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ABSTRACT

A STUDY OF CONDUCTIVITY IN A COMPLEX GEOMETRY

By

Sangil Hyun

I present a study of the conductivity1 of a material with a complex geometry.

There are three main parts in this dissertation, the determination of the isotropic

conductivity, anisotropic conductivity, and effective conductivity. In the first part, a

method using a multi-probe measurement together with a numerical simulation is

introduced for the determination of the isotropic conductivity in a complex geometry.

This method has been demonstrated on micron-sized diamond crystallites and diamond

homoepitaxial films. The 3d-computer image for the finite element method (FEM) has

been reconstructed from the scanning electron microscope (SEM) photos. For a sample

with four probes, a 6 x 6 geometrical factor matrix is generated from the FEM analysis. In

addition, the experimental measurement on the sample provides another 6 x 6 resistance

matrix. The sample conductivity and contact resistances can be determined by the least-

square fitting for the geometrical factors and the resistances. In the second part, this

method is generalized for the anisotropic conductivity that is represented by a 3 x 3

tensor. It has been validated on computer models and real material (bismuth). This

modified numerical scheme using the FEM analysis and the iterative linearization

technique has identified the anisotropic conductivity tensor within acceptable errors in

most cases. Some conditions for the application of this technique have been suggested



from the analysis of the results. In the last part, I describe the effective conductivity of a

composite material. Much research has been done to investigate the electric, thermal, and

elastic properties of composite materials. However, only a few problems with a simple

geometry have been solved analytically. For instance, the dielectric properties of a

composite that includes two perfect circular conductors have been determined analytically

by a multipole expansion method. However, for complex composites, the analytic

solutions cannot be obtained in most cases. Therefore, a numerical technique using the

finite element method has been introduced for problems where the analytic approach

fails. The FEM analysis is known as the most effective scheme to solve a boundary value

problem in a complicated geometry. The simulation using this method is a primary step to

understanding the effective medium theory for a complex composite material. To

demonstrate this technique in the study of composite materials, numerical simulations

have been performed and the results have been compared with the analytical solutions for

a simple composite material.
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Chapter 1 INTRODUCTION

The determination of the physical properties of a material has been one of the

main topics in experimental and theoretical research over the years. It has been a primary

step to characterize a specific material in most experiments. Moreover, the study has been

considered as an important approach to investigate the structural dependence of material

properties for some structured materials such as glasses, amorphous solids, and

composites. The effective material properties have been considered for a composite that

consists of more than one material. Some studies have been conducted to find an

optimum structure associated with these physical properties (electric, mechanical, and

thermal). The determination of these properties is usually straightforward in a simple

geometry. However, it is not possible for complex structures such as an arbitrary-shaped

diamond crystallite. The trouble in the determination usually comes from the complicated

geometry of the material. This is one of main motivations of this study. The finite element

method (FEM) has been adapted to deal with this trouble numerically. This technique is a

powerful tool to solve a boundary value problem especially in a complex geometry.

Sometimes, another computer simulation technique could be used to enhance the

performance of this method. This numerical technique in the determination of the

material properties provides a way to overcome a major limitation that results from

complex geometry.

In this dissertation, I describe the numerical determination of material properties.

Throughout my work, only the electric properties (conductivity, resistance) have been

considered. However, the methods suggested in this study can be applied to the



determination of other material properties (thermal, elastic, etc.), too. In Chapter 2, I

present the numerical method for the determination of the conductivity of micron-sized

diamond crystallites. For this diamond sample, the conductivity is isotropic due to its

symmetric lattice structure. The method is demonstrated on a diamond film for the

comparison with the well-known van der Pauw method. Two main procedures, the multi-

probe measurement and the FEM analysis are required to identify the sample

conductivity. This work could be considered as the first measurement of a diamond

crystallite in micron scale. In addition to conductivity, contact resistances are determined

also quantitatively. The conductivity measurement of a single diamond crystal provides a

primary step to the study of the transport properties in polycrystalline films. In Chapter 3,

I introduce a more generalized technique for the evaluation of anisotropic conductivity

that involves the 3 x 3 tensor. Aided by another computer simulation (iterative

linearization technique), the method using FEM analysis determines the anisotropic

tensor in a complex geometry. This generalized technique has been tested for computer

models and for a real material (bismuth). The conditions for the application of this

technique are obtained from the analysis of the result. In Chapter 4, this numerical

technique (FEM) is introduced to study the electrical properties of a composite. A simple

composite in 2d, which consists of a host and two circular inclusions has been selected

for the demonstration of the method because some analytic solutions of the electric

conduction problem are available in this geometry. Two resistances (4-point and 2-point)

in the composite are defined and obtained numerically and analytically over a wide range

of the neck distances between the inclusions. The numerical method turns out to

reproduce remarkably well the analytic solutions. In addition, a simple relation between



the resistances has been observed in the close neck limit. This relation may be useful in

the study of the effective conductivity of a composite in random close packing. The

numerical simulation using FEM could be considered a primary step in the study of the

effective medium theory for a composite material, especially in a complex geometry.



Chapter 2 CONDUCTIVITY MEASUREMENT OF

MICRON-SIZED DIAMOND CRYSTALLITES

2.1 Introduction

2.1.1 motivation

Because of its unique electrical and mechanical properties, diamond attracts much

interest these days. It has very wide band gap, high thermal conductivity, and extreme

strength as in Table 2.1. Motivated from these concerns, much research has been done on

the determination of the electrical properties of this material. Although it behaves

similarly in many respects to Si and Ge located in the same column of the periodic table,

it has some unique properties compared to these semiconductor materials. However, most

studies have been conducted on two-dimensional films because they can be fabricated

easily and many important devices are in this form. A diamond film grown on a Si

substrate (polycrystalline film) is a mixture of many isolated single crystallites (see Figure

2.1(a)), it includes many local defects (grain boundaries, twins, and dislocations)

Table 2.1 Selected properties of diamond structure semiconductors.

 

 

 

 

Band Ga Lattice Parameter Bond Energy Thermal Conductivity

at 300K at 300K3 _1 4 at 300K

(CV) (A) (kJ-mol ) (W-cm'l-C'l)

Diamond 5.47 3.56683 347 24 ~ 255

Si 1.12 5.43095 196 1.53

Ge 0.66 5.64613 163 0.63        



that contribute on the transport property of this film. One of these defects in the film is in

the form of a bicrystal in Figure 2.1(b). The electric transport in a Si polycrystalline film

has been investigated and modeled by the Trap Transistor Model.6'7 It turns out that the

transport in a polycrystalline film is dominated by grain boundaries. The role of these

local defects on transport in the diamond film has not been studied rigorously before,

because some electric properties of a single crystal are not measured simply due to the

complex geometry. Figure 2.2 shows an electron micrograph of typical single crystal that

is a well faceted micron-sized diamond.

Usually the determination of the conductivity of a regularly shaped macroscopic

sample is straightforward, both in principle and in practice. For a suitable choice of the

sample geometry, there is a region where the current flow is uniform and, if the voltage is

sampled across this region the measurements are independent of the contact resistances [a

so-called 4-terminal measurement] and the resistivity is easily obtained. An example of

this is a cylinder in Figure 2.3 with current contacts near both ends and voltage probes

 

(a) (b)

Figure 2.1 A polycrystalline diamond film (a) and a bicrystal (b) that was formed by two

single crystallites.



near the center of the bar. Since this cylindrical conductor has constant area through the

current direction, we have a simple relation for resistance R from the geometrical

parameters (L, A) by

L
R: _ .

pA, (21)

where L is length and A is area. If I neglect the contact resistances coming from the 2-

terrninal measurement, I need to use two extra contacts. The voltage between these two

leads is free of a voltage drop across the electrical contacts. However, this approach is not

possible for many samples for which regular shapes are difficult to obtain or fabricate,

especially in the micron scale. There is a well-known 4-probe method to determine the

conductivity in complex geometry, as first suggested by van der Pauw.8 However, this

method requires some restrictions on the geometry of the sample and contact pads. The

sample should be a quasi two-dimensional sample. The contacts should be on the

circumference of the sample. Therefore, the van der Pauw method cannot be used for the

3d diamond crystallites.
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Figure 2.2 A typical shape of CVD diamonds used in this measurement. It is a micron—

sized sample grown on a Si substrate.



 

 

Figure 2.3 The conductivity measurement of a simple shaped sample is usually

straightforward. This cylindrical geometry forms constant electric current

pattern inside the sample.

I suggest a technique based on the multi-probe measurement of I-V characteristics

and computer simulation using the finite element method (FEM). This method can be

applied to an arbitrary sample geometry under a restriction that the sample is Ohmic.

However, the contacts can be non-Ohmic. The diamond samples in this study have been

grown by a chemical vapor deposition (CVD) technique on a silicon substrate with boron

doping. This technique has been tested on a diamond film, and the conductivity of

diamond crystallites has been determined. The conductivity of 3d microcrystallites has

been measured and compared with that of a 2d film (especially polycrystalline film).

Throughout this chapter, the conductivity of diamond is taken to be isotropic because of

its lattice symmetry. Although the determination by this technique has been done on

electrically isotropic diamond crystallites, it is a quite general scheme that can be applied

to other materials.

In Section 2.1.2, the van der Pauw method is briefly reviewed and compared with

our technique. The general idea of the inverse problem and the finite element method

(FEM) will be described in Section 2.1.3 and Section 2.1.4. In the following Section 2.2, I



will introduce the resistance table from multi-probe measurements (Section 2.2.2) and the

geometrical factor will be defined in Section 2.2.1 and the way to consider the contact

resistances will be described in Section 2.2.3. Section 2.3 is devoted to computer

simulations of image processing (Section 2.3.1), mesh generating and analysis using FEM

(Section 2.3.2) and the x2 fitting technique to extract the material properties will be

described in Section 2.3.3. A brief description of the experimental measurements will

follow in Section 2.4. In Section 2.5, we tested this method with the van der Pauw

method on a 2d film (Section 2.5.1) and then apply this technique to the data taken from

two diamond crystallites and discuss the results (Section 2.5.2). Finally, I summarize the

application of the method and give some suggestions in Section 2.6.

2.1.2 van der Pauw formula for 2d film

The determination of the resistivity of a regular shaped conductor is simple

because it provides a uniform current inside the sample so that a simple relation between

the resistivity and even the Hall coefficient and parameters for the sample shape can be

given. However, this is not possible in case where a sample is grown and shaped

arbitrarily as in Figure 2.4. A method based on the well-known technique of conformal

mapping of two—dimensional fields9 to measure the resistivity and the Hall coefficient of

2-dimensional films was developed by van der Pauw.8 This method is very useful to

derive those quantities from simple I-V measurements and without considering contact

resistances between the sample and contacts by using multi-probe measurements.

Suppose we have a flat sample as in Figure 2.4 and the current I,2 is injected



 

Figure 2.4 The conductivity measurement of 2D film in arbitrary geometry is done by

four—probe measurement.

from lead 1 to 2 and the voltage V34 between lead 3 and 4 is measured. Then a resistance

R13; is defined by V34 / I12 and it is independent of the contact resistances because there is

no current flowing through the leads where the voltage is measured. The resistivity p of

the sample and 4--point resistances (R12 , R3) are related by

 
crux-”R34d)+exx-p( ”R3331—=)l (2.2)

where R5“ = V," / Iu and d is the thickness of the sample. The resistivity p is given by

w R34+ R4l R34

p=1112MflR13.) (2.3)

wheref is a function of the ratio R1324 IR;I only and has a relation

R1324 —R;3] = fcosh"{exP(ln2/f)} ' (24)

12:; mg; 2

The Hall mobility can be obtained by the change of R1334 when a magnetic field is applied

perpendicular to the plane. A resistance R1234 is given by a cross measurement of voltage



and current as done in the usual Hall geometry. If the magnetic induction is B and the

resistivity of the sample is known by the previous procedure,

_1AR13§‘
— B p 9 (2'5)#H

where ARE: indicates a change of the resistance. Usually a clover-shaped sample , shown

in Figure 2.5(a), is used to eliminate the influence of the contacts. There are some

advantages with this shape compared to the bridge-shaped sample (Figure 2.5(b)). For

low electronic mobility, it provides more Hall current at same amount of heat dissipation.

Moreover, it has mechanical strength and can be used for small sample. However, this

method works only for a situation that satisfies the following conditions. First, the

contacts should be located on the circumference of the sample. Although there are some

marginally safe regions inside the sample, for instance near the comers of a square

sample, generally this condition should be satisfied.10 Secondly, the contacts should be

small compared to the sample size. This second condition raises trouble in micron-sized

  
(a) (b)

Figure 2.5 A clover-shaped film (a) and a bridge-shaped film (b) are used for four-probe

measurement.



samples. Moreover, the van der Pauw method requires homogeneous thickness of the

sample. Following a 2-dimensional approximation, it does not consider any current

variation along the perpendicular direction to the plane. Finally, the sample should have a

singly connected surface. There should not be any hole inside the sample, which

generates a separated boundary from the outer surface. With these restrictions, it does not

help us to calculate the conductivity of three—dimensional shaped microcrystallites.

2.1.3 inverse problem

All physical problems might be classified into one of two categories, the direct

problem and the inverse problem depending on what is known and what is to be

identified in the problem. The term inverse problem can be defined simply as the

determination of the causes from the results. It is the opposite to the direct problem that

determines the results from the given causes (see Figure 2.6). The direct problem is the

determination of some physical quantities (potential, free energy, temperature, current

etc.) from the given conditions (geometry, boundary condition, initial condition, and

material property). Most analytic problems are usually direct problems. To solve a

problem analytically, all necessary conditions that cause some physical phenomena

should be defined. Here is a simple example of direct problem. Suppose we have an

electrostatic problem to obtain voltage distribution in a spherical conductor that has

constant charge distribution. This can be done by solving the Poisson’s equation with the

prescribed conditions (geometry, charge distribution, etc.). Even some numerical

simulations are also direct problems. One of these examples is molecular dynamics.
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Figure 2.6 A schematic of the inverse and direct problem. Those two problems can be

characterized by what is known and what is determined in the problem.

Consider a system consisting of many particles in a fixed volume. This system at a later

time can be described by the initial conditions (potential, initial position and momentum

of each particle, etc.). All positions and momenta of the particles at this later time can be

given by the simulation. However, some problems are quite different from the direct

problems. Suppose we determine some physical quantities from experimental data by

some fitting procedure. The results (experimental data) are used to find the causes

(physical properties). It can be called an inverse problem. The fitting is usually performed

to identify the unknown causes from the measured results. The optimization technique

can be classified by an inverse problem. It determines some parameters that minimize the

measured quantities (energy, power, 12 etc.).

Suppose we have a heat conduction problem as in Figure 2.7. Given a temperature

distribution at an initial time t = 0 , find the temperature distribution on the bar at later

time t. This problem is a direct problem because the solution of the

12



 

Figure 2.7 Heat conduction problem on a simple bar.

temperature distribution is determined by the initially given conditions. And this problem

is a well-posed direct problem because the temperature distribution at time t can be

determined uniquely from the given conditions (temperature distribution at t = 0 , heat

capacity cv of bar, and boundary conditions on the surface) and the heat conduction

equation governing the analysis.ll However, if we solve this problem in a different way

so that the initial temperature distribution on the bar should be found from the

temperature distribution at later time t, it is an inverse problem. This problem is an ill-

posed problem that does not have a unique solution because the temperature distribution

function T(x) in all regions of the bar cannot be determined from a finite number of

measurements of the temperature distribution at time t. Tikhonov developed a

regularization technique to solve a problem that cannot be solved by normal methods like

the inversion of linear equations.12 However, this regularization is not needed for our

problem that is a well-posed problem. Enough information is available to extract the

unknown parameters in our problem. We will determine the conductivity of the sample

and the contact resistances where the unknown parameters are fewer than the measured

(known) resistances provided by the multi-probe method. In our problem, the I-V



characteristics of the crystallite can be viewed as results and we identify the conductivity

and contact resistances as causes.

Suppose o is a field variable representing a physical state of the system, which is a

response to an applied forcef. Then a governing equation can be written as Eq. (2.6)

where L(k) is an operator and k denotes material properties of the system.

L(k)¢ = f . (2.6)

The inverse problem is, given the response 41, and the applied forcef, to determine any

missing information involving geometry, operator form, boundary conditions and

material properties. Our problem can be more specifically classified as a material

property inverse problem following the classification of Kubo.l3 He suggested that

inverse problems could be classified depending on what quantities to be determined.

There are five main inverse problems; domain/boundary problem (that includes electric

potential computer tomography (CT) method, inversion scheme for electric potential CT

method, crack identification), governing equation inverse problem, initial/boundary value

inverse problem,force inverse problem, and material property inverse problem. In our

problem for the determination of the conductivity of a material with a complex geometry

by multi probe I-V measurement, the applied forcef is the current and the response is the

potential. We know the form of the operator L defined by the analysis type. The unknown

quantity that we need to identify in this problem is the conductivity as a material property.

14



2.1.4 Finite Element Method (FEM)

Initially the finite element method has been developed for the analysis of

structural mechanics because of its excellent applicability to complex geometry analysis.

It is a very efficient way to analyze the mechanical property of an object with irregular

shape. However, it has been recognized it could be used to solve other problems like

electromagnetic, heat conduction, fluid mechanics, acoustics, and piezoelectric studies.

This method can be extended to dynamic problems as well as static. There are numerical

methods such as finite difference method (FDM), Monte Carlo, spectral, variational

method for solving a partial differential equation. However, the finite element method is

considered the most efficient for a study in a complicated and highly irregular geometry.

Only a few geometries of boundary value problem can be solved analytically even for

simple partial differential equations like Laplace’s equation. Such geometries might be

line, square, circle, sphere, and cylinder. However, most real problems generally have

very complicated shapes compared to these simple and ideal structures. Some problems

of irregular shapes might be solved by using the perturbation method. Otherwise, it

should be approached by successive numerical approximations.

Suppose we solve a boundary value problem as in Figure 2.8 and the inside

domain is governed by a partial differential equation

AI]! = f , (2.7)

where A is an operator that may represent Laplace’s equation, Poisson’s equation ,or heat

conduction problem depending on the type of analysis.fcan be any type of source as

charge, heat source, and so on. The solution 11!, which represents voltage

(electromagnetic) or temperature (heat conduction), can be solved by well-defined

15
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Figure 2.8 A boundary value problem is solved in this irregular geometry. Boundary

conditions on each surface are needed.

boundary conditions on the surface of the domain as

1;! = We : Dirichlet condition (2-8)

811,; = V’o' : Neumann condition , (29)

n

where div is a normal derivative of up. Since our problem is electrodynamic analysis of

n

a diamond crystallite, Laplace’s equation should be satisfied inside the region when there

is no static electric charge in the sample. We need Dirichlet conditions as boundary

conditions on the leads (SI, 82) where specific voltages are applied. Neumann condition

on the other surface S3 with I/lo'= 0 is given as no current flows through the surface.

