_ E . . .3552»? Ma -\ . Wok». a?" . 0- f. 5 I: 585.1%... 21.1.: 5 117.1. 3 .1631. (tiltiis Lanthaq. tkv. ‘ .Ikfl." LE1 oil-Tn I .il gilt. n (3.! 3.115.).— 1! 0! f4): :15: 164.3}: ..v>l!r!r.\ulr¥h§ x: .11! . .1 >11: . rfll if}? 41!! n'v?‘ ‘06.,» 2" .5‘ Pd). ’1! «.‘(vltllt s it!!! 5 5).}:22. viriLI—xo‘l) If... lv.’/vllt)>\.¢rll€ll( .I I. if};fllll¢’.... .n! i .a .InflPo))\ I01. ' 9'} IIHHUHHIHIIHHI!!!“HMHUIIIIHIINWNllllllllllml 301691 4289 This is to certify that the thesis entitled An Interactive Hydrologic Model for Semi-arid Watersheds presented by Abdelaziz Aslouni has been accepted towards fulfillment of the requirements for M.S. Agricultural Technology degree in and Systems Management M Major professor Dr. John B. Gerrish, P.E. Date ‘22) 5&0? 7?? (J 0-7639 MSU is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE 1/98 cJCIRC/DateDm.p65-p.14 AN INTERACTIVE MODEL FOR SEMI ARID WATERSHEDS By Abdelaziz Aslouni AN ABSTRACT OF A THESIS submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Agricultural Technology and Systems Management Department of Agricultural Enginnering 1997 ABSTRACT AN INTERACTIVE MODEL FOR SEMI ARID WATERSHEDS By Abdelaziz Aslouni Semi-Arid Watershed Model (SAWM) was developed using an object-oriented interactive software. In the model, rainfall is partitioned to four components of the hydrologic cycle, namely, a river, the atmosphere, a shallow aquifer, and a deep aquifer. SAWM estimates water yield, evapotranspiration, soil loss, and aquifer recharge - both flows and accumulations. Theoretical step- function storms of 30 days’ duration and six uniform intensities (5 through 50 mm/day) were used to calibrate SAMW against a secondary reference model, previously validated. When realistic rainfall and weather were applied, SAWM overestimated the annual ET by 6%, water yield by 38%, and sediment yield by 120%. Discrepancies are related to SAWM’s oversimplification of the soil and shallow aquifer. Interactively improving and tuning SAWM can be readily done for a particular watershed using real data. ACKNOWLEDGMENTS I thank God for His guidance. I would like to thank my major professor Dr. John B. Gerrish for his encouragement, expertise, and friendship throughout my graduate studies. His dedication to the profession and extreme generosity is an inspiration to all who have had the chance to work with him. I thank also Dr. Echart Dersh for his council and expertise on my research committee and credit him for inspiring my interest in watershed management issues. I also extend my recognition and sympathy to Dr. Fred Nurnberger for his help and positive role as a member of my research committee. In addition. I would like to express my thanks to USAID and the Moroccan government for financial support. Thanks can not express enough the support and patience my parents and the rest of my family have given over the years to make this research work possible. iii TABLE OF CONTENTS LIST OF TABLES ........................................................ v LIST OF FIGURES ....................................................... vi CHAPTERI INTRODUCTION ..................................... 1 CHAPTER 2 LITERATURE REVIEW ........................... 3 CHAPTER 3 METHODS .............................................. 29 CHAPTER 4 RESULTS AND DISCUSSION .................. 49 CHAPTER 5 CONCLUSIONS ....................................... 75 CHAPTER 6 RECOMMENDATIONS ............................ 76 APPENDIX A SAWM ALGORITHM ............................. 77 APPENDIX B USDA SOIL DATA ................................. 80 APPENDIX C SWRRB COMPUTER PRINTOUT ............ 82 REFERENCES ............................................................. 109 LIST OF TABLES Table 1- Tuned parameters, their values and sensitivities .................. 48 Table 2- Summary of the outputs from the tuning simulations ........... 50 Figure 1. Subsurface hydrologic zones .......................................... 23 Figure 2. Aquifer types ................................................................ 24 Figure 3. Conceptual model of SAWM using STELLA II ................ 32 Figure 4. The pulse-rainstorm of 900mm and the response of other components .................................................................................. 47 Figure 5. Comparison of water yields from the two models ............. 51 Figure 6. Comparison of evapotranspiration from the two models....52 Figure 7. Comparison of soil losses from the two models ................ 53 Figure 8. One year rainfall input to SAWM ................................... 55 Figure 9. One year rainfall input to SWRRB ................................... 56 Figure 10. Runoff estimated by SAWM .......................................... 57 Figure 11. Runoff estimated by SWRRB ......................................... 58 Figure 12. Cumulative water yield estimated by SAWM ................... 60 Figure 13. Daily water yield estimated bt SWRRB ........................... 61 Figure 14. Total ET estimated by SAWM ........................................ 62 Figure 15. Evapotranspiration estimated by SWRRB ........................ 63. Figure 16. Return flow estimated by SAWM .................................... 64 Figure 17. Return flow estimated bt SWRRB ................................... 65 LIST OF FIGURES vi Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. values ...... Recharge of the deep aquifer estimated by SAWM ............. 66 Sediment yield estimated by SAWM ................................. 67 Sediment yield estimated by SWRRB ................................ 68 Comparison of water budgets for the two models ............... 70 Comparison of soil loss estimated by the two models ......... 71 Main outputs from simulating real conditions and their ....................................................................................... 73 vii Chapter 1 INTRODUCTION Water is a limiting factor for biosystems in arid and semi-arid regions. Human conditions in many areas are becoming degraded due to overpopulation and the continual abuse of water resources. Agricultural, industrial and urban areas are encroaching on lands that once were rangelands or deserts. Surface water and groundwater are unable to keep up with the continual growth in needs. Water quality is declining because of the contamination of aquifers by waste water. The conventional approach that takes water resources for granted is no longer acceptable. It is urgent to address water management problems in a holistic manner, understanding how all components of the hydrological cycle interact. Computerized modeling techniques are rapidly becoming an integral tool in water management and planning due to the availability of appropriate technology and the cost effectiveness of computerized simulations compared to field experimentation. Hydrological modeling ( at the scale of a watershed ) allows one to better understand each system component and to make predictions according to the response of the system to inquiries. Methods at the scale of a single watershed command the attention of local authorities and citizens who are immediately affected by water management policy. This study is intended to evaluate the impact of management scenarios on both surface and groundwater resources within a watershed by quantifying the major components of the hydrologic balance including surface runoff, return flow, impoundment storage, plant uptake, consumptive use, and depletion of groundwater by pumping wells. Scenarios are limited to arid and semi-arid regions in developing countries where the technology is at a low level and data are scarce. Typically, rivers are ungaged and potential users are novices with computers. This study has three main objectives. The first objective is to make a continuous lumped-parameter descriptive model of the hydrological cycle at the scale of a rural watershed using an object- oriented software (STELLA II, High Performances Systems, Inc. 1990- 1994). The second objective is to keep this model simple, user-friendly, educational and adaptable to developing countries’ conditions. The third objective is to link surface water and groundwater by considering flow interconnections in the water budget in order to predict the effects of management decisions. The fourth objective is to validate this lumped-parameter model against a secondary reference - i.e., a validated distributed model such as WMS, SWRRB, SWAT or MODFLOW. Chapter 2 LITERATURE REVIEW Prior to the development of modeling and simulation techniques, classical hydrological methods relied mostly on observed values, pencil and paper. Despite the simplification of procedures. the task was tedious and time-consuming. People who used models tended to be highly trained in relevant areas and possessed an appreciation for problem-solving in general. Use of complex models as management tools has grown as the power of computers has increased and particularly as microcomputers have become powerful, inexpensive and easier to use. Computer simulation in hydrology started to be common since the development of the Stanford Watershed Model (Crawford and Linsley, 1966). In the 1960’s the challenge was to make a program that would simulate many continuous years of streamflow, that would be fast enough, and that would be physically based to allow the hydrologist to extrapolate beyond the range of the validating data. In recent years, mathematical modeling of water resources has become possible due to the computer technology and the substantial level of funding in this relatively new area. The modeling is driven by the public’s concern for environmental quality and by the increasing severity of water resource management problems worldwide. In early 1980’s, the Office of Technology Assessment (OTA) of the US Congress found that mathematical modeling of water resources was very useful to managers and decision makers (Friedman et al., 1980). One recognizes, however, that many organizational, financial and institutional barriers are to be surpassed before development of modeling can occur. Institutional constraints include lack of information about available models, lack of training in model use and interpretation, lack of communication between modelers and decision makers, and lack of general support services. Development and use of complex models, require highly qualified personnel as well as adequate budgetary support for computer facilities, collecting and processing data. According to OTA, most federal agencies have no comprehensive strategy for developing and using models due to the newness and technical complexity of such work. The role of models in managing water resources expanded after many regions had noticed decreased availability of water from major aquifers (e.g Ogallalla), and increased public concern for the quality of its drinking water, lakes and rivers. Models that merely determine water yields at the watershed outlet are inadequate ( Friedman, ibid). Models should be perceived as a part of the water quality planning process; they should be comprehensive with the biological and chemical facets in a comprehensive manner. The watershed models are of different types, depending on the purpose for which they were developed. The most evident division is between water quantity models and water quality models. Water quantity models are concerned with the physical allocation and the prediction of stormwater runoff, expected demands, and water supply shortfalls ( Biswas, 1975). Water quality models focus on physical attributes, biological processes, and chemical substances ( Ott, 1976). Simulation models are the most common type of model in water resource planning. They are usually descriptive in explaining the causal connection between policy and model parameters. However, despite their flexibility and ability to compress or expand the time scale, models may lead the planner to non-feasible solutions because they use trial and error to assess the response of selected outputs to the input variables. A simulation may be either time-sequenced or event-sequenced (Goodman, 1983). The time-sequenced form uses a fixed time interval to examine the watershed at regular time intervals. The event- sequenced simulations model events only as they happen, by simply recording the time they occurred. The time-sequenced type is more appropriate for watershed simulations because of the structure of water resource data. The watershed models can be classified also according to other criteria such as process description, scale, and technique of solution (Singh, 1995). The processes are dependent on the watershed characteristics, the resulting models can be described as lumped or distributed, deterministic or stochastic or mixed. Lumped-parameter models are expressed only by differential equations, without considering the spatial variability of processes, the boundary conditions or the watershed geometry. The