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ABSTRACT

NEW ZIG-ZAG COMPOSITE PLATE THEORIES

AND 3-D FINITE ELEMENTS FOR STATIC AND EXPLICIT DYNAMIC

ANALYSIS OF LAMINATED COMPOSITE AND SANDWICH PANELS

By

Yong-Bae Cho

Refined laminated plate theories based on linear or cubic plus zig-zag kinematics have

been developed, and new CO 3-D finite elements have been developed on the basis of those

theories for the purpose of static and dynamic analysis of sandwich and laminated

composite panels. In the first order zig-zag plate theory, the in-plane displacement fields in

each sublaminate are assumed to be piecewise linear and vary in a zig-zag fashion through

the thickness of the sublaminate. In the third order zig-zag plate theory, the in-plane

displacement fields in the laminate are assumed to be piecewise cubic and vary in a zig-

zag fashion through the thickness of the laminate. In each case, the transverse

displacement field is assumed to vary linearly through the thickness. The zig-zag functions

are evaluated by enforcing the continuity of shear stress at each interface. This in-plane

displacement field assumption accounts for discrete layer effects without increasing the

number of degrees of freedom as the number of layers is increased. In order to maintain

C0 continuity of all variables, new rotation degrees of freedom are introduced, and

subsequently constrained via the penalty method. The transverse normal strain is

improved by assuming a constant transverse normal stress through a sublaminate or the

entire laminate, and hence Poisson’s ratio stiffening in associated with finite element

model is eliminated.



The proposed C0 finite elements have the topology of an eight-noded brick. Each node

has five engineering degrees of freedom - three translations and two rotations. In-plane

displacements and rotational degrees of freedom are approximated by the bilinear

Lagrange interpolation functions. For transverse deflection degrees of freedom, an

interdependent interpolation is utilized. The element stiffness coefficients are integrated

exactly, yet the element exhibits no shear locking. This is achieved by using the consistent

transverse shear strain fields as well as the edge-consistency of the tangential shear strain

on any common inter-element edge. The elements are shown to be accurate, simple to use,

and compatible with the requirements of commercial finite element codes. Based on the

assumed displacement fields and the finite element approximations, consistent mass

matrices has been obtained. Making use of the consistent mass matrices, lumped mass

matrices have been derived according to HRZ lumping scheme. The developed elements

have been implemented into the explicit finite element dynamics code, NEPTUNE,

wherein the internal force vector is computed for the element.

Static, free vibration, and explicit structural dynamic analyses of sandwich panels and

laminated composites are performed using the elements. The numerical results show that

the elements are accurate, robust, and computationally efficient.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Fiber reinforced laminated composites have been used in structural members due to

better stiffness-to-weight and strength-to-weight ratios than those of conventional mono-

lithic materials. The primary characteristics of laminated composites are that the material

properties are orthotropic in the laminate plane, the ratio of transverse shear modulus to

in-plane modulus is low and layers are laminated through the thickness. Therefore, unlike

homogeneous isotropic materials, the behavior of laminated composites is unique and

complicated at both the global and the local levels. Moreover, the early laminated compos-

ites were applied to thin structures and were designed to withstand mainly in-plane tension

loads. But recently they are also employed for primary load-carrying structural members

in automobile front aprons, bridge frames, submarine hulls and aircraft because of

advances in their manufacturing techniques. Such recent applications of composite materi-

als involve the use of thick-section laminates containing perhaps over one hundred layers

and/or sandwich construction that contains a thick core between face sheets. Furthermore,

such structures are typically designed to withstand complex mechanical loading states,

e.g., static loadings and dynamic impact loading, in the presence of harsh environmental



conditions.

Because the importance of laminated composites in aerospace, automotive, civil and

marine structures continues to increase, the development of accurate structural theories

and efficient computational models for analyzing these structures is currently a critical

area of research. Especially important is to develop accurate, efficient, and convenient

models that can be used for static, dynamic, and progressive failure analysis of thick and

thin laminated composite and sandwich structures. Thus, for the purpose of modeling the

behavior of laminated composites efficiently under the various loading conditions in ser-

vice, many refined plate theories have been developed and pTOposed on the basis of vari-

ous kinematic assumptions.

The analytical solutions of such proposed theories are confined by the configurations

of plate, boundary conditions and loading, and are usually not available for most real prob-

lems. The way of overcoming such obstacles is to make use of the finite element method, a

prevalent tool used to obtain approximate solutions in complicated engineering problems.

The quality of a finite element can be significantly affected by the kinematic assumptions

made throughout its formulation. Thus, every aspect of the problems to be solved should

be reflected in the kinematic assumptions of finite element formulation.

In the analysis of moderately thick laminated composites, local effects are so impor-

tant that the three dimensional kinematics should be used on the development of finite ele-

ment models. Moreover, when the loading is excessive, the composites undergo local

damages, e.g., fiber breakage and/or fiber kinking, and local delarnination. Thus, the ele-

ment should have capabilities to capture more accurate distribution of local strains and

stresses and predict damage in composite structures associated with proper failure criteria.



However, conventional three-dimensional finite elements are computationally too expen-

sive to be used in the analysis of laminated composites to capture local effects of a com-

posite structure, if one element per layer is used. Thus, a lot of research has been carried

out to develop a robust finite element model that is more computationally efficient than the

conventional displacement based continuum finite element and describes adequate local

kinematics.

When external loading is varying with time or suddenly applied to a composite struc-

ture, e.g., seismic loading and impact loading, the response of the composite structure is

time dependent and can be obtained using structural dynamics techniques. Structural

dynamics is one of the rapidly expanding areas of application of the finite element method.

Many problems in structural dynamics cannot be solved effectively by analytical methods,

and the advances in both the digital computer and various associated numerical techniques

of analysis have significantly enhanced solution capability of the finite element method.

Therefore, the finite element method is as valuable a tool in dynamics as it is in the static

problems.

In general structural dynamics problems, the governing equations are second order or

fourth order partial differential equations in the space domain, and hyperbolic in the time

domain. In this case, the solution is a function defined both on the space domain and on

the time domain. Therefore, as a numerical solution procedure in explicit dynamics analy-

sis, the partial differential equations in space and time are first discretized in space, yield-

ing a system of decoupled ordinary differential equation in time. The disretization in space

is usually achieved by employing the finite element method, and called a finite element

semidiscretization, because though displacements are discrete functions of space, they are



still continuous functions in the time domain. To solve a system of decoupled ordinary dif-

ferential equations the finite difference method is adopted in the time domain.

1.2 Goals and Objectives of Current Research

To analyze static and dynamic responses of composite structures more accurately, first

of all, it is required to develop a composite plate theory where the local distributions of

stresses, Strains and displacement fields within a laminate are taken into account. On the

basis of the developed composite plate theory a robust finite element model that is more

computationally efficient and accurate needs to be developed. The main objective of the

current research is to develop a composite plate theory and the associated elements to pro-

vide static and dynamic analysis of composite laminate and sandwich structures. Thus the

plate theory and element must possess the following features.

. Using 3-D kinematics, a zig-zag discrete layer-wise plate theory wherein local effects

can be accounted for very well is to be developed.

. The developed plate theory should be C0 continuous in displacement fields. Thus, a C0

finite element should be developed.

- A shear correction factor Should not be necessary in the developed plate theory.

. The number of degrees of freedom of the finite element model associated with the

plate theory should be independent of the number of layers in the composites.

- The developed element should have only engineering degrees of freedom (translations

and rotations) to facilitate implementation into commercial finite element code.

- The developed element should be free of shear locking and Poisson’s ratio stiffening

effects.



- To be used in structural dynamics problems, the consistent mass matrix should be

developed. On the basis of the consistent mass matrix, the lumped mass matrix should be

developed.

- In structural dynamics problems, the internal force vector is calculated for the devel-

oped element.

- The developed element should have a critical time step (related to natural frequencies)

associated with explicit dynamic analysis that is as large as possible.

1.3 Literature Review: Plate Theories

Many plate theories have been developed on the basis of various kinematic assump-

tions to predict the response of laminates more accurately. Comprehensive reviews of lit-

erature on the development of modern plate theories have recently been carried out by

several authors [1-6]. They usually classify the plate theories by the assumptions of their

displacement fields. Such models can be roughly divided into three categories: equivalent

single layer theories, layerwiSe theories, and zig-zag in-plane displacement theories.

In the equivalent Single layer approach, the displacement components are assumed to

be C1 continuous through the thickness of the plate and functions of in-plane coordinates.

Thus, the material properties of all the layers are “smeared,” and the laminate is modeled

as an equivalent single anisotropic layer.

The classical laminated plate theory (CLPT) based on Kirchhoff - Love classical plate

theory (CPT) was the first laminated plate theory employed in the early days of study. In

this theory, it was assumed that the in-plane displacements vary linearly through the thick-

ness, while the transverse displacement is constant through the thickness. The shortcom-



ing of this theory is that the predictions of displacements and stress become inaccurate

when the aspect ratio of the plate becomes small (less than 20) or the transverse shear

modulus is low. The shortcoming mainly comes from the fact that CPT is based on the

Kirchhoff hypothesis that lines originally straight and normal to the reference surface

remain straight and normal to the reference surface during deformation so that the traverse

shear deformation is not allowed.

Timoshenko first recognized that rotary inertia and transverse shear deformation are of

importance in the vibration analysis of elastic bodies, and considered the effects of rotary

inertia and transverse shear deformation on the vibration. of elastic bars [7]. Then Reissner

[8] and Mindlin [9] expanded this concept to isotropic plate bending problems. On the

basis of these theories, an improved composite plate theory was developed by Mindlin,

called the first order shear deformation theory(FSDT) [10]. This theory assumes that a line

originally straight and normal to the reference surface remains straight during deformation

but not necessarily perpendicular to the reference surface. This theory yields good predic-

tions of overall laminate behavior (e.g., deflections, natural frequencies, and buckling

loads) and inplane stresses provided the plate is thin and the material properties of adja-

cent layers do not differ significantly. However, FSDT does not account for warpage of the

cross section, which may be significant in laminated composites, because FSDT accounts

for only average kinematics. Furthermore, FSDT yields constant transverse shear strains

through the thickness of the plate, therefore a shear correction factor(s) is required to com-

pute the shear strain energy accurately [11,12].

In order to reduce the inaccuracies of the FSDT, higher order shear deformation theo-

ries (HSDT) were proposed (e.g., [13-17]). In these models, it is assumed that the dis-



placements are of higher order polynomial form and are C1 continuous through the

thickness. Using the shear traction boundary conditions on the top and bottom of a lami-

nate, the higher-order undetermined functions in the displacement field are evaluated and

are eliminated. The assumptions of displacement fields permit nonlinear variations of dis-

placements, strains and stresses through the thickness, and thus warpage of the cross sec-

tion is allowed. However, even though they often can predict well the gross behavior of

thin and some moderately thick laminates, all equivalent single layer theories have a com-

mon shortcoming. Since they are unable to account for the sometimes severe discontinuity

in transverse shear strains that occur at interfaces between two adjacent layers with drasti-

cally different stiffness properties, they preclude the satisfaction of continuity of trans-

verse stresses at interfaces between adjacent layers with different material properties, and

do not reflect the proper kinematics in laminates. Therefore, the local deformations and

stresses, and sometimes even the overall laminate response, are not well predicted.

If the transverse shear stresses are needed, they can be recovered indirectly by integrat-

ing the equilibrium equations [18-22]. However, this procedure leaves controversies in its

accuracy for the analysis of highly irregularly shaped plates since it involves higher order

in-plane differentiation of the displacement functions. Moreover, the higher order in-plane

differentiation requires to use at least quadratic finite element interpolation functions to

obtain transverse shear stresses and cubic interpolation functions to capture transverse

normal stresses.

In an effort to overcome the shortcomings of the equivalent single layer approach, dis-

crete-layer (or layerwise) theories have been proposed [23-32]. These theories are based

on a unique displacement field for each layer, and enforce interlaminar continuity of dis-



placements and sometimes of transverse stresses, as well. In addition, the through-layer

variation of displacement is interpolated by one dimensional Lagrangian linear [23,24,27]

or quadratic shape functions [30] or a high order hierarchical element [31]. Reddy [25]

assumes that the displacement fields for each layer are expanded through the thickness

direction using Lagrangian shape functions employed in the conventional finite element

method. Therefore, displacement components are C0 continuous, so that transverse strains

are piecewise continuous through the thickness. Toledano and Murakami assume indepen-

dent fields for displacements and stresSes in each layer, and employ Reissner’s mixed vari-

ational principle in the formulation of model. They Show that the in-plane displacement

can be improved by this technique in the presence of transverse shear effects. In these the-

ories, some of the dependent variables are eliminated in the development of the model by

enforcing displacement continuity across the layer interfaces. In most of these theories,

the continuity of transverse shear stresses is met in an integral sense through the potential

energy formulation. When these theories are compared with the conventional 3-D dis-

placement finite element model, the most significant feature of these theories is that it has

a computational time - saving data structure while yielding exactly the same results for

comparable meshes. These theories predict excellent global and local distributions of in-

plane and out-of-plane displacements and stresses. The major shortcoming in these theo-

ries is their large computational expense, for as the number of layers increases, the number

of degrees of freedom increases proportionally.

A new class of laminate theory, called here the first order zig-zag theory (FZZT), was

developed by DiSciuva in the mid 1980’s [33,34]. In this theory, in-plane displacements in

a laminate are assumed to be piecewise (layerwise) linear and continuous through the



thickness, yet the total number of degrees of freedom is only five (not dependent on the

number of layers). This is accomplished by analytically satisfying the transverse shear

stress continuity conditions at each interface in the laminate. This theory was shown to be

very accurate for many cases, especially symmetric laminates. On the basis of the concept

introduced in [33,34], DiSciuva as well as other researchers made significant improve-

ments to the FZZT [35-42]. The primary improvement was achieved by superimposing a

piecewise linear variation of in-plane displacements on a continuous cubic function of the

transverse coordinate [35,36,40-42], creating a displacement field that can better account

for the warping that occurs during bending of unsymmetric laminates. These latter theo-

ries, denoted here as higher-order zig-zag theories (HZZT), also satisfy the homogeneous

shear traction boundary conditions at the top and bottom surfaces of the laminate in order

to maintain the number of degrees of freedom at five. This class of theories appears to

have an ideal combination of accuracy and efficiency, making them well-suited for use in

computational simulations. However, these theories have the unfortunate shortcoming that

the transverse deflection degree of freedom wo is required to be C1 continuous, so that

Hermitian-type interpolation of wo must be used within the finite element models [33,35].

Thus additional rotational degrees of freedom (gradients of wo) are present in the finite

element models, making it inconvenient, if not impossible, to implement the finite element

models based on these theories into commercial finite element software packages that

allow only six degrees of freedom -- three translations and three rotations.

Averill proposed a generalized form of the first-order zig-zag theory [38] and a gener-

alized form of the high-order zig-zag theory [40] for beams to alleviate the requirement of

Cl continuity on the transverse deflection. A new variable was introduced along with an
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associated constraint condition which was enforced by employing an interdependent

(anisoparametric) element interpolation scheme and the penalty method. On the basis of

the theories, C0 two-noded elements were developed. These elements were shown to be

simple, robust and accurate for application to thick and thin laminated beams. However,

these models still contained one additional rotational degree of freedom, and it was found

that for very thick and complex laminates, more refinement through—the-thickness was

rmeded.

Yip and Averill developed a model for laminated beams [41] and plates [42] that com-

bined the benefits of the discrete-layerwise and high-order zig-zag theories. This model

allows the laminate to be subdivided into a number of sublarninates, with each sublami-

nate containing several, even many, physical layers. \Vithin each sublaminate, very accu-

rate high-order zig-zag kinematics are assumed in which degrees of freedom describe

displacements, rotations, and transverse shear stresses (tractions or interlaminar stresses)

at the top and bottom surfaces of the sublaminate. Each finite element represents one sub-

laminate, and, if cast in the form of a four-noded quadrilateral (for beams) or an eight-

noded brick (for plates), refinement of a model by through-thickness discretization can be

achieved without the use of any special constraints. When only one sublaminate is used

through the entire thickness of the laminate, nodal degrees of freedom are three transla-

tions and two rotations. However, when multiple elements (sublaminates) are needed to

model a laminate, additional shear stress degrees of freedom are present, making the ele-

ment unsuitable for implementation into many of the current commercial finite element

codes.
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1.4 Literature Review: Three Dimensional Composite Shell/Plate

Elements

Laminated composites are usually modeled by using plate and shell elements which

are based on plate and shell theories. There have traditionally been three approaches to

model general shell structures in finite element representation [43,44]:

1) The ‘faceted” model of flat plate element

2) The “curved” shell element formulated on the basis of curved shell theory

3) The “degenerated” isoparametric element

Among the above elements, the Ahmad type [45] degenerated isoparametric elements

where the interpolation functions for rotational and translational d.o.f are independent are

most popular. The degenerated elements, since the thickness of plate or Shell is very small

when compared with other dimensions, are obtained by constraining adjacent thickness-

direction nodes on solid elements to have the same thickness-direction displacement and

merging the top and bottom nodes to a mid-node.

Recently, a number of three dimensional composite plate/shell elements that have a

thickness dimension have been proposed for the analysis of composite structures [47-53].

