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ABSTRACT
NEW ZIG-ZAG COMPOSITE PLATE THEORIES
AND 3-D FINITE ELEMENTS FOR STATIC AND EXPLICIT DYNAMIC
ANALYSIS OF LAMINATED COMPOSITE AND SANDWICH PANELS
By

Yong-Bae Cho

Refined laminated plate theories based on linear or cubic plus zig-zag kinematics have
been developed, and new C? 3-D finite elements have been developed on the basis of those
theories for the purpose of static and dynamic analysis of sandwich and laminated
composite panels. In the first order zig-zag plate theory, the in-plane displacement fields in
each sublaminate are assumed to be piecewise linear and vary in a zig-zag fashion through
the thickness of the sublaminate. In the third order zig-zag plate theory, the in-plane
displacement fields in the laminate are assumed to be piecewise cubic and vary in a zig-
zag fashion through the thickness of the laminate. In each case, the transverse
displacement field is assumed to vary linearly through the thickness. The zig-zag functions
are evaluated by enforcing the continuity of shear stress at each interface. This in-plane
displacement field assumption accounts for discrete layer effects without increasing the
number of degrees of freedom as the number of layers is increased. In order to maintain
C? continuity of all variables, new rotation degrees of freedom are introduced, and
subsequently constrained via the penalty method. The transverse normal strain is
improved by assuming a constant transverse normal stress through a sublaminate or the
entire laminate, and hence Poisson’s ratio stiffening in associated with finite element

model is eliminated.



The proposed C? finite elements have the topology of an eight-noded brick. Each node
has five engineering degrees of freedom - three translations and two rotations. In-plane
displacements and rotational degrees of freedom are approximated by the bilinear
Lagrange interpolation functions. For transverse deflection degrees of freedom, an
interdependent interpolation is utilized. The element stiffness coefficients are integrated
exactly, yet the element exhibits no shear locking. This is achieved by using the consistent
transverse shear strain fields as well as the edge-consistency of the tangential shear strain
on any common inter-element edge. The elements are shown to be accurate, simple to use,
and compatible with the requirements of commercial finite element codes. Based on the
assumed displacement fields and the finite element approximations, consistent mass
matrices has been obtained. Making use of the consistent mass matrices, lumped mass
matrices have been derived according to HRZ lumping scheme. The developed elements
have been implemented into the explicit finite element dynamics code, NEPTUNE,
wherein the internal force vector is compﬁted for the element.

Static, free vibration, and explicit structural dynamic analyses of sandwich panels and
laminated composites are performed using the elements. The numerical results show that

the elements are accurate, robust, and computationally efficient.
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CHAPTER
INTRODUCTION

1.1 Introduction

Fiber reinforced laminated composites have been used in structural members due to
better stiffness-to-weight and strength-to-weight ratios than those of conventional mono-
lithic materials. The primary characteristics of laminated composites are that the material
properties are orthotropic in the laminate plane, the ratio of traﬁsverse shear modulus to
in-plane modulus is low and layers are laminated through the thickness. Therefore, unlike
homogeneous isotropic materials, the behavior of laminated composites is unique and
complicated at both the global and the local levels. Moreover, the early laminated compos-
ites were applied to thin structures and were designed to withstand mainly in-plane tension
loads. But recently they are also employed for primary load-carrying structural members
in automobile front aprons, bridge frames, submarine hulls and aircraft because of
advances in their manufacturing techniques. Such recent applications of composite materi-
als involve the use of thick-section laminates containing perhaps over one hundred layers
and/or sandwich construction that contains a thick core between face sheets. Furthermore,
such structures are typically designed to withstand complex mechanical loading states,

e.g., static loadings and dynamic impact loading, in the presence of harsh environmental



conditions.

Because the importance of laminated composites in aerospace, automotive, civil and
marine structures continues to increase, the development of accurate structural theories
and efficient computational models for analyzing these structures is currently a critical
area of research. Especially important is to develop accurate, efficient, and convenient
models that can be used for static, dynamic, and progressive failure analysis of thick and
thin laminated composite and sandwich structures. Thus, for the purpose of modeling the
behavior of laminated composites efficiently under the various loading conditions in ser-
vice, many refined plate theories have been developed and proposed on the basis of vari-
ous kinematic assumptions.

The analytical solutions of such proposed theories are confined by the configurations
of plate, boundary conditions and loading, and are usually not available for most real prob-
lems. The way of overcoming such obstacles is to make use of the finite element method, a
prevalent tool used to obtain approximate solutions in complicated engineering problems.
The quality of a finite element can be significantly affected by the kinematic assumptions
made throughout its formulation. Thus, every aspect of the problems to be solved should
be reflected in the kinematic assumptions of finite element formulation.

In the analysis of moderately thick laminated composites, local effects are so impor-
tant that the three dimensional kinematics should be used on the development of finite ele-
ment models. Moreover, when the loading is excessive, the composites undergo local
damages, e.g., fiber breakage and/or fiber kinking, and local delamination. Thus, the ele-
ment should have capabilities to capture more accurate distribution of local strains and

stresses and predict damage in composite structures associated with proper failure criteria.



However, conventional three-dimensional finite elements are computationally too expen-
sive to be used in the analysis of laminated composites to capture local effects of a com-
posite structure, if one element per layer is used. Thus, a lot of research has been carried
out to develop a robust finite element model that is more computationally efficient than the
conventional displacement based continuum finite element and describes adequate local
kinematics.

When external loading is varying with time or suddenly applied to a composite struc-
ture, e.g., seismic loading and impact loading, the response of the composite structure is
time dependent and can be obtained using structural dynamics techniques. Structural
dynamics is one of the rapidly expanding areas of application of the finite element method.
Many problems in structural dynamics cannot be solved effectively by analytical methods,
and the advances in both the digital computer and various associated numerical techniques
of analysis have significantly enhanced solution capability of the finite element method.
Therefore, the finite element method is as valuable a tool in dynamics as it is in the static
problems.

In general structural dynamics problems, the governing equations are second order or
fourth order partial differential equations in the space domain, and hyperbolic in the time
domain. In this case, the solution is a function defined both on the space domain and on
the time domain. Therefore, as a numerical solution procedure in explicit dynamics analy-
sis, the partial differential equations in space and time are first discretized in space, yield-
ing a system of decoupled ordinary differential equation in time. The disretization in space
is usually achieved by employing the finite element method, and called a finite element

semidiscretization, because though displacements are discrete functions of space, they are



still continuous functions in the time domain. To solve a system of decoupled ordinary dif-

ferential equations the finite difference method is adopted in the time domain.

1.2 Goals and Objectives of Current Research

To analyze static and dynamic responses of composite structures more accurately, first
of all, it is required to develop a composite plate theory where the local distributions of
stresses, strains and displacement fields within a laminate are taken into account. On the
basis of the developed composite plate theory a robust finite element model that is more
computationally efficient and accurate needs to be developed. The main objective of the
current research is to develop a composite plate theory and the associated elements to pro-
vide static and dynamic analysis of composite laminate and sandwich structures. Thus the
plate theory and element must possess the following features.

« Using 3-D kinematics, a zig-zag discrete layer-wise plate theory wherein local effects
can be accounted for very well is to be developed.

« The developed plate theory should be C? continuous in displacement fields. Thus, a cP
finite element should be developed.

» A shear correction factor should not be necessary in the developed plate theory.

» The number of degrees of freedom of the finite element model associated with the
plate theory should be independent of the number of layers in the composites.

« The developed element should have only engineering degrees of freedom (translations
and rotations) to facilitate implementation into commercial finite element code.

» The developed element should be free of shear locking and Poisson’s ratio stiffening

effects.



« To be used in structural dynamics problems, the consistent mass matrix should be
developed. On the basis of the consistent mass matrix, the lumped mass matrix should be
developed.

 In structural dynamics problems, the internal force vector is calculated for the devel-
oped element.

« The developed element should have a critical time step (related to natural frequencies)

associated with explicit dynamic analysis that is as large as possible.

1.3 Literature Review: Plate Theories

Many plate theories have been developed on the basis of various kinematic assump-
tions to predict the response of laminates more accurately. Comprehensive reviews of lit-
erature on the development of modern plate theories have recently been carried out by
several authors [1-6]. They usually classify the plate theories by the assumptions of their
displacement fields. Such models can be roughly divided into three categories: equivalent
single layer theories, layerwise theories, and zig-zag in-plane displacement theories.

In the equivalent single layer approach, the displacement components are assumed to
be C! continuous through the thickness of the plate and functions of in-plane coordinates.
Thus, the material properties of all the layers are “smeared,” and the laminate is modeled
as an equivalent single anisotropic layer.

The classical laminated plate theory (CLPT) based on Kirchhoff - Love classical plate
theory (CPT) was the first laminated plate theory employed in the early days of study. In
this theory, it was assumed that the in-plane displacements vary linearly through the thick-

ness, while the transverse displacement is constant through the thickness. The shortcom-



ing of this theory is that the predictions of displacements and stress become inaccurate
when the aspect ratio of the plate becomes small (less than 20) or the transverse shear
modulus is low. The shortcoming mainly comes from the fact that CPT is based on the
Kirchhoff hypothesis that lines originally straight and normal to the reference surface
remain straight and normal to the reference surface during deformation so that the trav‘crse
shear deformation is not allowed.