lumped-parameter approach considers the whole catchment as a single entity and maps the input rainfall excess to an output hydrograph. Typical of this type of model is the Universal Soil Loss Equation ( USLE, Wishmeier and Smith, 1978). On the other hand, distributed models consider spatial variability, boundary conditions and watershed characteristics. Distributed models divide the catchment into a number of smaller areas (which could be square elements or subcatchments), which are assumed to be internally uniform with respect to the hydrologic parameters. Hydrology is simulated within each of these small areas and the output routed to the outlet. Examples of distributed models include AGNPS (Agricultural Non- Point Source Pollution, Young et al., 1987), and SWRRB (A Basin Scale Simulation Model for Soil and Water Resources Management, Williams et al., 1985). Considerable time and effort are required to collect data, run the models and interpret results. Integration with GIS (Geographic Informatin System) can eliminate many of the data-entry problems. Several models have been integrated with GIS including AGNPS, GRASS GIS ( Srinivasan and Engel,l994), and SPUR and ERDAS (Sasowsky and Gardner, 1991). The description of the process can be either deterministic, probabilistic (stochastic) or mixed ( Singh, 1988). Deterministic models treat the relationships among the elements of the system to provide results as the mean of different parameters values based on physical laws and empirical information. Stochastic models rely on assumptions about the system, including uncertainty in both inputs and relationships. Stochastic models require large amounts of data to determine the probability distribution and to validate the model. Mixed models have some components stochastic and some deterministic. The time-scale classification is critical in watershed modeling and can be defined as a combination of two time-intervals (Diskin and Simon, 1979). One interval is used for input and internal computations. The other interval is used for the output and calibration of the model. The spatial scale can be used to classify models into small- watershed (100km2 or less), medium-sized watershed ( 100 to 1000km2) and large watershed ( More than 1000km2). However , this classification may not be meaningful, depending on the heterogeneity of the soils and the land. use characteristics. The technique used for modeling is driven by the need to solve a particular problem . Data availability determines both the model size and the accuracy needed. Some simple models rely only on locally available data; others may rely on remote sensing and GIS capabilities to satisfy their needs in data. The cost of the first type of models is cheap because data are at hand, but the second type is costly at present due to technological and expertise overheads. The previous generation of models( e.g. SWRRB, AGNPS, etc..) needed much hydrological and meteorological records for their calibration. They used curve fitting to calibrate their parameters, but were always error-prone because they did not include critical data, such as topography, soil type and changes in vegetation. Physically-based models can overcome these anomalies if their parameters are physically significant ( Abott et al., 1986). However, even with the improvement of computer software, simulation models are always subject to errors, because they are involved in either exploring the implications of making certain assumptions about the nature of the real world system, or predicting the behavior of the real world system under a set of naturally-occurring circumstances ( Beven, 1989). Both assumptions and predictions are essential in model building, but their impact on results may vary from acceptable to completely surprising outcomes. The experience with many complex models showed that the results depend more on the understanding of the hydrologic processes rather than the sophistication of methods used. A lumped-parameter model based on a good hydrological knowledge of the system may provide better outputs in ungaged areas than a mathematically and technologically sophisticated approach. Beven (1989) pointed out that increased model complexity does not necessarily mean better accuracy. This is confirmed by Wilcox et al.(1990) in their comparison of two very different hydrology models designed to predict runoff from ungaged rural catchments. They found that the improved and complex Green and Ampt model is not noticeably more accurate than the simple Soil Conservation Service curve number method. On some catchments, the simple model was more accurate than the complex one. The SCS method is found in many actual models because it is simple, trustworthy, and widely recognized. Sorooshian and Michaud (1994) compared the accuracy of simulations of rainfall-runoff forecasting of a complex distributed model ( KINEROS) developed by Woolhiser et al.(1990) and a simple distributed model based on the SCS method. Sorooshian and Michaud conclude that for a semi-arid watershed the two models are similar in accuracy. Today, four federal agencies are widely recognized for their leadership and activity in water resources modeling: The US. Army Corps of Engineers, US. Department of Agriculture, US. Environmental Protection Agency, and US. Geological Survey. All are developing and using their own models. 10 Army Corps of Engineers’ Hydrologic Engineering Center (HEC): HEC provides assistance in applying mathematical models to hydrological planning, design and operation problems. This includes developing and maintaining many computer models. teaching of techniques and model use in formal training courses. and assisting Corps of Engineers officers in applying models and techniques (Fledman, 1981). The HEC’s areas of technical expertise are in hydrologic engineering, related computer applications and analytical techniques used in water resources planning. The areas include: Precipitation- runoff processes, water resources systems, frequency and risk analysis, fluvial hydraulics, urban hydrology, water resources planning, real-time water control, hydropower, and water supply. The main HEC goal in software development is to provide efficient tools to a diverse group of managers and planners. The codes are written in FORTRAN77 for this purpose. The rainfall-runoff model called HEC-1( Hydrologic Engineering Center, Army Corps of Engineers, 1990) is very widely used. It is a distributed parameter, physically based, single event model. The model components are simple mathematical relationships derived from the kinematic wave approach (Hjelmfelt, 1986) to represent meteorologic, hydrologic and hydraulic processes. Hydrographs and flood waves can be described as either dynamic or ll kinematic. Kinematic waves are determined by the weight of the fluid flowing in response to gravity. Dynamic waves are determined by mass, inertial forces, and pressure. The kinematic procedure uses both momentum and continuity principles with solution by finite differences. The fundamental laws that govern and describe fluid flow are described by the momentum and continuity equations (Chow, 1959) dy/dx + v/g dv/dx +1/g dv/dt = So - Sf (2.1) dA/dt + dQ/dx = q (2.2) where: y = depth (ft); v = velocity (ft/s); x = longitudinal distance (ft); t=time in sec); g = gravitational acceleration (ft/sec2); So = ground slope (ft/ft); Sf = friction slope (ft/ft); Q = flow rate (cfs); A = flow area (ft2); and q = discharge per unit length (cfs/ft). Equations 1 and 2 have been approximated respectively by Manning’s equation and the Continuity equation: V=(1.486/n) RA2/3 SoA1/2 (2.3) Q = VA (2.4) where: A = average area (ft2); R = hydraulic radius (ft); V = velocity(ft/sec); n = Manning’s coefficient; So = ground slope (ft/ft); and Q = flow rate (ft3/sec). Volume and time distribution of runoff are controlled through three parameters: Manning’s surface roughness coefficient, initial moisture loss, and constant rate of infiltration during overland flow. HEC-1 was mainly designed for flood event studies because flood protection was the Corps’ major responsibility. It is not limited to any watershed or river basin size and has been used on complex sub- basins provided that they are in a converging treelike form. Even though HEC-1 is a distributed-parameter model, it assumes that precipitation and infiltration are uniform. within the sub-basin (unit area). This lumped-parameter characteristic is common to many other models, but can be solved in HEC-1 by making the simulation building blocks small enough to capture the desired variability. HEC-1 has benefitted from the support of the US. Army Corps of Engineers to evolve from a small rainfall-runoff program to an integrated software package including, Data Storage System to pass data from one analysis program to another, and Geographic Information System technology to capture the spatial process of watersheds. However, because HEC-1 was mainly designed for flood 13 event studies, it does not recover precipitation losses, such as infiltration, interception, and detention storage. The U. S. Army Engineer Experiment Station and Brigham Young University have developed a computer program that combines surface water and groundwater. The surface water module is a two dimensional, depth-averaged, free surface, finite element program and is a part of the TABS-MD numerical modeling system (Thomas and Mc Anally, 1991). The groundwater module consists of a flow and transport model (3DFEMFT) model ( Yeh, 1991) and a 3-D finite element mesh graphical user interface (GeoSolid) to view the results. The US. Department of Agriculture had its Agricultural Research Service worked for eleven years on a special model: SPUR- 91 (Simulation of Production and Utilization of Rangelands Carlson and Thurow, 1992). SPUR-91 is physically based. integrating climate, hydrology, plant, animal and economics in a complex system. The hydrology and plant submodels are influenced by the climate submodel, while they interact with the animal module, the economic part depends on the animal and plant models. The most critical outputs of SPUR-91 are water yield and plant production. SPUR uses the curve number method to simulate overland flow and to determine how much water will infiltrate. It is a complete hydrology model in that the major components of rangeland water budgets are simulated: overland flow, subsurface flow. soil water, l4 and evapotranspiration. The curve number method, as a runoff prediction tool, is widely used as a part of models because it is simple, does not require calibration, and the Curve Number can be easily obtained from land use and soils maps. A major limitation of the curve number method however is that rainfall intensity and duration are not considered, only total volume. SPUR is one of several models which simulate the surface and root zone. These models include spatially detailed, single-event models such as ANSWERS (Beasley et al., 1980) and AGNPS (Young et al., 1987), and continuous time models such as HSPF (Johansen et al., 1984) and SWRRB (Arnold et al., 1990). Weather data is generated stochastically by CLIGEN (Nicks and Lane, 1989) which was originally developed to simulate weather for SPUR. The weather elements generated on daily time step are: precipitation amount, maximum intensity, duration, temperature maximum, temperature minimum, dew point, solar radiation, wind speed and wind direction. The hydrology submodel in SPUR is based on daily water balance, and is similar to SWRRB (Williams et al., 1985) with some adaptations for rangeland conditions: The water budget equation is: SW=Swo+P-Q-ET-PL-QR (2.5) where: SW = Current soil water content; Swo = Initial (current day - 1) soil water contenet; P = Precipitation; Q = Surface runoff; ET = Evapotranspiration; PL = Percolation loss below the root zone to groundwater storage; and QR = Return flow. Runoff is estimated using the Soil Conservation curve number method (USDA, Soil Conservation Service, 1985). Daily curve number is computed based on soil water storage (Williams and LaSeur, 1976). Water storage is modified because plants can extract moisture at soil water tensions down to -5.0 MPa under rangeland conditions instead of -1.5MPa under cropping conditions (Carlson and Thurow, 1992). The rest of the hydrology submodel and subroutines are similar to those of SWRRB. Unlike SWRRB, however, the interaction between vegetation, soil and climatic variables is well-developed and detailed in SPUR to accommodate a diversity of rangelands and to better simulate the hydrologic process. SPUR is a complicated but powerful tool for assessing various management practices because it combines hydrology, climate, ecology and economy. A model called Simulation for Water Resources in Rural Basins (SWRRB) was designed to predict the effect of management decisions on water and sediment with reasonable accuracy