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ABSTRACT

PERSONALIZED INFORMATION DISCOVERY FROM UNSTRUCTURED

TEXT

By

Marilyn Wulfekuhler

We have developed a technique that finds conceptually related groups of words

which represent the underlying content of user designated text examples. These word

groups characterize the content of the documents at an intermediate conceptual level

that is between full understanding and Simple statistical processing of individual

words. A number of user’s needs for finding and organizing information can be met

by using this intermediate conceptual level, beyond current methods which either

rely on individual words to characterize documents, or methods that rely on a global,

static comprehensive knowledge base.

Given sets of examples of unstructured text which a user has designated as in-

teresting, we can automatically find conceptually related groups of words from them

which represent underlying building blocks of the content of the documents. We

find these word groups using standard statistical clustering techniques without the

use of complicated natural language processing techniques, and without the need for



 

explicit external knowledge. We require only a relatively small number of example

documents.

Both automatic document content search and automatic document classification

have long been goals in information retrieval which have had only limited success.

We conjecture that success has been limited because in the case of classification, the

traditional focus has been to achieve a global, static, comprehensive scheme which is

all things to all people and all documents. In the case of search, traditional methods

have focused on documents and information needs at an individual word level; when

words are considered in isolation, the problems of polysemy (identical words with

different meanings) and synonymy (different words with identical meanings) limit the

success of the search.

By using an intermediate conceptual level, we can arrive at personalized context

sensitive organizational schemes, and provide a more useful basis for search than that

provided by representations based on isolated words.
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Chapter 1

Introduction

We have deveIOped a technique that finds conceptually related groups of words which

represent the underlying content of user designated text examples. These word groups

characterize the content of the documents at an intermediate conceptual level that is

between full understanding and Simple statistical processing of individual words. A

number of user’s needs for finding and organizing information can be met by using

this intermediate conceptual level of characterization, beyond current methods which

either rely on individual words to characterize documents, or methods that rely on a

global, static, comprehensive knowledge base.

We can concisely state the problem as follows:

‘6'

Given a set of n textual documents that a user has identified as In-

teresting”, containing (1 total words (the features), find some subsets of

d which represent conceptual features which distinguish these documents

from others, and which represent concepts contained in the n documents.
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The subsets of related words are found using standard statistical clustering tech-

niques without the use of complicated natural language processing, and without the

need for external knowledge. We require only a relatively small number of example

documents; we do not try to build these conceptual features based 011 a large corpus

of text; we use only documents which represent the user’s focus of attention at the

time.

We can use these conceptual features and the topics they suggest as the charac-

terization of textual information in order to:

o automatically search for unknown documents on similar topics

0 organize collections of documents tailored to personal preference

a dynamically classify document collections with topical proximity

These tasks are less fruitful under current schemes because traditional methods

represent information either by using individual words in documents, which is too

narrow a view, or by using a globally imposed topic categorization, which is too broad.

Representing information at an intermediate conceptual level enables a personalized,

dynamic view of textual information, allowing the above tasks to be performed more

effectively. This is the major contribution of this thesis.

Assumptions we make are as follows:

1. A user has collected several documents from each of several categories of interest

so that the document collection contains both commonality (as defined by a

user) between documents in the same category, and diversity among categories.

2. The commonality consists of related, low-level concepts which likely share a
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Specialized vocabulary rather than meta concepts (e.g., a collection of funny

stories).

3. The documents are not labeled by category.

4. The number of documents 72 is smaller than the number of distinct words (1.

5. A user may generate new conceptual features at any time, as interests or doc-

ument examples change.

Assumption 4 states that n < d. If there are more documents than distinct

words, that is, n > d, the document collection can be broken into subsets such that

the commonality and diversity requirements are met. The reason for the restriction

on the size of the document sets will be further explained in subsequent sections.

Assumption 5 implies that total processing time should be short enough to allow

user feedback as quickly as possible. While real—time processing is not yet possible,

it Should not take more than a few hours (e.g., over lunch or overnight) to generate

conceptual features and use them for search or organization.

In this chapter we motivate the problem, describe how it has been handled his-

torically in the context of library science, and explain why traditional methods don’t

work well in the new domain of the Internet. Chapter 2 reviews previous related work

and current approaches to information discovery on the Internet. Chapter 3 describes

our system for extracting conceptual features which we use for representing informa-

tion at an intermediate conceptual level in a personal, dynamic way. In this chapter

we also describe our attempts to achieve personal categorization using word-level fea-

tures, and explain why categorization using this sort of representation is doomed to
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failure. Chapter 4 gives detailed results of our experiments using 4 different data sets.

It then gives preliminary results of using the conceptual level features for automatic

search and document organization. Chapter 5 gives a summary and outlines future

work to be done in the area of automatic information discovery.

1.1 Motivation

AS the information age proceeds, we are deluged with more and more information,

and it is becoming increasingly difficult to manage it. An individual can not and does

not want to understand the organization of all available information, only that which

is of current interest to him or her. We need to have an easily derived representation

of information that conveys meaning in a given context which represents a user’s

current focus of attention.

1.1.1 Information and Knowledge

Humans are unique in the animal kingdom in that they do not rely solely on expe-

rience or a direct teacher to gain information. Instead, they can utilize an amassed

body of knowledge which has been acquired and stored by others. Significant among

sources of all information are textual sources, for which we have developed well es-

tablished practices of access. Some information needs are specific, (e.g., I need to

know the maximum recorded length of a blue whale), while others are general (I

want to learn about blue whales). Representation of information encompasses both

these needs, and information sources which fulfill needs. (The traditional resource for
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acquiring knowledge from textual information is a library. and methods and solutions

for meeting information needs have been developed in that context.

1.1.2 A new domain — the Internet and World Wide Web

The explosion of the Internet and the World Wide Web in the past four years has

created an unprecedented amount of readily and widely available textual information.

The current apprOaches to discovering relevant information are typically patterned

after methods and techniques from the information retrieval field, where the problem

of automatically finding information from textual sources has been well studied in

the context of library science. However, there are fundamental differences in the

basic assumptions of search and classification of text in library contexts which make

traditional methods inadequate when seeking information from the Internet.

Specifically, published works in a library are collected under well defined rules

and controls, using well established techniques. The tasks of categorizing, indexing,

and representing information are performed by professional humans. With the rise

of the Internet as a source of textual information, however, anyone can publish infor-

mation, and a document is under complete control of the author, who is most likely

to be untrained in library science. Library infrastructure and controls are absent

in the Internet, providing unique challenges to information discovery. There have

been attempts to automate some of the tasks performed by professional librarians,

both in library collections and on the Internet. Here we briefly describe traditional

approaches in broad terms; more detailed explanation is given in section 1.3 and in



chapter 2.

Both automatic document content search and automatic document classification

have long been goals in information retrieval though researchers have achieved only

limited success.

In the case of classification, the traditional focus has been to find a global, Static,

comprehensive categorization which is all things to all people and all documents. In

the case of search, traditional methods have focused on documents and information

needs at an individual word level; when words are considered in isolation, the problems

of polysemy (identical words with different meanings) and synonymy (different words

with identical meanings) limit the success of the search.

Rather than attempt to classify or understand the universe, we consider only

those concepts and categories that are important at a given time to a given user,

and are therefore able to dynamically provide a reasonable approximation of content

components of a document in a given context. In our approach we examine small sets

of documents from which we derive groups of related words (related in the sense that

they have Similar patterns of usage across the example documents). Using groups

of words together rather than in isolation alleviates the polysemy and synonymy

problems because the context of the other words in the set can disambiguate polysemic

words, and can augment a single word with its synonyms.
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1.2 Representation of Information

Textual documents are an abstraction of the information they contain. Represen-

tation of documents. in turn, is a further abstraction, preserving the expression of

information as much as possible while providing a computationally feasible way to

analyze, categorize, and search.

There are two main approaches to representing documents: One extreme considers

a document as being composed of individual words or phrases. Though the underlying

semantics can not in general be obtained automatically, the idea is that documents

with similar semantics use Similar words, thus allowing a word search match. The

other extreme consists of looking at a document as a whole, deciding what one thing

it is about, and assigning it a label in a global information categorization. Clearly

there is room for a middle ground, where documents are seen as being composed of

individual coherent topics. This is the approach we take.

1.2.1 Conceptual level representation

Rather than using either a word level representation or a global topical representation

for textual sources, we consider documents at an intermediate conceptual level.

Suppose a user has a collection of n interesting documents logically grouped to-

gether in classes either explicitly (a user’s bookmark file, or email folders, for ex-

ample), or implicitly in the user’s mind, according to the individual’s ideas of what

constitutes a category. Two people may have the same collection of documents, but

classify them differently. For example, one user may have saved a given page from a
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company which does research on software agents because of her interest in one of its

products which facilitates Internet commerce. They would (explicitly or implicitly)

group it with other pages about similar products. while another user may have saved

the same page because of interest in obtaining a job there. and grouped it with other

job leads.

Note that the user need not label the groupings; but when the whole collection

is examined, it is apparent to the user that a certain subset of the documents refers

to certain conceptual categories. The user—defined grouping is one that makes sense

to that user in the context of the other documents in the set. This means that the

underlying conceptual features which determine the user’s categories will vary with

each individual document collection, and with each user. The set of documents a

user has saved provides implicit context in determining the semantic concepts that

were used. In trying to extract these conceptual features, it is not enough to merely

find features that reproduce the user’s classification of their small example document

set. A number of traditional feature selection techniques from individual words can

reproduce the classification with a high degree of accuracy, as will be described later.

However, this is not enough, since we want features that are at a higher conceptual

level than single words, and which suggest the concepts that underly the user’s cat-

egories. We can find these conceptual features as long as the underlying concepts

share a common vocabulary; meta concepts such as “humorous pages”, or “ugly color

schemes” will not be detected.

We will enable personalized information discovery from unstructured text by first

finding conceptual features from example documents. These features consist of groups
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of semantically related words (concept clusters) with a value associated with each

word according to its “strength” in the concept. The user may manually refine and/or

label the concept clusters to better define their personal ideas of the topic, but. inter-

vention is not required.

Note that these concept clusters are different from any classes that the user may

have defined in their example documents, and are also different from the notion Of

classes provided by global subject catalogs such as Yahoo!. The word groups are

generated dynamically according to the raw features from the example document set,

and will change as the example document set changes.

Representing documents at an intermediate level through our conceptually related

word groups is useful in a number of ways. We can perform automatic searches on

behalf of a user based on topics they are interested in, rather than forcing them

to construct queries composed of individual words which are iteratively submitted

and refined. We can also improve the presentation of search results to the user by

classifying them according to the concepts the user has already indicated interest in.

Rather than merely presenting a linear list of ranked results as most search services

do, we can present documents of potential interest in a way that allows a user to

browse them with the expectation that physical proximity of the documents in the

presentation corresponds to their tOpical proximity.

We initially examine single words contained in documents, however, once our word

groups are identified, each group as a whole has an evident semantic meaning which

does not rely on a universally defined knowledge base of meaning built by human

categorization, and which is more powerful than considering words in isolation. The
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word groups also alleviate the problems of polysemy and synonymy by providing a

context. for individual words.

Providing a system to automatically classify/organize documents according to

semantic content as defined by the user, and automatically searching for previously

unseen documents with Similar semantic content are further contributions of this

thesis.

A general overview of the system is given in Figure 1.1, and will be described in

detail in Chapters 3 and 4.

’-----------------------------—--------—--------------------------
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1.3 Information Discovery in a library vs. the

Internet

There are. two distinct but related activities which facilitate information discovery

from textual sources (for example, the WWW, newsgroups, or a traditional library):

searching and browsing. Search consists of submitting a query to a predefined index,

relying on a word level representation of documents, while browsing consists of briefly

examining several items, relying on a global concept categorization. While both

activities can arise from a specific or a general information need, search is typically

for specific information, while browsing is typically for general information.

In a traditional library, search is facilitated by the card catalog, which has an

established indexing scheme which maps individual query words (including keywords,

author, title, etc) to a document. The document has a unique identifier (Dewey

Decimal System number [2] or Library of Congress Subject Heading [3]) which enables

the user to precisely locate the document in the library. The indexing scheme and

identifier also facilitate browsing, since the identifiers are constructed such that items

about Similar topics are intended to be in close physical proximity to each other.

Thus, once a user locates a single item of interest, others on the same topic will be

physically nearby. The underlying assumption of this scheme is that a given document

identifier has a well defined mapping to the semantic content or subject matter of

the document. Likewise, there is a well understood inverse mapping from subject

matter to identifier. When new documents are published, the labor intensive process

of determining the details of this mapping is performed by specially trained peOple.
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On the Internet, every document does have a. unique identifier in the form of a

Universal Resource Locator (URL). but there is no well—defined relation between topic

and location. The URL of a web document reflects wherever the author happened to

put it. There is no sense of topic proximity; items on the same topic can be widely

scattered across the world. Users browse by following hyperlinks, which presumably

go from a given page to a related topic, but the relevance of the relationship may

only be known to the page author.

A further difficulty on the Internet is that there is no well-defined notion of a

“document”. A document on the World Wide Web is usually thought of as a single

item with a distinct URL, but may logically be only a part of a document (for example,

a Single section from a scientific paper), or logically several documents (for example,

a Usenet newsgroup digest). Whenever we refer to an on—line “document”, we will

mean a data item that has a unique URL as an identifier. This may include book

chapters, directory lists, a Single email message, digests, etc.

Current search of on—line sources consist of engines which are based on traditional

information retrieval techniques, with some modifications, analogous to the library

card catalog search. A user submits a query consisting of a Boolean expression of

keywords to a service and is returned a set of documents which match the query.

In a library card catalog, a user can search for a document by title, author, or

keyword. Searching on the Internet is based only on keywords, not title or author. For

example, in a search for C.J. van Rijsbergen’s book “Information Retrieval”, in the

Michigan State University library’s MAGIC card catalog system, a query specifically

for the title as “t=Information Retrieval” results in three items with that title, all
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with the Library of Congress subject heading of 2699. Armed with this information,

the user could go to the shelf in the library containing “2699” call numbers and

browse for further resources related to the topic of information retrieval, or pinpoint

the one book of three they had in mind.

However, to find an on—line version of the same book on the web 1, there is no

uniform way to search for a title, and if the author’s name (or even its spelling) has

been forgotten, the user is forced to search for the title as a keyword. Submitting the

query information retrieval to AltaVista, for example, returns the URLs of 30,000

documents which each must be examined to find the desired reference (the correct

reference did not appear in the first 40 pages listed). Some search services do offer

the capability to search Specifically for a Web page’s title, but since web pages do

not conform to the standard notion of a Single volume of work, there is no guarantee

that the title of a Web page containing the book is the title of the book. (Titles of

the Web pages comprising that book are in fact unspecified and so default to the file

names “Prefacehtml”, “Ch.1.html”, “Ch.2.html”, etc.)

Another important difference between library search and on—line search lies in

the construction of the keyword index. While library card catalogs are hand con-

structed with carefully selected keywords, major web search engines such as Lycos

[6], AltaVista [7], WebCrawler [8], and Open Text [9] employ software robots [10]

(also called spiders) which traverse the web, read each document, and automatically

create an index of the documents they find. The index is an attempt to somehow

characterize a document without storing its full text. Each service makes its own

 

1its URL is http://www.dcs.gla.ac.uk/Keith/Preface.html
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decisions about how much of a document to read, which words from the document

belong in the index, and the weight or importance of each indexing term. Although

there is a. facility for associating keywords with Web documents (using META tags

within HTML documents), the responsibility for specifying them lies with the doc-

ument author. These META tags do not affect the information displayed to a user,

so the author may choose keywords poorly, may deliberately choose wrong keywords

to fool indexing robots, or may simply not bother to specify any at all. Since the

software robots cannot rely on the “keywords” given by web page authors, and since

they do not have the intelligence of a professional librarian, the most comprehensive

search engines treat every word in an on—line document as a potential keyword, which

results in large numbers of irrelevant documents being returned for a query, simply

because the query word occurred somewhere in the document, not because the query

word was an important keyword of that document.

