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ABSTRACT

THE PRODUCT OF A
COMPOSITION OPERATOR
WITH THE
ADJOINT OF A COMPOSITION OPERATOR

By

John Howard Clifford

We obtain an upper estimate for the essential norm of Cj,C, on the Hardy space
H? as the upper bound of a quantity involving the product of the inducing maps’
Nevanlinna counting functions. In the special case of univalent inducing maps we
prove a complete function theoretic characterization of compactness in terms of the
angular derivatives of the inducing maps.

We obtain necessary and sufficient conditions, under varied hypothesis on the
inducing maps, for the operator C,Cy, to be compact on the Hardy space H 2 In the
special case where one inducing map is boundedly valent we calculate a lower estimate
for the essential norm as the upper bound of a quantity involving the product of the

inducing maps’ Nevanlinna counting functions.
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Introduction

Let U denote the open unit disc of the complex plane and let ¢ and ¥ be holomorphic

self maps of the disk. The equation
Cof =fop

defines a composition operator C,, on the space of holomorphic functions; ¢ is called
the inducing map or symbol of C,. It is a consequence of Littlewood’s subordination
principle [8] that C, is bounded on H?. This paper studies the compactness of the
operators formed by multiplying a composition operator C, with the adjoint Cj, of
another composition operator to form either C,Cj, or CjC,. Our goal is to give a
function theoretic characterization of the essential norms of C,Cy, and CyC), in terms
of the geometric properties of the inducing maps ¢ and . This line of investigation
has already been carried out for composition operators acting on the classical weighted
Hardy and Bergman spaces. Let ||T||c denote the essential norm of the operator T
on H? (i.e the distance in the operator norm from T to the compact operators).

Shapiro [16] gave the following expression for the essential norm of C, on H?,

: Ny(w)
Cyl|? = limsup —+, 1
1€l = imsup T 0

thus providing a complete function theoretic characterization of compact composition

operators in terms of the inducing map’s Nevanlinna counting function N,,.



We make progress toward answering in the affirmative the following two conjec-

tures:

Conjecture 1 Suppose ¢ and v are holomorphic self maps of the disc. Then

Ny (p(2)) Ny (¥(2))

IC:C 1> = limsup . (2)
v lel1- 108 i 10g iy
Conjecture 2 Suppose ¢ and v are holomorphic self maps of the disc. Then
IC,Col> = limsupM. 3)

w|—>1~ (log ﬁ)z

The study of compact composition operators on H? first appeared in
H. J. Schwartz’s [14] thesis in the late sixties. He proved a necessary condition for a

composition operator to be compact;
If C, is compact then |p*| < 1 a.e. on the unit circle.

In other words, C, is not compact whenever the set {|¢*| = 1} has positive measure.
We let ©* denote the nontangential limit (when it exists) of ¢. (By Fatou’s theorem
this limit exists at almost every point of QU). Schwartz also showed this necessary

condition is not sufficient by showing the composition operator induced by

is not compact, even though ¢ maps only a single point of the unit circle onto the
unit circle, (1) = 1. This work was carried on in [15] by Shapiro and Taylor who

extended Schwartz’s theorem as follows:

C, is not compact whenever ¢ has an angular derivative at some point

of the unit circle.



In {14], Schwartz also proved the following sufficient condition, which we will refer

to as the L!-condition, for a composition operator to be compact.
If (1 = |o*(e))) ™" € LY(8U) then C, is compact.

Shapiro and Taylor [15] refined this result by showing that the L'-condition charac-
terizes the Hilbert-Schmidt composition operators on H2. Moreover, they applied the
L'-condition to show that if the image of ¢ is contained inside a polygon then C,, is
Hilbert-Schmidt.

In [9] MacCluer and Shapiro studied the extent to which the angular derivative
characterizes the compactness of a composition operator. They obtained a sharper

result than we state (i.e. [9], Theorem 3.10) but for our purposes we highlight;

Suppose ¢ is finitely valent. Then C, is compact if and only if ¢ has no

angular derivative.

In [9] it is shown that on the weighted Bergman spaces the angular derivative does
tell the whole story, i.e. for any self map ¢ of the unit disc, C, is compact if and only
if ¢ has no angular derivative.

In 1987, Shapiro [16] solved the compactness problem by deriving the essential

norm formula,

|IC, |12 = lim sup —+= N (w)
lo
lwl—1- 108 [y |w|

Hence,

C, is compact if and only zf llrn 11\(’;;(10) =0
[w|

This paper is organized as follows. In the next chapter we consider the operators
C;C, and C,Cj, induced by linear fractional self maps of the disc. As motivation

for more general results we completely characterize the compactness of these linear



fractionaly induced operators in terms of the inducing maps. Chapter 3 consists of a
sketch of background material. In Chapter 4 we develop the function theory needed
to connect the compactness of the operators with the angular derivatives of ¢ and
¥. The next two chapters treat the operators C;C, and C,Cy, respectively. In the
first section of each these chapters we outline the main results about the operator in
question and develop the connection between the compactness of that operator and

the angular derivative of ¢ and .



CHAPTER 1

Linear Fractional Maps

A composition operator C, induced by a linear fractional map ¢ is compact if and
only if ¢(U) C U. Equivalently, C, is not compact if and only if ¢ maps a point of
the unit circle onto the unit circle. This result can be deduced from the more general

theorem ([18], page 57):

Suppose ¢ is univalent self map of the disc. Then C, is compact if and

only if ¢ does not have an angular derivative.

In this section we prove analogous results for the linear-fractionally induced op-
erators Cy,C,, and C,Cj,.

The proofs will require both an explicit computation of the adjoint of a composi-
tion operator induced by a linear fractional self map of the disc, and some properties
of Toeplitz operators.

For g in L*(8U), the Toeplitz operator T, is the operator on H? given by
T,(f) = Pgf for f in H?, where P is the orthogonal projection of L? onto HZ.

(For more details on Toeplitz operators see [7] or [20]).

Cowen’s Adjoint Theorem([5], Theorem 2, page 153) Let ¢)(z2) = (az+b)/(cz +d)
be a linear fractional self map of U where ad—bc # 0. Then o(2) = (@z—¢)/(=bz+d)



maps U into itself, g(z) = (—=bz + d)~! and h(z) = cz + d are in H®, and

C;, = T,C,T;.

In [5] Theorem 2, Cowen requires that ad — bc = 1 but this is not necessary.

A comment about notation; throughout this chapter ¥ and o will be linear frac-

tional self maps of the disc defined by the relationship,

C; = T,C,T;.

A calculation shows that 1 and o have the following nice properties:

C; = T;C,pT‘g

where §(z) = (cz + d)~! and h(z) = —bz + d,

if for some n € U, ¢(n) =w € OU then o(w)=rn,

and conversely,

if for some w € U, o(w)=n€ U then Y(n) =w.

(1.1)

Since CyTy = Ty,,C, for any f € H* we obtain another expression for the adjoint

C, = C,T/Ty,

(1.4)



A further comment about notation, by applying Cowen’s Adjoint Theorem and

- (1.1) we will represent the operators C;, C;, C;, and Cy, as:
Cy =T,C,T,;, C;= T§C¢T‘,~E y Cp=TcCxTy, and Cg = TgC‘pT;}.
Throughout this chapter we shall reserve the letters v, o, g, h, g, l~z, v, G, H, C~v',

and H for this meaning.

Theorem 1.1 Suppose that ¢ and ¢ are linear fractional self maps of U. Then

C,C;, is not compact if and only if there exist points m; and 1, € OU such that
p(m) = ¥(m) € OU.

The key to the proof is the following lemma.