for ungaged rural basins (William et al., 1985). SWRRB is chosen as a secondary reference model against which my lumped-parameter Semi-Arid 16 Watershed Model (SAWM, hereinafter) is to be validated. The reasons why SWRRB is chosen are: (a) adaptable for semi-arid watersheds which are ungaged; (b) simple enough to cope with developing countries’ technology and computer literacy; (c) and cost effectiveness because it is free of charge for educational and governmental uses. SWRRB operates on daily time step for up to 100 years. The major processes of the model are surface runoff, percolation, return flow, evapotranspiration, transmission losses, pond and reservoir storage, sedimentation, and crop growth. The hydrology model is based on the water balance equation. SW = SWo+ 2 (Ri - Qi - Eti - Pi - Qri) (mm) (2.6) where: SW is the soil water content minus the 15-bar non- removable water content; t is time in days; R is daily amount of precipitation; Q is runoff; ET is evapotranspiration; P is percolation, and Or is return flow. The model requires daily rainfall, maximum and minimum temperatures, and solar radiation as input. In addition, it is capable of working on different soil classes and divides the soil profiles into as many as ten layers. Surface runoff is estimated using a modification of the SCS curve number method ( US. Department of Agriculture (USDA) Soil and Conservation Service, 1972). It uses a procedure similar to its predecessor, the CREAMS model (Knisel, 1980; Williams and Nicks, 1982). The runoff is predicted separately for each sub-area and routed to obtain the total runoff for the basin. The SCS curve number equation for predicting surface runoff is: Q = (P - 0.2 S)2 / (P + 0.8 S) P > 0.2 S (2.7) where: Q is daily runoff (mm); P is daily rainfall (mm); and S is a storage index related to curve number by: = 25400 / (CN - 254) (2.8) The curve number CN is dimensionless and varies non linearly from condition 1 (dry) at wilting point to condition 3 (wet) at field capacity, and approaches 100 at saturation Peak runoff rate is based on the Rational Method Qp = p r A /360 (2.9) where: Qp is peak runoff rate in m’/ s; p is runoff coefficient equal to ratio of runoff volume to percolation; r is rainfall intensity in mm/h; and A is drainage area in ha. The percolation component of SWRRB uses a storage routing technique to predict flow through each soil layer in the root zone. Upward flow and downward flow are allowed from the layer where 18 field capacity is exceeded to the less saturated layer. However, due to gravity forces and low rate of recharge, downward flows are more likely to occur than upward flows. Lateral subsurface flow is simulated when the storage in any layer is more than field capacity after percolation. It is calculated simultaneously with percolation. The flow is dictated by the hydraulic conductivity of the media as well as by the topography and geology of the subsoil. According to Sloan and Moore (1984), subsurface flow is likely to be significant in watersheds with soils having high hydraulic conductivities and an impermeable layer at shallow depths that can support a perched water table. The evapotranspiration component of SWRRB is critical for semi-arid watersheds. It is based on the concepts of Richie’s model (Richie, 1972). Potential evaporation is computed using the equation ( Priestley and Taylor, 1972): E0 = 1.28 (ho) (A) (2.10) where: E0 is the potential evaporation rate in mm/d ; ho is the net solar radiation in ly ; and A is a psychrometric constant. ho=RA(1-AB)/58.3 (2.11) where: RA is the daily solar radiation in ly and AB the albedo. 19 Soil and plant evaporation are computed separately. Potential soil evaporation is estimated by the equation ( Richardson and Richie, 1973) Eso = E0 exp (-0.4 LAI) (2.12) where: Eso is the potential evapotation rate at the soil surface in mm/d; and LAI is the leaf area index defined as the area of plant leaves relative to the surface soil area. LAI is difficult to measure on semi-arid rangelands because plants grow randomly. However, Weltz (1987) reported “LAI maximum is equal to 3 for shrub clusters and equal to 2 for herbaceous vegetation on a range site near Alice, Texas.” Transmission losses are included in SWRRB water budget, primarily in semi-arid watersheds where alluvial channels abstract a big part of the streamflow ( Lane, 1982). The portion of the flood wave that is lost from the system can be estimated in SWRRB by the method suggested by the SCS Hydrology Handbook ( USDA, 1983) based on the channel’s width, length, depth, and flow duration. Ponds and reservoirs are also simulated to manage excess water whenever this may happen. Required inputs are capacity and surface area. 20 The main weather variables in SWRRB are precipitation, air temperature and solar radiation. Precipitation and temperature data if not available, can be generated using the first-order Markov chain method developed by Nicks (1974). The method uses probability to estimate daily rain given the previous day was either dry or wet. Daily maximum and minimum air temperature and solar radiation are generated from a normal distribution corrected for wet-dry probability state. The probabilites of wet or dry day following a dry or wet day are associated with a random number (0-1). If the random number is less than or equal to the wet-dry probability, precipitation occurs on that day. Sediment yield is estimated for each sub-basin with the Modified Universal Soil Loss Equation (MUSLE) (Williams and Berndt, 1977). The equation requires varied data about the watershed, such as surface runoff, peak flow, soil erodibility factor, crop management factor, slope and length of basin. Complimentary data can be provided from the SCS Soil-5 database and by Wischmeier and Smith (1978). For estimated nutrients, such as nitrogen and phosphorous, SWRRB uses a modification of the method used in the EPIC model (Williams et al., ibid, 1984). Transport of pesticides by runoff or percolation is also part of the model, which comes from its predecessor GLEAMS (Leonard et al., 1987). The model’s scope is extended to the EPIC crop model 21 (Williams et al ibid, 1987) to follow the growth of crops and simulate their needs in water and monitor their content in biomass and pesticides. Even the effect of land management on ponds and lakes is predicted in SWRRB. Despite its lack of accuracy in water partitioning to the different components of the system watershed and the weakness of its groundwater component, SWRRB uses a broad analysis approach to predict the effect of management decisions on water and sediment yields. The study of the hydrologic cycle would not be complete without understanding and incorporating the exchanges of water between ground and surface supplies. Many streams and lakes are fed primarily by groundwaters. Excess stormwater is also used to recharge groundwater and compensate depletion caused by increasing needs. Groundwater is the water below the land surface that saturates the pore spaces in the subsurface media. It begins as infiltration from precipitation on the ground, and from streams, lakes and reservoirs. Water flows downward through the zone of aeration by gravity. This percolation leaves a film of water on the soil grains known as soil moisture. The amount of water in the profile depends on climatic, soil conditions, and depth of the aeration zone. Groundwater dynamics are dictated by Darcy’s law which provides the underlying theory for groundwater flow and is relevant to 22 such concerns as groundwater drawdown, rate of flow from a well, and speed of movement through an aquifer. The basic principle defining the flow of groundwater is: v=K*h/s (2.13) where: v is the velocity of the flow (L/T); K is the saturated hydraulic conductivity (UT); 3 is the distance through which the head h is dissipated (L). The subsurface is divided into two regions, the unsaturated zone and the saturated zone (Figure 1,). The unsaturated zone is the upper portion that contains air and water in the pores. It contains the root zone where plants can obtain water and nutrients. It is also separated from the saturated zone by the water table where the pressure is equal to the atmospheric pressure. The saturated zone is the subsurface zone where all voids and pores are filled with groundwater. The flow of water is so slow that is noticeable only on a long term. The saturated zone can contain two types of aquifers, confined and/or unconfined (Figure 2). The unconfined zone is immediately beneath the unsaturated zone and topped by the water table. The confined aquifer is below the unconfined zone where pressure is higher due to the weight of overlying layers. Aquifers are permeable geologic strata that hold and convey groundwater. Most are large enough to be considered as huge storage reservoirs. Infiltration 3UOZ +0 003 a: c o N '0 o '5 h 3 u «I in s: D 23 Water table Saturated zone Figure 1. Subsurface hydrologic zones. 24 .26. 9:52.00 E .893 5:33.. .N unswE $.on ucm 9.0.20 9.9.25 ommxmmd hots—um coca—50 ecu—Sam cocccoo f J 923. \“ 5:33.. 35:50:: mscccoo ¢_ns\ .532, Emobm 32:96.". mmctnm ho o5.— Zora—um congen— 25 Watersheds are complex and dynamic natural systems that display variable behavior temporally and spatially. When a watershed is pertutbed by a storm, its outputs fluctuate for a time before returning to equilibrium (Kort and Kassel, 1993). Most models that simulate real watershed behavior are hard to understand because they consist of many lines of computer code, which only experienced users can customize. STELLA 11 (High Performance Systems 1990, 1992) is an object oriented software that uses a dynamic approach to view a system as a collection of individual elements connected in a way so that feedbacks are allowed to operate as observed in reality. STELLA II uses four types of building blocks that may be interconnected to imitate the process modeled. These are stocks, pipelines, converters, and connectors. Stocks are rectangular in shape and act like reservoirs by accumulating flows. Pipelines convey the flow from the source to the stock or from the stock to the sick (end). Pipelines have controllers which contain equations , logical statements, and numerical relationships that regulate the flow. Converters (circles) are used to convert inputs into outputs. Connectors (arrows) depict the causal linkages among the objects in the model. Sources and sinks are infinite in size and will provide amount of input or accept any amount of output. 26 STELLA II simplifies model-building via a three-step method: mapping (in which equations that state the logic of simulation are automatically generated); modeling (where the software automatically creates equations); and simulation (where graphs, tables and animation can be viewed). The tool enables testing of different scenarios and viewpoints in a simple and interactive way; the user can experiment with interconnections and feedback, unburdened by codes and book keeping. The user needs to concentrate on the real-world problem, for example, a place like Morocco where water problems are urgent. The modeling of the hydrologic cycle in a Moroccan watershed seems an ideal application for using STELLA II. Morocco is a typical semi-arid area where ungaged watersheds are numerous and remote enough to be monitored for data collection. Moroccan geography and climate are similar to those of California. Both have high mountains, bordering oceans to the west, and desert in the south. Their climate is Mediterranean, with seasonal precipitation occurring in the coldest months of the year (October through March) and a hot, dry season for the rest of the year. Morocco is located in northwest Africa. A 3.500 kilometer coastline on the Mediterranean Sea and Atlantic Ocean bounds the country on the north and west. Algeria is to the east and Mauritania to 27 the south. The country’s area is about 750,000 square kilometers, almost 45 percent of which is in the Sahara region (GATT, 1990). Four mountain ranges divide the country into three agroecological zones: the fertile agricultural plain in the northwest with 400-1000mm of rain per year; mountains and plateaus in the east with 200-400mm of rain per year; and, deserts in the south with less than 200mm.) A climatic zoning based on the moisture index has been established (UNESCO, 1979) as = P / PET (2.14) where: P is the average annual precipitation, according to Penman’s formula; and PET is the potential evapotranspiration. Four classes were considered: a / Hyper-arid zones such as deserts with I<0.03 b / Arid zones with 0.2> I>0.03 c / Semi-arid zones including steppes, prairies, with 0.2015) to yield some of its water under the effect of soil sorptivity and capillarity forces. 