate   reader   (PerkinElmer,   Shelton,   CT   USA).   Corrected   absorbance   was  calculated  by  subtracting  absorbance  read  at  630nm  from  absorbance  read  at  490nm.   Surviving  cell  fraction  was  extrapolated  from  forecast  models  based  on  standards  derived   from  incubating  known  numbers  of  concurrently  plated  cells  from  each  cell  line  with  XTT.   Survival   assays   were   performed   with   three   technical   repeats   and   repeated   twice.   Means   of   percent   cell   survival   for   each   tested   chemotherapeutic   concentration   were   used   to   generate  survival  graphs.                         154     Results   Characterization  of  canine  lower  urinary  tract  urothelial  carcinoma  cell  lines  and  xenografts   Immunophenotyping  of  all  primary  tumors  was  consistent  with  urothelial  origin.     Specifically,  neoplastic  cells  throughout  all  tumors  diffusely  had  cytoplasmic   immunoreactivity  for  MNF116,  cytoplasmic  and  perimembranous  immunoreactivity  for   cytokeratin  7,  and  perimembranous  immunoreactivity  for  E-­‐cadherin  and  P-­‐cadherin   (Figure  24).    In  addition,  there  was  perimembranous  immunoreactivity  for  uroplakin  III  in   apical  cell  layers.    There  was  no  immunoreactivity  for  N-­‐cadherin,  vimentin,  or  PAP  in  any   primary  tumor.   After  >20  passages  ANGUS  and  KINSEY  had  a  uniform  epithelioid  morphology.     These  cells  were  plump  polygonal  and  grew  as  distinct,  dense  colonies  (Figure  25).    The   original  TYLER  cell  line  after  >10  passages  was  composed  of  a  biphasic  population  of  cells   including  plump  polygonal  epithelioid  cells  that  grew  in  sheets  and  aggregates,  and  a   population  of  more  spindle  to  stellate  cells.    After  separation  of  these  distinct  populations   by  selective  trypsinization  followed  by  >10  passages,  the  cell  lines  TYLER1  and  TYLER2   were  morphologically  characterized.    TYLER1  was  composed  of  plump  polygonal   epithelioid  cells  that  grew  in  discrete  colonies.  TYLER2  was  composed  of  spindle  to  stellate   cells  that  aggregated  into  sheets  and  bundles  when  near  confluence.   All  cell  lines  were  confirmed  as  epithelial  in  origin  by  immunoreactivity  to  the   pancytokeratin  marker  MNF116.    Further,  all  cell  lines  expressed  cytokeratin  7  which  given   the  location  and  histomorphology  of  the  primary  urothelial  carcinomas  from  which  they   were  derived,  is  consistent  with  an  urothelial  origin.    In  addition,  many  cells  from  the   TYLER1  and  TYLER2  cell  lines  expressed  prostatic  acid  phosphatase  (PAP)  (Figure  26).    All     155     cell  lines  were  immunoreactive  for  vimentin,  and  no  cell  line  expressed  uroplakin  3,  a   marker  expressed  late  in  urothelial  differentiation  and  only  by  apical  umbrella  cells  of  the   urothelium.   Characterization  of  xenografts   ANGUS  failed  to  produce  appreciable  tumors  in  xenograft  models.    KINSEY,  TYLER1,   and  TYLER2  grew  well  as  xenografts  forming  rapidly  growing  masses.  In  xenografts,   tumors  derived  from  the  KINSEY  cell  line  were  composed  of  neoplastic  plump  polygonal   epithelial  cells  arranged  in  dense  sheets  and  trabeculae.    Three  of  6  TYLER1  xenografts  and   3  of  4  TYLER2  xenografts  were  composed  of  biphasic  cell  populations  including  multifocal   regions  of  epithelioid  differentiation  and  extensive  regions  of  discrete  round  cells  (Figure   27).    Areas  of  epithelioid  differentiation  were  composed  of  nests  of  polygonal  neoplastic   cells  that  often  had  central  sharply  defined,  open  or  proteinaceous  fluid  filled  cavitations.     Discrete  cells  were  round,  loosely  associated  with  one  another,  and  arranged  in  dense   sheets  supported  by  scant  fine  fibrovascular  stroma.    The  remaining  3  TYLER1  xenografts   were  composed  of  only  epithelioid  cells  and  the  remaining  TYLER2  cell  line  was  only   composed  of  discrete  cells.    Such  biphasic  cell  populations  were  also  seen  in  xenografts   derived  from  subclones  of  TYLER1  and  TYLER2  generated  through  serial  dilution.   Using  immunohistochemistry,  neoplastic  cells  of  KINSEY  xenografts  had   immunoreactivity  for  the  epithelial  markers  MNF116,  E-­‐cadherin,  P-­‐cadherin;   immunoreactivity  for  cytokeratin  7  and  uroplakin  III,  which  are  expressed  by  urotheluim;   diffuse  immunoreactivity  for  vimentin,  an  intermediate  filament  expressed  in   mesenchymal  cells;  and  no  immunoreactivity  for  PAP,  a  marker  of  prostatic  epithelium   (Figure  28).    Epithelioid  populations  of  TYLER1  and  TYLER2  xenografts  had  expression  of     156     MNF116,  E-­‐cadherin,  P-­‐cadherin,  N-­‐cadherin,  cytokeratin  7,  and  uroplakin  III  (Figure  29).     Discrete  cell  populations  of  TYLER1  and  TYLER2  had  no  expression  of  MNF-­‐116,  E-­‐ cadherin,  P-­‐cadherin,  cytokeratin  7,  or  uroplakin  III.    Both  cell  populations  had  strong   expression  of  vimentin  and  few  scattered  individual  cells  of  both  populations  had   immunoreactivity  for  PAP.   Evaluation  of  MMR  protein  expression  by  Western  blots     Western  blotting  yielded  bands  corresponding  to  expected  molecular  weights  for  all   evaluated  markers  in  all  cell  lines.    The  expression  levels  of  MLH1  and  MSH3  were   relatively  consistent  across  cell  lines;  however,  the  relative  intensity  of  the  MSH2  and   MSH6  bands  were  lower  in  the  TYLER2  cell  line  in  comparison  to  that  of  other  cell  lines   consistent  with  lesser  expression  of  these  proteins  (Figure  30).       qPCR  for  MMR  gene  expression   With  the  exception  of  MSH6  in  KINSEY  in  which  there  was  moderate  variance,  there   was  only  mild  variance  in  relative  gene  expression  between  technical  and  biologic  repeats.     Examining  expression  of  the  MMR  genes  in  cell  lines  relative  to  a  compilation  of  the   expression  of  control  genes,  GAPDH,  β-­‐actin,  and  HPRT1,  TYLER2  had  lower  levels  of   expression  of  MSH2  and  MSH6  than  ANGUS,  KINSEY,  and  TYLER  (Figure  31).  There  were   no  obvious  differences  in  expression  of  MLH1,  MSH3,  PMS2  or  MLH1  between  evaluated   cell  lines.    There  was  significant  variance  in  the  relative  expression  of  MSH2  and  MSH6   relative  to  GAPDH  for  all  evaluated  xenografts;  however,  mean  relative  expression  of  MSH2   and  MSH6  was  higher  in  KINSEY  than  in  either  TYLER1  or  TYLER2,  and  the  there  were  no   or  only  mild  differences  in  mean  relative  expression  of  MSH2  and  MSH6  between  TYLER1   and  TYLER2  (Figure  32).    In  evaluations  of  relative  MSH2  gene  expression  in  LCM     157     separated  epithelioid  and  discrete  cell  populations  of  TYLER1  and  TYLER2,  there  was   differential  expression  of  MSH2  between  epithelial  and  discrete  cell  populations  for  both   TYLER1  and  TYLER2  (Figure  33).    There  was,  however,  no  difference  in  MSH2  expression   comparing  the  separated  cell  groups  of  TYLER1  to  those  of  TYLER2.     Immunohistochemistry  and  morphometric  analysis  for  MSH2  and  MSH6  in  xenografts   In  general,  the  mean  expression  levels  of  MSH2  and  MSH6  in  terms  of  positive  pixels   per  nucleus  was  lower  in  discrete  cell  populations  than  in  epithelioid  populations  for  both   TYLER1  and  TYLER2  (Figure  34;  Tables  15  and  16).    Further,  the  mean  expression  levels  of   MSH2  and  MSH6,  for  both  epithelioid  and  discrete  cell  populations  were  respectively   higher  in  TYLER1  populations  than  in  TYLER2  populations.    The  mean  expression  of  MSH6   was  higher  in  KINSEY  in  comparison  to  that  of  TYLER2  cell  lines  and  discrete  TYLER1  cell   populations,  but  was  not  different  from  that  of  epithelioid  portions  of  TYLER1.    Expression   of  MSH2  in  KINSEY  was  low  relative  to  that  observed  in  epithelioid  populations.    However,   there  was  marked  variation  in  quantitated  immunoreactivity,  and  particularly  large   differences  in  immunoreactivity  for  MSH2  between  the  TYLER  cell  line  subgroups.       