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ABSTRACT

LEARNING-BASED THREE DIMENSIONAL SOUND LOCALIZATION
USING A COMPACT NON-COPLANAR ARRAY OF MICROPHONES
By

Kamen Yankov Guentchev

One of the various human sensory capabilities is to identify the direction of per-
ceived sounds. The goal of this work is to study sound source localization in three
dimensions using some of the most important cues the human uses. Having robotics
as a major application, the approach involves a compact sensor structure that can be
placed on a mobile platform. The objective is to estimate the relative sound source
position in three dimensional space without imposing excessive restrictions on its
spatio-temporal characteristics and the environment structure. Two types of features
are considered, interaural time and level differences. Their relative effectiveness for
localization is studied, as well as a practical way of using these complementary pa-
rameters. A two-stage procedure was used. In the training stage, sound samples are
produced from points with known coordinates and then are stored. In the recognition
stage, unknown sounds are processed by the trained system to estimate the 3D loca-
tion of the sound source. Results from the experiments showed under +3° in average

angular error and less than +20% in average radial distance error.
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Chapter 1

Introduction

A sound produced by a point-source generates acoustic waves with spherical symme-
try, assuming uniform density of the surrounding air and absence of obstacles or other
sounds. It is known that the location of the source can be established by detecting
the front of the propagating wave and computing the center of the sphere [9][10]. Un-
fortunately acoustical waves are not clearly distinguishable objects and such a task
is not trivial in real environments even if real-life sources could be approximated by
points [18]. Numerous studies have attempted to determine the mechanisms used by
humans to achieve dimensional hearing [10][13][14]. Most phenomena have been rea-
sonably explained in principle, although many aspects of human dimensional hearing
need further study. It is known that two of the most important cues used by humans
are the interaural differences: in time and level (ITD, ILD) [18][24][25]. Other cues
relate to the spectral variations caused by diffractions at the head and pinnae [3].
For sounds with longer duration, cognitive processes start playing an important role,

including dynamic head adjustments, high-level reasoning, etc. [25].
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2
1.1 The problem of sound localization by machine

Sound localization can be used in many different applications: robot hearing, human-
machine interfaces, monitoring devices, handicappers’ aids, etc, where other means
fail for different reasons. The obvious importance of building sound localization de-
vices has prompted numerous efforts in the research community and a variety of
techniques has been developed. Driven by concrete application needs, sensor setups
of different implementations have seldom attempted to follow the human model. The
number, size and placement of the sensors in such devices follow the specific needs
of the task and are optimized for accuracy, stability, ease of use, etc. For example, a
number of microphone subarrays have been placed on the walls with a goal to pick up
the location of a speaker in a room [5][6][7][20]. In other studies a human model has
been followed to some degree resulting in constraints in applicability and limited ac-
curacy [19]. A significant amount of work has been devoted to devices with a limited
functionality (e.g. constrained to localization in a single half-plane while still using
large sensor structures) [8][20] or the help of a non-acoustical modality has been used

(e.g. vision)|8).

In contrast to large, fixed sensor arrays for special situations and environments,
this work concentrates on a compact, mobile sensor array that is suited for a mobile
robot to localize 3D sound sources with moderate accuracy. It should have the ability
to be positioned arbitrarily in space while being capable of identifying the relative
position of an arbitrarily located sound source. It is necessary to point out that the
human three dimensional sound localization capabilities, while amazingly accurate in
some instances often have very serious limitations. The precision depends on various
characteristics of the perceived sound: spectral contents, envelope variability as a

function of time, volume level, reverberation and echo, etc. It can be disappointingly
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low and in some instances totally inconclusive [13]. Sometimes it can be convinc-
ingly wrong (e.g. Franssen effect) [14]. One major diffference between human and
engineering setup is the number of sensors available.

Most authors distinguish a single parameter as the most significant factor for di-
mensional sound localization. It is the interaural time difference (ITD) of the sound
as perceived by two sensors. Numerous studies report the I'TD as the main cue in
human dimensional hearing [24]. The clear geometrical representation of the problem
makes it the favorite feature to be used when approaching such a task by a machine
setup [4][5][7][8][12](16][17][20]. However, if we return to the physical aspect of the
problem, it is clear that even three sensors (non-collinear) are not sufficient by them-
selves to establish unambiguously the three dimensional location of the sound source:
obviously there are two symmetrical solutions on each side of the plane, containing
the sensors. It is then reasonable to incease the number to four microphones, to
localize arbitrarily placed sound sources.

Another cue known to have notable importance in human dimensional hearing is
the interaural level differences (ILD). Surprisingly ILD have seldom been used in ac-
tual system implementations because they are believed to have unfavorable frequency
dependence and unreliability [18][19]. Another reason is the lack of an explicit and
stable relationship between ILD and source location which will allow for a simple al-
gorithmic solution to be derived [18]. The learning approach used in this study does
not have such limitations and it benefits from the added cues.

Finally the processing of the extracted features is one of the dominating fac-
tors for the success of a localization procedure. Most works determine the ITD and
then use either an iterative search algorithm to minimize a certain objective function
[15][19][20], or an approximation model for which a closed-form solution can be de-

rived [5][6]. The former is relatively slow and thus, it may not reach real time speed.
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The latter introduces model errors and cannot use more features for better accuracy.

To use both interaural time differences (ITD) and interaural level differences (ILD)
while effectively dealing with the complex nonlinear relationships among these feature
measurements and the solution, this work employs a learning based approach. It
consists of a training phase and a performance phase. In the training phase, sounds
from known 3D positions are generated for training the system, which builds a fast
retrieval tree. In the performance phase, the system approximates the solution by
retrieving the top match cases from the retrieval tree. This flexible framework allows
for the use of more than one type of feature, and to deal with the 3D localization
problem without imposing unrealistic assumptions about the environment, despite
the compactness of the sensor structure. To the best of my knowledge, this work is

the first to use a compact non-coplanar sensor array for full 3D sound localization.

In order to correctly evaluate the performance of the system, initially a lin-
ear search algorithm was used when searching for the nearest neighbors in the 12-
dimensional input space. The obtained results were also used to evaluate the cor-
rectness and the performance of the previsouly developed and tested with other im-
plementations SHOSLIF procedure. It achieves a high speed of retrieval due to its
logarithmic time complexity O(log(n)), where n is the number of cases learned and
stored as necessary [22](23]. It was found that the results produced by SHOSLIF
had identical precision with that of the linear search, while its performance time was
nearly 5 times faster, even with the relatively low dimensionality of the employed

search space.
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1.2 Review of related experimental work

Extensive work on sound localization by microphone arrays has been performed by
Michael Brandstein, in association with other authors at Brown University. A sig-
nificant effort in the theory of speech based sound localization is incorporated in a
series of publications [4](5][6][7]. Novel methods for estimating ITD and using it for
the localization are presented, among which are a pitch-based approach to time delay
estimation and a closed-form location estimator. The implementations concentrate
on room oriented solutions - microphone arrays placed in room walls. The sound lo-
calization is applied in three dimensions but one of the dimensions (the vertical axis)
is highly restricted. The reported accuracy of localization is very high - the space
resolution is in the order of centimeters. However, it is impossible to compare to the
accuracy of the work presented in this thesis, because the placement of sensors is
different. In the case of room-oriented placement it is impossible to define a direction
or distance from the array since the array surrounds the source. Furthermore the
application domain of the room-oriented implementation is much more limited than

that of a free standing array.

A model for 3D sound localization that uses both ITD and ILD is presented by
Keith Martin of MIT in [19]. The work simulates the human auditory system and uses
a binaural setup. Some assumptions and approximations of the real-life environment
are made and as a consequence the system can only estimate angular direction but
no distance. The experiments are performed in an idealized environment (e.g. noise
is eliminated) and an angular accuracy of around 5° is achieved. All computations

are performed offline.

One of the applications with hybrid methodologies is the work of Udo Bub, Mar-

tin Hunke and Alex Waibel at Carnegie Mellon University [8]. They use a second
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modality (vision) to improve the performance of the localization device by refining
the location estimate, provided by the sound localization. Their approach involves
the use of ITD only as determined by a linear array of 15 microphones for redundancy.
This setup limits their application to recognition in a single half-plane in front of the
array. With acoustic means only, their system achieves an angular accuracy of around
5° and under 10% in distance with bacground noise only. This error is estimated from
a single point in space in front of the array. The authors indicate that competing
noise can significantly degrade the accuracy of localization.