Lemma 1.2 Suppose that ¢ and ¢ are linear fractional self maps of U. Then C,C,,

is compact if and only if C,C, is compact.

Proof of Lemma: Suppose first that C,C, is compact. Since

C,C;, = C,T,C,T; (because Cy = T,C,Ty)

= T4ooCpCoT,  (because C T, = T4o,Cy)

we see that C,C}, is compact.

Conversely, suppose C,Cj, is compact. Since

C,C, = C,(C)"
= C,LC,T; (by (1.1) and C; =T;CyTy)

= T;,,CC.T; (because C,T; = T3, C,).

it follows that CyC, is compact.



Proof of Theorem 1.1: By Lemma 1.2 the operator C,Cy, is not compact if
and only if C,C,; = C,,, is not compact. Since o o ¢ is a linear fractional self map of
U, Cso, is not compact if and only if o o ¢ maps a point of the unit circle onto the
unit circle. So there exist points 7; and 7, € U such that o o ¢(n,) = 7,. Hence by

(1.3) there exists w € U such that ¢(n,) = w = ¥(n2), which completes the proof.

Theorem 1.3 Suppose that ¢ and 1y are linear fractional self maps of U. Then
C;Cy is not compact if and only if there erist points w, and wy, € OU such that

0 Hw) = v~ (ws) € 9U.

Proof: First we will reduce the compactness of Cy,C,, to that of the composition
operator C,C, = Cyoq, where Cy, = T,C,T. Suppose C,,C,, is compact.
First we will show that C;Cy; is compact. By (1.4), C3; can be written in the form

Cy = C,T;T; where F(2) = G o ¢(2). Thus
C,Cs = CyCTRT.

Thus C,,Cy; is compact.

Second we will show C,Cs, compact. We can apply Lemma 1.2 to conclude C;,Cys;
is compact if and only if C,C3; is compact; in more detail: C;Cy, = (CzCy)* is
compact if and only if (by Lemma 1.2) (CsC;)* = C,Cs. is compact.

Finally we show C,C, is compact by observing that
CGCSP = CU(C;)‘ = CO'THC)ET(‘; = THOUCUCETé'

Thus C,C,, is compact.
For the other direction suppose C,C, is compact, and note that by Lemma 1.2
C,C, is compact if and only if C,Cy; is compact. Now we will show that if C,C, and

C,Cy, are both compact, then CjC, is compact.



By Cowen’s Adjoint Theorem, C;, = T,C,T,; where h(z) = cz + d, thus

C;C, = T,C,T;C, = eT,C,T:Cy + dT,C,C,. (1.5)

By hypothesis C,C,, is compact so the second term in expression (1.5) is compact. In
order to conclude CjC,, is compact it suffices to show that the factor C,T;C,, of the

first term in expression (1.5) is compact. The key to this is the following calculation:

C,T:C, = C,T;(C)"
= C,T:TyCLT
= C,TeyCiTs

= C,T;CLT,

where b(z) = zH(z). By Cowen’s Adjoint Theorem we know that H(z) has the form

Az + B. Thus b(z) = zH(2) € H*®, which implies that T;Cy, = CsT}.5. Hence,

CoT,;Cyp = C,Cs Ty Tg.

By hypothesis C,C3, is compact, hence Cj,C, is compact as desired.

Since poo is a linear fractional map of U, C,,., is not compact if and only if there
exist points w; and w, on the unit circle such that ¢(o(w:)) = w,. Thus there exists
n € AU such that p(w;) = n and o(w2) = 7. By (1.3) ¥(n) = w,, which completes

the proof.

We will see that both of these linear fractional map results are prototypes for more
general theorems. Theorem 1.1 illustrates that the compactness of C,Cy, depends on
the behavior of the range of ¢ and . It illustrates the intuitive principle that if the

sets o(U), ¥(U), and AU are close then C,Cj, is not compact. Similarly, Theorem 1.3
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points to the fact that the compactness of CyC, depends on the behavior in the
domain of ¢ and .

We now consider three examples that illustrate some differences between the com-
pactness of the operators C;,C, and C,Cj,. In all three examples ¢ and 7 are linear
fractional self maps of the disc and the composition operators C, and C, are not
compact.

Example (1) C;C, is not compact but C,Cj is compact.

Consider the operators induced by,

1+2 -1-=z

plz) = —— and ¢(z) = —

The important points to notice are (1) = 1 and ¥ (1) = —1. Since (1) # (1),
C,C;, is not compact by Theorem 1.1. On the other hand, ¢~'(1) = ~!(-1), so
CyC, is compact by Theorem 1.3.

Example (2) C;C, is compact but C,Cj is not compact.

Consider the operators induced by,

1+2 1-2

ple) = —— and ¢(2) = ——,

where (1) = 1 and 9(—1) = 1. Since ¢(1) = ¥(-1), C,Cy, is not compact by Theo-
rem 1.1. On the other hand, ¢~'(1) # ¥~'(1), so C};C,, is compact by Theorem 1.3.

Example (3) Both C;C, and C,C; are compact.
Consider the operators induced by,

142-2 and 1/)(2)=_1+z

p(2) =



11

where (1) = 1 and ¢(—1) = —1. Since ¢(1) # ¥(-1), C,Cy is compact by Theo-
rem 1.1. On the other hand, ¢~'(1) # ¥~'(1), so C;,C, is compact by Theorem 1.3.

1.1 Comparison principle.

We will now use Theorem 1.1, the linear fractional theorem for C,Cy, to significantly
enlarge the set of operators C,Cy, that we know are not compact. This is done in the

lemma below, but the key idea is the following theorem.

Theorem 1.4 (Comparison Principle for the Compactness of C,C}.)
Suppose ¢ and ¢ are univalent holomorphic self maps of U, and o and 3 are holomor-
phic self maps of U such that a(U) C ¢(U) and B(U) C 9(U). If C,C;, is compact

then so is CoCy.

Proof: Because ¢ and 1 are univalent, and the range of ¢ and vy contains the

range of a and f respectively, we can form

n(z) = ¢ 'oa(z), and

n(z) = 7' o f(2)

both of which take U holomorphically into itself. Thus, a(z) = ¢ o 71(2) and f(z) =

1 o 72(2), and at the operator level,

CaCh = Coor, C,

Yotz

= C,,C,C;Cx,.

Hence C,C} is compact.

Corollary 1.5 Suppose ¢ and ) are univalent holomorphic self maps of U, and
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@(U) NY(U) contains a disc that is tangent to the unit circle. Then C,Cy is not

compact.

Proof: Let A be a disc that is contained in ¢(U) N¢(U) and is tangent to the
unit circle. Then there exists a linear fractional map a that maps U onto A. Thus
a(U) C ¢(U) Nny(U). Since C,C}, is not compact we conclude by the Comparison

Principle that C,C7 is not compact, which completes the proof.

Most theorems seem to come in pairs: one for the operator C,Cy, and one for
the operator Cy,C,, but we are unable to find a comparison principle for the operator

C3C,.



CHAPTER 2

Preliminaries

In this reference section we introduce our notation, and sketch the prerequisites for

the rest of the paper.

2.1 An equivalent inner product on H?2.

The Hardy space H? is the collection of functions that are holomorphic in the unit
disc U and whose Taylor coefficients in the expansion about the origin are square

summable. H? is a Hilbert space where the inner product is defined by:

<fig> = 3 Fmiw
n=0

with f(n) and §(n) denoting the n-th Taylor coefficient of f and g respectively. The

Littlewood- Paley identity for the H? inner product is

< f,9>=f(0 +/f 7@ log L da() (2.1)

with dA representing normalized Lebesgue area measure, A(U) = 1. A calculation

with the Taylor series of f and g proves that these inner products are the same.