Timoshenko first recognized that rotary inertia and transverse shear deformation are of
importance in the vibration analysis of elastic bodies, and considered the effects of rotary
inertia and transverse shear deformation on the vibration of elastic bars [7]. Then Reissner
[8] and Mindlin [9] expanded this concept to isotropic plate bending problems. On the
basis of these theories, an improved composite plate theory was developed by Mindlin,
called the first order shear deformation theory(FSDT) [10]. This theory assumes that a line
originally straight and normal to the reference surface remains straight during deformation
but not necessarily perpendicular to the reference surface. This theory yields good predic-
tions of overall laminate behavior (e.g., deflections, natural frequencies, and buckling
loads) and inplane stresses provided the plate is thin and the material properties of adja-
cent layers do not differ significantly. However, FSDT does not account for warpage of the
cross section, which may be significant in laminated composites, because FSDT accounts
for only average kinematics. Furthermore, FSDT yields constant transverse shear strains
through the thickness of the plate, therefore a shear correction factor(s) is required to com-
pute the shear strain energy accurately [11,12].

In order to reduce the inaccuracies of the FSDT, higher order shear deformation theo-

ries (HSDT) were proposed (e.g., [13-17]). In these models, it is assumed that the dis-
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placements are of higher order polynomial form and are C! continuous through the
thickness. Using the shear traction boundary conditions on the top and bottom of a lami-
nate, the higher-order undetermined functions in the displacement field are evaluated and
are eliminated. The assumptions of displacement fields permit nonlinear variations of dis-
placements, strains and stresses through the thickness, and thus warpage of the cross sec-
tion is allowed. However, even though they often can predict well the gross behavior of
thin and some moderately thick laminates, all equivalent single layer theories have a com-
mon shortcoming. Since they are unable to account for the sometimes severe discontinuity
in transverse shear strains that occur at interfaces between two adjacent layers with drasti-
cally different stiffness properties, they preclude the satisfaction of continuity of trans-
verse stresses at interfaces between adjacent layers with different material properties, and
do not reflect the proper kinematics in laminates. Therefore, the local deformations and
stresses, and sometimes even the overall laminate response, are not well predicted.

If the transverse shear stresses are needed, they can be recovered indirectly by integrat-
ing the equilibrium equations [18-22]. However, this procedure leaves controversies in its
accuracy for the analysis of highly irregularly shaped plates since it involves higher order
in-plane differentiation of the displacement functions. Moreover, the higher order in-plane
differentiation requires to use at least quadratic finite element interpolation functions to
obtain transverse shear stresses and cubic interpolation functions to capture transverse
normal stresses.

In an effort to overcome the shortcomings of the equivalent single layer approach, dis-
crete-layer (or layerwise) theories have been proposed [23-32]. These theories are based

on a unique displacement field for each layer, and enforce interlaminar continuity of dis-



placements and sometimes of transverse stresses, as well. In addition, the through-layer
variation of displacement is interpolated by one dimensional Lagrangian linear [23,24,27]
or quadratic shape functions [30] or a high order hierarchical element [31]. Reddy [25]
assumes that the displacement fields for each layer are expanded through the thickness
direction using Lagrangian shape functions employed in the conventional finite element
method. Therefore, displacement components are C? continuous, so that transverse strains
are piecewise continuous through the thickness. Toledano and Murakami assume indepen-
dent fields for displacements and stresées in each layer, and employ Reissner’s mixed vari-
ational principle in the formulation of model. They show that the in-plane displacement
can be improved by this technique in the presence of transverse shear effects. In these the-
ories, some of the dependent variables are eliminated in the development of the model by
enforcing displacement continuity across the layer interfaces. In most of these theories,
the continuity of transverse shear stresses is met in an integral sense through the potential
energy formulation. When these theories are compared with the conventional 3-D dis-
placement finite element model, the most significant feature of these theories is that it has
a computational time - saving data structure while yielding exactly the same results for
comparable meshes. These theories predict excellent global and local distributions of in-
plane and out-of-plane displacements and stresses. The major shortcoming in these theo-
ries is their large computational expense, for as the number of layers increases, the number
of degrees of freedom increases proportionally.

A new class of laminate theory, called here the first order zig-zag theory (FZZT), was
developed by DiSciuva in the mid 1980’s [33,34]. In this theory, in-plane displacements in

a laminate are assumed to be piecewise (layerwise) linear and continuous through the



thickness, yet the total number of degrees of freedom is only five (not dependent on the
number of layers). This is accomplished by analytically satisfying the transverse shear
stress continuity conditions at each interface in the laminate. This theory was shown to be
very accurate for many cases, especially symmetric laminates. On the basis of the concept
introduced in [33,34], DiSciuva as well as other researchers made significant improve-
ments to the FZZT [35-42]. The primary improvement was achieved by superimposing a
piecewise linear variation of in-plane displacements on a continuous cubic function of the
transverse coordinate [35,36,40-42], creating a displacement field that can better account
for the warping that occurs during bending of unsymmetric laminates. These latter theo-
ries, denoted here as higher-order zig-zag theories (HZZT), also satisfy the homogeneous
shear traction boundary conditions at the top and bottom surfaces of the laminate in order
to maintain the number of degrees of freedom at five. This class of theories appears to
have an ideal combination of accuracy and efficiency, making them well-suited for use in
computational simulations. However, these theories have the unfortunate shortcoming that
the transverse deflection degree of freedom wy is required to be C! continuous, so that
Hermitian-type interpolation of w, must be used within the finite element models [33,35].
Thus additional rotational degrees of freedom (gradients of wy) are present in the finite
element models, making it inconvenient, if not impossible, to implement the finite element
models based on these theories into commercial finite element software packages that
allow only six degrees of freedom -- three translations and three rotations.

Averill proposed a generalized form of the first-order zig-zag theory [38] and a gener-
alized form of the high-order zig-zag theory [40] for beams to alleviate the requirement of

c! continuity on the transverse deflection. A new variable was introduced along with an
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associated constraint condition which was enforced by employing an interdependent
(anisoparametric) element interpolation scheme and the penalty method. On the basis of
the theories, C? two-noded elements were developed. These elements were shown to be
simple, robust and accurate for application to thick and thin laminated beams. However,
these models still contained one additional rotational degree of freedom, and it was found
that for very thick and complex laminates, more refinement through-the-thickness was
needed.

Yip and Averill developed a model for laminated beams [41] and plates [42] that com-
bined the benefits of the discrete-layerwise and high-order zig-zag theories. This model
allows the laminate to be subdivided into a number of sublaminates, with each sublami-
nate containing several, even many, physical layers. Within each sublaminate, very accu-
rate high-order zig-zag kinematics are assumed in which degrees of freedom describe
displacements, rotations, and transverse shear stresses (tractions or interlaminar stresses)
at the top and bottom surfaces of the sublaminate. Each finite element represents one sub-
laminate, and, if cast in the form of a four-noded quadrilateral (for beams) or an eight-
noded brick (for plates), refinement of a model by through-thickness discretization can be
achieved without the use of any special constraints. When only one sublaminate is used
through the entire thickness of the laminate, nodal degrees of freedom are three transla-
tions and two rotations. However, when multiple elements (sublaminates) are needed to
model a laminate, additional shear stress degrees of freedom are present, making the ele-
ment unsuitable for implementation into many of the current commercial finite element

codes.
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1.4 Literature Review: Three Dimensional Composite Shell/Plate
Elements

Laminated composites are usually modeled by using plate and shell elements which
are based on plate and shell theories. There have traditionally been three approaches to
model general shell structures in finite element representation [43,44]:

1) The “faceted” model of flat plate element

2) The “curved” shell element formulated on the basis of curved shell theory

3) The “degenerated”’ isoparametric element

Among the above elements, the Ahmad type [45] degenerated isoparametric elements
where the interpolation functions for rotational and translational d.o.f are independent are
most popular. The degenerated elements, since the thickness of plate or shell is very small
when compared with other dimensions, are obtained by constraining adjacent thickness-
direction nodes on solid elements to have the same thickness-direction displacement and
merging the top and bottom nodes to a mid-node.

Recently, a number of three dimensional composite plate/shell elements that have a
thickness dimension have been proposed for the analysis of composite structures [47-53].
Such three dimensional elements are classified as “regenerated,” in contrast to the popular
two dimensional “degenerated” shell elements. This regenerated approach has been
employed successfully, and renders the very important advantage of allowing discretiza-
tion in both inplane and through-thickness directions without imposing any special multi-
point constraints. The regenerated elements must have just 3 translational degrees of free-
dom (u, v and w) to describe the deformations of a plate, whereas the degenerated element

must have at least 5 degrees of freedom (3 translational d.o.f + 2 rotational d.o.f). Thus, as
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far as the discretization through-thickness direction, the description of geometry and kine-
matics of deformation are concerned, the three dimensional regenerated element is pre-
ferred over the two dimensional degenerated element. The capability of discretizing in the
through-thickness direction enables one to simulate the separation of the laminated com-
posites due to delamination into two parts in the thickness direction.

Most proposed regenerated 3-D composite elements are similar to continuum elements
that have only 3 translational degrees of freedom per node. Moreover, contrary to the
structural element cases, in-plane displacement fields are approximated using the shape
functions, while special functions in some cases are used for transverse displacement to
improve the continuity of transverse stresses at the interface between two adjacent layers.