35 The equation is: upward flow =IF((SOIL<7)AND(SHALLOW_AQUIFER>l5)) THEN((SHALLOW_AQUIFER-l5)*0.01)ELSE(O) (3.3) Equations 3.3-3.18 can be seen in SAWM’s algorithm joined in Appendix A. b / Outputs: The model outputs, in order of priority, are: plant transpiration, surface runoff, percolation, lateral flow, and soil evaporation. Runoff: Surface runoff is an important component of the water budget. It has priority 2 and is computed from the SCS curve number. Q = k*SOIL*(l-S/1000) k=0.12 (3.4) and S=254*(100/CN-1) (3.5) where: S is a retention parameter; k is a coefficient to adjust the shape of the runoff curve; and CN is the average curve number of the watershed. CN depends mostly on the soil cover and the soil hydrologic group (USDA, 1972; see Appendix B) which provides CN for different groups of soils and type of soil cover. 36 The coefficient k is adjusted during the model tuning process to provide the best volume of runoff that approximates the one simulated by SWRRB. SAWM was not tuned for peak runoff; but this can be done in the future. Lateral flow: Lateral subsurface flow in the soil profile (0-2m) occurs not only after the soil is saturated, but also occurs depending on the topography of the site and the difference in pressure between the soil water and the river. The model simplifies the estimate of the lateral flow to a fraction of the excessive moisture of the soil beyond 25mm using IF/THEN reasoning and giving it priority 3. Lateral flow =IF(SOIL >25) THEN (1.2*(SOIL' - 25)/40) ELSE (0) (3.6) where 25 is the water content of the soil, above which, the excess moisture can freely leave the soil profile as a lateral flow. The coefficients 1.2 and 40 have been adjusted to give a realistic accumulation of the lateral flow over time. They also act as a resistance to the flow to compensate for the Darcy’s hydraulic gradient between the soil and the river. Percolation: Percolation in this model is the downward flow which occurs when field capacity of the soil is exceeded. The excessive moisture flow downward under the combined effect of gravity and suction 37 (negative pressure) from the unsaturated lower zone. Temperatures below 0° Celsius that may prevent flows from occurring are rare under Mediterranean semi-arid conditions. Therefore the model does not consider temperature in the subsurface water flow. The Percolation equation is: percolation = IF(SOIL>15) THEN(SOIL-15)*0.05 ELSE(0) (3.7) where 15 is set as the limit of saturation of the soil, above which the excessive soil moisture can be lost to the shallow aquifer. The coefficient 0.05 is used to adjust the accumulated amount of percolated water (estimated by the area under the percolation curve). Evapotranspiration: The evapotranspiration component considers only the potential evapotranspiration but not the actual evapotranspiration . The model computes evaporation from soil and plants separately. Potential soil water evaporation is estimated as a function of potential ET and leaf area index (LAI is the area of plant leaves relative to the soil surface area). PT is computed from the equation of Priestley and Taylor (1972). PT = 0.5*(1.28*delta*HO)/(delta+0.68) (3.8) where: PT is the plant transpiration rate in mm/d; H0 is the net solar radiation in 1y; 38 and delta is a psychrometric constant. The value of H0 is calculated with the equation H0 = (0.77/58.3)*Solar (3.9) where Solar is the daily solar radiation in ly and delta is determined using the equation: delta = 5304*EXP(21.255-(5304/T))/(T)2 (3.10) where: T = 273 + °C and °C is the soil temperature in degrees Celsius. PT VOLUME stock is used as a fictitious reservoir to compute the accumulated water lost from the soil by evapotranspiration to the atmosphere. Soil evaporation: The evaporation from the soil is ranked 5 in priority; however, it is part of the evapotranspiration submodel, even though computed separately. It is a function of the plantl transpiration PT and the leaf area index LAI. Potential soil evaporation is estimated by the equation (Richie and Richardson, 1973): solev = PT*EXP(-0.4*LAI) (3.11) where: solev is the potential evaporation at the soil surface; and LAI is the area of plant leaves relative to the surface soil area, estimated by Weltz (ibid, 1987) as 3 for shrub and clusters. 39 2. RIVER: The river body is considered in the model as a reservoir regulated by three inflows and three ouflows. The inflows are surface runoff, subsurface lateral flow, and return flow from the shallow aquifer. The outflows are evaporation and streamflow. a / Inputs: Runoff: The amount of surface runoff estimated by the SCS curve number method as the main output from the previous model component, namely SOIL, is supposed to flow laterally to the river without any losses en route to simplify the model. See equations 4 and 5 discussed previously. Lateral flow: The lateral flow is an outflow from the unsaturated zone of the soil profile. It is estimated as a fraction of the runoff. Its coefficients are adjusted in the tuning process . Equation 6 describe the flow without considering the time delay between surface runoff and subsurface flow. Return flow: The return flow is the part of the shallow aquifer’s saturated water that does not move vertically (upward to the soil profile 40 or downward to the deep aquifer), but horizontally from the shallow aquifer to the river. This flow may come partially or completely due to the excess recharge of the shallow aquifer by water percolating from the root zone. The equation estimates the lateral flow as a small fraction of the shallow aquifer. return flow = IF(SHALLOW_AQUIFER>20) THEN(0.01*(SHALLOW_ AQUIFER -20)ELSE(0). (3.12) where 0.01 is set to describe the amount of the return flow as well as the delay vis-a-vis to surface runoff and lateral flow. The value of 20 is the minimum moisture in the shallow aquifer. Only the excess amount beyond 20' mm can return to the river. b / Outputs: Streamflow: The streamflow describes the main output and the only concrete outflow from the system. It is generally more important than the other outputs from the river combined, namely river evaporation and seepage. The streamflow is simulated on a daily basis as a fraction of the total volume of the water in the river. 41 The equation is: stream flow = 0.0018*days*RIVER (3.13) where: 0.0018 is a coefficient of adjustment of volume and “days” causes a realistic delay of the flow over time. Evaporation: The evaporation from the river is simplified to a fraction of the water in the river that evaporates daily as a fraction of the volume of water in the river. Temperatures below 0° Celsius that may prevent flows from occurring are so rare under semi-arid conditions that is why the model does not consider temperature in the subsurface water flow. Evaporation equation is: evaporation = 0.002*RIVER (3.14) where: 0.003 was adjusted to estimate the average fraction of river water that can be lost by evaporation. Seepage: Seepage is the flow of water from the river to the shallow aquifer. It occurs to compensate for decrease in pressure of the saturated zone in areas along the river channel where the shallow aquifer may become unsaturated. The model estimates the seepage as a simple fraction of the river. The equation of the seepage is : 42 seepage = 0.006*RIVER (3.15) where: the coefficient 0.006 is tuned estimate the loss from the river to the shallow aquifer in some areas. 3. SHALLOW AQUIFER: In semi-arid developing countries, the shallow aquifer and the deep aquifer are the most difficult submodels to verify due to the lack of appropriate technologies to monitor water table dynamics and their interconnections with hydrogeologic aquifers. This model simulates primarily the shallow aquifer as a part of the system watershed, but approximates the amount of water lost from the shallow aquifer to the deep aquifer (deep percolation ) as part of the total water budget. The shallow aquifer is considered as reservoir with two inputs (percolation and seepage), and four outputs (return flow, deep percolation, revap and upward flow). a / Inputs: Percolation: Percolation is the fraction of water from the rain event which cannot be retained by the soil because it exceeds the field capacity and migrates downward to the shallow aquifer either by gravity or capillary action in the media below. The equation describing percolation was seen before in (equation 3.7) as output from the SOIL. 43 b/ Outputs: Return flow: The return flow is the opposite of seepage. It occurs in areas where the shallow aquifer is saturated and the water table level is higher than the river level. The return flow is approximated as a fraction of the shallow aquifer. Equation (3.11), which was used as input to the river, regulates the return flow as output from the shallow aquifer. Deep percolation: The deep percolation is particular in this model. It is simulated at the same time as input to the shallow aquifer as well as output from it (biflow). However, water is more likely to flow downward through cracks and breaks in confining layers. than upward from confined aquifer to unconfined aquifer. Except for artesian aquifers). Unlike the percolation that is simulated only during the rain event, the deep percolation is estimated as a fraction of the shallow aquifer that is continuously leaking to the deep aquifer and proportionally to the volume of water in the shallow aquifer storage. The equation below describes this flow lost to the deep aquifer as : deep percolation = 0.0006*SHALLOW AQUIFER (3.16) where the coefficient 0.0006 is chosen to compute the amount of percolated water in the leakage process. 44 Revap: The revap is added to estimate the proportion of moisture that may evaporate directly from the shallow aquifer to the atmosphere through the soil’s existing cracks and fissures under hot arid conditions. This happens frequently during dry seasons in semi-arid areas located in the range of latitudes between 28 and 35 such as Morocco, South California, and North Texas. That is why the amount of revap is approximated as a function of the amount of water in the shallow aquifer as well as the number of days. The amount of water lost by evaporation and revap are counted in the water budget whenever they are not small enough to be negligible. The equation describing this loss is: revap = 0.0016*SHALLOW AQUIFER (3.17) where 0.0016 is used to approximate the amount of water lost by revap from the shallow aquifer. Upward flow: The upward flow simulates the flow from the shallow aquifer to the soil when the soil is dry. The equation stating this process is the same as equation (3.3) simulating the upward flow as an input to the soil. 4. DEEP AQUIFER: Deep aquifer: The dynamic behavior of the deep aquifer is generally not known. SAWM simulates the deep aquifer as a huge CG reservoir connected to the shallow aquifer by a “biflow which allows 45 the movement of water in two directions. Only the increases from its initial level are simulated to evaluate its productivity . It has been put in the model for use in the future when it can guide management decisions such as irrigation or recharge. The deep percolation from the shallow aquifer is both input and output for the deep aquifer. Equation (3.16) states the relationship (mentioned above) prioritizing shallow aquifer losses according to the recharge from the deep aquifer. The stocks (reservoirs) are linked to the end of all output flows to allow the user to monitor the amount of water allocated by the model to each component of the hydrologic cycle. 5.SEDIMENT YIELD: Unlike SWRRB which uses the Modified Universal Soil Loss Equation (MUSLE by Williams and Berndt, 1977) to compute the sediment for each subbasin, SAWM simplifies the method from a six- parameter formula to a single equation requiring only the values of runoff above a certain threshold where the flow becomes enough to transport soil. The equation is: erosion = IF (runoff<5)THEN (0) ELSE(0.12*(runoff - 5))2) (3.18) 46 where 5 is the maximum runoff that causes no erosion and 0.12 and the exponent are set to represent the parabolic shape of the soil erosion as a function of runoff. The technique chosen to validate SAWM against SWRRB is to generate six artificial rainstorms of 30 days duration (30 days is required by SWRRB) and constant intensities of 50, 40, 30, 20, 10, and 5min per day. These step-function storms (pulses) are simulated on both SAWM and SWRRB while keeping sensitive parameters on both models constant and similar. The Figure 4 shows this theoretical rainstorm pulse and the simulated response of percolation, lsoil transpiration, streamflow and seepage. 