Such three dimensional elements are classified as “regenerated,” in contrast to the popular

two dimensional “degenerated” shell elements. This regenerated approach has been

employed successfully, and renders the very important advantage of allowing discretiza-

tion in both inplane and through-thickness directions without imposing any special multi-

point constraints. The regenerated elements must have just 3 translational degrees of free—

dom (u, v and w) to describe the deformations of a plate, whereas the degenerated element

must have at least 5 degrees of freedom (3 translational d.o.f + 2 rotational d.o.f). Thus, as
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far as the discretization through-thickness direction, the description of geometry and kine-

matics of deformation are concerned, the three dimensional regenerated element is pre-

ferred over the two dimensional degenerated element. The capability of discretizing in the

through-thickness direction enables one to simulate the separation of the laminated com-

posites due to delamination into two parts in the thickness direction.

Most proposed regenerated 3-D composite elements are similar to continuum elements

that have only 3 translational degrees of freedom per node. Moreover, contrary to the

Structural element cases, in-plane displacement fields are approximated using the shape

functions, while special functions in some cases are used for transverse displacement to

improve the continuity of transverse stresses at the interface between two adjacent layers.

Adding composite analysis capability to Ausserer and Lee’s isotropic shell solid ele—

ment [46], Kim and Lee [47] presented an 18-node solid isoparametric element using

assumed independent strains based on Hellinger-Reissner principle in an attempt to allevi-

ate locking. However, the transverse strains on this element in are continuous through

thickness direction, so that the continuity of transverse stress is questionable. Kong and

Cheong [52] developed an element incorporating the advantages of the layerwise plate

theory and the equivalent single layer plate theory. Layerwise local Shape functions in the

regions were used where transverse shear stresses are of interest and importance, while a

special through-thickness global-local interpolation is used in the zone where only global

responses are of interest. The compatibility of the displacement between these two region

is satisfied by introducing a transition region. Wanthal and Yang [48] proposed a family of

three quadrilateral isoparametric elements based on the layerwise modeling approach to

include the effects of transverse shear and normal stress for the analysis of delamination,
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holes and joints. The crucial shortcoming of these elements is that the total number of

d.o.f depends on the number of layers in the laminate. Han and Hoa [50] developed a

hybrid formulated plate element by taking three in-plane stresses and three transverse

stresses as the basic variables. The continuity of the transverse stresses at the interface

between two adjacent layers are satisfied by introducing a partial stress field parameter.

The element is a super element composed of some three dimensional eight noded finite

elements (layer element), so that the total number of d.o.f does not depend on the number

of layers.

1.5 Literature Review: Mass Matrices and Lumping Schemes

If a structure vibrates freely or excitation frequencies are higher than 1/3 of the lowest

natural frequency of the structure, inertial effects must be included when investigating the

response of the structure. When we try to analyze the dynamic response of a structure

using the finite element method, the mass matrix accounts for inertia and represents dis-

cretely the continuous distribution of mass in a structure. Thus, in general structural

dynamic response problems, the stiffness matrix is used to describe the elastic characteris-

tics in terms of force - displacement relationships, and the mass matrix is exploited to

define the inertial characteristics of the structure in terms of inertial force - acceleration

relationships at a finite number of nodal points chosen to represent the behavior of the

structure. In this case, the accuracy of the analysis is Significantly affected by the accura-

cies of the stiffness matrix as well as the mass matrix.

Up to the early 19605, the mass matrix was usually obtained by employing a lumped

parameter method [54], in which the structural mass was physically grouped as a series of
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concentrated mass at the nodes. The derived mass matrix is diagonal, and a simple tech-

nique is required to formulate and solve the equations. However, the computed natural fre-

quencies and mode shapes might be greatly different from the exact solution, if a large

number of elements are not used.

A consistent mass matrix was proposed by Archer in an attempt to improve the accu-

racy of the dynamic analysis [55]. The mass matrix was derived employing equations cor-

responding to the Rayleigh-Ritz approach, and the resulting mass matrix is “consistent”

with the actual distribution of mass throughout the structure. Later on, Archer also a con-

sistent mass matrix for Timoshenko beam element. The mass matrix was derived by super-

posing linear inertias on rotary inertias which were determined assuming that the mass

angular acceleration is consistent with the angular motion of the transverse fibers of the

beam [56].

Even though the consistent mass matrix represents a truer distribution of mass

throughout the structure compared to a lumped mass matrix, it results in a coupled system

of equations for explicit structural dynamic analysis as well as a need to construct a global

mass matrix. Thus the solution procedure to solve the system of equations becomes com-

plicated and computationally expensive. In addition, lumping lowers the highest wave

speed in the finite element mesh, and increases the critical time step for explicit integration

schemes. These facts motivate analysts to find rational ways to develop diagonal mass

matrix by lumping appropriately. Several lumping schemes based on a consistent mass

matrix have been proposed.

The easy-to-use and well-known lumping techniques are the row-sum lumping, the

optimal lumping and proportional lumping (so called HRZ lumping) schemes. In row sum
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lumping, the components in each row are added and lumped on the diagonal using the

property of the interpolation functions that the sum of the interpolation functions is 1. This

lumping scheme sometimes causes negative masses, especially for comer nodes of the

eight-node serendipity element. On the other hand, in the optimal lumping scheme pro-

posed by Fried and Malkus [57], the lumping of mass was accomplished by placing the

location of nodes of an element at the integration point of a quadrature rule. This lumping

scheme is practically useful only for low order Lagrange elements with only translational

degrees of freedom, because this scheme produces a block diagonal lumped matrix for

elements with rotational d.o.f, and zero or negative nodal masses for quadratic and higher

order elements.

A special lumping technique was presented by Hinton, Rock and Zienkiewicz [58].

This lumping scheme is sometimes called as the proportional lumping scheme or the HRZ

lumping scheme. In the HRZ (proportional) lumping scheme, lumping is achieved by cal-

culating the diagonal elements of the lumped mass matrix to be proportional to the diago-

nal elements of the consistent mass matrix While preserving the total mass of the element.

The most important feature of this lumping scheme is in that it always produces positive

lumped masses without regard to the element type, because the diagonal terms in the con-

sistent mass matrix must be positive by virtue of the positive-definiteness property. For

low order elements, the accuracy of this lumping scheme in the prediction of natural fre-

quencies often surpasses that of the consistent mass matrix. For Lagrange linear and qua-

dratic elements with constant material density, the lumped mass matrix computed by the

proportional lumping is the same as that obtained by the row-sum lumping.

The lumping scheme for two-dimensional degenerated general shell elements and axi-
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symmetric shell elements with rotational d.o.f was developed by Surana [59]. In this

lumping scheme, the rotary inertia terms are obtained by assuming that the masses in

translational d.o.f at the top and bottom surfaces of the plate are rotating with respect to

the 'mid surface, while the mass terms in lumped mass {matrix for translational d.o.f. are

derived by the same procedure as in the HRZ lumping scheme.

It was shown in [60,61] that the reduced integration rule to evaluate the element mass

matrix may result in a singular mass matrix. The existence of a singular mass matrix

implies that there are certain unacceptable modes of deformation associated with the ele-

ment which produce zero kinetic energy. Thus, full Gauss quadrature rule is recommended

to be used to evaluate the element mass matrix.

The the rates of convergence of eigenvalues and eigenfuctions between consistent

mass and lumped mass formulations was studied in [62-64]. Tong, Pian and Bucciarelli

[62] found that the lumped mass formulation suffers no loss in order of convergence for

the membrane and rod cases employing Simple interpolation functions. However, for prob-

lems with higher order equations such as the beam or plate, or for the second order equa-

tions with more accurate interpolation functions, the consistent mass formulation yields a

better rate of convergence.

The effects of negative and zero masses and stability conditions reproduced by optimal

lumping scheme in transient finite element analyses were investigated by Malkus and Ple-

sha [65], and Malkus, Plesha and Liu [66].

1.6 The Present Study

Refined plate theories based on linear or cubic plus zig-zag kinematics have been
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developed, and new C0 3-D finite elements have been developed on the basis of those the-

ories. The in-plane displacement fields in each sublaminate (for linear zig-zag) or in the

laminate (for cubic zig-zag) are assumed to be piecewise linear or cubic functions and

vary in a zig-zag fashion through the thickness of the sublaminate or the laminate. The

transverse displacement field is assumed to vary linearly through the thickness direction.

The zig-zag functions are evaluated by enforcing the continuity of shear stress at each

interface. This in-plane displacement field assumption accounts for discrete layer effects

without increasing the number of degrees of freedom as the number of layers is increased.

The rotational variables in the in-plane displacement field are eliminated in favor of the

translational variables, the inplane translations at the top and bottom surfaces of the sub-

laminate or laminate, in order to facilitate the development of convenient finite element

models. For the cubic zig-zag model, high order rotational variables are removed by

employing zero shear traction conditions at the top and bottom of the laminate. Moreover,

since the derivatives of transverse deflections appear in the displacement field, their sec-

ond derivatives will be present in the Strain energy functional, so Cl continuity of trans-

verse deflection is required. Such a requirement is alleviated by introducing new rotational

degrees of freedom. The constraints between the derivatives of transverse deflections and

new rotational degrees of freedom are imposed via the penalty method. To remove Pois-

son’s ratio stiffening effect, the transverse normal strain is improved by assuming a con-

stant transverse normal stress through a sublaminate or the entire laminate.

The equations of motion, the essential and natural boundary conditions, as well as the

displacement-based finite element model are developed from Hamilton’s principle. The

new C0 finite element is developed with the topology of an eight-noded brick. Each node
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has five engineering degrees of freedom - three translations and two rotations.

Inplane displacements and rotational degrees of freedom are approximated by the

bilinear Lagrange interpolation functions. For transverse deflection degrees of freedom, an

interdependent interpolation concept developed by Tessler and Hughes [75] is utilized.

-The above interdependent interpolation scheme alleviates the shear locking prOblem

but does not eliminate it totally. The element developed using this scheme still locks in the

very thin regime. Thus, the consistent transverse shear strain fields as well as the edge-

consistency of the tangential shear strain on any common inter-element edge were

achieved utilizing Prathap and Somashekar’s approach to prevent the element from lock-

ing [76,77]. The element stiffness coefficients are integrated exactly, yet the element

exhibits no shear locking. The element is shown to be accurate, simple to use, and compat-

ible with the requirements of commercial finite element codes.

Based on the displacement fields and the finite element model, a consistent mass

matrix has been obtained. Making use of the consistent mass matrix, lumped mass matri-

ces for explicit structural dynamic analyses have been derived by several lumping

schemes.

The developed elements have been implemented into the explicit finite element

dynamics code, NEPTUNE [78]. In the code the internal force vector is computed for the

element. Using NEPTUNE, the dynamic analysis of composite plate was performed.

1.7 Organization of the Dissertation

The dissertation will be focused on the development of robust and accurate composite

beam and plate elements for the static and dynamic analyses of laminated composites and
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sandwich structures. The dissertation is composed of 7 chapters, and the features and con-

tents of each chapter are as follows.

In Chapter 2, first order layerwise beam theory and the two dimensional beam element

associated with the beam theory is presented. Numerical results are obtained for cylindri-

cal bending cases and compared with the exact solutions by Pagano [72].

A laminated plate theory with first-order zig-zag sublaminate approximations and a

new 3-D finite element based on that theory are developed in Chapter 3. To alleviate lock-

ing, interdependent interpolation, consistent transverse Shear strain fields, and edge-con-

sistency of the tangential shear strain will be introduced. To remove Poisson’s ratio

stiffening effect, the transverse normal strain will be improved by assuming a constant

transverse normal stress through each sublaminate. Numerical performance of the current

element is investigated for a composite armored vehicle panel and a sandwich panel with

low and high aspect ratios.

Chapter 4 will introduce a refined laminated plate theory based on cubic zig-zag kine-

matics and the associated element. The discretization in the through-thickness direction is

not allowed in this element, because homogenous shear traction conditions at the top and

bottom surfaces are assumed. The numerical experiments will be carried out by simulating

a damaged composite plate under a double sinusoidal loading.‘

In Chapter 5, on the basis of the developed elements, the consistent mass matrices and

the lumped mass matrices will be derived. Utilizing the derived stiffness and mass matri-

ces, free vibration of a laminated plate will be analyzed.

The structural dynamic analyses of composite structures will be performed using the

proposed elements in Chapter 6. Since the proposed elements have been implemented into
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NEPTUNE, which utilizes the explicit time integration, the stability condition and critical

time step for the explicit time integration will be also discussed.

The conclusions and recommendations of the current research will be present in Chap-

ter 7.



CHAPTER H

FIRSTORDERZIG-ZAGBEAMTHEORY

BASED ON SUBLAMINATE APPROXINIATIONS

2.1 Introduction

In this chapter, a new beam finite element based on a new discrete-layer laminated

beam theory with sublaminate first-order zig-zag kinematic assumptions is presented and

assessed for thick and thin laminated beams. The model allows a laminate to be repre-

sented as an assemblage of sublaminates in order to increase the model refinement through

the thickness, when needed. Within each sublaminate, discrete-layer effects are accounted

for via a modified form of DiSciuva’s linear zig-zag laminate kinematics [33], in which

continuity of interfacial transverse shear stresses is satisfied identically. In the computa-

tional model, each finite element represents one sublaminate. The finite element is devel-

oped with the topology of a four-noded rectangle, allowing the thickness of the beam to be

discretized into several elements, or sublaminates, if necessary, to improve accuracy. Each

node has three engineering degrees of freedom, two translations and one rotation. Thus,

this element can be conveniently implemented into general purpose finite element codes.

The element stiffness coefficients are integrated exactly, yet the element exhibits no shear

locking due to the use of a consistent interdependent interpolation scheme. Numerical per-

21
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formance of the current element is investigated for an arbitrarily layered beam, a symmet-

rically layered beam and a sandwich beam with low and high aspect ratios.

2.2 Kinematic Assumptions and Formulation of the Beam Theory

It is assumed that a laminate is composed ofN perfectly bonded layers, with each layer

being of independent thickness and having independent Stiffness properties. The laminate

will be modeled as M sublaminates (1 S M), with each sublaminate containing Nm layers

such that:

N = 2 Nm (2.2.1)

In order to facilitate the development of the finite element model, all expressions in the

following derivation pertain to the mth sublaminate, and the sublaminate number designa-

tion is omitted for brevity hereafter.

The constitutive equation for a plane stress state in the kth layer of the mth sublaminate

can be written as:

      

' (If ' I I (k)‘

911 CY? CE? 0 811
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913, _ 0 0 C55_ 1713 J

where the principal material axes are assumed to coincide with the X,Z axes, and the sub-

scripts 1,3 correspond to the X,Z or x,z directions, respectively. The global X- and local x-
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directions coincide and are taken along the length of the beam. The global Z-axis is taken

perpendicular to X and has its origin at the bottom of the laminate, while 2 is a local sub-

laminate coordinate in the direction ofZ with its origin at the bottom of the sublaminate as

shown in Figure 1.
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Figure 1. Schematic ofsublaminate and layer divisions

in the laminated beam theory.

Coefficients of the material stiffness matrix are given by:
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where E,- are the Young’s Moduli, and VU are the Poisson’s ratios in kth layer, and Gij are

shear moduli.

The strain - displacement relationship for a plane stress state can be written as:
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(k) (k) (k) (k)
(k) 3“ (k)_auz (k)_auz +3“;

811 = 3;)“ , 33 —a—Z- , 13 —-3; a—z (2.2.4)

The assumed displacement fields are initially assumed in the following form:

k k- 1

u; )(x, z) = ub(X) + 2W + 2 (z - z,)§.-

i= 1 (2.2.5)

ugk)(x, z) = wb(x)(l — IE1) + w,(x)(’§l)

where h is the thickness of the sublaminate, ub is the axial displacement at z = 0, u! is the

rotation at z = 0, and wb and w, are the transverse deflections of the bottom and top sur-

(’0
x varies In a piece-faces, respectively, of the mth sublaminate. Thus, it is assumed that u

(’0
Z varies linearly throughwise linear fashion through the thickness of a sublaminate and u

the thickness.

The parameters Q in (2.2.5) are eliminated by enforcing the continuity of shear stress

at each interface. The shear stress continuity condition between the kth layer and the

k+1th layer can be expressed as follows:

"" - 0““) at z: z, A (2.2.6)
21:" 2x

Substitution of the constitutive equation (2.2.2), the strain - displacement relationship

(2.2.4) and the assumed displacement fields (2.2.5) into Eq. (2.2.6) gives:
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From the above (2.2.7), fik is:
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Solving the recursive relationship for 1;, finally 7;,- is found to be:

,. A Wb A dwr

g,- = aiw + b9; + C'E (22.9)

where

 

 

6111;) Z. 1-1
. _ , ..
b,- -( (M)— l][l—z+ 2 13,] (2.2.10)

From Eqs. (2.2.9) and (2.2. 10) it can be seen that fit. depends on the ratios of shear proper-
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ties between two adjacent layers and the shear deformation in each sublaminate. If either

of these quantities is small, then discrete-layer effects will also be small.

