..r .. hwy, .. I. ...,. ..- I..Inr.I|n.¢I IILI . ....Itflulbl J...» .I .I.... .n A. D¢III1 .\|.I|ulvh o!‘l‘l1fi«l . Ax; . ...... ixqmmfluu, “HI-MW! ‘\?.I aWIUTr .. f . . .._ . . . . Ia, aw». 3.6%.”. ...rw- . . 1.. any” any»... WWW“ (MW-Wfi ”Gun-K0. . ....5. {R .3. .. .. . .. f. . .QIA». . . . rfiv..d.~n.7+fi v.2. . - 544.43%...» aw“: I .8305...) IVE-pr“?! k9... I. I out... ‘ ...wv ..w.“fl.v.u. ......quv... .......u .. n. PPR thWnIv . ”figuun. 3n. . .. . .. .. he...» ... . . fbwufizuvpnlhl-n a u .1 . .55.. . ..ry i4" .. 5 E h I E? . 8.. . ... . .....zF. EMAI». «#dech .. .... In ...«.m&.%x§ II. . .1 -§ ‘0 . . n ......Fo. ..a I. ht... .. . I ...): «......MYIE a“?! "Hans: . d... .p u. ...... a. ham . (It . . . mvwlfi I..- . , onrvufih ...IT. . MEI!Y.J a I. \.. ., among nun . . A. I . .. 3W... .. . .. hear . 1». u #1.. .I.I.I. :9...» ...... AMI-II... . lIwfiIu wavy- .. .u..r(d..:..t7.t. H.vu.'u.c qr‘fl . . 5.90.. oi} I 'i II ,I'c: I '| IL: II, 1‘,| II‘I '0. \u .. v I. ‘I I‘lIIIi Ly . . ’.«.Illvt. . I. I O In. Ii‘ III." .Ho.o.I|I Q . . 'I’IIIIDVIA t I I (.-{l‘l I‘ . I!!! I- o f .11"! | I I. .‘lu" I- , 0 III'I I'DiIl .0 l I II\ I. \WIIIIIun II». III) .IIlI’ u I I 5. . II . VU-VIIID'II' I Iv ..I o n n u . I. I" to, It . I: t . t t In . Ir 3. t I a !-'.w."tvl.. I... I IV‘I,- I’. II .I. I I. . . . , I . L . . t IVID- III! I, II . u .. .. I. I I I r .I . ..I . .. I I .. uh .I . . . \II I o . . . v. I h. r . n I» I I n 0“”- ‘it I.- .l . la'llII ‘« IIIIIIIIIII .III I. . I: II.II‘| III: I I .I. .. I II; I.I.DNIII IIII III! III I...II. I5 I I I II I ..II. I .chIXIIIouo‘: II III- I !\.lv.|.01..vuuhb. It 4... I \ " ’0’07 ‘U‘n Ifi I l ‘I a.- w- IV.-. 1" I. I I ' | .AIo.I.|I .\ III. . I . l I I . II. .. I I It} I I III.V It‘stnx I IIII I. In In. I \I ‘I . . Io . I III r I I niliv . . r. , .v r r . I 1|... III I III II III II II .. I IIIII IWWMWWWWW 3 1293 01691 4578 This is to certify that the thesis entitled EXPERIMENTAL DETERMINATION OF A SPINAL LINKAGE MODEL FOR THE SEATED HUMAN TORSO presented by Melissa Sloan Gedraitis has been accepted towards fulfillment of the requirements for Master' 8 degree in Mechanics \ S) V Major professor ) mmNmI1£fi94 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution v _ ._fi ,. —» ‘~—-v—4 LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MTE DUE DATE DUE DATE DUE 1)” Wm“ EXPERIMENTAL DETERMINATION OF A SPINAL LINKAGE MODEL FOR THE SEATED HUMAN TORSO By Melissa Sloan Gedraitis A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Material Science and Mechanics 1997 ABSTRACT EXPERIMENTAL DETERMINATION OF A SPINAL LINKAGE MODEL FOR THE SEATED HUMAN TORSO By Melissa Sloan Gedraitis In this work, a model of the seated human torso was determined through postural analysis under a broad range of seated support conditions. Utilizing optical position measurement equipment and software, posture data were collected with ten mid—size male subjects in a laboratory seat under a wide range of torso support conditions. From these data, joint locations were determined for a three segment, two joint torso linkage model, which would satisfactorily simulate seated human torso motion. The allowable angle ranges through which adjacent segments should move relative to one another were determined and the coupling between motion at one joint and the other was evaluated. This seated human torso posture linkage was developed as a necessary step toward understanding the effects of seat support geometry on human posture. COPyn'ght by MELISSA SLOAN GEDRAITIS 1997 I dedicate this work to my research partner, my friend, my husband, Chris. iv ACKNOWLEDGEMENTS I would like to thank the following individuals and entities for their help in making this research possible: Johnson Controls, Inc and the National Science Foundation for their financial support, Dr. Robert Hubbard for providing the environment in which this research could take place, Drs. Gary Cloud and Roger Haut for serving on my committee, and the consulting office of the statistics department for providing custom analysis methods for my research problem. TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................. x NOMENCLATURE AND ABBREVIATIONS ............................................................... xii l - INTRODUCTION ...................................................................................................... l 1.1 Background ...................................................................................................... 1 1.2 Anatomy Of The Human Torso And Posture Descriptors ............................... 5 1.2.1 Introduction ................................................................................................. 5 1.2.2 Anatomical Directions ................................................................................. 5 1.2.3 Spinal Anatomy ........................................................................................... 6 1.2.4 The Stemum .............................................................................................. 10 1.2.5 Limb Influence on Torso Posture .............................................................. 10 1.3 Research Objectives ....................................................................................... 12 2 - EXPERIMENTAL METHODS ................................................................................ 15 2.1 Introduction .................................................................................................... 15 2.2 Test Setup ....................................................................................................... 15 2.2.1 Data Acquisition ........................................................................................ 15 2.2.2 Test Space ................................................................................................. 16 2.2.3 Measurement Targets ................................................................................ 16 2.2.4 Measurement Probe ................................................................................... 17 2.2.5 Reference Seat ........................................................................................... 18 2.2.6 Test Buck ................................................................................................... 20 2.2.7 Test Clothing ............................................................................................. 23 2.3 Subject Selection ............................................................................................ 23 2.4 Testing Protocol ............................................................................................. 24 2.4.1 Introduction ............................................................................................... 24 2.4.2 Test Preparation ......................................................................................... 24 2.4.3 Testing Procedure ...................................................................................... 25 2.4.4 Test Conditions ......................................................................................... 27 2.5 Analysis Approaches ...................................................................................... 30 2.5.1 Simplifying Modeling Assumptions ......................................................... 30 2.5.2 Raw Data Treatment .................................................................................. 31 2.5.3 Thorax Shape ............................................................................................. 31 2.5.4 Thoracic Coordinate System ..................................................................... 35 2.5.5 Pelvis Shape .............................................................................................. 36 2.5.6 Pelvic Coordinate System ......................................................................... 40 vi 2.5.7 Spinal Data ................................................................................................ 41 2.5.8 Creating Spinal Points- “Upper Lumbar” and “Lower Lumbar” .............. 42 2.5.9 Defining Lumbar Segments ....................................................................... 43 2.5.10 Thoracic and Pelvic Positions in the Lumbar Coordinate System ............ 44 2.5.11 Locating Model Joints, Introduction ......................................................... 45 2.5.12 Calculation of Rotation Centers in Lumbar Coordinates .......................... 45 2.5.13 Rotation Centers in Thoracic/Pelvic Coordinates ..................................... 48 2.5.14 Averaging Subject Data ............................................................................. 48 2.5.15 Generalizing Subject Results .................................................................... 49 2.5.16 Error in Joint Center Location ................................................................... 49 2.5.17 Length of Lumbar Segment ....................................................................... 52 2.5.18 Error in Lumbar Length ............................................................................. 54 2.5.19 Thoracic and Pelvic Angles Relative to the Lumbar Segment .................. 54 2.5.20 F lat-Back Reference Posture ..................................................................... 56 2.5.21 Limb Data .................................................................................................. 59 3 - RESULTS AND DISCUSSION ............................................................................... 60 3.1 Introduction .................................................................................................... 60 3.2 Raw Output Data ............................................................................................ 60 3.3 Thorax ............................................................................................................ 61 3.3.1 Shape ......................................................................................................... 61 3.3.2 Joint Center Locations ............................................................................... 63 3.3.3 Error in Joint Center Location ................................................................... 66 3.4 Pelvis .............................................................................................................. 66 3.4.1 Shape ......................................................................................................... 66 3.4.2 Joint Center Locations ............................................................................... 67 3.4.3 Error in Joint Center Location ................................................................... 70 3.5 Summary of Joint Center Locations ............................................................... 70 3.6 Lumbar ........................................................................................................... 71 3.6.1 Length ........................................................................................................ 71 3.6.2 Error in Length Calculation ....................................................................... 72 3.7 Ranges of Relative Rotation Angles .............................................................. 73 3.8 Maximum and Minimum Relative Angles ..................................................... 75 3.9 Lumbar Shape ................................................................................................ 77 3.10 Coupling Evaluation ...................................................................................... 82 3.11 Final Model .................................................................................................... 84 3.12 Repeatability .................................................................................................. 87 3.13 Error sources .................................................................................................. 88 3.14 Other Considerations ...................................................................................... 89 4- CONCLUSIONS AND FUTURE WORK ............................................................... 9O APPENDK A ................................................................................................................... 97 Height and Mass of Tested Subjects APPENDIX B .................................................................................................................... 98 UCRIHS Approved (IRB 96-054) Consent Forms vii APPENDB C ................................................................................................................. 100 Data Transformation into Sagittal Plane APPENDIX D ................................................................................................................. 102 Pelvis Shape and Scaling APPENDIX E .................................................................................................................. 106 Raw Output Data for Each Subject APPENDD( F .................................................................................................................. 166 UMTRI Thorax Points APPENDD( G ................................................................................................................. 167 Individual Subject Rotation Centers APPENDIX H ................................................................................................................. 205 Individual Subject Lumbar Link LIST OF REFERENCES ................................................................................................ 208 viii LIST OF TABLES Table 1: Anatomical Prepositions [4] ................................................................................ 6 Table 2: Subject Specifications ........................................................................................ 23 Table 3: Test Conditions ................................................................................................... 29 Table 4: Target to Landmark Directions- Thorax ............................................................ 32 Table 5: Lumbar Segments ............................................................................................... 43 Table 6: Average Thoracic Joint Center Locations in Thoracic Coordinates (mm) ......... 63 Table 7: Error in Model Joint Locations (plus or minus) ................................................. 66 Table 8: Average Pelvic Joint Center Locations in Pelvic Coordinates (mm) .................. 67 Table 9: Error in Model Joint Locations (plus or minus) ................................................. 70 Table 10: Lumbar Length (mm) Each Subject (I ) and Mean (i) ................................. 72 Table 11: Error in Lumbar Length (mm) ......................................................................... 73 Table 12: Range of Angles (9) ......................................................................................... 74 Table 13: Ratio of Average TL Angle to PL Angle .......................................................... 75 Table 14: Max and Min TL Angles (9) ............................................................................. 76 Table 15: Max and Min PL Angles (9) ............................................................................. 76 Table 16: Average TL and PL angles (9) for Thorax or Pelvis Support Only ................... 83 Table 17: Average TL and PL angles (9) for Even Support .............................................. 84 Table 18: Repeatability Angles (9) for Third Lumbar Segment ...................................... 88 Table 19: Final Joint Locations and Error ........................................................................ 93 Table 20: Angle Ranges ( 9) ............................................................................................. 94 Table 21: Height and Mass of Tested Subjects ................................................................ 97 Table 22: Pelvis Point Coordinates ................................................................................ 103 Table 23: Thorax Point Coordinates .............................................................................. 166 ix LIST OF FIGURES Figure 1: SAE 2-D Design Template and 3D Seating Mannequin [1] ................................ 2 Figure 2: The Set of Achievable Postures and a Subset of Possible Postures .................... 3 Figure 3: A Three Body, Two Joint Linkage Model ........................................................... 5 Figure 4: Spinal Regions, adapted from Chaffin, et al. [4] ................................................ 7 Figure 5: Vertebra- View from Superior Side .................................................................... 8 Figure 6: Vertebra Names, Examples ................................................................................. 9 Figure 7: Lordotic and Kyphotic Postures ........................................................................ 10 Figure 8: Hamstring Muscles, adapted from Chaffin, et al. [4] ....................................... 11 Figure 9: Arm Weight Influence on Thorax ..................................................................... 13 Figure 10: Posture Descriptors .......................................................................................... 14 Figure 11: Measurment Target ......................................................................................... 16 Figure 12: Measurement Probe ........................................................................................ 17 Figure 13: Reference Seat ................................................................................................ 19 Figure 14: Test Buck ........................................................................................................ 21 Figure 15: Height and Prominence Scales ....................................................................... 22 Figure 16: Subject in Reference Seat ................................................................................ 26 Figure 17: Subject in Test Buck ....................................................................................... 26 Figure 18: Calculation Directions for Locating Stemum from Targets ........................... 32 Figure 19: Example of Thorax Target Locations with Calculated landmark Locations .. 34 Figure 20: Thoracic Coordinate System ........................................................................... 36 Figure 21: ASIS and Sacral Landmark Locations from Target Data ............................... 37 Figure 22: General Pelvis Shape ...................................................................................... 38 Ifigure 23: Pelvic Coordinate System ............................................................................... 40 Fl-gure 24: Actual Spinal Data Points with Interpolated Spinal Point, LL ....................... 42 Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Lumbar Coordinate System ............................................................................ 44 Diagram for Center of Rotation Calculation ................................................... 46 L3 Deviation from Flat Back .......................................................................... 57 Regresssion Line on Graph of L3 Deviation from Flat .................................. 58 UMTRI Average Thorax Shape with Subject Shapes (axes in mm) .............. 62 Thoracic Joint Centers on UMTRI Thorax (axes in mm) ............................... 65 Pelvic Rotation Center Relative to Rigid Pelvis Shape (axes in mm) ............ 69 L3 Deviation from Flat vs. PL Angle ............................................................... 79 L3 Deviation from Flat vs. TL Angle .............................................................. 80 L3 Deviation from Flat vs. Tp Angle .............................................................. 81 Resulting Three-Segment, Two-Joint Model .................................................. 86 Thorax Rigid Shape (axes in mm) .................................................................. 91 Rigid Pelvis Shape (axes in mm) .................................................................... 92 Rotation Angle for Data Transformation to Sagittal Plane ........................... 101 Reynolds Pelvis Shape (axes in mm) ............................................................ 104 xi ASIS AN OVA C1-7 L1-5 LL LPI LPZ MSE MSTR PL PSIS SI SAE TI -12 TP UMTRI NOMENCLATURE AND ABBREVIATIONS Anterior-Superior Iliac Spine Analysis of Variance First through Seventh Cervical Vertebra Infrared First through Fifth Lumbar Vertebra Lower Lumbar Lumbar Point 1 Lumbar Point 2 Mean Standard Error- ANOVA Output Mean Std. Error due to treatment- ANOVA Output Pelvis relative to Lumbar Posterior-Superior Iliac Spine First Sacral Spine Society of Automotive Engineers First through Twelfth Thoracic Vertebra Thorax relative to Lumbar Thorax relative to Pelvis University of Michigan Transportation Research Institute xii 1. INTRODUCTION 1.1 Background Seated tasks have become more and more prevalent in current times. Owing to travel in cars, planes, trains, and buses, and use of computers, the amount of time that people are seated has risen drastically over the last century. To support this trend toward seated tasks, seating, from automotive to office, has also grown as an industry. What has lagged, however, is a method to evaluate seats from a human biomechanical perspective. Perhaps a good way to evaluate seats would be to understand the postures that result when people sit in them. Many people have seen the importance of data collection based on this type of seat performance. In the 1960’s, SAE (Society of Automotive Engineers) developed an automotive seat evaluation tool that still is used today [1]. This tool is the 3D seating mannequin, shown with the 2D side view plastic design template in Figure 1. 1826 H-Point Figure 1: SAE 2-D Design Template and 3D Seating Mannequin [l] The 3D mannequin consists of a single flat-backed torso section, connected via a pin joint to a thigh-pelvis section, to which shanks and feet are attached. To this shell, weights are added to simulate a seated average male, by weight and stature (height). The purpose of the mannequin has been to confirm that production automotive seating packages meet design specifications. Output parameters of the mannequin are limited to back, hip, knee and foot angles and H-Point location relative to the seat. However, when placed in a seat with large lumbar prominence, the mannequin does not fit. It cannot conform to the seat back contour, owing to its hard flat back, which makes it difficult, if not impossible, to take the standard angle readings repeatably from contoured seats. Also, the mannequin gives no feedback as to the effects on human posture that this contoured seatback would PrOduce. There is a need for more output than that which this simple tool is designed to give, This need is for a tool that can quantify the effects of seatback contours on the human torso. But what is torso posture and how should it be quantified? In recent years, the issues of defining and measuring torso posture have begun to be addressed. Haas [2] began to evaluate the complex motion of the spine, based on postural data found in various publications. He assumed that by fitting a model to these few known postures, a posture linkage could be inferred. This gave good start to simulating torso posture. Haas developed a multi-joint computer model that represented the mobility of the lumbar spine and began to model possible human torso shapes. However, the few postures Haas found in his references were only samples of postures that had been attained by subjects in testing. Previous investigators had not made attempts to place the subjects in extreme torso postures; and, therefore, their test results did not provide sufficient data for understanding the total range of postures. Also, because Haas did not have measurement techniques available for investigation of the total range of postures, his model was able to represent only a series of possible postures, but not the entire range of attainable postures, as illustrated in Figure 2. Postures Observed by Haas and Others All Achievable Postures Figure 2: The Set of Achievable Postures and a Subset of Possible Postures. From Haas’s multi-joint computer model, Bush [3] made important simplifications. Bush reduced the complexity to a model of only three segments (a ribcage, lumbar, and pelvis) connected by pin joints. The upper joint of Bush’s model was located at the anatomical joint center between the twelfth thoracic and first lumbar vertebrae, and the lower one was located at the anatomical joint center between the fifth lumbar and first sacral vertebrae. (See Section 1.2 for a better understanding of spinal anatomy.) Bush’s three-segment model is shown in Figure 3. Bush’s model was also given a motion pattern governed by a chain linkage, which directly coupled the motion of the thorax to that of the pelvis. For every clockwise rotation of the thorax relative to the lumbar, the pelvis rotated the same amount relative to the lumbar, in the counterclockwise direction. Refer to Figure 3. Bush found that his simplified model simulated Haas’s six joint model to within 12.7 mm of back contour discrepancy, which was felt to be acceptable in automotive seat design. However, the locations of the joints for Bush’s model were drawn from limited information. The motion patterns of Bush’s model were confirmed using Haas’s model, which itself had not been experimentally validated. No actual experiments were run to either confirm or discount the validity of Bush’s model joint locations. Also, the coupling linkage Bush gave to his model imposed severe restrictions on the model’s range of possible motion, excluding any thoracic rotation relative to the lumbar without pelvic rotation relative to the lumbar, or pelvic without thoracic rotation relative to the lumbar segment. This of the possible motions of Bush’s torso model was also not tested for its accuracy in representing human torso motion. The joint locations and coupling linkage were adopted out of mere convenience. Ribcage H-Point Pelvis Figure 3: A Three Body, Two Joint Linkage Model With this background, the current study aimed to expand on the work begun by Haas and Bush, by performing an in-depth study to lend insight to the entire range of possible seated postures. From the data produced by this study, a more complete understanding of seated human posture might be possible. 1.2 Anatomy Of The Human Torso And Posture Descriptors 1.2.1 Introduction Anatomical information necessary to the understanding of spinal motion and attaining postures is given in this section. 1.2.2 Anatomical Directions Special descriptive terms are used in anatomy to describe relative locations. For example, toward the top of the subject’s head is referred to as the superior direction, rather than upward [4]. This is to avoid the confusion that may result from different subject orientations, e.g., subject sitting versus lying down. Table 1 summarizes the anatomically comparative terms that will be necessary to the understanding of this document. Table 1: Anatomical Prepositions [4] PREPOSIT ION DEFINITION Superior Toward the Top of Head Inferior Toward the Bottom of the Feet Anterior Toward the Front of the Body Posterior Toward the Back of the Body Lateral Away from the Lefi/Right Centerline of the Body 1.2.3 Spinal Anatomy The base of the seated human torso is the pelvis (Figure 4). The pelvis has palpable skeletal landmarks, including the left and right anterior-superior iliac spine (ASIS), the pubic symphysis, and the sacrum, which are important for determining the position and orientation of the pelvis. The pelvis supports the spinal column, to which the ribcage is attached. Cervical Spine Manubrium _r' Thoracic Spine .4 Xyphoid ___/ Vertebra Lumbar Spine Anterior-Superior Iliac Spine x, Pelvis ’ 9\ Posterior-Superior Iliac Spine Pubic Symphysis ‘ Sacral Spine or Sacrum Coccygeal Spine or Coccyx Figure 4: Spinal Regions, adapted fi'om Chaffin, et al. [4] The spinal column is divided into five sections: cervical, thoracic, lumbar, sacral, and coccygeal spine, which are labeled in Figure 4. But of the sections of the spine, not all are considered in defining torso posture. For example, the cervical spine is responsible for the motion of the head relative to the ribcage, and is therefore not considered in this study of torso articulation. Also, the sacral spine is composed of five fused vertebrae, which serve as an attachment to the pelvic girdle, but have no motion relative to one another, while the coccyx, or tail bone, plays no known functional role in humans [6]. These spinal sections are excluded from this motion study. The lumbar spine and, to a lesser degree, the thoracic spine are responsible for torso mobility. The spine is composed of vertebrae, which move relative to one another, and give the human torso its wide range of mobility. The bony prominence on the posterior side of each vertebra is called the spinous process, and is the part of the bone that is palpable through the skin and tissue on a living human back. See Figure 5. >[ ) Figure 5: Vertebra- View fi'om Superior Side Each vertebra in the spinal column is given a name, consisting of a letter followed by a number. The letter corresponds to the initial letter of the spinal segment name (cervical, thoracic, lumbar, or sacral), and the vertebrae are numbered within each section, superior toward inferior, such that the names of the vertebrae are: C1-C7, T1- T12, Ll-LS, and Sl-SS. See Figure 6. Figure 6: Vertebra Names, Examples In describing the shape of the spine in different postures, it is often necessary to define the direction of curvature of the spine. For this purpose, the term lordotic (e.g., lumbar lordosis) is used to describe a lumbar spinal curvature that is concave posteriorly, and the term kyphotic (lumbar kyphosis) is used to describe an anteriorly concave spinal curvature. These are illustrated in Figure 7. lO \ X Lumbar Lumbar Lordosis Kyphosis l gill Ll 5i hi it Figure 7: Lordotic and Kyphotic Postures 1.2.4 The Sternum The sternum is the anterior intersection of the left and right ribs. The most superior region on the sternum is called the manubrium, while the most inferior part is called the xyphoid. 1.2.5 Limb Influence on Torso Posture The positions of the limbs relative to the torso can influence the torso posture of an individual. For example, the hamstring muscle group has connections to the pelvis at the ischial tuberosity and to the leg inferior to the knee as shown in Figure 8. 11 Knee Angle w ~ ->—~ I V I” i I Hamstring Muscle . Group connection at Hamstring Muscle Ischial Tuberosity on the Group Connection Pelvis below the Knee Figure 8: Hamstring Muscles, adapted from Chaffin, et al. [4] 12 The angle of extension of the knee therefore influences the tension of the hamstring, which in turn pulls on the bottom of the pelvis. Referring to Figure 8, should the knee be quite extended, perhaps beyond a knee angle of 120°, and should the pelvis want to rotate counter-clockwise, the hamstring would inhibit or limit this pelvic motion [4, 7]. Arm position is also able to influence torso posture. Arms extended out forward from a person must be held in this position using shoulder muscles, as shown in Figure 9. The resulting force and moment on the torso, shown in the free body diagram in Figure 9, cause the relaxed thorax to slump forward, if no counteracting muscle force is employed. 1.3 Research Objectives The aim of this research was to design a three segment model to represent human torso motions in the sagittal plane, based on measured data and statistical analysis, to be valid over the entire range of seated postures, within known error limits. The resulting human torso posture description is to be reduced to two joint centers and three angles: 1. recline 2. thorax relative to lumbar 3. pelvis relative to lumbar As shown in Figure 10, the recline angle is the angle of the lumbar segment relative to vertical. The thorax to lumbar angle (TL) is zero in the flat-back configuration, as shown on the left. It becomes more positive, as the thorax rotates toward an erect posture (clockwise). Likewise, the pelvis to lumbar angle (PL) is zero in the flat-back posture, and positive when the pelvis rotates toward a more erect posture (counter-clockwise). Arms Held Out Cause Forces and Moments on Thorax Reaction Force at Body T flfls Reaction 0 Moment . at Body Free Body Diagram Relaxed Thorax Slurnps as a Result Figure 9: Arm Weight Influence on Thorax l4 (vertical) i l —U: Recline I 1 TL > 0 A Toward Slumped Toward Erect < 0 > 0 Q. PL > 0 ' III/ll Reference Flat Back: ‘ TL Angle = 0 PL Angle = 0 Figure 10: Posture Descriptors The joint locations of the three segment model will be determined through analysis of postures resulting from different support configurations. Once the joint locations are determined, relative to the thorax and pelvis segments, the length of the segment connecting these joints will be calculated, and the angles through which the segments move relative to one another will be investigated. Coupling that might exist between the motions of the pelvis and thorax, as in Bush’s model, will also be evaluated. 2. EXPERIMENTAL METHODS 2.1 Introduction The goal of this research was to impose various geometric support conditions on the backs of seated mid-size males and to gather information about the postures attained by these subjects, resulting from these input support conditions. Analysis of the output was aimed at determining a three-segment torso model, first by locating centers of rotation between thorax and lumbar segments and between pelvis and lumbar segments, then by determining the ranges of motion about the joint centers. This section describes methods that pertain to experimental set-up, data collection, and analysis techniques used in completing these tasks. 2.2 Test Setup 2. 2. I Data Acquisition Data relating to the posture of each subject was collected using a five-camera Qualisys position and motion measurement system to locate targets placed over skeletal landmarks. The cameras were arranged to surround the test space, which was approximately 5.5 m x 5.5 m. The lenses of the measurement system cameras are surrounded by infrared (IR) light emitters, while the lenses themselves are equipped with IR filters. The camera apertures were closed sufficiently so that they would detect only the very brightly reflected IR light from test targets in the test space. (See Section 2.2.3 for details on targets.) MacReflex software, running on a Power Macintosh 7100/66AV 15 16 and connected to the Qualisys camera system, provided the coordinates of each target’s location in three dimensional space, relative to the test space as output. 2. 2.2 Test Space The test space was calibrated such that each target would be seen by a minimum of two cameras for each trial of testing, as required by the camera system and software for three-dimensional target coordinate calculation. The coordinate system created by the calibration process determined the positive X-axis pointing toward the rear of the space, in accordance with standard SAE coordinates. A right-handed Cartesian coordinate system was created, with the Y-axis toward the subject’s right, and the Z-axis upward (perpendicular to the plane of the floor.) 2.2.3 Measurement Targets Spherical wooden beads of 16 mm diameter, to be used as measurement targets, were coated with a layer of 3M retro-reflective tape. This tape is irnbedded with small glass spheres that make it highly reflective. Each target was then mounted with an adhesive to a 25 mm by 25 mm piece of vinyl backing material. Tape-Covered Wooden Bead 4 Vinyl Backing u Material Figure 11: Measurment Target These targets were taped to a subject’s skin over palpated skeletal landmarks of interest, 17 as will be discussed in Section 2.4.2. 2.2.4 Measurement Probe For applications in which the targets were not practical, i.e., if there was not good camera visibility or space for a target, as when locating points on the spine, a measurement probe was used to locate the skeletal landmark. Probe construction began by cutting 4 mm diameter steel drill rod to an arbitrary length (approximately 375 mm.) Two 25 mm diameter wooden beads were drilled down a centerline to receive the drill rod. The beads were then covered with reflective tape (as with the targets discussed in Section 2.2.3) and mounted on the drill rod, one at the end and one near the middle. The bead locations along the rod were fixed with epoxy. See Figure 12. Taped Figure 12: Measurement Probe As labeled in Figure 12, the length (Lp) of the probe from the center of Marker 1 (M1) to 18 the Tip (T) was measured. The location of the probe tip could be calculated from measured positions in space of the centers of Marker l and Marker 2 (M2) using the principle of right triangles. D=\/(M1, —M2,)2 +(MIy —M2y)2 +(MIZ —M2,)2 (1) T.- = (L —D) {15101142, i: ”’2 (2) T=T,.él i=x,y,z (3) In the event that a skeletal landmark location was physically inaccessible from being probed, a point superior and a point inferior to the actual location were probed and the two calculated tip locations were averaged. 2. 2.5 Reference Seat In order to gather posture data, it was first necessary to take a reference file, while the subject was seated in a reference seat. The reference file offered a consistent set of conditions under which to define locations of C7 and T4 spinous processes relative to the manubrium and xyphoid, and to get a reference foot angle of zero degrees. The seating surfaces of the reference seat were constructed of plywood, with a seat pan angle of 15° (SAE L27 10° [8]) and a back angle of 23° (SAE L40 24° [8]). The back surface was made of two plywood sections, with an opening down the center, in order to provide access and visibility to the subject’s spine. See Figure 13. Two targets were affixed to the left lateral side of the reference seating surface. 19 The first target (T1) was aligned 120 mm forward of the seat back, so that it would be approximately lateral of a seated subject’s ischial tuberosities. This target placement would allow superior/inferior scaling of the pelvis shape. The second target (T2) was 225 mm rearward of the first, along the seat pan, as shown. Because T2 was directly rearward of T1 , in the X-Y plane, the pair of targets provided the necessary information to align the subjects’ sagittal plane with the X-Z plane of the test space. Spine Slot Width = 70 mm Seat Width = 456 580mm Figure 13: Reference Seat 20 2. 2. 6 Test Buck In order to examine the postures of seated individuals in terms of a model, a laboratory seating buck was designed that would allow an adjustable seat back geometry. The buck is shown in Figure 14. The seating package was designed to produce a knee angle near 120°, using the SAE mannequin 50th percentile thigh and shank lengths [8]. This knee angle was chosen in order to minimize tension in the hamstring muscles that might restrict lordotic postures, as discussed in Section 1.2.5. The package was given an average vertical H-Point to Heel Point height of 398 mm, and a nominal horizontal H- Point to Ball of Foot distance of 885 mm [8]. This horizontal distance was adjustable, allowing the subject to choose an acceptable “pedal distance” at the beginning of the test. A pair of vertical hand grips was provided for support of the arms, but not to require that the subject reach far forward. It was not desired that hand position be a major postural input, as described in Section 1.2. The hand grips were therefore much nearer the torso than an average steering wheel might be. These grips were centered on the buck in the Y-direction and were 305 mm apart. In the sagittal view, they were located approximately X = 150 mm and Z = 210 mm from the SAE H-Point location. The hand rests were adjustable :20 mm vertically, in order to accommodate differences in subject torso and arm lengths. The seat pan was constructed of flat plywood, and extended forward approximately 420 mm from the intersection with the back support plane in a flat configuration. The buck had a constant seat pan angle of 15° (SAE L27 = 10° [8].) The seat back was comprised of four 30 mm diameter galvanized steel tubes. These were mounted horizontally and were adjustable in height as well as prominence 21 (distance from the back frame). A stop block was the lowermost seat back component and was used to provide consistent pelvis location. The seat back angle was 23° (SAE L30 = 24° [8]) in the flat contour configuration. See Figure 14. Seat Back Contour Prominences we!) Block .K " «My Targets on Seat Buck Figure 14: Test Buck Two targets were affixed to the buck on the lower left side, along the fore-aft axis of the test buck. Note the bright spots in Figure 14. Because the targets were directly aligned with the test buck, they provided the necessary information to align each subject’s sagittal plane with the X-Z plane of the test space. Length scales were mounted on the left and right seat back members, for consistent measurement of support height. A similar scale was also attached to each support, allowing measurement of relative support prominence. These are shown in Figure 15. 