Using  one-­‐way  ANOVA  tests,  there  were  significant  differences  in  the   immunoreactivity  for  MSH6  between  all  cell  groups  (p<0.001)  and  when  comparing  only   TYLER  xenografts  (p=0.015).    There  was,  however,  no  significant  difference  between  the   immunoreactivity  for  MSH2  whether  comparing  all  groups  (p=0.125)  or  only  TYLER   xenografts  (p=0.230).   Survival  assays   Graphic  results  of  XTT  survival  assays  are  presented  in  Figure  35.      With  regards  to   differences  in  chemotherapeutic  sensitivity  for  TYLER1  and  TYLER2,  there  were     158     appreciable  differences  in  sensitivity  to  carboplatin,  oxaliplatin,  methotrexate,  and   thiotepa.  TYLER2  was  more  sensitive  to  oxaliplatin,  moderate  concentrations  of   methotrexate,  and  lower  concentrations  of  thiotepa  than  TYLER1,  but  less  sensitive  to   carboplatin.    ANGUS  often  was  less  sensitive  to  chemotherapeutics  relative  to  other   evaluated  cell  lines  including  for  carboplatin,  cisplatin,  thiotepa,  and  gemcitabine.     Sensitivity  of  KINSEY  was  similar  to  that  of  TYLER1  for  carboplatin,  TYLER1  and  TYLER2   for  cisplatin,  ANUGS  and  TYLER1  for  oxaliplatin,  TYLER2  for  methotrexate,  and  TYLER1   and  TYLER2  for  gemcitabine.    For  thiotepa,  there  were  differences  in  sensitivity  for  all   tested  cell  lines,  especially  at  the  lowest  tested  concentrations,  with  TYLER2  being  most   sensitive,  followed  by  TYLER2,  KINSEY  and  ANGUS.    There  was  no  appreciable  difference  in   sensitivity  of  TYLER1,  TYLER2,  or  KINSEY  for  gemcitabine.    There  were  no  or  only  mild   differences  in  response  of  all  evaluated  cell  lines  to  paclitaxel,  cytarabine,  lomustine.                             159     Discussion   In  humans,  the  potential  application  of  MMR  as  a  therapeutic  target  is  highlighted  by   the   differences   observed   in   prognosis   and   the   response   to   treatment   between   cancers   of   the  same  type  that  differ  in  MMR  capacity.  In  terms  of  prognosis,  MMR  deficient  cancers  are   generally   associated   with   a   more   favorable   clinical   outcome   than   those   that   are   MMR   proficient.6-­‐10  In  colorectal  carcinomas,  for  example,  MMR  deficient  tumors  are  associated   with  longer  survival  times  and  a  decreased  risk  of  metastasis  compared  to  those  that  are   proficient.9   The   reason   for   this   difference   in   prognosis   is   likely   multifactorial.   Inherently,   cancers   with   defects   in   MMR   are   genetically   less   stable   that   those   with   intact   MMR   leading   to  an  increase  in  DNA  lesions,  which  promotes  cell  cycle  arrest  and  apoptosis  signaling.11   Also,  there  is  evidence  that  MMR  deficient  cancer  cells  are  often  highly  immunogenic.  This   is  proposed  to  occur  due  to  production  of  atypical  proteins  generated  through  frame  shift   mutations   resulting   in   T   cell   mediated   immune   responses   directed   against   the   cancer   cells.12   Additionally,   it   has   been   shown   that   several   genes   associated   with   antitumor   immune  responses  are  over  expressed  in  MMR  deficient  cancers  and  cell  lines.11   Given  the  range  of  DNA  repair  and  damage  signaling  pathways  with  which  the  MMR   system  is  associated,  it  is  not  surprising  that  defects  in  MMR  also  have  significant  effects  on   response   of   cancers   to   therapy.   The   effects   of   MMR   deficiency   on   chemotherapeutic   response   are   complex.   MMR   deficiency   is   capable   of   conferring   either   drug   resistance   or   sensitivity  largely  based  on  a  given  drug’s  mechanism  of  action.8,  13-­‐21  The  differential  effect   of  the  MMR  system  relative  to  chemosensitivity  likely  in  part  reflects  the  ability  of  the  MMR   machinery   to   participate   in   a   number   of   alternative   DNA   damage   processing/signaling   pathways.   In   the   case   of   simple   methylated   bases   in   the   DNA   molecule,   it   has   been     160     proposed   that   MMR   may   be   involved   in   triggering   apoptosis   through   either   futile   repair   attempts   or   through   conversion   of   the   alkylated   base   to   a   lethal   lesion   such   as   a   double   strand   break.21   Thus,   in   this   case,   deficiency   of   MMR   results   in   tolerance   of   alkylated   bases   and   drug   resistance.   In   contrast,   an   increased   sensitivity   to   cytotoxins   can   be   observed   if   defective  MMR  results  in  failure  to  repair  certain  types  of  DNA  lesions.  For  example,  certain   interstrand  cross-­‐links   are   recognized  by  the  MMR  system  and  repair  is  thought  to  occur   through   MMR   mediated   homologous   recombination.13   Cells   deficient   in   MMR   do   not   effectively   repair   these   cross-­‐links   and   are   sensitive   to   agents   that   induce   such   these   lesions.     Of  the  4  canine  lower  urinary  tract  urothelial  carcinoma  cell  lines  evaluated  in  the   current  study,  TYLER2  was  considered  to  be  MMR  deficient  relative  to  the  other  cell  lines   in   terms   of   MSH2   and   MSH6   gene   and   protein   expression.   Such   differential   expression   of   factors   in   the   MMR   pathway   in   cell   lines   offers   the   opportunity   to   study   the   effect   of   differential  expression  of  MMR  on  chemotherapeutic  response  in  an  in  vitro  canine  model.     This   is   particularly   true   as   TYLER1   and   TYLER2   provide   the   opportunity   to   evaluate   naturally   occurring   differenced   in   MMR   capacity   while   sharing   a   similar   genetic   background   having   been   derived   from   the   same   primary   tumor.   The   differential   sensitivities   observed   in   the   MMR   deficient   TYLER2   to   chemotherapeutics   are   consistent   with  reports  in  similar  studies  in  humans.  The  fact  that  ANGUS  was  resistant  to  a  number  of   chemotherapeutics  relative  to  other  cell  lines  is  not  surprising,  as  the  primary  tumor  was   aggressively  treated  with  chemotherapy  prior  to  establishment  of  the  cell  line.       Cisplatin,  carboplatin,  and  oxaliplatin  are  platinum-­‐containing  chemotherapeutics  that   act  by  forming  DNA  adducts  and  interstrand  crosslinks.    Recognition  of  such  DNA  damage     161     promotes   apoptosis   through   subsequent   activation   of   apoptotic   signaling   pathways.   In   humans,   resistance   to   cisplatin   and   carboplatin   has   been   reported   in   MMR   deficient   cancers,   while   no   such   resistance   has   been   reported   to   oxaliplatin.8,   18,   22-­‐26   While   these   drugs   have   similar   mechanisms   of   action,   it   has   been   suggested   oxaliplatin-­‐related   DNA   adducts   are   not   normally   recognized   by   MMR   and   thus   deficiency   has   little   effect   on   effectiveness   of   oxaliplatin.8,   26     Response   of   canine   lower   urinary   tract   urothelial   carcinomas   to   carboplatin   parallel   these   findings,   where   the   MMR   deficient   cell   line   TYLER2   was   relatively   resistant;   however,   there   was   no   difference   in   response   to   cisplatin,   and  TYLER2  was  more  sensitive  to  oxaliplatin.   Gemcitabine  and  cytarabine,  which  were  evaluated  in  the  current  study,  are  pyrimidine   nucleoside  analogs.  Radiosensitization  with  gemcitabine  in  the  face  of  MMR  deficiency  has   been  suggested.27,   28  Human  carcinoma  MLH1  and  MSH2-­‐deficient  cell  lines  were  found  to   be  sensitively  to  cytarabine.29  In  contrast  to  these  results,  there  was  no  apparent  difference   in  the  sensitivities  of  MMR  proficient  and  deficient  cell  lines  to  gemcitabine  or  cytarabine.   