Another work with a practical implementation is by Daniel Rabinkin et al. at
Rutgers University [20]. Their system is limited to two-dimensional localization yet
it uses two subarrays of 4 coplanar microphones each, placed on room walls. It
employs a DSP to estimate ITD by using a cross-power spectrum phase algorithm.
Then a space search algorithm minimizes the error between estimated and computed
delays to produce a location estimate. The performance with the algorithms being
run offline is reported as a percentage of deviation from a preset bound of 6° and is
reported as being generally lower than 20%. The performance from the online tests
is reported as being from “moderately well” to “quite poor”.

A number of other publications [3][11){12][13][14][15][16][17][25] treat theoretical
aspects of auditory localization and the various methodologies used in practical sound
source localization. However, there is no experimental work or actual implementations
reported. The problem of full three dimensional sound source localization with a
compact mobile structure, as examined by this thesis, has not been considered in any

other work included in the scope of this survey.



Chapter 2

Theoretical problem and sensor

structure

Required by versatile applications such as the dimensional hearing of a mobile robot,
we cannot use room-oriented solutions [6](20], which typically use a large intersensor
distance, with all the sensors fixed in the room. In our case the sound source will
necessarily be located outside of the sensor structure. Furthermore the distance to
the source will generally be significantly larger than the dimensions of the sensor
structure. Most of the sound sources that can be of interest for the purposes of sound
localization are compact enough to be assumed point-sources. If the source cannot
be approximated by a point then the problem is different and for the case of a source
size comparable to the source-detector distance, the problem is outside the scope of
this work. The same applies to the case of distinct sources of comparable intensity.
To determine the minimum number of sensors and their optimal placement, we need

to look into the geometrical aspects of the problem.

7



2.1 Parameters

From the front of the spherical acoustic wave, the two main parameters that can be
estimated are ITD and ILD. Assuming that the speed of sound is constant, which is
true only for uniform media (density, temperature, chemical and physical contents,
etc.), we can claim that ITD is proportional to the difference of the distances between

each of the detectors and the sound source:

ITD ~ 1y — 79, (2.1)

where r; is the distance between the sound source and the i-th microphone, i =1, 2,

and ~ indicates proportional (Fig. 2.1). Also since the amplitude of the sound wave,

Figure 2.1: Two detectors and a sound source

or the intensity of the sound, varies inversely with the square of the distance, the ILD
is proportional to the difference between the inverse values of the square of the dis-
tance. However if we take the difference we will be confronted with high-order terms
in the equations which will lead to unnecessary complication of the computations. A

much simpler form is provided by the ratio of the two values:



ILD ~ 2 (2.2)
1
Both parameters can be measured and if we are able to unambiguously define the

geometric representation then we would have a good method for solving our problem.

2.2 Number and placement of detectors

In order to determine the minimum number of detectors necessary we will first have
to consider the geometric representation. For each couple of microphone detectors, we
can derive the locus of the source points corresponding in three dimensional space to a
given measured value of ITD or ILD. From equation (2.1) the locus is represented by
a hyperboloid of two sheets of revolution with foci D, and D,. Depending on the sign
of the difference one of the sheets contains the source location. Then from equation
(2.2), for the matching ILD, it is less obvious but the forthcoming calculations will
show the locus is a sphere [1][2][21]. The intersection of these surfaces defined by a
number of detector couples will determine the ambiguity of the solution. It is clear
that, apart from some special cases, with three couples the intersection is two points
located symmetrically on both sides of the plane containing the three detectors. If
four non-coplanar detectors are used the intersection is a single point. Because of the
assumed isotropy of the locality, an equidistant structure seems reasonable. In the
case of four sensors this suggests a tetrahedron (Fig. 2.2). A mobile robot requires that
the structure of the sensor array be compact, while accuracy consideration requires a

large array. In the experiment, an equal-side tetrahedron with a 20cm side was used.
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2

Figure 2.2: Microphone placement on the array

2.3 Geometric representation

As we established earlier in equations (2.1) and (2.2), we need only use the geomet-
ric distances r; between the detectors D;; and the sound source S. Without loss
of generality we assume the following locations of the four detectors in a Cartesian
coordinate system: D,(0,0,0), Dy(2a,0,0), D3(0,2a,0), D4(0,0,2a). In this fepresen-
tation the detectors are not equidistant: the distance between D, and the rest will

be 2a and the distance between any pair of D,, D3 and D4 will be 2v/2a (Fig. 2.3).

2.3.1 From Intensity Ratios (IR)

We can define the following constants corresponding to the IRs:
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X,Y,Z2)

[ nonon] [_ o]
I I3 I4 ri r{ rg
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where I; are sound intensities and the i are the respective detector numbers.
Using those we can write the following equations:

o = (r —2a)? +y? + 22 o= 22 4 (y — 2a)% + 22 o = 22 + y% + (2 — 2a)? (2.4)
S R e ™ S e )
o = (r —2a)? +y* + 22 s = z? 4+ (y — 2a)? + 22 s = 2 +y? + (2 — 2a)? (2.5)
BT (y-202+22 T Pyt (z-2a)2 T (g2 +2+22

From (2.4) we get the following system:
(x — Li2)* + y* + 2 = R},
2?2+ (y — L13)? + 22 = R%, (26)

1?2 + y2 + (Z - L14)2 = Rﬂ
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where L;; = % and R;; = I-IEL%',/CU , 1=1,37=23,4.

Ci

And from (2.5) we get the following system:

(.’L‘ - L23)2 + (y + L23)2 + 22 = Rg.’i
£+ (y — L3a)? + (2 + Lss)® = R, (2.7)

(.’II + L42)2 + y2 + (Z - L42)2 = R32

where Ly; = 2% and R;; = V2, i=2,3,4, j =3,4,2

Systems (2.6) and (2.7) consist of the equations of six spheres with radii R;; and
centers described by L;;. Since a is a constant, by measuring the c¢;; (which are a
representation of the IRs) we can reconstruct the whole picture - the intersection
of the 6 spheres will be our solution. It remains to show the uniqueness of that
solution. By grouping the equations from (2.6) and (2.7) two by two and eliminating
the quadratic terms we get a linear system of three equations with three unknowns,
whose solutions are a superset of the solutions of the systéms (2.6) and (2.7), i.e. if

the system so obtained has a unique solution, so will the original system.

Lz —Lis 0 z —R%, + R}, + L3, - L},
2| Ly —Los —Lys y | =| -RL+R}+2L% - 12, (2.8)
Lyy L3y —L3s— Ly z —R3, + R, +2L3, + 2L},

The determinant of (2.8) is:
A = LygLo3L34 + L1aLo3Lag + Ly3L14Lag + L12L34 L4 — L13Lo3L3g — Li3LozLsy  (2.9)

As we mentioned earlier the equations (2.8) must be consistent by definition so we
are only interested in their independence. However, both will be ensured by having
A # 0. In our case we always have r; > 2a and therefore c¢;; = 1, which means the

L;; are of the same order. Thus for layouts as the one used in this work (2.8) has a
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unique solution and hence the same is true for (2.6) and (2.7).

We also have a purely geometrical indication of that fact, which is however difficult
to visualize. Consider the 3 spheres described by (2.6). Their centers are non-collinear
and their radii are of the same order. Therefore in the worst case two of them intersect
in a circle and the third intersects that circle in two points. The same can be said
about the spheres derived from (2.7). Furthermore we know the two new points are
not collinear with the first two since the centers of the second set of spheres does not
lie in the same plane as those from the first set. Hence only one point can be the

intersection of all six spheres, which suggests the uniqueness of the solution.

As was mentioned above, in our case ¢;; = 1. That was helpful (although not
necessary) in establishing the uniqueness of the solution. Unfortunately that brings
up a problem for the practical computing of the exact location of the sound source,
because that means L;; and R;; grow rapidly as c;; approaches 1. (The first derivative
of L;j and R;; as functions of ¢;; has large values as c;; tends to 1, which means a large
error in L;; and R;; when determined by c;; ). However the geometrical representation
of the problem shows that we have an intersection of spheres with very large radii

but whose centers are far apart, which indicates that the solution is stable.