22 Height Support Scale on Left Side Height Support Scale \ ' on Right Side ‘ \ Prominence Scales Figure 15: Height and Prominence Scales 23 2.2. 7 Test Clothing Clothing was provided to the test subjects for use during testing. It was necessary that targets be attached to the subjects’ skin at various locations, and that these targets be readily visible by the cameras. The test clothing therefore consisted of tight-fitting garments (a tank top and a pair of running style shorts), with holes in necessary areas. The tank top was cut in the front to allow afi‘ixing of a target to the xyphoid and cut down the back to allow access to the spinous processes. The shorts were cut in the back to allow access to the sacrum and cut on the front left to allow a target to be affixed to the skin at the left ASIS. 2.3 Subject Selection Subjects were selected to be mid-size males, based on the 1974 HANES US. population study [9], deviating plus or minus 5 kg in mass and 25 mm in stature (height). The upper and lower limits for the ranges of mass and stature indicated by these specifications are given in Table 2. Appendix A lists the height and mass for each of the ten tested subjects. Table 2: Subject Specifications MINIMUM MAXIMUM Stature 1727 mm 1778 mm Mass 73 kg 82 kg 24 2.4 Testing Protocol 2. 4. I Introduction A testing protocol was followed, allowing posture data to be gathered in each of the test conditions. These data pertained to the limbs as well as the torso, to document the total posture of each subject in each test condition. 2. 4. 2 Test Preparation 1. 9'9?” 10. ll. 12. 13. Prior to subject arrival, the test space was calibrated as described in Section 2.2.2. Double sided medical tape was adhered to each of thirteen targets. (See Section 2.2.3.) The reference seat was brought into the space, facing the negative X-direction. Upon subject arrival, the experiment was explained in detail to the subject. The subject was asked to sign a UCRIHS (IRB 96-054) approved subject consent form. (Appendix B contains a sample copy.) The subject was asked to change into prepared test clothing (as described in Section 2.2.7), leaving shoes on. Medical tape was placed on palpated spinous processes T10, T12, L3, and S1 on the subject’s back. A single dot was made on each tape over the spinous processes. This would be the point to be probed in each test condition. The subject was asked to sit upright on a hard surface and the heights from this surface of the following landmarks were recorded: T6, T12, L3, PSIS. The test buck’s back supports were then adjusted to the heights from the previous step, as measured from the test seat surface. Prepared targets were fixed to the subject, at the following palpated skeletal landmarks: a) manubrium b) xyphoid c) left ASIS d) left lateral femoral condyle e) left lateral malleolus i) left lateral ball of foot g) spinous process levels of C7, T4, and S1 Three measurements were then taken and recorded, a) The lateral distance between the subject’s ASIS’s b) The lateral distance between the subject’s PSIS’s c) The distance from the posterior heel of the shoe, to the location of the foot target, measured anteriorly. The subject was then asked to sit in the reference seat, as described in Section 2.2.5, keeping his feet on a flat level surface, and hands beside his thighs, resting on the 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 25 seat pan. See Figure 16. Target location data was gathered in this reference configuration, using the Qualisys system. The subject got out of the reference seat. The targets were then removed from the C7, T4 and 81 locations. A target was affixed to the subject’s left lateral humoral condyle and another to the back of the subject’s left wrist, between the radial and ulnar condyles. The reference seat was removed from the space and the test buck brought into the space. The subject was asked to sit in the test buck. The subject was instructed to sit in the seat with as extreme a lordotic posture as possible. He was encouraged to attempt to tilt his pelvis forward and push his shoulders back, bringing his lumbar spine away from the support surface as much as possible. The test buck’s back supports were adjusted to meet the back contour produced by this intentional lordosis. The values were read from the prominence support scales and were recorded. The subject was then asked to slump into a kyphotic posture as much as possible. The supports were again adjusted to meet this posture and the prominence values were recorded. The subject was asked to exit the test buck. The test buck’s seatback was set at test condition 1. (Test conditions are described in Section 2.4.4.) 2. 4.3 Testing Procedure 1. S" The subject was asked to enter the test buck, sliding his pelvis rearward until it contacted the stop block, then leaning back to contact the remaining back supports. (See Figure 17.) The subject was asked to focus on a designated spot on the wall, which was straight ahead and approximately at eye level, and which produced a typical driving head angle. The subject was asked to inhale and completely exhale. When the subject had expired his air, target location data was gathered while the following five points were probed: a) the acromion‘ b) taped spinous process] levels: T10, T12, L3 and S1 The subject was asked to exit the test buck. The buck’s seatback contour was adjusted for the next condition. ’ The acromion is the most prominent bone on the top of the shoulder joint, and was probed at the most anterior, lateral point. 26 Lateral Femoral Condyle Reference Targets Foot ‘g Figure 16: Subject in Reference Seat Figure 17: Subject in Test Buck 27 The Testing Procedure was repeated for each test condition, as discussed in the next section. 2. 4.4 Test Conditions Each test condition consisted of an amount of support applied to the thorax through the two uppermost seatback supports (T6 and T12 spinous process levels), and an amount of support applied to the pelvis by the lowest support (PSIS level). The support at the L3 level was used only to relieve any load concentrations caused by the other supports, but was not intended to initiate input contour control. The settings for the back support prominences for each test condition were computed separately for each subject. The extreme values for the lordotic and kyphotic range, as found in Steps 20-23 of the test preparation, were used to calculate the list of test conditions. The flat seat back was defined as the configuration in which all of the supports were in line with the pelvis stop block. Thorax Flat was the case in which the thorax supports (at the T6 and T12 spinal levels) were still in line with the pelvic stop block. Pelvis Flat was the configuration in which the pelvis support (PSIS level) was even with the stop block. The intentional lordotic extreme posture of test preparation Step 20 gave the values for extremely erect thoracic and pelvic support conditions for the test subject. These were Thorax Erect posture of degree 2 and Pelvis Erect posture of degree 2. Halfway between Thorax Erect degree 2 and Thorax Flat was designated Thorax Erect degree 1. Likewise, Pelvis Erect degree 1 was halfway between Pelvis Erect degree 2 and Pelvis Flat. Thorax Erect degree 3 was the same as Thorax Erect degree 2, but with the topmost support relieved by five millimeters, allowing the subject’s shoulders to fall back 28 even more. The slumped conditions were determined in much the same way. The intentional extreme kyphotic posture of Test Preparation Step 22 gave the values for extremely slumped thoracic and pelvic support conditions. These were Thorax Slumped posture degree 2 and Pelvis Slumped posture degree 2. Just as above, halfway between Thorax Slumped posture degree 2 and Thorax Flat was Thorax Slumped posture degree 1, and halfway between Pelvis Slumped posture degree 2 and Pelvis Flat was Pelvis Slumped posture degree 1. The test conditions provided all combinations of various degrees of thorax support with degrees of pelvic support. A description of the order of support conditions follows. From a flat support condition (condition number 1), first the pelvis was given support at the PSIS level in two increments (conditions 2 and 3) until it was extremely supported, all the while the thorax supports remained in the original flat configuration. With the pelvic support at the full extreme, the thorax was brought to full support at the T12 level in two increments (4, 5) and then relieved of support at the T6 level (6). At this point, the subject was supported in a fully lordotic posture. The pelvis support was then relieved at the PSIS level in two increments back to its flat configuration position (7, 8), while the thorax remained supported at T12. The support of the thorax was then relieved by half (9). At this point, half of the most extreme pelvic support was brought back, to pair with the analogous support of the thorax (10). Then both the pelvis and thorax were relieved of support, just to the other side of flat (1 1). Then back to all flat. (12). The same procedure of combining pelvic and thoracic support conditions was followed in the slumped postures. The complete list of test conditions is shown in Table 3. 29 Table 3: Test Conditions CONDITION THORAX PELVIS NUMBER SUPPORT SUPPORT CONDITION CONDITION 1 FLAT FLAT 2 FLAT ERECT 1 3 FLAT ERECT 2 4 ERECT l ERECT 2 5 ERECT 2 ERECT 2 6 ERECT 3 ERECT 2 7 ERECT 2 ERECT l 8 ERECT 2 FLAT 9 ERECT l FLAT 10 ERECT l ERECT l 11 SLUMPED l SLUMPED l 12 FLAT FLAT 13 FLAT SLUMPED 1 l4 FLAT SLUMPED 2 15 SLUMPED 1 SLUMPED 2 16 SLUMPED 2 SLUMPED 2 l7 SLUMPED 2 SLUMPED l 18 SLUMPED 2 FLAT 19 SLUMPED 1 FLAT 20 ERECT l ERECT l 21 SLUMPED l SLUMPED l 22 FLAT FLAT 30 These conditions were chosen in order to characterize the centers of rotation as well as to examine the possible existence of a coupling linkage, as suggested by Bush. If Bush’s model were correct, supporting only the pelvis would increase not only the PL angle (see Figure 10), but also the TL angle by the same amount. The unbalanced support conditions, brought to extremes in conditions 3, 8, 14, and 18, were designed to bring out the details of this linkage. 2.5 Analysis Approaches 2. 5. I Simplifying Modeling Assumptions Because each thoracic and lumbar vertebra is able, to some degree, to rotate relative to its neighboring vertebra, as discussed in Section 1.2.3, the anatomical spinal linkage is of 16 joints. This system is very complex for explicit description in each given posture. To create a usable and understandable human torso linkage model, several simplifying assumptions have been made in an attempt to represent this complex system in some simpler terms. The first simplifying assumption was to consider only postures taking place symmetric to the mid-sagittal. plane, in keeping with the previous works of Has [2] and Bush [3], since vehicle packaging and many other seated environments are designed symmetrically. The implication is that the model described in this research will be a two dimensional side view of a person. Th next simplifying strategy followed Bush’s work, discussed in Section 1.1, which was to lump the torso into three rigid segments, simply connected with only two ' The mid-sagittal plane divides the body into mirror image, left and right halves. 31 joints. However, the three rigid segments need not be assumed to be the same ones used by Bush. To the contrary, the aim of the current research was to define joint locations between rigid segments that matched experimental data over the total range of support conditions. 2. 5.2 Raw Data Treatment The raw target data for each subject were rotated to align the sagittal plane with the X-Z plane, such that positive X was rearward, and positive Y toward the subject’s right. For details on this rotation, see Appendix C. Because the test data were then aligned with the coordinate system of the test space, and because of the assumption of symmetry about the sagittal plane, only the X and Z coordinates of the data were considered from this point on. 2.5.3 Thorax Shape In the reference file, the locations of the targets over the manubrium, xyphoid, and spinal levels. C7 and T4 were all known. From these measured target locations, actual skeletal landmark locations had to be calculated. Calculation from the target center to the actual landmark was achieved by construction of the appropriate vector from the target center to the landmark. The length of this calculation vector (Lev) was defined to be half the target diameter (d,) plus the thickness of the target backing (tb) plus the thickness of the tissue at that point (t,). +t,,+t, (4) 1’ l L =-d C” 2 32 The vectors’ directions were considered individually by landmark, and will be discussed now. For the manubrium and xyphoid target pair, the calculation vector for both targets was chosen to be perpendicular to the line connecting these two target locations, toward the posterior of the body. See Figure 18. Manubrium Target Manubrium Landmark Xyphoid Target Xyphoid Landmark Figure 18: Calculation Directions for Locating Stemum from Targets For the spinous process levels C7 and T4, the calculation direction was perpendicular to the line between the C7 and T4 targets, anteriorly. These directions are summarized in Table 4. Table 4: Target to Landmark Directions- Thorax LANDMARK J. TO LINE: FROM TO Manubrium Manubrium Xyphoid Xyphoid Manubrium Xyphoid C7 C7 T4 T4 C7 T4 Mathematically, let there be a pair of target locations (J " and K") for which the landmarks lie a certain distance from the target, in a direction perpendicular to the line 33 between these two target. Let J ” be the more superior target, when the landmarks are more anterior than the targets. Or let K" be the more superior target, in the case that the landmarks are posterior to the target locations. Under either of these circumstances, the skeletal landmark locations (J and K) are calculated from the target locations (J " and K") as follows: J = [J;' + Lw(sin6)]é, + [J; + ch(cos6)]éz ( 5) K = [K;' + ch(sin6)]é, + [K; + Lfl(cos6)]éz ( 6) 0=sin" (”‘1“) (7) \IUI —K;)2 +(J; —K;)2 To complete a rigid thorax shape for the subject, the locations of the probed skeletal landmarks T10 and T12 relative to the manubrium and xyphoid were taken from the flat input configuration of test condition 12. Since posture influences thorax shape in the lower thoracic region. , a neutral posture was chosen for locating the T10 and T12 spinous processes relative to the rest of the ribcage. From these probed points, the T10 and T12 skeletal landmarks were located beneath the tissue. Analogous to the above description of calculating landmark locations from target positions, the T10 and T12 spinal landmark locations were extracted from the probed point data by creating a vector from the probed points to the landmarks. The vectors, in this case, were created ° influence of postural change on thorax shape has been experienced in previous laboratory investigation. 34 perpendicular to the vector connecting the probed points for T10 and T12, and had a length equal to the estimated tissue thickness (3 mm). The T10 and T12 landmarks, relative to the xyphoid and manubrium, were included with the xyphoid, manubrium, C7 and T4 landmarks from the reference file. These were all of the points necessary for creation of a rigid thorax shape. A sample thorax shape for a subject is shown in Figure 19. Manubrium, C7, from reference file target from reference file target T4, from reference file target Thorax Target Locations / (Black Diamonds) :yphoig. om re erence . file target T10, probed in neutral posture T12, probed in neutral posture Thorax Landmark Locations (Gray Squares) Thorax Probed Points (Black Circles) Figure 19: Example of Thorax Target Locations with Calculated Landmark Locations Once this reference thorax shape was established for a subject, it was rotated for each test condition to match the same xyphoid location and xyphoid-to-manubrium vector orientation as that found in the test condition. This transformation was performed to provide visual representation of the thorax segment during analysis and to document rigid C7, T4, T10, and T12 locations for ech test condition. Mathematically, the first step in this transformation was to locate the manubrium 35 and xyphoid landmarks relative to the target locations, repeating the procedure used for this task in the reference file. Refer again to Figure 19. The following transformation equation was then used: cos 6, sin 0, 0 {1'}: —sin9, case, 0 {T-Xy}+ {Xy'} (8) 0 0 l where i= x,z T' = T,’ éi T=TQ Xy' = Xyi ér Xy = Xyi éI (9) gr = ¢i "¢r t5} = sin"' (Man; - XyL) ¢r = sin" (Man.r - Xy.) Man' = Man; 6, Man = Man‘. e, T' is the test location of any rigid thorax shape point (C7, T4, T10, or T12), T. Xy’ is the test condition location of the xyphoid and Xy is the rigid thorax shape location of the xyphoid. 6,. the difference in thorax orientation between the test condition orientation (¢}) and the rigid shape orientation ((15,). Man' is the test location of the manubrium and Man is the rigid shape manubrium location. The matrix is the transformation matrix [10]. 2. 5.4 Thoracic Coordinate System A thoracic coordinate system was necessary for locating points on the rigid thorax 36 and also for comparison between subjects’ thoraces. The thoracic coordinate system is shown in Figure 20, with the origin at the rigid thorax T12 and the Zraxis through C7. Z1. A C7 Manubrium Xyphoid s‘ T12 xi. Figure 20: Thoracic Coordinate System This coordinate system was chosen on the back of the body, as the back is expected to be what contacts a seating surface, and should be held consistent between subjects. 2. 5.5 Pelvis Shape Analogous to the creation of the thorax shape, a pelvis shape was also constructed. In the reference file, the locations of the left ASIS and the sacrum were measured with targets. To compute the locations of the skeletal landmarks from these target locations, a vector was again constructed from the target centroid to the landmark. 37 The length of the calculation vector was again Lev, as above. The direction used for calculating from the target center to the landmark for the ASIS was in the direction from the ASIS target toward the sacral target, in the sagittal view. For the sacrum, it was toward the ASIS target from the sacral target, in the sagittal view. See Figure 21. ASIS Target ASIS Landmark Sacrum landmark Sacrum Target Figure 21 : ASIS and Sacral Landmark Locations from Target Data Mathematically, similar to Equations 5, 6, and 7 on page 33, the ASIS and sacrum landmark locations (A and S) are calculated fi'om the target locations (A” and S") as follows: A = [A;' + ch(cos6)]é, + [A," - ch(sin6)]é, ( 10) s = [5; - Lc,(cos6)]é, + [5; + Lc,(sin6)]éz ( 11) 19 = sin" (A; '55) (12) J04; —S;)2 we —S;)2 A general pelvis shape was then created from data contained in a report by Reynolds, et al. [1 1]. Figure 22 shows the sagittal view pelvic shape resulting from the 38 location of points on the outline of Reynolds’ pelvis shape relative to the ASIS and SI landmarks. ASIS l Anterior Posterior Pubic Symphysis Ischial Tuberosity Figure 22: General Pelvis Shape This pelvis shape was only used as a visual representation and to estimate hip joint center location, which will be discussed in Section 2.5.21. Overall pelvis scaling was based on the subject’s 81 to ASIS distance in the sagittal view. Additional scaling was performed based on knowledge of the pelvis bottom location. Since the location of the bottom of the pelvis was known in the reference file to rest upon the seat pan of the reference seat, level with the origin target of the reference seat, this known location of the bottom of the subject’s pelvis was used for superior-inferior scaling. See Appendix D for details of pelvis shape creation, as well as scaling methods. For every test condition, data gathered on the location of the pelvis consisted of the left ASIS target location and the location of a probed point at S1. (See Section 2.2.4 39 for details on calculating point location from probe data.) The locations of the ASIS and S1 skeletal landmarks were calculated exactly as described for the reference condition, except that the length of the vector from the S1 probed point to the skeletal landmark in the test conditions was only the clothing thickness plus the estimated tissue thickness (5 mm), since there was no target diameter to consider. } The reference pelvis shape was then manipulated in the same manner as was the thorax reference file shape. It was rotated to match the S1 skeletal landmark location and the Sl-to-ASIS orientation of the test condition. cos 6,, sin 61,. 0 {P'}= —sin6,, c080,, 0 {P—S}+{S'} (13) O 0 l where i=x,z P'=P,.'é, P=ge s1'=SI;é, S=sre , l4 0P=¢P—¢ ( ) ¢; = sin"(A; —S;) ¢P =Sin-l(Az -Sz) Awarg A=4a P' is the test location of any rigid pelvis shape point, P. 81' is the test condition location of S1 and $1 is the rigid pelvis shape location of S1. 6,, the difference in pelvis orientation between the test condition orientation (¢,',) and the rigid shape orientation 40 ( ¢P ). A' is the test location of the ASIS and A is the rigid shape ASIS location. 2. 5.6 Pelvic Coordinate System A pelvic coordinate system was created for locating points on the pelvis and comparing these points between subjects. The chosen coordinate system is shown in Figure 23, with the origin at the sacral skeletal landmark and the negative X-axis through the ASIS. Z? X? V S] A ASIS Figure 23: Pelvic Coordinate System Just as with the thoracic coordinate system, this pelvic coordinate system was chosen with its origin at the back of the body. Since the model’s back would be expected to interact with a seat, the subjects’ backs should be documented consistently between subjects. 41 2. 5. 7 Spinal Data During testing, the use of targets to locate landmarks on the subjects’ backs would have been impractical, due to visual blockage and physical interference by the test buck. Therefore, during test trials, spinous process levels of interest (T10, T12, L3, and S l) were probed instead of targeted. Locations of the spinous process skeletal landmarks were calculated from the probe target data, as discussed in Section 2.2.4. In order to determine the locations of the skeletal landmarks below the tissue, it was assumed that the tissue thickness over these spinous processes was three millimeters. In an analogous manner to the methods described for the thorax and pelvis in Sections 2.5.3 and 2.5.5, calculation directions from probed points to skeletal landmarks were determined for probed points in the sagittal view. The direction for calculation from the T10 probed point to the location of the T10 spinous process was the direction perpendicular to the line between the T10 and T12 point locations, anteriorly. The direction for calculation from the T12 probed point to the location of the T12 spinous process was the direction perpendicular to the line between the T10 and L3 point locations, anteriorly. The direction for calculation from the L3 probed point to the location of the L3 spinous process was the direction perpendicular to the line between the T12 and 81 point locations, anteriorly. The direction for calculation from the SI probed point to the location of the S1 spinous process was the direction perpendicular to the line between the L3 and S1 point locations, anteriorly. For mathematical details, please refer to the equations on page 33, where L0,. , in this case, is the estimated tissue thickness (3 mm), and J " is the more superior of the probed points used in calculation. 42 2. 5.8 Creating Spinal Points- “Upper Lumbar ” and “Lower Lumbar" Lumbar segments were to be determined as reference segments against which to compare thoracic and pelvic orientations. In order to define more reference lumbar segments, an additional spinal point was interpolated. (Lumbar segment definition will be discussed in Section 2.5.9.) A “lower lumbar point” (LL) was created by averaging the locations of the L3 and SI bony landmark locations. LL, =-;—(L3,.+SI,) i=x,z (15) Figure 24 shows a set of actual lumbar data points (filled diamonds) with the interpolated LL point (empty diamond). Although the LL point certainly varied slightly from representing an actual spinal point, the variation was taken to be negligible, as supported by the smooth shape created by the points in Figure 24. 1 .3 ; <>LL ' S1 Figure 24: Actual Spinal Data Points with Interpolated Spinal Point, LL 43 2. 5. 9 Defining Lumbar Segments While choosing the ribcage to represent the rigid thorax segment and the pelvic bones to represent the rigid thorax segment was fairly intuitive, because of their relatively rigid natures, the definition of the lumbar was not obvious. The human torso is not, in fact, comprised of three rigid sections. The lumbar spine, which anatomically connects the thorax and pelvis, changes shape with posture change. Because there was not obvious definition of a lumbar segment, five different lumbar definitions were used. The probed spinal points used to create each lumbar segment are listed in Table 5. Table 5: Lumbar Segments LUMBAR LUMBAR PT. 2 LUMBAR PT. 1 SEGMENT (LP2) (LPl) 1 S1 T12 2 LL T12 3 81 T10 4 LL T10 5 L3 T10 Because of the dependence of the lumbar spine shape on posture, the spinous processes also move relative to one another as posture changes. The origin for each lumbar segment was chosen as the midpoint between LP] and LP2, because this midpoint would remain constant as the length of the vector between the pair of points changed with the change of spinal shape between postures. The coordinate system for each lumbar segment was as shown in Figure 25. 0 I XL Where 0 is the origin, located at the midpoint between Lumbar Point 1 and Lumbar Point 2 Figure 25: Lumbar Coordinate System 2. 5. 10 Thoracic and Pelvic Positions in the Lumbar Coordinate System Thoracic and pelvic segments were transformed into the lumbar coordinate system so that positions and orientations of the thoracic and pelvic segments could be easily compared between test conditions, relative to the lumbar segment. For each lumbar segment, the coordinate transformation was carried out as follows: cos6L sin6L 0 L'= —sin9L cos6'L 0 {L}+{OL} (l6) 0 0 l i=x,z L'=Li'é, L=L,.éI (17) OL=Qé, 6L = Sin—1&1. 'éz) where L' is the position in lumbar coordinates of any thoracic or pelvic point that had position L in test space coordinates. Or. is the origin of the lumbar coordinate system and 45 6 L is the angle of orientation of the lumbar segment in the test space: the angle between the lumbar’s Z-axis and the Z-axis of the test space. The matrix is the transformation matrix [10]. 2. 5. I I Locating Model Joints, Introduction The goal was to determine joint locations, or centers of rotation between adjacent segments (thorax and lumbar, and pelvis and lumbar), for the model. 2.5. 12 Calculation of Rotation Centers in Lumbar Coordinates Treating the sets of data from each lumbar reference separately, centers of rotation were calculated for the thorax and pelvis in each lumbar coordinate system, between every two orientations of either the thorax or the pelvis. The center of rotation, assuming no pure translation, was determined using the following procedure: First, a two- dimensional vector was created from the initial location of a point on the body in one orientation (A) to the position of this same point in the other orientation (A'). This was repeated for a second point (B to B’). Vectors D and E were constructed with their origins at the midpoints of vectors AA' and 38', respectively, and their directions perpendicular to these vectors. The intersection of vectors D and E was the calculated center of rotation (C). Figure 26 shows an example of two thoracic orientations and the associated center of rotation. In Lumbar Coordinate System Figure 26: Diagram for Center of Rotation Calculation The details of the rotation center calculations are given below. Creation of vectors AA' and BB' : AA'=(A§(—Aj()éx+(Ag—Az)éz (18) BB'=(B}—BX) éx+(B}—Bz) éz (l9) Midpoint (MA) of vector AA': 1 . Max:5(Ax'l'Ax) (20) 47 1 . MAZ =§(Az 7' A2) Midpoint (M3) of vector BB': 1 1 Max =§(Bx +Bx) 1 1 M32 =§(Az +Az) Location of rotation center C: (32 +32 ‘Az “A” 2 AX -A,',. +33, -3, Ag—AZ Bg—B CX= Z/ (21) (22) (23) (24) (25) Note: In an attempt to minimize noise in the data, orientation differences of less than 7 9 between the thoraces or pelves in the lumbar coordinate system were not considered in computing rotation center locations. Seven degrees was chosen as the cutoff angle difference, because by trial and error this was found to give few erratic rotation center locations, which may have resulted from small rotation angles combined with pure translations. 48 2. 5.13 Rotation Centers in Thoracic/Pelvic Coordinates The centers of rotation as computed in the previous section were in the lumbar coordinate system. The set of thoracic or pelvic rotation center points was transformed into the thoracic or pelvic coordinate systems described in Sections 2.5.4 and 2.5.6. Mathematically, this transformation was carried out as follows: cos 6K sin 9K 0 L'= —sin6K cosQK 0 {l.'—OL}+ {0'} (26) 0 0 l i=Lz L' =Lfé, L' = Li'éI o' = o;é, (27) 0L = 0Li ér 6K = Sin-1&1. 'iK) where L" is the position of the rotation center in thoracic or pelvic coordinates, and L' is the position in lumbar coordinates. 01, is the origin of the lumbar coordinate system. 0' is the origin of the thoracic or pelvic coordinate system to which the rotation center is being transformed. 6 K is the angle of orientation of the thoracic or pelvic segment in the lumbar coordinate system, where fix is the orientation vector of the thoracic or pelvic coordinate system with respect to the lumbar coordinate system. The matrix is the transformation matrix [10]. 2. 5 . I 4 Averaging Subject Data For each subject, the rotation center locations of the thorax segment in thoracic 49 coordinates were averaged to yield a mean location. (Yr) , in ;.../T” , 7T5 ). The mean thoracic rotation center locations for each subject, for each lumbar, are given in Table 6 on page 63. Identically for the pelvis, the rotation center locations were averaged for each subj ect for each of the five lumbar segments. This gave an average pelvic rotation center location for each subject( 517m , 7P, ;...2—(P5 , 7P5 ), for each lumbar. These values are given in Table 8 on page 67. 2.5.15 Generalizing Subject Results To locate the pin joints connecting the thorax to the lumbar and the pelvis to the lumbar, the averages computed in Section 2.5.14 of the thorax and pelvis rotation center locations were averaged over the subjects tested for each lumbar. These final values for the rotation centers with respect to each lumbar section (szfl'n ,XP,,ZP1,XT5 ,er , XPS ,2”) were then designated as joint centers between the model segments. These values are given in Section 3.3.2, Table 6 and Table 8. The following sections discuss criteria for choosing the most appropriate lumbar segment based on error, length, and angle ranges, so that only one pair of the points determined by the methods in this section would be chosen for inclusion in the model. 2. 5. I 6 Error in Joint Center Location All the values with respect to a given lumbar segment for each subject were analyzed together, to determine the error associated with the calculations in Sections 2.5. 14 and 2.5.15. The data for the rotation centers were grouped by subject. Recall that there is not necessarily an equal number of rotation centers determined for each subject, due to the filtration described in Section 2.5. 13, (comparing only relative orientations of 50 greater than seven degrees difference.) For both the thoracic and pelvic joint center estimations, the problem was treated as two separate univariate estimation tasks. A rectangle of at least 95% confidence was obtained by taking the (X, Z) pairings where X’s belong to a 97.5% confidence interval for 2? and the Z’s belong to a 97.5% confidence interval for Z. This provided a rectangle estimate for ( 2? , Z ) of at least 95% confidence. Since it was desired that an inference be made about the mean joint center location of all mid-sized males, not merely the mean for the males tested (1 = 10), it was reasonable to use a “random-effects” model, which treats the individual systematic differences away from (X , Z ) as a sample from a large population of all such differences, i.e. the population of such systematic differences for each mid-size male conceivable. Symbolically, the X and Z coordinates of the rotation center location (thoracic or pelvic) were denoted (X,-,-, Z,-,-) where this is the jth observation on the ith subject, for i = l...l (I is the total number of subjects), j = 1...ni (n, is the number of rotation centers determined for subject i). The random-effects models are: X, J =a, +e,.j (28) z,j =1), +f,j (29) where a1...a1 are independent and identically distributed (i.i.d.) with a normal distribution of mean u, and standard deviation 6,, [denoted, N01,, 63)] and Cu 1 S i S I, l S j S n, are i.i.d. N(0, 03,) with {almal} independent of (en, 1 S i S I, l Sj S m}. And where b1 ...b1 51 are independent and identically distributed (i.i.d.) with a normal distribution of mean [lb and standard deviation ob, [denoted, N(ub, ob)] and fij l S i S I, l S j S n, are i.i.d. N(0, 0;) with {b1...b1} independent of {fl}, 1 S i S l, 1 S j S n,}. (a, is the systematic deviation from u, for the ith subject; eij is the random error of the jth observation on the ith subject in the X direction representing measurement error, etc. bi is the systematic deviation from z for the ith sub'ect; f} is the random error of the "h observation on the ith Pl .1 J J subject in the Z direction representing measurement error, etc.) From this model, the following 97.5% confidence interval formulas arise: Forux :Xi2.24*S(/T) Foruz :Zi2.24ws(‘) where 2.24 is the confidence multiplier since P(-2.24 < N(0,l) < 2.24) = 0.975 and ( 30) (31) (32) (33) ( 34) (35) 52 so?) =§,/ZS’(Z> (36) S(Z‘) =§,/ZS’(Z> (37) To obtain the values for 320(1) and 52(2)), an ANOVA (analysis of variance) was performed on the X and Z data separately. The MSE and MSTR values for both X and Z (MSEX, MSTRX, and MSEZ, MSTRZ) were output from this ANOVA. Then, SZ(X,) =l (i'n—‘lMSE,r +MSTRX (38) k "1 52(2) =1 (if—Q1165, +MSTR, (39) ‘ k "i where 2 Z ".- k=—1 N—‘=' (40) 1—1 N [12] The above was performed identically for both thoracic and pelvic rotation centers, to obtain 97.5% confidence error estimations in both the X and Z directions for joint locations relative to each lumbar segment. The error estimations are given on page 70, in Table 9. 2. 5. I 7 Length of Lumbar Segment Once the overall averaged rotation center locations on the thorax and pelvis rigid 53 segments (22', , Z, and XP , 2,.) were calculated, the length of the member that would connect these two joint centers for each lumbar segment was to be determined. The location of the thoracic rotation center was attached as a feature to the rigid thorax and the pelvic joint center was attached to the rigid pelvis. The segment orientations for each subject were then observed in various test conditions, with the joint center traveling with the segments. (This process of calculating test condition point locations was previously discussed in Sections 2.5.3 and 2.5.5.) In each condition, the distance between the thoracic and pelvic joint centers was computed, using the Pythagorean theorem. L0. = Jam — Fwy + (T2,, — P2,]. )2 (41) where L,-,- is the distance between the rotation centers for subject i in test condition j. T is the location of the thoracic joint center for the test condition, and P is the location for the pelvic joint center for the same test condition. These inter-joint distances were averaged for each subject over the various test conditions. The average lumbar length for each subject (Li) from these distance calculations and the averages over the subjects (L) for each lumbar are given in Table 10 on page 72. Mathematically, this is expressed, A l ..— L =%ZL, (42) l L. =—— L- (43) "1' 2.5.18 Error in Lumbar Length The estimated error in the distance between the two joints (S (L) ) was computed using the same methods as those discussed above with respect to the error in the joint center locations. For each subject, the mean of the entire population was expected to lie within calculated interval with 95% confidence. The calculation of this confidence interval follows: Forp.L :Lil.96*S(L) (44) Sui) =%,/Zs’(l’.) <45) 52(L,) = %[9;—"‘)MSEL + MSTRL] (46) 2. 5. I 9 Thoracic and Pelvic Angles Relative to the Lumbar Segment The angles of the thorax and pelvis relative to each lumbar segment were calculated for each test condition, in order to compare the amount of motion found between the thorax and the lumbar to the amount of motion between the pelvis and lumbar. In the local lumbar coordinate system, with e, and e, along the directions of XL and ZL of Figure 25, respectively, a thoracic orientation unit vector was created on the thorax from xyphoid toward manubrium as follows, where “ indicates unit vector: 55 Tom“ : Manx -ny 6; + Manz —Xyz We! (47) LMan—Xy LMan—Xy where i = x,z Man 2 Manié, Xy=Xy.-é. (48) LMMW = «Manx - ny)’ +(Manz -Xyz)2 Man is the location of the manubrium and Xy is the location of the xyphoid. L140")y is the length of the vector from manubrium to xyphoid. The angle of the thorax relative to the lumbar (TL angle) was the angle of the stemum in this coordinate system, or TL=sin"'(T é) —1<6<1’— (49) Likewise for the pelvis, a unit vector was created fi'om the sacrum toward the ASIS 13mm = M1. 3”. fl 9; (50) LA—Sl LA-Sl where L“, is the length of the vector from the ASIS to the sacrum, L”, = \/(A,r -SIX)2 +(Az —SIZ)2 (51) 56 The PL angle is determined as follows: PL = cos"' (1’41... -é,) 0 < 19 < 7: (52) The total range of TL for each subject was compared to the total PL range relative to each lumbar. The results of this comparison are discussed in Section 3.7. The following section describes methods for determining a consistent reference for TL and PL angles between subjects. 2. 5. 20 F lat-Back Reference Posture Once the TL and PL angles were established for each test, the reference posture was defined to a flat-backed posture, to which the TL and PL angles would be referenced for each subject. Any angle more slumped than the reference angle would be negative, and any angle more erect than the reference angle would be positive. Refer to Figure 10, page 14. This flat-backed posture was to be defined as the posture in which the L3 bony landmark lay on a line between the T12 and SI bony landmarks, or in which the lumbar spine formed a straight line in the sagittal view. For each test condition, in which the thorax and pelvis were both supported in the same degree (test conditions I, 5, 6, 10, 11, 12, 22, 21, 20, 16), the spinal shape data (locations of the T12, L3 and SI spinous process landmark locations, as calculated from the probed spinal points) were transformed so S1 was at the origin, and the Z-axis passed through the T12 point. 