In   humans,   MMR   deficiency   results   in   drug   resistance   to   certain   alkylating   agents   including   the   SN1   methylators,   temozolomide   and   dacarbazine.8,   13,   18,   19,   21   However,   reports   suggest   that   MMR   deficient   cells   are   highly   sensitive   to   many   of   the   interstrand   cross-­‐linking  alkylators,  including  lomustine  (CCNU)  and  mitomycin  C.13,   21  The  role  MMR   directly   played   in   sensitivity   to   alkylators   in   our   canine   urothelial   carcinoma   cell   lines   is   unclear.    While  the  MMR  deficient  TYLER2  cell  was  most  sensitive  to  the  alkylator,  thiotepa,   there   was   wide   variation   in   response   to   treatment   for   all   tested   cell   lines   regardless   of   MMR   status,   and   there   were   no   apparent   differences   in   response   of   the   MMR   deficient   TYLER2  to  lomustine.         162     Methotrexate   is   a   folic   acid   inhibitor.     There   are   contradictory   reports   regarding   the   effect  of  MMR  proficiency  on  sensitivity  to  methotrexate.  One  study  suggested  an  increased   sensitivity  to  methotrexate  in  MMR  deficient  cell  lines.    In  another  study,  comparison  of  the   effect   of   methotrexate   on   a   cell   line   with   inactivation   of   MLH1   and   decreased   expression   of   PMS2   to   a   MMR   proficient   cell   line   found   increased   sensitivity   in   the   MMR   proficient   cell   line30   In   the   canine   urothelial   carcinoma   cell   lines,   the   MMR   deficient   TYLER2   was   more   sensitive  to  methotrexate  than  the  proficient  TYLER1.   Paclitaxel  (taxol)  is  an  inhibitor  of  mitosis  that  acts  by  interfering  with  breakdown  of   microtubules.   Previous   studies   have   found   no   association   between   MMR   proficiency   and   paclitaxel  sensitivity,  and  no  obvious  differences  were  observed  in  cell  lines  of  the  current   study.24,  31       The   differential   expression   of   MSH2   and   MSH6   likely   influenced   the   differential   sensitivities   of   TYLER2   to   select   chemotherapeutics   similar   to   that   described   in   the   human   literature;   however,   differences   in   other   carcinogenesis   related   pathways   cannot   be   excluded   as   contributing   to   relative   chemosensitivity   or   chemoresistance   in   the   current   study.     While   TYLER1   and   TYLER2   were   derived   from   the   same   tumor,   produced   similar   tumors  in  xenografts,  and  maintained  similar  expression  profiles  of  immunohistochemical   markers,   the   exact   similarity   of   the   molecular   constitution   of   these   cell   lines   is   unknown.     This   is   particularly   true   given   that   there   are   marked   differences   in   morphology   of   these   cells   in   culture   likely   suggesting   differences   between   the   cell   lines   outside   the   MMR   pathway.  Further  the  growth  of  tumors  in  xenografts  composed  of  biphasic  cell  populations   suggests   that   each   cell   line   may   be   composed   of   a   mixed   cell   population,   components   of   which   may   differ   in   MMR   proficiency;   however,   some   of   the   xenografts   of   TYLER1   and     163     TYLER2   cell   line   subclones   also   had   epithelioid   and   discrete   cell   populations   suggesting   divergent  differentiation  within  the  mouse  rather  than  injection  of  multiple  cell  types.   Overall,   these   studies   suggest   that   there   are   similarities   in   dogs   and   humans   regarding   chemosensitivity   of   MMR   proficient   and   deficient   cells.     In   addition,   the   demonstrated   variance   in   chemosensitivity   suggests   likely   clinical   implications   for   dogs   affected   with   lower   urinary   tract   urothelial   carcinoma   with   regards   to   selection   of   treatment.         Acknowledgments   Dr.  Sledge’s  graduate  program  was  funded  by  Bristol-­‐Meyers-­‐Squibb  through  the   American  College  of  Veterinary  Pathologists/Society  of  Toxicologic  Pathologists  coalition.   Funding  for  portions  of  this  work  were  provided  by  a  companion  animal  fund  grant   through  the  Michigan  State  University  College  of  Veterinary  Medicine.                         164                           APPENDIX                           165     Figure  22.  Multispectral  imaging  of  MSH2  immunohistochemistry  in  canine  lower  urinary   tract  urothelial  carcinoma  xenografts.  Immunoreactivity  for  MSH2  in  unmixed  images  was   detected  by  3,3’-­‐Diaminobenzidine  (DAB)  chromogen  with  hematoxylin  counterstain.   Colocalization  of  immunoreactivity  (yellow)  was  determined  using  set  thresholds  defined   from  spectral  libraries  of  controls.    Morphometric  analysis  used  to  count  nuclei  in  images   converted  to  psedofluorescene.       166     Figure  22  (cont’d)         167       Figure  23:  Multispectral  imaging  of  MSH6  immunohistochemistry  in  canine  lower  urinary   tract  urothelial  carcinoma  xenografts.  Immunoreactivity  for  MSH2  in  unmixed  images  was   detected  by  indirect  biotin  streptavidin  and  Fast  Red  chromogen,  hematoxylin   counterstain.  Colocalization  of  immunoreactivity  (yellow)  was  determined  using  set   thresholds  defined  from  spectral  libraries  of  controls  and  morphometric  analysis  used  to   count  nuclei  in  images  converted  to  psedofluorescene.     168     Figure  23  (cont’d)         169       Figure  24:  Photomicrographs  from  the  initial  diagnostic  biopsy  and  immunohistochemistry   (IHC)  on  the  papillary  grade  II  urothelial  from  which  TYLER  cell  lines  were  derived.    The   histomorphology  of  the  neoplasm  and  pattern  or  immunoreactivity  for  the  tested  IHC   markers  are  consistent  with  a  urothelial  carcinoma.    Neoplastic  polygonal  urothelial  cells   are  arranged  in  dense  nests  that  occasionally  have  open  or  necrotic  centers,  and  that  are   supported  by  supported  by  scant  fine  fibrovascular  stroma,  hematoxylin  and  eosin  (A).   Neoplastic  epithelial  cells  have  strong  cytoplasmic  immunoreactivity  for  the   pancytokeratin  marker  MNF116  (B)  3,3’-­‐Diaminobenzidine  (DAB)  chromogen,  hematoxylin   counterstain.  While  stromal  cells  are  immunoreactive,  neoplastic  urothelial  cells  are  not   labeled  for  vimentin  (C),  indirect  biotin  streptavidin  and  Fast  Red  chromogen,  hematoxylin   counterstain.  There  is  strong  perimembranous  immunoreactivity  for  cytokeratin  7   throughout  the  neoplastic  cells  (D),  strong  apical  expression  Uroplakin  3  in  cells  at  the   center  of  nests  (E),  and  no  immunoreactivity  for  prostatic  acid  phosphatase  (PAP),  DAB   chromogen,  hematoxylin  counterstain.         170     Figure  25:    Phase  contrast  photomicrographs  of  ANGUS,  KINSEY,  original  TYLER  cell  lines.     ANGUS  (A)  and  KINSEY  (B)  cell  lines  are  composed  of  plump  polygonal  cells  that  grow  in   intimately  associated  colonies  and  sheets.    Cells  of  ANGUS  contain  occasional  refractile,   sharply  demarcated,  vacuoles.    The  original  TYLER  cell  line  is  composed  of  a  biphasic   population  of  plump  polygonal  cells  that  generally  form  dense,  tightly  aggregated  colonies   and  sheets,  and  an  intervening  population  of  loosely  arranged  spindle  to  stellate  cells  (C).                                 171     Figure  26:  Phase  contrast  photomicrographs  of  TYLER1  and  TYLER2  cell  lines  and   photomicrographs  of  IHC  for  differentiation  markers  in  TYLER1  and  TYLER2  cell  lines.  In  cell   culture,  TYLER1  is  comprised  of  plump  polygonal  cells  that  generally  form  dense,  tightly   aggregated  colonies  and  sheets.    TYLER2  is  composed  of  cells  that  have  a  spindle  to  stellate   morphology  and  grow  in  loose,  haphazardly  arranged  patterns.    TYLER1  and  TYLER2  have   similar  expression  of  immunohistochemical  markers.  In  both  cell  lines,  individual  and   scattered  aggregates  of  cells  have  cytoplasmic  immunoreactivity  for  cytokeratin  7  and   prostatic  acid  phosphatase  (PAP),  3,3’-­‐Diaminobenzidine  (DAB)  chromogen,  hematoxylin   counterstain.    Cells  from  both  lines  have  strong  cytoplasmic  expression  of  vimentin,   indirect  biotin  streptavidin  and  Fast  Red  chromogen,  hematoxylin  counterstain.                     