Since various web search engines differ in their indexing criteria, coverage, and

recency, identical queries to different services return different results. Query format

also varies with the particular implementation, and most users have difficulty in

formulating optimal queries for all the search engines. If the user is skilled enough

to formulate an appropriate query, most search engines retrieve pages with adequate

recall (the percent of the relevant pages retrieved among all possible relevant pages),

but with poor precision (the ratio of relevant pages to the total number of pages

retrieved), because of the keyword selection problem described above. The important

point is that searches are conducted and matching documents are found based on an

individual word level of representation, rather than an idea or topic level.
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For example, a naive user looking for information on legal issues involved in run-

ning a small business might. try the query legal small business, which to Alta\'ista

means “give me all the documents which contain any of the words legal, small, or

business. This query returns over a million documents (1,813,308 contained legal,

4,133,148 contained small, and the 8,805,231 containing business were ignored by

AltaVista). A more sophisticated user who is familiar with AltaVista’s query syn-

tax might try the query +lega1 +"small business", which means “give me all the

documents which contain the word legal AND the phrase small business. This query

returns around 10,000 documents, still an overwhelming amount for a user to sift

through, and they are not relevant or precise.

The results of these kinds of searches are typically presented as a list of URLs

matching the documents along with their first 20—30 words. The list is usually ranked

according to the search engine’s notion of relevance to the query, which may give

higher rank to documents which contain the search terms in the title, documents

which contain the search terms more times than others, or other schemes which are

usually not made known to the public. In any case, there is no topical proximity in

the returned list, and the user must search linearly through the list, possibly fetching

the full document, in order to determine if any of the listed documents are of interest.

In contrast to keyword based representations, global categorization schemes cre-

ate directories (hierarchical categories), and are an attempt to provide some topical

proximity in Internet documents, analogous to the Dewey Decimal System or Library

of Congress Subject Headings in libraries. Yahoo! [4] is the largest and most well

known Internet directory, but others also exist, sometimes alongside search engines
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(e.g, Infoseek [a] and Lycos [6]). To construct a directory, individual documents are

submitted or collected by hand, then assigned to a category in the hierarchical or-

ganization of topics created by the directory designers. Browsing is facilitated by

providing the hierarchical topic organization. For example, to find information on

karate, it is easy to start at Yahool’s top level, and successively travel down the hi-

erarchy to Recreation and Sports, then to Sports, Martial Arts, and finally Karate,

where there are 101 documents listed.

However, not all topics are as clear cut. For example, to search for a down-loadable

version of the publicly available stemming code from the textbook ”Information Re-

trieval: Data Structures and Algorithms” by Frakes and Baeza—Yates [11], one might

guess to start at the top level Yahoo! category of Computers and Internet, then the

sub category Software, then perhaps Archives. In any case, trying to guess the cat-

egories from this point leads to frustration, since the code in question is nowhere to

be found within the Computers and Internet sub—hierarchy. It is found in Yahoo!,

but under the tOp level category Reference, then Libraries, Library and Information

Science, and finally, Information Retrieval. Successful navigation of the tOpic hier-

archy requires that the user have the same notion of topic organization used by the

designers, not the users’ personal organization.

Another problem with a global categorization is that the number of documents

listed in a subject directory is necessarily much smaller than that in search engine

indices because of the human categorization bottleneck. There have been attempts at

automatic classification of web documents (e.g., [12], [13]), but these have had limited

SUCCESS.
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Rather than relying on user—specified queries of keyword based searches. or global

subject categorizations. we will instead use our automatically determined features

which describe the content of a document at. a higher level than individual words,

according to an individual user’s interests. We then use these higher level features to

seek out additional information and organize other documents (which may be candi-

date interesting documents resulting from a search, or merely previously unclassified

documents we already had on hand) in a topically related browsable form. This is an

improvement over current methods for information discovery on the Internet.



Chapter 2

Literature Review

Information discovery from textual sources is a fairly mature field in the context of

libraries, but has received much renewed interest recently because of the vast new

amounts available from on—line sources such as the World Wide Web. Automatic

methods for information discovery in traditional settings make up the field of In-

formation Retrieval (IR),where the focus is typically on search for documents which

meet a need that is expressed in a query. Many of the current methods of discov-

ering information from on—line sources have roots in traditional IR techniques, so

we begin this chapter with an overview of IR and the most widely used model of

information, Salton’s vector space model [14] and its variants and assumptions. With

this background, we can also examine current methods for on—line search. The other

major activity in information discovery, browsing, is dependent on the specific or-

ganization of text collections, so we next review various methods of text collection

organization, and conclude with current techniques for browsing assistance without

an explicit organization.

18
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2.1 Traditional Information Retrieval

2.1.1 Word Level Representation

Information Retrieval [14. 15, 11] is a mature field which grew out of a need for

automatically searching large collections of text such as those found in a library.

In order to meet a user’s need for information, a query is given, and pointers to

documents that are relevant to that query are returned to the user. Representation

of documents, representation of queries, and determination of relevance are important

issues in IR.

The most widely used model for query—document matching is Salton’s vector

space model [14], where each document (pattern) is represented as a vector of words

(features). In this approach, n words form an n—dimensional feature space, and each

document lies somewhere in that space. A query for information is composed of

words, so it can also be represented as a vector in that same feature space. Matching

a query to documents then consists of plotting the query in the space, and returning

the documents which lie closest to the query according to some distance measure. The

values for each vector element can range from binary (where a 1 indicates occurrence

of the word in the document, a 0 indicates absence), to values derived from the

frequency of the word in the document, to other more complex weighting schemes.

Choice of a distance measure is coupled with the representation of the feature vectors.

Possibilities include Euclidean distance, cosine coefficient, Dice’s coefficient, Jaccard’s

coefficient, etc. [15]

For example, a popular way to form values for the components in the feature vector
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is to use the term frequency/inverse document frequency (TF/IDF) measure [14]. [15]

for weighting each term. 1 Term frequency reflects the number of times a given word

occurs in a single document, and document frequency refers to the percentage of

documents from the entire collection in which the term appears. The idea behind the

TF/IDF measure is that words that occur often in a document, but rarely across the

entire document set, are important words and Should receive a higher value (weight)

in the feature vector.

The choice of a distance measure between documents, or between documents and

queries, can imply an assumption about the importance (or lack thereof) of the length

of a document. Most of the distance measures used, including the most popular cosine

coefficient, automatically normalize for document length [15]. For library collections,

where the types of documents being indexed are fairly homogeneous in form, it is

reasonable to assume that terms in long documents should not be weighted more

heavily than terms in short documents. However, Web documents can range from

simple lists of URLs to complete texts. The assumption that long and short docu-

ments should be equally treated for indexing and representation purposes may not

be a good assumption for Web documents, as we will discuss more fully later.

Many studies have been done on effective normalization schemes (e.g., [16]), but

all of these have been with document collections (TREC, Reuters) whose members

do not vary much with respect to style, unlike Web documents.

 

1A term is technically different from a word in the information retrieval literature, reflecting the

fact that the original word may have been stemmed or changed to some canonical form, but we will

use term and word interchangeably, and will note stemming or other operations when appropriate.
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2.1.2 Feature Selection and Extraction

When considering documents as patterns and the words in documents as features,

it obviously does not make sense to consider all words as equally important. We

know that not all words in a document convey information, and that some words

convey more conceptual content than others, so feature selection and extraction is an

important aspect of document representation.

It should be noted that sometimes all words in a document are not even eligible for

feature consideration. Due to computational limitations, many systems in the past

only used keywords chosen by humans, or words from only the title and abstract.

As early as 1957, Luhn suggested that the most frequently appearing words in

a document collection, as well as the least frequently appearing words, are not as

significant [17]. Selecting features based on the “Luhn cutoffs” is still a popular

method of feature selection, although there is no well established way to specify the

thresholds for the cutoffs.

Related to the idea of most frequent words not having high information content is

the notion of a negative dictionary, or stoplist [18]. Words such as “and”, “of”, “the”

should be eliminated from consideration as features, no matter what their frequency.

Another operation which reduces features is stemming [19]. Stemming is the

process which reduces a word to its stem (e.g., “computer” and “computing” both

become “comput”). Stemming explicitly acknowledges the fact that distinct original

features are not independent.

Bookstein et. al. [20] attempted to identify content bearing words based not only
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on frequency, but also based on the sequential occurrence pattern of the words. The

hypothesis is that words which tend to appear in "clumps” throughout the document

convey more information than words which are distributed randomly. This method

uses the key idea that a given word may be important in one set of documents, but

irrelevant in another.

One method of both reducing the feature Space and eliminating feature inter-

dependence is Latent Semantic Indexing [21]. Here the original pattern matrix is

converted into an orthogonal one, which can be truncated aCcording to those vectors

which correspond to the smallest eigenvalues. This is basically the principal compo—

nents projection. It is claimed that the newly derived feature vectors contain “latent

semantics” of the documents — semantics that can not be described explicitly, but

are present as a linear combination of the original features. We attempted a similar

approach, as will be described in the next chapter, but while latent semantic indexing

may be useful for document classification accuracy, it is ineffective for search on large

dynamic data collections, such as the World Wide Web.

An extension to the basic vector space model which is related to the idea of latent

semantic indexing is the Generalized Vector Space Model (GVSM) [22]. GVSM, rec-

ognizing that one of the limitations of the Vector Space Model is that terms are not

independent (especially when they have multiple meanings), considers each word to

be independent of the others, unless two words both index the same document. The

method then creates orthonormal basis vectors from the document—term frequency

matrix, and derives a similarity measure incorporating these basis vectors. It was

reported that precision was improved over the basic VSM model, but using linear
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combinations of the original terms does not convey conceptual meaning of the doc-

uments. This model was proposed during a time when documents were represented

by a small set of keywords.

Another attempt to capture semantics in the representation of documents for

search is the Semantic Vector Space Model [23]. This model also-recognized that

the basic vector space model, as a set of words, does not capture any contextual

information about a word’s usage in a given document. The semantic vector space

model extends the basic vector space model by using a heuristic natural language

parsing technique which assesses the probability that a word in a given sentence plays

one of a set of thematic roles as defined by linguists. A given term t in a document can

play one of m thematic roles. Probabilities for each of the possible roles are computed

for k occurrences in a single document, which are then combined linearly into a single

length m term vector, VT. A single document, then, is represented, not as a weighted

term vector (with n terms), but as a n x (m+1) matrix, where the rows of the matrix

represent a vector for each term in the document. These row vectors contain first, the

original term weight from the traditional vector space model, then the term vector VT

which represents the roles that term might take in the document. In other words, the

first column of the matrix is the traditional weights from the vector Space model. One

issue that arises in using this model is the problem of computing similarity between

matrices. It remains to be seen whether this fairly recent model will prove useful.
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2.1.3 Query Modification

When a user has an information need, it is usually specified in the form of a query

— a free text or boolean expression consisting of keywords. The query is represented

as a vector of its component words, then plotted in the same vector Space as the

documents are, so that documents “near” the query can be returned as the most likely

information relevant to the need. This is a simple and mathematically easy way to

match information sourCes with information needs, but queries typically have many

fewer terms than even the shortest documents, and while the mismatch in length is not

too much of a problem when documents are represented by relatively few keywords,

the length difference is greatly magnified for World Wide Web documents, which are

usually indexed by their full text, and for which typical user queries consist of only

two words [24]. The mismatch which results when a document is represented by too

many terms, and a query is represented by too few terms, causes queries to match

too many documents, and leads to the low precision characterized by Web searching.

It has long been recognized that user generated queries are imperfect indicators of

information needs [25]. One technique which addresses this problem is known as query

modification (also known as relevance feedback), which weights the terms in a query

according to the user’s evaluation of documents returned. In the first iteration, when

the documents resulting from a user’s query are returned, the user labels individual

documents as relevant or irrelevant. Then the distribution of the query terms in

these two document sets are analyzed, and the query terms are assigned weights

accordingly. For example, a query word which occurs frequently in the set of relevant
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documents but infrequently in irrelevant documents receives a higher weight. while

terms occurring frequently in irrelevant documents and infrequently in relevant ones

will receive lower weight. The newly weighted query is then submitted to the system,

which returns another set of documents, which the user again evaluates as relevant or

non relevant. There may be many iterations, all of which require the user to evaluate

every document returned at each stage, which becomes tedious.

Another technique for more closely matching a user—defined query to actual in-

formation needs is query expanSion, which modifies the query by adding additional-

words from a thesaurus.2 The thesaurus may be constructed by hand, which is very

labor intensive and time consuming, or it may be constructed automatically.

Word clustering is an appealing idea to automatically construct a thesaurus, and

early work using this technique was done by Sparck—Jones [26]. In that work it was

pointed out that though the intent at the time was to improve recall in retrieval by

adding words not included in the original query, use of an automatically constructed

thesaurus could improve precision as well, by disambiguating word senses. Words

from the entire document collection are clustered to obtain thesaurus classes. This

early work was only applied to small (by today’s standards) data sets, and only

marginal improvements in recall and precision were realized, as has been the case

with many extensions to this approach Since the early work [27] [28] [29]. A global

approach to clustering the words identifies words that have similar co—occurrences

across the entire corpus of documents, but it does not take into account the idea

 

2A thesaurus in information retrieval is not like the lay man’s idea of a thesaurus which contains

only synonyms. An IR thesaurus entry for a given word may contain synonyms, broader terms,

narrower terms, or related terms.
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that different information needs will have different thesaurus classes. Global methods

do not capture the context of a meaningful subset of documents which reflect the

information need.

In contrast to global methods, there have been local methods of automatic the-

saurus construction described in early literature [30, 31]. In these approaches, only

the top ranked documents returned after the results of the initial query were analyzed

for local feedback. Based on analysis of these returned documents, queries were both

expanded and re—weighted. Rather than relying on the user to determine which were

relevant and which were not, these approaches assumed relevance, and adjusted the

queries accordingly. A flaw in this approach is that if the n top ranked returned

documents (or even a subset of them) are in fact not relevant (as is often the case in

Web searching), the analysis of the words contained in these non-relevant documents

will skew the context. Again, improvements in retrieval using this early approach

were not promising.

More recently, Xu and Croft have proposed an approach to query expansion using

global analysis methods on a local subset of documents, which they call local context

analysis [32]. They use noun groups (rather than individual words) as concepts, which

are chosen from the top ranked documents (as in the local feedback described above).

However, instead of using the “best” documents as a whole to choose the concepts,

they use the “best” subsets of documents, which in this case are text windows with

300 words. They report better results in terms of precision and recall using this

approach than with using either global analysis or local analysis alone.

Crouch and Yang [33] describe a method for automatic thesaurus construction
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which clusters documents rather than words in an attempt, to capture context from

those documents seen to be similar to each other in some way. These clusters of

documents are then used as a local set on which to do analysis to construct thesaurus

classes.

AltaVista’s Live TOpics

AltaVista has attempted to aid the user in refining their query through their experi-

mental Live Topics interface to the AltaVista search results. When many documents

are returned, the system gives suggestions for additional terms which may improve

the query. The user can select more terms (or delete some), and the query is resub-

mitted. Live Topics is a form relevance feedback for generating better queries, which

still must be submitted in the usual way.

With an original query consisting of the Single word “clustering”, the AltaVista

search engine returns 20,000 documents. Live Topics suggests only 2 additional words

to refine the query: Cuba and Bearer. On another try with the same query, the only

two suggested words were expatriate and Anderson. These two sessions of Live Topics

were of no help in narrowing down the 20,000 documents which matched “clustering”.

In another Live Topics session, the original query consisting of the phrase “curse

of dimensionality” resulted in about 200 matches; among the terms live topics sug-

gested for query refinement included “clustering”, “statistical”, “feedforward”, “hy-

perplane”, “Gaussian”, “irrelevant”. When “clustering” and “irrelevant” were clicked

on, and the query resubmitted to include these keywords, AltaVista returned. no

matches. This experience illustrates that for some topics, Live Topics encourages
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query refinement to the. point of narrowing down the search so much that there are

no longer any matches.

According to the documentation, Live Topics works best when the number of

initial matches are 200 or more [34].