The modified displacement field is given by:

k ' 1 dw.. dw

i=1
(2.2.11)

“(2k)”, 2) = wb(x)(l - i) + MOE)

In order to facilitate the development of convenient finite element models, the rota-

tional variable 1|! is now eliminated in favor of the translational variable u,, the inplane

translation at the top surface of the sublaminate. Thus, rather than describing the inplane

displacement field by a translation and rotation at one point, it can more conveniently be

described here by the translation at two points. Introducing the new variable up u! can be

obtained as follows:

1 13de _dw,

W - 5|:“t-“b— 3; _CE] (2.2.12)

where ab and u, are the axial displacement at the top and bottom of each sublaminate, and

can be described mathematically as:

= u (I) u = u (N) (2.2.13)u

b 2: 2:0 I x z=h

The coefficients a, I.) and E are defined as:
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a = h+ 2 (h—zfidi

i=1

N-l

B = 2 (h—z,)13,. (2.2.14)

i=1

N-l A

Z‘ = 201—200,-

i=1

(k)
x can be written as follows:Therefore, u

x ’ dx dx

(2.2.15)

k- 1 .
* dw dw dw dw
a - b - r - b .. t

+.21(Z-Zi){5(ut“ub-b-d—x- — 2;)4'b-d—x- +025}

1 =

. . . . dwb th . .

Since the derivatives of transverse deflections, a and E , appear in the displacement

field, their second derivatives will be present in the strain energy functional, so Cl continu-

ity of w), and w, is required. It is desirable to alleviate such a requirement by introducing

new rotational degrees of freedom as follows:

_ = 91»— : 6, (2.2.16)

The above relationship still must be enforced within the model, as discussed later. The

final form of the axial displacement field can now be written as:
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"1 (2.2.17)
i=1

k-l k-l

+ 6,,{boz + 2 (z — 20171} + 9,{coz + 2 (z - mg}

i=1 i=1

where z,- is the coordinate of the ith interface in the sublaminate. The coefficients

ao, b0, CO, at, bi and ci are given by:

1 ..

b E _ x 01-. .. _ ..

0 — “'5 = ‘aob, b. = bi—Eb = bi—aoba' (2.2.18)

- Z- — _ - A ai_ _ A _ A

CO — -;_'1 — -aoc, Ci — i-EC - Ci—aocai

Thus, the strains are defined as:

du k-l du k-l

k b

3(11) = d; {1- aoz- 2 (z — 2,.)ai} +E'{aoz + 2 (z - 2001}

1‘: 1 i=1

+3; {boz + 2 (z — zi)bi} +E'{coz + 2 (z — 2091

i=1 i=1

(k) Wb ‘ “’1 (2.2.19)
 

{ZHXHXHX}
i=1 i=1 i=1 i=1

The governing equations, the essential and natural boundary conditions, as well as the

displacement-based finite element model can be derived from the principle of total poten-
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tial energy. Again, attention will be limited to a single sublaminate. The potential energy

. functional is modified here to include the imposition of the constraints (2.2.16) via the

penalty method [68-70]. The modified total potential energy for the mth sublaminate can

be defined as follows:

XX exx

k=1v. (2.2.20)

dw 2 dw 2

I __b I __‘+1329!) dx ) dx+j:2(e, dx)dx

where N", is the number of layers within the mth sublaminate, Vk represents the volume of

“(m)_ (108(k) (k) (k) (k) (1‘)

—N2 Izlc + 0'2: 822 + 021sz lde-j:(qrwr + qbwb)dx

the kth layer in the sublaminate, 'y is the penalty parameter, and qb(x) and q,(x) are the dis-

tributed transverse loads applied on the surfaces of the sublaminate (if these surfaces also

represent surfaces of the beam). As 7 is assigned successively larger values, the con-

straints of (2.2.16) are satisfied more exactly in the least squares sense. Substituting Eqs.

(2.2.2), (2.2.19) into (2.2.20), pre-integrating the internal strain energy terms through the

thickness and through the width of the beam, taking the variation of it?) , and integrating

by parts, (2.2.20) can be rewritten as:
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where Nxb, Nn, Mxb, Mn, Nzb, NU, Qb, Q” Sb, 5,, Tb, T, are the beam sublaminate

L

=0

0 

stress resultants defined as:
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[:1 k 1 k 1 (2.2.22)

" t (k) (k)
Q(b,r) = 2i: 02: b {[ 0' 2 01'], [40+ 2 01]}dx

k=1 "“ i=1 i=1

N... (k) (k) k-l k-l

k

S(b,l) = 2g 62X b {[bo'I’ bl]’ [Co'I’ 2 Cl]}dx

k=l *" 1:] i=1

NM

._ " (k) (’0 Z Z

- Emu" {(1 7.1 (71)}...
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Substituting Eqs. (2.2.2), (2.2.4) into (2.2.22), the sublaminate stress resultants are

described in terms of the generalized displacement degrees of freedom by:

N A A0 dub Aa B du‘ Ab Ba dOb Ac Bb d9!

x(b,r)—( ’ )2;+( 9 )2;+( , )2; +( , )2;

+ (C, C“)w,,—(C, C”)w,

du du b d9 b (19

Mx(b.:) = (Ab: Ac)?§b+(D, 3b13';t+(Da,D )EbHD .185!

+ (Cb: Cc)Wb-(Cb, CC)W’

dub dur b b deb c (19,

N (Cl-C)??? +(Ca,-Ca)-d-; +(C ,—C ).d_ +(C ’-CC)d—x

z(b, r) " x

+ (G, -G)Wb + (-G, G)w,

a b b (2.2.23)

QW, = (H, -H)ub+(-H, H)u,+(H”, —H )0b+(H ,-H )6,

dw dw
c c b d d t

+(H,—H )a +(H,—H )d—x

S“, 0 = (Ha, Hb)ub + (—H", —H”)u, + (I, I“)e,, + (1", J)e,

dw dw
b {a b c b t

”1’ )3 ”1’15?

T — (H‘ H")u +(—H" —H")u +(I” I‘)9 +(J“ J”)e
(b, r) " ’ b 3 r ’ b 3 r

dw dw

+ (K. K537” + (K“. mg;

where the coefficients in (2.2.23) are defined as follows:
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k-l \ - k-I

(A, A“, Ab, AC) = 2N1]: C(lk)b(k)[l —aOz— 2 (z—zfiai ( l—aoz— Elk-2.1611]

' i=1 ) b i=1

k-l k-l - P k—l

,[aoz + Z (2 — 200,], [boz + 2 (z — z,)b,- coz + 2 (z - 2,)ciDdx

i=1 1:] J '- i=1

9

  
N»l k—l k—l

(B, B“, B”) = 2 f‘ C‘,"’b“"[aa0z+ 2 (z-z,)a,.]-[[aoz+ Z (z—z,)a,],
Z

"‘ i=1 i=1k=1

k— 1 k-l

[boz + 2 (z — 2,)bi], [coz + z (z — z,)ci]]dx

i=1 i=1

_ N, 1-1

(C, Ca, Cb, Cc) = 2 ft C(lg)b(k)(—It). [[1 —aoz— 2 (Z-Zi)at]’

Z

II=1"l i=1

k-l k-l k-l

[aoz + 2 (z — 21M], [boz + 2 (z - 2,)bi], [coz + 2 (z - zi)c,-Ddx

i=1 i=1 i=1

i=1 i=1

k- l k-l

(D, D, Db) = kzlf C(lk)b(k)[b0z+ 2 (z- z)b][[aoz+ 2 (z—z,)a,-:|,

‘ (2.2.24)

k-l k-l

[boz + Z (z — zi)b,], [coz + 2 (z - z,)c,-Ddx

1:] i=1

k- 1

(F): Nil]:C‘,"’b""[coz+z(z- z,)c,-]-[coz+2(z z)c,)dx

i=1 i=1

(G) = N2 J:|C§k)b(k)(%)o (flax

k=l

N, k-l k-l
(H, Ha, Hb, He, Hd) = 2 J41 C(Ic)b(k)[_aO _k211“] 6-00-2 ai], [b0+ 2 bi],

k=l i=1 i=1

[sofi'cIII-ziiziIx
i-l

k-l k-l

(1,1“,1”,f)-= 2j:Cg’;’b""[b0+21,17]. flbw 2 b,], [c0+ 2 0.],

i=1 i=1 i=1

[I-il [21F
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Mgcgk>i<k>[.,.“2 q.) “2192153)“
i=1 i=1

:rWI)(II-iliilldxZ
1 k- 1

Off) -I

2
1
1
N
3
M
2

R
-

2
"

(L) j:lcgk’b‘k’m (2)213:

k l

The governing equations and boundary conditions for the mth sublaminate are obtained

from (2.2.21). If the entire laminated beam is modeled using a single sublaminate, then the

beam equilibrium and boundary conditions are:

dN b

Dub: —E;x +Qb = 0

(IN

5a, —‘—,;“+Q, = 0

dT d6 d w

8wb: sz—ab" qb(xx)+y[d—b—d_:.b] =

2x (2.2.25)

dT, d9, dw,

5W,: N21- d—x- -q,(X) +7 d—x —-d—x7 '-

deb dwb

dM dw

66,: -$ "+S,+y(9,—a') = O
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Essential B.C Natural B.C.

“b Nxb

U, er

9b Mxb

9, Mx, (2.2.26)

dw,,

Wb Tb - Y(9b ‘ 3; )

dw,

WI T: " 7(91 - 2'; )

2.3 Finite Element Formulation

From (2.2.23), it can be seen that the primary variables are functions of x only, thus we

need to consider only one dimensional shape functions for the finite element model. The

most obvious path of development would be toward a simple two-noded beam element

with six degrees of freedom per node. However, such an element would not fall within the

constraints of having three translational and three rotational degrees of freedom. Even

more importantly, a major advantage of the present formulation would be lost if a tradi-

tional two-noded element were developed. Because the degrees of freedom represent

quantities at the surfaces of a sublaminate, it is most convenient to cast the finite element

model in the form of a four-noded element with three degrees of freedom per node as

shown in Figure 2. This element is classified here as a “regenerated,” element. This

approach has been taken by other investigators as well [41,42,67], and has the very impor-

tant advantage of allowing discretization in both inplane and through-thickness directions

without the need for any special multipoint constraints. Therefore, the element can be used

to predict the global response of a laminate using only one (or a small number) of ele-
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ments through the thickness, and local effects such as interlaminar stresses can be cap-

tured by refining the mesh in the thickness direction near the interface(s) of interest.

Inplane displacement and rotation degrees of freedom are approximated by the linear

Lagrange interpolation functions:

2 2

“17,: = Z ubi,ri‘Pi 9b.: = Z ebmipi (2-3-1)

i=1 i=1

where

P1 = %(1—§) P2 = %(1+§) (2.3.2)

and g is the element natural (local) coordinate.

The constraints between the derivatives of transverse deflection and the rotation degree

of freedom is imposed in the strain energy functional via the penalty method. As men-

tioned, the rotation degrees of freedom are approximated by the linear Lagrange interpola-

tion functions. Thus, if the linear Lagrange interpolation functions are employed for the

transverse deflection degrees of freedom, the constraints in the Strain energy functional

enforce the relationships between the linear variations of rotation degrees of freedom and

the constant part of the deflection approximation, because the first derivative of a linear

function is constant. This causes locking of the element. In oeder to alleviate locking,

transverse deflection degrees of freedom are approximated by an interdependent interpola-

tion concept developed by Tessler and Dong [71]. Initially, the transverse deflections, wb

and w,, are approximated by quadratic Lagrange interpolation functions.
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3

“’12.: = X wbi,riNi (2.3.3)

(—

where

N1 = %(§2-§), N2 = %(§2+§), N3 = i—gz, —1 3:51 (2.3.4)

The virgin element is shown in Figure 2, and has a mid-node at the top and the bottom sur-

faces.

(a) virgin element

at, Wt, 6! wt “19 Wt! 9!

 

 

 

 

 

“in WI» 9b “’1: ub, wt, 9,,

(b) constrained element

u,, Wt, 9: at. wt. 9:

“b, va eb ub’ Wb. 6b

 

 

 

Figure 2. Element topology and nodal degrees of freedom.

The resulting mid-side deflection degrees of freedom can be eliminated by imposing the
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high-order part of the constraints in (2.2.16):

9
d dwot

dx “—2; J

= 0, or = 1(bottom), 2(top) (2.3.5)

Substituting Eqs. (23.1-23.4) into (2.3.5):

d dwa _ 0

dx “-5 ) -

2

1d0a 1 d we,

- “5 Jidt’
2 2 2 (2.3.6)

z(dPl sz ) 4 le sz dN3

=——0 +—6 -——w +—w +—w

he d1"; “1 d5 “2 h: d§2 “1 d§2 012 (1:2 a3

"9011 +9112) 4
= —— -—(w +w —2w )

( he kg a] 012 013

where J,is line Jacobian and he is the element length.

If we solve for we,3 in (2.3.6), we,3 is:

1 he
W013 = -2-(wa] +wa2) +§(9a1 -9a2) (2.3.7)

The substitution of we,3 into (2.3.3) results in the new interpolation functions for trans-

verse deflection degrees of freedom:

2 2

“’12,: = Z Wbr, n‘P1+ 2 abruNr (2.3.8)

i=1 i=1

.. h x h

WhereN1= -85(l-§2), N2 = -§e(1-§2)
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This approach improves the element behavior very effectively without introducing

additional degrees of freedom. Since the interdependent interpolation scheme identically

satisfies the linear part of the constraint in (2.2.25), the penalty parameter need only

enforce the constant part of the constraint. It has been found that a penalty parameter on

the order of the largest material shear stiffness is all that is needed to impose the constraint

sufficiently, so the possibility of numerical ill-conditioning due to large penalty parame-

ters is eliminated. Further, shear locking is obviated so that an exact order of integration

can be used.

An interesting property of the present model is uncovered when it is used to model iso—

tropic beams. Note that for the case of an isotropic beam the displacement field in (2.2.15)

does not contain any derivatives of the transverse deflection degrees of freedom, since the

coefficients of those terms vanish. The theory thus requires C1 transverse deflection

degrees of freedom for laminated beams in which any two adjacent layers have different

transverse shear stiffnesses, but requires only C0 transverse deflection degrees of freedom

for isotropic beams. As formulated, the present finite element is CO, with the constraints in

(2.2.16) imposed via the interpolation scheme and the penalty method. When used to

model isotropic beams, the current model yields predictions almost identical to those of

the one-point-integrated four-noded isoparametric plane stress element. The present ele-

ment may also be viewed as a planar element with drilling degrees of freedom, though the

rotations defined in (2.2.16) are in terms of only deflection degrees of freedom. The

present element is designed specifically for the analysis of beam bending, not for general

plane elasticity problems.
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2.4 Numerical results

The accuracy of the proposed laminated beam theory and the appropriateness of the

finite element model were assessed by simulating the response of three different simply-

supported laminated beams subjected to a transverse sinusoidal loading as shown in Fig-

ure 3. The elasticity solution of Pagano [72] was suitably modified to provide comparison

with the current beam results. The material properties used in the analyses are listed in

Table 1, and the lamination schemes studied are defined in Table 2.

p = sin(1l:x/L)

 
 

 

 

ll 1

Figure 3. Simply supported laminated composite beam

subjected to sinusoidal loading.
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Table 1. Material properties used in the analyses.

 

 

 

 

 

 

 

1. E11 E33 G13 V13 J

Material 1 1.0066 1.0066 0.2066 0.25

Material 2 25.066 1.0066 0.5066 0.25

Material 3 33.066 21.066 8.0066 0.25

Material 4 32.666 10.666 8.2166 0.10

Core 50.063 50.063 21 .763 0.15       
 

For a given location along the length of the beam, explicit expressions for the through-

thickness variation of stresses are provided by the present model. Along the beam axis,

stresses were evaluated at the centroid of each element, where stress is super-convergent

[73]. The bending stresses presented in the forthcoming discussion were evaluated at the

center of the element that is nearest the center of the beam. The transverse deflections are

obtained at the top surface of the center of the beam where load is applied, while the in-

plane displacement is obtained at the end of the beam where x = 0. Due to the symmetry of

the problem, only half of the beam was modeled. Unless noted otherwise, ten elements

were used along half the length of the beam, and the aspect ratio of the beam was set to

four.

An aspect ratio of four was chosen in the present examples in order to highlight the

ability of the present model to obtain accurate results for very thick laminates via through-

thickness refinement of the mesh. Analyses of beams with the same lamination schemes

but with an aspect ratio of ten were also performed. In most of these cases, the predictions

using one sublaminate were nearly indistinguishable from the exact elasticity solution.

These results are omitted for brevity.



Table 2. Ply stacking tables for the three laminates analyzed.
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Laminate Layer Material Thickness

4 j

1 1 2 0.125

2 1 0.125

3 2 0.125

4 1 0.125

5 1 0. 125

6 2 0. 125

7 1 0.125

8 2 0.125

2 1 2 0.300

2 1 0.200

3 2 0.150

4 3 0.250

5 1 0.100

3 1 1 0.010

2 4 0.025

3 2 0.015

4 1 0.020

5 2 0.030

6 Core 0.800

7 2 0.030

8 1 0.020

9 2 0.015

10 4 0.025

    H #   0.010
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Laminate 1:

The first example is denoted as Laminate 1 and has the lamination sequence (0/90/0/

90),. In Figure 4, normalized predicted center deflection and normalized predicted in-

plane stress is plotted as a function of the number of elements used in the mesh. In this set

of results, Llh=100, and only one sublaminate was used. The error was less than 1% when

seven elements were used in half the length of the beam. The influence of aspect ratios on

transverse deflection is shown in Figure 5. Nine different aspect ratios were considered to

check a wide range of beam bending behavior (Uh: 4, 8, 10, 20, 30, 50, 100, 500, 1000,

and 10000). When one sublaminate was used, the error in predicted deflection was less

than 5 percent even for the case Llh=4. The use of two sublaminates of equal thickness

resulted in more accurate predictions, but the trends were almost the same as those when

one sublaminate was used. When eight sublaminates (one element per layer) were used,

the error in the predicted deflection was less than one percent for all aspect ratios consid-

ered.

