
'1‘. 5151 111 - IIITIVI1I'I1I1I‘I‘,
p
-
r

.
o
b

“
W
V
-
w

v
-

1
.
2
.
.
.
1
.
.
.
“

t
o

u
—

.
.
-

—
-

v
.

.
-

v
r
'
w
—
V  

',.I'.II '. .9 ~'~ "'17'111" ’ I .‘ I-1IIIII: u ’1 :I12, 1 1. . I11I'1III 91H",. {41"

-, M55 935N515" ‘”’.1m--“5'1'‘n' ‘ :3 W ‘199&15 .. 55%m"
D" ;11"11“ 1 £15111" 1'II3 I'JI""II‘III I' 31513 513131.3'’H1j'1‘‘Il41513.“! I I'L' 511:1“1‘5II II‘vL‘I 'l '5”;'1" ""515-5'151‘,“'1'1_"1‘11:1”?{551jutfi‘1'”:51?in?3515'""£th"fig;

53-5551“""'.'I"53'f'::."'.1I‘ I'M1:111“I '11,”9'1":"'5" “553151331512131.111}”1991'1-3"I""''33'".1""'5'" 1'33"'"',' """""3""“5'5".""' 5"3'33'5'3%1‘135"' '3'?"

' 5 51.65 "fit-'9I 1- I ”5..I' I. I ‘9" . 59-15." 99:5.W"" "'3‘ I "'115"nhl"5H. 3""?' '5'5-3'“;551
15I1'I"i""'1 33")3"'51'3''15.". .IaI"'1' 1113;1d'11113 111‘II5‘11‘11:3:111:13;1'31'11311'35'"I51""'3";'"'-3"111:35WI“‘1‘11‘'1'51.131:11.3'95IIII 11111": 15'51'fi'5%I%§}'E"51'5§"3"?1'515121‘?

II I; . IIIII1.1.;--IIIIIIII 1II§1zIII ,1II1I :I3'1IIH'II'I3I :-MI1,.113"1I1““5"fil5:31: I .l‘1"1:53;!51155131125135.

  

  

"x

'
' ' 'ii':_I'"''1'?"3"1"?1'

3 53.1"? .11 '30" '1. {15153:
"' '—'

' . I . .
I I“ "‘n l I I . l"' ”11.5.." , - .1I‘;

‘ " ' "L I, """"9''I u I"I1‘.' '1.'1 3" 3":1' '11' L- f" , '1"I' 1 I" '3'» I'I .I'I 515131111 '15! ”Ll.-

III :3"?

'
' "II \ '5 ‘I'

""‘l'""99."'99’-.: Is 991..“ ‘9 '9'". “1.5-.“ 'II:1. " ‘' ""”95‘1119955"

' ' TI"I';1I1,'\"I,

     
  

    

   

     

    

  

    

  

    

   

       
  

    

      

     

     

   

  
Il',11'1'!'515

   
I .

"1I' :6; 35 . I55355b1,flth11:11
#11111111:1.1111111'5'1'5II‘LI'I] ‘3‘” ~1' '1'3131'55'13'"“13';"n'511‘

""5595:3:35“1133'9 "1141"”15I313""L3515'144135'1'35{'9'319'3'3““‘1'5II

I‘m.11111111545115.11111'5 {"515 5‘1‘I5151“lb;..3'1“1111411111""111111111113'33I'111115112311,5‘1I

wI wnufim111I 1,51311w.1,19111.111I519s1mrw'ufiq1II-9qm,w,

I'9'iI."IIq1:11"1:! .1 “159'~9111315. .I'J-I 'I... "4-151"111,111.15.1: .z, 1111;111“:3 1::

I; .1 51.155291 "1"II 151135131515155551:959.III-53591511III!

III ’

. - .11: "9‘ I
5.1151111,3111‘l131l'5'5511'1351”1:5 11115311:""5""5111”11'111133""3551'H'r'45151,?“313113;“;

5'3'»:

51-.
.5311“!'51.
III-1.": II1~.I11

1%:9"

51

191‘

j
.
.
.

,
-

,
.
.
.
'
.

,
.

l
-

p

7
1
.
7
.
.
.

-
.
~
o

.
V

l

.
.

'3II11

 

.
.

0
"

1
—
.
.
.
-

.
.
.
-
:
.
.
:
3
.

'
3
6
“
.

'
3
1
.
.
.
,

.
-
.
-
.
.
.
,
I
H

.
n
i
‘
»
:
g
r
,
"

-
-
:
E
Z
‘

-
.
w
:
-

"
t
«
w
:
-

1

51'3""15» I11“.1:11!"5113')

v.

     

 

    

     

   

   

            

  

.35 . . . 11".I'I‘9" "WWII3:1,!

5 3555 " 131511.353"" "'.13'n1""£i11!'5 .'i" ‘3I'LL'2‘UI‘L "2313' -. : 1'5'3 3531'~1":!'-f‘: I. '3'5'3'5'1'51

11399111159 5:1~'='I '6-1;591-91111;..9151‘6‘5''5'"I"""“"91'333‘1.fa:'33"',':‘-; ‘-'"'1',' ,1'1 115'?'1':, "3'13",-., "'3'19- 9 4'33""'."1""

91113111139:- .I111115-115115"5“? 11'...-115511'1‘915111311-3.I5*6

5'9}: 3'9 7' 33.5“}"'"'535":'1'11‘1111115911,, 5" "'""

It. ' ' '3‘ 'I 3'1. z"

5

,. 5-1.1-1:. .,
11';1-.“IF-$99113;I15511-195159'1-

. . ......1,1' ' J9;"""" "5515515539155"I‘ 9555':535555551';

199%.? 5511555169513395" "'3'59'9""" d"‘3'

13.159’1'999 " '

   

  
    

      
  

 

     

    

    
   

   

  

     

  

     

  

    

171:.

5mm“;1‘:II' '31:
uI 10 11- 1,1'3'1'1-

  l'.I

  

 

' ‘ Pt 5 .III‘;

.0 '5‘{9%}:’111 9"" 1

'3 ~ 9" .II;1 9.‘ 311;:3.111

.‘ 11:,' '5,“4;”.

1:353I""'113513'3'"'
I11156115111311II1¢I:'J5 ;1

  

  

  

   

   

 

       

   

   

  

  

 

  

 

  

  

  J“

    

      

 

    

  

   

"'1111'! ’5 I1.2

513'31: 1',“

.1 .I "; l 1".”1,35' .I' =1I21MJ'351'I5I511111 HI-

firm" ' "5";{1'1511' 35h“; 3 I

IIIIII II ,-
,;: UL]

  

 

7
.
2
.
-
.

  

    

   

  

   

    

      

. "I; , .1 I .131951'11'" {II‘II‘5'3”

"'1";3551111154:11551395315315"“1"1'5'" .13"35119 "515119"'My“.11."
.1411” J5I111'13111-11 5111111111. 55"" "135'3"'3':'331 fig”I411 1113:1811 , 4115*“

5111115“ II'1’1‘11'.'I3~5‘‘: 1111111,5115,1111III I011 -quz 111;” 1'9-1313:1":why-1111+

911-1155‘.9915‘91 I19.115111 9‘6 . 9-9:.6.--9-.:-;.:g";_-;-....‘6%

15'1'1-1111'115'55511I..11.11111 1553' .1111 H . ,99; ~19.

9‘1 VII 119I-II-I I " ‘9‘9 .' I = 11 1.41-9.11:
55115-151111 1"‘1i11515-h”5'11" '1 333199151; 1‘59

f1; I ‘ .'

A
7
9
’
.

1
.
1
V
{
1
‘
}
.
1

5" . II 911159-13.. . ,,
5555555555591115551555"15555" ,5"""9

.9. 3113.51

11193111;'If1I-4111WI)" , 



Illillllllll'illlllllllllllll’lllllilllllllll
3 1293 01691 4529

This is to certify that the

dissertation entitled

Using Beam Polarization to Study

Ancmalous Electroweak Physics and

Supersymnetry

presented by

Michael C. Wiest

has been accepted towards fulfillment

of the requirements for

 

PhD degree in _Eh¥sics__

Da449€//

Majdr professor /

Date NOW/4‘91? V 2 3 J9? 7I

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771



 

 

LIBRARY

Mlchlgan State

University

 
 

PLACE IN RETURN BOX

to remove this checkout from your record.

To AVOID FINES return on or before date due.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 
 

 

 
 

 

 

 

 

       
 

1/98 wagon-m
um“

 



USING BEAM POLARIZATION TO STUDY

ANOMALOUS ELECTROWEAK PHYSICS

AND

SUPERSYMMETRY

by

Michael Christian Wiest

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

1997



ABSTRACT

USING BEAM POLARIZATION TO STUDY

ANOMALOUS ELECTROWEAK PHYSICS AND SUPERSYMMETRY

By

Michael Christian Wiest

This thesis considers the phenomenology of two classes of possible fundamental in-

teractions and fields not present in the Standard Model (SM) of high-energy physics.

The topics are associated because each example considers how a collider experiment

with a longtitudinally polarized beam might be used to study the interactions.

It is technically feasible to polarize the proton beam at the Fermilab Tevatron col-

lider. In Part I we model an experiment at a polarized Tevatron, to compare its

capabilities to the existing unpolarized Tevatron. In particular, we estimate the

precision with which the Standard Model (SM) electroweak triple-boson couplings

could be tested; that is, we calculate limits on possible anomalous electroweak triple-

boson couplings, for a polarized and an unpolarized Tevatron. For comparison to

the Tevatron, and as a simpler illustrative calculation, we first calculate the rate of

W+W‘ production at two e+e‘ colliders, LEPII and the proposed NLC. This pro-

cess is sensitive to the triple-boson couplings, so the event rate allows us to estimate

limits which could be placed on anomalous couplings using data from these two col-

liders. We then calculate the rates of W+W’ production and W + '7 production at

the Tevatron pf) collider with and without a longtitudinally polarized proton beam,

to gauge the increase in sensitivity with a polarized beam. Because accurate polar-

ized parton distribution functions (ppdf’s) would be required for precise predictions,

we also consider how measurement of single-W production with a polarized proton

beam could be used to improve the accuracy of the ppdf’s. The physical decays of



the produced W bosons are included in all of these calculations.

In Part II we identify the region of parameter space for which the proposed NLC

would be able to detect a very light (order keV) gravitino, which is required in gauge-

mediated models of supersymmetry-breaking, and allowed in “no-scale” models of

unified supergravity. To map this accessible parameter space, we calculate the

production of gaugino pairs which decay to photons and gravitinos: 3+9." —r XiXi -—>

77GG’. In such an experiment, the polarized electron beam of the NLC would make

it possible to eliminate a background process.



Dedicated with love to my parents,

Toni and Michael
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Chapter 1

Introduction

The field denotes

this body, and wise men

call one who knows it

the field-knower.

Know me as the field-knower

in all fields—what I deem

to be knowledge is knowledge

of the field and its knower.

Lord Krishna, Bhagavad Gita

1.1 The Standard Model

The Standard Model (SM) describes the interactions of the most fundamental known

particles in nature. The SM is a quantum field theory [1], which means that the

particles detected in scattering experiments are represented by locally interacting

quantum fields. The Lagrangian of such a theory is specified by a list of its



constituent fields and its symmetries. A symmetry is an invariance of the Lagrangian

under a group of transformations of the fields. The SM Lagrangian is invariant under

“gauge,” or local, transformations corresponding to the group

SU(3)C X 311(2)], X U(1)y,

where SU(N) can be represented by the group of unitary complex N x N matrices

with determinant one, while a U(1) transformation is equivalent to multiplication

by a complex phase.

1.1.1 Quantum Chromodynamics

The subscript C on the SU(3) group refers to the quantum number associated with

this group, which is called color. Because it governs the interactions of colored

particles, this sector of the Standard model is known as Quantum Chromodynamics

(QCD). The fundamental colored matter particles (fermions) are called quarks. Each

quark field comes in three colors, so the quarks are represented by SU(3) triplets.

There are six of these color-triplet fields, labelled by their “flavor”: up, down,

strange, charm, top, and bottom. The matter fields and the gauge group determine

the gauge bosons. The QCD gauge bosons are called gluons because they hold

together the quarks which make up protons and neutrons. They fall into the adjoint

representation of SU(3), which includes eight independent color states.

QCD has the property that only color-singlet states can be isolated and observed:

quarks or gluons are “confined” within color-singlet bound states, hadrons, which

are the observed strongly interacting particles. The observational consequence of

confinement is that when a scattering process produces quarks or gluons in the final

state, these will “hadronize” to be observed as “jets” of hadrons.



1.1.2 The Electroweak Sector

The SU(2);, x U(1)y sector is called the electroweak theory [2]. These two groups

are lumped together because their product group is broken down to U(1)EM by the

Higgs mechanism, which will be discussed in section 1.1.3. The subscript L means

that only left-handed fermion fields couple to the SU(2) gauge bosons. The Lorentz

character of the interaction vertex is vector minus axial vector, or V — A; this

combination projects out the left-handed component of a fermion.t The left-handed

fermions, including quarks (color triplets) and leptons (color singlets, or “colorless”)

fall into doublets; while the right-handed fields are represented by SU(2) singlets,

which do not interact with the SU(2) bosons. The upper and lower components

of an SU(2);, doublet are distinguished by their flavor name, or mathematically by

the third component of the “weak isospin” quantum number, I3. I3 = i% for the

upper and lower components, respectively. The gauge field is again in the adjoint

representation, so it has three components, called W1", Wf, and W; .

The U(1);» quantum number is called weak hypercharge, denoted by Y. The

U(1)y gauge field is denoted by B“. The values of the weak hypercharge are chosen

to satisfy a relation with Ia and the electromagnetic charge Q (in units of e):

Y —““— 2(Q — I3).

1.1.3 The Higgs Sector

With the inclusion of quarks, leptons, and gauge bosons as outlined above, we

can write down a gauge invariant Lagrangian. However, mass terms for any of

these fields, of the generic form m2<I>l<I>, would not be invariant under a SM gauge

transformation. As the corresponding particles are known experimentally to be

 

lThis statement is strictly true only for massless fermions. Throughout this thesis quarks and

leptons will be approximated as massless. This approximation is good at the collider energies we

will be considering, because E > me“.



massive, the theory described so far is unacceptable. While the dynamics of the

theory, codified in the Lagrangian, respects the SM symmetry, the fields that we

would like to call fundamental are found in Nature to be massive, so they do not

respect the symmetry.

The SM solution to this problem is called the Higgs mechanism [3]. The general

strategy is to associate the gauge non-invariant physics with the ground or vacuum

state, and retain the invariance of the Lagrangian. When the ground state of a

system does not possess the full symmetry of the system’s Lagrangian, the symmetry

is said to be “hidden” or “spontaneously broken.”

We postulate a complex scalar field, called the Higgs field <I>, which is an SU(2)

doublet; and we postulate a Higgs potential that forces the field to have a non-zero

vacuum expectation value (vev), thereby breaking the SU(2);, x U(1)y symmetry.

We may perform a gauge transformation on the Higgs doublet which eliminates

three of its four degrees of freedom, so that the Higgs field can be written in terms

of its vev and one real field. When we transform the Higgs field we must make the

corresponding transformation of the gauge fields. When the Lagrangian is rewritten

in terms of these transformed fields, we find that mass terms have appeared for

three of the gauge bosons, and the mass is related to the vev of the Higgs field. In

the argot, one says that the Nambu-Goldstone boson degrees of freedom have been

“eaten” by the gauge bosons to acquire their mass.

The SM symmetry of the original Lagrangian is “hidden” by the Higgs’ dynam-

ics, but our transformed Lagrangian respects a residual U(1) symmetry, called the

U(1)EM. We require the gauge boson associated with this unbroken symmetry to be

massless, which identifies it as the photon, A”, and fixes the physical combinations

of the fundamental fields, the Wui and Z3. This physical SM Lagrangian is shown

in Appendix A.



1.1.4 Generations, the CKM Matrix, and CP violation

We now have an economical description of massive gauge fields interacting with

fermion matter fields, but Nature is not so simple. There are three copies of each

fermion field which differ only in mass. In addition to the electron field there are

muon and tau fields with the same quantum numbers as the electron, except that

they are orders of magnitude more massive. Similarly, the .S'U(2)L doublet of up and

down quarks is supplemented by the heavier charm-strange doublet and heaviest,

the top-bottom doublet. Each of the three sets of fields is called a “generation,” or

“family,” while a specific field within a generation is identified by its “flavor.”

To complicate matters further, the eigenstates of the interaction Lagrangian for

these various flavors of fields are not equal to the mass eigenstates observed in

scattering experiments. This means that mixing among the generations is present.

The mixing can be parametrized by three angles and a complex phase arranged in

a 3 x 3 matrix in generation space, called the Cabbibo—Kobayashi—Maskawa (CKM)

matrix [4]. It turns out that we can relegate all the minng to affect only the 13 = --%

quarks; the lepton mass eigenstates are equal to their interaction eigenstates. An

important experimentally verified prediction of this formalism is the absence of

flavour-changing neutral currents at “tree level,” the leading order of perturbation

theory. For example, a charm quark very rarely decays to an up quark.

Experiments with the decay of K mesons, containing strange flavor quarks, show

that the weak interactions are not invariant under combined charge-conjugation (C)

and parity (P) transformations. The complex phase in the CKM matrix provides

a convenient parametrization of CP violation, because CP invariance requires that

MEKM = MCKM. (However, it is not yet known whether CP violation in the

Standard Model is solely due to this complex phase in the CKM matrix.)



In this thesis we will neglect the CKM mixing, as the CKM matrix is near enough

to the identity for our calculation.

1.1.5 Summary of the Standard Model

The SM identifies the constituents of matter as a set of interacting boson and fermion

fields. The Lagrangian postulated to describe their dynamics is invariant under a

set of transformations corresponding to the group SU(3)0 x SU(2);, x U(1)y. The

ground state, or vacuum, of this system of fields does not respect the SM symmetry.

The non-zero vev of the Higgs field leads to a set of effective, or physical fields,

including massive vector bosons.

The fermions of the SM are the quarks and leptons. The quarks are “col-

ored,” because they transform as triplets under an SU(3)0 transformation. The

left-handed quarks are also doublets under .5'U(2)1” while the right-handed quark

fields are SU(2);, singlets. The leptons are color singlets and again the left-handed

leptons are SU(2)L doublets, while the right-handed leptons are singlets. There are

three generations of quarks and leptons differing only in mass; the CKM matrix

parametrizes the mixing between generations.

The bosons of the SM are the vector gauge bosons and the scalar Higgs boson.

The Higgs is a colorless SU(2)L doublet. The mediators of the color interaction

are the SU(3)C octet gluons, which are SU(2)1, singlets. The physical electro-

weak bosons are the massive Wi, Z0, and the massless photon A. They are linear

combinations of the SU(2);, X U(1)y gauge bosons, which transform under the

adjoint representation of their respective simple groups.

This set of fields along with the dynamics specified by the Lagrangian has been

adequate thus far to account for the results of high-energy scattering experiments,

although precision tests are under way to test for deviation from the SM. Despite



its phenomenological success, there are reasons to believe that the SM is not a com-

plete theory of elementary particles. For one, the gauge groups and parameters

of the SM appear arbitrary. Also, the equality of the magnitudes of the proton

and electron charges is unexplained unless the SM gauge groups are unified into a

larger simple group such as SU(5) Furthermore, the gravitational interaction is

not included in the theory. It may also be argued that the technical “triviality” of

the Standard Higgs sector implies that the model is only valid below some cut—off

energy scale [5]. In other words, the SM must be considered an effective—as op-

posed to a fundamental—theory. However, like the periodic table of elements, the

Standard Model will continue to provide an accurate and economical description of

the phenomena in its domain.

1.2 Triple-Boson Couplings

Because the generators of the Standard model gauge group do not commute, the

gauge bosons must interact among themselves to preserve gauge invariance. The

form and strength of these interactions are fixed by the gauge invariance, so the

measurement of the triple-boson coupling parameters is an important test of the

Standard Model.

In part I of this work we will focus on the electroweak triple-boson couplings.

In particular, we would like to determine experimentally values of the WW7 and

WWZ couplings. Let Wi“(:c), Z“(a:), and A”(:c) denote the fields of W*, Z0, and

7; then the interaction Lagrangian we consider is

£3 : —ig(W,:,W’“ — WLWH‘XA” sin 0w + Z" cos 6w) (1.1)

—igW:W;(A“"5, sin 0w + Z’“’52 cos 9w)

_X;%,_W“+“WJG(AWA7 sin 0w + Z‘“’A2 cos 9w)



where Aw = 6,,Au —6.,A,,, etc. L3 is CP invariant, and gauge invariant with respect

to U(1)EM electromagnetic gauge transformations.

The parameters 5, and A, are related to the anomalous magnetic moment (FW)

and anomalous electric quadrupole moment (Qw)of the W“, as follows [6]:

— —e—(1 + + A )
”W _ ZMW n7 7 2

—e

Qw = —MW2(5, — A,).

The parameters 52 and A2 are similar WWZ couplings. In the Standard

SU(2)><U(1) gauge theory these coupling parameters have the definite values

5, = 52 = 1 , A, = A2 = 0 (Standard Model).

We define A5 by

A5 = 5 —— 1 .

If A5 or A is significantly different than 0 for either 7 or Z0, then the Standard

SU(2) x U(1) gauge theory is not the complete theory of the electroweak interactions.

We can check that the SM Lagrangian from the appendix reproduces £3 with A5

and A both zero. From Appendix A, the SM electroweak triple-boson interactions

are included in:

1 _ _

£¢11(SM) = — §|Dqu “Dqul2

— -;-[g cos awzij + eAW](W+"W“" — W““W+").