Thus the solution is an intersection of a number of spheres. The measurement
error impacts both centers and radii of the spheres but the error in radius is the
one that determines the shape of the solid, representing the margin of errors. It is
wide when viewed from the sensors and flat when viewed from the side. The actual
impact of these observations, as it will clearly be shown from the experiments, is that
the ILD, which are a representation of the IR, will provide a good indication of the

distance to the sound source but a poor estimate of the angle.
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2.3.2 From Phase Differences (PD)

So far we have only considered the IR. Although the PD seem more promising for
the purpose of obtaining an accurate solution they are much more difficult to deal
with analytically. Before we had the only quadric surface with spherical symmetry -
the sphere - and thus we were not concerned with rotated axes: the equation of the
sphere can only differ from its canonical form by a factor of translation, reflected as
a constant term added to any of its variables. Unfortunately in the case of PD the
locus of the possible solutions for each pair of detectors constitutes a hyperboloid of
revolution of two sheets. Let us redo some of the steps we did for the IR. We define

analogically some constants:

- P12 Y1 P3Pl P4 - T1—T2 T1—T3 T1—T4
- - P2 — 3 P2 — P4 - - T2 —T3 T2—T4

2d;; = = (2.10)
- - - P3 — P4 - - - T3 — T4

L - L e

In a similar way we obtain the following system:

(@=a) 4 _ 2 __ 3

([fj a'l—d'fj a'z—c[fj

—x? (y—a)? 22
R (2.11)
-2y (z=a)® __
az—d?j a')—dg + d?‘j - 1

wherei =1, 7 =2,3,4.

These three equations describe the three hyperboloids, with transverse axes des-
ignated by the terms with d?j in the denominator, and conjugate axes shifted by a in
the positive direction. For the case of the remaining three couples a rotation factor

intervenes and the hyperboloids are not described in their canonical form. It can be
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determined that the rotation is of angle ¥ and there is some translation as well.

Again we obtain six quadratic equations with three unknowns and one measurable
parameter, hence we can produce a solution in an empirical way. Those equations
are inappropriate for showing the uniqueness of the solution but they can be used in
combination with the equations from the IR and actually most of the time they are
used by themselves (as the corresponding ITD) for sound source localization.

Again from the geometrical representation of the solution the margin of errors is
a solid, which this time is oriented with the pointed side towards the detectors. It is
obtained from the intersection of 6 hyperboloids and is almost impossible to visualize
but intuitively it can be assumed to be elongated enough to suggest a considerable
error in distance, while providing a very good estimate of the angle. This is the exact
opposite of the case with the ILD which makes these two parameters complement each
other very successfully and suggest their simultaneous use with sound localization

systems that need to estimate the distance.



Chapter 3

Methodology

As outlined in Chapter 2 efficient sound localization can be performed after having
extracted the necessary differential features. It was shown that the minimum number
of detectors required to obtain unambiguously a solution in three dimensional space
is four and that it is unique. In order to fully solve the problem of three dimensional
sound localization two main steps need to be performed. First the chosen features
need to be extracted from the acquired signal. Then using those features the actual

sound location must be estimated.

3.1 Feature Extraction

As discussed, the two features considered in this work are ITD and ILD. Their ex-
traction is based on the fact that the signal detected by the different sensors bears a
significant degree of coherency when produced by a single dominating source.

Using the appropriate hardware, the acoustic signal can be first converted to
electrical signal (microphones) and then to digital form (analog to digital converter
board). The digitized data is a sequence of values representing the intensity of the

sound, as picked by the respective detector for a determined period of time. A window

16
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of sufficient duration is used to define the searchable domain. Some preprocessing is
applied to ensure satisfactory quality of the sample. For instance, the amplitude
of the signal’s envelope can vary over time, e.g. with speech this corresponds to
accents and pauses within and between words. These sound blanks contain little
useful information and using them can degrade the quality of the estimates. In
order to avoid this problem, the window is divided into smaller intervals in which
the variation of the signal is evaluated (Fig. 3.1). This preprocessing selects only
signals with high variance for feature extraction. A measure of the “efficiency” of the
sample is returned by the procedure as the percentage of used subframes in the whole

window.

I

1 LA .

High variance Low variance

Figure 3.1: Preselection according to signal variance

The next phase involves the use of a cross-correlation procedure to determine the
shift between the sampled signals at each of the sensor couples. This gives a direct
measure for the ITD [8]. We find the peak of the cross-correlation function varying
across a range of possible time-delays (3.1), when j = 0, k varies from 0 to n — 1 and

when k = 0, j varies from 0 to n — 1:

N-l/y. _Y\NV. .,_V
R"mz = maz;-o. o<k<n ( NZi:O (Xz+_1_ XJ)(}I:’+;C Y;C) — ) (31)
k=0, 0j<n \/2,':81(Xi+j - Xj)2\/2.-=‘ (Yigr — Yi)?

where R,,q. is the maximum cross-correlation, X; and Y;,7 =0, ..., N are the samples

from both channels, N + n being the total number of samples in the window and n
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the number of samples corresponding to half of the maximum possible time delay.

The time-shift, T will be proportional to the value of j or k that maximizes
the value of 3.1, more precisely it is the product of that number and the digitization
interval (the inverse of the sampling frequency). The value at the maximum is selected
and is returned along with a parameter reflecting the sharpness of the correlation
curve at the peak (Fig. 3.2). A combination of those two parameters is used as a
quality estimate for the ITD (“score”). A high value of R, is an indication of good
coherence of the signals from both channels, which is true for a clear and compact
sound source but also is true for an even isotropic noise. The second parameter,
however, discriminates accurately between those two cases and helps select only the
appropriate matches: a wide, flat correlation curve would indicate a predominance of
noise, and a narrow, sharp curve - a clear, distinguishable sound source.

R,‘j A

ij

Figure 3.2: Typical cross-correlation curve with good sharpness

We should note a very useful side effect, which is closely related to the precedence
effect in human auditory perception [13][14]. In case there are reflections of the incom-
ing sound from incident surfaces (echoes, reverberation [11]) a secondary maximum
will appear in the correlation curve. However, with the presented approach, it will
be ignored because the coherency of that signal will be significantly lower and thus it
will correlate less well (lower and wider peak).

Using the thus obtained information for the ITD, it is possible to evaluate the ILD
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by computing an integral value of the signal energy from the shift-adjusted signal.

The value for microphone pair 1 and 2 is shown in equation 3.2.

ILD,, = /t:" —Szi‘f)T) dt (3.2)
where S (t) is the signal picked from microphone 1 and S»(t + T') is the signal picked
from microphone 2, T is the previously determined time shift and ¢; —tj is the length
of the sample window.

The estimates for ITD and ILD are considered reliable only if the efficiency and score
of the sample are satisfactory, i.e. above a predefined threshold. Thus the described
procedure not only extracts the needed features but will also suggest when a sample

can be reliably used for localization and when it should be discarded as useless.

3.2 Source localization

Once the ITD and ILD are extracted from the signal picked up by the detector array,
the next step is to perform the actual sound source localization. The discussed disad-
vantages of the currently available methods can be avoided to a large extent by taking
a learning-based approach. As stressed in Chapter 2 these features uniquely define
a solution and thus we have a direct correspondence between the three dimensional
coordinates of the sound source and the extracted ITD and ILD values. We also noted
the extreme complexity of the actual mapping function. It is appropriate then to use
learning as an efficient way of approximating complex high-dimensional functions [22].
Being able to explicitly model the function would significanlty increase the accuracy
of prediction. However, in the current case it was shown that when considering all

the presented variables, it is very difficult to establsih the form of such a model. Fur-
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thermore, the model might strongly depend on the training environment and hence
the generality of the performance application domain will be seriously limited.

In the current case the input feature space X is 12 dimensional, 6 for ITD and
6 for ILD, one for each combination of detector pairs. The output space Y is 3-
dimensional: azimuth, elevation and radial distance. Thus the mapping is of the
form [1'11,3312,11713,3514,331573316,11”21,1722,123,1324,5525,5526] - [ya,ye,yr]- The polar rep-
resentation in output space is used because it is known that the radial distance is a
very unreliable estimate.

The goal of the SHOSLIF recursive partition tree (RPT) is to find the top k near-
est neighbors in O(log(n)) time, where n is the number of training samples learned
and stored. The SHOSLIF scheme [22](23] automatically generates the RPT, which
recursively partitions the input space X into smaller and smaller cells. Each leaf
node contains exactly one training sample (z;,y;), where z;¢X and y;eY. The par-
tition is based on automatically computed principal component subspace or linear
discriminant subspace at each internal node of the RPT. A distance-based weighting
according to (3.3) is applied to the y; vectors of the top-k matched leaf nodes to give
an interpolated output vector yeY, given input vector zeX.

1 k
V= —— S u, (33)

i=1 Wi ;=1

where w is the weighting function and y, is the nearest neighbor:
_ly=y;ll
W; = & MTy—yoll+e (3,4)

More detail about SHOSLIF is available in [22] and [23].