172     Figure  27:  Photomicrographs  from  a  canine  lower  urinary  tract  urothelial  carcinoma   xenograft  derived  from  the  TYLER2  cell  line  showing  two  morphologically  distinct  cell   populations,  hematoxylin  and  eosin  stain.  Neoplastic  cell  populations  are  biphasic  with   regions  showing  epithelioid  or  discrete  cell  morphology.    In  the  lower  magnification   photomicrograph  (A),  epithelioid  cells  are  arranged  in  nests  and  packets,  which  often  have   central  cavitations  that  are  open  or  that  contain  flocculent  eosinophilic  fluid  and  sloughed   degenerate  cells.    Discrete  cells  are  arranged  in  dense  sheets  supported  by  scant  fine   fibrovascular  stroma.    In  the  higher  magnification  photomicrograph,  epithelioid  cells  are   plump  polygonal,  and  have  distinct  cell  borders,  moderate  amounts  of  eosinophilic   cytoplasm,  and  rare,  sharply  defined,  open  intracytoplasmic  vacuoles.    Discrete  cells  are   densely  packed,  but  loosely  arranged,  round,  and  have  scant  eosinophilic  cytoplasm  and   variably  distinct  cell  borders.                   173     Figure  28:  Photomicrographs  of  IHC  for  differentiation  markers  in  a  canine  lower  urinary   tract  urothelial  carcinoma  xenograft  derived  from  the  KINSEY  cell  line.  Neoplastic  epithelial   cells  have  strong  permembranous  to  cytoplasmic  immunoreactivity  E-­‐cadherin  (A),   perimembranous  immunoreactivity  for  P-­‐cadherin  (B),  no  labeling  for  N-­‐cadherin  (C)   confirming  an  epithelial  origin,  3,3’-­‐Diaminobenzidine  (DAB)  chromogen,  hematoxylin   counterstain.  There  is  strong  perimembranous  immunoreactivity  for  cytokeratin  7   throughout  the  neoplastic  cells  (D),  no  immunoreactivity  for  prostatic  acid  phosphatase   (PAP)  (E),  which  is  consistent  with  an  urothelial  origin,  DAB  chromogen,  hematoxylin   counterstain.    Similar  to  what  was  observed  in  plated  cell  lines,  neoplastic  cells  have   cytoplasmic  expression  of  vimentin  (F),  indirect  biotin  streptavidin  and  Fast  Red   chromogen,  hematoxylin  counterstain.             174     Figure  29:  Photomicrographs  of  IHC  for  differentiation  markers  in  a  canine  lower  urinary   tract  urothelial  carcinoma  xenograft  derived  from  the  TYLER2  cell  line.    In  regions  of   epithelioid  differentiation,  neoplastic  epithelial  cells  have  strong  permembranous  E-­‐ cadherin  (A),  P-­‐cadherin  (B),  N-­‐cadherin  (C),  and  Uroplakin  3  (D)  consistent  with  a   urothelial  origin,  3,3’-­‐Diaminobenzidine  (DAB)  chromogen,  hematoxylin  counterstain.   Discrete  cell  populations  were  not  immunoreactive  for  E-­‐cadherin  (A),  P-­‐cadherin  (B),  N-­‐ cadherin  (C),  or  Uroplakin  3  (D).    There  was  rare  cytoplasmic  immunoractivity  for  prostatic   acid  phosphatase  (E)  in  scattered  individual  cells  in  both  epitheliod  and  discrete  cell   populations  (E),  suggesting  some  degree  of  prostatic  epithelial  differentiation,  DAB   chromogen,  hematoxylin  counterstain.    Similar  to  what  was  observed  in  plated  cell  lines,   epitheloid  and  discrete  cells  have  cytoplasmic  expression  of  vimentin  (F),  indirect  biotin   streptavidin  and  Fast  Red  chromogen,  hematoxylin  counterstain.           175     Figure  30:  Western  blots  show  relative  decreased  expression  of  MSH2  and  MSH6  in  the   TYLER2  cell  line  in  comparison  to  that  of  ANGUS,  KINSEY,  and  TYLER1.    Actin  expression  was   evaluated  to  ensure  equal  protein  loading.                                     176     Figure  31:  Graph  depicting  results  of  qPCR  for  MLH1,  MSH2,  MSH3,  MSH6,  and  PMS2  in  the   canine  lower  urinary  tract  urothelial  carcinoma  cell  lines,  ANGUS,  KINSEY,  TYLER1,  and   TYLER2  cell  lines.    Columns  represent  relative  quantification  of  each  gene  as  determined  by   the  ΔΔCt  method  with  evaluation  relative  to  a  compilation  of  β-­‐actin,  GAPDH,  and  HPRT1   gene  expression  and  relative  to  expression  in  TYLER2.  Associated  bars  represent  standard   deviation.  KINSEY,  ANGUS,  and  TYLER1  respectively  had  greater  than  10  fold,  5  fold,  and  4   fold  mean  relative  expression  levels  of  MSH2  above  that  of  TYLER2.    KINSEY  had  greater   than  6  fold  mean  relative  expression  levels  and  TYLER2  and  ANGUS  had  greater  than  1  fold   mean  relative  expression  of  MSH6  above  that  of  TYLER2.  There  were  less  than  a  fold   differences  in  mean  relative  expression  of  MLH1,  MSH3,  and  PMS2  between  all  cell  lines.                                   177     Figure  31  (cont’d)                 178     Figure  32:  Graph  depicting  results  of  qPCR  for  MSH2  and  MSH6  in  canine  lower  urinary  tract   urothelial  carcinomas  xenografts  derived  from  TYLER1,  and  TYLER2  cell  lines  laser  capture   microdissection  separated  from  mouse  tissues.    Columns  represent  relative  quantification  of   each  gene  as  determined  by  the  ΔΔCt  method  with  evaluation  relative  to  GAPDH  gene   expression  and  relative  to  expression  in  TYLER2.  Associated  bars  represent  standard   deviation.  Variance  in  the  mean  relative  quantification  of  gene  expression  is  depicted  by   wide  standard  deviations.  The  mean  expression  of  MSH2  relative  to  GAPDH,  was  greater   than  15  fold  higher  in  Kinsey  than  in  both  TYLER1  and  TYLER2.    There  was  no  appreciable   difference  in  the  mean  expression  of  MSH2  between  TYLER1  and  TYLER2.    The  mean   expression  of  MSH6  relative  to  GAPDH  was  greater  than  25  fold  higher  in  KINSEY  than  in   TYLER2  and  greater  than  5  fold  greater  in  KINSEY  than  in  TYLER2.    The  mean  relative   expression  of  MSH6  in  TYLER2  was  greater  than  4  fold  higher  than  that  of  TYLER1.                           179     Figure  32  (cont’d)                           180       Figure  33:  Graph  depicting  results  of  qPCR  for  MSH2  in  laser  capture  microdissection   separated  epitheliod  and  discrete  cell  populations  of  canine  lower  urinary  tract  urothelial   carcinomas  xenografts  derived  from  TYLER1,  and  TYLER2  cell  lines.    Associated  bars   represent  standard  deviation.  Columns  represent  mean  relative  quantification  of  MSH2   expression  as  determined  using  the  ΔΔCt  method  with  evaluation  relative  to  GAPDH  gene   expression  and  relative  to  expression  in  the  TYLER1  discrete  cell  population.  There  was   over  a  fold  difference  in  the  expression  of  MSH2  in  TYLER1  epitheliod  and  TYLER2   epitheliod  populations  in  comparison  to  that  of  the  TYLER1  and  TYLER2  discrete  cell   populations,  respectively.      There  were  only  mild  differences  in  relative  MSH2  expression   between  the  separately  isolated  epithelial  and  round  cell  populations  when  comparing   TYLER1  and  TYLER2.                           181     Figure  33  (cont’d)                   182     Figure  34:  Graph  depicting  results  of  morphometric  analysis  of  multispectral  imaging  of   immunoreactivity  of  MSH2  and  MSH6  in  canine  lower  urinary  tract  urothelial  carcinomas   xenografts  derived  from  KINSEY,  TYLER1,  and  TYLER2  cell  lines.    For  TYLER1  and  TYLER2,   areas  with  epithelioid  and  discrete  morphology  were  imaged  and  analyzed  separately.   Quantitated  immunoreactivity  is  reported  as  positive  pixels  per  nucleus.    Columns   represent  mean  of  expression  of  MSH2  and  MSH6  between  multiple  xenografts  with  bars   representing  standard  deviation  (KINSEY:  n=6;  TYLER1  epithelioid:  n-­‐4;  TYLER1  discrete:   n=5;  TYLER2  epithelioid:  n=3;  TYLER2  discrete:  n=4).  Marked  variation  in  the  expression   of  MSH2  and  moderate  variation  in  the  expression  of  MSH6  within  xenografts  derived  from   the  same  cell  line  is  evidenced  by  large  standard  deviations.  The  mean  expression  levels  of   MSH2  and  MSH6  in  terms  were  lower  in  discrete  cell  populations  than  in  epitheliod   populations  for  both  TYLER1  and  TYLER2.    