Adding composite analysis capability to Ausserer and Lee’s isotropic shell solid ele-
ment [46], Kim and Lee [47] presented an 18-node solid isoparametric element using
assumed independent strains based on Hellinger-Reissner principle in an attempt to allevi-
ate locking. However, the transverse strains on this element in are continuous through
thickness direction, so that the continuity of transverse stress is questionable. Kong and
Cheong [52] developed an element incorporating the advantages of the layerwise plate
theory and the equivalent single layer plate theory. Layerwise local shape functions in the
regions were used where transverse shear stresses are of interest and importance, while a
special through-thickness global-local interpolation is used in the zone where only global
responses are of interest. The compatibility of the displacement between these two region
is satisfied by introducing a transition region. Wanthal and Yang [48] proposed a family of
three quadrilateral isoparametric elements based on the layerwise modeling approach to

include the effects of transverse shear and normal stress for the analysis of delamination,
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holes and joints. The crucial shortcoming of these elements is that the total number of
d.o.f depends on the number of layers in the laminate. Han and Hoa [50] developed a
hybrid formulated plate element by taking three in-plane stresses and three transverse
stresses as the basic variables. The continuity of the transverse stresses at the interface
between two adjacent layers are satisfied by introducing a partial stress field parameter.
The element is a super element composed of some three dimensional eight noded finite
elements (layer element), so that the total number of d.o.f does not depend on the number

of layers.

1.5 Literature Review: Mass Matrices and Lumping Schemes

If a structure vibrates freely or excitation frequencies are higher than 1/3 of the lowest
natural frequency of the structure, inertial effects must be included when investigating the
response of the structure. When we try to analyze the dynamic response of a structure
using the finite element method, the mass matrix accounts for inertia and represents dis-
cretely the continuous distribution of mass in a structure. Thus, in general structural
dynamic response problems, the stiffness matrix is used to describe the elastic characteris-
tics in terms of force - displacement relationships, and the mass matrix is exploited to
define the inertial characteristics of the structure in terms of inertial force - acceleration
relationships at a finite number of nodal points chosen to represent the behavior of the
structure. In this case, the accuracy of the analysis is significantly affected by the accura-
cies of the stiffness matrix as well as the mass matrix.

Up to the garly 1960s, the mass matrix was usually obtained by employing a lumped

parameter method [54], in which the structural mass was physically grouped as a series of
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concentrated mass at the nodes. The derived mass matrix is diagonal, and a simple tech-
nique is required to formulate and solve the equations. However, the computed natural fre-
quencies and mode shapes might be greatly different from the exact solution, if a large
number of elements are not used.

A consistent mass matrix was proposed by Archer in an attempt to improve the accu-
racy of the dynamic analysis [55]. The mass matrix was derived employing equations cor-
responding to the Rayleigh-Ritz approach, and the resulting mass matrix is “consistent”
with the actual distribution of mass throughout the structure. Later on, Archer also a con-
sistent mass matrix for Timoshenko beam element. The mass matrix was derived by super-
posing linear inertias on rotary inertias which were determined assuming that the mass
angular acceleration is consistent with the angular motion of the transverse fibers of the
beam [56].

Even though the consistent mass matrix represents a truer distribution of mass
throughout the structure compared to a lumped mass matrix, it results in a coupled system
of equations for explicit structural dynamic analysis as well as a need to construct a global
mass matrix. Thus the solution procedure to solve the system of equations becomes com-
plicated and computationally expensive. In addition, lumping lowers the highest wave
speed in the finite element mesh, and increases the critical time step for explicit integration
schemes. These facts motivate analysts to find rational ways to develop diagonal mass
matrix by lumping appropriately. Several lumping schemes based on a consistent mass
matrix have been proposed.

The easy-to-use and well-known lumping techniques are the row-sum lumping, the

optimal lumping and proportional lumping (so called HRZ lumping) schemes. In row sum
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lumping, the components in each row are added and lumped on the diagonal using the
property of the interpolation functions that the sum of the interpolation functions is 1. This
lumping scheme sometimes causes negative masses, especially for corner nodes of the
eight-node serendipity element. On the other hand, in the optimal lumping scheme pro-
posed by Fried and Malkus [57], the lumping of mass was accomplished by placing the
location of nodes of an element at the integration point of a quadrature rule. This lumping
scheme is practically useful only for low order Lagrange elements with only translational
degrees of freedom, because this scheme produces a block diagonal lumped matrix for
elements with rotational d.o.f, and zero or negative nodal masses for quadratic and higher
order elements.

A special lumping technique was presented by Hinton, Rock and Zienkiewicz [58].
This lumping scheme is sometimes called as the proportional lumping scheme or the HRZ
lumping scheme. In the HRZ (proportional) lumping scheme, lumping is achieved by cal-
culating the diagonal elements of the lumped mass matrix to be proportional to the diago-
nal elements of the consistent mass matrix while preserving the total mass of the element.
The most important feature of this lumping scheme is in that it always produces positive
lumped masses without regard to the element type, because the diagonal terms in the con-
sistent mass matrix must be positive by virtue of the positive-definiteness property. For
low order elements, the accuracy of this lumping scheme in the prediction of natural fre-
quencies often surpasses that of the consistent mass matrix. For Lagrange linear and qua-
dratic elements with constant material density, the lumped mass matrix computed by the
proportional lumping is the same as that obtained by the row-sum lumping.

The lumping scheme for two-dimensional degenerated general shell elements and axi-
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symmetric shell elements with rotational d.o.f was developed by Surana [59]. In this
lumping scheme, the rotary inertia terms are obtained by assuming that the masses in
translational d.o.f at the top and bottom surfaces of the plate are rotating with respect to
the mid surface, while the mass terms in lumped mass matrix for translational d.o.f. are
derived by the same procedure as in the HRZ lumping scheme.

It was shown in [60,61] that the reduced integration rule to evaluate the element mass
matrix may result in a singular mass matrix. The existence of a singular mass matrix
implies that there are certain unacceptable modes of deformation associated with the ele-
ment which produce zero kinetic energy. Thus, full Gauss quadrature rule is recommended
to be used to evaluate the element mass matrix.

The the rates of convergence of eigenvalues and eigenfuctions between consistent
mass and lumped mass formulations was studied in [62-64]. Tong, Pian and Bucciarelli
[62] found that the lumped mass formulation suffers no loss in order of convergence for
the membrane and rod cases employing simple interpolation functions. However, for prob-
lems with higher order equations such as the beam or plate, or for the second order equa-
tions with more accurate interpolation functions, the consistent mass formulation yields a
better rate of convergence.

The effects of negative and zero masses and stability conditions reproduced by optimal
lumping scheme in transient finite element analyses were investigated by Malkus and Ple-

sha [65], and Malkus, Plesha and Liu [66].

1.6 The Present Study

Refined plate theories based on linear or cubic plus zig-zag kinematics have been
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developed, and new C° 3-D finite elements have been developed on the basis of those the-
ories. The in-plane displacement fields in each sublaminate (for linear zig-zag) or in the
laminate (for cubic zig-zag) are assumed to be piecewise linear or cubic functions and
vary in a zig-zag fashion through the thickness of the sublaminate or the laminate. The
transverse displacement field is assumed to vary linearly through the thickness direction.
The zig-zag functions are evaluated by enforcing the continuity of shear stress at each
interface. This in-plane displacement field assumption accounts for discrete layer effects
without increasing the number of degrees of freedom as the number of layers is increased.
The rotational variables in the in-plane displacement field are eliminated in favor of the
translational variables, the inplane translations at the top and bottom surfaces of the sub-
laminate or laminate, in order to facilitate the development of convenient finite element
models. For the cubic zig-zag model, high order rotational variables are removed by
employing zero shear traction conditions at the top and bottom of the laminate. Moreover,
since the derivatives of transverse deflections appear in the displacement field, their sec-
ond derivatives will be present in the strain energy functional, so C! continuity of trans-
verse deflection is required. Such a requirement is alleviated by introducing new rotational
degrees of freedom. The constraints between the derivatives of transverse deflections and
new rotational degrees of freedom are imposed via the penalty method. To remove Pois-
son’s ratio stiffening effect, the transverse normal strain is improved by assuming a con-
stant transverse normal stress through a sublaminate or the entire laminate.

The equations of motion, the essential and natural boundary conditions, as well as the
displacement-based finite element model are developed from Hamilton’s principle. The

new C? finite element is developed with the topology of an eight-noded brick. Each node
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has five engineering degrees of freedom - three translations and two rotations.

Inplane displacements and rotational degrees of freedom are approximated by the
bilinear Lagrange interpolation functions. For transverse deflection degrees of freedom, an
interdependent interpolation concept developed by Tessler and Hughes [75] is utilized.

-The above interdependent interpolation scheme alleviates the shear locking pro.blcm
but does not eliminate it totally. The element developed using this scheme still locks in the
very thin regime. Thus, the consistent transverse shear strain fields as well as the edge-
consistency of the tangential shear strain on any common inter-clement edge were
achieved utilizing Prathap and Somashekar’s approach to prevent the element from lock-
ing [76,77]. The element stiffness coefficients are integrated exactly, yet the element
exhibits no shear locking. The element is shown to be accurate, simple to use, and compat-
ible with the requirements of commercial finite element codes.

Based on the displacement fields and the finite element model, a consistent mass
matrix has been obtained. Making use of the consistent mass matrix, lumped mass matri-
ces for explicit structural dynamic analyses have been derived by several lumping
schemes.

The developed elements have been implemented into the explicit finite element
dynamics code, NEPTUNE [78]. In the code the internal force vector is computed for the

element. Using NEPTUNE, the dynamic analysis of composite plate was performed.