Live Topics does not consider the relevance rankings of the matches to the initial

query. Rather, it analyzes all documents which provide a match [34]. Live Topics may

not work well because it"s enhanced queries are dependent on the quality of the initial

set of returned documents. If many irrelevant documents [are returned as a result of

a query, using words from those irrelevant documents to augment the query is not

appropriate. Our approach instead clusters words from documents already known to

be relevant.

2.1.4 Evaluation of Search Effectiveness

Evaluation of information retrieval systems is a difficult problem [15, 35]. Even though

there has been more than 20 years of research in retrieval effectiveness evaluation,

nearly all evaluation measures are based on precision and recall. As mentioned in the

introduction, recall is the percentage of all relevant documents which were actually

retrieved, and precision is the percentage of the documents retrieved which were

actually relevant. More formally,

[relevant fl retrieved]
 recall =

[relevant]

[relevant fl retrievedl
 precision = ,

[retrieved |
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Although these measures and those based OII them can be mathematically defined.

they rely on the subjective notion of relevance. They also require a binary partition

of documents into the absolute classes “relevant” and “non relevant”. Therefore.

comparisons of retrieval systems are often done on standard document collections

where a large number of specific queries and relevance judgments have been labeled

with respect to those two classes by experts.

Yao [36] suggests a performance measure which assumes documents are arranged

by a weak order of relevance (which the user determines by comparing two documents

at a time), leading to an ordinal scale of relevance of a number of equivalence classes

of documents (rather than just two). The performance of a system is based on the

distance between the user’s weak ordering and the system’s ordering. The traditional

precision and recall measures can also be derived from the distance. The advantages of

this approach are that documents can have an arbitrary number of levels of relevance,

and each user may define their own personal ordering. The disadvantage of measuring

system performance in this way is that the user must define their preference ordering

of the entire document collection for every information need, which is clearly not

practical in real systems. However, the idea of a user—defined weak ordering is a

promising new development in measuring the performance of retrieval systems. In

operational systems (as opposed to experimental ones), it is only the individual user

who can truly determine the effectiveness of a retrieval system.
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2.1.5 Traditional IR Search vs. On—Line Search

The search for specific information from on—line sources can use the traditional infor-

mation retrieval model of a Specific query which is then matched against a pre—existing

index of documents. However, there are differences between traditional published

works (where keyword selection, for example, is under the control of a publisher),

and on—line information, where an author is also the publisher, and does not have

the same discipline, training, or motives as print publishers. These differences cre-

ate difficulties in applying the library science information retrieval model to Internet

documents. Since an author can not be relied on to provide appropriate indexing

information, automatic methods are used to construct massive indices of web pages.

And since automatic methods are incapable of intelligently deciding which terms to

index, the most comprehensive index all terms found in a document. This leads to

many documents matching a given query, usually more than the user can easily ex-

amine. Most search engines provide a ranking of the matched documents in order of

relevance. However, there is no universally accepted measure of relevance, and dif-

ferent search services use many different measures and algorithms in determining the

score for a given document. Often, the list returned from a search contains irrelevant

pages being ranked highly, while those truly relevant to a user are buried so far down

the list that they are not examined.

One of the assumptions used in traditional information retrieval models is that the

keywords (those used to construct the pattern vectors and which define the feature

space) are a proper subset of all of the words in the documents. Usually this subset
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is much smaller than the set of the total occurring words, which means that. there is

a somewhat controlled vocabulary. One of the challenges of automatic index building

is the appropriate selection of the subset of words which comprise the feature space.

Most information retrieval systems use statistical properties of the frequencies of word

occurrences or co— occurrences to select the keywords.

Another assumption in information retrieval systems is that the entire collection

of documents is available for analysis, in order to construct the entire feature space,

and to compute statistics on the usage of certain words across the entire collection.

For example, the TF/IDF measure requires all term frequencies in the collection to

be known before constructing a feature vector for a document (or a query). The

sheer size of the collection of Internet documents, as well as the dynamic nature of

the collection, makes measures based on corpus—wide statistics impossible.

2.1.6 Search on the World Wide Web

The major search engines employed on the World Wide Web use traditional IR mod-

els based on full text indexing of documents encountered'by their web robots, but

commercial systems give few details about the Specific models, distance measures,

features, and relevance ranking methods they employ. Since the exact parameters of

the model are unknown, it is hard for users to design Optimal queries, even if they

are information retrieval experts.

Since no librarian or publisher has specified relevant keywords for a given docu-

ment, the current search engines use some form of full text indexing (with values of
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feature vectors based on different factors, such as giving more weight to words occur-

ring in titles or hyperlinks). Typically recall is good (there are plenty of documents

returned on almost any query), but. precision is poor, since the search is similar to a

Unix “grep” command (Simply a search for the query string occurring anywhere in

the text).

Marchiori’s work [37] has recognized some of these problems and sought to improve

the relevance ranking algorithm by considering the hyperstructure of a document as

well as the content. In that system, information content is a function of the text and

other text which can be reached via a certain number of hyperlinks (i.e., a number of

mouse clicks) from the original text. It uses the premise that connectivity is important

for determining a page’s worth.

2.2 Organization of Textual Information

Recall that browsing is an important activity for information discovery as well as

search. In fact, one could argue that it is the browsing capability of the World Wide

Web that has led to its huge popularity (after all, ftp and gopher have been around

for a long time, but neither of them saw the tremendous growth that the web did).

A meaningful organization of resources is essential for effective browsing. In this

section we examine various document organization schemes arrived at by document

clustering and document classification, as well as personal browsing agents.
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2.2.1 Global collection representation

In order to facilitate browsing by concept, an information item’s representation must

necessarily be different from the word based model described above, Since individual

words in isolation do not in general denote concepts. Effective browsing requires

a means for a user with general information needs to browse collections of text by

examining several sources which are topically related. In a library, a user with a

broad, general information need can go to the area where sources on the tOpic are

kept, and briefly examine several to find text that meets the need.

Organization of entire collections of information conceptually requires a universal,

global topic categorization. Examples of such organizations in the library context

are the Dewey Decimal System [2] and Library of Congress Subject Headings [3].

Examples from the Internet/Web are directories such as Yahoo! [4] and Infoseek [5].

All of these global categorizations require two things that are difficult to automate:

(1) an agreed upon categorization scheme and (2) assignment of textual sources to

the appropriate category.

Global representation is intended to provide topical proximity of textual informa-

tion, in order to facilitate browsing. It provides the mapping of document location to

topic. To use a global representation to fulfill an information need on the Internet,

you must know and understand the categorization scheme used.
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2.2.2 Subject Catalogs

There have been some attempts to create subject catalogs for the \Vorld Wide Web.

The most. extensive and successful of these is Yahoo! [4]. Yahoo! gives a catalog of web

pages based on a hierarchical topic structure. The catalog is constructed according to

the standard librarian approach; a human must decide on the apprOpriate categories

and assignments. Since it relies on human categorization, it’s catalog is easy to browse

if you have an idea of the topic you’re looking for, but it suffers from an immense

bottleneck of human evaluation. In a library, a document’s content never changes,

and there are relatively few new documents added in a given period of time. However,

on the web, there are so many new documents added (and already so many documents

in existence), that the human catalogers can not hope to keep up. In November 1996,

Yahoo indexed 185,000 documents compared to AltaVista’s 21,000,000 [38]. As of

mid 1997, Yahoo! indexed 500,000+, but AltaVista had grown to 100 million [39].

Another drawback of catalogs is that there is no well—defined system of categorization,

so it may be difficult for a user to determine in which category to look. For example,

information retrieval stemming algorithms are found in Yahoo under library science

and not under computer science.

Since topical hierarchies provide guidance in narrowing down a topic of interest,

they result in higher precision than the full text query based search services, but

since human effort is involved, there is a bottleneck to getting more information

categorized. The human evaluation factor results in lower recall. Yahoo does not

attempt to categorize the entire web, rather their goal is to provide high quality
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organization for those sites that they do index.

There are also human constructed catalogs for small specialized domains (e.g.,

3, manufacturing 4 ), which are sometimes subsets of the larger catalogs.Biosciences

These domain Specific catalogs have the advantage that their catalogers have a smaller

subset to work with, but there is still no unified standard categorization.

2.2.3 Document Classification

Document classification is the attempt to automatically place documents into pre-

defined categories. These categories may be a globally imposed hierarchy such as

Yahoo!, or merely the two categories of “relevant” and “not relevant” for a given

user. Classification into global categories is of interest in the Information Retrieval

and Machine Learning communities. Most methods require a large number of training

samples and assume a fixed global document collection.

Letizia

Letizia [40] is a software agent that recommends web pages for a browsing user by

concurrently exploring links from the page a user is currently browsing. It is actually

performing dynamic web page classification into the 2 categories “interesting” and

“not interesting”. It does not use any query based approach for resource discovery.

Rather, it follows links from the user’s current page and recommends those that it

believes the user will find interesting. It infers the user’s interest based on observation

 

3 http:/ /golgiharvard .edu/biopages/all .html

4 http: //www.nemonline.org
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Of the user’s browsing behavior. Strong interest. in a given page is indicated by saving

a reference to it (i.e., "'l:)ookmarking” the page). Following a link from a page or

returning to the same page several times also indicates interest. Not following a link,

but following a link occurring later in the document can indicate disinterest in the

link that was “passed over”.

Letizia models the content of a document as a list of keywords. It provides a

preference ordering of links to follow to assist the user. It does not require explicit

relevance ranking of pages by the user, rather it infers relevance based on assumptions

about the user’s behavior.

Fab

Another system for providing page recommendations is Fab [41]. The Fab system

utilizes both the content of pages and the recommendations of other users to deter-

mine its recommendations. Rather than recommending pages directly linkable from

the user’s current browsing position, Fab uses a set of independent software agents

which collect information from the web and try to match a user’s interest profile in

determining which to recommend. The user must explicitly rank all pages suggested

by the agent in order to provide feedback and also to provide the evaluation of the

effectiveness of the system.

Fab uses the traditional information retrieval vector space model using a term

frequency — inverse document frequency (TF/IDF) measure for the features. Recall

that we described above some of the problems with adopting the information retrieval

model for web-based information discovery: namely the nonexistence and impracti-
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cality of measuring statistics from the entire collectiOn, and the scarcity of labeled

training samples relative to the entire collection. Fab avoids these problems by taking

a random sample of 5,229 web pages, and considers that. set to be the entire docu-

ment collection for purposes of defining the global feature Space. It then computes

the maximum term frequency in a given document, and the document frequency for a

given term. The 5229 web pages yield a fixed dictionary of 70,000 stemmed terms (af-

ter stop words are removed), weights are computed for each term using the TF/IDF,

then the top 100 weighted terms are selected as features for future analysis.

Thus a 100—ary vector is used to represent both documents and the user profile

(corresponding to a query in traditional information retrieval). The user profile is

updated according to the formula m = m + sw, where m is the user profile (a term

vector), w is a document vector, and s is an integer —3 . . .3 representing the user’s

relevance score for that document. Several different agents are described, includ-

ing search agents which explore the web [42], index agents which use existing web

search services, and non—adaptive agents which consider “random” pages from various

sources.

One of the problems with the Fab system is its reliance on the explicit human

evaluation of each suggested page. It is likely that, especially in the early stages of

learning, the user will be presented with many irrelevant or uninteresting pages, and

the user will not want to bother ranking those, and may become frustrated with the

high time investment with low payoff. Experience with Fab has also shown that the

users are very strict in their rankings of pages — usually either very high or very low,

rather than using the full range of the 7 point scale.
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WebWatcher

WebWatcher [43] is a personal agent that attempts to learn which hyperlinks will lead

to target information. Like Letizia, WebWatcher observes the user’s current browsing

behavior in order to infer relevance information about documents. However, unlike

Letizia, WebWatcher assumes the user has a specific goal (in the form of a scientific

paper, a Specific domain) in mind, and observes a user’s behavior to learn how to

predict whether a hyperlink will be followed or not. Though the authors call this web

search, they are not classifying documents. Instead, they are classifying hyperlinks

into 2 classes: followed vs. not followed. They consider only information from the

text of the current page, and not the content of the target of the hyperlink. It may

not follow that these followed vs. unfollowed links correspond to relevant/irrelevant

pages. WebWatcher uses a fixed length (530) boolean feature vector composed of 4

subvectors. The words comprising the features are determined during the learning

phase. The subvectors are used to distinguish words of 4 categories: words occurring

in hyperlinks (the anchor text), words occurring in the sentence of the hyperlinks (i.e.,

click M2 for information about machine learning), words in the headings ”associated

with the hyperlinks, and words used to define the user goal. Feature selection for

the first three subvectors was performed by ranking all the words in the training

set according to their mutual information with respect to correctly classifying the

training data, then choosing the top N words in the ranking. Mutual information is

a feature selection technique where each feature is taken in isolation and tested on

its ability to classify the training data.
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Preliminary results were given from data gleaned from 30 browsing sessions of 3

different users who started from the same page, and had the same kind of goal (a

specific kind of scientific paper). 23 of the 30 sessions resulted in a paper being found.

Evaluation of the learning performance of the system was done by a comparison of

the system’s recommended hyperlinks with the links that the user actually followed.

The best performer recommended as its first choice the link that the user actually

chose 30% of the time, and the user’s choice was in the classifier’s top 3 choices 54%

of the time.

One disadvantage to this approach is that it does not consider the content of a

linked document, as mentioned above. Another is that it must have a specific target

goal, and training is only relevant for that goal. For every new goal a user Specifies,

training (including feature selection) must start again from scratch.

Hotlists and Coldlists

Pazzani, Nguyen, and Mantik [13] describe an information filtering agent that tries

to learn a user’s interests based on their ranking of pages. In their experiments, a

single user was asked to classify a set of URLs from a single domain (BioSciences) as

interesting (the “hotlist”) or not interesting (the “coldlist”). Out of 120 total URLs,

the user selected 38 documents as positive examples (interesting) and the remaining

82 were negative examples (uninteresting). Sets of varying sizes, ranging from 10 to

100 were randomly selected to be training patterns, with the remaining patterns used

as test data. Features were selected from the training data based on the expected

information content of a word, with the idea that the most discriminating features



40

would be those that occur with very different frequency between the two classes. The

128 most. informative features (words) were selected to form binary feature vectors,

indicating occurrence or non—occurrence of the word in the document.

Error estimation was based on the classification accuracy of the test data. Four

different learning algorithms were compared, a Bayesian classifier, a nearest neighbor

algorithm using the matching coefficient as a distance measure, a nearest neighbor

algorithm using a value difference metric [44] as a distance measure, and the ID3

decision tree algorithm.

Results showed that the Bayesian classifier clearly outperformed the other algo-

rithms, achieving 85% accuracy with only 15 training examples, and 91% accuracy

with 100 training examples. None of the other algorithms ever exceeded 78% accu-

racy. The authors conjecture that the superior performance of the Bayesian classifier

may be due to the difference in importance of various features accorded by the con-

ditional probability of each feature given the class, where the other algorithms treat

all features equally, and the fact that the Bayesian classifier examines all features at

the same time (in contrast to ID3). However, they do not mention the fact that the

prior class probability is also considered for the Bayesian classifier, and the global

pool of examples has P(hot) = .317, and P(cold) = .683. The decision rule for the

Bayesian classifier is thus already predisposed to decide “uninteresting”, and with no

other information at all, it would be accurate nearly 70% of the time.

For the general information discovery problem, the prior class probabilities of

interesting / not interesting can not be computed, but are likely to be even more

skewed toward uninteresting than 30/70. If the prior probabilities were 5/95, one
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could use a classifier that always decided "uninteresting” and report a 95% accuracy

rate.

Note that the success of learning the profile may be due to the fact that all

examples were from a single domain, which likely has a. specific vocabulary. Note also

that the assumed universe for feature selection was only the pool of interesting and

uninteresting training data, and the features were chosen as those which were most

discriminating across only this training set. While this technique may have produced

accurate classification in a speCific domain, it is questionable whether the features

used for classification would be of any use in seeking additional information that was

not present in the initial set of data.