These boundary conditions can be represented by

VZV =0 (2.10)

V: V0 onSl,V=0 MS; (2.11)

ri-E=0 ons3, (2.12)



2.1.4.1 preprocessor

There are three main procedures in FEM, the preprocessor, analysis,

postprocessor. The preprocessor generates geometry and initial conditions of the

problem. Initial conditions consist of the construction of the geometry, meshes (nodes and

elements), boundary conditions, and material properties. In the procedure of geometry

reconstruction, we need to have the coordinates of vertices, faces and their connectivity.

We developed an algorithm to reconstruct a 3d sample from 2d SEM pictures.14 The

coordinates of the sample vertices obtained by this technique are used to generate the

geometry of the computer model in the FEM analysis. This process to build the computer

geometry is one of main steps in the preprocessor. Some commercial FEM packages

including ANSYS provide a CAD type utility for this process. The computer model

consists of lines in 1d, areas in 2d and volumes in 3d. The whole domain of the model

should be divided into subdomains if different materials are involved in the analysis.

Each material is assigned to a given subdomain.

After the construction of the geometry, this whole domain should be meshed into

/[\.
Figure 2.9 Some typical element shapes are presented for FEM. Each element has nodes

on the vertices or some extra nodes on the edges to enhance the accuracy.
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the elements. Each domain of the volume should be meshed separately. These elements

are the most important objects in FEM, where the analysis is performed inside. Each

element is defined by nodes, lines, andfacets as in Figure 2.9. Elements can be lines in

1d, triangles, squares, honeycombs in 2d, and tetrahedras, cubes in 3d. However, highly

distorted elements as in Figure 2.10 are not recommended because they may cause serious

numerical errors in simulation. Following the defined shapes and sizes of elements, the

whole domain can be covered by the elements as shown in Figure 2.11. Apparently finer

meshes can generate more realistic shape for a complex structure and can enhance the

accuracy of the simulation. However, many meshes increase degrees of freedom so that

the performance of the simulation would be limited by the computing power. A spherical

object is one of the most complicated structures to mesh well. All boundaries of elements

are defined by a line segment in 2d, plane in 3d. A curve in 2d or a curved plane in 3d

cannot be used for the boundaries of the elements. A circle in 2d can be meshed only into

a polygon. It may cause a serious problem in the numerical analysis of two adjacent

circles. Except for these extreme structures, the meshing itself is not so

. « '5"
Figure 2.10 Highly distorted elements are not usually acceptable in mesh generating.

 

l8



 

Figure 2.11 A sample of meshed geometry with square-shaped elements in 2d.

important in the numerical simulations. The meshing generates the coordinates of all

nodes and defines the topology of each element defined by these nodes. This information

is moved into the next stage of analysis.

2.1.4.2 analysis

In the analysis procedure, a function is defined inside each element. As mentioned

earlier, since the physical quantities in the problem are represented only on the nodal

points at the boundaries of elements, they are not defined yet inside the elements. We

express the physical quantities (voltage, displacements, etc.) in terms of the functions

whose magnitudes are defined on the nodal points. This function is interpolated to

generate physical quantities inside the elements. This property is the main difference with

the finite difference method (FDM), which is very similar to the FEM in many aspects.

All variables, including first and second derivatives of the physical quantities, can be

obtained by the interpolation of this function inside the elements.



The next equation is one example of this function defined by the basis function

¢i~

q

‘l’ = X‘Pflli (2.13)
'=1

where (1),- is a known basis function and u, is an unknown coefficient (Ritz

coefficient).'5’16 We have q unknown coefficients here. In FEM, the basis functions are

selected to calculate the physical values inside the elements. Then all values in the whole

domain can be represented by the coefficients and the physical quantities on each node.

The global potential energy is represented by the sum of the local potential energy defined

for each element. The variational principle is applied to find out the values of won the

nodes. By solving for the coefficients in the above equation, we can construct the

functional wand obtain the physical quantities in the whole region. One choice for the

basis functions is orthogonal polynomials. The degree of the polynomials is an option to

enhance the efficiency of the analysis. However, the increase of the degree of the

polynomials means the increase of degrees of freedom so that it causes a memory

problem in computing. We have a trade off here between the accuracy of the simulation

and the limit of computing power. This trouble happens similarly in the mesh generation

as mentioned in the previous section. The finer mesh gives a better result, but it increases

the number of nodes where each functional tilis defined. After setting up the functionals

of the physical variable, we solve the boundary value problem inside the elements. That

means we have the equations of the unknown coefficients by solving the differential

equation and applying the boundary conditions between the elements and their adjacent

20



elements. The boundary conditions should be the continuity relations of the physical

quantities around the boundary of the elements. The first derivative of the variable also

should be continuous. For instance, the voltage and electric field on the boundary

between two finite elements should be continuous. Then, the potential energy of each

element is represented by the unknown coefficients and combined together for the global

potential energy II as in

IT = J¢du 2*- 2(1)].(uij) . (2.14)

j=l

The variational principle should be applied to minimize the potential energy functional II.

The unknowns are the nodal point variables that are related to the unknown coefficients

in Eq. (2.13). The global function 11 would be the electric power in electrodynamics,

potential energy in electrostatic, heat dissipation in heat conduction, and elastic potential

energy in the structural mechanics. In the variational method, the functional should satisfy

the minimization condition of

L“ = 0, i=l,..,n (2.15)
(911,.

where the approximate solution is given by

u" =fif,a,. (2.16)
i=1

where j". is a Ritz function equivalent to a basis function and a, is a Ritz parameter. In

this procedure, the correct boundary conditions of u" should be applied on the surfaces

and the differential equation should be satisfied inside the complete domain. By solving

the minimization method, the physical quantities on all nodes and the unknown

21



coefficients (Ritz parameters) are determined. Those values generate a complete solution

for the whole region.

2.1.4.3 postprocessor

In last step of postprocessor, a complete solution has been obtained for the whole

region. Since each variable on the node is given by the analysis, values inside the

elements can be determined by the interpolation of the functional in Eq. (2.13). From the

given quantities on the nodes, we can calculate other information. For instance, we solve

the electric conduction problem using only one variable that is voltage. However, after

the voltage on each node is obtained from the analysis, the current flow can be calculated

from the electric field and the conductivity of the material. The postprocessor provides

the visualization of the results by the interpolation technique; the contour map of voltage,

current, stress and strain distributions as presented in Figure 2.12. This is a very useful

and fast way to check if the simulation works well. More detail about FEM can be

 

Figure 2.12 By the FEM analysis, a voltage distribution on a sample is obtained. The

interpolation technique is used to obtain the distribution inside the

elements.
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found in other references.” 18' '9

2.2 Theory

2.2.1 conductivity and geometrical factors

For a complicated geometry, the conductivity cannot be determined directly from

the measurement of the resistances since we measure the voltage and current that depend

on the geometry. We cannot separate the conductivity (geometry independent) from a

resistance (geometry dependent). Thus, we define a geometrical factor that only depends

on the geometry to treat the conductivity separately from the resistance. At this moment,

the contact resistances are neglected. The way to treat contact resistances (Ohmic and

non-Ohmic) will be described later in Section 2.2.3.

When we measure the voltage V and current I in a sample like Figure 2.13, a

resistance is defined by

R=_=_,__'_,=ir=pr , (2.17)
. . S 0'

 

Figure 2.13 For 2-terminal measurement, the voltage is calculated by a line integral

along the path I and the current is obtained by a surface integral on the cross

section S.
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where we assumed the conductivity tensor is isotropic; otherwise acan not be taken out

the integral. A newly defined quantity I‘= I E - dl / IE ~ d8 in this relation depends on

the geometry only, not on the absolute value of the conductivity.

Suppose we have a sample with four probes as in Figure 2.14, 36 resistances can

be defined from six measurements of voltage and six measurements of current. We can

represent each resistance with a corresponding quantity I‘ defined in Eq. (2.17). From a

voltage between two leads I, m and a current through i, j, a resistance R5" is defined in

the same manner.

 

jiiai jaw”

R5" =¥1=§ =—'j——=pr;" (2.18)

pas dyad“

We call the quantity 1‘5.“ defined in Eq. (2.18) a geometricalfactor. By defining this

 

Figure 2.14 Showing a conductor that has four probes that are attached on the surface.
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geometrical factor, the conductivity (which is a constant as an intrinsic material property)

can be separated from the resistance. This geometrical factor F is given by L / A for a

simple geometry of cylindrical shape, where L is a length and A is a constant area.

However, in most cases it can not be obtained by this simple form because of complicated

geometry that induces a complicated non-uniform current pattern. Following this

definition in Eq. (2.18), each resistance has its corresponding geometrical factor with the

conductivity as a scale factor. These geometrical factors can be given by a numerical

simulation described in Section 2.1.4 using unit conductivity. These calculated

geometrical factors will be used later to determine the conductivity by fitting with

resistances given by the experimental measurement.

2.2.2 resistance table and its properties

In a multi-probe measurement, we can define many different configurations for

the resistance measurement depending on how to choose the leads for voltage and current

measurement. All possible measurements provide a set of resistances that forms a matrix,

a so called resistance table.

One of the diamond crystals (Sample 2) with contact pads prior to lithographic

lead attachment is presented in Figure 2.15. In a normal multi-probe measurement,

contacts are attached on the surface of a sample and the I-V characteristics are measured.

At least four contacts are needed to obtain contact-free resistances. Although we have five

pads on the surface in this sample, four of the five pads were used for the measurement,

with the furthest to the left having no lead attached. This pad was at a
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Figure 2.15 Micron-sized diamond crystal grown by a chemical vapor deposition

technique before Au leads were attached. Five titanium contacts were

formed on the surface and four of them (indexed) were used for the

measurement.

constant (but initially unknown) potential that was determined by the finite element code.

With the four probes for the I-V measurement, a set of resistances can be given by all

possible voltage and current measurements. This set is called a resistance table that has

all necessary information of the sample conductivity and contact resistances. A current I1.].

flows through the terminal i, j and a potential difference Vb" is measured across terminal

I, m. We can define a (signed) resistance R5" = V," / I. which reduces to the standard,1.

definition of resistance (2—terminal resistance) when i, j = l,m . With this definition of

resistance, we can generate a resistance matrix as Table 2.2 formed by V,"I column and I,1.

row for all possible combinations. This set of measurement forms a "C2 (= n(n — l)/2) by

"C2 resistance matrix of all possible pairs of current terminals and voltage terminals but

there are only "C2 independent elements in this matrix because of the following

constraints. For an Ohmic sample, the matrix is symmetric under the exchange of current

and voltage terminals, Le.
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Table 2.2 A resistance table from all possible combinations of voltage and current

 

 

  

 
 

 

 

 

  

measurements.

Rg" Vl2 Vl3 V14 V23 V24 V3,,

1'2 R1122 R1123 R112

1‘3 R133 R11;

1” R11:

’23 R333

1,, R23:

1,,
R33:      
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i’ I" m V

Rd. =73 = R;- = J- (2.19)
m

9

1m [if

where V0. is the voltage between the leads i, j and I,m is the current between the leads I,

m. This is a reciprocity theorem,20 which is proved in the Appendix A.1 for the present

geometry. Along any row of the resistance matrix, the current I,m is a constant, and the

voltage is a scalar potential that satisfies

%=%+%. em

Thus, the resistance elements have the additive property

R1} = vi)“ = Vr'k +ij

Im III = Riii. + Riff. . (2.21)
 

lm m

Using these two rules, we can show that there are only ”C2 independent elements in the

resistance matrix by the following construction:

Consider the n —1 elements (R13; , i = 2,..,n) in the first row of the resistance

matrix. These terms can generate all the other elements in this row using the addition rule

Rg=Rg—Rg, am)

where i < j = 2,..,n. Note that changing the order of the indices changes the sign of the

resistance. In the second row, only n — 2 elements of R1]; (i = 3,.., n) are needed to

construct the remaining elements in that row because, by the reciprocity theorem,

R}; = R3 and R3 was given in the first row. Continuing in this manner we need n —1

terms in the first row, n - 2 terms in the second row, for a total of
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n(n — 1)
 (n-1)+(n—2) +....+2+1 = ="C2 (2.23)

independent elements. There are many possible choices of the "C2 independent elements,

but they cannot be selected arbitrarily. By the above construction, the (n — 1) by (n — 1)

upper diagonal block forms one independent set. Surprisingly, the "C2 diagonal elements

(the set of 2 terminal elements) also form an independent set, related to the off diagonal

elements by

jl im _ jm _ 1'!

Rjl + Rim Rjm Rillm _

RU. _ 2 (2.24)

This relation means that knowledge of only the 2-terminal measurements can be

used to generate the complete resistance matrix, which can be used as a useful self

consistency-check on the experimental results. Table 2.3 shows how the diagonal terms

reconstruct the whole resistance table. Three off-diagonal terms in the triangular matrix in

the bold box can be obtained from the six diagonal terms by Eq. (2.24). Six terms in the

bold box was already shown to generate the whole matrix in Table 2.3. In Table 2.4, I

summarized how the number of elements of the resistance matrix, and the number of

independent elements depend on the number of terminals. We need at least four terminals

to extract the resistivity p and the contact resistances because otherwise there are more

unknowns than independent terms.

As an example, consider the case for four terminals (n = 4) shown in Table 2.4.

There are six ways to select two of four terminals and so there is a 6 by 6 resistance

matrix with six independent elements. The six diagonal elements form the most
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Table 2.3 How to generate the triangular matrix from six diagonal terms so that the

triangular matrix produces a whole table

 

 

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

  

R3" VIZ VIS V14 V23 V24 V34

1.. 11:; R3 +14: we 11:: +14: 42::
2 2

[13 R11; Rii 1' R1]: " R3:

2

Ii. R13:

123 R2233

12. R22:

1,, R332

Table 2.4 The number of independent elements in a resistance table.

Number of Dimension of Elements in Independent Unknowns

Terminal Resistance Table Resistance Elements ( p , contact

Table resistances )

2 l 1 1 3

3 3 9 3 4

4 6 36 6 5

5 10 100 10 6

6 15 225 15 7

" "c2 =n(n—1)/2 ["c2]2 "C, =n(n—l)/2 n+1    
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important set of independent elements from which we can use Eq. (2.24) to obtain the

three off-diagonal terms, R1123 , R11; , R11; as shown in Table 2.3. The 3 x 3 upper

diagonal block (shown inside the bold line in Table 2.2 and Table 2.3) is an alternative

independent set that can be used to construct the entire matrix using the procedure

outlined above. However, it is interesting to note that the set of 4-terminal measurements

is not all independent. Note that by Eq. (2.24), only two of the 4-terminal elements are

independent with

R3; = R3: + RS; . (2.25)

As a result, a set of six terms including three 4-terminal measurements cannot be used to

reconstruct the whole resistance table.

It is important to note that the above analysis is only true for samples where the I-

V curve is independent of the current direction (otherwise the reciprocity theorem fails).20'

2‘ Some of the experimental data analyzed in Section 2.5.3 has non-Ohmic characteristics

indicated by asymmetry of a table, and so the resistance matrix has more than 6

independent elements. The necessary modifications to the above analysis are model

dependent, and will be discussed for the specific situation of the experiment.

2.2.3 contact resistances

In two previous sections, it has been found that the geometrical factors separate

the unknown conductivity from a resistance. However, the contact resistances should be

considered in 2-terminal and 3-terminal resistances. The measured resistances include the

contact resistances, so the representation of the resistances should be modified. We
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Figure 2.16 Contact resistances have two different values (r, , r,. ') for non-Ohmic

contacts. A resistance measurement consists of a sample resistance Rum

and contact resistances added in series.

Table 2.5 Resistance table with two contact resistances for current flows.

 

 

 

 

 

 

 

 

Riljm Viz VI} VI4 V23 V24 V34

112 pl“),2 + rl + rz' pl‘1‘23 + rl p131;t + r1 P1753 - 72' pl": ” ’2' P 1324

1,3 p11; + ’1 pi]? + r1 + r3' p11: + rl p113,3 + r3' pI‘lza4 p17,? — r3'

1,, p113 + r. pFi'i +ri PW: + n + '4' p11? p113.“ + r.‘ pF.3.“ + r.‘

123 prz‘i - r. p1“); + r,‘ tori; PF2? + '2 + '2' 10132: + 4 p133: - r.‘

124 pm? - r2 pFi‘i‘ pFlZ + r.‘ p133} + r. PF2? + '2 + '4' pl"; + 0'

I34 p133} p133,3 — r3 p1“;3 + r,‘ pl‘ff — r3 p133: + r4' p133,4 + r3 + r,‘       
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assume these contact resistances can be added in series to the sample resistance because

the contact area is assumed an equipotential due to the high conductivity of the Au/Ti

contact pads. This leads to

Rim =priim+’i'(5u"5im)+rj(5jm—6fl) , (2.26)

where 1;. is the Ohmic contact resistance of terminal i and 5,]. is Kronecker delta function.

However, contact resistances are generally non-Ohmic which is indicated by non-

symmetric three terminal elements in the observed resistance table. We assume that the

sample itself is Ohmic, which is justified if the four terminal elements are symmetric.