47 1: precip 2: percolation 3: ET 4: streamflow 32.00 (mm) f\ 16.00 ' 0.00 0.00 91.25 182.50 273.75 365.00 days Figure 4. The pulse-rainstorm of 900mm and the response of other components. The other graphs from SAWM are compared to those of SWRRB and tuned, one at a time, so that they match reasonably. The tuning process is tedious and time- consuming because areas under the graphs are computed by hand, approximating the area as a sum of multiple trapezoids: Area=((H+h)/2)*w (3.19) where H and h are the heights and w is the width of each trapezoid. The list of tuned parameters and their values are listed in Table l. 48 Table 1. Tuned parameters, their values and their sensitivities. omponent t 11 N0. ow m er threshold m er m p er threshold perco on m p er threshold return ow m p er threshold m er er n1 n1 er n1 er n1 er in p er threshold nent To cover a wide range of rainfall amounts. the rainstorms tested for the tuning process are respectively 1500, 1200, 900, 600, 300, and 150 mm. These amounts include the range of annual semi-arid rainfall. The main output curves from SAWM and SWRRB at are compared to guide the tuning process are Water Yield, ET, and Sediment Yield. Water Yield and evapotranspiration are in mm in both models, while the soil loss estimate is in kg/ha. Chapter 4 RESULTS AND DISCUSSION The graphs that compare the water yield, total evapotranspiration and sediment yield from the two models and for the six rainfall simulations appear in Table 2. This table also displays the input rain for each model. Results from the tuning process are plotted in Figures 4, 5, and6 to better compare the response of each model to each rainstorm event. The simulated water yields from SAWM shown in Figure 5 track the water yield from SWRRB fairly for the six storms simulated. The general shape of Figure 5 is not linear, this is probably because the system is completely dry before the 30-day rainfall event begins. The early rain goes into the soil. For small storms (less than 300mm , i.e. 30 days at 10mm per day), no runoff is produced. Thus, no yield. Figure 6 reveals that the evapotranSpiration simulated by SWRRB stays constant above the 300mm storm, while it keeps increasing in SAWM. Figure 6 shows an inherent difference in the two models. The constant ET which SWRRB shows for all large storms is unrealistic and fails to account for prolongation of moist soil conditions following large rainfall events. I tend to trust SAWM model on this difference. 49 50 as : s m as m as m 6:89.85 c o N. o RN N8 24 3» «8 NE SN N8 €59.82 :8 as m- e. T e. v .x. Y s m- e. m- 88985 3. 8. 2n 8... ”No 8m "8 8a SN. 82 $2 83 £2 .22 3.. 3 SN 3N «N» 8... as 3» SN. Na: 2.2 3: 23:22.5 as 3- as 8. as 9- as N as t s 8 688.85 a: 8. SN .3 SN 2.. «8 SN 8N NVN 8N 2N new .28 N m 3 2 N 8 sigma N N mN 8 Nm 8 swam. N m 9 NN on 8 _o> 8% 2 E a: 92 R: N: .2, B s t as N2 as 8 as P as m- s N? 358.85 mm a. 8 3. 2n 5. 20 m5 33 9a 82 SN. 22> at; .maxim 2i>>_>>mu SN? 23% a sesame team .2 2:5 mm. 5 00.0 00.0 00.0? 00.0w (ww) 58 925 E assesses toga .: 8:? m>mu Rm 2% 95 EN EN NmN 8N at 9.; P: mm mm m.N so (ww) 59 sensitive to low intensity rains than SWRRB. The water yield is conveniently accumulated from the river stream flow as shown in Figure 12, making it easy to read the yearly amount of water transported by the river. However, in SWRRB, this amount is estimated by computing the area under the curve in Figure 13. This estimation is subject to errors due to the irregularity of the curve’s shape. The evapotranspiration is also better estimated in SAWM (Figure 14) than in SWRRB (Figure 15) because it can be read directly in SAWM by summing its four components of ET. The unstable curve generated by SWRRB shown in Figure 15 makes it very hard to estimate evapotranspiration, let alone its four components. The return flow simulated in SAWM (which contributes to the river’s water yield, Figure 16) tracks fairly its couterpart in SWRRB (Figure 17), but with less intensity. SAWM goes below the shallow aquifer and simulates the recharge of the deep aquifer. Figure 18 provides a valuable updated water budget of the deep aquifer by simulating the amount of recharge (or withdrawals to satisfy human and animal needs). Soil erosion: The sediment yield resulting from the erosion process is more sensitive to runoff in SAWM (Figure 19) than in SWRRB (Figure 20). However, the threshold set for a minimum runoff to cause soil erosion 60 00.000 mudaw .23mu “mm awn awn aw .wu awn ”fin ¢m_ ufi. o__ ha an an H. _ u - (ww) 62 23% E 835:3 E 35 .3 2:3 v m>mu Sodom mhéhw om.Nw—. mm. 5 cod l% H \Wlfioob \I\I\-\|\| K oodmm < oodom ._O> n_<>mm ”V ..Ow<>w ”n 40> n_<>m_ HN m=>=jO> PM U_. (ww) 63 .mmmam NE 338:8 :osfifimcmbomgm .2 oSwE m>mc mum mvm mwm omm EN mmm mam 3: m: w: mm mm mm a .r. .ufluflnfl_fiu o J; J: d 2m In: (ww) 63 .mmmgm 3 3383mm :osfiamcmbomgm .2 833m m>mu Rm mum 9m 0mm EN mmm mom 3: m: m: mm mm mm o n . . u u h n “ u . u L. a ,1 J.) ,, J I'm :9 (ww) 64 860m ms. 23% 3 83%? 3o: Seem . m>mu mum om.wa V l// mu. 5 2 2%; oo. ood end 004 (um!) 65 .mmmgm 3 3385mm 30c Baum .2 upswE m>mu km 2m 98 0mm mum mmm 8m fit mm: P: mm mm mm and .3 :3 (ww) 66 .§mu 8.8m Sim 8&2 mm. a 8d 8m 2:5 50.2 67 comma mhdnw 23% 3 33850 2% “586% .2 8&5 m>mu omdmv mm. 5 ood 0.0 me ao.m mIIJ. 68 .mmmam E 855:3 32» 556% .8 2%; w>mc hmm me 0.5 Dmm 6N mmm mmm w»: 9.; P: mm mm mm God — u _ u u _ u - — d _ — - (Bu/1) 69 and the constancy of the curve number CN during the whole year causes the discrepancy between the sediment yields simulated by each model. Similar discrepancies, however, are frequent when USLE is used to estimate soil loss from watersheds where precipitation is infrequent and low in intensity. Figures 10 and 11 explain some of the discrepancy in sediment yield. Despite the simplifications in SAWM, the main hydrologic outputs (water yield and evapotranspiration, (Figure 21) show that the evapotranspiration submodel in SAWM is accurate enough to make predictions similar to those of SWRRB. However, the water yield output from SAWM is 38% less than the water yield from SWRRB, even though precipitation is the same for both. Comparison of precipitation, ET, and water Yield for both models during the tuning process (Table 1), as well as for the realistic situation simulation( Figure 21), shows that SWRRB always is better. This fact explains the difference between the two water yields as well as sediment yields (Figure 22), since soil erosion is function of runoff in SAWM. The weakness in water yield estimation and the time delay can be corrected by introducing gradually more stocks (reservoirs) in the conceptual model to better imitate the soil component of SWRRB (which does a better job of storing excessive moisture and simulates better the slow motion of water through the soil. 70 mmm>>w I 5_>> com oov oow oow ooor oomw (ww) 71 .2288 o>5 2t 3 388:8 $2 :8 mo :oflbfiEoU .NN ouswE mmm>>w I _>.>>25)THEN(1.2'(SOlL-25)/40)ELSE(0) 3 runoff = O.12'SOIL'(1-S/1000) 3 retum_flow = lF(SHALLOW_AQUIFER>20)THEN( 0.01'(SHALLOW_AQUIFER-20) )ELSE OUTFLOWS: ' 3 evaporation = 0.002'RIVER 3 seepage = 0.006'RIVER 3 streamflow = 0.0018'days‘RlVER [:1 SHALLOW_AQUIFER(t) = SHALLOW_AQUIFER(t - dt) + (percolation + seepage - upward_flow - revap - deep _percolation - return_flow) ' dt INIT SHALLOW_AQUIFER = 0 NF LOWS: 3 percolation = lF(SOlL>15)THEN(SOlL-15)‘.05 ‘ELSE(0) + PT‘0+runoff'0 3 seepage = 0.006'RIVER OUTFLOWS: 3 upward_flow = lF((SOIL<7)AND(SHALLOW_AQUIFER>15))THEN((SHALLOW_AQUlFER-15)'.01)ELSE(0) 3 revap = 0.0016'SHALLOW_AQUIFER 3 deep _percolation == SHALLOW_AQUIFER'0.00060 77 78 Q C = GRAPH(month) (0.00, 0.00), (1.08, 9.00), (2.17, 12.5), (3.25, 13.2), (4.33, 19.2), (5.42, 28.0), (6.50, 27.0), (7.58, 29.0), (8.67, 29.0), (9.75, 25.0), (10.8, 21.0), (11.9, 14.0), (13.0, 10.0) Q Sol. = GRAPH(month) (0.00, 0.00), (1.00, 250), (2.00, 320), (3.00, 427), (4.00, 488), (5.00, 562), (6.00, 651), (7.00, 613), (8.00, 593), (9.00, 503), (10.0, 403), (11.0, 306), (12.0, 245) 79 3 retum__flow = IF(SHALLOW_AQUIFER>20)THEN( 0.01*(SHALLOW_AQUIFER-ZO) )ELSE [:1 SOIL(t) = SOIL(t - dt) + (precip + upward_flow + Irrigation - PT - percolation .- runoff - lateral_flow - solev) * dt INIT SOIL = 1 INFLOWS: 3 precip = GRAPH(days) (0.00, 0.00), (1.00, 0.00), (2.01, 0.00), (3.01, 0.00), (4.01, 0.67), (5.01, 1.13), (6.02, 0.00), (7.02, 0.00), (8.02, 0.00), (9.02, 0.00), (10.0, 23.1), (11.0, 0.00), (12.0, 0.00), (13.0, 0.00), (14.0, 0.00), (15.0, 0.00), (16.0, 5.90), (17.0, 0.00), (18.0, 0.00), (19.1, 0.00), (20.1, 0.00), (21.1, 0.00), (22.1, 13.4), (23.1, 1.76), (24.1, 0.01), (25.1, 4.31), (26.1, 0.00), (27.1, 0.00), (28.1, 9.65), (29.1, 0.00), (30.1, 0.00), (31.1, 0.00), (32.1, 0.00), (33.1, 0.00), (34.1, 0.00), (35.1, 0.00), (36.1, 0.00), (37.1, 0.00), (38.1, 0.00), (39.1, 0.00), (40.1, 0.01), (41.1, 0.00), (42.1, 0.00), (43.1, 0.00), (44.1, 0.00), (45.1, 0.00), (46.1, 0.00), (47.1, 0.00), (48.1, 0.00), (49.,1 0.,00) (501,000), (51.1, 00,0) (52.,1 66.4) 3 upward _flow - ' IF((SOIL<7)AND(SHAI.LOW_ AQUIFER>15))THEN((SHALLOW_ AQUIFER-15)‘. 01)ELSE(0) 3 Irrigation: 0 OUTFLOWS: PT: 0. 5*(1.28'delta'HO)l(delta+0. 68) percolation= IF(SOIL>1 5)THEN(SOIL-1 5)‘. 05 ELSE(0) + PT."0+runoff"0 _ 3 runoff= 0. 12"SOIL'(1-S/1000) 3 lateral_flow= IF(SOIL>25)THEN(1.2'(SO|L-25)/40)ELSE(0) 3 solev = PT’EXP(-0.4"LAI) 1:] SOIL_LOSS(t) = SOIL_LOSS(t - dt) + (erosion) " dt INIT SOIL_LOSS = 0 - . INFLOWS: 3 erosion = IF(runoff<5)THEN(0)ELSE((0.12*(runoff-5))"2) D TOTAL_RAIN(t) : TOTAL_RAIN(t - dt) + (ACCUMULATOR) ‘ dt INIT TOTAL_RAIN = 0 INFLOWS: 3 ACCUMULATOR= precip I: WATER _YI=ELD(t) WATER __YIELD(t- dt) + (streamflow)* dt INIT WATER_YIELD= 0 INFLOWS: . 3 streamflow = 0.0018*days*RIVER CN = 70 . days = COUNTER(1,366) delta = 5304*EXP(21:255-5304/(C+273))I(C+273)"2 H0 = (0.77/58.3)*Solar LAI = 3 month = lNT(COUNTER(1,366)/30) S =~254*((100/CN)-1) 0191 0000000 APPENDIX B APPENDIX B - USDA SOIL DATA 80 Cover Land use Treatment or practice Hydrologic WW9— condition A B C D Fallow Straight row ---. T7 86 91 94 Row crops Straight row Poor 7‘2 81 88 91 " Good 67 78 85 89 Contoured Poor 70 79 84 88 " Good 65 65 82 86 Contoured and terraced Poor 66 74 80 82 " Good 62 71 78 81 Small grain Straight row Poor 65 76 84 88 " Good 63 75 as 87 Contoured Poor 63 74 82 85 " Good 61 73 . 81 84 Contoured and terraced Poor 61 72 79 82 " - Good 59 70 78 81 Close-seeded Straight row Poor 66 77 85 89 legumes” or " Good 58 72 81 85 rotation meadow Contoured Poor 64 75 83 85 " Good 55 69 78' 83 Contoured and terraced Poor 63 73 80 83 " Good 51 67 76 80 Pasture or range Poor 68 79 86 89 Fair 49 69 79' 84' Good 39 61 74 80 Contoured Poor 47 67 81 88 " Fair 25 59 75 83- " Good 6 35 70 79 Meadow Good 30 58 71 78 Woods Poor 45 66 77 83 Fair 36 60 73 79 Good 25 55 70 77 Farmsteads ---- 59 74 82 86 Roads min)” 72 82 37 89 (hard surface)” 74 84 9o 92 y Close-drilled or broadcast. 2’ Including right-of-way. Taken from USDA (1972). 8l Runoff curve numbers for hydrolog'c soil-cover complexes in Puerto Rico. (Antecedent moisture condition 11, and l. = 0.2 S). H l I . 1 Cover and condition A B C D Fallow 77 86 91 93 Grass (bunch grass or poor stand of sod) 51 70 80 84 Cofl'ee (no ground cover, no terraces) 48 68 79 83 Coffee (with ground cover and terraces) 22 52 68 75 Minor crops (garden or truck crops) 45 66 77 83 TrOpical kudzu 19 50 67 74 Sugarcane (trash burned; straight-row) 43 65 77 82 Sugarcane (trash mulch; straight-row) 45 66 T7 83 Sugarcane (in holes; on contour) - 24 53 69 76 - Sugarcane (in furrows; on contour) 32 58 ‘ 72 79 Runoff curve numbers for hydrologic soil-cover complexes of a typical watershed in Contra Costa County, California. (Antecedent moisture condition 11, and L = 02 S). Cover Condition A B C D Scrub (native brush) --- 25-30 41-46 57-63 66 Grass-oak (native oaks with understory Good 29-33 43-48 59-65 67 of forbs and annual grasses) Irrigated pasture Good 32-37 46-51 62-68 70 Orchard (winter period with understory Good 37-41 50-55 64-69 71 ' of cover crop) Range (annual grass) Fair 46-49 57-60 68-72- 74 Small grain (contoured) Good 61-64 69-71 76-80 81 Truck crops (straight-row) Good 67-69 74-76 80-83 84 Urban areas: Low density (15 to 18 percent 69-71 75-78 82-84 86 impervious surfaces) Medium density (21 to 27 percent 71-73 77-80 84-86 88 impervious surfaces) High density (50 to 75 percent 73-75 79-82 86-88 90 impervious surfaces) APPENDIX C 82 APPENDIX C - SWRRB COMPUTER PRINTOUT wmo o~.mm "maDfihfidq o.m qumm mm.x€2 omoomm mm» 02 22 oo.moaumm 22 oo.mm u m m.o mDo mom “Ommm my oav mBZDOEd aafimZHdm owimb oo.HH ON.vN om.ma ON.mN Azmvm¢mmd mam m0 mMB¢ZHQmOOU QHOmEZmo om.NH OH.NN om.NH om.m Azxvmflmmd mam mo mmB¢ZHDmOOU QHombzmo mm whh v ovv vH mmm mv ovm NH mew om mow mm mph 0 ha 0 0mm hm mmN om mvN mm mam mh bah mm Hmm ma hmm mo Mv ha mmv mm m mommm mOBmmmzmw medhm BZMZHomm H u mB¢Bm mMB<3 mm H mmAUWU moedmmzmw Q oo.om H MEHB add ZHmdm 0mm. u moeoflm SOQmMmdm oo.H v oo.H m oo.H m oo.H fl ZHmdmmDm m0¢w mom fl m>¢\AA¢mZH¢m d m>4 NaeEM oom.mmm n €mm¢ ZHmdm H H mm? 02 wHHm oocouowom \ oooomoz o.H ZOHmmm> om ZmH Hm\NO\wo 03mmm3m 83 mm. mm. 0v. mm. 00. am. mm. hm. Nv. mm. vm. mqu vm.m mm.v 00.0 h>.v >0.m Mb.m mw.n Nn.n 50.0 m>.h HH.m mwfio mm.Hm HH. 00.00m 0v.h 0H.om mm.m >02 0m.©o mo. 00.m0v 0N.va om.hm mw.©m Boo mo.vm 00. 00.mom 0m.mH 0m.Nm mh.Hm mmm mm.hv mo. 00.mmm 0m.m~ om.mm HN.mN 00¢ mm.vN v0. 00.mam 0h.mm 00.nm 00.0w 40% No.00 00. 