In Figure 6, the variation of in-plane displacement through the thickness of the lami-

nate is plotted for a beam with aspect ratio of four. The exact distribution of in-plane dis-

placement is approximately linear within each layer, and globally piece-wise linear and of

zig-zag pattern due to the difference in the shear moduli of adjacent layers. For the model

containing only one sublaminate, the difference between the present model predictions

and the elasticity solution at the top surface was about 13 percent. However, when eight

sublaminates were used, the numerical predictions were in excellent agreement with the

elasticity solution, with error of about 2.75 percent. The stress distribution through the

thickness is illustrated in Figure 7. It can be observed that the prediction of in-plane stress
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()3.Jr converges rapidly to the exact solution as more sublaminates are used.

Laminate 2:

Laminate 2 is a random five layer laminate in which the thickness and material proper-

ties vary considerably from layer to layer, a challenging problem for any model to solve

accurately. In this case, most predicted results are locally relatively poorer than those for

Laminate 1 which has a symmetric lamination sequence. Predictions of normalized trans-

verse deflection versus aspect ratio are represented in Figure 8. It can be observed that

when the aspect ratio is greater than 20, a one sublaminate approximation gives quite

accurate estimates of center deflection. However, five sublaminates (one element per

layer) are needed to obtain accurate predictions of deflection for an aspect ratio of four.

The in-plane displacements predicted by the present model and by elasticity are plotted

versus the thickness of the beam in Figure 9. Even though the overall prediction of in—

plane displacement by the current model agreed well with the elasticity solution, a rather

large error in the prediction of in-plane displacement occurred in the first layer of the

beam when either one or two sublaminates were used. This is an example of the shortcom-

ing of first-order zig-zag theory in modeling very unsymmetric laminates. However, the

predictionusing five sublaminates was very close to that of the elasticity solution. The pre-

dicted distribution of in-plane stress as a function of thickness is plotted in Figure 10.

Overall, the predictions of the current model are very good, with the maximum error

occurring at the top of the laminate.

Laminate 3:

The last example is a sandwich panel, denoted here as Laminate 3, which consists of a
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thick core between two sets of five face sheets. As can be seen in Table 2, the core occu-

pies eighty percent of the thickness of the beam, while each set of face sheets contains five

layers (with a lamination sequence very similar to that of Laminate 2) and occupies ten

percent of the total thickness. Three types of through-thickness discretization were used in

the analyses: (1) a single sublaminate, (2) three sublaminates -- one for the core and one

each for the face sheets, and (3) five sublaminates -- three for the core and one each for the

face sheets.

The predicted normalized deflections for various aspect ratios are plotted in Figure 11.

When the aspect ratio was greater than 4, only one sublaminate was needed to yield accu-

rate results. In Figure 12 the predicted through-thickness distributions of in-plane dis-

placement are illustrated. All predictions were very accurate in the upper and lower face

sheet regions, but there were significant errors in the core region when only one or three

sublaminates were used. These errors were due to the very large transverse shear strains

and transverse squashing in the core of this thick sandwich beam. The nonlinear variation

of inplane displacement in this region could not be captured accurately by a single sub-

laminate in the core region. For thinner beams (i.e., L/h greater than about 10), the inplane

displacements throughout the thickness are predicted satisfactorily using a single sublami-

nate through the entire thickness of the laminate.

The bending stress predictions shown in Figure 13 are so accurate that it is difficult to

distinguish between analytical and finite element results. To assess these more clearly, the

stress distribution in the upper face sheet region is enlarged and shown in Figure 14. It can

be observed that the finite element model using only one sublaminate predicts the stress

distribution in the face sheets very accurately.
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2.5 Summary

An improved first order zig-zag theory and an associated finite element model are pre-

sented. The model allows the representation of a laminate as an assemblage of sublami-

nates in order to increase the mode] refinement through the thickness, when needed.

Within each sublaminate, an accurate first-order zig-zag sublaminate kinematic approxi-

mation is made which minimizes the need for multiple sublaminates for many problems of

practical interest yet easily accommodates through-thickness refinement for predicting

local variations of stress and deformation. The finite element model is “regenerat ” in the

form of a four-noded planar element with three degrees of freedom (two translations and

one rotation) per element. Thus, it suitable for implementation into commercial finite ele-

ment codes. Numerical results demonstrate that the current model is accurate, efficient,

and robust for analysis of a wide variety of thick or thin laminated beams.
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Figure 4. Variation of normalized center deflection and maximum

bending stress versus number of elements in the mesh

(Laminate 1, Llh=100).
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Figure 5. Variation ofnormalized center deflection

versus beam aspect ratio (Laminate 1).
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Figure 6. Inplane displacement versus normalized thickness

coordinate (Laminate 1, Llh=4).
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Figure 7. Bending stress versus normalized thickness coordinate

(Laminate l, Llh=4).
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Figure 9. Inplane displacement versus normalized thickness

coordinate (Laminate 2, Llh=4),
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Figure 10. Bending stress versus normalized thickness coordinate

(Laminate 2, Llh=4).
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Figure 13. Bending stress versus normalized thickness coordinate

(Laminate 3, Llh=4).
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CHAPTER III

PLATEELEMENTBASEDON

FIRST ORDER ZIG-ZAG SUBLAMINATE THEORY

3.1 Introduction

In this chapter, after estimating the shortcomings and merits of the first order zig-zag

beam theory and the beam element, a refined plate theory based on sublaminate linear zig-

zag kinematics and a new 3-D finite element based on that theory are developed. The in-

plane displacement fields in each sublaminate are assumed to be piecewise linear func-

tions and vary in a zig-zag fashion through the thickness of the sublaminate. The zig-zag

functions are obtained by satisfying the continuity of transverse shear stresses at layer

interfaces. This in-plane displacement field assumption accounts for discrete layer effects

without increasing the number of degrees of freedom as the number of layers is increased.

The transverse normal strain predictions are improved by assuming a constant variation of

transverse normal stress in each sublaminate. In the computational model, each finite ele-

ment represents one sublaminate. The finite element is developed with the topology of an

eight-noded brick, allowing the thickness of the plate to be discretized into several ele-

ments, or sublaminates, where each sublaminate can contain more than one physical layer.

Each node has five engineering degrees of freedom, three translations and two rotations.
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Thus, this element can be conveniently implemented into general purpose finite element

codes. The element stiffness coefficients are integrated exactly, yet the element exhibits no

shear locking due to the use of an interdependent interpolation scheme and consistent

shear strain fields. Numerical performance of the current element is investigated for a

composite armored vehicle panel and a sandwich panel with low and high aspect ratios.

Comparison of numerical results with elasticity solutions shows that the element is very

accurate and robust.

3.2 Kinematic Assumptions

In this plate theory, a laminate will be modeled as M sublaminates, and each sublami-

nate is assumed to consist of N,,, perfectly bonded layers which have independent thick-

ness and independent stiffness properties. Mathematically, the total number of layers, N, in

the laminate is written as:

N = 2 N... (3.2.1)

The global Z-axis is taken perpendicular to the inplane X, Ycoordinate axes and has its ori-

gin at the bottom of the laminate, while 2 is a local sublaminate coordinate in the direction

of Z with its origin at the bottom of the sublaminate (see Figure 15). In the following deri-

vation all expressions are related to the mth sublaminate in order to facilitate the develop-

ment a computationally convenient finite element model. All indices indicating the

sublaminate number are omitted for brevity.
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Sublaminate 2

 

Figure 15. Schematic ofsublaminateand layer divisions

in the laminated plate theory.

The constitutive relations for a three dimensional stress state in the kth layer of the mth

sublaminate can be written as:

  

'05:" CW C(k) C(12) 0 0 Coneeff

“i? C“) C“) cg? 0 0 eggs83;)

021%: CE’S’C‘Z'Q’C‘!) o o cg“, 82"} (3.2.2)

0;? o 0 0 C34“ cg? o 7;?

cg? o o 0 Cf,’;’C§§) 0 7""

~ 61(3)} C(k) C(zk)C(k) 0 0 C212 H733    
For monoclinic materials, 13 coefficients of the material stiffness matrix are independent,

but for most practical laminated composites, nine coefficients of the material stiffness
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matrix are independent and the others are obtained through a transformation law [79].

These nine coefficients are given as follows:

 
 

 

(k) (k) (k) (k) (k) (k) (k) (k)

—(k) (k)1‘V23V32 —(k) __ (k)"21 +V31V23 —(k) _ (k)V31 +V21V32

C11 = 1 T’ 12 'El (k) ’ C13 - 1 (k)
A A A

(k) (k) (k) (k) (k) (k) (k)

50:) _ (k)1’V13V31 €213) _ (k)V32 +V12 V31 1‘13) _ E(k)1-V12V21

22 - 2 ——' - 2 ’ - 3 ——
A“) AU!) A“)

—(k) (k) -(k) (k) —(k) (k) (3-2-3)

C44 = 023’ C55 = G13’ C66 = 012

(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)

A = 1“’12V21 ‘V23 V32 "’31 V13 ‘2V21V32V13

(k) (’0
vi. v..

J = j] . A =

(k) (k) "1 1’2’3

, . . . . k . , .
where E?“ are the Young s moduli in x, y, 2 directions and vgj) are the Porsson s ratios

associated with transverse strain in the j direction due to axial strain in the i direction in

the kth layer. From the transformation law of a fourth order tensor, 13 coefficients are

derived using the transformation law of a fourth order tensor:

(’0 —(k)
”kl = a- ajnakpalqcmnpq (3.2.4)
1} rm

where am stands for the direction cosine associated with the material and the global

axes.

The infinitesimal strain - displacement relationships are defined as:

(k) (k) (k)

80:) _ Ex 80:) _ 8“y 80:) _ 5“:
xx " ax ’ yy '3; ’ zz -a—Z

(3.2.5)

(’0 (k) (k) (k) (k) (k)

(k) _ 8“2 at? (k) _ auz +§x (k) _ 8“y + 3“x

”2'23 +82’ “'3'; 82’ Icy-3; fi
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3.3 Formulation of the Plate Theory

The displacement fields in a sublaminate are initially assumed in the following form:

k-l

k

u; )(x, y, z, t) = ub(x,y,t)+zw,(x.y.t)+ 2 (24.9%.-

i=1

k-I

k

u; )(X, y, Z, I) = Vb(x, y: t) +ZWy(x, y! t) + 2 (Z—zi)ni

i=1

(’0 Z 2
uz (x, y, z, t) = wb(x, y, t)(1 — h) + w,(x, y, 0(5)

(3.3.1)

where h is the thickness of the sublaminate, ub and vb are the axial displacements in x and

y directions, respectively, at z = 0, w, and my are rotations of the normal at z = 0, and Wb

and w, are the transverse deflections of the bottom and top surfaces, respectively, of the

(k)

x

(k)
and uymth sublaminate. Thus, it is assumed that u vary in a piecewise linear fashion

)
through the thickness of a sublaminate and uik varies linearly through the thickness.

The parameters fit. and I], in Eq. (3.3.1) are eliminated by enforcing the continuity of

shear stress at each interface [33, 34]. The transverse shear stress continuity conditions at

the kth interface can be expressed as:

(k) _ 0“”) 600 - 00””, (3.3.2)
yz-yz’ zx’zx

Assuming that infinitesimal strain theory holds, the form of the assumed displacement

0‘) and “(1‘)fields in (3.3.1) is such that the inplane displacements ux y contribute only con-

(’0 (k)
yz and o",z .For con-stant (i.e., no variation in 2) terms to the transverse shear stresses, 0'

(k)
sistency, then, the transverse displacement uz should also contribute only constant

terms to these stress components. In order to achieve this consistency, terms in the trans-
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verse shear strain expressions that involve the transverse displacement variables are evalu-

ated at the mid-plane of the sublaminate, thereby taking a thickness-averaged value of

these terms. This approach is equivalent to ignoring the effect of transverse normal strain

on the transverse shear strains, a very good assumption for most laminates. Thus, the

transverse shear strains in the kth layer are:

k113wb+BW)

72:) = + 2% + gab +331:

'=‘ (3.3.3)

3w
(’0

sz = y+k21ni+ %(+ayt)

i=1

From (3.3.3), the relationships between transverse shear strains in the (k+1)th layer and

the kth layer are:

k

(k+ 1) 1 3W1, 3W

73" "+ Zgi+§£8x +3xt)
i= 1

k—l
1 awb 3w (3.3.4)

=Wx+2§i+§(ax a I) a]:

1': 1

k

= 'Yix) 1' £1

By the same token,

k 1 k

7;: ) =7? + nk (3.3.5)

From the constitutive equation in (3.2.2), the transverse shear stress-strain relationships

are:
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(k) (k) (k) (k) (k)

cyyz = C44 sz + C45 yxz

(k) _ (k) (k) (k) (k)

xz " C45 yz + C55 yxz

(3.3.6)

0

Making use of (3.3.4), (3.3.5) and (3.3.6), the transverse shear stress continuity conditions

at the kth interface can be recast as:

(kk k k k k1 k k

1CL’1§,’+C£5’1§,’>M =16” ’11”+n,.)+Cf.51v’,.z’+§,.)}|_
 

1* (3.3.7)
k k k k kl k k k

1C25’1§,’+C§5’v§,’) = {Ci* ’1v‘zs’+n.)+C§’1111"+§,.)}|z=z
 

Solving (3.3.7) for 11k and 5,, , and using (3.3.3), we can develop the following recursive

equations.

11+21- «oz—:1 :—:1211;212:1213—1141}

 

 

k 1 (3.3.8)

.. ’13wb+aw13wb+aw,

5" = ck1‘"y+.zl"‘+§(ay ay)1W+2:: + 5(5 311)}1: 1:

where

ii" = A1(C(Sl;+1)Cg4k)_C£§-l-1)C(§))_‘ 1

[1+1

131 = —(C(5k+1)C(k)—C,(,5+1)C(k))l

A[11-1-1

a, = (Cf,4"*”cf,’;’-Cf,’;*”cf,4"’) 13.3.9)

Ak:-1-l

ak_ A_(C(k+l)C(5k)_ £§+1)C(k))—l

k+l

(1+1) (k) (k+l)

A1+1 = C44 C55 ~C45
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Solving the recursive relation, (3.3.8), i,- and 11,- are then found to be:

a — +.1_(a_wb+§f‘) +d +1(3Yb+.a;.vt)

i-c"wy23y 3y iw‘ZBx 3x

(3.3.10)

11'. = ai{\|ly+§(a—y +a_y.’)}+bi{\|lx+-2-(§-x— +§;)

where

1-1 1-1

a' = a, 1+ XajJ+EiZcJ

J'= i=1

i: 1: (3.3.11)
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From Eqs. (3.3.9-3.3.1 1) it can be seen that £1 and 11,. depend on the ratios of shear prop-

erties between adjacent layers and the shear deformation in each sublaminate. If either of

these quantities is small, then discrete-layer effects will also be small.

The rotational variables W): and my in the displacement fields are now eliminated by

introducing translational variables u, and v,, the inplane. translations at the top surface of

the sublaminate [41,42] in order to expedite the development of versatile finite element

models. Thus, rather than describing the inplane displacement field by a translation and

rotation at one point, it can more conveniently be described here by the translation at two

points.
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Moreover, the displacement fields still need to be manipulated to develop a C0 finite

element, because the derivatives of transverse deflections,

aw, aw, aw, 3w,

appear in the displacement field. The existence of the derivatives of transverse deflections

in the displacement fields results in their second derivatives appearing in the strain energy

functional, so Cl continuity of wb and w, is required. It is desirable to alleviate such a

requirement by introducing new rotational degrees of freedom as follows:

=—9 93 W3; = - ”,5; =9xb’ay n (3.3.13)

These relationships will be constrained in the strain energy via the penalty method. There-

fore, the displacement fields can be written as follows:

u(k) = (1)1111)““b + (Dyan + (1,1210% + (bygv, + (by?9x!) + (bade+ «1,119,, + e‘k’ey,

= 111+” +111... 211+“ 11.2”31111,. 1121».
k) (10 (3.3.14)

+ ‘1‘,“ 9y}; + ‘1’42fl6

(k)

z = wbfll “”1292

Employing the indicial notation, the modified displacement fields can be expressed in

more concise forms:

11) - 11:) (k)_ k 1
u = u Be 3, u M113, u§’=anB, a = 1...4;13 = 1,2 (3.3.15)

where the index [3 is used to denote the top and bottom of the sublaminate with 1: bottom



66

and 2: top, and (PL? , W3; and RB are shape functions in the thickness direction, and will

be defined in Appendix A. Unless noted otherwise, summation on repeated indices is

implied. The variables Bali are:

‘7113 = “B , (.423 = VB , 17313 = 6x5 , 1743 = Gyfi (3.116)

Since through-the-thickness shape functions, (1):}; , ‘l’g‘g and 913’ which are only func-

tions of z, are included in displacement field, nodal variables in the finite element can be

approximated by two dimensional shape functions in x, y. Thus, the strains are obtained

from Eq. (3.3.15) as:

(k) _ 1k) 1k) - 1k) 1k)

exx = “aflx‘bafl eyy = “0113wa 822 = WBQBJ

1k) - 1k) 1k) _ - (k)

7,. = “aa‘l’ap,z+wa,y913 1. 'sz -“a3¢afi.z+wfi.xafi ,, (3.3.17)
Z = i Z = i

k - k - (k

yky) = uaB,y¢ExB)+uaB,qua[i a = 1-"43fi = 1:2

where tensor notations are employed and a coma in the subscript implies partial differ-

entiation. In (3.3.17), the contribution of the transverse deflection to the transverse shear

strains 7;]? and 7;? are evaluated at the middle of the sublaminate to ensure constant

shear stresses through-the-thickness of a sublaminate (as discussed previously).