1.7 Organization of the Dissertation

The dissertation will be focused on the development of robust and accurate composite

beam and plate elements for the static and dynamic analyses of laminated composites and
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sandwich structures. The dissertation is composed of 7 chapters, and the features and con-
tents of each chapter are as follows.

In Chapter 2, first order layerwise beam theory and the two dimensional beam element
associated with the beam theory is presented. Numerical results are obtained for cylindri-
cal bending cases and compared with the exact solutions by Pagano [72].

A laminated plate theory with first-order zig-zag sublaminate approximations and a
new 3-D finite element based on that theory are developed in Chapter 3. To alleviate lock-
ing, interdependent interpolation, consistent transverse shear strain fields, and edge-con-
sistency of the tangential shear strain will be introduced. To remove Poisson’s ratio
stiffening effect, the transverse normal strain will be improved by assuming a constant
transverse normal stress through each sublaminate. Numerical performance of the current
element is investigated for a composite armored vehicle panel and a sandwich panel with
low and high aspect ratios.

Chapter 4 will introduce a refined laminated plate theory based on cubic zig-zag kine-
matics and the associated element. The discretization in the through-thickness direction is
not allowed in this element, because homogenous shear traction conditions at the top and
bottom surfaces are assumed. The numerical experiments will be carried out by simulating
a damaged composite plate under a double sinusoidal loading.’

In Chapter S, on the basis of the developed elements, the consistent mass matrices and
the lumped mass matrices will be derived. Utilizing the derived stiffness and mass matri-
ces, free vibration of a laminated plate will be analyzed.

The structural dynamic analyses of composite structures will be performed using the

proposed elements in Chapter 6. Since the proposed elements have been implemented into
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NEPTUNE, which utilizes the explicit time integration, the stability condition and critical
time step for the explicit time integration will be also discussed.
The conclusions and recommendations of the current research will be present in Chap-

ter 7.



CHAPTER1II
FIRST ORDERZIG-ZAG BEAM THEORY
BASED ON SUBLAMINATE APPROXIMATIONS

2.1 Introduction

In this chapter, a new beam finite element based on a new discrete-layer laminated
beam theory with sublaminate first-order zig-zag kinematic assumptions is presented and
assessed for thick and thin laminated beams. The model allows a laminate to be repre-
sented as an assemblage of sublaminates in order to increase the model refinement through
the thickness, when needed. Within each sublaminate, discrete-layer effects are accounted
for via a modified form of DiSciuva’s linear zig-zag laminate kinematics [33], in which
continuity of interfacial transverse shear stresses is satisfied identically. In the computa-
tional model, each finite element represents one sublaminate. The finite element is devel-
oped with the topology of a four-noded rectangle, allowing the thickness of the beam to be
discretized into several elements, or sublaminates, if necessary, to improve accuracy. Each
node has three engineering degrees of freedom, two translations and one rotation. Thus,
this element can be conveniently implemented into general purpose finite element codes.
The element stiffness coefficients are integrated exactly, yet the element exhibits no shear

locking due to the use of a consistent interdependent interpolation scheme. Numerical per-
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formance of the current element is investigated for an arbitrarily layered beam, a symmet-

rically layered beam and a sandwich beam with low and high aspect ratios.

2.2 Kinematic Assumptions and Formulation of the Beam Theory

It is assumed that a laminate is composed of N perfectly bonded layers, with each layer
being of independent thickness and having independent stiffness properties. The laminate
will be modeled as M sublaminates (1 < M), with each sublaminate containing N,, layers

such that:

N= YN, (2.2.1)

In order to facilitate the development of the finite element model, all expressions in the
following derivation pertain to the mth sublaminate, and the sublaminate number designa-
tion is omitted for brevity hereafter.

The constitutive equation for a plane stress state in the kth layer of the mth sublaminate

can be written as:
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where the principal material axes are assumed to coincide with the X,Z axes, and the sub-

scripts 1,3 correspond to the X,Z or x,z directions, respectively. The global X- and local x-
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directions coincide and are taken along the length of the beam. The global Z-axis is taken
perpendicular to X and has its origin at the bottom of the laminate, while z is a local sub-
laminate coordinate in the direction of Z with its origin at the bottom of the sublaminate as

shown in Figure 1.
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where E are the Young’s Moduli, and v; are the Poisson’s ratios in kth layer, and G;; are
shear moduli.

The strain - displacement relationship for a plane stress state can be written as:
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The assumed displacement fields are initially assumed in the following form:
} k-1
ui )(x, 2) = uy(x)+zy + 2 (z- zi)§,-
i=1 (2.2.5)
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where A is the thickness of the sublaminate, , is the axial displacement at z = 0, Y is the

rotation at z = 0, and w;, and w, are the transverse deflections of the bottom and top sur-

(k)

faces, respectively, of the mth sublaminate. Thus, it is assumed that u, ° varies in a piece-

(k)

. varies linearly through

wise linear fashion through the thickness of a sublaminate and u
the thickness.
The parameters £ in (2.2.5) are eliminated by enforcing the continuity of shear stress

at each interface. The shear stress continuity condition between the kth layer and the

k+ Ith layer can be expressed as follows:

® o6k at 124 (2.2.6)

x - VYV

Substitution of the constitutive equation (2.2.2), the strain - displacement relationship

(2.2.4) and the assumed displacement fields (2.2.5) into Eq. (2.2.6) gives:
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Solving the recursive relationship for &,, finally &; is found to be:
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From Egs. (2.2.9) and (2.2.10) it can be seen that §; depends on the ratios of shear proper-
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ties between two adjacent layers and the shear deformation in each sublaminate. If either
of these quantities is small, then discrete-layer effects will also be small.
The modified displacement field is given by:
uF(x,2) = uy(x) + 2y + ki:l (z- z,-)(&,-\v + B,«Zl:” + e,j—:")
i=1 (2.2.11)
u(x,z) = w,,(x)(l - i) + w,(x)(i)

In order to facilitate the development of convenient finite element models, the rota-
tional variable ¥ is now eliminated in favor of the translational variable u,, the inplane
translation at the top surface of the sublaminate. Thus, rather than describing the inplane
displacement field by a translation and rotation at one point, it can more conveniently be
described here by the translation at two points. Introducing the new variable u,, ¥ can be

obtained as follows:

[—

(2.2.12)
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where u,, and u, are the axial displacement at the top and bottom of each sublaminate, and

can be described mathematically as:

—u ™

u=u™ (2.2.13)

up > % x z2=h

z=0

The coefficients @, b and ¢ are defined as:
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Therefore, uik) can be written as follows:
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Since the derivatives of transverse deflections, yr and el appear in the displacement

field, their second derivatives will be present in the strain energy functional, so C! continu-
ity of w, and w, is required. It is desirable to alleviate such a requirement by introducing

new rotational degrees of freedom as follows:

dw, dw
—° =0, E‘

dx =0

(2.2.16)

t

The above relationship still must be enforced within the model, as discussed later. The

final form of the axial displacement field can now be written as:
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k=1 k-1
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where z; is the coordinate of the ith interface in the sublaminate. The coefficients

agy, by, ¢y, a;, b; and c; are given by:

1 -
4 = 2 a; = apa;
b= -2 = _ap b, = b,—=b = b,—ayba 2.2.18
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Thus, the strains are defined as:
du k-1 du k-1
k b
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k-1 k-1 k-1 k-1
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i=1 i=1 i=1 i=1

The governing equations, the essential and natural boundary conditions, as well as the

displacement-based finite element model can be derived from the principle of total poten-
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tial energy. Again, attention will be limited to a single sublaminate. The potential energy
. functional is modified here to include the imposition of the constraints (2.2.16) via the

penalty method [68-70]. The modified total potential energy for the mth sublaminate can

be defined as follows:
N, 1
k) (k k) (k k) (k
n;m) = 2 leoix)six)+6iz)eiz) ( ) ( )]de J.L(q‘w,+qbwb)dx
k=1V, (2.2.20)

dw,\2 dw \?
Y b ‘1 o
+I(l;§(e”_dx ) d”ﬁz(e' dx ) dx

where N, is the number of layers within the mth sublaminate, V, represents the volume of
the kth layer in the sublaminate, ¥ is the penalty parameter, and g,(x) and q(x) are the dis-
tributed transverse loads applied on the surfaces of the sublaminate (if these surfaces also
represent surfaces of the beam). As 7y is assigned successively larger values, the con-
straints of (2.2.16) are satisfied more exactly in the least squares sense. Substituting Eqs.
(2.2.2), (2.2.19) into (2.2.20), pre-integrating the internal strain energy terms through the
thickness and through the width of the beam, taking the variation of n(pm) , and integrating

by parts, (2.2.20) can be rewritten as:
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L 2
81{;"') = I[sub(Qb—-&-; )+8ut(Q‘—z ‘)+8Wb{sz—qb—a +Y(E —-‘;-x—z-
0
2
dr do, dw aM dw
+ SW‘{NU bl ql -2-;‘ + 'Y(-J;t —;—7‘]}4-891,{8,, —a xb + 'Y(eb —ab)}
X
am ,, dw, '
+89, S"’E +‘Y(9,—2;) dx (2.2.21)

d
' [Nszub + N Bu,+ M, 86, + M .56, + {Tb - Y(Qb - d_‘:b) }SWb

{1,105 fow ]

where N, ,N .M M N, N, 0,0,S,S,T, T, are the beam sublaminate

L

=0
0

stress resultants defined as:

N, k-1 k-1
k), (k

Nivo= 2, z* cfu)b( ){ 1-agz- Z(z—zi)a,«} [aoz+ Y (z—z,-)a,-)}dx

k=1 *! \ i=1 i=1

N, - k-1 k-1

k

Moo= 3 J': ooy b1 | byz + Z(z—z,-)b,-} [coz+ 2(z—zi)c,-)}dx

k=1 ! \ i=1 i=1

R ORCITERAYA
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Substituting Egs. (2.2.2), (2.2.4) into (2.2.22), the sublaminate stress resultants are

described in terms of the generalized displacement degrees of freedom by:

du du do do
= a\""b a p\t b na\""b c pb 4%
N‘(b") = (4.4 )dx +(4 ’B)dx +(ALB )dx +(4.B )dx

+(C, C*w,—(C, C*w,

du du do do
- b ,c __b b et a b _b b Y
Mx(b.l)-(A’A)dx +(D’B)dx+(D,D)dx +(D,F)dx
+(C?, Cyw,~(C?, Cyw,
dub du, b b deb de'
Nz(b,f) = (C: —C)'a; +(Ca, —Ca)a-; +(C ,—C )-d—x +(Cc, —Cc)d—x

+(G,-G)w, + (-G, G)w,
a A (2.2.23)
O,y = (H,~H)uy,+ (-H, Hyu,+ (H',-H")8, + (H, -H")8,

dw dw
c c b d d t
+(H,-H )d_x +(H ,-H )E
Stey = (HY H Yy + (-H%, ~H"yu, + (I, 1°)8, + (I°, J)8,
dw dw
b b c .b t
T, = (H HYu, + (=HS, ~H")u + (1%, 190, + (J°, 1°)0
(b, 1) ’ b ’ t ’ b ’ I

dw dw
+ (K, K“)a;” +(K° L)'

where the coefficients in (2.2.23) are defined as follows:
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k-1 \/T k-1
(A, 4% A%, A) = Zf C(l';)b(k)(l—a z- Y (z-2z)a [l—aoz—Z(Z z)a]

k=1 i=1 J i=1

k-1 k-1 17 k!
[aoz+ Y (z- z)at]’ [boz+ 2 (2=2)b; |, | coz+ Z(Z_Zi)ci])dx

i=1 = <4 L i=1

N, k-1
(B,B° B’) = Zf C(I';)b(k)( 0z + 2(2 z)aJO([aoz+ Y (z- z)a]

k=1 i=1 i=1

k-1 k-1
[boz + Y (z- z,—)b,-], [coz + Y (z- z,-)c,«Ddx

i=1 i=1
N

N, . k-1
(C’ C'a’ Cb’ CC) = Z r C(Il;)b(k)(—%) ® ([1 —aoz_ 2 (Z_Z,')ai]’
i=1

-
k=1 k-1

k-1 k-1 k-1
[aoz+ Z (z—z,-)a:| [boz+ 2 (z-z; )b,], [coz+ 2 (z-z; )c])

i=1 i=1

-1 k-1
(D, Da, Db) = J’Z C(k)b(k)Lboz + z (Z - Zi)bij[[aoz + Z (Z —Z,-)ai:|,
(2.2.24)

i=1 i=1

k-1 k-1
[boz + Z (z- Z,-)b,-:|, [COZ + z (z- Z,‘)ci]]dx

i=1 i=1

k-1
(F) = zr C(k)b(k)(coz+ Y (z- z)cJ-[coz+ Y (z- z)c]

i=1 i=1
_ v A1) (]
(G) = ZJ’;_‘cgb (Z) (}—z)dx
N, k-1 k-1 k-1
(H,H H* H  H) = ¥ j: ‘ C(S?b(k)[—ao— Z“iJ‘([‘“O‘ Za,-],[bw Zb.-]’
k - i=1
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7% 7% = 2 f cg’;’b""(co+ ¥ cJ.[[co+kZ] c,],[ ‘E]’ [i])dx

= i=1 i=1

(K. K = if e (1-3)e (-5 [3])e

Z
k k-1

o= B e

k-1

The governing equations and boundary conditions for the mth sublaminate are obtained
from (2.2.21). If the entire laminated beam is modeled using a single sublaminate, then the

beam equilibrium and boundary conditions are:

dN
8ub —zx-x +Qb =0
dN
Su, -=1+0,=0
drT, de, dw,,
dw,,: N, - P —q,(x)+y d— -d_z. =
2" (2.2.25)
dT, de, dw,
Sw,: NZ d q,(X)'i"Yd —:1—1'? =

aMm dw
89,,: _-d;Xb+Sb+’Y(eb_ab) =0

dM
36, -z’“+s,+y(e,-_x') =0
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Essential B.C Natural B.C.
up Ny
ut Nxt
6, M
8, M, (2.2.26)
dw,
W T,- Y(eb wr )
dw,
w, T, - Y(O, " )

2.3 Finite Element Formulation

From (2.2.23), it can be seen that the primary variables are functions of x only, thus we
need to consider only one dimensional shape functions for the finite element model. The
most obvious path of development would be toward a simple two-noded beam element
with six degrees of freedom per node. However, such an element would not fall within the
constraints of having three translational and three rotational degrees of freedom. Even
more importantly, a major advantage of the present formulation would be lost if a tradi-
tional two-noded element were developed. Because the degrees of freedom represent
quantities at the surfaces of a sublaminate, it is most conveniept to cast the finite element
model in the form of a four-noded element with three degrees of freedom per node as
shown in Figure 2. This element is classified here as a “regenerated,” element. This
approach has been taken by other investigators as well [41,42,67], and has the very impor-
tant advantage of allowing discretization in both inplane and through-thickness directions
without the need for any special multipoint constraints. Therefore, the element can be used

to predict the global response of a laminate using only one (or a small number) of ele-
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ments through the thickness, and local effects such as interlaminar stresses can be cap-
tured by refining the mesh in the thickness direction near the interface(s) of interest.
Inplane displacement and rotation degrees of freedom are approximated by the linear

Lagrange interpolation functions:

2 2
Up = Z ubi, u‘Pi eb,r = 2 9bi, tiPi (2'3'1)

i=1 i=1

where
Py = %(l—é) P, = %(1+§) (23.2)

and & is the element natural (local) coordinate.

The constraints between the derivatives of transverse deflection and the rotation degree
of freedom is imposed in the strain energy functional via the penalty method. As men-
tioned, the rotation degrees of freedom are approximated by the linear Lagrange interpola-
tion functions. Thus, if the linear Lagrange interpolation functions are employed for the
transverse deflection degrees of freedom, the constraints in the strain energy functional
enforce the relationships between the linear variations of rotation degrees of freedom and
the constant part of the deflection approximation, because thé first derivative of a linear
function is constant. This causes locking of the element. In oeder to alleviate locking,
transverse deflection degrees of freedom are approximated by an interdependent interpola-
tion concept developed by Tessler and Dong [71]. Initially, the transverse deflections, w,

and w,, are approximated by quadratic Lagrange interpolation functions.
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3
Wh o = X, WhiiilV; (2.3.3)

1=

where
Ny=3E -8, Ny =5E+E),  Ny=1-F ~1<E<1 (234)

The virgin element is shown in Figure 2, and has a mid-node at the top and the bottom sur-

faces.

(a) virgin element

Uy, W 6, Wi Uy, Wy, 6,
*° o —o

Ups W, Bp Wy Up, Wy, O

(b) constrained element
Uy, w,, 6, U, wy, 6,

®
Up, Wy, By, Uy, Wy, 0,

Figure 2. Element topology and nodal degrees of freedom.

The resulting mid-side deflection degrees of freedom can be eliminated by imposing the
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high-order part of the constraints in (2.2.16):

d dw
P e"_ﬂ ) =0, a = 1(bottom), 2(top) (2.3.5)

Substituting Egs. (2.3.1-2.3.4) into (2.3.5):

d dwa) _
dx 8-z )= 0
2
148, 1dw,
R
2 2 5 (2.3.6)
2(dP1 dpP, ) 4(d N, dN, dN,
= =|==0,+==0,|-=|— Wy +t— Wep+— W
he d§ al d§ a2 hz d§2 al d&z a2 d§2 a3
=04 +9a2) 4
= | ——— == (wy + W,y —2W,3)
( he h2 al a2 a3
where J;is line Jacobian and A, is the element length.
If we solve for w5 in (2.3.6), w3 is:
1 h,

The substitution of w,; into (2.3.3) results in the new interpolation functions for trans-

verse deflection degrees of freedom:

2 2
W, = 3 Wy Pt Y 0, N, (2.3.8)

i=1 i=1

~ h 2 - h 2
whereNl=-85(l-§ ), N2=-§e(1-§)
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This approach improves the element behavior very effectively without introducing
additional degrees of freedom. Since the interdependent interpolation scheme identically
satisfies the linear part of the constraint in (2.2.25), the penalty parameter need only
enforce the constant part of the constraint. It has been found that a penalty parameter on
the order of the largest material shear stiffness is all that is needed to impose the constraint
sufficiently, so the possibility of numerical ill-conditioning due to large penalty parame-
ters is eliminated. Further, shear locking is obviated so that an exact order of integration
can be used.