57 T12 . T12 T12 Anterior L3 + L3 L3 Posterior $1 1. SI 31 Lordotic Neutral, Flat Kyphotic Figure 27: L3 Deviation from Flat Back In this configuration, a flat back would have a zero L3 X coordinate. Any deviation of L3 from the Z-axis (non-zero X coordinate) would imply a non-flat back, and the amount of L3 deviation from the Z-axis indicated the extent the posture deviated from the flat-back posture. The deviation of L3 from the Z-axis was plotted versus the TL angle for each symmetrically supported posture. A linear regression line of the form y=mx+b (53) was calculated to pass through these points. See Figure 28. 58 y=-1.0048x+ 1.7335 ' I 82 - 0.824 Figure 28: Regresssion Line on Graph of L3 Deviation from Flat In order to adjust the TL values, so that a zero TL was representative of a flat-back posture, the TL values were adjusted so that the regression line passed through zero L3 deflection at zero TL. The adjustment amount, which would be added to each current TL value, was calculated as Adjust = -—b ( 54) m In the graphical example of Figure 28 above, 59 —l.7335mm _1.70 (55) Adjust = _. - 1.0048 "1% This process was identically repeated for the L3 deviations versus PL angle and the associated linear regression line. The adjustment offsets for each subject were added to the TL and PL angles computed in the previous section, rendering TL and PL angles relative to a flat-back zero, more positive with lordosis, and more negative with kyphosis. 2. 5.21 Limb Data Data were collected pertaining to the positions of the limbs (left arm and leg) to document the subject’s overall posture. Data were gathered on the leg and foot during reference data and test data collection. Arm data were collected only during testing. Targets were placed on the left lateral femoral condyle, left lateral malleolus, and lateral toe of left shoe. In the reference file, the subjects’ foot rested flat on the floor, so that subsequent orientations of the foot target relative to the lateral malleolus target had a reference. The left ASIS was targeted, and the sacrum probed in the test conditions to document pelvis location. The inter-ASIS and inter-PSIS distances were measured for femoral head (hip joint center) location estimation, using methods of Seidel el al. [13] For the upper extremity, targets were located at the lateral humoral condyle of the elbow and between the radial and ulnar condyles, on the dorsal (back or posterior) side of the wrist. The acromion was also probed, giving a reference point for locating the shoulder joint. These data, sufficient for documentation of the limb posture, using methods of Robbins [14], are included in the raw data given in Appendix E. 3. RESULTS AND DISCUSSION 3.1 Introduction This study of seated postures was conducted for modeling the seated human torso. Subjects’ seated postures were evaluated under a broad range of geometric support conditions. These postures were compared in terms of a three segment model, connected by two joints. The two joint locations that best distributed the torso were computed. The ranges of angles through which the model should be allowed to move on either side of a flat-back condition at each joint were determined. The possibility of a linkage coupling the motion at one joint to the motion at the other was investigated. Trends in the shape of the lumbar segment with changes in relative segment orientations were also evaluated. 3.2 Raw Output Data Posture data was collected on subjects in a reference seat and in a test buck with various geometric seat back configurations. (See Section 2.4.) Raw data for each subject consisted of 1. measurement values taken during test preparation a) inter-ASIS distance b) inter-PSIS distance 0) heel to foot target distance 2. and, for the reference file a) nine skeletal landmark target locations b) two reference seat target locations 3. and, for each test condition a) eight skeletal landmark target locations b) two test fiame target locations c) coordinates of the probe, when probing 60 61 i) acromion ii) T10 iii) T12 iv) L3 v) 81 See Appendix E for a complete list of the raw data for each subject. 3.3 Thorax 3. 3. 1 Shape The shape used for the thorax was taken from an anthropometric study conducted by the University of Michigan Transportation Institute (UMTRI). Anatomical landmarks of 50 mid-size males seated in an automotive environment were measured [14]. Skeletal landmark locations from this UMTRI study were used to create the shape shown in Figure 29. For details, see Appendix F. The UMTRI thorax shape overlays the subject thorax shapes from this research. 62 UMTRI Thorax Shape -50 “L Figure 29: UMTRI Average Thorax Shape with Subject Shapes (axes in mm) 63 This UMTRI thorax shape was chosen for use as the rigid thorax segment for this model, because it was based on an in-depth anthropometry study and therefore represents the mean anthropometric shape of a large sample of mid-size males. The back shape of the UMTRI thorax was consistent with the shapes of the subjects from this study within 10 mm in the X direction, up to the T4 level, confirming its compatibility with the data of this study. 3. 3.2 Joint Center Locations As described in Sections 2.5.11 and 2.5.12, rotation centers between the thorax and lumbar sections were computed for each subject using five different lumbar definitions. The instant center locations (X, Z) between test conditions can be found in Appendix G. For each joint, each subject, the X coordinates for each lumbar definition were averaged over all computed rotation centers, as were the Z coordinates, as discussed in Section 2.5.14. The thorax to lumbar rotation center location in thoracic coordinates [in the notation of Section 2.5.14, (XP, , 7P, ;.../Yup5 , 7P5 )] is given for each subject in Table 6. Table 6: Average Thoracic Joint Center Locations in Thoracic Coordinates (mm) LUMBAR: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 ”fl" SUBJECT S X11 er__ X12 21: X13 Zr: X14 Zn X15 Zr: 01 ~66 ~7 ~66 ~35 ~26 2 ~33 ~3 ~57 1 02 ~72 1 1 ~60 ~39 ~57 ~17 ~61 ~13 ~75 ~6 03 ~87 -1 7 ~45 ~52 ~28 ~18 ~36 -9 ~39 1 7 04 ~39 -1 7 ~31 ~42 -5 7 -1 7 6 ~36 1 5 05 ~68 ~9 ~43 ~56 ~45 ~26 ~44 ~29 ~32 ~24 06 ~84 ~5 ~33 ~64 ~54 ~31 ~42 ~26 ~30 ~1 9 7 ~62 ~9 ~51 ~40 ~42 4 ~55 -5 ~60 ~9 08 ~44 1 1 ~52 ~14 ~47 29 ~59 21 ~78 1 O 09 ~55 ~28 ~41 ~43 ~39 ~1 7 ~32 ~25 ~23 ~28 10 ~72 ~134 64 Of these thoracic joint center locations for all subjects, the mean was taken, to yield the thoracic rotation centers for the model, relative to each lumbar definition, A (2?n , Z T, ,X ,5 , Zn ). These mean rotation center coordinates are given in the last row of Table 6 and are plotted relative to the rigid UMTRI thorax in Figure 30. The T12 - Ll joint center [(-54, 17) in the thorax coordinate system, from [15]] is also shown in Figure 30 as an anatomical reference. 65 350 -— C7 —UMTR| Thorax e 1 I 2 A 3 x 4 e 5 250 -~ 0 T12-L1 Jt. Ctr. 150 ~— 50__ T10 o f 60’ T12 -50 ' —.__ l 1 -250 -150 ~50 50 150 Figure 30: Thoracic Joint Centers on UMTRI Thorax (axes in mm) 66 3. 3.3 Error in Joint Center Location For each of the five final joint locations given in the last row of Table 6, an associated error margin was calculated, within which the mean joint location of the entire population of mid-size males would lie, with 95% confidence, as determined by the statistical methods described in Section 2.5.16. The estimated error associated with the X and Z coordinates [S( X, ) and 5(2, )] for each of the five lumbar segments is given in Table 9. Table 7: Error in Model Joint Locations (plus or minus) Coordlnate s1 2%,) s(2,) Lumbar (mm) (mm) 9.9 10.2 1 2 7.8 10.5 3 10.6 14.2 4 11 .5 15.8 5 19.5 14.1 Lumbar definitions 1 and 2 showed the lowest average error. Lumbar 3 had slightly larger error in the Z coordinate, and lumbar 4 had slightly greater error in both X and Z coordinates. The error margin associated with the X coordinate of lumbar 5 was substantially higher than the other four. 3.4 Pelvis 3. 4. 1 Shape The rigid pelvis segment shape was taken from an anthropometric study of the pelvis performed by Reynolds, et al. [1 1]. This shape was used because it was derived 67 from an in-depth study of pelvic anatomy, based on 80 male pelves. See Appendix D for tabulated coordinates of points along the outside of the pelvis. 3. 4.2 Joint Center Locations As described in Section 2.5.11 and 2.5.12, rotation centers between the pelvis and lumbar segments were computed for each subject using five different lumbar definitions. The calculated rotation center locations, (X, Z) between test conditions can be found in Appendix G. For each subject, the X coordinates for each lumbar definition were averaged over all computed rotation centers, as were the Z coordinates, as discussed in Section 2.5.14. The average pelvis to lumbar rotation centers for each subject in pelvic coordinates (27p. ,2.” XPS , ZPS ) are given for each subject in Table 8. Table 8: Average Pelvic Joint Center Locations in Pelvic Coordinates (mm) LUMBAR: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 --—-— !-—-—-1 -—-— --—-— 1 SUBJECTS Xp1 Zp1 X z XE zfli XE 2a _X_fi 2H 01 ~54 ~3 ~71 23 ~75 ~6 ~93 22 ~99 63 02 ~54 ~8 ~66 1 3 ~62 ~9 ~72 1 7 ~78 60 03 ~70 1 ~84 1 7 ~72 ~1 ~86 1 6 ~95 37 04 ~72 -1 5 ~90 26 ~77 -1 7 ~95 28 ~96 95 05 ~65 3 ~85 1 9 ~78 3 ~89 24 ~93 54 06 ~61 ~6 ~85 1 5 ~46 ~4 ~69 22 ~81 71 07 ~1 6 ~2 * 1 4 ~60 ~7 " 1 6 ~80 29 08 ~59 ~10 ~89 -1 ~64 ~12 ~106 35 ~64 131 09 ~42 ~2 ~49 39 ~44 ~1 ~42 41 ~38 90 10 ~62 ~2 ~68 40 ~58 ~1 ~51 44 ~38 102 (Where * indicates a large variance in data. These data were not used.) The final pelvic joint location relative to each lumbar segment was found by averaging 68 the subjects’ rotation center locations. [In the notation of Section 2.5.15, these are (XPl , 2191,4025 , 2P5 ).] The mean pelvic rotation center locations are given in the last row of Table 8 and are plotted relative to the Reynolds rigid pelvis shape in Figure 31. The anatomical L5 ~ 81 joint center [(-47, 15) in the pelvis coordinate system, from [11]] is shown in Figure 31 for reference. 69 0 "" ‘. e 1 (St 10712)] g 2 (LL to T12) ‘ 3 (S1 to T10) 11: 4 (LL to T1 0) e 5 (L3 to T10) —Reynolds 0 L5-S1 jl. ctr. Figure 31: Pelvic Rotation Center Relative to Rigid Pelvis Shape (axes in mm) 70 3. 4.3 Error in Joint Center Location For each final pelvis joint location given in the last rows of Table 8, an associated error margin was calculated, within which the mean joint location of the entire population of mid-size males would lie, with 95% confidence, as determined by the statistical methods described in Section 2.5.16. The estimated error associated with the X and Z coordinates (S(X,,) and S(ZP)) for each of the five lumbar segments is given in Table 9. Table 9: Error in Model Joint Locations (plus or minus) Coordinate s12.) s(2,) Lumbar (mm) (mm) 1 10.9 3.7 2 9.4 5.9 3 9.3 3.9 4 1 1.5 7.0 5 16.1 20.3 Lumbar definitions 2 and 3 showed the least error in the X direction, while lumbar 1 had only slightly higher error in the X direction. Lumbars 1 and 3 showed the least error in the Z direction, while lumbar 2 had only slightly higher error in the Z direction. Lumbar 4 showed higher error in both the X and Z directions, and the error margin associated with lumbar 5 was substantially (3.5 to 6.8 mm in the X direction and 16.6 to 13.3 mm in the Z direction) higher than the other four. 3.5 Summary of Joint Center Locations Both thorax and pelvic centers tended to cluster (with the exception of the pelvic center associated with lumbar segment definition 5. Refer again to Figure 31.) This clustering of the mean rotation centers indicates that the behavior of a model generated 71 from the use of one of these pairs of centers would not vary significantly from the behavior of a model generated from one of the other pairs of centers. Choosing one pair, using some selection criteria, would therefore be reasonable, although, as stated, any of the five pairs of centers (thorax and pelvis) could be used to represent the postures of the seated human torso, since they were calculated from actual human torso postures. Although five pairs of centers were found that would represent seated postures, due to differences in the magnitudes of the 95% confidence error margins, the centers determined by using lumbar definitions 1-4 would be better choices for the model than lumbar definition 5. 3.6 Lumbar 3. 6. 1 Length Having defined locations for joint centers on the thorax and pelvis segments, the length of the link connecting the thorax and pelvis joints was determined, as discussed in Section 2.5.17. For each subject, an inter-joint length was found corresponding to each test condition. These lengths, which can be found in Appendix H, were averaged to yield a lumbar length (L ) for each subject. These subject averages are given, along with the overall mean lumbar length (L ), in Table 10. 72 Table 10: Lumbar Length (mm) Each Subject ( L ) and Mean (L) LUMBAR 1 2 3 4 5 (SUBJECT S110T12 LL to T12 S1 to T10 LLtOT10 L310 T10 01 190 128 188 152 109 02 189 123 183 147 106 03 207 145 205 170 128 04 221 155 218 180 138 05 148 91 149 115 70 06 208 142 202 166 124 07 169 * 168 ‘ 88 08 167 102 163 126 84 09 179 117 177 141 98 10 210 146 204 170 128 IlEAwk 189 126 186 150 107 where * indicates large varience in pelvic center location, and data were not used in mean lumbar length calculations 3. 6.2 Error in Length Calculation Note that the lumbar length for each subject listed in Table 10 is the average length for that subject over different postures. Since the human torso is not actually composed of three rigid segments, there is some difference in the distance between the joints, which are located relative to the thorax and pelvis rigid segments, in different postures. In other words, posture change causes the distance between the joints (or the lumbar length) to change. Therefore there is some error, even in representing one single human torso with a simplified model. The error within subject, for the lumbar segment length was found to be small; the standard deviations of the inter-joint, or lumbar segment, lengths of Table 10 for each subject were all between 2.0 and 8.7 millimeters. The average lengths for each subject were averaged, to yield a lumbar length to be used for the model. The estimated 95% confidence error margin associated with each inter-joint (lumbar) length, as it represented the mean of the entire population of mid-size 73 males, was calculated, as discussed in Section 2.5.18. These are given in Table 11. Table 11: Error in Lumbar Length (mm) I Lumbar Segment Deflnltlon S L 14.4 13.3 13.5 13.3 13.8 (ll-5910‘ An error in the length of the lumbar segment implies that while the pelvis segment of the model would be on the seating surface, the thorax segment could be up to 14.4 mm too high or too low. This error is acceptable here, as the small influence that this error would have on a contour design or evaluation would be insignificant relative to differences in anthropometric measurements between people. 3.7 Ranges of Relative Rotation Angles For each joint, as discussed in Section 2.5.19, the minimum (most kyphotic) angle found in the testing for each subject was subtracted from the maximum (most lordotic) angle, to yield the angle range. These angles ranges are given, for each lumbar segment definition, in Table 12. 74 Table 12: Range of Angles (9) . 1 2 3 4 5 LUMBAR __81 to r12 LL to 112 5:1 to 110 LL to no L3 to r10 SUBJECT rL 1:L T1 ’1 TL 9, r—L _—"‘Pl rL PL— 01 18 20 18 23 16 21 14 24 12 28 02 35 16 34 18 31 18 29 19 26 21 03 15 28 14 30 12 27 1o 28 12 31 04 21 12 20 15 19 13 17 15 15 19 05 21 17 20 17 18 18 18 18 14 23 08 19 19 18 20 18 20 15 21 13 23 07 18 14 20 12 14 15 14 14 12 15 08 22 9 20 1o 19 8 18 9 12 14 09 28 12 24 15 23 18 21 20 18 28 1o 22 13 19 15 18 18 15 19 11 24 MEAN: 22 18 _—21 18 19 17 17 19 14 22 The angle ranges varied considerably between subjects, as some torsos were more mobile than others. Some torsos exhibited more motion in the lower lumbar, and therefore had a greater PL than TL angle, such as subjects 01, and 03. Other subjects’ torsos exhibited the opposite bias, such as subjects 02 and 09. However, the average amount of motion at each joint was computed for all of the subjects, to render the mean motion range at each joint. This is given in the last row of Table 12. The ratio of the mean TL angle range to the mean PL angle range was taken for each lumbar segment definition, in order to understand the distribution of motion found at the upper joint compared to the lower joint, using the different lumbar definitions. These are given in Table 13. 75 Table 13: Ratio of Average TL Angle to PL Angle ‘ LUMBAR iLIPL 1 1.3 2 1.2 3 1.1 4 0.9 5 0.7 An unequal distribution of the range of motion between the joints indicates more torso motion range at one joint than the other. In the most extreme of unequally distributed cases, all the range would be at one joint and none at the other, which would be a one joint linkage. This would not allow the decoupling of rotation from translation of the thorax relative to the pelvis, and may be too simple to represent the complexity of the torso. Two joints allow decoupling of rotation from translation, and an equal distribution of motion between that upper and lower joints (1.0) takes greatest advantage of the degree of complexity allowed by having two joints, over having just one, allowing the most decoupling. Lumbars 3 and 4 come closest to the 1.0 ratio, and might, based only on this criterion, be the best choices of lumbar definitions. 3.8 Maximum and Minimum Relative Angles The flat-back posture, to be used as the reference zero posture (PL = 0 and TL = 0) was discussed in Section 2.5.20. The amounts of angle change from this reference in the positive (more erect and lordotic) and negative (more slumped and kyphotic) directions were determined at both joints. These are given for the thorax in Table 14 and for the pelvis in Table 15. 76 Table 14: Max and Min TL Angles (9) LUMBAR: 1 2 3 4 5 S1 to T12 | LL to T12 | 81 to T10 I LL to T10 || L3 to T10 SUBJECT MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN 01 13 -6 11 -5 12 -4 10 4 8 -4 33 -1 32 -1 31 0 30 1 28 2 9 -7 8 ~6 7 -4 7 -3 8 -4 M 8 12 8 m ~6 11 8 8 -7 m 3 ‘n -3 17 4 m 0 w 1 2 -w 2 48 3 -M 3 42 4 3 m 0 22 4 w 2 13 4 m -5 17 ~5 1 5 ~5 14 ~5 1 1 -5 6 ~6 20 -6 1 9 ~4 20 ~3 1 9 ~2 19 1 18 ~4 1 5 -4 1 5 ~3 1 2 -3 8 ~3 1 ESSSSSSESS 17 -5 16 -5 15 4 13 -4 I 11 ~13 I Table 15: Max and Min PL Angles (9) LUMBAR: 1 2 3 4 5 S1 to 1'12 1 LL to T12 I S1 to T10 LL to 1'10 1 L3 to T10 SUBJECT MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN 01 10 ~10 12 ~11 10 ~11 11 ~13 12 ~15 02 13 ~3 15 ~3 14 ~3 15 ~3 18 ~3 03 25 ~4 26 ~4 23 -4 24 4 25 ~6 04 9 ~3 12 ~3 10 ~13 12 ~3 15 -4 05 1 1 ~7 1 1 ~6 8 ~7 10 ~9 12 -1 1 06 10 ~9 11 ~9 10 '9 11 ~10 12 ~11 07 3 ~1 1 1 ~11 9 ~6 8 ~5 11 -5 08 5 ~5 5 -5 5 ~3 6 ~3 10 ~3 09 7 ~5 9 -6 10 ~6 12 ~8 16 ~10 10 7 ~6 10 ~6 10 ~7 13 ~7 17 -7 I MEAN: I 10 -6 I 11 -7 I 11 -6 I 12 -6 I 15 -7 I 77 It should be noted that at both joints, the torsos were able to move farther in lordosis than kyphosis, from the flat-back. Looking, for example at the mean maximum and minimum angles associated with lumbar segment definition five, the thorax, on average, articulated 15 9 in the positive (kyphotic) direction relative to the lumbar and only 4 9 in the negative (lordotic) direction. Likewise, the pelvis articulated, relative to the lumbar, on average 11 9 toward lordosis and 6 9 degrees toward kyphosis. Although SAE J 826 tools [1] (refer to Figure 1, page 2) use the flat-back as the nominal posture, this may not be ideal. Because of the higher mobility of torsos in flexion (lordosis) than extension (kyphosis) relative to the flat-back, the flat-back is perhaps not the best nominal position around which to design and evaluate seat back contours. A more lordotic posture, such as 5.5° TL and 25° PL, would be more in the center of the average range [of mid-size male postures and would be a better nominal posture for seat design and evaluation than the flat-back. For model design, it might be reasonable to limit the amount of angular motion at the joints to these average amounts. Or it may serve better to allow a model to flex and extend to the extreme ranges of motion found, depending on the application. 3.9 Lumbar Shape While the pelvis shape is easily defined as a rigid shape, because the pelvis bones articulate relative to one another only slightly, and the thorax rigid shape is easily defined because the thorax is nearly rigid, having only some appreciable mobility in the lower thoracic spine. and during breathing, the lumbar shape is not so easily defined. The shape ’ from previous experience, examining laboratory postures and thorax shape change with changing posture 78 of the lumbar spine changes considerably with posture changes, from kyphotic in the slumped postures to lordotic in the more erect postures. Lumbar shape change varies for each individual, but there are trends that should be documented. To begin to understand the shape of the lumbar segment in different postures, the position of L3 relative to a line between T12 and S] in various postures was observed. As discussed in Section 2.5.20, the L3 landmark lies on a line between the T12 and SI spinal points in a flat-back posture. In more kyphotic postures, the L3 landmark lies more posterior of this line (more positive), and in more lordotic postures the L3 landmark lies more anterior (more negative). Refer again to Figure 27, on page 57. The deviation of the L3 landmark from the S1 to T12 line was plotted versus PL angle in order to understand the shape of the lumbar segment in different pelvis to lumbar configurations. This plot is shown in Figure 32. 79 e. 91 y-ossasx-oasas mm15 ~ Figure 32: L3 Deviation from Flat vs. PL Angle The slope of the linear regression line shows that the trend in deviation was approximately ~0.60 mm per degree PL. (The minus sign indicates L3’s moving toward the front of the body, which is in the negative direction, for an increase in PL angle, meaning toward a more lordotic posture.) The R2 correlation is 0.57, which indicates that the L3 deviation is influenced by the PL angle, but that there are also other influences on lumbar shape. Figure 33 shows the L3 deviation from the T12 to S1 line versus the TL angle, which was plotted to show the influence of thorax segment to lumbar segment orientation on lumbar shape. In this case, the slope of the linear regression line shows that L3 moves anteriorly 0.46 mm per degree TL (more lordotic) angle. Figure 33: L3 Deviation from Flat vs. TL Angle The R2 correlation of 0.51 shows a trend, but again, that there are influences, other than TL angle (such as PL angle), on lumbar shape. Summing the PL and TL angles produces a thorax angle relative to the pelvis, or Tp angle. The influence of the overall Tp angle on L3 deviation from the S1 to T12 line is shown in Figure 34. mm: y=~0.3603x~ 1.2119 ..9 82-06476 . 421 . . Figure 34: L3 Deviation from Flat vs. Tp Angle The slope of the regression line indicates that there is a trend of 0.36 mm anterior L3 deviation per degree Tp (toward flexion), with an R2 correlation of 0.64. Note that this is greater than the correlations of TL (0.51) or PL (0.56) alone. One would expect, perhaps, that the sum of the influences of the PL and TL angles on the L3 deviation, might add up to the Tp influence, but this is not necessarily the case. If it were true, for a five degree PL and five degree TL, 82 (L3 dev.) P1 + (L3 dev.)TL $(L3 dev.)TP ( 56) 0.60 *(P, ) + 0.46 *(TL #03600, + TL) (57) ? 0.60 r 5 + 0.46 * S=036(5 + 5) ( 58) 3.0 + 23 9: 3.6 ( 59) As shown, the influences of the PL and TL angles on deviation from the flat-back configuration are linearly dependent (not summable). The dependency is not immediately quantifiable, but the trends provide a qualitative understanding of lumbar shape change as a result of posture change. Understanding the shape of the lumbar spine is important, especially in designing a structure that will support the back. The support structure should contact and support the whole back in order to avoid load concentrations and to achieve an even pressure distribution. An understanding of the trends in lumbar shape makes the design of conforming (comfortable) seat back contours possible. 3.10 Coupling Evaluation In the case that the orientation change of the pelvis relative to the lumbar and the orientation change of the thorax relative to lumbar were coupled, support of the pelvis would induce not only an increase in the PL angle, but also in the TL angle, while support of the thorax would induce not only an increase in the TL angle, but also in the PL angle. For evaluation of the orientation change coupling between motion at the joints, the postures resulting from fully supporting only the pelvis or only the thorax were examined. 83 Table 16 shows the subjects’ average posture (PL and TL angles) over the subjects for the cases of only fully supporting the pelvis (from test condition 3) and only fully supporting the thorax (from test condition 8). Table 16: Average TL and PL angles (9) for Thorax or Pelvis Support Only l 1 TL 91 l PerIs Support Only ~2 6 Thorax Support Only 9 -2 These TL and PL values show that on average, when only the pelvis was supported (by a prominence at the PSIS level,) the PL angle increased from flat to six degrees lordotic, while the TL angle did not increase, but decreased slightly. And with support of the thorax only, the TL angle increased by nine degrees from the flat-back, but the PL angle decreased slightly. These results imply that the orientation changes are not coupled. Support of the pelvis and support of the thorax do not produce equivalent postures, as they do using Bush’s coupled model [3]. Differences in the shape of the seat back, such as height of the support prominence, have a major effect on posture, whether the change in segment orientation takes place between the pelvis and lumbar or between the thorax and lumbar, or a combination of both. The TL and PL angles must be evaluated separately, for a complete understanding of the effects of a seat on posture. The thorax can and will remain in its flat-back configuration relative to the lumbar or will even slump, if not supported, although there may be support at the pelvis. Likewise, the pelvis must be 84 supported, or it will also remain in its flat-back configuration relative to the lumbar or will slump, in spite of support of the thorax. Table 17 shows average results of supporting both the pelvis and thorax simultaneously (toward lordosis in test condition 6) and relieving both pelvis and thorax support ( toward kyphosis in test condition 16). Table 17: Average TL and PL angles (9) for Even Support I ITL PLI l:erIs and Thorax Supported 8 6 I Pelvis and Thorax Unsupported ~7 -5 Supporting both upper pelvis and lower thorax produced average increases of 8 9 in TL and 6 9 in PL. Providing no support of the upper pelvis of lower ribcage produced on average, a 7 9 decrease in TL and a 5 9 decrease in PL. It should be noted that the amount of support applied to each subject in these conditions varied based on the flexibility of the subject’s torso, as described in the Testing Procedure (Section 2.4.3). However, support at T12 and support at the PSIS tended to produce lordosis, which was nearly evenly distributed between the upper and lower joints, and unsupported PSIS and T12 levels tended to produce almost evenly distributed kyphotic postures. 3.11 Final Model From the five definitions of the lumbar segment used in calculation, five pairs of joints (thorax and pelvis) were found to represent the human torso postures. Due the clustering of the five calculated joint locations for the thorax and the pelvis, the five models resulting from the five pairs of points would be expected to behave quite similarly 85 to one another. Therefore, it is not unreasonable to choose one of these pairs to represent the torso, based on some selection criteria. As, due their similarity in location. Because the error in the locations of the joint centers associated with lumbar 5 were high, relative to the other four segment definitions, the joint locations associated with lumbar definition number 5 were not chosen. There were no considerable differences between lumbar segment definitions in lumbar length error. Because it is perhaps most desirable to have an equal distribution of the torso motion between the two joints, as opposed to having more motion at one joint or the other (as discussed in Section 3.7), the joint locations associated with lumbar definitions 3 and 4 were considered the best behaved pairs of joints based on distribution. In order to decide between the joint locations associated with lumbar segment definitions 3 and 4, a second look at joint center location error was taken. Lumbar 3 showed smaller error margins, by 0.9 mm in the X direction and 4.9 mm in the Z direction. For this reason, the joint locations associated with lumbar segment definition 3 were chosen for the model. The three-body, two-j oint model in a flat-back posture, with the joint centers of lumbar segment 3, is shown in Figure 35. 86 C7 Zr. T12 XP ASIS V . Thorax to S1 Lumbar Joint . Pelvis to Lumbar Joint Figure 35: Resulting Three-Segment, Two-Joint Model 87 The segments were oriented relative to one another sing the UMTRI drawing of the seated mid-size male [15] in the flat-back posture. Orientation vectors, as defined by this research, for each segment are shown in Figure 35. The relative angles of the adjacent segments’ orientation vectors document the flat-back posture (TL = PL = 0) of this model. For the flat-back posture, the angle between the thorax and lumbar orientation vectors (Zr and 21,) must be 39 9 and the angle between the pelvis and lumbar orientation vectors (Xp and Z1) must be 96 9. From this flat-back configuration, the model can be adjusted to any desired posture, as defined by TL and PL angles. By the sign convention defined in Figure 10, rotation of the thorax in the clockwise direction relative to the lumbar segment is an increase in TL and a counterclockwise rotation of the pelvis relative to the lumbar segment is an increase in PL. 3.12 Repeatability Since this research was only to investigate the nature of attainable seated postures, but was not to draw a correlation between input (support condition) and output (posture), the issue of repeatability was not a major factor in the success of this experiment. However, because great variations in output from like inputs would have initiated curiosity as to the cause, the repeatability of the postural response to input conditions was investigated. Two of the test support conditions were visited twice (in Steps 10 and 21 , 11 and 20) and the flat input condition three times (in Steps 1,12, and 22) during the data gathering procedure. The TL and PL angles determined at each like input would be expected to yield a similar result each time the same subject was subjected to the identical condition. The TL and PL angles relative to the third lumbar segment are given in Table 88 18, where TCl, TC12 and TC22 were identical inputs, TC10 and TC21 were identical inputs, and TCl l and TC20 were identical inputs. Table 18: Repeatability Angles (9) for Third Lumbar Segment WW 01 02 03 04 05 06 0'7 08 09 10 Test Condition TL PL TL P1_. TL PL TL PL TL PL TL PL TL PL TL PL TL PL TL PL rm -3 443-709-212-133 3 0nodataO-10-5-7 TC12 ~21-9-10-3-502-30543024-3-2-10 1022 4-3-9-3-3-840-20887-537-1441 _——rcw 25-8-3-5742439583572053 TC21 46-63-81013038510-2551130 rcr1 ~6-4-1310~3-10~42-3~4052-529-7-3-5-3 rcao ~3-4-19-9-7-13-2-4-55432-631-10-5-2-2 The TL and PL angles did not vary more than 3° between trials of identical input, in 42 cases out of 60 total. Of the 18 cases where the difference between the angles was more than 3°, in 6 of these cases the difference was less than 4°. This error was considered small, in the scope of this experiment. 3.13 Error sources There are always sources of error in experimentation. In this study, there may have been error in the measurement equipment, the experimenters’ accuracy in targeting, or in the nature of collecting data on humans. The target location measurement cameras need to have visibility of complete targets. Viewing targets only partially would result in an offset in the target location readout compared to the actual target location. Since all the body landmark locations used in the calculations are derived from target location data, such an offset would reduce the integrity of the data. Every effort was made to ensure conditions were favorable for 89 full target visibility, but the possibility that target blockage may have occurred must be considered. The targets were attached to the skin over palpated skeletal landmarks. It was up to the tester to make decisions about what prominence corresponded to which skeletal landmark. Many methods of locating spinal process levels were used: palpating from the C7 spinous process (which is nearly always easily identifiable by palpation as the most superior of the prominent spinous processes) and counting inferiorly to the desired level; palpating the most inferior lumbar vertebra (L5) and counting superiorly to the desired level; and using estimation of the T7 level as being at about the level of the bottom of the shoulder blades, and using this as a reference. However, even combining these methods of spinous process location, it is not always possible to feel the prominences through the skin and some educated guessing was involved. Not only was location of skeletal landmarks affected by the skin and tissue overlying the landmarks, but through movement into different postures, the tissue shifted relative to the skeleton. This was especially apparent with the tissue over the ASIS of the pelvis. The experimenter attempted to ensure that the ASIS target always remained in place above the ASIS, but there may have been some error in the extremely lordotic or kyphotic postures. 3.14 Other Considerations It should be brought to light that the age distribution of the subjects ranged only from 19 to 40 years of age. The data presented in this document can only be assumed valid over this age range, since no data were gathered outside this range. 4. CONCLUSIONS AND FUTURE WORK A postural model of the seated human torso was developed to be valid over a broad range of seated postures. Utilizing optical position measurement equipment and software, posture data were collected with ten mid-size male subjects in a laboratory seat under a wide range of torso support conditions. From these data, joint locations for a three-segment, two-j oint torso linkage model were determined, which would satisfactorily simulate seated human torso motion. The allowable angle ranges through which the model should move at each joint were determined and the linkage between motion at one joint and the other was evaluated. This seated human torso posture linkage was developed as a necessary step toward understanding the effects of seat support geometry on human posture. The rigid shapes for the model were taken from previous research. The thorax shape of the 1983 UMTRI anthropometry study [14] was used along with the pelvis geometry found by Reynolds [11]. The lumbar shape will be discussed below. Each shape was given a local coordinate system, based on palpated anthropometric landmarks. See Figure 36 and Figure 37. 90 91 350 ~- 250 —~ 150 __ — UMTRI Thorax ‘ Thorax to Lumbar Joint 50 ~— '50 1 1 1 a ~250 -1 50 ~50 50 1 50 Figure 36: Thorax Rigid Shape (axes in mm) 92 100 — 1 400 — I ~200 ~250 —— Reynolds Pelvis I Pelvis to Lumbar Joint a». ._()_ ~1 50 ~50 50 Figure 37: Rigid Pelvis Shape (axes in mm) 93 After gathering posture data on the seated subjects under 18 different support conditions, locations for joints between adjacent segments were calculated to best represent the postures of the seated torsos. The final joint locations are shown in Figure 36 and Figure 37 for the thorax to lumbar and the pelvis to lumbar, respectively. The error associated with the calculated joint center locations was computed using an analysis of variance, to obtain the 95% confidence margin, within which the mean location of the joint would lie for the whole population of mid—size males within the 19 to 40 year old age range. The error of both coordinates of both joints are listed with the joint locations in their respective local coordinate systems in Table 19. Table 19: Final Joint Locations and Error x tS(X) z tS(X) (mm) (mm) me1 (mm) Thorax to Lumbar Joint -40 10.6 ~10 14.2 (In thoracic coordinate system) Pelvis to Lumbar Joint ~63 9.3 ~5 3.9 (In pelvic coordinate system) The length of the link connecting the thoracic and pelvic joints, or the length of the lumbar segment, was computed to be 186 mm. The 95% error margin, within which the mean lumbar length for the whole population of mid-size males lies is 3: 12.7 mm. The zero reference position for the model was a flat-backed posture. Angles at each joint more lordotic than this were considered positive and more kyphotic postures were considered negative. The average range of postural mobility attributed to each joint is given in Table 20. 94 Table 20: Angle Ranges (9) Maximum Minimum (most lordotic) (most kyphotic) TL 15 -4 PL 1 1 -6 Because of the tendency of the torso to be more flexible in lordosis than kyphosis relative to a flat back, the flat-back configuration is not the best nominal posture around which to design and evaluate seats. A more extended or lordotic posture should be used. The shape of the lumbar segment was defined by the deviation of the L3 spinous process from the line between the S1 and T12 spinous processes. This deviation, as compared to different measured postures (TL, PL, and Tp angles) resulted in the following trends: 0 L3 deviated 0.60 mm from the flat-back line toward the front of the body for every positive degree change in PL angle (toward lordosis). The R2 correlation for this trend was 0.57. 0 L3 deviated 0.46 mm from the flat-back line toward the front of the body for every positive degree change in TL angle (toward lordosis). The R2 correlation for this trend was 0.51. 0 L3 deviated 0.36 mm from the flat-back line toward the front of the body for every positive degree change in Tp angle (toward lordosis). The R2 correlation for this trend was 0.65. 