From (3.3.17), it can be seen that the transverse normal strain,

k W -W .

2:2) = was)“ = ' h b (3.3.18) 

is constant in a sublaminate. Such a uniform normal strain may give rise to substantial

errors in composites which have a soft core or layer. Let’s consider a composite which is
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composed of 3 layers, one of which is very compliant. When the composite is under load-

ing as shown in Figure 16 (a), the uniform transverse normal strain distribution through

the thickness is predicted from (3.3.18) as shown in Figure 16 (b).

11111111111111
actual

/r uniform

N

»

Compliant

 

 

 

(a) 15
;

Figure 16.A composite under transverse tension load (a) and the corresponding

transverse strain distribution through the thickness (b)

However, the actual distribution is not uniform, so that we can see that there is a big devi-

ation between the predicted strain and the actual one. Thus, it is desirable to improve the

distribution of the transverse normal strain through the thickness. If the transverse strain

field is improved, the Poisson’s ratio locking can be prevented as well (to be discussed

later). The improvement can be achieved by instead assuming a constant transverse nor-

mal stress, (T-u , through-the-thickness of a sublaminate. Tessler and Seather attempted to

improve the transverse strain, but they used a field consistent polynomial [80]. (Tu can be

determined using Reissner’s mixed variational principle [81]. From (3.2.2), the transverse

normal strain is obtained as:
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(k) (k) (k)

-(k) _C_1_3 (k)_ C__2_3 (k) C36 (k)+1 —
fizz = -C—(—];) xx _Cg-T) yy _C—g§)yxy+ CT]? 22 (3.3.19)

o—zz is then determined by analytically solving the following relation:

k

_k k

0 = z I (822 - Ezz)dz

k = lzk_ l

(3.3.20)

 

(k) (k) (k)

2 }{W:; Wb_ C1380:) C2380:) C__367(k)+ 1_;]}dz

cm H cm W cm U can zz

k=lzkl

Substituting the strain - displacement relations in (3.3.17) into (3.3.20), the constant trans—

verse normal stress o—zz is found to be:

_ Bub Bu, av, av, aeyb

on = 37 (P1+56)+Tx(P2‘56)+$(P3+S7)+a—x(‘P3+SB)+a—x (P4+Sg)

86 39,, 86 ea, Bu

+a—xy'37(P4+S9)+Xb-é—(P5+Sw)+x’"(P5+S]O)+a—yb1(Q,+S“a?(-Q1+Sz)

(3.321)

av, av aeyb 86y, 66x1,

+—b(Q2+S3)+a—y(Q3— 53)”???yb(Q4+S4)+—y'M'Sfl'i'Jrb(Q5'*'Ss)

89x!

+a—y- (Q5+SS)+wb(—T])+wt(Tl)

where the coefficients are defined in the Appendix A. The newly defined transverse nor-

mal strain can now be written as:

k

.g = uaB xxggfl+uafl yx§fifl+wflxfi a = 1...4; B = 1,2 (3.3.22)

where the functions I.“B) and x3 are definedin the Appendix A.

The important properties of the present laminate theory are:
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1) The laminate thickness may be subdivided into several sublaminates for refined analy-

sis, if needed.

2) Discrete-layer effects are captured within each sublaminate by allowing a piecewise

(layerwise) continuous through-the-thickness variation of the in-plane displacements.

3) Continuity of transverse shear stresses through the thickness of each sublaminate is sat-

isfied.

4) Transverse normal strain distribution through the thickness of sublaminate was

improved by assuming constant transverse normal stress.

5) Accuracy and efficiency of the theory are adaptable, depending on the number of sub-

laminates used.

6) In the displacement fields, only five engineering d.o.f. (three translations + two rota-

tions) are present.

3.4 Governing Equations and Boundary Conditions

The equations of motion, the essential and natural boundary conditions, as well as the

displacement-based finite element model can be developed from. Hamilton’s principle.

Again, attention will be limited to a single sublaminate. The constraints between the deriv-

atives of transverse deflection and the rotational d.o.f in (3.3.13) should be imposed in the

energy functional. There are two ways to impose the constraints - either Lagrange multi-

plier method or penalty method. Since the Lagrange multiplier method introduces addi-

tional d.o.f., the penalty method has been used to maintain computational efficiency and

convenience. Therefore, the energy functional is modified here to include the imposition

of the constraints via the penalty method. Hamilton’s principle for the mth sublaminate
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can be defined as follows:

5 '{U—K—W+P}dt=0 (3.4.1)

‘0

where U is the internal strain energy:

xx 8xx+oyy€yy+ozzezz +0”sz +6u'sz +0

N

"ll/ck kk(k)k kk(k)k kk=2J‘_2_[O.O.£_:()() ()() () ()() () ()Y(y)]de (3.42)

=1v

Vk is the volume of the k-th layer. K is the kinetic energy:

NM

2

= 2 I;Mkll-2+(k) “(’02 +1221!) lde (3.43)

=1V,‘

pm is the density of the k-th layer and a superposed dot indicates differentiation with

respect to time. W is the work of external forces:

w = IwaPadQ+ Itiuidl"

(3.4.4)

I =oijnj;oc=1, 2; i=1, 2

P is the penalty constraint:

P = $11211(u3B-gflf+(u4fl+::p)2}]dn (3.4.5)

where y is the penalty parameter. As 7 is assigned successively larger values, the con-

straints of Eq. (3.3.13) are satisfied more exactly in the least squares sense. In the internal
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strain energy expression, (3.2.4), we need to pay attention to the transverse normal stress

terms. The constant 0:; leads to an asymmetric stiffness matrix. Thus, Cu from the con-

stitutive equation, (3.2.2), instead of the constant transverse normal stress should be

employed.

Substituting Eqs. (3.2.2, 3.3.15, 3.3.17, 3.3.22, 3.4.2, 3.4.3, 3.4.4, and 3.4.5) into (3.4.1),

taking the variation of (3.4.1), and integrating by parts, (3.4.1) can be rewritten as:

t

' _ _aNmB _aNyaB _a_NwB_ _a_QwB aRmB_aRymB

J J[{5u“ 8x 3y 8x 8y +anfl+QmB3y 3x

'1

2

8W5 32ur a a? V

(—)(—.M Jim}
2 2

BR BR 817 a w 317 8 w 82w

+ 5WB{RZB ay ax PB Y[ay ayz J + 'Y[ + x J+—a—'t2215p}]dfl

(3.4.6)

+ §[5§“B{Nman + NymBny + Nzaan + QzaBny + nyaBny + Ryxaan}

_ awB _ BWB

+8wB Rany+Rxan+yny(u3B—-é—y- j—ynx(u4B+§; ) ds

1!:

N" (k) - (k) (k) -

+12 [(511515«950154352155aa‘l’aa’)dzds]dr = 0

(a,r=1...4;[3,p=1,2)

Where NxaB’ NyuB’ NzaB’ NzaB’ QzaB’ anB’ Qxafl’ nyafi’ RyxaB’ RzB’ RyB’ RxB are the

sublaminate stress resultants shown in the Appendix A, nx, n are the directional cosines,
)’

Ill

aBrp’ [LBW 13p are the plate inertias defined in the Appendix A, and SaB is the Kro-

necker delta. Considering that variations of the generalized displacement degrees of free-

dom are independent for to < t < t1 and zero for t = to, II , the equations of motion are
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derived as:

.. . aNxthaNyaBaNzaBa_Qz(1B anyaB+ aRyxaB

5““13' 3_x +8y +3x +a—y - anfi - Qmfl + 3— +3x

2_

awB BWB Buam 32umv

__ ._ I
+ 7(uuaB ay B)831 + 7(1“GB + ax “)5“ 3‘2 IaBrp+ at2 aBrp (3-4-7)

312 an a- 32 a a a2u w u w w
5 _yB+_xB_R +1; + _3B__B _4B+_B =_p1W

WB . 3y 3x zB B Y[By ay2 7 ax +3x2 a: IPB

The corresponding boundary conditions are:

Essential B.C Natural B.C.

aaB (NxZan + NyaBny + Nullan 4' Qany + nyaBny + Ryxaan)

(k)n (Ion (k)
+X 2! (GunjcpffB + 0‘2} nJ‘PaB)dz (3.4.8)

=12»:

wB Rany + Rxan + yny(u3B -a—y )--'yn(“413 +—a? )

3.5 Finite Element Formulation

Since the primary variables are functions of x, y and I only in (3.4.6), we need to con-

sider only two dimensional shape functions for the finite element model. Thus we can con-

sider that the most obvious element to be developed would be a simple four-noded

Ahmad-type degenerated plate element with 10 degrees of freedom per node (5 bottom

surface d.o.f + 5 top surface d.o.f). However, such an element would not fall within the

constraints of having three translational and three rotational degrees of freedom. (Most

available commercial codes do not allow more than six d.o.f per node). Even more impor-
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tantly, a major advantage of the present formulation would be lost if a traditional four-

noded element were developed. Because the degrees of freedom represent quantities at the

surfaces of a sublaminate (this was not by chance), it is most reasonable to develop the

finite element model in the form of an eight-noded element with five degrees of freedom

per node (see Figure 17). Such elements are classified here as “regenerated,” compared to

the popular “degenerated” shell elements obtained by imposing constraints on solid ele-

ments.

u,, v,, w,, 9,5,, GB, 14,, v,, w,, 9,“, 0y,

 

 

   

  

 

r. c-‘u 4.4,: ',' ; ;.‘ .«'.'“._._.... .-..
"43': 4121’.- .-'Tr“.3-.r4m.
-‘-.~.-.-'.~. .453

_ 0'.. , . . .
W ‘r—x‘p ~... 1-

J— " "' - 1

q
.,

rl-l'

. . . '. .i ;‘_

. ‘. 3'
.|_‘.._ Bf .'-"‘~"' Bz.__ “ , B, ..I:.- “-7. . ,

.B...',Q.-Vf*‘.:".‘fi;.:k,h>. . 17-34453‘ . B . . 1 . _. -- ~., .. ; ..:4‘.‘.'-‘ 1  
.'-' .. *".4; ':..‘ a; 22‘." m'“,

41. :32..:a-‘ru.3 eats-32‘ {3.4—.41 ~
I If"? t r': \ ._).’,.‘..m’—1r.'¥‘.‘tf'.‘t‘:‘1§;__§f

‘4: - "‘2 , 4‘ B”. -. 5.7.34

   

“1» V1» W1» 9:2» eyb “1» Vi» W1» 9x1» eyb

Figure 17. Element topology and nodal degrees of freedom.

This approach has been used with great success [41,42], and has the very important advan-

tage of allowing discretization in both inplane and through-thickness directions without

the need for any special multi-point constraints. Elements are assembled in the standard

way. Therefore, the element can be used to predict the global response of a laminate using

only one (or a small number) of elements through the thickness, and local effects such as

interlaminar stresses can be captured by refining the mesh in the thickness direction near



74

the interface(s) of interest. The capability of discretization in the through-thickness direc-

tion enables one to simulate the separation of the laminated composites due to delamina-

tion into two parts in the thickness direction.

Inplane displacement and rotation degrees of freedom are approximated by the bilin-

ear Lagrange interpolation functions:

4 4

‘716 = 2145,10,. 7‘26 = Zvflipi

i=1 i=1

4 4 (3.5.1)

1733 = 2 exfiipi 1743 = 2 eyBiPi

i=1 i=1

where

P.- = ,l,(1+§,-§)(1+nm) (3.5.2)

and g, n are the element natural (local) coordinates. For transverse deflection degrees of

freedom, an interdependent interpolation concept similar to that developed by Tessler and

Hughes [75] is utilized.

Interdependent interpolation

One of objectives in the current research is to develop a C0 element. However, the first

derivatives of the transverse deflection are present in the displacement fields due to evalu-

ating the zig-zag functions. In consequence a Cl element needs to be developed unless we

relax such a requirement. The requirement of CI continuity was eliminated by introducing

new rotational d.o.f. as discussed previously. Then the constraints between the derivatives
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of transverse deflection and the rotation degrees of freedom are imposed in the strain

energy functional using the penalty method. Recall that the rotational degrees of freedom

were approximated using bilinear shape functions. If we employ bilinear shape functions

to approximate the transverse deflection d.o.f. the constraints in the strain energy func-

tional must enforce the relationships between the bilinear variations of rotation degrees of

freedom and linear variations of transverse degrees of freedom. As a result, the element

locks. Thus, the order of shape functions to be used for transverse deflection d.o.f. is

biquadratic. The simplest shape functions to be used is the quadratic Serendipity shape

functions which have mid-side nodes. However, such a finite element is not of convenient

form. Thus, the interdependent interpolation scheme introduced by Tessler and Hughes

[75] is utilized in the current research. This approach improves the element behavior very

effectively without introducing additional degrees of freedom.

The virgin element is assumed to have mid-side nodes with only deflection degrees of

freedom at the top and bottom surfaces (see Figure 18), and then the mid-side nodes are

removed by writing the deflection degrees of freedom in terms of rotational degrees of

freedom according to interdependent interpolation scheme. The interdependent interpola-

tion scheme enforces the linear part of the constraints of the form:

i‘rb, t aWb t
ax +9yb,,=0, _’ -9 , =0 (3.5.3)

where the coma in the subscript does not imply any differentiation. Generally, in quadri-

lateral element coordinates, the constraint (3.5.3) is recast into:

(.31: _ 9,.) = 0 (3.5.4)
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Lets designate the coordinate running along an element edge and denote n the coordinate

running normal to an element edge as shown in Figure 18.

 

 
  

 

    
       

xij = xi—xja yij=yi-yj‘

Figure 18.Quadrilateral element coordinates and definition of rotation

The xy coordinate and the fin coordinate systems are referred to as the “global” and

“local” coordinate systems, respectively. Initially, a Serendipity (eight-node) transverse

deflection distribution is assumed:

8

wb,t = 2 Ni(&n n)wbi,ti

i=1
4 4 (3.5.5)

x = 2 Pi(§,n)x,- y = 2,10,03,71)»

i=1 i=1
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where Pi(§, n) , and N,(i, n) are bi-linear and Serendipity shape functions respectively,

and wbi, n. denote transverse nodal degrees-of-freedom at the bottom and top surfaces. The

biquadratic serendipity functions are [82]:

N, = gamma+n,-n>-(1-§2)(1+n,—n)-<1-n2)<1+§.§)1§%n3

(3.5.6)

+%(1-§2)(1+n,~n)(1-§.-2)n.-2+%(1"12)(1+§i§)(1“li2)§i2

where —1 .<_ {3, n S l , and 111,};- are the location of node in the local coordinate. Rotation

degrees of freedom are approximated by the bilinear Lagrange interpolation functions as

in (3.5.1).

For side 1-2, the constraint along this side (1] = -l) is:

aw“

(a: -e..)

where a = l, 2 imply bottom( 1) and top(2) of the sublaminate. Since the different shape

= 0 a = 1,2 (3.5.7)

n=-l 

functions are used, the number of d.o.f at the comer nodes is not same as those at mid-side

nodes. In order to have a uniform four-node topology at the top and bottom surfaces, the

four mid-side node transverse deflection degrees-of-freedom at edges are condensed out

by using four differential constraints at the edges:

= o (o s z s 1) (3.5.8)

aw

i(_ a - Gnu)

§n=il

as as
 

where hk is the edge length. For the edge 1-2, the differential constraint is given by:
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a

a W“- em) = 0 (3.5.9)
333  

Due to the property of the shape functions, the evaluation of the derivatives of transverse

deflection at the edge leads to:

I

 

 
 

8

Wa|n=—1 = ZNIWO‘I
(3.5.10)

i=1 11:4

' = = = N = N = O,

smce N3|n=—1 N4In=—1 N6In=-1 7ln=-1 8|"="

1 l

wal _ = -§(§-1)w,+-§(§+1)w2+(1-§2>w5
11-- 2 2

.a_wa — (_l+§\w +(l+§)w -2§W l

as _-1 2 J 1 2 2 5 1: (3.5.11)
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Wu 1
_ = W +W -2W —

n=—]
71:"

  

where ds = J[I 1d§’ and J1 is the line Jacobian. The normal rotation at the edge is

n = -

approximated using bilinear shape functions. Then the derivatives of the normal edge rota-

tion along side 1-2 due to the property of the shape functions is given by:

= Z 12.9,")n = -1 (3.5.12)
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4

9n n =_ = 2 Premln = -1

1:1

1
= i[(1—§)e,,1+(1+§)e,,2] (3.5.13)

39,, 1 1

g - - 5(6n2—enl)7l

‘n—-l
n=—l

Substituting (3.5.11) and (3.5.13) into (3.5.9), solving for the mid-side W5 degree-of-free-

dom, then w5 is found to be:

11 1

Since the geometry of the element can be approximated by bilinear shape functions, the

line jacobian, J1 , is obtained as follows:

 

  
 

  

3x
Jc|n=_1 = .zlPixi , Tan=4 — 2(x2—x1)

l— "=4

4

yl = 21’) ' a—y -(y y)
TI=-l . 1 It 9 .. 3§n__1 2 2 1

I: 71:4 -

J" = [ax ]2+[3_y )2 (3.5.15)

"=‘1 §Efl=-l agn-_1
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The other mid-side W6, W7, W3 degrees-of-freedom can easily be obtained by the same

procedure, and are found to be:



8O

1 l h2

“’6 = §(W2+W3)-Z(9,,3-9,,2)—2-

1 1 h
W7 = §(w3+w4)—Z(6n4-9n3)§3 (3.5.16)

_ 1 l ’14

W8 - 5(W4+W1)‘Z(9n1‘9n4)'2'

Now we need to transform the rotations at the edges into ones in global coordinates. Tak-

ing the edge 1 - 2, we can derive the transformation law.