2.2.4 Document Clustering

Document clustering also organizes documents into groups, but the groups are not

according to some predetermined labeling; they are groups whose members are similar

in some way, and dissimilar to members of other groups. Although there are not

labeled categories (except for some attempts to label clusters), an organization of this

kind enhances browsing once the user has found something of interest by providing

topical proximity.

Visual Organization

Kohonen’s WEBSOM group at Helsinki University of Technology use a self organizing

map (SOM) to present on—line documents for easier browsing and exploration [45],

[46], [47], [48]. A self—organizing map is a neural network technique in which high
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dimensional statistical data is arranged in an easily visualized spatial map such that

like inputs are near each other on the map. The first step is to create a SO.\-l of

word categories from the example documents using a local neighborhood of context

(i.e., words that appear nearby) from the full text. The local neighborhood vectors

are input into the neural network, which creates a map of word categories. Then

individual documents are encoded as a histogram of the word categories, and a SOM

of the encoded documents is created which can be browsed. This technique has been

used to organize Grimm’s fairy tales [45], articles from the Single Usenet newsgroup

“comp.ai.neural-nets” [48], and articles from 20 different Usenet newsgroups (which

used a partially supervised method to increase the separability between groups) [47].

For the newsgroup “comp.ai.neural—nets”, there were 4600 documents and 1700

words considered. The maps were created on specialized hardware, the massively

parallel CNAPS neurocomputer, and then fine tuned with SOM software.

One problem mentioned in connection with organizing Usenet articles is the fact

that they contain both Short query or answer postings, which may not provide enough

context to properly categorize them, and long articles which contain multiple tOpics,

which properly belong in multiple locations.

HyPursuit

HyPursuit is a hierarchical network search engine described by Weiss, et. al [49] which

gives an architecture for organizing the web which clusters hypertext documents in

a “given information space” to aid browsing and searching. They propose a hierar-

chical organization where each information server’s documents are clustered, and the
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server keeps track of the summary information on it. so that queries can be routed

to particular servers which are likely to contain the information. This scheme is in

contrast to current existing search engines, which construct a massive single database

of information on the entire web. One of the main aims of the HyPursuit project is

to distribute the indexing information and then group the indices in order to allevi-

ate network load and provide a coherent organization. Unfortunately, this proposed

scheme requires universal agreement on the new paradigm, and Sites which do not

follow it will still require other methods of information discovery. The interesting

aspect of the HyPursuit work is in its definitions of document and cluster Similarity.

They not only use document contents (the terms contained in the documents), but

also hyperlink information. The idea is that if several documents d1, d2, ...d,, all con-

tain a link to another document (1, then they are likely to be semantically related.

Similarly, if several documents d, are linked to from the same document d, the d,- are

semantically related. Consequently, the definition for document similarity contains

terms for both content similarity and hyperlink structure similarity. The idea that

there is semantic information in the hyperlinks of a document is worth investigating

further; however, it is difficult to discern the link structure for the entire web unless

only small subsets are considered at a time.

Syntactic clustering

Rather than clustering documents based on semantic concepts, or topical catego-

rization, Broder, Glassman, and Manasse clustered web documents based on their

syntactic similarity [50], with the goal of finding documents that are “roughly” iden-
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tical. For example. documents which occur in the same cluster may differ only in

formatting, minor corrections, webmaster signature, or logo. Their goal is therefore

not enhancing information discovery on the web, but applications such as updating

widely used information (such as FAQS which occur on multiple Sites), identifying

intellectual property violations, or finding a document which has changed locations.

We are more interested in semantic clustering, and will not further discuss syntactic

clustering.

Topic Categorization

Martin [12] describes a system for clustering documents into overlapping hierarchies

using the factor learner algorithm. The hope was to achieve groups of documents

which were comparable to the Yahoo! categories. In this algorithm, each of several

different groupings of n documents is called a factor. The factors are found by con-

structing an undirected graph consisting of all features, where a link between two

features indicates a dependency relation, and no link between features indicates in-

dependence. The factors are then formed by finding cliques in the graph. Once the

factors are found, the objects are clustered according to the factors using a greedy

approximation of a Bayesian clustering algorithm. The method estimates highly

probable conditional dependencies between factors and features.

Martin constructs a stop word list based on the most frequent words across the

collection, augments keywords using WordNet [51], and uses frequency for feature

values. He does not Specify how many features were ultimately used, and describes

preliminary results of clustering 54 documents from a Single Yahoo category. Using
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only words from the documents as features, the resulting clustered hierarchy matched

the Yahoo hierarchy with only a few shared headings. Using the augmented words

from W'ordNet, the resulting hierarchy shared half the headings with the Yahoo di-

rectory.

SONIA

Sahami, Yusufali, and Baldonado [52] describe the SONIA project, which clusters

documents which were returned as the result of an initial keyword search. They

use partitional clustering rather than hierarchical as in [12]. (Of course, partitional

methods can always be applied iteratively to achieve a hierarchy of clusters.) Their

goal is to aid search and browsing by dynamically organizing the results from an

initial keyword search. They select features from the documents by first eliminating

common English stop words, very infrequent words, and then words with minimal

entropy. They use a Boolean representation for feature vectors (indicating presence

or absence of a given word in the document). They then cluster the documents using

both a Bayesian network (AutoClass) and a K—means algOrithm. Once the clusters

are found, they extract “descriptive” keywords for each cluster, based on the cluster

centroid, or frequency of the words in each cluster. They present results from a query

on “mining” which led to 50 documents and 3500 features, and a query on “Mars”,

which led to 39 documents and 1400 features. Results showed plausible clusters of

subtopics within the query domain (i.e., mineral mining vs. data mining, pictures of

Mars vs. life on Mars).
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Scatter/Gather

The Scatter/Gather browsing technique from Xerox PARC [53] creates a hierarchical

structure for navigating through large text collections. The original intent of Scat-

ter/Gather was not to create a search tool to replace current information retrieval

techniques, but to communicate information about the topic structure of a collec-

tion to a user. The interface for Scatter/Gather is that the user is presented with

a set of clusters of documents with a summary of their contents based on topical

words and typical titles of the documents they contain. The user can select one or

more of the clusters which are of interest (gather), and then ask to have these cho—

sen documents re—clustered (scatter). Scatter/Gather clusters documents based on

pairwise document similarity, and the cluster hierarchy is pre—computed off line in

order to provide constant time access. Results indicated that Scatter/Gather is not

superior to other methods of information retrieval when the goal is to locate specific

documents. However, indications are that it does effectively communicate topical

information structure to a user about a given document collection.

Further research with Scatter/Gather indicates that document clustering is an

effective way to organize a document collection which assists the user in browsing

a collection while avoiding the need to express their information needs as a formal

query. More recent work has been done on clustering smaller collections, such as

those returned from an initial search, and on efficient clustering algorithms so that

the clustering can be performed in real time [54, 55, 56].
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Personal Bookmark Clustering

Maarek and Shaul [57] have attempted to provide an organization of a user’s book-

marks into conceptual hierarchical categories. This task is characterized by the fact

that the concepts are personal and may be different for each user, the set of docu-

ments to be organized is a small subset of the entire document collection, and the

collection is highly dynamic. They use a hybrid of manual and automatic organiza-

tion where the user can control the behavior of the system, specifying which parts

Should be automatically grouped, and what should be left under the user’s control.

A user can specify a node in the cluster hierarchy as “frozen”, which the system then

considers as a black box sub—tree, and will not reorganize documents classified under

that node.

An interesting aspect of this work is that instead of Single words as features, it uses

pairs of words which are linked by a lexical afi‘inity, or correlation of their common

appearance. They use a binary feature vector and do not specify the precise distance

measure, but say it is a direct function of how many features the documents share.

A hierarchical agglomerative clustering technique is used, and the problem of where

to cut the dendogram is automatically determined by identifying the level clusterings

within the tree that have a comparable degree of intra—cluster Similarity. This was

found to have more meaning for users than forcing them to specify a cluster size.
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2.3 Summary

III this chapter we have described some of the. current research into automatic informa-

tion discovery from the \Yorld \Vide \‘l’eb. \Ve described the models from traditional

information retrieval, which are used by most of the current Web search services. We

also described some of the assumptions about the library based information retrieval

models, and characteristics of Web based information which require reconsideration

of “standard” information retrieval search techniques.

Existing search services are intended to be applicable to the general user, and

are not tailored specifically to an individual’s preferences and interests. Browsing

assistants consider the personal preferences of their users, but are limited in what

they can recommend by either the pages directly accessible from the user’s current

position, or by pages which have been recommended by others.

We want to utilize services which cover the entire information space of the World

Wide Web, and also personalize the search according the user’s interests and pref-

erences. By using a conceptual representation of information that is tailored to the

current information need/interests, rather than relying on global conceptual ideas or

isolated words as concepts, we will be able to perform automatic search and provide

document organization which are based on concepts.

 



Chapter 3

Finding Concepts

In this chapter we describe the process used to define our intermediate level features

which represent or approximate conceptual information. Remember that a user first

provides some example documents that they determine are relevant or interesting in

some way. These may be organized into categories (e.g., as a Netscape bookmarks

file, or different email folders), or simply as an unlabeled list of files. The documents

are fetched from remote servers if necessary and copied locally, where the words are

parsed and counted. A word is defined as a sequence of letters without punctuation,

digits, or white space.

Our next task is to find features that will define semantic concepts that are mean-

ingful to the user from these example documents. Semantic concepts serve two Specific

purposes in aiding information discovery: they provide an organization or classifica-

tion of documents, and provide a means for searching for additional similar informa-

tion. We make an initial approximation of semantic concepts by finding important

keywords from the example documents. Using pattern recognition techniques and

49
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terminology, and consistent with the vector space model, we consider each document

to be a pattern, with the words in all the documents as features.

Initially, we tried to find the important keywords by using feature selection and

feature extraction of the words from the example documents, with the measure of suc-

cess being accurate classification of the example documents into the user’s categories.

These efforts are described in detail in section 3.3.1 and section 3.3.2. However, our

results showed that although these techniques may lead to accurate classification of

the training data, the features (i.e., word subsets) found are not useful for searching,

and do not provide any advantages in representation of documents. Subsequently, we

used a different approach, described in section 3.4, that clustered the words according

to their use across the document set, and then combined groups resulting from multi-

ple clusterings into fuzzy sets. This technique creates groups of words which together

suggest semantic content, and can be used as the keywords which approximate under-

lying “concepts” contained in the example documents. Results from word clustering

on four different data sets are reported in chapter 4. By turning the focus away

from document classification as an evaluation criteria for keyword determination, we

can create sets of words which can be used both to seek out additional documents

which were not in the training set, and to classify and organize topically the existing

documents as well as new documents.

The next step in the process is to present these word groups to the user in order

that they may further define the concept that iS characterized by a given cluster. The

user may tag Specific words in a cluster as useless (unrelated to the tOpic), may ask

for large clusters to be further subdivided, or tag more than one cluster to be merged
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into the same tOpic. In addition, the user can provide a concept label to the cluster.

This is not required, but can aid the user in further browsing of documents.

The user’s participation at this point is not. absolutely necessary; the system can

use the topic definitions it found automatically without additional refinement, and

can automatically create labels based on the individual words in the topic that have

the strongest membership.

Once the user is satisfied with the concept word clusters, they form a basis for a

new approach to various problems:

0 automatic query construction for queries to existing search services

0 new methods of indexing

o classification of query return results

0 classification of previously unseen documents

0 organization of existing collections according to personalized preferences

3. 1 Preprocessing

We parse each document for words, defined as a contiguous string of letters, ignoring

HTML tags, digits, and punctuation, as well as common English words (such as the,

of, and, etc) from a pre—defined stop list. Our stop list is the one given by Fox [18],

which is based on a broad range of literature in English.
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3.1.1 Stemming

We can also reduce each remaining word to its word stem. so that words like computer

and computing both become the same term, comput. This is a standard information

retrieval technique. and we used the algorithm from Frakes [19]. If stemming is done,

all unique word stems from the entire training set of documents form the global feature

space. Without stemming, all unique words comprise the global feature Space.

Stemming the words has the obvious advantage of reducing dimensionality of the

feature space, for example, one of our data sets contained 7633 distinct non—stemmed

words, and 5190 stemmed words. It would also seem advantageous in classification,

since words with the same stems should be related to the same semantic concept, so

we Should count them as the same feature without regarding Slight variations in tense

and usage as distinct features.

However, there are cases where the Simple stemming algorithm reduces words

to the same stem when the originals were not related. For example, “animal” and

“animation” are both reduced to the same stem, “anim”, which merges two words

which denote distinct underlying concepts into a single feature. A second disadvan-

tage is that stemming is not a one-to—one function, so there is no inverse function

from the stemmed word to the original. Once the original term is lost, it can not

then be used in subsequent searching. A third disadvantage is that the best stem—

ming algorithms are often inaccurate; they use heuristics about typical English word

formation which do not always lead to correct results. For example, an “ed” ending

on a word like formed is removed to form the stem farm. But in the word “feed”, the
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“ed" is removed to get a stem of “fe”, which is meaningless. Our initial experiments

used stemming to reduce the initial feature space as much as possible, but we have

subsequently found that the additional number of non—stemmed keywords do not. sig-

nificantly affect processing time nor results. and the utility of having complete words

for generating automatic searches outweighs any advantage brought by the decrease

in the number of features. Furthermore, experimental evidence Shows that words

which really are variants of the same root word (such as america and american, or job

and jobs), appear together in the final word clusters, so their indication of similarity

is preserved without resorting to stemming.

3.2 Forming the Pattern Matrix

The n example documents contain a total of (1 distinct words, so there are n patterns

in d dimensional space, with d >> n. The n x d pattern matrix M is formed as

follows: MW- 2 k, where word j appears k times in document i. One of our data

sets, referred to as the “NEM—Online” data, consists of 85 documents in 4 categories

containing 5190 distinct stemmed words. The documents are from the manufacturing

domain, labeled by experts into the categories “labor”, “legal”, “government”, and

“design”. This data set will be more fully described in section 4.1.

A portion of the NEM Online pattern matrix is given in Table 3.1, with rows

representing documents (patterns), and columns representing word stems (features).

Selected features out of the 5190 total feature space are shown for illustrative pur-

poses. Rows which are not shown have 0 values in all positions of those columns.
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3.3 Finding Important Features

Table 3.1: Sample of the partial pattern matrix.

If we attempted to classify these documents using their words as features with a

parametric statistical classifier, the standard rule of thumb is that you need 10

times as many training samples as features for each class to accurately estimate

the parameters[58]. Assume a user has collected 100 documents in 2 classes. Using

a conservative estimate of 5000 distinct words in the 100 documents, a paramet-

ric statistical classifier would need 100,000 labeled training samples to estimate the

H
P
.
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parameters. Clearly this is not possible with so many features.

Even though our ultimate goal is not merely classification of documents but detec-

tion of underlying concepts. a reasonable hypothesis is that features which successfully

classify the user’s training set will reflect the distinguishing characteristics of the doc-

ument set and lead to the concepts. We therefore used some feature selection and

extraction techniques to reduce the number of features, and used the classification

accuracy of the training set as a measure of the worth of the features. The assumption

is that a feature set which best reproduces the user’s classification (has the highest

classification accuracy) is the set which contains the “best” features. This assumption

turned out to be false, and our experiments which led to this conclusion are detailed

below.

3.3. 1 Feature Selection

Feature selection is the process of choosing a subset of the available features for use

in classification. There are 2" possible subsets of n original features, so exhaustively

enumerating all subsets is computationally prohibitive, especially when n is on the

order of thousands. Some effective conventional methods for feature selection are

sequential forward selection [59], sequential floating feature selection [60], and ge-

netic algorithm search [61, 62]. We applied sequential forward selection and genetic

algorithm search on our sample manufacturing data set.

 



Sequential Forward Selection

Sequential forward selection was applied using a 1 nearest neighbor classifier, Eu-

clidean distance, and leave one out testing. The classifier performs as follows:

1. Select a pattern from the data set to be a test pattern whose category label we

wish to assign.

2. Find the pattern vector from all the remaining data whose Euclidean distance

is closest to the test pattern. This is the nearest neighbor pattern.