95 Note that although Tp angle is defined a the sum of Ty, and PL angles, the trends in lumbar shape due to TL and PL do not sum to the trend in lumbar shape due to Tp. This is because TL and PL influences on L3 deviation are not independent. However, the trends provide a starting point for understanding the impact of posture on lumbar shape. Coupling between orientation change of the thorax relative to the lumbar to orientation change between the pelvis and lumbar was not found. Support of the pelvis was shown to yield relative orientation change between the pelvis and lumbar, but not corresponding orientation change between the thorax and lumbar. Support of the ribcage resulted in thorax orientation change relative to the lumbar segment, but did not cause relative orientation change between the pelvis and lumbar. Because no coupled linkage was found, it was concluded that evaluating seats with a linked model, such as Bush’s model, would provide insufficient information for describing the total posture. Using a coupled model, many different heights of a prominence would yield identical postural outputs; however, when using an uncoupled model, more like the human torso, change in thorax to lumbar orientation could be evaluated separately from change in orientation between the pelvis and lumbar segments, to reflect the height of the lumbar prominence. Support of both the thorax and pelvis, creating a convex seat back contour, showed, on average, nearly even increases in TL and PL from flat-back (lordosis). Unsupported lower thorax and upper pelvis seatback configurations (concave seat back) caused evenly distributed decreases in TL and PL from flat-back (kyphosis). Future work should include testing more mid-size male subjects. This would increase the level of confidence in the final joint locations and angle ranges. It would 96 also be fitting to test subjects in other size groups, i.e. large males and small females, in order to understand the differences size and gender make on a model. Perhaps also warranting investigation would be a posture study in an office environment. Although it is possible to use the model developed here in an office environment, there is no documentation to support the fact that the range and type of motion represented by this model would necessarily model subjects seated in an office environment. Values of and locations for masses of the segments should also be determined, to provide a true human-like computer model for computer modeled seat prototypes. This would be the next step in creating the needed seat design tool, which incorporates evaluation feedback, in the form of seated posture, in the design process. Having a means of testing seat ideas with such a computer model would be a great advantage over expensive and time-consuming physical prototyping. APPENDICES APPENDIX A Height and Mass of Tested Subjects Table 21: Height and Mass of Tested Subjects SUBJECT HEIGHT (mm) MASS (kg) 01 1778 73 02 1759 73 03 1765 73 04 1778 74 05 1753 82 06 1759 73 07 1740 73 08 1702 76 09 1740 82 10 1734 79 97 APPENDIX B UCRIHS Approved (IRB 96-054) Consent Forms BIOMECHANICAL DESIGN RESEARCH LABORATORY A423 East Fee Hall Michigan State University East Lansing, MI 48824 1 . consent to serve as an experimental subject in the research project ‘Position. Force. and Muscle Activity Measurements of the Body in Various Seats“. I understand that I am to participate in a non-invasive experiment conducted in various instrumented seats. andthat data will be gathered concerning my position, muscle activity and force on the seat. The time that I will spend participating in this experiment will be approximately two hours. My height. weight and some physical measurements will be taken prior to testing. Certain areas of my skin will be cleaned with alcohol swab and gauze pad. Hypo-allergenic tape or adhesive collars may be used to attach reflective targets and EMG electrodes to the surface of my skin. A material band may be used to attach reflective targets to my head or pelvis. I may be asked to move through a range of typical positions. Motion and muscle activity data will be transferred to a personal computer along with force information gathered by force plates in the seats. I have been advised that all work will be conducted under the supervision of individuals who are expert with the involved techniques. I have been assured that my participation remains confidential and that published experimental results will not reveal my identity. My consent to serve as a subject is given freely and without coercion. Further. I understand that I may choose not to participate in any portion of the experiment. that I may refuse to answer any question. and that I may withdraw from the experiment at any time and for any reason without penalty. Should I have questions. I may contact Tammy Bush at 353-9544 or Robert Hubbard at 353-501 3. Signature: 09'“ UCRIHS APPROVAL FOR Address. THIS project EXPIRES: JAN 2 9 1998 Phone: suamr RENEWAL APPLICATION ONF MONTH PRIOR TO Witness: Date:— 98 99 BIOMECHANICAL DESIGN RESEARCH LABORATORY A423 East Fee Hall Michigan State University ' East Lansing, MI 48824 CONSENT TO PHOTOGRAPH AND/OR INTERVIEW l. . .do hereby give my consent m MIC. Pit-I. boll mil for . to be: (rm of Infection: Wt ___videotaped filmed photographed interviewed and/or audiotaped by . for the purpose of: demm I also consent to the use or publication of such photographs and/or interviews for the purpose stated above. I relinquish any claim to said photographs. films. . videotapes. audio tapes and/or interviews and acknowledge that they are the property of and to be used only by Michigan State University. sen-a 9" Warren M to Strainer! Um UCRIHS APPROVAL FOR THIS project EXPIRES: JAN 2 9 1998 SI MMIT RFNFWAI APP! ICATION APPENDIX C Data Transformation into Sagittal Plane In order to transform all of the observed data into the coordinate system defined by the reference targets, 0 and R (Origin and Reference), the data was first translated to the origin at O and then rotated such that the vector from target 0 through target R created the positive x axis. Locations of targets were defined as vector locations, where O is the origin target location, R is the x-axis reference target location, and P is the location of any other target inthe space. 0:0,.él i=x,y,z (60) R=R,é, i=x,y,z (61) P=Rél i=x,y,z (62) The translation was carried out, such that 0,'=0,.—0,.=0 (63) R'=R-0.- <64) m=n—q (a) The rotation was then applied through an angle 19, which was defined as 0 = sin’I 5;- ( 66) IR where 100 101 IR] = ‘iRiR, i= x, y,z (67) applying the summation convention. This can be shown graphically, I) Y o R' ‘4 5 _ Rear of O F X Space View from Top Figure 38: Rotation Angle for Data Transformation to Sagittal Plane Rotation of this translated data through the angle 6, was completed as follows: cos(0) sin(0) 0 P; (13"): -sin(6) cos(I9) o P; (68) 0 0 1 P; cos(0) sin(6) 0 R; (R')= —sin(t9) cos(6I) 0 R; (69) 0 0 1 R’ Point locations here denoted with the double prime ( " ) are the point locations referred to in this document as the sagittal view target locations. The matrices are transformation matrices [10]. APPENDIX D Pelvis Shape and Scaling The pelvis shape used in this study was based on anthropometric data collected by Reynolds, et al. [11]. Points in coordinate pairs (mm) are listed below. 102 Table 22: 103 Pelvis Point Coordinates X Z ~137.1 0.0 ~125.0 ~14.9 -128.5 ~35.7 ~122.2 ~49.3 ~148.3 ~75.3 ~145.2 ~94.4 ~122.6 ~126.9 ~90.7 ~145.1 ~68.2 ~135.6 ~63.8 ~129.4 ~61 .4 ~104.3 ~61 .0 ~73.8 ~58.5 ~38.6 ~45.3 ~34.3 ~25.6 ~42.5 ~18.2 ~74.8 ~21 .4 ~89.5 ~13.9 ~88.0 ~2.6 ~54.7 0.3 ~31 .8 ~2.4 ~10.7 0.0 0.0 ~26.7 46.7 ~36.7 47.8 ~46.2 56.1 ~52.3 56.3 ~77.5 48.4 -1 12.3 29.4 ~132.3 8.1 The pelvis outline created by plotting these points is shown in Figure 39. 104 ASIS i——- ‘ -—~—-+~ ~200 1 1 1 I 1 1 1 I‘ ! Pubic } Symphysis 1 l 1 I -150l Ischial Tuberosity L M _ _,______._ Figure 39: Reynolds Pelvis Shape (axes in mm) For visual representation of the pelvis of each individual subject and for estimating the location of the hip joint center, the above pelvis shape was scaled for each subject. The first step in the scaling was to determine the subject’s ASIS to S1 distance. The Reynolds pelvis shape was then scaled in the X direction based on the ratio of the subject’s ASIS to S1 distance to the Reynolds pelvis’ ASIS to S1 distance (137.1 mm). Next, information from the reference file was used to scale the height of the pelvis. In the reference file, the height of the seating surface was documented by a target lateral to the approximate location of the subject’s ischial tuberosities. The thickness of the tissue under the pelvis, depressed by the weight of the seated subject was assumed to be 15 mm, based on data from Reynolds [16]. Therefore, the known location of the seat surface was 15 mm below the position of the ischial tuberosities. This information was used to scale 105 the pelvis in the Z direction, so that the pelvis height matched that of the individual subject. APPENDIX E Raw Output Data for Each Subject Reference Data Target locations for Subject 01 x y z Orthn 243.1 -214.4 187.3 Reference 459.6 ~196.5 129.9 Manubrium 379.3 67.8 733.0 Xyphoid 321 .5 49.6 588.5 C? 544.5 79.2 791.8 T4 565.3 83.7 688.1 SI 422.0 58.4 284.7 Left ASIS 276.7 -71.2 388.9 Left Lateral Femoral Condyle ~106.1 ~204.6 402.3 Left Lateral Malleolts ~264.8 —183.7 19.0 Left Lateral Foot ~458.3 ~182.3 ~30.7 Test target data for Subject 01 follows (coordinates in millimeters); 106 Subject 01 Probe Length 376 Intel’ASIS Dist. 215 InterPSlS Dist. 90 Heel to foot target dist. 235 107 Test Met Locations: Condition Origin ref2 x y z x y z 1 75.1 ~282.1 ~25.0 426.3 ~272.9 ~24.7 2 75.1 -282.0 ~25.1 426.4 ~272.9 -24.6 3 75.1 -282.1 -24.9 426.3 ~273.1 -24.8 4 75.1 ~282.1 -25.0 426.4 -273.0 ~24.7 5 75.1 -282.0 ~25.1 426.4 -273.0 ~24.7 6 75.2 -282.0 ~250 426.4 ~272.9 -24.9 7 75.0 -282.1 ~25.1 426.4 -273.0 -24.7 8 75.2 -282.0 ~250 426.4 -272.9 -24.7 9 75.2 -282.1 -25.0 426.5 ~273.1 -24.8 10 75.1 282.0 ~25.1 426.4 ~272.9 ~24.7 11 75.2 -282.1 ~25.0 426.6 -273.0 ~24.8 12 75.2 ~282.1 -25.0 426.3 -272.9 -24.9 13 75.2 ~282.1 -25.1 426.4 -273.0 ~24.8 14 75.1 282.0 ~25.1 426.4 -272.9 24.6 15 75.2 —282.0 ~250 426.4 -272.9 24.9 16 75.2 ~282.1 ~25.0 426.5 ~273.1 ~24.7 17 75.2 -282.2 -25.0 426.6 -273.0 -24.7 18 75.2 -282.1 -25.0 426.4 -272.9 -24.9 19 75.2 -282.1 -25.2 426.4 ~272.9 ~24.7 20 75.2 -282.1 -25.0 426.3 ~273.1 -24.9 21 75.2 -282.1 -25.0 426.6 273.0 -24.8 22 75.1 -282.0 -25.1 426.3 ~273.0 ~24.8 Test , Target Locations: Condition Elbow Wrist x y z x y z 1 493.0 ~240.9 409.5 245.8 492.7 521.0 2 495.9 -240.3 417.1 246.7 ~197.3 521.1 3 490.1 -242.7 413.2 232.9 -218.4 522.2 4 489.7 -240.4 420.8 232.8 -217.7 525.3 5 485.8 222.4 415.8 224.1 -225.1 524.4 6 478.3 -239.8 424.2 219.4 -214.8 525.6 7 484.2 -246.2 417.9 225.2 -219.3 522.0 8 491.2 -244.1 419.6 234.0 ~220.2 527.9 9 502.2 -240.8 417.0 246.5 -206.1 523.7 10 496.3 220.6 416.8 238.0 208.3 523.3 11 494.4 -239.3 409.7 243.0 ~202.6 520.2 12 495.5 -242.6 412.6 240.5 -205.1 521.5 13 508.4 —220.6 407.7 257.1 489.5 518.4 14 495.9 -240.3 417.1 246.7 ~197.3 521.1 15 499.7 -235.0 409.5 248.4 ~200.6 519.9 16 500.3 -234.7 409.9 251.2 492.6 519.3 17 501.3 ~238.9 412.3 250.3 494.5 519.0 18 495.6 240.2 410.6 248.6 494.1 522.7 19 500.1 -236.1 411.2 250.4 497.9 519.5 20 497.6 -227.3 411.0 244.0 498.7 518.7 21 0.0 0.0 0.0 229.6 ~220.8 516.8 22 501.1 -239.2 411.9 250.3 -200.1 519.9 Test Condition CONQU’IbON-A Test Condition ngfififiafiifififiaowflmmhund Taget Locations: 108 X 465.2 470.3 473.5 464.4 474.9 502.7 492.2 481 .6 477.9 480.6 446.1 469.9 466.3 470.3 448.0 439.4 449.2 429.6 461 .7 457.3 485.1 470.5 Manumbrlum Y 33.3 36.3 33.7 34.6 39.8 44.1 26.8 26.1 22.9 40.2 33.2 27.1 43.5 36.3 31.3 31.1 27.9 32.1 34.7 36.5 34.9 32.3 2 738.1 743.5 741 .0 744.5 748.4 743.1 746.2 748.6 745.7 745.5 733.6 738.3 738.1 743.5 732.1 736.7 738.4 732.5 739.3 739.4 745.2 740.3 Xyphold x 394.0 395.8 395.7 391.2 389.2 401.8 398.4 394.3 395.9 397. 4 384.1 397.6 395.2 395. 8 384.0 377. 7 381.5 378.4 389.9 387.6 397.1 395.9 Y 19.2 21.4 19.9 19.9 26.4 27.1 12.9 9. 8 10. 5 26.8 19.0 16.2 31.1 21.4 17.5 21.1 15.8 20.8 25.5 23.1 17.6 18.5 2 600.0 608.2 608.1 608.8 621.1 625. 6 623.4 620. 6 614.5 615.0 592.0! 601.5 600.4 608.2 591.4 592.6 598.1 587.6 601.3 600.1 616. 8 604.1 Left ASIS X 332.7 327.4 317.3 319.7 316.8 316.7 324.7 328.5 332.4 327.0 336.5 334.8 338.3 327. 4 339.6 340.3 338.4 336. 1 336.4 338.0 329. 5 338.5 Y ~101.6 ~101.7 ~102.5 ~101.6 ~99.7 ~94. 0 ~106. 3 ~109.9 ~103.6 ~95.0 ~98.2 ~99.6 ~86. 5 ~101.7 ~100.2 ~97.4 ~104.2 ~104.9 ~104.0 ~103.5 ~102.1 ~103.7 2 394.6 399.9 403.7 403.3 402.8 401 .9 396.4 394.3 394.4 399.9 394.0 396.7 397.9 399.9 398.7 397.9 398.8 394.1 397.9 394.8 399.9 397.3 ‘ Knee Target Locations: X ~93.3 ~88.8 ~102.9 -92.1 ~101 .1 ~98.2 ~96.0 ~91.9 ~88.5 ~88.5 ~89.0 ~89.1 ~87.9 ~88.8 ~94.2 ~90.6 ~89. 1 ~87. 9 ~90.4 ~90.2 ~90. 6 ~89. 7 Y ~163.2 ~180.8 ~163.2 ~180.3 ~176.3 ~182.5 ~180.8 ~182.5 ~185.0 ~181.2 ~172.5 ~183.9 ~168.6 ~180.8 ~169.7 ~175.8 ~172.1 ~196.5 ~171.0 ~174.4 ~176.2 ~178.6 345.6 336.2 349.0 344.6 347. 8 343.5 346.0 328.8 339.7 339.1 336.3 338.0 337. 2 336.2 343.0 338.3 346.1 336.1 340.6 341.6 351.2 348.5 Ankle ~352.8 ~364.1 ~358.0 ~365.1 ~364.5 ~364.9 ~360.4 ~372.8 ~356. 4 ~364. 5 ~361 .0 ~361 .3 ~364. 1 ~357. 5 ~351 .4 ~357. 0 ~359. 0 ~346.4 ~347.0 ~132.7 ~147.1 ~131.4 ~175.8 -150.6 ~155.1 ~156.8 ~152.4 ~154.8 ~149.1 ~146.3 ~150.0 ~141.0 ~147.1 ~138.6 ~139.6 ~140.3 ~164.1 ~139.3 ~147.7 ~141.5 ~156.3 ~6.5 40.2 ~4.7 ~4.3 ~5.1 ~7.3 ~0.1 ~1 1.1 ~0.3 ~3.6 ~9.2 ~8.4 ~5.9 ~10.2 ~1 .1 ~4.4 ~0.7 ~3.1 ~6.7 ~3.6 0.4 ~1.1 Foot ~514.9 ~520.1 ~517.4 ~520.4 ~520.6 ~520.4 -520.5 -521 .5 ~518.7 ~520.0 ~519.5 -519.6 ~519.2 ~520.1 ~517.8 ~517.9 ~514.3 ~517.5 ~515.3 ~518.9 ~514.0 ~512.7 ~141.8 ~144.0 ~137.6 ~164.4 ~144.3 ~147.3 -139.8 ~157.2 ~151.9 ~145.5 -145.0 ~148.3 -141.4 ~144.0 ~143.8 ~145.7 ~140.3 ~167.9 ~153.1 ~148.7 ~136.9 ~166.1 103.5 110.5 107.8 115.4 112.8 111.8 110.4 118.1 110.7 110.4 111.3 108.3 110.1 110.5 110.2 109.5 101.0 110.1 105.7 109.7 96.5 102.5 Test Condition @QNOOI-hGM-a Test Condition Basssssasasamwmww 109 Met Locations: Probe- Acromlon X Y 654.9 -399.2 634.5 -416.1 679.1 329.1 689.5 ~391.3 661.0 ~345.0 750.0 330.2 767.7 -375.6 704.1 ~393.7 . . 660.5 -372.9 1049.5 869.9 19.9 709.2 -378.0 1014.3 865.1 54.8 676.4 -362.3 1024.9 865.0 63.5 700.9 -399.8 998.5 877.7 61.9 617.2 -368.2 1041.2 900.8 86.2 634.5 -416.1 1002.0 854.0 15.1 648.0 -363.2 1039.9 881.0 70.4 670.6 -341.5 1041.2 889.9 80.9 656.9 -360.1 1046.4 873.0 48.3 632.6 342.7 1054.8 868.7 55.1 620.3 372.1 1046.5 861.9 41.0 661.6 421.3 979.5 866.9 68.9 771.6 376.1 978.9 871.3 67.0 617.6 392.4 1034.0 869.1 63.5 (probe target 2) (probe target 2) x y z x y 600.8 -280.4 883.9 736.2 18.6 596.7 -289.9 885.9 726.6 19.8 619.5 -245.2 913.4 731.1 38.2 623.6 -277.6 892.8 738.7 30.7 615.8 -250.8 916.1 723.3 37.9 672.0 ~240.9 895.7 724.9 48.7 680.2 -272.0 878.3 726.6 27.4 638.9 -282.4 894.9 732.7 18.3 615.0 272.0 913.0 730.1 20.0 641.6 -268.0 895.1 728.3 46.9 603.8 -264.0 899.4 731.6 44.8 631.0 ~285.2 885.5 741.5 42.0 583.8 -260.2 906.7 752.6 62.3 596.7 -289.9 885.9 726.6 19.8 591.0 -262.8 907.4 740.6 48.6 599.0 -249.7 909.7 742.2 55.5 595.5 263.2 913.5 733.6 32.3 574.3 -251.4 917.1 731.8 41.8 579.9 267.7 911.3 724.9 31.8 601.7 ~293.1 875.6 732.4 47.2 676.8 -269.4 876.7 733.4 47.1 586.9 -278.3 904.4 733.0 45.8 2 414.3 404.0 407.1 421.8 412.2 412.9 412.7 425.9 413.9 411.9 419.0 422. 6 438. 8 404. 0 429. 6 443.8 431.4 430.9 412.3 419.4 420.7 412.2 Prb1.T10- at/below X y 2 878.1 12.0 312.2 854.0 15.1 283.5 867.0 48.9 298.5 879.2 43.6 318.8 863.8 46.6 308.5 867.9 62.1 311.3 866.7 32.6 308.9 873.0 23.2 322.4 869.9 19.9 308.6 865.1 54.8 305.0 865.0 63.5 306.5 877.7 61.9 315.4 900.8 86.2 348.4 854.0 15.1 283.5 881.0 70.4 327.5 889.9 80.9 350.2 873.0 48.3 328.3 868.7 55.1 323.9 861.9 41.0 304.1 866.9 68.9 307.2 871.3 67.0 312.5 869.1 63.5 305.2 (probe target 2) X y 2 736.2 18. 6 414.3 726.6 19. 8 404.0 731.1 38. 2 407.1 738.7 30. 7 421.8 723.3 37. 9 412.2 724.9 48. 7 412.9 726.6 27. 4 412.7 732.7 18.3 425.9 730.1 20.0 413.9 728.3 46.9 411.9 731.6 44. 8 419.0 741.5 42. O 422. 6 752.6 62. 3 438.8 726.6 19. 8 404. 0 740.6 48.6 429. 6 742. 2 55. 5 443.8 733. 6 32. 3 431.4 731.8 41.8 430.9 724.9 31.8 412.3 732.4 47.2 419.4 733.4 47.1 420.7 733.0 45.8 412.2 Test Condition CG‘IO’OIth-i Tam Condition I(probe target 2) @QNOUl-DODM-l X 760.2 756.0 759.6 755.0 741 .3 737.3 737.6 736.5 744.5 742.4 754.3 754.0 760.4 756.0 758.2 754.1 749.5 749.5 680.1 756.1 744.4 754.4 Y 41.0 52.2 62.4 49.4 61 .5 60.9 49.5 49.0 36.5 42.2 19.9 51 .8 46.4 52.2 18.7 38.3 28.5 36.8 36.2 46.1 24.9 40.8 Target Locations: Prb1.T12, at/above X Y 932.3 55.9 920.7 78.7 921 .5 95.2 923.9 68.8 909.0 94.2 900.0 89.4 899.2 78.8 895.8 79.3 901 .0 60.1 898.8 52.7 919.6 23.3 918.6 81 .8 926.2 56.8 920.7 78.7 924.5 17.7 921 .6 49.6 915.1 38.6 914.7 47.1 796.6 46.0 923.5 69.3 901 .7 31 .1 919.1 58.3 110 z x y 438.8 798.8 20.9 403.2 801.4 34.3 407.2 791.5 52.9 425.9 812.8 14.4 421.9 808.3 36.0 380.9 791.2 54.4 380.6 789.8 37.9 378.6 783.3 48.0 364.9 811.3 ~7.6 358.9 789.3 38.4 396.3 819.9 28.3 395.2 918.8 81.8 401.7 828.6 44.9 403.2 801.4 34.3 403.1 835.8 28.4 414.3 859.6 22.8 402.4 831.2 27.5 399.8 849.3 23.7 197.6 796.6 46.0 417.01 864.9 35.0 388.2 818.4 45.8 379.2 815.4 19.3 (probe target 2) z x y 471.1 684.1 21.1 453.2 885.4 33.3 453.7 677.9 43.5 465.8 689.9 24.1 464.1 680.5 33.2 442.2 672.8 46.7 444.31 872.5 28.3 443.7 669. 0 4.9 438.1 688. 8 1.2 433. 4 872. 7 37.5 448.4 897.7 26.4 446. 6 754.0 51.8 450.6 703. 6 39.9 453.2 685.4 33.3 452.0: 707. 8 25.7 458.3 719.4 26.5 452.7 700.7 23.0 451.1 711.1 23.7 329.6 680.1 36.2 458.9 721.7 28.1 438.2l 690.3 34.7 439.9 688.1 24.6 PI'b1.T12, atlbelow 2 193.3 197.1 193.5 221 .0 224.0 213.3 209.4 201 .2 218.1 197.2 213.3 395.2 218.3 197.1 223.4 259.7 229.0 252.6 197.6 265.1 226.7 205.5 2 326.6 328.8 327. 0 344.3 347.7 343.0 339. 9 333.0 341. 7 330.3 337.4 446.6 339.7 328.8 342.0 362.5 345.4 358.0 329.6 364.2 348.8 329.4 Prb1.L3, at/above X Y 900.7 12.2 875.4 44.8 886.3 39.8 870.9 9.7 847.7 56.2 848.6 87.1 852.6 55.9 886.9 11.9 877.4 4.5 852.6 43.4 894.5 72.5 893.8 35.6 893.2 48.1 875.4 44.8 817.4 33.7 896.8 5.6 896.4 40.8 897.2 65.7 897.1 61.1 906.4 20.7 868.2 31.9 889.9 41.3 (probe target 2) X Y 723.1 22.5 713.4 33.9 714.6 32.6 706.7 13.8 693.7 40.1 692.9 59.6 699.2 35.4 714.2 11.6 715.2 5.0 700.6 37.7 724.6 48.2 725.0 28. 5 726.7 43.8 713.4 33.9 685.0 24. 7 728.6 8. 1 725.1 30. 3 723.1 50.6 724.2 44.1 728.3 27. 9 705.9 27.8 723.7 28.6 2 377.7 289.5 356.8 314.2 279.8 287.7 277.3 358.8 299.6 263. 7 340. 3 334.2 321.0 289.5 160.2 330.0 344.6 373. 2 373.7 384.9 292. 2 318.1 397.3 357. 9 389.4 369.1 359.7 364.0 357.4 390.6 361.4 348.0 379.1 378. 4 368.8 357.9 271.7 374. 5 380.0 395. 9 396.3 399.6 360.4 367.8 Test Condition OONQUIbuM-d Test Condition OONGMhUN-fi lll Target Locations: Prb1.L3, at/below X 1! 795.2 12.1 769.6 18.8 756.6 18.9 870.9 9.7 750.0 34.4 755.1 50.2 758.5 20.5 886.9 11.9 810.9 22.5 775.5 43.9 809.7 71.3 808.8 26.6 808.6 74.6 769.6 18. 8 817.4 33. 7 832.8 35. 2 814.2 35.9 843.9 42.1 845.7 51.5 821.1 45.7 772.8 28.5 777.7 44.0 (probe target 2) X Y 665.0 18.5 644.8 19.4 636.6 24.6 706.7 13.8 631.9 28.3 629.0 40.2 635.6 23.5 714.2 11.6 677.7 17.5 651.0 36.9 685. 0 43.1 680. 7 16.1 686.1 44.2 644.8 19.4 685. 0 24.7 689.0 33.4 682.6 26.6 689.3 33.1 690. 9 35.2 680. 9 33.3 649. 5 20.8 652.5 33.4 259.1 251 .4 251 .7 369.1 262.5 264.7 252.6 390.6 277.7 264.0 272.3 274.6 270.6 251 .4 271 .7 282.4 272.4 289.6 290.1 265.4 264.9 247.2 Prb.St, at/above Prb1.S1, at/below X Y 786.3 3.7 855.9 66.1 844.0 42.3 840.1 73.0 767.1 25.8 835.6 79.5 769.0 10.1 780.5 44.2 781.9 46.8 853.1 55.2 790.7 50.7 761.3 77. 5 805.2 47. 8 855.9 66. 1 810.3 18. 3 813.9 77. 9 790.5 90.1 814.0 42.1 816.7 21.5 813.7 56.7 855.4 65.6 798.5 56.7 (probe target 2) X Y 641.9 8.9 684.8 46.6 674.0 33.5 667.9 44.8 623.1 23.1 665.1 53.1 628.3 11.1 637.2 26.6 638.9 31.1 678.1 41.3 644.1 35.6 633.5 43.6 651.2 38.6 684.8 46.6 653.1 16.9 655.4 49.5 642.4 54.8 657.4 29.8 659.2 18.2 658.4 36.8 680.9 42.4 650.1 38.3 z x y 98.3 786.3 3.7 267.9 775.8 28.0 283.0 773.3 55.2 302.1 765.9 39.7 105.6 767.1 25.8 265.1 776.3 18.5 92.2 769.0 10.1 96.9 780.5 44.2 94. 9 781.9 46.8 293. 4 773.1 58.7 99.9 790.7 50.7 72.8 761.3 77.5 124.1 805.2 47.8 267.9 855.9 66.1 128.6 810.3 18.3 146.1 813.9 77.9 108.9 790.5 90.1 144.4 814.0 42.1 145.9 816.7 21.5 139.8 813.7 56.7 304.3 761.2 28.8 116.3 798.5 56.7 (probe target 2) z x y 198.6 641.9 8.9 304.7 634.6 22.5 315.7 627.1 41.9 326.01 624.4 29.5 205.2 623.1 23.1 305.1 626.4 21 .4 198.1 628.3 11.1 197.5 637.2 26.6 196.2 638.9 31.1 316.6 633.6 40.8 195.3 644.1 35.6 186.3 633.5 43.6 208.1 651.2 38. 6 304.7 684.8 46. 6 206.9 653.1 16.9 216.9 655.4 49.5 198.8 642.4 54.8 222.9 657.4 29. 8 223. 3 659.2 18. 2 217.4 658.4 36.8 321.7 628.7 23.7 208.0 650.1 38.3 2 98.3 93.3 1 13.3 103.1 105.6 1 1 1.8 92.2 96.9 94.9 94.9 99.9 72.8 124.1 267.9 128.6 146.1 108.9 144.4 145.9 139.8 76.5 1 16.3 198.6 196.7 212.2 207.0 205.2 203.1 198.1 197.5 196.2 200.1 195.3 186.3 208. 1 304. 7 206. 9 216.9 198.8 222.9 223.3 217.4 192.6 208.0 112 Reference Data Target locations for Subject 02 I x y z HOrigin -59.7 -259.3 187.9 Reference 158.6 -253.8 130.3 Manubrium 93.5 2.8 738.2 Xyphoid 4.7 -2.4 601 .0 C7 248.5 -5.5 809.5 T4 275.1 6.1 659.2 81 122.2 15.6 268.3 Left ASIS -20.8 -121.9 394.7 Left Lateral Femoral Condyle -436.7 -186.9 403.4 Left Lateral Malieoils -527.7 -169.3 17.6 Left Lateral Foot -705.8 -224.5 -30.6 Test data for Subject 02 follows (coordinates in millimeters); Subject 02 Probe Length 376 Intei‘ASlS Dist. 270 interPSlS width 1 00 Heel to foot target dist. 237 Test Condition DONOU’IOQN‘ Test Condition OO‘IOU’IhuN-fi ‘ Origin Target Locations for Sublect 02: 113 X ~44.2 ~44.3 ~44.2 ~44.3 ~44.3 ~44.2 ~44.3 -44.2 44.3 ~44.3 ~44.3 ~44.3 ~44.3 -44.3 44.3 ~44.3 ~44.3 ~44.3 -44.3 -44.3 ~44.3 ~44.3 Y ~308.0 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 ~308.0 ~308.0 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 ~307.9 -307.9 -307.9 ~307.9 ~307.9 ~307.9 Z ~25.5 ~25.6 ~25.6 ~25.5 ~25.5 ~25.6 ~25.6 ~25.5 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 refz X 307.7 307.7 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.6 307.7 307.6 307.6 307.6 307.5 307.6 307.6 307.5 307.6 307.5 Y -318.2 -318.2 -318.2 ~318.1 ~318.1 ~318.1 ~318.2 ~318.1 ~318.1 ~318.1 -318.1 ~318.2 ~318.0 ~318.2 ~318.2 ~318.1 ~318.1 ~318.2 ~318.1 ~318.1 ~318.1 -318.1 2 ~23.2 ~23.2. ~23.3 ~23.2 ~23.2 ~23. 3 ~23. 3 ~23.2 ~23. 2 . ~23. 3 ~23.2 ~23.3 ~23. 2 ~23. 3 ~23. 3 ~23. 2 ~23. 3 ~23. 3 ~23. 2 ~23. 2 . ~23. 3 ~23.3 Tar et Locations for Sublect 02: Elbow x 328.4 326.6 335.4 333.3 330.7 345.4 339.6 349.4 350.7 333.4 330.6 337.6 328.7 341 .4 328.7 31 3.3 309.6 339.2 334.2 320.8 338.6 330.5 Y ~302.1 -307.6 ~302.3 ~300.4 ~296.7 ~304.4 -288.6 ~308.1 ~302.2 ~301 .4 ~291 .2 -301 .9 ~299.0 ~294.2 ~294.4 ~296.6 ~297.9 ~313.9 ~298.3 ~295.0 -300.1 ~307.0 2 465.2- 468.3 475.3 471 .6 477.3 476.2 480.0 484.4 484.2 477.1 475.4 474.2 471 .7 471 .2 468.4 445. 6 438.6 466.1 462.5 461 .4 479.6 480.0] Wrist X 121.9 119.1 122.8 123.9 115.0 132.2 118.7 130.3 134.3 121.0 115.7 125.3 120.1 125.7 117.2 118.8 116.4 135.1 127.4 115.4 121.5 117.7 564.9 560.6 562.4 563.0 559. 7 561.6 557.4 559.5 560.1 562.9 560.7 558.7 556.0 561 .7 557.8 554.1 555.9 553.2 560.8 560. 2 561.1 114 Test Target Locations for Subject 02: Condition Manumbrium Xyphoid Left ASIS x y z x y z x y z 1 363.9 -4.5 748.5 265.4 -5.3 614.9 219.1 -139.7 398.9 2 359.8 -6.8 747.9 266.7 -9.3 613.1 207.3 -142.9 400.1 3 369.5 -2.9 755.1 266.6 -8.3 625.4 196.2 -142.6 405.8 4 363.5 -1.3 755.2 263.0 -3.6 625.3 195.1 -133.9 404.0 5 372.4 0.2 765.3 261.4 0.0 640.1 196.5 -128.3 403.4 6 389.5 -2.5 764.7 267.0 —4.9 647.3 194.2 -136.2 404.7 7 379.6 6.3 763.7 263.2 3.0 642.2. 202.9 -126.2 399.9 8 387.4 -5.2 770.2 264.2 -7.4 649.7 210.0 -135.9 398.7 9 374.2 2.2 771.8 261.2 -1.9 645.3 217.8 -131.9 398.5 10 374.7 -0.8 759.2 264.6 -1.4 631.2 205.0 -132.3 400.2 11 352.2 10.6 750.5 255.1 4.5 611.0 229.8 -127.7 396.7 12 372.3 1.6 754.8 264.0 -3.1 625.4 217.6 -138.7 398.1 13 370.2 -1.7 752.7 263.7 -2.6 621.5 223.4 -135.2 395.3 14 372.1 8.6 754.8 264.8 6.3 624.2 225.4 -120.0 393.4 15 353.6 5.3 751.6 257.1 5.8 611.5 230.6 -129.2 394.8 16 306.4 3.1 718.5 251.4 -3.3 573.5 227.8 -131.6 392.2 17 306.3 -6.7 718.9 252.2 -8.4 575.1 222.7 -138.5 393.7 18 334.6 -6.4 748.6 247.5 -8.8 607.6 219.9 -142.1 395.5 19 322.1 0.9 741.9 249.3 -4.3 595.8 218.9 -133.6 396.0 20 325.0 5.5 742.4 247.3 4.1 596.9 225.4 -126.4 393.2 21 376.5 5.9 760.4 263.9 2.5 635.1 206.4 -130.6 401.2 22 368.4 -5.4 758.1 264.4 -8.9 626.1 215.9 -140.1 398.0 Tom la_rget Locations for Subject 02: Condition Knee Ankle Foot x y z x y z x y z 1 ~208.0 ~196.1 332.7 -474.1 208.9 3.8 -625.6 -211.9 100.7 2 -211.2 -202.5 335.9 -469.7 -205.8 2.7 -622.8 -217.5 96.5 3 -213.6 -201.7 342.2 -463.7 -200.0 3.5 -622.4 -202.7 90.2 4 -212.7 -196.7 341.0 -465.2 -210.1 5.3 -622.8 -213.3 94.7 5 -212.2 -195.2 340.4 -465.9 -204.6 5.1 -624.4 -202.9 93.2 6 -215.8 -201.4 341.2 -467.0 -195.8 4.1 -625.3 -186.5 91.4 7 -210.8 -187.5 335.0 -472.7 -189.9 4.4 -624.4 -189.9 100.4 8 -198.8 -203.1 333.3 -463.7 -215.4 5.2 -624.3 -207.8 91.5 9 -204.5 -187.4 328.5 472.9 -186.5 1.7 -624.2 -193.5 100.6 10 -215.7 -188.3 331.9 -477.7 -207.5 2.6 -624.8 -214.4 107.0 11 -205.4 -187.9 324.7 -477.8 -204.8 2.2 -624.8 —212.0 106.7 12 -208.3 -199.3 334.0 -469.0 -220.1 3.9 -622.2 -231.4 98.7 13 -204.6 -191.1 332.4 -466.6 -200.6 4.7 -623.3 -203.1 97.8 14 -198.8 -179.3 331.5 —465.2 -195.1 4.5 -622.3 -197.3 94.6 15 -200.1 -188.4 330.7 -465.3 -194.6 3.7 -624.9 -194.6 91.7 16 -204.5 -184.1 325.7 -475.0 -181.0 2.2 -627.7 -182.5 102.0 17 -208.3 -198.9 330.6 -473.5 -211.0 4.2 -626.4 -212.8 101.6 18 -203.6 -208.6 335.8 -459.2 -198.3 0.9 621.0 -201.4 81.7 19 -204.3 -197.0 328.9 -473.3 -210.6 3.4 -626.7 -211.4 102.0 20 -202.0 -193.3 330.4 467.0 -191.9 0.8 -624.4 -193.6 91.8 21 -212.5 -193.0 336.3 -467.4 489.5 3.5 625.5 -188.9 96.4 22 -204.1 -208.4 330.4 -467.9 -204.3 1.0 -624.0 -215.4 93.8 Test Condition Bassaaaasaszaooummaund Test T et Locations for Sub 115 Probe- Acromlon X 636.6 640.9 656.7 589.9 659.5 700.9 648.8 708.2 687.1 718.6 631.4 602.1 646.4 641.4 637.6 536.9 552.8 545.3 524.3 614.2 672.8 643.7 Y ~428.5 ~441 .1 437.6 ~451 .1 ~443.4 ~434.2 -420.1 ~427.3 ~424.5 ~389.0 ~374.0 ~394.9 ~412.8 ~414.1 ~397.7 ~438.1 ~434.1 ~408.9 ~442.6 ~422.9 ~396.2 ~436.5 Condition i(probe target 2) 3383833335§33°0Nambw~4 X 543.8 542.1 555.2 517.8 562.0 593.7 560.0 597.1 578.6 593.4 534.5 528.4 551 .6 551 .7 538.2 457.0 465.7 477.4 457.3 512.5 570.9 549.8 Y ~313.7 ~318.0 ~316.4 -320.8 ~316.4 ~313.4 ~299.6 ~307.7 ~304.7 -286.7 ~271 .4 -284.7 ~297.7 -294.3 -285.3 ~31 1.7 ~312.5 ~297.6 ~313.6 ~302.7 ~285.4 ~313.2 02. Prb1.,T10 at/above Prb1.T10- atlbeiow z x y z y 975.2 776.6 -75.0 308.2 -75. 0 945.0 770.7 -64.0 294.6 -64. 0 950.0 769.6 -87.8 316.2 -87. 8 982.0 767.8 -36.3 303.1 -36. 3 942.1 752.3 -39.5 301.5 -39. 5 929.1 752.0 ~14.0 294.6 -14.0 978.3 752.7 -40.9 302.7 -40. 9 927.8 747.4 -56.1 300.0 -56. 1 940.7 753.7 -20.4 286.4 -20. 4 929.5 752.0 -58.0 292.6 -58.0 1007.3 762.3 -46.3 274.7 -46.3 1027.7 771.6 -32.6 296.3 -32.6 975.6 760.1 -46.9 278.1 -46. 9 976.3 769.9 -18.8 291.4 -18. 8 971 .4 783.6 -33.1 298.7 -33.1 968.5 783.9 30.5 281.0 -30. 5 960.1 799.7 -45.6 318.8 -45. 6 1042.7 785.5 -48.3 323.7 48.3 993.6 775.8 -6.5 294.0 6. 5 943.8 780.0 -32.2 299.1 -32. 2 977.5 750.1 -28.7 281 .5 -28.7 965.4 760.6 -57.5 285.3 -57.5 ((probe target 2) (probe target 2) z x y z y 879.2 629.8 -43.0 396.8 629.8 -43.0 865.7 624.2 -39.7 388.5 624.2 -39. 7 872.4 620.8 52.5 397.2 620.8 ~52. 5 886.7 617.8 -21.1 394. 8 617.8 -21. 1 866.7 605.0 -19.6 396.3 605.0 -19.6 856.8 605.5 -10.0 393.3 605.5 -10.0 885.4 604.6 -20.7 396.1 604.6 -20.7 860.0! 602.4 -36.8 396.6 602.4 -36.8 870.5 611.8 -14.0 390.3 611.8 -14.0 858.4 607.9 -34.7 390.8 607.9 -34.7 902.1 623.4 -22.3 380.1 623.4 -22. 3 910.5 624.1 -21.4 390.6 624.1 -21 .4 880.9 617.8 -26.9 381.1 617.8 -26.9 882.4 625.0 -7.2 389.7 625.0 -7.2 880.1 634.8 -17.0 391.0 634.8 -17.0 874.5 638.0 -18.6 379.2 638.0 -18. 6 867.7 642.2 -28.0 395.0 642.2 -28. 0 918.3 627.5 -31.7 404.5 627.5 -31.7 894.7 630.4 -6.0 392.8 630.4 -6.0 865.0 631.9 -17.5 393. 3 631.9 -17.5 885.7 609.0 -17.1 386.7 609.0 -17.1 881.2 619.1 -38.7 387. 6 619.1 38.7 Test 116 Target Locations for Sub ect 02: Condition Prb1.T12, at/above Prb1.T12, at/beiow x y z x y z 1 822.7 -38.3 512.3 680.7 -30.5 163.1 2 815.7 ~76.7 473.7 697.5 46.4 181 .5 3 769.6 -87.8 316.2 692.6 -54.1 190.9 4 804.9 -52.9 530.8 705.6 -19.1 211.2 5 799.1 -27.0 491.6 677.1 -0.1 200.9 6 791.2 -51.7 414.3 677.6 ~15.9 199.7 7 793.2 -76.0 457.8 679.3 14.2 197.9 8 792.9 -81 .9 477.5 677.9 -56.7 197.2 9 778.0 -43.3 327.0 680.4 5.7 177.9 10 798.3 -78.4 456.3 675.7 -10.4 184.9 11 824.7 ~38.2 528.7 685.9 4.4 151.4 12 810.1 -77.5 504.6 677.5 -32.8 165.4 13 816.9 -47.8 503.9 683.3 -17.1 162.4 14 815.4 -52.6 526.8 687.7 -20.9 169.2 15 809.0 -10.6 570.3 687.6 -7.2 154.4 16 824.4 -25.8 572.5 684.2 -34.3 141.3 17 714.0 ~23.7 174.7 714.0 ~23.7 174.7 18 715.8 ~42.1 201.4 715.8 ~42.1 201.4 19 812.0 -98.4 492.8 673.0 -34.5 152.1 20 819.1 -35.1 549.8 678.7 -11.2 149.3 21 802.7 -55.3 536.2 682.4 -26.1 187.6 22 805.3 -107.8 497.7 695.2 -64.7 189.2 Test Condition 1(probe target 2) (probe target 2) x y z x y z 1 646.5 -23.8 493.4 566.0 -18.0 298.9 2 641 .9 -45.7 473.8 565.1 -27.7 302.8 3 620.8 -52.5 397.2 559.8 -30.1 308.5 4 630.5 -29.0 505.9 570.1 -10.6 323.7 5 621.6 -12.1 488.9 551.3 -2.2 324.3 6 619.9 -29.5 448.3 552.3 -15.4 323.8 7 620.6 -43.4 471.1 554.8 4.8 321.6 8 618.7 -49.8 481.9 553.6 -42.8 321.3 9 620.1 -24.7 402.1 558.4 -5.3 306.1 10 625.6 -44.4 468.1 559.7 -13.8 314.2 11 650.1 -16.9 499.5 571.4 9.3 286.9 12 638.2 -45.3 490.7 563.2 -17.2 301.5 13 646.0 -27.2 491.8 569.5 -10.0 298.3 14 641.2 -24.8 501.1 571.4 -11.2 300.6 15 646.0 -6.1 523.5 574.9 0.5 291 .6 16 654.4 -12.8 519.6 578.2 -20.0 280.6 17 585.1 -15.1 295.5 585.1 -15.1 295.5 18 587.9 -31.2 319.1 587.9 -31.2 319.1 19 642.3 -51.7 481.0 563.6 -16.6 289.1 20 645.7 ~16.9 510.5 568.5 -2.7 287.1 21 627.8 —31.8 508.6 553.3 -13.6 311.0 22 635.0 -63.2 486.6 572.3 -44.8 311.5 Prb1.L3, at/above X Y 792.3 5.0 779.5 -22.2 754.1 -71.7 772.2 -11.9 751.0 -13.5 747.1 -0.8 754.9 24.8 756.1 -1 1.7 756.7 —7.9 743.5 -28.7 801.0 -32.0 788.7 28.1 792.8 39.5 794.6 -24.9 804.1 -8.9 711.3 64.3 676.3 -61.4 797.5 -6.0 797.5 -6.0 804.6 -22.1 765.2 -26.3 778.7 -58.0 (probe target 2) X 11 616.3 -3.0 603.9 -21.7 589.0 -45.4 594.4 -9.0 580.9 -8.3 577.6 -5.9 586.6 12.0 589.5 -10.9 594.8 -7.1 585.9 -18.2 625.7 -19.2 608.3 14.3 612.9 22.1 619.6 -3.0 628.0 -5.2 575.6 -38.6 555.6 -37.9 616.4 1.8 616.4 1.8 629.2 -10.3 596.7 -17.3 611.3 -38.7 2 367.5 341 .3 287.5 373.5 314.1 300.6 300.0 506.4 260.1 253.0 426.6 360.9 354.7 423.2 381 .8 127.3 100.4 359.0 359.0 419.7 304.1 314.6 385.8 369.6 346.0 393.0 363.8 356.6 353.5 457.3 331 .1 332.2 41 1.8 377.9 373.9 412.2 387.2 236.9 227.9 375.7 375.7 41 0.0 356.7 360.6 Test Condition DQ‘IOUIth-l' Test Condition @GNO’OIBQN-fi Prb1.L3, at/below X Y 680.2 -21.4 673.9 -30.0 670.2 -42.3 674.3 -13.4 666.0 -25.9 666.2 -1.1 684.4 -19.6 668.8 -15.8 671.9 -29.2 673.3 7.6 675.0 -17.4 684.3 -12.8 688.8 9.8 667.4 -36.6 681.6 5.5 711.3 -64.3 676.3 -61.4 717.6 -18.3 717.6 -18.3 684.2 -28.8 673.5 -36.9 680.3 -46.6 (probe target 2) X Y 544.3 -1 1.9 543.2 -26.4 538.0 -25.5 537.6 -10.7 530.7 -15.2 530.6 -7.1 547.1 -14.3 539.9 -14.9 538.7 -12.6 540.9 2.8 555.1 -8.8 553.2 -10.0 552.0 13.1 549.0 -14.6 557.1 -1.5 575.6 -38.6 555.6 -37.9 571 .7 -1 1.4 571.7 -1 1.4 555.7 -13.4 541.1 -22.6 550.8 -35.8 Prb.S1, at/above Prb1.S1, at/beiow x y z x y 2 669.9 -56.3 83.7 669.9 -56.3 83.7 671.9 -53.7 103.4 671.9 -53.7 103.4 672.7 -25.0 124.2 672.7 -25.0 124.2 658.4 -17.8 108.2 658.4 -17.8 108.2 651.3 -5.5 94.1 651.3 -5.5 94.1 662.7 -5.8 108.5 662.7 -5.8 108.5 674.8 6.9 106.1 674.8 6.9 106.1 677.9 -37.1 97.1 677.9 ~37.1 97.1 663.6 9.3 68.6 663.6 9.3 68.6 659.9 -5.6 86.6 659.9 -5.6 86.6 678.2 -38.4 73.5 678.2 -38.4 73.5 680.1 -7.2 93.2 680.1 -7.2 93.2. 684.5 40.1 91.0 684.5 40.1 91 .01 680.8 -15.8 72.4 680.8 -15.8 72.4 686.8 -13.2 73.6 686.8 -13.2 73.6 688.8 -41.2 79.2 688.8 -41.2 79.2 683.2 -31.6 83.1 683.2 -31.6 83.1 677.9 -26.6 80.8 677.9 -26.6 80.8 685.9 -61.5 104.4 685.9 -61.5 104.4 704.0 -60.0 120.5 704.0 -60.0 120.5 666.7 -28.2 92.9 666.7 -28.2 92.9 692.5 -50.0 1 13.8 692.5 50.0 1 13.8 (probe target 2) (probe target 2) x y z x y 2 524.7 -33.3 182.1 524.7 33.3 182.1 524.9 -34.5 199.1 524.9 -34.5 199.1 521.1 -16.2 215.0 521.1 -16.2 215.0 513.8 -10.0 209.4 513.8 -10.0 209.4 508.8 3.2 201.2 508.8 3.2 201.2 515.1 -7.2 206.6 515.1 -7.2 206.6 525.0 5.6 200.9 525.0 5.6 200.9 529.4 -24.9 192.3 529.4 -24.9 192.3 525.9 2.3 179.9 525.9 2.3 179.9 517.3 -4.5 191.0 517.3 -4.5 191.0 535.0 -21.5 173.6 535.0 -21.5 173.6 528.8 -7.5 184.0 528.8 -7.5 184.0 533.4 -22.7 180.5 533.4 -22.7 180.5 536.9 -2.7 173.9 536.9 -2.7 173.9 540.3 -7.6 172.3 540.3 -7.6 172.3 540.5 -21.8 172.2 540.5 -21.8 172.2 533.8 -19.4 177.2 533.8 -19.4 177.2 531.1 -18.3 178.7 531.1 -18.3 178.7 535.3 -31.9 191.4 535.3 -31.9 191.4 547.7 -31.2 197.5 547.7 -31.2 197.5 522.4 -18.6 194.0 522.4 -18.6 194.0 541.3 -33.7 203.4 541.3 -33.7 203.4 118 Reference Data Target locations for Subject 03 x L 2 Origin 140.6 ~227.9 187.3 Reference 357.7 -226.6 128.8 Manubrium 344.3 17.7 762.1 Xyphoid 234.0 30.0 609.7 C7 497.9 15.4 783.4 T4 500.3 13.8 662.7 81 349.6 29.2 298.9 Left ASIS 191.6 -78.4 393.0 Left Lateral Femoral Condyle -211.0 -113.0 426.0 Left Lateral Maileolis -341.4 -98.3 32.4 Left Lateral Foot -529.8 -91.9 -35.3 Test data for Subject 03 follows (coordinates in millimeters); Subject 03 Probe Length 376 interASlS Dist. 1 90 InterPSiS width 1 20 Heel to foot target dist. 263 119 Test Met Locations for Subject 03: Condition Origin ref 2 x y z x y z 1 91.5 -318.5 -24.8 442.5 -311.5 -25.2 2 91.6 -318.5 --24.7 442.5 -311.5 -25.3 3 X X X 4 91.5 -318.5 -24.8 442.4 -311.6 -25.3 5 91.5 -318.5 ~24.8 442.5 -311.5 25.3 6 91.5 -318.5 -24.9 442.5 -311.5 -25.3 7 91.6 -318.5 -24.7 442.5 -311.5 -25.3 8 91.5 -318.5 -24.7 442.5 -311.5 25.4 9 91.5 -318.5 -24.8 442.5 -311.6 -25.4 10 91.5 -318.5 -24.8 442.6 -311.4 -25.4 11 91.5 -318.5 -24.7 442.5 -311.5 -25.3 12 91.5 -318.5 -24.8 442.5 -311.5 -25.4 13 91.5 -318.5 -24.7 442.5 -311.5 -25.3 14 91.5 -318.5 -24.9 442.5 -311.5 -25.3 15 91.5 -318.5 -24.8 442.5 -311.5 25.4 16 91.5 -318.5 -24.9 442.4 -311.4 -25.4 17 91.5 -318.4 -24.8 442.4 -311.4 -25.4 18 91.5 -318.5 -24.9 442.4 -311.5 25.4 19 91.5 -318.4 -24.8 442.4 -311.5 -25.4 20 91.4 -318.3 -24.8 442.4 -311.5 -25.5 21 91.4 -318.4 -24.8 442.4 -311.6 -25.3 22 91.5 -318.4 -24.8 442.5 -311.5 254 Test Larget Locations for Subject 03: Condition Elbow Wrist x z x y z 1 492.8 -265.8 405.1 260.1 216.2 530.2 2 500.0 -259.1 407.6 266.1 -207.1 527.4 3 X X X 4 481.4 -283.5 397.1 258.2 -215.9 528.7 5 483.6 -276.0 396.9 256.7 -222.0 533.5 6 491.4 -258.6 411.9 256.2 -206.3 536.0 7 484.5 -268.1 402.4 258.0 -206.8 528.7 8 498.8 -261.9 405.4 267.4 -200.6 523.6 9 495.2 -266.9 404.0 263.8 -211.9 528.0 10 493.8 -275.9 401.0 267.0 -217.5 530.91 11 510.3 —262.2 418.6 271.7 -203.3 525.9 12 490.3 -268.3 399.7 260.1 -217.3 528.0 13 488.1 -262.5 392.1 261.1 -216.2 527.7 14 487.4 -264.9 393.2 259.9 -217.5 527.6 15 501.9 -263.6 407.6 268.9 -210.8 527.3 16 486.0 -270.6 386.1 262.6 -228.0 530.3 17 487.5 -261.4 388.9 264.5 -200.5 522.1 18 500.8 -258.2 403.8 266.4 -210.5 525.6 19 495.4 -248.9 388.4 267.9 -211.9 524.5 20 484.5 -264.2 377.4 266.5 -204.4 518.9 21 490.7 -276.7 393.1 268.0 -209.1 525.0 22 490.4 -251.3 391.4 259.7 -212.9 525.8 Test Condition Test Condition 3333333a36§38°°flmmewnd 3383838336§38°°Nmmh9~‘ 120 Met Locations for Subject 03: Manumbrlum Xyphoid Left ASIS x y z x y z x y 2 494.1 -22.9 751.7 396.9 -19.2 597.2 358.7 -140.4 393.4 499.4 -9.0 756.5 397.7 -4.9 604.2 341.5 -134.9 400.3 X X X x 497.4 -33.5 747.4 395.8 -23.5 600.0 323.3 -154.4 407.9 491.9 -23.7 748.8 390.2 -15.7 602.6 322.2 -146.4 409.3 502.6 9.0 753.4 392.3 8.6 609.8 321.2 -119.3 409.5 489.1 -19.1 754.0 392.7 -10.0 602.4 341.5 -140.0 401.9 501.0 -13.9 757.7 396.0 -6.5 608.3 348.7 -131.9 397.6 499.5 -17.9 755.2 396.1 -13.2 604.1 351.0 -139.9 398.8 495.9 -22.1 753.2 396.0 -19.1 601.5 342.1 ~147.7 405.6 490.3 -13.8 749.4 399.5 -14.6 590.0 364.7 -135.9 394.5 485.3 -19.4 748.0 397.1 -13.8 591.2 356.3 -138.8 397.0 481.9 -32.7 747.6 394.5 -22.1 588.0 365.8 -140.8 392.6 490.9 -25.2 748.7 394.0 -15.9 592.9 368.9 -139.8 392.4 479.9 -19.5 742.0 396.5 -18.8 581.4 364.4 -143.0 393.2 468.1 -27.0 733.2 395.3 -18.4 567.3 367.0 -143.1 393.1 489.0 -26.1 744.7 397.9 -15.7 584.8 366.0 -133.6 393.3 482.9 -8.4 743.4 398.4 -7.8 583.2 354.6 -129.8 395.5 474.3 -14.5 739.7 397.9 -4.6 576.4 356.6 -129.8 395.3 467.9 -29.2 734.6 392.8 -14.1 572.4 365.9 -136.0 394.0 482.2 ~351 749.5 393.2 -26.0 595.4 338.3 -147.8 399.0 485.6 -15.5 748.2 395.5 -5.9 591.1 356.5 -124.5 393.8 Target Locations for Subject 03: Knee Ankle Foot x y z x y z x y 2 -73.0 -172.0 342.6 -373.4 -157.4 12.1 -504.9 -165.4 151.3 -69.9 -189.2 354.5 -359.1 -194.7 15.7 -506.0 -198.9 140.8 X X X X -90.1 -207.3 373.3 -350.4 -184.6 14.4 -504.6 -192.3 129.9 ~93.7 -195.2 364.1 -365.5 -157.1 15.3 -508.8 ~158.1 141.4 -93.9 -179.2 366.1 -369.2 -180.1 16.3 -507.4 -177.1 150.1 -75.3 -173.6 363.5 -350.1 -167.0 17.1 -505.0 -178.3 130.4 -73.0 -173.5 352.3 -363.3 -169.3 11.4 -507.4 -183.2 139.7 -69.8 -187.5 350.2 -363.9 -186.4 14.4 -508.8 -182.7 144.2 -79.1 -185.5 362.4 -358.5 -179.1 14.7 -507.3 -171.2 140.1 -68.6 -170.8 347.6 -365.3 -172.6 12.3 -508.1 -177.3 143.3 -76.5 -159.3 339.1 -380.0 -147.8 9.3 -507.2 -148.4 157.3 -65.6 -182.3 349.0 -360.8 -181.5 13.6 -507.6 -183.7 141.0 -69.7 -182.1 344.6 -367.1 -178.7 12.8 -506.9 -184.0 148.1 -69.1 -179.0 347.2 -364.4 -174.0 11.7 -508.1 -187.1 142.8 -71.4 -176.0 351.2 -362.4 -153.6 14.5 -507.9 -157.1 139.1 -66.3 -181.6 348.5 -364.4 -184.5 14.4 -509.1 -179.2 143.1 -71.6 -173.9 353.7 -361.8 -183.1 14.0 -507.4 -189.1 141.5 -66.3 -192.3 343.5 -365.8 -203.1 11.1 -504.6 -220.1 146.4 -72.9 -166.3 343.3 -373.7 -174.9 13.5 -507.1 -170.2 153.3 -70.9 -200.5 365.8 —345.1 -192.0 15.8 -504.6 -191.4 124.2 -68.1 -183.6 349.3 -363.5 -193.0 16.0 -508.3 -187.4 145.7 Test Condition Test Condition DGNOmth-fi Bassasaazasz‘s‘wwmum 121 Tar et Locations for Sub act 03: Probet Acromlon Prb1.T10, at/above Prb1.T10- at/beiow x y z x y z x y 2 744.2 416.7 969.9 917.9 -81.2 344.9 917.9 -81.2 344.9 739.5 457.0 920.7 921.1 -39.4 343.3 921.1 -39.4 343.3 X 683.9 -505.3 925.0 922.5 -63.3 347.8 922.5 -63.3 347.8 713.2 468.0 919.6 927.7 -18.8 363.0 927.7 -18.8 363.0 718.2 418.6 967.4 918.8 4.5 346.9 918.8 4.5 346.9 728.9 442.3 940.9 905.1 -31.0 329.4 905.1 -31.0 329.4 755.8 425.3 952.6 905.9 -38.8 334.1 905.9 -38.8 334.1 721.5 452.4 942.2 904.2 -26.8 321.3 904.2 -26.8 321.3 716.8 464.8 935.6 914.7 -32.8 333.3 914.7 32.8 333.3 699.6 438.9 984.5 905.6 -22.1 310.4 905.6 -22.1 310.4 702.0 437.9 968.8 890.1 -54.3 307.2 890.1 -54.3 307.2 734.3 467.3 919.7 922.3 -27.3 347.1 922.3 -27.3 347.1 715.7 466.1 922.6 911.4 -0.6 331.8 911.4 -0.6 331.8 730.3 -385.6 1009.8 920.9 -54.1 332.1 920.9 -54.1 332.1 621.5 434.0 1000.6 944.1 43.3 354.0 944.1 43.3 354.0 713.9 448.7 952.3 941.4 -18.6 353.4 941.4 -18.6 353.4 731.3 443.0 935.8 933.7 -26.6 339.2 933.7 -26.6 339.2 690.2 467.3 924.3 929.0 -17.5 339.8 929.0 -17.5 339.8 729.2 440.6 920.8I 928.3 -24.8 345.5 928.3 -24.8 345.5 657.0 481.1 953.2 919.5 -12.9 340.1 919.5 -12.9 340.1 636.2 478.4 930.1 921.1 23.9 346.4 921.1 23.9 346.4 (probe target 2) (probe target 2) (probe target 2) x y z x y z x y 2 650.8 -308.0 868.9 770.8 -57.3 436.1 770.8 -57.3 436.1 651.5 -327.8 841.4 773.3 -29.3 434.1 773.3 -29.3 434.1 X 618.6 -368.0 836.2 770.6 49.3 432.8 770.6 49.3 432.8 633.2 -337.8 832.5 773.3 -20.3 444.2 773.3 -20.3 444.2 644.5 -296.9 862.6 770.0 -1.1 435.5 770.0 -1.1 435.5 644.0 -318.7 848.5 761.0 -25.1 426.5 761.0 -25.1 426.5 662.8 -311.6 855.8 763.4 24.5 433.9 763.4 -24.5 433.9 644.9 -326.1 848.4 762.3 -19.5 423.3 762.3 -19.5 423.3 637.1 -337.5 845.2 769.7 -26.0 429.5 769.7 -26.0 429.5 634.0 -314.7 879.1 768.9 -20.8 419.0 768.9 -20.8 419.0 625.6 -320.5 865.6 758.0 ~39.0 420.5 758.0 -39.0 420.5 644.1 -343.6 835.1 776.5 -25.6 442.6 776.5 -25.6 442.6 634.9 -337.1 835.3 770.0 -10.6 434.3 770.0 -10.6 434.3 641.6 -291.2 892.1 778.3 41.0 431.8 778.3 41.0 431.8 578.9 -320.6 873.5 794.0 -34.1 440.4 794.0 -34.1 440.4 635.2 -331.4 849.0 790.0 -19.0 440.6 790.0 -19.0 440.6 642.3 -320.0 847.7 787.2 -22.9 434.5 787.2 -22.9 434.5 614.9 -334.8 837.0 783.4 -15.5 435.3 783.4 -15.5 435.3 636.2 -324.8 828.3 782.6 -24.8 441.3 782.6 ~24.8 441.3 598.2 -350.3 851.8 773.4 -24.8 434.6 773.4 -24.8 434.6 589.1 -335.5 838.9 775.9 5.5 440.0 775.9 5.5 440.0 Test Condition @QNOUI-hQN-t Test Tar et Locations for Sub Prb1.T12, at/above X x 844.0 811.9 832.5 852.6 81 1.5 950.9 941 .8 934.4 808.7 956.4 947.1 950.8 949.8 963.1 875.5 861 .3 825.2 965.2 958.7 956.3 947.0 Y -23.9 ~16.7 X -17.0 ~35.3 14.3 ~69.4 ~93.2 ~128.3 29.8 ~1 15.3 -1 13.6 ~12.9 -43.9 ~100.5 ~69.8 ~44.8 ~1 1.2 ~98.6 ~105.2 -81.9 ~78.0 Condition 1(probe target 2) @QNOUIhQN-fi X X 721.8 703.8 704.2 721 .3 698.2 782.5 777.7 774.9 702.3 790.2 781 .7 799.7 785.4 795.7 749.8 738.9 720.5 795.7 793.0 786.2 784.2 Y ~28.2 ~18.6 X ~22.8 -30.6 3.3 ~47.2 -54.6 ~73.6 5.5 -69.9 ~68.3 ~26.7 ~32.0 ~62.9 ~49.0 ~33.3 -15.6 -54.0 ~61 .0 ~58.3 ~47.8 122 03: Prb1.T12, atlbelow Prb1.L3, atlabove z x y z x y 2 226.6 844.0 -23.9 226.6 796.4 -28.2 124.8 198.8 811.9 -16.7 198.8 894.6 1.3 326.1 x x X X X 214.4 832.5 -17.0 214.4 778.8 ~13.1 143.9 249.0 852.6 -35.3 249.0 871 .6 37.9 304.0 209.2 811.5 14.3 209.2 871.6 37.9 304.0 456.8 814.3 -75.6 213.1 889.6 20.0 313.8 447.6 823.3 -14.0 219.0 909.5 -34.4 386.3 437.8 857.0 3.6 239.7 907.6 25.2 352.6 203.9 808.7 29.8 203.9 896.6 12.6 328.0 471 .0 849.8 -36.5 21 5.7 849.6 -22.0 167.4 459.9 81 1.1 -26.4 197.0 913.1 3.5 349.4 404.1 869.4 ~19.1 249.1 796.9 41.7 117.2 405.6 848.5 -13.1 225.5 856.0 26.1 181.9 456.7 885.4 -8.5 242.8 876.1 -33.1 198.6 232.1 875.5 -69.8 232.1 874.9 -8.2 184.3 224.2 861.3 44.8 224.2 877.3 -22.7 202.5 190.9 825.2 -1 1.2 190.9 849.9 30.7 175.5 495.2 874.1 ~52.8 235.2 841.4 31.0 163.3 455.5 875.6 -55.4 237.4 847.5 -1 1 .8 154.5 459.1 840.6 11.6 222.7 897.2 33.5 334.5 417.2 847.2 46.0 230.2 916.8 18.0 365.5 (probe target 2) (probe target 2) z x y z x y 2 352.6 721 .8 -28.2 352.6 672.8 -26.1 247.3 337.5 703.8 -18.6 337.5 726.2 -8.4 375.1 X X X X X 338.9 704.2 -22.8 338.9 652.9 -22.3 263.8 364.4 721.3 -30.6 364.4 710.7 12.4 364.9 343.8 698.2 3.3 343.8 710.7 12.4 364.9 488.8 703.7 -50.1 347.0 726.6 -1 .3 366.8 482.6 707.6 -10.8 348.1 736.5 -26.1 400.9 476.1 734.3 -8.8 358.2 735.7 3.9 383.0 340.5 702.3 5.5 340.5 728.1 -6.6 374.8 490.8 731.2 -33.2 344.8 71 1 .0 -23.4 273.0 486.7 706.2 ~26.2 338.4 741.8 ~12.5 381 .1 463.6 737.1 -24.6 366.7 678.1 -30.7 244.5 460.5 726.4 -17.9 351.4 71 1.6 4.6 282.3 483.1 749.7 -17.2 351.8 723.0 -29.7 282.4 351.0 749.8 49.0 351.0 724.5 -16.3 277.6 348.9 738.9 -33.3 348.9 722.9 -19.3 286.2 331.8 720.5 -15.6 331.8 709.5 5.5 274.1 501.2 743.1 -33.1 348.5 707.7 7.6 271.7 482.8 744.0 -38.3 351.2 717.8 -21.7 265.2 486.7 716.2 -10.4 345.1 727.8 3.5 377.8 467.4 723.3 -28.4 352.0 743.8 4.9 389.2 Test Condition @QNOUI-huN-l Test Condition OONOM§UMd 123 Tar et Locations for Subject 03: 1.759 1.L3, at/beiow Prb.S1, at/above Prb1.S1, at/below x y z x z x y 796.4 -28.2 124.8 818.5 -5.6 111.8 818.5 -5.6 781.2 -11.7 130.5 853.9 13.2 244.3 768.0 -8.2 X X X X X 778.8 -13.1 143.9 827.1 22.7 242.4 760.5 -14.1 776.7 1.8 152.8 824.3 11.1 230.0 764.2 -32.6 776.7 1.8 152.8 824.3 11.1 230.0 769.3 13.8 780.5 -16.3 130.7 843.4 1 1 .2 220.9 787.8 -2.9 836.2 5.9 179.5 875.3 17.3 308.4 829.4 -2.2 835.1 -15.0 176.5 873.7 27.3 284.1 803.4 9.2 801.7 -6.3 148.3 850.9 6.8 242.0 784.4 -10.9 849.6 -22.0 167.4 844.5 -23.7 147.1 844.5 -23.7 826.9 -24.5 155.5 827.8 -26.9 128.1 827.8 -26.9 796.9 41 .7 1 17.2 824.0 -7.7 109.6 824.0 -7.7 856.0 26.1 181.9 829.8 -18.5 113.7 829.8 -18.5 876.1 -33.1 198.6 844.5 42.7 141.6 844.5 42.7 874.9 -8.2 184.3 818.3 -19.8 93.3 818.3 -19.8 877.3 -22.7 202.5 838.6 42.7 140.4 838.6 42.7 849.9 30.7 175.5 821 .4 -8.2 1 13.5 821.4 -8.2 841 .4 31 .0 163.3 825.4 7.2 122.4 825.4 7.2 847.5 -1 1.8 154.5 847.3 -33.2 144.7 847.3 -33.2 812.5 -19.0 165.0 849.1 10.3 236.4 784.4 6.0 830.1 7.1 160.0 819.4 -22.1 110.2 819.4 -22.1 (probe target 2) (probe target 2) (probe target 2) x y z x y z x y 672.8 -26.1 247.3 668.3 -17.3 201.4 668.3 -17.3 657.1 -14.5 253.7 688.6 -6.9 299.2 638.9 -21 .4 X X X X X 652.9 -22.3 263.8 662.6 -5.4 299.0 623.1 -24.2 645.5 -0.8 270.5 657.3 0.3 291 .5 626.2 -26.5 645.5 -0.8 270.5 657.3 0.3 291 .5 627.6 4.1 657.4 -17.6 253.7 682.8 -6.8 285.8 646.7 -15.8 694.9 -8.3 277.6 700.7 -0.9 329.2 669.5 -9.8 696.0 -20.4 276.3 700.6 3.2 313.5 660.0 -8.3 670.5 -14.9 264.0 686.3 -12.2 298.4 645.2 -23.1 71 1.0 -23.4 273.0 684.2 -23.6 218.5 684.2 -23.6 704.3 -31 .6 272.0 676.4 -32.0 215.6 676.4 -32.0 678.1 -30.7 244.5 673.8 -16.2 199.8 673.8 -16.2 71 1.6 4.6 282.3 676.3 -22.8 197.9 676.3 -22.8 723.0 -29.7 282.4 685.4 -38.6 212.7 685.4 -38.6 724.5 -16.3 277.6 671.1 -25.1 190.3 671.1 -25.1 722.9 -19.3 286.2 682.3 11.6 213.8 682.3 11.6 709.5 5.5 274.1 669.7 -15.5 200.5 669.7 -15.5 707.7 7.6 271 .7 674.1 -7.1 209.0 674.1 -7.1 717.8 -21.7 265.2 686.3 -30.0 214.5 686.3 -30.0 674.9 -27.2 272.4 685.0 -8.2 293.9 645.5 -1 1 .1 703.4 -9.2 273.2 670.9 -21 .2 203.1 670.9 -21 .2 2 111.8 77.3 100.9 106.7 115.4 105.1 149.4 109.1 99.5 147.1 129.1 109.6 1 13.7 141.6 93.3 140.4 113.51 122.4 144.7 100.2 110.2 201.4 196.0 212.1 213.9 218.7 208.8 218.6 209.2 206.2 218.5 215.6 199.8 197.9 212.7 190.3 213.8 200.5 209.0 214.5 206.5 203.1 124 Reference Data Target locations for Subject 04 x y 2 Origin 31 .9 -297.4 187.6 Reference 249.3 ~306.4 130.4 Manubrium 201 .5 -25.9 727.1 Xyphoid 141.4 40.1 580.5 C7 335.7 44.8 813.0 T4 370.8 43.4 678.3 St 225.3 42.4 258.3 Left ASIS 82.3 -149.9 394.0 Left Lateral Femoral Condyle -324.3 -196.6 414.1 Left Lateral Maileolis 403.3 -175.4 19.6 Left Lateral Foot -575.2 -186.1 -30.4 Test data for Subject 04 follows (coordinates in millimeters): Subject 04 Probe Length 376 lnterASiS Dist. 245 InterPSlS width 1 05 Heel to foot target dist. 225 Test Condition COONODUI-buN-I 10 11 12 13 14 15 16 17 18 19 20 21 22 Test Condition coooflaocnwa-s Target Locations for Subject 04: 125 Origin x 31.1 31.3 31.4 31.1 31.1 31.3 31.3 31.1 31.1 31.2 31.1 31.3 31.1 31.0 31.2 31.2 31.1 31.2 31.2 31.0 31.1 31.1 Y ~381.7 ~381.5 ~381.5 ~381.5 -381.5 ~381.5 ~381.8 ~381.5 ~381.5 ~381.5 ~381.5 ~381.8 ~381.4 ~381.7 ~381.5 ~381.5 ~381.5 ~381.5 ~381.5 ~381.4 ~381.5 ~381.4 Z ~26.3 ~26.3 ~26.4 ~26.6 ~26.6 ~26.3 ~26.3 ~26.5 ~26.6 ~26.4 ~26.5 ~26.4 -26.5 ~26.5 ~26.6 ~26.4 ~26.5 ~26.7 ~26.4 ~26.5 ~26.6 ~26.5 re12 X 382.6 382.5 382.6 382.5 382.5 382.6 382.5 382.5 382.5 382.5 382.2 382.5 382.5 382.5 382.5 382.5 382.3 382.5 382.5 382.5 382.5 382.5 2 ~25.4 ~25.4 ~25.4 ~25.4 ~25.5 ~25.5 ~25.5 ~25.5 ~25.4 ~25.4 ~25.5 ~25.4 ~25.5 ~25.5 ~25.5 ~25.5 ~25.5 ~25.4 ~25.5 ~25.4 ~25.5 ~25.4 Target Locations for Subject 04: Elbow x 432.6 0.0 431 .3 431 .6 435.2 432.5 434.5 432.3 442.5 0.0 432.8 427.6 428.6 429.4 429.2 427.4 424.0 429.3 429.2 426.5 432.6 426.0 Y ~356.8 0.0 ~336.8 ~346.5 ~344.0 ~354.1 ~350.0 ~347.0 ~350.6 0.0 -343.7 ~340.7 ~348.1 ~345.6 ~352.3 ~352.6 ~341 .1 ~345.1 ~344.9 ~353.8 ~346.8 ~351 .8 2 418.0 0.0 417.5 419.8 425.0 425.7 424.4 427.3 424.3 0.0 412.9 411.5 416.7 414.1 414.0 408.2 410.2 412.9 410.7 413.3 422.0 415.2 Wrist X 209.9 206.5 205.1 208.0 207.6 207.3 206.4 206.5 21 3.7 21 2.1 21 0.3 203.5 202.6 207.2 207.1 205.8 204.4 207.0 205.1 205.4 206.6 201 .3 523.3 521 .7 526.3 525.8 527.9 526.6 526.7 526.0 522.6 529.2 530.3 525.4 527.1 526.8 527.6 521 .8 526.2 519.1 523.4 524.8 528.2 525.0 Test Condition 3383833835§33°m9mmeu~4 Test Condition 3383333336338°°Nmmhw~4 126 Target Locations for Subject 04: Manumbrium Xyphoid Left ASIS x y z x y z x y 2 426.7 -78.5 739.8 360.7 -90.1 596.7 294.6 -208.1 393.6 434.8 -77.5 740.5 359.1 -92.5 601.3 285.0 -204.7 398.4 437.2 -76.1 745.7 357.5 -90. 