00.Hmm 0m.HN om.mm mm.NN 200 vm.ONH mo. 00.Nmm 06.6H 0m.mm ma.oq yd: m0.vm m0. 00.mwv 0N.ma 0N.mm mm.mw mad mm.mm ma. 00.6Nv 0N.m om.om mm.nfl mflz 0H.hm Na. 00.0mm 00.m 00.0H N0.>H mmm Hm.Hv ma. 00.0mm 0N.m om.vH hw.ofi zdm zHU flm ZZB x29 Xme 0mN.N 060.0H oma.m vHv. mmH. 0NH.M 0NN.vH Ofiv.oa mmv. NvH. 000.H 0N0.hH 0N>.ma hmm. mNH. 05m.a oam.wa 05m.ma mmv. mmH. 06h.m 00v.va oam.m mmm. HHH. omh.N omv.NH 0ma.m vvm. who. 00H.N 0mm.va 000.HH mav. mma. 00N.N 0vm.HN omb.mH mmv. mma. 0mH.N 006.0H omH.NH vHv. mom. 0H0.N 0mm.m 0N0.b haw. 00H. omN.N 00v.m Ohm.h vmv. OHN. 00m.N 0am.m omm.m hmm. mvH. ho SMm >0 Em z¢mz 3\3 0\3 12H Um ZmH Hm\N0\mo 03mmm3m m>¢0 00000.00 H wmqmo mm9<30200m0 00m00. H DAMH» onHummm 00000. H moeoflm dmmq¢ 22 00000. 1 30am mMBmzozoomU AdHBHZH Z 00000.H H Hmemm mmE4 00. N moeodm U m>< 00. N mOBUdm U m>¢ H AmmwnN..Ozqu QmH H AmmwnN.OzuHV OMH H AmmwuN.OZHHV wad mN. u xmozH 9mm>m<3 mN. u xmozH Hmm>mm¢m H0. u Uflm mmmmfim mMde H0. u Udh mmmmfim mmedz H0. u Uém mmmmfim mm9¢3 00.0m u .>ZOU mdeOHm 00.0m u .>ZOU mdeOHm 00.0m 1 .>200 mdeOHm U .mmmmntHZD Edam 80m 0 .mmmwanHZD Bflmm Pom U .mmOHntHZD Edam 90m 0 u mmmo mwdquB 0 u ammo mwdquB H u ammo mwquHB 0. u Bmm>mMDU 0. u Bmm>m4m OZ m>m00 0.0m H Bmm>m¢m OZ m>m00 0 \0 u m9¢0 Bmm>mdm 0 \o H MEmo Emm>m¢m mH\m H m5<0 Bmm>mdm 0. u OZHBZ€Hm OZ m>mDU 0. n OZHBZmDU 0.0m u DZHBdem OZ m>mDU 0 \0 u mafia GZHBZ¢Hm 0 \o n MB<0 GZHBZ¢Am H \H u me¢0 wzHBzmHm m n mmomo m0 mmmZDz m mOmU N mOmU H momo H szdmmDm defio momo mHHm wocmumwmm \ Ouuomoz 0.H ZOHmmm> Um EmH Hm\N0\mo 03mmm3m Hv. mN.Nh mN.moh 0H. mh.wvv Nm.mH mm.mN mH.mN m» mN. m>.m Nm.ov mH. 00.WVN om.v 00.0H mH.NH 0mm 84 0 00. 0 \0 0 00. o \0 0 00. o \0 0 00. 0 \0 0 00. 0 \0 0 00. o \0 0 00. 0 \0 0 00. 0 \0 0 00. 0 \0 0 00. 0 \0 0 00. 0 \0 0 00. 0 \0 .Oz .02 H¢:\Omv .Oz H¢:\Oxv A¢m\wmv Emma omHHmm< Bmmm QmHHmm¢ Emma QmHHmm¢ mQHUHEmmm 00. 00. 0 \0 00. 00. 0 \0 00. 00. o \0 m 00. 00. 0 \0 00. 00. o \0 00. 00. o \0 v 00. 00. 0 \0 00. 00. o \0 00. 00. o \0 m 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \0 N 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \0 H A¢m\wxv A¢m\wmv A¢:\Oxv H¢:\Omv A4$\OMV A¢m\wxv m 2 made 0 z meflo m z MB¢ 00. n moeoflm U m>4 00. H moeodw U m>¢ H AmmwuN .OZHHV GMH H AmmwuN.Oanv 0mg H AmmwuNtoanv OMH mN. u xmozH Emm>mdm mN. u xmozH 9mm>m¢m mN. H xmozH Emm>m¢m H0. u Ufim mmmmfim mmhflz H0. u Udm mmmmhm mmhda H0. H Udh mmmmhm mm8¢3 00.0m n .>ZOU mdeOHm 00.0m u .>ZOU mdeOHm 00.0m 1 .>200 mdeOHm U .mmmmumBHZD Bfimm 900 U .mmmmntHZD 84mm 90m 0 .monntHZD afimm 90m 0 fl ammo mwQHHHB 0 u ammo mwmAHHB H n ammo mwdquB 0. u 9mm>m¢m Oz m>mDo 0. n Emm>mdz OZ m>mDU 0.0m u Emm>m¢m OZ m>mDU 0 \0 fl m940 9mm>mdm 0 \0 u medo Emm>m¢m mH\m u m9<0 Emm>m¢m 0. H OZHBZfiHm OZ m>m00 0. u OZHBZ¢Hm OZ m>mDU 0.0m n wzHBdem OZ m>mDU 0 \0 n WB<0 QZHBZ¢Hm 0 \0 u me¢0 02H924Hm H \H H m9¢0 QZHBZ¢Hm m n mmomo m0 mmmZDz m mOmU N mOmU H momo H szfimmDm @940 momo mHHm wocwuwwmm \ Oouomoz 0.H ZOHmmm> Um ZmH Hm\N0\mo 03mmm3m Hv. 0N.N> MN.m0> 0H. mh.mvv Nm.mH mm.mN mH.mN m» mN. m>.m No.0v mH. 00.mvN 0m.v 00.0H mH.NH 0mm 85 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \o A¢ H AmmwuN .OZHHV OMH mN. u xmozH 9mm>m4m H0. fl Odm mmfldhm mmfimz 00.0m n .>ZOU mdeOHm 0 .mmmoumBHZD Bflmm 900 0 u mmmo mO¢HHHB 0. fl Emm>m¢m OZ m>mDU 0 \0 u mafia 9mm>mdm 0. u 02H924Hm OZ m>m00 0 \0 u made UZHBZ¢Hm m mOmU 00. 0 \0 00. 0 \o 00. 0 \0 00. 0 \0 00. o \o A220 oqumm¢ o 00. 0 \o UZHBZ¢Hm OZ m>mDU oo. 0 \o 00. 00. 0 \o 00. 00. 0 \o 00. 00. 0 \o 00. 00. 0 \o 00. A¢$\oxv A¢:\Oxv z mEmQ m N momo mMNHHHBmmm u mOBomm U m>¢ 00. AmmwuN.Ozqu wmq u meZH Emm>m¢m mN. Uflm mmmmfim mmefia H0. u .>ZOU mdeOHm 00.0m .mmmonmEHZD Edam 90m 0 u ammo mwdquB Emm>mm00 H mbdo Bmm>m¢m H m9¢0 QZHBZ¢Hm H \H H @940 wZHBZQHm m n mmomu m0 mmmZDZ N momo H momu ZHmfimmDm 49<0 momo mHHm mocwummwm \ Ouuomoz 0.0m oo. 00. oo. 00. 00. A¢r\omv 2 00000 \ O r—INMQ'LO m940 .mmd H momo mOBoflm U m>< H AmmeN.Ozqu OMH XMQZH Emm>m¢m H U¢m mmmmem mmemz .>ZOU mdeOHm .mmOHumBHZD Bflm: 900 N mH\m mmmO mwquHB 0.0m H Emm>m¢m OZ m>m00 abdo Bmm>m4m H QZHBZmDU 0.H ZOHmmm> Um ZmH Hm\N0\mo 03mmm3m 00. 0 \o 00. 0 \o 00. 0 \0 00. 0 \o 00. 0 \0 A220 omHHmm¢ ZOHedemmH 00. 0 \0 0 00. oo. oo. oo. 00. A220 QmHHmmd 00. 00000 \0 86 m mOmU 00. n moeodm U m>< 0 AmmwflN .OZHHV 0mg 00. u xmozH Bmm>m¢m 00. u Uém mmmmbm mMHdz 00. 00. H .>ZOU mdeOHm U .0 HmEHZD 94mm 90m 0 u ammo mudquE 0. u Bmm>mmDU 0 \0 u m9¢0 Hmm>m¢m 0. n QZHBZ¢Hm oz m>m00 0 \0 u memo wzHBZ¢ o Ammwum.ozuflv own 00. u xmozH amm>mam u can mmmmem mmemz 00. n .>zoo mmaonm o .o “meHza Ham: Bod o u ammo moaque o. u emm>mmm oz m>moo o \o u mean emm>mam o. u ozHezaqa oz m>mao o \o u mean ozHezmqm N mOmU H momu m0. u mOHUmm U w>4 H AmmwnN~OZHHV OMA Nv. H xmozH Emm>mmm H0. H Udm mummfim mMB¢3 00.0m n .>ZOU mmm¢m OZ m>mDU mH\w H itdo Bmm>m¢m 0.0m n UZHEZQHm OZ m>mDU H \H u MEfio GZHBZ¢Hm H u mmOmU m0 mmmZDZ H momu m szdmmDm dbmz momo oHHm mucouomwm \ Ovjomoz 0.H ZOHmmm> om EmH Hm\N0\m0 03mmm3m 00 0 \o oo o \o 00 o \o oo. 0 \0 00. o \0 A220 omHHmmd ZOHedonmH 0 00. 0 \0 0 00. 0 \o o 00. o \0 o 00. o \o o 00. o \0 .Oz A¢m\omv Emmm QMHHmm¢ MQHUHBmmm 00. 0 \0 oo. 0 \o 00. 0 \0 00. 0 \0 00. 0 \o HEZV QmHHmmd 0 00. 0 \0 0 00. o \0 0 00. o \0 0 oo. o \0 0 oo. o \0 .Oz A¢m\0xv A¢m\0xv Emma QmHHmmd 87 o o. u 03 o \0 00000 .02 n mmmo mwdquB Bmm>mm00 fl WB¢0 Emm>mfim 0. H DZHBZ¢Hm OZ m>m00 u @940 GZHBZde oo. 00. 00. 00. 00. A220 omHHmmd 00. 00. 00. 00. 00. Emmm omHHmmd oo. oo. oo. oo. oo. A¢:\0xv m 00. 00. oo. 00. oo. A¢m\0xv z m mOmU 00000 00000 00000 \o \o \o \o \o \o \o \o \o mefio 0 u mmmo mwdAHHB 0. u Emm>mdz Oz M>MDU 0 \0 u mafia Hmm>m¢m 0. u OZHEZmDU 0 \0 n medo OZHfizflqm N mOmU oHHm mucouowom 0.0 0.0m m m H v H ammo mwfianE u Emm>m¢3 OZ m>mDU mE¢0 Emm>m¢m u GZHBZ¢Hm OZ m>mDU H \H H memo UZHBZde u mmOmU mo mmmZDZ H\m u 48m v H momu ZHm Um zmH Hm\N0\m0 03mmm3m oo. 0 \0 00. 0 \0 oo. o \0 oo. 0 \0 oo. o \0 A220 QMHHmm¢ ZOHedonmH o oo. 0 \0 o 00. 0 \0 o 00. 0 \0 0 oo. 0 \0 o oo. 0 \0 .Oz H¢:\Oxv Bmmm aqummd MQHQHEmmm 00. 00. 0 \0 oo. oo. 0 \0 00. 00. 0 \0 00. 00. 0 \0 00. 00. 0 \0 A< 00. u moeoam o m>< 00. n moeoma o m>¢ o Ammwum .ozuav own 0 Ammwum.ozuav own H Ammxum.ozufiv om; oo. u xmozH emm>mam 00. u xmozH emm>mam mm. u xmozH emm>mmm 00. u oaa mmmmem mmeaz 00. u can mmmmem awed: 30. u can mmmmem mmemz oo. u .>zoo mmaonm 00. u .>zoo mmaonm oo.om u .>zoo mmaonm o .o umest seam sod o .o umest seam Bod o .mmofinmeHza 94mm eon 89 A¢IV>0mmm0 0. 0. 0. 0. AZZV>¢304000 >02000mzm 84 0040090 0HO>00000 00. 00. 00. 00. A02000020 Ed 0000 0000000 0H0>0mnm0 000. 000. 000. 000. ZOHEU<00 0000 BZMZIoedu 0H0>0mmm0 00. 00. 00. 00. A:\2200209900 0200 000 >EH>HBUDOZOU 900 .0 .0 .0 .0 A200vm0200 ZH 0200 0mm Awémoz .0 .0 .0 .0 A200000200 ZH 0200 0mm H¢HrHZH 0. 0. 0. 0. A2200000090 0200 AmszH 0. 0. 0. 0. A22000¢0090 0200 X02 00. 00. 00. 00. 00004000 0000000 0200 000. 000. 000. 000. ZOHBU<00 0000 920200900 4:30 00N. 00N. 00N. 0000 ZHmdm\0m0¢ sz<0.mDm 4900 szmmimDm oHHm mucouowmm \ 0000002 0.H 20Hm0m> 00 20H H0\N0\nm 0300030 00. 00. 0 v 00. 00. 0 m 00. 00. 0 N 9O 00H0> 2 3000 0ZOA00>0 000. 000. 000. 000. 000. 0DAO> 2 0022000 00.0H 00.0H 00.0H 00.0H A:\ZZVEDH>DAAO 0022010 00 0200 00%: 00.MH 00.HH 00.HH 00.0 220 I90H3 0022000 2H0: 00020>0 0N00. 0HHO. 0000. 0v00. 0v00. AE\20000H0 0022000 0N.Hv 0H.9N 00.0 09.HH 0N.vH 2200 090200 0022000 2HOE 0. 0. 0. 0. A220 00>00 3020 00 9209200 00903 0H. 0H. 0H. 0H. 000000 0H00 0.09 0.09 0.09 0.09 20 0200 N 00. 00. 00. 00. 20\ZEV 0209900 0H0>00000 00 09H>H9000200 900 .0 .0 .0 .0 A200000H0>00000 2H 0200 000 002002 .0 .0 .0 .0 2200000H0>00000 2H 0200 000 0009HZH 00000. 00000. 00000. 00000. ANraEM\0\ma*2000900 0000000 0H0>00000 0>0 0. 0. 0. 0. 22200000090 0H0>00000 AOH9H2H 0. 0. 0. 0. AZEV>0ZAAH00 400H02H00 90 0000090 0H0>00000 00. 00. 00. 00. 91 00.0H 00.0H 00.0H 00.0H 00\ZEVZDH>0000 002200U 0Q 0203 0090 00. mo. 00. 00. 0000> 2 0022000 00. 0H.N 00.NH 0H.9N 0200090200 0022000 00. H0. H0. H0. AE\EV00000 0022000 00. 00.N 00.N 00.N 02009000 0022000 0>0 00. 00.HH 00.0 00.0H 020090H3 0022000 0>0 900900 2H000 09 2H000I000 II 0900 02H9000 mH. 00.H 09.H Nv.H 00000009000 000200090 020 090200 00000 00.H 00.H 00.H 00.H 0000009000 00H90000 0009200 2000000 00H0. 00H0. 0000. 0000. 0000. AZ\20000200090 00000 .00H .00H .00 .mm .00 020090200 0&000 000. 000. 000. 000. 00002H9 00>009 000 900 .009 .009 .009 .009 02000 0200 000 000 900 9H.0H 00.0 00.H Hm.m NN.v A0V0ZH0001000 000 20H9009200200 00 02H9 000. 000. 000. 000. 000. 92 00.0 Nm.0 N0.N N0.N ma.0 Nm.0 N0.N N0.N 00.0 Nm.0 N0.N N0.N 000 200000 000 vN.00 00.00 00.00 00.0 VN.00 00.00 00.00 00.0 vN.00 00.00 00.00 00.0 A9\00 002 00H9H2H .0000 00903 No.00 N0.mm No.00 N0.mm N0.mm N0.mm N0.mm N0.mm No.00 N0.mm N0.mm No.00 00\220 0200 900 000 .0000 v.00 9N.0 Nm.0m 90.9 v0. v.00 9N.0 Nm.0m 90.9 v0. v.00 9N.0 No.00 90.9 v0. 0220 90 3 00H9H2H 0H00 2H III00H0 m.N00 00.00 00.000 0N.vN 09.0 m.N00 00.00 00.000 0N.vN 09.0 m.N00 00.00 00.000 0N.vN 09.0 2220 90 3 0H0>0 000H000 20 0000I|I 000909 ON. 90. 0N. 0.000 v 0N. mo. 0N. N.0m0 m 9N. 00. mv. v.NmH N 9N. 00. mv. 0.00 0 002200 0 2H000000 000909 ON. 90. m . 0.000 v 0N. mo. mN. N.000 m 9N. 00. mv. v.NmH N 9N. 00. mv. 0.00 0 002200 N 2H000000 000909 ON. 90. 0N. 0.000 v 0N. mo. mN. N.0m0 m 9N. 00. mv. v.NmH N 9N. 00. 0v. 0.00 0 002200 0 2H000000 022\220 A22\220 222\220 0220 Oz 30 30 >9H00000 09000 90 000 m. 000 00 00000 0900 00H00 @000 wucmuwmm0 \ 0000002 0.0 ZOH000> 00 20H Hm\N0\00 0300030 .0000 000 9000 000 0003 0 H 0090002H0 000HOH9000 00 00 00909 0900 00H009000 000.0 000.0 000.0 000.0 0022000 000 0 009000 0H00 0000 000. 000. 000. 000. 0022000 000 0 009000 0000 0000 93 BOHm 40> mOz mOZ moz m mOz m 2 3m OHmH» Hm mB Um ZmH Hm\NO\u. OZOmmzm OOO. OOO. OOm. OOm. OOv. q OOO. OOO. OOH. OOH. OOm. m OOO. OOO. OOH. OOH. OOm. m OOO. OOO. OOH. OOH. OOO. H OO. mo. NOO. HO. ON. ofl H Dd Em wdqu HHHO 024m AEEVMNHO szmmumOm ZOHPOmHmBmHO MNHm BzmzHomm OO. OO. OO. Hm. OH. Nb. NH. v OO. OO. OO. hm. mm. HO. OH. O OO. OO. OO. hm. mm. HO. OH. N OO. OO. OO. hm. mm. HO. OH. H x Ozdm BHHm >.mN OO.NH hm.mm OO.M> Nv. vm. Ov. 0.0>NH m ON. O>.HN OO.NH OH.>H OO.vm vv. ON. Ov. 0.000 v mm. OO.mH OO.NH O0.0H ON.mO Hv. NN. Ow. 0.00m m OO. PH.mH OO.NH ON.OH Om.HO mm. MH. Ov. 0.0mm N OO. Nv.H OO.NH OO. OO.H ON. 50. Ov. 0.0H H HmOm v szmmmDm 94 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. vO.N OO. OO. OO. OO. OO. OO. OO. OO. vO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. NO. HO. HO. HO. NO. OO. OO. mO. NH. OO. OO. OH. OH. VH. VH. VH. VH. vH. OH. OH. OO. OO. OH. OH. VH. OH. OH. NH. HH. HH. OH. OO. OO. OO. OO. OO. OO. 50. PO. 50. OO. OO. vO. HO. HO. HO. HO. HO. OO. OO. OO. OO. OO. AZEV OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 00. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON.O OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. vm. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. hv. OO. OO. OO. OO. OO. OO. OO. nN. OO. OO. OO. OO.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NH.N OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON. OO. OO. OO. ON. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. IIIIIIII H¢:\vaullnnuuu OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 00. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. hH.mv Oh.mv Hv.OO OO.HO NO.HO vO.NO O0.00 OO.vO H0.00 O0.00 ON.OO Oh.OO OO.NO HO.vO hO.>O ON.OO O0.00 OO.mO Oh.OO O0.00 OO.vO Ov.OO m0.00 >v.hO O0.00 hH.HO NO.>O H>.OO NH.OO v>.NO OO.vO qh.>O O0.00 OH.HO OH.NO HN.OO OO.vO HN.OO H0.00 Om.OO Hm.OO OH.OO Azzv OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. A¢:\EV HO. OO. OO. qr. HO. Nm. OO.H OO.H OO.N HO.N O0.00 OH.N Hv.H hv.H OO.H O>.H OO.H Oh.H O0.0 nH.N HO. Nm. OO.H hO.H VO.N ON.H OO.H Hv.H NO.N OO.H vv.O OO.N OO. vm. NH.H Ov.H NH.H OO.H Nv.N hm.H VN.N OO.H AZZV HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON.HH OO. OO. O>.H OO. OO. OO. HO. NO. OO.N OO. OO. OO. OO. OO. VH.H OO. OO. OO. OO. OO. O0.0 OO. OO. OO. OO. mv. Nv. OO. OO. OO. OO. HZZV OH. OH. VH. VH. VH. VH. vH. OH. OH. x) c U OO.N OH. OH. VH. OH. OH. NH. HH. HH. OH. OO. OO. OO. OO. OO. OO. ho. no. ho. OO. OO. vO. HO. HO. HO. HO. HO. OO. OO. OO. OO. OO. AZZV OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ”EEO OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. AZZV HO. OO. OO. OO. OO. OO. OO. OO. OO. 90. N0.00 OO. OO. O0.0 OO. HO.v HO. Ob.H O0.0H OO. OO. OO. OO. OO. O0.0 OO. OO. OO. OO. OO. OH.ON CO. 00. oo. OH.H nO. oo. oo. oo. oo. AEZV Hv Ov OO OO 5O OO OO VO OO NO OO. HO OO ON ON EN ON ON vN ON HNMV‘WKOPGDCWOHN HHHHHF‘IHHHNNN HNMVLOKDPQONO .—4 sz 95 OO. OO. OO. OO. wO. wO. wO. wO. wo. wO. wO. wO. wO. wO. wO. wO. wO. wO. wo. OO. OO. OO. OO. OO. OO. h0.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. mO. OO. OO. mo. mo. mO. OH. OH. OH. OH. OH. OH. HH. HH. HH. HH. HH. HH. NH. NH. OO. NH. NH. NH. NH. OH. NH. NH. HH. HH. HH. HH. NH. NH. NH. NH. NH. OH. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. OO. OO. OO. OO. OO. HO. HN. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. 00. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 8. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. Ow.OO Oh.OO H0.00 ON.OO h0.00 O0.00 OH.wO ww.>O wn.>O O0.00 O0.00 b0.00 O0.00 N0.00 wO.mO Om.mO N0.0w n0.0w OO.Hw OO.Hw OO.Hw wH.Nw OO.Nw OO.Nw O0.0w ON.Ow ON.Ow OH.ww OO.ww mo.Ow b0.0w O0.0w O0.0w OH.ww ww.ww wO.ww ON.Ow O0.0w OH.Ow O0.0w no.5w OO.hw b0.0w H0.0w OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON. ON. ON. ON. ON. ON. OO. OO. OO. HO. HO. NO. NO. OO. wO. wO. OO. OO. OO. OO. OO. OO. Ow. Hw. Nw. HO.NN Ow. Ow. Ow. Ow. OO. NO. O0.0 Ow. Hw. Nw. Ow. ww. Ow. hw. Ow. HO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO.H OO. OO. OO. OO. OO. OO. OH.H Ow. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. mo. OO. OH. OH. OH. OH. OH. OH. HH. HH. HH. HH. HH. HH. NH. NH. O0.0 NH. NH. NH. NH. OH. NH. NH. HH. HH. HH. HH. NH. NH. NH. NH. NH. OH. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON.> OO. OO. OO. OO. OO. OO. w0.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO OO NO HO OO Oh Oh hr Oh Oh wh OF NO Hr Oh OO OO NO OO OO wO OO NO HO OO OO. OO OO hO OO OO wO OO NO HO OO Ow Ow hw Ow Ow ww Ow Nw 96 O0.0 ON. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OH. OO. OO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO.N OO. OO. OO. OO. OO. OO. Ow. Ow. Ow. Ow. Ow. OO. Ow. Ow. Nw. Nw. Nw. Nw. Nw. Hw. Ow. Hw. Nw. Nw. Nw. Ow. Nw. Hw. OO. NO. ON. OH. OH. HH. HH. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH. HO. OO. OO. OO. OO. OO. OO. OO. OO. O0.0HwO. wO. OO. OO.H OH. OO. OO. ON. OO. OO. OO. OO. OO. OO. OO. OH.H wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. NO. wO. OH. OO.w ON. OH.N OO. OH.O OO. OO. OO. OO. OO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. O0.00H O0.00H O0.0HH OO.HHH OO.NHH OH.wHH OH.wHH O0.0HH HN.OO Ow.OO O0.00 Ow.OOH OO.HOH O0.00H N0.00 OH.OO H0.00 O0.00H OO.HOH NO.NOH O0.00H O0.00H O0.00H O0.00H O0.00 Ow.OO OO.ww w0.00 H0.00 ON.OO O0.00 OO.NO OO.NO NH.OO O0.00 N0.00 O0.00 O0.00 OH.wO OO.wO OO.wO NO.wO OH.OO OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. w0.0 HO. NO. OO.H OO.H w0.00 O0.0 Nw.w NN.H OO.N O0.0 OO.H ON.N O0.0 OO. NO. OO. OO. OO.H ON.H OO.H OO.N O0.0 O0.0 OO.w wH.O HH.O OO. OO. w0.0 O0.0 wN. ON. ON. ON. ON. O0.0 ON. ON. ON. ON. ON. ON. wO.H OO. OO. OO. OO. OO.wO HH. O0.0 HO. HO. NH.H OO. OO. OO.N OO. OO. OO. OO. OO. OO. OO. OO. OO.H O0.0 OO.w N0.0 OO.H OO. OO.H OO.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. Ow. Ow. Ow. Ow. OO. O0.0 Ow. Ow. Ow. Ow. Ow. Nw. Ow. Nw. Hw. Nw. Nw. Ow. Ow. Ow. Ow. Nw. OO. OO. wN. OH. OH. HH. OH. OO. OO. OO. OO. OO. OO. OO.N OO. OO. OO. OO. OO. OO. HO. HO. HO. HO. HO. OH. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. N0.0 OO. OO.. OO. CO . U®.mmH OO. Nw.: 8. mfm Sim co. 8. 3.2 co. go. .30. 30. co. co. co. 3:2 2.? Sim 2.2 3.: co. go. 3.3 3.2 :0. co. co. co. HMO- OO. OO. OO. CO. CO. OO. OO. ONH wNH ONH NNH HNH ON. ONH OHH OHH OHH OHH OHH wHH OHH NHH HHH OHH OOH OOH OOH OOH OOH wOH OOH NOH HOH OOH OO OO OO wO OO NO HO OO. OO OO OO OO OO OO 97 ON. ON. ON. ON. ON. ON. ON. ON. OO. HO. HO. NO. NO. NO. O0.0H OO. OO. OO. OO. HO. ON. ON. OO. OO. OO. wO. OO. OO. OO. OO. OO. HO. NO. NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. NO. Ow. ww. OO. OO. Ow. Hw. Hw. Hw. Nw. Nw. Ow. ww. ww. Ow. Ow. Ow. Ow. Ow. HO. NO. HO. OO. OO. OO. OO. OO. OO. OO. HH. OO. OO. OO. OO. OO. NO. O0.0 NO. NO. NO. OO. OO. wN. NO.N NO. ON. OH.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. HO. NO. OH. wO. NN. OO. wO. OH. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 00. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO.wOH O0.00H Ow.OOH H0.0wH O0.0wH HN.OOH O0.00H OH.HOH OO.HOH NN.NOH OO.NOH OO.NOH N0.00H O0.00H NO.wOH OH.OOH O0.00H O0.00H O0.00H O0.00H O0.00H O0.00H OO.NOH N0.00H O0.00H NO.HOH OO.HNH ww.ONH ON.HOH OO.HOH OH.NOH OO.NOH w0.00H w0.00H w0.00H OH.wOH wO.wOH OH.OOH O0.00H N0.00H w0.00H H0.00H O0.00H HH.OOH OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO.H Ow.N HO.w ww. Ow. Ow. Ow. HO. wO. OO. HN.O OO. OO. NO. OO. HO. OO. wH.OO OO. OO.H NN.H OO.H H0.0 O0.0 O0.0 O0.0 OO.w w0.0 Ow. Ow. Ow. Ow. Ow. OO.N Ow. HO. OO. OO. OO. NO. OO. NO. OO. OO. NO. OO. O0.0 OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. wH.OO OO. OO. OO. OH. OO.w wO.H Ow.HH wO.w OO.H O0.0 OO. OO. OO. OO. OO. NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. NO. OO. OO. OO. OO. OO. OO. OO. NO. OO. Ow.OH wO. wO. OO. OO. OO. OO. OO. wO. Ow. Ow. OO. Ow. Hw. Hw. Nw. Nw. Nw. Ow. ww. Ow. Ow. Ow. Ow. Ow. Ow. Ow. OO. OO. OO. OO. OO. OO. OO. wO. wO. wO. wO. wO. wO. wO. wO. OO. OO. wO. OO. OO. OO. OO. OO. wO. OO. NO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. O0.0H OO. OO. OO. OO. OO. OO. OO. NO.w OO. OO. OO. OO. OO. CO . OO.wwH OO. oo. OO. OO. N0.0H N0.0 N0.0w OO.HN OO.w H0.00 oo. 00. OO. CO . co. NH.O co. co. oo. oo. oo. OO. co. OO. OO. OO. OOH OOH OOH OOH wOH OOH NOH HOH OOH OOH OOH OOH OOH OOH wOH OOH NOH OO. HOH OOH OwH OwH OwH OwH OwH wwH OwH NwH HwH OwH OOH OOH OOH OOH OOH wOH OOH NOH HOH OOH ONH ONH ONH ONH 98 HO. HO. OO. ON. ON. HO. OO. HO.NN wO. OO. OO. OO. OO. OO. OO. OO. OO. wO. HO. ON. ON. OO. OO. OO. OO. HO. NO. OO. wO. wk. wO. wO. NO. OO. HO. OO. wO. OO. OO. OO. OO. OO. OO. HO. OO. wO. OO. OO. OO. OO. OO. OO. NO. OO. wO. OO. OO. OO. OO. OO. OO. NO. OO. OO. OO. OO. OO. ON.H OO. OO. OO. NO. HO. OO. OO. OO. ON. OO.N OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH.O OO. OO. OO. OO. OO. OO. OO. OO. NH. wO. O0.0 OO. OO. NO. NO. OO. OO. OO. OO. OO. HO. NO. NO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. Hw. OO. OO. OO. OO. OO. HO. NO. OO. OO. OH. wH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO.NOH O0.00H NH.OOH O0.00H ON.OOH O0.00H OO.HOH Ow.NOH Ow.OOH wO.wOH O0.00H O0.00H O0.00H O0.00H O0.00H OO.HOH OO.HOH wO.HOH OH.NOH Ow.NOH OO.NOH ON.OOH O0.00H OO.wOH Ow.wOH NO.wOH O0.00H w0.00H N0.00H O0.00H O0.00H O0.00H H0.00H Ow.OOH OH.OOH O0.00H O0.00H Nw.HOH Ow.NOH O0.00H w0.00H wO.HOH OO.NOH Ow.OOH OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO.HH NO. OO. HO. OO. O:.H NN.H wO.H HO. O0.0 wO. wO. OO. OO. OO. OO. OO. OO. Ow. Hw. Nw. ww. Ow. Ow. Ow. OO. OO. HH.Ow OO. OO. NO. OO. HO. OO. OO. OO.H ON.H O0.0H OO. NO. OO.H OO. HO. ON.O OO. OO. OO. OO. OO. OO. OO. NH. HN.H Ow.OH OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. .OO. OO. OO. O0.0N OO. OO. OO. OO. OO. OO. OO. OO. OO. w0.0 OO.wH OO. OO. HO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OON OO. OO. OO. OO. OO. OO. HO. NO. OO. OO. OO. OO. OO. OO. HO. OO. wO. OO. N0.0N OO. OO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO. wO. wO. wO. wO. wO. wO. wO. OO. OO. OO. OO. OO. OO. OO. Hw.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. O0.0N OO. OO. OO. CO. 30. OO. OO. OO. OO.H Ow.OO OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 30. OO.HO :o. oo. co. co. co. co. oo. oo. oo. cw.O OO.HO oo. oo. HHN OHN OON OON OON OON OON wON OON NON HON OON OOH OOH OOH OOH OOH wOH OOH NOH HOH OOH OOH OOH OOH OOH OOH wOH OOH NOH wO. HOH OOH OOH OOH OOH OOH OOH wOH OOH NOH HOH OOH OOH 99 ON. HO. OH.NN HO. HO. NO. wO. OO. OO. OO. OO. OO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. HO. NO. NO. NO. OO. wO. OO. OO. OO. OO. OO. OO. HO. HO. NO. OO. wO. wO. OO. OO. OO. OO. OO. OO. wO. wO. OO. OO. OO. ON.w wO. HH.N OO. HO. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. ON. OO. OO. OO. OO. OO. OO. OO. OO. HO. OH. OO. OO. HO. OH. OO. OO.w OO. OO. OO. OO. OO. OO. HO. NO. OO. wO. ON. OO. OH. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO.wOH O0.00H O0.00H wN.OOH O0.00H w0.00H N0.00H N0.00H O0.00H OH.NOH OH.NOH ON.HON w0.00H O0.00H O0.00H O0.00H N0.00H OH.OOH O0.00H O0.00H HO.HOH wO.HOH OO.NOH Ow.NOH HO.NOH Nw.OOH H0.00H wO.wOH OO.wOH ON.OOH w0.00H wN.OOH O0.00H N0.00H O0.00H w0.00H N0.00H O0.00H OH.OOH O0.00H OH.HOH OO.HOH OO.HOH HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. wO. OO. OO. wO. OO. wO. OO. OO. OH.H OO.wO ON.O O0.0 O0.0 wN.O N0.0 OO.H OO. OO. Ow. Hw. Ow. OO.H Ow. Ow. Ow. HO.w ww. Ow. Ow. Ow. OO. NO. OO. OO. HO. Ow.N HO. OO. HO. OH.O OO. ON.OO OO. OO. OO. OO. OO. OO. OO. OO. HO. OH. NO. HH. OO. NH. wO. NH. wO. OH. OO. ww.ON OH.HN OO.H HO. H0.0 wO. O0.0 NO. ON.N OO. OO.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. NO. OO. OO. OO. wO. OO. wO. wO. OO. HO.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. NO. OO. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO.H OO. OO. OO. O0.0H N0.0N OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH.H OO. OO. NO. NO. NO. NO. NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO. wO. wO. wO. wO. wO. wO. wO. OO. OO. OO. OO. OO. OO. Ow.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. 30. NO.CO OO. ON.OO O0.0H wO.HH OO.w wN.N OO. OO. OO. OO. OO. OO.H OO. OO. OO. OH.O OO. OO. OO. OO. OO. OO. OO. OO. OO. w0.0 OO. OO. OO. O0.0 OO. OO.wO OO. NON HON OON OwN OwN OwN OwN OwN wwN HO. OwN NwN HwN OwN OON OON OON OON OON wON OON NON HON OON ONN ONN ONN ONN ONN wNN ONN NNN HNN ONN OHN OHN OHN OHN OHN wHN OHN HO. NHN IOO Ow. OO. ON. ON. ON. ON. ON. ON. OO. OO. HO. HO. NO. NO. OO. wO. wO. OO. OO. OO. OO. OO. OO.NN OO. OO. OO. OO. OO. wO. NO. NO. NO. OO. OO. OO. NO. OO. ON. ON. ON. ON. ON. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. wO. OO. OO. OO. OO. HO. NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. OO. OO. OO. OO. OO. HO. Ow.w OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. wO. H0.0 wO. wO. wO. OH. wH.H OO. Ow. HO. wO. wO. wO. wO. wO. OO. wN.H Ow. OO. OO. OO. OO. OO. OH. wN. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO. HO. NO. OO. OO. OO. OO. HO. OO. OO. HO. NO. NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. O0.00N OO.NHN O0.00H OH.OOH O0.00H O0.00H wO.HOH OO.HOH OH.NOH OO.NOH O0.00H Ow.OOH O0.00H Ow.wOH OO.wOH O0.00H O0.00H O0.00H ON.OOH O0.00H O0.00H O0.00H O0.00H O0.00H OO.HOH ON.OOH N0.00H ON.OOH ON.OOH OO.HOH Hw.OOH wN.OOH ON.OOH Ow.OOH H0.00H wN.NOH O0.00H wO.NOH OO.HOH OH.NOH OO.NOH O0.00H O0.00H OO.wOH OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. w0.0 O0.0 OO.w OO. OO. OO. Ow. Nw. Ow. ww. Ow. Ow. Ow. HO. OO. OO. OO. OO. OO. OO. HO. HO. H0.00 OO.H wO.H HN.N OO.N O0.0 O0.0 OO.H OO. OO. OO.H OO.H OH.N H0.0 HO.w ON.O O0.0 ww. Ow. Ow. Ow. HO. H0.0 O0.0H O0.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH. OO.H OO.H OO. HO. OO. wO. OO. OO. wH. HH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH. OH. wH.N OH. HH. HH. HH. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. 00. Ow.Ow Ow.ON oo. oo. co. co. co. co. co. oo. oo. oo. oo. oo. oo. oo. oo. oo. oo. oo. oo. O0.00 OO. OO. HO. HO. N0.0H H0.0H Ow.OH OO. OO. OO. OO. OO. OO. Hw.HH OO.wN ON.O OO. OO. OO. OO. OO. OON wON OON NON HON OON OON OON OON OON OON wON OON NON HON OON OON OON OON OON OON wON OO. OON NON HON OON OON OON OON OON OON wON OON NON HON OON OON OON OON OON OON wON OON 101 NO. OO. OO. ww. OO.H OO.H OO.H OO.H OO.H wO.H OO.H OO.N wO.N OO.N OH.N wH.N OH.N HN.N ON.N ON.N NO.N OO.N OO.N Hw.N Ow.N OO. ww.N Nw.N OO.N NN.N OO.H OO.H Ow.H NO.H OO.H OO. OO. OO. OO. HO. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. HO. OO. HO. OO. HO. OO. NO. OO. NO. OO. OO. Ow. wO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. OO. HO. OO. NO. OO. OO. HO.NNOO.N OO. wO. OH. OO. ww. OH. OO.H NN. NO.w NO. OO.H ON. OO. OH. w0.0 OO. ON.H OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON. OO. OO. OO. OO. OH. OO. OO. OH. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. Ow. OO. OO. OO. OO. OO. OO. OO. OH. OO. O0.00H NH.OOH O0.00H O0.00H wN.OOH O0.00H Ow.OOH OH.OOH O0.00H OO.HOH HO.NOH Ow.OOH OO.wOH O0.00H w0.00H OH.OON H0.00N ON.OOH O0.00H O0.00H H0.00H O0.00H Ow.OOH H0.00H Hw.OOH O0.00H Ow.OOH OO.HOH OO.HOH OO.NOH NN.OOH ON.wOH O0.00H O0.00H O0.00H Ow.OOH OO.HON ON.OON H0.0HN OO.NHN Hw.wON N0.0HN H0.00N NO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. OH.NO OO. HO. OO. OO. OO. wO. OO. OO.w HO. OO.H OO.H HO.N H0.0 O0.0 Hw. Nw. Ow. Ow. Ow. Ow. OO. NO. OO. OO. HO. OO. OO. OO. OO. OO. O0.0w OH.H wO.H NO.N ON.O OO.H NO.H Ow.N O0.0 OO.N OO. OO. OO.wH OO. OO. OO. OO. OO. HO. wH. NO.H OH. OH. ON. ON. NO.H O0.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wO. OH. HN. ON. ON. O0.0NH OO. NO.H H0.0 O0.0H OO.HO OO.NH O0.0 O0.0N O0.0 wO.H OH. OO. OO.H OH. OO. O0.00 O0.0 OO. HO.H OH. OO. wO.H OH. OO. OO.H ON. OO. HO.N HN. OO. OO.N HN. OO. OO.N NN. OO. NH.N ON. OO. OH.N wN. OO. OH.N wN. OO. ON.N ON. OO. ON.N ON. OO. ON.N ON. OO. ON.N ON. OO. ON.N ON. OO. OH.N ON. OO. ON.N ON. OO. ON.N ON. OO. NO.N ON. OO. OO.N ON. OO. Hw.N OO. OO. Ow.N HO. OO. OO.N NO. OO. wO.N OO. OO. OO.N wO. OO. wO.N OO. OO. OO.N OO. OO. OO.N OO. OO. OO.N OO. OO. NO.N Hw. OO. OO.N Nw. OO. w0.00 OO.w Ow.HN OO.N Ow. OO. OO.N ww. OO. OO.N ww. OO. OO.N ww. HO. O0.0H OO. OO.NH OO.N NO. OO. OO.H ON. OO. ww.O ON. O0.0 ON.H OH. OO. OO. OO. wo.OO so. :0. OO. co. :0. so. OO. O0.0 oo. oo. oo. oo. oo. ON.OO co. co. oo. oo. 50. oo. oo. oo. OO. oo. oo. oo. oo. co. co. co. O0.0NN OO. OO. OO. NH.O OO.wO wN.ON OO. O0.0w OH.OH OOO OOO NO. HH wOO OOO NOO HOO OOO ONO ONO ONO ONO ONO wNO ONO NNO HNO ONO OHO OHO OHO OHO OHO wHO OHO NHO HHO OHO OOO OOO OOO OOO OOO HO OH wOO OOO NOO HOO OOO OON OON OON OON l02 cv.mmmoo. wH.Nq oo. qv. wO.H 0v. OO.H mq. mo.H ow. HH.H Ow. mH.H mg. wH.H mg. wH.H mq. wH.H om. ON.H Hm. NN.H mm. wN.H mm. ON.H vm. mm.