3. Assign the test pattern the category label of the nearest neighbor.

4. Repeat for every pattern in the data set.

The sequential forward selection algorithm first chooses the single best feature

which gives highest accuracy in classifying the training set. It then successively

chooses one feature at a time which, when combined with those features already

chosen, gives the highest accuracy.

Using all 5190 features (stemmed words) in the four category NEM—Online data

(described briefly in section 3.2) with the above classifier resulted in an error rate

of 50/85, or accuracy of 41.18%. Using an SGI Indy’, sequential forward selection

achieved 17/85 errors, or 80% accuracy by selecting only 13 features. These features

were engin, action, david, contempl, afi‘irm, architectur, ave, osha, abund, rehabilit,

notic, commerc, transact.

 

1Because the implementations of the C library routine quicksort behave differently in the presence

of ties on an SGI and a Spare Ultra, we achieved similar classification accuracy with a Similarly Sized

feature set, but very different features. On a Spare Ultra, sequential forward selection achieved 14/85

errors (83.5% accuracy) with 15 different features. Those features were low, act, afirm, govern,

drive, version, reduc, benefit, labor, bank, at, omer, regul, edgar, label.
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Selecting any number of features sequentially, we were able to ultimately achieve

7/85 errors, for a 91.76% accuracy rate with only 17 features. Those features are

project, job, staff. david, apr, clinton, govern, gov, sophist, afiirm, favor, commission,

eeo. fiscal, cfo. tm, stori.

Since we have such a sparse pattern matrix (zero values for many of the features

in any given pattern), if we only add one feature at a time to the current pattern

vector, there is a high probability that for a given test pattern, many other patterns

will have a zero value for that’feature, meaning that all of those patterns are equally

far away from the test pattern. There will be many neighbors who are equally near

the test pattern. This will be true for most distance measures and any sequential

feature selection method. In other words, any sequential feature selection algorithm

could produce many different subsets of features which are equivalent in classification

accuracy by arbitrarily choosing different features in the presence of many ties.

Genetic Algorithm Feature Selection

A genetic algorithm is a technique for searching for optimal solutions. to a problem

based on the principles of natural selection [63, 64]. A solution to a particular problem

is encoded in a bit string called a chromosome. Multiple solutions are initialized

randomly in a single population and evaluated according to problem specific criteria.

All chromosomes receive a fitness value according to the “goodness” of the solutions

they represent. Three basic operations are applied to a population of solutions over

several generations. They are selection, crossover, and mutation. Selection methods

are used to ensure good solutions are more likely to survive to the next generation than
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bad solutions. Crossover involves choosing two chromosomes in the current generation

to use to construct a new chromosome in the next. generation which contains some

parts of each parent. Mutation is used to randomly change some small part of a

solution (usually a single bit) in order to maintain population diversity and make

sure the pOpulation does not converge to a single solution too fast.

Solutions which are more fit are more likely to survive and recombine with other

good solutions in subsequent generations, while poor solutions tend to die out of the

population.

Genetic algorithms have been used for the feature selection problem [61, 62]. The

representation of a solution in a genetic algorithm for feature selection is typically a

chromosome which is the same bit length as the number of features. A bit is assigned a

zero value if the corresponding feature is not selected, and the value one if the feature

is selected. This allows the genetic algorithm to potentially search the entire 2"

possible subsets. Using this technique with n = 5190 dimensions is computationally

prohibitive, even though all 2" possibilities are not examined. Instead, we chose a

subset of fixed size k, which could contain exactly k features. Then there are (2)

possible subsets, which is a more tractable problem for the genetic algorithm (but

still can not be exhaustively searched). We implemented this form of feature selection

using the GALLOPS genetic algorithm software from Michigan State University 2. We

chose k = 25, and let the genetic algorithm search for the best set of 25 from the 5190

features. In 300 generations, the best subset of features was found in generation 168

and achieved 21/85 errors for 75.29% accuracy. The feature set was bliznakov, volant,

 

2http: / /isl.cps.msu.edu/GA/software/software-indexhtml
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law, biographi, permiss, cwatx, alaska. treatment, sodimn, move, evolut, version, avex,

darnell, thoma, photographi, build, pany, hospit, law, lexi, plamen, briefli, export, cite.

Recall that these are stemmed words.

3.3.2 Feature Extraction

Another pattern recognition technique we can use to try to obtain accurate classifi-

cation is feature extraction. Rather than simply selecting from the existing features,

feature extraction derives new features by transforming the original features in some

way.

The Discriminant Karhunen-Loeve Projection

One approach used in pattern recognition problems where the dimensionality is much

greater than the number of training samples is the Discriminant Karhunen—Lo‘eve

(DKL) projection, proposed by Swets and Weng for face recognition [65]. This is

similar to Latent Semantic Indexing [21] which has been proposed in information

retrieval, and which also constructs new orthogonal features which are linear com-

binations of the original features. It is called “latent” semantic indexing because it

claims to capture “latent” or “hidden” semantics of a document.

The DKL projection consists of first performing a principal component projection

followed by discriminant analysis. The principal component projection selects as the

first feature the linear combination of dimensions which has the greatest amount

of variance among all the patterns. Then a new dimension iS chosen which has

the highest variance of patterns among all dimensions orthogonal to the first. So
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we can project the original Space into one whose dimensions are the eigenvectors

corresponding to the largest eigenvalues of the original features which still retain

some high percentage of the total variance.

With our 5190 stemmed features, only 23 eigenvectors were required to retain

90% of the total variance. Thus we transformed the 5190 dimensional original feature

vectors to new 23 dimensional vectors. The 23 new dimensions are orthogonal linear

combinations of the original 5190. Classification using these 23 dimensional feature

vectors did not achieve very high accuracy, only 54%. This result is not surprising

since the principal component method is only concerned with finding orthogonal axes

in the feature space of maximal variance, and is not concerned with class separation.

However, the Karhunen—Loeve projection is only the first step in the DKL pro-

jection. The 23 new feature vectors are next projected into another space using

discriminant analysis, which does consider class separation of the training patterns.

Discriminant analysis considers each class of patterns in the n dimensional Space,

and tries to project the data into a smaller dimensional space while maximizing the

between—class scatter and holding the within—class scatter constant [66].

The scatter matrix for a given class k, S(k) is defined as follows:

where xj is a pattern vector from class k, mk is the mean feature vector in class k,

and nk is the number of patterns in class k.

The within-group scatter matrix is the sum of the group scatter matrices:
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where K is the total number of classes, 4 in our case.

The between—group scatter matrix, Sb is the scatter matrix for the group means:

To project the data into a t dimensional space, we retain the eigenvectors cor-

responding to the t largest eigenvalues of Sngb. Note that in order for Sw to be

invertible, we must have the number of patterns, n, greater than the dimensionality

of the patterns, d. This is why discriminant analysis by itself will not work on the

85 patterns in the original 5190 dimensional space. So we use the 23 new features

obtained by the Karhunen—Lo‘eve projection. We also note that there will be at most

c — 1 non—zero eigenvalues in Sngb, where c is the number of classes. So the final

dimensionality of the Space must be less than the number of classes.

Now in our data set we have n = 85, d z 23, and c = 4. We use discriminant anal-

ysis to project the patterns of the Karhunen—Loeve projection into a 3—dimensional

space.

With our data set and performing KNN classification on the combined DKL pro-

jection, we got 43/85 errors, or 49.41% accuracy with K = 1. This is a lower accuracy

than even the Karhunen—Loeve projection alone. With K = 5, we did only slightly
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better, with 36/85 errors for 57.65% accuracy. Although the DKL projection per-

formed well in the face recognition problem [65], it. appears that the DKL projection

is not robust enough to create a general classifier for document classification. For the

DKL projection to be successful, one must train over all possible expected variations

of the eventual data to be classified. The DKL based retrieval fails if the search

probe varies significantly from any of the training examples [65]. Also, in the face

recognition problem there were many more classes than 4. Since the final dimension

is constrained to be less than the number of classes, the DKL projection may not

perform well where the number of classes is so few.

Even if the DKL projection had adequately classified the training data, it suffers

the drawback that its low dimensional features are created by linear combinations

of the original 5190, which do not by themselves give any suggestion of semantic

content. We can not therefore use eigenvector based features for subsequent search,

since documents are not indexed in search engine databases based on those eigenvector

features. Even if one could construct such an index for every document on the web, a

new index would have to be constructed for every additional or new training example.

The eigenvectors derived from the original training set will not generalize to other

documents in other categories.

There is no way to examine only a subset of documents on the Web according to

their weightings of 5190 features that happened to be in the training set. This is a

very inefficient way to discover new information, especially since the vast majority

of documents on the web properly belong to the reject class for a given information

need. We need the ability to seek out documents which match a user’s preferences
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without examining the entire global set of documents, preferably using the resources

that already exist. namely, keyword based indexes of documents.

Discussion

The feature extraction technique did not achieve high classification accuracy, nor

did it suggest semantic content. Though the feature selection techniques achieved

high accuracy in classification of the training data, the features in each subset were

quite different and do not by themselves suggest the content of the original (or any)

categorization.

It is not meaningful to select a feature as a category discriminator when there

are many potential candidate neighbors for a test pattern with few features. Why

then do the selected sets of features above achieve such high accuracy rates? The

answer lies in the sparse nature of the original pattern space. With 85 points in 5190

dimensional space, there will be many piecewise linear decision boundaries which

adequately partition the training patterns. However, the real question is whether

these decision boundaries are meaningful or generalizable. We want not only to find

some decision boundary, but the best general decision boundary, and meaningful

features which will suggest the semantic content of documents, and enable us to

find new data. We conclude that our assumption that the feature set which best

reproduces the example classification is the best feature set for defining concepts was

invalid. One of the problems with this approach is that individual words are used in

isolation to represent document content and a globally imposed categorization label

is used as the performance criteria. We are Simultaneously using two extremes of
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representation which do not have a good mapping to each other; we would prefer a

unified conceptual level of representation between the two extremes.

3.4 Transposing the Matrix: Clustering Words

Instead of Documents

Our efforts at. classification accuracy using feature selection were somewhat successful,

but the resulting features were not useful in seeking new documents or in suggesting

semantic concepts. The problem lies in the low level representation of information at

an individual isolated word level. We now focus on ways to find features which will

aid us in finding new data, which will represent the documents at a higher conceptual

level than individual words.

Since we know that the words in the original pattern matrix are correlated, we

should be able to cluster the words into groups whose members are similar to each

other and not Similar to members of other groups. We may then be able to use the

groups of similar words to form concepts which are meaningful representations of the

information contained in the documents, and which can subsequently be used to aid

search, and provide personal organization of documents.

Recall that in the n x d pattern matrix M, (Table 3.1), rows represent documents,

columns represent individual features (words), and the feature values are the number

of occurrences of that word in the given document. When we were trying to reproduce

the example documents’ classification, we were grouping documents according to their
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pattern of words. Now, instead. we group the words according to their usage pattern

across the sample document collection.

To group the words, we used a K—meaus partitional clustering algorithm [67].

where K points are chosen randomly as the means of K groups in the n dimensional

Space. Each of the at points is then assigned to the group whose mean is closest. After

each point is assigned, the group means are recomputed, and the process repeats until

either there is no change, or after a fixed number of iterations. The K—means process

is not guaranteed to find a global optimum grouping, so we run it several times with

different random seeds, resulting in groups which often overlap. Combining results of

these different groups to form fuzzy sets is described in section 3.4.4.

3.4.1 Choosing a value for K

One of the important parameters of the K—means algorithm is the choice of a value

for K, the number of groups. If K is too small, there will be few groups which

have many members. If K is too large, there may be empty clusters, or many small

groups which Should be grouped together. If some of the K clusters are empty, we

can simply accept less than K groups. This means that the number of final groups,

as well as their final membership, will depend on the initial random seed. Since we

know the number of categories, c in the training set, we allow for two groups of words

(i.e., 2 “concepts”) for each document category, plus 2 groups for a reject category.

Therefore we choose K = 2(c+ 1). Experiments have shown that greater values of K

tend to generate many empty clusters.
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3.4.2 Distance Measures

Choice of a distance measure between patterns is also an important parameter in

the clustering algorithm. We have used three different distance measures in our

experiments, Euclidean distance, cosine distance, and Jaccard distance.

Euclidean distance

For two d dimensional vectors X = (x1, x2, . . . , xd) and Y = (y1,y2, . . . , yd), Euclidean

distance is defined as

d 1/2

[2% — 3102]

i=1

and is the typical straight line distance between end points of the vectors X and Y

in Euclidean space.

Cosine distance

If we again consider the points X and Y as vectors from the origin, instead of mea-

suring the distance between the endpoints, we can measure the cosine of the angle

between the vectors. Since in our case both X and Y will always have positive val-

ues, we are only dealing with the first quadrant of the Space. The cosine distance is

defined as:

 



67

and is commonly used in information retrieval. The cosine distance has an appeal as

a distance measure between documents where word O(:'(.'urrences are used as features,

because points along the same vector will have the same distance to another vector,

regardless of the vector lengths. This means that the proportion of words with respect

to other words (the other dimensions in the space) is constant along a given vector,

despite the number of words being more or less. This gives an automatic normalization

for document length. Consider measuring document distance in a space with only two

dimensions (i.e., two words), a and lb. Suppose document d1 contains 2 as and 2 bs,

document d2 contains 2 as and 4 bs, document d3 contains 50 as and 50 bs, and

document d4 contains 25 as and 50 bs, as shown in Figure 3.1.
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Figure 3.1: Four documents in 2 dimensions

Using Euclidean distance, points d1 and d2 are much closer to each other than

d1 and d3, but there is 0 cosine distance between d1 and d3. The cosine distance

from d1 to d2 is identical to the cosine distance between d1 and d4. However, when
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measuring distance between words rather than documents. it does not make sense to

consider a word wl that occurs once in document (II and once in document (12 to

be identical to a word w2 that occurs 100 times in document d1 and 100 times in

document. d2 simply because their ratios are the same. We also see empirically that

the cosine distance does not make sense between words, since our K—means clustering

algorithm always failed to converge within 100 iterations when clustering words using

the cosine distance.

Jaccard distance

The third distance measure we used was Jaccard’s coefficient [66], using the binary

values 1 for occurrence of a word in a document and 0 for non—occurrence. Jaccard’s

coefficient as a measure of distance between two documents is defined as

m1

m

where m1 is the number of distinct words that appear in both documents, d is the

total number of unique words in the whole collection (the number of dimensions), and

m0 is the number of words that appear in neither document. This distance measure

considers only presence or absence of a word, and ignores the frequency of occurrence

of a word in a document. When using Jaccard’s coefficient as a measure of distance

between words, m1 represents the number of documents in which both words occur,

d is the number of documents, and m0 is the number of documents in which neither

word appears. Since the Jaccard coefficient is ignoring some potentially important
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information, namely, the frequency of usage of a word in a document, we expect. that

the Jaccard measure will not perform as well as Euclidean distance. Again, empirical

evidence confirms this, where we see that words fail to converge into clusters within

100 iterations when using the Jaccard coefficient.

3.4.3 Normalization for document length

As we mentioned, one attractive feature of the cosine measure (but only useful when

measuring distance between documents) is that it automatically normalizes for a

document’s length, on the assumption that longer documents should not contribute

more than Shorter documents. When clustering words, we also wondered if we should

normalize for document length, by dividing each word count in a document by the

total number of words in the document (giving a frequency between 0 and 1 as a value

for a given word rather than an integer number of occurrences). In other words, in

our original pattern matrix, Mm- = k where word j appears k times in document i,

we can normalize M by document length by defining M’, where

, _ k

1"sz " d

Ell/Im-

1:1

 

Under the original scheme, longer documents weigh more heavily into the cluster-

ing than shorter ones. The K—means clustering was performed on the NEM-Online

data which had been row normalized. Resulting clusters tended to be more polarized,

with small clusters smaller and large clusters larger, and the semantic content was
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less striking than when using word occurrences.