7 609.4 266.8 -209.1 401.6 443.1 -82.9 747.3 359.9 95.1 610.8 266.9 -208.1 401.6 425.5 ~70.3 747.7 350.5 ~84.7 607.7 268.1 ~203.4 401.9 453.4 -73.3 747.3 361.8 -86.8 616.5 268.7 -203.4 405.2 449.5 -74.3 749.5 358.4 -88.2 616.1 282.2 -210.0 401.6 465.0 -82.1 756.1 364.7 -95.2 625.7 285.5 -214.1 393.9 451.8 -71.3 753.6 363.0 -85.5 616.5 293.6 -204.2 392.6 446.0 -68.9 752.8 361.2 -80.4 615.91 279.8 -203.7 398.2 424.5 -72.0 740.1 359.6 -85.0 592.6 290.9 -208.4 395.5 432.2 -75.0 739.6 360.9 -86.2 597. 6 292.0 -205.4 393.6 430.1 ~78.4 743.1 358.7 ~89.4 600.0 297.4 -204.8 391.6 435.1 -78.4 746.7 359.0 88.4 602.3 298.5 —203.5 391.2 430.1 -71.2 736.1 362.1 -84.1 589.8 299.6 -202.3 391.6 414.4 -74.8 732.3 359.2 -85.5 582.5 299.3 -204.0 391.6 421.7 -71.6 736.5 357.9 -84.6 589.3 299.7 -203.3 394.7 426.6 -77.5 739.7 358.0 -90.5 596.1 293.9 -207.2 392.5 423.8 -74.8 737.1 358.6 -86.3 590.7 294.1 -206.0 393.0 422.8 -76.9 740.1 357.2 -88. 2 595.1 296.7 -207.3 392.2 438.3 -74.0 748.7 362.1 -87.1 610.4 278.1 -211.2 396.1 426.5 -76.6 742.1 357.8 -88.4 598.5 290.0 -207.2 393.3 Target Locations for Subject 04: Knee Ankle Foot x y z x y z x y 2 -119.6 -286.5 328.0 -396.6 -267.6 -2.3 547.4 -288.2 82.5 -130.4 -291.8 331.2 -397.7 -264.7 -2.8 -549.9 -286.5 86.5 -133.4 -283.2 343.0 -390.8 -268.2 0.0 -550.3 -278.0 83.6 -140.3 -278.8 339.9 -399.2 -251.9 0.3 -550.9 -261.5 87.7 -137.3 -281.9 343.7 -388.5 -259.3 -0.1 -545.2 -282.2 77.4 -140.0 -290.1 345.2 -398.2 271.3 -0.7 -551.4 -276.4 85.6 -137.5 -294.1 333.8 401.7 -266.9 -3.1 -550.4 -283.6 85.7 -122.2 -294.5 326.4 -398.1 -270.4 4.8 551.9 -287.9 85.9 -118.6 -281.2 327.7 -396.8 -268.8 -1.6 -550.0 -284.6 85.0 -125.8 -283.1 331.0 -397.1 -253.8 -0.9 -550.5 -267.0 86.9 -121.8 -283.1 327.8 -396.8 -260.8 -2.2 -547.9 -278.9 81.2 -123.4 -283.1 326.1 -397.9 -256.8 -2.1 -550.7 -272.2 88.3 -115.7 -285.7 322.5 -398.8 -276.2 -3.8 -552.9 -293.0 87.3 -117.7 -283.1 326.2 -398.6 -278.5 -2.7 —552.2 -296.1 86.9 -120.7 -275.5 326.7 -397.7 -257.7 -0.5 -550.8 -272.3 89.1 -121.7 -274.6 327.7 -398.3 -259.3 1.5 -551.1 -266.0 88.5 -117.1 -281.2 328.5 -396.0 -262.4 4.8 -549.6 -278.5 79.5 -121.6 -281.4 327.9 -396.5 -264.8 -3.8 -549.7 -284.5 83.1 -121.6 -282.8 325.3 -399.3 -259.9 -1.8 -551.3 -273.5 88.8 -120.3 -279.7 327.2 -397.4 -266.0 -1.9 550.3 -283.6 86.0 -119.8 -285.7 329.8 -397.0 -269.5 -1.7 -551.1 -281.5 83.3 -120.5 -281.0 328.9 -396.5 -263.9 -1.0 -548.4 -286.5 83.4 Test Condition CONGMhQN-fi Test Condition Basaassasasxsooummou~4 X 604.6 737.6 655.8 639.3 595.0 680.2 659.9 657.0 633.1 669.3 569.2 593.5 645.7 631 .4 660.9 541 .0 609.3 663.6 608.0 571 .2 604.5 676.6 X 550.7 625.9 580.2 575.7 546.5 603.5 592.8 595.8 576.3 593.1 528.1 542.8 572.8 565.9 577.4 507.6 547.8 579.3 546.6 528.9 553.1 587.1 Y ~546.6 ~51 3.8 ~492.3 ~503.6 ~490.6 ~487.5 ~535.5 ~542.0 ~542.0 ~497.9 ~486.2 ~51 1.8 ~523.0 ~525.9 ~439.3 -551 .4 ~508.1 ~500.3 ~497.9 -488.6 ~477.9 ~522.1 (probe target 2) Y ~408.7 ~390.1 ~378.4 ~386.5 -374.0 ~373.9 ~401 .4 ~408.7 ~403.7 ~377.8 ~371 .6 ~387.4 -395.0 ~397.6 ~345.9 ~408.9 ~384.3 ~383.4 ~381 .5 ~375.9 -370.3 ~396.7 2 955.5 881 .6 997.3 1004.5 1020.8 991 .6 948.3 968.2 957.0 981 .6 1028.8 994.4 961 .9 969.2 1018.9 957.0 982.7 967.0 1002.4 1025.9 1039.2 932.3 2 863.0 821 .5 883.9 887.3 900.8 882.0 860.1 872.3 865.1 875.7 899.0 878.8 863.7 867.0 892.4 857.8 872.1 868.0 885.8 898.9 907.5 851 .0 127 Tar et Locations for Subject 04: Probe- Acromlon x Y 864.4 ~1 04.6 832.8 -1 05.2 842.8 ~51 .8 833.9 ~127.3 824.4 ~78.9 835.7 ~1 03.4 837.0 ~73.8 837.5 ~95.5 823.9 ~72.4 839.4 ~63.4 850.6 ~70.4 848.0 ~99.2 826.9 ~70.4 839.3 ~79.1 831 .5 ~55.1 853.5 ~1 01 .6 856.0 ~34.4 870.7 ~89.8 851 .0 ~65.3 829.0 ~65.3 820.2 ~87.9 852.6 ~80.1 (probe target 2) X y 71 7.7 ~96.5 697.3 -95.2 702.6 ~71 .8 696.0 ~1 10.9 686.7 ~82.1 692.2 ~94.2 695.7 ~81 .6 690.2 ~92.0 693.8 ~82.6 701 .3 ~73.5 714.0 ~76.9 71 0.5 -93.1 696.5 ~78.3 704.0 ~85.3 702.0 ~68.6 71 5.9 ~96.8 71 5.7 ~58.0 723.0 ~91 .7 713.4 ~74.4 698.1 ~75.7 691 .6 ~90.4 71 1.9 ~84.8 Prb1.T10, at/above 2 346.2 300.8 318.4 308.5 307.9 313.7 319.4 317.1 300.4 316.1 316.7 322.0 296.4 312.9 296.0 325.2 326.5 347.5 319.5 296.1 294.3 327.4 441.1 412.3 421.6 413.0 416.9 414.8 422.5 416.4 415.3 423.2. 425.5 429.3 413.7 422.2 413.3 432.7 430.4 440.4 427.4 413.2 413.6 431 .4 x Y 864.4 -104.6 832.8 -105.2 842.8 -51.8 833.9 -127.3 824.4 -78.9 835.7 -103.4 837.0 -73.8 837.5 -95.5 823.9 -72.4 839.4 -63.4 850.6 -70.4 848.0 -99.2 826.9 -70.4 839.3 -79.1 831.5 -55.1 853.5 -101.6 856.0 -34.4 870.7 -89.8 851.0 ~65.3 829.0 -65.3 820.2 -87.9 852.6 -80.1 (probe target 2) X Y 717.7 ~96.5 697.3 -95.2 702.6 -71.8 696.0 -110.9 686.7 -82.1 692.2 -94.2 695.7 -81.6 690.2 -92.0 693.8 -82.6 701.3 -73.5 714.0 -76.9 710.5 93.1 696.5 -78.3 704.0 -85.3 702.0 -68.6 715.9 -96.8 715.7 -58.0 723.0 -91.7 713.4 ~74.4 698.1 -75.7 691.6 -90.4 711.9 -84.8 Prb1.T10- at/below 2 346.2 300.8 318.4 308.5 307.9 313.7 319.4 317.1 300.4 316.1 316.7 322.0 296.4 312.9 296.0 325.2 326.5 347.5 319.5 296.1 294.3 327.4 441.1 412.3 421.6 413.0 416.9 414.8 422.5 416.4 415.3 423.2 425.5 429.3 413.7 422.2 413.3 432.7 430.4 440.4 427.4 413.2 413.6 431.4 Test Condition OQNC’UI-hQNd Test Condition OO‘IOU‘IhWN-l X Y 886.2 -83.2 886.7 -86.8 891.6 -73.3 889.1 -77.0 881.4 -108.8 878.6 -80.6 875.6 -70.8 874.5 -85.4 868.4 -97.6 882.6 -92.8 894.3 -79.8 875.5 -65.2 889.9 92.8 894.6 53.6 898.8 -28.6 910.5 -57.1 898.9 -91.5 897.3 -106.2 891.1 42.5 898.3 -7.6 875.5 -27.2 878.0 43.0 (probe target 2) X Y 721.6 -84.9 720.6 -86.7 721.4 —81.0 719.6 80.3 713.4 -97.3 711.7 -81.5 709.3 -80.7 707.8 -89.0 710.7 -92.6 716.7 -89.0 728.4 85.3 718.4 -75.5 722.7 -91.9 725.2 -73.9 732.2 -56.8 736.0 -72.8 733.3 -91.1 729.0 -98.4 727.8 -63.8 726.5 45.8 710.9 -58.6 720.2 -65.4 Prb1.T12, at/above 2 379.8 400.3 430.4 425.9 424.8 404.2 392.8 395.7 360.2 399.7 387.0 358.9 403.9 432.4 41 2.7 461 .9 393.2 409.1 377.9 460.4 395.1 376.0 442.3 452.6 466.8 466.2 467.0 455.2 449.3 450.5 436.1 453.7 441 .7 433.6 452.5 467.6 457.3 478.1 444.6 452.6 440.1 477.6 448.4 442.1 128 Target Locations for Subject 04: Prb1.T12, at/beiow x y 2 787.0 -124.0 217.6 767.2 -123.0 204.5 810.5 -86.8 253.5 776.7 -106.4 221.1 776.1 -74.8 227.5 774.3 -90.1 227.7 776.2 -94.5 224.0 779.0 -58.3 232.8 779.5 -89.6 220.8 780.6 -97.0 225.5 798.0 -100.7 217.0 790.3 -99.8 216.5 889.9 -92.8 403.9 894.6 -53.6 432.4 898.8 -28.6 412.7 910.5 57.1 461.9 827.2 -89.0 240.5 812.5 82.8 232.2 777.9 -98.9 195.3 898.3 -7.6 460.4 875.5 -27.2 395.1 792.8 -120.0 224.0 (probe target 2) x y 2 662.0 -106.5 338.1 652.1 -105.0 337.0 668.5 -88.8 356.1 650.5 -96.9 340.9 645.4 -79.4 346.7 645.9 -84.3 346.3 648.6 -88.5 343.9 648.1 -75.4 347.7 653.0 -87.0 340.8 652.6 -91.1 343.7 670.8 -95.7 337.1 664.5 -90.1 337.4 722.7 -91 .9 452.5 725.2 -73.9 467.6 732.2 -56.8 457.3 736.0 -72.8 478.1 691.3 -90.0 350.3 680.4 -89.5 346.1 662.5 -92.8 328.2 726.5 45.8 477.6 710.9 -58.6 448.4 664.1 -101.4 341.0 5m .L3, atlabove X Y 766.3 -122.7 748.8 -126.6 748.5 -74.0 758.3 408.3 741.2 ~82.6 759.8 -95.8 770.8 -90.4 766.8 -57.8 733.2 -91.9 774.1 -85.9 783.2 -91.1 777.8 -106.1 769.2 -69.2 796.7 -102.1 825.1 -86.7 818.1 -136.2 814.3 -141.4 808.9 -115.5 783.0 -119.0 792.1 -104.5 743.1 403.3 776.8 -93.9 (probe target 2) X Y 635.6 -108.2 621.2 -109.1 612.4 -83.1 623.4 -104.5 607.7 -85.4 622.3 -96.1 633.3 -95.8 626.7 -77.6 616.6 -89.5 633.4 -88.3 652.4 -98.9 649.3 -105.0 650.2 -88.0 653.8 -97.2 669.9 -85.6 666.9 -115.0 664.5 -116.1 660.6 405.4 647.4 -107.4 660.5 -90.0 615.9 -99.9 644.2 -96.7 2 156.8 152.8 165.9 183.0 166.0 190.5 184.4 174.4 137.7 195.0 167.9 164.0 155.6 183.9 218.7 204.4 196.6 197.1 161.4 189.9 160.7 170.8 272.4 271 .2 280.7 292.0 282.6 296.9 291 .5 280.4 268.5 301 .1 279.1 279.3 276.9 287.0 300.0 290.8 287.0 291 .2 271 .2 290.3 281 .2 282.7 Test Condition CDQ‘IODUIhUNd Engdddddddddd -|~ OwNOCflhQM-‘O Test Condition @ONOUIhuMd 129 Tar et Locations for Sub 04: Prb1.L3, at/below Prb.S1, at/above Prb1.St, at/beiow x y z x y z x y 766.3 -122.7 156.8 764.6 -111.4 107.8 764.6 -111.4 748.8 -126.6 152.8 753.7 -99.3 115.7 753.7 -99.3 748.5 -74.0 165.9 736.8 ~98.6 1 10.1 736.8 ~98.6 758.3 -108.3 183.0 733.9 ~103.8 108.8 733.9 -103.8 741 .2 -82.6 166.0 738.2 -79.0 1 15.6 738.2 -79.0 759.8 -95.8 190.5 755.5 -122.7 158.8 755.5 ~122.7 770.8 -90.4 184.4 759.2 -109.4 134.7 759.2 -109.4 766.8 -57.8 174.4 767.7 -142.4 131.5 767.7 -142.4 733.2 -91.9 137.7 775.8 ~96.5 133.0 775.8 -96.5 774.1 -85.9 195.0 768.9 ~95.5 143.5 768.9 ~95.5 783.2 -91 .1 167.9 766.7 -96.5 1 12.2 766.7 -96.5 777.8 -106.1 164.0 779.4 -101.4 139.1 779.4 -101.4 769.2 -69.2 155.6 777.4 -88.4 126.1 777.4 -88.4 796.7 -102.1 183.9 781.9 -76.0 134.8 781.9 -76.0 825.1 -86.7 218.7 794.0 -106.2 166.2 794.0 -106.2 818.1 -136.2 204.4 789.2 -134.3 159.5 789.2 434.3 814.3 -141.4 196.6 783.8 -118.6 140.3 783.8 -118.6 808.9 -115.5 197.1 761.0 -116.8 97.8 761.0 -116.8 783.0 -119.0 161.4 775.4 -114.9 125.4 775.4 -114.9 792.1 -104.5 189.9 784.9 -102.1 143.1 784.9 -102.1 743.1 -103.3 160.7 755.2 -78.3 1 13.2 755.2 -78.3 776.8 -93.9 170.8 773.9 -132.9 132.7 773.9 -132.9 (probe target 2) (probe target 2) (probe target 2) x y z x y z x y 635.6 -108.2 272.4 610.4 -104.7 193.7 610.4 -104.7 621.2 -109.1 271.2 596.7 -96.4 195.2 596.7 -96.4 612.4 -83.1 280.7 585.8 -98.3 200.01 585.8 98.3 623.4 -104.5 292.0 583.6 -99.8 199.8 583.6 99.8 607.7 -85.4 282.6 585.6 -86.0 201 .8 585.6 -86.0 622.3 -96.1 296.9 592.3 -109.5 223.1 592.3 -109.5 633.3 -95.8 291.5 598.1 -107.5 204.7 598.1 -107.5 626.7 -77.6 280.4 607.9 424.2 201.6 607.9 -124.2 616.6 -89.5 268.5 614.7 -94.6 202.8 614.7 -94.6 633.4 -88.3 301 .1 608.4 -95.2 213.3 608.4 -95.2 652.4 -98.9 279.1 61 1 .0 -97.8 195.3 61 1 .0 97.8 649.3 -105.0 279.3 617.0 -98.8 205.1 617.0 -98.8 650.2 -88.0 276.9 617.8 -90.0 198.9 617.8 -90.0 653.8 -97.2 287.0 619.0 -82.8 200.9 619.0 ~82.8 669.9 -85.6 300.0 625.6 -99.2 215.9 625.6 ~99.2 666.9 -115.0 290.8 623.1 -115.7 213.5 623.1 -115.7 664.5 -116.1 287.0 620.3 -107.5 202.2 620.3 -107.5 660.6 -105.4 291.2 612.2 -110.0 184.9 612.2 -110.0 647.4 -107.4 271.2 616.0 -105.6 199.2 616.0 405.6 660.5 -90.0 290.3 621.0 -100.7 205.5 621.0 -100.7 615.9 -99.9 281.2 601.6 -87.5 197.1 601.6 87.5 644.2 -96.7 282.7 614.5 -115.2 204.2 614.5 -115.2 2 107.8 115.7 1 10.1 108.8 1 15.6 158.8 134.7 131.5 133.0 143.5 112.2 139.1 126.1 134.8 166.2 159.5 140.3 97.8 125.4 143.1 1 13.2 132.7 199.7 195.2 200.0 199.9 201.9 223.1 204.7 201 .6 202.9 213.3 195.3 205.1 199.9 200.9 215.9 213.5 202.2 194.9 199.2 205.5 197.1 204.2 130 Reference Data Target locations for Subject 05 x y 2 Origin 4965 -222.8 187.9 Reference 22.0 -220.2 130.4 Manubrium -67.5 43.3 715.0 Xyphoid -1 14.1 31.3 576.3 C7 77.8 42.5 801.1 T4 122.5 47.1 691.6 St 14.9 36.1 308.8 Left ASIS -163.2 -90.7 398.1 Left Lateral Femoral Condyle -580.4 -134.9 425.7 Left Lateral Maileolis -756.7 -115.7 12.4 Left Lateral Foot -958.1 -109.2 43.4 Test data for Subject 05 follows (coordinates in millimeters); Subject 05 Probe Length 376 InterASlS Dist. 250 InterPSlS width 1 10 Heel to foot target dist. 260 Test Condition OQNQUbQN-fi Test Condition CONGUIbQN-l ‘ Origin 131 Targe Locations for Subject 05: X ~161.9 ~162.0 ~161.9 ~161.9 ~161.8 ~161.8 ~161.8 ~161.9 ~161.8 -161.9 ~161.9 -161.9 ~161.9 ~161.9 -161.9 ~161.9 ~161.9 ~161.9 ~161.9 -161.9 ~161.9 ~161.9 V ~205.4 ~205.6 ~205.7 ~205.7 ~205.5 -205.5 ~205.5 ~205.4 ~205.5 ~205.4 ~205.4 ~205.4 ~205.4 ~205.4 ~205.4 ~205.4 ~205.4 ~205.6 ~205.4 ~205.4 ~205.6 ~205.4 Z ~25.8 ~25.8 ~25.8 -25.7 ~25.8 ~25.9 ~25.8 ~25.9 ~25.9 ~25.8 ~26.0 ~26.0 ~25.9 ~25.8 ~26.0 ~25.9 ~26.0 ~25.9 ~26.0 ~26.0 ~25.9 ~26.0 ref 2 x 190.0 189.9 190.0 190.0 189.9 189.9 189.9 190.0 190.0 190.0 190.0 190.0 189.9 190.0 190.0 189.9 189.9 189.8 189.9 190.0 190.0 190.0 Y ~197.7 ~197.8 ~197.8 ~197.7 ~197.8 ~197.8 ~197.8 ~197.7 ~197.8 ~197.7 ~197.7 ~197.6 ~197.7 ~197.8 ~197.8 ~197.7 ~197.8 ~197.8 ~197.8 ~197.8 ~197.8 ~197.7 Z ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.6 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.5 ~24.4 ~24.6 ~24.6 ~24.5 ~24.5 ~24.5 Tame Locations for Subject 05: Elbow X 215.0 236.1 247.0 236.6 223.0 226.2 234.9 238.9 222.5 225.2 226.0 225.3 235.2 220.1 227.3 216.8 216.1 221 .5 220.5 215.8 237.8 229.0 Y -198.3 ~167.0 ~168.2 ~165.7 ~186.0 ~177.3 ~163.0 ~139.9 ~164.6 ~182.5 ~177.5 ~160.3 -143.8 ~172.9 -155.9 ~183.8 ~169.3 ~165.0 ~167.6 ~158.3 ~151.8 ~147.7 2 422.0 430.2 427.0 414.4 430.9 427.0 432.4 434.0 430.9 432.6 430.4 419.9 420.8 428.3 407.5 430.6 418.9 416.1 421 .6 421 .3 424.5 417.2 Wrist X ~3.2 ~8.6 6.1 ~4.9 ~21 .7 -18.1 ~13.6 ~13.6 ~23.6 ~16.0 ~12.1 ~10.1 ~10.4 ~25.4 ~6.5 ~24.4 ~26.4 ~21 .4 ~19.5 ~15.6 ~5.4 ~15.7 ~121.3 ~127.4 ~119.3 ~126.2 ~135.8 ~133.0 ~125.3 ~126.6 ~124.9 -120.4 ~115.4 ~99.9 ~115.9 ~128.3 ~105.2 -127.2 ~129.5 ~133.3 ~127.7 ~86.3 ~113.0 -118.6 552.9 534.9 530.1 527.8 531 .2 534.4 530.7 534.5 530.7 531 .0 529.4 524.9 524.5 528.5 521 .9 529.8 524.6 528.2- 533.4 523.5 529.7 526.7 132 Test Targe Locations for Subject 05: Condition Manumbrium Xyphoid Left ASIS x y z x y z x y z 1 193.5 100.0 728.6 130.6 91.1 589.8 89.8 45.8 399.6 2 190.8 133.1 731.8 127.7 120.0 590.2 82. 8 -11.1 402.3 3 189.9 127.9 732.4 132.4 113.5 590. 8 77.2 -14.0 404.2 4 201 .4 1 12.1 740.4 136.1 103.1 600. 4 79. 9 -20.4 404.3 5 213.9 106.5 749.5 131.6 90.8 614. 9 79.1 -31.7 400.6 6 222.6 106.6 746.7 140.9 99.7 614.1 78.2 -25.7 403.9 7 209.5 133.3 748.8 131.6 118.5 613.0I 79.1 -12. 4 401.6 8 208.4 156.1 748.0 131.4 139.9 611.3 86.2 9. 6 399.5 9 208.2 132.1 739.7 134.0 118.0 601.0 88.5 -14. 2 401.0 10 208.6 110.2 740.5 136.9 96.3 601.6 88.5 -29.6 399.6 11 175.0 116.4 724.1 125.9 101.9 579. 6 94.0 -23. 3 397.5 12 191.4 127.7 728.1 137.8 112.6 585.3 89. 4 -20. 0 400.4 13 190.3 138.5 739.8 132.4 125.1 595. 2 93. 5 0. 5 397.0 14 186.9 120.4 728.2 130.8 104.1 583.7 91.9 -21.7 399.1 15 186.9 128.7 720.1 135.2 111.7 578. 3 92.5 -19.3 400.3 16 155.9 118.8 716.0 117.5 103.5 569.7 93.7 -24.1 395.4 17 154.6 117.9 721.1 113.7 106.7 575.1 91.6 -18.7 397.0 18 153.7 121.8 718.3 118.4 108.2 572.2 87. 0 -20.3 398.9 19 172.8 123.9 722.8 123.8 110.3 579.8 89. 8 -9.6 396.5 20 166.7 135.2 718.4 122.6 118.8 573.2 93. 5 -6.3 396.7 21 198.2 130.6 735.7 136.9 117.8 594.8 84.1 -11.2 400.9 22 185.9 135.5 725.5 131.6 118.7 582.5 89. 4 -2.1 397.7 Test Targg Locations for Subject 05: Condition Knee Ankle Foot x y z x y z x y z 1 -345.3 -102.3 341.3 -651.2 -55.2 -8.8 -772.8 -72.6 150.2 2 -344.0 -81.0 334.5 -650.1 -1 6. 2 -14.9 -772.3 48.8 143.9 3 -344.5 -94.3 340.9 -649.5 -38. 0 -9.8 -774.9 48. 9 147.5 4 -339.7 -90.7 339.9 -646.0 -12.1 -5.9 -779.4 13. 2 151.1 5 -338.5 -109.2 336.2 -643.8 44.2 -10. 8 -776.4 ~68. 2 142.8 6 -341.9 -81.1 343.6 0.0 0. 0 0. 0 -780.8 -23. 3 148.2 7 -337.6 -84.1 336.4 -643.6 -17. 0 -15. 1 -775.4 -51.2 136.3 8 -335.6 -56.6 347.9 -637.2 -1.4 -6.9 -781.7 -13.3 138.1 9 -342.7 -70.5 339.9 -648.2 -6.9 8.91 -780.8 -14.9 148.4 10 -334.9 -101.9 344.9 -635.1 -36. 1 -7.3 -779.8 -55.5 136.9I 11 -337.8 -102.9 334.1 -644.2 -23. 4 -10.5 -780. 3 -37.2 143.0 12 -340.0 -101.1 328.4 -653.5 -30. 5 -13.7 -777. 8 41.9 151.1 13 -331.3 -83.1 331.5 -643.4 ~30.8 -14.0 ~774. 5 -71.0 137.2 14 -338.3 -89.6 331.4 -644.6 -12.0 -14.2 -775.9 45.5 138.4 15 -340.8 -88.3 332.9 -648.6 -13.3 -12.1 -778.5 -28.7 146.7 16 -338.1 -112.6 325.0 -644. 9 -19.3 -17.2 -776.3 -54.4 135.4 17 -339.8 -98.1 330.8 -649. 1 -24.7 -13.8 -777.4 48.4 144.1 18 -340.9 -97.8 327.8 -648.9 -13.0 -14.9 -777. 7 -36.7 143.6 19 -340.9 -86.6 335.8 -646.4 -16.0 -12.8 -778. 9 ~38. 7 142.9 20 -337.5 -86.9 338.0 -645.8 32.7 -11.3 -775.7 -59. 7 143.5 21 -342.6 -79.5 341.8 -648.6 -25.9 -9. 1 -779.0 -38.2 149.0 22 338.6 -70.4 340.4 -644.7 -18.0 -11.3 -775.7 44.5 142.3 133 Test Ta e Locations for Sub ect 05: Condition Probe- Acromlon Prb1.T10, at/above Prb1.T10- at/beiow x y z x y z x y z 1 485.3 -314.5 949.0 667.9 23.8 355.2. 667.9 23.8 355.2 2 476.5 -291.0 956.9 638.0 78.1 295.1 638.0 78.1 295.1 3 504.9 -274.3 960.2 662.1 75.3 335.9! 662.1 75.3 335.9 4 471.9 -314.9 953.3 627.3 95.3 287.6 627.3 95.3 287.6 5 494.5 -330.6 945.3 622.4 94.1 294.2 622.4 94.1 294.2 6 511.8 -313.4 962.1 616.8 77.5 289.2 616.8 77.5 289.2 7 429.8 -356.5 934.9 636.3 102.3 320.6 636.3 102.3 320.6 8 510.4 -287.0 928.4 617.2 108.0 299.8 617.2 108.0 299.8 9 457.0 -314.0 963.0 625.7 97.4 290.3 625.7 97.4 290.3 10 489.7 -337.0 936.1 614.2 60.0 276.6 614.2 60.0 276.6 11 419.3 -282.6 1014.2 650.5 104.0 310.3 650.5 104.0 310.3 12 476.9 -309.8 936.1 659.7 105.4 321.0 659.7 105.4 321.0 13 442.1 -304.7 964.9 657.0 88.1 329.0 657.0 88.1 329.0 14 446.8 -296.2 986.2 662.2 84.9 329.1 662.2 84.9 329.1 15 468.5 -316.3 906.0 650.6 104.5 302.9 650.6 104.5 302.9 16 425.7 -340.9 921.9 662.3 118.3 336.6 662.3 118.3 336.6 17 395.3 -302.3 987.4 633.4 87.3 298.8 633.4 87.3 298.8 18 399.8 -341.7 931.3 659.0 95.9 338.6 659.0 95.9 338.6 19 434.1 -327.3 936.9 637.4 111.5 293.5 637.4 111.5 293. 20 383.1 -312.6 973.5 634.0 71.8 292.9 634.0 71.8 292.9 21 479.0 -324.7 919.6 628.1 141.8 285.6 628.1 141.8 285.6 22 437.8 -312.6 948.5 662.6 126.7 328.6 662.6 126.7 328.6 Test Condition (probe target 2) F(probe target 2) (probe target 2) x y z x y z x y z 1 379.4 -208.0 855.4 512.3 57.1 427.0 512.3 57.1 427.0 2 379.2 -176.9 863.2 494.8 104.9 394.2 494.8 104.9 394.2 3 395.5 -172.3 865.3 510.0 97.6 417.9 510.0 97.6 417.9 4 376.0 -202.4 856.9 481.8 103.1 388.6 481.8 103.1 388.6 5 392.2 -215.7 858.5 478.5 99.0 396.0 478.5 99.0 396.0 6 412.3 -204.7 863.6 476.8 93.1 394.4 476.8 93.1 394.4 7 358.7 -217.0 852.8 486.3 116.7 411.4 486.3 116.7 411.4 8 406.9 -166.0 850.4 474.3 129.5 399.7 474.3 129.5 399.7 9 374.1 -190.8 866.7 481.6 112.3 392.0 481.6 112.3 392.0 10 392.0 -214.4 853.9 479.8 83.6 388.8 479.8 83.6 388.8 11 339.8 -179.7 895.2 502.9 109.5 405.3 502.9 109.5 405.3 12 375.4 -194.4 848.5 508.0 113.2 411.6 508.0 113.2 411.6 13 357.8 -184.0 866.3 507.3 114.7 416.7 507.3 114.7 416.7 14 357.3 -187.5 878.7 510.4 100.2 416.0 510.4 100.2 416.0 15 363.5 -198.0 827.7 504.3 112.6 399.8 504.3 112.6 399.8 16 333.9 -211.4 844.8 508.0 117.6 421.3 508.0 117.6 421.3 17 314.3 -190.9 876.5 492.2 103.5 403.1 492.2 103.5 403.1 18 315.1 -213.6 844.7 507.3 106.8 425.3 507.3 106.8 425.3 19 341.8 -203.7 850.4 494.9 117.7 396.0 494.9 117.7 396.0 20 311.2 -189.5 869.0 493.1 102.3 393.8 493.1 102.3 393.8 21 381.5 -199.8 841.4 485.2 136.6 387.7 485.2 136.6 387.7 22 351.8 -190.2 854.7 509.3 130.0 414.8 509.3 130.0 414.8 Test Condition Test Condition OO‘IOOIbOONd OG‘IOUIbQM-A T Prb1.T12, at/above X Y 690.6 73.4 689.3 81.8 686.5 56.7 676.2 55.0 667.7 22.6 637.6 77.5 662.7 58.7 658.4 42.6 669.9 28.7 654.4 -18.4 684.6 27.8 664.3 15.7 670.9 39.8 669.2 68.8 674.9 4.7 679.7 9.3 681.8 48.7 670.4 93.3 674.3 24.3 678.6 14.4 650.4 ~10.1 668.9 90.9 (probe target 2) X Y 516.3 84.9 514.3 104.2 513.5 88.8 503.5 88.5 493.8 58.5 481.7 94.3 494.3 90.0 490.2 91.4 500.4 74.8 492.8 41.1 514.5 70.0 503.8 67.7 506.8 88.5 507.8 91.4 510.2 63.0 510.8 63.1 513.0 83.1 507.1 106.0 508.6 74.3 511.3 68.7 493.7 57.4 506.7 113.9 134 e Locations for Sub ect 05: 485.4 500.9 466.6 467.8 497.1 404.5 454.4 467.8 473.9 445.0 479.4 429.3 438.8 41 1.2 456.7 481 .2 441 .1 412.6 448.1 474.3 449.3 X 610.7 604.6 601 .9 563.6 563.5 555.5 562.4 564.0 558.3 565.9 575.9 564.8 573.8 565.3 567.3 578.6 591 .8 588.3 578.7 571 .0 564.7 566.2 X 466.4 463.0 458.1 438.7 434.8 428.9 433.8 435.5 437.8 439.3 452.4 445.6 448.9 445.9 447.9 453.6 460.4 457.2 453.7 449.4 440.3 413.0] 445.5 Y 82.8 147.1 119.7 141.2 117.1 167.7 116.4 149.4 130.1 118.6 114.6 125.7 127.3 110.5 137.4 129.3 140.9 131.0 93.7 141.0 95.2 157.5 (probe target 2) Y 88.1 138.4 123.1 132.6 110.3 135.4 120.6 148.5 122.3 113.7 118.2 122.6 136.1 1 10.9 132.8 128.4 129.9 126.1 109.9 138.2 114.1 147.4 Prb1.T12, at/beiow 2 225.6 221 .8 215.7 195.4 208.9 214.3 207.3 208.0 194.2 197.2 185.3 180.7 189.8 1 78.4 175.6 187.8 198.5 195.3 194.8 178.4 195.7 180.7 326.7 325.6 322.3 319.8 329.0 332.4 328.0 327.4 319.4 319.5 310.9 310.3 313.5 307.8 305.8 31 1.4 313.9 31 1.5 317.1 306.5 317.8 308.8 X 645.1 651 .4 643.0 602.7 603.0 603.3 642.9 618.8 633.1 614.6 655.1 629.1 641 .3 638.7 655.1 661.7 650.4 642.4 646.1 656.3 620.8 631 .5 X 479.0 480.3 474.4 454.1 447.8 447.0 466.4 456.8 467.6 460.6 487.2 474.2 478.2 478.6 485.8 491 .8 486.6 480.4 481 .3 491 .8 464.8 475.0 Prb1.L3, atlabove Y 69.4 104.6 143.7 163.7 157.8 127.6 119.1 155.4 154.4 115.5 128.4 153.5 186.0 152.4 147.5 156.9 134.8 129.7 124.1 161.2 154.1 162.7 (probe target 2) Y 81.5 118.8 135.3 142.1 133.0 118.4 120.8 152.1 141.6 111.5 123.6 135.6 165.6 135.1 134.9 138.4 127.2 123.9 126.3 146.6 141.1 149.8 Test Condition OQNOUIhQNd Test Condition 00940101500104 X 578.3 574.7 571 .0 545.7 545.3 603.3 642.9 547.1 553.4 558.2 570.1 562.2 575.3 574.5 585.2 594.1 557.7 566.6 579.7 603.0 550.3 555.2 X 436.2 430.9 426.0 406.9 400.3 447.0 466.4 415.1 422.0 421 .9 436.1 429.8 436.5 437.0 441 .7 449.9 430.5 433.9 437.7 451 .6 418.7 425.1 Y 107.4 119.8 115.2 150.5 123.8 127.6 119.1 161.3 118.3 125.6 140.4 120.8 155.6 133.4 155.5 110.5 120.5 118.5 142.9 114.7 155.2 126.3 (probe target 2) Y 101.2 117.4 122.3 130.1 109.4 118.4 120.8 153.7 120.0 1 17.4 130.3 118.9 149.2 126.5 138.9 1 13.3 120.7 1 19.4 134.1 123.3 140.0 128.7 Targe Locations for Sub ect 05: Prb1.L3, at/below 135 X 535.8 531 .6 605.7 590.6 603.5 590.9 603.2 549.5 533.9 604.3 544.7 547.5 562.0 546.7 568.0 574.4 552.8 520.6 547.2 571 .7 614.6 548.5 X 401 .6 397.0 438.5 429.3 435.3 432.8 437.2 404.3 398.9 439.4 405.4 407.4 41 3.7 407.2 41 7.8 422.4 41 1.0 394.5 407.6 41 9.8 446.1 1 409.2 Prb.S1, at/above Y 28.5 95.1 113.9 159.4 108.9 122.1 189.6 161.8 122.5 144.7 116.9 169.4 168.8 84.9 123.0 110.5 139.9 124.7 136.0 94.6 131.9 176.8 (probe target 2) Y 57.3 109.4 113.3 134.7 109.0 106.2 158.3 155.4 122.2 128.0 115.2 144.5 156.2 99.5 119.7 110.7 127.9 119.6 131.2 111.4 129.2 155.1 2 89.1 90.5 245.9 224.8 248.6 226.8 255.8 108.2 84.4 230.4 85.0 104.7 113.0 91.2 116.0 121.1 94.9 63.9 94.2 124.6 248.9 101.3 200.9 203.1 301 .0 289.4 302.3 294.3 304.9 21 1.1 197.6 292.3 194.0 208.7 209.7 197.9 207.8 210.2 198.9 190.5 200.8 212.6 300.5 205.8 X 535.8 531 .6 538.4 512.0 51 1.0 508.5 553.6 549.5 533.9 561 .7 544.7 547.5 562.0 546.7 568.0 574.4 552.8 520.6 547.2 571 .7 556.9 548.5 x 401 .6 397.0 394.4 381 .9 382.7 381 .0 402.9 404.3 398.9 407.8 405.4 407.4 413.7 407.2 417.8 422.4 41 1.0 394.5 407.6 419.8 405.7 408.2 Prb1.S1, at/beiow Y 28.5 95.1 97.3 130.5 109.5 109.7 142.3 161.8 122.5 1 18.5 116.9 169.4 168.8 84.9 123.0 110.5 139.9 124.7 136.0 94.6 150.2 176.8 (probe target 2) Y 57.3 109.4 104.1 121.0 105.8 97.1 129.7 155.4 122.2 112.9 115.2 144.5 156.2 99.5 119.7 110.7 127.9 119.6 131.2 111.4 137.1 155.1 2 89.1 90.5 110.6 80.4 78.9 80.2 124.3 108.2 84.4 130.3 85.0 104.7 113.0 91.2 116.0 121.1 94.9 63.9 94.2 124.6 124.9 101.3 200.9I 203.1 21 1.2 199.6 199.3 200.5 216.0 21 1.1 197.6 215.5 194.0 208.7 209.7 197.9 207.8 210.2 198.9 190.5 200.8 212.6 215.0 205.8 136 Reference Data Target locations for Subject 06 x y 2 Origin 53.3 -285.9 191 .1 Reference 271 .2 -281 .5 132.0 Manubrium 185.9 -21.9 709.0 Xyphoid 1 1 1 .6 -22.6 569.4 C7 327.4 -12.5 802.5 T4 368.6 -8.2 690.1 St 261.2 -11.6 306.5 Left ASIS 104.9 -150.1 388.6 Left Lateral Femoral Condyle -317.0 -235.2 380.6 Left Lateral Maileolis -507.9 -158.7 13.9 Left Lateral Foot -686.4 -153.1 -38.6 Test data for Subject 06 follows (coordinates in millimeters); Subject 06 Probe Length 376 interASiS Dist. 250 InterPSiS width 95 Heel to foot target dist. 225 Test Condition OQNOUl-hODN-l» Test Condition OONOU‘IhC-DNJ BNdedddddd-‘d d ‘DQNOmeN-‘O 137 Target Locations for Subject 06: Origin X ~118.5 ~118.5 ~118.5 -118.5 ~118.5 ~118.5 ~118.5 -118.5 ~118.5 -118.5 ~118.4 ~118.5 ~118.5 ~118.5 ~118.4 ~118.5 ~118.5 ~118.4 ~118.4 ~118.4 ~118.4 -118.5 Y ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.9 ~306.6 ~306.9 ~306.9 ~306.9 ~306.7 ~306.7 ~306.7 ~306.5 ~306.6 ~306.6 ~306.6 ~306.9 Z ~25.1 ~25.1 ~25. 1 ~25.1 ~25. 1 ~25. 1 ~25.2 ~25.2 ~25.2 ~25.2 ~25.4 ~25.2 ~25.2 ~25.2 ~25.3 ~25.3 ~25.3 ~25.3 ~25.4 ~25.4 ~25.3 ~25.2- ref 2 X 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.6 233.8 233.8 233.8 233.8 233.7 233.8 233.8 233.8 233.8 233.8 233.8 233.8 233.8 Y ~320.6 ~320.6 ~320.7 ~320.7 ~320.6 ~320.7 ~320.7 ~320.7 ~320.7 -320.6 ~320.6 ~320.7 ~320.7 ~320.6 ~320.6 ~320.7 -320.6 ~320.7 ~320.6 -320.8 ~320.7 ~320.7 Z ~23.7 ~23.8 ~23.7 ~23.8 ~23.8 -23.9 ~23.8 ~23.8 ~24. 0 ~23. 8 ~23. 8 ~23.9 ~23. 7 ~23. 8 ~23. 7 ~23.8 ~23.8 ~24.0 ~23.8 ~23.9 ~23.7 ~23.9 Elbow X 254.7 260.5 253.4 256.3 257.6 265.8 264.4 260.4 252.0 255.8 255.0 254.9 259.0 264.3 257.1 252.2 253.2 246.0 261 .1 262.9 258.3 259.1 432.5 429.4 441.9 439.7 443.1 443.9 437. 4 443.5 428. 8 439.1 427.1 431.7 432. 3 434.2 427. 7 422.6 417.7 421.7 435.7 432.1 439.5 439.3 Wrist X 51.8 56.8 43. 5 47.3 50.3 56.4 59. 4 50. 3 46. 7 47.9 57.0 56.6 56.0 56.8 54.6 55.4 56. 3 45. 7 54.1 51.1 47.4 47.2 ~224.4 ~216.1 -232.7 ~227.3 ~215.6 -219.4 ~218.2 ~225.8 -232.1 ~224.9 ~215.9 ~221 .9 -218.7 ~224.0 ~227.3 ~221 .7 ~220.5 -230. 6 -232. 3 ~227.6 ~232.8 543.1 543. 8 545. 7 544.9 542.0 541.5 542.3 549.8 545.6 548. 5 545.1 545.7 546.5 541.3 544.4 543.6 537. 9 542.4 544.0 540. 7 544. 4 549.1 Test Condition 3383333333§380m~1mm5de Test Condition 33333333353380m90mau~4 138 1a_r_get Locations for Subject 06: Manumbrlum Xyphoid Left ASIS x y z x y z x y 2 282.3 44.7 716.0 190.0 40.2 584.2 156.5 -176.0 389.8 291.2 -24.2 716.4 188.1 -21.4 589.1 154.2 -150.9 390.9 292.4 45.2 725.3 193.1 43.1 597.2 142.0 -177.3 393.1 294.3 43.6 726.4 190.5 -39.5 600.2 144.4 -170.1 393.6 298.5 42.2 731.6 188.5 41.1 608.2 144.7 -173.9 394.3 303.0 36.3 730.9 190.5 -35.4 609.0 141.9 -168.4 392.6 290.5 40.4 727.2 185.4 -37.4 601.3 148.8 -171.2 393.7 292.3 -34.7 728.5 183.4 -34.6 602.2 154.9 -166.0 389.6 285.7 45.7 717.9 183.3 43.1 590.6 154.6 -176.1 393.5 297.1 -36.8 726.4 189.6 -32.3 602.3 150.5 -165.2 391.8 269.4 -34.9 709.5 188.3 -34.3 574.7 159.8 -169.1 387.3 282.4 48.8 716.7 187.5 46.2 587.1 155.5 -178.7 389.7 284.8 -31.9 718.2 186.8 -29.4 587.8 163.3 -161.9 388.5 284.0 -33.3 720.3 186.1 -30.6 589.1 164.9 -161.4 389.1 271.7 40.8 712.7 186.0 -39.7 575.9 165.3 -171.3 385.1 258.9 -34.3 707.4 183.5 -31.0 568.6 167.3 -164.9 386.5 254.8 -37.1 700.2 183.5 -34.3 562.1 165.8 -167.6 386.1 260.3 40.3 703.9 182.5 41.0 567.6 158.4 -175.5 389.1 273.0 -26.7 718.3 185.5 -25.5 582.4 161.7 -157.8 390.1 278.0 -30.2 717.7 184.1 28.1 581.2 163.0 -162.4 387.5 288.1 -35.3 724.0 186.3 -34.2 595.9 150.9 -168.1 388.9 284.3 -28.2 717.7 186.2 -29.2 588.2 155.6 -162.3 385.0 Knee Ankle Foot x y z x y z x y 2 -280.0 -244.8 327.1 0.0 0.0 0.0 -696.2 -179.6 100.0 -287.2 -236.3 322.2 -558.5 -150.6 -17.0 -696.8 -164.1 103.8 -275.2 -243.7 335.2 -515.2 -138.1 -13.2 -679.0 -163.4 61.8 -279.1 -226.9 334.7 0.0 0.0 0.0 -693.3 -144.3 95.3 -275.6 -236.8 339.9 -515.9 ~150.4 -9.2 -681.5 -166.5 70.4 -283.3 -226.4 331.3 0.0 0.0 0.0 -692.4 -142.0 95.8 -282.6 -225.4 335.5 0.0 0.0 0.0 -694.1 -174.6 97.8 -279.9 -228.9 323.8 0.0 0.0 0.0 -695.2 -168.8 101.1 -292.2 -226.3 338.0 0.0 0.0 0.0 -697.0 -175.9 102.3 -279.1 -230.0 331.3 0.0 0.0 0.0 -693.6 -168.6 95.7 -277.2 -228.3 326.0 0.0 0.0 0.0 -693.5 -167.9 96.4 -282.5 -235.6 334.7 0.0 0.0 0.0 -691.4 458.3 88.8 -274.7 -232.5 316.8 -558.1 -166.8 ~15.5 -698.3 -176.8 107.2 -277.6 -224.7 316.4 0.0 0.0 0.0 -695.5 -163.8 101.2 -274.9 -232.6 318.6 0.0 0.0 0.0 -691.9 -162.7 93.2 -271.5 -233.6 319.4 0.0 0.0 0.0 -697.3 -172.5 104.3 -271.6 -251.5 304.8 -560.7 -168.1 -18.5 -698.6 -181.7 107.1 -284.0 -238.6 320.6 -557.9 -146.0 -19.9 695.2 -166.8 99.5 -276.6 -214.4 339.0 -525.6 -127.7 -6.8 -684.1 -130.3 79.6 -271.8 -236.6 317.2 0.0 0.0 0.0 696.0 -176.8 101.1 -275.4 -245.8 319.0 0.0 0.0 0.0 -695.4 -162.3 99.0 -275.6 -237.9 318.3 0.0 0.0 0.0 -694.5 -171.6 99.0 Test Condition coauthors-cans Test Condition (DONOUibMNd X 492.9 525.5 474.4 494.9 534.6 512.6 508.6 444.6 442.3 537.5 485.1 501 .0 466.5 466.1 487.6 443.9 389.5 473.3 497.1 531 .6 514.4 468.9 X 416.0 439.7 41 1.3 421 .9 447.5 439.5 429.7 398.9 392.7 448.8 402.8 420.8 403.9 404.2 406.5 373.8 342.3 390.0 412.1 433.3 432.3 408.5 Y ~463.5 ~451 .4 460.8 446.5 ~481 .2 ~462.9 454.1 484.4 452.6 ~445.3 ~442.9 ~490.0 ~447.9 464.8 458.1 ~442.0 ~490.1 ~433.8 ~424.8 ~441 .9 -419.6 446.0 1(probe target 2) Y ~342.7 ~328.9 ~343.0 ~333.9 ~356.6 ~339.1 ~338.3 ~350.0 ~338.0 -333.1 ~331 .9 -362.9 ~332.4 -337.9 ~339.4 ~328.2 ~354.9 ~327.9 ~31 6.3 ~326.2 ~31 6.6 ~327.5 Z 971 .9 946.4 1007.5 1003.7 954.2 978.4 987.8 980.7 1012.2 974.4 984.7 953.2 1005.8 980.6 969.6 996.3 966.5 990.2 994.4 948.0 1007.6 1005.5 2 868.2 852.9 891 .7 888.2 863.6 874.5 880.0 875.4 887.0 870.9 874.8 860.1 888.3 874.9 867.4 880.7 863.3 876.3 884.0 858.0 889.9 889.0 139 Tar at Locations for Subject 06: Probe1 Acromlon Prb1.T10, at/above X Y 731.7 -107.7 725.1 -130.8 718.4 -139.4 721.9 -70.2 707.7 -69.0 710.0 -99.6 705.8 -76.6 704.6 -62.1 730.5 -93.0 717.1 -134.7 721.9 -102.7 727.8 -92.1 706.9 -65.5 730.1 -82.0 705.9 -129.1 726.1 -83.5 724.6 -89.5 718.2 -100.5 727.8 -84.2 725.1 -81.8 724.2 -70.0 722.9 -68.2 (probe target 2) X Y 576.4 -77.0 572.4 ~80.4 570.1 -95.0 574.4 -60.7 559.4 -58.4 561.9 -74.0 559.4 -60.3 554.0 48.3 572.2 -72.2 566.7 -84.7 574.5 -70.5 574.3 -72.6 560.5 47.2 574.8 -57.2 564.2 87.6 576.6 ~62.8 580.5 ~68.8 569.8 -74.4 575.7 58.6 575.2 -61.6 571.1 -57.0 571.8 -52.5 2 338.1 353.3 332.7 324.9 314.1 324.7 313.0 312.3 352.1 341 .3 321 .0 334.5 302.8 344.9 306.9 316.2 325.8 313.7 330.6 321 .1 335.4 322.8 718.4 -139.4 721.9 -70.2 707.7 -69.0 710.0 -99.6 705.8 -76.6 704.6 -62.1 730.5 -93.0 717.1 -134.7 721.9 -102.7 727.8 -92.1 706.9 65.5 730.1 -82.0 705.9 -129.1 726.1 -83.5 724.6 -89.5 718.2 -100.5 727.8 -84.2 725.1 -81.8 724.2 -70.0 722.9 -68.2 (probe target 2) X Y 576.4 ~77.0 572.4 -80.4 570.1 -95.0 574.4 -60.7 559.4 -58.4 561.9 -74.0 559.4 -60.3 554.0 48.3 572.2 -72.2 566.7 -84.7 574.5 -70.5 574.3 -72.6 560.5 47.2 574.8 -57.2 564.2 87.6 576.6 -62.8 580.5 ~68.8 569.8 —74.4 575.7 -58.6 575.2 -61.6 571.1 -57.0 571.8 -52.5 Test Condition OONOUIhOlM-l Test Condition @QNOUIth-l 140 Target Locations for Sub ect 06: Prb1.T12, atlabove Prb1.T12, at/beiow Prb1.L3, atlabove x y z x y z x y 766.7 -84.6 517.2 612.9 -67.2 177.9 726.0 ~87.9 626.8 -84.9 193.7 626.8 -84.9 193.7 619.1 49.0 759.0 -116.6 489.1 624.7 -57.7 191.5 705.5 -9.9 758.3 -51 .3 436.3 61 1 .4 ~85.3 186.4 700.2 34.6 742.8 -129.8 449.6 618.1 -86.4 203.1 701.0 -33.2 746.9 -118.8 452.6 615.1 -39.9 197.7 694.9 7.6 744.8 -120.5 439.8 607.9 -64.1 191.7 705.6 -15.5 748.1 -96.0 441.0 610.7 -51.4 191.4 706.1 48.4 757.2 -100.7 522.2 612.5 69.2 186.7 696.5 -51.9 748.1 -129.1 485.2 652.0 -98.5 231.9 685.4 49.3 748.2 -129.3 500.0 609.7 -60.5 170.4 621.6 -31.9 756.8 -118.8 494.6 615.9 48.7 183.0 726.7 -26.4 764.0 -76.0 496.3 608.9 -90.5 184.1 727.5 -38.4 758.9 92.6 484.5 612.6 -65.1 182.1 694.3 42.5 763.3 -109.7 456.1 644.2 -53.8 197.5 705.2 -34.5 754.7 -83.2 373.3 694.2 -54.6 238.4 718.3 42.3 765.9 -124.5 510.0 677.8 -62.8 227.5 700.5 -69.0 625.7 -15.2 180.5 625.7 -15.2 180.5 703.1 -63.3 759.2 -111.9 494.8 613.5 39.9 175.1 693.4 -63.2 755.8 -141.0 477.7 623.3 48.1 178.8 692.4 -32.1 739.4 -158.0 451.4 612.6 43.7 186.3 716.9 -52.3 744.9 -153.9 526.6 613.6 -57.2 183.1 729.1 -17.8 1(probe target 2) 1(probe target 2) (probe target 2) x y z x y z x y 590.5 -62.4 505.7 504.2 -60.1 317.1 551 .3 -64.5 503.8 -52.1 319.9I 503.8 -52.1 319.9 483.7 -29.1 585.7 -83.3 492.7 507.5 -51 .8 321 .2 536.2 -27.5 584.3 48.5 466.7 490.2 -74.4 321 .2 532.3 -36.9 573.1 -88.6 475.2 497.9 -67.5 332.5 529.3 -37.2 576.0 -83.4 476.5 498.4 41.6 330.1 526.4 -15.0 575.7 -81 .8 470.4 497.0 -57.4 330.4 534.5 -26.3 576.8 -68.4 471 .0 498.8 45.1 329.9 537.3 8.5 581 .5 -74.1 510.3 502.1 «55.9 324.5 535.5 44.3 578.6 -81 .3 492.1 520.9 -66.3 346.0 528.7 40.2 591.9 -77.3 499.2 479.1 -82.3 318.0 492.5 -30.5 585.2 -83.2 496.8 504.9 49.7 321 .1 549.4 -34.6 589.1 55.8 497.7 501.1 -61 .9 321.9 553.9 35.2 585.6 -61 .1 490.8 503.7 49.1 320.4 537.3 -35.9 590.5 -76.5 474.5 520.8 46.7 320.9 545.8 -33.5 589.1 -61.8 430.8 547.3 44.1 340.9 555.1 -36.5 591.8 -82.8 498.5 541.6 49.9 340.4 544.8 49.3 515.7 -32.2 3189- 515.7 -32.2 318.9 544.7 -52.3 587.9 -71.3 495.3 506.2 -34.7 315.8 539.6 45.1 586.4 -91.9 485.7 514.5 41.3 314.1 541.9 -29.7 573.4 -104.0 474.5 500.8 44.3 325.2 544.4 43.5 578.6 -96.3 512.8 504.3 44.6 320.5 551.4 -22.3 2 393.5 1 54.8 326.6 31 5.3 340.6 325.6 339.8 357.4 279.4 269.4 140.1 41 7.0 444.2 261 .3 267.6 281 .3 255.4 266.8 256.9 248.5 375.8 41 0.5 408.0 269.1 374.6 369.4 382.7 374.9 381 .4 387.6 353.1 350.1 260.8 420.4 434.3 342.6 343.4 348.3 337.4 343.8 341 .6 338.2 400.4 416.4 Test Condition Prb1.L3, atlbelow Prb1.S1, atlbelow x y z x y z x y 1 625.4 -54.6 150.8 639.7 -50.0 142.9 639.7 -50.0 2 619.1 49.0 154.8 616.3 -77.8 129.6 616.3 ~77.8 3 616.7 -58.1 162.7 629.9 -53.3 148.1 629.9 53.3 4 614.4 -35.7 163.0 612.5 -65.8 116.2 612.5 -65.8 5 612.7 -59.5 168.5 621.4 408.2 142.3 621.4 -108.2 6 613.5 58.6 167.5 608.9 46.1 107.3 608.9 46.1 7 619.2 43.0 163.9 624.8 -142.1 153.1 624.8 -142.1 8 620.1 -59.6 153.2 634.7 -32.3 131.1 634.7 -32.3 9 617.7 -70.2 151.9 633.8 404.2 158.0 633.8 -104.2 10 618.4 50.7 157.9 631.6 -99.6 146.4 631.6 ~99.6 1 1 621.6 -31.9 140.1 631.3 -65.9 120.1 631.3 -65.9 12 726.7 -26.4 417.0 634.4 -119.4 150.0 634.4 -119.4 1 3 727.5 -38.4 444.2 642.8 -93.6 151.0 642.8 -93.6 14 615.7 43.1 140.3 643.4 -23.5 137.4 643.4 23.5 15 628.9 46.7 144.2 641.3 -89.3 136.6 641.3 -89.3 16 636.1 42.9 144.3 638.7 -21.5 119.2 638.7 -21.5 17 623.6 -33.8 137.7 643.6 ~10.3 141.6 643.6 -10.3 18 634.4 42.1 156.5 624.2 65.6 1 13.0 624.2 -65.6 19 620.7 ~54.4 145.7 621.9 ~24.5 100.7 621.9 -24.5 20 624.2 -26.2 142.1 621.1 -12.8 96.2 621.1 -12.8 21 716.9 ~52.3 375.8 628.2 49.0 129.5 628.2 49.0 22 729.1 -17.8 410.5 631.7 23.3 129.9 631.7 23.3 Test Condition (probe target 2) (probe target 2) (probe target 2) x y z x y z x y z 1 489.7 ~39.5 266.5 477.7 47.3 214.1 477.7 47.3 214.1 2 483.7 -29.1 269.1 460.9 47.4 207.8 460.9 47.4 207.8 3 481.9 50.0 277.3 474.5 49.3 231.8 474.5 49.3 231.8 4 480.3 36.9 278.7 463.1 -53.2 210.0 463.1 -53.2 210.0 5 477.9 48.4 282.4 469.1 ~77.9 227.2 469.1 ~77.9 227.2 6 477.7 -51.0 281.5 460.9 43.0 204.2 460.9 43.0 204.2 7 483.5 -38.1 277.3 470.2 -95.8 224.9 470.2 -95.8 224.9 8 484.7 -38.5 268.2 476.2 -33.8 209.7 476.2 -33.8 209.7 9 483.3 -51.3 267.0 471.1 -75.5 221.3 471.1 -75.5 221.3 10 480.7 33.8 270.2 472.7 -69.7 218.9 472.7 69.7 218.9 11 492.5 -30.5 260.8 476.3 51.1 203.8 476.3 -51.1 203.8 12 549.4 -34.6 420.4 475.6 ~86.5 219.3 475.6 -86.5 219.3 13 553.9 -35.2 434.3 482.4 63.2 217.4 482.4 -63.2 217.4 14 488.4 -34.4 262.6 481.8 -28.4 208.0 481.8 28.4 208.0 15 495.6 -38.6 261.0 482.3 64.7 208.5 482.3 -64.7 208.5 16 502.2 -32.7 260.0 481.6 ~25.2 199.3 481.6 -25.2 199.3 17 496.2 -30.8 259.8 482.2 -19.2 212.9 482.2 -19.2 212.9 18 498.6 -39.3 269.9 468.9 -56.2 198.4 468.9 -56.2 198.4 19 489.3 -35.1 263.8 472.1 -24.4 194.5 472.1 -24.4 194.5 20 494.5 -23.2 262.0 472.0 -18.8 189.7 472.0 -18.8 189.7 21 544.4 43.5 400.4 471.3 41.8 210.8 471.3 41.8 210.8 22 551.4 ~22.3 416.4 475.1 ~0.9 210.2 475.1 ~0.9 210.2 142 Reference Data Target locations for Subject 07 x y 2 Origin -79.5 -247.9 189.0 Reference 137.7 268.4 130.9 Manubrium 1 15.8 -3.8 726.5 Xyphoid 43.4 -9.3 573.8 C7 258.8 42.8 767.2 T4 276.8 -14.0 676.0 S1 135.9 68 282.9 Left ASIS -8.4 -81.3 378.6 Left Lateral Femoral Condyle 438.4 -204.3 352.8 Left Lateral Maileolis -628.5 -134.3 33.6 Left Lateral Foot ~838.8 ~104.3 ~36.3 Test data for Subject 07 follows (coordinates in millimeters); Subjem 07 Probe Length 376 lnterASiS Dist. 235 interPSiS width 85 Heel to foot target dist. 280 Test Condition @ONOthN-l» Test Condition @Q‘JO’GbQN-fi 143 Target Locations for Subject 07: Origin X 60.4 60.5 60.5 60.4 60.4 60.4 60.5 60.7 60.7 60.7 60.7 60.7 60.7 60.8 60.8 60.8 60.7 60.7 60.7 60.7 60.9 60.7 Y ~373.1 ~373.1 ~373.1 ~373.2 ~373.1 ~373.1 ~373.1 ~373.3 ~373.2 ~373.3 ~373.3 ~373.2 ~373.2 ~373.3 ~373.3 ~373.3 ~373.3 ~373.3 ~373.2 ~373.3 ~373.2 ~373.1 Z ~26.6 ~26.5 ~26.5 ~26.4 ~26.5 ~26.5 ~26.5 ~26.4 ~26.4 ~26.4 ~26.4 ~26.4 ~26.5 ~26.5 ~26.4 ~26.4 ~26.4 ~26.5 ~26.4 ~26.5 ~26.5 ~26.5 ref 2 X 410.7 410.7 410.6 410.7 410.7 410.7 410.7 411.1 411.1 411.1 411.1 411.1 411.0 411.1 411.1 411.1 411.1 411.1 411.1 411.1 411.1 411.1 Y 410.9 410.8 410.8 410.9 410.8 410.9 410.8 411.0 411.0 410.9 411.0 411.0 411.0 411.0 411.0 410.9 411.0 411.0 411.0 411.0 411.0 411.0 2 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.7 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.6 ~25.7 ~25.7 ~25.6 Target Locations for Subject 07: Elbow X 437.0 448.0 435.5 447.1 440.4 446.6 453.1 448.3 450.9 436.5 436.1 441 .7 442.2 442.3 440.7 447.0 435.3 446.5 441 .7 431 .5 446.5 451 .6 Y ~393.1 ~398.9 400.8 41 0.0 401 .6 403.1 ~396.6 405.7 ~399.6 ~388.7 ~398.9 ~391 .7 403.3 400.4 ~386.1 ~397.6 ~398.4 ~395.7 ~397.1 ~396.2 405.2 -392.8 2 436.7 439.6 440.1 450.0 452.5 456.6 449.0 452.8 443.6 444.4 441 .8 437.7 440.1 438.8 432.4 443.3 433.1 433.2 437.4 437.0 447.8 441 .8 Wrist X 226.5 234.8 223.9 234.0 226.0 228.0 233.7 224.4 232.4 221 .4 224.1 229.6 232.1 228.0 231 .8 231 .2 225.5 238.1 231 .5 218.4 232.9 234.5 -308.0 ~31 1.2 -314.7 ~31 1 .1 ~307.8 ~313.4 ~312.6 -325.9 ~319.4 ~309.8 ~312.7 ~308.2 ~314.8 -319.7 ~306.9 ~315.5 ~312.5 ~310.5 ~31 1.2 ~315.9 -314.3 ~31 1.5 560.6 559.5 561 .8 559.8 567.4 566.5 563.6 567.2 562.1 568.8 566.1 560.3 562.5 562.2 561 .0 561 .3 555.8 559.5 560.9 563.3 565.2 560.0 Test Condition CONGO-band Test Condition 18333333323§=8°°N°°'9“N‘ 144 Target Locations for Subject 07: X 480.2 484.3 489.6 498.0 508.9 522.7 501 .7 500.1 495.2 495.8 477.5 480.9 481 .4 483.3 475.3 475.3 467.9 470.9 475.2 474.1 501 .8 489.6 ‘ Manumbrium y ~119.0 ~117.8 ~121.9 ~122.9 ~120.4 -120.3 ~121.9 ~121.0 ~118.2 ~113.3 ~118.3 ~113.5 ~120.0 ~118.1 ~108.5 ~110.1 ~122.7 ~116.0 416.4 414.8 ~117.2 ~110.7 2 728.3 730.2 730.6 736.8 744.2 744.7 746.6 745.8 737.7 738.2 731 .4 729.2 728.4 728.7 727.6 732.1 730.7 728.8 728.4 725.9 736.3 732.9 Xyphoid X Y 410.9 ~118.9 416.5 -119.1 414.5 -121.8 414.1 -120.6 413.9 ~114.6 419.1 -115.1 413.3 -119.0 409.9 -118.9 415.3 -115.5 416.3 ~107.5 411.2 ~119.0 414.6 ~111.2 414.4 -118.5 414.2 ~116.9 412.8 -108.0 408.4 ~112.6 407.8 -121.4 410.5 -115.7 412.4 -118.4 411.8 ~118.6 413.8 ~115.0 416.4 -112.6 2 572.1 579.3 581.8 591.8 605.0 61 1.7 602.2 602. 