“ vm. Hm.H mm. mm.H on. mm.H Om. Om.H mm. Ow.H mm. ww.H ow. ww.H Ho. Ow.H Nw. mw.H mm. ww.H ww. ww.H mo. ww.H om. ww.H Ow. Hw.H mo. mo.~ mo. ww.H O0.0000.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. NO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. ON. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. Ow. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. wH.OOH wH.OOH wH.OOH Ow.OOH O0.00H O0.00H w0.00H O0.00H O0.00H ON.OOH H0.00H w0.00H ON.OOH O0.00H O0.00H w0.00H H0.00H O0.00H Ow.OOH O0.00H ON.HOH OO.HOH HH.NOH OO.NOH H0.00H Ow.OOH O0.00H ON.wOH OO.wOH ON.OOH ON.OOH Oz mm>¢4 OOO mmfidz AHOO OO.H OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. O0.0NO OH.OH ON. OO. OO. HO. HO. NO. NO. OO. OO. wO. OO. OO. OO. OO. OO. OO. OO. Ow. Nw. Ow. ww. Ow. Ow. Ow. OO.N Ow. HO. OO. H0.0 :._, NO.HNO ON.OOO O0.0N OO.N OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. HO. OO. OO. OO. Nw. ON.H ZQHOOO> O0.0w NH.H wH.H OH.H OH.H ON.H NN.H ON.H ON.H ON.H HO.H wO.H OO.H OO.H Hw.H ww.H Ow.H Ow.H NO.H wO.H OO.H OO.H OO.H OO.H OO.H HO.H OO.H OO.H OO.H NO.H I, .unymeu. ...O w_mw H O0.0 OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OH. OH. OH. HH. HH. HH. NH. NH. OH. OH. wH. wH. wH. OH. OH. OH. OH. OH. mmjgiu L . H ~h.. 4: x Ow.HN OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. OO. — OZ szdmnmsm .gzOO L . . JBDOOZO H ww. H0.000HOO ww. O0.0 NH OO. OOO OO. wOO OO. OOO OO. NOO OO. HOO OO. OOO OO. OOO OO. OOO OO. OOO OO. OOO OO. OOO OO. wOO OO. OOO OO. NOO OO. HOO OO. OOO OO. OwO OO. OwO OO. OwO OO. OwO OO. OwO OO. wwO OO. OwO OO. NwO OO.N HwO OO. OwO OO. OOO Nw. OOO wH.w OOO I03 muqudm mH0>mmOmm ¢:\O OO+L::33:;. m E: 30+OOOOOOO. J O moz¢q¢m LZOO E: wOumOOQDOO. u moz¢4¢m mme¢3 OHOO OOO. O w OOO. O O OOO. O N OOO. O H Azzvoqummd OZOthuHHmmd .OZ MEDHO> m0.0z ZHmflmamDO H¢322¢ .m>¢ I ZOHfifimemH 22 OO. n Om OHO>mmmmm MBHOOOZOU ddsz 22 OO. n HO 020m mBHOOmEOU AOZHO O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. Amev AZZV AmeO HEEO UZOU HO> UZOU Qmm OMBQB Qmm OOOQS 111OOHO>mmmmmIII IIIII OQZOO lllll OHZmOZOU Adsz 22 O. u Hm OMde HdDQH>HQzH 2H2 22 H.OOH u Om wHHOOOZOU AOZHO 0.0HO H.OOH 0.00H 0.00H mmh<3 AHCO AdOOB 0.00 w.Hw 0.00 O.wO N.OO H.ON O 0.0H N.OHH O. O 0.0H N.OHH O. O 0.0H N.OHH O. O O O O w O N H v—ONMV r—ONMV 02 40> szflmlmDO HNMV w u Oxm Oz m\O;*z wO0.0N u zémz ZOHO mm Onmm W\m‘cz mmN.MN fl >WQ PW ON0.00 u 2H2 HO0.00 u X<2 wO0.0w u 24m: .20 OUHOOHOOOO ZHmdm 104 OO. OH.OH OO Ow O0.0 OO. OO w;.O NH OO. OH.NO O0.00 O0.0 OO. OO. H;.OO HH NO. O0.0w w0.00 OO.w Ow.HN OO O0.0NN OH NO. H0.00 HH.ON wH.N OO. OO. O0.00 O HO. OO.wO OH.HN OH.H OO. OO. N0.00 O HO. ON.OO N0.0N Ow.H OO. OO. OO.wO O HO. HH.Ow N0.0N Hw.H OO. OO. OO.HO O OO. wH.OO Ow.OH wO. OO. OO. OO.wwH O OO. w0.00 O0.0 OH. OO. OO. OO.OOH w OO. O0.0 OO.N OO. OO. OO. OO. O OO. Nw.ON O0.0 OO. OO. OO. Ow.O N OO. O0.00 OO.N OO. OO. OO. N0.00 H H¢O\OO szv HEZO AZEO HZZO HZZO «EEO M Em OHmH> 0 OOO 0 OOO Hadm m 02 OOOOB mam 302m OMOH¢> ZHO¢m OHOBZOZ m>¢ O. O w.OO 0.00 0.000H w O. N. w.HH 0.0H 0.000H O O. O. O. N. w.HH 0.0H O.JOOH N O. O. O. 0.0 N.HH 0.0H 0.000H H O mOmU N momu H mOOU H¢O\OV HZEV HZZV HEZV OZ H¢:\wmvmm JOOZZO m>4 OUHOOHB om ZOH HO\No\Oo OZOOOZO <:\O OO+OOOOOOO. n O 22 OO+mOOOOOO. H O 105 BOHOZH 2: OOO. n HOOO ZO HHdmszm :2 OOO. u mo¢mmmm 2: OOO. n onfidmOmd>m Omuozm OHO>mmOmm m BmUDDm OZOm szdm Hdszz< m>¢ wHHm mocmumuwm \ OUUOOOZ O.H ZOHOmm> Um ZmH HO\NO\OO OBOOOBO O0.00 n O>¢O mmmmem OOOOIOOOOO OH. H mxdo mmmmhm ZMOOOEHZ OH.HO u O>¢O Ommmbm mmDB¢mmmsz OO.H u mwdo mmmmam mm8¢3 Owdo mmmmhm szdm H¢322¢ m>< 22 wO.NN H >mQ BO 22 ON.ON H z¢m2 OH» mmedz OZ Ommm O\O.¢Z ON0.0w n Xdz 106 OUHOOHOdOO mm943 HHHU¢ ZO 2H2 ODZDx H£m\oxv OOO. n 2 OOO mHmdfim OB m>HEU¢ H¢=\va OOO. u 2 OOO m>HBU¢ ZO ZHZ ODZD: H<:\va OOO. n ZOHBHBU¢ H4:\Oxv OOO. u 304m m qumdq OB m>HBU¢ H4:\Oxv OOO. u mx¢emo m Ad:\oxv OOO. u midfim: Z A4I\va Ow0.00 u ammofimg OOZ H¢:\Omv OOO. u OHmH> m HOO A4:\va OO0.0 u HOOOO OHmH» OOz A¢:\Omv OON. u HOOO OHme OOZ H4m\wxv OOO. u m UHz¢me H ZHmdm H¢DZZ¢ m>¢ wHHm mucmummmm \ OULOOOZ O.H ZOHmmm> Um ZmH HO\NO\O: 03mmm3O ¢r\9 OOO. u w 2: OOO. H O OOHO>mmmmm 20mm OOOH quH» ¢:\E OOO. H > 22 OOO. u 0 OOZOm 20mm OOOH QHmH» ¢I\O OOO. u w 22 OOO. n O ZOHOBDO mO OOO n mdmz >mO OHO u Qmmm :flmz n mmmz :mmz O0.0H ON.OOO OO. O0.0w OO. O0.00 wO. wL.nO wO.N H_.O OO. OH.HN OO. N0.0N HO. N0.0N OO.N w.OH H0.0 O0.0 OO.N OO.N Nw.H O0.0 OO.H OO.N OOO Ommm mUHBmHfidfim OHIBZOZ wLn r-‘NW‘ O (\ HN 1—1v—4 HNMVLDle‘mmO H 108 HO. OO. HO. HO. OO. NO. 2 O OO+mOHOOwO. OOO.| ONO. NH ON. NO. OO. OO. HO. HO. 4 H mmO ZDZ Na¥mm ZOO mmOHm 0mm Ny*m 23m HQOJH O0.0quN"OH OO. HO. wO. wN. HO. OO. OO. O 2 OO+MwOOHON. HOIOOOOOHO. HonMOOOOOO. HOIMOOOOOO. OH.OO NO. OO. HO. wN.: HO. HO. OO. d ”mZHB ”MEHE OO. OO. ON. OO. OO. HO. 02ngm UZszHmmm NO. NO. OO. OO. Qmmm >mo OHO Odmz >MO Dem Qmmm z¢m2 mfimz :mmz OO.H OO. OO. NO. NO. HO. HO. HO. mmO ommm OO NH OH \DF‘CDON REFERENCES Abott, M. B., J. C. Bathust, J. A. Cunge, P. E O’Connell, and J. Rasmussen. 1986. An introduction to the European Hydrological System- System Hydrologic European, “SHE”, 1. History and philosophy of a physically-based, distributed modeling system. Journal of Hydrology 87: 45-59. Anderson, M. G., and T. P. Burt. 1985. Modeling Strategies in Hydrological Forecasting, edited by M. G. Anderson and T. P. Burt, John Wiley, New York. Beasley, D. B., L. F. Huggins, and E. J. Monke. 1980. ANSWERS: A model for watershed planning. Transactions ASAE, 23(4): 938-944. Beven, K. J. and E. Wood. 1983. Catchment geomorphology and the dynamics of contributing areas. Journal of Hydrology 65: 139-158. Beven, K. 1989. Changing ideas in hydrology - The case of physically - based models. Journal of Hydrology 105: 157-172. Beven, K. Surface water hydrology-runoff generation and basin structure, Rev. Geophys.,21(3), 721-730. Biswas, A. K., 1975. “System approach to water management”. New York: Mc Graw Hill in A. K. Biswas, ed. Chow, V. T., 1959. Open-channel hydraulics. Mc Graw-Hill, New York. FAO 1990 “ Report on the Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements.” Food and Agriculture Organization of the United Nations (FAO). Roma, Italy 28-31 May. Fledman, A. D. 1981. HEC models for water resources system simulation: Theory and Experience Adv. Hydrosci. 12, 297-423. Friedman, R. C. Ansell, and S. Diamond. 1984. The use of Models for Water Resources Management 20(7): 793-802. Goodman, A. S. 1983. Principles of Water Resources Planning. Prentice Hall Englewwod cliffs, New Jersey. 109 110 Graf, W. L., Fluvial Process in Dryland Rivers, Springer-Verlay, New York, 1988. Green, W. H. and G. A. Ampt., 1911. Studies in Soil Physics, 1. The flow of water through soils. Journal of Agriculture Science 4: 1-24. Hawkins, R. H. 1975. The importance of accurate curve numbers in the estimation of storm runoff. Water Resources Bulletin 11(5): 887- 891. Hjelmfelt, A. T. 1986. Estimating peak runoff from field-sized watersheds: Water Resources Bulletin 22(2): 267-274. Hyde, R. F. and N. J. Vesper. 1980. International clearinghouse for groundwater, models, repp, Office of Technology Assessment, Washington, DC. Hydrologic Engineering Center. September 1990.”HEC-l, Flood Hydrograph Package.” US Army Corps of Enginners, Hydrologic Engineering Center, Davis, CA. Johansen, N. B. J.C Imhoff. J. L. Kittle. and A. S. Donigian. 1984. Hydrological Simulation Program-FORTRAN (HSPF): User’s Manual for Release 8-EPA-600/3-84-066. U. S. Environmental Protection Agency, Athens, GA. KINEROS, A Kinematic Runoff and Erosion Model: Documentation and User Manual. U. S. Dept. of Agriculture, Agriculture Research Service, ARS-77, 130pp. Lane, L. J. 1982. Distributed model for small semi-arid watersheds. Journal of Hydraulic Engineering, ASCE 108 (HY10)21114-1131. Lane, L. J and M. A. Nearing, 1989. USDA-Water Erosion Prediction Project: Hillslope Profile Model Documentation. NSERL Report No.2. Leonard, R. A., W. G. Knisel and D. A. Still. 1987. GLEAMS: Groundwater loading effects on agricultural management systems. Transactions ASAE 30(5): 1403-1428. Loague, K. M., and R. A. Freeze. 1985. A comparison of rainfall-runoff modeling techniques on small upland catchments, Water Resources Research 21(2), 229-248. 111 Michaud. J., and S. Sorooshian. 1994. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed, Water Resources Research 30(3), 593-605. Nicks, A. D., and L. J. Lane. 1989. Weather Generator. In: Lane, L. J. and Nearing, M. A. (Editors) USDA-Water Erosion Prediction Project: Hillslope Profile Model. NSERL Report No. 2, USDA-ARS National Soil Erosion Research Laboratory, Purdue University, West Lafayette, IN.47907. Nicks, A.D., 1974. Stochastic generation of the occurrence pattern, and location of maximum daily rainfall. In: Proc. Symp. On Statistical Hydrology, August-September 1971, Tucson, AZ. Misc. Publ. 1275, pp:154-l71 Ott, W. R. 1997. Environmental Modeling and Simulation (Washington, DC: EPA. Parker, M., J. G. Thompson, R. R. Reynolds, Jr., and M. D. Smith, 1995. Use and Misuse of complex models: Examples from water demand management. Water Resources Bulletin 31(2): 257-263. Penman, H. L. 1948. Natural Evaporation from open water, base and grass. Proceedings of Royal Society. London A 193: 120-146. Penman, H. L. 1963. Vegetation and Hydrology. Tech. Comm. No.53, Commonwealth Bureau of Soils, Harpenden, England. 125pp. Rallison, R. E. 1980. “ Origin and Evolution of the SCS Runoff Equation”, Proceedings of the Symposium on Watershed Management ‘80, ASCE. Richardson, C. W. and J. T. Richie. 1973. Soil water balance for small watersheds. Transactions ASAE 16(1): 72-77. Richie, J. T. 1972. A model for predicting evaporation from a raw crop with incomplete cover. Water Resources Research 8(5): 1204-1213. Risse, L. M., B. Y. Liu, and M. A. Nearing. 1995. Using Curve Numbers to determine baseline values of Green-Ampt effective hydraulic conductivities. Water Resources Bulletin 31(1): 147-158. Russell, G., and J. Miller. 1990. Global river runoff calculated from a global atmospheric general circulation model, Journal of Hydrology 117, 241-254. 112 Singh, V. P.,(editor) 1988. Hydrologic Systems, Vol. 1. Rainfall-Runoff Modeling. Prentice Hall, Inc., Englewwod cliffs, New Jersey. Skaggs, R. W. 1978. A water management model for shallow water table soils. Water Resources Research, Institute of the University of North California, Report No. 134. Srinivasan, R. and J. G. Arnold. 1993. Basin scale water quality modeling using GIS. Proceedings, Application of Advanced Information Technologies for Management of Natural Resources. Spokane, Washington., 17-19 June 1993. Thomas, W. A., and W. H. Mc Anally, Jr. (1991). “ User’s Manual for the Generalized Computer Program System: Open-Channel Flow and Sedimentation, TAB-MD.” U S Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. U. S. Army Corps of Engineers. 19. Hydrologic Engineering Center, HEC-1, User’s Manual. UNESCO (1979). World map of Arid Zones. USDA Soil Conservation Service, 1983. National Engineering Handbook. Hydrology Section 4, chapter 19 . U. S. Government Printing Office, Washington, DC. Weltz, M. A. 1987. Observed and estimated (ERHYM-ll) water budget for south Texas rangelands. Ph.D. dissertation. Range Science Department, Texas A&M University, 173pp. Wilcox, B. P., W. J. Rawls., D. L. Brankensiek.,L. and J. R. Wight, Predicting Runoff from Rangeland Catchments: A Comparison of Two Models, Water Resources Research 26(10), 2401-2410, 1990. William M. Alley., 1984. On the Treatment of Evapotranspiration, Soil Moisture Accounting, and Aquifer in Monthly Water Balance Models. Water Resources Research 20(8) 1137-1149. Williams, J. R. and H. D. Bendt. 1977. Sediment yield prediction based on watershed hydrology. Transactions ASAE 20(6): 1100- 1104. fll¥n¥ 113 Williams, J. R., C. A. Jones., and P. T. Dyke. 1984, A model approach to determining the relationship between erosion and soil productivity. Transactions ASAE 27(1) pp. 129-144. Wischmeier, W. H. and D. D. Smith. 1978. Predicting rainfall erosion losses, a guide to conservation planning. U. S. Dept. Agric., Agric. Handbook No.537. Woolhiser, D. A., R. E. Smith, and D. C. Goodrich. 1990. Yeh, G. T., (1991). “ A Three-dimensional Finite Element Model of Density Dependent Flow and Transport through Saturated- Unsaturated Media.” The Pennsylvania State University, Department of Civil Engineering, University Park, Pennsylvania. Young, R. A., C. A. Oustad., D.D. Bosh. and W. P. Anderson. 1987. AGNPS, Agricultural Non-Point-Source Pollution Model. A Watershed Analysis T001, 1987. USDA, Conservation Res. Rep. 35, Washington, DC., 77pp. 1 I llHl111111111111111111111111111111HI 31293016914289