The second line is equal to the second line of £3, because the symmetric part of

W+“W“" contracted with the antisymmetric field tensors vanishes; and because

e = gsin 9w. To expand the first line and show that it includes the first line of £3

above, recall that

D” E 0,, + ig(Z2 cos 0w + A,J sin 0w).



Then the terms cubic in the vector fields are

igWJuKZO'“ cos 9w + A“ sin 0W)W"’ —— (Z°"’ cos 0w + A” sin 6w)W—"]

— igWJu[(Z°’“ cos 9w + A” sin 0w)W+" - (Z0"’ cos 0w + .4” sin 0w)W+"].

Again, since the tensor Wm, is antisymmetric, when it is contracted with any other

tensor only the antisymmetric part will survive; so we may replace the terms in

brackets, giving finally

_ig(W;'uW““ — W,;,W+“)(A" sin 9w + Z” cos 0w),

as claimed.

In the Standard Model, A5 and A can be induced at loop level, but only of

the size of 0(92/16'52) % 0.003 at one-loop level from naive dimensional analysis

[7]. Thus setting stringent experimental limits on the anomalous WW7 or WWZ

couplings is an important test of the Standard Model; actually discovering large

anomalous interactions would be a sign of new physics. We treat L3 as an effective

Lagrangian and only use it for tree-level calculations.

To determine the WWV couplings (where V stands for 7 or Z0) it is necessary

to measure the experimental cross-section, or the distribution of some kinematic

variable, for a scattering process that depends on the WWV coupling, and compare

the measurement to a calculated prediction. In subsequent chapters we will consider

a few processes to estimate their sensitivities to the WWV couplings.

Current (95% confidence) limits on A5 and A from pp —» W7,WW,WZ at

Fermilab, as reported in References [8] — [12] are shown in Table 1.1. The limits

on individual anomalous couplings were calculated assuming the other anomalous

couplings were zero.

Because the anomalous triple-boson amplitudes increase with energy as s/M3y,

to preserve the unitarity of the amplitudes these analyses were performed treating
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Table 1.1: Current 95% CL. limits on anomalous couplings from direct cross section

measurments. A subscript 7, Z indicates that the photon and Z anomalous couplings

were assumed equal. All couplings but those being limited were fixed at their SM

values. All entries shown were calculated with A = 1.5 TeV, except the last, from

Reference [12], for which A = 1.0 TeV.

 

 

 

Experiment/Luminosity Process pp -—+ Ref. Limits

D0 lu7(l = e,p) [8] -1.6 < A5, < 1.8

13.8pb“1 —0.6 < A, < 0.6

D0 81/ij [9] —0.47 < A5,,2 < 0.63

96 pb‘l —0.36 < A,,2 < 0.39

—1.38 < A5, < 1.70

—1.21 < A, < 1.25

—0.60 < A52 < 0.79

—0.40 < A2 < 0.43
 

 

 

D0 W7, WZ,WW [10] —1.38 < A5,,2 < 1.70

13.8pb“l Combined —0.44 < A,,2 < 0.44

CDF lV7(l = e,p.) [11] —2.3 < A5, < 2.2

19.6pb“1 —0.7 < A, < 0.7

CDF lej [12] —0.89 < A5,; < 1.27  19.6pb-l —0.81 < A,,2 < 0.84
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the anomalous coupling parameters as “dipole” form factors. For example,

A5(s) = US$772? (1.2)

with a similar expression for A. A may be interpreted as the energy scale of non-

Standard gauge boson dynamics. Both Tevatron detector collaborations found that

for sufficiently large A, above about 200 GeV, the limits on non-Standard couplings

are relatively insensitive to A. In this thesis we treat the anomalous couplings as

point couplings, independent of s. That is, we set A5(s) = A5, which is valid

at energy scales much smaller than A. This approximation causes our estimates of

bounds on anomalous couplings to be more stringent than those calculated including

the form factor behavior. Low energy values of anomalous couplings provide a lower

limit on A of order 1 TeV [13]. In the worst case, if A z 1TeV, our NLC limits

(«3 = 500 GeV) would be about 35% smaller than those calculated using form

factor couplings.

The fact that the anomalous vertices violate unitarity at high energies can ac-

tually be used to derive limits on the couplings. The authors of Reference [14] find

for A3 greater than about 1 TeV,

1.86 0.85

[A51] < 7: [A52] < 'A—z,

0.99 9.33
[A7] < 7’ Hz] < (13)

with A in TeV. To compare these unitarity bounds to the bounds obtainable from

direct cross section measurements, we anticipate a result of Chapter 2, namely that

the Next Linear Collider (NLC) could probe anomalous couplings of order 0.01.

Therefore, direct experimental cross section measurements will set stronger limits

on anomalous couplings than these unitarity bounds, unless A is greater than order

 

:The definition of A in Ref. [14] is not identical to Eq. (1.2), but the interpretation as the scale

of new triple-boson dynamics is the same.
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10 TeV. Inversely, if A is greater than 10 TeV, the unitarity bounds imply that we

could not observe anomalous couplings at the NLC.

One can also derive limits on anomalous couplings by an analysis of precision

(loop-level) electroweak measurements [15]. A DPF study [16] reports that a global

fit of electroweak data, including for example measurements of lepton gyromagnetic

ratios and electric dipole moments, yields the following 10' (68 % C.L.) constraints,

A5, = 0.056:l:0.056

A52 = 4001940044

A, = —0.036i0.034

A2 = 004940.045, (1.4)

assuming that only one anomalous coupling varies at a time. The authors of [16]

consider it unlikely that non-Standard physics will only produce one anomalous

triple-boson vertex. They emphasize that these bounds disappear if the coupings

are allowed to vary simultaneously, due to the possibility of cancellations among the

couplings. In this case one is left with limits of order 1 from precision electroweak

measurements. Furthermore, the authors of [14] caution that bounds such as these,

which make use of loop calculations, ”should be taken with a grain of salt,” because

of ambiguities inherent in calculating loop effects in non-gauge models. They point

out that if one only analyzes unambiguous low-energy quantities, like (9 — 2)”, the

resulting bounds are again only of order 1. (Reference [17] discusses bounds from

(g — 2),, and from the precision measurement of the Z —» b5 branching ratio at

LEPII and BNL.) We conclude that possible bounds on anomalous couplings from

direct experimental cross section measurements are worth investigating; Part I of

this thesis is devoted to calculating these bounds at a few particle colliders.
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1.3 Beam Polarization

Polarizing one or both incoming beams longtitudinally in a collider experiment can

enhance the precision of studies of parity non-conserving physics, or reduce parity

non-conserving background processes. Because the electroweak interaction violates

parity conservation (e.g. the W couples only to left-handed fields), electroweak

processes are the SM processes most sensitive to polarization.

Experimenters can potentially use this fact in two ways. To study an electroweak

process, a polarized beam would allow the experimenter to choose the polarization

with the higher cross section and greater event rate. On the other hand, to study a

parity-conserving process with an electroweak background, the polarization which

minimizes the background may be chosen. As an example consider single W pro-

duction from e+e“ annihilation, where we may polarize the electron to be right or

left-handed. Because the W coupling to fermions is pure left-handed, we will see

no W’s from a right-handed electron beam. Now, the unpolarized cross section is

the average of the two polarized cross sections. Therefore, if we choose the left

polarization, the polarized cross section will be twice the unpolarized cross section.

This will be true of any process for which the diagrams involve a. W line connected

to a massless initial fermion.

The calculation of polarized cross sections is straightforward in terms of helicity

amplitudes. The helicity eigenstates are definite polarization states of the initial

elementary fermions. At an e+e“ collider this means we simply include the helicity

amplitudes corresponding to the chosen polarization. At a pp collider, we may p0.

larize the initial hadron; however, since we can only calculate amplitudes involving

the elementary fields of the SM, i.e. “partons” within the proton, therefore to relate

the polarization of the beam to the helicity of the interacting constituent “partons”

from the proton, we will need to make use of polarized parton distribution functions
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(ppdf’s), which give the probability to find a gluon or quark in a polarized proton.

These functions will be introduced in Chapter 3.

1.4 The Organization of This Thesis

Part I of this thesis is concerned with comparing the sensitivities of various collider

experiments to anomalous electroweak triple-boson vertices. In Chapter 2 we will

estimate these sensitivities at two e+e“ colliders. The purpose of Chapter 3 is

to determine to what extent polarizing a p1“) collider, the Fermilab Tevatron, can

enhance its sensitivity to anomalous couplings. In Chapter 3 the importance of the

polarized parton distribution functions will become apparent. Chapter 4 examines

how these might be constrained by studying single W production at a polarized pp

collider.

Part II of this thesis deals with supersymmetry (SUSY). After a brief introduc-

tion to SUSY, we explore the phenomenology of a very light “gravitino” particle,

which arises in certain mechanisms of SUSY-breaking. The role of polarization in

this part will be to eliminate a background process.



Part I '

Anomalous Electroweak

Triple-Boson Couplings
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Chapter 2

Probing Anomalous Triple-Boson

Couplings with e_e+ —> W—WJr

2.1 Introduction

Processes which produce electroweak bosons offer the most obvious testing ground

for the triple-boson vertices. We will focus here on W pair production, as it is simple

to calculate and has a relatively large cross-section. In part I of this work we are

interested in the potential of beam polarization for improving sensitivities to triple-

boson couplings. The Tevatron, with center of mass energy J3 2 2 TeV, is the

existing collider with sufficient energy to produce a W pair. Before turning to the

p13 collider calculation, we consider production of a pair of W’s from e“e+ collisions

at LEPII and at the proposed Next Linear Collider (NLC). This calculation will be

somewhat simpler than the p13 calculation, so the analysis may be more transparent.

The authors of [18] estimated the sensitivity of LEPII to anomalous triple-boson

couplings through W pair production, without explicitly calculating the decay of

the W’s. We will reproduce their calculation here, including the decays and realistic

cuts, and focusing on one particular anomalous coupling, A5,. They assumed for

LEPII J3 = 190 Gev and a luminosity of 0.5fb“1yr“1, as will we. We will not

consider the partial polarizability of the LEP beam. The proposed NLC would have

J3 = 0.5 TeV, very high luminosity (50 fb“1yr“1), and better than 90% polarization

16
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of the electron beam [19]. The authors of [20] estimated the sensitivities to anoma-

lous couplings at the NLC, using a x2 analysis of a triple-differential cross-section.

We will instead use a single-differential cross-section, the cosine distribution of the

final electron, which was identified in [18] as the most sensitive variable to the

anomalous couplings. We will thus be able to directly compare our LEPII and NLC

sensitivities. In our NLC calculation we will assume 100% polarization.

In the pp analysis in the next chapter we will use only the total cross-section

to calculate limits on the anomalous couplings, because the uncertainties in the

polarized parton distribution functions (ppdf’s) are incompatible with the precision

we would hope to achieve by a x2 fit. For the e+e“ case at hand, we will also estimate

sensitivities using the x2 statistic to rule out values of anomalous couplings for which

the final state electron cosine distribution, do/dcos9e, deviates significantly from the

standard model distribution. By comparing the sensitivities from the x2 calculation

to those from the total cross-section calculation, we can get an idea of how the

sensitivities in the pi) case could improve when the ppdf’s are better constrained.

A realistic study must include the decay of the W bosons. Following references

[18, 20] we will consider the semi-leptonic decay channel:

e—e+ —) W-W+ —) I‘qu’.

The leptons included are l = e, p, and the hadronic decay channel includes q = u,c.

At the NLC we calculate cross-sections with a left-polarized electron beam, and at

LEPII we consider the unpolarized process. We choose this decay mode because

allowing both W’s to decay leptonically would reduce the cross-section, whereas the

four-jet hadronic mode would have a large QCD background.
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2.1.1 Calculation

To calculate the cross-sections, we began with the helicity amplitudes corresponding

to the Feynman diagrams in Figure 2.1. The definitions of our helicity eigenstates

are collected in Appendix B.1. Helicity amplitudes are most convenient in a study

involving polarization, as at the NLC, because the helicity amplitudes correspond

to definite polarization states. To calculate a polarized cross section, we include

only the helicity amplitudes corresponding to the chosen polarization, instead of

summing the amplitudes-squared for every helicity.

To calculate a cross-section from the amplitudes, we must integrate the phase

space of the process. We perform this integration using a Monte-Carlo event gen-

erator based on the VEGAS routine [21]. We store all the simulated events in an

HBOOK NTUPLE, from which we can project any differential cross-section.

Figures 2.2 and 2.3 compare the differential cross section in W“ rapidityl of our

Monte Carlo calculation to an analytic calculation based on the amplitudes of [18].

The Monte Carlo distribution is uncut at this stage, but includes the W decay with

a narrow width.

The cuts we imposed on the cross-section calculations are shown in Table 2.1.

 

AR = \/(A¢)2 + (A1,)2 is a measure of the separation between two particles, where

Ad; and A1] are their separations in azimuthal angle and rapidity, respectively. Re-

quiring AR to be greater than 0.7 ensures that after a final parton showers into a

jet it will still be distinguishable experimentally from the other final state particles.

The cuts on AR and on the absolute value of rapidity are imposed on all final state

particles except for the neutrino. The cut on transverse momentum (PT) is imposed

 

lRapidity y is a measure of polar angle defined by y 5 %ln fit, where P, = Pcos 0, 0 being

the angle from the s-axis. The s-axis is defined to point in the direction of the proton beam at

pp colliders, and the electron beam at e+e“ colliders. Zero rapidity corresponds to the “central”

0 = 90 region; large positive or negative rapidity approaches 0 = 0 or 0 = 180 degrees, respectively.

(Throughout this thesis c and A are set equal to l.)
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Figure 2.1: Diagrams for e“e+ —-> W'W+ —* l-l'qu-’
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Figure 2.2: Rapidity distributions of the W“ at LEPII from analytic amplitudes

(smooth) and uncut Monte Carlo calculation (histogram).
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Figure 2.3: Rapidity distributions of the W“ at NLC from analytic amplitudes of

(smooth) and uncut Monte Carlo calculation (histogram).

Table 2.1: Final state cuts.

 

   

LEPII NLC

Minimum PT 10 GeV 20 GeV

Maximum Rapidity 1.5 1.5

Minimum AR 0.7 0.7 
 

on all final state particles.

Although these cuts reduce the total number of events, they enhance the depen-

dence of the cross section on anomalous couplings. Figure 2.4 shows the rapidity

distribution of the final electron at LEPII for the SM and for A5, = 0.5, with-

out cuts. Where the cross section is large, at high rapidities, the dependence on

anomalous coupling is small. The largest deviation from the SM occurs at low and

central rapidities, where the cross section is smaller. This means that when we

cut out events with high lycl, we cut out mostly events from the region with weak

dependence on anomalous couplings. Furthermore, since the effect of anomalous
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couplings increases with energy, the low PT region, which we cut out, is less sen-

sitive than the high pt region. Figure 2.5 shows the electron rapidity distributions

after implementing the cuts of Table 2.1. Still, the cuts we chose are probably not

optimal, so perhaps the limits we find could be improved somewhat.

With these cuts, the total SM cross section is 3.43 picobarns at LEPII, and

0.66 pb at the NLC (with left polarized electron beam). The total cross section as

a function of anomalous photon couplings is shown in Figures 2.6 and 2.7. This

dependence of the cross section on anomalous coupling will allow us to rule out

couplings for which the cross section is significantly different from the SM.
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Figure 2.4: eta/dye at LEPII, without cuts, for e+e“ ——i W+W“ -> e“17¢u,cdd_,cd.

Solid line is SM, dashed is A5, = —0.5.
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2.1.2 Estimation of Sensitivity to Anomalous Couplings

Here follows an explanation of how we estimated the sensitivity of W pair production

to anomalous triple-boson couplings. We assume the anomalous couplings are in

fact zero; the limits we place on their allowed values from hypothetical experiments

at LEPII and NLC indicate the sensitivity of these experiments to the anomalous

couplings.

For simplicity, we focus on the A5, coupling, assuming that A, 2 A52 = A2 = 0.

To estimate the experimental limit that could be placed on an anomalous WW7

coupling, we must estimate the uncertainty in an experimental measurement of the

cross section a’. For this analysis we simply assume that the standard deviation in

the number of events N is EN = \fN, i.e. that N obeys Poisson statistics. (For

our purposes we do not include the efficiency of the detector.) The measured cross

section would be a' = N/L where L is the integrated luminosity. The 3-sigma upper

limit on 0' (i.e. 99.7% confidence level) expected from Poisson statistics would be

(N + 3\/N)/L. Thus the measurement would rule out a cross-section larger than

503 = 3% . (2.1)

Similarly, for a 1-sigma (68.3% C.L.) or 2-sigma (95.5% C.L.) limit, we replace the

0' + 603, where

3 in this equation with a 1 or a 2, respectively.

To estimate the limit that could be placed on A5, or A,, assuming the anomalous

couplings are in fact zero, we compare the uncertainty 603 to the variation of the

calculated a as a function of the anomalous coupling. At the 3-sigma confidence

level A5, would be in the range with

|a'(A5,) — a'(A5, = 0)] < 503 . (2.2)

We obtain the results in Tables 2.2 and 2.3, for the experimental limits that
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Figure 2.7: Total cross section at NLC for e+e“ —> W+W“ —> l“i7q§’ vs. A5,.
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Table 2.2: LEPII limits on A5, from the total cross section.

 

 

LEPII Total Cross Section Limits

1 Sigma 2 Sigma 3 Sigma

A5, +1.35 +1.52 +1.68

—0.23 -0.41 —0.56

 

 

 

Table 2.3: NLC limits on A5, from the total cross section.

 

 

NLC Total Cross Section Limits

1 Sigma 2 Sigma 3 Sigma

A5, +0.0031 +0.0062 +0.0095

~0.0029 —0.0058 -0.0085

 

 

 

 

could be set on the anomalous couplings of the photon. We emphasize that the

numbers in Tables 2.2 and 2.3 do not include possible experimental uncertainties.

This procedure gives us limits on anomalous couplings, assuming the anomalous

couplings are in fact zero. In an experiment we would want to find the most probable

value of the couplings based on our measurement. A glance at Figures 2.6 and 2.7

shows that for any measured value of the total cross section there correspond two

values of anomalous coupling. This ambiguity possibly can be avoided with the

polarization capability of the NLC.

Figure 2.8 shows the total cross section as a function of A5, for each polarization,

for the process e+e“ —+ W+W“ at the NLC. We calculated these cross sections from

analytic amplitudes given in [18]. To see how these plots may resolve an ambiguity

in A5,, imagine we perform the experiment with a left-handed electron beam and

find a cross section of 15 pb. This corresponds to A5, of about -0.1 or 0.26. If we

then measure the right-handed cross section, a value of 1 pb means A5, = -0.1;

while 2 pb means A5, = 0.26. In other words, after finding two possible values of

A5, from the left-handed run, the right-handed run will distinguish between them
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Figure 2.8: Total cross section at NLC for e+e“ —> W+W“ vs. A5,. The solid and

dashed curves are for left and right polarized electron beams, respectively.

if the right-handed cross section is significantly different at the two values of A5,.

Figure 2.8 also shows why we chose to study the left polarized process at NLC.

The right-handed cross section is much smaller, without showing any greater de-

pendence on the anomalous couplings. The right-handed cross section is smaller

because the t-channel diagram in Figure 2.1 is dominant, and vanishes in the right-

polarized case due to the pure left-handed coupling of the W boson.
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2.1.3 Using x2 to Estimate Sensitivities to Anomalous Cou-

plings

We also found limits on anomalous couplings by a x2 analysis. The x2 statistic

provides a measure of the deviation of a difierential cross section from the SM

distribution. The strategy is similar to the above. Instead of limiting the deviation

of the total cross section from the SM, we limit the x2.

The reduced chi squared is defined by [22]

(0k - Etc)2

X3111“_ (112——
El:

where d is the number of degrees of freedom. For our purposes, (I will be the

(2.3)

number of bins into which we histogram a differential cross section. 0,, is the

number of events observed, and E1, is the number of events expected, in the le‘”

bin. The subscript cap is a reminder that this quantity is defined in terms of an

experiment. In our theoretical study we are not making an actual observation, but

merely simulating a possible experiment. N = Lo relates the number of observed

events to the luminosity and the theoretical cross section. Using this formula to

relate the numbers of events in Eq. (2.3) to cross sections, we define a theoretical

reduced “chi squared” in terms of a binned differential cross section:

 

)Ith(A"7): £§1(UAM’U;M:SMk)a (2'4)

which is a function of the anomalous coupling. a". is the integrated cross section

in the k‘“ bin. The quotes around “chi squared” indicate that it is a theoretical

quantity, not distributed according to the chi-squared distribution— a distribution

which refers to the results of experiments. We will nevertheless treat the theoretical

chi squared as a deviation from the SM that could be measured if the anomalous

couplings were not zero. Then, assuming the anomalous couplings are zero, we rule

out those anomalous couplings that correspond to “unlikely” chi squareds (at some

confidence level).
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We will choose a distribution, calculate the chi squared as a function of anoma-

lous coupling, and rule out large chi squareds. The authors of [18] found that the

angular distribution of the final electron is most sensitive to the couplings we are in-

terested in, so we will use the cosine distribution, do/d cos Be, as they did. Figure 2.9

shows this differential cross section at each collider for two values of A5,.