7 590. 2 .. .1 579.8 576.7 575.3 576.0 572.0 579.7 5729' 573.0 572.8 570.4 594.3 583.2 Left ASIS x 1! 349.1 214.5 344.0 217.9 334.4 216.3 331.5 214.9 331.2 207.9 324.4 209.0 339.2 210.7 337.3 214.6 342.6 210.2 342.1 205.0 344.4 217.6 349.1 209.0 349.0 216.9 349.3 217.6 352.7 210.7 350.3 210.9 346.7 221.0 350.7 216.0 349.4 215.9 350.3 216.2 339.7 216.2 349.9 213.9 2 386.0 392. 3 395.3 393.7 394.5 395. 7 386. 5 397.4 390.4 390.6 391.9 386.9 394. 2 392. 5 399.4 395.4 395.1 399. 9 397. 0 395. 3 392. 0 390.4 Knee Target Locations for Subject 07: X ~87.1 ~92.6 ~97.5 ~95.3 -88.6 ~88.4 ~81 .8 ~83.3 ~83.3 ~75.9 ~82.4 ~76.9 ~82.2 ~78.5 ~79.7 ~78.0 ~81 .2 ~82.0 ~83.3 -85.8 ~90.7 ~79.1 Y ~303.7 ~295.3 ~297.6 ~309.1 ~31 5.7 ~322.5 ~31 6.0 -318.2 ~305.1 ~31 7.2 ~324.5 -325.5 ~318.6 ~326.5 ~31 3.2 ~320.7 ~328.5 ~321 .8 ~313.4 ~308.4 ~31 7.1 ~324.0 2 328.6 335.3 344.8 335.3 328.9 324.2 321.9 318.5 323.5 320.1 316.9 312.2 321.5 320.6 322.7 318.5 313.2 322.6 322.7 327.2 318.2 321.5 Ankle X ~336.3 ~335.9 ~333.4 ~335.5 -338.9 ~339.5 -338.1 ~345.5 ~342.4 0.0 0.0 0.0 ~342.0 ~337.1 ~339.7 0.0 0.0 ~336. 1 ~345. 5 ~335.0 ~352.9 ~337.2 -258.6 ~244.6 ~262.4 ~259.0 ~269.7 ~255.7 ~259.8 -267.0 ~250.5 0.0 0.0 0. 0 ~264. 9 ~273.9 -266.9 0.0 0. 0 ~262. 6 ~263.8 ~257.8 ~250.4 ~272.5 18. 2 20. 5 18. 7 18.9 18.0 15.6 16.8 17.2 17.5 0.0 0.0 0. 0 17.9 18.7 17.0 0.0 0. 0 17. 1 18.8 18.6 17.4 18.2 Foot ~516.5 ~514.7 ~512.6 ~516.9 ~517.8 ~516.5 ~517.8 ~517.6 ~515.0 ~514.1 ~517.0 ~518.1 ~516.9 ~517.5 ~517.3 ~517.0 ~516.8 ~516.5 ~517.5 ~516.3 ~516.9 ~516.3 ~238.3 ~219.6 -243.7 ~237.2 ~247.4 -238.1 ~244.5 ~250.6 ~231.8 ~244. 0 ~254.4 -244.9 ~254.6 ~250. 1 ~245.0 -243.1 ~244.3 ~236.6 ~240. 1 -228.7 ~254. 1 129.5 127.4 123.0 128.1 130.5 126.1 128.1 140.2 133.0 126.7 140.5 139.1 132.6 126.7 131.9 129.8 141.2 126.5 137.6 126.0 141.2 125.0 Test Condition CDQNO’UIOGN-l- Test Condition omflmmth-s Tar at Locations for Sub act 07: Prb1.T10, atlabove Probe- Acromlon X Y 718.7 -558.4 696.0 -566.3 678.7 -608.8 723.4 -589.6 751.9 -597.9 735.8 -566.6 744.3 -611.5 744.3 -578.2 761.9 -588.6 701.3 -613.9 672.3 -600.0 656.1 -570.5 667.1 -598.8 730.2 -577.2 701.4 584.3 687.6 -571.6 701.7 ~581.1 643.5 -606.6 670.9 -577.7 701.2 -573.6 778.4 —566.8 702.2 -555.4 (probe target 2) X Y 629.8 443.8 619.0 448.8 610.3 472.1 643.5 461.5 664.5 465.9 664.0 450.0 649.5 470.6 660.2 456.2 659.9 462.2 628.0 470.8 604.8 465.5 590.0 441.9 595.4 463.3 637.9 454.1 616.3 455.6 612.1 447.9 606.2 453.8 575.8 464.3 603.2 452.7 617.7 453.1 673.2 447.7 627.2 440.3 2 909.4 932.6 880.1 895.1 847.2 946.3 854.0 895.9 821 .9 832.2 880.4 962.3 929.9 871 .7 871 .7 917.2 908.8 913.1 925.4 901.0 848.7 944.9 2 831.0I 843.2 815.3 826.2 798.7 851.7 804.1 825.3 785.0 790.7 817.5 860.1 841.8 810.3 808.5 837.1 830.0 832.5 840.5 824.5 798.8 851 .8 145 x 907.0 884.7 889.8 886.8 879.9 881 .5 879.1 876.4 880.1 880.6 903.4 894.3 899.5 901 .3 903.2 907.1 888.0 891 .5 899.6 902.7 892.6 892.8 X 753.4 741 .2 742.2 738.7 733.4 732.4 731 .6 729.5 737.5 737.2 753.5 748.0 749.9 751 .4 752.6 749.6 742.0 745.3 750.7 753.7 742.8 744.1 Y ~179.0 ~211.8 ~210.7 ~179.6 ~194.8 ~188.7 ~166.2 ~202.1 ~192.5 ~182.6 ~207.8 ~151.5 -179.6 ~168.6 ~140.9 ~192.0 ~182.1 ~184.1 ~165.8 ~161.9 ~163.5 ~140.3 (probe target 2) Y -152.2 ~172.3 -173.2 -156.1 459.1 ~157.1 ~146.2 ~165.1 ~158.4 ~149.4 ~165.0 ~133.0 ~153.8 -147.0 ~128.5 ~154.8 ~157.5 ~154.0 ~143.6 ~141.8 ~141.0 ~131.6 2 322.1 301.0 312.7 308.1 320.3 318.9 312.0 318.8 301.8 302.3 332.1 299.3 307.5 308.8 310.2 331.9 299.1 307.1 310.5 319.3 312.8 306.8 408.2 397.9 403.2 403.5 413.1 409.5 408.4 410.4 401 .0 401 .3 416.8 397.7 400.3 402.4 404.1 41 1.9 397.8 402.2 405.0 404.8 405.7 404.1 X 907.0 884.7 889.8 886.8 879.9 881 .5 879.1 876.4 880.1 880.6 903.4 894.3 899.5 901 .3 903.2 907.1 888.0 891 .5 899.6 902.7 892.6 892.8 X 753.4 741 .2 742.2 738.7 733.4 732.4 731 .6 729.5 737.5 737.2 753.5 748.0 749.9 751 .4 752.6 749.6 742.0 745.3 750.7 753.7 742.8 744.1 Y ~179.0 ~211.8 -210.7 -179.6 ~194.8 ~188.7 466.2 -202.1 -192.5 ~182.6 ~207.8 -151.5 ~179.6 ~168.6 ~140.9 ~192.0 ~182.1 ~184.1 ~165.8 ~161.9 ~163.5 ~140.3 (probe target 2) Y ~152.2 ~172.3 ~173.2 ~156.1 ~159.1 -1 57.1 ~146.2 ~165.1 ~158.4 ~149.4 ~165.0 ~133.0 ~153.8 ~147.0 ~128.5 ~154.8 ~157.5 ~154.0 ~143.6 ~141.8 ~141.0 ~131.6 P"rb"—1.T1o- atlbelow 2 322.1 301.0 312.7 308.1 320.3 318.9 312.0 318.8 301.8 302.3 332.1 299.3 307.5 308.8 310.2 331.9 299.1 307.1 310.5 319.3 312.8 306.8 408.2 397.91 403.2 403.5 413.1 409.5 408.4 410.4 401 .0 401 .3 416.8 397.7 400.3 402.4 404.1 41 1.9 397.8 402.2 405.0 404.8 405.7 404.1 146 Test Target Locations for Sub 07: Condition Prb1.T12, atlabove Prb1.T12, atlbelow Prb1.L3, atlabove x y z x y z x y z 1 742.3 426.1 130.5 742.3 426.1 130.5 806.0 410.7 117.5 2 782.5 436.4 162.6 782.5 436.4 162.6 891.3 431.0 383.9 3 774.4 455.0 162.0 774.4 455.0 162.0 867.5 451.3 264.5 4 730.1 434.6 142.6 730.1 434.6 142.6 851.1 456.4 230.6 5 724.7 441.3 150.2 724.7 441.3 150.2 850.6 442.9 243.3 6 724.7 441.3 150.2 724.7 441.3 150.2 830.0 ~152.4 219.2 7 915.6 -207.5 452.5 769.2 428.9 170.0 839.6 479.4 217.9 8 728.2 -203.3 155.9 728.2 -203.3 155.9 874.4 472.8 319.4 9 718.3 479.1 140.1 718.3 479.1 140.1 869.1 458.2 259.3 10 724.5 433.3 139.9 724.5 433.3 139.9 848.9 429.4 211.4 11 796.7 461.2 165.1 796.7 461.2 165.1 880.2 458.2 286.4 12 771.7 440.4 149.5 771.7 440.4 149.5 883.3 442.9 454.3 13 772.1 454.1 147.5 772.1 454.1 147.5 816.6 436.8 129.9 14 786.2 445.0 158.2 786.2 445.0 158.2 807.3 445.2 117.6 15 830.1 422.7 194.9 830.1 422.7 194.9 805.9 428.6 114.2 16 800.5 ~175.4 177.9 800.5 ~175.4 177.9 809.4 429.7 122.2 17 790.0 432.1 163.3 790.0 432.1 163.3 802.2 441.8 112.6 18 793.3 477.6 170.4 793.3 477.6 170.4 894.1 438.6 331.0 19 783.7 436.5 154.8 783.7 436.5 154.8 903.3 452.7 399.3 20 799.2 ~148.4 162.1 799.2 448.4 162.1 805.1 433.4 110.1 21 738.7 447.3 147.3 738.7 447.3 147.3 863.0 451.8 252.8 22 788.2 409.1 171.6 788.2 409.1 171.6 876.0 -208.0 428.3 Test Condition (probe target 2) (probe target 2) (probe target 2) x y z x y z x y z 1 655.9 421.7 283.8 655.9 421.7 283.8 667.3 411.4 225.5 2 677.0 430.3 303.1 677.0 430.3 303.1 715.2 420.7 378.2 3 670.9 442.4 303.4 670.9 442.4 303.4 700.0 437.2 318.6 4 645.1 431.8 294.6 645.1 431.8 294.6 691.9 438.2 303.2 5 639.5 428.5 304.3 639.5 428.5 304.3 687.1 425.4 309.9 6 639.5 428.5 304.3 639.5 428.5 304.3 674.2 433.7 301.8 7 747.0 464.1 472.0 662.7 422.6 309.2 685.3 448.6 297.7 8 637.4 463.4 302.5 637.4 463.4 302.5 701.4 445.7 346.1 9 640.9 450.4 295.7 640.9 450.4 295.7 703.0 434.8 314.1 10 644.5 420.7 296.0 644.5 420.7 296.0 693.2 413.2 294.3 11 683.3 442.4 298.5 683.3 442.4 298.5 710.4 438.1 328.3 12 679.0 421.4 297.7 679.0 421.4 297.7 712.7 423.4 412.5 13 670.8 435.3 291.6 670.8 435.3 291.6 677.4 424.4 235.0 14 681.5 432.2 299.3 681.5 432.2 299.3 675.6 425.5 232.4 15 705.4 416.7 318.1 705.4 416.7 318.1 668.3 418.3 225.6 16 687.8 445.4 310.0 687.8 445.4 310.0 674.2 419.0 234.6 17 683.5 431.1 302.1 683.5 431.1 302.1 665.1 431.1 224.5 18 684.5 449.9 305.7 684.5 449.9 305.7 719.8 426.2 348.2 19 681.2 424.4 298.3 681.2 424.4 298.3 718.9 428.3 382.3 20 687.0 435.7 300.3 687.0 435.7 300.3 665.3 421.9 219.3 21 651.7 432.2 299.6 651.7 432.2 299.6 699.5 432.8 314.4 22 681.6 -115.3 310.9j 691.6 415.3 310.9j 706.4 461.3 401.6 Test Condition COGNOUI-bQM-l Test Condition @QVC’IO‘IbNN-l' Prb1.L3, atlbelow X 806.0 821 .7 797.3 797.2 798.1 797.1 796.9 799.2 809.9 799.4 829.4 854.9 816.6 807.3 805.9 809.4 802.2 804.7 845.3 805.1 801 .4 831 .0 X 667.3 672.7 660.1 660.0 656.3 652.0 662.6 660.3 669.0 660.8 685.2 692.1 677.4 675.6 668.3 674.2 665.1 666.8 689.7 665.3 665.1 678.1 Y ~110.7 459.0 471.5 458.5 4 05.9 4 24.4 429.1 4 38.1 ~94.4 418.8 ~161.7 -1 35.3 436.8 445.2 4 28.6 4 29.7 441.8 438.9 435.4 433.4 ~96.8 4 04.4 (probe target 2) Y 411.4 435.8 448.2 4 39.8 4 03.5 418.0 417.7 -1 26.2 4 03.3 410.0 4 36.7 4 22.0 -1 24.4 -1 25.5 418.3 -1 19.0 ~131 .1 4 26.6 427.2 ~121 .9 ~99.5 ~107.5 Target Locations for Subject 07: 2 117.5 147.9 131.4 128.3 140.5 149.9 128.6 125.8 134.6 125.7 177.5 191.0 129.9 117.6 114.2 122.2 112.6 113.2 177.9 110.1 130.1 156.5 225.5 239.1 240.3 238.7 245.1 249.5 238.5 234.2 147 Prb.St, atlabove 239.0 232.7 254.3 257.1 235.0 232.4 225.6 234.6 224.5 224.4 254.7 219.3 239.6 241 .6 X 871 .1 866.1 824.6 852.2 851 .0 849.2 833.2 784.4 787.9 841 .9 789.5 792.5 795.3 794.3 789.9 790.0 797.0 790.4 790.5 794.9 844.7 789.7 X 696.2 692.1 668.4 678.2 676.4 675.3 673.2 645.5 648.2 682.5 647.9 651 .8 653.7 652.7 650.8 649.2 653.5 652.6 650.6 654.1 676.5 650.5 Y 478.0 441.0 459.0 434.3 4 33.6 ~171.2 471.2 436.1 -1 34.8 407.2 460.1 414.1 4 34.2 442.3 445.8 ~176.2 435.3 441.4 434.1 434.3 495.2 ~128.5 (probe target 2) Y 446.4 425.3 442.2 425.2 422.1 445.0 444.6 4 29.6 424.5 410.9 ~141 .9 411.6 423.3 4 30.6 428.3 446.8 430.1 424.4 427.0 ~128.5 4 58.6 422.6 2 371 .1 365.8 162.7 242.1 238.6 340.1 185.8 73.5 70.9 191 .1 75.1 70.6 73.8 72.7 70.4 75.0 75.0 70.2 68.6 71 .8 396.1 69.6 346.9 344.6 243.4 283.8 283.2. . 333.9 254.6 181 .5 179.4 257.5 178.8 177.8 177.6 176.3 177.2 178.2 175.9 177.2 176.8 175.9 359.0 178.3 Prb1.S1, atlbelow X 794.7 787.4 787.2 852.2 788.8 783.6 789.5 784.4 787.9 785.7 789.5 792.5 795.3 794.3 789.9 790.0 797.0 790.4 790.5 794.9 791 .0 789.7 X 648.6 643.3 637.9 678.2 642.2 635.4 643.3 645.5 648.2 645.9 647.9 651 .8 653.7 652.7 650.8 649.2 653.5 652.6 650.6 654.1 645.5 650.5 y ~149.1 450.1 458.0 434.3 4 09.8 456.7 436.5 436.1 -1 34.8 444.7 460.1 414.1 434.2 ~142.3 445.8 476.2 435.3 441.4 434.1 4 34.3 430.2 ~128.5 (probe target 2) Y 433.7 439.7 ~140.3 425.2 4 15.8 435.5 430.3 429.6 -1 24.5 428.3 ~141 .9 411.6 423.3 430.6 428.3 446.8 4 30.1 424.4 ~127.0 ~128.5 429.0 422.6 2 81 .9 83.1 98.9 242.1 101 .8 105.0 86.3 73.5 70.9 74.4 75.1 70.6 73.8 72.7 70.4 75.0 75.0 70.2 68.6 71 .8 82.0 69.6 180.1 184.7 190.7 283.8 197.2 199.7 184.9 181.5 179.4 180.9 178.8 177.8 177.6 176.3 177.2 178.2 175.9 177.2 176.8 175.9 181.5 178.3 148 Reference Data Target locations for Subject 08 x y z Origin 249.0 414.5 188.5 Reference 467.8 ~397.9 129.0 Manubrium 396.8 448.5 723.9 Xyphoid 317.2 446.5 590.2 C7 554.1 433.8 783.8 T4 568.8 432.8 649.7 S1 438.1 439.8 290.4 Left ASIS 300.2 282.6 396.3 Left Lateral Femoral Condyle 418.4 -386.5 415.6 Left Lateral Maileolis 458.9 -333.8 38.3 Left Lateral Foot -325.7 -361.5 -51.9 Test data for Subject 08 follows (coordinates in millimeters); Subject 08 Probe Length 386.5 lnterASiS Dist. 280 interPSiS width 1 20 Heel to foot target dist. 245 Test Condition OGNOUIthd Test Condition @QNOUIbWNd 149 TargetLocations: Origin X X 152.7 152.5 152.7 152.3 152.7 152.6 152.6 152.6 152.6 152.6 152.7 152.6 152.6 152.7 152.4 152.7 152.7 152.7 152.7 152.6 152.6 X Y ~375.3 ~375.2 ~375.3 ~375. 1 ~375.3 ~375.3 ~375.3 ~375.2 ~375.3 ~375.3 ~375.3 ~375.3 ~375. 1 ~375.3 ~375. 1 ~375.3 ~375.3 ~375.3 ~375.3 ~375.2 ~375.2 ~27.3 ~27.2 ~27.3 ~27. 1 ~27.3 ~27.3 ~27.3 ~27.1 ~27.2 ~27.3 ~27.3 ~27.2 ~27.2 -27.3 ~27.1 ~27.3 ~27.3 ~27.2 ~27.2 ~27.1 ~27.3 ref2 X 503.8 503.8 503.8 503.7 503.8 503.8 503.8 503.8 503.8 503.7 503.8 503.7 503.8 503.8 503.8 503.8 503.8 503.8 503.8 503.8 503.8 Y ~346.9 ~347.0 ~347.0 ~347.0 ~347.0 ~346.9 ~347.0 ~347.0 ~347.0 ~347.0 ~346.9 ~346.9 ~347.0 ~347.0 ~346.9 ~346. 9 ~346. 9 ~347.0 ~346.9 ~347.0 ~25.4 ~25.4 ~25.4 ~25.4 ~25.4 ~25.5 ~25.5 ~25.4 ~25.5 ~25.4 ~25.4 ~25.5 ~25.5 ~25.5 ~25.4 ~25.5 ~25.4 ~25.5 ~25.4 ~25.4 ~25.5 TargetLocations: Elbow X X 538.7 543.7 540.9 542.9 535.1 541.0 545.7 554.3 553.9 547.3 538.7 538.8 541.6 543.9 539.3 541.8 538.7 543.3 536.9 547.2 541.5 409.8 405.6 413.9 416.2 429.0 425.1 426.1 415.6 415.2 413.6 409.8 416.0 419.4 409.2 407.8 406.3 409.8 413.0 409.6 417.2 410.7 Wrist X 316.7 313.4 304.5 298.5 282.7 297.0 300.7 322.9 320.2 328.6 316.7 313.6 312.5 320.1 322.6 327.4 316.7 320.0 312.5 321 .4 316.1 Y ~290.9 ~284. 4 ~302. 6 ~31 4.8 ~305.1 ~309.3 ~272.7 ~281.2 ~276. 8 ~305. 4 ~300. 6 ~280. 1 ~279. 2 ~293. 2 ~296.3 ~287. 1 ~297.7 556. 9 533. 7 537.8 544.6 541.3 540.5 543.4 538.4 538.2 556.9 556. 9 559. 5 558.6 555.3 555.1 556.2 556.9 556. 5 556.5 558.7 554.5 Test Condition CONGO-503104 Test Condition DONOU’IAUN‘ 150 , TargetLocations: Manumbrium Xyphoid Left ASIS x y z x y z x y z x x x x x x x x x 504.5 -35.4 725.0 427.3 -36.6 589.4 403.1 480.8 402.4 511.6 42.7 721.4 429.2 45.7 589.9 393.9 491.5 409.9 553.8 47.7 728.6 448.5 -51.6 614.9 390.3 495.2 410.3 555.8 42.6 727.7 448.1 48.1 615.9 388.7 498.0 407.9 588.6 -38.7 728.5 464.1 44.0 633.5 387.6 496.0 411.3 569.0 42.9 733.4 455.7 47.9 626.0 398.6 497.3 406.6 579.7 -33.6 734.4 463.0 42.7 628.5 400.5 492.4 406.7 517.1 -35.0 730.4 432.4 -39.0 599.4 406.5 487.2 409.2 515.8 -35.3 726.5 431.7 -39.2 597.3 344.3 -388.2 455.2 509.3 -36.6 721.9 432.3 41.9 587.4 409.1 490.4 400.2 504.5 -35.4 725.0 427.3 -36.6 589.4 403.1 480.8 402.4 513.0 43.3 727.0 430.5 43.1 595.2 408.7 490.3 401.9 508.6 41.2 728.1 429.6 40.9 594.3 405.3 485.0 403.9 515.0 -32.4 723.2 436.2 -33.2 588.9 406.6 474.6 405.1 517.3 46.2 715.8 440.7 46.7 581.4 411.2 488.7 404.6 519.8 43.4 718.7 440.3 45.5 585.3 409.9 488.0 405.1 504.5 -35.4 725.0 427.3 -36.6 589.4 403.1 480.8 402.4 525.5 44.7 725.7 439.8 46.3 597.0 407.5 491.2 403.8 514.9 26.9 722.4 433.7 -28.3 589.1 408.5 469.1 405.3 520.3 -26.2 729.0 431.8 28.3 600.3 397.0 475.1 406.9 506.8 -37.1 726.4 429.1 -36.2 592.2 403.7 475.7 407.5 TargetLocations: Knee Ankle Foot x y z x y z x y z x x x x x x x x x -23.4 -285.2 376.7 0.0 0.0 0.0 0.0 0.0 0.0 51.6 -281.0 367.1 442.9 ~324.9 91.4 0.0 0.0 0.0 -50.4 -276.6 369.7 -263.6 -296.8 21.7 445.8 -324.8 96.8 47.4 -277.7 370.8 -252.7 -256.0 22.0 440.5 298.4 74.8 -52.6 -280.2 358.9 0.0 0.0 0.0 443.8 -316.5 94.5 -39.4 -280.0 351.3 0.0 0.0 0.0 447.5 ~326.6 104.3 -24.6 -295.7 344.3 0.0 0.0 0.0 442.1 -325.5 87.6 34.9 -258.2 354.2 0.0 0.0 0.0 445.3 -309.7 95.8 -36.9 -288.5 349.6 0.0 0.0 0.0 445.8 ~299.6 91.2 -33.1 -286.7 343.3 -287.8 -248.9 21.1 445.2 -304.5 92.9 -23.4 -285.2 376.7 0.0 0.0 0.0 0.0 0.0 0.0 -27.0 -306.3 334.8 0.0 0.0 0.0 444.2 ~326.2 94.7 -37.2 -270.7 355.0 0.0 0.0 0.0 458.2 278.8 109.8 -32.3 -271.2 343.0 0.0 0.0 0.0 449.3 -310.3 104.1 -36.6 -275.3 350.8 -290.1 -269.0 25.9 450.1 -309.8 104.4 37.7 -267.2 350.7 -284. 5 -230.8 22.1 446.9 -276.1 88.8 -23.4 -285.2 376.7 0.0 0.0 0.0 0.0 0.0 0.0 -31.2 -284.4 351.7 -274.9 -247.0 23.1 445.0 -284.7 80.8 -34.3 -263.6 350.9 0.0 0.0 0.0 448.6 -307.9 102.6 30.6 296.4 351.6 0.0 0.0 0.0 441.1 -326.3 85.1 -33.4 -259.0 350.5 -286.0 -232.1 17.2 443.5 -308.6 97.0 Test Condition Test Condition @GNOUI-hwtod 3333333335323004mm5un4 151 Met Locations for Sub ect 08: Probe- Acromion Prb1.T10, atlabove Prb1.T10- atlbelow x y z x y z x y z X X X X X X X X 845.0 -507.6 779.2 904.0 41.2 243.1 904.0 41.2 243.1 830.5 456.4 908.91 920.5 47.1 257.3 920.5 47.1 257.3 881.5 -505.9 800.2 930.4 45.3 267.3 930.4 45.3 267.3 936.1 449.6 808.8 929.0 16.3 269.5 929.0 16.3 269.5 940.8 495.4 749.2 939.8 -5.6 275.6 939.8 -5.6 275.6 916.0 492.8 784.7 929.2 -30.5 264.7 929.2 -30.5 264.7 905.7 486.2 832.7 924.5 -22.8 255.3 924.5 -22.8 255.3 899.6 441.2 831.1 900.4 -23.5 241.1 900.4 -23.5 241.1 893.1 447.1 823.5 912.8 41.8 251.6 912.8 41.8 251.6 862.7 460.2 869.6 907.4 -35.1 238.3 907.4 -35.1 238.3 845.0 -507.6 779.2 904.0 41.2 243.1 904.0 41.2 243.1 856.0 -511.0 786.9 906.5 -24.7 243.1 906.5 -24.7 243.1 818.8 -518.2 853.7 900.4 3.4 241.8 900.4 3.4 241.8 853.9 460.8 871.5 905.0 -5.0 234.8 905.0 -5.0 234.8 796.3 -518.3 887.7 917.6 -31.7 232.1 917.6 -31.7 232.1 846.2 -510.6 826.1 929.0 40.8 244.2 929.0 40.8 244.2 845.0 -507.6 779.2 904.0 41.2 243.1 904.0 41.2 243.1 786.2 -547.9 830.3 915.2 47.6 240.2 915.2 47.6 240.2 776.7 -521.4 854.9I 906.2 4.2 235.9! 906.2 4.2 235.9I 880.7 428.1 878.2 909.7 22.8 253.1 909.7 22.8 253.1 831.4 484.3 868.1 901.5 -26.9 242.6 901.5 -26.9 242.6 (probe target 2) (probe target 2) (probe target 2) x y z x y z x y z X X X X X X X X 726.9 -378.0 758.3 775.8 -33.3 362.9 775.8 -33.3 362.9 716.7 -349.5 826.1 784.3 -25.1 369.2 784.3 -25.1 369.2 772.3 -383.8 767.9 788.4 -26.9 372.1 788.4 -26.9 372.1 807.5 -346.3 770.4 788.0 -7.7 372.5 788.0 -7.7 372.5 828.1 -371.4 733.1 794.8 49.6 374.3 794.8 49.6 374.3 802.5 -372.3 758.9 789.3 -34.2 371.5 789.3 -34.2 371.5 801.0 -363.8 786.7 783.4 ~23.3 361.7 783.4 -23.3 361.7 761.1 -340.5 787.8 774.1 -25.1 363.2 774.1 -25.1 363.2 756.8 -341.2 784.2 778.4 48.9 364.0 778.4 48.9 364.0 738.6 -350.0 808.3 780.7 -33.6 360.1 780.7 -33.6 360.1 726.9 -378.0 758.3 775.8 -33.3 362.9 775.8 ~33.3 362.9 736.6 -382.7 763.6 778.4 -28.4 362.7 778.4 -28.4 362.7 717.6 -382.9 800.9 774.7 43.2 361.8 774.7 43.2 361.8 733.3 -348.5 807.2 779.8 43.6 357.8 779.8 43.6 357.8 704.8 -386.8 813.5 790.9 -34.6 353.4 790.9 ~34.6 353.4 733.1 -382.3 780.7 793.3 -21.8 355.5 793.3 -21.8 355.5 726.9 -378.0 758.3 775.8 -33.3 362.9 775.8 -33.3 362.9 700.5 -399.7 785.1 785.6 41.6 358.4 785.6 41.6 358.4 692.4 -376.3 798.8 780.1 -7.6 357.9 780.1 -7.6 357.9 752.3 -324.9 813.3 779.1 3.5 369.1 779.1 3.5 369.1 718.5 -363.4 806.5 774.6 -27.3 363.8 774.6 -27.3 363.8 Test Condition Test Condition @QNOMhuN-fi DONOUIDUN-l andddddddddd d OQNOMhQN-‘O X Prb1.T12, atlabove X Y X X 981.4 4.3 821.6 -29.9 820.1 -8.8 977.9 -0.3 819.7 -12.5 985.3 -1.7 820.9 -0.3 967.9 32.1 959.7 10.2 989.2 19.5 981.4 4.3 986.6 -11.2 983.1 1.7 990.8 3.2 807.4 -23.3 806.5 -8.1 981.4 4.3 986.1 23.8 986.3 26.8 979.3 -3.9 978.0 10.7 (probe target 2) X Y X X 811.3 4.8 716.2 -30.1 713.7 -23.8 807.4 -15.2 714.1 -24.2 809.5 -12.5 714.1 -10.0 803.2 7.8 801.7 -3.3 818.1 0.2 811.3 4.8 814.9 -18.4 812.1 -10.4 819.8 4.3 718.2 -28.5 716.0 -19.8 811.3 4.8 818.0 -0.3 817.0 9.9 809.5 -7.5 809.0 -0.4 419.1 281 .3 289.3 423.8 288.6 442.7 289.5 407.7 395.6 422.7 419.1 431 .3 422.6 425.9 264.3 264.5 419.1 417.1 414.0 418.7 415.1 152 Target Locations ior Sub act 08: 838.3 17.0 821.6 -29.9 820.1 -8.8 844.2 -21.9 819.7 -12.5 819.7 1.8 820.9 -0.3 819.6 4.5 852.8 2.9 886.3 1.9 838.3 17.0 815.2 -1 1.5 851.9 3.5 849.1 21.5 807.4 -23.3 806.5 -8.1 838.3 17.0 864.3 -31.3 901.8 71.9 837.0 0.5 819.8 6.9 (probe target 2) X Y X X 727.2 0.4 716.2 -30.1 713.7 -23.8 719.7 -28.0 714.1 -24.2 713.4 -13.8 714.1 -10.0 716.7 -11.8 729.6 -10.3 754.8 -12.5 727.2 0.4 71 1.8 -16.5 734.7 -12.1 733.3 5.7 718.2 -28.5 716.0 -19.8 727.2 0.4 741.6 -32.9 761.4 32.8 721.9 -7.1 718.9 4.9 Prb1 .L3, atlabove X Y X X 919.6 5.6 937.1 33.6 932.8 1 .3 890.7 -14.8 890.4 -7.3 897.3 25.2 921 .5 42.9 938.0 38.9 906.8 21 .9 934.4 53.6 919.6 5.6 914.5 24.1 932.7 23.4 935.3 81 .5 943.4 23.2 938.4 58.1 919.6 5.6 899.4 6.3 934.1 48.3 912.3 1 .0 943.7 42.2 (probe target 2) X Y X X 761 .1 -5.5 759.6 8.2 755.9 -14.2 733.6 -22.3 731 .8 -17.9 739.0 -1 .8 748.8 7.5 765.8 8.2 749.9 0.5 768.5 16.6 761 .1 -5.5 757.3 0.6 765.9 -0.8 767.4 35.0 775.9 -0.7 772.9 18.5 761 .1 -5.5 753.4 -13.4 768.6 22.7 751 .5 -6.5 768.1 14.2 X 236.4 381 .3 407.1 233.9 235.9 245.3 413.8 328.6 231 .2 281 .5 236.4 224.8 271 .3 326.5 276.7 284.3 236.4 190.5 268.8 241 .9 372.5 313.5 388.4 403.4 313.4 314.5 318.2 401 .4 356.5 309.9 330.6 313.5 302.9 325.6 354.1 327.6 332.1 313.5 289.1 325.4 314.1 380.0 153 Test met Locations for Sub act 08: Condition Prb1.L3, atlbelow Prb.S1, atlabove Prb1.S1, atlbelow x y z x y z x y z 1 x x x x x x 2 832.2 23.0 100.3 820.7 20.3 59.6 820.7 20.3 59.6 3 837.2 -2.0 125.3 832.1 -3.7 97.8 832.1 -3.7 97.8 4 848.6 -28.9 145.8 829.7 -23.9 90.4 829.7 -23.9 90.4 5 827.8 -12.8 130.7 828.5 -10.3 91.2 828.5 -10.3 91.2 6 823.8 0.5 132.0 826.0 17.3 102.7 826.0 17.3 102.7 7 824.7 -0.4 119.1 815.3 -2.1 67.7 815.3 -2.1 67.7 8 921.5 42.9 413.8 813.3 -2.5 62.3 813.3 -2.5 62.3 9 938.0 38.9 328.6 821.5 5.9 56.9 821 .5 5.9 56.9 10 828.6 15.5 107.1 819.8 -2.1 62.6 819.8 -2.1 62. 6 11 853.6 17.5 1 14.6 822.1 -3.9 56.4 822.1 -3.9 56. 4 12 832.2 23.0 100. 3 820.7 20.3 59. 6 820.7 20.3 59. 6 13 832.3 -14.0 94. 0 835.8 4.2 63.7 835.8 4.2 63. 7 14 836.1 26.2 102.9 830.7 18.6 62.31 830.7 18.6 62. 3 15 852.3 27.4 118.5 818.3 68.9 60.3 818.3 68.9 60. 3 16 865.7 14.2 122.3 831.3 23.8 64. 1 831.3 23.8 64. 1 17 856.2 31.7 116.4 828.4 41.8 61.6 828.4 41.8 61 .6 18 832.2 23.0 100. 3 820.7 20.3 59. 6 J 820.7 20.3 59. 6 19 830.4 14.8 96. 4 824.5 -11.2 54.9 824.5 -11.2 54. 9| 20 832.0 48.5 95. 1 821.5 84.1 70. 8 821.5 84.1 70. 8 21 826.0 63.0 116.5 816.0 19.2 63. 2 816.0 19.2 63. 2 22 943.7 42.2 372.5 910.2 40.1 254. 7 820.6 17.0 55.6 Test Condition (probe target 2) (probe target 2) (probe target 2) x y z x y z x y z 1 x x x x 2 705.0 2.2 221 .1 685.4 -3.3 170.1 685.4 -3.3 170.1 3 701.6 -12.3 237.4 683.1 -18.2 190.3 683.1 -18.2 190.3 4 704.7 -31.3 250.0 681.6 -35.2 186.7 681.6 -35.2 186.7 5 691 .5 -20.2 242.5 680.5 -25.5 186.6 680.5 -25.5 186.6 6 687.0 -9.1 243.8 675.9 -11.0 190.9 675.9 -11.0 190.9 7 690.2 -12.9 233.0 678.1 -22. 0 176.7 678.1 -22. 0 176.7 8 748.8 7.5 401.4 678.5 -20. 4 174.8 678.5 -20. 4 174.8 9 765.8 8.2 356.5 686.2 -10.2 168.8 686.2 -10.2 168.8 10 697.7 4.7 224.8 686.1 -16.4 176.3 686.1 -16.4 176.3 11 712.7 -1.6 222.2 690.8 -20.1 173.01 690.8 -20.1 173.01 12 705.0 2. 2 221.1 685.4 -3.3 170.1 685.4 -3.3 170.1 13 708.0 -21.2 218.5 694.9 -19.5 170.4 694.9 -19.5 170.4 14 706.6 -0.6 220.2 693.7 -7.1 171 .1 693.7 -7.1 171.1 15 715.6 4.6 227.9 685.6 23.1 168.3 685.6 23.1 168.3 1 6 727.0 -7.3 232.9 691.2 -6.0 166.5 691.2 -6.0 166.5 17 720.4 1.7 225.6 694.5 2.8 169.8 694.5 2.8 169.8 18 705.0 2.2 221.1 685.4 -3.3 170.1 685.4 -3.3 170.1 19 706.2 -9.0 219.1 690.5 -30.3 167.8 690.5 -30.3 167.8 20 706.4 23.2 217.8 686.6 33.7 173.6 686.6 33.7 173.6 21 699.8 24.9 232.2. 680.0 -2.3 173.2 680.0 -2.3 173.2 22 768.1 14.2 380.01 739.7 7.5 289.1 686.3 4.8 167.6 154 Reference Data Target locations for Subject O9 x y 2 Origin -56.1 -232.6 194.1 Reference 167.2 -214.5 129.5 Manubrium 143.0 52.2 724.3 Xyphoid 66.8 48.6 606.4 C7 305.0 58.3 762.7 T4 300.5 56.0 666.0 S1 142.7 32.7 286.7 Leit ASIS -28.0 -83.7 378.2 Lait Lateral Femoral Condyle 411.6 -144.7 387.7 Left Lateral Maileolis -506.7 -92.8 25.7 Left Lateral Foot -682.6 -114.7 -14.2 Test data for Subject 09 follows (coordinates in millimeters); Subject 09 Probe Length 376 lnterASlS Dist. 245 interPSiS width 95 Heel to foot target dis target dist. 225 Test Condition CDQNOUIDGN‘ Test Condition @ONOUIth-l 155 TarJgg Locations tor Subject 09: Origin rei2 x y z x y 2 -202.4 -267.5 -26.2 149.6 -254.8 -25.1 -202.4 -267.5 -26.2. 149.6 -254.8 -25.0 -202.4 -267.5 26.2 149.7 -254.9 -25.1 -202.4 -267.5 -26.1 149.7 -254.9 -25.1 -202.4 -267.5 -26.1 149.3 -254.6 -25.3 -202.4 -267.5 -26.2 149.5 -254.9 -25.0 -202.4 -267.5 -26.2 149.7 -254.7 -25.2 -202.4 -267.4 -26.3 149.7 -254.9 -25.0 -202.4 -267.4 -26.2. 149.7 -254.8 -25.1 -202.4 -267.5 -26.2 149.6 -254.9 -25.0 -202.4 -267.5 -26.2 149.6 -254.8 ~25.1 -202.5 -267.5 -26.2 149.6 -254.8 -25.1 -202.4 -267.3 -26.2 149.7 -254.8 -25.1 -202.4 -267.3 -26.3 149.7 -254.8 -25.0 -202.4 -267.3 -26.2 149.7 -254.8 -25.0 -202.4 -267.4 -26.2 149.7 -254.8 -25.0 -202.4 -267.4 -26.2. 149.6 -254.8 -25.1 -202.4 -267.4 -26.3 149.6 -254.7 -25.1 -202.4 -267.4 -26.3 149.7 -254.8 -25.1 -202.5 -267.3 -26.3 149.6 -254.7 -25.0 -202.5 -267.3 -26.3 149.7 -254.6 -25.1 -202.4 -267.3 -26.2 149.7 -254.6 -25.2 WMet Locations for Subject 09: Elbow Wrist x y z x y 2 159.7 -239.3 461.4 -38.2 -193.8 562.4 162.5 -243.5 471.9 -30.6 -182.2 570.1 154.4 -261.7 462.7 -32.9 -188.5 565.5 156.8 -244.0 467.7 -37.3 -185.1 566.1 169.5 -239.0 465.0 -22.9 -176.9 563.7 167.2 -244.0 470.7 -23.5 -171.1 563.8 163.8 -254.7 469.9 -29.4 -195.2 568.9 170.2 -239.7 467.7 -22.1 -174.4 564.4 160.8 -246.6 470.5 -29.0 -175.0 566.9 158.3 -247.7 456.9 -26.2 -177.7 563.8 158.7 -231.3 445.0 -24.5 -181.1 563.0 158.8 -225.9 457.7 -31.6 -175.8 563.8 161.4 -242.5 459.2 -25.3 -176.5 563.6 159.1 -241.8 458.7 -25.8 -172.6 563.6 157.1 -232.1 448.6 -25.5 -166.9 559.5 156.7 230.2 436.1 -17.2 -155.1 554.0 155.2 -222.6 440.8 ~23.2 -160.4 557.2 152.4 -218.5 445.9 -34.0 -178.7 561.0 165.8 -235.2 453.4 -22.5 -182.6 563.0 150.2 —242.1 443.6 -25.5 -168.5 558.9 165.1 -234.9 457.6 -20.5 -167.5 562.3 161.3 -224.1 460.9 -29.6 -168.8 563.9 156 Test Met Locations for Subject 09: Condition Manumbrium Xyphoid Left ASIS x y z x y z x y z 1 206.1 47.7 732.1 124.7 44.5 615.5 32.8 -95.9 388.6 2 210.3 49.7 734.1 125.9 44.8 621.2 21.7 -93.5 391.4 3 209.2 23.2 728.7 124.3 18.9 615.0 9.7 -115.8 399.3 4 211.8 42.2 737.2 125.5 39.0 625.7 11.5 -92.9 394.2 5 212.7 43.6 747.5 122.5 43.5 640.9 13.1 -89.1 396.8 6 220.7 41.0 743.8 125.5 38.2 641.0 10.4 -93.2 393.6 7 215.8 32.4 743.1 122.7 29.2 636.1 22.5 -100.6 388.7 8 210.5 47.3 744.4 118.5 44.3 636.8 28.4 -91.9 385.9 9 211.7 38.9 740.3 125.4 34.4 627.2 28.2 -97.1 385.4 10 210.1 31.5 738.2 123.7 29.0 625.2 21.6 -101.4 387.2 11 186.3 48.9 725.6 116.4 45.9 601.8 36.9 -87.4 384.1 12 203.4 55.3 733.3 126.2 53.7 613.1 33.5 -83.0 385.6 13 207.1 43.0 732.5 126.8 40.0 614.3 35.3 -96.9 387.3 14 205.2 43.1 730.8 125.6 37.8 611.7 37.8 -103.3 385.3 15 189.5 49.3 726.7 116.6 44.1 603.6 41.4 -91.6 384.0 16 165.0 48.4 717.2 107.9 44.5 583.8 41.7 -91.2 388.4 17 172.2 51.1 725.3 109.7 49.2 595.1 43.4 -88.2 387.8 18 170.9 60.2 725.4 110.5 59.4 595.8 33.0 -77.1 390.0 19 186.5 53.3 728.6 115.9 49.8 604.7 38.1 -87.0 392.9 20 180.6 32.4 718.9 116.7 29.5 591.7 34.9 -100.8 393.7 21 205.8 46.1 737.6 121.5 45.4 623.7 20.8 -82.6 388.3 22 206.7 59.2 733.0 126.2 57.9 617.3 30.8 -78.9 384.6 Test nget Locations tor Subject 09: Condition Knee Ankle Foot x y z x y z x y z 1 -364.8 -181.5 313.6 0.0 0.0 0.0 -765.4 -198.5 82.7 2 -378.1 -161.7 317.1 0.0 0.0 0.0 -764.7 -164.4 96.1 3 -396.1 -183.0 315.4 0.0 0.0 0.0 -769.5 -159.8 112.5 4 -377.0 -177.3 320.0 -618.9 -154.3 4.9 -764.7 -172.3 83.3 5 -374.2 -154.4 320.0 -620.1 -148.7 6.3 -766.0 -168.4 84.5 6 -373.3 -174.8 319.9 -621.2 -158.0 7.4 -765.0 -176.1 90.5 7 -363.6 -183.5 319.8 -613.7 -179.2 6.2 -764.7 -187.9 85.2 8 365.3 -170.7 318.6 -613.3 -163.5 3.2 -764.8 -178.9 86.1 9 -359.1 -185.2 314.1 -613.0 479.2 5.1 -764.7 -191.1 82.6 10 -369.6 -188.4 314.4 0.0 0.0 0.0 -766.0 -196.5 95.6 11 -359.6 -188.0 306.5 -615.1 -160.8 2.5 -767.7 -164.5 78.8 12 -360.8 -158.7 314.2 0.0 0.0 0.0 -763.5 -173.0 83.3 13 -363.2 -177.4 313.8 0.0 0.0 0.0 -761.4 -202.2 84.9 14 -363.4 -180.1 314.4 0.0 0.0 0.0 -761.0 -204.2 84.9 15 -360.7 -172.3 308.4 0.0 0.0 0.0 -763.0 -184.0 84.3 16 -362.4 -169.1 312.5 -616.2 -151.8 6.1 -764.6 -165.3 82.7 17 -353.1 ~184.5 309.7 0.0 0.0 0.0I -759.0 -214.0 83.2 18 -359.9 -160.8 312.1 0.0 0.0 0.0 -763.9 -173.6 85.3 19 -363.7 -162.2 314.3 -615.0 -150.7 7.1 -762.4 -167.3 86.1 20 -365.5 -173.2 310.7 0.0 0.0 0.0 -765.0 -177.6 90.3 21 -371.8 -168.4 314.8 -620.5 -150.3 7.8 -765.7 -160.6 85.9 22 —365.0 -157.7 315.8 0.0 0.0 0.0 -762.1 -182.4 83.9 Test Condition OGNOUIhWN—L Test Condition 33333333333380m~1mm¢un4 X 533.6 503.8 484.6 514.5 485.0 532.5 558.1 514.1 464.5 425.8 493.8 436.9 452.7 493.8 450.4 434.4 419.4 449.6 424.4 381 .8 517.3 426.6 X 412.8 399.1 388.4 402.8 386.8 419.7 426.6 405.6 377.1 352.4 375.4 358.0 368.3 386.1 354.4 331 .8 327.4 344.9 339.6 314.3 399.7 351 .7 V -385.7 -375.3 414.6 400.1 -41 1.4 -363.9 -385.9 -397.4 -384.8 456.3 -353.4 ~372.8 421 .4 -399.8 -399.3 395.3 -384.1 -387.4 423.5 423.9 -367.9 416.4 (probe target 2) y 266] -259.1 -292.2 -276.7 -280.4 -254.6 -274.2 -272.2 -267.9 -31 1.0 -248.3 -251 .3 -285.0 -275.5 -270.9 -270.3 -258.8 -258.7 -281 .4 -289.3 -255.4 -275.7 2 834.5 912.4 910.8 868.5 884.1 913.9 823.1 870.9 957.9 882.4 896.8 953.7 897.0 870.6 892.6 879.8 917.7 864.0 874.0 933.3 887.9 902.1 788.9 833.1 829.2 808.2 820.0 834.5 787.0 812.1 859.6 814.9 820.7 853.7 823.6 809.4 821 .0 810.3 834.2 805.5 812.1 840.8 819.4 827.8 157 Tar at Locations ior Subject 09: Probe1- Acromlon Prb1.T10, atlabove x Y 639.5 63.2 588.8 8.1 597.8 14.6 591 .4 14.4 571.5 43.7 577.3 13.0 577.5 91 .3 572.2 44.6 614.2 4.1 586.5 27.0 61 1.2 38.3 616.3 57.8 622.2 36.3 601.1 19.0 632.4 57.3 627.7 3.9 606.2 60.6 621.1 41 .7 625.1 44.3 613.4 43.5 586.7 25.8 608.5 23.0 (probe target 2) x Y 464.6 56.6 440.3 24.9 446.2 18.7 438.7 28.4 424.6 44.8 429.7 26.3 425.9 62.3 423.1 43.6 447.4 20.9 436.8 29.0 460.2 43.4 459.4 59.4 461 .8 42.6 450.9 26.2 468.7 53.4 470.3 24.1 454.1 58.8 462.9 53.6 465.6 48.2 461 .2 42.1 436.4 37.8 449.6 41 .7 Z 451 .1 298.1 299.4 307.5 302.9 31 1.7 327.2 306.9 372.4 301 .3 304.1 326.8 338.1 296.5 343.3 326.5 302.3 327.5 327.4 300.5 302.9 327.6 465.9 393.4 391 .3 397.1 401 .9 407.9 412.3 403.0 428.1 395.9 395.2 409.0 41 1.8 390.0 408.7 403.2 393.2 404.6 405.3 391 .3 396.0 404.4 X Y 639.5 63.2 588.8 8.1 512.7 65.9 591 .4 14.4 571 .5 43.7 577.3 13.0 577.5 91 .3 572.2 44.6 614.2 4.1 586.5 27.0 61 1.2 38.3 616.3 57.8 622.2 36.3 601 .1 19.0 632.4 57.3 627.7 3.9 606.2 60.6 621 .1 41 .7 625.1 44.3 613.4 43.5 586.7 25.8 608.5 23.0 (probe target 2) X 1! 464.6 56.6 440.3 24.9 384.0 47.2 438.7 28.4 424.6 44.8 429.7 26.3 425.9 62.3 423.1 43.6 447.4 20.9 436.8 29.0 460.2 43.4 459.4 59.4 461 .8 42.6 450.9 26.2 468.7 53.4 470.3 24.1 454.1 58.8 462.9 53.6 465.6 48.2 461 .2 42.1 436.4 37.8 449.6 41 .7 Prb1 .T10- atlbelow Z 451 .1 298.1 195.1 307.5 302.9 31 1 .7 327.2 306.9 372.4 301 .3 304.1 326.8 338.1 296.5 343.3 326.5 302.3 327.5 327.4 300.5 302.9) 327.6 465.9 393.4 317.5 397.1 401 .9 407.9 412.3 403.0 428.1 395.9 395.2 409.0 41 1.8 390.0 408.7 403.2 393.2 404.6 405.3 391 .3 396.0 404.4 158 Test Target Locations ior Subject 09: ‘ Condition Prb1.T12, atlabove Prb1.T12, atlbelow Prb1.L3, atlabove x y z x y z x y z 1 543.6 57.4 21 1.5 543.6 57.4 211.5 510.5 22.9 140.5 2 516.0 61.3 194.1 516.0 61.3 194.1 484.4 11.5 127.4 3 537.3 73.9 223.3 537.3 73.9 223.3 489.8 93.1 157.6 4 526.0 71.1 215.0 526.0 71.1 215.0 475.5 49.7 138.0 5 603.3 31 .6 388.5 506.7 84.4 221 .4 564.5 64.0 328.4 6 610.9 29.3 424.3 506.9 70.3 221 .9 564.5 64.0 328.4 7 615.9 -6.4 458.8 525.3 69.0 229.5 474.9 73.0 141 .9 8 615.4 72.0 422.5 512.8 55.5 216.2 463.7 37.8 125.3 9 530.2 51.8 212.5 530.2 51.8 212.5 493.8 36.7 135.8 10 631.5 1.3 491.4 523.1 54.8 212.0 575.9 77.6 301.1 1 1 514.2 31.0 167.6 514.2 31.0 167.6 484.3 22.9 98.3 12 638.4 47.1 398.6 533.1 64.7 193.5 472.9 59.7 102.4 13 515.6 52.0 179.3 515.6 52.0 179.3 492.1 49.5 112.5 14 523.6 52.9 182.0 523.6 52.9 182.0 499.6 37.9 112.7 15 557.9 62.6 203.3 557.9 62.6 203.3 518.1 64.6 126.6 16 551.9 40.3 191.5 551.9 40.3 191.5 529.6 80.8 135.8 17 527.4 56.5 180.9 527.4 56.5 180.9 484.5 59.0 100.1 18 528.9 54.5 179.7 528.9 54.5 179.7 521.0 85.1 140.5 19 554.2 55.2 205.7 554.2 55.2 205.7 520.3 73.2 136.7 20 528.0 63.9 174.3 528.0 63.9 174.3 488.3 41.6 98.1 21 631.8 50.8 457.5 535.5 89.0 221.6 583.5 69.3 315.5 22 509.0 35.5 187.3 509.0 35.5 187.3 601.7 78.3 336.1 Test Condition ((probe target 2) (probe target 2) (probe target 2) x y z x y z x y z 1 404.3 50.8 321.0 404.3 50.8 321 .0 376.3 32.6 253.91 2 386.9 55.4 316.5 386.9 55.4 316.5 356.1 24.1 249.4 3 397.3 46.8 328.4 397.3 46.8 328.4 352.0 54.9 260.6 4 388.4 55.8 328.1 388.4 55.8 328.1 345.2 43.6 260.2 5 433.9 43.8 437.6 374.5 68.8 338.6 394.0 54.1 375.6 6 437.3 38.1 456.7 375.0 54.0 339.0 394.0 54.1 375.6r 7 440.8 12.6 474.6 382.4 52.5 337.5 343.9 53.9 263.7 8 439.6 63.6 456.3 379.5 48.9 335.7 343.8 38.3 256.4 9 393.7 42.2 324.9 393.7 42.2 324.9 361.5 34.4 253.7 10 455.9 16.6 488.9 389.3 42.7 327.6 409.5 55.3 358.3 11 396.3 40.9 297.6 396.3 40.9 297.6 366.9 31 .9 229.5 12 466.0 56.0 438.5 398.2 65.8 309.8 356.2 57.5 235.4 13 395.8 49.3 308.1 395.8 49.3 308.1 364.1 45.8 235.5 14 400.3 41.4 308.0 400.3 41.4 308.0I 368.8 36.9 233.2 15 419.4 53.4 313.4 419.4 53.4 313.4 382.3 53.2 2399' 16 420.1 43.9 310.4 420.1 43.9 310.4 394.7 64.8 249.0 17 401 .6 55.8 305.1 401 .6 55.8 305.1 365.1 55.7 229.8 18 404.5 56.5 304.6 404.5 56.5 304.6 386.8 71 .4 253.6 19 418.4 53.2 319.1 418.4 53.2 319.1 386.1 62.0 252.1 20 400.8 55.2 295.8 400.8 55.2 295.8 368.4 39.2 227.5 21 455.1 53.5 470.6 393.1 72.2 328.9 414.9 60.5 367.5 22 387.2 47.7 314.91 387.2 47.7 314.9 427.5 68.8 371.9] 159 Test Tar at Locations for Subjflfl: Condition Prb1.L3, atlbelow Prb.St, atlabove Prb1.S1, atlbelow x y z x y z x y z 1 510.5 22.9 140.5 494.2 70.8 105.4 494.2 70.8 105.4 2 484.4 1 1.5 127.4 474.7 136.1 1 19.8 474.7 136.1 1 19.8 3 489.8 93.1 157.6 507.3 -3.4 185.3 507.3 -3.4 185.3 4 475.5 49.7 138.0 489.5 78.8 136.7 489.5 78.8 136.7 5 463.7 71.8 145.1 542.0 68.8 272.6 495.9 52.3 144.31 6 463.7 71 .8 145.1 542.0 68.8 272.6 495.9 52.3 144.3 7 474.9 73.0 141.9 480.9 55.0 100.1 480.9 55.0 100.1 8 463.7 37.8 125.3 496.7 87.1 125.5 496.7 87.1 125.5 9 493.8 36.7 135.8 500.6 92.7 122.5 500.6 92.7 122.5 10 486.4 42.8 134.1 489.9 84.9 119.5 489.9 84.9 119.5 11 484.3 22.9 98.3 504.1 70.4 102.0 504.1 70.4 102. 0 12 472.9 59.7 102.4 484.9 90.8 83.7 484.9 90.8 83. 7 13 492.1 49.5 112.5 485.9 72.9 80.0 485.9 72.9 80. 0 14 499.6 37.9 1 12.7 492.1 58.2 83.9 492.1 58.2 83.9 15 518.1 64.6 126.6 493.9 59.4 81.7 493.9 59.4 81.7 16 529.6 80.8 135.8 510.0 49.0 101.3 510.0 49.0 101.3 17 484.5 59.0 100.1 492.7 73.2 81.4 492.7 73.2 81.4 18 521.0 85.1 140.5 522.4 63.1 141.2 522.4 63.1 141.2 19 520.3 73.2 136.7 493.6 74.4 86.9 493.6 74.4 86. 9 20 488.3 41.6 98.1 509.5 52.9 108.3 509.5 52.9 108. 3 21 475.5 69.0 126.0I 511.2 53.4 150.3 511.2 53.4 150.3 22 473.8 60.2 111.2 512.6 51.3 132.7 512.6 51.3 132.7 Test Condition (probe target 2) (probe target 2) F(probe target 2) x y z x y z x y z 1 376.3 32.6 253.9 340.1 50.5 189.1 340.1 50.5 189.1 2 356.1 24.1 249.4 327.7 83.8 200.1 327.7 83.8 200.1 3 352.0 54.9 260.6 336.2 1 .2 234.4 336.2 1.2 234.4 4 345.2 43.6 260.2 331.3 57.3 219.6 331.3 57.3 219. 6 5 336.6 54.2 266.9 365.0 52.5 309.0' 339.0 42.3 222. 9 6 336.6 54.2 266.9 365.0 52.5 309.0 339.0 42.3 222. 9 7 343.9 53.9 263.7 334.1 41.4 197.3 334.1 41.4 197.3 8 343.8 38.3 256.4 341.6 65.6 210.1 341.6 65.6 210.1 9 361 .5 34.4 253.7 346.5 63.8 205.8 346.5 63.8 205.8 10 355.0 36.3 253.1 339.3 54.8 207.6 339.3 54.8 207.6 11 366.9 31.9 229. 5 352.8 53.7 192.3 352.8 53.7 192.3 12 356.2 57.5 235. 4 341.7 68. 9 185.1 341.7 68. 9 185.1 13 364.1 45.8 235.5 342.5 51.8 181.3 342.5 51 .8 181.3 14 368.8 36.9 233.2 345.7 43. 5 180.3 345.7 43. 5 180.3 15 382.3 53.2 239.9 347.2 47. 8 179.2 347.2 47. 8 179.2 16 394.7 64. 8 249. 0 356.8 46.0 189.6 356.8 46.0 189.6 17 365.1 55. 7 229. 8 347.5 59. 3 180.8 347.5 59.3 180.8 18 386.8 71.4 253. 6 357.0 60. 0 212.2 357.0 60.0 212.2 19 386.1 62.0 252.1 346.8 59. 9 184.2 346.8 59.9 184.2 20 368.4 39. 2 227.5 355.2 42.0 194.7 355.2 42.0 194.7 21 350.1 64. 6 254.0 351.5 45.7 225.3 351.5 45.7 225.3 22 350.3 59. 7 240.0 352.5 50.1 208.9 352.5 50.1 208.9 160 Reference Data Target locations for Subject 10 x y z Origin -74.3 -250.6 189.6 Reference 143.6 -262.0 131 .2 Manubrium 86.8 9.4 723.2 Xyphoid 3.6 1 .4 574.1 CT 231 .1 3.5 788.9 T4 266.3 1 .7 682.3 S1 128.5 -13.2 290.1 Left ASIS -31.8 -113.1 404.8 Left Lateral Femoral Condyle 428.7 -194.7 382.3 Left Lateral Maileolis -539.5 -143.7 -15.0 Left Lateral Foot 634.9 -136.3 -58.9 Test data for Subject 10 follows (coordinates in millimeters): Test Condition Subject 10 1 2 Probe Length 3 386.5 4 5 interASlS Dist. 6 237 7 8 interPSlS width 9 120 10 1 1 Heel to foot 12 target dist. 13 153 14 15 16 17 18 19 20 21 22 Test Condition 1 T10 location 2 was estimated 3 from rigid thorax 4 location and 5 orientation 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 Target Locations for Subject 10: 161 Origin x -149.4 -149.5 -149.4 -149.4 -149.5 -149.3 -149.4 -149.4 -149.4 -149.4 -149.5 -149.4 -149.4 -149.5 -149.4 -149.4 -149.4 -149.4 -149.4 -149.4 -149.5 -149.4 V -295.1 -295.1 -295.0 -295.1 -295.2 -295. 1 -295. 1 -295.0 -295.1 -295.1 -295.1 -295.0 -295.2 -295.0 -295.1 -295.1 -295.1 -295.1 -295.2 -295. 