Since the I-V characteristics are non-linear and not symmetric for non-Ohmic behavior of

the contacts, each contact has two independent resistances for the two different current

directions [i.e. current reversal with the magnitude of the current held constant]. To

investigate such non-Ohmic I-V characteristics of a contact, we used two fitting

parameters, 4, ’1' corresponding to the two contact resistances for constant current flow

as in Figure 2.16. If r, is a contact resistance when a current is flowing into the sample

and '1' is for a current flowing out of the sample, then Eq. (2.26) is modified to become

R5?" = p13.“ + r, (6,, — 6m) + 5.16),, — 6],) (2.27)

to be a more general expression for non-Ohmic contacts. The whole expression of the

resistance table following the relation of Eq. (2.27) is given in Table 2.5.
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2.3 Computer Simulation

2.3.1 reconstruction of 3d computer image

In FEM, all the information of the sample geometry is needed for the

preprocessor that constructs a computer model for the analysis. It may include the

coordinates and topology of all vertices, lines, planes, and volumes associated with the

sample shape. However, since our samples are micron-sized crystals, it is not

straightforward to measure the shape of such small objects. One way is using electron

lithography to get the SEM (Scanning Electron Microscope) photos. An inverse ray

tracing technique is used to reconstruct the three dimensional object that will be used in

simulations. Ray tracing is a computer process used to create a two dimensional

representation of a three dimensional object by tracing the path of the ray of light between

the light source, objects, and an observer.22 We apply this technique in reverse to

construct a three dimensional image from the two-dimensional SEM photos. Since these

photos were only two dimensional, we needed several pictures taken along different

viewing angle

 sample y

 

X  

 

Figure 2.17 Each SEM photo is given in an orientation for viewing angle (6, ¢) as

shown in this figure.
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(C) (d)

Figure 2.18 SEM photos of a sample (Sample 2) in various orientations. (a) 6, ¢ = 0° ,

0° (b) 0, ¢ = 50° , 0° (c) 0, ¢ = 50° , 90° (d) 9, ¢ = 50° , 270°
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orientations defined by viewing angles in Figure 2.17. Figure 2.18(a)~(d) present four

different pictures projected in each direction before gold leads are attached on the five

contacts formed on the surface. In this sample, contacts were located on the upper surface

since it has been formed by the electron beam along the vertical direction. Therefore, the

picture in Figure 2.l8(a) taken along the same direction shows most of the detailed

geometry. However, some contacts were observed smeared down the surface (see Figure in

2.18(c)). This contact formed a wide contact area that could affect the I-V measurements.

For a more complicated contact formation or some serious deformations in the lower part,

it is necessary to select all viewing angles carefully to take the whole geometry of the  ‘1‘-.
.
-
m
.
‘
m

sample. After taking these SEM pictures, the coordinates of all vertices of the sample and

contacts were digitized on each photo.

The algorithm treats the crystal as an irregular polyhedron and attempts to assign

coordinates to the vertices in a way that is consistent with the SEM images. From each

picture of the crystal we can measure the projected length of an edge of the diamond

crystal, and compare it with the projected length calculated from the assumed vertex

coordinates. The vertex coordinates are adjusted to minimize

 

, 1.4.55“ '2

x, =2[' 6? ]. (2.28)

where ll. is a calculated projected length, If” is the projected length from the SEM and

o". is an estimate of the experimental error in measuring [1.35M . The sum is over all edges

visible in each picture, and over all pictures. The positions of the contact pads are

determined by including the coordinates of the comers of the contact pads, and the

lengths from the comers to some of the crystal vertices. Taking pictures from enough
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different orientations to ensure that every edge was visible in at least two images was

adequate to ensure that we could construct a representation of the sample that matched

the SEM images very well. Because we knew that the sample was a single crystal, we

added some additional constraints to the minimization process. Specifically we required

the facets to be planar, and the facet angles to conform to the known facet angles of the

diamond structure, e.g. 70.5° or 109.4° between different (111) facets. The flatness

constraint was achieved by adding to 12 the term

22?(r—-—c-‘)2], (2.29)

where if). denotes j—th vertex coordinate in i-th facet and E. is a constant vector that is

normal to the i-th plane. The facet angles are constrained by adding to 12 a term

6 _0 theory 2

1,3 = [.-_.-__:| , (2.30)

where the facet angles 9,.”"0'3’ are those appropriate for a diamond structure. The sum is

over pairs of facets. The 0",.” in Eq. (2.29) and of in Eq. (2.30) are standard deviations

denoting the weighting factors for each constraint. Although it is arbitrary how these

factors are assigned, they should be larger than the standard deviation associated with the

edge lengths I, because these lengths could be determined very easily and directly from

the SEM photographs.

12 =x,2+xp2+xf2. (2.31)

The total 12 , the sum of the three quantities in Eq. (2.28)~ (2.30) is minimized by

adjusting the vertex coordinates using a standard non-linear minimization routine.23 The
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final coordinates associated with the minimized 152 were used as the input for the current

flow analysis that was done using the finite element method.

After this optimization procedure, we obtained a computer model of the sample. It

provided all information about the geometry defined by the coordinates of vertices and

the connectivity of planes and volumes. Nearly 80 vertices were needed in our models

and most vertices were for the contacts. The contact areas have been constructed very

carefully since the transport in the sample mostly depends on the area. By initially

assigning high conductivity to the contacts, the contribution of the contacts to the

resistance measurements was determined only by the effective area for the current flow.

We attached five contact pads in the shape of small pyramids on the sample as in Figure

2.19. Although only four contacts of five were used for the real measurement, we made

the fifth contact also to generate the equipotential area below the contact. Figure 2.19(a)

and (b) shows two views of the computer model (Sample 2), which correspond to the

 

(a) (b)

Figure 2.19 Computer images reconstructed from SEM photos by image processing.

Five small pyramids on the surface denote five contacts. Compare these two

images with the SEM photos in the Figure 2.18.
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SEM image in Figure 2.18(a) and ((1) respectively. It was not possible to observe the

bottom of a sample because of the Si substrate. Some diamond crystallites may have an

unusual structure of local defect below that cannot be identified in the SEM photos.

However, usually it does not contribute significantly to the transport as much as the top

part of the sample does. On the surface near the contact pads, a large variation of current

flow was observed. However, it was not so on the surface below where no contact pads

were formed.

2.3.2 modeling and analysis using FEM

2.3.2.1 modeling (preprocessor : ANSYS)

After the geometry reconstruction, I did the simulation using the finite element

method to solve the electrical conduction problem. All FEM tasks in this problem were

performed by the commercial packages ANSYS24 and ABAQUS”. ANSYS 6.1 was used

for a preprocessor (mesh generating) and the other processes (numerical analysis and post

processor) were done by ABAQUS 5.5. In modeling by ANSYS, I generated volumes that

correspond to the sample and contacts. Since our sample had highly irregular geometry, it

was not straightforward to generate the structure. Some simple structures (squares,

circles, bricks, spheres, etc.) can be constructed by giving a few coordinates and

geometrical parameters. First, it begins with the formation of keypoints for all vertices of

the sample and contacts. Planes for the volume construction are made by linking the

keypoints that are associated with a plane. Some vertices of a plane may not be located on

the same plane even after the geometry optimization with the constraint of a flat plane.

ANSYS does not allow making a plane by linking these vertices. All keypoints should be
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(b) (C)

Figure 2.20 Triangular planes generated from three keypoints were combined into a

large plane as shown in (a). A volume could be constructed by connecting

these large planes into a volume unit. The volume elements for the diamond

crystallites were presented in (b) and (c).
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on the same plane to construct a plane. Thus, a triangle plane was used to overcome this

trouble. Suppose we need to make a plane structure by four vertices (1, 2, 3, 4) in Figure

2.20(a) and the vertex 4 is not on the plane defined by the other three vertices (1 , 2, 3).

Then we make two triangular planes and connect them to form a folded plane made of

four vertices. Most planes in our samples were constructed in this way as shown in Figure

2.20(b) and (c). A volume was constructed by combining these planes. Figure 2.20(b) and

(c) present the structured volumes of two diamond crystallites before the meshing. Both

of our samples consisted of six separated volumes (one huge volume for the sample and

five small pyramids for the contact pads). Different material properties could be assigned

to the separated volumes in the FEM analysis.

After constructing these volumes, we need to select the type of element for the

meshing. Element types are selected depending on the dimension and the analysis type.

Figure 2.21 shows the element shapes used in the meshing of the diamond film (2d) and

the crystallites (3d). For the analysis of electrical conduction in 2d, ANSYS provides

triangular elements with three or six nodes and squares with four nodes or eight nodes. In

3d, we can use cubic elements with 8 or 20 nodes and tetrahedral elements with 4 or 10

nodes. Tetrahedral elements were usually used to mesh an irregular shape in 3d where it

was not done by cubic elements. Tetrahedral elements with four nodes were used for the

diamond films and one diamond crystallite (Sample 1) and tetrahedral elements with 10

nodes were used for the other diamond crystal (Sample 2). The diamond film was meshed

by square elements (2d) as well as tetrahedral elements (3d) to test whether the 2d

approximation of the film was valid in the simulation. Figure 2.22 shows the meshed

structures of all samples; a diamond film(a) and crystallites ((b) and (c)).
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Figure 2.21 The elements used for the meshing of 2d film (square) and 3d crystallites

(tetrahedra). Sometimes elements that have only four nodes on the comers

were used.

Table 2.6 The characteristics of the meshings for each sample.

 

 

 

 

 

 

Homoepitaxial films Sample 1 Sample 2

Element type DC3D4 DC3D4 DC3D10

Nodes per elements 4 4 10

Total Nodes 800 1100 4700

Number of elements 2300 5500 3300    
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(b)

 

(C)

Figure 2.22 Meshed structures of the diamond film(a) and crystallites (Sample 1(b),

Sample 2 (c)). Figure 2.20(b) and (c). Each model has square-shaped

contacts on the surface.



2.3.2.2 analysis (processor : ABAQUS)

The meshed structures given by ANSYS were delivered to ABAQUS for the

analysis. All coordinates of nodes and the topology of elements were used to generate an

ABAQUS input file that includes all necessary information for the analysis; material

property, boundary conditions, and output format as well as the geometry. Since

ABAQUS does not provide the electromagnetic analysis, the heat conduction analysis

was used. Both analyses follow the same differential equation, Laplace’s equation with no

charge and heat source. The temperature in the heat conduction analysis is equivalent to

the voltage in the electric conduction analysis. The heat flux and the thermal conductivity

correspond to the current and the electric conductivity respectively. By these

correspondences, the electric conduction problem could be solved by the heat conduction

analysis using ABAQUS. In the heat conduction analysis, the temperature is the only

degree of freedom that is defined on each node. By minimizing the heat dissipation

defined by the temperature, the solution on each node could be obtained under the

subscribed boundary conditions and the material properties. After the temperatures on

every node were obtained, the heat flux could be determined from the derivatives of the

temperature functions and the thermal conductivity. An electric resistance could be

defined by the temperature (voltage) and the heat flux (current). Some details of these

procedures were described earlier in Section 2.1.4.2 and the rest can be found in some

other references or ABAQUS manuals.25

Our main object in this analysis is to obtain the geometrical factors, not

resistances. They represent the shape factors that are not related to the intrinsic material

property (conductivity). To obtain these factors in this analysis, unit conductivity is given
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to the conductor. Then, the resistances calculated from the voltage and current given are

equivalent to the geometrical factors Fifi.” . In the absence of any contact resistances, these

factors are related to the resistances R5" by a simple linear relation of

lm _ lm

RU — p11,. . (2.32)

All possible combinations of the current and voltage measurements generate a 6 by 6

geometricalfactor table. These geometrical factors include any information of complex

current paths across the arbitrarily shaped sample for each combination.

2.3.2.3 contour map (postprocessor : ABAQUS)

From the analysis in the previous section, the voltages only on the nodes were

obtained. Inside the elements, the equipotential lines were calculated from the

interpolated functions of the voltage. The contour maps of the voltage distributions on the

sample surfaces are shown in Figure 2.23 for a selected configuration of the current and

voltage measurement. The current flows from the red pad (high potential) to the blue pad

(low potential). The voltage distributions are indicated by the contour map. Figure 2.23(a)

presents the potential distribution on the surface of a film. Figure 2.23(b) and (c) present

the potential distribution of a crystal (Sample I) viewed by different orientations. Figure

2.23(d) and (e) show the similar contour maps of another crystal (Sample 2). Figure

2.23(b) and (d) were viewed by the vertical direction (view point =(0, 0, 1)) and Figure

2.23(c) and (d) were rotated and shown by a different View point (1, -1, 1). By assigning

high conductivity ( > 106 ) to the contacts and unit conductivity to the sample, the contour
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(d) (6)

Figure 2.23 Equipotential lines on the surface of the samples given by ABAQUS. (a) is

for homoepitaxial film. (b) (c) are for Sample 1. (d),(e) are for Sample 2.

The figures of 3d samples were obtained in different orientations.
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maps show the constant potential distributions on all contact areas including the lead-free

contact as expected.

2.3.3 least square fitting

Table 2.5 in Section 2.2.3 is a modified resistance table for a 4-terminal problem

showing each element in terms of the sample resistivity p, the geometric factors 1“,?" and

6 of the 8 contact resistances (rl , r2 , r2 ' , r3 , r3' , r4 ' ).26 Another table for reverse current

flows is necessary to extract all the contact resistances for non-Ohmic contacts. From

these two tables given by opposite current directions, a resistance can be defined as

R1?" = P135" +7.-(5.-i JANE-(5).. —5,-i)+Ari(5.-i *5im)-Ar,-(5,-m -5,-i) (2.33)

where

_ l ,

and

1 .
An=-2-n—n). (2.35)

A similar resistance table with both current and voltage leads reversed enables us

to construct an Ohmic resistance table RE“ = (R53 + Rf,“ )/ 2 which is shown in Table 2.7,

and the non-Ohmic resistance table M3?” = (R? — R7,.“ )/ 2 , shown in Table 2.8. Note that

the Ohmic resistance table displays all the symmetries of the analysis in Section 2.5.2,

and in particular, only the six diagonal (2-terminal) elements are needed to generate the

entire table. For the non-Ohmic resistance table, the six diagonal elements only
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Table 2.7 The Ohmic resistance table obtained from Table 2.5. (symmetric)

 

 

 

 

 

 

 

       

f?- Vrz VI3 Vi4 V23 V24 V34
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Table 2.8 The non-Ohmic resistance table obtained from Table 2.5. (non-symmetric)

 

 

 

 

 

 

 

       

AR Viz Vrs Vr4 V23 V24 V34

I,2 Ar. - Ar; Ar; Ar; Ar; Ar; 0

I,3 Ar] Ar] - Ar3 Ar] - An 0 Ar;

I14 Ar] Ar] Ar] - Am 0 - Ar4 - Am

123 - Arz - An; 0 Ar; - Ar3 Ar; Am

I24 - Arz 0 - Ar4 Ar; Ar; - Ar4 - Am

I34 0 - Ar3 - Am An - Am An - Ari;
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determine the off diagonal elements up to an arbitrary constant. To determine all the Ar; it

is necessary to have at least one of the 3-terminal elements. For this model, the non-

Ohmic resistance table is independent of the resistivity, because we have assumed that the

material itself is Ohmic.

Because the geometric factors are known from the FEM, we can in principle

obtain the resistivity and the contact resistances by doing a least squares fit for the

expressions intheoretical resistances (Table 2.7 and Table 2.8) and the measured

resistances; i.e. we minimize a x2 defined by

 

2

X2=2|:Ri —Ri'(p9r):l ,
(236)

i of

where Rf are the experimental measurements and R} (p, r) are the theoretical

resistances defined by Eq. (2.33) as a function of the resistivity p and contact resistances

r. The sum is over the elements of the resistance matrix used for fitting and o". is a

standard deviation of each experimental measurement, which includes both errors in the

resistance measurements. The errors in the geometric factors might be from the incorrect

computer modeling of the geometry as well as the small numerical error in the FEM. In

practice, the least squares fit is best done separately for the Ohmic and the non-Ohmic

parts (Table 2.7 and Table 2.8). The practical details of this fitting will be discussed in the

next section, when it is applied to our two samples.
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2.4 Experiment

2.4.1 sample preparation

In this section, several experimental processes of sample preparation, contact

formation, and the I-V measurement by multi probes will be briefly described. Details of

this work can be found in Jaeger et al.27 The experimental measurements have been done

on homoepitaxial diamond films and microcrystallites. The films were grown on the

diamond substrates where as the microcrystals were grown on Si substrate. Since the

conductivity of diamond crystallites has not been measured before in highly irregular

geometry, our technique should be compared with a well-known method. We chose the

van der Pauw method on the conductivity measurement of a 2d film. The conductivity of

a 2d film can be given by the van der Pauw formula in Eq. (2.1), thus our result can be

compared with the result from this formula.

The size of a homoepitaxial film (Figure 2.24) is 3 x 3 mm2 and its thickness is

1.86 um. It is a good two-dimensional object. The I-V measurement was done twice on

the same film with different contact formations. Once it was done with a film with four

contacts as in Figure 2.24(b). Later two more contacts were attached on the same sample

as in Figure 2.24(c) and the measurement was done again. However, only four contacts

(gray pads in the figures) were used for the measurement in both cases. Figure 2.25

presents two SEM photos of the CVD diamond crystallites whose conductivities were

measured by our method. Although both samples had five contacts, only four contacts

were used for the resistance measurement. Two crystallites were grown in the same

condition. However, a twin boundary between the contacts was observed in one of the
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(a) (b) (C)

Figure 2.24 A normal picture of the 2d sample (diamond homoepitaxial film) is shown

in (a). Two schematics ((b), (c)) of the sample denote the positions of the

contacts. Film 1 (b) has four contacts and film 2 (c) has six contacts. Gray—

colored squares in the figures represent the contacts actually used for the

measurement.

 

(a) (b)

Figure 2.25 Two micron-sized CVD diamond crystallites, Sample 1 (a) and Sample 2

(b). Sample 1 has Au leads attached on the Ti contacts and Sample 2 is a

shape before the lead attachment.
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Table 2.9 The characteristics of CVD diamond samples.

 

 

 

 

 

Sample Description

Diamond film Homoepitaxial film on single crystal (100).

(homoepitaxial) Natural diamond substrate.

Dimension : 3.0mm x 3.0mm x 1.86pm

Contact size : 0.3mm x 0.3mm

Sample 1 Isolated microcrystal with no visible defects.

(microcrystal) Ohmic contacts.

8102 substrate.

Diameter : ~ 4 mm , Height : ~ 2 pm

Sample 2 Isolated microcrystal with a twin defect.

(microcrystal) Non-Ohmic contacts.

 SiOz substrate.

Diameter : ~ 4 um , Height : ~ 2 um
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sample (b). Although no significant difference of the contacts was observed in the photos,

it turned out that the contacts of one sample (a) were Ohmic where as the other contacts

in (b) were non-Ohmic. Our method could be tested more generally for these two

different samples whether it determines the conductivity, which is independent of the

contact properties. The characteristics of all the samples in this work are listed in Table

2.9. All diamond samples were prepared by microwave plasma enhanced CVD at Kobe

Steel USA, Inc.