  

 
Figure l9.Coordinate transformation between edge and global coordinates

From Figure 19, the transformation law is derived as:

[n = cos(n, x) cos(n, x) x (35.17)

s cos(s, x) cos(s, x)

where (n, x) is the angle between the two axes. Then on the 1 - 2 edge,
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9:11 = cos(n, x) cos(n, x) 9x1 (3.5.18)

631 cos(s,x) cos(s,x) El),l

where

cos(n, x) = cosG = cos(-B+90) = sinB = )’_2’_:_fl

’ (3.5.19)

. x1 "x2
cos(n, y) = cos(9+90) = —sm9 = -cosB = h

1

Thus, (3.5.18) becomes:

yZ-yl Jr1‘3‘2 yZ-yl x1'x2
6n] = -—h—1—9x1+T9y1, an = TQM—ray, (3.5.20)

By the same procedures, the coordinate transformations of the other sides are obtained:

on the 2 - 3 edge,

y3-y2 xz‘xs Y3‘Y2 x2-x3

  

  

9,12 = —h—2—9x2 +TOW 9n3 = ’12 6x3 T9y3 (3.5.21)

on the 3 - 4 edge,

y4‘y3 x3 ‘x4 y4—y3 x3 "x4

on the 4 - 1 edge,

_ yl-Y4 x4-x] YITY4 x4-x1
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Substitution of Eqs. (35.20-35.23) into (3.5.14) and (3.5.16) yields the following expres-

sions for the mid-side node transverse deflection degrees-of-freedom in global coordi-

nates:

w5 = gov.+w2)-§t(y2—y,)(e.2—e.l)+(x,—x2)(e,2—9,,>1

W5 = %(W2 + W3) " $03 " Y2)(9x3 " 9x2) + (x2 ‘ x3)(9y3 — 9,2)1

(3.5.24)

W7 = %(W3 + W4) ‘ %[()’4 - Y3)(ex4 — 9x3) + (x3 — x4)(9y4 " 9y3)]

W3 = %(W4 + W1) - $101 'Y4)(9x1 — 9x4)+(x4—x1)(9y1—6y4)]

Finally, interdependent interpolation functions are derived by substituting the mid-side

node transverse deflection degrees-of-freedom expressions, (3.5.24), back into (3.5.4):

4

w = 20>,ng .9 .+Ny,e
I! X!

y.) (3.5.25)

i=1

where Nxi and Nyi depend on Ni + 4 and the projections of each edge onto x and y axes

and are given by:

1 1

le = —§(>’12N5-)’41N8)’ Nyl = §(x12N5—x41N8)

1 l

NxZ = ‘§(>’23N6‘>’12N5)4 Ny2 = §(x23N6-x12N5)

1 1 (3.5.26)

Nx3 = _§(y34N7_y23N6)’ Ny3 = §(x34N7-x23N6)

1 l

Nx4 = —§(>’41N8‘>’34N7)’ Ny4 = §(x41N3‘x34N7)

where
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N5 = %(1-§2)(1-n)
5 N6 = %(1-n2)(1+§)

N7 = $0 —€2)(1 +11), N8 = %(1-Tl2)(1-§) (3.5.27)

xij = xi—xj’ yij = yi—yj

Furthermore, the mid-side transverse deflection d.o.f. in terms of covariant rotations is

readily obtained from Eqs. (3.5.14, 3.5.16) as:

1 1

ws 2 5(w1+w2)—Z(9n1-9n2)

l 1

(3.5.28)

1 1

W7 = 5(W3+W4)’Z(9n4’9n3)

1 l

The interdependent interpolation functions in terms of covariant rotations can be written

as in the following expression by substituting (3.5.28) into (3.5.5) (these interdependent

interpolation functions will used to derive field consistent shear strains):

4

w = Z (Pl-wt. + Ngieg. + Nniem) (3.5.29)

i=1

where Ng1 and ”hi are given by:



1 _ 1
”:2 ZN6’ an - 3N5

1 1 (3.5.30)

N 1N N 1N
§4 - -2 8’ 114 _ -— 7

Since the interdependent interpolation scheme is employed, the transverse deflection

d.o.f. is coupled with the rotational d.o.f. Therefore, the transverse distributed load acting

on the top and bottom surfaces should be applied to the appropriate nodal d.o.f.

Field Consistent Shear Strain

The locking phenomenon has been a big issue in the development and application of

the finite element method. In an attempt to alleviate shear locking, the interdependent

interpolation scheme was adopted. However, it turned out that it did not remove the shear

locking completely, and the developed element still locks in the very thin regime.

To avoid shear locking, a lot of works have been accomplished. One popular method

employed is reduced/selective integration [83-88]. However, reduced/selective integration

has had limited success. In some elements the locking phenomenon is not completely

avoided. Moreover, when the order of integration is reduced enough to alleviate locking,

spurious kinematic or zero strain energy modes arise in the element stiffness matrix. These

kinematic modes can be suppressed by adding a stabilization matrix to the stiffness matrix

[89,90]. Thus, some researchers try to alleviate the locking problem by special treatment

of the transverse shear strain components [91-94], while using full integration to preserve

the correct rank of the element stiffness matrix.
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Prathap and Somashekar found that the source of the shear locking phenomenon

comes from inconsistency of the transverse shear strain fields with respect to the inplane

coordinates, x and y [72,73]. There are also inconsistencies in the thickness coordinate, 2,

but terms associated with the thickness coordinate are small when the aspect ratio is large,

so that the transverse interpolation inconsistencies are not so crucial in locking problems

compared to the in-plane interpolation inconsistencies [95]. Thus, in order to prevent the

shear locking phenomenon, we need to make only the transverse shear strain fields be field

consistent with respect to only the in-plane coordinates.

Since a general quadrilateral element is non-uniformly mapped from a Cartesian (glo-

bal) system into a natural (local) coordinate system, it is difficult to see the consistent form

of the transverse shear strains clearly. We need to transform them to the natural coordinate

system. The transverse shear strains in the natural coordinate system are called covariant

shear strains. Any fields can be transformed from the covariant to Cartesian coordinate

systems by the following expression:

1952 13x2
{ } = [J]{ } (3.5.31)

1371?. fiyz

where [J] is the Jacobian matrix and is defined as:

3x a

[J] = [1” J‘2] = (3.5.32)

121 122

‘1  

a— a

iay
_an a

The inverse Jacobian is obtained as:



 

86

-1 7 i 1 j -J°[J] = 111112 =m e2 .12 =

121 122 “121 111

where I]I is the determinant of the Jacobian matrix.

(3.5.33)

1°
)
w
l
a
'

l
g
”

S
’
l
g
’

.

  '
c
v

c
u

E

The transverse shear strain in the Cartesian coordinates, 7” is mapped into the natural

coordinates as:

aux

sz(§21’l) = a—z' +3}!

(3.5.34)

aux Buzag Eula"

= a7 *(‘aE5§*fia—x)

Considering that the inverse Jacobian terms are included in Eq. (3.5.34), some new covari-

ant in-plane displacement fields, u: and “n are introduced in order to derive the covariant

shear strains, so that the in-plane displacement field, ux can be rewritten as:

BE 31’] (3.5.35)ux = “Ea—x-‘i' “"3;

As the modified displacement fields can be expressed in more concise forms in Eq.

(3.3.15), covariant in-plane displacement fields, u: and “n can be expressed by:

_ (k) _ (k) - .
“g = u§a8¢§afi, U1.I = unaBCDnaB a. = l, 2, B = 1,2 (3.5.36)

where the new set of degrees-of-freedom will be represented as:
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a :17 ,a = u ,9

fa". _ng _m :5 g” B = l(bottom),2(top) (3.5.37)

"nafl' “nlfi’unzfl = “M3: 9116 .

Thus, u: and “n can be defined in terms of their new set of degrees-of-freedom, (igafl ,

“naB) 1n the covariant frame as:

ux = amBqaggg—E”Mofflfl-gg a : 1, 2; [3: 1, 2 (3.5.38)

where (1)223 and (Pmnab are still shape functions of the thickness coordinate (2) only and

are given in detail in the Appendix A. Substituting Eq. (3.5.35) into Eq. (3.5.34), the Car-

tesian based shear strain, 'sz’ can be obtained in terms of the covariant shear strains,

7&2’7112 as

+23“ a: 8“z 311

"ME n)= (.3.? +a§—)3—x+ (g:+331): (3.5.39)

=7§3111+Yn2112

where

_ _8_Zu§+ a_uz _ dun duz

Now, the covariant shear strain is derived in terms of covariant degrees of freedom by sub-

stituting Eq. (3.3.15) and Eq. (3.5.38) into Eq. (3.5.40):

7:2 = “élpq’gla, z 4’ 9gzpq’g23, z + quflg = aéab‘pgap, z + WB’énfl a = 1, 2 (3 5 41)

7n: = “nlfi‘pnlb.z+9n213‘pnzb.z+WB’nQB = ar1<=:13“’1r1m13.z+“’B’nna B = 1, 2
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The shear strain field, 'sz , can be expressed in terms of covariant degrees of freedom

by the same procedure as 7“:

Bu au

sz(§, Tl) = a—y +a—'z

Z y

(3.5.42)

= Buy + cal-33+ 8153-“)

BE; ay+ 811 By

uy can be written as:

_ . 3i . 3n
uy — 14:53:4' (Ln-a; (3.5.43)

Covariant in-plane displacement fields, it: and an can be expressed as:

uy = agafiwgafi1’2, «Landfiwnafl132 a = 1, 2; [3: 1, 2 (3.5.44)

where through-the-thickness shape functions, was and \Pnafi are given in the Appendix

A. Then the shear strain, yyz, can be expressed in terms of covariant shear strains,

“7&2 and 7m. Mathematically, this is as shown below:

(g )_ (Bug +114“) +(a:n+ iu)-

7” .n _ 3% ’2‘ an ’22 (3.5.45)

= 7:2121 +7nz122

where

_ (k)

‘ “zaa‘l’wz~
2
W N

I        

II

N
I
}

(3.5.46)
.. (k)

?nz = unafiwnafi,z+wflsn “- = 1, 2, B = 1,2   
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fiéaB and anus of Eq. (3.5.37) can be approximated by bilinear Lagrangian interpolation

functions, Pi(§, n) whiCh are used to interpolate 17,43 degrees-of—freedom in Eq. (3.5.1):

“eons = P“éafii’ W " Pia“nal” (3.5.47)

i=1, ..,4;a=1,2,;[3=1,2

For “’6 , the interdependent interpolation functions in the covariant frame as in Eq.

(3.5.29) should be used. Using Eqs. (3.5.25), (3.5.41), (3.5.47), the covariant shear strain

component, 7&2 in 7“ of Eq. (3.5.39) can be recast as:

wes-z)
          _ (Pi. éwfii + ”4449415” Nni. 4911139

I

N
I
}

_C__-8712)

—{enlB+9n23‘en3B+ 9714     
N
I
I
'
}

+%[(1— n){¢§1a 204.5213 ' “4213) + (9:23 ‘ eélbwém 2 “61115 " e       

+(1+"){‘1’§m.z(“§3a‘ “2:46) + (936" Gunman: + (91133-9       

 

                                   
=(WZB‘ WIB)}

5
3
1
'
:
-

 

{q’m z(“§BB + “4415) + @4211: _ (W313 — W419}
               

N
I
}

Since the coefficients associated with the quadratic term (1 - 112) in Eq. (3.5.48) include

only 9111' rotational degrees-of-freedom, they apparently yields an inconsistent shear strain

field, 75,. Those terms do not vanish in the thin regime where “7&2 tends to zero, leading to

spurious constraints and shear locking. It was identified that the inconsistent terms came

[_‘1
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from the interdependent interpolation scheme for degrees-of-freedom WB' Eliminating the

inconsistent terms, a consistent 752 can then be obtained in a concise form:

71:2: Piaigaa‘l’éanzHP4W5.-+N§i§9wima
 2:

(3.5.49)

N
I
}

i=1,...,4; 0L=1,2; B=1,2

Thus, we can obtain the consistent transverse shear strain, Yfiz of Eq. (3.5.49) by approxi-

mating WB by the modified interpolation function as follows:

WB = Pini+N§ie§Bi i = 1, ..., 4, B = 1,2 (3.5.50)

The other consistent covariant strain, 7m can be derived from the inconsistent shear strain,

711: in Eq. (3.5.39), in a similar way as

.(bu‘) + (P=P'u naflz mal: (3.5.51)

l
-
{
l

.
3 naBi i’Tl WiB+ NTIi’TI 6115i

h
i
l
l
}
-

with interpolation function for the WB degrees-of-freedom now given by:

EB = Pini+NnOMB! i = 1, ...,4,B = 1,2 (3.5.52)

The other transverse strain sz of Eq. (3.5.46) can be written in terms of the other two

covariant consistent transverse shear strains, 3:2 and $112 using the inconsistent covariant

shear strains, 3%, and '7,” of Eq. (3.5.45). The other two covariant consistent transverse

shear strains are:
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1’42 = Pi”"igaa‘l’mazfipvawm+N§v§9§mma|z= ,,

N
"

(3.5.53)

Ynz = Piunafli‘yflafi 2+(Pi’flwBi +N1‘Ii’fl6713i
    

N
I
I
'
}

i=l,...,4;0t=1,2;|3=1,2

The derived consistent transverse strain field is based on the concept that all transverse

shear strain fields should vanish in the thin regime of plate due to Kirchhoff constraints,

and the inconsistent fields which don’t vanish should be eliminated. This method can be

viewed as one of the assumed shear strain fields approaches [91-94], and it is analogous to

the selective/reduced integration concept except that it only removes the inconsistent

terms. However, selective/reduced integration removes even necessary terms in the strain

fields and causes spurious zero energy modes.

Consistent Penalty Constraints

To develop a C0 laminate theory and the finite element associated with the theory,

four constraints between rotation d.o.f and the first derivatives of transverse deflection

were imposed in the energy functional by employing the penalty method. The constraints

are given as follows:

Cw aw, e Cyfl aw“ e -12 3554
=W =(a7+5) P” (")

These constraints are very similar to the form of the shear strains in first order shear defor-

mation plate theory. This can be simply verified. If we consider the following rotation con-

vention and deformed shape,
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/ 6y

/deformed shape

U/ —-
\original shape

 

 

  

Figure 20.Schematic and definition of rotation and deformed shape

then displacement field becomes:

u = uo—za—x = u0+z6)

aw _ (3.5.55)

Thus, the transverse shear strains are given by:

_aw 8u_awo

”farm-5; “’1

_aw av _ aW0

'sz =8y +3z 3y 6"

(3.5.56)

We can see clearly that the constraints of Eq. (3.5.54) are exactly the same as the trans-

verse shear strains in first order shear deformation plate theory. Therefore, just like the

above transverse shear strain fields, we need to check if any of these constraints are field
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inconsistent, and hence causes any spurious constraints. Using the relation from Eq.

(3.5.31), the constraints in Eq. (3.5.54) can be written in terms of their covariant form as:

aw

3y ‘5

aw aw

_ 5 B 5 5 ’ 7_ “Va—g +1125 ~1129§p+1119nfi
(3-5-57)

7 3W3 7 aWB

111(5E + 91.3) + 112(fi — 953)

i11C§p+j12CnB

After substitution of shape functions into the covariant penalty constraints, C§B can be

l'CCflSt as:

aWB

C413 = 53 +9113)

_(l-nz)

- 3 (9452‘9§BI+9:B4‘9§133)

(1- 1+

4n)(W52 _ WI“ + 6an + 91132) + LIT-12(WB3 - “’84 + 91:53 + Ogfl4)

(3.5.58)
 

 +

If we examine Eq. (3.5.58), the coefficients of the quadratic term ( l — n2) are found to be

inconsistent because they are composed of only the rotational degrees-of-freedom 955,-.

Thus, they must be removed to make all the fields consistently vanish without inducing

spurious or locking constraints. The consistent covariant penalty component, C55 can be

obtained by interpolating the WB d.o.f. in a similar form as in Eq. (3.5.50) above instead of

Eq. (3.5.25) while keeping the interpolation scheme for the rotational degrees-of-freedom

unchanged. 6&5 can then be expressed in a succinct form,
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5:6 = Pvgwm + (Nun: + Poegpi (3.5.59)

Similarly, the other covariant penalty constraint Cm; can be derived as:

with the W5 degrees-of-freedom interpolated as in Eq. (3.5.52).