An interesting property of the present model is uncovered when it is used to model iso-
tropic beams. Note that for the case of an isotropic beam the displacement field in (2.2.15)
does not contain any derivatives of the transverse deflection degrees of freedom, since the
coefficients of those terms vanish. The theory thus requires C I transverse deflection
degrees of freedom for laminated beams in which any two adjacent layers have different
transverse shear stiffnesses, but requires only C? transverse deflection degrees of freedom
for isotropic beams. As formulated, the present finite element is C?, with the constraints in
(2.2.16) imposed via the interpolation scheme and the penalty method. When used to
model isotropic beams, the current model yields predictions almost identical to those of
the one-point-integrated four-noded isoparametric plane stress element. The present ele-
ment may also be viewed as a planar element with drilling degrees of freedom, though the
rotations defined in (2.2.16) are in terms of only deflection degrees of freedom. The
present element is designed specifically for the analysis of beam bending, not for general

plane elasticity problems.
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2.4 Numerical results

The accuracy of the proposed laminated beam theory and the appropriateness of the

finite el model were d by simulating the resp of three different simply-
supported laminated beams subjected to a transverse sinusoidal loading as shown in Fig-
ure 3. The elasticity solution of Pagano [72] was suitably modified to provide comparison
with the current beam results. The material properties used in the analyses are listed in

Table 1, and the lamination schemes studied are defined in Table 2.

p =sin(nx/L)

A

I}
Y

Figure 3. Simply supported laminated composite beam
biected to si Lo oo
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Table 1. Material properties used in the analyses.

u Eq E33 Gi3 Vi3
Material 1 1.00e6 1.00e6 0.20e6 0.25

Material 2 || 25.0e6 | 1.00e6 | 0.50e6 | 0.25

Material 3 || 33.0e6 | 21.0e6 | 8.00e6 | 0.25

Material 4 " 32.6e6 | 10.6e6 | 8.21e6 | 0.10

Core “50.0e3 50.0e3 | 21.7¢3| 0.15

For a given location along the length of the beam, explicit expressions for the through-
thickness variation of stresses are provided by the present model. Along the beam axis,
stresses were evaluated at the centroid of each element, where stress is super-convergent
[73]. The bending stresses presented in the forthcoming discussion were evaluated at the
center of the element that is nearest the center of the beam. The transverse deflections are
obtained at the top surface of the center of the beam where load is applied, while the in-
plane displacement is obtained at the end of the beam where x = 0. Due to the symmetry of
the problem, only half of the beam was modeled. Unless noted otherwise, ten elements
were used along half the length of the beam, and the aspect ratio of the beam was set to
four.

An aspect ratio of four was chosen in the present exampies in order to highlight the
ability of the present model to obtain accurate results for very thick laminates via through-
thickness refinement of the mesh. Analyses of beams with the same lamination schemes
but with an aspect ratio of ten were also performed. In most of these cases, the predictions
using one sublaminate were nearly indistinguishable from the exact elasticity solution.

These results are omitted for brevity.
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Table 2. Ply stacking tables for the three laminates analyzed.

Laminate | Layer Material Thickness
1 1 2 ~ | 0125
|| 2 1 0.125
3 2 0.125
4 1 0.125
5 1 0.125
6 2 0.125
| 7 1 0.125
I 8 2 0.125
2 1 2 0.300
2 1 0.200
3 2 0.150
4 3 0.250
5 1 0.100
3 | ! 1 0.010
" 2 4 0.025
3 2 0.015
[ 4 1 0.020
5 2 0.030
6 Core 0.800
7 2 0.030
8 1 0.020
9 2 0.015
10 4 0.025
11 1 0.010
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Laminate 1:

The first example is denoted as Laminate 1 and has the lamination sequence (0/90/0/
90),. In Figure 4, normalized predicted center deflection and normalized predicted in-
plane stress is plotted as a function of the number of elements used in the mesh. In this set
of results, L/h=100, and only one sublaminate was used. The error was less than 1% ;n/hen
seven elements were used in half the length of the beam. The influence of aspect ratios on
transverse deflection is shown in Figure 5. Nine different aspect ratios were considered to
check a wide range of beam bending behavior (L/h= 4, 8, 10, 20, 30, 50, 100, 500, 1000,
and 10000). When one sublaminate was used, the error in predicted deflection was less
than 5 percent even for the case L/h=4. The use of two sublaminates of equal thickness
resulted in more accurate predictions, but the trends were almost the same as those when
one sublaminate was used. When eight sublaminates (one element per layer) were used,
the error in the predicted deflection was less than one percent for all aspect ratios consid-
ered.

In Figure 6, the variation of in-plane displacement through the thickness of the lami-
nate is plotted for a beam with aspect ratio of four. The exact distribution of in-plane dis-
placement is approximately linear within each layer, and globally piece-wise linear and of
zig-zag pattern due to the difference in the shear moduli of adjacent layers. For the model
containing only one sublaminate, the difference between the present model predictions
and the elasticity solution at the top surface was about 13 percent. However, when eight
sublaminates were used, the numerical predictions were in excellent agreement with the
elasticity solution, with error of about 2.75 percent. The stress distribution through the

thickness is illustrated in Figure 7. It can be observed that the prediction of in-plane stress
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o,, converges rapidly to the exact solution as more sublaminates are used.

Laminate 2:

Laminate 2 is a random five layer laminate in which the thickness and material proper-
ties vary considerably from layer to layer, a challenging problem for any model to solve
accurately. In this case, most predicted results are locally relatively poorer than those for
Laminate 1 which has a symmetric lamination sequence. Predictions of normalized trans-
verse deflection versus aspect ratio are represented in Figure 8. It can be observed that
when the aspect ratio is greater than 20, a one sublaminate approximation gives quite
accurate estimates of center deflection. However, five sublaminates (one element per
layer) are needed to obtain accurate predictions of deflection for an aspect ratio of four.
The in-plane displacements predicted by the present model and by elasticity are plotted
versus the thickness of the beam in Figure 9. Even though the overall prediction of in-
plane displacement by the current model agreed well with the elasticity solution, a rather
large error in the prediction of in-plane displacement occurred in the first layer of the
beam when either one or two sublaminates were used. This is an example of the shortcom-
ing of first-order zig-zag theory in modeling very unsymmetric laminates. However, the
prediction using five sublaminates was very close to that of the elasticity solution. The pre-
dicted distribution of in-plane stress as a function of thickness is plotted in Figure 10.
Overall, the predictions of the current model are very good, with the maximum error

occurring at the top of the laminate.

Laminate 3:

The last example is a sandwich panel, denoted here as Laminate 3, which consists of a
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thick core between two sets of five face sheets. As can be seen in Table 2, the core occu-
pies eighty percent of the thickness of the beam, while each set of face sheets contains five
layers (with a lamination sequence very similar to that of Laminate 2) and occupies ten
percent of the total thickness. Three types of through-thiékness discretization were used in
the analyses: (1) a single sublaminate, (2) three sublaminates -- one for the core and one
each for the face sheets, and (3) five sublaminates -- three for the core and one each for the
face sheets.

The predicted normalized deflections for various aspect ratios are plotted in Figure 11.
When the aspect ratio was greater than 4, only one sublaminate was needed to yield accu-
rate results. In Figure 12 the predicted through-thickness distributions of in-plane dis-
placement are illustrated. All predictions were very accurate in the upper and lower face
sheet regions, but there were significant errors in the core region when only one or three
sublaminates were used. These errors were due to the very large transverse shear strains
and transverse squashing in the core of this thick sandwich beam. The nonlinear variation
of inplane displacement in this region could not be captured accurately by a single sub-
laminate in the core region. For thinner beams (i.e., L/h greater than about 10), the inplane
displacements throughout the thickness are predicted satisfactorily using a single sublami-
nate through the entire thickness of the laminate.

The bending stress predictions shown in Figure 13 are so accurate that it is difficult to
distinguish between analytical and finite element results. To assess these more clearly, the
stress distribution in the upper face sheet region is enlarged and shown in Figure 14. It can
be observed that the finite element model using only one sublaminate predicts the stress

distribution in the face sheets very accurately.
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2.5 Summary

An improved first order zig-zag theory and an associated finite element model are pre-
sented. The model allows the representation of a laminate as an assemblage of sublami-
nates in order to increase the model refinement through the thickness, when needed.
Within each sublaminate, an accurate first-order zig-zag sublaminate kinematic approxi-
mation is made which minimizes the need for multiple sublaminates for many problems of
practical interest yet easily accommodates through-thickness refinement for predicting
local variations of stress and deformation. The finite element model is “regenerated” in the
form of a four-noded planar element with three degrees of freedom (two translations and
one rotation) per element. Thus, it suitable for implementation into commercial finite ele-
ment codes. Numerical results demonstrate that the current model is accurate, efficient,

and robust for analysis of a wide variety of thick or thin ]aminated beams.
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Figure 4. Variation of normalized center deflection and maximum
bending stress versus number of elements in the mesh
(Laminate 1, L/h=100).
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Figure 5. Variation of normalized center deflection
versus beam aspect ratio (Laminate 1).
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Figure 6. Inplane displacement versus normalized thickness
coordinate (Laminate 1, L/h=4).
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Figure 7. Bending stress versus normalized thickness coordinate

(Laminate 1, L/h=4).
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Figure 9. Inplane displacement versus normalized thickness
coordinate (Laminate 2, L/h=4).
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Figure 12. Inplane displacement versus normalized thickness
coordinate (Laminate 3, L/h=4).
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Figure 14. Bending stress in face sheets versus normalized thickness
coordinate (Laminate 3, L/h=4).