Chapter 4

Experimental setup and results

In order to test the methodology, an experimental setup was used to perform a number
of tests. A set of four identical Lavalier microphones is placed at the tips of a solid
tetrahedron with 20cm side (Fig. 2.2). The signal from the microphones is amplified
by four modular microphone preamplifiers to bring the signal level in range. It is then
supplied to an analog-to-digital converter board mounted in a personal computer. The
software is designed to visualize, train, recognize and run various sound localization
related tasks. Samples were taken from various points with known 3D coordinates,
some were used for training and others for testing. The results were analyzed with

linear search and the performance of SHOSLIF was evaluated.

4.1 Experiment and results

The dedicated hardware was built from low priced and widely available items to
keep the project simple and economical. All experiments were held in the Pattern
Recognition and Image Processing laboratory of the Department of Computer Science,
which is hardly suitable for high precision acoustic experiments. The test space is

located in the middle of the laboratory, in between cubicles with computers and

21
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reflecting, and absorbing surfaces of irregular shape. The number of devices producing
strong noises of different frequencies and levels is above 20. Often times human
speakers would be active in the background while taking samples for training or
retrieval. This highly problematic environment was actually intended in order to
simulate the real world environments, in which a typical sound localization device

would be intended to work.

4.1.1 Hardware

Some preliminary tests with low quality microphones emphasized the need for pre-
serving the inherent coherency of the incoming signal. This led to the introduction
of better quality Lavalier microphones, made for high fidelity voice recording. The
choice fell on Audio-Technica ATR35s condenser microphones. Their polar pattern is
omnidirectional, the frequency response is 50 — 18000 Hz, the sensitivity is -54dBm
+ 3dB , 1kHz at 1Pa, impedance of 10002 + 30%. The array structure was built

from cardboard and the microphones taped to the edges.

The signal from the microphones is preamplified by four inline modular micro-
phone preamplifiers of the stick-on series by Radio Design Labs, model STM-2. Their
input impedance is 5K2 unbalanced, the output impedance is 1502, the output level
is up to +4dBp, the frequency response is 50-25000Hz + 1dB, the gain is adjustable
from 0 to 65dB, the THD is under 0.05% and the noise is under -80dB bellow +4dBpu
with the microphones used. With those preamplifiers the signal from the microphones

is taken to the £0.1 —1 V peak-to-peak range suitable for digitizing by the convertor.
The next component is the analog to digital converter board. It is the most

expensive item in the whole setup. The one used in this work is made by Computer

Boards and is a 12 bit, 16 single-ended channel, programmable gain ADC with 160kHz
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maximum aggregate sampling frequency. Its accuracy is 0.01% of the reading + 1 bit,
the minimum current is 250nA and the input impedance is 10MQ2. The minimum
conversion time is 3.3us and the linearity is + 1 bit. It is used to digitize the input on
four of its channels at the rate of 16kHz per channel. This rate is sufficient to capture
the second harmonic of the highest human-made tone of 3000Hz. The maximum
available rate of the board, which would be 40kHz per channel, is not used because
the higher frequencies contain predominantly noise, but could be easily implemented

if necessary.

The computer used is a stock IBM-compatible PC, based on a 200MHz Intel
Pentium MMX CPU. The operating system is Microsoft Windows 95, imposed by

ADC board driver availability.

Figure 4.1: Training the system
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4.1.2 Experiment

At the training stage a continuous sound, originally produced by a human speaker
uttering a short sentence, is reproduced using a hand held tape recorder, from a set
of previously defined locations (Fig. 4.1). Without significant loss of generality, the
span of the training grid was set to an arbitrary section of 3 x 3 x 2.1 meters, with the
microphone array in the middle of one of the sides. The density is linear in Cartesian
coordinates with a granularity of 0.3m. However, only 237 of the thus defined 700
points were used for training. They were selected to simulate a uniform angular
density and ten samples were taken from each of those points. Thus the angular span
of the training area was about 180° in azimuth and a little less than that in elevation.
The site was the PRIP Laboratory (Fig. 4.2) where the acoustics is very challenging
and the background noise was significant. At this time a room with better acoustic
properties (e.g. anechoic chamber) was not availablebut as it was mentioned earlier,
this type of environment is close to the one in which an actual sound localization

device would be exposed to.

Figure 4.2: Experimental setup

At the recognition stage the same device produced the original sound, however the

performance of the system was tested with other sources, as well. A human speaker
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would produce variable results. One important observation was that the quality of
the sound, which directly influences the reliability and the accuracy of recognition,
depended on the amount of useful information (ratio of sounds vs pauses) but mostly
on the compactness of the source - the aperture of the mouth.

The system can be started to collect 0.5s samples and provide location estimates
based on each of them or to store them for further analysis. Test samples from 79
points on the grid, but different from the ones used for training, were taken. They
were analyzed offline with the specially designed software. Estimates for the location
of each of the test points were thus produced and recorded. They were compared
to the known actual values of the three dimensional coordinates and the error was
computed as the difference between the actual and estimated value for the angles,

and the ratio of that difference to the actual value, for the radial distance.

The employed algorithm uses two parameters for fine tuning. One is the relative
weight of the two extracted features: ITD and ILD. Because of the importance of
the ITD, only the ILD was multiplied by a variable factor, called scaling on ILD,
thus increasing its weight (the original values being very low numbers) as needed.
This allows us to estimate the relative influence of those two parameters on the
accuracy of the results. A low value of this parameter would mean neglecting the
ILD (a value of zero means only ITD are used), while a higher value indicates a
predominance of the ILD. Their relative weight is practically equal for a value of
around 13. The other parameter is the weight coefficient « in the interpolation of the
retrieved nearest neighbors (3.4). A low value of a would indicate that all considered
nearest neighbors are equally weighted (for @ = 1 we have averaging) while a big
value of alpha emphasizes the role of the nearest neighbor.

It is known that ITD and ILD are frequency dependent, e.g. ILD uses predomi-

nantly the low frequencies, while higher frequencies are the only ones that can be used
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for estimating the ITD. A preliminary signal filtering can be employed to leave only
the useful frequencies when determining each of those two parameters. The actual
response of those two filters can be another subject for fine tuning. However, the
real-time implementation requirements for this project impose serious limitations on
the amount of preprocessing that can be performed and thus spectral analysis of the

signal is abandoned at this stage.
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Figure 4.3: Distribution of error values for Azimuth

4.1.3 Results

The results obtained in this manner were used to study the above mentioned relations.
A number of plots is used to show some observed trends. Fig. 4.3 shows how the
relative weighing between ITD and ILD affects the accuracy of estimation of the
azimuth, Fig. 4.5 - of the elevation and Fig. 4.7 - of the distance. The respective

standard deviations are shown on Fig. 4.4, Fig. 4.6 and Fig. 4.8. The horizontal axes
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are the scaling on ILD - the coefficient by which ILD is multiplied when considered for
estimating the nearest neighbors, and the weighting coefficient «, which indicates how
much influence the further neighbors have in the interpolation (see equation 3.3). The
range on the axes was chosen equal on all plots for compatibility and the direction
of the axis, representing the scaling on ILD, was inverted for the distance plot so
the surface can face the viewer. The distance plot shows a trend of a descending
error value but its further extent was not followed because the standard deviation is
increasing for those same values, rendering the low error values unreliable. In these
trials a number of KNN=7 (nearest neighbors) was used. The values of ILD are
theoretically unbound hence it is impossible to get a correct number for the balance
of relative weights of ITD and ILD but an empirically estimated value of scaling on

ILD of around 13, for which their weight is approximately equal, was found.

Scaling on ILD 0 o

Waeighting coefficient

Figure 4.4: Distribution of standard deviation for Azimuth

The best precision measured for points located within the sector designated for
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Figure 4.5: Distribution of error values for Elevation

training but between the grid points used for training, was estimated at around

+2.2° in azimuth, +2.8° in elevation and +19% in distance. Table 4.2, Table 4.4 and

Table 4.6 show the error results for different values of the above tuning parameters.

The respective values for standard deviation are shown in Table 4.3, Table 4.5 and

Table 4.7. The superresolution is achieved by the KNN interpolation while the lower

performance in distance is expected for such source - sensor placement. It should

also be noted that the specific task the system was tested for - indicating the actual

location of the sound - is very difficult for humans in such situations, as well.