Edge Consistency

Now we have developed field consistent shear strains by examining transverse shear

strains in the covariant frame and eliminating inconsistent terms. However, even though

transverse shear strain fields are field-consistent, the element still locks if edge-consis-

tency of transverse shear strain on any common inter-element edge is not met, especially

for general quadrilateral elements. It is crucial to ensure matching of the tangential shear

strain on any common inter-element edge. Mismatch of tangential shear strain will give

rise to spurious constraints on the edges when the shape of elements is a general quadrilat-

eral. This stems from the fact that when the field consistent covariant transverse shear

strain is mapped back into global cartesian coordinates from the covariant frame, jacobian

transformations of two adjoining elements at their own integration points will redefine this

consistency, and cause a mismatch of tangential shear strain at the common edge. Thus,

the choice of sampling points of the jacobian transformations plays a very important role

in edge consistency of tangential shear strain at the common edge. Prathap and

Somashekar [72] showed that the consistency of tangential shear strain along a common

edge between two elements is maintained by transforming field consistent shear strains in

covariant frame into global cartesian fields at each node of the element instead of at Gauss
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integration points. In this way, edge consistency in the field consistent covariant penalty

constraint fields can be treated as well.

Replacement of Eqs. (3.5.49) and (3.5.51) with Eq. (3.5.39) gives the field consistent

shear strain in the covariant frame as:

7xz(§.11) = 2:21:11 “an1712

_ k 7' 7

= (Piuéafli¢(§ozflv z + (Pirawn: + N§,.§0§B.-)Qp)1 11

(3.5.61)_ k " ’
nab: 1105.2 t

where 1‘: 1,...,4; a=1,2; B: LEE-25:95

2 =1'
2

To maintain the edge consistency on the common inter-element edge, the covariant nodal

d.o.f, 17:3,, Ting,- of Eq. (3.5.37), should be mapped into their Cartesian coordinate defini-

tions, flag,- of Eq. (3.3.16) at each node [42,76], i.e.:

§=-1,n=—l; fi=l,n=—1; §=l,n=1; §=-1,n=1 (3.5.62)

Then, using Eqs. (3.5.32), (3.5.61), after the nodal transformation is accomplished, the

consistent Cartesian based shear strain, 7“ is given by:

4

- . (k) 7 . (k) 7

73:45:") = Z [ufli{(111)ipi¢§lfl, 2111 + (1203091113, 2112}

i=1

‘ k 7 . 7 7 7 _.

+ vBi{(112)iPi(D(§l)B, 2111 + (122)ipi¢f1k1)fi, 2112}+ WBi(Pi’§./11 + Pi’n112)nfl

(3.5.63)

. (k) 7 " 7 . k 7 " 7

"' exai{(122).-(Pi¢§2p, 2111 + NgvnQBJn) - (112),(P,-¢$,2)3, Z112 + Nnv§93111)}

. (k) 7 7' 7 . k 7 '— 7

+ eyfli{(111)i(Pi¢nzfl, 2112 + angflfiln) _(121)i(Pi¢(§2)B.2111 + Ngi’n08112)}:l
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iii are used to map Cartesian d.o.f into the covariant frame d.o.f. Therefore, it must be

evaluated at the integration points. ji]. are employed to map covariant frame d.o.f back to

Cartesian d.o.f, and must be assessed at the nodal points. Similarly,

4

- . (k) 7 . (k) 7

'sz(51 11) = 2 [ufli{(111)ipiql§lfl, z121 "' (121)1Pi‘11n1m122}

i=1

. k 7 . k 2 7 _

+ ”Bi{(1 12)1PI‘P(§1)B, 2121 + (122),P.:‘P$11)3, 2122} + W55(Pi’§b21 4’ Pi’n122)afl

(3.5.64)

. k 7 — 7 . k 7 — 2

4’ 9x5i{(122),-(Pi‘yéz)p, 2121 + NgngBJzz) 7 (112),(P31412)), z122 4' angflplzfi}

. k 7 — 7 . k 7 — 7

+ Gypi{(111),-(Pi‘1’£12)3, z122 + angflpjzl) - (121)i(Pi‘P(§2)B, z121 + Ngi,nQB]22)}]

Field consistent penalty constraint 6x13 is obtained by expressing Eq. (3.5.57) in terms of

the field consistent covariant penalty constraints, 6&3 and C115 from Eqs. (3.5.59),

(3.5.60):

(15$. T1)= 5:131:11 + (71151712

i= 1,...,4; [3: 1,2

By nodal transformation, the nodal covariant rotations, 6g,- and 9111' are transformed back

to the Cartesian coordinate definitions of the rotations, 9n- and Gyi. Thus, the consistent

covariant penalty constraint, ExB can be written in terms of 9x: and 0,,- explicitly as:
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4

i=1 . . , , (3.5.66)

+ eyBi{(Jll)i(Nni9§ + 19,91117(121),-(N§,-,,1 — P9112}

+WBi(Pi’§jll+Pivnj12)] [3 = 1.2

By the similar procedure, the consistent covariant penalty constraint, 5343 are:

4

ayfi<§9 TI) = Z [eth{—(j12)i(NT|i’§+Pi)j21 +(j22)i(N§i91]—Pi)j22}

i: l . 7 , ... (3.5.67)

+ eysi{(11 1 ).-(Nn.w§ 4' P0121 - (121)i(N§i’n — P9122}

+W5i{Pi’§j2l +Pi’nj22}]
B = 1, 2

The consistent shear strain fields, '7“ and '7” in Cartesian coordinates as well as the con-

sistent penalty constraints, CxB and Cy]; derived in this method ensure to alleviate locking

phenomenon, therefore an exact numerical integration rule can be used to evaluate the

shear strain energy.

3.6 Poisson’s Ratio Stiffening Effect

The element with uniform transverse normal strain predicts deflections that are about

10 % too stiff when one sublaminate (one element through thickness) is used in the thin

regime, depending on Poisson’s ratio, even though the element is developed using field

consistent shear fields and edge consistency to prevent shear locking. This phenomenon

was identified as Poisson’s ratio stiffening effect [77,96,97].

From the assumption of transverse deflection displacement, Eq. (3.3.1), the original

form of transverse normal strain is constant through-the-thickness as:



 e = ’ (3.6.1)

This transverse normal strain can be also obtained from the constitutive equation Eq.

(3.2.2) and is given by:

(k) (k) (k)

(k) _C__13 (k)_ C_2__3 (k)__ C___3_6 (k)+__1—o (3 62)

ea = C—'(k) xx C(k) W Can 0 Can 22 ° '

When the laminate is thin, the laminate is in a plane stress state, and the transverse normal

stress approaches to zero. Eq. (3.6.2) becomes:

(’6) (k)

(k) C13 (k)_ C23—e(k)- C36 (’0 (363)
82.2: _C(k) xx _Cg") yy €735)ny

. °

Due to the assumption of displacement field, Eq. (3.3.1), eggs”"" and 7"" in Eq. (3.6.3)

vary linearly in the thickness direction, while 82:) in Eq. (3.6.1) is constant through the

thickness by the definition of transverse strain. Thus, the element can not capture the vari-

ation of egg) in the thickness direction. The difference in the through-thickness variation

between transverse normal strain by Eq. (3.6.1) and by Eq. (3.6.3) produces a stiffening

effect of the order of 10%. This effects goes away rapidly when more than one element is

used through the thickness. In the current element, this stiffening effect is removed by

using the assumed transverse normal stress approach as discussed previously.
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3.7 Numerical Results

The accuracy of the proposed laminated plate theory and the appropriateness of the

finite element model were assessed by simulating the response of two different simply-

supported laminated plates subjected to a transverse double sinusoidal loading as shown in

Figure 21. The elasticity solution ofBurton and Noor [98] and the predictions based on

first-order shear deformation theory (FSDT) [10] were used to provide comparison with

the current plate results (FZZBD). For a given location in the plane of the plate, explicit

expressions for the through-thickness variation of stresses are provided by the present

model. In the plane of the plate, stresses were evaluated at the centroid of each element,

where stress is super-convergent [73]. The bending stresses presented in the forthcoming

discussion were evaluated at the center of the element that is nearest the center of the

plate. The transverse deflections are obtained at the top surface of the center of the plate

where load is applied. The in-plane displacements are obtained at the edges of the plate

where x = O and y = a/Z (for ux displacement) or y = O and x = a/2 (for uy displacement),

and a is the length of each side of the plate. Due to the symmetry of the panels, only a

quarter of the plate was modeled in each case. A uniform mesh of 8x8 elements was uti-

lized in the plane of a quarter of the plate, and the through-thickness disoretization was

varied to assess the utility of the present models. A length-to-thickness aspect ratio of four

was chosen in the present examples in order to highlight the ability of the present model to

obtain accurate results for very thick laminates via through-thickness refinement of the

mesh.



 

Figure 21. Simply supported laminated composite plate

subjected to sinusoidal loading.

Example 1: CAV Panel

The first example is a panel from the US Army TACOM’s Composite Armored Vehi—

cle (CAV). Material properties used in the analysis are given in Table 3. The laminte con-

sists of 55 layers and is nearly two inches thick. The laminate can be divided into three

sections, as described below:

- Inner Shell: Four plies of S-2 Glass/Phenolic fabric with stacking sequence

{[902/02] } (ply thickness = 0.0] in.). Thirty-seven plies of S-2 Glass/855340 Epoxy

tows with stacking sequence {[0/90] , [45/—45/0/90]4 , [45/0/45] ,

[90/0/—45/45]4 } (ply thickness = 0.021 in.).

0 Armor Core. One layer of EPDM rubber (ply thickness = 0.0625 in.) and one layer of

ceramic tile with inserts (ply thickness = 0.7 in.).

0 Outer Shell. TWelve plies of S-2 Glass/855340 Epoxy fabric with stacking sequence



101

[0/90/45/—-45/0/90]5 (ply thickness = 0.01 in.).

To allow comparison of predictions of the current model with the elasticity solution, all

layers are oriented at either 90° or 0° from the reference axis by replacing all 45° plies with

90° plies and -45° plies with 0° plies.

Two types of through-thickness refinement were used in the analyses: (1) a single sublam-

inate, and (2) three sublaminates with a sublaminate for the inner shell, a sublaminate for

the rubber layer, and a sublaminate for the ceramic tile layer and the outer shell.

The influence of aspect ratios on transverse deflection is shown in Figure 22. Eight dif-

ferent aspect ratios were considered to check a wide range of plate bending behavior (Uh:

4, 8, 10, 20, 30, 50, 100, 500, and 1000). When one sublaminate was used, the error in pre-

dicted deflection was about 15 percent for the case alh=4. The use of three sublaminates

resulted in more accurate predictions, with an error of less than one percent. It was

observed that the prediction of transverse deflection converges rapidly to the exact solu-

tion as more sublaminates are used. In Figure 23, the variation of in-plane displacement,

ux, through the thickness of the laminate is plotted at x = 0 and y = a/2 for the case of

aspect ratio of four. The exact distribution of in-plane displacement is approximately lin-

ear within each layer, and globally piece-wise linear and of zig-zag pattern due to the dif-

ference in- the shear moduli of adjacent layers. It is shown that the current model

containing only one sublaminate captures the trends of the distribution of displacement

very well, while FSDT is unable to simulate such behavior. The bending stress distribution

through the thickness is illustrated in Figure 24. The stress was evaluated at the Gauss

point nearest to the center of the plate. It can be observed that the prediction of in-plane

normal stress by the current model agrees well with the elasticity solution.



102

Table 3. Material properties for TACOM’s composite armored vehicle (CAV) panel

 

 

 

 

 

 

 

 

 

 

 

S-2 Glass] S-2 Glass] S-2 Glass/ EPDM

Phenolic 8553-40 8553-40 Rubber Ceramic

=L Fabric Tow Fabric

E1 1 3.0e6 6.2e6 3.0e6 3.0e3 5.0e6

E22 3.0e6 1 .0e6 3.0e6 3.0e3 5.0e6

E33 1.2e6 1 .0e6 1.1e6 3.0e3 1 .25e5

v12 0.13 0.29 0.13 0.45 0.15

v23 0.18 0.37 0.18 0.45 0.15

v13 0.18 0.29 0.18 0.45 0.15

(312 1.0e6 0.3e6 1.0e6 1.0e3 2.5e6

623 4.6e5 0.3e6 3.9e5 1.0e3 8.5e3

613 4.6e5 0.3e6 3.9e5 1.0e3 8.5e3          
The prediction of in~plane shear stress is shown in Figure 25. There is significant error in

the armor core region, but predictions of the current model are very good in other regions

of the laminate. The distribution of transverse shear stress, (13,z through thickness is shown

in Figure 26. As assumed, this component of stress is constant in each sublaminate. It is

shown that the use of multiple sublaminates allows the current model to capture the trends

of the through-thickness distribution of shear stress. The transverse normal strain, 8w is

predicted in Figure 27. When three sublaminates are used, the distribution of transverse

strain is nearly indistinguishable from the elasticity solution. In Figure 28, transverse nor-

mal stress, ow versus normalized thickness coordinate at the center of the plate is illus-

trated. As assumed, the model captures about the average value of the exact distribution in

a sublaminate.
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Example 2: Sandwich Panel

The second example is a sandwich panel which consists of a thick core between two

sets of five face sheets. The material properties used in the analysis are listed in Table 4.,

and the lamination scheme is defined in Table 5. The core occupies eighty percent of the

thickness of the plate, while each set of face sheets contains five layers and occupies ten

percent of the total thickness. Two types of through-thickness discretization were used in

the analyses: (1) a single sublaminate, (2) three sublaminates with equal thickness. In Fig-

ure 29, the predicted through-thickness distributions of in-plane displacement are illus-

trated. All predictions were very accurate in the upper and lower face sheet regions, but

there were significant errors in the core region when only one sublaminate was used.

These errors were due to the very large transverse shear strains and transverse squashing

in the core of this thick sandwich plate. The nonlinear variation of inplane displacement in

this region could not be captured accurately by a single sublaminate in the core region. For

thinner plates (i.e., a/h greater than about 10), the inplane displacements throughout the

thickness are predicted satisfactorily using a single sublaminate through the entire thick-

ness of the laminate. To assess the bending stress, on, more clearly, the stress distribution

in the upper face sheet region is enlarged and shown in Figure 30. It can be observed that

the current finite element model using only one sublaminate predicts the stress distribution

in the face sheets fairly accurately, and even greater accuracy is achieved with three sub-

laminates. In Figure 31, in-plane shear stress in the face sheets are predicted. It is shown in

Figure 32 that the average transverse shear stress is captured well by the current model.

Figure 33 depicts the distribution of transverse normal strain, 82,, through the thickness of

the laminate. When three sublaminates were employed, the strain distribution through the
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thickness is predicted relatively well, capturing the trend very well in the core region.

Transverse normal stress, ow versus normalized thickness coordinate at the center of the

plate is shown in Figure 34. It can be observed that it takes about the average value of the

exact distribution in a sublaminate, and captures the distribution trends as more elements

are used through thickness.

3.8 Summary

An improved first order zig-zag theory and an associated finite element model are pre-

sented. The model allows the representation of a laminate as an assemblage of sublami-

nates in order to increase the model refinement through the thickness, when needed.

Within each sublaminate, an accurate first-order zig-zag sublaminate kinematic approxi-

mation is made which minimizes the need for multiple sublaminates for many problems of

practical interest yet easily accommodates through-thickness refinement for predicting

local variations of stress and deformation. The finite element model is “regenerat ” in the

form of an eight-noded three dimensional element with five degrees of freedom (three

translations and two rotations) per node. Thus, it is suitable for implementation into com-

mercial finite element codes. Numerical results demonstrate that the current model is

accurate, efficient, and robust for analysis of a wide variety of thick or thin laminated

plates.
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Table 4. Material properties for sandwich composite plate

 

 

 

 

 

 

 

 

 

 

       

L 4 material 1 material 2 material 3 core

E11 1.0e6 r 32.6e6 : 25.e6 50.e3

E22 25.0e6 1 .0e7 1 .0e6 150.e3

E33 1.0e6 l .0e7 1 .0e6 50.e3

V12' 0.01 0.10 0.25 0.01

v23 0.25 0.25 0.25 0. 15

v13 0.25 ' 0.10 0.25 0.15

612 0.50e6 8.21e6 0.5e6 21 .7e3

623 0.50e6 0.5e6 0.2e6 42.0e3

613 0.20e6 8.21e6 0.5e6 21 .7e3

 

Table 5. Lamination Scheme for Sandwich Panel

 

 

 

 

 

 

 

 

 

 

 

 

     

. Layer No. dilatefial Thickness

1 1 0.010

2 2 0.025

3 3 0.015

4 1 0.020

5 3 0.030

6 Core 0.800

7 3 0.030

8 1 0.020

9 3 0.015

10 2 0.025

11 1 0.010   
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Figure 22. Variation ofnormalized center deflection

versus plate aspect ratio at the center of the plate (CAV Panel, alh=4).
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Figure 24. Bending stress, om versus normalized thickness

coordinate at the center of the plate (CAV Panel, alh=4).
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Figure 26. Transverse shear stress, on, versus normalized

thickness coordinate at x = 0, y = 21a (CAV Panel, alh=4).
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Figure 27. Transverse normal strain, 82,, versus normalized thickness

coordinate at the center of the plate (CAV Panel, alh=4).
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coordinate at the center of the plate (Sandwich Panel, alh=4).



3
‘
I
N

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

118

 

  
   — Elasticity

- - FZZ$Dz 1 sublaminate

-- - - F230: 3 sublaminates

   

I b
-
—
—
-
—
—
—
-
—
.
-
-
-

 

  
.5 0 0.5 1

SIGMA 22

Figure 34. Transverse normal strain, ow versus normalized thickness

coordinate at the center of the plate (Sandwich Panel, alh=4).