13
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Moreover, when f = g we obtain the Littlewood-Paley identity for the H? norm

17 = 15@)F + [ 1F () g T dA(:). (2.2

2.2 Reproducing kernels and essential norm.

Let K,(z) be the reproducing kernel at the point a € U and let k, be K, divided by

its norm,

K.(2)  (1-[aP)"”?
IIK‘,II— l1-az ’

ka(z)= (ZGU).

Let ||| denote the essential norm of the operator T on H? (recall that this is the
distance in the operator norm from the compact operators). Since k, converges to
zero uniformly on compact subsets of U as |a| = 1~ and ||k,|| = 1 for all a € U, it

converges weakly to zero as |a| = 1. Thus, ||Ak,|| — O for every compact operator

A on H?, hence

ITlle = IIT + All

2 (T + A)kd||-

Hence,
IT|le > limsup || Tk,||.
la]—1

A result that follows immediately from the proof in [16] of Shapiro’s essential norm
formula is,

hmsup||C ko> = lim sup —&~ Ne(a) )
la|— lal=+1 108 igf |a|

Hence a composition operator’s action on the normalized reproducing kernels of H?
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completely determines the essential norm.

2.3 Nevanlinna counting function.

For a holomorphic self map ¢ of the open disc U, we define the Nevanlinna counting

function of ¢ by:

Now)= ¥ log,  weU\{p(0)

z€p~Y(w) |z|

where ¢~ !(w) denotes the set of p-preimages of w counting the multiplicity, and
Ny(w) = 0if w ¢ p(U). One of the main ingredients in the proof of the essential

norm formula of a composition operator is the the following property of N,:

Sub-mean-value property ([16], Theorem 4.6, page 390) If A is a disk in U not

containing ¢(0), with center a, then

1
No(a) < 17 [, No(w)dA(w)

where |A| is normalized area measure of A.

The sub-mean-value property is used in [16] to establish the lower estimate,

th(w)

C,||? > limsup —&—==~.
ICAE 2 limsup 72

The next proposition follows directly from the proof of the lower estimate in [16]

and is a consequence of the counting function’s sub-mean-value property. Set
2r2|al? 10g|';,1"|
1+ la]) (1 - lal)
point @ € U.

¢ (a) = ( and recall k, is the normalized reproducing kernel for the
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Proposition 1 For 0 < r < 1 there ezists § > 0 such that,

ICokall* > c,(a)for‘;(i) forall 1-40<|a|<1.
la

Note that lim c,(a) = r2.

laj—=1-

2.4 Change of variables formula.

The following non-univalent change of variable formula was first used in the study of

composition operators by Shapiro in [16].

Theorem([16], Theorem 4.3, page 389) If F is a positive measurable function on U

and ¢ is an holomorphic self map of U, then:

/U(Fw)lw’l?log—dA ) =2 [ Fw)N,(w)dA(w). (23)

The following calculation establishes the connection between composition opera-
tors and the Nevanlinna counting function. By applying the Littlewood-Paley

identity(2.2) for the H2 norm to C,f = f o ¢ we obtain,

£ o0l = [ 1700V (2) log 5dA() + 114 O)

= [ 1Fop@Ple )P 1og|—?dA( 2) + £ (9(0)?

= 2 /U |f'(w) PN, (w)dA(w) + | £ ((0))[?

where the last line follows from the change of variables formula (2.3), with g = | f'|2.

Hence,

If o ll? =2 [ 1f (@) Ny(w)dA(w) + £ (p(O)  f e H™ (2.4)
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2.5 Littlewood’s Inequality.

Littlewood [8] in 1925 established the boundedness of composition operators on the
Hardy Spaces. The key to the proof is a result called Littlewood’s inequality, proofs

and development of this result can be found in [8], [16], and [18].

Littlewood’s Inequality.([16], Theorem 2.2, page 380) If ¢ is a holomorphic self
map of the disc, then for each z € U\ {¢(0)},

1 —Zp(0) |
N,(z) < log|———=|. 2.5
<P( ) g 7 — (p(O) ( )
In the case when ¢(0) = 0, Littlewood’s inequality simplifies to
1
Ny(z) <logi— for ze€U)\{0}. (2.6)

2|
An immediate observation from Littlewood’s inequality and the boundedness of
log |z| near AU is that the Nevanlinna counting function is bounded near the boundary
of the unit disc. More precisely for each |p(0)| < r < 1 there exists a positive constant

C such that

N,(z) <C forall |p(0)] <7 <1. (2.7)

We now prove a lemma that we will use in the proof of Theorem 5.5.

Lemma 2.1 If ¢ is a holomorphic self map of U, then

[ No(2)dA() < 501 - 19O,

1 —wz’

Proof: Set a,(w) = and notice that we can write Littlewood’s inequal-
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ity as

N,(z) < log forall ze€ U\ ¢(0).

p(0)(2)

By applying successively Littlewood’s inequality, the change of variables w =
a,(0)(z), the Littlewood-Paley indentity (2.2) for the H? norm, we obtain the desired

result,

/U N,(2)dA(z) < /U log dA(2)

ap(0)(2)
< [, o8 loln (w)PFdA(w)
= %/Ulafp(o)(w)lzlogl—lspdA(w)
= 5 (lewwl - leuo O)P)

= S (1-1eOP).

2.6 Angular derivative.

We say ¢ has a finite angular derivative at a point ¢ € 9U if there is a point w € U

such that the difference quotient

p(2) —w

z—¢
has a finite limit as z tends non tangentially to (. The connection between composition
operators and angular derivative depends heavily on the following classical theorem

of Julia and Caratheddory.



19

Julia-Caratheédory Theorem.([18], Section 4.2, page 57) For ¢ € AU, the follow-

ing conditions are equivalent:
1. ¢ has a finite angular derivative at (.

2. ¢ has a nontangential limit of modulus 1 at (, and the complex derivative ¢’

has a finite limit at (. In this case the limit of ¢' is ¢'(().

1 - |p(2)] =

3. liminf =d < 0o. In this case, ¢'(¢) = ¢(¢){d.

==¢  1—|z|
(For more information on the Julia-Caratheddory Theorem and its connection with
composition operators see [16], Section 3 or [18], Chapter 4)

The Julia-Caratheddory Theorem allows us to think of |¢’| as a function mapping
the unit circle to (0,00]. In the case when ¢ is univalent it is shown in [3] that the
essential norm of C, can be computed explicitly in terms of the angular derivative of
. We reproduce part of the proof below. The argument relies on the fact that if ¢

is univalent, then |¢'| is lower semicontinuous, a proof of which can be found in [3].

Theorem A ([3]) Suppose ¢ is univalent. Then

-1
2 _ : /
ICelle = |min |¢ I]

Proof: Applying Shapiro’s essential norm formula equation (1) of Chapter 1,
and noting that for univalent functions the Nevanlinna counting function simplifies
to log(1/|z|) where z = ¢~ !(w) (with the understanding that log(1/|z|) is zero if w

is not in the image of ) we obtain

1 -1
: O8] . 1—|z] . 1= e(2)]

C, |12 = limsup —=L = limsup ——— ' = [llmmf——————— )

IColle =T oup jog £ =N StP Ty = (MR 1=
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Upon applying the Julia-Caratheédory Theorem to the term on the right, and noting

that by the lower semicontinuity |¢'| obtains its infimum on dU, we see

-1
ICol2 = [minle'] -

(eau



CHAPTER 3

The Angular Derivative and

the Essential Norm

We now develop the link between the angular derivatives of ¢ and ¥ and the conjec-
tured essential norm formulas, equations (2) and (3) of the Introduction.