For calculational convenience and to remove any bias in )2,”,,(A5,) due to Monte

Carlo fluctuations, we fitted our Monte Carlo data to a smooth function. The func-

tional form we choose is cubic times Gaussian in the electron cosine and quadratic

in anomalous coupling. We rebin the smoothed distribution to use Eq. (2.4).

In principle we can bin our differential cross section into an arbitrary number of

bins. The sensitivity to anomalous couplings of a distribution is dependent on how

we bin that distribution. One restriction on our binning is that the bin widths must

be large enough so that the number of events corresponding to the cross section in

a particular bin is statistically significant. This means the number of bins cannot

be too large. This turns out not to be a limiting factor for the process we are

considering. We calculated sensitivities for various numbers of bins, and found that

dividing do/d cos 9, into 2 or 3 bins is most advantageous. This is initially suprising,

as one might imagine that dividing the distribution into more bins increases our

sensitivity to detailed features of the distribution. However, if there are no “features”

to be distinguished in the anomalous distribution, increasing the number of bins is

actually a disadvantage. This conclusion can be made plausible by considering the

chi-squared for an experiment whose observed and predicted distributions differ only

by a constant. In this case the highest value of 52:” will be obtained for only one bin,

which is equivalent to calculating the squared deviation of the total cross section.
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31

Table 2.4: LEPII limits on A5, from )22 of cos 9., distribution.

 

 

LEPII 722 Limits on A5,

(1 1 Sigma 2 Sigma 3 Sigma

1 +1.35 +1.52 +1.68

—0.23 —0.41 —0.56

2 +0.35 +1.57 +1.73

-0.23 -0.36 -0.46

3 +0.42 +1.60 +1.75

—0.26 —0.37 —0.46

 

 

 

 

 

 

The highest value of the reduced chi-squared, however, does not necessarily cor-

respond to the greatest sensitivity to anomalous coupling. We rule out a particular

value of A5, if 2,2,,(A5,) is greater than some cut-off 522(d, CL), which is given by

the chi-squared distribution and depends on the number of bins d and the desired

confidence level. The question of the optimal number of bins to use is therefore

answered by the detailed calculation.

Plots of 523,, versus anomalous coupling are shown in Figures 2.10 and 2.11, for

2 bins. We report estimated limits on A5, from LEPII and the NLC in Tables 2.4

and 2.5; for 1, 2, and 3 bins. We note that higher numbers of bins than 3 give poorer

limits on A5,. Also note that the limit calculation for a chi-squared with one bin

is equivalent to the calculation from deviations in the total cross section discussed

above.

2.1.4 Conclusions

We estimated sensitivities to A5, at LEPII and the proposed NLC. W pair

production is sensitive, at the 3 sigma level, to anomalous couplings of order 1 at

LEPII, and less than order 0.01 at the NLC. We conclude that the NLC would be

able to probe the loop-level corrections to the triple-boson couplings.
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Table 2.5: NLC limits on A5, from 522 of cos He distribution.

 

 

NLC 5&2 Limits on A5,

d 1 Sigma 2 Sigma 3 Sigma

1 +0.0031 +0.0062 +0.0095

-0.0029 -0.0058 -0.0085

2 +0.0038 +0.0055 +0.0077

-0.0036 -0.0052 -0.0071

3 +0.0041 ' +0.0062 +0.0083

-0.0039 -0.0058 -0.0076

 

 

 

 

 

 

The LEPII sensitivities we find are worse than the sensitivities estimated in [18]

to the anomalous Z couplings. This disparity is not surprising, since our choice

of one W decay channel reduces the total number of events. Those authors ex-

pected about 4000 events at LEPII, whereas after cuts we find about 1600 events.

Assuming similar sensitivity to photon and Z couplings, the reduction in statistics

corresponds to a reduction in estimated sensitivity. In fact, a W pair production

experiment cannot distinguish an anomalous Z coupling from an anomalous photon

coupling from the total cross section alone. In the event of a non-standard exper-

imental result, one may resolve this ambiguity with complementary data from an

unambiguous process, such as W plus photon production, which only depends on

the photon couplings. (In the next chapter we will estimate sensitivities to W plus

photon production at a pp collider.)

We find that using a x2 analysis generally improves our sensitivity only marginally,

by about 15% or less. It turns out that the optimal number of bins for a chi-squared

analysis to limit A5, is only two, because for the very small non-standard cou-

plings we are simulating, there is little difference in shape between the Standard

and non-standard differential cross sections.

In the next chapter we estimate sensitivities to anomalous couplings at the
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Tevatron, and at a proposed Tevatron with a polarized proton beam. The fact

that the protons and anti-protons are not elementary particles will add a level of

complication to the calculation.



Chapter 3

Probing Anomalous Triple-Boson

Couplings with Polarized

Proton—Antiproton Collisions

3.1 Introduction

In the last few years the SPIN collaboration has shown in various technical notes

that it is feasible to polarize the proton beam, longitudinally or transversely, during

the colliding mode of the Tevatron [23]. Taking proton polarization as a possibility,

we examine one of the possible physics topics that could be pursued with such a

beam configuration - to study tri-boson couplings of the weak gauge bosons. (Other

interesting physics topics involving polarization at the Tevatron collider can be found

in Ref. [24].) I

In this chapter we consider two processes in proton-antiproton collisions

19+13-->W+ (+1“ Vz)+7,

p+f)—>Wi (a£i(§})+WI(—+2jets) .

 

'After this work was completed, we learned that a polarized colliding beam is less likely to

be built in the near future at the Tevatron. However, since a polarised collider is technically

feasible, we believe it is still interesting, and potentially useful, to explore theoretically the possible

experiments with such a machine.
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For t we include both e and p. The unpolarized cross-section for pp —t W“7 is

equal to that for pp -+ W+7 in a CP invariant theory such as £3, the tri-boson La-

grangian defined in Section 1.2. However, we are interested in scattering of polarized

protons, for which W+7 is more interesting than W“7, as we will see below.

The purpose of this chapter is to explore the experimental search for anomalous

couplings in proton-antiproton collisions, assuming the protons are longitudinally

polarized. The antiprotons are assumed to be unpolarized. With the Tevatron

collider in mind [23, 24], we consider the center-of-mass energy equal to 2 TeV.

The reaction cross-section for a process involving the WW7 or WWZ coupling

depends on the longitudinal polarization of the proton through spin-dependent par-

ton distribution functions. The coupling of W5 to quarks (ud or other flavor com-

binations) is a V—A (vector—axial vector coupling) interaction, so the parton-level

cross-section depends strongly on the helicities of the quarks: for massless quarks a

Wi couples only to left-handed (L) quarks and right-handed (R) antiquarks. Thus

the parton-level process depends strongly on helicity. The question is whether the

proton process depends strongly on proton helicity. If a polarized proton contained

equal parton densities of left-handed and right-handed quarks, then the proton

cross-section would not depend on the proton helicity. However, we know that the

densities of L and R quarks are not equal for polarized protons. Therefore, the pp

cross-section will be different for left-polarized and right-polarized protons.

Our calculations of the polarized-proton cross-sections depend on polarized par-

ton distribution functions (hereafter abbreviated ppdf’s), and these are only known

with limited accuracy. The ppdf’s are defined as follows: For any parton type f, we

define

5(2) = gush/W»

= density of L (or R) partons in a L (or R)‘proton,
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12(2) = gas—Are»

= density of L (or R) partons in a R (or L) proton,

where :c is the fraction of the proton momentum carried by the parton. There are

nine different parton types

f=uvalsdualsusea=aseasdsea= seaagss=§sc=asb2bstzt°

In the ppdf’s we used, the u and d sea distributions are equal, but different than

the s and c distributions, and the b and t distributions are zero

u,ea(:c) = dm(2:) ; b(z) = 0 ; t(:s) = 0 .

Figure 3.1 shows the polarization dependence of the ppdf’s we used, by plotting

a: Af(:1:) for several parton species. The ppdf’s depend on momentum scale Q; i.e.

f5: = fi(a:,Q2). Fig. 3.1 corresponds to Q=80 GeV. (These ppdf’s are calculated

from a program based on Morfin-Tung parton distribution functions [25, 26].) The

ppdf’s have been measured, to some limited precision, from polarized deep-inelastic

lepton scattering [27]. For example, recent data from the Spin Muon Collaboration

(SMC) at CERN provide a measurement of the polarization difference, integrated

over :1: and weighted by eg/e2 [28]:

r1 62 1 -

I E .1. 2’) j,- [Af(=v,Q’) + 23:32.00]
' 0 f=u,d,s,c

0.142 :l: 0.008 i 0.011,

where the momentum scale is Q2 = 10 GeV’. The ppdf’s used in our calculations

have

I = 0.138 for Q2 = 10 GeV2 ,

I = 0.163 for Q2 = (80 GeV)2 ,
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Figure 3.1: Polarized parton distribution functions. The curves are zAf(:r) us :1: for

parton types um; , dual , u,ea(= duo) , g, which are the most important partons in

our calculations.

where the Qz-dependence is determined by renormalization group equations. For

Wi production the relevant momentum scale is of order Mw. The spin-dependence

of the quark densities is rather small, as indicated by the small value of I,l (30

one question that motivates our study is whether the cross-sections for these Wi-

production processes depend significantly on the proton helicity.

In Section 3.2 we calculate the cross-section for the process pip —» W+7, where

A = L or R denotes a left-handed or right-handed proton. This process is sensitive

to the WW7 anomalous couplings. In Section 3.3 we consider the process mp —§

Wi WI, which is sensitive to both WW7 and WWZ anomalous couplings. The

purpose of these calculations is to explore whether polarization of the protons can

increase the sensitivity of measurement of anomalous couplings.

 

II = .138 is small compared to the prediction I = .17, based on the Ellis-Jafi'e sum rule, which

assumes vanishing strange sea polarisation [29].
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3.2 W+7 production

The Feynman diagrams for the process p + p —> W+ + 7 are shown in Figure 3.2.

One diagram has a WW7 vertex, so the cross-section depends on the anomalous

photon coupling parameters A5, and A,. This process can be used to place lim-

its on the anomalous couplings. Calculations of the unpolarized cross-section with

anomalous couplings were described in References [30] and [31]. For polarized scat-

tering we expect the cross-section for left-polarized protons to be larger than for

right-polarized protons, because the produced W+ line is always connected to a

left-handed quark line. We only consider the process pip -’ W+7, and not W“7,

because the former is more sensitive to the proton helicity. A W+ comes from a u

quark, whereas a W“ comes from a d quark. The helicity dependence is stronger

for 11. than d in a proton, as seen in Figure 3.1. To investigate whether polarizing

the proton beam would yield better limits on A5, and A,, we have calculated the

polarized and unpolarized cross-sections. The results of this study are reported in

this section.

3.2.1 Method of Calculation

The cross-section for p; + p —) W+ + 7, where A is L or R for left-handed or

right-handed protons, and with subsequent decay W+ —-> I“ + 11;, is expressed as

fl

a(,\) = i... dzdz’[&LR(2P1,2:'P2)ui(a:)d(z') (3.1)

+5'LR(€D’P2: 3P1)J=F(3)“(z’)l

where the notation is as follows: The parton cross-section &LR(p1,p2) is for the

process uL(p1)+ dR(p2) —> W“ +7. The upper sign on ui(:c) and d;(:c) is for A = L

and the lower sign is for A = R. The factor of % averages over the spins of the
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Figure 3.2: Feynman diagrams for the process ud —+ e+u7.

unpolarized p. The first line in Eq. (3.1) corresponds to u,d coming from p,p', and

the second line corresponds to d,u coming from p, 13', respectively. a: and z’ are the

parton momentum fractions in the proton and antiproton respectively. The parton

distribution functions are, for example,

ui(:c) = u quark with same/opposite helicity as p

d(:c') = d quark in unpolarized p

d;(:c) = d quark with opposite/same helicity as p

11(3') = u quark in unpolarized 5.

We also add the contribution for the parton process c + 3 -—» W+ + 7, which is,

however, small. (We ignore Cabibbo-Kobayashi-Maskawa mixing in this work.)

Finally, we add the cross-sections for two lepton decay modes of the W+; that is, t

can be either e or p.
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The parton cross-section is calculated from helicity amplitudes for the reaction.

In this reaction there is only one nonzero helicity amplitude, with Au = L and

Ag = R, because we approximate the quark masses as 0. We calculate the helicity

amplitude M[,3 analytically. Then the parton cross-section is

r

a“. = d<I>|MLR|2 (3.2)

where f d<I> indicates a phase space integral.

The phase space and :c, z’ integrations are performed by a Monte-Carlo program,

based on the Vegas Monte-Carlo integration routine [21]. The style of the full Monte-

Carlo program is the same as the program PAPAGENO [32].

The kinematic cuts we impose on the final (1' and 7 are:

 

rapidity I’ll] < 3 9 [777] < 3 : (3'3)

transverse momentum pm > 20 GeV , p1, > 20 GeV , (3.4)

AR 2 \/(A1,)2 + (A03)? > 0.7 , (3.5)

where AR is the separation of the PL and 7 in 1] — 96 space. The only cut on the

neutrino is a transverse momentum cut p1,, > 20 GeV; that is, we require

ET > 20 GeV . (3.6)

At the parton level, there is no background to this process from other interac-

tions, as long as we require the W+ to decay to leptons. There is an experimental

backround due to confusion between jets and photons in the detector [31]. How-

ever, we do not consider the experimental background here, because our interest is

to examine the effect of proton polarization, compared with the unpolarized case.



 

2.0 I I I I I I I I I I IN I I I I I I I

_
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- <> p(R) ‘
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V
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Figure 3.3: Total cross-section (with cuts in Eqs.(3.3)—(3.5)) for polarized protons

us anomalous coupling A5,, assuming A, = 0. The unpolarized cross-section was

calculated separately using CTEQ2 parton distribution functions.

3.2.2 Results

Tables 3.1 and 3.2 show the results of our calculations: the W+7 production cross-

section for polarized and unpolarized protons with different values of anomalous

couplings A5, and A,. The cross-section includes the branching ratio 2/9 for W+ —+

(+114, where the decay modes I = e and l = p. are added. (The branching ratio factor

2/9 is included in all cross-sections reported hereafter.) The cross-section is smallest

for the Standard Model values A5, = 0 and A, = 0. The cross-section depends more

strongly on A, than on A5,. Figures 3.3 and 3.4 show plots of the cross-section as

A5, assuming A, = 0, and us A, assuming A5, = 0. As expected, the cross-section

is larger for left-handed protons; 0'(L) is roughly 3 times U(R), and so roughly 1.5

times the unpolarized cross-section. The unpolarized cross-section is by definition

equal to %(o(L) + o(R)).
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Figure 3.4: Total cross-section (with cuts in Eqs.(3.3)—(3.5)) for polarized protons

vs anomalous coupling A,, assuming A5, = 0. The unpolarized cross-section was

calculated separately using CTEQ2 parton distribution functions.

Figures 3.3 and 3.4 show only the total cross-section, for the cuts specified in

Eqs. (3.3)-(3.5). Analysis of differential cross-sections with respect to relevant kine-

matic variables—such as the x2 analysis of the previous chapter—may provide more

precise tests of anomalous couplings [31]. For example, Figure 3.5 shows the dis-

tribution of p7, for polarized proton scattering, with A5, = 0 (solid line) and

A5, = —1 (dashed line). The shapes of the distributions are similar for left- or

right—handed protons, but there is an overall difference of magnitude.
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3.2.3 Limits on A5, and A,

Tables 3.1 and 3.2 are results from the Monte Carlo calculations of cross-section

vs anomalous couplings. There is a fairly large effect of proton polarization: 0'(L)

is generally about a factor of 3 larger than 0'(R). But to see whether an experi-

ment with polarized protons would yield a significantly better measurement of the

anomalous couplings, we must estimate the experimental limit that could be set on

A5, or A,, for a given integrated luminosity. The sensitivities to these anomalous

couplings are estimated using the same procedure as in Chapter 2. That is, we as-

sume the number of events N detected is predicted by the SM, and an uncertainty

in this number given by W. (This is an underestimate of the experimental un-

certainty; for instance, it does not take into account the experimental background

of jets misidentified as photons.) The anomalous couplings which correspond to a

three-sigma fluctuation of the number of events are the largest anomalous couplings

consistent with a SM result, at the 99.7% confidence level; in other words these

values of the anomalous couplings are the 30' limits on the couplings.

The left-polarized proton provides a better limit on A5, or A,, because it has

a larger cross-section. The improvement in precision from left-polarized protons,

compared to unpolarized, is not very great, because 0'(L) is only about 1.5 times

larger than 0(unpolarized), and because the precision on 0' is only proportional to

01/2. The result is that the total cross-section for left-polarized proton scattering

can provide a better limit on A5, or A, than that for unpolarized scattering, better

by about 10 to 20 %.

Another way to consider the effect of proton helicity is to calculate the left-right

asymmetry, defined by

_ a(Ll—"(12)

A- 0'(L) + 0'(R) .

An asymmetry measurement may be accurate experimentally because systematic

 (3.7)
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errors cancel in the ratio. The possible range of A is —1 S A S 1, and A is equal to 0

in a left-right symmetric world. For the parton process qyj’ —-> W+7, we have A = 1

because only left-handed quarks contribute. For the proton process, the asymmetry

is reported in Tables 3.1 and 3.2; we find A z 0.5. However, A depends only weakly

on A5, and A,: A varies by 0(10%) over the range of anomalous couplings consid-

ered. Thus a measurement of A to determine A5, or A, would require high statistics.

3.3 W+W“ production

The process pp—)W+W“ provides a way to test the Standard Model WWV vertices

for both V = 7 and V = Z0, although we may not be able to distinguish the two

couplings from each other unless we can compare to results from the W7 production

process discussed above. We consider the electroweak process

p(A)+p—>W+(—>Z+u¢)+W“(—+d+1“1), (3.3)

and also the process in which the W“ decays leptonically while the W+ decays to 2

jets. The diagrams for the production of two W’s include two electroweak vertices,

in contrast to the background diagrams (discussed below), which only contain one

electroweak vertex. The complete set of Feynman diagrams with the final state Zydfi

includes diagrams that do not have the form of W+W“ production. Figure 3.6 shows

the complete set of Feynman diagrams for the parton process

u+fi-—>W++d+fi, WithW+—+Z+V(; (3.9)

there is similarly a set of diagrams for the process

d+J—>W++d+0, withW+—»Z+u¢. (3.10)

Also, there are similar diagrams for production of W“ +u+d, with W“ —» (+175.

(The complete set of diagrams for the final state fade], or lfiud, includes additional
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diagrams in which the leptons are not decay products of a single narrow Wi.)

These parton processes involve the WWi7 and WWZ vertices in some Feynman

diagrams, so the cross-sections depend on anomalous WWV couplings, i. e. the

parameters A5,, A52, A,, A2. In this section we study the cross-section as a function

of these non-Standard parameters, for polarized protons. The purpose is again to

see whether an experiment with a polarized proton beam would yield a stronger test

of the electroweak triple-boson vertices.

Some, though not all, of the Feynman diagrams in Fig. 3.6 have the form of

W+W“ production, followed by decays of the W’s, one leptonically and the other

into two jets. At 2 TeV center-of-mass energy, the cross-section is dominated by

the W+W“ production. Therefore, as explained further below, we approximate the

cross-section by W+W“ production. The cross-sections for (Bud and fluid final

states are equal in this approximation, because either W is equally likely to decay

leptonically.
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A related process is W35 Z0 production, where the Z0 decays to 2 jets, e. g. ,

u+d—>W+(—>l++iq)+ZO(—>q+rj) . (3.11)

In our calculations we ignore the W5:Z0 production. In a theoretical calculation

the W+W“ production is distinguishable from the W520 production. However,

in an experiment these two processes are tangled together, because they are both

observed as W5 + 2 jets. In our W+W“ calculation we impose a kinematic cut on

the invariant mass M2,- of the 2 jets, making M2, approximately equal to the W5:

mass; specifically we take M2,- between 70 and 90 GeV. (This cut reduces the QCD

background of W“: + 2 jets, as discussed in the next subsection.) But even with this

cut on M2,- there would still be an overlap between W+W“ production and WIZ0

production. The purpose of our calculation is a theoretical study of the effect of

proton polarization on the cross-section. A complete analysis of experimental data

would need to include both the W+W“ and W‘IZ0 processes together.

The method of calculation is similar to that of W7 production in Section 3.1,

but with some differences. In Section 3.2 only one parton helicity combination

contributes, u(L)d(R). Here two helicity combinations contribute, for example

u(L)fi(R) and u(R)1“1.(L), and we include both. In fact, for Standard couplings

the contribution from u(R)fi(L) is very small compared to u(L)i(R), because of

interference between Feynman diagrams, so the parton-level process still depends

strongly on quark helicities. A more important difference is that in Section 3.2 there

was no parton-level background process, whereas here we have a large background

from electroweak+QCD processes.
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Figure 3.7: Example diagrams for QCD production of W“ and two jets.

3.3.1 Background, Approximations, and Cuts

The parton-level background to this process is the production of Wi +2 jets by pro-

cesses with one electroweak vertex and one QCD vertex. Two example background

diagrams are shown in Figure 3.7. All combinations of quarks and gluons in the

initial and final states are included in the complete set. These processes do not in-

terfere quantum mechanically with our doubly electroweak signal process, because

they have a different color structure. For example, the qfig vertex is color octet,

where 9 denotes the gluon, whereas q§7 or qqZ" vertices are color singlet. How-

ever, the final states are indistinguishable experimentally, so the doubly electroweak

reaction is hidden in a background of electroweak-QCD reactions.