CHAPTER III
PLATE ELEMENT BASED ON
FIRST ORDER ZIG-ZAG SUBLAMINATE THEORY

3.1 Introduction

In this chapter, after estimating the shortcomings and merits of the first order zig-zag
beam theory and the beam element, a refined plate theory based on sublaminate linear zig-
zag kinematics and a new 3-D finite element based on that theory are developed. The in-
plane displacement fields in each sublaminate are assumed to be piecewise linear func-
tions and vary in a zig-zag fashion through the thickness of the sublaminate. The zig-zag
functions are obtained by satisfying the continuity of transverse shear stresses at layer
interfaces. This in-plane displacement field assumption accounts for discrete layer effects
without increasing the number of degrees of freedom as the number of layers is increased.
The transverse normal strain predictions are improved by assuming a constant variation of
transverse normal stress in each sublaminate. In the computational model, each finite ele-
ment represents one sublaminate. The finite element is developed with the topology of an
eight-noded brick, allowing the thickness of the plate to be discretized into several ele-
ments, or sublaminates, where each sublaminate can contain more than one physical layer.

Each node has five engineering degrees of freedom, three translations and two rotations.

57
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Thus, this element can be conveniently implemented into general purpose finite element
codes. The element stiffness coefficients are integrated exactly, yet the element exhibits no
shear locking due to the use of an interdependent interpolation scheme and consistent
shear strain fields. Numerical performance of the current element is investigated for a
composite armored vehicle panel and a sandwich panel with low and high aspect ratios.
Comparison of numerical results with elasticity solutions shows that the element is very

accurate and robust.

3.2 Kinematic Assumptions

In this plate theory, a laminate will be modeled as M sublaminates, and each sublami-
nate is assumed to consist of N,, perfectly bonded layers which have independent thick-
ness and independent stiffness properties. Mathematically, the total number of layers, N, in

the laminate is written as:

N= YN, (3.2.1)

The global Z-axis is taken perpendicular to the inplane X, ¥ coordinate axes and has its ori-
gin at the bottom of the laminate, while z is a local sublaminate coordinate in the direction
of Z with its origin at the bottom of the sublaminate (see Figure 15). In the following deri-
vation all expressions are related to the mth sublaminate in order to facilitate the develop-
ment a computationally convenient finite element model. All indices indicating the

sublaminate number are omitted for brevity.
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The constitutive relations for a three dimensional stress state in the kth layer of the mth

sublaminate can be written as:

(k) (k)
o¥ C(k) cHc® o o C(k) £x
(k) (")
o, cOcPc® o o cllen
(") (k)
u B C(k) C(k) C(’() 0 0 C(k) ZZ (3 2 2)
o® 1o 0 o c®c® ol|y® B
)'Z yz
0(") 0 0 0 C(k) C(k) 0 ,Y(‘()
(k) (") (k) (") (k) (k)
Oy Ca 0 o0 C“_ Yy,

For monoclinic materials, 13 coefficients of the material stiffness matrix are independent,

but for most practical laminated composites, nine coefficients of the material stiffness
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matrix are independent and the others are obtained through a transformation law [79].

These nine coefficients are given as follows:

(k),, (k) (k) (k) (k) (k) (k) (k)

=(k) w1=Va3Vay i _ V2 tVarVas = _ V3 V2 Vy
Cir = E o Cu=E W G =E D)
A A A
(k) , (k) (k) (k) (k) (k) (k)
ek _ E(k)l - Vi3 V3 cw _ ()V32 + Vi3 V3 o - E(k)l -Vi2 V3
22 = 2 ’ - 2 T =Ly —F
A(k) A(k) A(k)
=(k) (k) —(k) (k) =) (k) (3.2.3)
Cas = Gy, Css = G3» Ces = Gz

(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)
A" = 1=V Vy = V3 V3y = V31V 3 =2V V35 V3

(k) (k)
V.. AV
®=Tw  hI=L23
E; Ej

where Egk) are the Young’s moduli in x, y, z directions and vg‘) are the Poisson’s ratios
associated with transverse strain in the j direction due to axial strain in the i direction in
the kth layer. From the transformation law of a fourth order tensor, 13 coefficients are

derived using the transformation law of a fourth order tensor:

(k) _ =(k)
ijkl = Fim8jnkp15Cmnpq (3.2.4)

where a;,, stands for the direction cosine associated with the material and the global

axes.

The infinitesimal strain - displacement relationships are defined as:

(k) (k) (k)
(0 _ ou, 0 _ 9 () _ O
xx a ’ Yy -Ty ’ 2z —FZ-
(3.2.5)
*) (k) *) 4 (k) k)~ (k)
(k) _ O, Ou, b _Oug ouy (hy _ Oy"  Ouy

e 3 Y YTH Yw o TWTH Yy,
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3.3 Formulation of the Plate Theory

The displacement fields in a sublaminate are initially assumed in the following form:

k-1
k
ui )(x’ » t) = ub(x’ Y, t)+z‘|’x(x1 Y, t)+ 2 (Z-zi)gi

i=1
. k-1
u§ xy. 20 = vxy, 1 +zy (x5, 0+ Y (z2-z)N;

i=1

(k) z F4
uz (I, Y 2, t) = wb(-x9 Y, t)(l - ;) + w,(x, Y, t)(Z)

3.3.1)

where h is the thickness of the sublaminate, &, and v,, are the axial displacements in x and
y directions, respectively, at z = 0, y, and y, are rotations of the normal at z = 0, and w,,

and w, are the transverse deflections of the bottom and top surfaces, respectively, of the

(k)
y

mth sublaminate. Thus, it is assumed that uik) and u

vary in a piecewise linear fashion
(k)

, Vvaries linearly through the thickness.

through the thickness of a sublaminate and u
The parameters §; and 71; in Eq. (3.3.1) are eliminated by enforcing the continuity of
shear stress at each interface [33, 34]. The transverse shear stress continuity conditions at

the kth interface can be expressed as:

k) _ Sk+D (k) _ k+1)
vz = Oy o, =0, . (3.3.2)

Assuming that infinitesimal strain theory holds, the form of the assumed displacement

(k) and u(k)

fields in (3.3.1) is such that the inplane displacements u y

contribute only con-

(k)

(k)
y. and o°. For con-

stant (i.e., no variation in z) terms to the transverse shear stresses, G
(k)

sistency, then, the transverse displacement u,

should also contribute only constant

terms to these stress components. In order to achieve this consistency, terms in the trans-
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verse shear strain expressions that involve the transverse displacement variables are evalu-
ated at the mid-plane of the sublaminate, thereby taking a thickness-averaged value of
these terms. This approach is equivalent to ignoring the effect of transverse normal strain
on the transverse shear strains, a very good assumption for most laminates. Thus, the

transverse shear strains in the kth layer are:

1/0w, ow,
Yg? x* 2‘ Si+ ( & ax )
i=1 (33.3)

= e T Y3

i=1

From (3.3.3), the relationships between transverse shear strains in the (k+1)th layer and

the kth layer are:
k
k+1) 1 Bwb ow
Yu+ x+ Z§i+2(ax +'a';t)
1=
k-1
1/0w, ow (3.3.9)
- "’X+ Zgl'l'i(-a— +$’)+§k
i=
k
= 'Yix)"'ék
By the same token,
k+1 k
Tor )= i+, (3.3.5)

From the constitutive equation in (3.2.2), the transverse shear stress-strain relationships

are:
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(k) (k). (k) (k). (k)
0.yz = C44 sz +C4S sz

(k) (k) (k) (k) (k)
Oy, = Css Yy, + Css Yz,

(3.3.6)

Making use of (3.3.4), (3.3.5) and (3.3.6), the transverse shear stress continuity conditions

at the kth interface can be recast as:

k k k k k 1 k k k
cR 0 | ~k) (k) (k+ l) (k) (k) (k) ‘ (3.3.7)
(C a5 ¥y, t+ Css Yy, )I = {Cys . )+ Css +§k)}|

Solving (3.3.7) for n, and &, , and using (3.3.3), we can develop the following recursive

equations.

o)

- - (3.3.8)
. - aw,, ow, - 1(0w, ow,
& = Ck{‘l’y*“izl“i‘“'(a 3y )}+a"{""‘+ 2 é‘*i(ﬁ +$)
= I=
where
2, = (C(k+l) (k) C(k+l) (k))_1
Ak«rl
by = 1 (C(k+ l)C(k)_C45+l)C(Ic))
Ak+l
& = ——(Cr Dl _ kDl (3.3.9)
Ak+l
= gl el -l

Ak+l

(k+1) (k) (k+1)?
Apv1 = Cqy Css = Cys
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Solving the recursive relation, (3.3.8), &, and n; are then found to be:

aw,, ow, aw,, ow,
éi”f{"’r* (a Y )}*"{"’**’(a = )}
(3.3.10)
aw,, ow, 1/0w, Ow,
m= e w55 )i Yt alae o )
where
i1 i-1
a; = a 1"'2“}' "'B‘zcj
j=1 ) j=1
i-1 0\ -1
j=v =) (3.3.11)
4 =1\ i-1
¢; = ¢ 1"'2"1’ +3iZCj
\  j=1 / j=1
d,-=3,~ 1+ Zd]+c > b;
j=1 j=1

From Egs. (3.3.9-3.3.11) it can be seen that §; and 1; depend on the ratios of shear prop-

erties between adjacent layers and the shear deformation in each sublaminate. If either of

these quantities is small, then discrete-layer effects will also be small.