We use the following notation for nontangential approach regions: For 0 < p < 1,
let A,(¢) be the convex hull of the disc pU and the point (. For 0 < r < 1, let
A,r(€) = Ay(¢) \ rU. Let ¢*(¢) denote the nontangential limit (when it exists) of
¢(z). By Fatou’s Theorem this limit exists for a.e. ¢ € dU.

For w € U we define

E(p,w) = {¢ € 0V, ¢*(¢) = w}

with the understanding that this set is empty if w is not a nontangential limiting

value of ¢. Now we define for w € 9U:

1
«s(so,w)—{zm . CGE(%w)},

where 1/|¢’(¢)| = 0 if ¢ does not have a finite angular derivative at ¢, and §(p,w) =0

if E(p,w) is empty.

21
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Our goal in this chapter is to generalize the following result;

Theorem ([16], Theorem 3.3) Suppose ¢ is a holomorphic self map of U. Then

lim sup N(p(li)) > sup {6(p,w) : w e U}.

lw|—=1- 108 1

We will give two different generalizations of this result, the first of which is:

Theorem 3.1 Suppose that p and i are holomorphic self maps of the disc. Then

i sup Me(@)Ny ()

57— > sup {0(p,w)d(,w) : we}.
|w]—1- (log Iﬁ)

Proof: Fix w € 0U a nontangential limiting value of both ¢ and ¥. Suppose
{¢}poi C E(p,w) and {me}x, C E(¢,w) such that ¢ has a finite angular derivative
at (x, 1 < k < n and ¢ has a finite angular derivative at n;, 1 < k < m. Fix
0 < p < 1, and choose 0 < t < 1 so that the angular regions Ax = A,:({x) are disjoint
for 1 < k < n, and similarly By = A,,(n), 1 <k < m. Corollary 3.2 of [16] insures

that

(N{e(Ar) : 1<k <n}) N (MH¥(Be) : 1<k <m})

contains a nontangential approach region A with vertex w.
For w € A\ {¢(0),%(0)} choose a set of preimages of w for each inducing map ¢

and ¢, {z(w)}?_, and {ur(w)}i,, such that

o(zk(w)) =w and z(w)€ Ay, k=1,..,n

Y(uk(w)) =w and ur(w) € By, k=1,..,m.
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By the definition of the Nevanlinna counting function we see:

(3.1)

n l m
22 log oy and )2 Yo log o

For fixed k, we know by the Schwarz Lemma that zx(w) — (¢ and ug(w) — 7%
through A, and By, respectively as w — w through A. Thus by the Julia-Caratheédory

theorem:

log ——~

2k (w)] ’ -1

—— = |p 3.2
wow, wEA log _|1| l (Ck)l ( )

log m(w)l
wow, wEA logl |

= [3' (me)| " (3.3)

Applying (3.1), (3.2), and (3.3) we obtain:

N, N, z u
lim sup M > limsup ) k g‘”) "i"’)
jw|—1- (log T'l;i) wow, wEA | log Tl k=1 lOg Twl
n m l
= Z g zk(w) Z ] g “k§W)

Now take the supremum over m and n and then the supremum over w € 9U to finish

the proof.

An immediate consequence of the proof of Theorem 3.1 is;

Corollary 3.2 If there ezist three points {, 1, and w on the unit circle such that

¢(¢) = ¥(n) = w and ¢'(¢) and Y'(n) ezist, then

lim sup No(w)Ny(w) 1

wow (log |—:)|)2 B |‘P'(C)¢"(7I)‘ -
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Our second generalization is:

Theorem 3.3 Suppose that ¢ and ¢ are holomorphic self maps of the disc. Then

> sup {6(¢, (€))(¥,%(C)) : ¢ € dU}.

Proof: Fix ( € 0U such that both ¢ and v have a finite angular derivative at
¢. Let wy = ¢(¢) and wy = 9(¢) be the nontangential limiting values of ¢ and 7 as
z — ¢ nontangentially. Suppose {(x}7=; C E(p,w:) and {m}iv; C E(¢,w,) are such
that ¢ has a finite angular derivative at {,, 1 < k < n, and ¥ has a finite angular
derivative at nx, 1<k <m.

Fix 0 < p < 1, and choose 0 < t < 1 so that the angular regions Ay = A,.((x) are
disjoint for 1 < k < n, and similarly for By = A,:(m), 1 <k < m. Corollary 3.2 of

[16] insures that the set

M{e(Ar) : 1<k <n}

contains a nontangential approach region A, with vertex w;, and that the set

M{%(By) : 1<k <m}

contains a nontangential approach region By, with vertex w,. For a point z € U such
that ¢(z) € A, and 9(2) € By, choose a set of yp-preimages {vk(¢(2))}r, for ¢, and

choose a set of y-preimages {ur(¥(2))}r, of ¥(z), so that

e(ue(p(2))) = (2) and  wv(p(2)) € Ax, k=1,..,n

P(ur(p(2))) =9(2) and  uk(y(2)) € By, k=1,..,m.
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By the definition of the Nevanlinna counting function we see:

N‘p(cp(z))zglo ) and Ny (v z=: ¢(Z)) (3.4)

1
ONOIE

For fixed k, we know by Schwarz Lemma that vi(p(z)) = ¢ and ue(¥(2)) = M
through A; and B respectively as z — ¢ through 4 = ¢~'(A,) N9y~1(By). Thus by

the Julia-Caratheédory theorem:

log =
|vk(~p D _ 1
Bt Tog L = l'(Ce)I™ (3.5)

log ——A—
[ur (¥(2))] ' -1

= . 3.6
z¢, z€A  log |,/,(lz)| W) (nk)l ( )

Applying (3.4), (3.5), and (3.6) we obtain:

1
lim sup “’(‘p(z))Nw( ( ) S tim SUPZ vk(w(z)) Z uk(w(z))
- log

log—1— m 1
— Z lim vk(ﬁp(z)) lim uk('/’(z)) (ZGA)
i te log iy (S etee log iy

3 Al > P

Now take the supremum over n and m, and then the supremum over ¢ € 9U to finish

the proof.

An immediate corollary of the proof of Theorem 3.3 is

Corollary 3.4 If ¢ and v have an angular derivative at the point ( € OU then

- No(e(2)) No(¥(2)) 1
1 4 > )
T gy log iy 9 QW (O)]



CHAPTER 4

The Operator C;ZCQp on H?

This chapter is broken up into three parts: In the first section we outline the main
results for the operator C;C,, and using Theorem 3.3 we develop the connection
between the compactness of Cy,C, and the angular derivative of the inducing maps.
In the second section we establish an upper bound on the essential norm of CjC,, and

in the third section we prove a necessary condition for the operator to be compact.

4.1 Main results for C{j,C .

Theorem 4.1 Suppose that ¢ and v are holomorphic self maps of U. Then

ICyColle < limsup

|z]—=1-

1 1
log 120y 108 ey

(Nw(mz))w(w(z»)”f

Corollary 4.2 Suppose that ¢ and v are holomorphic self maps of U, and

Then C}C,, is compact on H.
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Remark. In the case when 1 = ¢, Shapiro’s essential norm formula tells us that,

IC3C, N = I = timsup T2,
lzl-1= 108 ()]

hence the estimate of Theorem 4.1 is sharp. We now consider the form that The-
orem 4.1 takes when the inducing maps are univalent. If ¢ is univalent then
the Nevanlinna counting function of ¢, evaluated at ¢(z), simplifies to log ﬁ, ie.
Ny(p(2)) = log ﬁ Thus if ¢ and ¢ are univalent the above upper bound on the

essential norm simplifies to;

2
log -
moup N LN _ g, (o8)
jel1- log iy log iy el 108 1oy log oy
1_
= limsup ( [21)*

zio1- (1= le(2))(1 = [¥(2)])
Hence an immediate corollary of Theorem 4.1 is;

Corollary 4.3 Suppose ¢ and ¢ are univalent self maps of the disc, and

| a-lzpz
- T o@D T @)~

Then CyC,, is compact.