We have calculated the background cross-section from the helicity amplitudes for

a complete set of W2t + 2 jets processes [33], with the polarized parton distribution

functions described in Section 3.1. The background reactions should depend strongly

on the helicity of the proton: The produced W‘t must connect to a left-handed quark
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or right-handed antiquark for massless quarks, by the V-A coupling; the density

of quarks of given helicity depends on the helicity of the proton. By contrast,

for the signal reaction the diagrams with WW7 or WWZ vertices do not require

any specific helicities of the incoming quarks. Thus the signal reaction will have

a different dependence on proton helicity than the background. The important

question is whether the signal-to-background ratio in the measurement of anomalous

WWV couplings is better for left- or right-polarized protons.

To reduce the background we impose a cut on the invariant mass M2,- of the 2

jets, putting ng approximately equal to MW. The solid curve in Figure 3.8 shows

the distribution of the invariant mass of the two jets produced by the complete

unpolarized doubly electroweak process with final state qé’W“, with W“ —-> in, for

J3 = 2 TeV. (Figures 3.8 through 3.12 are 30 bin histograms; the vertical axes are

labelled in picobarns per bin.) The qq’ invariant mass is peaked at the W“ mass.

Because the cross-section is dominated by the W“ resonance, we approadmate the

calculation by keeping only the Feynman diagrams that produce a W“W“ pair,

which is an accurate simplifying approximation. Furthermore, we require the qrj’

invariant mass to be approximately equal to the W“ mass: we calculate the cross-

section only for events with MW: between 70 and 90 GeV. The dotted curve in

Figure 3.8 shows the 2-jet mass distribution when we neglect all but the W“W“ pair

production diagrams and also require the 2-jet mass to be between 70 and 90 GeV.

With this M2,- cut, the complete doubly electroweak process is practically the same

as production of W“W“ followed by leptonic decay of Wi and quark-antiquark

decay of WI. For comparison, Fig. 3.9 shows the 2-jet mass distribution of the

background processes with the kinematic cuts listed in Eqs. (3.12)—(3.14) below. The

cut 70 GeV < qul < 90 GeV reduces the total background significantly, because

there is no resonant effect in the background processes.
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Figure 3.8: Two-jet invariant mass distribution for the signal process. The solid line

is the result of the complete calculation of the pure electroweak process p + p —>

qi’W“, with W“ -+ fill; the dotted line is the result of the calculation of W“W“

production, with W“ —> Z!" and W“ —> 2 jets, with a cut on the two-jet invariant

mass (70 < ng < 90 GeV).
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Figure 3.9: Two-jet invariant mass distribution for the QCD background processes

pf) -+ W“ + 2 jets. (The cross-section for W“ + 2 jets is the same, for unpolarized

scattering.)
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In addition to the ng-cut just described, we impose the following kinematic

cuts on all the final-state particles except the neutrino:

 

rapidity [17] < 3, (3.12)

transverse momentum pr > 15 GeV, (3.13)

AR 2 J(An)2 + (A41)2 > 0.7 , (3.14)

where AR is the separation of any pair of final particles not including the neutrino.

In the case of the neutrino, we impose only a transverse momentum cut, p7,, > 15

GeV. That is,

ET > 15 GeV. (3.15)

Figure 3.10 is another comparison between the complete doubly electroweak calcula-

tion, shown as the solid line, and the simplified approximation (W“W“ production

with subsequent W:h decays), shown as the dashed line. Figure 3.10 compares the

J5 distributions, where J5 is the center of mass energy of the parton-level process.

Again, the two calculations are practically equal.

We also consider, separately, a cut requiring large J5, specifically J5 > 340 GeV,

The variable J5 is important because the effect of anomalous coupling increases with

J5. Figure 3.11 compares signal and background as a function of J5. This figure

shows why large J5 is interesting: The dependence on A5 and A is stronger, and the

signal-to—background ratio is larger, for large J5. Figure 3.12 compares signal and

background for J5 > 340 GeV. On the other hand, this energy cut reduces drasti-

cally the total number of events, so it becomes a question of detailed calculation to

see whether it is a real advantage, given the available luminosity. Our calculation

is for J? = 2 TeV. A pp collider with higher center-of-mass energy would produce

more events in the interesting region of phase space with large J5, and provide

stronger tests of the anomalous WWV couplings.
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Figure 3.10: J5 distribution for the signal process. The solid line is the result

of the complete calculation of the pure electroweak process p + p —-> qq’W“, with

W“ —-» In; the dotted line is the result of the calculation of W“W“ production,

with W“ Hill; and W“ —> 2 jets, with a cut on the two-jet invariant mass

(70 < M2,- < 90 GeV).
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Figure 3.11: Comparison of J5 distributions for signal and background processes.

The solid line is the QCD background. The dotted line is the electroweak process,

with zero anomalous couplings; the dashed line is the electroweak process with

A5, = A52 = 0.5.
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It is difficult to determine J5 accurately in an experimental event, because

that requires measurement of jet momenta and missing neutrino momentum. The

z-component of the neutrino momentum p,,z can be obtained up to a two-fold am-

biguity by solving the mass contraint for the W-boson, M3,, = (pg + p..)2. One way

to choose p”z is to select the solution with smaller absolute value, because a hard

scattering process tends to produce final products in the central rapidity region with

large transverse momenta. Given pa, it is straightforward to calculate J5 from the

4-momenta of l, u, and the 2 jets. An alternative way to select large J5 is to require

large transverse mass of the final state of the hard scattering process [34]. However,

we have not pursued these approaches in this work.

3.3.2 Results

For the cross-section calculations that follow, we set Q = J5, where Q is the mo-

mentum scale used in the parton distribution functions . The uncertainties we quote

are only the statistical Monte-Carlo uncertainties. The theoretical uncertainty due

to the choice of Q scale is discussed briefly later. The cross-section includes the

branching ratio 2/9 for leptonic decay of one W into either electron or muon plus

neutrino. The cross-section also includes the branching ratio 6/9 for 2-jet decay of

the other W, W“ —+ ud and W“ —-) c5. (Again, we ignore CKM mixing.) The

overall branching ratio (2/9) x (6/9) = 4/27, as well as the effect of the cuts of

Eqs. (3.12)-(3.14), are always included in the cross-sections reported hereafter for

W“W“ production. Note that we consider separately the rates for l“ + jets and

l“ + jets.

Figures 3.13 to 3.15 show the results as plots of signal cross-section vs anomalous

coupling parameters. Since our signal process involves the creation of a W“W“

pair with subsequent decays of the W“ and W“, the signal cross-section is the same
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regardless of which W decays to leptons, in the narrow-width approximation. This

is not true of the background cross-section, when the proton beam is polarized.

(For unpolarized scattering the production rates of W“ and W“ are equal by CP

invariance; but for scattering of polarized protons on unpolarized antiprotons, CP

invariance does not apply.) For instance, for a left-handed proton the background

process p(L) + p —) W“ + 2 jets has a larger rate than p(L) + p -> W“ + 2 jets ,

because the probability of finding u(L) (which produces W“) inside p(L) is larger

than d(L) (which produces W“), as implied by Fig. 3.1. (Remember that u(R)

and d(R) do not contribute to the constituent cross-section of the W“ + 2 jets

background process because the weak charged current is left-handed.) Thus we may

calculate the W“ + 2 jets and W“ + 2 jets possible backgrounds, and then choose

the W charge for which the background cross-section is smaller. Since the signal

process is symmetric with respect to the charge of the W that decays leptonically, the

process with the smaller background has a better signal-to-background ratio. In light

of the cross-section inequalities mentioned above, it is advantageous experimentally

to observe the W“(—> £17) + 2 jets mode for a left-polarized proton beam, and

similarly the W“(—) Lu) + 2 jets for a right-polarized proton beam. Hereafter we

apply this strategy when comparing signal and background rates in the tables.

The program we have used to calculate the electroweak+QCD background, which

comes from many processes [33], is set up to calculate the cross-section for produc-

tion of W“ + 2 jets. To find the cross-section for production of W“ + 2 jets, we

calculate the rate for W“ production with polarized anti-protons, which is equal to

the rate we want by the approximate CP invariance of the SM:

0(p + p(L) —+ W- + 2 jets) = 0'(p(R) + p —-> W“ + 2 jets) (3.16)

0(1) + p(R) —+ W— + 2 jets) = 0'(p(L) + p —) W+ + 2 jets) (3.17)

Tables 3.4 to 3.8 give the calculated cross-sections. Table 3.8 lists the background
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Figure 3.13: Electroweak cross-section for my —> W“W“ as a function of anomalous

couplings A5, for polarized (L, R) and unpolarized protons. For each polarization,

three cases are shown, corresponding to assumptions (x) A5, 76 0 and A52 = 0,

(0) A5, = 0 and A52 79 0, and (C1) A5, = A52. In all cases A, = A2 = 0.
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Figure 3.14: Electroweak cross-section for pAp —» W“W“ as a function of anomalous

couplings A, for polarized (L, R) and unpolarized protons. For each polarization,

three cases are shown, corresponding to assumptions (x) A, at 0 and A2 = 0, (O)

A,=0andA27é0,and(C|) A,=A2. InallcasesA5,=A52=0.
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Figure 3.15: Electroweak cross-section for pgp' -+ W+W' as a function of anoma-

lous couplings, with J} > 340 GeV. For each polarization, two cases are shown,

corresponding to assumptions (x) An, = Aug with A, = A2 = 0, and (O) A, = A2

with An, = Anz = 0.
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cross-sections for different proton helicities. As expected, 0’(L) is larger than U(R)

for W+ production: the W+ must come from a u(L), and the density of u(L) is

larger in p(L) than in p(R). On the other hand, 0'(L) is smaller than U(R) for W“

production: the W‘ must come from a d(L), and the density of d(L) is smaller in

p(L) than in p(R), because Ad(:c) is mostly negative, as shown in Fig. 3.1.

Table 3.8 lists cross-sections calculated using the polarized parton distribution

functions of Section 3.1, and also, for comparison, unpolarized cross-sections calcu-

lated using CTEQ2 parton distribution functions [35]. We have used the leading-

order set CTEQ2L for our studies. The CTEQ2 results are consistent with the

average of the two proton helicities, within the uncertainty of the Monte Carlo cal-

culations.

3.3.3 Limits on An.“ Anz, A,, and AZ

We estimate limits on anomalous couplings that could be set by experiments at

«3 = 2 TeV. Since there is a large background for this process, the limits depend

on the background cross-section 03. Again, as in our previous analyses, we assume

that in an experiment with N events the standard deviation of N is EN = x/IV. At

the three-sigma confidence level, the uncertainty of a’ is

0’

603 = 3\/% , (3.18)

which is the same as in Chapter 2, except that here a' is the sum of signal and

background cross-sections. We consider integrated luminosity L = l fb'1 and L =

10 fb'l.

To calculate the limit that could be set on an anomalous coupling parameter, e.g.

A5,, assuming the actual value of the parameter is zero, we compare the statistical

uncertainty 603 to the variation of the calculated cross-section as a function of A5,.
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At the three-sigma confidence level, Art, is in the range with

|0'(An,) — U(An, = 0)| < 603 . (3.19)

For example, Figure 3.13c shows 0’ vs A1: for unpolarized scattering. Three possi-

bilities are shown: (1') the effect of An, with Anz = 0, (ii) the effect of Aug with

An, = 0, and (iii) the effect if An, = A52. The background cross-section is given

in Table 3.8. Then Tables 3.9 and 3.10 list the limits that could be set on An (and

also A) for these three cases. The estimated limits in Table 3.9 are from events with

arbitrary fl, and the limits in Table 3.10 are from events with \/§ > 340 GeV.

Our purpose is to determine whether measurment of the cross-section with polar-

ized protons leads to stronger limits on anomalous couplings than with unpolarized

protons. Tables 3.9 and 3.10 show that the limit is stronger with polarized protons,

assuming the same integrated luminosity as for unpolarized scattering. The con-

straints on either An, or A, alone from the W+W“ channel are not as strong as

those obtained from studying the W+7 channel. Though the total W7 cross section

is much larger than the W+W" cross section, after including the W decays and cuts

the signal cross sections are comparable (unpolarized cross sections 0.47 and 0.7pb,

for W7 and W+W", respectively). Therefore the superior sensitivity of the W7

channel in our study is not explained by a large cross section for that channel. The

W7 channel is more sensitive to the photon couplings simply because no Z couplings

contribute to the event rate. In other words, some of the WW events are due to Z

interactions, which are independent of the photon couplings, so a given anomalous

photon coupling will result in a smaller fractional deviation from the SM event rate.

The W7 and WW channels are therefore complementary, since the WW channel

probes both W and photon couplings, without distinguishing between them, while

the W7 channel limits only the photon couplings.

The constraints on A52 and A2 are about a factor of 2 better than those on
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An, and A, from the W+W’ channel. For models with a linear SU(2) symmetry,

such that n, = 132 and A, = A2, the constraint on An, is about a factor of 2 better

than from the W+7 channel, while the constraint on A, is about the same as from

the W+7 channel, after selecting the large \/§ region. In general, selecting large J}

(> 340 GeV) improves the significance of signal to background by about a factor of 2.

3.3.4 Interpretation of the Results

The limits described above show how this process, W+W' production with polar-

ized protons, tests the WWV vertex. The estimated limits on anomalous couplings

include only simple statistical uncertainty, based on Poisson statistics (EN = x/IV);

they do not include experimental uncertainty due to detector inefficiency or theo-

retical uncertainty of parton distribution functions or Q scale.

For example, the background calculation depends on the choice of parton mo.

mentum scale Q. Table 3.11 shows how the background cross-section, for unpolar-

ized scattering, depends on the choice of Q. We used Q = J; in our calculations.

Q = 2Mw or Q = fl/2 would also be reasonable choices. The cross-sections for the

three choices differ by about 20%. This theoretical uncertainty due to dependence

on scale choice is larger than the statistical uncertainty estimated above. It is thus

difficult to extract the signal cross-section unless the uncertainty in the background

cross-section is reduced, by including higher-order QCD effects to reduce the de-

pendence on Q scale. On the other hand, given large luminosity the details of the

QCD background processes, e.g., the shapes of \/§ distributions, can be measured

directly from data to discriminate between different theoretical predictions from dif-

ferent scale choices. Therefore we anticipate that background rates will eventually

be better known, and allow us to extract signal rates.

Our purpose in this work is to study the effect of proton polarization. For this
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study we have analysed only the total cross-section as a function of An and A.

Stronger constraints on An and A may be set by analysing, as in Chapter 2, dif-

ferential cross-sections with respect to variables for which the distribution of events

is sensitive to Art or A [30, 31]. It would be interesting to find kinematic variables

dependent on proton helicity for which the distribution of events is sensitive to A1:

or A, to further test the triple-boson couplings with polarized proton scattering.

3.4 Discussion and Conclusions

We have studied the potential of a polarized proton beam at the Tevatron collider for

measuring the tri-boson couplings WW7 and WWZ. Because the polarized parton

distribution functions in the relevant kinematic region (i.e., :e-values) are not yet

precise enough to give definite detailed predictions about the rates of the signal and

the backgrounds, we have concentrated on the comparisons between the total event

rates from a polarized- and an unpolarized- proton beam. As summarized in Tables

3.3, 3.9 and 3.10, we found that with a polarized proton beam the limits on non-

standard parameters An,, A,, Anz and A2 are somewhat improved compared to

those obtained from an unpolarized proton beam. We anticipate that these results

can be further improved by studying detailed distributions of relevant kinematic

variables. Generally a factor of 2 improvement in measuring these non-standard

parameters is expected, after selecting kinematic regions where the signal becomes

more important, as illustrated in Tables 3.9 and 3.10.

One interesting feature that we found about the polarized collider program is

that it is possible to select the polarization state of the proton beam to enhance the

ratio of signal to background for a specific charge mode of the final state. This was

demonstrated in studying the process pp —) W+W" —+ (£17); + 2 jets. For the
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final state with a positive charged lepton (1"), one can select the polarization of the

proton beam to be right-handed to improve the signal-to-background ratio because

the QCD background process p(R)p —) W+(—+ (+14) + 2 jets has a smaller rate

than p(L)p' —» W+(-—> (+14) + 2 jets. The signal rate, in contrast, is independent

of the charge mode of the isolated lepton from the W-boson decay because either

W+ or W' can decay into the charged lepton. We expect that similar tricks can be

applied to other polarized physics measurements, such as the lepton + jet mode of

the it pair production from qt} and 99 fusion processes.

We are now in a position to compare the sensitivity of a Tevatron experiment

with a polarized beam (“polarized Tevatron”) to those of the NLC and LEPII.

Tables 2.2 and 2.3 show limits on anomalous photon couplings from LEPII and

the NLC, calculated from the variation of the total cross section; and Tables 3.9

and 3.10 show limits from a polarized Tevatron. Comparing 3-sigma limits on An,

and A,, it is immediately evident that the NLC is superior to the other colliders

by about two orders of magnitude. The polarized Tevatron gives somewhat better

limits than LEPII, especially when we capitalize on high energy events with greater

dependence on anomalous couplings by cutting events with x/g < 340 Gev. Note,

however, that a complete analysis of an actual Tevatron experiment would have

to include the contribution from WZ production, which depends on anomalous Z

couplings. In addition, to extract such precise limits from the Tevatron one would

have to reduce the momentum-scale choice uncertainty by calculating the next-to-

leading-order corrections to the cross section. Due to the relatively wide range of

center-of-mass energies for the Tevatron hard-scattering events, it would also be

important to include the energy dependence of the anomalous couplings, especially

if the scale of anomalous physics A (discussed in Chapter 1) were near its lower

bound.
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The Tevatron limits should improve mildly, as did those from the e+e‘ collid-

ers, were we to use differential cross section information to calculate them, rather

than merely the total cross section. However, reliable predictions of distributions of

kinematic variables will require more precise polarized parton distribution functions.

Measurements of polarized proton-antiproton reactions will yield new information

on spin-dependent parton distributions. Thus the use of polarized scattering to test

fundamental physics, and the determination of the spin structure of the proton,

would proceed together. In the next chapter we investigate the potential improve-

ment of ppdf accuracy from studying single-Wt production with a polarized proton

beam.
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Chapter 3 Tables

Table 3.1: Cross-section for the process pp —> W+7 with polarized protons, for

different values of the anomalous coupling A5,, assuming A, = 0. Cross-sections are

in pb. The branching ratio 2/9 for W+ —+ e+uc or [fix/u, and the effect of our cuts,

is included. The unpolarized case was calculated separately using CTEQ2 parton

distribution functions, for comparison. The asymmetry A, defined in Eq. (3.7), is

calculated by fitting the data to a parabola.

p113 —> W+7 cross-sections in pb
 

Art,

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

p(R)

0.49 :1 0.01

0.39 i 0.01

0.29 :t 0.01

0.25 :1: 0.01

0.25 :1 0.01

0.27 a: 0.01

0.32 :1: 0.01

0.41 :I: 0.01

0.53 :I: 0.02

p(L)

1.44 d: 0.01

1.08 :1: 0.01

0.86 a: 0.01

0.72 d: 0.01

0.69 :1: 0.01

0.75 :l: 0.01

0.94 :1: 0.01

1.23 i 0.01

1.57 :1: 0.02

Unpol

0.98 i 0.01

0.75 :l: 0.01

0.59 :l: 0.01

0.51 :l: 0.01

0.47 :l: 0.01

0.54 :l: 0.01

0.63 i 0.01

0.83 :l: 0.01

1.09 :l: 0.02

A

0.514

0.504

0.491

0.480

0.475

0.480

0.491

0.504

0.514
 

Table 3.2: Cross-section for the process pf) —-> W+7 with polarized protons, for

different values of the anomalous coupling A,, assuming An, = 0. Cross-sections

are in pb. The unpolarized case was calculated separately using CTEQ2 parton

distribution functions, for comparison. The asymmetry A, defined in Eq. (3.7), is

calculated by fitting the data to a parabola.

 
 

PX? -> W+7 cross-sections in pb.
 

A7 p(R) p(L) Unpol A
 

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

—2.0

1.73 :l: 0.03

1.11 :l: 0.02

0.62 :l: 0.01

0.35 :l: 0.03

0.24 :t 0.01

0.34 :l: 0.01

0.57 :l: 0.01

0.99 :l: 0.03

1.64 i 0.03

7.47 :l: 0.03

4.47 :l: 0.02

2.32 :I: 0.01

1.14 :l: 0.03

0.68 :l: 0.01

1.05 :l: 0.01

2.19 :1: 0.01

4.13 :l: 0.03

6.87 :l: 0.03

4.55 :l: 0.03

2.72 :t 0.02

1.50 :l: 0.01

0.75 :l: 0.03

0.49 i 0.01

0.71 :l: 0.01

1.39 :l: 0.01

2.59 :t 0.03

4.16 i 0.03

0.613

0.602

0.580

0.530

0.478

0.530

0.580

0.602

0.613
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Table 3.3: Limits on non-Standard couplings, from pp —2 W+7 with polarized and

unpolarized protons. The upper number is for 1 fb‘1 integrated luminosity, and the

lower number (in parentheses) is for 10 fb‘l.

 

 

 

 

Parameter Limits

p(R) p(L) Unpol

An, i0.89 :l:0.62 :l:0.70

(:l:0.50) (:l:0.35) (:l:0.39)

A, :l:0.36 $0.22 :l:0.26

(i020) (10.13) (40.14)
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Table 3.4: Purely electroweak cross-sections, in pb, for p(R)p’ —> W+ + 2 jets, with

W+ —> it! where l = e or p; the proton is right-handed. The cross-section for

p(R)p —-> W” + 2 jets is the same. The branching ratio (2/9) x (6/9) = 4/27 and

the effect of our cuts are included.