Further,  the  mean  expression  levels  of  MSH2   and  MSH6,  for  both  epithelioid  and  discrete  cell  populations  were  respectively  higher  in   TYLER1  populations  than  in  TYLER2  populations.    The  mean  expression  of  MSH6  was   higher  in  KINSEY  in  comparison  to  that  of  TYLER2  cell  lines  and  discrete  TYLER1  cell   populations,  but  was  not  different  from  that  of  epithelioid  portions  of  TYLER1.    Expression   of  MSH2  in  KINSEY  was  low  relative  to  that  observed  in  epithelioid  populations.                     183     Figure  34  (cont’d)                         184       Figure  35:  Results  of  XTT  survival  assays  comparing  survival  of  canine  urothelial  carcinoma   cell  lines  upon  exposure  to  specific  chemotherapeutics.  With  regards  to  differences  in   chemotherapeutic  sensitivity  for  TYLER1  and  TYLER2,  there  were  appreciable  differences   in  sensitivity  to  carboplatin,  oxaliplatin,  methotrexate,  and  thiotepa.    For  carboplatin,  there   was  low  survival  of  TYLER1  relative  to  TYLER2  especially  at  higher  tested  concentrations;   however,  TYLER2  was  more  sensitive  to  oxaliplatin  than  TYLER1.      TYLER1  was  less   sensitive  than  TYLER1  to  moderate  concentraions  of  methotrexate  and  lower   concentrations  of  thiotepa.    ANGUS  often  was  less  sensitive  to  chemotherapeutics  relative   to  other  evaluated  cell  lines  including  for  carboplatin,  cisplatin,  thiotepa,  and  gemcitabine.     Sensitivity  of  KINSEY  was  similar  to  that  of  TYLER1  for  carboplatin,  TYLER1  and  TYLER2   for  cisplatin,  ANUGS  and  TYLER1  for  oxaliplatin,  TYLER2  for  methotrexate,  and  TYLER1   and  TYLER2  for  gemcitabine.    For  thiotepa,  there  were  differences  in  sensitivity  for  all   tested  cell  lines,  especially  at  the  lowest  tested  concentrations,  with  TYLER2  being  most   sensitive,  followed  by  TYLER2,  KINSEY  and  ANGUS.    There  was  no  appreciable  difference  in   sensitivity  of  TYLER1,  TYLER2,  or  KINSEY  for  Gemcitabine,  but  ANGUS  had  relative   resistance.    There  were  no  or  only  mild  differences  in  response  of  all  evaluated  cell  lines  to   taxol,  cytarabine,  and  lomoustine.                   185     Figure  35  (cont’d)                           186       Table  14:  TaqMan®  gene  expression  assays  used  for  qPCR   Amplicon   Gene   length   Species   Number   MLH1   105   Dog   Cf02666410_m1   Cf02626772_m1   MSH2   83   Dog   MSH3   103   Dog   Cf02643735_m1   MSH6   77   Dog   Cf02641004_g1   PMS2   109   Dog   Cf02644577_m1   HPRT1   102   Dog   Cf02626256_m1   β-­‐Actin   139   Human   Hs03023880_g1               Canine  GAPDH  custom  designed  TaqMan  gene  expression   assay:   Forward  Primer:  TCAACGGATTTGGCCGTATTGG   Reverse  Primer:  TGAAGGGGTCATTGATGGCG   FAM  labeled  probe:  CAGGGTGCTTTTAACTCTGGCAAAGTGGA             Table  15:  Distribution  of  MSH2  expression  in  canine  urothelial  carcinoma  xenogafts  as   evaluated  by  morphometric  analysis  of  immunohistochemistry   Cell  line  xenograft   KINSEY   TYLER1  epithelioid   TYLER1  discreet   TYLER2  epithelioid   TYLER2  discreet   N   6   4   5   3   4   Mean  MSH2  expression              (±   Standard  Deviation)   267.1  (±111.9)   1275.7  (±855.3)   453.4  (±808.3)   826.3  (±1318.3)   128.0  (±212.1)         187   Minimum   Maximum   127.3   409.4   564.6   2544.7   42.6   1896.3   24.2   2347.7   9.1   445.7     Table  16:  Distribution  of  MSH6  expression  in  canine  urothelial  carcinoma  xenogafts  as   evaluated  by  morphometric  analysis  of  immunohistochemistry     Cell  line  xenograft   KINSEY   TYLER1  epithelioid   TYLER1  discreet   TYLER2  epithelioid   TYLER2  discreet   N   6   4   5   3   4   Mean  MSH6  expression                (±   Standard  Deviation)   796.2  (±  158.5)   672.8  (±325.9)   197.9  (±153.9)   371.7  (±293.8)   95.2  (±59.7)                                     188   Minimum   Maximum   643.7   1128.5   275.5   1035.7   77   453.9   54.3   634.1   38.9   176.8                           REFERENCES                           189     REFERENCES     1.  Catto  JW,  Azzouzi  AR,  Amira  N,  et  al.  Distinct  patterns  of  microsatellite  instability  are   seen  in  tumours  of  the  urinary  tract.  Oncogene.  2003;22:  8699-­‐8706.   2.  D'Errico  M,  de  Rinaldis  E,  Blasi  MF,  et  al.  Genome-­‐wide  expression  profile  of  sporadic   gastric  cancers  with  microsatellite  instability.  European  journal  of  cancer.  2009;45:  461-­‐ 469.   3.  Hewish  M,  Lord  CJ,  Martin  SA,  Cunningham  D,  Ashworth  A.  Mismatch  repair  deficient   colorectal  cancer  in  the  era  of  personalized  treatment.  Nature  reviews.  Clinical  oncology.   2010;7:  197-­‐208.   4.  Jacob  S,  Praz  F.  DNA  mismatch  repair  defects:  role  in  colorectal  carcinogenesis.   Biochimie.  2002;84:  27-­‐47.   5.  Mylona  E,  Zarogiannos  A,  Nomikos  A,  et  al.  Prognostic  value  of  microsatellite  instability   determined  by  immunohistochemical  staining  of  hMSH2  and  hMSH6  in  urothelial   carcinoma  of  the  bladder.  Acta  pathologica,  microbiologica  et  immunologica  Scandinavica.   2008;116:  59-­‐65.   6.  di  Pietro  M,  Sabates  Bellver  J,  Menigatti  M,  et  al.  Defective  DNA  mismatch  repair   determines  a  characteristic  transcriptional  profile  in  proximal  colon  cancers.   Gastroenterology.  2005;129:  1047-­‐1059.   7.  Schwitalle  Y,  Kloor  M,  Eiermann  S,  et  al.  Immune  response  against  frameshift-­‐induced   neopeptides  in  HNPCC  patients  and  healthy  HNPCC  mutation  carriers.  Gastroenterology.   2008;134:  988-­‐997.   8.  Casorelli  I,  Russo  MT,  Bignami  M.  Role  of  mismatch  repair  and  MGMT  in  response  to   anticancer  therapies.  Anti-­‐cancer  agents  in  medicinal  chemistry.  2008;8:  368-­‐380.   9.  Cejka  P,  Stojic  L,  Marra  G,  Jiricny  J.  Is  mismatch  repair  really  required  for  ionizing   radiation-­‐induced  DNA  damage  signaling?  Nature  Genetics.  2004;36:  432-­‐433.   10.  Flanagan  SA,  Robinson  BW,  Krokosky  CW,  Shewach  DS.  Mismatched  nucleotides  as  the   lesions  responsible  for  radiosensitization  with  gemcitabine:  a  new  paradigm  for   antimetabolite  radiosentizers.  Molecular  cancer  therapeutics.  2007;6:  1858-­‐1868.   11.  Hart  JR,  Glebov  O,  Ernst  RJ,  Kirsch  IR,  Barton  JK.  DNA  mismatch-­‐specific  targeting  and   hypersensitivity  of  mismatch-­‐repair-­‐deficient  cells  to  bulky  rhodium(III)  intercalators.   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America.  2006;103:   15359-­‐15363.     190     12.  Martin  SA,  Lord  CJ,  Ashworth  A.  Therapeutic  targeting  of  the  DNA  mismatch  repair   pathway.  Clinical  cancer  research  :  an  official  journal  of  the  American  Association  for   Cancer  Research.  2010;16:  5107-­‐5113.   13.  Pors  K,  Patterson  LH.  DNA  mismatch  repair  deficiency,  resistance  to  cancer   chemotherapy  and  the  development  of  hypersensitive  agents.  Current  topics  in  medicinal   chemistry.  2005;5:  1133-­‐1149.   14.  Sargent  DJ,  Marsoni  S,  Monges  G,  et  al.  Defective  mismatch  repair  as  a  predictive  marker   for  lack  of  efficacy  of  fluorouracil-­‐based  adjuvant  therapy  in  colon  cancer.  Journal  of  clinical   oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology.  2010;28:  3219-­‐ 3226.   15.  Takahashi  T,  Min  Z,  Uchida  I,  et  al.  Hypersensitivity  in  DNA  mismatch  repair-­‐deficient   colon  carcinoma  cells  to  DNA  polymerase  reaction  inhibitors.  Cancer  letters.  2005;220:  85-­‐ 93.   16.  Valentini  AM,  Armentano  R,  Pirrelli  M,  Caruso  ML.  Chemotherapeutic  agents  for   colorectal  cancer  with  a  defective  mismatch  repair  system:  the  state  of  the  art.  Cancer   treatment  reviews.  2006;32:  607-­‐618.   17.  Rader  KA.  Making  Mice:  Standardizing  Animals  for  American  Biomedical  Research   1900-­‐1955.  Princeton,  NJ:  Princeton  University  Press,  2004.   18.  Hahn  WC,  Counter  CM,  Lundberg  AS,  Beijersbergen  RL,  Brooks  MW,  Weinberg  RA.   Creation  of  human  tumour  cells  with  defined  genetic  elements.  Nature.  1999;400:  464-­‐468.   19.  Macleod  KF,  Jacks  T.  Insights  into  cancer  from  transgenic  mouse  models.  J  Pathol.   1999;187:  43-­‐60.   