The next theorem is stronger than the converse of Corollary 4.3 in that we only

assume one of the inducing maps is univalent.

Theorem 4.4 Suppose ¢ and v are self maps of the disc and one of ¢ or ¢ is

univalent. If C;,C, is compact on H? then

| A-la)?
- T e @D - o@D~
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By Theorem 3.3 this says that if C},C, is compact then ¢ and ¢ do not have an
angular derivative at the same point.

Putting together Theorem 4.1 and Theorem 4.4 we obtain the following com-
plete function theoretic characterization of compactness when the inducing maps are

univalent.

Corollary 4.5 Suppose ¢ and v are univalent self maps of the disc. Then C;C, is

compact on H? if and only if

b (1 = |2|)?
lz2l-1- (1 — |(2)])(1 = |¥(2)])

= 0.

In terms of the angular derivative of ¢ and i we obtain the equivalent statement:

Corollary 4.6 Suppose ¢ and v are univalent self maps of the disc. Then CyC), is

not compact if and only if ¢ and ¢ have an angular derivative at the same point.

To connect Corollaries 4.5 and 4.6 with the work we did in Chapter 1, note that if
@ is a linear fractional self map of the disc then the existence of the angular derivative
is equivalent to ¢ mapping a point of the unit circle onto the unit circle. Thus if ¢ and
9 are linear fractional self maps of U, Corollary 4.6 implies that Cj,C,, is not compact
if and only if there exists a point 7 € dU such that ¢(n) € U and ¥(n) € oU.
Equivalently, there exist points w; and w,; € AU such that ¢~ (w;) = ¥~} (w,) € AU,
which is Theorem 1.3.

We now turn our attention to the proofs of the theorems.

4.2 Upper estimate on the essential norm of C}C,.

The proof of Theorem 4.1 is based on the approach Shapiro used in [16] to find the

upper estimate of the essential norm of a composition operator. We will use the
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following general formula for the essential norm of a linear operator on a Hilbert

space.

Proposition 2 Suppose T is a bounded linear operator on a Hilbert space H. Let
{K,} be a sequence of compact self-adjoint operators on H, and write R, = I — K,,.
Suppose ||R,|| = 1 for each n, and |R,z|| — O for each x € H. Then ||T||e =
lim, | R, T Ry||-

The proof of Proposition 2 follows directly from the proof of Proposition 5.1 in [16].
We also require the following estimates on H? functions, whose proof can be found

in [16].

Proposition 3 Suppose f € H? has a zero of order at least n at the origin. Then

for each z € U:
Lf@) <P = |22 fllz,  and
2. 1f(2)] < V2nl2|* 11 = |2[2) 3| ]l

Proof of Theorem 4.1: We will show that

[|CyCylle < limsup

|z]—=1

(Nw(cp(z))zv,b(w(z))) "

1 1
log 1 108 ey

This will be done by applying Proposition 2 with K, the operator that takes f to the

nth partial sum of its Taylor series:

K.f(z) = i f(k)z*, where  f(2) = kf: f(k)z* € H2.
k=0 )

Since K, is the orthogonal projection of H? onto the closed subspace spanned by
the monomials 1, z, ..., 2", it is self-adjoint and compact. Since R, = I — K, is the

complementary projection, its norm is 1. Thus the hypotheses of Proposition 2 are
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fulfilled, so that

”CJ:ap”e <lim|[|R,CyCuRyl| = li,{n sup | < CyRnf,CyRng > | (4.1)

" f.9€(H?),

where (H?), is the unit ball of H2. To estimate the inner product on the right hand
side of equation (4.1) it is enough to consider the supremum over the unit ball of H?
because R, f and R,g are in the unit ball of HZ for all n > 1 and for all f and g in
(H?),. Therefore, to estimate the inner product, fix the functions f and g in the unit
ball of HZ, and a positive integer n, and use the Littlewood-Paley identity for the H?

inner product to obtain,

| < CpRaf,CoBng > | < |Raf(9(0)) Rag((0)) (42)
[ NCoRuIY (2)(CoRag) () log dA(). (43

|22

Since R,f and R,g are in the H? unit ball and both have a zero of order n at the

origin, Proposition 3 implies that

|Rnf(0(0))] < l(0)["/+/(1 = [#(0)[?), (4.4)
and

(Raf)'(2)P < 202|270 /(1= |2)?, (4.5)

and similarly for |R,g(¥(0))| and |(Rng)'(z)|- Now fix 0 < r < 1 and split the integral

on the right side of equation (4.3) into two parts: one over the disc 7U and the other
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over its complement. Use estimate (4.4) on the first term of equation (4.3) to obtain,

lo(0)["(0)]"
V(L= le(O)R)(L = [ (0)[?)

4 [ HCoRafV(2)(CoRug) (2)] g

|<C<,,R,.f,C',,,R,.g>I S

: Isz(z) (4.6)

+ /U\ru |(CoRnf) (2)(CyRag)'(2)|log isz(z)_

||

The first term on the right hand side has limit zero as n tends to infinity, so we need
only be concerned with the two integrals. Let I represent the integral over rU. Set
p = sup {max (J¢(2)|, |¥(2)|) : z € rU}, which is clearly less than one. To estimate
I, use the Cauchy-Schwartz inequality, the change of variables formula (2.3), and

estimate (4.5) to obtain

D= [ NCoRfY () (Colrug) (2] log AL

1/2

< ([, 1Cumaryeion oaa@) ([ 1O agy o) 1og raae)

< 2( [, 1B @ PN @Aw) " ([ RagY PNy (ldA@)

< 4n2p2(" 1) (/ N, ) (/U Nw(w)dA(w)>l/2

The last inequality follows from Littlewood’s inequality (Lemma 2.1, Section 2.5).
Thus the supremum over f and g in the unit ball of H? of the integral I is bounded
by an expression whose limit is zero as n tends to infinity.

A note about notation; an unadorned ”sup” will mean the supremum over f and

g in the unit ball of H2 throughout this section.



32

We have

1 2n2p2(n-—1)
—dA(2) < ———.
&)< =

PE (4.7)

sup [ (Conf) (2) (CoRag) (2)]log

Therefore

IRCICRall < sup [ I(CoRaf)(2)(CoRng) (2) log 5dA(:)

||
2 2(n-1) le(0) [ (0)| _
=22 /1=l - [$0)]?)

We may replace R, f by f and R,g by g in the above integral because f and g range
over a larger set than their projections R, f and R,,g. Hence,

IRC3CoRall < sup [ 1(Cof(2)(Cug) (2)| o8 T dA(2)

|2[2
2n2p2(n=1) N le(0)[" | (0)|" ,
=2 /A= le)P)(1 - [¥(0)]?)