 

 

Electroweak cross-sections in pb;

right-polarized proton.
 

 

 

 

 

Value Varied parameter

An, Anz An, = Artz

1.00 0.604i.012 1.120:l:.020 1.064:l:.020

0.75 0.534i.012 0.774:l:.016 0.816:l:.016

0.50 0.496:l:.012 0.600:l:.012 0.588:l:.012

0.25 0.456i.012 0.484:l:.012 0.484i.012

0.00 0.456:l:.012 0.456:l:.012 0.456:l:.012

-0.25 0.484:l:.012 0.508:l:.012 0.516:l:.012

-0.50 0.540:l:.012 0.628:l:.012 0.676zlz.012

-0.75 0.6202t.012 0.822:|:.014 0.908zl:.016

-l.00 0.716i.016 1.172i.024 1.356:l:.028

A, A2 A, = A2

1.00 0.740:l:.020 1.344:l:.028 1.444:t.032

0.75 0.602i.014 0.952:l:.018 1.004i.020

0.50 0.524:l:.012 0.688:l:.016 0.712:l:.016

0.25 0.472i.012 0.520:l:.012 0.520:l:.012

0.00 0.456:l;.012 0.456:l:.012 0.456:l:.012

-0.25 0.480:l:.012 0.504:l:.012 0.516:l:.012

-0.50 0.548:l:.012 0.664:l:.016 0.708:l:.016

-0.75 0.642:l:.016 0.920i.018 l.000:l:.020

-1.00 0.768:l:.016 1.2882t.024 1.444:l:.028  
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Table 3.5: Purely electroweak cross-sections, in pb, for p(L)}? —I W+ + 2 jets,

with W+ —+ [V where l = e or p; the proton is left-handed. The cross-section for

p(L)p’ —> W" + 2 jets is the same. The branching ratio (2/9) x (6/9) = 4/27 and

the effect of our cuts are included.

 

 

Electroweak cross-sections in pb; left-polarized proton.
 

 

 

 

Value Varied quantity

An, Alcz An, = Anz A, A2 A, = A2

1.00 1.08:l:.02 1.88:l:.04 2.68:t.08 1.26:l:.04 2.60:l:.04 3.84:l:.08

0.75 1.02i.02 1.48:l:.04 1.92:l:.04 1.10:l:.02 1.84:l:.04 2.60:l:.08

0.50 098212.02 1.16:l:.02 1.34:l:.04 1.04:l:.02 1.38:l:.04 1.72:l:.08

0.25 0.98:l:.02 1.00i.02 1.02i.02 0.98:l:.02 1.06:l:.02 1.16:l:.02

0.00 0.96:l:.02 0.96:l:.02 0.96i.02 0.94:l:.02 0.94zl:.02 0.98:l:.02

-0.25 0.98:l:.02 1.08i.02 l.16:l:.04 1.00:l:.02 1.06:l:.02 1.16:l:.04

-0.50 1.04:l:.02 1.32:l:.02 1.58:l:.04 1.04:l:.02 1.40i.04 l.72:l:.04

-0.75 1.14:l:.02 1.72:l:.04 2.28:l:.04 1.14:l:.02 1.86:l:.04 2.60:l:.08

-1.00 1.242t.04 2.24:l:.04 3.20i.08 1.26:l:.04 2.56i.04 3.88:l:.08
 

 

Table 3.6: Purely electroweak cross-sections, in pb, for p}? —* W+ + 2 jets, with

W+ —> iv where l = e or p; the proton is unpolarized. The cross-section for

p1“) —> W‘ + 2 jets is the same. The branching ratio (2/9) X (6/9) = 4/27 and the

effect of our cuts are included. These values were calculated independently using

the Morfin-Tung ppdf’s; the cross-section for unpolarized protons is equal to the

average of cross-section for left and right polarized protons.

 

Electroweak cross-sections in pb; unpolarized proton
 

 

 

 

Value Varied quantity

AIS, Alcz An, = Alcz A, A2 A, = A2

1.00 0.84:l:.02 1.50:l:.04 l.88:l:.06 1.00:l:.02 1.98i.06 2.64i.06

0.75 0.78:L-.02 1.14:l:.02 1.36:l:.02 0.86:l:.02 l.40:l:.04 1.80:l:.06

0.50 0.74:l:.02 0.88:l:.02 0.96:l:.02 0.78:l:.02 1.04:l:.02 l.22:l:.02

0.25 0.72:l:.02 0.74:l:.02 0.76:l:.02 0.72:l:.02 0.80:l:.02 0.84:l:.02

0.00 0.72:l:.02 0.72:l:.02 0.72i.02 0.70:t.02 0.70:l:.02 0.70i.02

-0.25 0.72:l:.02 0.80:l:.02 0.84:l:.02 0.74:l:.02 0.86:l:.02 0.84:l:.02

-0.50 0.78:|:.02 0.9821302 1.14:l:.02 0.80i.02 1.04:l:.02 1.22i.02

-0.75 0.88:l:.02 l.28:l:.02 1.60:l:.02 0.88:l:.02 1.38:l:.04 1.80:l:.06

-l.00 0.98:l:.02 1.70:l:.04 2.28:l:.06 1.02:l:.02 1.92;l:.04 2.66:l:.06
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Table 3.7: Electroweak cross-sections, in pb, for W+W’ production with non-

Standard couplings, with polarized or unpolarized protons, and with a large-J's;

cut, «3 > 340 GeV. One W decays leptonically, the other to 2 jets, and the branch-

ing ratio 4/27 and the effect of our cuts are included in the cross-section. Two

assumptions on non-Standard couplings are listed: An, = Anz with A, = A2 = 0,

and A, = A2 With An, = ANZ =0.

 

Electroweak cross-sections

in pb, with 4/3 > 340 GeV
 

 

 

 

 

 

 

Value Varied parameter

An, = Anz

p(L) p(R) Unpol
0.75 0.720:l2.016 0.2082t.004 0.456:}2.012

0.50 0.3802t.008 0.110:l:.002 0.236:l2.004

0.25 0.180:l:.004 0.052:l:.002 0.112:t.002

0.00 0.132:l2.004 0.038:l:.002 0.082:l:.002

-0.25 0.2282t.004 0.066:l2.002 0.142:l2.004

-0.50 0.4842l:.012 0.138:l:.002 0.304i.008

-0.75 0.876:l2.016 0.244:l:.004 055632.012

A, = A2

p(L) p(R) Unpol

0.75 1.196i.028 0.3162l:.008 0.756:l:.012

0.50 0.592:l:.012 0.162:l:.004 0.368:t.008

0.25 0.248:l:.008 0.070:l:.002 0.152:l:.004

0.00 0.132:|:.004 0.0382L-.000 0.082:l:.002

-0.25 0.2441008 0.070:l2.002 0.156:l:.004

-0.50 0.604:l:.016 0.166:l:.004 0.376:l2.008

-0.75 1.160:l:.028 0.316:t.008 0.732212.016   
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Table 3.8: QCD background cross-sections for pp ——> Wi + 2 jets, for various proton

polarizations and kinematic cuts. The unpolarized cases U(pp -—» W+ 2j) = U(pp —I

W" 2j) were calculated separately using CTEQ2 parton distribution functions.

 

W+2 jet Background
 

process 0' (pb)
 

without 2 jet mass cut:

p(R)p —) W" 23' 50.56$.58

p(L)p —» W‘ 2j 41.36$.52

p(L)p —> W+ 2j 65.46$.78

p(R)p --) W+ 2j 26.84$.28

pf; —> W+ 2j 45.30$.50
 

with 2 jet mass cut (70-90 GeV):

p(R)p —> W‘ 2j 7.324$.070

p(L)p _. w- 23' 531022.056

p(L)}? —+ W+ 2j 9.4041092

p(R)p —> W+ 2j 3.874$.034

p5—+W*‘2j 6.514$.060
 

with 2 jet mass cut

and \/§ > 340 GeV:

MR)? -’ W‘ 21'

p(L)i5 -* W’ 23'

p(L)? -—> W’“ 21'

p(R)I3 —+ W” 23'

7213 -> W+ 22'

0.348$.004

0.308$.004

0.520$.004

0.144$.004

0.358$.002
 

Table 3.9: Limits on anomalous couplings that could be set from p'p -» W* + 2 jets

with polarized or unpolarized protons. The numbers in parentheses are for 10 fb-l

integrated luminosity, and the other numbers are for 1 fb‘l integrated luminosity.

 

 

 

Parameter Limits

p(R) p(L) Unpol

An, $0.89 $1.10 $1.06

Anz $0.56 $0.47 $0.54

A16,=Anz $0.53 $0.35 $0.44

($0.30) ($0.20) ($0.24)

A, $0.79 $0.77 $0.83

Az $0.47 $0.37 $0.44

A,=Az $0.44 $0.29 $0.36

($0.25) ($0.16) ($0.20)
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Table 3.10: Limits on anomalous couplings that could be set from p13 —5 W“: +

2 jets with polarized or unpolarized protons, from events with «5 > 340 GeV. The

numbers in parentheses are for 10 fb"1 integrated luminosity, and the other numbers

are for 1 fb‘1 integrated luminosity.

 

Parameter Limits

p(R) P(L) Unpol

An,=Anz $0.34 $0.23 $0.28

($0.19) ($0.13) ($0.16)

A,=Az $0.28 $0.18 $0.23

($0.16) ($0.10) ($0.13)

 

Table 3.11: Effect of parton Q scale on the calculated cross-section for background

processes pp' —+ Wi + 2 jets. These are unpolarized cross-sections, calculated with

CTEQ2 parton distribution functions.

 

Q scale 0 (pb)

.5 6.420 4 .056

75/2 8.5384074

2Mw 7.3984068

 



Chapter 4

Probing the Polarized Parton

Distributions with p13 —> W

4.1 Introduction

In the preceding chapter we examined the potential of a Tevatron with a polarized

proton beam for studying anomalous electroweak physics. Other possible physics

topics to explore with a polarized beam are outlined in Reference [24]. However, in

order to use polarized p—p scattering as a probe of interesting physics, it would be

necessary to know accurately the parton distribution functions for polarized protons.

Polarized parton distribution functions (hereafter abbreviated ppdf’s) have been

measured to some accuracy in deep-inelastic polarized lepton scattering [36, 27, 28].

These experiments have revealed the spin structure of the proton, which is inter-

esting in its own right. Several parametrizations of ppdf’s have been published

[37, 26, 38, 39] based on this data. The purpose of this chapter is to examine

whether single-W3: production in polarized p—p collisions, with longitudinally po-

larized protons, could be used as another, complementary, method to constrain the

ppdf’s.

With the Tevatron collider in mind [23], we consider the center-of-mass energy

equal to 2 TeV.l

 

lAfter this work was completed, we learned that a polarized colliding beam is less likely to

75
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The idea to study ppdf’s from the effect of proton polarization on the process p+

p -+ W‘h has been considered previously, in Ref. [40], in which the cross-section for

producing W* was calculated, treating the W3: as a stable particle. Here we will take

into account also the leptonic decay W* —> ei +972, including a possible kinematic

cut on p1 of the cf; i.e., we are concerned with the experimentally measurable

processes p + p —> (Wi —> e* +971) + X.

The cross-section for W": production depends strongly on the helicities of the

quarks. For massless quarks a W* couples only to left-handed (L) quarks and right-

handed (R) antiquarks, because of the V—A form of the weak coupling. We know

that the densities of L and R quarks in a proton depend on the proton helicity.

Therefore, the cross-section for p,\ + p —) Wi, where A = L or R indicates the

helicity of the proton, depends on A. Measurement of the polarization dependence

would provide some information on the ppdf’s. The question which motivates our

study is whether such data could determine the ppdf’s accurately.

The ppdf’s are defined as follows: For any parton type f, we define

Me) = -:;(f(z)+Af(=v))

2 density of L (or R) partons in a L (or R)‘proton,

12(2) = ass—Am»

2 density of L (or R) partons in a R (or L) proton,

where a: is the momentum fraction of the parton. Thus Af(:c) is the difference

between partons with the same helicity as the proton and partons with opposite

helicity. There are 13 different parton types

f=mm¢aqammiaaafi

 

be built in the near future at the Tevatron. However, since a polarised collider is technically

feasible, we believe it is still interesting, and potentially useful, to explore theoretically the possible

experiments with such a machine.
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In our calculations we neglect the 5,5 and t,t distributions. Also, the gluon distri-

bution does not contribute in our calculation, which is only a tree-level calculation.

We have used two recently published parametrizations of ppdf’s [38, 39]. (Specif-

ically, we use set 2 from Ref. [38] and set B from Ref. [39].) We calculated these

ppdf’s with a computer program written by Dr. Glenn Ladinsky. Figure 4.1 shows

zAf(:c) vs a: for f = u and d. The ppdf’s depend on momentum scale Q; i.e.,

ft = fi(:v, Q). Figure 4.1 is for Q=5 GeV. These distributions were constructed by

fitting to data for the polarized structure function gf(:e, Q); in the parton model

511(20): $232: [Amen + A§(z,Q)l . (4.1)

Figure 4.2 shows plots of zgf(z, Q) vs a: calculated from the two sets of ppdf’s we

used, again for Q = 5 GeV.

The difference between the two parametrizations of ppdf’s, illustrated in Figs. 4.1

and 4.2, indicates the uncertainty of our current knowledge of the ppdf’s. Either

parametrization is a reasonable fit to existing data from polarized deep-inelastic

lepton scattering, within the uncertainty of the data. We will use the difference

between these two sets of ppdf’s to gauge the current uncertainty of the ppdf’s. We

will consider whether measurements of W1t production in p113 collisions could be

used to reduce this uncertainty.

4.2 Wi production

In the parton model, the cross-section for p,\ + p —) W+ + X, where A is L or R

for left-handed or right-handed protons, with subsequent decay W+ —1 e+ + 11.3, is

expressed as

5(1) = :1 3535' [&LR(2P,2'P')ui(z)d(z') (4.2)

N
I
H

+&LR(2’P’, 5p)3‘,(5)a(5')]
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Figure 4.1: Polarized parton distribution functions. The curves are :cAf(2:) vs a: for

parton types 11. and d, which are the most important partons in our calculations, for

two sets of polarized parton distribution functions. The solid curve is the Nadolsky

parametrization [38] and the dashed curve is the Gehrmann-Stirling parametrization

[39].
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Figure 4.2: The function zyflz, Q), which has been measured experimentally in

polarized deep-inelastic lepton scattering, calculated using two sets of polarized

parton distribution functions. The solid curve is the Nadolsky parametrization [38]

and the dashed curve is the Gehrmann-Stirling parametrization [39].
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where the notation is as follows: The parton cross-section &LR(p1, p2) is for the pro-

cess uL(p1) + dR(p2) -—> W+ —> e+ + Vc; note that u must be left-handed and d

right-handed because of the V—A coupling. The upper sign on ui(z) and d4(a:)

is for A = L and the lower sign is for A = R. The first line in Eq. (4.2) corre-

sponds to u,d coming from p,p, and the second line corresponds to d,u coming

from 12,13, respectively. a: and :e’ are the parton momentum fractions in the proton

and antiproton respectively. The parton distribution functions are, for example,

ui(a:) = u quark with same/opposite helicity as p

d(z') = d quark in unpolarized p

d4(z:) = d quark with opposite/same helicity as p

11(22’) 2 u quark in unpolarized 13.

(We evaluate the parton distribution functions at momentum scale Q = 80 GeV

for W15 production.) The factor of 1/2 is from the average over 1') helicities. We

also add the contribution for the parton process c + 3 —) W+ —2 6+ + 14,. (We

ignore Cabibbo-Kobayashi-Maskawa mixing in this work.) The cross-section for

p; + p —2 W" —> e" + 176. is given by a similar expression, but with parton densities

di(z)u(z’) and fi;(z)d(z’).

We have calculated U(A) from Eq. (4.2) by a Monte Carlo calculation based on

the program PAPAGENO [32], modified to include the two sets of polarized parton

distribution functions.

As a preliminary calculation, in this Section we consider the processes p; + 13 —->

Wi treating Wi as a stable particle. Figure 4.3 shows the Feynman diagram for

the hard production process to produce a W+. (In Section 4.3 we include the Wi

decay.) Integrating the squared amplitude over the W phase-space yields the
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W+_

E
:

Figure 4.3: Diagram for ud —+ W+

color-averaged parton-level cross-section, summed over W polarizations:

. I “'92 I 2

oLR(:e,z) = -3—-6(zz s — MW) . (4.3)

The 5-function sets the invariant mass of the incoming partons equal to the invariant

mass of the W.

In this case the cross-section U(A) may be calculated analytically, i.e., without

a Monte Carlo program, by inserting this 6'“;— which treats the Wi as a stable

particle of mass Mw—into Eq. (4.2), instead of the hard cross-section which includes

the W decay. To find the differential cross-section in rapidity, include in Eq. (4.2)

a factor

1 EW + PzW

which by going to the pp center-of-momentum frame can be shown to be equal to

1 :c
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Figure 4.4: Cross-sections do(A)/dyw for p; + p —+ W+ in nb, multiplied by 1/9,

the branching ratio for the W+ to decay to e+ + u... Proton polarization A is L or R.

The solid and dashed curves are for ppdf’s from Ref. [38] and Ref. [39], respectively.

This 6—function, together with the 6-function from Eq. (4.3), relates the rapidity yw

of the W* to the parton momentum fractions 2: and z’:

= _ Uw = __ -uw .
:1: fl e , a: \/3 e , (4 4)

and yields the differential cross-section

do A ‘Irg2 — _

713%.?) = E‘ [u1(4)d(5') + d4(z)u(z')] . (4.5)

For W“ production interchange v. and d. The result is shown in Figures 4.4 and 4.5.

Figure 4.4, which is for W“L production, has graphs of édo/dyw vs yw, where yw

is the rapidity of the W+. Figure 4.5 is the same for W‘ production. The cross-

sections have been plotted in Figs. 4.4 and 4.5 multiplied by 1/9, which is the

branching ratio for W53 to decay to ei +52, because in an experiment the Wi

would be observed from its decay to leptons.
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Figure 4.5: Cross-sections da'(A)/dyw for p; + 13 —1 W“ in nb, multiplied by 1/9,

the branching ratio for the W“ to decay to e“ + 17... Proton polarization A is L or R.

The solid and dashed curves are for ppdf’s from Ref. [38] and Ref. [39], respectively.

The cross-section for 1);, + p ——+ WJr is greater than that for p3 + p —» W+,

because W+ production is dominated by the reaction of 11.1, from the p and d3 from

the p". Since Au(:c) is positive, as we see from Fig. 4.1, 11.1, has greater density in pL

than in pH, making the cross-section larger for p1,. Similarly, 0(pR + ‘p -+ W“) is

greater than U(pL + p —> W“) because W“ production is dominated by dL from the

p. Figure 4.1 shows that Ad(z) is negative, so dL has greater density in p}; than in

PL-

We can display the spin dependence by plotting the left-right polarization asym-

metry ALR(W), defined by

d0(L)/dyw - 40(R)/dyw

do(L)/dyw + da'(R)/dyw . (4.6)

ALR(W) = 

For w+ production Eq. (4.6) shows that ALR(W) is simply related to Au(z) and
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Figure 4.6: The left-right polarization asymmetry ALR for W3: production in polar-

ized p — p collisions. The solid and dashed curves are for ppdf’s from Ref. [38] and

Ref. [39], respectively.

Ad(:c); we have

Au(a:)d(:e’) — Ad(z)1“1.(z’)

u(z)d(z’) + d(z)1“1(2:’)

The polarization dependence of the sea quarks is small, so ALR(W) is approximately

Au(z)/u(:c). Similarly, for W“ production ALR(W) is approximately Ad(z)/d(:e).

 

ALR(W) = (4.7)

The left-right polarization asymmetry ALR(W) is shown in Figure 4.6, as a

function of yw, for both W+ and W“ production. The asymmetry is greatest for

yw > 0, i.e., at large 2:, where the asymmetry may be as large as 50 percent.

For yw < 0, the asymmetry is small because yw < 0 corresponds to small 2:, where

Af(z) is small. This result is in accord with the intuition that the helicity of partons

with small a: is not much correlated with proton helicity.

In the case of W+ production the two sets of ppdf’s give fairly similar results

for ALR(W). The W+ asymmetry depends on Au(z), which is relatively well deter-

mined by deep-inelastic polarized lepton scattering. In the case of W“ production
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the two sets of ppdf’s give dissimilar results for ALR(W) The W“ asymmetry de-

pends on Ad(:e), which is less well determined by measurement of gf(:1:, Q) because

Aq(z) is weighted by e: which is 1/9 for d compared to 4/9 for 11.. Thus the process

p + I“) —1 W“ would be the most likely to give accurate new information on the

ppdf’s, specifically on Ad(:c), as has been pointed out by Nadolsky [40].