2.4.2 four-probe measurement

With four probes formed on the samples, the I-V characteristics were measured by

DC voltage as a function of temperature in a vacuum level less than 1045 torr. To

investigate the I-V characteristics of the contacts, a fixed amount of current was used for

each current flow. All possible combinations of the voltage and current measurement

generated a 6 by 6 resistance table that was described in Section 2.2.2. A total of 36

elements in the resistance table consist of six 2-terminal terms, six 4-terminal terms, and

twenty-four 3-terminal terms. While these measurements were done through a broad

temperature regime (-100 ~ 170° C) as in Figure 2.26, a complete measurement of a

resistance table was done only for a specific temperature for each sample. At the other

temperatures, only one 4-terminal resistance (R;4 = V14 / I23 ) was measured. Since the

geometrical factor is temperature independent, the conductivity at the other temperatures

can be obtained by dividing the 4-point resistances with this geometrical factor. The

investigation of the temperature dependence of the conductivity provides the activation
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Figure 2.26 Temperature dependence of a resistance of diamond crystallites (Sample 1

(solid circles) and Sample 2 (open circles)). To investigate the temperature

dependence of the resistivity of these samples, a four-terminal resistance

(R;3 ) were measured over a wide range of temperatures.
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energies of the doped semiconductors.28 The conduction mechanism of each sample can

be understood and compared using these activation energies.

The resistance measurements for some samples were done with two different

current directions to determine the non-Ohmic contact resistances. Usually two diagonal

resistances were measured for these two current directions; they could provide complete

information of non-Ohmic contact resistances. In this submicron scale, the leads were

electrically fragile because static discharges could happen near the contacts. The melting

of metal leads that might cause the missing of an entire portion of the contacts sometimes

happened during the measurement. So the current level should be kept below 10 11A to

prevent the contact disconnection from the melting. With this problem, some

measurements did not provide enough information (two complete sets of resistance table

for two current flows) needed for the analysis.

2.5 Analysis

2.5.1 diamond film

To test our method, we used two films with multi probes whose conductivity

could be determined by the van der Pauw method. One (Film 1) had only four leads on

the film and the other (Film 2) had six leads. With the Film 1 with four contact pads of

Figure 2.24(b), we measured all possible combinations of current and voltage

measurement to construct a 6 by 6 resistance table of Table 2.10. It was given by constant

current (1 (IA) to investigate Ohmic behaviors of contacts at T=24.7° C. For this sample,

we measured two diagonal terms (two terminal measurements) for two different current
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Table 2.10 Resistances measured for homoepitaxial film by 4-probe experiment (k9).

 

 

 

 

 

 

 

    
 
   

 

 

 

 

 

 

 

 

 

R VI2 V13 Vl4 V23 V24 V34

I12 264.6(329.5) 106.65 90.95 -158. 17 -173.94 -_l_5_.'_72

I13 107.41 l98.7(l98.7) 105.988 91.239 1.43 -92.658

I14 91.62 106.097 l84.5(184.5) M 92.636 78.158

I23 -232.6 90.23 M 322.4(248.1) 247.3 -75.834

I24 -246.7 1.2—12 91.391 246.5 337.7(265.1) 92.612

I34 ;_1_5i9_ 93.7 14 78.268 -77.86 94.170 l72.l(l72.l)

Table 2.11 Geometrical factor table obtained by FEM (mm'l).

F Vl2 V13 V14 V23 V24 V34

I12 904.04 515.40 393.80 -388.65 -510.24 -121.59

Il3 515.32 1023.48 506.32 508.16 M -517.16

114 393.80 506.27 947.54 _l_l_2._42 553.74 441.27

I23 -388.68 508.13 M6 896.80 501.13 -395.67

124 -510.18 M 553.81 501.14 1063.99 562.85

I34 M -517.22 441.30 -395.68 562.84 958.52      
 

Table 2.12 The resistivity and contact resistances of diamond film (Film 1) given by van

der Pauw formula (VDP) and our method.

 

 

  

P (9 cm) P (52 cm) 71 . Ar1 (m) 72 . Arz (kg) 7'3 . A73 (k9) 7.. . Ar4 (kn)

(VDP)

12.51 12.91 37.8, -0.9 139.8, 34.1 24.55, -1.45 19.95, -l.35     
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directions to identify all non—Ohmic contact resistances. Notice that some of the_matrix

terms showed substantial asymmetry indicating that some contacts were non-Ohmic.

However, the 4-terminal measurements (underlined) showed a relatively good symmetry.

We also did the FEM analysis using ABAQUS to find out the geometrical factor table in

Table 2.11. From the 36 elements in this table, we used only the 4-terminal terms to

determine the resistivity of this film that would be compared with the same quantity

calculated from the van der Pauw method. The contact resistances were obtained by

fitting the diagonal elements in both tables. They turned out substantially non-Ohmic as

anticipated from the asymmetry of the resistance table. The results from the van der Pauw

and our method are presented in Table 2.12. The resistivity given by van der Pauw

method was 12.51 (Q cm) and the resistivity from our method was 12.91 (0 cm) which

agrees within 3% error. Thus, the fitted resistivity from our method agrees well with the

resistivity from the van der Pauw formula.

Another test has been done on Film 2 that had six contact pads. At this time, I

obtained two complete resistance tables for the different current directions as shown in

Table 2.13 and Table 2.14. The minus signs in Table 2.14 came from the definition of the

resistance. Table 2.13 and Table 2.14 were given by constant currents (100 nA) at

T=22.8° C. These tables show a good symmetry in each term that indicates that the

contacts are Ohmic. The geometrical factors of the film were given by the numerical

simulation and shown in Table 2.15. All six pads were constructed on the film as perfect

conductors, although two pads were not used in the measurement. From these geometrical

factors and the resistance tables, the conductivity of the film could be determined by the

van der Pauw method and our method. By the van der Pauw formula,
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Table 2.13 Resistances measured by 4-probe experiment (k9).

 

 

 

 

 

 

        
 

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

        
 

 

 

   

R V. V. V... V.. V. V...

I12 149.20 76.30 53.51 -70.91 -91.58 M

I,3 76.14 162.20 66.30 83.66 fl -93.36

I,4 55.23 66.07 141.10 _10_.9_8_ 83.69 72.65

I23 -70.40 83.03 M 156.80 81.17 -72.20

I24 -90.63 fl 83.1 1 80.85 177.80 93.12

134 M -92.50 72.08 -72.00 92.53 168.60

Table 2.14 Another resistance table for the opposite current flows of Table 13. (k9)

R V12 VI3 V14 V23 V24 V34

I21 -l49.00 -76.06 -53.50 71.03 91.73 20.20

I31 -75.89 -l62.00 -66.06 -83.66 23 93.45

I4, -55.04 -65.86 -141.00 M -83.76 -72.77

132 70.30 -83.09 M -156.70 -81.07 72.24

I42 90.46 _9._9_2_ -83.23 -80.78 -l77.80 -93.22

I43 29$ 92.42 -72.28 71.96 -92.64 -168.70

Table 2.15 Geometrical factors calculated from FEM (mm'l).

l" VI2 Vis V14 V23 V24 V34

I,2 712.19 408.59 262.44 -303.61 —449.75 -146. 14

I 3 408.63 878.20 350.58 469.57 _-__5__8_._(_)_’_5_ -527.62

I 4 262.47 350.58 779.07 M 516.60 428.49

I23 -303.57 469.67 M 773.24 391.65 -381.59

124 -449.70 £807 516.57 391.63 966.27 574.64

I34 -146. 19 -527.69 428.44 -381.50 574.64 956.13

Table 2.16 The resistivity and contact resistances of Film 2 given by van der Pauw

formula (VDP) and our method.

p (9 cm) p ((2 cm) 7', , Ar; (k9) 72 , Arz (k9) F3 , Ar3 (kfl) F4 , Ar4 (kfl)

(VDP)

12.62 I 13.25 17.5, 0.05 27.35, 0.05 18.15, 0.05 11.65, 0.05  
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the resistivity p was given by 12.62 (9 cm). We used only two 4-terminal resistances

(R324 , R1243 ) in the formula because the other term R1234 was very unstable due to the

symmetric formation of the contact pads. And the same resistivity as well as the contact

resistances were obtained by our method and compared with the result from the van der

Pauw method in Table 2.16. The same 4-terminal geometrical factors (R13;1 , R1243 ) used in

the van der Pauw method were used to extract another resistivity 13.25 (Q cm) by our

method. It agreed with the van der Pauw result (12.62 (9 cm)) within 5% error. All of the

four contact resistances in the same table show good Ohmic behaviors as expected from

measured tables. Our technique works well with a two dimensional sample. It was

verified by the comparison of the result from the van der Pauw method. Therefore, we

suggest that it can be applied to the 3d sample, too. One of the advantages of our method

is that it could determine the contact resistances besides the resistivity of a sample. The

detailed fitting procedure to select data set and fitting parameters will be mentioned in

next section for the analysis of crystallites.

Another test simulation was done to check how the result was changed depending

on the positions of leads. When one of the leads was moved by -0.]mm in x-direction

Table 2.17 Stability test of 4-terminal resistances on the position of one contact.

 

34 24 23 14 13 12

R12 R13 R14 R23 R24 R34
 

Before (k0) -121.59 -9.007 1 12.47 1 12.46 -9.044 -121.54

 

After (k9) — 124.84 -13.06 1 11.79 1 11.79 -13.06 -124.84

 

Error (%) 2.7 44.4 0.6 0.6 44.4 2.7        
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(sample size is about 3x3 mmz), six terms of 4-terminal method were shifted from the

initial values as in Table 2.17. Two of these terms (R1234 , R53) given by the crossed

formations of voltage and current measurements showed the significant changes up to

44.4% by the shifting of one lead. However, the other terms turned out stable. From this

result, it has been realized that the position of the contacts should be reconstructed

accurately for the FEM especially for the symmetric formation.

2.5.2 sample 1 (Ohmic contacts)

As an illustration of this technique on 3d samples, we used two diamond

crystallites with four terminals (Figure 2.25). A resistance matrix for Sample 1 (Table

2.18) was completed by making all 36 resistance measurements. Diagonal terms in

boldface denote 2-terminal measurements and the underlined values are 4-terminal

measurements. A 6 x 6 matrix of geometrical factors is obtained by using the FEM and

shown in Table 2.19. Diagonal terms in boldface denote 2-terminal measurements and the

underlined values are 4-terminal measurements. Within the experimental error, Table

2.18 is symmetric which indicates that r2 and r3 are Ohmic. If the contact resistances are

Ohmic, we can determine the resistivity p and the four contact resistances (I; = r, '= T; ,

i = l,..,4 ).

As a check of the validity of our method, we first calculated the resistivity from

the 4- terminal measurements (where R5” = pI‘é’" ) with a linear fit through all six data

points and the origin. We then used this p to determine the contact resistances from the 3-

terrninal measurements (each of which involves only one contact resistance) and then
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Table 2.18 Resistances obtained from the experimental measurement for Sample 1 (k9).

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

 

R V. V. V. V. g V. V.

I,2 720.0 560.0 508.0 -176.0 -231.8 :55_._5_

I13 568.7 1039.0 534.5 497.3 43$ -531.1

Il4 518.4 540.2 986.0 M 500.0 476.9

I23 - 174.5 498.7 M 665.0 195.1 -477.7

I24 -230.6 :35._2 498.5 195.4 718.0 531.0

I34 £7 -534.2 473.7 -477.6 529.2 999.0

Table 2.19 Geometrical factors from the finite element method for Sample 1(|.I.m'l ).

r V. V. V. V. V. V.

I12 1.6609 0.9635 0.7955 -0.6974 -0.8653 M72

I13 0.9634 1.9550 0.9568 0.9916 -0.006647 -0.9982

I,4 0.7957 0.9569 1.5608 1.161; 0.7651 0.6039

I23 -0.6973 0.9916 Q._1_6_1_3_ 1.6889 0.8586 -0.8303

124 -0.8652 -0.006684 0.7651 0.8585 1.6303 0.7718

I34 M -0.9982 0.6038 -0.8303 0.7717 1.6021       

Table 2.20 Resistivity and contact resistances for Sample 1, assuming that all the contact

resistances were Ohmic.

 

 

 

 

 

      

p (Q cm) rl (k0) r2 (k9) r3 (k9) r4 (k9)

(a) 23.72 316.3 6.1 276.2 329.0

(b) 22.50 314.0 15.0 285.0 336.0

(c) 23.72 303.3 5.6 274.0 329.0

(d) 23.58 317.6 7.3 277.5 330.0
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averaged the results. The results are shown in row (a) of Table 2.20. I then did a least

squares fit for five parameters to the six 2-terminal measurements. The results are shown

in row (b). In (c), the resistivity was fitted by 4-terminal measurement as in (a), and four

contact resistances were obtained from six diagonal terms by a least squares fit. Finally,

we fitted five parameters with all 36 elements of the resistance matrix, the results of

which are shown in row ((1) of Table 2.20. It is clear that all four methods give essentially

the same results. Note that one of the contacts has a very small resistance compared to the

others.

2.5.3 sample 2 (non-Ohmic contacts)

The measured resistance matrix for Sample 2 is given in Table 2.21. All

measurements were done at constant current (100 nA) at room temperature ('1‘: 20° C).

The values in parentheses in the diagonal terms were measured for a reversed current

flow. The different magnitudes in these two measurements show the non-Ohmic behavior

of the contacts. Diagonal terms in boldface denote 2-terminal measurements and the

underlined values are 4-terminal measurements. Using Table 2.5, it is clear from the

asymmetries that contact resistance 3 was very non-Ohmic, and that contact resistance 2

had a small non-Ohmic part. As discussed in the previous section, a second set of

measurements had to be taken, with the current probes reversed. This was only done for

the six diagonal (2-terminal) elements before the leads were damaged. Nevertheless, this

is a sufficient set of data to determine the resistivity and all the contact resistances. The

geometrical factors are given for the Sample 2 as in Table 2.22. We processed the data for

Sample 2 in four distinct ways to test the accuracy of the fitting procedure.
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In the first method we first calculated the resistivity from the 4-terminal measurements

and with this p determined six of the eight contact resistances from the 3-terminal

measurements, and the remaining two contact resistances (r,' and r4 ) from the diagonal

elements with the currents reversed. The results of this analysis are shown in row (a) of

Table 2.23. In the second method we did a least squares fit to obtain the resistivity and the

Ohmic part of the contact resistances (7,, i = l,..,4 ), from the six diagonal elements of

Im

a. , and the 3—terminal elements of the originalif" . From the six diagonal elements of AR

 
resistance matrix that involve both r2 and rz', i.e. the elements (R1223 , R1224 , R; , R3 ), we

were able to fit the non—Ohmic part of the four contact resistances (Ar, , i=1,..,4). The

results are shown in row (b) of Table 2.23. There is rather good agreement between the

two methods, with only a 10% difference in the resistivity. This agreement obtains in

spite of the very large and non-Ohmic contact resistance r3 that dominates the least

squares fitting procedure for the diagonal elements. In general, it is probably best to

determine the resistivity from the four terminal measurements, and so as a final check, we

used the value of p determined from the 4-terminal measurements. And a least squares fit

was done to obtain the Ohmic part of the contact resistances ( 7} , i: l,..,4 ), from the six

diagonal elements of El” . The non-Ohmic parts of the contact resistance are unchanged

by this alternative method of determining the resistivity. These results are shown in row

(0) of Table 2.23. Finally, the row (d) of Table 2.23 was given by fitting all parameters by

whole table.
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Table 2.21 Resistances obtained from the experimental measurement for Sample 2 (kn).

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

 

R V12 V13 V14 V23 V24 V34

I12 875(875) 386 369 -432.3 -451 -_1_8,_1_

I13 392 3771(4878) 587 3240 _2_0§ -3032

I14 369.5 389 1591(1591) 21—2 1114 917

I23 -450 3255 2_2’_1 3774(4936) 663 -3026

I24 -471 £2 1126 654 1705(1705) 943

I34 1041 -4207 918.9 -4190 935 5236(4098)

Table 2.22 Geometrical factors from the finite element method for Sample 2 (}.tm'l ).

r V. V. V. V. V. V.

I,2 1.0825 0.6336 0.6049 -0.4489 -0.4777 -0.02869

I13 0.6336 1.4178 0.9440 0.7843 QQLOA -0.4737

114 0.6049 0.9440 1.4112 _Q._3§2_1_ 0.8064 0.4671

I23 -0.4489 0.7842 9,1321 1.2332 0.7880 -0.4450

Iz4 —0.4776 _0_.3;l_(_)4 0.8064 0.7880 1.2840 0.4958

I34 @2862 -0.4738 0.4673 -0.4452 0.4960 0.9407

Table 2.23 Resistivity and contact resistances for Sample 2.

10(5) cm) 7., Ar. (k9) 7.. Ar. (k9) 7.. Ar. (k9) 7.. Ar. (k0)

(a) 62.68 -3.0 , -7.00 162.6 , 10.7 3379.6 , 600.7 675.5 , 51.3

(b) 69.08 -26.8 , 11.6 152.9 , 4.72 3361.7 , 575.9 654.4 , 7.70

(c) 62.68 19.8 , 11.6 189.5 , 4.72 3398.1 , 575.9 692.2 , 7.70

(d) 60.78 9.30 , -7.50 173.1 , 12.5 3390.5 , 600.9 687.0 , 52.0     
 

 



In this analysis, it should be noted that there are some possibilities of error in

modeling and fitting as well as experimental measurements. First, we suspect the

effective contact area in the sample is less than that apparent in the SEM photographs.

Some part of the contact might not form a good electrical contact with the sample, and

hence decreases the real contact area. The sensitivity of diagonal and 4-terminal terms has

been tested by calculating the resistance changes by shrinking the area of all the contacts

by 1/3. The 2-terminal measurements varies 30~40 % but the 4-terminal ones were

changed by less than 10%. The resistivity fitted by 4-terminal elements turned out more

stable than the contact resistances included in 2-terminal terms under this change of the

contact geometry. Hence the resistivity should be fitted from the 4-terminal resistance

measurements, which are contact independent resistances, and the contacts are then

obtained subsequently by fitting the whole resistance table. We note that a fine meshing is

necessary for reliable results for the geometrical factors for the 2-terminal measurements,

but a coarser meshing is sufficient to get reliable geometric factors for the 4-terminal

measurements. And we could get better results by doing the measurements on many

different samples that have the same resistivity and with many contacts that give more

terms for consistency checks.

Throughout our theoretical treatment, although we have taken into account the

spatial distribution of currents within the sample, there has been no attempt to consider

the charge redistribution at surfaces and interfaces, for example due to band bending.

Contact resistances, in particular, will depend on local electric fields which, in turn, will;

depend on details of the semiconductor-metal interface. In retrospect, it is somewhat

surprising that a model invoking local contact resistances should work so well, with
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contact pad dimensions and separations approaching a space charge depth. If the scale of

the experiments were to shrink further, these considerations will need to be treated with

more rigor. Even if the reconstructed geometry is correct, one more error is possible. The

conductivity of the sample was assumed to be isotropic due to the diamond lattice

structure. So, the conductivity has been treated as a scalar, not a tensor. However, this

assumption may not be true for a sample with a twin boundary that could be observed in

Sample 2. This twin boundary may affect the isotropy of conductivity or homogeneity of

the material property. Nevertheless the reciprocal theorem is still true for anisotropic

conductivity; a resistance table is still symmetric for anisotropic tensor. We did not

analyze this effect on Sample 2 when the conductivity was determined in this chapter

since the defect is not apparent to be considered in the SEM photo.