20.  Artandi  SE,  Chang  S,  Lee  SL,  et  al.  Telomere  dysfunction  promotes  non-­‐reciprocal   translocations  and  epithelial  cancers  in  mice.  Nature.  2000;406:  641-­‐645.   21.  Artandi  SE,  DePinho  RA.  Mice  without  telomerase:  what  can  they  teach  us  about  human   cance?  Nat  Med.  2000;6:  852-­‐855.   22.  Perkel  JM.  Telomeres  as  the  key  to  cancer:  could  hundreds  of  mouse  models  be  wrong?   The  Scientist,  2002:38.   23.  McKevitt  TP,  Nasir  L,  Devlin  P,  Argyle  DJ.  Telomere  lengths  in  dogs  decrease  with   increasing  donor  age.  J  Nutr.  2002;132:  1604S-­‐1606S.   24.  Nasir  L,  Devlin  P,  McKevitt  T,  Rutteman  G,  Argyle  DJ.  Telomere  lengths  and  telomerase   activity  in  dog  tissues:  a  potential  model  system  to  study  human  telomere  and  telomerase   biology.  Neoplasia.  2001;3:  351-­‐359.     191     25.  Bibby  MC.  Orthotopic  models  of  cancer  for  preclinical  drug  evaluation:  advantages  and   disadvantages.  Eur  J  Cancer.  2004;40:  852-­‐857.   26.  Hougton  PJ.  Human  tumor  xenografts  as  preclinical  models:  Value  and  limitations.   American  Association  for  Cancer  Research  96th  Annual  Meeting.  Anaheim,  CA,  2005:33-­‐37.   27.  Johnson  JI,  Decker  S,  Zaharevitz  D,  et  al.  Relationships  between  drug  activity  in  NCI   preclinical  in  vitro  and  in  vivo  models  and  early  clinical  trials.  Br  J  Cancer.  2001;84:  1424-­‐ 1431.   28.  Izumi  Y,  di  Tomaso  E,  Hooper  A,  et  al.  Responses  to  antiangiogenesis  treatment  of   spontaneous  autochthonous  tumors  and  their  isografts.  Cancer  Res.  2003;63:  747-­‐751.   29.  Lindblad-­‐Toh  K,  Wade  CM,  Mikkelsen  TS,  et  al.  Genome  sequence,  comparative  analysis   and  haplotype  structure  of  the  domestic  dog.  Nature.  2005;438:  803-­‐819.   30.  Knapp  DW,  Glickman  NW,  Denicola  DB,  Bonney  PL,  Lin  TL,  Glickman  LT.  Naturally-­‐ occurring  canine  transitional  cell  carcinoma  of  the  urinary  bladder  A  relevant  model  of   human  invasive  bladder  cancer.  Urologic  oncology.  2000;5:  47-­‐59.   31.  Mutsaers  AJ,  Widmer  WR,  Knapp  DW.  Canine  transitional  cell  carcinoma.  Journal  of   veterinary  internal  medicine  /  American  College  of  Veterinary  Internal  Medicine.  2003;17:   136-­‐144.           192     CHAPTER  6       Conclusions     Dodd  Sledge     Department  of  Pathobiology  and  Diagnostic  Investigation,  Diagnostic  Center  for  Population   and  Animal  Health,  Michigan  State  University,  Lansing  MI           193     Summary  of  findings   With  regards  to  canine  lower  urinary  tract  urothelial  carcinomas,  these  studies   highlight  the  potential  prognostic  significance  of  multiple  evaluated  markers,  emphasize   potential  targets  for  directed  therapy,  and  highlight  similarities  between  dogs  and  humans   in  multiple  carcinogenesis  pathways.  However,  these  studies  also  highlight  significant   differences  between  urothelial  carcinomas  of  the  dog  and  human.  As  such,  these  findings   contribute  to  the  field  of  canine  cancer  prognostics  and  give  hope  to  improved,  targeted   treatment  for  bladder  cancer  in  dogs,  but  indicate  that  further  study  is  needed.  As  an   animal  model,  canine  lower  urinary  tract  urothelial  carcinomas  provide  an  interesting,   although  not  perfect,  parallel  to  such  disease  in  humans.       Histologic  classification  and  grading  form  cornerstones  of  routine  tumor  diagnostics   and  prognostication;  however,  the  recently  proposed  classification  and  grading  scheme  for   canine  proliferative  urothelial  lesions  based  on  the  World  Health  Organization   (WHO)/International  Society  of  Urologic  Pathology  (ISUP)  consensus  system  accepted  in   humans  had  not  previously  been  evaluated  with  respect  to  prognostic  relevance.    This   work  shows  that  there  are  biologic  differences  between  histologic  classifications  and   grades  as  evidenced  by  differential  expression  of  differentiation  molecules  and  factors   reflecting  specific  carcinogenesis  pathways.    Specifically,  there  were  differences  in   expression  of  uroplakin  III,  cytokeratin  7,  cyclooxygenase-­‐2  (COX-­‐2),  P-­‐cadherin,  and  β-­‐ catenin  between  classifications  of  proliferative  urothelial  lesions.  Differentiation  of   urothelial  tumors  as  papillary  or  infiltrating  did  correlate  with  survival  time;  however,   degree  of  invasion  and  histologic  grading  based  on  degree  of  anaplasia  did  not.       194     Based  on  the  common  findings  of  invasion  of  carcinomas  into  the  bladder  wall  and   metastasis,  it  is  likely  that  epithelial-­‐to-­‐mesenchymal  transition  occurs  in  canine  urothelial   carcinomas.  Our  studies  suggest  that  the  mechanisms  underlying  such  transition  in  dogs   differ  from  that  reported  in  humans.  In  humans,  correlations  exist  between  the  loss  of   expression  of  15-­‐hydroxyprostaglandin  dehydrogenase  (HPGD)  and  cadherin  switching.     This  does  not  appear  to  be  exactly  the  case  in  dogs  as  decreased  expression  of  HPGD   relative  to  that  of  normal  urothelium  was  common,  but  changes  in  cadherin  expression   were  not  similar  to  that  described  in  humans.    There  were  differences  in  the  expression  of   P-­‐cadherin  in  canine  urothelial  carcinomas,  with  loss  or  aberrant  localization  of  P-­‐cadherin   being  most  common  in  higher  grade,  invasive  carcinomas  and  being  associated  with   survival  time.    This  contrasts  with  the  increased  P-­‐cadherin  expression  described  with   epithelial-­‐to-­‐mesenchymal  transition  in  humans.    Further,  while  N-­‐cadherin  expression  is   reported  with  epithelial-­‐to-­‐mesenchymal  transition  in  human  urothelial  carcinomas  and   was  observed  in  human  urothelial  carcinoma  cell  lines  lacking  HPGD,  no  expression  of  N-­‐ cadherin  was  observed  in  any  of  the  examined  canine  urothelial  carcinomas.  This  suggests   that  while  overall  histomorphology  and  clinical  progression  of  human  and  canine  are   similar,  the  mechanisms  that  govern  invasion  and  metastasis  at  the  molecular  level  are   different.     Microsatellite  instability  (MSI)  was  found  in  a  significant  proportion  of  canine   urothelial  carcinomas  and  was  associated  with  genetic  background  in  terms  of  breed  and   phylogenetic  clade  of  affected  dogs.    This  finding  alone  makes  evaluation  of  MSI  and  the   possible  heritable  basis  of  MSI  attractive  for  further  study.    High  MSI,  however,  was  not   associated  with  clinical  outcome  in  terms  of  survival  time  and  was  not  specifically     195     correlated  with  subsequent  evaluation  of  DNA  mismatch  repair  (MMR)  protein  expression.       Differences  in  MMR  capacity  were,  however,  associated  with  variable  response  to   chemotherapeutic  sensitivity  in  canine  urothelial  carcinoma  cell  lines.    Specifically,  the   TYLER2  cell  line  had  decreased  expression  of  MSH2  and  MSH6,  resistance  to  carboplatin,   and  increased  sensitivity  to  oxaliplatin,  methotrexate,  and  thiotepa  relative  to  TYLER1,   which  was  derived  from  the  same  primary  tumor  and  considered  MMR  proficient.    Such   differences  in  response  to  treatment  in  vitro  suggest  that  there  are  likely  similar  differences   between  canine  urothelial  carcinomas  in  vivo  and  that  MMR  capacity  should  be  taken  into   account  with  regards  to  choice  of  therapeutic.     Given  the  preponderance  of  MMR  deficiencies  in  both  hereditary  and  spontaneous   human  cancers  and  the  clear  differences  reported  in  therapeutic  response,  there  is  clearly  a   need  to  optimize  treatment  plans  and  therapeutic  options  with  respect  to  MMR  capacity.   Relevant  and  reproducible  models  for  study  of  MMR  and  the  effects  of  loss  of  MMR  function   on  response  to  treatment  are  lacking.  Based  on  our  data,  MMR  is  frequently,  though  not   exclusively,  defective  in  canine  urothelial  carcinomas.  