A significant difference between the two sets of ppdf’s occurs at very large yw, say

yw > 2, which corresponds to the limit 2: —) 1 by Eq. (4.4). The two parametriza-

tions of ppdf’s treat the limit a: —> 1 differently. Nadolsky [38] imposed the require-

ment that u_.(:c) —1 0 and d_(:1:) —> 0 as a: —> 1; equivalently, Au(z) —> 11(2) and

Ad(:e) —-> d(z). This requirement, first derived in Ref. [41] by an argument based on

first-order perturbation theory, means that if a parton carries all the momentum of

the proton (a: = 1) then it has the same helicity as the proton. With this require-

ment the asymmetry ALR(W) must approach +1 as :1: —> 1, i.e., as yw approaches

its maximum value. (Ad(z) and d(z) are negligible at z = 1.) Indeed ALR(W) for

the Nadolsky ppdf’s is increasing toward 1 as yw increases. Testing experimentally

this interesting helicity behavior at large a: is emphasized in Ref. [40]. Gehrmann

and Stirling [39] did not impose the requirement Af(z) —+ f(:1:) as a: —) 1, but

rather fitted Au(z) and Ad(:e) only in the limited range of a: where data exists on

gf(z,Q), extending out to a: z 0.6; therefore their ppdf’s should only be applied

for yw < 2.7. Of course, we exaggerate the difference between 0’(L) and U(R) at

very large yw by plotting the left-right asymmetry ALR(W), which is a ratio; both

da'(L)/dyw and do(R)/dyw approach 0 for large yw, so ALR(W) is a ratio of very

small cross-sections there. In any case we are interested in determining the ppdf’s

for all :13, not just in the limit :1: —> 1.

The results shown in Figs. 4.4 — 4.6 give a good indication of the effect of proton

polarization, but are not directly measurable because the W‘t is unstable.
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4.3 Decay of Wi

Next we include the leptonic decay of the Wi to consider the processes p,\ + p -)

(W53 -> ei +573.) + X. It is this process that would actually be observed in an

experiment. Of course only the e* would be detected. The question addressed here

is whether the Wi decay would markedly reduce the sensitivity of the polarization

asymmetry ALR to the ppdf’s.

Figure 4.8 shows do(A)/dy¢ for the process p,\ + p -—> (W+ —1 e+ + 14,) + X, and

Figure 4.9 shows the same for the process p; + p —-> (W“ —+ e“ + 17,) + X, where

3,.: is the rapidity of the e*. These cross-sections were calculated by a Monte Carlo

calculation from the tree-level formula.

We note that the distributions of y.3 are spread out and shifted relative to the

distributions of yw; the shift is toward negative rapidity in the case of e+ and

W+, and toward positive rapidity in the case of e“ and W“. These shifts can be

understood as a consequence of the V-A coupling between W* and eflfl-l, together

with angular momentum conservation. Consider, for example, pm? -—1 W11 The

partons involved must be a left-handed u colliding with a right-handed d, as shown

schematically in Figure 4.7. Because a 111, in a pL tends to have relatively large

a: (see Fig. 4.1) compared to the d); from the 1“), the W+ comes out preferentially

in the direction of the 11;, (see Fig. 4.4), which is the case depicted in Figure 4.7.

Angular momentum conservation—conservation of the double-arrow directions in

Figure 4.7—along with the requirement that the e+ be right-handed, by the V—A

coupling, force the positron direction to be against the W+ direction. In the lab

frame this corresponds to a negative shift in rapidity, because a Lorentz boost from

the W+ rest frame to the lab frame simply adds the W+ rapidity (zero in its rest

frame) to the positron rapidity.

Figure 4.10 shows the left-right polarization asymmetry ALR(e) for both e+ and
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 > W 2 ”L 

Figure 4.7: Schematic diagram of particle momentum and spin orientations in

uLdR —-» W3 —) efiuL. Single arrows indicate momentum directions; double ar-

rows indicate spin orientation. For clarity the d and e+ momenta are shown at

angles to the other particles’, but they should be imagined as along the same line.
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Figure 4.10: The left-right polarization asymmetry ALR(e) for W“: production in

polarized p — p collisions, with decay W33 —> 13i +971. The solid and dashed curves,

labeled (a) and (b), are for ppdf’s from Ref. [38] and Ref. [39], respectively.

e“ production,

= da(L)/d3/e “’ d”(Bl/dye:

d0(L)/dye + 40(R)/dye '

As before, ALR(e) depends mainly on Au(:1:) for 6*, and on Ad(:e) for e“. However,

 

A1010?) (4.8)

a: is not simply related to ye. Therefore a real experiment, where only 31.3 can

be measured, would not determine Av.(:1:) or Ad(:c) directly; there is no direct

relation analogous to Eq. (4.7) for ALR(e). Instead, a calculation of da'(A)/dy,,

computed from parametrized ppdf’s, would be fitted to the data. The asymmetry

for ei production is somewhat less than the asymmetry found in Section 4.2 for

W* production, but is still significant. We will quantify this statement below by

estimating the luminosity which would be required to distinguish the two ppdf’s.

In an experiment, the charged leptons would be observed as a function of their

transverse momentum p1»... It is interesting to consider events with large p1,. There-

fore we plot in Figures 4.11 and 4.12 the cross-sections for W+ and W“ production,
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Figure 4.11: Cross-sections alo(A)/dy.3 for p,\ + p —-> W+ —-> e+ + we in nb, with

a kinematic cut on the lepton transverse momentum, p1, > 25 GeV. The solid

and dashed curves, labeled (a) and (b), are for ppdf’s from Ref. [38] and Ref. [39],

respectively.

with decay Wi —> ei +9723, for events with pTe > 25 GeV; Figure 4.13 shows

the corresponding polarization asymmetry. With this high-p1,, cut there is again a

significant asymmetry.

The left-right polarization asymmetry of do(A)/dy., with p1,, > 25 GeV exhibits

large differences between the two sets of ppdf’s that we have used in our calculations,

which implies that this process is sensitive to the ppdf’s. The region of large rapidity

is especially interesting. Indeed, ALR(e) with p1, > 25 GeV resembles ALR(W) of

the underlying W:k production, for large rapidity. Specifically, for the Nadolsky

ppdf’s [38] ALR(e) increases at large 3],, which reflects the increase of ALR(W) at

large yw. Events with large yw are interesting because they come from partons with

large a: in the proton, and we would like to verify the helicity behavior of partons

at large 2:, that is, that f_(:c) —> 0 as a: —> 1. However there is an experimental
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p,+p +W--+e'+17.
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93

difficulty here: It is difficult for a collider detector to detect charged leptons well

with 3],, > 2.5, and the range of y., where ALR(e) increases strongly with y,, is in

the range of '17c > 2.5. Thus we find that a precise test of the helicity behavior of

partons at large 3 would require a detector with large coverage in rapidity, extending

to y., > 2.5. This result shows the importance of the Wi decay. In terms of the

W*, the large-a: helicity behavior is already tested to some degree at yw < 2.5; but

in terms of the ei, the large-:1: helicity behavior is not really tested until 378 > 2.5.

Finally, we estimate the integrated luminosity (f 1:) that would be needed to

measure the ppdf’s accurately. Over a large range of y, with 37.3 > 0, the asymmetry

ALR(e) is of order 0.3, and the diflerence between the two sets of ppdf’s, which

we are using to gauge the current uncertainty of the ppdf’s, is of order 0.1, i.e.,

about 30 percent of the asymmetry. An experiment to distinguish between the two

sets of ppdf’s, and thus provide a more accurate measurement of the ppdf’s than

deep-inelastic scattering, would need to measure the polarized cross-sections to an

accuracy of order 1 percent. The total polarized cross-sections, with and without

the p76 cut, are listed in Table 4.3. (There is no kinematic cut on the rapidity

ye for the cross-sections in Table 4.3; the reduction of 0'(A) for an experimentally

accessible range of ye, say [ye] < 2.5, can be judged from Figs. 4.8, 4.9 and 4.11,

4.12.) By Poisson statistics, a measurement of the cross-section to an accuracy of

1 percent would require «Io/0' = 1/\/N = 0.01, which implies a number of events

N of order 104 events. For the cross-sections in Table 4.3, which are of order 1

nb, the required f L: is of order 10 pb“1. But those are total cross-sections. Larger

integrated luminosity would be needed to measure difl'erential cross-sections to 1

percent accuracy. To have 10“ events in a rapidity bin Ay requires f £ = 104(do/dy-

Ay)“1, which is of order 100 pb“1/Ay. To measure the polarization asymmetry

would require this large I 1C for each proton polarization (L and R). These are only
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Table 4.1: Total cross-sections for the processes p; + 1“) —+ W:h -—> ei +9733, where

A is the proton polarization, L or R. The polarized parton distribution functions

are taken from Refs. [38] and [39]. Also, we consider a transverse momentum cut

pr... > megn. There is no restriction on lepton rapidity y,; the effect of a cut on ye

may be judged from Figs. 4.8, 4.9, 4.11, 4.12.

 

 

  

charge A ppm-n 0’(A)(nb) ppdf

W+ L 0 1.298 Ref. [38]

1.211 Ref. [39]

WJr R 0 0.638 [38]

0.668 [39]

w- L 0 0.817 [38]

0.829 [39]

W“ R 0 1.117 [38]

1.048 [39]

W+ L 25 (GeV) 0.901 [38]

0.841 [39]

W+ R 25 (GeV) 0.442 [38]

0.464 [39]

W“ L 25 (GeV) 0.566 [38]

0.576 [39]

W“ R 25 (GeV) 0.775 [38]

0.728 [39]
 

order of magnitude estimates, but they demonstate that high luminosity, e.g., f I.

as large as 1 lb“, would be necessary to measure the ppdf’s at an interesting level

of accuracy. For regions of ye and PT: where the cross-section is very small, such as

the region of large ye, the required integrated luminosity would be correspondingly

larger.

4.4 Conclusions

We have calculated the cross-sections for Wi production, with subsequent decay to

65573,, in polarized proton - unpolarized antiproton collisions at center-of-mass en-

ergy 2 TeV. The left-right polarization asymmetry is sensitive to the spin-dependent

parton distributions Au(:v) in the case of W1“, and Ad(z) in the case of W“. We
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used two recently published parametrizations of polarized parton distribution func-

tions to gauge the current uncertainty of Au(z) and Ad(:e), as measured from deep-

inelastic scattering. Wi production can provide a second method of measuring

these important distributions.

The accurate determination of the ppdf’s would be a necessary step in a program

to use polarized proton scattering as a probe of interesting new physics. If a polarized

proton beam were available at the Tevatron collider, the W3% production processes

would be used to obtain new data on ppdf’s. We find that with large luminosity,

i.e., f .C of order 1 fb“1 for each proton polarization, the functions Au(z) and Ad(z)

can be measured to a few percent accuracy over a large range of z. The interesting

large-:1: region can be well measured only if the rapidity coverage of the detector

extends to quite large 3],, at least beyond yc = 2.5.

Experimental studies of spin physics and the ppdf’s will soon be possible at

the BNL Relativistic Heavy Ion Collider (RHIC). A recent preprint [42] examines

the potential of various processes, including single W production, for constraining

the ppdf’s. Reference [43] focuses on W and Z0 production at RHIC, while other

processes at RHIC are discussed in References [44, 45].



Part II

A Light Gravitino and the

Supersymmetry Breaking

Mechanism
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Chapter 5

Detecting a Light Gravitino at a

Future Linear Collider

5.1 Introduction to Supersymmetry

A too rapid unification, and an excessive appliance to parts and particulars, are the

twin dangers of speculation.

—Ralph Waldo Emerson

Many physicists tacitly live according to a faith that the fundamental interac-

tions, indeed all Natural phenomena, will eventually allow some unified descrip-

tion. Even if this is a mystical delusion, at very high energies, such as presumably

were common in the early universe, quantum gravity effects are important—but

are neglected in the Standard Model (SM). In this context, a puzzling feature

of the SM becomes apparent. The natural scale of gravity is the Planck mass

Mp =mz 1019 GeV, while the scale of the electroweak interactions is about

100 GeV. The tiny ratio between these scales 00“”) is unexplained at present. This

mystery is called the “hierarchy problem.”

Moreover, even should we accept this hierarchy as an a priori constraint, loop

corrections to SM masses will include Planck-scale fields. To end up with physical

masses of order 100 GeV, we would therefore have to multiply each such loop by a

97
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constant of order 10“”. Unless such miniscule constants are explained at a deeper

level we feel that this is a “naturalness” problem. This “fine-tuning” will have to

be repeated at each order of perturbation theory.

Supersymmetry (SUSY) is a symmetry which solves the fine-tuning problem.

That is, if we define a SUSY theory with a hierarchy of mass scales, the hierarchy will

not be spoiled by loop corrections. In terms of Feynman diagrams, this is because

every boson loop will be cancelled by a matching fermion loop including a factor of

—1, according to the usual Feynman rule for fermion loops. This cancellation, which

preserves a hierarchy against higher-order corrections, is the practical motivation for

SUSY.

But SUSY is also aesthetically attractive, because the symmetry relates fermions

to bosons, the two fundamental classes of field in relativistic quantum field theory.

From the point of view which asks for unification, nothing could be more natural.

In order to accomplish this relation between bosons and fermions, it turns out that

one must involve the generators of the Poincaré group. Specifically, the generators

of SUSY are fermionic operators Q and Q which obey the anti-commutative algebra:

{Q01 Q0} = 2P“(7u)037 (5'1)

where P” is the four-momentum operator, and a and B are spinor indices. It is

satisfying that the generators of SUSY and of space-time translations are woven

together inevitably.

This connection with the Poincaré group is a clue to another attractive feature

of SUSY. In addition to Eq. (5.1), the SUSY generator also commutes with the

generator of space-time translations:

[Qm P“] = 0.

That is, SUSY is a global symmetry, independent of space-time coordinates. SUSY

can be made local, or gauged. The resulting theory includes a spin-2 field and
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its spin-3/2 partner, identifiable as the graviton and the gravitino. In other words,

local SUSY is a (non-renormalizable) theory of quantum gravity, called supergravity

(SUGRA). Part II of this thesis deals with the phenomenology of a light (order keV)

gravitino.

This symmetry between bosons and fermions implies that every fermion has

a bosonic partner with the same SM quantum numbers. Reflection on the SM

particles reveals that none of them can be SUSY partners of each other. For example,

the neutrino cannot be the fermionic partner of the photon, because the neutrino

transforms differently under SU(2)L. Therefore if SUSY actually is a symmetry of

nature, the SUSY partners (“sparticles”) have not been observed. The hypothetical

sparticles are named according to their SM partners. The scalar partners of fermions

are known as “sfermions,” whose names are derived by adding an “s” prefix to the

name of their SM partner to get “squarks” and “sleptons.” The fermionic partners of

the bosons are named with an “ino” suffix: the “gauginos” are “gluinos,” “winos,”

“zinos,” “photinos,” and “Higgsinos.” However, the mass eigenstates of the fermionic

sparticles need not be the same linear combination of unbroken SM fields as the SM

gauge bosons. That is, in general we must consider “neutralinos” and “charginos,”

not specific combinations like the photino. Sparticles are denoted by a tilde over

their SM counterpart. For example, W is the wino field.

Only a few of these new fields will enter into our calculation in this chapter.

We will be interested in the production of gravitinos, the fermionic partner of the

graviton in SUGRA. The diagrams for the production of gravitinos from e+e“ an-

nihilation involve an exchange of the scalar partner to the electron field, called the

selectron. Because right-handed and left-handed electrons are independent fields,

they each have a scalar partner. These are named the right and left selectrons al-

though, again, they are scalars. The exchange of a selectron produces neutralinos
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which will decay to gravitinos if the gravitino is light enough. The neutralino field

is an unknown combination of the neutral gauginos and Higgsinos.

The SM fields are conveniently distinguished from their superpartners by intro-

ducing a global symmetry called R-parity. The SM fields are R—even, while their

superpartners are R—odd. If R-parity is assumed to be conserved, then lepton and

baryon number are conserved l, and R-odd particles can only be produced in pairs

[47]. We assume R-parity conservation throughout this work.

5.1.1 Supersymmetry Breaking

If supersymmetry is unbroken, then particles must be degenerate in mass with their

superpartners. As we noted above, no superpartners have been observed. Therefore,

in our low-energy world, SUSY must be broken to be a viable theory of particles. As

long as the breaking mechanism does not generate any new quadratic divergences,

which will contaminate weak-scale physics with Planck-scale masses, then our theory

will still stabilize the hierarchy as we wish. Such SUSY breaking is called “soft”; and

the (relatively few) Lagrangian terms which satisfy this constraint are called “soft

SUSY-breaking terms.” These may be determined experimentally, but ultimately

we would like to explain their origin. In fact, Haber said recently [48], “The origin

of supersymmetry breaking is perhaps the most pressing theoretical problem in

fundamental theories of supersymmetry.”

We noted above that SUSY solves the fine-tuning problem by stabilizing the

hierarchy of mass scales against radiative corrections. It has been suggested that

models of dynamically broken SUSY may explain the hierarchy itself [49]. It is also

encouraging to note that in many supersymmetric models electroweak symmetry

 

lR—parity is imposed by hand in the minimal supersymmetric SM. Some theories, such as the

minimal left-right symmetric SUSY SM, automatically guarantee R-parity conservation at the

weak scale [46].
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is broken dynamically by the renormalization group running of one of the Higgs

masses [50].

Since the origin of SUSY breaking is an unsolved problem, the subject is still

rather technical. Because we will be examining the phenomenology of a light grav-

itino, we will only consider models of SUSY breaking derived from more fundamental

models of broken SUGRA. Here we will merely distinguish two broad classes of mod-

els. In both types of model one posits a “hidden” sector of heavy fields in addition

to the SM “visible” sector. The hidden sector gauge symmetry is assumed to break

itself dynamically, for example by instantons [49] or by condensation of a gaugino

field [51]. This breaking is transmitted to the visible sector via some “messenger”

interaction. The messenger interaction distinguishes our two classes of models. In

older models, the visible and hidden sectors interact only gravitationally; these are

“gravity—mediated” models of SUSY breaking. More recently [52], there has been

a renewal of interest in “gauge-mediated” models of SUSY breaking, in which the

breaking of the hidden sector symmetry is transmitted to the visible sector by some

additional gauge interaction.

The gauge—mediated models discussed in Ref. [52] have been found to require

a very small mass for the gravitino [52]. Therefore the existence of a light grav-

itino is a definite prediction of the whole class of gauge-mediated SUSY breaking

models. Ruling out a light gravitino experimentally would mean ruling out the

gauge—mediated SUSY breaking mechanism. Discovering a light gravitino, on the

other hand, does not rule out all gravity—mediated models; for example, certain

“no-scale” unified SUGRA models [53] allow a very light gravitino. Should a light

gravitino be found, these models would have to be distinguished from each other by

the mass spectrum of the remaining sparticles.
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5.2 Introduction to the Problem at Hand

Recently, Dine, Nelson and Shirman [52] have revisited a class of models in which

SUSY is dynamically broken at a low scale, within a few orders of magnitude of

the weak scale. Certain technical problems with these models have been solved, so

that they are more attractive as realistic fundamental theories. They noted that

in such models the lightest supersymmetric partner (LSP) is the gravitino (C) and

the next to lightest supersymmetric partner (NLSP) is a neutralino x3), which is a

mixture of neutral gauginos and Higgsinos.l Ellis, Enqvist, and Nanopoulos had also

noted as early as 1984 that “no-scale” models of dynamically broken SUGRA allow

a very light gravitino [53]. These models may have a bearing on the cosmological

constant problem and the strong CP problem,1 as well as dynamically creating a

mass hierarchy. Motivated by these theoretical possibilities, we consider in this

chapter the production of neutralinos and their subsequent decay into gravitinos.

The decay channel of the neutralino which we focus on is the decay into a photon

and a light gravitino.

In the gauge-mediated models the mass of the gravitino m3/2 is in the range

1eV < m3/2 < 10 keV. As in the spontaneously broken electroweak theory, where

the W mass is proportional to the vacuum expectation value of the Higgs field and

the weak coupling, so here the gravitino mass is related to the SUSY breaking scale

and the gravitational coupling [47]. We define a mass parameter

 

Msusy = \/m3/2MPlanck1 (5'2)

where the Planck mass is Mplum], = 1/\/CN ~ 1019 GeV. In the gauge-mediated

models MN,” is in the range 105 — 107 GeV. This mass parameter may be the scale of

SUSY breaking, but in general we must only consider Mm,” to be a parameter which

 

lIn N=2 supersymmetric models of this type it is likely that the NLSP will be the right slep-

ton [54]. We do not treat this possibility here.

:The strong CP problem is described for example in Kaku’s book [1].
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determines the gravitino mass and its effective coupling strength. In particular, in

the “no-scale” unified SUGRA models of Reference [53], SUSY may be broken by

gaugino condensation at scales above 107 GeV, yet the gravitino can be even lighter

than 1 eV.

In most other models of SUSY breaking, such as the minimal supersymmetric

standard model (MSSM), the gravitino mass is of order the weak scale and the

supersymmetry-breaking occurs at a scale in the range 1010 — 1011 GeV. Usually, in

the MSSM, the lightest supersymmetric partner is a neutralino, which is then stable

assuming R-parity conservation. Thus the decay of the neutralino into a photon

and a light gravitino probably signals “low-energy” SUSY breaking; in any case it

narrows the field of possible breaking scenarios.

In this chapter we study the possibility of detecting a light gravitino from the

decay of massive neutralinos (the NLSP, with mass mac?) which are produced in

pairs from e“e+ annihilation at the Next Linear Collider (NLC, a proposed collider

introduced in Chapter 2) with a right-hand polarized electron beam. (Use of a

right-hand polarized beam is to suppress background contributions, as discussed in

Section 5.3.4.) For this study, we assume that the center-of-mass energy \/S of the

NLC leptons is 500 GeV and the NLC luminosity is 50 fb“1 per year. Accordingly,

we ignore the mass of the electron and the mass of the gravitino. The experimental

signature of the signal event of interest is two photons with large missing energy.