Now let n tend to infinity. Because p, |[1(0)|, and |¢(0)| are less than one, we conclude

1C3Colle < Sup/ |(f 0 ©)'(2)(g 0 ¥)'(2)|log 2dA(Z) (4.8)
U\rU | I
To finish the proof set h,(z) = ﬁ:‘;(i) and

H(2) = (hy(p()ho(w()? = ( Rololz )’N"’“”("”)

log 11557 108 5y

We have

, 1
IC:Clle < sup || 1(F 0 9)'(9 0108 [ 5dA(2)
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= 2sup/ (f 0 ¢)(g 0 w)'|H(2) ()longA()

< 2r<SIliIIll{H 2)}sup | 1(foe)(goy)] ()logl IdA(Z)
If°<p V' ltgovY(@ |

< 25w WG | o)t e @) A

lgw(zn 1 v
< 2 s (HG }S“"(/ (7000 ey o8 740

8 B 1 v
Y(z
(/ (g0 W) -l log IIdA(z)) :

where the last line follows from the Cauchy-Schwarz inequality. Now we will calculate
the two integrals in the last expression above; because the calculations are similar we
will only explicitly compute the first integral. To do this, use the change of variables

formula (2.3) and the Littlewood-Paley identity (2.2) for the norm to obtain ,

Iw(Z)I
J 1 0 ) P tog rda()

I 2 2 ggaz _
—/Ifoso I () s og dA(z) et w= (2

log L
= [, 1 ) N dAw)
= [ 17 )P log zdA(w)
1 2
= SI7IP.

Similarly,

e OB 1 1
J, o) @ = 55 1og dA(z) = 5l



34

Since || f|| = ||g|| = 1, we get
ICyColle < sup{H(2):7r < |z| <1},

and the desired result follows upon letting r tend to 1~.

4.3 Necessary condition for C;C, to be compact.

We will prove the contrapositive form of Theorem 4.4:

Suppose ¢ or i is univalent. If p and ¥ have a finite angular derivative

at the same point of OU then C;,C, is not compact on H?.

Suppose ¢ is univalent and let n € AU be such that ¢'(n) and ¥'(n) exist. We may

assume the following;

(1) n=1 (by rotations)

(2) p(1)=1 (by rotations)

(3) ¢'(1)=1 (by hyperbolic automorphism)
4) |ICylle =1 (by parabolic non-automorphism)

The first three modifications above will be obtained by multiplying C;C, by an
invertible composition operator or by the adjoint of an invertible composition operator
thus not changing the compactness of C;,C,. The fourth modification will involve
multiplying C;C, by a non-invertible composition operator, this is not a problem
because if the product of CyC,, with any operator is not compact then CyC,, can not
be compact.

To see why we may assume conditions (1) and (2), let o be a rotation of the

disc that takes the point 1 to . The induced composition operator is unitary, i.e.
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C.;! = C:. Let 8 be the rotation of the disc that takes 5 to 1, note = o~!. Then
CyCy is not compact if and only if C}CiCaCyCp = Cy,4Cpopoa is not compact. Since
both 9 o o and o ¢ o a have angular derivatives at 1 and So p o (1) =1 we will
assume 7 = 1 and ¢(1) = 1.

To see why we may assume condition (3), we know by (1) and (2) that 1 is a
boundary fixed point of ¢, so s = ¢’(1) > 0. Let 7 be a hyperbolic automorphism of
the unit disc that has fixed point, with 7/(1) = 1/s. Then (T0o¢)'(1) =1, Top(1) =1,
it suffices to show CjCro, = C},C,C; is not compact inorder to conclude C;C, is not
compact. Thus we may assume that ¢'(1) =1 .

To show that we may assume (4), recall from Theorem A in Section 2.6, that the

essential norm of a univalently induced composition operator C,, is given by,

IC, |2 = max {m e aU} . (4.9)

Let 3 be a linear fractional self map of the unit disc, not an automorphism, with 1 its
only fixed point, i.e. 3 is a parabolic non-automorphism of the disc with fixed point
1. It can be shown that the derivative of 3 at 1 is one, thus the angular derivative is
one. Also, since (3 is a non-automorphism, 1 is the only point for which the angular
derivative exists. So (3 o ¢ has boundary fixed point 1, angular derivative one at
1, and 1 is the only point for which the angular derivative of 3 o ¢ exists. This
implies, by (4.9), that the essential norm of Cp., is one. It suffices to show that
CyCpop = CyCy,Cp is not compact, and CjCpo, is an operator with (o ¢ having all
the desired conditions (1),(2),(3), and (4). Thus we may assume that ||Cy||. = 1.
We continue the proof of Theorem 4.4 under the assumptions (1)-(4) on the uni-
valent map ¢. Consider the family of normalized reproducing kernels {k,(z)} for

0 < r <1, where

_ K. (2) V1-1?
a | K-l S 1l-rz]

k.(z)
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Since {k.} converges weakly to zero as r — 1, it will suffice to show that
limsup ||CyC, k.|| > 0, (4.10)
r—1

thus showing Cj,C,, is not compact.

Set g, = C,k, — k,, which implies

IIC'ZCvkrII = ”C:/.;kr'*'C‘zgr“

2 [|Cykell = ICyllllg-II- (4.11)

We will now show lim,_,, ||Cjk.|| > 0 and lim,_,, ||g,|| = 0, which will prove inequal-
ity (4.10).
Since CyK, = Kyw) and ¢'(1) exists, upon applying the Julia-Caratheédory

Theorem we obtain,

lim IC3kr 2 = Tim(1 - 72 Ky
= lim 1
TP
= lim 1-7
r=11 — |9(r)|
_ 1
[¥'(1)]
> 0
Thus lim,_,, [|Cyk, || = l ¢,tl)| > 0, so we have reduced the problem to showing that
lim,,, ||g-|| = 0.
lg-I? = lICokr — krll?

< K,op K, >
| K2

= [ICohell? + Ik ~ 2Re
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1—r2

— 2 - -
= lICohill? + 1~ 2Req—os.

(4.12)

The lim sup as 7 — 1 of the first term is bounded by the essential norm of the operator

C, which by hypothesis is one, i.e.
lim “Cspkr”2 < lim sup ”C«ka”2 < ”CwHE =1

Now to finish the proof we have to deal with the third term in equation (4.12), which

we do in the following calculation,

1-rp(r) _ 1 (l—w(r)ﬂo(r)—w(r))

1-72  1+r 1-r
1 (1-¢p(r)
1+r( 1-7r +<p(r)).

And since lim,_,; =20 — ¢'(1) =1 and ¢(1) = 1, we conclude that

1-r

Hence lim,, ||g,|| = 0, which completes the proof of Theorem 4.4.



CHAPTER 5

The Operator C,Cy, on H 2

This chapter is broken up into three parts: In the first section we outline the main
results for the operator C,Cy, and using Theorem 3.1 we develop the connection
between the compactness of the operator C,,C; and the angular derivative of the
inducing maps. In the second section we establish a lower bound on the essential
norm of C,Cy, and in the third section we prove a sufficient condition for the operator

to be compact.

5.1 Main results for C,Cy.

We establish the following lower estimates on the essential norm, which provides a
necessary condition for C,,C to be compact.
Theorem 5.1 Suppose ¢ and ¥ are holomorphic self maps of the disc. Then

log L
1. ||IC,C 12 >11mSup1 g|z| ]:f¢(1/)(z))
|z|]—1 O8 w1 Tw( z)l og o)

log L
9. ”C Cwnz > lim Sllpl 0g |z| J;Iw(‘P(z))
21— 10g iy log 1y

and

Remark. In the special case when one of the inducing maps is univalent Theo-

rem 5.1 reduces to the lower estimate on the essential norm of C,Cj, conjectured in

38
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equation (3) of the Introduction. To see this suppose ¢ is univalent, and apply the

change of variables w = 1¢(2) to the first lower estimate in Theorem 5.1 to obtain,

IC,C32 > lim sup Ne(INu(w),
lw|—1- (log ﬁ)

With a little more care we obtain the following,
Corollary 5.2 Suppose ¢ and v are holomorphic self maps of the disc and either ¢

or ¥ 1s boundedly valent. Then

IC,ColE > Mlimsup YeNe(®)
[w] 1= (logllm)

where M is a positive constant.