As  such,  urothelial  carcinomas  in   dogs  are  likely  to  provide  such  a  model  for  more  generalized  study  of  MMR.           196     Limitations  of  studies  and  unanswered  questions   The  major  limitation  of  chapter  1  was  the  lack  of  clinical  follow-­‐up  data.    This  was  a   retrospective  study  and  cases  evaluated  were  retrieved  from  archives  of  routine  diagnostic   specimens.    As  such,  provided  clinico-­‐demographic  information  was  of  varying  quality  and   completeness,  and  no  information  regarding  treatment,  clinical  progression,  or  clinical   outcome  was  available.  Thus,  while  it  was  possible  to  compare  and  correlate  expression  of   the  evaluated  immunohistochemical  markers  (uroplakin  III,  cytokeratin  7,  COX-­‐2  and   caspase-­‐3)  to  histomorphologic  features  that  are  often  associated  with  prognosis  in   humans  and  in  canine  other  cancers,  the  exact  prognostic  significance  of  differences  in  both   histomorphologic  features  and  evaluated  immunohistochemical  markers  is  unclear.  COX-­‐2   expression,  at  least,  was  further  examined  in  chapter  2  and  no  correlations  were  found   between  expression  and  survival  time;  however,  the  grading  of  methods  and  means  of   evaluation  of  COX-­‐2  expression  was  different  between  chapters  1  and  2.   In  studies  in  which  survival  time  was  available  (chapters  2  and  3),  only  urothelial   carcinomas  and  normal  urinary  bladders  were  evaluated,  and  there  were  particularly  low   numbers  of  infiltrating  and  low  grade  papillary  urothelial  carcinomas.    While  differences   were  found  in  HPGD,  P-­‐cadherin,  and  β-­‐catenin  expression  and  in  microsatellite  instability   between  urothelial  carcinomas  and  normal  urothelium,  it  is  unclear  if  such  findings  would   be  discriminatory  between  urothelial  carcinomas  and  other  proliferative  urothelial  lesions   or  inflammatory  disease  processes  affecting  the  lower  urinary  tract.    However,  the  lack  of   proliferative  urothelial  lesions  besides  urothelial  carcinomas  and  the  low  number  of   infiltrating  and  low  grade  papillary  carcinomas  is  largely  reflective  of  the  types  of  cases     197     that  present  to  a  veterinary  referral  clinic  and  the  low  rate  of  low  grade  or  infiltrating   carcinomas  in  the  overall  canine  population.   Survival  time  from  the  date  of  diagnosis  was  the  major  indicator  of  prognosis   evaluated  in  these  studies.  While  overall  survival  time  can  be  a  relevant  prognostic   indicator,  it  can  be  skewed  by  many  factors.    In  these  studies,  it  is  unclear  how  long  tumors   may  have  been  present  before  diagnosis,  treatment  was  not  consistent,  information   regarding  clinical  progression  was  not  available,  and  the  extent  of  disease  progression  at   the  time  of  death  was  unclear.    In  contrast  to  humans,  diagnosis  of  bladder  cancer  in  dogs  is   often  not  made  until  late  into  disease  progression  when  tumors  cause  mechanical  problems   or  when  systemic  disease  becomes  apparent.  Access  to  complete  clinical  follow-­‐up  was   limited  as  most  cases  that  had  significant  survival  time  were  referred  back  to  primary  care   veterinarians.    Further,  monitoring  of  disease  progression  in  terms  of  changes  in  tumor   size,  invasion,  or  development  of  metastasis  was  inconsistent  or  incomplete,  and  results   were  often  not  available.  The  reason  for  death  in  most  of  these  animals  was  reported  to  be   related  to  progressive  disease  related  to  the  urothelial  carcinomas.  In  most  cases,  however,   necropsies  were  not  preformed  to  document  extent  of  tumor  growth  or  metastasis,  and   death  was  not  by  natural  causes,  but  rather  by  elective  euthanasia.  The  choice  of   euthanasia  is  a  complicated  issue  with  respect  to  statistical  evaluation  of  survival  in  canine   cancer.    This  is  especially  true  given  that  there  is  significant  variation  in  the  point  of  disease   progression  at  which  the  decision  to  euthanize  is  made.    In  lower  urinary  tract  diseases,  the   choice  for  euthanasia  may  be  related  to  local  disease,  and  not  necessarily  metastasis  or   other  systemic  progression.  Further,  in  veterinary  medicine,  home  care  considerations  and   financial  impact  of  treatment  also  play  large  roles  in  the  decision  to  euthanize.    Euthanasia,     198     however,  is  an  unavoidable  confounding  factor  in  analysis  of  cancer  related  statistics  in   veterinary  medicine.   The  exact  significance  of  deficiency  in  mismatch  repair  as  evaluated  in  chapter  3   remains  unclear.    While  microsatellite  instability  was  demonstrated  in  a  number  of  canine   urothelial  carcinomas  and  was  associated  with  breed,  there  was  no  clear  association  of  MSI   to  MMR  protein  expression  as  evaluated  by  immunohistochemistry.    The  evaluation  of   MMR  proficiency  is  complicated  even  in  human  medicine  where  it  has  been  extensively   used.  Variable  recommendations  regarding  evaluation  immunohistochemcial  of  MMR   protein  expression  and  determination  of  MSI  exist.    The  reagents  used  for  evaluation  in  all   of  these  studies  were  not  specifically  designed  for  use  in  dogs.    This  is  particularly  true  of   the  antibodies  used  to  assess  protein  expression  by  IHC.    While  we  were  able  to  show  that   the  antibodies  did  label  appropriately  sized  molecules  in  Western  blot,  aberrant  labeling   cannot  be  completely  excluded  as  a  confounder.    The  role  of  decreased  MMR  protein   expression  rather  than  total  loss  is  unclear.  Further,  the  morphometric  methods  of   evaluating  overall  MMR  protein  expression  differ  from  that  described  in  most  human   studies.     In  canine  lower  urinary  tract  urothelial  carcinoma  cell  lines,  the  functional  significance   of  decreased  relative  expression  of  MSH2  and  MSH6  is  unclear.  Evaluation  of  the  status  of   the  MMR  system  of  evaluated  cell  lines  was  largely  inferred  from  evaluation  of  MMR  gene   and  protein  expression  and  comparison  between  cell  lines.    It  is  less  clear  to  what  degree   the   relative   differences   in   MMR   gene   and   protein   expression   had   on   the   overall   function   of   the   MMR   system.   Outside   of   the   studies   reported   in   this   dissertation,   MSI   was   evaluated   in   ANGUS  and  the  initial  cultures  of  TYLER  using  the  methods  described  in  chapter  3.  ANGUS     199     did   not   exhibit   instability   in   any   of   the   microsatellites   evaluated.   In   contrast,   there   was   variability   in   the   length   of   select   microsatellites   comparing   DNA   of   the   TYLER   cell   line   to   that  of  DNA  of  blood  samples  collected  from  the  dog  from  which  TYLER  was  derived.  This   does   suggest   some   functional   deficiency   microsatellite   instability   in   TYLER.     However,   differences   in   TYLER1   and   TYLER2   with   respect   MMR   functional   capacity   have   not   been   specifically  assessed.       While  the  TYLER  cell  lines  were  derived  from  the  same  primary  urothelial   carcinoma,  it  is  likely  that  these  cell  lines  differ  not  only  in  MMR  gene  and  protein   expression.  This  is  suggested  by  the  marked  phenotypic  variation  in  cell  culture  and  the   production  of  biphasic  cell  populations  in  xenografts.    These  cell  lines  were  derived  from   primary  culture  and  as  such  are  likely  composed  of  a  heterogeneous  cell  population.  While   such  a  heterogeneous  cell  population  in  cell  culture  may  more  closely  resemble  the  natural   heterogeneity  of  cancer  in  vivo,  it  complicates  determination  of  the  effects  of  specific   differences  in  in  vitro  studies.    In  addition,  if  MMR  deficiencies  in  TYLER2  are  functional,  an   increased  rate  of  mutation  and  an  associated  build  up  of  secondary  mutations  over   numerous  passages  in  cell  culture  is  likely.    