The missing energy belongs to the two gravitinos, which escape undetected, because

their interactions are so weak. By calculating the cross section for this process as a

function of MN,” and mx?’ we will determine what region of this parameter space

would be accessible at the NLC. The accessible parameter range for current electron

(LEP/SLC) and hadron (Tevatron) colliders is also briefly discussed; detection of

a light gravitino at these colliders is more thoroughly analysed in Refs. [55] and [53].



104

5.3 Detecting a Light Gravitino at the Next Lin-

ear Collider

5.3.1 Production of Neutralino Pairs at the NLC

A pair of neutralinos, the NLSP’s, can be produced at the NLC via the tree-level

process e“e+ —-> x9361). At tree level, the particle exchanged in the t- and u-channel

Feynman diagrams are either left or right selectrons, and that of the s-channel

diagram is the Z-boson. The t- and u-channel diagrams vanish if x? is Higgsino-like

because the Higgsino-electron-selectron coupling is zero for a massless electron. The

s-channel diagram vanishes if x‘,’ is gaugino-like because there is no tree-level Z-R-

B or Z-WP-IIE interaction, because the Z is a combination of W3 and B, which

interact neither with each other nor themselves. (R is the supersymmetric partner

of the U(1)y gauge boson B, and W'-3 is the supersymmetric partner of the third

component of the SU(2);, gauge boson W3.)

In general the neutralino is a mixture of the neutral gauginos (B and I75) and

neutral Higgsinos. Determining its gaugino and Higgsino components will be im-

portant for distinguishing different models of SUSY breaking. For example, in the

constrained MSSM (CMSSM), which narrows the MSSM’s parameter space with

some cosmological and unification assumptions, the lightest neutralino x? is most

often primarily R, or “bino-like” (see [56] and [57]).

The NLC will provide a powerful tool for probing the content of the neutralino.

Calculation of 3+6“ cross sections is simpler than for hadron collisions, and more

than 90% polarization of the NLC electron beam is expected [19]. For simplicity, in

this paper, we shall assume that the electron beam at the NLC can be 100% right-

hand polarized. The assumption of 100% polarization will not significantly affect our
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conclusions as compared to a 90% polarized beam, but the polarization capability

will simplify calculation and eliminate a background. For a right-polarized electron

beam, the WP component of the neutralino does not contribute to neutralino pair

production in e§e+ collisions because the I73 coupling to fermions is pure left-

handed, due to the .S'U(2);, gauge symmetry. As for the bino component of the

neutralino, recall that B may be written as a linear combination of photino 7 and

I75; specifically,

R = 7/ cos 9., — Wtanflw , (5.3)

where 9,, is the weak mixing angle (sin2 9., = 0.23). We decompose the bino this way

so that we may compare the cross section for production of mass-eigenstate photinos

to production of general neutralino mass-eigenstates. If x‘,’ is photino-like, then the

production of xgx? from a right-hand polarized electron beam occurs only through

the 7 component in Eq. (5.3). Similarly, for a general gaugino-like neutralino, only

the mass-eigenstate component of the bino will contribute to Xi’Xi’ production, while

the I75 remainder will not contribute when the electron is right-polarized. For the

rest of this thesis we assume that the neutralino x‘,’ is gaugino-like. The case that

x? is Higgsino-er is discussed in the paper upon which this chapter is based [58].

For a gaugino-like neutralino we define a mixing angle a by

x3): Bcosa+fi738ina . (5.4)

Then the cross section for xfi’x? production from a right-handed electron is, by Eqs.

(5.4) and (5.3),

+

 (5.5)
_ cos a 4

U(eRe
0 0 _ — + ~~

—> XIXl) ”(€126 -* 77) (co8 9...

in terms of the cross section for photino-pair production. In the numerical calcula-

tions below we always report results for a = 0, corresponding to x? being R-like; it

is straightforward to determine the numbers for other values of a.
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The cross section for efie+ —1 77 has been published [59, 60]. There are two

Feynman diagrams remaining for this process after our assumption of a gaugino-

like neutralino and a right-handed electron beam, representing the t-channel and

u-channel exchange of a right selectron 3;}. The differential cross section do/d cos 0

for efi(p1)+ e+(p2) —1 Xi)(P3) + x?(p4), where 9 is the angle of an outgoing neutralino

x? relative to the c“ direction, is

do e4 1 mi, “mi? 2 "—mie 2

dc089—161rS — S mg-k— + mg—u

”mi: “212)“ (5.6)_ 2 2
(me-h — t)(mc-;z — u) cos 0,”

   

 

where t = (p1 — p3)2 and u = (p1 — p4)“. (Because the final state x9361) contains

identical particles we must specify the normalization of the differential cross section.

The normalization of do/d c080 is such that the integral over c080 from —1 to

1 is 2 times the total cross section.) This cross section is shown in Fig. 5.1 for

x/S = 500 GeV, for a = 0 and two cases of the mass parameters: mx‘,’ 2 100 GeV,

me; = 300 GeV; and mx? = 200 GeV, me; = 600 GeV.

5.3.2 Decay of the Neutralino

Since the photino component of the neutralino x? would mainly decay into a photon

and a gravitino for models ( [52], [53]) in which the gravitino is extremely light, the

experimental signature of the signal event we consider here is two photons and

missing energy. The missing energy belongs to the two gravitinos. Other signals

could be considered that involve the zinc 2 component of x?, which would decay

to a Z-boson and a gravitino; these signatures are 7Z with missing energy and ZZ

with missing energy.

The rate of the neutralino decay x? -—1 76' can be related to the rate of the

photino decay 7 ——7 7C from the fact that a gaugino-like neutralino is a mixture of
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Figure 5.1: Differential cross-section do/d mad for esze+ —1 xfi’xg’, where 0 is the

angle of a neutralino, at J3 = 500 GeV. The mixing angle a is 0, and the masses are

mxo = 100 GeV, me; = 300 GeV (solid curve), and mx? = 200 GeV, me; = 600 GeV

(dashed curve).
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7 and Z

x? = 7 cos(a — 9",) + Zsin(a —— 0w) , (5.7)

and the fact that at tree level only the 7 component decays to 76, with nearly 100%

branching ratio. Therefore we have

I‘(x(,) —+ 7C) = I‘(7 -——1 7C) cos2(a — 0w) . (5.8)

The photino decay rate has been calculated [61, 59] to be

m5

 (5.9)

where m is the photino mass, assuming the photino is a mass eigenstate. In general,

however, 7 is not a mass eigenstate, and in Eq. (5.8) we use the neutralino mass

mxc]; that is,

5
.. m 0

I‘(x(1’ —> 70) = 87% cosz(a — 9w) . (5.10)

The parameter (1 is related to our M,,,,,, by [47]

\/§ \/§
4: M 0,, =—M2 . 5.11

{—41rm3/2 Pl cl: “—417 susy ( )

 

The decay rate in Eq. (5.9) is derived by noting that at energies large compared to

the gravitino mass, only the spin-1/2 component of the spin-3/2 gravitino interacts.

The spin-1/2 component of the gravitino is called the Goldstino, a fermionic ana-

logue of a Goldstone boson, because it is the massless excitation arising from the

breaking of SUSY. When the local SUGRA symmetry is broken, the two compo—

nents of the Goldstino combine with the two components of the massless gravitino,

to make a four-component massive gravitino. Then 7-7-6 vertex factor, including

only this Goldstino part of the gravitino coupling, is W,,7"]1/5/2d [47]. Note that

the decay rate is inversely proportional to the fourth power of the supersymmetry-

breaking scale MW," and is proportional to the fifth power of the neutralino mass.
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For Mung = 106 GeV and mx? = 100 GeV, which are characteristic values for our

study, the lifetime of the NLSP x9, given by

1 _6M4 1
8118

1': — y

1‘ mi? cos2 (a — 9w) ’

 (5.12)

is expected to be 5 X 10“10 sec for a = 0. For MW,” in the range 104 to 107 GeV, 1'

can vary from 10“18 sec to 10“6 sec.

The average distance travelled by a neutralino before it decays at the NLC is

D = 73c?" , (5.13)

 

where ['3 is the neutralino velocity 6 = \/1 — 4mig/S and 7 = 1/W One

must observe the decay photon to make any statement about existence of a light

gravitino, and to detect the photon from x‘,’ —1 76? the decay must occur within the

detector volume. We shall assume that D must be smaller than 1 meter to observe

the decay photon inside the detector. Figure 5.2, which is explained further below,

shows the range of parameters MN,” and mx? for which at least ten signal events

would be observed at the NLC.

5.3.3 Background-Flee Signal Events

In certain circumstances there will be no background to our signal. The signal we

seek is two photons plus missing energy. If the massive neutralinos live long enough

before decaying into photons, then it will be possible to verify that the photons did

not originate at the interaction point (IP) of the collider. In this case there will be

no SM process with the same signature to act as a background. At the NLC the

beam size is expected to be stable with dimensions 0',_X 0,, x 0', = 5 nm x 300 nm x

100 um [62]. This is small enough that we may consider the interaction region to

be a point. Depending on calorimeter technology, the angular resolution for the

trajectory of a few Gev photon is typically in the range 10 to 100 mrad, assuming
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Figure 5.2: Range of parameters Mm,” and max? accessible at the NLC. We allow

M,,,,,, to vary from 104 to 107 GeV. The shaded region is the range of Mum, and

mx? for which D < 1m and 0' > 0.2 fb, where D is the typical decay length of

x? and o is the production cross-section for efie+ —+ x‘fx? at the NLC. The bound

0' > 0.2 fb is equivalent to observing more than 10 events assuming integrated

luminosity 50 fb“1. The cross-shaded region is for 10cm < D < 1 m, corresponding

to the background-free signal process. Parameter values for this plot are a = 0 and

me; = 300 GeV.
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Figure 5.3: Differential cross--section in photon energy da/dE, for eRe+ —1 X9361

7700 at the NLC, assuming a—— 0. The mass parameter values are 111,,0 =100 GeV

and m~ = 300 GeV. (The normalization of do/dE, is such that thexintegral over

E, is 2 times the total cross-section, because the final state has identical photons.)

the photon originates in the inner portion of the calorimeter. Given a 1 m radius

for the calorimeter, the pointing resolution to the IP would be 1 cm to 10 cm. Note

that the resolution will generally improve as 1/ ‘/E_,-. The typical energy E, of the

photon from the decay of a massive x? is x/S/4; more precisely, the distribution

in photon energy is constant with E, between «S(1 — fl)/4 and \/§(1 + fi)/4, as

shown in Fig. 5.3. To be conservative, we will assume that if a neutralino travels

more than 10 cm before it decays, then the displaced origin of the decay photon can

be well-separated from the IP at the NLC.

If 10 cm 5 D S 1 m, then the typical signal event occurs within the detector but

away from the IP, and the event is background-free. The range of Mm,” and mx?

in which this condition on D is satisfied is the cross-shaded region in Fig. 5.2. We

allow Mm,” to vary between 104 and 107 GeV in the figures; this range is within a
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few orders of magnitude of the weak scale, as required in the models of Ref. [52].

This range corresponds to gravitino masses allowed in the SUGRA models of [53],

although in these models SUSY is actually broken at a higher scale than M,.,,,,. We

see from figure 5.2 that for mx? = 100 GeV, the background-free signal occurs for

Mm,” around 106 GeV. Conversely, for Mm", = 106 GeV, the background-free range

of mat? is from 85 GeV up to 122 GeV. (We note that for fixed Mm," and s/S', D

is proportional to fl/mgg.) However, for the lowest Mm.” considered, 104 GeV, the

background-free range of mx? would be below 10 GeV. Since we are considering a

signal with no background, observing just one event would be in principle sufficient

to declare the discovery of the signal. The integrated luminosity of the NLC is

50 fb“l per year, so the NLC experiment is sensitive to a signal production cross

section larger than 0.02 fb.

We find that over a reasonable range of the mass parameters involved in the

Feynman diagrams, the cross section is larger than 1 fb. Because we chose to polarize

the electron beam right-handedly, the production of XiXi) occurs by exchange of a

right selectron £72, and the cross section depends on the mass of £73. (In this work,

we shall ignore the possible small mixing between 3:71; and ET, so that 31'; is the

mass eigenstate with mass mat.) We are assuming, in accord with the models of

references [52] and [53], that the LSP is the gravitino and the NLSP is Xi: so 1?];

must be heavier than x9. Also, in both sets of models, we expect me; to be of the

same order as mxcla, because sfermion masses squared ("1:72) depend on a two-loop

diagram while gaugino masses (mx?) depend on a one-loop diagram. (The details

depend on the gauge groups assumed in the model.) In Table 5.1 we give the signal

production cross section 0' for a few choices of mx? and me; at the NLC, assuming

M,.,,,, = 106 GeV. In all cases the cross section is larger than 1 fb. We conclude that

for Mum, = 106 GeV and me; less than 1TeV, the NLC guarantees the discovery of
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Table 5.1: Production cross-section 0' and typical decay distance D for the process

efie+ —> XiXi at the NLC, assuming a = 0, for several values of masses. (Note

that the electron beam is right-hand polarized, so the cross-section is a factor of 2

larger than that for an unpolarized electron beam.) These numbers are for Mm," =

106 GeV.

mxoL (GeV) m; (GeV) 0' (fb) D (m)
R

 

100 100 670 0.35

100 300 252 0.35

100 600 57.1 0.35

100 1000 11.7 0.35

200 300 84.6 0.0036

200 600 17.6 0.0036

200 1000 3.4 0.0036
 

the background-free signal event if 85 GeV S mx‘.’ 3 122 GeV.

Table 5.1 also shows the typical decay length D in the various cases. In fact,

it is the decay length D, not the production cross section 0', that constrains the

discovery of the background-free signal event, because 0' is larger than 0.02fb for

mxc; < s/S/2 = 250 GeV and me} < 1TeV except when "‘21? is extremely close to

\/S/2. Our conclusion does not change even if we require observation of at least 10

signal events to declare discovery of the signal.

The shaded region in Fig. 5.2 shows the values of MN," and mx‘l’ for which

D 3 1m and for which the number of events at the NLC (0' x 50 fb“1) is greater

than 10. The diagonal boundary on the left is the curve D = 1 m, and the vertical

boundary on the right is where the number of events equals 10. The cross section

0' does not depend on Mm,” so the boundary on the right side is a vertical line

near the threshold at "‘71? = x/S/2 = 250 GeV. Figure 5.2 is for me; = 300 GeV,

where the right selectron ET; is the exchanged particle in the process efie+ —+ x‘llxcll.

Increasing me; up to 1 TeV only slightly shifts the vertical boundary on the right

toward the left. The cross-shaded region has 10 cm S D S 1m, corresponding to
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the background-free signal. The two diagonal boundary curves depend only on the

kinematics, not on the cross section, so they do not depend on the selectron mass

me;I .

This calculation in terms of the average decay length D provides a rough estimate

of the parameters Mw,” and "‘11? for which background-free events occur. The cross—

shaded region in Fig. 5.2 is the region of parameter space where the average decay

distance of the neutralino D = fl7cr is between rmgn = 0.1m and rm“ = 1m.

However, the cross section is large enough that there will be events in which the

neutralinos decay in a distance between rmin and rm, even though their average

decay distance is outside that range.

To calculate a more precise parameter range for background-free events, let

P(r)dr be the probability that a neutralino travels a distance between r and r + dr

before decaying

P(r) = %e-'/0 . (5.14)

Then the fraction of events for which both neutralinos decay in a distance between

rmin and rm“, is

I‘Tmax

fBF = ( 130011?)2 . (5.15)

' 7min

If we require that there are more than 10 background-free events, given integrated

luminosity equal to 50 fb“1, then we must have

ofBF > 0.2fb , (5.16)

where 0' is the production cross section. The range of parameters that satisfy this

condition is larger than the simpler estimate in Fig. 5.2, and is shown as the cross

shaded region in Fig. 5.4.

In the rest of the shaded region, i.e., not including the cross-shaded region,

the decays occur within 10 cm of the IP. We assume conservatively it is not possi-

ble to detect a displaced vertex of these decay photons. For these values of M,.,,,,
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Figure 5.4: Same as Fig. 5.2, but with a more precise calculation as described in

Section 5.3.3.

and mx‘.’ there are intrinsic backgrounds to the signal process, which we discuss next.

5.3.4 Non-Background-Free Signal Events

As shown in Fig. 5.2 and Table 5.1, assuming M,.,,,, = 106 GeV, if mx? 2 120 GeV

then the decay length D is less than 10 cm, which does not satisfy the criterion for

being a background-free signal event. The experimental signature of the signal event

in this case consists of two photons coming out of the interaction region with large

missing energy. Any background will consist of a standard process with a similar

event signature. Before identifying these processes, let us examine the details of the

signal event, so that we may better distinguish them from the features of the various

backgrounds.

To obtain the distributions of the decay photons we evaluated the full correlated

helicity amplitudes including the decays of the two neutralinos. However, we did
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not find a noticeable difference compared to a simpler calculation in which the

decays of the x‘,”s are treated independently, ignoring the correlation between their

polarizations. Figure 5.3 shows the distribution of the single-photon energy E,, for

mx‘l’ = 100 GeV and me; = 300 GeV. The distribution is approximately constant

with E, between x/S(1 — )6)/4 and \/§(1 + fl)/4, so the order of magnitude of the

photon energies is \/S/4. Typically, each photon has large transverse momentum

p}. Figure 5.5 shows the p} distribution of either photon, for mx? = 100 GeV

and me; = 300 GeV. If x? is heavy, then the two decay photons are acollinear,

which indicates missing transverse momentum. If x‘,’ is light, then due to the large

momenta of the x9’s the two photons will tend to be more nearly back-to-back,

but the sum of the two photon energies will still be peaked at about s/S/2, which

indicates missing energy. This latter feature of the signal event is shown in Fig. 5.6,

which is the distribution of the sum of photon energies, for mxc] = 100 GeV and

me; = 300 GeV. (Figures 3—5 are for a = 0.)

Since the signal event consists of two photons, the first obvious background

process to consider is the ordinary QED process efie+ —-> 77. However, the photon

kinematics for this process are much different than for the signal process: The

photons will be approximately back-to-back with combined energy s/S. Initial state

radiation can change the energy by a small amount, but at the NLC it is expected

that the effects of bremsstrahlung will not significantly change the available center-

of-mass energy of the e“e+ system [19]. Hence in events generated from the QED

process efie“ —> 77 , including possible initial state radiation, the sum of the two

photon energies is close to \/S. By demanding that the sum of the two photon

energies is around VS/2, indicating large missing energy in the event, and that

the two photons are not back-to-back, one can eliminate the large background from

photon pair production.
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Figure 5.5: Differential cross-section in photon transverse momentum do/dp} for

efie+ —» XIX? -—> 77GG at the NLC, assuming a = 0. The mass parameter values

are mx‘l’ = 100 GeV and me; = 300 GeV. (The normalization of do/dp}- is such

that the integral over p} is 2 times the total cross-section, because the final state

has identical photons.)
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Figure 5.6: Differential cross-section in the sum of photon energies d0'/d(E,l + E,,)

for efie’r ——> x‘fx? -> 770G at the NLC, assuming a = 0. The mass parameter

values are mx? = 100 GeV and me; = 300 GeV.

Another background process at the NLC is efie“ —> 77Z with the Z-boson decay

Z —> 1117. This process has large missing energy carried away by the neutrino pair.

We have calculated the cross section for this background process. The cross section

diverges at low transverse momentum p1 of either photon, so we require 117 to be

larger than 20 GeV for each photon. We find that this background cross section is

14.7fb (including three neutrino flavors from Z-boson decays) which is rather small

(cf. Table 1). For comparison, with the same pT cut on the photons the production

cross section of the signal event efie+ —> XiXi) —> 77GG’ is 210fb for mx? : 100 GeV

and me; = 300 GeV, and it is 16.9fb for mx? = 200 GeV and me; = 600 GeV.

Although the 77Z cross section is comparable to the signal cross section in the limit

of large SUSY-partner masses, this background event can be easily distinguished

from the signal event: The missing energy in the 77Z event is entirely due to the

decay of the Z-boson, so the invariant mass of the invisible particles (the m7 pair)
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Figure 5.7: Differential cross-section da/dMgm, in the invariant mass of invisible

particles M5,", for the signal process efie+ —> XiXi —> 77GG, and for the background

process size” -> 77Z, with decay Z —-» m7. The photon transverse momenta are

required to be greater than 20 GeV. The masses for the signal process are "be? =

200 GeV and me} = 600 GeV.

is peaked at the Z-boson mass. The invariant mass can be determined from the

visible energy, i.e., the energy of the initial state and the two photons. We define

this invariant mass squared to be M3", = (193- +pe+ —p.,l —p.,, )2. The invariant-mass

peak for the 77Z background event is shown in Fig. 5.7, along with the distribution

in M5,", for signal events with mx? 2 200 GeV and me; = 600 GeV. The signal

distribution is broad, so requiring Mim, to be away from the Z-peak to discriminate

against the 77Z events would further suppress this already small background. For

instance, as seen in Fig. 5.7, if we require IMgm, — mzl > 20 GeV, then the ratio of

signal to background becomes 14.6 fb/0.7fb=21, as compared to 16.9 fb/ 14.7 fb=1.15

without the invariant-mass cut.

We have noted in the previous section that the search for our signal is limited

by kinematics rather than cross section, so we need not fear such cuts. Figure 5.8
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Figure 5.8: Total cross-s-ection at the NLC for the process e§e+ —» X176? with a—— 0,

as a function of mx° for m~ ——300 GeV (solid curve), men =100 GeV (dashed

curve), and me~ = 1600 GeV (dot dashed curve). (Note that only mx0 < men is

allowed1n the models we consider because x1 is the NLSP.)

shows the X976? production cross section a for a few choices of me}, as a function

of mx? at the NLC. The order of magnitude of a is 100 fb. We conclude that it is

possible to observe the non-background-free signal event at the NLC with 50 fb—1

integrated luminosity, for all the shaded region shown in Fig. 5.2 except if mx‘,’ is

extremely close to the threshold for XiXi production, which is \/§/2 = 250 GeV for

the NLC.