1 -295.0 -295.0 2 -24.0 -24.1 -24.0 -24.0 ~23.9 -23.9 -24.0 -24.0 -24.1 -24.0 -24.1 -24.0 -24.0 -24.1 -24.1 -24.1 -24.0 -24.1 -24.1 -24.1 -24.1 -24.0 rat 2 X 201.7 201.9 201.9 202.0 201.9 201.9 201.9 201.8 201.9 202.0 201.9 201.9 201.7 201.8 201.8 201.8 201.9 201.9 201.9 201.8 201.8 201.9 Y -320.3 -319.8 -320.3 -320.3 -320.3 320.4 -320.3 -320.3 -320.3 -319.9 -320.3 -319.9 -320.4 -320.5 -320.3 -320.3 -320.4 -319.9 -320.3 -320.3 -320.3 -319.9 2 -22.7 -22.5 -22.6 -22.6 -22.6 -22.8 -22.7 -22.7 -22.7 -22.7 -22.6 -22.5 -22.6 -22.6 -22.7 -22.7 -22.7 -22.7 -22.7 -22.7 -22.8 -22.7 Target Locations for Subject 10: Elbow x 184.8 0.0 205.1 199.5 201.2 220.0 211.1 208.7 203.1 209.1 190.6 204.2 203.8 201.8 196.9 198.7 194.1 199.5 197.0 198.7 207.8 196.4 Y -286.6 0.0 -272.7 277.3 -270.7 -269.6 -271 .2 -275.7 -273.9 -268.9 -276.3 -269.7 -274.5 —271 .1 -276.1 -283.0 -282.0 -279.5 -278.4 -277.5 -274.6 -273.1 2 448.8 0.0 476.2 462.0 467.0 484.0 477.3 480.6 478.1 482.7 451 .6 463.4 468.9 473.5 457.8 464.7 461 .0 467.5 452.4 464.2 465.9 466.8 Wrist X 2.9 0.0 -1.8 1.7 2.3 10.6 1.3 5.8 2.9 6.6 -4.4 7.7 4.8 3.2 -4.4 0.6 -1.1 -2.5 2.4 2.4 5.1 1.0 -166.2 0.0 -177.0 -169.4 -166.7 -166.5 ~174.3 -170.3 -163.3 -158.2 -177.2 -159.1 -166.6 -162.4 -178.7 -176.1 -173.5 -178.4 -174.4 -169.8 -173.3 -164.8 593.9 0.0 605.9l 596.2 603.5 603.8 604.8 608.3 605.9 604.8 596.9 595.9 601 .9 604.7 597.4 599.3 599.0 602.4 595.5 600.6 598.3 602.6 162 Test Igget Locations for Subject 10: Condition Manumbrium Xyphoid Left ASIS x y z x y z x y z 1 243.8 -25.1 736.9 156.2 -27.3 587.8 114.0 -146.1 410.8 2 298.0 4.1 754.2 170.8 -13.8 627.6 94.6 -124.1 408.1 3 294.7 -0.2 748.5 166.9 4.7 620.0 86.0 —117.8 412.9 4 281.4 -13.0 757.0 168.8 -12.6 619.5 97.9 -122.2 410.6 5 294.6 -5.0 751.4 171.2 -7.6 624.0 96.6 -118.4 408.8 6 348.5 -7.4 757.8 195.2 8.0 654.0 100.4 -115.6 409.9 7 298.7 -3.1 758.3 168.6 -7.7 631.2 102.5 -115.3 407.7 8 290.0 -6.1 759.7 163.6 -12.0 629.9 104.1 -112.9 406.6 9 289.0 4.6 757.6 164.3 -8.1 624.1 111.0 -115.3 403.5 10 293.7 -3.0 756.7 168.0 -8.5 622.9 104.2 -115.3 404.9 11 242.1 4.0 735.6 153.8 -11.2 581.9 118.2 -119.3 402.9 12 265.4 1.0 747.4 162.4 -0.6 601.4 114.2 -119.2 404.7 13 265.0 -0.7 749.4 158.3 -7.3 602.6 114.8 -121.3 404.4 14 268.1 -5.8 751.6 157.7 -9.2 605.3 114.9 -119.7 403.4 15 249.9 9.1 744.3 153.1 -12.1 591.3 118.2 -120.8 402.2 16 243.3 -9.3 742.2 149.1 -16.1 585.0 120.8 -127.8 402.3 17 244.5 -12.5 742.1 150.3 -17.8 586.1 116.6 -126.6 402.1 18 261.2 -8.6 748.4 155.6 -15.6 597.8 115.7 ~124.8 403.4 19 247.6 -8.0 736.7 155.9 -12.8 585.4 116.3 -124.7 405.1 20 257.1 -7.0 743.3 154.3 -12.4 590.8 113.9 -125.8 404.5 21 281.4 -8.5 752.9 163.4 -8.5 615.8 105.2 -121.1 405.5 22 265.8 -1.6 749.3 159.5 -5.4 601.5 114.1 -123.0 404.4 Test Target Locations for Sumct 10: Condition Knee Ankle Foot x y z x y z x y z 1 -294.4 -205.1 322.3 -585.2 -152.9 13.0 -667.9 -170.5 63.2 2 -290.4 -200.2 328.6 -576.3 -157.1 12.6 0.0 0.0 0.0 3 -314.0 -196.2 346.3 -672.9 -165.3 47.5 0.0 0.0 0.0 4 -297.6 -176.9 336.4 -577.2 -146.6 15.0 -675.4 -157.3 54.9 5 -293.5 -195.7 331.2 -575.1 -152.2 12.0 0.0 0.0 0.0 6 -288.0 -197.2 329.1 -673.4 -166.3 48.3 0.0 0.0 0.0 7 -289.5 -190.7 323.7 -579.2 -140.5 11.4 -678.3 -145.2 56.9 8 -287.7 -190.4 329.0 -575.7 -150.3 12.8 0.0 0.0 0.0 9 -288.6 -185.2 328.5 -574.3 -148.7 12.9 0.0 0.0 0.0 10 -289.6 -196.7 329.0 -572.7 -152.7 11.4 -672.8 -153.4 48.0 11 -291.0 -184.7 319.1 -585.5 -146.6 12.7 -679.8 -168.7 68.3 12 -287.3 -191.7 323.7 -578.5 -152.2 12.2 -676.5 -158.3 54.7 13 -294.0 -182.2 322.4 -588.5 -152.6 14.6 -680.9 -173.8 69.5 14 -292.0 -190.0 322.5 -584.5 -153.9 12.8 -677.9 -175.8 67.8 15 -286.0 -199.4 325.9 -674.5 -172.0 48.5 0.0 0.0 0.0 16 -289.9 -196.5 319.7 -582.9 -154.6 12.0 -677.2 -164.7 55.7 17 -291.1 -199.8 321.6 -582.6 -154.1 12.3 -677.9 -155.8 56.6 18 -288.3 -206.4 323.0 -578.2 -158.0 10.9 0.0 0.0 0.0 19 -296.4 -173.9 334.7 -575.5 -149.8 14.4 0.0 0.0 0.0 20 -292.3 -213.4 319.5 -673.8 -165.6 46.1 0.0 0.0 0.0 21 -298.9 -182.3 326.9 -585.4 -151.9 13.0 -677.9 -173.6 66.8 22 -287.1 -198.2 323.5 0.0 0.0 0.0 0.0 0.0 0.0 163 Test Tar at Locations for Sub act 10: Condition Probe1- Acromlon Prb1.T10, atlabove WO- atlbelow x y z y z x y 1 503.0 477.5 918.4 0.0 0.0 0.0 0.0 0.0 2 547.0 468.3 938.6 0.0 0.0 0.0 0.0 0.0 3 641.6 400.5 901.3 0.0 0.0 0.0 0.0 0.0 4 605.6 441.1 878.2 0.0 0.0 0.0 0.0 0.0 5 603.5 444.8 873.7 0.0 0.0 0.0 0.0 0.0 6 710.9 410.8 857.6 0.0 0.0 0.0 0.0 0.0 7 624.8 427.6 913.9 0.0 0.0 0.0 0.0 0.0 8 624.9 441.6 895.4 0.0 0.0 0.0 0.0 0.0 9 648.5 406.0 892.1 0.0 0.0 0.0 0.0 0.0 10 643.6 -391.9 929.4 0.0 0.0 0.0 0.0 0.0 11 522.5 407.8 970.3 0.0 0.0 0.0 0.0 0.0 12 556.7 471.2 876.0 0.0 0.0 0.0 0.0 0.0 13 538.4 461.3 926.0 0.0 0.0 0.0 0.0 0.0 14 578.5 440.2 933.6 0.0 0.0 0.0 0.0 0.0 15 574.1 449.9 890.3 0.0 0.0 0.0 0.0 0.0 16 515.6 450.1 962.8 0.0 0.0 0.0 0.0 0.0 17 582.8 460.9 862.2 0.0 0.0 0.0 0.0 0.0 18 588.2 423.2 925.2 0.0 0.0 0.0 0.0 0.0 19 524.9 433.7 957.4 0.0 0.0 0.0 0.0 0.0 20 549.4 474.8 887.91 0.0 0.0 0.0 0.0 0.0 21 601.8 432.5 914.3 0.0 0.0 0.0 0.0 0.0 22 574.7 425.1 931.5 0.0 0.0 0.0 0.0 0.0 Test Condition (probe target 2) (probe target 2) (probe target 2) x y z x y z x y 1 407.3 -354.3 835.0 0.0 0.0 0.0 0.0 0.0 2 459.2 -341.0 852.9 0.0 0.0 0.0 0.0 0.0 3 511.7 -302.1 832.3 0.0 0.0 0.0 0.0 0.0 4 481.3 -331.5 818.4 0.0 0.0 0.0 0.0 0.0 5 483.5 -328.9 815.4 0.0 0.0 0.0 0.0 0.0 6 575.1 314.7 798.7 0.0 0.0 0.0 0.0 0.0 7 506.8 -318.8 839.5 0.0 0.0 0.0 0.0 0.0 8 506.9 -328.0 829.6 0.0 0.0 0.0 0.0 0.0 9 516.5 -307.8 827.91 0.0 0.0 0.0 0.0 0.0 10 518.2 -296.8 849.3 0.0 0.0 0.0 0.0 0.0 11 419.0 -308.0 867.3 0.0 0.0 0.0 0.0 0.0 12 452.0 -341.3 818.4 0.0 0.0 0.0 0.0 0.0 13 444.2 -334.5 847.6 0.0 0.0 0.0 0.0 0.0 14 471.9 -326.0 851.5 0.0 0.0 0.0 0.0 0.0 15 458.0 -334.1 825.1 0.0 0.0 0.0 0.0 0.0 16 428.3 -331.2 866.6 0.0 0.0 0.0 0.0 0.0 17 462.2 343.2 810.31 0.0 0.0 0.0 0.0 0.0 18 470.0 -319.0 846.2 0.0 0.0 0.0 0.0 0.0 19 425.5 -324.6 860.5 0.0 0.0 0.0 0.0 0.0 20 447.8 -345.1 824.8 0.0 0.0 0.0 0.0 0.0 21 484.4 -323.6 838.6 0.0 0.0 0.0 0.0 0.0 22 461.6 -317.7 849.7 0.0 0.0 0.0 0.0 0.0 Test Condition OGNOMhQN-fi Test Condition CONOUIOUNJ 164 T at Locations for Subject 10: Prb1.T12, atlabove Prb1.T12, atlbelow Prb1.L3, atlabove x y z x y z x y 2 687.5 -66.3 292.1 687.5 -66.3 292.1 655.4 -98.8 222. 9 700.0 -57.8 352.1 700.0 -57.8 352.1 643.3 -60. 7 273. 4 708.5 43.5 358.01 590.2 -59.5 183.51 661.4 40. 3 316.8 693.9 -39.7 316.1 693.9 -39.7 316.1 631.7 -63. 8 217.1 684.8 -64.0 319.1 684.8 -64.0 319.1 623.2 -73. 3 218.6 688.3 -52.4 309.4 688.3 -52.4 309.4 624.9 -57.9 226.2 674.4 49.6 296.5 674.4 49.6 296.5 629.5 40.6 215.1 680.5 -60.9 310.1 680.5 -60.9 310.1 628.7 -68.8 214.3 690.8 -62.6 317.6 690.8 -62.6 317.6 628.6 -53.2 191.7 683.8 -37.4 303.5 683.8 -37.4 303.5 640.8 -9.1 216.9 694.5 -78.0 301.6 694.5 -78.0 301 .6 687.8 -51.8 277.9 688.4 -69.7 303.2 688.4 -69.7 303.2 658.9 —73.4 232.5 691 .9 -78.2 306.8 691.9 -78.2 306.8 658.9 -64.3 217.9 684.3 -77.1 295.0 684.3 -77.1 295.0 656.6 -94.0 224.1 710.2 -69.5 326.0 710.2 -69.5 326.0 698.1 -23.8 409.4 712.4 -52.5 317.4 712.4 -52.5 317.4 703.3 -25.7 320.9 715.3 -87.7 336.0 715.3 -87.7 336.0 683.3 -114.4 280.9 716.9 -68.8 341.2 716.9 -68.8 341.2 667.2 -112.3 250.0 698.6 -92.1 313.7 698.6 -92.1 313.7 664.5 -90.5 232.5 699.9 -87.0 313.6 699.9 -87.0 313.6 673.7 -81.2 245.0 685.7 -74.1 306.7 685.7 -74.1 306.7 648.4 -52.8 222. 5 695.9 -78.9 316.3 695.9 -78.9 316.3 658.5 -79.7 230. 8 H(probe target 2) (probe target 2) (probe target 2) x y z x y z x y 2 541.0 -50.5 388. 6 541.0 -50.5 388. 6 499.1 -75.7 302.7 535.8 40.5 416. 7 535.8 40.5 416. 7 477.0 43.7 333.1 542.1 -30.5 417.0 473.3 -38.8 314.4 490.3 -30.7 354. 6 537.9 -30.9 399.1 537.9 -30.9 399.1 479.1 44.6 304.2 530.4 42.2 402.0 530.4 42.2 402. 0 472.4 47.6 307.8 534.4 -34.0 398.0 534.4 -34.0 398. 0 470.9 -38.2 310.5 526.2 -33.8 392.4 526.2 -33.8 392. 4 478.0 -28.8 304.9 529.8 40.6 402.1 529.8 40.6 402.1 477.5 44.2 303.6 535.7 43.1 401.7 535.7 43.1 401.7 486.0 -38.2 296. 0 534.4 -29.2 397.1 534.4 -29.2 397.1 485.2 -12.7 302. 5 544.0 -52.1 389.9 544.0 -52.1 389.9 518.5 -38.4 326.7 539.5 44.2 396.6 539.5 44.2 396.6 500.9 47.8 308.4 540.6 -53.7 397.2 540.6 -53.7 397.2 501.9 46.9 298.6 537.6 -53.5 389.9 537.6 -53.5 389.9 500.8 -62.8 302. 1 551.8 47.8 401.7 551.8 47.8 401.7 523.0 -26.2 396.2 554.8 42.6 397.1 554.8 42.6 397.1 528.6 -28.3 348. 1 555.1 -62.1 406.9 555.1 —62.1 406.9 516.5 -76.3 328. 2 553.9 49.7 409.6 553.9 49.7 409.6 506.4 -73.2 312.9 544.8 -61.3 396.5 544.8 -61.3 396.5 506.7 -61.7 306.6 545.9 -59. 6 396.0 545.9 -59.6 396.0 510.8 -59.3 311.1 535.5 -50. 2 399.0 535.5 -50.2 399.0 492.0 41.1 305.3 541.7 -50. 6 399.0 541.7 -50.6 399.0 500.2 -53.0 306.4 165 Test Met Locations for Subjfljo: Condition Prb1.L3, atlbelow Prb.S1, atlabove Prb1.S1, atlbelow x y z x y x y z 1 655.4 98.8 222.9 646.4 -71 .2 576.7 ~56.3 64.9 2 643.3 60.7 273.4 633.9 ~16.2 573.1 ~5.3 85. 9 3 561.8 ~30.1 121.4 632.1 ~34.4 573.1 ~29.9 1152 4 631.7 ~63.8 217.1 621.3 5.9 621.3 5.9 179.8 5 623.2 ~73.3 218.6 619.7 ~19.8 619.7 -19.8 186.5 6 624.9 ~57.9 226.2 617.8 9.2 617.8 9.2 183.5 7 629.5 40.6 215.1 643.5 19.0 643.5 19.0 246. 8 8 628.7 ~68.8 214.3 649.9 ~31.8 649.9 ~31.8 296.8 9 628.6 53.2 191.7 653.6 ~56.3 653.6 ~56.3 296. 7 10 640.8 91 216.9 652.3 22.0 652.3 22.0 290. 4 11 687.8 51.8 277.9 639.2 ~34.4 580.7 ~31.0 64. 7 12 658.9 ~73.4 232.5 660.1 ~0.9 660.1 ~0.9 289. 9 13 658.9 -64.3 217.9 662.4 41.5 576.4 48.8 68.1 14 656.6 94.0 224.1 648.1 -53.9 577.8 42.7 65.8 15 698.1 ~23.8 409.4 667.7 49.4 580.1 44.7 63.6 16 703.3 -25.7 320.9 666.2 ~25.9 581.2 ~52.8 63. 2 17 683.3 ~114.4 280.9 657.8 49.1 579.8 ~34.5 62. 0 18 667.2 ~112.3 250.0 653.1 ~53.7 580.7 ~50.4 69.2 19 664.5 ~90.5 232.5 644.4 -33.1 576.2 48.1 65.5 20 673.7 ~81.2 245.0 667.0 ~27.1 575.6 45.5 65. 1 21 648.4 ~52.8 222.5 628.9 ~21.2 572.6 ~21.3 73. 0 22 658.5 ~79.7 230.8 660.8 ~13.7 660.8 ~13.7 295.6 Test Condition (probe target 2) (probe target 2) (probe target 2) x y z x y x y z 1 499.1 ~75.7 302.7 473.0 ~58.4 436.1 ~54. 1 172.7 2 477.0 43.7 333.1 458.0 ~17.1 429.1 -13. 1 183.6 3 428.4 26.2 237.7 458.0 ~20.9 420.7 ~25. 1 204.2 4 479.1 44.6 304.2 459.4 -5.2 459.4 ~5. 2 249.0 5 472.4 47.6 307.8 456.7 -17.8 456.7 -1 7. 8 255.4 6 470.9 ~38.2 310.5 455.3 08 455.3 08 253.2 7 478.0 28.8 304.9 465.9 9.2 465.9 9.2 282.6 8 477.5 44.2 303.6 476.4 -22.3 476.4 ~22. 3 308.2 9 486.0 ~38.2 296.0 479.4 ~36.2 479.4 ~36. 2 307.2 10 485.2 -12.7 302.5 475.9 ~16.4 475.9 ~16.4 306.1 11 518.5 -38.4 326.7 478.0 -21.7 440.8 ~27.5 171.7 12 500.9 47.8 308.4 485.1 ~10.2 485.1 -10.2 303.6 13 501.9 46.9 298.6 487.3 ~31.8 435. 7 ~37. 8 174.7 14 500.8 ~62.8 302.1 479.2 ~38.9 437. 2 ~34. 7 173.1 15 523.0 -26.2 396.2 492.6 ~34. 3 440.9 ~32. 8 171.0 16 528.6 28.3 348.1 492.6 ~24. 7 440.9 40.8 170.6 17 516.5 -76.3 328.2 488.0 ~34.5 440.5 ~27.7 170.5 18 506.4 ~73.2 312.9 484.3 ~38.6 438.4 ~39.0 174.5 19 506.7 ~61.7 306.6 473.5 ~23. 2 436. 2 ~38.6 173.5 20 510.8 ~59.3 311.1 490.5 -21.8 435.8 ~33. 9 173.6 21 492.0 41.1 305.3 465.5 -19.5 431.8 ~20. 4 178.4 22 500.2 53.0 306.4 484.2 -17.6 484.2 ~17.6 307.5 166 APPENDIX F UMTRI Thorax Points The following coordinate pairs were interpo;ated from the skin point locations on the UMTRI drawing [15]. Coordinates are given in millimeters. Table 23: Thorax Point Coordinates x 2_‘ 15.0 56.0 34.0 241.6 0.0 352.0 -115.0 284.6 ~169.5 175.5 201.9 57.9 475.0 -3.1 0.0 0.0 15.0 56.0 Subject 01 Individual Subject Rotation Centers Pelvic Centers (coordinates in mm) APPENDIX G re: lumbar 699 1 re: lumbar seg 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar seg 5 X Z X Z X 2 4X 2 X Z ~63.1 -3.7 ~101 .9 11.4 ~68.8 -3.o 425.1 -1.5 ~181.9 ~T5-— ~85.6 4.2 ~1 14.4 24.4 ~31.1 ~1.4 ~73.5 23.9 ~100.7 57.7 ~71.3 4.5 ~97.5 35.1 ~81.7 ~5.5 ~1 10.7 33.8 -1 19.6 80.5 ~72.6 4.8 ~136.8 28.3 ~72.9 ~5.1 ~106.2 29.9 ~149.9 59.7 ~69.7 ~6.8 ~102.4 30.5 ~72.1 ~7.8 ~90.7 22.5 ~1 19.7 74.0 ~63.0 ~6.6 ~87.5 22.4 ~68.7 ~7.7 ~94.3 19.2 ~99.1 61 .5 ~54.1 ~5.6 ~87.9 19.7 ~64.8 ~7.1 ~88.1 19.4 ~107.8 56.4 54.6 ~2.6 ~77.2 20.6 ~82.6 4.6 ~86.5 28.8 ~100.8 55.7 2.0 0.1 ~60.6 30.0 -22.8 ~1 .5 ~33.3 26.9 ~84.2 67.5 ~54.0 1.2 ~12.2 26.8 47.1 0.7 ~114.4 ~17.1 ~39.9 61.7 43.9 2.4 ~107.0 ~3.6 44.0 0.7 ~97.1 ~22.7 ~216.9 -67.7 ~51.0 0.8 ~87.5 ~2.9 ~75.6 ~0.7 ~126.3 ~9.7 ~188.2 ~29.5 46.5 06 ~80.9 5.9 ~50.0 ~0.5 ~87.8 8.4 ~1 18.9 23.2 ~59.2 ~0.2 ~88. 4 14.9 ~83.9 ~2.6 ~113.5 20.0 ~128.7 52.3 ~23.6 1.3 ~58. 7 8.6 ~87.0 1.3 -127.1 5.8 ~164.4 12.4 -52.5 ~0.9 ~79.4 24.2 ~77.4 ~2.7 ~1 10.0 17.0 ~128.8 46.6 ~64.9 1 .5 ~94.5 14.0 ~75.9 ~5.5 ~96.0 13.1 ~107.9 40.1 ~53. 8 ~1.1 ~83. 2 21.0 ~73.1 ~5.6 ~99.0 10.5 ~115.7 36.0 ~55. 1 ~28 ~74. 8 16.3 ~70.0 ~5.2 ~93. 9 10.4 ~109.7 34.8 ~50.7 ~2.9 ~75.6 14.4 ~84.7 ~1 .7 ~95. 9 13.9 ~102.0 35.2 44.1 -2.5 ~67.1 14.8 41.0 ~1.3 ~53.6 12.2 ~62.6 31.7 ~39.6 ~0.1 51.4 17.2 ~22. 9 0.3 ~50.3 ~7.2 ~84.0 ~27.7 38 0.0 ~17.9 14.3 ~19. 3 0.3 ~31.2 ~12.4 46.9 41.6 ~53. 3 0.5 ~79.2 ~2.6 ~56.9 ~0.6 ~77.8 ~1.1 ~99. 1 26 ~49. 8 0.2 ~59.4 ~1.5 ~31.4 ~0.4 ~44. 5 16.2 ~52. 9 42.1 45.2 ~1.2 ~60.4 8. 4 ~68.7 ~2.2 ~78. 8 27.1 ~79.8 67.1 ~59.2 ~0.9 ~67.9 18. 1 ~63. 1 0.9 ~67.9 14.7 ~68.9 36.5 ~51.8 ~1.5 ~61.9 28.1 ~62. 4 ~22 ~75.8 24.1 ~80.0 61.7 65.8 0.7 ~68.0 17.3 ~64. 3 4.7 ~69. 5 19.8 ~69.8 54.1 ~53.2 ~1.7 ~66. 0 24.6 61.8 4.8 ~72. 8 17.3 ~77.7 50.2 ~54.8 ~3.5 ~60. 1 19.6 ~58.5 4.4 ~67. 4 17.2 ~71.2 49.1 ~50. 0 ~35 ~61.5 17.6 ~67.9 ~1.4 ~56. 8 21.3 45.1 52.0 42. 9 ~30 ~52.4 18.0 ~25. 3 08 ~18. 5 19. 4 ~12. 5 47.7 ~37. 4 ~05 ~27.9 21.1 ~55. 2 1.5 ~118.8 63. 0 ~88.5 132.3 2. 0 0.0 7.0 18.3 ~102. 2 ~16.0 ~110.6 55. 9 ~88.2 123.2 ~92. 3 2.1 44.9 72.4 ~95.6 ~15.4 ~120.7 4.2 ~194. 8 ~0.4 ~55.7 ~8.4 ~53. 9 63.2 ~90. 2 ~14.3 ~87.1 36.7 ~71.8 95.2 45.9 ~7.2 ~151.5 8. 4 ~80. 0 4.6 ~92. 1 31.4 ~83.1 88.0 ~31.2 ~4.9 ~46.8 42. 1 ~125.2 98 ~83. 1 32.4 ~73. 2 88.1 48. 6 ~39 ~50. 0 36.9 ~113.4 ~9.2 ~143. 6 20.4 ~19 6 132.9 ~59. 9 ~50 ~33. 4 39.2 ~100.2 ~12.0 ~87.3 44.3 36. 1 119.0 ~62. 1 ~5.4 ~69.7 27. 4 ~95.6 ~11.8 ~122.6 48.5 ~145. 0 59.3 ~100.7 5.5 ~82.9 43. 7 ~91] ~11.1 ~117.7 44. 2 ~81.7 97.7 ~61.6 ~7.2 ~71.6 52. 2 ~133.1 ~8.9 ~99.2 32. 6 ~105.9 107.8 167 Subject 01 re: lumbar sag 1 X Z ~54.2 ~6.7 43.7 ~5.4 37.1 2.8 ~87.3 1 .5 60.5 94 49.5 ~8.1 ~33.8 ~5.5 ~67.1 -5.2 ~74.9 ~0.9 ~89.9 ~0.2 ~77.1 ~6.3 ~78.5 ~6.6 ~82.5 4.7 ~73.3 ~8.5 ~65.3 ~8.0 ~55.1 6.7 15.3 1.1 ~80.0 ~1 .3 ~103.5 2.5 41.5 ~6.2 ~33.0 ~5.2 ~18.4 ~2.9 ~80.8 4 .6 ~77.3 ~3.9 ~72.1 4.1 ~65.5 ~3.7 ~70.7 ~0.1 ~33.1 ~0.3 re: lumbar sag 2 X Z ~77.3 46.7 ~171.2 1.6 ~66.9 34.8 ~68.4 31.3 ~56.3 32.5 ~18.9 51.2 34.3 46.6 -130.8 7.9 ~64.6 40.7 ~66.8 35.1 49.2 37.7 ~100.5 0.7 -113.8 12.3 ~117.8 17.1 ~121.9 21.3 49.0 18.8 ~22.5 23.4 ~95.8 32.9 ~101.8 27. 0 ~125.2 25.8 ~83.9 18.7 ~84.6 15.7 ~71.9 17.0 ~45. 6 26.3 16. 3 24.1 ~108. 5 28.6 ~136.4 23.5 ~52.1 23.5 ~55.1 19.0 ~37.0 21.6 ~112.0 25.5 ~99.5 19.4 ~99.5 17.4 ~91.4 17. 7 ~86. 6 23. 2 ~52. 9 19. 6 191.8 14.4 ~125.5 ~1.5 ~99.4 3.0 168 Pelvic Centers continued (coordinates in mm) re: lumbar sag 3 X Z ~58.3 4.5 ~52.7 1.5 ~104.2 -16.2 97.6 ~15.6 ~92.3 ~14.5 ~79.1 0.3 ~75.2 ~13.6 ~68.0 ~12.6 ~59.9 ~11.0 ~56.2 0.1 -119.4 21.8 ~109.2 ~20.4 ~102.2 ~18.9 ~122.3 ~9.8 ~110.4 ~9.2 ~37.5 2.3 ~97.9 ~11.9 -93.3 ~i 1.7 ~89.3 ~11.0 ~129.9 ~8.9 ~53.9 ~4.3 ~86.2 ~1.6 ~89.9 2. 5 ~64.5 ~10. 1 ~59.7 ~9.6 ~53.6 ~8.5 ~80.2 ~1.8 ~78.3 4.7 ~75.7 4.8 ~72.8 4.5 ~87.1 06 47.1 ~0.9 -110.1 ra: lumbar sag 4 re: lumbar sag 5 X Z X Z ~102.7 29.0 ~112.4 117.4 ~96.4 29.4 ~106.0 101.7 ~99.1 46.3 ~90.6 84.4 42.7 42.5 ~99.0 79.5 ~137.5 62.9 ~92.1 79.1 ~129.2 56.0 ~69.8 101.2 ~107.2 0.2 -30.9 92.7 ~99.7 36.8 ~71.2 131.6 ~104.2 31.6 ~111.9 130.2 ~95.8 32.5 ~1 1 1 .7 121.5 8.7 59.7 ~171.6 ~9.9 ~129.7 6.0 ~89. 4 94.0 ~63.9 48.3 ~100. 1 87.0 ~71.1 40.9 ~91.0 87.2 ~58.7 42.7 ~55.3 130.7 ~99.9 18.4 2. 2 117.1 ~96.4 19.6 ~70. 1 170.5 -110.1 18.0 ~69. 2 157.4 416.3 10.6 ~179. 2 11.4 ~103.9 11.8 ~55. 0 110.4 ~135.0 30.4 ~69. 4 100.5 ~129.2 25.9 ~56.2 101.5 ~92.7 20. 3 ~112.1 52.2 ~105.2 18. 5 ~124.6 45.4 ~108.8 14.9 ~98.1 65.9 ~102.2 15.1 ~115.1 53.7 ~111.1 24. 7 ~100.3 53.4 45.8 23. 7 ~129. 9 79.6 ~117.6 28. 0 ~129. 8 72.1 ~130.4 21.6 -139. 8 39.8 ~71.6 23. 8 ~104.1 58.8 ~77.3 18. 6 ~113.7 53.1 ~67.4 19.3 ~105. 9 52.3 ~114.5 25.1 ~90. 5 65.0 ~101.3 19.7 ~37. 9 59.4 ~104.0 17.3 ~98.6 100.1 ~99.4 17.2 ~131 .6 65.0 ~102.7 23. 4 ~98. 0 88.4 ~65.3 20. 5 ~1 59. 4 45. 2 992.0 -924. 2 ~73.5 67.2 ~104.0 2.7 ~86. 6 58.8 ~75. 1 58. 3 67.7 77. 5 ~131.9 60. 2 -113.6 51.5 ~120.6 47.9 ~115.3 47.0 52.5 Pelvic Centers continued (coordinates in mm) ra: lumbar sag 2 Subject 01 re: lumbar sag 1 X Z 169 re: lumbar sag 3 re: lumbar sag 4 ~124.5 re: lumbar sag 5 X Z ~76.8 47.4 41.9 668.9 ~121 .2 47.1 ~224.9 37.0 ~141.4 32.1 ~244.9 19.0 30.9 -57.4 Subject 01 Thoracic Centers (coordinates in mm) ra: lumbar sag 1 X Z ~77.2 72.9 ~30.7 73.8 12.4 70.7 60.7 90.5 42.3 73.2 -2.8 75.2 32.4 73.9 46.3 78.3 4.6 52.3 29.8 104. 5 ~53.5 81.9 ~16.9 84.5 15.7 83. 9 21.3 91.3 ~27.7 68. 1 ~1 50. 8 69. 2 ~63. 2 89.0 ~70. 6 62.7 ~91.2 54.6 ~69.2 108. 3 ~104.9 76.5 ~71.0 89.7 ~122.1 78.5 ~35.7 67.9 ~109.4 63. 2 ~120.5 59. 7 ~142.1 68.4 -100.1 89.6 ~167.9 90.5 ~70.9 78.2 ~17. 9 92.1 ~83. 4 79.7 17. 7 68.5 ~75.7 63.7 ~87.5 59. 9 ~100. 2 68.0 ~72. 3 92.6 ~125. 0 91.9 40.1 76.7 32.1 89.7 47.3 77.2 66.9 65.0 45.2 61.5 57.3 ra: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 X Z X Z X Z ~100.7 45.2 ~34.4 66.6 ~58.8 38.2 ~58.9 47.6 12.7 74.8 ~20.5 48.2 ~31 .4 46.0 20.3 83.8 ~36.1 57.4 ~38.5 52.0 ~27.2 83.8 ~58.5 56.3 ~13.7 64.4 13.5 93.6 ~24.4 67.2 ~68.0 46.9 19.6 103.6 ~38.7 76.8 ~32. 9 49.8 87.0 97.3 16.1 73.3 ~10. 6 49.0 69.6 94.5 40.7 65.8 94 55.2 ~29.2 72.8 ~30.8 43.3 -36.2 29.9 5.2 80.6 -1 .3 52.1 0.3 75.7 9.4 87.5 ~1 1.3 58.6 ~56. 5 53.4 60.1 78.8 35.4 54.4 ~23. 4 56.6 ~4.3 55.6 1.3 30.7 ~2.5 55.9 ~0.7 110.4 84.1 23.5 0. 8 64.0 ~65.2 70.2 40.5 80.1 21.6 42.8 ~39.7 79.3 ~57.0 27.4 -1 16.8 82.1 ~86.0 77. 3 ~36.8 45.9 ~111.0 41.2 13.1 60. 2 ~77.3 34.1 ~75.5 60.4 ~74.4 68.5 ~34.0 34.8 ~128.4 42.5 ~83.7 59.3 ~77.6 23.5 ~79.9 42.6 ~88.3 73.7 ~76.9 11.9 ~121.5 24.9 ~58. 5 85. 7 ~73.9 54.5 ~125.2 19.7 ~110.4 111.6 ~21.1 36.1 ~163.6 27. 9 ~32.3 77. 4 11.7 58.4 ~120.3 62. 1 10.8 89. 8 ~33.9 44.9 ~225.2 62.2 ~48. 6 86.0 7.6 45.0 ~70.6 43.6 69. 5 68. 3 40.1 32.2 21.0 63.2 ~40. 4 75. 7 40.7 19.3 ~80.3 44. 5 ~51.3 65. 1 ~48. 6 63.3 ~36.3 45. 0 ~43. 6 82.9 ~35. 6 43.4 ~82.3 26.7 -31.4 93.8 ~5.5 54.3 ~86. 0 21.4 ~62.0 128.9 ~57.8 39.8 -.108 8 28.8 ~32.1 84. 1 ~57.7 25.4 ~91.1 65. 4 18. 7 102. 4 ~61.3 69.9 ~1 72. 4 64.5 ~50. 6 95.4 23.6 32.3 ~43. 8 42. 2 87. 0 77. 5 ~24. 6 67.1 13. 5 60.2 41.1 82. 5 ~67] 45.9 48.0 42. 2 ~53.2 70. 4 ~64.5 84.1 ~8.4 43. 3 44.9 94. 0 05 40.9 -56.0 25. 5 ~31.4 100. 6 59.6 20. 2 11 .2 71.8 ~70.6 25. 9 3. 4 67. 8 ~71.3 64.9 ~13. 5 52. 0 ~132.8 61.1 1.2 95. 9 re: lumbar sag 5 X 2 56.3 2.5 ~58.8 19.0 ~91.5 30.1 ~26.4 32.0 ~112.8 21.6 ~76.0 37.6 ~107.8 48.3 43.7 49.9 ~33.8 9. 5 ~8. 0 21.9 ~31 .8 29. 0 13.8 31.7 7.1 6. 8 ~95 50. 7 16.7 77.2 ~9. 3 50. 5 72. 3 14. 6 ~96. 3 2. 5 412.5 12. 0 ~58. 8 19. 0 ~81.3 26. 1 ~91.5 30.1 ~108.5 35.0 ~26.4 32.0 ~53. 6 37.3 ~92. 8 6.1 ~96.5 60.4 ~1.1 15.3 Subject 01 171 Thoracic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar seg 5 X Z X 1 Z X Z X Z X Z ~60.2 63.6 -55.7 45.8 ~66.1 45.3 47.7 92.7 ~5.3 49.3 ~99.5 21 .4 ~83.0 88.6 ~71 .7 21 .8 ~56.2 77.0 ~57.6 78.6 ~76.6 14.2 ~0.5 66.5 ~74.4 80.0 ~87.5 72.2 ~64.1 56.6 ~121.9 52.9 ~81.5 50.0 ~77.8 106.4 ~63.9 98.5 ~8.6 77.6 -116.4 52.6 -122.8 28.7 ~142.3 21.2 ~106.5 79.7 ~140.7 83.0 ~9.2 103.0 172 Subject 02 Pelvic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X 2 it 2 X - Z X z X 2 49.4 ~9.2 ~55.6 ~3.0 ~24.7 4.0 ~33.0 ~6.3 41.3 ~9.4 40.4 ~6.1 ~81 .6 13.0 ~55.5 ~9.2 ~70.5 19.6 ~77.1 58.4 647 ~10.3 ~107.7 1.6 ~59.2 ~9.9 ~81.1 7.8 ~94.5 36.8 ~89.2 ~15.5 ~101.1 ~3.0 ~55.8 ~10.2 ~70.7 5.1 ~80.9 30.0 ~88.5 ~16.6 ~86.8 0.7 ~51.6 ~8.5 ~70.4 6.1 ~83.3 30.5 ~68.7 ~1 1 .6 ~76.4 7.1 48.3 ~8.4 ~64.5 10.8 ~74.7 40.4 ~62.0 -1 1.1 ~117.4 10.4 ~69.7 ~11.2 67.2 23.2 ~62.6 63.5 ~65.1 ~10.2 23.5 38.2 ~31.6 4.7 43.8 35.3 49.1 81.0 ~32.7 ~3.9 ~72.2 19.7 ~31.0 ~5.0 42.7 27.8 49.0 68.7 -32.5 ~5.2 ~99.9 15.4 ~97.8 ~14.1 ~103.3 18.1 ~100.5 58.3 ~19.3 ~2.4 48.2 2.6 41.2 4.1 62.0 ~16.0 ~65.0 ~21.4 ~38.9 ~5.2 ~38.5 ~2.9 ~49.3 ~6.9 ~56.7 ~12.1 ~60.1 44.5 ~61 .5 ~92 ~16.4 ~8.2 ~60.8 ~6.7 ~59.7 ~19.0 ~87.7 41 .2 ~64.2 ~10.5 55.4 9.7 ~73.0 ~10.4 ~83.8 10.3 ~104.2 21.4 44.4 ~6.4 ~79.5 1 .6 ~75.7 ~10.9 ~93.0 0.6 ~91 .3 16.7 41.5 ~6.4 ~76.9 ~2.0 ~70.9 ~1 1.3 ~83.0 ~1.1 ~95.6 14.9 ~80.1 ~9.8 ~60.9 0.4 ~70.3 ~9.8 ~85.0 ~1.2 ~86.1 25. 2 5.7 0.7 ~55.5 5.7 ~66.0 ~10.0 ~78.4 3. 2 ~75.6 44. 6 ~38.9 ~5.2 ~78.6 7.5 ~84. 8 ~11] ~81.6 12. 9 64.0 59. 2 ~53.3 ~6.3 96 28.4 ~58. 1 ~7.3 ~64.0 21.5 ~62.9 49.8 ~52.3 ~3.0 48.2 14.9 ~54. 4 ~76 ~61.0 16.5 ~110.9 37.1 ~45.3 4.4 ~63.8 10.6 ~108. 5 ~13.1 ~112.9 7.8 ~72.7 ~2.1 ~41 .5 ~57 ~63.9 1 .7 ~27.7 ~2.0 ~50.3 ~2.2 ~61.3 ~0.1 ~33.8 ~3.5 ~51 .7 ~0.4 ~38.3 4.3 ~50.1 ~3.1 ~56.5 ~8.2 ~63.0 4.4 ~39.6 34 43.8 ~3.7 ~50.1 ~5.6 ~93.6 6. 6 48.7 ~5.4 89.0 0 3 40.7 ~2.2 ~68.2 0. 8 ~79.1 45 .4 ~66.4 ~8.3 ~66.8 10. 6 ~57. 7 ~66 ~72.0 14. 6 ~91.8 30.6 ~68.2 ~9.5 ~85.6 4.3 ~60. 0 ~70 ~79.3 7.1 ~82.7 25.9 ~52.5 ~6.3 ~83.1 1.0 ~57. 7 ~76 ~72.5 5.0 ~84.7 25.8 49.5 ~6.5 ~71 .0 3.1 ~55.2 ~6.2 ~72.5 5.7 ~78.2 32.7 ~82.0 ~8.2 ~65.4 7.0 ~52.8 ~6.5 ~68.3 8.6 ~69.1 47.8 ~14.3 ~1.5 ~86. 0 9. 6 ~66.5 ~7.3 69.9 16.6 ~59.4 59.0 48.8 ~5.3 ~29. 9 24. 5 43. 9 4.3 ~55.1 23. 0 59.1 51.6 ~61.4 ~5.8 ~60. 9 14.5 42. 3 4.7 ~53.6 18. 9 ~94.7 43.5 43.0 ~8.4 ~74.9 11.8 ~81 .9 ~7.7 ~91.9 13. 7 J42 53. 4 ~86.4 ~15.8 ~52.2 7.5 46. 6 ~7.3 ~55.5 9. 6 ~61.4 35. 1 ~86.1 ~17.0 ~78.4 26.5 ~59. 8 ~76 ~57.2 11.8 ~53.3 40.0 ~63.1 ~11.2 ~106.1 12. 6 ~74.3 ~11.8 ~84.4 29.8 ~84.1 77. 2 ~56.5 ~1 0. 7 ~99. 5 6. 6 ~77.5 ~12.4 ~94.0 20. 2 ~98.5 62. 4 ~32.9 ~6. 6 ~84. 0 12. 9 ~71.7 ~12.6 ~83.7 16. 0 ~87.8 54. 4 ~78.6 ~14. 9 ~73. 8 17.6 ~71.2 ~11.1 ~85.6 19.3 ~90.1 59. 2 ~79.6 ~16.2 ~1 15.2 26.3 ~66.1 ~1 1.1 ~78.9 21.6 ~82.7 63. 1 ~52.3 ~9.6 ~17.8 53.0 ~88.4 ~13.6 ~82.1 33.3 ~72.7 81.7 46.7 ~9.1 ~68.7 33. 4 ~56. 7 ~81 ~63.4 44.3 ~61.8 95.4 ~17.1 ~3.7 40.0 17. 5 ~52. 5 ~8. 2 ~60.6 36.6 ~61.4 84.6 ~73.1 ~15.9 ~63.7 39. 5 ~118.1 ~16. 2 ~114.8 32. 1 ~102.5 82.5 94.6 23. 3 ~35.6 ~5.8 42.5 19.0 ~50.0 79.6 ~89.4 15.9 ~65.7 ~10.9 ~37.7 25.2 47.2 52.6 173 Pelvic Centers continued (coordinates in mm) Subject 02 re: lumbar sag 1 X Z re: lumbar sag 2 re: lumbar sag 3 X Z X Z __ ~70.5 24.7 ~69.2 ~1 1.5 ~62.3 27.8 ~64.3 ~1 1.7 ~1.1 67.1 62.1 ~10.1 ~53.9 46.4 ~57.7 ~10.0 40.0 5.7 ~80.3 ~12.9 ~82.2 10.6 44.5 ~6.6 ~77.2 3.3 41.9 6.8 ~40.7 19.0 ~110.7 ~15.9 ~82.7 ~16.0 ~73.3 ~15.4 ~65.4 ~13.2 ~102.2 re: lumbar sag 4 re: lumbar sag 5 X Z X Z ~74.4 38.4 ~32.5 63.9 ~83.9 28.8 ~73.8 89.9 ~74.6 23.7 ~87.0 76.3 ~74.5 28.3 ~77.6 67.2 ~69.0 29.8 ~77.8 73.9 ~71 .5 42.4 ~72.3 76.2 ~51 .2 54.5 ~62.0 94.7 49.7 45.7 ~51 .0 108.4 ~102.8 42.8 ~51 .5 97.1 ~103.7 9.8 ~88.9 97.8 ~97.5 20.5 ~95.3 95.3 -78.1 28.1 ~122.9 67.7 ~92.3 12.2 ~98.? 53.4 ~77.0 8.1 ~108.3 63.1 ~78.4 10.6 ~91 .2 70.2 ~69.5 16.1 ~75.2 106.9 ~74.2 33.7 ~56.2 135.5 41.1 40.3 ~55.1 111.6 ~121.5 110.1 ~157.0 81.6 ~124.2 63.2 ~1 17.4 82.6 ~101.3 124.9 ~81.2 158.1 ~76.7 128.5 ~73.3 77.8 ~93.9 52.3 ~77.2 42.2 ~78.9 46.3 69.6 55.8 ~54.7 85.9 ~37.9 109.1 ~38.8 91.3 85.3 174 Subject 02 Thoracic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z _X Z X Z X Z ~70.4 90.7 ~71 .4 67.4 ~50.6 102.8 ~52.4 79.5 ~98.3 71.5 ~78.9 1 13.2 ~85.3 90.7 ~70.1 1 17.4 ~78.2 94.1 ~53.3 57.7 ~53.6 1 1 1.0 ~60.8 85.8 ~32.5 107.7 ~42.5 82.8 ~32.5 66.1 ~32.7 121.7 ~35.6 96.9 ~23.9 1 15.0 ~28.1 90.6 ~26.8 1 12.6 ~31 .2 165.6 ~29.3 142.9 ~29.5 156.9 ~27.9 134.4 ~83.2 44.7 ~89.0 108.9 ~102.4 83.9 ~51.6 95.0 ~67.1 70.0 ~81 .1 166.0 ~51 .3 201.7 ~73.8 162.8 ~17.9 163.7 44.6 132.4 ~59.9 99.0 ~52.4 21 1 .3 ~69.5 173.5 ~9.6 166.0 ~30.6 135.3 43.5 102.6 ~54.2 193.9 ~68.7 161 .2 40.6 153.5 ~55.9 125.4 ~65.1 95.8 ~78.7 39.8 ~83.6 11.9 ~111.4 50.1 ~127.4 17.1 ~50. 6 171.6 ~140.0 91.0 ~157.7 71.5 ~135.0 80.1 ~148.0 52.3 ~174. 1 ~31.4 ~24.4 77.7 ~23.3 53.6 ~75.4 125.4 ~89.1 104.2 ~206.1 17.6 49.9 108.2 ~56.5 86.5 ~29.1 111.8 42.5 87.1 ~58. 5 62.7 ~20.7 104.9 ~31.1 80.1 ~19.7 118.9 ~25.2 94.7 ~31.3 70.7 4.9 1 17.3 ~9.4 92.8 ~23.6 173.5 ~22.3 153.1 ~21 .7 135.8 12.5 170.6 15.3 149.8 ~37.1 175.4 ~59.2 146.0 ~68.2 122.7 ~40.6 101.3 ~62.2 76.9 ~99.6 58.5 ~108.8 29. 7 45.1 127.1 7.4 215.0 ~18.9 180. 5 ~119.2 83.3 ~125.1 57. 3 ~73. 4 114.3 ~102.4 49.0 ~106.5 23. 5 ~85.5 35.4 ~80.1 ~0.5 ~132. 4 55 -154.0 93.8 ~167.6 74. 8 ~4.7 94.4 ~58.1 90.6 ~152.4 29.1 ~141.2 37.2 ~142.3 7. 9 43.4 113.3 ~22.2 77.8 ~84.2 68.0 ~15.5 80.7 ~24.6 57. 9 ~34 101.9 ~12.0 86. 8 ~40.7 53.6 42.8 108.4 ~54.9 86. 6 ~1.4 110.4 ~3.1 135.0 ~22. 2 63.0 ~15.1 105.5 ~31.4 80. 8 3.4 157. 5 ~38.3 61.4 ~10. 0 112.5 ~1.3 117.2 ~10.8 92.8 ~7.2 85. 2 ~10.2 134.6 ~66. 9 37.7 16.8 168.2 10.6 145.3 0.5 154. 9 5.8 137.8 ~61.5 174.6 ~29.2 102.9 ~58.9 78.3 ~131.4 57.3 ~30.9 125. 7 43.9 98.2 14.3 208.1 ~14.9 176.1 ~150.8 83.6 ~141.4 26. 7 ~25.9 102.0 ~109.6 44.8 ~21.6 170. 5 ~142.6 32.9 ~158.7 57. 5 ~52.0 94.7 ~163.9 90.9 ~110.5 18. 5 2.9 122.3 ~8.4 96.3 ~180.8 ~17.0 -157.7 29.2 ~177.6 72. 4 ~86.9 76.1 ~96. 1 47. 9 ~208.6 26.6 18.2 150.3 ~155.9 4. 3 ~100.2 93.6 ~107. 3 67.8 ~46. 4 59.6 ~68.8 ~65.2 5.4 1197 ~121.7 29.1 ~73.2 37.3 ~17. 0 69.5 ~109.8 ~71.4 ~55.4 ~131.7 ~73.2 69.1 ~104.1 61.8 ~124.2 11.8 ~77.9 62.4 ~81.0 37.0 ~76.5 29.1 ~112.7 78.2 ~138.8 39. 2 ~108.7 94.6 ~115.9 73.6 ~115.6 28.5 ~148. 3 38.7 ~88. 9 ~10.5 ~95.0 5.3 ~101.8 ~39.3 ~92.8 88.6 ~88. 9 58.5 35. 1 49.2 ~87.3 61.0 ~87.2 33.9 ~103.3 103.3 ~24. 3 ~21.7 ~134.5 30.1 ~82.6 11.0 ~82.6 ~30. 9 ~119.4 75. 1 ~59.2 ~18.4 ~145.7 52.6 ~118.1 29.4 ~115.5 ~21.2 ~83.4 87. 2 ~80.6 60.3 ~113.1 22. 2 ~117.8 20.7 ~89.2 52. 9 ~25.4 22.4 ~88.7 75.5 ~98.1 32. 5 ~109.1 21.6 ~118.0 86. 3 ~57.6 21.6 ~88.1 34.6 ~105.9 50. 6 ~83.6 77.8 ~110.2 20. 8 ~70.7 86. 6 ~60.2 55.1 ~135.7 ~12. 9 ~108.8 106.7 ~95.9 57.2 ~81.3 101.0 13.0 104.3 ~71.0 24.7 ~98.9 52.5 ~54.2 ~20.5 ~73.3 67. 1 ~12. 4 23. 3 19. 6 78.6 ~91.8 82.6 ~58.5 ~7.4 55.3 83. 1 ~19. 2 49. 2 ~6. 5 ~21.3 ~54.1 11.2 ~65.1 44.7 6.3 130. 0 ~32.8 47.4 ~1.0 12.5 ~67.6 26.6 ~76.0 ~10.7 ~18.6 56.2 5.2 30.9 ~25.2 1 1 .2 175 ~135.1 163.6 Subject 02 Thoracic Centers continued (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z _X_ Z X _Z X Z X Z ~67.6 18.4 ~75.7 54.2 ~34.4 79.5 ~35.1 26.9 ~32.0 -1 1 .1 ~74.? 21.0 ~101.1 85.6 41.5 77.5 ~66.5 71.0 ~76.2 45.6 ~70.2 78.9 ~80.9 24.2 ~10.8 62.9 ~73.2 84.1 ~81.7 60.8 ~94.6 107.3 ~77.1 57.4 ~40.5 57.8 ~58.1 59.1 ~71 .7 28.3 ~73.2 52.1 26.3 97.6 ~61.1 96.0 46.1 67.9 ~49.3 40.7 ~73.8 82.7 28.8 19.2 ~70.0 108.6 9.0 50.1 ~86.2 66.2 20.7 124.3 ~16.6 43.9 ~54.4 86.6 ~30.5 55.1 ~94.5 85.8 33.6 46.9 ~21 .6 38.8 45.5 94.3 ~76.6 88.9 ~50.2 69.1 ~30.1 71.8 ~12.8 21.8 ~17.1 82.7 ~85.4 104.1 ~125.8 14.5 ~30.5 66.3 40.0 31 .3 ~52.1 85.3 ~71.0 97.9 ~137.2 37.3 ~24.5 49.3 ~60.2 67.4 ~73.1 1 12.0 ~51.5 92.7 ~100.7 ~1.3 45.1 58.6 ~79.7 95.9 ~84.4 126.1 ~100.5 45.2 ~130.8 78.1 ~57.7 91.4 ~50.5 51.0 ~72.1 119.6 ~110.7 64.1 ~142.9 102.8 ~77.5 117.2 ~55.7 72. 5 55.8 116.7 ~81.8 34.5 ~101.7 92.9 49.8 76.3 ~7.6 32. 8 ~86.7 72.9 ~121.8 99.1 ~110.0 52.0 ~56.2 97.0 ~23.3 55. 2 ~99.8 90.4 ~134.8 120.1 ~1 19. 6 73.0 ~25.6 61.6 63.3 83. 0 ~121.4 21.7 ~103.6 118.5 ~80. 0 51.7 ~43.0 81.7 ~89.8 118. 5 ~73.3 64. 7 ~92.6 75.7 ~100. 2 54. 8 ~62.8 105.6 46.4 77.7 ~110.5 122.1 ~103.4 94.0 ~109. 7 75. 8 ~88.5 136.0 57.5 96.3 ~128.2 141.9 58.1 77.4 ~66. 2 55. 0 ~52.1 100.1 ~95.2 41.8 ~100.0 144.3 ~85.7 78.2 ~109. 3 54. 7 ~61.8 118.4 ~132.3 79.9 ~77.6 100.8 ~96.6 96.3 ~1 17. 8 73. 9 ~89. 3 ~67.9 ~140.0 ~26.2 ~92.3 1182 ~58.3 80.3 ~82. 7 54. 9 ~86. 4 67.2 ~107.9 42. 2 ~56.7 103. 8 ~94.3 78.3 ~129. 1 103.9 ~119.5 101.0 49.1 12. 6 ~73.8 102. 8 ~103.6 94.8 ~78.4 93. 3 ~115.8 11.8 ~107.0 106.6 ~88.5 120.0 ~120.6 77.4 ~83.3 59. 2 ~99.9 68.6 ~164.3 167.9 ~51.3 106.3 ~73.7 80.3 ~96.6 86.4 44. 6 42.1 ~131.2 162.5 ~82.6 103.0 ~114.9 121.1 ~22.2 62. 9 ~98. 5 131.1 ~86. 6 72.7 ~95.2 118.7 ~71.5 118.4 ~151.7 181.7 ~124. 6 115.4 -98.0 102.5 ~79.1 81.7 ~126.7 187.9 ~107.9 53.4 ~66.5 106.3 ~96.0 106.3 ~76.2 97.4 ~92.7 88.3 ~105.8 143.3 ~26.3 89.8 -1 12.6 134.9 ~85.4 76.4 ~63.6 143.9 ~83.0 78.1 ~123.6 119. 7 ~72.5 105.3 ~83.4 113.1 ~103.2 63. 6 95.4 129. 0 ~77. 0 100.5 ~90.6 93.9 ~28.7 116.5 413.5 138.2 ~84.7 79.9 ~84.2 87.1 ~118.3 119.9 ~84.4 117.9 ~96.1 75.5 ~76. 5 104.3 ~88. 2 96. 6 ~108.7 139.0 ~132.6 144.1 ~80.5 99.3 ~108. 9 126.3 ~82.0 121.0 9-1. 1 124.7 ~122.6 160.9 ~78.3 84.0 ~81.8 145.1 ~69.7 46. 1 ~86.2 149.8 ~140. 0 148. 1 ~74. 6 108.3 ~82. 1 124.8 ~56. 8 70.5 176 Subject 03 Pelvic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 _X Z 1 Z X Z X 2 X Z ~73.8 6.0 ~77.5 31 .1 ~71.6 5.7 ~82.9 27.2 ~88.3 5.7 ~92.4 1 1 .6 ~85.1 39.5 ~69.7 ~0.2 ~36.7 30.9 ~38.2 61 .1 ~75.5 1 .0 ~89.5 22.7 ~72.3 3.1 ~87.3 20.5 ~97.9 46.9 ~72.8 4.0 ~93.9 28.6 ~75.2 ~0.1 ~99.0 26.0 ~1 15.4 54.2 ~90.9 1.0 ~99.2 17.1 ~72.7 ~2.5 ~87.8 13.9 ~96.5 32.4 ~73.5 ~1 .7 ~87.6 18.8 ~76.6 ~1.0 ~90.4 16.2 ~101 .8 40.9 ~71.1 0.6 ~77.9 21 .5 ~74.5 1.0 ~85.0 19.7 ~88.8 45.3 ~72.7 3.3 ~78.7 32.3 ~71.1 0.1 ~81.8 31.2 ~82.4 65.2 ~67.3 1 .5 ~75.7 20.1 ~91.9 2.3 ~81.0 18.5 ~86.5 41 .8 ~87.4 4.5 ~101.5 25.5 ~84.9 3.5 ~106.7 24. 4 ~114.1 51.5 ~76.6 5.1 ~89.8 35.3 ~56.2 6.2 ~99.2 34. 6 ~103.2 69.7 ~134.5 26.1 ~155.7 32.2 ~24.5 3.5 ~79.9 11.4 ~102. 5 17.5 ~84.4 9.8 ~99.7 20.3 ~60.9 1.8 45.2 8. 0 ~65. 3 13.1 ~100.8 16.1 ~116.1 23.3 ~60.3 4.5 ~84.4 12. 3 ~103. 4 26.9 ~82.8 4.0 ~102.8 15.5 ~65.5 2.0 ~93.9 14.7 ~122.6 28.3 ~82.1 7.3 ~1 10.0 19.6 ~64.8 ~0.2 ~84.9 6.2 ~102.9 1 1.9 ~95.6 4.3 ~111.7 10.7 ~67.3 1.3 ~87.4 9. 6 ~105.8 23.7 ~80.1 0.9 ~98.9 12.6 ~64.2 2.9 ~82.4 12. 0 ~94.3 26.2 ~78.9 3.4 ~92.1 14. 3 ~62.0 2.0 ~79.2 21.2 ~88. 6 44.0 ~81.6 6.5 ~95.2 23. 0 ~77.7 4.4 ~78.8 10.2 ~93. 1 21.2 ~76.3 4.3 ~91.5 12. 7 ~70.5 5.2 ~101.0 14. 7 ~120.2 28.3 ~93.6 8.1 ~116.6 17.1 45.8 4.3 ~94.0 22. 5 ~110.1 44.6 ~85.7 8.7 ~107.3 24.9 ~2.7 0.3 48.0 19. 2 47.8 38.9 ~51.0 4.6 49.8 23.4 ~55.3 0.6 4. 0 17.3 10.3 39.5 ~54.2 7.3 41.9 24.9 ~53.0 3.0 ~67. 2 18.2 ~74.5 41.9 ~60.9 1 .4 ~71.0 19.3 ~60.4 0.7 ~71.8 21.4 ~84.1 45.8 ~54.2 3.5 ~70.4 23.1 ~60.3 ~1.2 ~67.1 1 1.8 ~71 .6 27.3 ~75.7 1.5 ~80.2 13.9 ~62.5 0.1 ~72. 9 15.0 ~81.2 37.5 ~61.4 ~0.8 ~72.0 16.7 ~58.4 1.6 ~66. 1 17.8 ~66. 8 40.7 ~57.0 1.1 ~60.1 18.3 ~56.4 0.8 -61.0 27.8 ~59. 3 59.2 ~55.3 3.0 ~57.7 27.4 ~73.0 2.9 ~60. 8 16.1 ~62.6 36.4 ~52. 4 1.7 ~56.5 16.3 ~64.5 3.6 81.9 21.0 ~86. 0 44. 6 ~68. 2 4.2 ~77.8 20.1 40.5 3.8 ~73.0 29.7 ~74. 8 61.4 ~56. 0 4.3 ~65.1 29.0 4.6 ~0.6 42.6 18.4 42. 5 37. 7 ~51.4 4.7 49.7 23.3 ~52.3 0.6 11.5 16.0 17. 7 37.7 ~54. 9 7.4 41.7 24.7 49.0 2.8 ~64. 1 18.0 ~71.5 41.6 ~61 .2 1.4 ~~70.9 19.3 ~57.3 0.7 ~67. 8 21.0 ~80. 2 45. 1 ~54. 6 3.5 ~70.2 23.0 ~57.7 ~1.1 ~64. 0 11.6 ~68. 4 26. 9 ~75. 9 1.6 ~80.1 13.9 ~59.6 0.1 ~70. 2 15.0 ~78. 6 37.3 ~61.6 08 ~71 .9 16.7 ~55.1 1.5 ~63. 1 17.6 ~63.9 40.5 ~57.3 1.1 ~60.0 18.2 ~53.3 0.8 ~57. 7 27.6 ~56. 3 58.9 ~55.6 3.1 ~57.6 27.3 ~69.5 2.7 ~57.6 15.9 ~59. 5 36. 1 ~52. 7 1.7 ~56.4 16.3 ~60.6 3.4 ~78.3 20.6 ~82. 5 44.1 ~68. 5 4.3 ~77.6 20.1 ~97.9 5.3 ~69.1 29. 3 ~71.3 60.9 ~56. 4 4.4 ~64.9 28.9 ~80. 9 ~23 ~114.0 15. 7 ~125.9 29.7 ~38.9 1.9 ~52.5 17.5 ~89. 3 1.5 ~101.0 12. 8 ~114.6 33 .9 ~57.1 ~1.1 ~78.5 13.4 ~87.4 ~2.4 ~122.8 17. 0 ~146.7 38. 3 46.5 1 .0 81.2 17.1 ~82.3 ~4.9 ~101.9 4.6 ~1 13.9 14.8 177 Subject 03 Pelvic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 _X Z X 3 X Z X 2 X Z ~76.2 ~1.6 90.4 5.6 ~88.2 -3.4 -101 .9 8.6 415.8 28.2 ~58.3 ~3.2 ~77.9 1 1.1 ~88.1 ~1.1 ~97.3 12.3 ~102.4 33.0 ~52.3 ~1 .2 64.0 12.9 ~82.9 ~2.0 ~95.7 25.6 ~96.6 57.1 48.6 0.6 ~62.5 24.5 ~1 10.5 0.0 ~93.9 10.5 ~101 .3 27.5 45.9 05 ~59.6 9.9 ~104.8 1.7 ~128.7 15.6 ~140.1 36.6 ~66.2 1 .3 ~91 .5 12.3 ~73.8 4.6 ~122.0 28.3 ~127.9 60.3 48.2 1 .7 ~74.8 25.6 ~66.5 ~6.2 ~91 .3 9.8 ~107.1 16.9 ~78.1 4.8 ~88.0 16.8 ~78.1 ~7.3 ~90.7 12.2 ~107.1 38.3 ~76.8 ~7.3 ~106.9 4.4 ~72.3 ~9.1 ~90.7 ~3.0 ~101.8 3.8 -1 15.2 ~1 1.3 ~132.2 ~14.9 ~80.4 ~8.4 ~94.4 6.0 ~1 10.4 28.5 ~71 .4 -9.4 ~95.2 2.9 ~77.6 ~6.1 ~85.6 12.0 ~87.6 37.9 ~65.7 ~6.5 ~75.2 6.2 69.5 63 ~81.3 36.3 ~78.8 80.7 ~64.6 -3.3 ~90.2 1 1 .4 ~90.2 ~5.7 ~76.9 8.7 ~81.5 29.0 ~53.6 ~0.6 ~100.9 16.2 ~109.7 ~2.0 ~115.0 9.1 ~156.3 41.7 ~89.0 ~4.9 ~105.5 0.7 ~98.8 ~6.2 ~158.4 12.8 ~135.2 95.3 640 5.7 ~86.3 8.7 ~89.6 ~8.5 ~1 16.6 2.0 ~132.2 30.5 ~58.1 ~3.3 ~71.1 11.4 ~98.? ~7.3 ~1 12.8 4.2 ~193.1 34.4 ~55.6 ~1.1 ~72.2 27.2 -101.5 ~4.9 ~109.1 8.8 ~132.4 4.7 50.4 22 ~66.4 7.6 ~93.1 ~5.6 ~109.9 26.3 ~129.7 23.6 ~82.0 ~1.1 -1 15.8 8.7 ~135.4 ~4.9 ~106.2 6.2 -1 15.0 30.1 ~78.0 ~0.5 ~94.4 29.6 ~133.0 ~2.6 ~159.2 10.9 ~109.9 61.9 ~75.8 2.6 ~96.8 12.1 ~70.4 ~1.4 ~154.8 29.7 ~1 15.4 22.7 ~95.3 ~0.9 ~105.6 16.1 ~73.8 1 .9 ~90.9 1 1.1 ~174.1 32.4 ~75.1 ~3.3 ~108.2 5.0 ~76.5 -1.4 ~107.4 13.7 ~159.9 67.2 ~72.9 ~0.8 ~92.6 9.6 ~73.5 ~3.8 ~91.5 3.1 ~106.2 29.0 ~75.4 1.9 ~82.7 1 1 .5 ~78.0 ~2.3 ~93.4 7.6 ~133.9 30.6 ~68.9 0.1 ~85.6 22.5 ~75.9 ~0.3 ~88.0 10.8 ~104.9 9.8 ~92.8 2.9 ~80.8 8.8 ~72.0 ~1.2 ~85.2 23.0 ~108.6 24.4 ~80.8 3.8 ~1 15.1 1 1.9 ~95.8 0.8 ~83.8 8.7 ~94.7 28.4 ~72.6 ~11.6 ~101.8 23.9 ~88.3 2.2 ~1 15.1 13.2 ~88.4 51.5 ~72.8 ~12.3 ~72.0 4.1 ~71.6 ~1 1.7 ~107.4 24.6 ~92.8 22.4 ~46.2 ~7.5 ~101.4 ~19.2 ~50.5 ~8.3 ~72.1 2.9 ~129.1 30.2 ~67.3 -9.9 ~59.7 13.0 45.0 4.9 ~1 17.0 52.9 ~78.1 -5.3 ~65.4 ~15.4 ~71 .6 23.4 ~19.1 38.4 ~62.9 21.6 -81 .3 ~26.0 178 Subject 03 Thoracic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 X Z X _ Z X Z ~141.1 24.1 20.7 33.2 7.8 102.5 43.5 87.8 ~7.9 81.7 ~11.1 114.9 ~108.8 119.7 ~67.9 68.6 51.6 131.2 ~7.4 128.8 ~128.2 99.0 31.2 89.5 13.5 81.9 44.5 125.3 13.1 102.4 48.5 123.2 ~98.4 70.4 83.7 120.8 70.8 131.6 ~93.1 96.0 ~67.5 56.6 31 .0 64.2 ~64.0 103.3 ~93.4 49.4 ~176.0 ~2.4 4.5 62.1 ~71.7 81.3 ~163.3 ~5.7 ~38.5 98.3 ~90.3 60.9 15.6 58.6 15.0 101.0 ~127.4 54.8 ~129.5 33.4 17.5 47.7 ~97.4 89.0 ~74.6 37.8 33.8 96.8 8.1 65.0 ~119.7 ~10.9 23.8 61.5 ~55.0 24.7 ~99.3 29.6 ~5.6 40.8 30.8 51 .0 ~84.3 63.6 ~125.6 6.3 ~36.7 77.2 ~129.6 49.5 ~71.7 10.9 ~54.1 75.0 ~180.1 44.6 ~108.8 ~35.4 ~38.3 105.3 ~150.5 83.8 ~81.8 6.4 ~161.8 5.1 ~71.6 38.5 ~29.3 48.8 ~124.7 21 .4 39.1 97.1 ~151.5 19.0 ~66.2 10.1 ~132.5 59.7 ~83.7 47.3 10.3 94.3 ~80.3 29.7 ~50.1 21 .4 ~99.9 70.5 48.1 72.1 ~95.0 76.9 96.0 ~22.7 ~50.7 63.3 ~102.7 18.8 ~70.7 60.6 ~91 .5 ~26 ~58.4 95.9 ~97.3 43.4 0.3 53.9 ~123.1 54.8 ~38.8 88.3 ~68.4 38.8 ~77 8 39.5 57.7 re: lumbar sag 4 X Z ~27.6 83.7 ~36.9 97.0 ~22.7 109.4 19.8 70.6 16.9 83.3 24.1 97.7 59.2 100.6 66.7 23.6 ~76.2 20.2 ~57.8 52.6 ~80.0 28.1 ~94.2 25.5 ~71.0 61 .6 ~61.5 49.6 ~69.2 51 .7 ~52.2 79.4 ra: lumbar sag 5 X 2 ~31 .3 47.4 ~57.2 79.9 ~61 .6 65.0 ~62.1 79.0 45.9 105.1 ~77.8 87.8 9.7 52.2 19.1 64.6 45.8 87.8 ~24.0 48.2 ~15.8 74.7 68.8 130.2 35.9 47.5 ~0.3 77.2 ~87.6 99.2 ~74.1 ~22.5 ~59.4 ~14.2 44.6 17.9 42.3 77.0 ~92.3 21 .4 ~81 .0 30.3 ~67.5 54.4 179 Subject 04 Pelvic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 X Zl X Z X Z ~88.4 ~15.6 ~1 13.6 05 42.8 ~7.6 ~80.2 ~14.5 89.0 -1 .2 ~72.3 ~13.0 48.9 ~10.1 ~79.7 10.4 ~32.8 ~6.5 ~36.8 ~7.8 48.8 9.1 1 1 .8 2.3 -53.8 ~11.0 ~87.4 2.1 ~51.6 ~10.0 ~72.8 ~13.6 ~84.9 51 .4 ~82.5 ~15.4 ~84.9 ~16.6 ~107.2 29.9 ~52.1 ~9.9 ~83.8 ~18.0 ~116.0 40.0 ~58.8 ~12.4 ~109.4 ~22.7 ~102.3 14.7 ~68.0 ~14.5 ~85.3 ~16.6 ~119.8 9.6 ~90.6 ~18.6 ~69.3 ~14.1 ~93.1 26.6 ~70.6 ~15.1 41 .6 ~87 ~81.6 26.4 ~83.1 ~14.5 ~29.5 ~6.4 ~58.1 49.8 ~54.9 ~1 1.1 ~46.6 ~9.8 ~101.6 29.2 91 ~18 ~65.0 ~12.4 ~61.3 1 1 .3 ~75.8 ~15.0 ~78.4 ~15.7 ~29.2 10.1 ~110.1 ~20.9 ~78.4 ~17.2 ~68. 6 2.4 ~77.5 ~14.9 ~104. 6 22.1 ~88. 9 31.7 ~79.2 ~17.0 ~78. 7 ~15.6 ~101.2 42.2 ~88.5 ~19.1 ~62. 6 ~13.0 ~87.4 15.8 ~113.2 ~23.6 ~48.1 ~11.5 ~104.4 10.2 ~90.9 ~19.7 ~31.0 ~7.6 ~75. 0 28.3 ~115.5 ~20.5 ~55.2 ~13.1 ~64. 3 28.2 ~53.7 ~12.5 ~96.8 ~24.0 ~24. 4 53.9 12.3 2.9 ~135.1 ~32.5 ~73.8 31 .0 ~87.1 ~21.3 ~78.1 ~18.4 ~82.1 16.4 ~99.5 ~24.5 ~108.7 ~28.5 ~39. 2 15.7 ~135.2 ~32.3 ~92. 7 4.6 ~102.7 ~25.4 ~123. 0 44.1 ~123.4 ~31.9 ~132.3 54.2 -137.7 ~35.8 ~1 12.0 20.1 ~140.6 ~36.7 -137.0 13.0 ~64.4 ~16.7 ~101.9 39.0 ~80.1 -20.9 ~85.2 37.8 ~84.3 ~22.1 ~1. 1 26.9 ~127. 0 73.4 ~100.8 29.0 ~131.6 20.3 ~64. 0 54.3 ~143. 5 77.5 ~113.8 29.6 ~1 14.1 ~21.7 ra: lumbar sag 4 X Z ~71.8 7.7 ~81.4 3.4 ~67.9 10.1 ~3.9 11.1 ~90.4 4.4 ~118.8 46.4 ~119.4 27.3 ~98.4 42.9 ~83.8 17.4 ~85.2 17.7 ~99.4 26.4 ~83.9 27.2 ~71.1 47.8 ~94.7 32.3 ~75.0 6.7 ~8.9 7.8 ~99.1 ~8.7 ~133.6 43.4 -128.9 24.2 ~106.3 40.7 ~90.3 14.6 ~91.7 14.9 ~106.5 23.7 ~90.0 24.8 ~81.6 45.3 ~104.7 29. 2 ~91.1 11.3 1.3 16.0 ~127.7 ~11.2 ~168.9 34. 2 ~133.8 55. 8 ~108.4 19.9 ~110.0 20.1 ~130.5 31.5 ~107.1 32. 5 ~101.8 17. 7 ~151.9 69.0 ~119.6 25.9 ~121.2 26.0 ~145.3 39.0 ~117.3 39.6 ~95.0 89.1 ~71.1 43.1 ~73.7 43.0 ~96.3 56. 6 ~73.3 55. 8 ~45.3 12.1 ra: lumbar sag 5 X Z ~95.3 32.4 ~87.3 32.0 ~158.5 197.7 ~102.8 103.0 ~120.1 143.2 ~93.9 134.1 ~95.8 37.9 ~19.4 25.0 ~124.8 7.3 ~124. 9 109.4 ~135. 2 82.5 ~1 16. 2 106.6 ~100. 0 59.9 ~95. 8 61.2 ~101.5 79.6 ~90. 5 78.7 ~73. 8 107.3 ~97. 7 86.6 ~89. 9 38.0 ~10. 3 24.9 -1 18.7 6.2 ~1 18.5 1 1 1 .7 ~131.0 83.6 ~1 12.4 108.1 ~95.4 60.5 ~91.2 61.9 ~97.1 80.7 ~86.2 79.8 ~66. 3 109.5 ~91.6 88.0 ~117.0 49.3 ~10.8 36.8 -162.9 6.8 ~173.1 161.9 -168.0 104.5 ~139.0 130.2 -118.1 73.7 -1 12.6 75.4 ~120. 1 97.8 ~105. 1 95.5 ~93. 2 154.4 ~123.7 118.3 ~105.4 74.0 15.8 65.9 ~152.7 32. 8 ~163.0 130. 0 ~134.0 152.2 ~110.5 93.8 180 Pelvic Centers continued (coordinates in mm) Subject 04 re: lumbar sag 1 X 2 re: lumbar sag 2 X 2 re: lumbar sag 3 X 2 re: lumbar sag 4 X Z re: lumbar sag 5 X Z ~104.7—W ~1 13.2 1 18.6 ~98.1 1 14.5 ~75.9 198.8 ~1 12.1 152.7 ~57.0 94.1 75.9 89.5 ~90.0 57.3 ~54.8 201 .2 ~121 .8 148.2 ~102.0 167.4 ~75.4 109.6 ~70.2 1 1 1.0 ~79.8 134.1 ~67.7 129.0 ~12.9 224.7 ~58.4 175.1 ~103.3 104.6 ~39.4 46.5 ~109.5 28.5 181 Subject O4 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 X Z X Z X Z X 2 ~66 1 1 1 .2 ~22.7 77.1 ~30.2 1 1 1.9 47.9 78.4 2.1 106.6 9.9 74.5 17.8 113.1 27.4 80.8 3.4 1 10.3 ~14.4 75.7 ~34.6 123.2 ~56.7 87.4 ~95.3 92.9 ~50.3 71 .0 16.8 84.9 ~32.7 58.5 ~7.7 102.6 ~8.4 72.1 41 .7 96.8 30.0 68.7 1.2 102.0 40.4 70.4 8.4 97.7 40.9 66.8 2.4 102.9 ~13.4 99.9 36.2 1 17.8 ~35.1 90.2 ~95.3 102.5 17.7 86.2 ~29.0 129.5 36.9 87.0 17.5 118.4 50 95.9 17.6 123.0 44.7 99.2 29.2 132.4 54.0 103.6 ~33.2 138.7 ~63.0 96.4 ~98.6 74.1 ~9.2 91.5 42.2 135.1 13.3 92.7 ~23.1 141.9 43.4 100.3 22.3 59.3 ~70.4 103.9 ~5.8 123.5 49.7 102.9 ~14.6 94.4 56.4 102.8 ~10.5 136.8 ~74.1 11.1 21.8 49.0 29.9 48.7 ~72.6 61.9 ~90.6 37.8 24.3 59.5 ~5.5 46. 7 37.7 137.5 -110.8 ~23.8 4.8 86.1 45.4 72. 4 ~62.6 57.1 ~63.8 -8.2 ~23.2 1 10.8 44.1 73.2 ~21.2 54.4 ~48. 9 57.7 ~23.2 111.4 ~57.2 35.4 ~69.1 78.4 ~12. 7 63.1 31.4 79.6 ~29.? 31.3 ~81 .3 32.1 ~67.4 70.6 1 1 .0 72.7 ~20.8 50.7 ~60.5 15.3 ~76. 7 32.8 4.9 89.0 68.8 65.6 44.1 37.0 ~64. 6 32.2 54.7 94.0 41.6 60.0 ~37. 9 93.4 ~42. 5 41.7 29.1 96.3 78.0 70.5 ~32. 0 114.1 11.9 82.5 41.4 109.5 77.0 56.9 3. 4 99.5 ~12.5 64.1 24.5 101.9 53.0 61.2 ~49. 3 105.4 15. 4 73.1 25.9 100.0 29.0 77.3 ~55.2 71.0 54. 8 67.5 18.3 112.6 10.8 78.7 ~29.1 68.1 23. 2 62.1 7.6 113.8 12.3 54.9 ~22.1 76.1 14. 5 66.2 6.6 93.5 38.5 53.4 ~5.4 115.9 ~29. 8 73.5 37.3 89.7 35.1 63.3 ~20.2 97.6 31.0 49.1 30.8 98.5 ~13.2 54. 0 ~10.7 108.6 ~16.3 49.9 ~0.8 95.2 ~54.3 81.6 8.5 106.9 ~9.6 53.5 2. 9 119.6 50.0 78. 9 2.5 98.2 40.8 58.3 ~27. 7 120.8 ~64.5 43. 9 6. 7 99.9 5.6 62.9 ~26.4 117.7 39.5 42. 2 ~30. 2 106.1 ~59.7 70.6 34.8 89. 7 ~28.9 58.6 32.6 83.8 ~66.8 35.2 3.2 86. 0 61.1 84. 0 ~13.2 82.8 53.1 35.0 ~1.1 98.8 ~74.8 93. 3 ~10.8 86.0 35.1 43.3 0. 3 94. 6 36.6 90.6 ~28.1 95.0 ~38.4 37.4 ~35. 5 124. 1 -17.6 112.8 ~65.4 59.0 49.7 84. 9 15.2 112.3 ~76. 7 0.8 23.4 128.9 10.7 100.1 ~29. 2 16.1 ~15.7 126.1 40.3 106.1 ~99. 4 46.1 ~44. 3 74.8 ~59.6 59.4 ~18. 2 72.7 ~101.3 61.5 ~14.0 79.2 -111.2 64.9 ~30.9 79.2 ~139.7 7.9 ra: lumbar sag 5 X Z ~61.7 45.6 38.1 48.7 ~81.8 50.3 ~93.4 82.4 66.7 33.7 19.0 41.7 ~82.5 36.0 ~91.9 61.3 ~51.3 56. 9 ~55.2 57. 4 36.3 57.0 ~72.6 62.7 ~83.7 90.7 ~83.3 63.5 8.9 62.9 ~100.8 68. 1 ~109.3 92.3 ~72. 6 94. 4 63. 5 70. 6 ~19. 3 1.3 ~77.0 29.8 ~54.8 6.8 76.4 39.9 61.4 18. 7 148.7 22. 1 46.5 37. 7 15.8 39.2 21.6 5.6 44.3 9.4 43.7 23.6 ~33.6 1.5 ~94. 7 32. O 47. 5 34. 3 ~104.1 59. 4 ~87.0 43.4 ~62.9 53.6 182 Subject 04 Thoracic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z l 2 X Z X Z X 2 23.9 82.9 ~87.0 23.4 45.7 96.4 ~82.3 75.4 ~51.4 52.4 ~99.7 21.1 ~17.0 41 .8 49.0 36.2 ~11.4 58.5 ~54.1 91.2 ~64.5 95.1 ~83.1 95.1 ~66.0 108.0 ~79.1 55.1 ~27.9 64.5 183 Subject 05 Pelvic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 X Z X Z X Z X Z ~39.7 5.2 ~68.1 0.0 ~12.1 ~0.2 ~77.8 28.7 42.0 ~0.9 ~57.8 3.3 ~76.0 ~1.0 ~34.9 ~9.3 ~51.8 ~0.2 ~60.0 15.6 ~79.4 ~1.9 ~91.0 29.2 ~83.7 ~0.5 ~91 .9 29.9 ~86.7 ~1.0 ~92.9 14.6 ~75.6 ~0.3 ~93.2 21 .4 ~14.3 0.6 ~86.7 31.4 40.3 4.2 ~122.2 23.2 4.5 0.3 ~94.7 37.0 41.2 1.8 ~95.7 16.8 47.6 2.5 41.8 ~11.5 46.1 2.8 ~81.7 31.6 45.9 4.2 ~30.0 ~5. 5 ~38.8 4.5 ~79.3 37.2 ~58.1 3.5 ~73.2 12. 5 ~59.4 4.4 68.5 3.1 ~52.8 3.3 ~92.6 4.7 ~64.4 6.6 ~61 .9 1 .6 ~50.1 2.1 ~90.4 4.1 -58.2 4.1 ~63.1 8.4 ~54.2 1.7 ~88. 0 5.9 ~67.7 5.3 ~66.3 9.7 ~55.7 2.4 ~75. 6 4. 8 ~62.8 3.8 ~79.7 16.7 49.9 4.1 ~73.2 17. 3 ~58.3 3.6 ~94.4 16.6 41.4 3.1 ~76.9 19.5 ~52.8 4.1 -80.7 12.2 ~61.0 1.9 ~69.4 15.8 ~39.8 4.6 ~94.5 13.3 ~58.4 2.8 ~64.8 1 1 .3 ~67.3 6.6 ~83.1 10.5 ~102.6 4.3 ~85.5 ~0.8 ~41.9 3.2 ~74.9 18. 9 ~133.3 10.8 ~78.8 7. 6 ~42. 2 0.8 ~72.9 20. 3 ~118.5 5.9 ~117.4 23. 7 ~48. 5 1.7 59.0 15. 7 ~113.8 5.8 ~165.7 25.8 ~65. 7 3.2 ~84.5 17.6 ~100.3 3.1 ~140.8 16.9 ~75.3 5.7 ~71.2 6.5 ~100.5 2.1 ~138.8 19.0 ~64.0 2.8 ~62.2 3. 3 ~107.2 3.6 ~117.6 14.8 ~76.5 3.9 ~63.9 11.5 ~128.1 9.3 ~109.4 25.5 ~69.1 2.3 ~84.3 21.3 ~11 1.3 7.3 ~1 16.6 29.1 ~63.6 2.3 -105.1 23.0 ~51.4 1.2 ~129.4 33. 2 ~57.4 2.9 ~85.4 15.9 46.8 1.9 ~120. 7 27. 0 ~78.5 5.6 ~102.6 17.1 -95.1 3.3 ~80. 0 14.2 54.6 ~0.3 ~87.8 13.4 ~111.7 4.7 ~72. 5 24.2 ~65.1 0.8 ~78.1 23.5 ~106.4 4.7 ~111.4 38.1 ~91 .0 2.2 ~76.0 25.8 ~93.3 2.2 ~153.5 48.8 ~87.4 1.8 59.0 24.1 ~94.2 1.3 ~133.4 33. 2 ~106.7 2.9 ~91.6 23.9 ~100.6 2.6 ~131.3 35. 4 -91.0 0.9 ~82. 1 13.4 ~120.0 7.8 ~112.0 28.6 ~84. 6 1.0 ~86. 3 24.3 ~102.3 5.9 ~104.9 37.4 ~80. 7 2.2 ~111.9 36.5 ~47.8 2.0 ~111.5 42.0 ~49. 8 0.4 ~151.5 47.5 43.4 2.6 ~120.3 52.4 ~58. 0 1.5 ~113.0 30.1 ~84.2 4.4 ~112.5 45.1 ~78. 