The temperature dependence of conductivity has been one of main concerns

because it is crucial to understand the conduction mechanism of the doped

semiconductors. The temperature dependence of the resistivity in Figure 2.27 was

obtained from the temperature dependence of a 4-terrninal resistance in Figure 2.26. It

was done by rescaling the resistances with a geometrical factor for the measurement. The

Table 2.24 Fit result of conductivity model with two activation energies for data in

 

 

 

 

Figure 2.27.29

Sample a] E] 0', E2

(102 o" cm") (eV) (102 :2" cm") (eV)

Sample 1 1 14: 4 0.347 :0.001 1711.9 :345 0.109 :0.004

Sample 2 163: 5 0.351 :0.001 21.8: 17 0.059 :0.014

Polycrystalline film 0.95 :0.12 0.199: 0.004 102: 6 0.0089 :0.009       
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Figure 2.27 Temperature dependence of the resistivities of the diamond samples. Two

microcrystallites (MC-A, MC-B) correspond to Sample 1 and Sample 2.

PF1 and PF2 are polycrystalline films. HF] and HF2 are homoepitaxial

films. The resistivity of these samples was obtained by rescaling the

resistance measurement in Figure 2.26 using the fitted resistivity.
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geometrical factor for the 4-terminal measurement is a constant throughout whole

temperature regime. The temperature dependence of the conductivity is governed by

a = 0, exp(— E, /kT)+ 0, exp(— E, /kT), (2.37)

where E is the impurity ionization energy and E2 is from the nearest neighbor hopping.

0'l , 0'2 , El and E2 were obtained by fitting the data with this relation. I present the fitted

results given by Jaeger in Table 2.24.29 It was observed that the activation energy E1 was

the same for two diamond crystallites, but the polycrystalline film presented significantly

different activation energy. That indicates that the conduction mechanism in the  
polycrystalline film is quite different from the homoepitaxial film or microcrystallites.

The discrepancy might be from the effect of grain boundaries in the film as mentioned in

the motivation of this work. No significant structural defects such as grain boundaries are

formed in a homoepitaxial film since it is grown on the diamond substrate.

2.6 Conclusion

A method to measure the resistivity and contact resistances of single crystals in

complex geometry has been introduced and demonstrated on micron-sized diamond

crystallites. The method is quite general, if the material of the sample is homogeneous

and Ohmic, with contacts that can be non-Ohmic but should be equipotential surfaces.

The sample resistivity and contact resistances were obtained experimentally using 4-

probe measurements, aided by finite element calculations. This technique can be applied

to determine the sample resistivity using any shape of sample. It is possible to determine
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the sample resistivity and the Ohmic part of the contact resistances solely from the set of

2-terminal measurements, with currents in both directions, but it is probably best to use

the 4-terminal measurements to determine the resistivity. The most accurate results will

be obtained from a complete set of resistance measurements with currents in both

directions.

V
_
L
'

This technique was tested to determine the conductivity of some materials in

complicated geometry like CVD diamond crystallites, but it should be noted that there are 3.

some restrictions on the application of this method. For a material that has an anisotropic

 conductivity, our method cannot be applied. There are six terms in a general conductivity

tensor because of its symmetry. In our method described in this chapter, the conductivity

has been treated as a scalar, not a tensor. Therefore, we need a different approach for the

anisotropic case. The next chapter will be devoted to a presentation of a method to

determine the anisotropic tensor using the iterative linearization technique as well as the

multi probe measurement.
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Chapter 3 ANISOTROPIC CONDUCTIVITY

MEASUREMENT FOR COMPLEX GEOMETRY

3.1 Introduction

In this chapter, I introduce a method to determine the anisotropic conductivity of

an arbitrary shaped sample. The conductivity of our samples (CVD diamond crystallites)

was assumed isotropic throughout the previous chapter due to the symmetric lattice

structure of the samples.”31 However, one of the crystallites had a clear twin boundary

between the contact pads (see Figure 3.1). The homogeneity may not be satisfied in this

sample because of this defect, that is a main requirement for the application of our

method. Under the assumption that the effect of the defect could be neglected, its

contribution to the transport has not been considered rigorously before.

However, this inhomogeneity of the sample induced by some significant defects

 

Figure 3.1 A diamond crystallite has a local defect (twin boundary) denoted by an arrow.

This defect was neglected in the isotropic conductivity determination.

7O  



should be considered more carefully in the determination of the material properties.

Moreover, some materials (Bi, Sn) and some superconductors are known to have

anisotropic conductivity tensors from the anisotropic lattice structures (see Table 3.1).

Diamond and Aluminum have an isotropic conductivity tensor from the cubic lattice

structures, but some materials in other lattice structures (tetragonal, trigonal, and

hexagonal) usually have anisotropic conductivity tensors. Therefore, the conductivity '1"

should be determined as a tensor form that has six terms in 3d. Only three diagonal terms

can be determined when the three principal axes are known.

The main difference between the isotropic and anisotropic case is related to the

 
geometrical factor. For an anisotropic conductivity tensor, the resistances can not be

represented by the simple form of a geometrical factor times conductivity. In fact, the

geometrical factor cannot be defined in the anisotropic case. Nevertheless, it may be

possible to calculate the anisotropic conductivity tensor for some simple shapes (brick,

cylinder) that build up uniform current patterns. However, it is not easy to fabricate the

samples into such shapes in micron scale, and the principal axes of conductivity are

generally unknown. To identify this conductivity tensor, I developed an algorithm using

Table 3.1 Electrical resistivity of metalic crystals.32 Values of principal resistivities at

T=20° c. (in unit 10'6 :2 cm)

 

 

 

 

 

     

Crystal System pl , p2 p3

Aluminum Cubic 2.72 2.72

Tin (Sn) Tetragonal 9.9 14.3

Bismuth (Bi) Trigonal 109.0 138.0

Zinc Hexagonal 5.91 6.13
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the multi-probe measurement and computer simulations (the FEM analysis and the

iterative linearization technique). This method has been tested for the 2d and 3d

computer models and a real sample (Bi) whose anisotropic tensor components are already

known as in Table 3.1.

In the next section, a brief description of the nonlinear problem induced by

anisotropic conductivity is presented and I will describe the basic idea of a method based

on iterative linearization in Section 3.2.2. The orthogonal transformation is introduced to

find the principal axes of a tensor in Section 3.2.3. In Section 3.3, I introduce a general

scheme of computer simulation using FEM on the computer models (Section 3.3.1) and

the interfaces between the FEM package and the minimization routine (Section 3.3.2). I

will explain how to apply this method to real material (Bi) in Section 3.4. The sample

geometry and the lead formations will be described in that part. The results of the

computer models and the real sample are presented and analyzed in Section 3.5.1 ~ 3.5.3.

The stability test on our method is discussed in Section 3.5.4. To close this chapter, I will

provide the conclusion and suggestions in Section 3.6.

3.2 Theory

3.2.1 anisotropic conductivity tensor

For an isotropic resistivity tensor, a sample resistance ’R;."' has been defined by

(3.1)
i] ’

3R3?" = 1".”

Where 1‘5" is a geometrical factor that depends only on the geometry and the resistivity p

18 Single parameter. The geometrical factor does not have any orientation dependence
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since the sample is isotropic. This simple relation in Eq. (3.1) makes it possible to

determine a resistivity by fitting the geometrical factors 1‘5?" and the sample resistances

5R3". However, the conductivity should be considered as a 3 x 3 tensor in general. This

anisotropic behavior of the conductance could be observed in many materials. The

conductivity tensor is symmetric when there is no external magnetic field.33 Then, the

number of the independent terms in the tensor is given by d(d + l)/ 2 in d—dimensions. It

becomes three in 2d and six in 3d as shown in the following equations.

on a , ,

0' =[ x’ J in 2d (3.2)

on, 0'

0,, 0",). on

a: 0,, 0'”, a), in 3d (3.3)

OX2 a}! all

If the principal axes of a conductor are known and the coordinate axes in the

simulation are set up equal to these principal axes, the conductivity tensor becomes a

diagonalized tensor. Since all off-diagonal terms are set zeroes, the only unknown terms

in a tensor are the diagonal terms. Even so we cannot use the previous method to

determine the conductivity tensor because the geometrical factor 1".” cannot be defined

as in Eq. (3.1) for the anisotropic tensor (5' ), i.e.

R.’."' =-R.’"’(6) ¢ p17?" . (3.4)

So, the resistivity p cannot be obtained by dividing a resistance by a geometrical factor.

All elements in a conductivity tensor are correlated in the expression of the resistances.

These elements cannot be separated from the geometrical factors as previously done for
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the isotropic tensor. More general relations between the experimental measurements and

the theoretical calculations should be

‘R.j-'"=‘R§?"(6)+n(5. —6,-,,.)+r,'(6,,,, —6,,). (3.5)

where 'Rfjf" is an experimental measurement and r, and r,‘ represent non-Ohmic contact

resistances. We need to extract the conductivity tensor using Eq. (3.5) aided by the multi

probe measurement and the FEM analysis.

In the presence of a magnetic field B, the tensor becomes antisymmetric and can

be separated into a symmetric and an antisymmetric part as in Eq. (3.6).

on on, 0 on on “also,2 0

o = 0",, a” 0 = on, -RZB0'02 0),, O

0 0 oz, 0 0 oz,

2 , (3-6)

on on, O 0 R200 0

= on. 0,, 0 +3 —R,o,2 0 0

0 0 on 0 0 0

where RZ is the Hall coefficient and 0'0 is given by

/2

0'0 = (03.0"... —ox}.2) . (3.7)

However, this Hall measurement will not be considered in this work.

3.2.2 iterative linearization technique for nonlinear inverse problem

The unknown conductivity tensor can be determined by fitting two resistances

(experimental and theoretical) in Eq. (3.5). Since the functional forms of a resistance in

terms of the tensor elements are generally unknown, we should use the iterative

linearization method. While the tensor elements are changed, the linearized resistances
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calculated from the FEM are fitted to the experimental measurements to extract the

optimized tensor elements. Usually the optimized solution can be achieved after many

iterations of the linearization and least square fittings. This technique is also known as the

Gauss-Newton method.34 The term Gauss is named by the least-square fitting of the

resistances and the term Newton comes from the iterative linearization technique in the

optimization procedure. This technique has been widely used to solve nonlinear

Optimization problems, for instance the earth conductivity problem in geophysics.35

Here I describe the detailed procedures of this technique. Suppose we are trying to

find an anisotropic conductivity tensor with unknown principal axes. Simply we choose

an arbitrary tensor to start the iteration, which is defined by six parameters. To get the

linearized form of each resistance for this tensor, all first derivatives of the resistances

with respect to the six tensor elements are calculated using the FEM. Then, the

expressions of the resistances are known as linearized forms, we can perform the least

square fitting to extract a tensor. However, since the linearized forms are correct only

near the previous tensor, the fitted tensor may not be the global solution of the

optimization. Therefore, the fitted tensor substitutes for the old tensor and the same

procedures are done. This iteration will go on until the best-optimized tensor is obtained.

After the tensor is obtained, it is diagonalized by the orthogonal transformation to find the

principal axes and values of the tensor.

In this iteration, the first step is very important. The iteration begins from an

arbitrary selected point that might be far from the global solution. Then it is very crucial

to find a next point close to the global solution in the first step. We begin the first step

with an isotropic tensor (unit conductivity) and keep the tensor isotropic throughout the
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p‘ p'+Ap p" p2 p°p°+Ap

Figure 3.2 Iterative linearization technique of 12 minimization in 1d (Newton method).

This technique is useful when the function form of the 12 is not known.

Each step, the function form is approximated to a linearized form by Taylor

expansion. After many iterations, it reaches the minimum point.
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step. This procedure is exactly the same as our method in the previous chapter. We can

determine the scale factor po that is nothing but an isotropic conductivity. When a tensor

is isotropic, there is only one parameter p0 ( = p” = p),y = pa ). Since the conductivity is

isotropic in this step, we can use the relation of

R = pOFO , (3.8)

where F0 is a geometrical factor given by the initial tensor that is a unit conductivity

tensor. The fitted tensor that will be used for the next step has same diagonal terms of p0

as

 
p0 O O

p°= O p° 0 . (3.9)

O 0 p°

From the second step, we use the linear approximation method of the resistances.

Each tensor element is treated separately in the procedure. A resistance depending on the

six fitting parameters can be represented by

RU)”,p).).,pzz,pn,pyzipxz)=R0032,pg)»pgrpgnpgz’pgz)+2Aleprj ’ (3°10)

i<j

where R0 is a resistance determined by the resistivity tensor p0 given by a previous step.

The linear expansion of the resistances can be defined by

(3.11) 

R 9+A .. —R .9

pij=p3+Apij , Al}: A5— 2 (p0 p") (p0).

Apij Apr}

Selecting Apij is somewhat arbitrary depending on the functional shape around the tensor

p3. The constant Ar; can be given by taking the numerical derivative of the resistance.
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Then the resistances in Eq. (3.10) can be fitted with the experimental values to find a

conductivity tensor that minimizes the 12 of the resistances. By continuing this process

until the best optimum point is achieved, the anisotropic conductivity tensor and contacts

can be given. This is the main idea of this algorithm.

Next, I explain the way to save one fitting procedure in the first step. Each

iteration in this simulation requires a heavy computer job; sometimes it is very efficient to

skip one iteration. Previously, I consider only an isotropic tensor in the first step for the

rescaling of the resistivity. However, an anisotropic tensor also can be used for the

rescaling and the determination of each tensor term simultaneously in the first step. First,

I will describe the skip for a diagonalized tensor. It will be explained for a general tensor

later. Suppose we have a diagonalized tensor. Then, we have only three unknown

variables in a tensor. A resistance can be represented by a geometrical factor F0 and some

constants Bi}. as in Eq. (3.12).

 

u + W + :2

R(pxx’pyy’pzz)=r0[p p3 p
+Bupu +Bwp”, +Bapa] . (3.12)

Since a resistance R should be equal to F0 for the unit tensor ( p“ = p”, = pZZ = 1.0 ), a

relation between three coefficient B”. can be found by

BU+BW+Ba=O. (3.13)

Then Eq. (3.12) can be simplified as

R(p...p.,..p.) = 131(1)) +3....(p... -p..)+B.(p. -p..)l . (3-14)

where
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p.+p.+p.
<P>= " -3 (3.15)

One coefficient Bu has been removed from Eq. (3. 12) using Eq. (3.13). If we define new

parameters of 1,]. and Ba by

py‘pu AR 1

x.~=——— ,B,.=r —-, (3.16)

J (p) } ()[Apu'] 3

then we have a relation between a resistance and the fitting parameters (p) and Zr;-

 

R(pxx’ pyy’ pzz) = I-‘0<I))[1-'- B)’)‘XX)’ + Buxxz] (3’17)

In the first step, the rescaling is done by (p) while 1,}. provides the separation of each

tensor element. If the off-diagonal terms are considered as well, this relation can be

generalized by adding some extra terms 6,]. associated with off-diagonal terms in Eq.

(3.12).

R(pxx’py_y’pzz’pxy’pyz’pxz) : r0<p)[1+Byylxy +821sz +Bxy§xy +Byz€yz +sz§xz]’ (3'18)

where new parameters of 5,]. can be defined by

15,, = 3L. (3.19)

So we have six fitting parameters (< p ), x”, x”, 5.. , 5 Cu) in the resistances with
yz ’

six geometrical factors (I‘0 , 8 Ba , B”, B sz ) calculated at the starting point.

However, this amended first step has been used only for especially heavy computer jobs

in the real simulation. Usually I applied the simple algorithm for the first step given by

Eq. (3.8).
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In each iterative step, we minimize 12 of the experimental resistances R‘ and the

theoretical resistances R ' ( [5, rj ) . The theoretical resistances can be given by a resistivity

tensor [5 and the contact resistances rj as in Eq. (3.5).

2

R? _ R-t ”, r-
. .(p ,) , (3.20)

0i
l

where i denotes the index of all data and 0',- is the standard deviation of each experimental

measurement. We used Levenberg-Marquardt method to minimize 12 to determine the

unknown parameters (srx terms 1n a resrstlv1ty tensor and the contact resrstances).2

3.2.3 orthogonal transformation

After the iteration, an optimized conductivity tensor is obtained. However each

element in this tensor varies under the rotation of the coordinate; it is changed for

different coordinate systems. So, the principal axes and diagonal elements should be

obtained. The sample properties are characterized by these invariant quantities. A

symmetric conductivity tensor in Eq. (3.3) is a Hermitian matrix that has three real

eigenvalues and three orthogonal eigenvectors.36 Three eigenvalues (principal values) and

eigenvectors (principal directions) of the matrices can be determined by doing the

Orthogonal transformation on the tensor.

P

011 012 013 0.11 O O

013 023 0'33 0 0 0.3,;
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To identify the principal axes and values, we solve an eigenvalue problem of the tensor

0,}. .

6 - i. = 2,55,. , (3.22)
l

where A, is an eigenvalue that denotes a conductivity and If, is an eigenvector for the

eigenvalue.

3.3 Computer Simulation

3.3.1 sample geometry

First, I have counted how many leads are needed on the sample for enough

information to determine the tensor. Most fittings in this chapter have been done with

only 4-terminal measurements to obtain the tensor. The contact resistances were not

considered in most cases. In the previous chapter, the fitting with 4-terminal terms turned

out to give a better result than the fitting with whole terms including 2-point, 3—point

terms. The isotropic tensor can be determined by four leads since the tensor has single

unknown parameter that is fewer than the independent 4-terminal terms. However, the

number of the unknowns is increased for an anisotropic tensor, so we may need more

leads. Moreover, it is hard to form many contacts on some samples. Therefore, it is

important to know what is the minimum number of the contacts necessary to reconstruct

the conductivity tensor. Since there are six unknown parameters in the tensor now, we

Should have more than six independent 4—point resistances. Following the argument in

Appendix A.2, we should have at least six leads on the sample. To identify the contact
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(b)

Figure 3.3 Many probes are attached on the surface of samples in 2d (a) and 3d (b). More

contacts are needed for anisotropic conductivity tensor compared to isotropic

conductivity tensor.