Normalization seems like a good idea but upon reflection, we realize that it is

beneficial only if the documents are fairly homogeneous in their style. We know that

online documents vary widely, from full text to a simple list of links. We conjecture

that we need some length to the documents in order to extract context which will

lead to grouping of words from the same concept. Long documents are more likely to

reflect “typical” usage patterns than simple lists or abbreviated documents such as

abstracts. Long documents are providing more information, so it is reasonable that

they contribute more heavily to the clustering.

3.4.4 Combining runs into fuzzy sets

A mathematical set X with members 2:,- in a universe U can be defined as a function

f : U —> {0,1} where f(u) = 0 if and only if u E X and f(u) = 1 if and only

if u ¢ X. In other words, set membership can be thought of as a function from

all objects in the universe to the set {0, 1} where a 1 indicates membership and 0

indicates non—membership.

Fuzzy set theory was first proposed by Zadeh [68] as an alternative to sets with

absolute memberships. Now, instead of mapping the function from U to the discrete

set {0, 1}, we map U to the interval [0, 1]. Members of U can have varying degrees of

membership, and f is called the membership function. If an object has a membership

value close to 1, it is a strong member of the set, while a value close to 0 indicates a

weak member. Note that this is not the same as the probability of a member being in
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a set (though both have values in [0, 1]); if an object x,- has probability .5 of being in

a set A and a probability of .5 of being in a set B, it still ultimately has a membership

value of 1 in either A or B, but not both. In fuzzy set theory, it is possible for an

object to simultaneously belong to multiple sets, and all membership values for all

sets need not sum to 1.

Fuzzy set theory has been used in pattern recognition [69] as a means to arrive at

clusters which have a fuzzy membership. Rather than forming fuzzy clusters at the

outset, we find partitional clusters, then assign a fuzzy membership function to their

objects, as described below.

We ran the K—means word clustering algorithm many times with different initial

random seeds to increase our confidence in the results. Examining different runs

by hand reveals that there are consistencies, though differences do exist. We need to

precisely quantify the cluster set membership, and combine the results from differently

seeded runs. Philosophically, concepts are not composed of a fixed set of words,

neither are they stochastic. The underlying notion of a concept is fuzzy, so we use

fuzzy set theory to define the final membership of a concept cluster [69].

To form “concept” clusters, we combine the results of several runs of the K—means

clustering, in order to get a definitive assignment of words to clusters. Recall that we

run the original K—means algorithm n times, with n different random seeds. Words

that appear together in the same cluster all n times have strong evidence that they

truly belong in the same cluster. Furthermore, words that co-occur in the same

cluster in only a few runs probably do not ultimately belong together. We can use

the number of times words co—occur as a measure of their strength in relation to each
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other: co-occurring a large number of times shows that the words are bound together

strongly, and are likely to be from the same "concept”.

Since words have different. senses, some words may validly belong in more than

one concept. For example, the word “circuit” may occur in half the runs along

with “design”, “CAD”, “electrical”, and in the remaining runs may occur along with

“court” and “appeals”. The fuzzy membership function allows the word to occur in

both concept clusters.

Our experiments have Shown that there are usually K —1 “smaller” clusters, and 1

very large cluster that contains > 807. of the original feature words. This large cluster

contains the very low frequency words which are not useful in discriminating between

documents, so ignoring this cluster reduces the number of words without sacrificing

discriminating power. To combine clusters from several K—means runs, we first find

all unique words from the K — 1 smallest clusters across all runs. We want to form

“master clusters” which combine results of all runs, and which are actually fuzzy sets,

with words appearing togther many times across several runs having a high degree

of membership, and words appearing few times together with the other words in the

set having a low degree of membership.

We have used two different methods to construct the fuzzy sets. The first method

is as follows. Assume we already have K—1 master clusters, M1, M2, . . . MK_1. Given

a new cluster C, we can find the master cluster with the maximum intersection, that

is, find the M, such that [II-I,- DC] is maximized. Then M, is updated by adding C to

it, so M,- = M,- U C. However, we want to remember the intersection M,- H C, because

the number of intersections will determine the fuzzy set membership. In practice. we
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can keep track of the number of intersections merely by not eliminating the duplicate

members when taking the union.

The fuzzy membership function for a word In belonging to master cluster M,- is

defined as follows: fM,(w) = dup/n, where dup is the number of duplicates of the

word within that cluster (i.e., the number of times it intersected with another similar

cluster), and n is the number of runs we are combining. Thus all elements have a

membership value between 0 and 1.

This approach is convenient and fast, but assumes the existance of initial master

clusters. One way to obtain initial master clusters, is to simply accept the first set

of clusters generated as the “master” clusters, then find the maximal intersection of

subsequent runs with these initial clusters. This is a cheap and easy way to form the

fuzzy sets, but has the drawback of being dependent on the order in which the runs

are presented. If the initial run has anomalies due to poorly chosen initial centers, it

will affect the final cluster membership.

To avoid this problem, our second method constructs a full co-occurrence matrix

R for words in the K - l smallest clusters and forms the fuzzy clusters by finding

the words with the maximum co—occurrence. All pairs of wOrds in a cluster in a given

run are given a vote each time they appear together in a run. SO for n runs, the

maximum value in the co—occurrence matrix Rid is n, meaning that word i and word

j appeared together all n times. The minimum value of RM is 0, meaning that word

i and word j never appeared together.

Once the matrix R is constructed, the algorithm for forming fuzzy clusters is as

follows:



1. Level 2 n

2. For all words i

(a) Find all worde such that R231 2 Level

(b) If i and j are not already in the same cluster, create a new cluster that

contains words i and j.

(c) Compute the set membership function strength, of i and j, for each new

cluster they appear in.

3. Decrement Level by 1.

4. Go to Step 2.

The strength function of a word w in cluster C can be defined in a number of

ways. One method is to use the average connectedness of word w to all other words

currently in the cluster:

Estrengthfi)

iEC

ICI

 strength(w) =

When any new word is added to a cluster, the strength of every word in that cluster

must be recomputed.

Unfortunately, this algorithm is in the worst case 0(j * n“) in time, and 0(4n2)

in space, where j is the number of runs and n is the number of unique words in the

K — 1 clusters across all runs. We could make the algorithm faster by making a

simpler strength function (such as strength(u.') 2 Level at which it joined the cluster)
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but can in no case do better than the ()(j * n”) of Warshall’s algorithm required to

find the transitive closure of the matrix j times. Ten runs for n = 5000 requires over

4 hours clock time and 100 MB of space on an Enterprise Server 3000 with 250 MHz

Spare Ultra 2 processors and 512 MB Of main memory. This is a powerful machine,

not readily accessible to an average user. Recall that one of our requirements is fast

turnaround and easy accessibility. The use of this algorithm may be too resource

intensive for average users.

When we have the fuzzy clusters constructed by either method, we can identify

the “core concepts” in each by choosing the words with the strongest membership.

These core concepts can now be presented to the user, who can identify whether key

terms actually Should belong to the concept, and who can modify the degree of fuzzy

membership if desired.

3.5 Summary

In this chapter we have described methods for finding concepts in text. We have

concluded that classification accuracy of a small set of training examples is not a

good indicator of features that convey semantic meaning. Word clustering using

several different runs of the K—means algorithm and Euclidean distance provides

small groups of words which lead to an approximation of semantic content. In the

next chapter we will discuss in detail the results of this process on four separate data

sets, then describe the uses of the concept clusters for automatic search and document

organization.



Chapter 4

Experiments and Results

In this chapter we describe our experiments with concept extraction and the results

obtained using four different datasets. First we describe the data sets used, then the

experiments which obtained the fuzzy concept clusters. We describe the convergence

behavior, size of resulting clusters, and strengths of resulting clusters. We conclude

the chapter with a discussion of the uses of the derived clusters in automatic search

and document organization.

4.1 Sample Data Sets

Statistically Random

First, in order to provide a baseline for comparison and to ensure that we don’t derive

conceptual results from statistically random documents, we need a set of documents

that are statistically the same as typical documents, but which are not conceptually

related. We generated a set of random documents in the following way. We obtained

76
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the Reuters-21578. Distribution 1.0 I test, collection of documents. This collection

consists of 21,578 Reuters newswire articles from 1987 which all deal with economic

topics. There are 45,534 distinct words in the entire collection. To generate our

purely random pages, we computed the frequency distribution of all words in all

21,578 articles, then sampled words with replacement according to their observed

probability estimate. The word with highest probability, was, not surprisingly, “the”.

The overall probability of a word w appearing in a document is defined as

where n is the number of occurrences of w in the entire collection and N is the total

number of words in the collection. We created 80 documents with 1000 words in each

document. The number of unique words in these 80 generated documents was 9238,

with 4881 of those words occurring only once, and 1394 occurring only twice. The

majority of all words are low frequency ones. Note that word order in the generated

documents is not important, Since we do not use phrases or word pairs in our analysis.

Seeded Random

Once we had the purely random documents, we ”seeded” them with a set of chosen

“tOpic” words in a controlled way, in order to make sure we could reliably retrieve

these topic words using our methods. Each Reuters document contains zero or more

category labels which were assigned manually by experts. A given article may contain

 

1available from David Lewis at http://www.research.att.com/Iewis
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many labels. and many of the categories could have overlapping concepts. or be

conceptually hierarchical. For example. "corn”, “wheat”, and “grain” are all distinct

categories in the Reuters data but many articles contain concepts from all three.

Due to human decisions about labeling, it is possible for an article about wheat to

be labeled “wheat” but not “grain”, even though “wheat” can be considered a sub

category of “grain”. Though the Reuters documents have labels manually assigned

by experts, there are many errors and inconsistencies in the labeling of articles. For

example, one article about sOybeans (without mention of meal or oil) may carry all of

the labels “grain”, “soy-meal”, “soy-oil”, and “soybean”, while another similar article

may have only the single label “soybean”. Many articles from the “gas” category do

not also have the label “fuel”, and some articles are clearly mislabeled (one example

is an article about the price of gold carrying the label “gas”).

The Reuters data is also full of many abbreviations standard to Reuters, but

not to typical English text, such as “dlrs” for dollars, “mln” for million, “pet” for

percent, “bpd” for barrels per day. Additionally, there are many proper names and

misspellings, and special routing codes for the news wire. All of these factors con-

tribute to the phenomenon of a higher number of distinct words and a different word

distribution than one would typically expect from, say, English literature.

The four Reuters categories acquisitions, gas, interest, grain were chosen, and the

distribution of words in each category alone was computed to get the probability that

a given word appears in an article of that category. The conditional probability of a



word u; appearing in a certain class c is

12,.

P((l.'[C) : -l\_r

where no is the number of occurrences of the word w in category c, and NC is the

total number of words in category c.

When P(w[c) >> P(w), the word Should be an important feature of class c.

We therefore took the words with the largest values of P(wlc) — P(w) as “seed”

words to insert in the purely random documents. For example, P(oil) = .00158,

and P(oillcrude) = .0177. The difference indicates that oil is probably an important

word for the category crude. The words with the greatest difference between overall

probability and class conditional probability form our seed word sets for each category.

It is interesting to note that the set of words with greatest differences between overall

6‘ 1,

and class conditional probability often included words such as “the”, “from”, a ,

which also have a very high overall probability. In the same way that we removed

stop words from documents prior to word clustering, we removed stop words (from

the same list) from the potential seed word sets. The top 10 “seed” words from each

category is listed in Table 4.1. Note that even these small sets of words overlap

categories, “pct” appears as a top class conditional word in both the categories “gas”

and “interest”.

There are many parameters we can control to construct seeded random documents,

including document size, number of documents in a target category, seed word set

size, percentage of the random document that is replaced with seed words, and the
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L acquisitions [ gas [ interest [ grain ]

lt shares pct gasoline rates rate tonnes wheat

company include mln oil pct bank grain corn

offer corp prices bpd market money agriculture usda

stake share barrels crude stg fed nil crop

dlrs acquisition demand octane cut banks department export.     
 

Table 4.1: Seed words from four Reuters categories

percentage of the seed word set included in a given document.

To construct our random seeded documents, we constructed three sets of 80 doc-

uments of 1000 words each, in the four target categories mentioned above (20 doc-

uments per category). These values roughly correspond to our “real life” data sets,

and so represent a realistically Sized set from which to derive concept clusters. In set

one, 10 words out of the 1000 (17.) were chosen uniformly from a Size 10 seed word set.

The remaining 990 words were chosen according to the overall collection distribution

of words, giving a total of 8881 unique words. The second random seeded data set

had 5'/. seed words (again, chosen uniformly from a seed set of size 10) with all other

parameters the same, resulting in 8557 unique words among the 80,000. The third

data set was 10'/. seed words (100 words out of 1000 chosen uniformly from a size

10 seed set), with 8346 unique words. We wanted to ensure that we obtain the seed

words as concept clusters from each of the four categories.

Reuters articles

We next chose a subset of actual Reuters articles, chosen from the same four specific

categories. Again, we wanted to use a small subset of example articles, to realisti-



81

cally simulate real life Situations where a user in general does not have access to an

entire document collection, and therefore can not compute the global probabilities

or the class conditional probabilities. We therefore sampled articles from the cho-

sen categories at random without regard to any probabilities, or any requirements

of exclusiveness of the category label. In other words, we were not choosing the

“best” representatives of a category which might be the case when an article has only

that label. An article had an equal chance for selection as long as it contained the

correct category label (from perhaps many labels). For each of the four categories

acquisitions, gas, interest, grain, we randomly selected 20 documents for a total of 80

documents. The Reuters data is summarized in Table 4.2.

 

 

 
 

 

 

 

 

   
 

Category Number of Distinct Non— Document Length

Documents Stemmed Words Min [ Max [ Avg [ Median

acquisitions 20 1087 30 369 134 82

gas 20 911 27 355 107 96

interest rates 20 1087 27 388 134 92

grain 20 760 33 234 87 78

[total 80 2665 27 388 115 110 [       
 

Table 4.2: Sample Reuters data set categories

NEM-Online

The final data set we examined comes from the manufacturing domain, and consists

of actual web documents from the Network for Excellence in Manufacturing (NEM

Online)2, which contains a set of documents manually selected by human browsers

to be of interest to a particular user community. We again chose four categories,

 

2http: / /www.nemonline.org
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labor, legal, government. and design, and collected 85 documents which we were able

to retrieve from the Web. The Nem—Online data is summarized in Table 4.3. This

data set is the most realistic, with varying numbers of documents per category, and

varying lengths of the documents.

 

 

 
 

 

 

 

 

     
 

Category Number of Distinct Non— Document Length

Documents Stemmed Words Min [ Max [ Avg [ Median

design 23 2155 37 990 253 127

government 15 2852 16 5450 633 80

labor 13 2444 33 2557 552 342

legal 34 3921 34 3137 403 123

[ total 85 7633 j] 16 5450 456 127 [     
 

Table 4.3: Sample NEM Online data set categories

In the tables, document length refers to the total number of words in the document

(excluding stop words). Notice that the Reuters articles are much shorter than the

NEM Online documents. This makes concept extraction from the Reuters data more

diflicult, Since there is not as much context in a given article to distinguish the

characterizing concepts.

The category labels were assigned by human experts. Note that the categories

may contain underlying concepts which overlap. For example, a document discussing

“affirmative action” may be reasonably classified into government, labor, or legal

categories, according to the person who is doing the category assignment, and within

the context of their other collected documents. The NEM Online category labels are

distinct, but recall that the Reuters documents may (and usually do) have multiple

category labels. The overlapping of concepts into multiple categories is one thing
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that. makes text classification so difficult: even human categorizers do not have a

well-defined, unequivocal method of assigning a definitive label to a certain document.

All sets of training data are summarized in Table 4.4.

 

 

 

 

 

 

 

Data Set categories does in each total distinct conceptually

category words related words

StR 1 80 9238 none

SeR 1% 4 20 8881 10

SeR 5% 4 20 8557 10

SeR 10% 4 20 8346 10

RA 4 20 2665 unknown

NO 4 see Table 4.3 2665 unknown        
Table 4.4: Summary of the training data sets: Statistically Random (StR), Seeded

Random (SeR) at 1%, 5%, 10% seed words, Reuters articles (RA), and NEM—Online

(NO).

4.2 Word Clustering Results

In this section we discuss the results of clustering the words of the four different data

sets, and convergence, cluster size, and word strength in the fuzzy clusters in each

data set.