7 3.0 ~135.6 32.8 ~101.1 9.3 ~56.8 7. 6 ~76.2 2.6 ~113.1 25.6 ~97.2 5.9 47.5 15. 2 ~91.3 3.8 -100.9 36.3 ~92.6 5.8 ~84.7 29. 4 ~80.5 1.9 ~102.1 41.6 ~83.7 3.5 ~106.3 32. 4 -74.7 1.9 ~130. 7 46.1 ~85.2 2.7 ~101.2 24.1 ~69.8 2.8 ~60. 4 2. 8 ~89.7 3.9 ~99.2 25.9 ~98.1 6.0 ~62. 0 11.7 ~99.7 8.3 ~86.6 21.5 ~43. 5 ~16 ~84. 4 22. 2 ~87.2 6.6 ~83. 1 30.7 ~42. 5 ~16 ~1 08. 3 24. 4 37.2 ~0.7 ~87. 2 34.1 ra: lumbar sag 5 X 2 ~135.9 90.8 59.0 54.6 ~93.9 63.9 ~141.6 37.1 ~140.3 45.3 ~102.7 36.5 ~84.2 69.1 ~90.3 77.7 ~78.2 ~38.4 ~59.6 ~17.7 ~93.4 27.0 ~143.4 2.4 ~123.6 4.0 ~122.7 9.1 ~100.1 8.6 ~85.0 38.5 ~89.7 42.4 840 31.4 ~84.7 22.7 ~113.1 ~7.2 ~97.2 14.2 ~121.3 48.9 -185.9 45. 1 ~155.3 32. 6 ~154.2 37.2 ~128.0 31.5 ~108.1 54. 6 ~114.1 60. 0 ~120.6 61.3 ~120.0 51.8 ~103.8 29. 3 ~89. 0 49. 4 ~1 12. 7 73.8 ~159.0 85.7 ~140.4 64.2 ~139.6 68.2 ~118.8 58. 4 ~102.8 74. 4 ~107.6 80.7 ~108.4 91.2 ~108.6 82.0 ~79.6 14.8 63.5 17.1 ~48. 2 34.3 ~98. 3 50.6 ~77. 2 61.0 -100. 2 62.1 97.0 49.5 184 Subject 05 Pelvic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X 2 L 2 X j X Z ~85.6 16.2 ~105.5 -1 .8 ~84.3 37.9 ~96.4 53.2 ~104.6 17.5 ~104.9 ~2.9 ~79.6 32.6 ~82.9 46.8 ~88.2 13.5 ~117.7 ~1.8 44.8 7.5 ~73.8 64.7 ~77.7 24.5 ~8.9 ~0.1 ~99.2 44.6 ~76.4 69.7 ~75.4 27.2 ~66.6 0.2 ~100.6 29.1 ~64.7 71 .9 ~92.8 25.4 ~68.1 ~0.5 ~93.1 42.5 ~66.1 64.4 ~55.2 ~7.0 ~72.2 ~1.3 ~101 .7 49.7 ~50.5 20.8 ~62.8 ~18.4 ~77.8 ~0.5 ~18.7 ~2.5 ~22.3 55.6 ~87.0 28.6 5.8 10.0 ~80.4 89.7 ~69.4 32.4 ~1 15.1 75.6 ~96.2 21.3 ~1 14.2 82.0 ~92.5 24.8 ~88.2 66.3 ~73.0 19.1 ~75.8 88.0 ~71 .0 34.1 ~80.0 97.5 ~76.1 39.4 ~57.7 126.8 ~55.2 33.0 ~60.2 109.3 ~29.2 ~7.9 1.3 25.1 ~135.3 113.8 ~64.7 69.9 ~95.9 48.8 ~95.2 55.6 ~72.5 45.9 ~63.6 73.7 ~66.9 81.8 ~34.5 97.1 ~38.2 81.0 44.8 73.6 47.3 85.3 ~61.8 231.5 ~138.2 ~63.7 ~88.1 48.0 -89.6 62.4 185 Subject 05 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 _X Z 35 Z X Z X Z L 2 ~75.1 31 .4 ~57.8 9.2 ~63.3 32.8 40.8 6.2 48.9 42.4 ~86.2 -22.4 ~85.8 42.6 ~76.4 ~31 .2 ~84.3 ~64.2 4.9 ~28.4 40.4 17.3 47.6 ~3.3 ~20.1 20.1 32.2 ~6.6 ~15.2 ~26.9 ~3.4 27.6 ~14.8 7.1 21 .4 20.9 8.3 ~2.4 ~51.9 30.4 ~34.8 13.8 ~42.1 ~2.3 10.5 1 1.8 28 ~7.7 ~1 14.6 ~28.1 ~65.6 63.1 45.7 ~50.4 47.1 72.6 47.6 53.4 ~75.9 17.0 ~71 .0 28.0 ~66.5 45.2 ~53.2 33.6 ~75.2 8.3 ~33.0 13.7 41.7 54.6 ~83.6 8.0 ~17.6 65.7 41.0 43.6 46. 7 21.6 ~15.1 59.6 ~58.1 34.6 13.1 59.8 ~8.0 38.0 ~142. 8 63.7 ~38. 6 56.0 ~32.8 39.4 2.5 63.4 ~20. 6 43.1 -63.5 43.2 41.4 39.1 ~55.1 37.0 ~32.5 55.3 ~67. 2 32.0 ~90.1 61.1 78. 2 90.3 ~61.5 20.0 ~108.0 117.8 ~107.9 102.7 ~22.5 50.6 ~67.8 102.1 23.5 69.0 ~128.7 59.8 ~159.8 36.0 ~49. 4 4.6 ~80.5 46.4 ~63.5 87.4 ~63.3 105.7 ~95.8 85.2 ~103. 1 ~22.2 ~29.9 85.6 ~94.6 26.6 ~8.0 86.6 ~34.6 65.4 ~1 14. 5 ~57.0 9. 8 85.9 51.0 65. 2 ~35.1 103.8 64.0 82.8 ~55. 3 32.3 ~23. 0 92.9 ~13.6 65. 2 ~106.8 60.4 ~84.1 31.2 ~91.2 21.0 ~108.9 ~10.5 45.6 71.2 ~95.3 92.6 ~64. 3 72.3 ~74.6 ~7.2 ~105. 7 54.7 ~88.9 30.5 ~158.7 51.2 ~131 .4 20.0 50.4 13.8 ~96. 5 96.9 ~72.2 80. 6 ~92.3 61.6 49.1 33.8 ~29. 3 ~22.0 ~170. 2 59.7 ~156.2 34. 8 ~113.3 87.8 ~88.2 66. 1 ~11.3 22.3 ~92.5 58.8 59.5 35. 4 ~105.0 56.7 ~91.3 25. 6 ~50. 2 ~27.8 ~109.6 81.5 ~89.8 62.4 ~96.8 37.9 ~78.0 0. 5 14. 8 -17.8 ~108.0 48. 0 ~98.2 22.6 ~72.0 62.5 ~60.7 38. 3 ~30.8 14.2 ~107.2 30. 8 ~95.2 2.1 ~91.8 57.6 ~75.3 30.4 48.9 ~29.7 ~89.7 56. 1 ~82.1 35. 2 ~120.8 10. 8 ~125.5 ~30. 5 ~31.4 ~59.2 ~85.0 51.9 ~71.3 29. 0 ~108.6 46. 1 ~101.2 17. 7 ~31.6 4.1 ~115.2 10.7 ~113.4 ~18. 7 ~185.2 ~16. 0 ~96. 2 ~38.3 ~31.8 ~17.6 ~107.4 50.2 ~99.2 26.2 ~108.6 1.8 ~129. 4 7.5 ~47.8 ~19.0 ~188.9 -1.5 ~188.9 ~32.9 ~128.9 39. 1 ~125.3 ~26. 6 ~23.2 34.5 ~104.8 5. 2 ~91.3 ~23.5 ~115.5 15.6 ~114.5 ~57. 6 ~77.2 ~26.6 ~120.3 35. 8 ~115.0 10.7 ~107.5 ~7.5 ~87.6 ~5.9 8.1 -12.2 ~114.6 12.1 ~116.9 ~17.5 ~79.0 25.3 ~114.6 ~29. 4 48. 7 25.6 ~114.2 ~6.8 ~114.9 ~38. 8 ~104.3 8.2 ~74.5 18. 9 ~70. 7 ~29.4 -95.1 22.8 ~98.2 -O. 8 ~71.9 50.9 ~55.9 59. 4 50.0 ~66.6 ~93.7 7.9 ~95.7 ~18. 9 ~60.3 83. 6 ~117.4 5. 0 45.0 0.8 ~76. 2 43.4 ~76.2 17.3 ~114.7 37. 7 ~39.6 19. 1 49.5 ~13.9 ~64. 2 83.7 ~60.0 61.5 ~50.5 49. 7 ~78.5 52. 7 ~129. 4 42. 7 ~130.9 16.2 ~77.6 78.3 ~82.8 15.5 ~57.0 44. 1 ~47.8 18.6 ~75.9 49.4 ~69.4 97 ~78. 3 69. 1 ~76.4 45.9 ~65.6 29.7 ~54.0 29. 3 ~83. 7 39.5 ~86.9 12.7 44.7 56.2 ~66. 3 18. 4 ~82. 2 22.1 ~84.0 ~6.7 ~57.0 48. 2 59. 0 35.5 ~66.9 48. 4 ~72.9 25.6 68.9 57. 2 ~26. 0 17.7 ~55.7 40. 6 ~60.5 16.2 ~25.6 47.2 ~13. 5 48.6 38. 3 88.0 41.0 24.9 ~15.6 73.2 47. 8 7. 4 40. 0 50.3 ~24.5 62.5 48.0 35.7 4. 9 16. 4 ~25. 8 85.4 ~74.9 25.7 ~2.1 44.3 ~28. 7 43.3 186 -84.4 52.6 Subject 05 Thoracic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 __3( Z X Z X Z X Z X Z ~73.2 51 .0 -1 1 .5 26.0 ~28.5 68.9 ~38.4 16.0 ~16.5 51 .0 ~39.9 49.5 ~35.5 47.3 ~25.8 4.0 39.5 72.9 ~56.3 20.5 ~25.2 30.5 ~19.7 27.0 ~53.2 46.6 53.1 3.5 ~1 1.5 52.9 ~20.9 17.3 ~51.1 31.0 46.8 31.6 ~13.9 44.7 47.3 17.9 ~39.6 54.3 ~28.2 23.6 ~50.6 46.3 ~30.8 58.1 ~22.0 47.5 ~73.0 19.3 ~38.5 81.2 ~82.7 3.3 ~76.1 43.2 ~55.7 66.6 ~90.3 29.4 ~8.7 17.5 -63.2 89.0 ~131.0 18.4 23.0 43.6 ~51.6 51.3 ~138.4 41 .5 ~41 .8 21 .2 ~56.2 75.3 ~59.7 15.0 ~54.0 44.3 ~73.3 49.7 ~58.6 45.9 44.6 ~10.1 ~78.9 72.1 ~84.8 14.1 46.4 24.7 ~34.3 29.0 ~84.3 38.9 ~81 .5 ~62 ~27.2 53.6 40.1 17.5 ~82.4 19.8 ~70.5 27.5 ~34.8 43.5 ~137.7 ~17.3 ~66.2 48.8 ~56.4 18.2 ~120.3 26.8 ~84.2 10.7 ~53.2 40.4 ~91.4 ~15.7 ~107.7 ~5.7 ~94.4 13.7 ~69.8 53.4 ~70.0 40.6 ~81.1 75.8 ~94.3 28.1 ~101.5 51.9 ~101.8 ~14.7 ~99.2 15.4 ~97.3 43.5 ~96.9 ~10.4 ~80.8 7.6 ~75.3 30.3 ~66.5 ~15.1 ~62.5 11.0 ~10.5 46.1 ~18.6 45.1 ~113.0 30.4 7.8 67.9 187 Subject 06 Pelvic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 X ZJ X Z X Z X Z ~10.4 ~0.5 -22.0 11.5 44.1 ~1.3 ~53.8 10.8 12.7 1.4 10.1 24.3 4.7 ~0.4 5.6 26.9 4.1 0.4 ~1 1 .7 26.8 ~74.3 ~5.5 ~78.0 25.3 ~64.4 ~0.1 ~91.9 91 40.1 0.9 41.9 36.2 ~69.1 ~2.5 ~90.2 ~2.0 ~39.6 ~0.7 ~68.5 ~12.3 ~65.4 4.2 ~78.6 8.2 ~23.1 -1.2 ~61.2 ~0.6 ~68.6 ~5.2 ~94.6 5.1 40.5 ~2.6 ~38.8 12.1 ~62.4 ~2.8 ~91 .5 2.9 44.0 ~0.8 ~66.5 10.3 ~29.6 ~1 .6 ~35.9 23.3 54.5 ~1.0 ~76.7 ~6.7 ~69.7 ~3.3 ~105.4 8.0 ~55.3 ~1 .6 ~60.8 19.2 ~61 .6 4.6 -93.8 1 .6 ~36.3 ~2.2 ~92.2 9.4 ~60.2 ~5.8 ~87.1 4.1 42.4 ~3.4 ~68.0 5.9 ~55.1 ~3.7 ~78.9 12.4 46.9 -2.5 ~69.8 7.3 ~56.7 ~3.1 ~80.5 15.8 49.0 ~2.5 ~71.0 14.7 ~67.5 ~2.6 ~99.6 15. 2 ~76.5 ~3.5 ~70.2 21.3 ~68.7 -2.1 ~107.7 7. 9 43.5 ~1.7 ~98.2 24.3 ~61.5 ~2.4 ~87.5 11.3 ~36.2 ~0.9 ~71.3 21.6 ~88.2 ~10.9 ~90.3 11.5 18.8 1.9 ~62. 5 14.8 ~90.6 ~12.2 ~114.3 4. 6 ~12.5 ~1.4 5. 4 27.1 ~24.4 ~2.7 ~19.3 41.6 23.1 ~1.8 3-9. 2 21.4 ~79.1 ~10.6 ~144.1 9.5 52 ~06 ~12.0 41.6 ~73.3 ~11.3 ~113.5 ~1.1 ~18.6 ~2.4 ~65.8 22.0 ~69.6 ~8.8 ~99.5 3. 4 ~18.7 ~1.9 ~39.3 15.5 ~75.4 ~8.5 ~90.3 17. 9 ~21.3 22 46.8 16.2 ~86.3 ~10.0 ~95.1 24.6 ~62.6 60 43.5 28.1 ~88.7 ~11.2 ~97.5 15.8 ~7.7 ~0.7 ~43. 5 37.3 ~88.0 ~8.4 ~118.4 9.3 11.2 0.8 ~82. 9 40.2 ~29.0 ~3.0 ~126. 5 ~0.1 ~73. 2 4.5 40.6 39.7 ~100.0 98 ~34. 8 41.9 ~37. 4 ~35 ~18.6 33. 0 ~78.1 ~9.8 ~145. 3 15.8 ~59.7 ~6.5 ~95.5 11.7 ~73.0 ~10.7 ~117.9 4.4 ~80.3 ~5.0 ~53.3 24.4 ~69.4 ~8.2 ~104. 3 7. 2 ~97.7 ~6.1 ~87. 6 19. 0 ~74.6 ~7.9 ~97. 0 21.2 ~92.9 ~6.8 ~120. 7 1.5 ~65.9 -8.9 ~102. 0 27.7 ~54. 3 ~58 ~91.2 39. 0 ~72.0 ~10.6 ~138.8 28.9 ~59. 7 ~75 ~134.1 21.5 ~58.4 ~8.5 ~119.3 23. 7 ~71.3 ~7.0 ~90.6 13.7 ~56.5 ~9.4 ~69.1 25. 2 ~74.7 ~7.2 ~89.6 13.7 44.9 ~6.2 ~98.3 15.7 ~117.0 ~10.6 ~95.5 25. 5 46.8 92 11.6 60.5 ~70.5 ~5.8 ~94. 2 34. 0 ~96.7 9. 9 ~63.4 4.5 ~132. 5 37. 0 ~85.6 12. 7 ~69 ~0.8 ~99. 1 36.6 ~71.0 31.3 40.5 ~5.4 ~91.5 30.9 ~73.0 40. 9 ~32.8 4.3 ~19.4 33. 6 ~84.0 14. 1 ~43. 4 ~6.5 ~67.5 24. 7 ~56.1 3.7 ~52. 7 ~6.4 ~69.6 18.3 ~56. 7 ~6. 8 ~72.4 17.8 ~1 12. 4 ~12. 9 ~75.7 33.2 46.1 ~8.8 ~74.9 43.9 ra: lumbar sag 5 X 2 ~60.7 302 ~8.1 64.1 ~75.5 66.2 ~36.2 86.0 ~84.0 ~35 51.5 32.4 ~86.9 30.9 ~117.7 ~27. 0 ~62.5 48. 3 ~124.1 24. 3 ~96.7 17. 2 ~92.5 24.8 ~87.7 41.1 ~81.9 56.0 ~106.6 63.3 38.0 55. 5 ~82.6 37. 7 ~14.3 21.2 ~7. 4 61.7 ~59. 5 54.7 ~10. 9 90.8 ~97.2 53.4 ~67.9 38.3 ~69.0 44.8 ~59.9 68.9 ~55.9 86.4 ~88. 0 94.7 ~59. 5 89.3 ~40. 0 73. 7 ~1 10. 6 35.9 ~62. 5 62.3 ~103. 5 55. 7 ~160. 6 7.1 ~78. 6 89. 4 ~156. 1 58.7 ~116.3 42.1 ~108.7 46.2 ~105.3 68.8 ~97.9 84. 1 ~127.1 92. 0 ~106.7 87.3 ~103.2 74.9 ~29.4 77.8 ~83.5 66. 9 40. 3 1170 ~141 .0 74. 4 ~95.8 50. 8 ~91.5 54. 6 188 Subject 06 Pelvic Centers continued (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X 2 X J2 X Z X Z ~38.8 ~7.4 ~123.1 46.9 ~85.2 83.1 ~20.9 4.0 ~77.5 48.7 ~78.8 100.6 ~84.3 16.3 ~1 14.0 109.3 ~63.9 28.2 ~86.3 106.6 ~82.8 ~18.4 ~72.9 96.5 ~99.4 76.4 ~108.6 55.1 ~104.8 104.7 ~93.5 129.7 ~150.6 141.1 ~110.7 148.5 25.9 129.5 ~64.9 100.4 ~78.4 81.7 ~78.4 78.3 ~66.9 127.0 ~61.8 146.8 ~112.8 157.6 ~68.3 167.0 ~27.2 38.9 189 Subject 06 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z L 2 X Z X _ Z ~39.4 46.4 ~10.1 12.6 ~2.5 92.3 ~16.3 64.9 ~28.7 38.0 ~15.9 69.8 13.6 38.6 -1 14.1 61.0 10.4 70.8 ~8.4 44.4 61 52.4 25.5 23.7 ~31.2 104.9 ~35.6 47.4 ~77.4 36.6 47.8 86.3 ~57.7 58.5 ~88.4 98.6 17.4 68.5 ~57.8 49.6 ~31.1 91.2 ~55.8 61.7 ~1 1.7 77.4 76.7 64.8 48.4 45.5 ~16.3 129.9 44.1 96.5 49.4 93.4 ~83.5 58.4 25.2 56.6 ~168.4 15.4 ~67.2 11.5 ~180.7 60.7 ~113.6 57.2 ~151.5 1.8 ~109.5 48.6 ~56.9 ~9.5 ~98.4 98.1 ~110.1 25.9 ~18.9 ~6.1 ~1 10.6 26.3 ~91.0 ~3.2 ~158.7 93.0 40.9 56.9 ~71.3 ~8.8 ~101.9 37.8 ~51 .3 22.0 ~103.5 89.8 ~82.4 53.2 ~6.2 9.5 ~70.6 57.6 44.0 8.0 ~144.0 85.0 ~102.0 51 .4 39.0 20.6 ~68.1 42.5 ~189.6 116.7 ~120.5 68.3 ~105.5 38.8 ~58.7 40.4 ~149.6 132.4 ~110.1 39.2 ~66.8 92.8 ~100.3 24.6 64.6 40.6 ~130.7 75.4 ~97.3 17.7 ~104.5 89.7 ~39.5 51.5 ~17.2 29.9 ~1 10.8 54.8 ~64.6 33.0 ~133.8 67.9 ~75.9 48.2 43.2 9.3 ~84.5 67.1 ~59.6 22.4 ~84.9 85.6 ~97.8 23.6 14.8 31 .1 ~83.9 56.2 ~77.7 20.0 ~1 15.6 80.3 ~96.2 60.8 ~15.0 31 .4 ~102.3 56.7 ~174.4 115.0 ~102.9 67.0 ~94.6 29.6 ~19.0 20.1 ~129.2 133.9 ~103.6 44.3 ~54.9 89.2 ~27.7 60.0 ~153.4 27.3 ~78.5 83.9 ~94.3 22.2 ~88.1 86.3 ~67.5 56.5 ~130. 4 ~21.3 ~111.8 80.9 ~63.6 35.9 ~106.7 65.3 46.6 69.6 ~34. 7 17.9 ~99.5 59.8 ~58.9 25.8 ~73.7 93.5 35.7 69.6 ~81.8 16.4 ~75.8 71.0 ~74.6 26.3 ~107.9 88.5 ~35.3 63.2 ~138.6 39.0 ~74.6 60.7 ~104.7 25.8 96.0 70.8 ~50.2 46.8 ~113.6 ~11.7 ~85.7 63.2 ~68.7 40.8 42.6 96.5 -3.1 66.9 ~14.9 29. 0 ~151.5 159.3 ~63.4 29.8 ~79.1 93.2 30.3 65.5 ~63.9 27. 4 ~128.2 92.6 ~86. 6 34.3 ~96.6 70.3 31.9 51.0 ~107.3 63.3 ~145. 1 142.5 ~35.9 98.3 ~103.6 59.7 ~79.4 75.9 -21.6 95.1 0.0 100.2 ~100.7 25.7 ~78.1 64.6 ~86. 4 79.7 ~52.5 95.4 ~27.8 59.5 ~94.4 70.8 ~85. 2 47. 9 59.0 80.4 ~71.2 55. 3 ~119.0 164.4 ~58.6 56. 5 ~17.5 100.1 ~99. 9 88. 8 ~61.3 128.5 ~54.1 47. 8 44.7 98.2 ~97. 7 51.4 ~101.3 111.3 ~62.5 61 .9 44.2 81.9 ~25. 3 82. 5 ~93.4 80.2 ~131.3 30.4 ~57.7 90.7 ~68.2 80. 6 ~70.9 88.8 ~84. 4 47.0 ~86.7 63.7 ~99. 8 57. 3 ~69.1 79.8 ~78. 7 34.7 ~25.4 96.0 ~75. 6 71.8 ~75.1 93.4 ~99. 0 68.3 ~66.9 90.9 45. 4 58. 2 ~119.0 66.3 ~90. 8 33.5 59.8 119.3 ~97. 2 21 .9 ~83.1 81.9 ~58. 0 47. 1 91.3 121.7 ~21.5 58.0 ~81.3 68.5 ~52. 4 36.4 ~85.5 91.5 ~66. 4 53. 2 ~115.3 166.8 ~64. 2 45.4 ~31.2 116.6 ~76. 2 35. 7 ~92.5 102.2 52.8 ~23.5 ~67.9 115.3 4.4 69.6 ~86.0 70.7 72.0 48.2 ~78.8 102.5 46.3 66.0 ~61 .9 82.3 ~136.3 ~2.1 40.1 90.5 59.1 71.5 ~79.1 26.9 ~19.1 103.4 ~60.0 80.9 ~71.8 11.0 ~118.0 51.5 10.7 2.5 ~121.3 23.5 ~33.0 97.8 190 Thoracic Centers continued (coordinates in mm) Subject 06 re: lumbar sag 1 X Z -1 13.6 37.9 ~72.8 63.2 ~69.3 44.8 ~99.6 61 .9 ~67.9 78.3 ~64.7 64.6 ~76.7 69.1 ~49.3 84.5 44.2 71 .3 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z X Z X Z ~76.1 41.9 ~91.8 89.9 ~70.1 29.2 ~72.4 63.6 ~92.2 33.6 ~12.6 96.2 ~54.9 49.6 ~52.4 91 .0 48.1 37.6 ~56.0 74.0 ~51 .9 49.7 2.6 106.0 ~35.6 101.8 ~64.3 83.7 Subject 07 Pelvic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 X Z X 2 ~62 -1.2 ~10.5 ~15.5 ~8.4 ~1.5 ~108.7 19.1 ~52.3 ~8.3 ~82.0 4.6 ~2.8 ~0.4 ~68.5 ~34.1 ~34.0 ~5.1 ~138.0 ~72.1 ~45.3 ~7.0 ~92.6 ~31 .4 ~67.1 ~10.4 -148.5 ~10.8 ~32.6 4.4 ~82.8 43.9 ~65.1 ~7.9 ~125.5 ~26.0 ~33.3 ~3.9 ~131.0 ~66.1 43. 7 4.8 ~100.1 47.9 ~75. 4 -7.5 ~1 14. 9 ~21.9 ~54.8 ~6.1 ~22. 2 17.9 ~60. 9 ~72 ~98. 9 33.5 ~75. 2 ~88 10.5 44.3 -51.1 ~5.6 40.2 23.9 ~70.4 ~6.6 7. 8 68.4 4.4 0.8 ~62. 9 87.4 22.8 4.3 25.5 58.8 31 .9 6.3 46.4 60.1 ~9.5 -1.7 ~29.8 33.0 44.4 7.4 9.7 57.6 ~60. 4 ~10.2 ~3.1 93.3 14. 0 2.1 ~37.4 12.1 63. 4 9.4 15.3 13.1 59. 7 8.4 ~32.2 ~16.8 40.4 5.8 ~57.7 29.6 23.8 3.5 -133. 3 52.0 4.3 0.6 ~106. 0 25.8 48.8 6.9 13. 3 27.0 ~54. 0 47.2 30. 2 15.7 ~38. 9 25.4 ~22. 3 91 15. 3 13.0 3.5 44.7 191 ra: lumbar sag 3 re: lumbar sag 4 X Z X Z 5'53 23 ~69.2 ~10? ~84.2 ~11.6 ~127.4 18.1 ~59.6 ~8.2 ~34.8 ~1 1 .6 ~32.8 4.6 ~69.5 ~1 .3 ~67.2 ~9.9 ~67.1 ~27.0 49.0 ~6.8 47.9 ~1 1 .2 ~63.6 ~2.2 ~63.5 20.9 ~50.2 ~3.9 ~95.2 48.5 ~62.0 4.8 ~123.2 ~56.6 ~75.3 ~6.5 ~148.0 ~79.8 ~92.3 ~3.9 ~1 10.2 ~8.1 ~63.9 4.6 ~105.1 ~19.5 ~74.9 ~5.4 ~130.5 3.6 ~61.1 ~5.3 ~77.2 ~15.9 45.4 4.0 ~95.7 ~8.8 ~65.7 ~6.3 ~94.9 ~24.4 ~55.0 4.8 ~84.5 -15.3 ~69.0 ~5.2 ~93.1 3.8 ~76.7 ~1 1.0 ~78.7 37.0 50.0 ~7.2 ~123.0 61 .8 ~21.1 ~3.0 43.2 33.5 ~59. 4 ~91 ~73.1 39.6 ~38. 5 ~55 ~71.3 16.7 ~81.9 ~11.7 ~54.5 33.5 ~55. 4 ~7.9 ~67.8 62.2 ~26. 6 ~38 ~30.7 30.0 ~64.1 ~9.8 ~69.1 18.6 ~44. 0 ~63 ~103.9 ~15.9 ~67. 4 ~11.1 ~52.6 61.9 ~90. 1 ~12.3 ~95.3 80.9 ~65. 6 ~90 ~25.7 54. 6 ~38. 8 ~5.4 ~53.7 59. 1 ~72. 4 ~10.7 ~52.4 38.4 ~55.1 ~7.6 ~36.0 54. 4 47.2 80. 4 ~101.2 25.3 ~139.6 50.4 ~63.3 23. 7 ~90.4 30. 2 ~88.6 8.4 ~73.8 23. 8 ~86.7 51 .0 -84.4 re: lumbar sag 5 X Z ~78.0 6.2 -126.2 20.5 ~52.6 ~2.0 ~71.1 ~0.4 ~84.2 ~10.7 ~54.7 2.8 ~73.5 33.7 ~143.6 ~19.3 ~99.2 ~59.0 ~128.4 49.7 ~128.2 46.2 ~112.9 39.4 ~102.0 ~9.0 ~123.6 16.2 ~82.7 1.3 ~92.7 2.7 ~99.8 ~3.3 ~83.3 4.1 ~93.3 22.3 ~105.1 ~13.5 ~66.3 46.6 ~106.9 73.7 ~47.8 50.6 ~63.5 50.7 ~75.5 38.7 49.7 53.4 ~64.8 79.9 ~71.7 14.0 ~79.4 11.3 ~52.6 148.8 45.0 64.3 ~85.3 86.7 ~32.7 64.4 47.6 64. 3 ~59.8 52. 5 ~34.8 66. 8 48.4 91.3 ~45.3 30. 8 ~62.6 16. 3 ~26.2 34. 9 ~47.8 70. 7 ~130.5 ~28.3 ~92.3 29.8 ~126.9 58. 7 ~68.2 37. 0 ~82.8 37.5 ~93.2 26.6 ~69.5 40. 0 65.7 192 Subject 07 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 x Z_ X Z X Z X Z X Z ~142.3 85.7 ~1 14.5 60.3 ~72.6 99.7 -101.0 69.0 ~102.9 48.1 ~65.7 102.7 ~89.9 76.8 46.5 100.4 ~90.0 67.7 ~87.9 47.9 57.5 1 10.6 ~104.5 85.5 ~33.5 85.1 ~75.0 53.9 ~72.5 33.7 ~51.1 98.7 ~89.2 69.3 ~15.8 104.5 46.8 74.1 41 .4 54.4 0.9 92.7 ~21 .4 64.1 21.4 107.2 ~41 .6 67.0 ~54.7 47.4 ~23.7 102.5 ~98.3 74.9 ~50.3 100.2 35.7 65.2 44.4 46.5 ~89.4 90.9 ~30.7 48.1 ~25.3 100.2 ~14.4 49.5 ~22.9 30.4 ~38.7 97.2 ~30.5 68.4 4.1 83.5 8.6 71.6 8.6 53.3 ~32.9 106.0 47.6 78.3 9.3 104.4 ~70.3 27.8 ~75.0 17.2 ~17.6 92.2 ~27.6 59.9 37.2 92.3 ~55. 9 39.4 ~104.1 25.6 27.2 86.3 26.2 54.7 93.9 96.5 ~128. 5 55.8 ~94.9 30.3 25.2 95.0 79.3 54.1 ~96.1 69.6 ~92.2 46.4 ~137.7 ~17.6 20.7 122.8 ~92.9 19.6 ~96.3 90.4 ~92.1 53.0 ~1 16.3 28.0 108.2 82.5 ~70.4 ~13.2 ~100.8 83.6 ~119.6 7.8 ~100.1 37.6 ~104.8 ~6.5 ~103.0 28.7 ~95.1 77.7 ~111.9 52.0 ~100. 0 29.1 ~150.2 48.5 ~101.9 20.6 ~78.2 86.5 ~87.6 59.4 ~65. 0 20.2 ~175.2 37.6 ~92.6 29. 1 ~142.7 57.6 ~89. 4 52. 7 -1 15. 7 29 .3 ~160.5 50.9 ~95.4 13. 5 ~113.6 87.0 ~50. 5 40. 5 ~87.9 28. 2 ~142.1 37.4 ~80.9 40. 5 ~88.9 93. 9 ~1 12. 4 55. 8 ~59.5 11.5 ~128.5 77.3 ~63.2 16. 1 ~79.8 90. 0 ~81.3 47.2 ~81.1 32.1 ~56.5 46.2 ~108.6 64.5 ~12.3 103. 1 47.9 31.9 ~114.4 ~8.0 ~111.6 95.6 ~60.5 32. 1 65.0 75. 4 ~82.5 53.3 ~100.1 30.3 ~88.5 71.5 ~85.7 50. 8 ~62.7 92.8 ~104. 3 13.4 ~85.0 38.6 ~77.5 81.2 ~85.8 17.1 ~67.5 87.2 ~100. 9 52. 5 ~82.8 31.2 ~109.5 57.8 ~86.8 42.8 ~60.7 82. 3 ~78.1 58.9 ~49. 4 6. 0 ~95.0 75.0 ~78.0 50.8 51.8 89.3 ~78.6 52.8 ~71.0 10. 8 ~83.2 82.9 ~78.9 41.1 ~100.9 66.4 35.2 27.7 ~65. 0 16.7 ~75.1 74.0 -92.0 46. 9 ~81.9 90. 3 ~96.4 37.5 ~97. 4 ~32.6 ~24.8 125.3 ~75.3 23. 3 ~60. 2 95. 7 ~64.1 30. 2 ~85.8 14. 8 -113.2 89.1 ~125.1 75. 1 ~52. 3 92.3 ~22. 3 8.1 ~68.5 22. 9 50.8 58.6 ~80.0 44. 8 ~55.8 50.5 ~67. 5 39. 1 ~63.9 12. 2 ~96.6 105.8 ~98.5 58. 4 ~52.8 71.4 ~86. 8 ~94 ~23.7 26. 3 ~76.9 84.1 ~103.2 28.8 ~59.1 64.7 ~87. 6 38.8 47.3 36. 6 69.0 90.9 ~98.6 49. 7 ~49. 2 56.3 ~62.4 44.7 ~37.3 34. 7 ~95.6 72.3 90.8 58. 3 ~40. 2 71.1 ~61.0 36.0 7.5 18. 6 ~85.2 85.2 ~92.8 49. 5 ~102. 7 34.3 13.1 78.1 ~34.? 38.5 ~74.1 92.6 ~79.8 34.2 ~78.6 71.3 ~16.0 47.8 ~56.2 ~1 .5 ~67.1 84.2 ~61.6 8. 8 50.8 78.5 ~59.7 63.6 ~54. 3 36.7 ~123.3 67.6 ~108.5 55. 2 40.6 74.2 ~34.9 55.2 ~36. 3 45.1 41.5 35.4 ~58.3 20.2 47. 0 107.8 7.1 41.8 ~27. 4 38.0 ~102.9 88.4 ~84.8 43.7 ~32. 9 78. 5 41.5 60. 4 ~75.3 60.6 ~84.7 5. 8 ~28. 3 96. 6 51.0 24. 5 ~65. 5 74.4 ~85.8 36. 1 ~34. 1 90. 8 ~60.1 59. 8 ~100. 0 43.9 ~76.8 43.7 ~24. 8 85.7 36.1 65. 8 ~85.7 67.2 ~77.8 33.1 ~21.8 93. 0 ~31.9 60.4 ~72.0 76.2 38.9 46. 8 ~67. 2 69. 1 ~36.7 29.6 ~62.8 66.5 40.2 55. 2 ~52. 8 93. 9 27.9 77.2 ~29.4 39.8 ~29.7 99.6 193 Subject 07 Thoracic Centers continued (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 __X Z X Z_ X Z X Z X 2 72.3 83.9 -13.4 19.7 21.4 96.1 47.9 73.0 ~27.3 53.4 ~30.5 86.9 0.6 47.6 1 1.9 28.2 ~84.1 85.6 ~27.8 85.8 ~26.1 46.5 45.4 97.4 ~1 1.6 66.6 ~11.1 19.2 ~30.6 92.0 ~13.5 76.6 ~31.0 41.2 ~28.4 56.2 ~20.3 46.3 ~29.8 72.2 ~17.9 38.2 ~18.1 78.1 ~80.5 25.1 ~12.9 70.9 ~53.7 ~10.7 ~115.4 59.7 ~88.6 36.3 ~14.9 24.1 ~89.2 26.5 ~87.1 87.3 ~77.0 36.9 49.8 50.8 ~77.9 19.8 44.2 71 .3 ~97.9 1 1.3 ~82.4 27.5 ~68.3 ~31.8 ~70.1 62.1 ~113.6 20.7 ~52.4 73.4 ~110.4 11.2 ~41.4 61.7 ~99.5 21.7 ~64.1 0.5 ~107.4 47.3 ~104.3 54.4 ~131.3 43.8 -114.2 56.8 ~98.4 43.6 194 Subject 08 Pelvic Centers (coordinates in mm) ra: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 X Z X Z _X Z X Z ~84.7 ~14.1 ~35.6 61 .1 ~50.4 ~9.3 ~26.8 78.1 ~55.8 ~9.7 ~1 16.7 ~29.9 ~55.8 ~10.4 ~68.3 76.8 47.6 ~8.8 ~73.5 15.1 ~85.9 ~16.1 ~68.4 47.9 47.8 ~7.9 ~90.8 ~9.5 ~69.1 52.9 ~57.2 ~9.8 ~97.5 ~27.5 ~105.3 53.2 ~59.2 ~10.1 ~120.2 ~12.9 ~123.3 31.1 ~1 19.9 36.7 ~94.0 45.2 ~123.5 32.8 ~150.6 37.8 ~174.0 3.8 ~113.2 ~23.6 ~147.9 ~18.8 -201 .6 re: lumbar sag 5 X Z ~24.5 181.3 3.6 224.9 ~78.0 147.1 ~120.8 125.4 47.5 170.6 ~1 17.4 127.7 ~166.6 104.1 45.9 103.6 45.9 t 13.3 ~88.5 1 17.1 ~31.2 129.7 ~24.5 181 .3 ~32.7 133.9 14.2 148.9 ~7.1 137.8 ~64.6 135.9 70.2 192.8 ~24.5 181 .3 ~53 209.7 6.8 161 .8 3.6 224.9 ~1 1.6 163.0 45.4 185.0 23.1 174.1 49.3 162.2 3.6 224.9 ~79.2 96.6 ~78.0 147.1 ~75.4 103.9 ~33.4 116.0 ~58.3 102.8 ~104.1 108.2 8.3 152.7 ~78.0 147.1 ~75.3 167.9 ~1 18.2 80.6 ~120.8 125.4 ~1 10.7 88.6 ~76.9 97.8 ~102.1 85.3 ~134.3 93.8 ~53.0 126.1 ~120.8 125.4 ~130.4 138.9 ~150.5 30.7 ~179.9 43.8 ~173.2 ~39.4 ~16.1 195 Subject 08 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X 12 X Z X Z X Z X Z ~28.1 72.4 ~33.0 46.0 40.9 94.1 ~63.8 91.0 -1 16.5 62.6 41.2 71.0 ~57.9 41.0 ~51.7 104.0 ~56.2 77.8 ~7.2 40.1 ~39.3 107.2 ~55.5 84.0 44.3 116.5 ~19.8 69.4 ~29.6 42.6 ~58.6 89.9 ~59.7 66.3 ~55.9 102.9 ~27.4 71 .4 ~70.7 61 .4 ~30.8 73.9 ~25.4 50.6 ~27.6 93.6 49.2 77.7 ~32.4 52.5 44.9 94.7 47.1 70.6 ~26.9 97.0 47. 8 89.3 4.1 48.7 ~54.2 90.7 ~66.4 64.5 37.0 104.6 ~38. 5 79.0 ~149.6 80.7 48.2 119.0 ~61.5 95.2 ~36.0 115.0 ~10. 5 72.5 ~151.6 60.3 ~67.7 104.7 ~66.0 81.6 44.2 103.0 41.3 58.9 ~116.5 62.6 ~39.9 88.0 ~33.8 65.6 ~20.4 95.2 ~54. 1 60.3 ~138.6 72.3 46.7 157.0 ~30.6 89.1 44.5 141 .6 ~95. 1 52.7 ~96.9 51 .1 ~34.1 76.6 ~15.3 54. 9 14.5 84.9 ~76.2 66.4 ~152.4 52.9 6.3 65.3 ~35.6 42. 3 40.9 94.1 ~124. 7 61.1 ~116.5 62. 6 ~28.1 72.4 -33.0 46. 0 ~53.3 101.7 ~63. 4 98.9 ~112.4 44. 2 ~53.9 64.8 ~72.8 72. 8 ~53.3 90.1 ~73. 0 104.4 ~100.1 60.1 50.0 95.0 ~63.9 55.6 ~62.3 81.8 ~58.6 86.9 ~57.1 38. 3 ~61.8 81.7 -74.0 51.9 40.9 94.1 ~63. 8 91.0 ~117.2 37. 5 48.9 76.9 33.0 46. 0 ~13 95.0 ~79. 8 86.9 ~33.9 56.5 ~28.1 72.4 ~59.3 37. 8 ~51.7 104.0 ~99. 4 98.4 49.5 39.6 ~24.0 56.9 ~57.9 41.0 ~63.5 111.6 ~78. 5 97.7 ~7.2 40.1 ~44.8 63.1 ~118.3 32.5 ~60.9 97.7 ~63.9 83.6 42.9 53. 7 2.8 77.4 ~96.7 65.3 ~71.2 93.0 ~86.6 84.9 ~12.9 35. 6 ~1 1.3 64.4 ~81 .4 50.8 ~51.7 104.0 ~63.8 91.0 ~59.4 34.7 41.2 71.0 ~96.5 46.6 43.7 123.5 ~63.4 83. 5 ~72 40.1 ~72.7 69.8 ~57.9 41.0 ~34. 7 127.3 ~53.4 82. 7 ~66.7 65.1 ~56.1 90. 8 ~15. 2 109.3 ~67.0 91.2 ~61. 1 90.2 42.6 1001 44.3 116.5 49.9 73. 3 ~68. 5 79.6 ~56.8 80. 9 ~53.4 113.7 ~56.2 77. 8 ~59. 8 75.0 ~55.5 84. 0 ~58.5 122.0 ~74.7 65. 4 41.2 71.0 -83.0 103. 3 ~50. 3 121.6 ~101.1 82.4 ~43. 3 58. 4 ~87.5 90.1 ~51.9 111.1 ~74.6 85. 8 ~39. 3 113. 3 ~77.8 102.9 ~56.0 110.8 57.5 71.9 ~1 1 .3 120.0 ~72.5 85.5 44.3 1 16.5 ~84.3 70.3 ~19.3 101.0 ~79.1 90.0 41.9 110.6 ~56.2 77.8 ~39.3 107.2 ~55.5 84. 0 ~60.4 107.3 ~53.7 64. 0 ~53.7 121.1 ~59.2 85. 5 48. 2 113.2 ~5.4 69. 2 ~53.5 111.7 ~63.0 68. 2 ~20. 0 95.2 ~21.0 78. 1 ~50. 8 123.6 45.9 81.4 ~55.9 102.9 ~15.3 65. 7 ~59. 7 109.7 ~60.8 63. 1 ~72.5 94.4 ~19.8 69. 4 ~51.1 112.3 ~59.7 66. 3 ~77.7 106.1 ~22. 0 54.8 ~39.3 107.2 ~100.8 79.1 ~64. 1 108.5 49. 1 70.9 ~39. 1 108.2 ~101.1 68.5 ~62. 2 98.5 ~36.1 76.6 ~66. 9 92.3 ~87.5 87.1 ~70.0 95.6 ~27.6 66.4 ~31.8 101.7 ~78. 3 70.4 ~55.9 102.9 46.0 63.7 ~34.3 83.6 ~88. 3 72.3 ~56.0 92.3 ~19.8 69.4 ~58.6 89. 9 ~59. 7 66.3 ~22. 7 93.1 95 54.9 ~88. 1 100. 2 ~66.5 62.2 ~13. 3 98.6 ~81.7 91.4 ~18.7 46.1 3.8 86.5 Thoracic Centers continued (coordinates in mm) Subject 08 re: lumbar sag 1 X Z ~75.4 107.8 ~78.9 94.5 ~74.2 94.9 ~58.6 89.9 ~64.8 86.9 ~29.9 69.9 ~2.1 76.6 ~10.9 68.3 ~30.8 73.9 44.0 74.7 44.3 71 .5 ~41 .9 87.1 ~51 .5 81 .1 42.3 77.3 ~30.8 73.9 ~29.9 66.8 ~98.4 94.8 ~151 .6 70.7 ~65.8 89.1 ra: lumbar sag 2 X 2 ~72 56.7 ~27.2 48.6 ~25.4 50.6 ~38.5 50.4 ~50.3 49.1 44.6 66.2 45.0 57.3 47.0 55.4 ~25.4 50.6 ~22.3 42.3 ~55.6 65.2 196 ra: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z X Z ~27.6 93.6 ~33.5 82.5 40.3 93.7 ~33.7 98.1 ~37.9 91.8 40.2 87.3 ~27.6 93.6 ~21.9 81.5 Pelvic Centers (coordinates in mm) Subject 09 re: lumbar sag 1 X Z ~52.4 46.6 ~2.0 ~60.0 ~3.0 ~53.3 ~2.2 ~50.4 ~2.3 ~78.2 4.1 ~0.6 0.0 ~55.0 ~2.2 ~17.0 ~0.7 44.4 ~1 .6 69.9 ~3.1 0.0 0.0 46.7 ~1 .1 48.0 ~1 .5 ~14.6 ~0.5 ~50.4 ~1 .2 ~34.8 ~0.7 27— 197 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z X Z X Z ~87.1 27.0 ~80.2 ~3.4 ~91 .3 28.8 ~91 .6 68.8 ~64.1 35.9 ~92.2 ~1 .7 ~96.2 37.9 ~89.2 82.6 ~58.8 32.1 ~68.5 ~0.2 ~75.2 35.9 ~72.9 77.9 ~69.2 16.7 1.2 0.1 ~10.4 9.9 ~75.9 66.4 ~62.8 13.9 ~31 .6 ~0.7 41.5 23.6 ~20.9 24.7 ~118.4 14.2 ~17.0 ~0.1 ~26.8 22.5 46.7 55.6 ~57.7 35.7 ~25.6 ~1 .2 ~10.4 7.7 ~33.2 52.2 ~30.9 36.5 27.5 1.1 43.1 21.5 43.2 86.8 51.7 18.6 46.7 ~2.1 22.5 29.1 ~10.7 20.9 ~86.5 27.3 ~44. 7 ~18 ~11.9 37.2 ~54.3 52.6 ~8.1 33.5 ~31. 1 ~15 ~30.9 39.7 16.1 64.2 36.6 68.1 46.4 ~1.9 ~1.6 53.4 ~50.4 122.1 36.5 40.8 ~43. 3 ~05 48.7 59.9 47.6 100.7 ~39.8 42.5 51.5 ~1.1 ~28.3 39.1 0.3 79. 2 ~14.1 57.1 ~14.6 ~0.2 ~57.9 49.4 ~19.1 83. 9 ~63.2 64.0 ~99. 5 0.6 ~39.7 51.5 1.1 102. 9 ~20.9 42.4 ~60. 1 ~0.4 44.7 24.0 44.2 1142 ~68.9 51.9 ~67. 1 ~14 ~62.8 31.8 ~24.7 83. 4 ~47. 6 54.0 42.1 05 ~18.2 35.9 ~57.4 100. 8 ~46. 5 15.3 ~67.0 ~1.0 ~81.0 63.9 ~38.6 102.4 ~79. 4 24.1 ~55.0 ~1.3 ~80.1 54.0 43.1 56.5 66 28.9 ~67.6 ~1.2 44. 2 43.0 ~65.4 71.4 ~31.9 59.3 ~59.5 08 ~52. 5 43.7 ~19.6 76.9 ~68.4 45.4 ~25.5 0.1 ~32.8 53.0 ~98.1 97.5 ~32.3 35.2 ~34.1 ~0.2 ~64.3 58.7 ~60.6 1 16.4 ~35.8 37.6 ~1.6 0.0 ~50.1 43. 1 ~62.3 103.3 ~11.7 49. 4 ~67. 3 1.4 ~71.5 51 .3 ~30.6 87.6 ~56.6 56. 7 ~60. 0 1.7 ~59.1 52.5 ~38.9 89.4 ~18.4 37. 5 ~38. 4 0.3 ~28.2 22.6 ~24.3 101.9 ~62.2 46.1 47.5 ~0.3 45.9 30.0 ~54.0 1 1 1.4 42.6 47.7 ~24. 4 0.1 ~6.4 32.9 42.4 89.1 ~46. 3 0.0 ~62.5 42.2 ~64.4 102.2 ~37. 4 ~0.3 ~58.6 57.2 51.4 102.9 47.4 ~0.1 ~54. 4 47.5 ~29.0 52.6 ~39.6 0.1 ~27. 9 39.0 51.0 67.2 ~37.6 40.6 96 71 .4 -1 9. 4 48.3 ~69.5 85.4 48. 2 54.1 46.1 107.7 ~35. 7 40.2 44.9 93.8 ~54. 4 47. 6 ~19.0 80.9 ~42. 9 48. 3 ~28.2 84.0 ~33.4 70. 2 ~14. 6 95.1 4.4 42.0 ~42. 7 105.1 -31.5 83.9 51.8 96.5 ~39.6 96.6 -90.5 204.5 20.9 198 Pelvic Centers continued (coordinates in mm) Subject 09 re: lumbar sag 1 X 2 re: lumbar sag 2 x 2 re: lumbar sag X 3 2 re: lumbar sag 4 X Z re: lumbar sag 5 X 2 47.9 117.9 ~21.1 128.6 11.3 89.8 ~35.7 111.4 ~8.5 115.1 ~42.6 127.1 199 Subject 09 Thoracic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 Z X {Z X Z X Z X Z ~178.5 79.2 ~203.8 50.6 ~191.3 91.1 41.2 36.6 ~ .2 ~1.7 ~99.5 92.7 ~94.5 67.9 ~55.6 67.2 ~57.1 65.8 ~59.1 37.3 ~121.1 122.3 ~126.7 98.8 57.0 93.4 ~10.2 15.3 -22.6 ~32.7 34.1 21 .8 ~25.4 ~60.1 4.3 49.8 ~29.4 29.9 ~58.1 ~2.1 7.9 32.1 3.4 17.8 ~7.2 58.6 49.3 33.1 ~61 .8 4.8 6.9 46.8 ~20.3 35.6 45.1 64.3 ~230.9 73.1 ~90.5 31 .7 ~2.? 61 .0 ~24.3 33.3 ~208.3 94.8 ~97.1 59.1 ~105.2 52.1 ~23.8 60.8 17.1 ~34.6 ~213.9 103.0 ~107.5 79.2 ~35.8 42.6 26.5 ~2.8 ~147.2 51 .9 ~103.4 85.2 50.8 65.3 ~25.1 21 .5 ~145.3 79.1 ~141.0 58.9 ~106. 1 105.8 100.6 ~12.9 48.8 44.4 ~141.2 85.3 ~76.0 71.8 ~65. 8 88.7 ~158.3 60.5 53.1 32.1 ~82.4 97.1 ~98.2 91.0 73. 6 36.4 ~27.1 44.4 31.5 26.5 ~98.3 1 18.8 ~13.9 86.5 38.1 49.4 41.1 68.1 ~7.9 56.4 ~26.2 1 13.3 28.4 ~8.8 ~146.3 89.9 67.5 47.2 ~76.0 ~73.6 19.8 30.1 ~10.1 5.5 ~28.2 67.7 ~17.8 0.4 ~126.8 46.3 13.7 36.4 ~151.8 62.2 ~28.8 92.3 ~68.2 18.7 58.5 49.5 ~18.7 42.4 ~65.5 76.4 ~24. 6 44.2 ~59.5 ~12.2 ~113.3 47.1 ~145.4 88.5 ~93.8 101.9 ~38. 3 51.9 ~144.7 41.5 ~158.7 ~21.5 ~66.6 101.9 4.5 2. 5 ~72. 1 58.7 ~55.0 12.4 ~154.7 ~23.0 ~86.4 132.2 ~38.4 15. 3 ~54.2 37.3 ~81.3 24.1 ~14.7 ~34.9 ~7.8 3.0 ~38.5 16.8 ~88. 1 69.7 ~89.9 27.1 ~25.3 5.7 ~32.1 ~50. 2 ~94.1 ~1.8 ~103. 0 19.0 ~84.0 ~26.6 ~77.4 ~17.3 ~12.2 36. 6 ~96.8 25. 0 ~54. 8 51.3 ~97.4 8. 5 ~85. 3 ~53.1 ~32.5 46.7 ~1 14. 3 ~33. 3 ~70. 9 59. 6 ~143.8 49. 3 ~24. 9 ~18.9 47.1 48.9 ~56. 7 12. 3 ~88. 0 63. 5 ~167. 8 ~10. 3 41.9 ~0.9 ~10.5 ~19.8 ~92. 6 26.9 ~76. 7 27. 3 ~80. 0 21.0 44.7 ~2.1 ~80.7 36.0 ~85.0 25.2 ~84. 3 50.1 ~107. 4 34. 1 ~30.7 47.5 ~84. 4 57.1 ~83. 8 ~19.0 ~120. 9 82. 1 ~112.2 35. 4 6.2 39.5 411.3 25.8 ~101.5 14.8 ~159.0 67. 2 ~116.8 ~3. 1 ~40. 5 ~52 ~118.6 18.7 ~104.5 39.4 ~159.6 65.5 12.2 28. 1 ~51 .9 34.1 ~93.6 7.7 ~146.0 14. 2 ~127.2 37.0 ~14.4 11.1 ~101 .0 22.1 ~57.0 44.0 ~154.7 4. 2 ~75.2 57.2 -24.2 37.9 ~115.7 13.7 ~82.3 56.0 ~117. 9 ~10. 8 ~93.8 67.1 ~52.6 20.6 ~104.4 ~16. 8 ~85.2 55. 7 ~66. 9 19.7 ~106.4 69.6 ~57.8 16.4 43.4 0. 6 ~78. 6 21.0 ~98. 5 35.1 ~102.9 41.8 ~59.3 ~1.6 ~60.0 19. 1 ~107. 3 64.0 ~91.6 32.3 ~13.3 55.1 ~24.7 23. 2 ~62.0 17.2 ~89.6 46. 7 ~93. 2 ~06 ~15.7 43.9 ~35. 8 32. 9 ~55.0 ~15.7 ~94.6 67. 2 ~48. 5 29.8 ~24.4 65. 7 45. 6 35.1 68.8 ~37.9 ~116.3 46.1 ~35. 7 54.3 ~37.5 49. 9 ~30. 1 3.0 68.9 12. 6 ~121.7 39.2 ~62.6 33.3 41.7 49.4 ~9.3 64.5 ~8. 9 ~64. 6 ~100.8 23.2 ~74.5 23.9 47.9 32. 5 ~26.1 29.6 27. 5 ~16. 2 ~66.0 49.4 ~66.7 5. 8 ~27.4 54. 8 ~37.8 60.6 13.0 4.2 ~89. 5 62.1 ~34.6 31.4 ~33.2 61.2 ~67.4 48. 7 7.0 2.7 ~91.3 61.1 ~55.6 47.4 ~50. 2 65.2 ~72.6 45. 2 50. 5 ~54.2 ~87.8 33. 5 ~54.2 44.1 ~32. 9 37.3 ~70.6 19.0 ~72. 5 40. 9 2. 6 80. 3 ~44. 8 14. 8 ~12. 5 90.3 ~33.4 35.7 ~116.3 ~11.8 ~45. 2 57.6 ~68. 7 46. 8 ~16. 6 59.5 45.4 47.8 ~115.3 ~13.9 ~34.6 79.3 ~61.0 76. 2 ~25. 2 86.6 ~54.5 48.6 24.6 ~13.5 Subject 09 Thoracic Centers continued (coordinates in mm) ra: lumbar sag 1 X 2 47.7 59.1 ~58.6 51.7 ~57.3 34.1 ~36.7 58.9 ~51.7 72.3 58.2 70.9 45.9 44.2 ~56.5 72.5 48.7 101.1 ~64.1 83.2 ~74.3 73.3 ~68.7 47.9 ~44.8 68.4 ~61.9 85.1 ~67.6 81.9 ~56.6 57.8 10.0 55.4 57.3 87.8 25.6 38.7 ~7.1 21.7 ~1.8 60.8 ~10.2 76.3 ~24.8 74.3 5.9 37.3 ~75.8 36.9 ~92.4 ~2.9 49.5 47.5 ~79.9 62.8 ~84.1 61.2 ~72.7 16.5 ~20.0 65.4 ~34.1 38.3 ~79.2 54.8 ~85.7 54.2 ~28.1 60.6 ~59.7 87.9 ~70.5 80.1 ~18.4 69.8 46.7 105.7 ~62.1 92.7 ~85.5 190.6 ~22.7 99.1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X _Z X Z X 2 30.5 59.3 ~38.4 74.2 41.3 21.6 42.9 18.1 ~101.0 48.8 42.7 72.9 54.8 4.0 22.8 ~1.1 ~85.8 22.2 49.4 48.8 64.7 38.1 ~2.0 33.2 48.8 41.5 ~28.9 65.8 1.0 ~16.8 ~10.1 28.2 ~72.4 60.6 ~34.6 74.7 16.8 23.4 ~69.4 55.6 ~52.0 77.5 12.1 33.8 ~63.8 30.7 34.1 52.5 ~5.2 36.6 15.1 27.5 46.7 36.1 33.2 ~7.2 61 .4 63.2 61 .1 63.0 39.1 ~9.4 ~13.0 5.8 7.2 16.9 44.0 17.1 4.8 33.7 9.0 54.3 ~70.3 31 .2 ~10.3 52.1 1 1.4 60.5 ~81.6 33.5 ~15.1 48.2 ~16.0 65.6 ~68.5 ~26.9 14.7 8.2 22.1 26.5 22.0 4.9 ~106.3 2.8 ~16.4 34.2 ~77.4 25.4 ~129.9 ~38.1 ~77.9 6.7 ~1.3 29.8 ~57.9 17.2 ~34.0 53.4 ~17.7 50.9 ~101.8 35.9 46.7 63.0 41.0 50.7 ~91 .5 32.4 ~71.3 67.1 1.5 33.8 ~91.5 ~19.2 46.8 20.5 ~13.2 56.0 ~10.1 39.5 ~28.3 41 .8 ~36.9 55.1 ~28.7 8.4 ~87.2 57.8 ~75.3 26.8 ~19.9 60.6 ~12.6 34.4 ~30.2 76.1 49.9 66.1 ~65.7 78.2 48.2 55.9 ~15.9 62.1 21 44.8 ~24.5 78.8 ~35.0 84.1 ~62.4 80.4 ~37.0 69.3 ~37.9 169.9 ~19.3 73.9 ~1.7 Subject 10 Pelvic Centers (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 X Z X Z ~53.4 ~1.2 ~51.6 ~29.3 ~0.5 ~91.1 35.9 ~1 15.9 ~6.6 ~129.9 29.6 ~112.5 ~6.1 ~128.2 26.8 ~89.0 4.5 ~80.4 28.3 ~60.8 ~2.4 ~87.7 44.2 ~89. 1 ~4.7 ~90.3 45.4 ~84. 7 4.1 ~88.2 37.9 ~52. 2 ~21 ~110.5 32.0 ~61.9 ~2.5 ~102.3 45.6 -61.4 2.8 49.6 41.0 ~63. 5 ~18 ~90.9 35.2 ~87. 6 ~35 ~86.9 32.8 ~83.7 ~3.1 ~37.5 34. 1 ~56.4 ~1.5 48.9 48. 4 ~64. 4 ~19 46.0 49. 5 ~60. 3 ~13 41.6 42.9 ~51.5 ~1.0 ~69.5 37. 5 ~63. 9 -2.1 ~97.2 40. 3 ~72. 9 ~0.3 ~52.7 36. 8 ~35.8 ~0.3 ~92.6 41.7 40.2 ~0.9 ~88.6 32.7 ~65.8 -2.3 ~85.0 30.3 ~61.4 ~1.9 42.6 30.6 ~33. 3 ~0.7 51.8 43.4 41.3 ~1.0 49.7 43.8 ~34.9 05 46.3 37.9 ~26.6 ~0.4 ~69.8 34. 2 41.9 ~1.1 ~75.8 31.7 ~84.1 38.1 ~69.3 57.6 36.0 51.7 ~62.8 60.0 ~69.1 47.3 65.0 45.8 ~26.9 46.9 ~36.0 56.8 ~32.5 58.2 ~29.0 53. 7 51.5 49. 1 ~58.4 31.5 201 re: lumbar sag 3 X Z ~53.7 0.7 ~28.9 0.9 ~74.8 ~2.6 ~108.8 4.3 ~108.6 ~3.6 ~70.5 ~2.2 ~75.9 ~2.7 ~73.9 ~2.0 ~75.4 ~3.0 ~52.7 ~1 .7 ~86.8 ~3.2 ~84.8 ~2.6 47.4 ~1 .4 ~54.0 ~1 .8 49.0 ~1 .2 ~54.5 ~2.0 ~52.5 ~0.7 ~88.9 1 .4 ~79.5 ~1 .3 ~77.5 ~0.8 48.4 ~0.4 ~53.5 ~0.7 49.7 ~0.2 ~45.3 0.1 ~53.9 -0.9 49.8 2.5 ~64.6 2.9 ~34.1 1 .4 ~33.4 0.2 ~55.0 1 .9 ~56.5 0.2 ~53.6 0.5 ~29.3 0.3 ~34.3 0.2 ~29.6 0.5 ~24.9 0.5 ~35.2 0.1 ra: lumbar sag 4 re: lumbar sag 5 X Z X 2 47.5 5.9 ~66.6 9.0 ~78.7 36.8 ~8.5 177.7 ~126.6 31.2 ~68.9 168.4 ~128.2 28.2 ~63.5 174.5 ~71.5 30.1 11.9 179.1 ~77.3 44.0 ~10.9 181 .9 ~78.7 45.0 4.2 195.4 ~82.3 38.6 2.3 204.1 ~97.2 33.6 42.9 169.8 45.2 41.3 38.6 106.1 ~92.0 36.0 ~76.7 76.0 ~90.2 33.4 ~147.4 86.4 ~35.3 35.0 ~131.6 69.0 45.2 48.1 ~135.6 63.2 42.4 49.2 ~68. 9 64.3 40.9 43.3 ~72. 9 87.2 ~64.2 38.3 ~76. 1 88.2 ~103.5 39.9 ~85. 0 78.2 45.2 38.2 ~105. 9 72.2 ~80.9 43.4 ~10. 8 107.9 ~82.8 34.9 ~160. 0 88.1 ~80.7 32.7 ~37. 7 83.7 ~37.6 32.9 ~81 .0 95.2 45.1 43.8 ~89. 5 77.5 42.9 44.1 ~88. 4 72.5 42.0 39.2 ~25. 5 73.2 ~60.5 36.2 ~36.9 93.9 ~69.3 34.1 ~35.4 95.2 ~75.9 40.5 ~36.9 86.4 ~65.6 55.8 ~66. 4 80.2 ~67.1 62.4 ~141.5 27.3 ~31.3 49.6 ~122.9 80.3 ~52.3 56.9 ~37. 5 78.2 ~61.2 47.8 ~69. 5 85.5 ~58.3 46.6 ~79. 7 74.4 ~24.7 45.9 ~78.1 70.0 ~31 .5 53.8 ~28.2 69.2 ~28.6 54.6 36.6 87.0 ~26.8 51 .5 ~35.5 87.2 43.8 48.2 ~36.9 79.4 13.2 75.8 ~60.9 76. 2 ~54.0 65.6 ~82.0 66. 6 9.4 83.5 ~80.1 78. 4 ~16.2 69.3 ~79.1 103. 9 9.3 41.5 ~57.9 109. 9 ~53.0 33.6 ~28.2 94. 4 45.4 29.5 46.8 104.1 29.2 32.9 ~60.2 92.9 202 Subject 10 Pelvic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z X Z X Z i 2 6.2 50.4 ~57.6 90.6 18.8 51.7 ~20.8 88.5 ~17.7 37.3 ~27.8 100.4 ~26.1 101.4 ~26.3 96.9 46.3 93.4 18.4 131.2 44.3 122.0 ~35.9 121.5 43.1 125.1 13.9 139.7 23.9 147.2 35.5 145.8 ~18.0 124.8 38.2 129.9 37.2 117.6 ~25.7 116.3 72.9 122.2 30.8 140.2 45.7 149.3 6.1 121.6 83.7 114.9 9.8 83.0 ~59.1 72.9 ~52.7 65.0 35.3 68.2 6.0 96.8 15.0 98.3 25.2 85.5 -29.7 77.6 Thoracic Centers (coordinates in mm) Subject 10 re: lumbar sag 1 X 2 9.7 75.0 ~169.3 153.7 ~2.8 56.2 47.4 57.4 25.8 17.3 ~10.3 22.9 ~1.9 13.0 ~3.9 21.2 5.1 3.2 ~4.9 60.2 ~94.5 103.0 ~20.6 63.2 ~16.1 ~7.8 ~21.3 4.6 ~25.9 70.5 ~88.0 110.9 ~86.8 119.4 ~99.4 140.4 46. 2 142. 9 ~75. 8 34. 6 ~63. 2 27. 9 ~1 00. 3 ~7.7 ~75.2 ~15.2 ~81.2 ~6.7 ~106.6 ~37.9 ~82.5 38.4 ~81.3 82.8 ~97.9 78.1 -50.0 100.8 ~67.8 84.3 ~57.7 94.4 ~76.7 78.8 ~75.1 70.2 ~80.1 69.1 ~69.6 57.2 ~72.0 63.8 ~79.9 64.9 ~70. 7 88. 1 ~56. 3 79. 0 ~35. 7 93.6 ~64. 3 64. 3 ~57. 7 45. 0 ~71.8 54.0 ~56.5 39.8 ~60.2 48.5 ~69.8 44.0 ~60. 4 84.1 ~60. 5 86.5 203 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z X Z X _Z X Z— ~147.6 125.8 4.5 67.2 ~18.4 25.4 ~142.6 81.5 ~14.3 20.4 55.3 70.2 ~15.3 ~54.4 ~170.7 109.2 ~32.4 ~24.5 ~12.9 27.2 ~17.6 ~38.7 ~139.6 36.7 ~13.0 43.1 ~2.5 15.5 ~0.3 29.4 ~173.3 1 .0 ~14.5 ~30.5 ~5.2 25.2 ~147.9 95.6 ~156.4 ~37.5 0.2 23.4 6.0 3.9 ~120.6 106.8 ~153.3 ~18.0 ~114.7 81.5 ~7.2 72.0 ~115.5 ~1.2 ~110.4 40.7 ~92.6 88.9 ~118.4 118.5 ~119.3 ~88.1 ~164.1 41.9 ~109.3 94.0 ~25.8 76.4 ~124.9 ~72.0 ~164.6 58.6 ~116.1 112.7 ~111.0 129.0 ~102.9 1.8 ~202.7 22.4 ~112.0 118.2 ~106.6 138.2 ~98.1 73.2 ~185.6 ~17.7 47.9 127.6 ~63. 4 167.9 ~79.4 88.0 ~182.1 2.9 ~90.7 0.6 ~92. 5 40.5 ~101.1 59.6 ~134.9 64.5 ~126.1 49.8 ~121.7 ~11.6 ~98.6 45.7 ~94.7 ~67.3 ~90.9 ~19.9 ~1 18.8 50.1 ~98.9 ~54.5 ~98.3 ~9.8 ~101 .7 31 .3 ~80.6 2.9 ~100.8 45.0 ~103.6 41.4 ~49.3 80.8 ~123.5 89.0 ~1 14.8 40.7 ~76.1 60.7 ~66. 7 120.0 ~90.5 76.9 ~60.1 72.1 ~84. 4 98.9 ~99.3 64.2 ~77.7 50.3 ~73. 7 111.3 ~128.8 27.8 ~75.9 39.3 ~96.4 91.8 ~102.4 3.8 ~93.0 43.1 ~94. 4 81.5 ~105.? 17.6 ~80.0 27.6 ~99. 0 80.0 ~125.1 7.3 ~81 .2 35.7 ~85.7 66.3 ~88.9 69.5 ~89.9 35.9 ~88.9 74.1 ~102.1 75.3 ~70.0 63.5 ~99.0 74.7 ~133.3 38.7 ~78.2 53.0 ~88.2 103.3 ~105.2 12.6 ~54.6 69.0 ~68.9 93.0 ~108.7 27.3 ~82.6 28.2 45.4 1 10.7 ~91.3 81 .5 ~102.2 24.7 ~79.1 75.0 ~104.2 84.2 81.6 4.9 ~87. 0 62.5 ~134.7 50. 2 840 16.0 ~68. 3 46.2 ~107.4 23. 8 ~99.7 8.7 ~72. 9 56.5 ~110.9 38.4 ~69.7 57.1 ~84. 4 50.3 ~93.8 90.6 ~80.9 62.2 ~74. 0 98. 9 ~115.0 53.1 ~56.4 85.0 ~73.6 101.6 ~153.0 6.9 ~106.5 33.6 49.6 126.2 ~1 18.7 ~19.2 ~84.4 1 1.9 ~93.7 69.9 ~123.4 ~3.3 ~87.0 23.8 ~72. 7 51.4 ~103.7 58.9 ~104.8 19.0 ~77. 8 62.6 ~72.1 67. 1 ~92. 2 58. 1 ~80.5 68. 1 ~79.3 108. 3 57.0 92. 0 ~60.8 109.0 ~85. 3 56. 4 ~26.7 139.8 ~1 04. 6 42. 1 ~79.6 75. 9 ~83. 9 20. 7 ~59.3 55. 6 ~86. 3 32. 3 ~64.3 67. 7 204 Subject 10 Thoracic Centers continued (coordinates in mm) re: lumbar sag 1 re: lumbar sag 2 re: lumbar sag 3 re: lumbar sag 4 re: lumbar sag 5 X Z_ X Z _X Z X Z X Z ~39.2 107.3 ~102.3 30.9 ~74.3 64.2 ~71 .8 75.5 ~72.0 72.9 ~66.3 1 16.4 ~77.8 60.4 ~91 .8 44.4 ~95.5 80.4 ~60.4 44.3 ~123.0 8.1 ~123.9 38.3 ~64.6 53.8 ~95.8 ~13.7 ~94.0 22.0 ~76.7 50.8 ~99.3 ~0.8 ~101 .2 33.8 ~65.2 92.3 ~82.6 48.9 ~103.5 87.1 49.4 91.9 ~81 .6 91.8 ~19.6 117.0 ~52.3 83.0 ~65.3 64.7 48.8 47.3 ~52.7 57.5 ~60.9 55.1 ~53.7 98.2 ~79.2 68.6 ~66.4 84.6 ~103.5 33.9 ~78.6 19.6 ~84.5 29.6 ~109.6 15.5 ~85.8 74.4 ~59.4 112.6 ~54.7 34 8 ~68.7 125.5 APPENDIX H Individual Subject Lumbar Link Lengths Distances between the upper and lower joints were calculated under test conditions (TC) as described in Section 2.5.17. These distances are listed in the tables below for each subject, relative to each lumbar segment definition. All distances are in millimeters. Subject: o1 Lumbar: Si to T12 LL to T12 51 to T10 LL to T10 L3 to T10 1 2 3 4 5 TC12 188.0 126.4 186.7 151.3 107.3 T011 194.3 131.4 193.4 156.0 112.3 T01 0 183.6 122.5 181.2 147.6 104.4 ‘TC3 178.9 123.0 180.2 148.3 104.7 T06 183.9 120.6 178.4 145.1 103.3 T07 198.9 133.2 193.2 157.3 1 15.7 T014 T010 197.3 131.9 194.9 156.3 114.9 T018 192.1 132.0 193.4 156.4 111.3 Subject: 02 Lumbar: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 1 2 3 4 5 T012 193.0 124.7 185.4 148.3 108.9 T01 1 190.2 121.3 181.1 144.2 105.7 T010 183.7 119.2 178.4 143.6 101.4 T03 182.2 122.4 180.9 147.6 104.1 T06 181.8 116.5 174.0 140.1 99.1 T07 193.3 124.3 181.6 145.7 107.9 T014 189.7 120.9 180.8 144.0 105.2 TC10 198.5 137.5 200.3 161.6 117.2 T018 190.7 124.1 186.1 148.4 107.4 205 206 SEjact: 03 Lumbar: $1 to T12 LL to 112 61 to T10 LL to T10 L3 to T10 1 2 3 4 5 TC12 207.2 144.8 205.4 169.6 126.0 TC11 216.1 151.0 212.8 175.5 133.3 TC10 190.3 133.4 190.3 158.9 116.1 TC3 200.7 147.6 203.3 173.2 130.7 TC6 200.7 142.7 200.2 168.1 125.2 TC7 205.0 142.5 201.4 167.2 124.6 TC14 215.4 147.9 209.6 171.9 131.9 1010 207.4 144.9 207.1 169.5 125.6 TC18 216.2 153.2 214.9 177.8 134.3 Subject: 04 Lumbar: 61 to T12 LL to T12 s1 to T10 LL to 110 L3 to T10 1 2 3 4 5 TC12 221.5 156.2 219.2 180.6 139.1 TC1 1 216.0 152.9 215.6 177.4 134.0 TC10 221.6 155.9 217.8 180.3 138.6 TC3 214.8 152.7 213.9 177.4 133.5 TC6 217.5 152.5 214.2 177.0 134.7 TC7 228.3 159.1 219.9 182.3 144.4 TC14 225.3 157.9 221.0 182.2 142.9 TC10 223.6 160.4 224.1 184.7 142.3 TC18 215.9 151.1 213.9 175.6 133.4 fibject: 05 Lumbar: s1 to 1'12 LL to 1'12 61 to T10 LL to T10 L3 to T10 1 2 3 4 5 TC12 150.3 95.6 153.7 119.8 73.8 TC1 1 152.2 93.1 153.6 117.4 71.7 TC10 144.1 86.1 144.0 111.3 67.3 TC3 140.9 91.3 146.0 115.5 71.6 TC6 136.3 80.5 135.7 106.3 65.3 TC7 155.7 90.9 150.9 115.5 72.8 TC14 150.0 90.5 150.8 115.1 69.6 TC10 154.4 95.4 156.5 119.3 73.5 TC18 145.9 91.3 149.9 115.0 68.2 EFbject: 06 Lumbar: S1 to T12 LL to T12 St to T10 LL to T10 L3 to T10 1 2 3 4 5 TC12 208.7 142.9 203.6 167.1 125.5 TC1 1 205.9 139.3 200.3 163.4 122.3 TC10 208.9 143.1 202.9 167.1 125.7 TC3 198.8 138.7 196.2 163.8 121.6 TC6 205.1 140.1 198.1 163.9 122.7 TC7 209.3 141.2 200.4 164.1 124.7 TC14 213.2 144.8 205.8 168.3 129.3 TC10 213.0 147.4 209.8 171.8 130.1 TC18 208.3 144.1 206.1 168.7 125.8 207 FSfiubjectz 0'7 Lumbar: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 1 2 3 4 5 T012 174.0 1 15.5 175.8 139.9 94.3 T011 173.5 112.2 174.2 136.5 91.9 T010 161.6 102.5 161.8 127.5 82.7 ‘ T03 161.1 105.5 164.2 129.8 83.9 T06 170.2 106.4 165.7 131.1 88.4 T07 174.9 108.9 169.7 133.2 91.4 T014 172.0 1 1 1.2 172.7 135.6 90.7 TC10 173.9 1 11.3 173.6 135.8 91.9 T018 168.0 108.6 170.1 132.7 87.0 Subject: 08 Lumbar: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 1 2 3 4 5 TC1 2 166.1 102.5 164.4 127.2 83.6 T011 156.6 95.1 155.7 119.9 75.3 T010 158.9 95.3 156.2 120.1 76.5 T03 165.7 103.6 165.4 128.1 83.7 T06 178.8 109.4 167.4 131.2 93.6 T07 169.5 101.9 160.4 125.0 84.9 T014 168.5 102.8 165.0 127.4 85.4 TC10 170.7 107.2 169.9 131.7 88.5 T018 Subject: 09 Lumbar: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 1 2 3 4 5 T01 2 180.2 1 18.4 178.3 143.3 99.6 TC1 1 175.7 113.5 174.3 138.4 94.3 T010 180.5 117.5 176.3 142.2 99.6 T03 188.8 126.0 186.8 150.7 107.1 T06 171.4 109.4 165.4 134.0 93.2 T07 185.1 118.2 176.8 141.6 101.0 TC1 4 182.3 1 17.7 178.5 142.3 99.6 TC10 170.0 110.3 171.6 134.6 89.1 T018 180.5 120.1 181.5 144.6 99.5 Subject: 10 Lumbar: S1 to T12 LL to T12 S1 to T10 LL to T10 L3 to T10 1 2 3 4 5 T012 209.0 145.7 205.3 170.3 127.6 T011 207.3 143.5 204.6 168.1 125.1 T010 210.2 146.5 204.0 170.6 129.2 ‘TC3 210.1 147.9 205.7 172.5 130.5 T06 209.7 146.9 200.3 169.5 130.3 T07 214.1 148.8 206.4 172.2 131.3 T014 212.8 146.6 206.5 170.5 129.3 TC10 207.4 141.7 202.9 166.0 124.2 T018 209.2 143.7 203.9 167.9 126.1 LIST OF REFERENCES LIST OF REFERENCES l. SAE J 826 - “Devices for Use in Defining and Measuring Vehicle Seating Accommodation” 2. Haas WA, “Geometric Model and Spinal Motions of the Average Male in Seated Postures”, Thesis for Master of Science, Michigan State University, East Lansing, MI, 1989 3. Bush NJ, “Two- Dimensional Drafting Template and Three- Dimensional Computer Model Representing the Average Adult Male in Automotive Seated Postures”, Thesis for Master of Science, Michigan State University, East Lansing, MI, 1992 4. Chaffin DB, Andersson GBJ, Occupational Biomenchanics, Wiley, New York, NY, 1984 5. Pope MH, Andersson GBJ, Frymoye JW, Chaffin DB, Occupational Low Back Pain: Assessment, Treatment and Prevention. St. Louis, MO: Mosby-Year Book, Inc., 1991 6. White III AA, Pajabi MM, Clinical Biomechanics of the Spine, J .B. Lipppincott, Philadelphia, PA, 1978. 7. Boughner R, “A Model of Average Adult Male Human Skeletal and Leg Muscle Geometry and Hamstring Length for Automotive Seat Designers”, Thesis for Master of Science, Michigan State University, East Lansing, MI, 1991 SAE J l 11 — “Surface Vehicle Recommended Practice”, 1995 9. Abraham S, Johnson CL, and Najjar F, “Weight and height of adults 18~74 years of age” Vital Health and Statistics, Series 11, Number 211. Hyattsville, MD: US. Departments of Health, Education and Welfare 1979. 10. Mase GE, Mase GT, Continuum Mechanics for Engineers, CRC Press, Inc., 1992 11. Reynolds HM, Snow CC, Young JW, “Spatial Geometry of the Human Pelvis.” Technical Report, FAA-AM-82-9, Federal Aviation Administration, Office of Aviation Medicine, Washington, DC, 1982 12. Neter, Kutner, Nachtsheim, Wasserman, “Random and Mixed Effects Models”, Applied Linear Statistical Models, Fourth Edition, Irwin, 1996 13. Seidel GK, Marchinda DM, Dijkers M, Soutas-Little RW, “Locating Hip Joint Center from Palpable Bony Landmarks”, J Biomechanics, 1995 14. Robbins DH, “Anthropometric Specifications for mid sized male dummy, Volume 2”, Final report (DOT-HS-806-716), Department of Transportation, National Highway Safety Administration, 1985 15. Schneider LW, Robbins DH, Pflfig MA, Snyder RG, “Anthropometry of Motor Vehicle Occupants”, US Department of Transportation, 1983 16. Reynolds HM, Erect, “Neutral and Slump Sitting Postures: A study of the torso linkage system from shoulder to hip joint”, Final Report. AL/CF-TR-l994-0151, Air Force Material Command, 1994 9° 208