 



resistances also, we need six leads. Now there are 6 + n unknowns (6 tensor terms and n

contact resistances) and this number should be less than "C, (= n(n — 1)/ 2) that is the

number of the independent terms in a resistance table. Therefore, we need six leads in

both cases whether the contact resistances are fitted or not.

To illustrate this technique, we generated computer models in 2d and 3d as shown

in Figure 3.3. Six surface probes were formed on the sample both in 2d and 3d. By the

counting argument of the 4-terminal terms, only five probes were enough to determine

three tensor elements in 2d. Six circular contacts of different sizes were formed in the 2d

planar sample and six identical small bricks of contact pads were attached on the surface

of the large brick of 3d sample. The contacts were randomly distributed on the 2d sample,

but for the 3d sample, the six contacts were attached one on each facet. A 2d sample was

meshed by ~3000 brick elements (DC2D4 in ABAQUS) and a 3d sample was by ~5000

tetrahedral elements (DC3D10). Modeling (generating geometry and meshes) was done

again by the commercial package ANSYS.24

3.3.2 simulated experimental data using FEM

To test my method for these computer models, I generated simulated resistance

tables. An anisotropic conductivity tensor has been arbitrarily selected to generate the

simulated resistance table. By performing the FEM with this prescribed tensor, I obtained

a 15 x 15 resistance table constructed by all possible voltage and current measurements.

With this tensor, the contact resistances were added to the sample resistances. Only

Ohmic contacts were considered for this test sample. Moreover, to simulate the real

experimental measurement, the resistance table was decorated by Gaussian noise. This
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simulated resistance table was used as experimental resistances to test how our method

could find the prescribed tensor and contact resistances. A commercial package

ABAQUS25 was used for the analysis.

3.3.3 iterative linearization fitting using FEM

In each iteration, the resistance calculation using FEM was done by the fitted

conductivity tensor obtained from the previous step. And these resistances were fitted

with the experimental values again to determine another tensor for the next step. In each

step, I calculated the whole resistances R5" (pj) (225 terms) using the fitted conductivity

tensor pj given from the previous step. And some other resistances R5?" (pj. + Apj) were

calculated to obtain the linear expansions of Ag. in Eq. (3.11) or By. in Eq. (3.16).

 

 

  

AR?!"
Ar = '1 , (3.23)

Apj

ARI?" 1

3:1 = 1‘0 -- , (3.24)

Apj 3

ARI?" _ Ry“); +Apj)-R,;m(pj)

Apr A” 1' (3.25)

The least square fitting could be done in each step using numerical derivatives

given by the FEM. The whole table or only 4-terminal terms were used for the fitting.

After approaching close to an optimum point, the iteration was stopped. The fitted

conductivity tensor and contact resistances were compared with the initially given

quantities. While the fitting was done iteratively, I obtained a diagonalized conductivity
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tensor by the orthogonal transformation. The diagonalized tensor showed the principal

axes of the tensor and the principal values along the principal axes.

3.4 Experiment

3.4.1 sample preparation (Bi cylinder)

A test of this method has been performed on a bismuth cylinder. As shown in

Table 3.1, bismuth has an anisotropic resistivity tensor. It has two distinguishable

principal directions: one (pp = p1 = p2) is the isotropic on xy-plane and the other ( p,)

is perpendicular to the plane. Later, I will call the pp a planar resistivity and p3 a

perpendicular resistivity. This property comes from its trigonal lattice structure. The

planar resistivity component is known to be 109.0 (1045 Q-cm) and the perpendicular

component is 138.0 (10'6 Q-cm). The discrepancy between these two elements is about

40%; this number is larger than the possible error estimations of the measurement or the

simulation. In Figure 3.4, I display the geometry of our test sample. It is a relatively thin

cylinder that may be treated as a circular plate. Its diameter is 10.4mm and thickness is

2.0mm. Six gold electrodes were formed on both circular planes of the sample by the

evaporation technique. All the contact areas were circular (diameter : 1.0mm). Three

contacts were formed on the top, the others were formed on the bottom. Three pads on a

plane were rotated by some angle from the other three pads (see Figure 3.4(b)).

Otherwise, we would have measured extremely small 4-point resistances that might have

caused some serious numerical error. Usually the symmetric formations of contacts raise
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(a)

top contact

bottom contact

 

(b)

Figure 3.4 Schematics of a real sample (Bi cylinder) with six circular Au electrodes. (a)

It is a relatively thin cylinder. Three contact pads were formed on each

circular plane of the sample. (b) Three pads on a plane were formed to have

an angle from three pads on the other plane.
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(b)

Figure 3.5 The normal photos of the Bi sample for the real measurement.37 It has six

contacts that are formed on both sides of the circular planes. (a) and (b) show

the formation of contacts on these two sides. The ruler shows the size of the

sample.
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the errors in the simulation because of the sensitivity of the 4-terminal resistances that has

been observed in the isotropic case. The geometry was constructed by taking normal

photos of both sides of the sample as given in Figure 3.5.

3.4.2 six-probe measurement

A resistance table (15 x 15) was obtained by all possible voltage and current

measurement. A total of 225 terms were obtained in a resistance table. Only 90 terms of

4-point measurement would be used in the fitting since the contact resistances were not

concerned for this real material. DC current has been used for the I-V measurement on the

sample. It was important to use low currents to remove the thermoelectric effect of the

high conductivity sample. Each 4—point resistance was measured to check the Ohmic

property of the sample. This was really important to check whether the conductance was

related to the thermoelectric effects. Thermoelectric effects break the symmetry in the 4-

point measurement. So, if these effects are significant in the measurement, their

contributions to the resistances should be considered separately. With several different

DC current flows, the I-V curves for all 4-terminal measurements were obtained and fitted

by the linear regression technique to find the derivatives that were equivalent to the 4-

terminal resistances. Among 90 terms, some measurements showed bad I-V

characteristics. Some 4—point measurements were observed to be asymmetric. These

terms were removed from the final data since I had enough data in the table. The

asymmetry might be normal for 2-point and 3-point resistances because of the non-Ohmic

contacts. However, 4-point resistances should not be asymmetric if the conductance is

only electrical. That asymmetry might be from the thermoelectric conductance. However,
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that effect has been neglected throughout this work based upon the asymmetry was not

substantial. So, the 4—point resistances were symmetrized by taking the average of two

off-diagonal elements. Finally, this refined resistance table was used to determine the

conductivity tensor elements of the Bi sample.

3.5 Analysis

3.5.1 computer generated sample (2d)

Our method has been tested on a 2d computer model in Figure 3.6. That irregular

plane has six circular probes. Figure 3.6(a) shows the meshed structure and Figure 3.6(b)

presents a voltage distribution on the sample for a measurement given by the FEM

analysis. Table 3.2 shows the prescribed and the fitted conductivity tensors. The fitting

procedures were done by whole resistance table and 4-terminal resistances only. The

second row represents the conductivity elements that have been used to generate the

  
(a) (b)

Figure 3.6 A computer generated sample for the determination of anisotropic

conductivity. This 2d computer model has six circular probes. The contour

map (b) shows the equipotential lines. The meshing was done by ANSYS and

the analysis was done by ABAQUS.
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Figure 3.7 These figures show the fitting procedures of the tensor in 2d. The fittings

were performed using only 4-point resistances (a) or whole resistances in the

table (b). Three data points are equivalent to three conductivity tensor terms.
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Table 3.2 The comparison of the fitted results of the conductivity tensor elements with

the prescribed values for the computer model in 2d.

 

 

 

 

     

0'll 0',2 0'22

Prescribed 5.00 1.40 2.50

4-point terms (a) 5.03 1.42 2.52

Whole terms (b) 5.01 1.43 2.52

 

 

Figure 3.8 Two principal directions were drawn on the surface of 2d computer model.

Three directions (one real and two fitted) represent a remarkable coincidence.
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simulated resistances. We compared the fitted results in the table with the predefined

tensor. In both cases, our method reproduced the real values remarkably within acceptable

error levels that were associated with the Gaussian noise. For this 2d sample, 2% of noise

had been added to the resistances to simulate the experimental measurement. Figure 3.7

shows the fitting procedures for two data sets (4-point terms (a) and whole terms (b)).

Usually the iterations were observed to be stabilized just after a few steps.

The orthogonal transformations were done to diagonalize the fitted tensors. Two

principal values and two principal directions equivalent to the values were given for the

real tensor and two fitted tensors. The diagonalized tensors and the principal vectors of

each tensor were presented in Eq. (3.26)~(3.28). Eq. (3.26) came from the prescribed

tensor and the rest came from the fitted tensor. These principal directions in each case

were shown on the surface of the model as in Figure 3.8.

5.627 0.000 56, =(0.913 0.409)

00: y _, . (3.26)

0.000 1.873 x,=(—0.409 0.913)

5.67 0.00 “ = 0.912 0.411

,= . f‘ ( ) . (3.27)
0.00 1.88 x,=(—0.411 0.912)

5.66 0.00 ‘ = 0.910 0.414
6,: , f‘ ( ) . (3.28)

0.00 1.87 x,=(-0.414 0.910)

3.5.2 computer generated sample (3d)

I did another test simulation on a 3d computer model with six probes. A meshed

structure of the sample and the voltage distribution on the surface were presented in

Figure 3.9(b). The predefined conductivity tensor and the fitted results were given in
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Table 3.3. Since we have six terms in a tensor, the number of the fitting parameters is also

six. Two different fittings with different fitting data (4-point terms and whole table) were

done again for this 3d sample. These results by two different data sets (4-point (a) and

whole table (b) in Figure 3.10) showed a good agreement with the predefined tensor

elements. The errors in the results might be acceptable, although they came out higher

than in 2d case. 2% Gaussian noise had been added to generate the simulated resistances.

Usually a few more steps were needed to reach to the Optimum solution compared to the

2d case. It is simply because of the increase of the fitting parameters in 3d. From these

graphs, I realized that the first a few steps were critical in the entire process. The rest of

the iterations did not improve the results in most cases. I obtained the principal values and

axes of the conductivity tensor by diagonalizing the fitted tensor. Eq. (3.29) shows the

diagonalized tensor of the prescribed conductivity tensor and the principal vectors. And

Eq. (3.30) and (3.31) were given from the fitted tensors by 4-point terms and whole

resistances respectively.

Table 3.3 The comparison of the fitted results of the conductivity tensor elements with

the prescribed values for the computer model in 3d.

 

O.ll 0'12 022 0'13 0'23 033

Prescribed 8.0 -0.8 1 1.0 1.5 -0.5 9.0

4-point terms (a) 7.640 -0.817 10.19 1.521 -O.613 9.604

Whole terms (b) 7.845 -O.811 10.24 1.619 -0.552 9.366
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(b)

Figure 3.9 The meshing (a) and equipotential lines (b) of a 3d computer generated

sample. Six brick-shaped probes were formed on six facets of the sample.
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4-point terms onlyIn 3d (error=0.02)

 

 

 

whole terms in 3d (error=0.02)

 

(b)

Figure 3.10 These figures show the fitting procedures of the tensor in 3d. The fittings

were performed using only 4-point resistances (a) or whole resistances in

the table (b). Six parameters in a tensor were obtained each step. The

iterations in 3d needed a few more steps to the optimum than in 2d.
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6.89 0.00 0.00 2, =(0.822 0.0916 —0.562)

a: 0.00 11.55 0.00 . 32,=(—0.352 0.857 —0.376) (3.29)

0.00 0.00 9.57 2, =(0.447 0.507 0.737)

6.76 0.00 0.00 Jr',=(0.886 0.131 —0.445)

6,: 0.0 11.27 0.00 . 2,=(—0.411 0.666 -0.622). (3.30)

0.00 0.00 9.41 35, =(0.215 0.734 0.644)

6.77 0.00 0.00 x, =(0.854 0.119 —0.507)

6,: 0.00 11.24 0.00 . 224—0441 0.682 —0.583)- (3.31)

0.00 0.00 9.44 2, =(0.277 0.722 0.635)

The sensitivity test of our method has been performed for several simulated

resistance tables that were generated by different noise levels. I monitored how the errors

in the fitted results were related to the noise levels and shown in Figure 3.11. It shows

two curves that correspond to the fitting data of whole table and 4-point terms. They

turned out basically linear as expected, but the derivatives were quite different. The

derivative of the fitting with whole table was somewhat higher than the fitting with 4-

point terms only. This result seems to support the argument that the fitting with 4-point is

more efficient than the fitting with whole table in the determination of the anisotropic

tensor.

3.5.3 real sample (Bi cylinder)

The test for a real material has been done by two different meshings for the same

geometry. Figure 3.12 presents one meshed sample and the voltage distributions of the Bi

cylinder obtained by the FEM analysis. Two figures obtained from different view angles

show the voltage distribution on the top and side of the sample. Notice that whole

contacts were given as equipotential regions since the six small cylindrical contact pads
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Figure 3.11 Sensitivity test of the conductivities fitted by 4-point terms and whole table

has been done to check the relation between the result and the Gaussian

noise.
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Figure 3.12 Equipotential lines of the real sample (Bi) obtained by FEM analysis.
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were perfect conductors. The well-known conductivity elements of Bi and the fitted

results by our technique are presented in Table 3.4. And the fitting procedures of two

different meshings were shown in Figure 3.13(a) and (b). The real conductivity

components (planar (109.0) and perpendicular (138.0)) of the Bi sample were represented

by the two horizontal solid lines in the figures. In this test, only 4-terminal resistances

were used in the fitting according to the argument in the previous tests. It has been

realized that the fitting with 4-terminal terms was more effective than the fitting with

whole table. Since the orthogonal transformation has been done in each step, I have only

three data points in the figures. Three points correspond to the three principal components

of the conductivity tensor. The errors of the fitted conductivities were measured relatively

high compared to the results of the computer models. This result might be acceptable

when the experimental and simulation error levels are considered. However, the

separation between the planar and perpendicular components is not so clear in the results.

IfI take the average of two planar resistivity values (98.75, 126.3), it is given by 112.52

that agrees remarkably with the real value (109.0). However, these two components never

crossed over in the entire fitting procedures. The separation between these two planar

components was quite substantial. Moreover, the fluctuations of the fitted components

Table 3.4 Principal values of the resistivity of Bi. (1045 0 cm)

 

 

 

 

 

    

P11 P22 P33

Real Sample (Bi) 109.0 109.0 138.0

Fitted result 98.75 126.3 152.1

Error (%) 9.4 15.9 10.2   
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Figure 3.13 Fitting procedures of a resistivity tensor of the real sample. Two meshings

were used to test our method on this sample. Only three principal

components of the tensor were shown in these pictures. Two planar

resistivity components (solid circle and square) are observed stable around

the real value, but the perpendicular component (triangle) shows a

substantial variation, especially in (b).
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were observed to be significant in both fitting procedures as in Figure 3.13. By the

comparison of two fitting procedures, the fluctuation of the perpendicular component was

more serious than the other two planar components.

The experimental errors were believed not to exceed 10%. So, there must be some

other considerable error sources in this method. One of the main error sources might be

the incorrect geometry reconstruction of the sample. Therefore, in next section, I will

describe various stability tests to investigate the possible error sources, the meshings and

the geometry reconstruction.

3.5.4 stability test

First, I selected several different sizes and types of elements for the meshing and

checked if the fitted results depend on the way of meshings. The characteristics of all

meshings used in this test were presented in Table 3.5. Iran the algorithm with these

meshings to obtain the anisotropic conductivity tensors. The fitting procedures were

given in Figure 3.14. The planar components (solid square and circle) fluctuate slightly

around the real value (109.0) that is denoted by the lower solid line for all meshings, but

the variation of the perpendicular component is quite significant. Therefore, I realized

that a finer meshing did not improve the fitting result so much. The variation of the

perpendicular component was quite substantial in the simulation.

The other test has been done to find the dependence of the result on the positions

of the contact pads. I built up several structures that had contact pads on slightly different

positions by rotating three pads on a plane. The fitted results by these different structures

were presented in Figure 3.15. It was observed that even small rotations (2° ~ 5°) could
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give substantial differences to the results. Interestingly, the two planar components were

found to cross over at some degree between 2° and 5° . And the perpendicular component

was observed fluctuating significantly. It should be emphasized that the geometry

reconstruction is very important especially in anisotropic case.

Meanwhile, I tried to understand why the perpendicular component p3 was not

accurate and showed a serious instability. I thought that the error might be related to the

thickness of the sample. To verify this, another test was done for two identical computer

models except for the thickness. One model (Cylinder 1) was the same shape of the Bi

sample and the other one (Cylinder 2 in Figure 3.16) had different thickness that was

5mm (note that the thickness of Cylinder 1 was 2.0mm). Both samples had six probes at

same positions. I generated the simulated resistances for each model as done before. A

meshing (Bi 10-1) was used to generate the resistances of Cylinder l and a different

meshing (BulklO-l) was used for Cylinder 2. I further tested if the technique could

reproduce the prescribed conductivity components. I used the four meshings described in

Table 3.6 including the meshing that was used to generate the simulated resistances. In

Figure 3.17, the perpendicular component for the thin sample (Cylinder 1) could not be

Table 3.5 Different meshings for the stability test of a cylindrical sample.

 

 

 

 

 

 

Meshing Bi10-1 Bi10-2 Bi4-l Bi4—2

Element type DC3D10 DC3D10 DC3D4 DC3D4

Nodes per elements 10 10 4 4

Total Nodes 4473 1744 2445 728

Number of elements 2492 908 9809 2492      
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Figure 3.14 Resistivity fittings were done for the Bi sample using three different

meshings. BilO—l is a fine meshing and Bi4-2 is a rough meshing. It turned

out that the perpendicular resistivity component was so sensitive on the

meshing while the other components were stable.
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Figure 3.15 Resistivity fittings were performed on some modified structures. The

modifications were done by rotating the contact pads. The dependence of the

result on the angles was shown in the figure. Huge variations were observed

for all components. Interestingly, two planar resistivity components ( p1 ,

p v ) crossed over somewhere between 2° and 5° .
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Figure 3.16 Equipotential lines of thicker cylindrical sample (Cylinder 2). This model

has more layers of elements along the perpendicular direction. That may

enhance the fitting result for that direction.
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Figure 3.17 This graph was obtained from another computer test for the same geometry

of the Bi cylinder (Cylinder 1). The simulated resistances were generated

by the meshing BilO—l. The fitted results from different meshings were

presented. The perpendicular component (triangle) shows still a huge

variation for this computer model.
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Figure 3.18 Another computer test for a thick sample (Cylinder 2) as shown in Figure

3.16. The simulated resistances were generated by the meshing BulklO—l.

The fitting from other meshings could reproduce the all resistivity

components nicely including the perpendicular component.
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Table 3.6 Different meshings for the stability test of Cylinder2.