4.2.1 Statistically Random Data Set

Random data with no inherent clusters are manifested by patterns whose features

are all Similar. This is the case with the statistically random data. All documents

look alike across the feature set, so we do not expect to get semantically related

words as clusters. The K-means algorithm fails to converge after 100 iterations,
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indicating that. it is having difficulty finding stable clusters. When forced to stop

after 100 iterations, we assume that the words within the clusters have little chance

of being semantically related to each other. They represent those words whose overall

probability of getting into a document is similar. Interestingly, the sizes of the clusters

follow the same pattern as the non—random data do; we get one very large cluster

and K — 1 smaller ones. This is a result of the tendency of English text to follow a

distribution according to Zipf’s law [70], which states that the frequency of word use

times its rank order in a given text is approximately constant [15]. Sizes of the K — 1

smallest clusters of all data sets are shown in Figure 4.1.
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Figure 4.1: Sizes of K — 1 smallest clusters in all data sets



85

\Vith K = 10, the Sizes of the clusters from the random data are roughly the

same over all 10 runs, even though the algorithm did not converge. Furthermore, the

3 smallest clusters have Sizes 9. 10, and 30 (or 31) in all runs. If we examine the

contents of those smallest clusters. we see the same words appearing. The smallest

cluster contains be, dlrs, lt, march, mln, pct, reute, reuter, vs. Next smallest contains

april, bank, billion, company, corp, cts, inc, mar, net, usa. If we examine the overall

probabilities for these words in the Reuters collection, we see that the rank order of

the probabilities for the first cluster is 15, 11, 12, 16, 14, 19, 30, 20,26. The rank

order for the second cluster is 46, 47, 36, 43, 41, 49, 45, 35, 50, 33. We are obtaining as

clusters those words which have a similar overall probability, which is what we would

expect. The words with highest overall probability (ranks 1-10) are all stop words:

the, to, of, f, in, and, a, said, 3, for, and thus were eliminated before clustering.

So, for the purely random data, we obtain clusters that contain words with similar

overall probabilities, but which do not suggest any semantic content.

4.2.2 Random Seeded Data Set

Since the purely random data had no class information, and its documents were

created based on the overall probability distribution of words, the clusters obtained

were based on those overall probabilities. For the random seeded data, since we have

specific words in four categories, with those words being the highest difference in class

conditional probabilities, obtaining those seed words in our clusters will reflect the fact

that the documents are diflerentiated by those words with the highest class conditional
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probability differences (not merely the highest class conditional probability).

I.’sing Euclidean distance and K = 10. the clusters converged in an average of

35.1 iterations for the 17. seed words. 44.5 iterations for the 57. seed words. and 45.4

iterations for the 107. seed words. In contrast to the purely random data, the K—

means algorithm is able to find stable clusters.

As seen in Figure 4.1, the distribution of the sizes of the K clusters again follows

the same pattern as the random data; that is, more than 807. of the words fall into a

single cluster, leaving less than 207. in the remaining K - 1 clusters. The words in the

large cluster correspond to the great number of words that have very low frequencies

in the document set.

Recall that our categories are gas, grain, acquisitions, interest. We know that the

words with the largest differences between class conditional probability and overall

probability for all grain articles in the Reuters collection are tonnes, grain, agriculture,

nil, department, wheat, corn, usda, crop, export, which are the words seeded into the

random seed document set at 1%, 5%, and 10% of words in each document. We want

to ensure that we detect those words through our clustering process. We do obtain

those words in the K — 1 smallest clusters, but we also obtain clusters containing

words with a high overall probability in the document collection.

Clusters from 1% Seeded Random

At the 1% level, for example, we get a cluster containing the grain seed words agri-

culture, corn, crop, usda with a strength of 1.0, and the additional grain seed words

department, export, grain, nil, wheat appear in the same cluster at a strength of .4.
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However, the cluster containing the grain seed words also contains 359 other words

which have strength .5 or higher, most of which are not seed words in any of the four

categories. We also get a very strong small cluster consisting of the words be, dlrs, lt,

mln, pct, reute, reuter". These are words with high values of P(w) (the rank order of

their overall probabilities is 16, 15, 12, 11, 20, 14, 19) but which were not eliminated

in the stOp word list, because our stop word list is based on typical English, and not

on Reuters data.

Since we know something about the domain and where these articles were’ob—

tained, and in fact have access to the entire collection, we know that “reute” and

“renter” appear in nearly all documents. Similarly, the Reuters document database

deals with economic topics, and uses the special abbreviation “dlrs” for dollars.

Armed with this kind of domain information, we can easily add these high frequency

words to the stop word list to prevent them from being clustered if we are restrict-

ing our analysis to Reuters articles. It is important to note that we do not want

to blindly eliminate the most frequently occurring words in a collection. Since we use

only a small set of examples, it may be that precisely those highest frequency words

in our collection are what distinguishes them from others we have not yet seen. It iS

only because we have access to the entire Reuters set and are restricting our analysis

to that collection (for this set of experiments) that allows us to make decisions on

the usefulness of the highest frequency words. Given a larger universe of discourse,

the words “reute”, “reuter”, and “dlrs” would be those that would point us towards

more Reuters economic news articles.

 

3Recall that these words are special abbreviations peculiar to the Reuters collection
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III the 17. data, using the order-dependent method of fuzzy set. construction from

10 different K--means runs, if we examine the smallest K — 1 clusters, all seed words

from all categories do appear, but they are scattered throughout the K — 1 clusters,

and are not separated according to category. There are also many other non-seed

words included with high strengths which reflect their high overall probability. Note

that some words with very high overall probability are also seed words, such as “lt”,

H 77

“pct , “dlrs”, “mln . ’e conclude that if only 17. of a document’s content contains

discriminating keywords, our. method will have difficulty finding them. The words

are there, but so are many other words which are not discriminating. We suppose

that in a solid piece of text with a reasonable length, important concept words will

constitute more than 1% of the total non—stop words, so this represents a worst case

scenario.

Clusters from 5% Seeded Random

In the 57. seeded data, three clusters contained all seed words except “agriculture”,

which was not present in any of the K — 1 clusters. The fuzzy clusters containing the

other seed words and their strengths are given in Table 4.5 Words with strengths

less than .4 are not Shown.

Cluster 1 represents the words with high overall probability, including some of

the seed words. Cluster 2 contains all of the seed words from the interest category

(except “pct”, which is in Cluster 1), and all but one of the seed words from the

grain category. Cluster 3 contains all of the seed words from the gas category except

“mln” and “pet”, which are in Cluster 1. It is interesting that. the seed words from
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[ Cluster 1 [ Cluster 2 Cluster 3

1.0 be 1.0 april 1.0 bank .9 barrels .9 bpd

1.0 company 1.0 banks 1.0 billion .9 crude .9 demand

1.0 dlrs 1.0 cts 1.0 cut. .9 gasoline .9 octane

1.0 include 1.0 fed 1.0 mar .9 oil .9 prices

1.0 It 1.0 market 1.0 money .6 sin .6 trade

1.0 march 1.0 net 1.0 rate .5 acquisition .5 apr

1.0 mln 1.0 rates 1.0 stg .5 corp .5 loss

1.0 pct 1.0 usa .7 corn .5 offer .5 rm

1.0 reute .7 crop .7 department .5 share .5 shares

1.0 reuter .7 export .7 grain .5 stake .5 stock

1.0 vs .7 nil .7 tonnes

.7 usda .7 wheat

.5 apr .5 loss

.5 rm .5 Share

.5 Shares .5 stock

.4 acquisition .4 co

.4 ofier .4 stake

.4 trade   
 

Table 4.5: Three smallest, strongest clusters from 5% random seeded document set

the “acquisitions” category appear in both Cluster 2 and Cluster 3, with strengths of

and half the time with gas words.

.5. This means that half the time they clustered with the grain and interest words,

We do have another fairly large cluster (104 words) with strong membership (all

but 9 words have strength 1.0 or .9), but which contains none of the seed words. If

we restrict our focus to the smallest clusters, we find the seed words (along with some

others). What we see at the 57. level is that the seed words are appearing in the

smallest clusters with strong membership.
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Clusters from 10% Seeded Random

In the 10% seeded data set, there. are only 4 clusters that have any word at a strength

greater than .6. Of these four “strong” clusters, two of them contain all the seed

words for all four categories. These two clusters are shown in Table 4.6.

 

 

 

 

[ Cluster 1 [[ Cluster 2 [

gas [ acquisitions interest grain Non seed words

1.0 barrels 1.0 acquisition 1.0 bank .8 agriculture 1.0 be

1.0 bpd 1.0 company - 1.0 banks .8 corn 1.0 reute

1.0 crude 1.0 corp 1.0 out .8 crOp .8 march

1.0 demand 1.0 dlrs 1.0 fed .8 department 8 reuter

1.0 gasoline 1.0 inc 1.0 market .8 export 8 vs

1.0 octane 1.0 It 1.0 money .8 grain .6 mar

1.0 oil 1.0 offer 1.0 rate .8 nil 6 usa

1.0 prices 1.0 share 1.0 rates .8 tonnes

.8 mln 1.0 shares 1.0 stg .8 usda

.6 pct 1.0 stake .4 pct .8 wheat     
 

Table 4.6: Two clusters containing seed words from 10% random seeded document

set

One cluster contained all of the gas seed words, and no other words. The strength

of each word was 1.0 except for “mln”, with a strength of .8, and “pet” , with a strength

of .6. This is a clear indication that we retrieved the seed words from the gas category.

The other cluster contained all of the acquisitions seed words, all of the interest seed

words, and all of the grain seed words. One of the other clusters containing words

with strength greater than .6 contained high overall frequency words. The remaining

strong cluster contained 115 words, none of which are seed words.

At a 10% level, we can detect important category words by examining the small-

est clusters with strong members, and by ignoring clusters which contain words with
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high overall probability. Of course, in real data situations, we would have no way

of detecting which clusters are actual “seed words” (i.e., have high class conditional

probabilities). and which are merely high overall probability words. But these high

probability words which do not belong on the stop list are probably also important

characterizing words for our example document set, even though they may not dis-

criminate among our current categories.

4.2.3 Reuters Data Set

Next we examine the fuzzy clusters resulting from the actual Reuters data in four

categories. Recall that we used the same four categories for actual data as we did for

the random seeded data, and we know the class conditional probabilities for the words

in each of these four categories. Therefore, we expect to obtain clusters containing

those same high class probabilities words as when we “seeded” random documents

with them.

The K—means algorithm converged to stable clusters quickly, in an average of 13.7

iterations. The size distributions of the clusters follow the same consistent pattern,

with one large cluster containing about 80% of the words. Again, using the order

dependent fuzzy cluster construction method, with K = 10, we obtained only 4

clusters whose strongest member was higher than .4. These clusters are shown in

Table 4.7. The words of strength .6 or greater in these 4 clusters consisted almost

entirely of words that are within the top 100 class conditional probabilities of one of

the four target categories. For example, cluster 1 contained 35 words with strength
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L Clusterl [ Cluster2 [ Cluster3 F Cluster4 ]
  

.8 crude .9 demand .8 budget .9 banks

.8 gasoline .9 production .8 co .9 commercial

.7 companies .9 tonnes .8 georgia .9 debt

.7 dunham .7 corn .8 power .8 official

.7 energy .7 crop .8 unit .9 world

.7 import .7 fall .8 vogtle .7 brazil

.7 imports .7 farmers .8 board .7 plan

.7 industry .7 growth .7 third

.7 unleaded .7 soybean

.7 soybeans

.7 wheat      
Table 4.7: The four clusters from actual Reuters articles whose strongest member was

greater than .4. Words with strength < .7 appear in the clusters, but are not shown

here.

.6 or above; 19 of those 35 words appeared in the top 100 class conditional words for

the gas category. Cluster 2 clearly indicates words from the grain category. The third

cluster had 10 words of strength .6 or above; 4 of them were in the top 100 of the

acquisitions category and 1 was from interest. The final cluster had 9 words; banks

and commercial are in the top 100 class conditional words from the interest category,

and debt and official are from the top 100 of grain.

These results lead us to conclude that we are successfully obtaining important

keywords from the 4 categories, although the separation between categories is not

always clearly delineated from the cluster information alone. We also get some extra

words which do not Show up in the list of the top class conditional words, especially

at lower strength levels.
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4.2.4 NEM—Online Data Set

The last data set is the HTML documents from NEM—Online. Here, we have no

objective way to evaluate the cluster word membership, Since we can not compute

any class conditional probabilities. We also can not compute the overall probability

for a given word; the overall probabilities for the Reuters data is not valid for this set

of documents. Just as the Reuters data had words such as “renter” and “dlrs” as high

frequency words, HTML documents have words such as “homepage” and “Internet”

as high frequency, non—discriminating words. We have evaluated the words in the

clusters by having experts familiar with the NEM—Online domain examine them.

We ran several runs of the K—means algorithm on the NEM—Online data described

above. Cluster membership stabilized in an average of 26 iterations, and again there

was 1 large cluster and K —1 smaller ones for each run. With K = 10 and 10 different

runs, we obtained 6 fuzzy clusters which had at least one member at strength .6 or

above. These clusters are listed in Table 4.8.

The two clusters not Shown here had 178 and 165 members. We note that with

the NEM—Online data, as in all other data sets, we get one very large cluster (the

“useless” cluster), and the remaining clusters are smaller. The smallest of these

remaining clusters suggest reasonable topics, however, others are still too large for a

human to easily interpret. We conjecture that the words in these larger clusters may

be useful in further suggesting content if we could subdivide them into smaller pieces.

We implemented a recursive variation of the partitional K—means algorithm which

accepts some user—defined Size threshold, and if any cluster (other than the largest)
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

.8 affirmative 1.0 amendments 1.0 cfr .7 cad

.8 americans 1.0 bankruptcy 1.0 cosmetic .7 cadmazing

.8 discrimination 1.0 code 1.0 cosmetics .7 customer

.8 people 1.0 debtor 1.0 eye .7 inc

.8 women 1.0 petition 1.0 hair .7 management

.7 action 1.0 section 1.0 product .7 project

.6 employee 1.0 products .7 service

.6 fmla .9 color .7 services

.6 leave .9 containing .7 software

.4 opportunity .9 except .6 company

.9 fda .6 connx

.9 skin .6 consultants

.6 consulting

.6 customers

.6 design

.6 electronic

.6 network

.6 process

.6 projects

.6 solutions      
 

Table 4.8: The four clusters from NEM—Online documents.

exceeds that threshold, the words from that cluster are reclustered according to the

original documents.

Again, we have no way to objectively evaluate the worth of the words in these sub

clusters. Looking at the words subjectively without the opinion of domain experts,

it is not clear whether the sub categorizations are useful. Work on the hierarchical

subclustering is ongoing and a subject of future study.
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4.3 Cluster Usefulness

Referring to our system overview in Figure 1.1, we have described the process and

results of obtaining the concept. clusters. We next discuss their uses in classification

accuracy and in automatic querying and document organization.

4.3.1 Classification Accuracy

Now that we have some small clusters of words, are these groups useful in document

categorization? We attempted to use the resulting feature clusters to recognize the

original 4 (NEM) document categories. We used a simple scheme where each of the

10 clusters was considered a feature, and an occurrence of any term from a cluster

was counted as an occurrence of that feature. We used number of occurrences in each

cluster as the feature values, and the 85 documents as patterns. So for example, if

the phrase “affirmative action” occurred three times in a given document, and the

cluster containing both “affirm” and “action” was cluster 2, the second element of the

10 dimensional feature vector for that document would contain a value of 6 (provided

no other terms from that cluster also occurred in the document). If no terms from a

cluster appear in a document, the value for that cluster in the feature vector is zero.

After constructing this new pattern matrix with the 10 features derived from the

occurrences of terms from the 10 clusters, we performed K—nearest neighbor classifi-

cation with leave one out testing, as in the feature selection cases. The classification

accuracy was 42/85 errors, or 50% accuracy with K = 1, and didn’t change signifi-

cantly for other values of K.