Table 4.1: Comparative timings of various routines

PreProcessing

Linear Search

SHOSLIF ||

230ms

15ms

2.5ms |

A sample set of error values, used to produce a single point in the average errors

plot is presented in Table 4.8.
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Figure 4.6: Distribution of standard deviation for Elevation

4.2 Program performance and details

For accuracy testing and parameter fine tuning a determinsitic linear search algorithm
was implemented to find the nearest neighbors in input space. The results obtained
in such a way were used to estimate the performance of the SHOSLIF procedure.
The speed was confirmed to be considerably faster with SHOSLIF', even for the low
dimensionality of the input: only 12. As timed on the test PC, a single retrieval
from the tree, with 2370 test samples, took 2.5ms on average for SHOSLIF, versus
15ms with the linear search (see table 4.1). The accuracy was comparable to that
of the linear search. The timing for the preprocessing indicated an average of 230ms
which, although being considerably longer than the retrieval time, is still shorter
than the signal scan time of 500ms (single window). In other words the algorithm, as

implemented, is twice as fast as needed for real time application.

The program was written in C++ and is object oriented with the exception of the
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Waeighting coefficient

Figure 4.7: Distribution of error values for Distance

C code, adapted from a previous implementation of SHOSLIF. The Graphical User
Interface allows the user to pass all necessary parameters to the program, to select

the various options, as well as to view the waveform of the scanned signals (Fig. 4.9).

4.3 Implementation restrictions

As mentioned before, the system performed well despite different unfavorable factors,
like background noise, reflections, unreliable sound sources, etc. However, it should
be noted that although no exact measurements have been performed, these and some
other factors would influence its reliability and accuracy depending on their strength.
In most experiments the acoustic noise was kept at a S/N ratio of around 20dB
(as estimated visually from the displayed waveform) but in real life situations the

S/N ratio can be as high as 0dB (noise is as strong as signal). Another problem
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would be multiple sound sources. In the case of signal reflection, the intensity of
the reflected signal would be significantly weaker and thus it will be ignored by the
preprocessing routine. However with secondary sources, the intensity of the sources
can be comparable and this might lead to jumping between the two sources and even

complete wash-out of the correlation curve and thus incorrect localization.

Most of the experiments were performed with a sound source steadily fixed in
space. A moving source would present a challenge for the current implementation.
With the current windowing of 0.5s a source movement would be equivalent to having
a source of a larger size (aperture), which would produce a lower signal correlation.
The performance with a shortened window has not been studied extensively at this
point. In a similar way an influence on the accuracy of detection was observed when
varying the size of the aperture of the sound source. For instance sounds produced

with a wide open mouth would yield a high error value. An accurate study of this
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Table 4.2: Average error in azimuth for different values of Scaling on ILD (x) and weighting
coefficient (y) as plotted in Figure. 4.3 [degrees]

x/y| 1] 2] 3] 5] 8 12] 18
0221226228 232233 233|234
1223|224 225223223224 2.24
1.7 | 2.21 | 2.25 | 2.20 | 2.22 | 2.24 | 2.24 | 2.26
2.6 | 225|229 | 2.30 | 2.31 [ 2.29 | 2.27 | 2.27
3.9 246 | 2.48 [ 2.50 | 2.51 | 2.50 | 2.51 | 2.53
5.6 | 2.61 | 2.64 | 2.65 | 2.66 | 2.66 | 2.68 | 2.68
7.9 | 2.89 | 2.90 | 2.91 | 2.96 | 2.95 | 2.98 | 2.98
11 [3.20 | 3.26 | 3.31 | 3.32 | 3.34 | 3.32 | 3.35
16 | 3.39 | 3.45 | 3.46 | 3.44 | 3.50 | 3.46 | 3.41
23 [3.70 | 3.79 | 3.78 | 3.69 | 3.73 | 3.74 | 3.70
32| 4.78 | 4.79 | 4.76 | 4.78 | 4.82 | 4.81 | 4.75
45 5.96 | 5.98 | 6.03 | 6.15 | 6.06 | 6.03 | 5.98

relation needs to be performed in order to determine the correct way of compensating

the increase in source size.

One of the main disadvantages that training presents is the difficulty for a learning
system to perform in unknown environments, compared to the environment in which
it was originally trained. No exact measures have been taken to establish the actual
error values in a new environment but many observations indicate that the system

can perform within some reasonable expectations.

Another obvious limitation is the absolute distance from the detectors to the
sound source. Because of the physical characteristics of sound propagation in the
air, the coherency of the sound waves decreases significantly with distance: non-
linear frequency absorption, distortion, fading, are just a few of the factors. A good
example is the noise, coming from the engines of airplanes high in the éky - it is very
difficult to establish the location of the source, even after turning around several times
(another factor intervenes here, too: the relatively slow speed of sound introduces a

serious delay, relative to the optical image, i.e. the actual location of the object). For
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Table 4.3: Standard deviation of error in azimuth, for different values of Scaling on ILD
(x) and weighting coefficient (y) as plotted in Figure. 4.4 [degrees]

x/y 1 2 3 S 8 12| 18
0193|209 (206|218 218|218 2.19
11193210209 |214|2.15(215]|2.15

1.7 1193212 210|217 (213|215 2.15
2.6 185203201211 2.10]2.09]2.09
39197216 |2.11|221 222222221
5.6 | 236 | 2.42 | 2.44 | 2.55 | 2.57 | 2.57 | 2.58
7.9 (257 (270|274 (281278279277
111299 |3.04 |3.03|3.04]311(3.14]|3.15
16 | 2.77 |1 2.86 | 2.93 | 2.91 | 2.99 | 3.02 | 3.03
23 13.1813.28 (3.29|3.34|3.33|3.32]|3.34
321391394 393|387 |(3.78]3.80|3.81
45| 4.44 | 4.57 | 4.56 | 4.49 | 4.49 | 4.55 | 4.61

the presented implementation distances of just 5 to 10 meters would already pose a

serious problem.
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Table 4.4: Average error in elevation for different values of Scaling on ILD (x) and weighting
coefficient (y) as plotted in Figure. 4.5 [degrees]

x/y 1 2 3 5 8 12 18
0292289292288 |290]2.90](291
112951290291 |292(295(293]293

171291 | 2.88(2.89|285|2.88]|2.88]|2.87

26(296 2931294294 (292|296 | 294

391296297 293|296 |294 295|294

5.6 13.01 296296297297 (298|297

791284 (283|278|278|2.83|280]|2381

11285287 283282290288 287
16 | 3.41 | 3.42 | 3.41 | 3.37 | 3.34 | 3.34 | 3.31
2313.79(3.82|3.88|394]|3913.89]|3.87
321448 [ 4.57 | 4.58 | 4.58 | 4.62 | 4.71 | 4.69
45543 [ 547 | 543 | 5.41 | 5.45 | 5.49 | 5.59

Table 4.5: Standard deviation of error in elevation, for different values of Scaling on ILD
(x) and weighting coefficient (y) as plotted in Figure. 4.6 [degrees]

x/y] 1] 2| 3| 5| 8| 12| 18
0]2.98]2.94 293295294294 294
1274 | 2.71 | 2.70 | 2.68 | 2.67 | 2.67 | 2.66
1.7 | 2.49 | 2.45 | 2.47 | 2.44 | 2.39 | 2.41 | 2.41
2.6 | 2.46 | 2.42 | 2.41 | 2.41 | 2.42 | 2.38 | 2.39
3.9 | 2.52 | 2.48 | 2.47 | 2.45 | 2.46 | 2.45 | 2.45
5.6 | 2.44 | 2.41 | 2.37 | 2.38 | 2.36 | 2.35 | 2.33
7.9 224 | 2.16 | 2.18 | 2.14 | 2.16 | 2.15 | 2.14
11| 221 215|217 | 2.13 | 2.15 | 2.17 | 2.15
16 | 2.73 | 2.74 | 2.69 | 2.66 | 2.63 | 2.59 | 2.56
23 | 2.97 | 2.97 | 2.95 | 2.92 | 2.90 | 2.91 | 2.91
32 | 3.82 | 3.75 | 3.69 | 3.68 | 3.65 | 3.70 | 3.69
45 | 4.53 | 4.47 | 4.46 | 4.45 | 4.37 | 4.29 | 4.29
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Table 4.6: Average error in distance for different values of Scaling on ILD (x) and weighting
coefficient (y) as plotted in Figure. 4.7 [%]

x/y 1 2 3 5 8] 12| 18
0 | 32.59 | 32.59 | 32.59 | 32.59 | 32.59 | 32.59 | 32.59
1 31.60 | 31.60 | 31.60 | 31.60 | 31.60 | 31.60 | 31.60
1.7 | 31.57 | 31.57 | 31.57 | 31.57 | 31.57 | 31.57 | 31.57
2.6 | 32.12 | 32.12 | 32.12 | 32.12 | 32.12 | 32.12 | 32.12
3.9 [ 31.04 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04 | 31.04
5.6 | 29.13 | 20.13 [ 20.13 | 29.13 | 29.13 | 29.13 | 29.13
7.9 | 26.80 | 26.80 | 26.80 | 26.80 | 26.80 | 26.80 | 26.80
11 | 24.27 | 24.27 | 24.27 | 24.27 | 24.27 | 24.27 | 24.27
16 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55 | 22.55
23 [ 21.01 | 21.01 | 21.01 | 21.01 | 21.01 | 21.01 | 21.01
32 [ 19.35 | 19.35 | 19.35 | 19.35 | 19.35 | 19.35 | 19.35
45 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65