The next corollary is a sufficient condition for noncompactness of C,Cj, in terms
of the angular derivatives of the inducing maps ¢ and % and is a generalization of the
angular derivative criterion for a composition operator. The corollary follows directly

from Theorem 5.1 and Theorem 3.1.

Corollary 5.3 Suppose (i, (2, and w are three points on the unit circle such that
1. ¢(¢1) = ¥(¢2) = w and,
2. ¢ (¢1) and ¢¥'((2) exist.

Then C,Cy, is not compact.

The two lower estimates on the essential norm in Theorem 5.1 are not sufficient for
compactness of a composition operator. This can by seen by considering the inducing
map ¢ defined in [18] page 185: an inner function which does not have an angular

derivative at any point. By the Julia-Caratheodory Theorem the non-existence of an



40

angular derivative is equivalent to,

=0,
21— 1og |p(2)]

and since o is inner, its counting function approaches zero slowly in the sense

lim sup M

> 0.
lw|—=1- lOg [w]

The next theorem is a sufficient condition for C,Cy, to be compact. Roughly the
sufficient condition says that if ¢(U), ¥(U), and 9U are not too close then C,Cy, is

compact. We use the following notation,

E,=4¢€dU: hmsupN( w) >0;p. (5.2)
w—( lo (|w|)

Theorem 5.4 Suppose ¢ and 1 are holomorphic self maps of the disc. If
dist(E,, Ey) > 0 then C,Cj, is compact.

It is a straightforward calculation to show dist(E,, E;) > 0 implies

lim sup MH—)— =0.
|w|—1= (log l_::T)

Thus Theorem 5.4 is a partial converse to Theorem 5.1.

5.2 Lower estimate for the essential norm of C,Cj.

Theorem 5.1 Suppose ¢ and ¢ are holomorphic self maps of the disc. Then

log &
L [IC, Clnp||2>hmsupl g“;' 1l\’¢(z/)(1a))
a1~ log L= log

log &
2. [1ICCyllz 2 lim sup ; °8 ol I;Iw(so(a))
la|>1- 0g =7 IW(O)l og @)l
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Proof: Let K,(z) be the reproducing kernel at the point a € U and let k, be

K, divided by its norm,

_Ku(2) _ (1=1a)"?
k() =Tk T T1ma

(z€U). (5.3)

Since k, converges to zero uniformly on compact subsets of U as |a|] — 1~ and

llka]] = 1, it converges weakly to zero as |a| — 1~. Hence,
ICoCylle > limsup ||C,Cyk,ll-
la]—1-

Using the identity C;, K, = Ky(,) and normalizing Ky ) we obtain,

1—|af
C,Ciku||? = (1 = |a|)||CoKpia)||? = ————=||Cokyia >
” ["AdV] ” ( l I)” e y( )” 1_|¢(a)l2” phy( )”
Therefore,
1
limsup ||C,Clka||* = limsuplog—mHC’ kgl
laj—=1- v la|—1- log |¢(1a)| v

Now fix 0 < r < 1. By Proposition 1 of Section 2.3 we obtain,

Ny(¥(a))

ICokyall® > -
log ray

¢ (a)

for 1 (a) sufficiently close to dU. Thus,

log &
limsup [|C,C ko> > limsupc,(a) 8 fal th(‘/)(la))

laj>1- la| 21~ log |w(1a)| log 15y

log L
= r2limsup gl‘;' Nw(l’b(la)).
jal1- 108 oy 108 ey

Since r can be chosen arbitrarly close to one, this completes the proof for the first

lower estimate.
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Applying the above calculation to the adjoint of C,Cy, which is CyC7, we obtain

the second lower estimate, thus finishing the proof.

Corollary 5.2 Suppose either ¢ or ¢ is boundedly valent. Then

IC.Coll2 > MllmsupM-N—w(;—}l
wi-1= (log &)

where M is a positive constant.

Proof: Assume 9 is boundedly valent. Let k,(z) = kq(z)/||k.|| be the normalized

reproducing kernel at the point @ € U. For w € U set {a;}} = ¢~'(w), and

N

n

Fyu(2) = Zcikai (2), where ¢; = (E ||Kaj||‘2)
i=1

i=1

a;

Since 9 is boundedly valent || Fy, .|| is uniformly bounded for all w € U and F,, ,, con-
verges to zero uniformly on compact subsets of U as |w| — 1. Thus Fy,,, converges
weakly to zero as |w| — 17. Let 1/M be an upper bound on ||Fy || for all w € U.

Hence

CiFyw
ICCylle > llmsup”—‘pﬂb-'—l—| > Mlimsup [|C,C}Fy ll- (5.4)
wi-1= 1 Fpull wlo1-
Using the fact that C}K,, = K, we see
C Fpa G0t K, (2) = Ko(2) . (5.5)
ae(s) = 22 G o

A short calculation shows

> (S uK.,.NZ)W‘ 49
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Thus using equation (5.5), equation (5.6), and normalizing K,,, we obtain,

ICCsFsull = [CoKe
Oy ”ZMK.,.H

- 1ol (E ||Ka.||2)m

A%
= Gkl (3
2 Ko P
Therefore, by equation (5.4) and Proposition 1 of Section 2.3 we obtain,

IC,Cille > Mlimsup |C,CyFol

jw|—>1-

1/2 n 2 1/2
> limsup (_N(p(ux])) (Z ”}I;u)llllz)

wi-1- \ 108 o

1/2
= limsup (—————N“’(w) _______N,,,(ul)))

w1~ \ 108 1o 10g o

thus finishing the proof.

5.3 Sufficient condition for C,Cj to be compact.

This section is broken into three parts: We start with a technical lemma. We then
prove a theorem that is weaker than Theorem 5.4 and, using this result, we prove

Theorem 5.4.

Lemma 5.5 Suppose 1 is a holomorphic self map of the disc and f € H? of norm

one. Then

O
JCHC ‘2<4/|1—z|6 V) T2
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Proof: Let F,(w) be the reproducing kernel for the derivative of an H? function

at the point z € U, i.e.

fl(2) =< f,F,> forall feH

In particular,

(C3f) (2) =< Cyf, Fs >=< f,Fao > (5.7)

Fix f € H? such that ||f|| = 1. Then use the inner product representation
in equation (5.7) to estimate | (C’,}, f)l (2)|- Apply successively, the Cauchy-Schwartz

inequality, the fact that || f|| = 1, and the change of variables formula (2.4), to obtain:

(Cof) () = |<fiFoy>]
< IFIPNE: o 9|I?
= |[Fioyl?

- ¢(U)|F’( w) 2Ny (w)dA(w) + |F, o (0)[?

¢ T saaw) + IF, 0 wOIP,

IA

which is the desired result.
Theorem 5.6 If dist(E,,y(U)) > 0 then C,C;, is compact.

Proof: Let (f,) be a sequence in H? that converges uniformly on compact sub-

sets of U to zero and || f,,|| = 1 for all n. Thus (f,,) converges weakly to zero. We will
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show,
lim C,C3 fall = 0.

To estimate ||C,Cy, full, use the Littlewood-Paley identity(2.2) for the H? norm

and the change of variable formula (2.4) to obtain,
ICCofall =2 [ 1(CoaY PN + C,Cifa O

Since (fn) converges to zero weakly and C,Cy, is bounded operator, (C,Cy, f,) con-
verges to zero weakly. Thus |C,Cy f.(0)| converges to zero as n — oco. Hence as

n — oo we obtain,
ICACfall? =2 [ (C31a) NodA + o(1). (5.8)

Now temporarily fix 0 < r < 1, and split the integral on the right side of (5.8) into
two parts: one over the disc rU, and the other over its complement. Since Cj f,(2)
converges weakly to zero it follows that |(Cy, f.)'(2)| converges uniformly to zero on

the relatively compact set U as n — oo. Thus we obtain,

* 2 _ * 12
ICCifall? = 2 [ 42 [ (CifYIPNpdA+ o(1)

2 * ) I°N,dA 1
ey | (Cofn) PNpdA +o(1)

as n — oo. We have reduced the proof to estimating the integral,

— * 2
L= [ NG PNdA().
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More precisely, we need to show that given ¢ > 0 there exists an 0 < r < 1 and a

positive integer N such that
IL,<e forall n> N.