Before closing this section, we comment on the reason for using a right-hand

polarized e" beam for the proposed experiment. Polarization has little effect on

the backgrounds already discussed. As the QED coupling is pure vector, the cross

section for efie+ —> 77 is independent of electron polarization. Because the vector

part of the e-e-Z coupling is proportional to 1—4 sin2 0",, which is small, this coupling

is approximately pure axial vector. Thus the background which produces a photon
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pair and a Z boson is also nearly independent of the electron polarization. The signal

process, on the other hand, may differ for the two polarization cases. efie+ —I xgx‘l’

occurs by exchange of a £72, which does not interact with the V73 component of

x?; whereas e; 3+ —-> Xi’Xi’ occurs by exchange of a 31:, which does couple to 1717’.

Furthermore, the masses of ET; and E}: may be different. We might expect the E}: to

be heavier due to extra contributions from the weak interaction [59]. A heavier left

selectron mass would supress the left polarized cross section, leading one to choose

the right polarization.

In any case, running the experiment with a right-polarized electron beam also

eliminates a background we have not yet considered, the process e"e+ —» 14217677-

The complete gauge-invariant set of diagrams for this process includes the diagrams

for e’e+ —> 77Z(—+ 113178), discussed above, but also includes diagrams involving

e-Ve-W interactions. These contributions to e'e+ —» 11317377 arise from Feynman

diagrams in which a t-channel W boson is exchanged between the two fermion lines.

A right-polarized electron beam eliminates this additional background, because the

W coupling to fermions is pure left-handed. Therefore a right-hand polarized elec-

tron beam has a significantly better ratio of signal to backgrounds, compared to

an unpolarized e" beam. Predicting this additional background due to W boson

interactions for the NLC with less than 100% right-hand polarization of the electron

beam, or for current colliders which have weaker polarization capability, is a topic

for a more detailed study.

5.4 Discussion and Conclusion

We have discussed the possibility of detecting a light gravitino at the NLC, a pro-

posed future e‘e+ collider with center-of-mass energy \/§ = 500 GeV and with a
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function of x/_. The mass parameter values are mx0 =100 GeV, m~ =300 GeV

(solid curve), and mx0 _-200 GeV, m~ ——600 GeV (dashed curve).

right-hand polarized e" beam, from the decay x? —-> 763' where the neutralino x?

is produced in pairs in the e'e"’ collisions. The proposed NLC would also operate

at \/§ = lor 1.5 TeV with a luminosity of 200 fb’1 per year. Figure 5.9 shows the

total cross section a'(e,}e+ —> XiXi) for a gaugino-like x, with a-— 0, as a function

of \/§, for two cases of the mass parameters: mx‘,’ = 100 GeV me; = 300 GeV, and

mxg = 200 GeV me; = 600 GeV. If mx? is large then the cross section increases with

\/§; but if mx? = 100 GeV then the cross section actually decreases as \/§ increases

from 500 GeV to 1 TeV.

The ranges of the parameters MW,” and max? that are accessible for the three

modes of the NLC are shown in Fig. 5.10. (For simplicity, we did not separate

the regions of parameters for background-free signal events from those for non-

background-free signal events, as we did in Fig. 5.2.) It is clearly seen that at

500 GeV the NLC will probe a slightly larger region of the parameters MN,” and
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Figure 5.10: Range of parameters Mm,” and "‘21? accessible at the NLC with

«3 = 500 GeV (solid line), 1TeV (dashed line), and 1.5 TeV (dot-dash line). The

luminosity per year is 50, 200 and 200 fb‘l, respectively. Mass parameter values

are 111;;z = 300 GeV, 500 GeV and 750 GeV, respectively, and the mixing angle a is

0. The interior of each triangle is the region where the number of events is greater

than 10, and D < 1m.

mxg than a TeV NLC if mx? < 250 GeV. At higher x/g the neutralinos are more

likely to exit the detector before decaying. Therefore, a TeV NLC is needed to detect

a light gravitino through the event signature of 2 photons plus missing energy, only

if the NLSP x? is heavier than about 250 GeV.

We should also consider whether this process can be discovered at a current e‘e+

or zip collider. First consider the case of LEP/SLC, with center-of-mass energy J— =

171.2 = 91 GeV and integrated luminosity 450 pb'1 (which is about the integrated

luminosity at mz when combining all the experiments from LEP and SLC), and

also LEP-II, with center-of-mass energy \/§ = 190 GeV and luminosity 500 pb"1

per year per experiment. Figure 5.11 shows the range of parameters MW," and

mx? accessible by LEP/SLO, LEP-II, and the NLC, superimposed, with the same
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Figure 5.11: Range of parameters MN,” and mx? accessible at the NLC (solid line),

LEP/SLC (dashed line), and LEP-II (dot-dash line). The interior of each triangle is

the region where the number of events is greater than 10, and D < 1 m. Parameter

values for this plot are a = 0 and me; = 300 GeV.

assumptions as Fig. 5.2.

The accessible region depends mainly the threshold mass 1nch = J?/2; and on

kinematics, i.e., on the requirement that D < 1 m, where D is the mean distance

traveled by the neutralino before it decays. In the case of a gaugino-like x? at the

NLC we found that the cross section for right-handed electrons is of order 100 fb (cf.

Table 1), large enough to discover the signal even for large me; and mx? near the

threshold. In the case of LEP/SLC or LEP-II with unpolarized e' beam, the cross

section depends on the masses of both selectrons (ET; and 31:), but if we assume

these masses are about equal then we may estimate that the unpolarized cross

section is approximately equal to the right-handed 6' cross section. The boundaries

for LEP/SLC and LEP-II in Fig. 5.11 were calculated with this assumption, with

me; = me; = 300 GeV. For example, the cross section for LEP-II (\/§ = 190 GeV)
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with mx? = 100 GeV and me; = mg; = 300 GeV is 143 fb. In Fig. 5.11 the triangular

area enclosed by the curve for each collider is the range of parameters such that there

would be 10 events (total for LEP/SLC, or per year per experiment for LEP-II or

the NLC), with average decay length D < 1 m.

Figure 5.11 implies that for Mm,” between 104 GeV and 107 GeV, the range rele-

vant to the model of Ref. [52], only the region of parameter space with mx? 5 30 GeV

is accessible at LEP/SLC; however, an interesting region for Mm,” < 106 GeV will

be accessible at LEP—II. However, because the electron beam polarization at LEP-II

is only of order 50%, there is a background from left-handed electrons: the process

e‘e+ —» lief/C77 in which a W-boson is exchanged between the fermions. This back-

ground may be significant at the level of 10 events. A definitive analysis of a LEP-II

search for the gravitino process must include this background.

Next we turn to the Tevatron pp' collider. We have calculated the cross section

for the process pf) -—1 X936? at fl = 2 TeV, for bino-er x9, using a Monte Carlo

program with CTEQ2 parton distribution functions. We find that the cross section

is 19 fb for mx? = 100 GeV and m; = 100 GeV, where 6 indicates any squark. The

cross section decreases with mg. Because of the small production rate (about a factor

of 35 smaller than a 500 GeV e+e‘ collider) and the additional large backgrounds

in hadron collisions (either from physics processes or from the imperfectness of the

detector), the current total integrated luminosity of the Tevatron is probably too

small to provide a useful search for the light gravitino. With the upgrade of the

Tevatron, at which the luminosity will increase by an order of magnitude (to about

2fb"l per year), one can probably detect the light gravitino for some values of

MW,” and mxcl). This requires a separate study as well. The Tevatron and LEP are

considered in detail in Reference [55].

In conclusion, the proposed NLC could provide a means to search for the decay
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of a gaugino—like Next-to-Lightest-Supersymmetric-Particle x? into a gravitino and

photon, Xi —) 761' , for a significant part of the parameter space relevant to models in

which the SUSY-breaking scale is within a few orders of magnitude of the weak scale.

Models with a light gravitino but a higher SUSY-breaking scale would also be probed

by the NLC. The range 105 Gev< Mum, < 107 GeV corresponds to gravitino masses

in the range 1 eV < m3/2 < 10 keV. This range of parameters could be accessible at

the NLC, depending on the neutralino mass. The neutralino pair production cross

section is large enough, of order 100 fb, that it is not a limiting factor. The limiting

factor is the lifetime of the NLSP, which is proportional to M4
easy ‘

If Mm,” is too

large, then the NLSP will exit the detector before decaying, and no information on

the gravitino will be obtained. But as shown in Fig. 5.2, if Mm,” is small enough

for a given neutralino mass mxg, then the neutralinos will decay inside the NLC

detector. The decay x? —> 76? can then be used to detect the gravitino by seeing

the two photons with large missing energy from Xi) pair production.

This study was motivated by the class of gauge-mediated dynamical SUSY-

breaking models, which require a light gravitino. We investigated the possibility of

observing the light gravitino at the NLC, and found that for a large region of the

parameter space, the gravitino would be produced copiously and within the detector.

Therefore, non-detection of the gravitino would rule out a region of parameter space

of the gauge-mediated models. Detection would narrow the field of viable SUSY-

breaking models, providing evidence for the gauge-mediated scenario—though not

proof, since other models do exist which allow a light gravitino.

5.5 Additional Comments

After completing this work we received the paper “Experimental Signatures of Low

Energy Gauge Mediated Supersymmetry Breaking”, by S. Dimopoulos, M.Dine,
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S. Raby and S. Thomas [54], which is similar and complementary to this chapter.

Also, an ee'ry plus missing transverse energy event was reported by CDF at the

Fermilab collider which seems to have no SM interpretation, and may be consistent

with a light gravitino SUSY scenario. This and another SUSY interpretation of the

event are analyzed in Ref. [63]. The authors of Ref. [63] also consider other signals

which can occur at the Fermilab Tevatron or LEPII in the light gravitino scenario.

In Ref. [64], the CDF event is considered in the “no-scale” SUGRA framework.
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Appendix A

The Standard Model Lagrangian

After symmetry-breaking, the physical fields can be written in terms of the SU(3)0 x

SU(2)], X U(l)y fields:

_1_

fi

204‘ = (—B“ sin 0w + WiJ cos 9W)’

W” = (W," 2]: in),

A” = (8‘“ cos 0w + W; sin 0w),

where the Weinberg angle 0w parametrizes the mixing of the electroweak fields. In

the unitary gauge the Higgs field can be written in terms of one real field 1] and a

constant vacuum expectation value v:

‘1’“) = ( [v +111» Nz‘ )

The Lagrangian is then:

LSM : Lboson + Llepton + Lquarlv

Lb..." = -2 mema) — $109 - (1)2

1 _ ..

— 5|D,,W;‘—D.,W,,:‘|2 (AJ)

11 1
+ MW2(W;)*W+" — 74-2}:qu + ngzgzow — ZAWAW
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— éflg cos owzf}, + eAW](W+”W’” — W'"W+") (A.2)

+ 71-512mm; — w;w:)2

+ §[92(Iw+12+ IW‘Iz) + (9” + gszszwum + 112)

+ -;-[(¢9"n)(¢9un) - 213112] - Mn" - 2M“.

where Latin indices run from 1 to 8 in color space, and Greek indices run from

1 to 4 in Minkowski space. The terms labelled A.1 and A.2 are discussed in the

Introduction; they are responsible for electroweak gauge tri—boson couplings. In

terms of the physical fields the covariant derivative is

D” E 3,, + ig(Z3 cos 0w + A,, sin 9w),

and the field strength tensors are

Fuu,&(G) = 3,10“ — BuG’us - g.fa,3,aG,.,aGu,a,

Aw, = anAu—BuAu,

23,, = auzg—auzg.

In terms of v and the SU(2);, and U(1)y coupling constants g and g’, the new

parameters are

I

 

sin 0w = ——£——,—,

(9’2 + 92)?

e = g’g

(9” + a”)?

1

MW = avg,

1 1 MW

M = -— ’2 2 ’ = .

Z 2v(g +9 )2 cosOw

n is the real Higgs scalar field.

Finally, the lepton and quark terms are:

Llepton + Lquark :
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Zfli fi-CQI4“mI‘%fllf

allf

1

+ 2 (K“9:7" 5A0)‘IGIM

q

9 - _ _

— 75‘ 2: ¢§L’v"[a+w:+a Wuwf“

=eiuirIuiclt

 

_ g " p _ 5 0

2mW .2113,” (v1 017 )pr-

Recall that electroweak doublets have 13 = i; for their upper and lower com-

ponents, respectively. Then the vector and axial-vector couplings of the Z0 to a

fermion are given by

‘vf = I3J—2stin20w,

a, =1 I3’f.

a'i are equal to %(0'1 2]: 1:02), respectively.



Appendix B

Helicity Amplitude Method

B.1 Helicity Eigenstates

In the Weyl basis the gamma matrices are the following 4 x 4 matrices

7‘(10)’ 7‘(a,- 0’ 7‘ 0—1’

where 0',- are the Pauli 2 x 2 spin matrices

01 O—i 1 o

”‘=(10)’ ”22(1' o)’ ”3=(0—1)'

The spin operator for a Dirac particle is % E, where in terms of the Pauli matrices

_. 3’ 0

2“(o 3)‘

We define the helicity operator 11(3) =35 13, with eigenvalues z\ = +1 and —1 corre-

sponding to spin parallel and antiparallel to the momentum 3, respectively.

A four-component Dirac spinor can be written as

Wt),

where 1,1)... and z/1- are two-component spinors. 211 is a helicity eigenstate if for

fermions

1P: = "i = WiAX%a (B.1)
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Table B.1: Helicity states in two-component spinor, and bra-ket notation.

 

u+(.\ = +1) +\/E +|i3||15+ >

MA = —1) +\/E - l 3 ma— >

u_(A = +1) +\/E — | 3 ”13+ >

u-(z\ = —1) +\/E + I P “P— >

MA = +1) +\/E — I 3 Ilfi- >

v+(A = —1) —\/E +|3ll13+ >

MA = +1) —\/E + I 3 ma— >

v_(A = —1) +\/E — | 3 ”15+ >

 

    
and for anti-fermions

1P1 = ”a: = iszpr_%, (B.2)

with wi = l/ E :l: I I; I. Here 70/2 is the eigenvector of the 2 x 2 operator 3 of) with

eigenvalue A = :tl. These two-component eigenvectors XA/g, are

_ cos0/2 __ —e“¢sin0/2

X1/2— e‘¢sin0/2 ’ X"1/2- cosB/2 ’

where 0,96 are the directional polar coordinates of 5. We also introduce a ket

notation for the Weyl two-component eigenvectors

[13+ >5 X1/2, [13" >5 X-1/2-

In this notation, the eigenstates for fermions (vi) and anti-fermions (vi) for each

helicity are listed in Table B.1. The helicity eigenvectors for massless fermions in

four-component Dirac form have either zlq. or 1p- equal to zero; and the non-zero

two-component spinor is proportional to XiA/2- The massless Dirac helicity eigen-

vectors are shown in Table B.2 in terms of Weyl spinors. Because two components

are zero the algebra reduces to two-component spinors acted on by 2 x 2 matrices.
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Table B.2: Dirac helicity eigenvectors for massless fermions.

 

(W) (a)
(F)

 

Fermion

 

    
Antifermion ID = ( x/Z—ng )

— —1/2
 

The chirality projection operators are defined to be

1

Pi = 5(1 If: ’75).

In the Weyl basis they are diagonal

1 o 0 o

P+=(o 0)’ P‘=(o 1)’

and they project out 30¢, respectively.

Feynman diagram calculations with a fermion propagator include a factor of j) =

07“
u: +

7_(75 0)’

’7’; =(11:F 3)‘

1): 0 p°+;-I;

pO—E-P 0

The Fierz identities are useful for performing contractions. In terms of bra-kets one

my“. In the Weyl basis

where

Thus,

identity is

< ihilj >< kl7=Full >= 2 < ill >< k|j >. (B.3)

Also, for each ket Ifizi: >, we define an associated ket [E > by

IE >= 4413? >.



134

Then it can be shown that

< “Hm-"7111..” >=< II‘Hun-nfim IE > o (BA)

Therefore uniting Eqs.(B.3) and (BA) another Fierz identity is

< i|7§=|j >< kl‘mull >= 2 < ill} >< le >. (B.5)

For a spin-1 field, the right-handed (R), left-handed (L), and longtitudinal (0) po-

larization vectors are

fit

6‘}; = e_‘/§(0, i sin ()5 — cos «)3 cos 0, —i cos ¢ — sin 43 cos 9, sin 9)

-i¢

6’}, = (ET/{(0, i sin 43 + cos ()5 cos 0, —i cos at + sin 43 cos 0, — sin 0)

66‘ = i-(IP I,Esin0cos¢,EsinOsin¢,Ecos€).

0 and d) are spherical coordinates specifying the direction of the boson’s momentum.

The longtitudinal polarization applies only to massive vector bosons.

B.2 Example Calculation

In this section we give an example calculation of a Feynman diagram, using helicity

states. We also briefly discuss the numerical calculation of the cross section.

We calculate the Feynman diagram in Fig. B.1(b), which is one term in the am-

plitude for W7 production (with W decay). This s-channel diagram includes a

triple-boson vertex. For simplicity we assume A, = 0. Then the WW7 vertex

factor, with momentum definitions as shown in Figure B.1(a), is -ig sin OwI‘afl“,

where

1“”’"‘(qv, (7.10) = (q - é)”g°‘" - (p + (1)59” + (p + §)°9“"

+ A~v(p°g"” -p”9“°)- (B-6)
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(a)

/W‘(q)

I \W+(§)

 

Figure B.1: (a) The WW7 vertex. (b) Example diagram for ad —-> W+7 —-> e+u'y.

Arrows indicate the defined momentum direction.

(The factor for the WWZ vertex would be identical, with sin 9w replaced by cos 9w.)

With the assignment

P = —P3

q = ‘19?

(I = P4

we can write down the contribution to the amplitude from this diagram

-ieg2 1 1

2 (pi - M30013 - MI»)

 

M = [17(2)7aP—U(1)] ‘ [i(6)7aP-v(5)l ° 62(3)I‘“3",

(B.7)

where we have adopted the shorthand u(l) = u(pl), etc. Note that the fiW vertex

has a chirath projection operator P. because of the parity violating V-A coupling.

To simplify the first term in square brackets, we note that

[17(2)7aP—U(1)] = [17(2)P+7aP—u(1)]
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and that

17(2)P+ = “(2)7013

= (121(2) v1(2))(‘1’ 3)

= (”1(2) 0)

W = (3 00:83)

= («z—in]

From Eqs. (B.1) and (B.2) we deduce that, in order to be non-zero, u_(1) and

(B.8)

121(2) must have A equal to minus and plus one, respectively; that is, the up quark

is left-handed and the d is right-handed. We make a similar simplification of the

other square-bracketed factor in Eq. (B.7). Then we can use Table B.1 to write the

amplitude in terms of bra-kets:

 

 

- 2 "

—Ieg 1 1

M E .

2 (p2 - Mwe- Mm‘/2E‘2E’2E52 6

< 2 — [7+a|1— > - < 6 — |7+e|5- > -e;(3)r“"". (3.9)

Using Eq. (B.6) for Pam, and the Fierz identity, (B.3), we simplify the Lorentz

contractions to get

 ' 2

_ —zeg 1 1

M " 2 (p: — Ms) (1»: — May)‘/2E‘2E’2E52E°

{—2(p4 +p7) - 6*(3) < 2 — |6+ >< 5 +|1— >

+ < 6 — |(167+ 123)+|5— >< 2 — l £1(3)|1— >

+ < 2 - |(164— 163)+|1— >< 6 —| fi:(3)I5-— >

+ A», [< 6 — | p3+|5— >< 2 —| ;;(3)|1— >

 

— < 2 — I 163+I1— >< 6 — I £1(3)|5- >]}, (B-10)

where [1,]: denotes pu'yi.
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The rest of the cross section calculation is done by computer. Components of

the transition amplitude in the form of Eq. (B.10) are calculated numerically by a

FORTRAN subroutine. To obtain a differential or total cross section, the “hard”

cross section in terms of partons must be convoluted with the parton distribution

functions and integrated over the momentum fractions of the initial partons. The

hard cross section (for massless partons) is

r (2104
&= —.

. 23

|M|2d<I>, (B.11)

where 5 is the partonic center-of-mass energy, M is the matrix element, and d<I> is

the phase-space element appropriate to the number of outgoing particles. The total

hadronic cross section is then

0: 'dzdz'f(z)f'(z')&, (3.12)

where a: and 2’ are the momentum fractions of a parton in the proton and antiproton,

respectively. (This is one term; we also include a term in which the f and f’

originate in the antiproton and proton, with probability f(z’)f’(23)) Our Monte-

Carlo program, based on PAPAGENO [32], evaluates the phase-space and a: integrals

simultaneously by summing the kinematic and matrix element weights of many

events. That is, for each event a set of random 2’s and momenta are generated which

satisfy all kinematic constraints. The 23’s determine the parton distribution weight,

while the momenta determine the matrix element and phase space weights. The

product of these weights, summed over many events, yields the cross section. The

parameters of each event are stored in an HBOOK NTUPLE, so that we may project

out the distribution of events along any kinematic variable, i.e. the differential cross

sections.
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