Table 4.7: Standard deviation of error in distance, for different values of Scaling on ILD
(x) and weighting coefficient (y) as plotted in Figure. 4.8 [%)]

x/y 1 2 3 5 8 12 18
0]21.98(21.98|21.98|21.98 |21.98 |21.98 | 21.98
1]19.89|19.89 | 19.89 | 19.89 | 19.89 | 19.89 | 19.89

1.7 | 19.86 { 19.86 | 19.86 | 19.86 | 19.86 | 19.86 | 19.86

2.6 | 20.05 | 20.05 | 20.05 | 20.05 | 20.05 | 20.05 | 20.05

3.9 18.80 | 18.80 | 18.80 | 18.80 | 18.80 | 18.80 | 18.80

5.6 | 17.97 | 17.97 | 17.97 | 17.97 | 17.97 | 17.97 | 17.97

7.9 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65 | 18.65

11 | 18.83 | 18.83 | 18.83 | 18.83 | 18.83 | 18.83 | 18.83
16 | 15.49 | 15.49 | 15.49 | 15.49 | 15.49 | 15.49 | 15.49
23 (1291 | 12.91 | 12.91 | 12.91 | 12.91 | 12.91 | 12.91
32 |13.71 | 13.71 {13.71 | 13.71 | 13.71 | 13.71 | 13.71
45 | 14.50 | 14.50 | 14.50 | 14.50 | 14.50 | 14.50 | 14.50
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Table 4.8: Error values for Scaling on ILD = 11 and weighting coefficient = 1

Azim [] [ Elev [] [ Dist (%] ] [AF][EFI[D 4] [ATI[EFI]D %
2.0 6.0 17.45 1.0 1.0 | 44.25 1 0.3 | 22.16
1.1 6.4 7.70 1.7 5.9 | 38.35 14 1.0 | 19.54
1.0 1.0 39.46 3.0 2.0 | 34.02 4.9 0.6 6.95
12.0 0.0 0.00 1.0 4.0 | 40.24 3.0 3.0 | 29.82
4.0 2.0 11.82 1.0| 4.0 40.24 89| 3.3| 31.68
0.0 10.0 25.37 1.1 8.0 | 14.55 0.0 2.1 | 22.08
2.6 3.3 17.22 20| 20| 19.14 7.0 2.0 | 56.67
0.0 0.7 25.35 6.7 0.9 | 17.04 9.0 1.0 | 45.56
3.0 4.0 23.95 5.0 2.0 | 19.79 2.0 3.0 | 30.86
3.0 4.0 23.95 1.7 39| 26.79 6.6 4.0 29.94
0.0 Tl 24.45 5.7 1.1 7.72 3.0 2.0 | 41.13
3.0 0.9 14.07 0.9 4.4 2.83 2.0 3.0 | 30.86
14 29 11.51 71 2.9 | 16.54 0.0 0.0 3.89
1.3 0.4 11.64 5.3 31 1.98 0.0 0.0 | 50.34
0.1 2:7 10.45 31 11 9.45 6.4 5.9 0.61
11.0 3.0 32.09 7.0 0.0 8.99 5.4 1.3 22.39
0.0 5.3 3.38 24 5.6 7.70 0.7 0.9 4.52
9.0 1.0 45.56 3.6 3.1 7.05 3.0 1.0 | 39.36
2.0 9.0 37.70 00| 5.1]| 25.36 0.9 4.6 | 13.76
0.3 5.1 51.18 3.0 0.0 [ 26.72 2.4 2.3 | 13.80
3.0 2.0 41.13 5.1 8.4 | 17.51 0.7 4.4 13.60
0.3 177 22.14 0.1 1.0 4.81 1.0 4.0 | 23.59
9.0 4.1 57.37 2.3 2.3 6.60 4.0 0.3 | 14.68
1.1 24 69.98 0.9 3.3 | 46.99 6.0 3.0 12.55
11 4.6 19.53 8.0 3.0 | 22.56 4.7 2.0 7.40
110 1.0 44.25 14 0.3 1.99 4.6 1.1 12.31
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Figure 4.9: Screen with signals and data dialog



Chapter 5

Conclusions

5.1 Discussion

A learning-based method for determining the three-dimensional location of a sound
source is presented. Two of the most important features used by humans in sound
localization are used. Their extraction is based on a fast and efficient algorithm that
is capable of not only computing those parameters with satisfactory accuracy but
also provides a very useful means of evaluating the usability of the taken sample.
The three dimensional localization is performed by a learning technique. The ap-
plicability of the proposed implementation is more general than the majority of the
currently available solutions, in that various features can be used without the need
to explicitly model the relationship between feature values and the 3D location esti-
mates. The method needs to store a large number of samples (over-learning is avoided
by SHOSLIF by only storing samples that are necessary). In order to achieve good
accuracy the training density needs to be close to the expected resolution. This can
lead to the need of taking samples from hundreds of three dimensional locations, and

to ensure stability, several samples from each point need to be taken. Thus the total
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number of training samples can some times approach tens of thousands. However,
the logarithmic retrieval makes the system easily reach real-time response speed.

The originality of this work is in the versatility of its application domain. First
the lack of spatial constraints allows for a wide range of applications. The use of
a compact sensor array makes it suitable for mobile robots, embedded devices and
other human-machine interaction apparati. The simultaneous use of ITD and ILD
as complementary attributes is another advantage because of their complementary
character. It is made possible by the learning approach, also unique for this range
of problems. The employed non-coplanar array with a minimal number of sensors is

another distinctive feature of this work.

5.2 Future research

Some results suggest several directions for future work. The observed dependence of
the “quality” of the sound on the size of its source (aperture) is an important issue
because of the typical application domain of this method - human voice. Because
of the different size of the mouth of different people and because of the inherent
variations in the ways of pronouncing phonemes, the detectability of human sources
can suffer severely. The chosen approach in preprocessing of captured sounds could
be revised to reflect the expected variations in the source size.

Another direction for further study is the impact of sound source movement over
the selected methodology. The relation between the speed of source movement and the
discretization interval (the time segment, used to extract the features) can be adjusted
by shortening the scanning time so that the source movement remains relatively
slow but this approach will inevitably result in loss of accuracy. Other techniques

for compensating the source movement can be developed to efficiently handle this
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problem. For instance a sliding window algorithm can be employed, instead of a
stop-and-go approach, to constantly monitor the available sound and adjust to its
spatio-temporal variations.

The issue of multiple sound sources also should be studied in more details. With
the present approach the presence of a second sound source is ignored but it degrades
the quality of localization for the primary source.

It is also necessary to establish the degradation of performance when the system is
put in an unknown environment. When training the system no assumptions are made
about the acoustics of the environment and the ability of the system to overcome
obstacles like noise, reflections, etc., could be due to the specific of training. It is
interesting to establish a relation between the characteristics of the environment and
the quality of sound localization.

It was mentioned that the generality was not lost when selecting a sector of the
3D space for training, although the system is claimed to be able to perform in all
of the surrounding space. It remains to verify that claim experimentally but most
important of all is the issue of the necessity to train in full 3D space around the
array. It could be logical to expect that the data from a sector of space can be used

to extrapolate the scope of localization to the full 3D space surrounding the system.
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Appendix A

Class “IADiff”: Signal

Preprocessing

This Appendix contains the C++ declarations and definitions of the class IADiff,
which preforms the preprocessing of the captured signal and outputs the ITD and

ILD values, along with the quality measures.

Declarations

/*

Class IADiff: “"Inter-Aural Differences"

Takes an array of samples, containing data from 2 or more channels.