The rotational variables Yy, and y, in the displacement fields are now eliminated by

introducing translational variables u, and v,, the inplane translations at the top surface of

the sublaminate [41,42] in order to expedite the development of versatile finite element

models. Thus, rather than describing the inplane displacement field by a translation and

rotation at one point, it can more conveniently be described here by the translation at two

points.
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Moreover, the displacement fields still need to be manipulated to develop a C° finite

element, because the derivatives of transverse deflections,

ow, ow, ow, ow,

= 5 ,a—y and a—); 3.3.12)

appear in the displacement field. The existence of the derivatives of transverse deflections
in the displacement fields results in their second derivatives appearing in the strain energy
functional, so C! continuity of w, and w, is required. It is desirable to alleviate such a
requirement by introducing new rotational degrees of freedom as follows:

ow, ow,

0 0

ox = O3y T y:’j}j = xb’g =0, (3.3.13)

These relationships will be constrained in the strain energy via the penalty method. There-

fore, the displacement fields can be written as follows:

i = 0w, + 0Hu, + v, + 0y, + 00, + 06, + 0, + 2P0,
D = Wy ¥ 0, ¥, 9000, e
+ ‘I’(")e v+ ‘I’(k)e

(k)

2 = Wle + ngz

Employing the indicial notation, the modified displacement fields can be expressed in

more concise forms:
(k) - (k) (k) (k) k
uy = Gop®ug, Uy =lgp¥eg. u =wpQs @ =1..4;B=12 (33.15)

where the index B is used to denote the top and bottom of the sublaminate with 1: bottom
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and 2: top, and (DGB s yp®) ap and Qg are shape functions in the thickness direction, and will
be defined in Appendix A. Unless noted otherwise, summation on repeated indices is

implied. The variables &g are:

Ug = ug, pg=vg, ﬁ3B=exB"_‘4B=eyB (3.3.16)

Since through-the-thickness shape functions, (Dgg, p®) op and Qg, which are only func-

tions of z, are included in displacement field, nodal variables in the finite element can be
approximated by two dimensional shape functions in x, y. Thus, the strains are obtained

from Eq. (3.3.15) as:

(k) - (k) (k) (k) (k)
€ = Hop, xPap Eyy = Hgp,y'Fap € = wpllp,;
(k) - (k) (k)
Yy, = Bap¥op . +wp Q| Yo = HapPop .+ Wy, s (33.17)
= i = i

(k) (k) (k) . _
ny = aB )'d> l3+uaB.x\Paﬂ a = 1...4,6 =

where tensor notations are employed and a comma in the subscript implies partial differ-
entiation. In (3.3.17), the contribution of the transverse deflection to the transverse shear
strains y;';) and 'yg:) are evaluated at the middle of the sublaminate to ensure constant

shear stresses through-the-thickness of a sublaminate (as discussed previously).

From (3.3.17), it can be seen that the transverse normal strain,

e = weQy , = ' (33.18)

is constant in a sublaminate. Such a uniform normal strain may give rise to substantial

errors in composites which have a soft core or layer. Let’s consider a composite which is
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composed of 3 layers, one of which is very compliant. When the composite is under load-
ing as shown in Figure 16 (a), the uniform transverse normal strain distribution through

the thickness is predicted from (3.3.18) as shown in Figure 16 (b).
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.
Ellll

actual

'/—- uniform

aN
>

Compliant

S

() (®)

Figure 16.A composite under transverse tension load (a) and the corresponding
transverse strain distribution through the thickness (b)
However, the actual distribution is not uniform, so that we can see that there is a big devi-
ation between the predicted strain and the actual one. Thus, it is desirable to improve the
distribution of the transverse normal strain through the thickness. If the transverse strain
field is improved, the Poisson’s ratio locking can be prevented as well (to be discussed
later). The improvement can be achieved by instead assuming a constant transverse nor-

mal stress, G, , through-the-thickness of a sublaminate. Tessler and Seather attempted to

22
improve the transverse strain, but they used a field consistent polynomial [80]. o_zz can be
determined using Reissner’s mixed variational principle [81]. From (3.2.2), the transverse

normal strain is obtained as:
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(k) (k) (k)
k) _ Ci3 S w_Cae 0, 1 =—

2z = C"" xx C"" »y C(kﬂxy C(k) 22 (3.3.19)
()'_zZ is then determined by analytically solving the following relation:
4
-k k
0= z I(ezz-ezz)dz
k= llk 1
(3.3.20)

(k) (k) (k)
2 I {W Wp ( Cis g® _ 2 g® _ C3¢ Y(k) 1 c_}}dz
K=y, C(k) xx C(k) yy C(k) xy C(k) 2
Substituting the strain - displacement relations in (3.3.17) into (3.3.20), the constant trans-
verse normal stress 0'_zz is found to be:

du,, du ov, ov 00,
c, -:)—(P,+S,5)+—(P2 S6)+—(P3+S7)+—(—P3+Ss)+ (P4+S9)

89 d9,, 20, du,, Ju
+=— (P4+S9)+— (P5+Slo)+ (P5+S,0)+ (Q,+S )+—( -0, +5,)
ox 9y 9y (3.3.21)

9 39 d9,,
+T(Q2+S3)+a (Q3 S3)+ (Q4+S4)+ (Q4+S4)+— (Q5+Ss)
00,
+a—y (Q5+Ss5) +wy(-T|)+w,(T))

where the coefficients are defined in the Appendix A. The newly defined transverse nor-

mal strain can now be written as:

(k)

- k — k
€57 = ligp Aop+lop yhoup+ Wpks O = 1..4;B = 1,2 (3.3.22)

where the functions ?»( )B and X g are defined in the Appendix A.

The important properties of the present laminate theory are:
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1) The laminate thickness may be subdivided into several sublaminates for refined analy-
sis, if needed.

2) Discrete-layer effects are captured within each sublaminate by allowing a piecewise
(layerwise) continuous through-the-thickness variation of the in-plane displacements.

3) Continuity of transverse shear stresses through the thickness of each sublaminate is sat-
isfied.

4) Transverse normal strain distribution through the thickness of sublaminate was
improved by assuming constant transverse normal stress.

5) Accuracy and efficiency of the theory are adaptable, depending on the number of sub-
laminates used.

6) In the displacement fields, only five engineering d.o.f. (three translations + two rota-

tions) are present.

3.4 Governing Equations and Boundary Conditions

The equations of motion, the essential and natural boundary conditions, as well as the
displacement-based finite element model can be developed from‘Hamilton’s principle.
Again, attention will be limited to a single sublaminate. The constraints between the deriv-
atives of transverse deflection and the rotational d.o.f in (3.3.13) should be imposed in the
energy functional. There are two ways to impose the constraints - either Lagrange multi-
plier method or penalty method. Since the Lagrange multiplier method introduces addi-
tional d.o.f., the penalty method has been used to maintain computational efficiency and
convenience. Therefore, the energy functional is modified here to include the imposition

of the constraints via the penalty method. Hamilton’s principle for the mth sublaminate
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can be defined as follows:
[ {U-K-W+P}dt =0 (3.4.1)
1)

where U is the internal strain energy:

xx€xx ¥, € 40, €, +06, V), +0,, 1, + 0,7,y

"lkk K (k) () (k K k) ) (k k) (k
=2J‘§ ()() (k) (k) (k) (k). (k) (k) ()()]dvk (3.4.2)
=1V,

V, is the volume of the k-th layer. K is the kinetic energy:

Nm 2
=y j p®® il 4 P yay, (3.4.3)
=1V,

p(k) is the density of the k-th layer and a superposed dot indicates differentiation with
respect to time. W is the work of external forces:
W = j woPedQ + j t;u,dl

344

t —c,,nj,a-l 2; 1-1 2

P is the penalty constraint:

p-1 ‘{[ﬁ {(usna) (u4ﬁ+gjs)z}]dg (345

where 7y is the penalty parameter. As 7y is assigned successively larger values, the con-

straints of Eq. (3.3.13) are satisfied more exactly in the least squares sense. In the internal
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strain energy expression, (3.2.4), we need to pay attention to the transverse normal stress
terms. The constant (fz leads to an asymmetric stiffness matrix. Thus, ¢,, from the con-
stitutive equation, (3.2.2), instead of the constant transverse normal stress should be
employed.

Substituting Egs. (3.2.2, 3.3.15, 3.3.17, 3.3.22, 3.4.2, 3.4.3, 3.4.4, and 3.4.5) into (3.4.1),

taking the variation of (3.4.1), and integrating by parts, (3.4.1) can be rewritten as:

t
: _ 0N, 0N, ON,p 00,45 R yop OR
”({a“aa‘s; "% ax oy TDetCasg;

1

T yxap
T ox

ow ow au, 8u,
_y(ﬁap_$B)83a y( B+B_B)64a ~ — 1+ — Plap,p}

OR.. OR au a w o a w a w
_YB_ B _ T3 5 Tap 778, P
(3.4.6)

+ §[8ﬁaB{Nxaan + Nyaﬁny + Nzaan + QzaB"y + nyaﬂny + Ryxaﬁnx}
s

Bwb _ aWB
+dwpi Rygn, + R, gn, +yn (“35 > )"'Y"x(“«tp"'g ) ds

N, &

(k) - (k) (k) -
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