 

 

 

 

 

 

Meshing BulklO-l Bulk10-2 Bulk4-1 Bulk4-2

Element type DC3D10 DC3D10 DC3D4 DC3D4

Nodes per elements 10 10 4 4

Total Nodes 9359 4473 2445 728

Number of elements 5727 2492 9809 2492    
 

reproduced in some different meshings. For a rough meshing (Bi4—2), a noticeable error

was detected for the planar components. However, for the thicker sample (Cylinder 2), all

different meshings could reproduce remarkably the prescribed components as shown in

Figure 3.18. From this test, I realized that the real Bi cylinder was too thin to have enough

information of current path along the perpendicular direction. Most current flows were

formed in the horizontal direction. There was no significant current flow into the

perpendicular direction, that is required to determine the conductivity component

corresponding to the direction. So, I suggest that the sample should be a cube-like shape

and the leads should be arranged to detect current paths in all principal directions;

otherwise the method may fail to determine all components of an anisotropic tensor.

3.6 Conclusion

In this chapter, I introduced a technique to determine the anisotropic conductivity

tensor in complex geometry, which has been generalized from the method for the

determination of isotropic conductivity. This method has been tested on computer models

in 2d and 3d with arbitrary shape and real material (Bi). Six probes were required to
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identify the six unknown parameters in a symmetric conductivity tensor. The iterative

linearization technique has been adapted to deal with the problem where the resistance in

terms of the tensor components were unknown. This method has worked remarkably in

the determination of the prescribed conductivity tensor for the computer model. However,

for the real sample (Bi cylinder), the technique did not work properly. Some significant

errors, especially for the perpendicular component were observed in the resulting

conductivity tensors. After some stability tests performed by various computer models, it

was realized that the resulting errors were inevitable for such a thin sample. For a test on

a computer model that was more cubic, the method turned out to determine the

conductivity much better. This technique has been demonstrated for the conductivity

measurement, however it can be applied more generally to evaluate other properties. I

believe that this algorithm could be used to determine any material property in a complex

geometry.
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Chapter 4 EFFECTIVE CONDUCTIVITY OF A

MEDIUM WITH CIRCULAR INCLUSIONS

4.1 Introduction

In the previous two chapters, I described how to determine a material property

(conductivity) using experimental measurement and theoretical calculation. The samples If“

were actually single materials with isotropic or anisotropic conductivities. Only one

material (diamond or Bi) was considered in the conductivity determination. The

numerical techniques using FEM analysis were introduced and demonstrated to determine  
the unknown conductivity of samples with a complex geometry. However, in this chapter,

my concern is with the (effective) material properties of a composite material. The study

of material properties of composite materials has been the focus of much research in

condensed matter physics, material science, mechanical engineering, and so on. Due to

the interests in diverse fields, the study of the effective medium theory on a composite

material has been conducted in various ways. Meanwhile, some efforts have been devoted

to the investigation of the universal relation between various material properties (electric

conductivity, heat conductivity, magnetic permeability, viscosity, even elastic constants)

of the materials. Analytic approaches have been successful in some simple geometries.

However, these approaches are usually limited when some complex structures are

concerned. Therefore, the numerical analysis should be adapted to study the effective

medium theory in more complex geometries. The numerical simulation using FEM could

be introduced for this purpose. To check the performance of this method for composite
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materials, it should be tested on a composite in simple geometry where analytic solutions

can be obtained.

In next section, I give a brief background of our study on composite materials.

That part describes how the research has been done historically. The motivation of this

work is also mentioned. In Section 4.3, the sample geometry is defined such as a

composite that includes two hyperspherical inclusions. Two resistances from 4-point and

2-point measurements are defined for the geometry. The analytic solutions and

asymptotic forms of the resistances are described, too. The computer simulations using

FEM method are introduced and performed to calculate the resistances numerically in

Section 4.4. The numerical results are presented and compared with the analytic solutions

in Section 4.5.1(2d) and 4.5.2(3d). Furthermore, the relations between the 4-point and 2-

point measurement in the geometry are obtained and discussed in Section 4.5.3. I will

close this chapter by presenting the conclusion and suggestions in Section 4.6

4.2 A brief history of the study on a composite material

The study of the properties of random mixtures containing a low fraction of

inclusions has been of much interest since Maxwell’s study of a system of spherical

inclusions.38 The dielectric constant of a composite is given by the low volume fraction

expansion as

e=£0(l+[£]c+0(c2)+...) , (4.1)

where c is the volume fraction of the inclusions. Here [8] is the first order coefficient, as

109

 



I

80 *

$

Figure 4.1 A composite material consists of two different dielectric constant regions

(80 , 8,.) in dilute limit.

given by Maxwell, is for a d—dimensional sphere

 

s, + (d —1)so
[81:41:54 ] (4.2)

where [3 , the expansion in brackets, is proportional to the polarisability associated with

an isolated spherical inclusion with dielectric constant 8,. in the host medium with

dielectric constant 80. The 0(c) coefficient for the viscosity of a suspension containing a

system of hard spheres has been also found by Einstein,” 40 although these two do not

have universal relations.

Recently, Thorpe obtained the exact results for the 0(c) coefficient of electrical

conductivity for inclusions of other shapes in 2d using conformal mapping.4|

Hetherington et a].42 calculated the conductivity of a sheet containing n-sided polygons

with sharp comers by solving the integral equations numerically. The results were

compared with analytical solutions in the limits when the inclusion is either a hole or a

superconductor. Jeffrey used the Batchelor-Green multipole expansion formalism to
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determine the second order expansion 0(c2 ) in the problem of dielectric inclusions.43

Binns and Lawrenson44 and more recently Djordjevic et al.45 also studied this problem

with the image charge method in 2d, which provided better convergence than the

multipole expansion method. Choy et al. showed in a recent paper that the troublesome

divergent dipole integral term could be removed and the result agreed completely with the

result of Jeffrey and Djordjevic.46

This study of random mixtures has been done also for the mechanical properties

of composite materials that consist of a host and many inclusions. These studies provided

effective mechanical properties as the function of the rigidity of inclusions, the

distribution pattems,“ and the shapes of inclusion. The elastic moduli of a matrix

containing circular holes with three different distributions of honeycomb, triangular, and

random was studied for the percolation theory of Young’s modulus of the composite.48 It

turned out that the relative Young’s modulus El E0 of a two-dimensional sheer

containing circular holes, overlapping or not, is the same for all materials, independent of

the Poisson ratio, for any prescribed geometry as a consequence of the CLM theorem.49

Davis et a1. studied the elastic moduli of composite materials consisting of an isotropic,

elastic matrix with perfectly rigid circular inclusions near random close packing (see

Figure 4.2).50 This study has been done for the practical reason that the stiffness of rigid

fiber inclusions could be enhanced remarkably by arranging them inside a host material.5 1

A theory of the bulk modulus was developed by assuming that the elastic energy of the

neck regions was minimized subject to the constraint that average local strain was equal

to the macroscopic strain. The local strain was approximated by a simple function that

depended on the gap distance but not on the surrounding environment, in a concentrated

lll
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Figure 4.2 Elastic energy distribution in a composite material with many circular

inclusions under hydrostatic pressure. The contour map was given by the

elasticity analysis using ABAQUS. Elastic energy turned out to be distributed

mostly near the necks between two circles.
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random array of rigid inclusions in an elastic matrix under hydrostatic deformation in 2d.

In that study, a solution of an electric conduction problem for the geometry was applied to

solve the elastic problem according to its universal formalism.

However, most analytic solutions of composite materials could be obtained only

for simple geometry. For more complicated structures, we should do numerical analysis

using computer simulation. The finite element method (FEM) would be one of the most

efficient techniques to perform this structural analysis. This technique has been

introduced to determine the isotropic and anisotropic conductivity of single materials in

the previous chapters. However, it can be applied also to a composite material. To test

this method on composite materials, the numerical simulation should be done for a simple

composite where some analytic solutions are available.

4.3 Theory

In this section, I provide the analytic solution of the dielectric problem of a

composite that has two hyperspherical inclusions. Two resistances in the geometry are

defined according to the configurations of voltage and current measurement. The first

configuration is that a voltage is applied on the infinite boundaries of the host. Since the

host is very large compared to the size of the inclusions, the applied voltage forms

constant electric field near the inclusions. A resistance defined for this configuration is

called 4-point resistance since there is no common lead for the voltage and current

measurements. The second configuration is that the voltage is applied on the centers of

two inclusions. A resistance from this configuration is called Z-point resistance. The

detailed definitions of these resistances will be given in Section 4.3.1 and Section 4.3.2.
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In both cases, the resistances (or effective conductivities) can be calculated as a function

of the distance between the inclusions. In 2d, exact solutions can be obtained by image

charge method 52 and multipole charge method45 when the inclusions are perfect

conductors. In 3d, an empirical approximation and asymptotic solutions are given for the

similar composite structure. An interesting feature is given by the comparison of these

two resistances. The ratio of the two resistances approaches a constant in the close neck

limit.

 

4.3.1 4-point resistance (R4)

Consider two circles with radius a in the infinite plane as shown in Figure 4.3.

They are separated by L and the neck distance is w. The plane is a normal conductor that

has a conductivity 0'0 and the circular inclusions are perfect conductors (0' >> 0'0 ). Two

inclusions are located in a constant electric field Eo formed by a voltage applied on the

boundaries of the host. The voltage between the inclusions is calculated for this geometry.

The initial voltage before the formation of the inclusions is given by EOL. However, if

two circular conductors are implanted in this host, they deform the current paths in the

region near the inclusions. Then, a voltage change AV from the initial value is induced

between the two centers of the inclusions.

4.3.1.1 Exact solutions in 2d

Djordjevic et a1. solved this problem for perfect conductor inclusions in 2d using

the multiple image charge method.45 The solution is given in closed form by
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E0
a

Figure 4.3 4-point resistance measurement of two circular inclusions. The voltage

between two inclusions is calculated in terms of the geometrical parameters

when a constant electric field is applied.

 

 

AV = on/LZ --4a2 = EM/(w+2a)2 —4a2 = E0 w(w+4a) , (4.3)

where L = w+ 2a is the distance between two centers, a is the radius of the circular

inclusions. The asymptotic forms of this solution can be checked simply. AV approaches

EOL as L goes to infinity. No voltage difference is measured (AV = 0) when two

inclusions touch (L = 2a).

Besides this induced voltage AV , we should have a current to define a resistance

for this configuration. Thus, a normalized current I0 has been defined by total current

flow into the cross section of the inclusions in the direction of E0 (see Figure 4.4). The

current density J0 in the host is given by (JOE, from Ohm’s law. The cross section of the

inclusion is given by 2a in 2d. Therefore, the normalized current I0 is given by 2a0'0E0.

Thus, from the given AV and the new current 10, a resistance R4 can be defined by

R. =— . (4.4)
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Figure 4.4 Normalized current I0 is defined by the total current flowing through the

cross section of the inclusions.

This resistance is called a 4-point resistance because it is equivalent to a resistance

measured from the 4-point measurement. The 4-point resistance R4 can be given using

the closed form of AV in Eq. (4.3) and the normalized current 10.

4 10 2116050 -200 Z a

R _AV_E0‘/W(w+4a) _ l w(w+4] (45)

The asymptotic forms in two limits are given by

R4z-l- K , w/a<<1 (4.6)

0'0 lie

1 w

R4 =—(—+2] , w/a>>1. (4.7)

200 (1

4.3.1.2 Empirical approximation and asymptotic solutions in 3d

Before discussing the 3d composite, let us consider the 1d composite that has two

perfect linear conductors as in Figure 4.5. The current density between the inclusions are
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Figure 4.5 One dimensional composite material with two perfect conductor inclusions.

identical for the two resistance measurements (R4 , R2 ). Since the voltage AV between the

inclusions is simply given by Eow in the constant electric field, the 4-point resistance R4

can be represented by

R, =33: EOW =31 . (4.8)

IO OOEO o.0

 

Let us move to the 3d composite structure. In 3d, the inclusions are spheres.

Thorpe suggested an empirical approximation of the voltage AV between the inclusions.53

l

d 274

AV = EOL[l—(ZL£) ] , (4.9)

where d is the dimension. This formula reproduces correctly the exact solutions in 1d and

2d.

AV=EO[L—2a]=Eow , d=l (4.10)

AV=EO\/L2--4a2 , d=2 (4.11)

In 3d (d = 3), the approximation gives

AV = EOL"“(L3 —8a3)”“ . (4.12)
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In addition, the normalized current I0 defined in Section 4.3.1 is given by Irazcr'oE0 in 3d

because the cross section of the spheres is 71212 . Then, the 4-point resistance R4 in 3d is

obtained by

1/4 3_ 31/4 “4 3 1/4

R4=AV=E°L (f 8“) z 1 3+2 1+2 —8 . (4.13)
10 no COED trooa a a

  

Meanwhile, the asymptotic solution of the same composite in 3d was given in the

close neck limit (w/ a <<1).46 That was done by Choy et a1. using the multipole image

method. Following this method, the voltage AV in that limit is obtained as a logarithmic

function.

2 -1

AV 4 ” “E0 , w/a «1 (4.14) 

  

a

ln{—)+ const

w

A constant term exists in the formula as the next leading term. Then, the 4-point

resistance is represented by

—1

AV 7‘ , w/a<<l. (4.15)R = z

4 I0 300a

 

  

a

1n — + const

w

Comparing with this logarithmic form in the limit, the approximation in Eq. (4.6) turns

out incorrect; because the asymptotic form of the empirical formula is given by

R  
_fl .. 1502a(3w/a)“‘ _ 2.632 [3

1/4

2 , w/a<<1. (4.16)

IO M 00E0 com a

4.3.2 2-point resistance (R2)

The second configuration for the resistance calculation is much simpler than the

4-point resistance. As presented in Figure 4.6, a voltage difference V0 is applied across
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Figure 4.6 2-point resistance measurement of two circular inclusions. A resistance is

obtained when the current flows between these two inclusions. I:

 
the centers of two inclusions, and then current flows between the inclusions. Most current

.
.
.
-
L

fiows through the neck when the inclusions are close. From this current flow, a resistance

is simply given by

V0
R2=T, (4.17)

where V0 is the applied voltage and I is total current between the inclusions. This

resistance R2 is called 2-point resistance because it is equal to the normal resistance

measurement.

4.3.2.1 Exact solutions in 2d

Exact solutions of this resistance for this geometry has been derived by the image

charge method. Details of this method can be found in the reference.52 Suppose 8 is the

electric permeability of the host. Then, the capacitance C between two circular conductors

in 2d is given by
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2 —1 2 -1

C = 27:.e[cosh‘"[2l‘7 4]] = 271:13|:cosh"[2W—a2 +303“H , (4.18)

where L = w + 2a . The resistance R between two circles can be represented as the

function of the geometry parameters (w, a) by

 

2

19:11: 1 cosh"' W—2+—21+1 . (4.19)
C 0'0 271'0'0 2a a

The asymptotic forms of this resistance can be given by

 

 

 

1

R2 == 1/3 +... , w/a «1, (4.20)
7:00 a

R2 = 1 ln[3)+... , w/a >>1. (4.21) ...—

rroo a

One of these asymptotic formulas (Eq. (4.20)) can be obtained more simply using the

approximation that all currents flow through the neck. It is presented in Appendix A.3.

4.3.2.2 Exact solutions in 1d and 3d

In 1d, the 2-point resistance (R2) is simply given by

R2 = —, (4.22)

where w is the neck distance. This resistance (R2) is equal to the 4-point resistance (R4)

in Eq. (4.8).

In 3d, this 2-point resistance can be obtained by the image charge method.52

-1

1 e °° 1

R =———= 27rd sinh -————— , 4.232 C00 00 (misinhmfi) ( )

n=l
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where cosh(,B) 2 2i +1 . The capacitance C between two perfect spherical conductors is

a

 

1 l

C: 2 h

Rea sin ””2:l[slinh( 2n - l)[3 +sinh( Znfi {I

(4.24)

1 l
_2 h

=2 1

7128618111 (H)I;—=lsinh(nl3) ”8% + sinh(2[3) + sinh(3fi) +

 

Meanwhile, the exact asymptotic expansion in the limit has been done by Choy.46 It is

obtained by

 

—1

R2 = 1 [ln[£]+ const] , w/a <<1. (4.25)

4.3.3 The ratio of R4 and R2

The ratio of the 4-point resistance and 2-point resistance can be given by the exact

form in 2d and asymptotic form in 3d. In 1d, two resistances turned out identical from Eq.

(4.8) and Eq. (4.22). So, the ratio in 1d is 1.

In 2d, two resistances were given by the exact forms. It should be noted that the

two resistances (see Eq. (4.6) and Eq. (4.20)) have the identical forms of square root in

the limit of w/ a <<l . The only difference is the pre-factor that is a constant 71'. So, the

ratio is obtained by

R4
=71? , w/a<<1. (4.26)

R2

In 3d, due to the infinite sums in Eq. (4.20), the asymptotic behavior cannot be

determined in the close neck limit (w/ a << 1) in this analytic solution. However, if we
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consider only the leading terms of logarithmic form in Eq. (4.15) and Eq. (4.22), the ratio

of the resistances (R4 and R,) can be given by

R4

7:2

—z —— z 3.29 . (4.27)
R, 3

4.4 Computer Simulation

4.4.1 FEM analysis for 2d composite

To calculate the resistances defined in the previous section for a composite,

numerical simulations were performed using the FEM. Modeling to obtain the meshed

geometry was done by ANSYS, and the FEM analysis of electrical conduction problem

was performed by ABAQUS. Details about these procedures can be found in Chapter 2.

In this problem, the geometry itself is not complicated like the diamond crystal. It consists

of a large square host and two circular inclusions. Therefore, the modeling was somewhat

a simple procedure. However, I had some troubles in the meshing while computer models .

were generated over a wide range of the neck distances. In the close neck limit, the finite

elements near the neck region should have been extremely small. Usually, the meshing in

this limit has been restricted due to the limitation of the computer memory. To generate a

constant electric field, two large pads were attached to the boundaries of the host and

these pads were modeled to be perfect conductors in the analysis.

I made a large square host material (L4 =1.0 , L)‘ 21.0) that included two circular

perfect conductors (a = 0.05 ). In addition, two large pads (P) were attached on the
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Figure 4.7 The geometry of 2d composite material with circular inclusions. Huge plates

were attached to the host to form a constant electric field in 4-point resistance

measurement. Those plates were removed for 2-point resistance

measurement.

  
(a) (b)

Figure 4.8 Contour graphs of voltage distribution near the neck in 2d. (a) is given from

4—point measurement and (b) is given from 2-point measurement.
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boundaries to form a constant field inside the host for the 4-point resistance calculation.