96

Classification using the same scheme as described above, but, with elimination of

the largest cluster (therefore using only 9 features) yielded results which were only

55% accurate.

Even though the features derived from the clusters as described above did not

perform very accurate classification of the original categories, we must remember that

classification accuracy is not our ultimate goal. We can use the word clusters as an

initial approximation of a semantic concept. We can verify the semantic relationships

between the cluster words by user evaluation, or by lookup in a semantic database.

We can also allow the user to refine the concept by adding or deleting words, or giving

the word cluster a meaningful label (which is not necessarily the same as the user’s

original category labels). Our experience has shown the clusters are usually small

enough that consideration of the individual words is not burdensome for a user. If a

cluster is too large, the user asking the system to sub-cluster it may prove fruitful.

4.3.2 Search for Similar Documents

One of the advantages of having a semantically related group of words as a represen-

tation of a document is the ability to search for similar documents using these words.

Though automatic query construction is a complicated issue, we can generate queries

from word clusters using two simple strategies that show the efficacy of this approach.

A query formed by taking the conjunction of cluster words (for example,

crude AND gasoline AND companies AND..., etc.) leads to a higher precision as

more words are added than does a query consisting of single words alone. However,
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recall will'decrease as words are added to the conjunction. A' query formed by the

disjunction ofcluster words (for example, crude DR gasoline DR companies 011...,

etc.) results in a higher recall, but lower precision as more words are added to the

query.

Remember from Table 4.7 that cluster 1 words suggest the category “gas” and

cluster 2 words suggest the category “grain”. We used these as target categories for

purposes of determining document relevance.

Using the 9 words of cluster 1 with strength .7 or greater, and the 11 words of

cluster 2 with strength .7 or greater, we generated all possible conjunctive queries of all

sizes for the target categories “gas” and “grain”. We computed precision and recall for

each query as defined earlier. For purposes of this experiment, “Retrieved” documents

were all those that satisfied the conjunction and “Relevant” were those that carried

the same label as the target category. Note that this definition of “relevant” may not

be correct, due to the multiple, inconsistent, and erroneous labelings in the Reuters

data. However, we used that definition of relevance to provide as objective a measure

as possible.

The maximum precision and recall values for a given size query for the two con-

cept clusters are shown in Figure 4.2 and Figure 4.3. We see that, as expected, for

conjunctive queries the precision increases with additional words.

We also simulated disjunctive queries, where we are interested in improving recall.

'e know that many disjunctive terms will decrease precision since a single word from

the query occurring in a document is enough to retrieve that document. We generated

queries consisting of the disjunction of all words in Reuters cluster 1 and cluster 2
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Maximum Precision and Recall for Cluster 1 in the 'gas' category
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Figure 4.2: Maximum Precision and Recall for Reuters cluster 1 in the gas category

(Table 4.7), and measured the percentage of documents retrieved in each of our 4

target categories. Results are shown in Table 4.9.

 

 

 

 

 

Category Cluster 1 Cluster 2

Percentage retrieved Percentage retrieved

acquisitions .16 .07

gas .75 .39

interest .12 .29

grain .25 .86   
 

Table 4.9: Occurrences of cluster words in all Reuters documents of the four categories

We see that the disjunction of cluster 1 words retrieved the highest percentage

of “gas” documents, and the disjunction of cluster 2 words retrieved the highest

percentage of “grain” documents from among the four targeted categories.

Precision and recall of single word queries of the target categories, where the query

consisted of the obvious choice of category label are given in Table 4.10.

For example, the single word query “gas” for the target category “gas” resulted in
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Maximum Precision and Recall for Cluster 2 in 'grain' category
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Figure 4.3: Maximum Precision and Recall for Reuters cluster 2 in the grain category

 

 

[ Category Query Term Precision Recafl

acq acquisition .80 .22

gas gas .03 .21

interest interest .15 .37

grain grain .31 .39      

Table 4.10: Precision and Recall of single word queries

precision of .025 and recall of .21. The best precision single word query formed from

the concept clusters in the category “gas” was the word “unleaded”, with a precision

of .52. For the query “grain” in the “grain” category, precision was .31 and recall was

.39. A single word query from cluster 2 consisting of “corn” and another query of

“wheat” both exceeded the recall of the “grain” query. So even without constructing

multiple word queries, word clustering can obtain single word queries which perform

better than the category labels themselves.

If we then examine queries consisting of the conjunction of 2 words, we see that

the query “tonnes AND wheat” achieved precision of .30, and recall of 30. The three
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word queries “tonnes AND farmers AND growth”, and “corn AND farmers AND

growth" achieved 1.0 precision.

We know that most web queries consist of one or two words [24]; we see that by

using more words per query we can improve precision with conjunction and recall

with disjunction. Furthermore, by providing a set of words, we can achieve greater

performance in both precision and recall by suggesting words a user may not have

thought of (e.g., “unleaded”). More complicated combinations of operators for query

generation may be able to improve bothprecision and recall simultaneously by using

the words from the feature clusters and their strengths. This is a subject for further

research.

4.3.3 Personalized Document Organization

Another application for our concept clusters of words is for organizing a collection of

documents (listed as “organization with topical proximity” in Figure 1.1). We have

already seen that classification of documents into the original training set categories

does not work well. Instead, we used an unsupervised clustering method to group

the original documents using our derived concept clusters as features. Recall that in

our original pattern matrix M, entry Mid represented the number of times word j

occurred in document 2'. We now form a new 2' x c matrix P, where rows represent

documents, and columns represent fuzzy clusters. We define an entry

11

Pig = Z wkMz‘J:
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where n is the number of words in fuzzy cluster j. and urk is the fuzzy membership

value (i.e., the strength) of word I: in cluster j.

We then cluster the rows of P using K—mcans partitional clustering and Euclidean

distance. We now have many documents but only a few features.

If we examine only the original labels of the documents to evaluate our clustering,

we see that small, tight clusters have the same labeling, but there are also many

documents that do not go into a small cluster. These are then combined into one

cluster whose members have several category labels. However, if we look closely at

the content of the clustered documents rather than just their labels, we see some

close similarities between the documents. For example, for the NEM data, we see

that a group of 3 hardware/software/electronics consulting companies always clus-

ters together. The text of the Family Medical Leave Act (FMLA) occurs along with

a document entitled “11 easy steps to avoid FMLA problems”, “Employee relations:

Resources on Affirmative Action”, “Judy’s affirmative action page”, and “President’s

remarks on affirmative action”. We also get a cluster containing the 3 documents

“Poisonous substances in human and animal feed”, “FDA import procedures”, and

“FDA recall policies”. Another contains “Trusts and Estates bulletin”, “GATT re-

lated changes in the US. Patent System”, “Overview of the US. Patent”, “Preparing

the defective product case”, and “Defective product litigation”. While we did not get

neat clusters of our original categories back, we did get clusters of documents that

are more closely related to each other than the broad topics defined by the original

labels.

The Reuters articles were less clear, although a similar argument can be made for
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closely related articles getting grouped together. For example, one cluster contained

4 documents, 2 each from the categories “acquisitions” and “interest”. However, if

we examine those 4 documents, one of the “acq” articles is about Brazil's bank debt.

In another cluster, there were 7 “interest” documents and one “acquisitions”. Here

again, the “acquisitions” article was about Bank of America’s German branch selling

Bankhaus Centrale Credit, with words such as “bank” and “credit” occurring several

times, lending credence to the idea that it should be together with articles relating

to banking which carry the label “interest”. That same cluster also revealed two

identical articles under different identifiers, which clustered together.

There were no small clusters among the Reuters set that contained the “gas”

label. Upon inspection of our 20 randomly selected “gas” articles, it was discovered

that some of them were mis—labeled (articles about “the decline in gold production”,

“Vermont Financial Services approved cash dividend to shareholders”, and “debt

securities offered for sale”), and the remainder varied widely in their subject matter,

though they could be reasonably considered to be in the category “gas”. For example,

there were articles about ethanol tax exemption, energy costs rising, the Ford Escort

passing European emissions tests, the EPA proposing rules to shield water supplies

from leaks of underground tanks, and a company proposing a plant to build an octane

enhancer to replace lead. Though all can be considered to fall under the category

“gas”, they are not very closely related to each other, rather they represent many

subtopics under “gas”. The 20 “gas” articles chosen (at random) were not closely

related to each other, however, in spite of that we did get a word cluster with words like

crude, gasoline, energy,.unleaded, diesel, octane, petroleum, refining which suggest the
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concept of gas. This brings up an important point. about document. categorization.

The process of assigning documents to categories is difficult. even for humans, except

in the most clear cut and obvious cases. We should not expect that a computer

will be able to categorize documents according to meaning which is not explicitly

represented, when humans often have difficulty with the same task.

4.3.4 Conclusions

In this chapter we have described our experimental results in deriving concept clus-

ters. We demonstrated that random documents (which nevertheless had the same

distribution of words as the entire document collection) did not converge into stable

clusters of semantically related words. We showed that the random documents which

were seeded with category words obtained small, strong clusters containing those seed

words. We also showed that for actual documents, the small strong clusters contained

words which had a large difference between their class conditional probabilities and

their overall probabilities. The categories were not well separated by the concept

clusters; words from different clusters often appeared together, but were still present

in the small clusters. We conclude that when we use our method on real documents,

we obtain words which have a high difference between their class conditional proba-

bilities and their overall probabilities, or, words which have high overall probability

within that set but were not removed by a stop list.

We can use the concept clusters formed from our method as a basis for solving

other problems such as search for documents on similar topics, and organization of
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document collections according to personal categOrization schemes.



Chapter 5

Summary and Future Work

In this chapter we summarize the results of the research reported in this dissertation,

and discuss a number of directions for future research.

5. 1 Summary

Using only statistical techniques, we have developed a method of finding conceptually

related groups of words which represent the underlying content of user—designated

text examples. We use these groups of words as a representation of documents that

is at an intermediate conceptual level between single word representations and global

category representations.

We assume that a user has collected several documents from each of several cate-

gories of interest so that the document collection contains both commonality between

documents in the same category, and diversity among the categories. This is a reason-

able expectation of the user. we also assume that the number of example documents
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is smaller than the number of distinct words contained in all documents. If there are

more. documents than words, and if we attempt to use the entire document set. to

obtain word clusters, we are likely to suffer the problem of of a sparse high dimen-

sional space that was discussed in Chapter 3. In that. case, we would need to break

the document collection into subsets (subspaces of lower dimension) which meet the

diversity and commonality requirements. The method described here was intended

for personal use on few example documents, therefore all processing should take place

in a reasonably short time.

Another assumption is that the documents in the same category share a common

vocabulary which denotes the category. Users often categorize documents in this way

(e.g., documents about vacations vs. documents about job openings), but also some-

times categorize documents according to meta concepts like humor or color schemes.

When these documents in the same category do not share common vocabulary which

distinguishes them from other categories, our method will fail. The documents need

not be labeled by category, it is enough that the categories are present implicitly.

We described the limitations of word-level and global representations of docu-

ments, and pr0posed an intermediate conceptual level of representation of text using

our groups of semantically related words. This is the major contribution of this thesis.

We described our initial attempts at finding good features from among all the

words in documents, using classification accuracy as a performance measure. We con-

cluded that when the number of examples is as small as those we are working with,

classification accuracy is not a good measure of the worth of features. Traditional

feature selection and extraction techniques obtained highly accurate classification,
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but features which do not. convey semantic content of the documents. Feature selec-

tion and extraction techniques use a word—level representation of a document, but

classification accuracy is a global representation. Using one extreme of representation

as a measure of the worth of the other extreme is not a good idea, especially when

the goal is content representation, and not classification. This realization is a second

contribution of this thesis.

We used word clustering to obtain groups of semantically related words which

do convey content‘information. We reported on using Euclidean distance, cosine

distance, and Jaccard’s coefficient. Cosine distance is the one most favored by re-

searchers in the information retrieval community. We concluded that while cosine

distance makes sense as a measure of distance between documents, it does not make

sense as a measure of distance between words.

We discussed normalization for document length and concluded that it is not

necessary, and may in fact be harmful, although this is an area for future study.

Next we described a method for combining the clusters resulting from different

runs of the clustering algorithm into fuzzy sets whose members have a strength func-

tion according to their proclivity to co—occur with other members of the group. We

described two different algorithms for determining the fuzzy set membership function;

one which depends on the order in which the results are presented but is fast, and

one which is not order dependent but which is computationally resource intensive.

In chapter 4 we presented results of experiments on 4 different data sets, and

demonstrated that we can find words with high class conditional probabilities without

many training samples, and without needing to explicitly compute those probabilities,

 



108

or the overall word probabilities. This is an important result. We also described the

uses of the word concept clusters in classification, search, and document organization.

We concluded that. although using the concept clusters for classification into the

original categories was not very accurate, the concept clusters are useful in searches

and document organization.

5.2 Future Work

There are a number of different directions for future research, which we describe

below.

5.2.1 Characterization of Trainng Set

By using the “seed” words from the Reuters document collection, we showed that we

can find the words with high class conditional probabilities, as long as the number

of concept words is somewhere between 5 and 10% of the documents. We used a

fixed document size, fixed seed word set size, and a fixed number of categories. There

are many more studies that can be done to evaluate the effect of these parameters

on the success in finding the appropriate words. Then we can determine necessary

characteristics of the example document set.

One possibility is to have a larger seed word set size, but seed each document with

only a fraction of that seed word set. We could see whether we can still detect the

entire set, and if so what portion of the seed word set needs to be included in each

document in order to successfully find the seed words.
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Varying the number of classes would allow us to analyze performance with respect

to the connnonality / diversity of the training set. The experiments reported here

used 4 classes which were for the most part disjoint. It would be interesting to see

if smaller numbers of categories or larger number of categories affect the ability to

detect the key words. It would also be interesting to see whether including a reject

class (that is, a set of random documents with no seed words) would improve, hinder,

or not affect the formation of concept clusters.

 

We could also study the effect document length has on the resulting clusters.

We have already hypothesized, based on empirical evidence, that since we do not

normalize for document length, we need documents of a certain size in order to

extract the correct context and thus the correct concept clusters. We would like to

see how short documents can be and still yield concept clusters.

5.2.2 Hierarchical Subclustering

We have implemented a hierarchical version of the K—means clustering algorithm

which subclusters any cluster which exceeds a user—defined threshold. We have not

fully studied the effects of the sub—clustering, and a next step would be to determine

whether we can derive sub—concepts by hierarchically clustering, and if so, what char-

acteristics of the training examples are necessary to achieve meaningful subclusters.
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5.2.3 Other methods for determining fuzzy set membership

As we mentioned, creating the fuzzy clusters by building the full (1)-occurrence ma-

trix and traversing it several times according to different strength levels is compu-

tationally complex. It. would be interesting to try different methods of determining

the “strength” of a word in the cluster. Some possibilities for the strength function

strength(w) in cluster C were mentioned in section 3.4.4. The challenge is to develop

an algorithm that is efficient enough for use by average users at any time.

5.2.4 Applications for conceptual representation

There are many directions to investigate regarding automatic search for new docu-

ments using a word cluster representation. We could run our own indexing spider

which indexes documents according to the concept clusters, and then use it for re-

trieval with the automatic queries generated from the concept clusters.

There is also great research potential in studying automatic query generation.

One interesting idea is to use genetic programming to construct Boolean queries using

cluster words. Not only could these queries lead to improved retrieval of documents,

but a further representation of the information contained therein.

5.2.5 Incorporate knowledge in representation

Perhaps the most interesting direction for future research involves incorporating

knowledge into creation of the concept features rather than just statistics of single

words. We can use a semantic database such as WordNet [71] to determine relation-
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ships between the concept cluster words. We could also use word pairs for phrase

detection. or natural language processing techniques to further determine word rela-

tionships. Techniques which were computationally prohibitive when considering all

words in a document are. no longer intractable when working with the concept clus-

ters. Incorporating knowledge will allow further abstraction of information beyond

simple sets of individual words, which we have dealt with in the research reported

in this dissertation. Sets of words with relationships such as “follows” (phrase for-

mation), “islike” (synonyms), “isakindof” (subclass), etc. offers a potentially more

powerful representation of information.
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