The  reason  for  the  marked  variation  in  cell   morphology  between  TYLER1  and  TYLER2  is  unknown,  but  is  likely  not  determined  only   by  differences  in  MMR.    As  such,  it  cannot  be  excluded  that  differences  in  sensitivity  to   chemotherapeutics  observed  between  TYLER1  and  TYLER2  were  not  related  to  specifically   to  differences  in  MMR  proficiency.  Further,  even  though  differences  in  response  to   chemotherapeutics  were  observed  in  cell  culture,  this  in  vitro  response  may  not  be   reflected  in  vivo.       200     Future  directions   Larger   and   more   in   depth   prospective   studies   are   needed   to   more   fully   evaluate   the   prognostic  significance  of  histologic  classification  and  grading.  Such  studies  should  ideally   include  a  larger  representative  group  of  low  grade  and  infiltrating  carcinomas.  Such  studies   should   also   include   careful   monitoring   to   evaluate   prognostic   significance   in   terms   of   change   in   tumor   size,   change   in   stage,   and   time   to   metastasis.   Based   on   the   biologic   differences   observed   in   tumor   classification   and   grade,   it   is   likely   that   prognostic   significance  exists,  but  was  not  observed  in  the  studied  populations  of  this  dissertation  as   only  survival  time  from  diagnosis  was  examined  and  there  were  low  sample  numbers,  with   low  grade  and  infiltrating  carcinomas  being  particularly  underrepresented.   The   mechanisms   that   underlie   epithelial-­‐to-­‐mesenchymal   transition   in   canine   urothelial   carcinomas   remain   unclear   as   does   the   significance   of   loss   of   HPGD.   It   is   clear   that   epithelial-­‐to-­‐mesenchymal   transition   in   dog   urothelial   carcinomas   is   different   from   that   in   humans.   Comparative   studies   evaluating   other   features   of   epithelial-­‐to-­‐ mesenchymal   transition   are   needed   to   further   characterize   similarities   and   differences.   Lack  of  HPGD  expression  was  seen  in  all  evaluated  canine  urothelial  carcinoma  cell  lines,   and   while   there   was   some   degree   of   difference   in   P-­‐cadherin   expression,   loss   or   up   regulation   was   not   often   observed.     Knock   in   studies   for   HPGD   in   cell   lines   along   with   evaluation  of  changes  in  cadherin  expression  and  comparative  invasion  assays  would  serve   to  further  determine  the  functional  consequences  of  loss  of  HPGD.     It  is  unclear  if  MMR  deficiencies  play  a  role  in  development  of  other  types  of  cancers   in  dogs.  Based  on  the  results  of  immunohistochemical  MMR  protein  evaluation  in  bladder   tumors,   expression   levels   of   MMR   protein   may   not   be   well   correlated   with   MSI   given   the     201     methods  by  which  MSI  was  evaluated  in  these  studies.    It  appears  that  lack  of  MSI,  at  least   within   the   MS   evaluated   in   our   studies,   does   not   preclude   that   differences   or   at   least   variation  in  MMR  may  be  present.  Given  the  fact  that  relative  differences  in  expression  of   MMR   protein   expression   as   assessed   by   IHC   and   morphometric   analysis   of   immunoreactivity   did   not   correlate   with   MSI,   it   would   be   of   interest   to   evaluate   MMR   protein  expression  in  other  tumors  including  gastric  carcinomas  and  mammary  tumors,  for   which   it   was   shown   that   MSI   is   uncommon.   It   is   likely   that   variance   in   MMR   protein   expression  is  common  in  canine  cancer  and  possibly  normal  tissues.       The long-term goal of establishing differences in response to chemotherapeutics with respect to MMR status is to be able to make treatment selection for an individual patient based on MMR system evaluation. The   results   of   chemotherapeutic   sensitivity   testing   in   canine   urothelial   carcinomas   is   promising,   but   the   exact   role   of   MMR   proficiency   and   the   exact   implication  these  data  have  in  animals  in  vivo  remains  unclear.  In  order  to  better  isolate  the   effects  that  MMR  proficiency  have  on  treatment  response  in  vitro,  knockdown  and  knock-­‐in   studies   would   be   required.     TYLER1   and   TYLER2   offer   an   excellent   opportunity   for   such   studies   due   to   their   common   origin,   but   differential   MMR   capacity   and   demonstrated   differences   in   chemosensitivity.   In order to separate the effects of MMR deficiency form other potential sources of treatment response differences, MSH2 could be selectively knocked down in TYLER1 and other MMR proficient cell lines. Concurrent knock in studies could also be preformed in TYLER2 to increase the expression of MSH2 to the comparative levels of the other evaluated cell lines. Subsequent chemotherapeutic survival studies comparing manipulated cell lines to wild types would better distinguish differences in treatment response specifically associated with altered MMR expression.   202     Further,  conditions  in cell culture vary greatly from in vivo conditions as such response of cancerous cells to treatment may differ in each of these settings. Treatment dosages used in cell culture systems may not be achievable or may be ineffective in live animals. Drug concentrations that are applicable to cell cultures may cause toxicity in live animals or may not achieve sufficient penetrance of the target tissues. Xenografts of derived from cell lines could be evaluated in terms of in vivo response to treatment. The long-term goal for such studies would be to support clinical studies in naturally occurring bladder cancer dogs evaluating the response of tumors to standard chemotherapy with respect to the presence MSI and alterations in MMR protein expression as evaluated by IHC in routine diagnostic biopsies.   As a whole, the studies detailed in this dissertation suggest that many pathways are involved in carcinogenesis of canine urothelial tumors. These include prostaglandin regulation pathways, epithelial-to-mesenchymal transition, Wnt signaling, and DNA mismatch repair. However, it is unclear if and how the observed differences relate to one another or what other carcinogenesis related pathways may be altered in canine urothelial carcinomas. Carcinogenesis is a multifactorial process involving defects in multiple pathways related to DNA repair, the cell cycle, apoptosis, and a multitude of other processes. Once initiated, cancer progression involves changes in the expression of a plethora of genes due to a wide variety of mechanisms. Such individual changes and the sum of these changes act to determine clinical progression and response to treatment. MMR deficiencies are associated with not only an increased rate of mutation, but with specific secondary mutations. In humans, whole genome gene expression profile of MMR deficient cancers are distinct from those of cancers with MMR proficiency. Large scale genomic analysis of MMR proficient and deficient canine urothelial carcinoma cell lines would allow for   203     evaluation of expression profiles of other DNA repair pathways, for comparison of differential expression of genes between MMR deficient and proficient cell lines, for comparison of changes in gene expression of both MMR proficient and deficient cell lines that occur in response to treatment, and for comparison of profiles in canine urothelial carcinomas to reported gene profiles in human cancers. Similar to what has been documented in human cancers with variable MMR capacity, differences in expression of genes related to apoptosis, antitumoral immunity, and MMR would be expected. With evaluation of profiles with response to treatment, cell lines with varying MMR capacity will undoubtedly have significant differences in expression of multiple genes as MMR capacity is associated with varying sensitivity to cytotoxic agents. Such differential gene profiles would serve to highlight additional potential targets for therapeutic intervention. Comparisons of gene profiles in dogs to those of humans would also further the supposition that dogs are accurate models of urothelial carcinogenesis and MMR deficiency for human cancer.         204