Since dist(E,,¥(U)) > 0 (where E, is defined by equation (5.2)) there exists a

subset S of the unit disc such that

E,CS and, (5.9)

dist(S, v(U)) > 0. (5.10)

Now split the integral I, , into two integrals: one over S, = SN (U \ rU) and the

other over S¢N (U \ rU) to obtain,

I, = C: £.) PN, dA.
: /,+/scn(U\rU) (Cofa) TN,

Let ¢ > 0. We will estimate each integral separately starting with the integral
over S,. Choose 0 < r < 1 so that ¢(0) € U \ rU and A(S,) < € and let C be a
constant such that

sup N,(z) =C.

r<|z|<1

Upon applying Lemma (5.5) we obtain,

[, (C3aY PN, dA(2)

Ny(w)N,(2) Ny (2)
<4/,/ rl—zwlﬁ dA(w)dA(z +/ T L ONCRRY
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Since dist(S,¥(U)) > 0 and S, C S it is clear that dist(S,,4(U)) > 0. Thus there

exists § > 0 such that

inf {[1-zwl°: z€S,, weypU)} > (5.12)

In particular |1 — zy(0)|* > 6 for all z € S,. Hence we estimate the first term on
the right side of expréssion (5.11) by applying successively inequality (5.12) and

Lemma 2.1 of Section 2.5 to obtain,

/'/W,) Ny(w)N, )dA( JdA(2) < %/r/UNw(z)Nw(w)dA(w)dA(Z)

|1 - zw|6

< A("sgr) T<SII:IILIN¢(2)/UN¢(w)dA(w)
< e(5)a-woD.

We estimate the second term of expression (5.11) to obtain,

N¢(z) 1
s ToopFA@ < 3 /S No(2)dA(2)
< As)S
< eg.

Hence the integral over S, is less than a constant multiple of ¢, with the constant
independent of n.

We now consider the integral over S¢N (U \ rU), i.e.

* n2
Lcn(u\ru) l(C'/’fn) | N¢dA.
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Since E, C S we see from the definition of E,, equation (5.2), that

lim sup N‘p—(:i) = 0.
|z|]—=1,2z€8¢ 10g lz_|

Thus there exists 0 < 7 < 1 such that

N,(z) < elog% forall r<|z|]<1andzeS" (5.13)

Hence applying inequality (5.13) and the Littlewood-Paley identity (2.2) we obtain,

(CoLYEPNAR) < ¢ [ 1(Cofa) (2)log —dA(2)

/Scn(U\rU) |2|

< S(IC3I? = I(C3 £ O)F).

Thus the integrals over S, and SN (U \ rU) are both less then a constant multiple

of ¢, with each constant independent of n. This finishes the proof.

Before starting the proof of Theorem 5.4 we introduce the definition of a smooth

sector. First by a sector we mean the interior of an angle with center at the origin.

Definition: A subset S of the unit disc is a smooth sector if S is contained in a sector
of the unit disc and the boundary of S is smooth in the following sense: let 7 be a
Riemann map from U to S, then

lim inf NT(ZI) > 0.
lz]=1-,z€S log T

Theorem 5.4 Ifdist(E,, Ey) > 6 > 0 then C,Cj, is compact.
Proof: Without loss of generality we may assume that ¢(0) = 0. Let (f,) be

a sequence in H? that converges weakly to zero. Using the same argument as in the
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proof of Theorem 5.6 we reduce this proof to estimating the integral,

— * 12
In = /U o (Cofa) PN dAG).

More precisely, we need to show that given € > 0 there exists an 0 < 7 < 1 and a

positive integer N such that

I.,<e forall n> N.

)

Let € > 0.
For each point ( € E,, let I be an arc of the unit circle with center ¢ and arc
length /2. By hypothesis dist(E,, Ey) > ¢ and since the arc length of I is §/2, it is

clear that
. 1)
dist(I¢, Ey) > 3 for all ( € E,,. (5.14)

Set

(EE,

Since each arc I; has a fixed length it is clear that there exist a finite number of

pairwise disjoint arcs {Iy, ..., I, } of the unit circle such that,

Now for each arc I; let S; be a corresponding smooth sector such that

I, =5 (aU.
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Let 7; be the Riemann map from U onto S;. Since S; is a smooth sector there exists

d; > 0 such that

lim inf N"‘(f) > 5. (5.15)
|z]=1-,2€5; 1°g|z—|

Set, S=|J Siand S°=U\S. By construction we see

i=1

) N,(2)
limsup —=2 = 0. 5.16
|z}—=1-,2€8° lOg ]i_| ( )

Thus there exist an 0 < r < 1 such that

N‘p(z)Selogli—' (€5 and r<|s<1) (5.17)

Now split the integral I,, into two integrals: one over S¢ = SN(U \ rU) and the

other over S to obtain,

* 2 < . "2 .
/v,(,,), (Cyfa) PNdAS [ S+ JNCofa) PN dA

We now consider each integral separately. In the estimate below of the integral over
S¢, we apply inequality (5.17) and then the Littlewood-Paley identity (2.2) for the

H? porm:

[ Gy PNdAG) < e ] |(C’,}‘,fn)'l"’log|17|dA(z)
< ¢ (||C$fn|| - |2(C.7,fn)(0)|2)

IA

el|Cyll-
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Thus the integral over S¢ is a constant multiple of ¢, with the constant independent
of n.
We now turn our attention to estimating the integral over S. Using the fact that

S = J Si we see,

[ Cata PNdAR) = 3 [ 1(Cota) PN, dA(2). (5.19)

By Littlewood’s inequality (2.6) in Section 2.5 we see,

L NCoLYPNAAG) < [ €35 (2) P log dACe). (5.19)

2|

By inequality (5.15) there exist 0 < ' < 1 and a constant C such that

logli—| <CN,(z2) (z€S; and 7' <|z]<1)

for all 0 < i < m. Thus,

/S 1(C3 ) ()" log Liaz <c /S 1(C3fa) PN dA(2) (5.20)

2|

for all 0 < 3 < m. To the right side of equation (5.20) using the fact that 7;(U) = S;

and applying succesively the inequalities (5.19) and (5.20) we obtain,

/S (Cy f) P N,dA(z) gcfj / C3 f) PN, dA(2). (5.21)

i=1 Ti(U) l(

Applying to each term on the right side of (5.21) the change of variables formula (2.4)

and then the Littlewood-Paley identity (2.2) for the H? norm we obtain,
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M ! *\/ 2 1
/Ti(U) I(wan) |2NwdA(Z) < /UI(CT'C'/’) (z)l log |_2.:_ldA(z)

IA
N —

(ICACy fall® = IC-C £ (O)) -

Hence

< ¢
=72

JMC3 1Y PNoAAE) < 5 3 (10l = 1CC3a0)F).

Since dist(Ey, 7:(U)) = dist(Ey, I;) > 6/2 where 7,(U)N0U = I;, we see by Theo-
rem 5.6 that CyC7, is compact. Since CyC7, is compact its adjoint C;,Cj, is compact.
Hence there exist an integer N such that
S (IC.Cyall — IC.C 1 OF) <€ (n> N)
2 TivyJn TiYyIn y

i=1

and this concludes the proof.
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