However, these pads were not used for 2-point resistance calculations. The geometry was

meshed by more than 2500 square elements that have four nodes on the comers.

Normally, there were more than 2500 nodes in the meshed models. Many computer

models over a wide range of the neck distances were generated. In the analysis of the 4-

point resistances, unit conductivity was given to the host material and high conductivity

(106) was given to the inclusions and pads. The resistance was calculated as a function of

neck distance. Two figures in Figure 4.8 represent the voltage distributions inside the

sample. Figure 4.8(a) denotes for a 4-point resistance calculation when a voltage is

 
applied on the host boundary and Figure 4.8(b) shows a 2-point resistance when the

voltage is applied on the centers of the inclusions. In the 2-point resistance calculation, it

should be noted that the current distribution is concentrated near the neck region.

4.4.2 FEM analysis for 3d composite

A numerical simulation using FEM has been done for 3d composite. A large brick

was constructed as the host material (L, =1.0, Ly = L2 = 0.6) and two spheres

(a = 0.05) were used for two spherical inclusions (see Figure 4.9). After meshing this

geometry using tetrahedral elements, the FEM analysis was performed over a wide range

of the neck distances. Figure 4.10(a) and (b) show the generated meshes and the

equipotential distributions for two resistance calculations (R4 and R2 ).

The computer models were meshed by tetrahedral elements that had four nodes

and four facets. Normally, much finer meshings (~1500 nodes, ~7000 elements) than the

124



 

Figure 4.9 Three-dimensional composite material with two spherical inclusions. Similar

large bricks were attached to the host for 4-point measurement.

  

Figure 4.10 Contour graph of voltage distribution near the neck in 3d. (a) is given from

4-point measurement and (b) is given from 2-point measurement.



 

Figure 4.11 The meshed structure of the spherical inclusions. For a rough meshing, as

these spheres approach together, the shape of the neck is getting less

realistic because of the sharp ends of the spheres.

meshing in the figure were used in the real analysis. However, the generation of realistic

shapes of the sphere was seriously limited by the computer memory problem. The

spherical inclusions were modeled as polygons as shown in Figure 4.11. These rough

meshings could generate significant numerical errors in the simulation, especially in the

close neck limit (w/ a << 1).

4.5 Analysis

4.5.1 2d composite

From the calculations using FEM code (ABAQUS), 4-point and 2-point

resistances were examined over a wide range of the neck distances (0.01 < w/ a < 10.0 ). I

plotted these calculations and compared them with the analytic solutions as in Figure

4.12. Cross (+) in the graph represents the 4-point resistance calculation obtained from

FEM analysis and the solid line indicates the exact solution given by Djodjevic et a1. as

shown in Eq. (4.5). Square (:1) denotes the FEM result of 2—point resistance and the solid

line means the analytical solution obtained by the image charge method. The results
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Figure 4.12 Numerical solutions of the 4-point and 2-point resistances were obtained for

2d composite using FEM analysis. They agree well in all regions with the

analytical solutions. (b) shows the detail in the close neck limit.
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from the simulation show good agreement with the analytical solutions. However, the

simulated 2-point resistances in the far field limit were observed to be slightly higher than

the analytical solutions. That is the finite size effect of the host, i.e. the inclusions were

getting close to the boundaries of the host as the neck distances increase. In Figure

4. 12(b), more details in the close neck limit were shown to verify the asymptotic

behaviors. Even using the rough meshes, the numerical calculation could reproduce the

square root law in 4—point and logarithmic law in 2-point resistances in that limit.

4.5.2 3d composite

Figure 4.13 presents the numerical result and analytical solutions in 3d. The cross

represents the 4-point resistance (R,) from the simulation and the solid line denotes the

empirical formula that is suggested by Thorpe. Choy’s solution in the close neck region is

shown by the dashed line. This asymptotic line is drawn by selecting a constant for the

best fit with the numerical result in the region. The empirical formula agrees well with the

numerical results in most part in the figure. However, serious disagreements were

detected in the close neck limit as shown in Figure 4.l3(b). In the limit, the numerical

simulation, the empirical formula, and the Choy’s asymptotic solution do not agree very

well. The numerical error should be from the rough meshing in that region.

The square mark shows the simulated 2-point resistance (R2) and the solid line is

the analytic solution given by the infinite series sum. The dashed line denotes the another

asymptotic formula in the other limit (w/ a <<1) given by Choy. The simulated results

were obtained slightly lower than the analytic solution. The rough meshing raised errors

again for the 2-point resistances in the close neck limit. Substantial discrepancy between
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Figure 4.13 Numerical solutions of the 4—point and 2-point resistances were obtained

for 3d composite using FEM analysis. They agree nicely in most regions

with the analytical solutions, but show some disagreements in an

asymptotic regime (close limit). (b) shows the detail in that limit.

129

 

 



the numerical result and the exact solution has been detected in that limit

4.5.3 The ratio of 4-point and 2-point resistances

The ratio of two resistances (4-point and 2-point) has been one of the major

concerns in this study. The analytic prediction and the numerical result are presented in

Figure 4.14. The ratio can be determined analytically in 2d since all exact forms of the

resistances are obtained. As expected from the analytical solutions, that ratio approaches E,

It in the close neck limit (w/ a << 1 ). The numerical simulation is observed to approach

this constant in that limit. The prediction of this ratio in 3d was given by 7:2 l 3 from the

 
asymptotic forms done by Choy. However, from the numerical simulation, the ratio turns

out to approach ~8.0. A large error occurred here mainly because the numerical error

caused by the rough meshings. However, the analytic prediction also has error because

the constant terms as the second leading terms in the formula have been neglected in the

derivation of this ratio. It should be tested more carefully with better meshings. This study

could be a subject for the future research.

4.6 Conclusion

In this chapter, I have described two main subjects. One was the demonstration of

the numerical analysis using the FEM for the study of composite materials and the other

was the investigation of the ratio of two resistance calculations (4—point and 2-point).

Both studies were done for a simple composite model that was composed of a large host

and two spherical inclusions of perfect conductors. Two resistance measurements (4-
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Figure 4.14 The ratio between 4-point resistance and 2-point resistance in 2d and 3d.

Each ratio was observed to approach a constant in the close neck limit

(w/a <<1). The limiting value is given by trin 2d and 71:2 /3 in 3d.
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point, 2-point) were defined in the geometry depending on whether the voltage is applied

to the boundary of the host or the inclusions. For the first subject, I presented the

simulated results of these two resistances using the FEM analysis and they were

compared with the analytic solutions. Since the numerical results were observed to be

consistent with the analytic predictions, the FEM could be suggested as a primary step to

investigate the effective medium theory of complex composite materials. For the second

subject, I compared two resistances over a wide range of the neck distances. A simple

relation between these two quantities was found analytically in 2d and numerically in 3d

in the close neck limit ( w/ a << 1). However, the numerical result should be tested with

better meshings. I suggest that this simple relation may provide an useful approach to the

study of composite material properties.
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A.1 Reciprocity theorem

This electric reciprocity theorem has been stated in many works since the earliest

work was done by Lord Rayleigh in last century.54 Since then, many publications related

to this topic came out because of theoretical and practical interests.55‘56’S7 This relation is

quite general; it works for all materials with any shapes in any dimensions. It does not

depend on whether the sample is homogeneous, isotropic or not. The sample can be a

composite material that has various shapes of inclusions of different conductivity, even

some holes in it. The only condition of this theorem is that the sample should be Ohmic.

First, this theorem was concerned with electric field. However, since the role of magnetic

field in a conductivity tensor was understood by the Onsager relation,” 59 this reciprocity

theorem has been concerned with the interference term in the conductivity tensor by

magnetic field, too. This leads to the reverse-magnetic-field reciprocity (RMFR) under

the assumption of the linearity of a sample.2| These reciprocity relations have important

implications for electronic-transport properties in electric current and magnetic field (Hall

effect, magnetoresistance).

In this appendix, I simply derive this theorem for zero magnetic field under the

assumption that a bulk conductor can be represented by an equivalent resistor circuit.

Suppose a sample in arbitrary shape is electrically equivalent to a circuit of resistors as in

Figure A. 1. All of the resistors are fully connected to each other. In this proof, the sample

and the resistors in the circuit are assumed electrically Ohmic, which means that it does

not show any diode behavior. This is the only requirement of the theorem. Thus, this
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Figure A.1 A sample with four probes and its equivalent circuit. The electric circuit is

composed of many resistors that are fully connected.

theorem does not work for non-Ohmic sample. The laws of Kirchhoff in an electrical

 

circuit can be used to prove it.

Suppose we have a sample with n leads on it for the conduction, then there are r

(="C2 ) resistors in the circuit. First, we need to know the number of independent current

loops in this circuit to find out how many linear equations we need. The maximum

number of currents is r, which is same with the number of resistors. And there are n —1

constraints of currents by current conservation on each lead, known as the first law of

Kirchhoff. Although there are n vertices for constraints, the two constraints on vertices

that the external current flows in and out are really a single constraint. Then we have d

independent current loops for n leads as

d=r—(n—l)=r—n+l, (A.1)

where r (="C,) is a number of resistors and n is a number of vertices. Because there are r

unknown currents, i], i,, , i, on each resistor, we have n —1 constraints for currents at  
each vertex by Kirchhoff’ s first law of current conservation. Although there are n vertices
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for constraints, the two constraints on vertices that the external current flows in and out

are really a single constraint. Since r is equal to n(n — l)/2 , the number of independent

loops in the circuit is given by

___ n(n—1)_(n_1)=(n—1)(n—2)

2 2

d (A-Z)
 

which is one for 3 leads, three for 4 leads, six for 5 leads and so on. We also have one

more loop by the external current i0 as well as d loops in the sample. We need to set up

(1 +1 current 100ps for Kirchhoff laws which give (1 +1 current equations. There is one

condition in setting up these loops that each resistor should be included in at least one

current loop. To prove the reciprocity theorem, a resistor RM is selected for external

current flow and Rm” for voltage measurement. A voltage V is applied across RM and the

current io flows in. Suppose Rm is shared by m current loops( i1+1 , .. , i1+». ) and RM is

shared by p current loops (i,+l , , i,er ) and the external current i0. Now we have d +1

linear equations from Kirchoff laws

    

/ Rm 0 . 0 0 . _qu —qu . 0 V 10 1 (v)

0 ML] . . . . . . . . 1, 0

O . . Mj+Lj+l . . . . . . ij+1 0 (A 3)

O . . . Mj+ij+m . Mj+m’k+l . o . ij+m = O 0

- qu - - - Mk+l,j+m - Mk+l,k+l - 4 4 i4+1 0

-qu . . . . . . Mk+pJ¢+P . . ik+p 0

L 0 . . . . . . . . Md,d A id 1 \0/ 
where M00 is R andpterms( M0,k+l’ .. , M0.k+p) in 0-th column are —Rm. In Eq.

I"!

(A.3), M1. j is a matrix element that represents a sum of resistors where the current ij
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flows in the i-th loop. It is equal to M 1.1 because those two terms represent the same

resistors that are shared by the i-th andj-th current loops. A solution for ij from Eq. (A.3)

is given by

 

(A.4)

where A denotes the determinant of the matrix and A1. j is a cofactor of M1. j. . Since the

net current flow 2 i

0:1

in Rm" is given by the sum of all currents of loops pass through it,
j+a

a resistance defined by a voltage across m, n and a current through p, q is given by

m m

Rmn Zij-l-a Rmn 2A0,j+a

an _ =1 =1

i0 V A0.0 A0,0

A

Rm"-pq _ , (A.5) 

In this equation, AOIM is equal to _ quiAw’k+b).(0.I”) because there are p terms of

b=l

— Rm in the 0-th column and the other terms are zero except 0-th element RW irrelevant

in calculating A0.1+4 . [Amman is the determinant of the matrix without the 0-th and k-th

rows and the 0-th and j-th columns] From this relation, we have

m

Rmanq 2iA(O.k+b),(0,j+a)

Rmn ___ _ a=lb=l , (A.6)
Pq A0,0

 

By switching the leads p, q and m, n [which is equivalent to exchanging k +b , j+ a in

this notation], we have another resistance Rf: defined by a voltage V applied across Rm
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instead of R124 and a voltage measured across RM . Since A(0.k+b).(0. 1+4) 18 equal to

A“,1.,“ 110.1412) due to the symmetry of the matrix, we have a symmetric relation by

m

quRmn2 i A(0,j+a),(0,k+b)

R53, = - “=‘b=‘ = Rm” (A.7)
ADJ) Pq

 

This reciprocity theorem says that the resistance from a voltage across p, q and

current through m, n is equal to another resistance from voltage across m, n and current

through p, q in an equivalent resistor electrical circuit, and therefore in the sample.

A.2 Counting of Independent 4-terminal terms

In this part, I describe how to count the number of 4-terminal independent terms

in a resistance table. I have shown that there are "C, ( = n(n — 1)/ 2) independent terms in

a resistance table for an n-probe measurement in Section 2.2.2. Four probes are enough to

determine the isotropic conductivity because the four probes generate two independent 4-

terminal terms. However, the unknown parameters are increased in an anisotropic

conductivity tensor. Thus, we need more independent terms in a resistance table. To have

more independent terms in a table, we need to have more probes on the sample. How

many probes are needed for an anisotropic conductivity tensor? In Table A. l , the first

column shows the number of terminals and the second column is the number of

unknowns when the contacts are Ohmic. The third column is the number of independent

terms in a resistance table as proved in Section 2.2.2. The fourth column is the number of

contact resistances that is equal to the number of leads.
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Table A.1 A table represents the number of independent 4-terminal terms in a resistance

matrix for n-probe measurement.

 

 

 

 

 

 

 

 

 

  

Number of Unknowns Independent Contact Independent 4-

Terrninal ( P1,- , contact Elements resistances terminal terms

resistances) (A) (B) ( A - B )

2 8 1 2 0

3 9 3 0

4 10 6 4 2

5 l 1 10 5 5

6 12 15 6 9

7 13 21 7 14

8 14 28 8 20

n 6+n "C, (=n(n_1)/2) n n(n—3)/2    
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The number of independent 4-terminal terms in the last column can be given by

following argument. There are A independent terms in a resistance table. Meanwhile, the

contact resistances are independent of the sample resistances. They are independent each

other, too. So, if we subtract the contact resistances (B) from the whole independent terms

(A), the rest (A-B) should be independent of the contact resistances. Therefore, we have

A-B independent 4-terminal terms. Following this argument, we need 6 probes on a II

sample to determine 6 components in an anisotropic tensor, because six probes generate 9

independent 4-terminal terms.

 

A.3 Resistances of Two Perfect Hyperspherical

Conductors

Consider two hyperspheres in the plane with radius a and separated by L so that

the neck distance is w (see Figure A.2). Ifx is the distance up the vertical line from the

center, then we have

x: (a+-’3)sin0 = (1+l)asin0 = (1+1)asin0 , x =l. (A8)
2 2a 2a

The two spheres have a resistance between them that is mainly given by the neck region.

If we strip the neck into long this differential sections and add up the resistances in

parallel, we find the total resistance R as [where w = L - 2a].

 

=00Lxmax Yd-l'xd—de
(A.9)

w+ 2a(1— c086)

where 7d factor for the area in d dimensions, that might be 2 in 1d and 271’ in 2d and 471'
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Figure A.2 Two circular perfect conductors in a host material in the close neck limit.

_d_

in 3d etc. More generally “yd = 27: 2 /I"(-‘-§-). If we look at small 6, we may write

9 z x/ a , so that the integral becomes

d-2

xmax Yd-lx dx-1
R =0

00

 

2 (A.10)

w+ x lo

if we make a change of variable to y, where x = Jawy , the integral can be rewritten as

which can be evaluated to give

d__; d-2d

R 1=0'0ayd_1(ara) 2 y y 2 (A.11)

1+y

where We have replaced the upper limit in the integral with infinity for narrow necks.

This integral converges at the lower end if d >1 and at the upper end if d < 3 , so that in

general for 1 < d < 3, we have the result

and—3341)

3-d '
R“1 = 0'0 (A.12)

(war) 2

This gives a result in two dimensions as
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R"l =007Na/w (A.13)

Note that as d approaches one from above, R‘1 = 0', / a) as expected, and as d approaches

three form below, we have a divergence. If we use the closed form in 2d,

  

R—I=O'0J’xmax yldx :0 Jam,“ cosBdG (A.14)

0 w+2a(1-c089) 0 (l+x)—cosB

Then we have

9m...

(1 1 2 —1

20 +12) arctan ( +1) ° 1.311%

,1 _ 2

(1+1) 1 0 (A.15)

2(l+x) arctan (1+1)

200(1+x) —6max +

(/(l+x)2 —1 2C

In the limit 1 = w/ 2a <<1, we have the same result with Eq. (A. 13).

2 73 6m} ,_
R"1 z 00['9max +—arctan{———~tan = 0'07: 1 (A.16)

71'

727 72 T ““74 w

A more close examination of the integral when d=3, shows that if we use xmax = a for the

R"1=oo(1+x) —0+   

 

I  

 

upper limit, which seems reasonable, we can do the integral in Eq. (A9) in closed form,

to give

  

R—1_O. Jxmax szdx _750'0 xmax xdx
— 0 —

0 w+2a(l-cos6) a 0 (l+x)—cos0

=7“, (1+X)zajgmu cosGsin 9d9

0 0 (l+x)—cosO

(A. 17)

 

Let y = cos6 , then
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0 J1 (1+x)-y

=4000+x)2al—y—(1+x)1n{(1+x)-y}”I“:

=7t'0'0 (1+Z)Za[(ymax _1)+(l+x)ln{(1+X)x_ Ymax }]

== trooa[(ymax — 1) + 1n{1—_—y—m-9-’-‘-}]

Z

(A.18)

 

If we take ymax = 0 (0 :g)’ then

R" z naoa[1n{i}—1]= naoa|:ln{2—a} — 1] = nooa[ln{—a—} + 1n{2}— 1]

7‘ W W (A.19)

= moa[1n{3} — 0.3069]
W

And if ym = =0.7071 (9=%,xm=a), then
1

72

0.2929

x

 R" =—. trooa[- 0.2929+ ln{

= naoa[1n{3—} —O.8277]
W

The exact asymptotic expansion done by Choy gives

R‘1 z 00a7r[ln(£]— E] z 00afl|:ln[£]— 2.667] . (A.21)

a) 3 60

Thus we get the leading term right in both 2d and 3d, but the next term is wrong.

H = naoa[1n{i}+1n 2 + 1n 0.2929 42929]

W (A20)
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