Returns the Interaural Time and Level Differences along with two quality parameters:
1) ratio of used samples (regions with high variance) to total number of samples;
2) an arbitrarily determined score, indicating the ceratinty in determining the

ITD & ILD from the cross-correlation.
It employs a fast cross-correlation implementation based on a heuristic search of
usable portions of the data.

*/

#ifndef IADIFF
#define IADIFF

#include <math.h>
#include <stdlib.h>

class IADiff
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{
private:
short sframel, *frame2, *subframe;
unsigned short maxShift;
unsigned short prescanWindow;
double #*subVar;
double bestShift, bestlratio, meanVar;
unsigned short nSamples, nSubFrames;
public:
// default constructor
IADiff(void);
“IADiff(void);
//AGC first channel second channel # of samples/channel number of subframes
double Init(const unsigned short, const unsigned short, const unsigned short, const unsigned short,
// array with data samples
const unsigned short *);
//ret:% used data ITD ILD score
double IADcompute(doublek , doublek , doublek );
private:
// frame 1 frame 2 number of samples/ch size of XC window
short MaXCorr(const short[] , const short[], const unsigned shortk, const unsigned shortk,
//sigma factor max R ratio s-threshold
unsigned shortk, doublek, doublek, const doublek);
//ret:variance array w/data
double PreScan(const short X[]);
//xet:avg var. variance
double Variance(double(]);
};
#endif

Definitions

#include "IADiff.h"

IADiff::IADif£()
{

const unsigned short Channels = 4;

nSubFrames = 0;
prescanWindov = 0;
framel=NULL;
frame2=NULL;
subframe=NULL;
subVar=NULL;
maxShift = 12;

}

IADiff::"IADiff(void)
{



43

delete framel, frame2, subframe, subVar;

}

double IADiff::Init(const unsigned short Chl, const unsigned short Ch2, const unsigned short nSamples,
const unsigned short nSubFr, const unsigned short *Data)
{
const unsigned short Channels = 4;
unsigned int overflowsl = 0, overflows2 = 0, uprangel=0, uprange2=0;
double modfactorl, modfactor2;

nSubFrames = nSubFr;

prescanWindov = unsigned short(nSamples/nSubFrames);

framel = nev short [nSamples];

frame2 = new short [nSamples];

subframe = nev short [prescanWindow]; // a buffer for storing the subframes
subVar = nev double [nSubFrames+2]; // holds the variance of each subframe + MAX & MIN e
maxShift = 12; // the value of the maximum possible ITD

for(int i=0; i<nSamples; i++)
{
framel[i)=short(Data[Channels#*i+Ch1]-2047);
if (framel[i]==-2047)
overflowsi++;
else if(framel[i]==2048)
overflowsi++; !
if (abs(frame1(i])>205)
uprangel++; E.
frame2[i]=short(Data[Channels*i+Ch2]-2047);
if (frame2[i)==-2047)
overflows2++;
else if(frame2[i)==2048)
overflous2++;
if (abs(frame2(i))>205)
uprange2++;

if (uprange1<0.01*nSamples &k uprange2<0.0l*nSamples) // if there are <1% samples with amplitude >10%
return(-1.0); // of ADRANGE - signal to increase gain
modfactori=overflovwsi/double(nSamples);
modfactor2=overflows2/double(nSamples);
if (modfactorl >= modfactor2)
return(modfactori);
else
return(modfactor2);

short IADiff::MaXCorr(const short X[], const short Y[], const unsigned shortk N, const unsigned shortk n,
unsigned short& sigma, doublek Rmax, doublek ratio, const doublek sThreshold)
{
long *rjo, *rok;
double *meanX, *meanY;
-.int64 +StdX, »StdY;
double *Rjo, *Rok;
long maxC=0;
long i,j;

meanX=new double [n];
meanY=new double [n];
double sumX, sumY;
rjo=nev long [n];
rok=nev long [n];
StdX=nev __int64 [n];
StdYsnew __int64 [n];
Rjo=new double [n);
Rok=new double [n];

// Computing the means of the two inputs
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meanX [0]=X [0] ;meanY [0]=Y[0] ;
for (i=1; i<N; i++)

{
meanX [0]+=X[i];
meanY[0]+=Y[i];
}
meanX [0) smeanX [0] /N;
meanY [0]) =meanY[0] /N;
for (j=1; j<n; j++)
{
meanX(j]=meanX[j-1] + double(X[N-1+j] - X[j-11)/N;
meanY[jl=meanY([j-1] + double(Y[N-1+j] - Y[j-1])/N;
}

//Computing the total "energy" of the signals
sumX=double(abs(X[0])) ; sumY=double(abs(Y[0]));
for (i=1; i<N; i++)
{
sumX+=double (abs(X[i]));
sumY+=double(abs(Y[i]));
}
sumX=sumX/N;
sumY=sumY/N;

ratio=sumX/sumY;

//Computing the cross-products "ro"
for (j=0; j<m; j++)

rjo[jl=0; rok[jl=0;

for (i=0; i<N; i++)

{
rjol[jl+=X[i+jl1*Y[i];
rok(jl+=Xx[i]*Y[i+j];

}

rjo(jl-= long(N*meanX[j]*meanY[0]);

rok[j]l-= long(N*meanX(0]*meanY([j]);

}

//Computing the standard deviation "sigma"
Stdx[0]=0; StdY([0]=0;
for (i=0; i<N; i++)
{
StdX[0]+=long((X[i]-meanX[0])*(X(i]-meanX[0]));
StdY[0]+=long((Y([i]-meanY[0])*(Y([i]-meanY([0]));
}
for (j=1; j<m; j++)
{

StdX[j)=StdX(j-1] + X[N-1+j]*X[N-1+j] - X[j-1]=X[j-1] +
N*long(meanX[j-1]*meanX(j-1]-meanX[j]*meanX[j]);
StdY[j1=Std¥[j-1] + Y[N-1+j1#Y[N-1+j] - Y[j-11#Y[j-1] +
N*long(meanY[j-1]*meanY([j-1]-meanY[j]+*meanY[j]);
}

//Computing the cross-correlation
for (j=0; j<n; j++)
{

Rjoljl=rjo(jl/(sqrt(double(StdX[j]))*sqrt(double(StdY([0])));
Rok[jl=rok[j]/(sqrt(double(StdX[0]))#*sqrt(double(StdY([jl)));
}

Rmax=-1E300;
for (j=0; j<n; j++)
{

cout << "Rjo["<<j<<"]="<<Rjo[j] << " ;  Rok["<<j<<"]="<<Rok[j] <<

if (Rmax < Rjo(j])
{

endl;
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Rmax=Rjo[j];
maxC=j;
}
if (Rmax < Rok[j])
{
Rmax=Rok[j];
maxC=-j;
}
}
sigma=0;
if (maxC >= 0)
{
j=maxC;
vhile ((Rjo[j] > Rjo([maxC]*sThreshold) &k (j<n))
{
sigma++;
i+
}
j=maxC-1;
vhile ((Rjo[j] > Rjo[maxC]*sThreshold) k& (j>=0))
{
sigma++;
i
}
it (j==-1)
{
j=1;
vhile ((Rok[j] > Rjo[maxC]+sThreshold) &k (j<n))
{
sigma++;
je+;
}
}
}
else
{
j=-maxC;
while ((Rok[j] > Rok[-maxC]*sThreshold) &k (j<n))
{
sigma++;
hRaH
}
j=-maxC-1;
vhile ((Rok[j] > Rok[-maxC]*sThreshold) && (j>=0))
{
sigma++;
J==i
}
it (j==-1)
{
i=1;
vhile ((Rjo[j] > Rok[-maxC]*sThreshold) && (j<n))
{
sigma++;
j+es
}
}
}

delete meanX, meanY, rjo, rok, StdX, StdY, Rjo, Rok;

return (short(maxC));

// End of MaxCorr

double IADiff::PreScan(const short X[])

{
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unsigned short i;
double meanX;
--int64 StdX;

meanX=X[0] ;
for (i=1; i<prescanWindow; i++)
{
meanX+=X[i];
}
meanX/=prescanWindow;
StdX=0;
for (i=0; i<prescanWindow; i++)
{

StdX+=__int64((X[i)-meanX)*(X[i])-meanX));
}

return(sqrt(double(StdX)));
}
// End of PreScan

double IADiff::Variance(double subVar([])

{
double meanVar=0;
subVar [nSubFrames])=0; //MAX variation
subVar [nSubFrames+1]=1e10; //MIN variation
for(int i=0; i<nSubFrames; i++)
{
for(int j=isprescanWindow; j<(i+1)*prescanWindow; j++)
subframe[j-isprescanWindow] = framei[j];
subVar[i]=PreScan(subframe);
if (subVar[i] > subVar[nSubFrames])
subVar [nSubFrames]=subVar(i];
if(subVar[i] < subVar[nSubFrames+1])
subVar [nSubFrames+1]=subVar([i];
meanVar+=subVar (i) ;
}
return meanVar/nSubFrames;
}

// End of Variance

double IADiff::IADcompute(doublek ITD, doublek ILD, doublek score)
{

unsigned short highVar=0, sigma;

short *postFramel, *postFrame2;

double maxC, sThreshold=0.5, coeff;

meanVar = Variance(subVar); // Compute mean, max and min variance
if (meanVar < 2500) // quit if mean variance is too low
return(0.0);
if (subVar [nSubFrames]/subVar [nSubFrames+1] < 2.5) // max-to-min ratio
return(0.0); // quit if too little variation of variance
if (subVar [nSubFrames] /subVar [nSubFrames+1] < 3.5)
coeff=0.7;
else if(subVar[nSubFrames]/subVar[nSubFrames+1i] < 5.5)
coeff£=0.8;
else
coeff=1.0;
for(int i=0; i<nSubFrames; i++)
if(subVar[i] > coeff*meanVar) // pick only frames with good variance
highVar++;
if (highVar==0) // quit if no frames were picked
return(0.0);

postFramel = new short [highVars*prescanWindow];
postFrame2 = new short [highVar*prescanWindow];

highVar=0;
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for(i=0; i<nSubFrames; i++)

{
if(subVar(i] > coeff*meanVar) // pick only frames with good variance
{
for(int j=0; j<prescanWindow; j++)
{
postFramel (highVarsprescanWindov + jl=framel[isprescanWindow + j];
postFrame2[highVar*prescanWindow + jl=frame2[isprescanWindow + j);
}
highVar++;
}
}

ITD=double (MaXCorr(postFramel, postFrame2, highVarsprescanWindow-maxShift, maxShift,
sigma, maxC, ILD, sThreshold));
score=sqrt (double(sigma))/maxC;

delete postFramel;
delete postFrame2;
// ret: part of data that’s used
return(float(highVar)/nSubFrames) ;
}
// End of IADcompute




Appendix B

Class “LinSrch”: Linear Search

This Appendix contains the C++ declarations and definitions of the class LinSrch,
which preforms the linear search for the nearest neighbors of the signal features in
the 12-dimensional input space.

Declarations

/*

Class LinSrch: "Linear Search"

Input: an array of "learned" ITD/ILDs with associated coordinates
and single ITD/ILD sample.

Output: the coordinates for an interpolated vector from the KNN closest
matching ITD/ILD’s in the "learned" set.

Method: Linear search in 12-dimensional space.

*/

#ifndef LINSRCH
#define LINSRCH

#include <math.h>
#include <stdlib.h>
#include <fstream.h>

class LinSrch
{

private:

double PI;
unsigned int dimIAD, dimAngles, dimDist, dimLines;
float sqscale, alpha;

float *»data; // array to store the training samples
unsigned int KNN; // K-th Nearest Neighbor to be considered
// array probed dist position index

void insert(float** , const float, const int, const unsigned int);

public:

// default constructor
LinSrch(unsigned int, unsigned int, unsigned int, char*, float, float);

“LinSrch(void);
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// signal control scale alpha
void search(float*, float*, float, float);
};
#endif

Definitions

#include "LinSrch.h"

LinSrch::LinSrch(unsigned int dimI, unsigned int dimA, unsigned int dimD, char* filename, float SS, float a)

{

}

// The constructor reads the samples form the file and builds an array to hold them
fstream samples;

unsigned int nLines, i,j;

float dataline[15];

PI=3.14159265358979323846;

KNN=7; // K-th Nearest Neighbor to be considered

sqscale=SS;

alpha=a;

dimIAD=dimI; // dimension of IADs, i.e. how many numbers are there

dimAngles=dimA; // dimension of angular coordinates, i.e. from IAD to IAD+dimA-1 are angles
dimDist=dimD; // dimension of distance-coordinates, i.e. from dimA to IAD+dimA+dimD are distances

samples.open(filename, ios::in);
if (samples.fail())
exit(-1);

nLines=0;
vhile(!samples.eof()) // count the number of lines in the file
{

for(i=0; i<16; i++)

samples >> dataline(i];

nLines++;
}
nLines--;
samples.seekg(0); // reset the file
samples.clear();

data = newv float *[15]; // make the array to hold the data
for(i=0; i<15; i++)
data[i] = new float [nLines];

for(j=0; j<int(nLines); j++) // read the data
{
for(i=0; i<15; i++)
{
samples >> data(i)(j);
if(i>=dimIAD &k i<dimIAD+dimAngles) // are angles!
data(i) [j)=float(int(360+data[i] [j]1)%360); // normalize for angles to be in {0,360}
}

}

samples.close();
dimLines=nLines; //number of lines in training-samples file

LinSrch::“LinSrch(void)

{

for(int i=0; i<15; i++)

rﬂ-'zmnv TR T .-nvj
2 a
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delete data[i];
delete data;
}

void LinSrch::search(float* sample, float* coords, float SS, float a)
{
float buffer, *NN[2], avgAngle, avgAngleSin, avgAngleCos, frac;
unsigned int i,j;

sqscale=SS; // sqscale is the square of the adjustment scale
alpha=a; // alpha - hov fast weight decreases
NN[0]) = new float[KNN]; // distance of the vector from the original sample vector
NN[1]) = new float[KNN]; // position in file / rank of the neighbor (i.e. NN, 1st NN, 2nd NN, etc.)
for(i=0; i<KNN; i++)
NN[0]) [i)=float(1e10); // initialize for sort
for(i=0; i<dimLines; i++)
{
buffer=float(0);
for(j=0; j<dimIAD; j++)
{
if(j%2==0)
buffer+=(data(j]l [i] - sample[j])*(dataljl[i] - sample[j]l);
else
buffer+=sqscale*(datalj] [i] - sample(j])+(datalj]l[i] - sample(jl);
}
buffer=float(sqrt(buffer)); // distance in 15D space
insert (NN, buffer, i, 0); // store the i-th vector and establish rank in NN
}
for(j=0; j<dimAngles; j++)
{
avgAngleSin=float(0);
avgAngleCos=float(0);
for(i=0; i<KNN; i++)
{
avgAngleSin+=float(sin(data[j+dimIAD] [int(NN[1][i])]*PI1/180));
avgAngleCos+=float(cos(data[j+dimIAD] [int (NN[1] [i])]*P1/180));
avgAngleSin/=KNN;
avgAngleCos/=KNN;
avgAngle=float (atan2(avgAngleSin,avgAngleCos)/PI*180);
avgAngle=float(int(avgAngle+360.5)%360);
coords[j]=float(0);
for(i=0; i<KNN; i++)
coords[jl+=(int(data[j+dimIAD] (int(NN[1][i])]-avgAngle+540)%360) =
float(pow(alpha, (-NN[0] (i]/(NN[0] (0] + float(1e-35))))); // weights
buffer=float(0);
for(i=0; i<KNN; i++)
buffer+=float(pow(alpha, (-NN[0] [i]/(NN[0][0] + float(1e-35))))); // sum of weights
coords[j]/=buffer;
coords [j]+=avgAngle+180;
frac = coords[j] - int(coords(jl);
coords[jl=float(int(coords[j]1+0.5)%360) + frac;
}

for(j=dimAngles; j<dimAngles+dimDist; j++)
{

coords[jl=float(0);
for(i=0; i<KNN; i++)
coords[jl+=data[j+dimIAD] [int (NN[1]1[i])] / (NN[0]([i] + float(1));
buffer=float(0);
for(i=0; i<KNN; i++)
buffer+=1/(NN[0] [i] + float(1));
coords[j]/=buffer;
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}

void LinSrch::insert(float* Dist[2], const float newDist, const int pos, const unsigned int rank)

{

if (rank>=KNN) // hit the bottom - throw it away!
return;
if (newDist<Dist [0] [rank]) // compare the distance to the current NN and if closer...
{
insert(Dist, Dist[0][rank], int(Dist[1]([rank]), rank+1); // ...push the one there...
Dist (0] (rank]=newDist; // ... and store
Dist (1] ([rank]=float(pos);
}
else

insert(Dist, newDist, pos, rank+l); // otherwise insert it at the next position
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