1.5



 

CHAPTER IV

PLATE ELEMENT

BASED ON CUBIC ZIG-ZAG THEORY

4.1 Introduction

Composite materials are being considered for use in the front end structures of vehi-

cles to help reduce overall vehicle mass and, thus, improve fuel efficiency. Acceptance of

composite materials in structural members will depend on their ability to do crash energy

management. Numerical simulations can greatly aid in the design of these critical struc-

tures and reduce the number of crash tests. When the laminated composites undergo crash,

the fracture of composite materials results from four possible major reasons: (i) fiber frac-

ture, (ii) matrix cracking, (iii) fiber/matrix interface debonding, and (iv) fiber buckling or

kinking. These modes of failure don’t occur simultaneously in all constituents but initiate

as micro-cracks at the constituent level, and unite or propagate as external loading (for

example, impact force, heat and moisture) is increased. As the micro-crack propagates

parallel to the fiber direction through resin rich region, delamination occurs. The simplest

way to predict delamination is to evaluate the interlaminar shear stress/strain states in each

layer, neglecting the stress/strains in the constituent level. The discretization in the thick-

ness direction gives a good prediction of the interlaminar shear strains, but makes the com-

119
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putational cost expensive (especially for dynamic analysis). For this purpose, the

development of more accurate theories and elements to predict interlaminar shear stress/

strain is indispensable.

A new finite element, which is based on laminated plate theory with cubic zig-zag

approximations, has been developed to model the relevant mechanics that occur in com-

posite materials during crash events. In the plate theory, the in-plane displacement fields in

a laminate are assumed to be piecewise cubic functions and vary in a zig-zag fashion

through the thickness of the laminate. The zig-zag functions are obtained by satisfying the

continuity of transverse shear stresses at layer interfaces. This in-plane displacement field

assumption accounts for discrete layer effects without increasing the number of degrees of

freedom as the number of layers is increased. The transverse normal strain predictions are

improved by assuming a constant variation of transverse normal stress through the thick-

ness in a laminate. The finite element is developed with the topology of an eight-noded

brick. Each node has five engineering degrees of freedom, three translations and two rota-

tions. Thus, this element can be conveniently implemented into general purpose finite ele- ,

ment codes. Numerical performance of the current element is investigated by simulating a

plate with a damaged layer.

4.2 Formulation of Plate Theory

A laminate is assumed to be composed ofN perfectly bonded layers. Each layer in the

laminate may have independent thickness and material properties. The global Z-axis is

taken perpendicular to the inplane X, Y coordinate axes and has its origin at the bottom of

the laminate (see Figure 35).
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Figure 35. Schematic ofa laminateand layerdivisions

in the cubic zig-zag laminated plate theory.

To develop the element, three dimensional kinematic assumption were utilized, and the

three dimensional constitutive equation in the kth layer can be written as:

.3: "cl: Ci? c2? 0 0 CE? 8553

61? egg) cg; egg) 0 o cg? e33

(’0 k k (k)

<o::)> = C(13) C(23) Cg]? (3k) (3k) Calgtéi)» (4.2.1)

Cyz 0 0 0 C44 C45 0 sz

of? o o 0 C5,? cg? o yfifi’

as pit) c9: cl: 0 o c221 155’       

For most practical laminated composites, the 13 coefficients of the material stiffness

matrix are obtained from 9 independent material constants and a transformation law. The
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stress - strain relationship is defined as:

(k) (k) (k)

8(k) _ 93x 8(k) _ 33y a“) _ 3‘1:

xx“ x ’ w‘a ' zz’az

(k) (k) y(k) (k) (k) (k) (4'22)

Y(k) = fie + fly (k) = 3_“z + is , (k) = fl“), +911.

yz y 82 ’ ‘2 8x dz ’ ’0’ 8x By

The displacement fields are initially assumed in the following form:

2 3 k-l

k

“(x )(X, y: Z, t) = ub+sz+Z ax+z Bx+ 2(Z_Zi)§i

i= 1

2 3 It—l

k

"(y )(x, y, z, t) = v,, + zwy + 2 ply + 2 By + z (z — zimi (4-2-3)

i=1

(’0 Z Z
uZ (x, y, z, t) = wb(l — II) + w,(,—1)

where h is the thickness of the laminate, ab and vb are the axial displacements in x and y

directions, respectively, at z = 0, w, and w, are rotations of the normal at z = 0, and wb and

w, are the transverse deflections of the bottom and top surfaces, respectively, of the lami-

nate. ax, cry, Bx and By represent the high order rotations of the normal at z = 0, and

account for warping of the normal, which occurs when the material properties in, each

layer are significantly different. Comparing Eq. (4.2.3) with Eq. (3.3.1), it can be observed

that this plate theory is reduced to the first order zig-zag plate theory by setting these high

order rotations to zero. It is assumed in Eq. (4.2.3) that a piecewise linear zig-zag function

(’0 (k)
x and u),

k)

is superimposed on cubic displacement function, so that u vary in a piecewise

cubic fashion through the thickness of a laminate, and it: varies linearly through the

thickness. The resulting transverse shear strains vary a quadratic fashion through thick-
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ness, so interlaminar shear stresses can be predicted accurately. The parameters 5, and 11,.

of Eq. (4.2.3) are removed by enforcing the continuity of shear stress at each interface [33,

34]. At the kth interface in the laminate, the shear stress continuity condition can be given

by:

(k)_ (k+l) (k)_ (k+1)

yz - Gyz _ 62x " O.er _ (4-2-4)

Z - Z} Z " zt

0'

The transverse shear stress - strain relationship can be obtained from the constitutive equa-

tion (4.2.1) and is defined as:

(k) _ (k) (k) (k) (k) '

0'yz ' C44 sz +C45 7x2

(k) _ (k) (k) (k) (’0

0x2 - C45 sz + C55 sz

(4.2.5)

By differentiating displacement fields with respect to z, x or y properly, the transverse

shear strains are obtained, and the relationship between the transverse shear strains in the

kth layer and (k+1)th layer are derived as:

(k+l) 2 k aw” Z aw‘z'sz = Wx+220Ix+3z Bin“ 2§i+a—x (1';)+§} (5)

i=1

0‘)

= sz +§k

k

(“U __ 2 3W1; 2 8w, 2
yyz — wy+22ay+3z By-I- 211,43 (l-Z)+$ (’7)

i=1

(4.2.6)

(k)

= sz + TI];

The transverse shear stress continuity condition is rewritten as:
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k k k k k l k It It(C(17;?) (32.-2:37;)” _ {C(+ )(Y()+71k)+c())+§k)}I(z=z

(k) (k) C(k) (k) (k l) (k) (k)( ,YUc) (4'2'7)4.

(Caryn szsssz)|_ = {C45 (7,, +n,.)+C55 z..+§,.)}|_
- zk

The following equation is obtained by solving (4.2.7) for 11k and Q:

k k
7115 = ay;2)+by() 428

(k) (k) ( ' ' )

gk = 6"sz +d‘sz

where

. l k k 1 k
a, = Atl(C5’5+ ’C‘44’-Cf,5*c’ 5’)—l‘

+

.. 1 k l k
b5 = Ak11(cg’5+ )C(5’—Cf,’;* ’C55’)

+

Ck = A 1(C(k+1)C(k)_ £§+1)Cg:)) (4.29)

k-i-l

3k = A 1(C(k+l)C§k)_C£§+l)C(k))_1

k+l

Ah] _ C(k+l)C(5k)__ C(k+l)

Substitution of Eq. (4.2.6) into Eq. (4.2.7) gives recursive equations about E,- and 11,- , and

solving the recursive equations for £1- and 11,. renders:

(4.2.10)
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where

aik

J'=I j-l

bik =

a,[f,,+za]+b,.zc

125+;IN:MI

. .,( 5. (4.2.11)

]+dkkzlc:

j=1 j-l

dik=dk[ffik+kzljdj+ckkzlbij9 (i=192’394)

j-1 =1

fik = "(Z/Ji-

From Eqs. (4.2.9)-(4.2.11) it can be observed that Q and n,- depend on the ratios of shear

properties between adjacent layers and the shear deformation in the laminate. If the differ-

ence in shear stiffness quantities between two adjacent layers or the shear deformation in

the laminate is small, then discrete-layer effects will also be small.

Convenient finite element models (i.e. regenerated elements) can be developed by

writing the rotational variables W5 and \yy in the displacement field in terms of the trans-

lational variables a, and v,, the inplane translations at the top surface of the laminate

[41,42]. Thus, in-plane displacement is described more conveniently by the translation at

two points using surface quantities. Moreover, since the existence of the first derivatives of

transverse deflections,

!37 , $6 "a? and 8_y (4.2.12)

in the displacement fields result in the presence of their second derivatives in the strain
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energy functional, Cl continuity of w,, and w, is required. In order to facilitate the develop-

ment of more convenient finite element models, it is desirable to alleviate such a require-

ment by introducing new rotational degrees of freedom as follows:

(4.2.13)

These relationships will be imposed as constraints in the energy functional. Furthermore,

ax, (1y , Bx and By can be eliminated by using the free shear traction conditions at the

top and bottom of the laminate as follows [15]:

(1)

  

  

 

= (ataxia-c2315.?) - o

55:.) -—- <01§’v§’:’+ c1251?) — 0
1:2,) =(Cfifi’y§§’+c§§’y§’;’)l =0 (4.2.14)

z=h z=h

55:.“ = (castucliiitblzz, = 0

Substituting the modified displacement fields into Eq. (4.2.14), solving for ax, 0t, , x

and By , we can attain final modified displacement fields. Here, we need to pay attention to

the fact that since the free shear traction conditions were utilized, the discretization

through thickness is impossible in finite element model. Therefore, the displacement fields

can be written as follows:

(k) - (k) (k) - (k) (k)
= u B‘Dafl , My =uaB‘I’aB, “Z =WBQB, (1 = 1...4,B = 1,2 (4.2.15)

where the index [3 is used to denote the top and bottom of the laminate with 1: bottom and

2: top, and (1)23, if; and “B are shape functions in the thickness direction, which are
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explained in Appendix B. Unless noted otherwise, summation on repeated indices is

implied. The variables Cap are:

l-llB = “3, I225: VB, E3B=GIB,T¢4B=9yB (4.216)

The transverse normal strain, which is constant in the laminate due to the assumption

of displacement for thickness direction, can be improved by instead assuming a constant

transverse normal stress G—zz through-the-thickness of the laminate. 6'; can be deter-

mined using Reissner’s mixed variational principle [81]. From Eq. (4.2.1), the transverse

normal strain is obtained as:

e“) - figs“ - £8“) — 92¢“ + io— (4.2.17)
22 ‘ (15) xx (k) W (k) I? (k) 21

C33 C33 C33 C33

o—ZZ is then determined by analytically solving the following relation:

N 1k

..k k

0 = 2 j (ea—cum (4.2.18)

k=lzk—l

Substituting the strain - displacement relations and Eq. (4.2.17) into Eq. (4.2.18), the con-

stant transverse normal stress (I, is found to be:
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_ aub Bu, avb 3v, 39y];

ozz = 8—x (P1+56)+$(P2—56)+3;(P3+S7)+a—x(—P3+SB)+§; (1044.59)

39),, 39x), 39x, aub aut

+5; (P4+59)+-a; (P5+S‘°)+$ (P5+Slo)+§;(Q1+51)+§;(’Q1+52)

(4.2.19)

+-a—y(Q2+S3)+$(Q3—S3)+$ (Q4+S4)+a—y (Q4+S4)+a_y (Q5+Ss)

39x:
+9.; (Q5+S5)+Wb(-T1)+W:(Tl)

where the coefficients are defined in the Appendix B. The newly defined transverse normal

strain can now be written as:

(k) _ (k) — (k) . _
822 = “GB: xlxafl + uaB’ ylyafi ‘l' WBXB a = 1. . .4, B — 1, 2 (4.2.20)

where the functions 2.225 , 14,23 and x5 are defined in the Appendix B.

The current plate theory has the following features:

1) A piecewise linear zig-zag function is superimposed on a cubic in-plane displacement

(k) (k)
x and u),

k)

function, thus, u vary in a piecewise cubic fashion through the thickness of

a laminate, while u: varies linearly through the thickness.

2) Discrete-layer effects are captured within a laminate by allowing a piecewise (layer-

wise) continuous through-the-thickness variation of the in-plane displacements.

3) The transverse shear strains vary in a piecewise quadratic fashion through thickness,

and interlaminar shear stresses can be predicted accurately.

4) Continuity of transverse shear stresses through the thickness of a laminate is satisfied.

5) By introducing rotational degrees of freedom, the C0 plate theory was developed.

6) Because of utilizing homogeneous shear traction boundary conditions, refinement

through the thickness can not be accomplished.
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6) Transverse normal strain distribution through the thickness of a laminate was improved

by assuming constant transverse normal stress.

7) In the displacement fields, only five engineering d.o.f. (three translations + two rota-

tions) are present.

The equations of motion, the essential and natural boundary conditions, as well as the

displacement-based finite element model can be developed from Hamilton’s principle.

The energy functional is modified here to include the imposition of the constraints Eq.

(4.2.13) via the penalty method. Hamilton’s principle can be defined as follows:

8 l{U—K—W+P}dt= 0 (4.2.21)
‘0

U is the internal strain energy:

N...

lkk kk(k)k kk(k)k kk

U = 2 J §[o( )e( ) +0( )8( ) +6 8( ) +0373 +0er ygx)+o§y)7§y)]de (4.2.22)

k

xx xx yy yy 22 zz

where Vk is the volume of the k-th layer. K is the kinetic energy:

N

1 k .k2 .k2 .k2 .
K: 2 I§p()[ui) +14) +u§)]dvk (4.2.23)

k=1V,, '

where pm is the density of the k-th layer and a superposed dot indicates differentiation

with respect to time. W is the work of external forces:

w = JwaPadQ+ ItiuidI‘

Q r (4.2.24)
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P is the penalty constraint:

P = all zl{(u3p_ggfl)2+ (u4B+g_:B)2}:|d.Q (4.2.25)

where y is the penalty parameter. As 7 is assigned successively larger values, the con-

straints of Eq. (4.2.13) are satisfied more exactly in the least squares sense.

Substituting Eqs. (4.2.2), (4.2.15), (4.2.20), (4.2.22), (4.2.23), (4.2.24), and (4.2.25) into

Eq. (4.2.21), taking the variation of Eq. (4.2.21), and integrating by parts, Eq. (4.2.21) can

be rewritten as:

_yxafi
aNmB_aNyaB_anB{:wa a_nyaB 3R

:11““6"— ay ax 197 ”WWW37 a7

de 32u, 32u,

““7((NB a_'yMM:N(“013+?— B)84tz'*'—2pIaBrp+ _2pIaBrp}w

at2 3:2

3R 8R ya—u _322w 3_u +3_2w +8—22wp

(4.2.26)

+ §[5aaB{Nxaan + NyaB”y + N:0,an + szflny + nyapny + Rymbnx}p

S

__ aWB _ 3W5 ‘

+ 5wB Ryany + Rxan + Yny(u3B —$ )- ynx(u45 +$ ) ds

N 21
k) - k

+J‘ 2 I (0(11- njau(15(1)(43+ C(21)").-6uaflwgcfl))dzds:|dt = 0

3k: lzk-l

(a, r =1...4;[3,p =1,2)

where NxaB’ NyaB’ NZGB’ NZGB’ QZGB’ anp, Qxap, nyaB’ Ryxafi’ RZB’ RyB, Rxfl are the

stress resultants shown in the Appendix B, nx, ny are the directional cosines,
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1:5”), 1:15”, 13;, are the plate inertias defined in the Appendix B, and 8013 is the Kro-

necker delta. Considering that variations of the generalized displacement degrees of free-

dom are independent for r0 < t < t1 and zero for t = t0, t1 , the equations of motion are

derived as:

anyaB 3R
_ny13

NB Qde + 3)? +37

31v“+3 aN3352,1539
_ . zaB_

5““B' ax ay ax ay Q

8w 8w 3 it, u 32u,

+ 7(‘7045 ‘ 533)531+ 707043 "' 3; BJSM = _2' I”«W+—at22pIaBrp (4-2-27)

The corresponding boundary conditions are:

Essential B.C Natural BC.

3013 (Nxaan '1' Nyafiny + Nzaflnx + QZaBny + nyaflny + Ryxaflnx)

N z (k) (k) (on (k)
+ z I (011-711(1)B + oz}. nJ‘PaB)dz (4.2.28)

k' 1231— 1

W13 Ryfiny + Rxan + yny(u3fl -a—y )——7n(“43 +—a—x )

4.3 Finite Element Formulation

Because the degrees of freedom represent quantities at the surfaces of the laminate, to

take a major advantage of the present formulation, the finite element model was cast in the

form of an eight-noded element with five degrees of freedom per node (see Figure 36).

From Eq. (4.2.3), it can be seen that the primary variables are functions of x, y and t only,
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thus we need to consider only two dimensional shape functions for the finite element

model.

14,, v,, w" 9”, By, 14,, v,, w,, 9,“, 9y,
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Figure 36. Element topology and nodal degrees of freedom.

Inplane displacement and rotation degrees of freedom are approximated by the bilin-

ear Lagrange interpolation functions:

4 4

7‘15- 2%”: '7213 - 2%th
I: i:

4 4 (4.3.1)

where

= in +§.§)(1 +n.~n) (4.3.2)
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and 2;, n are the element natural (local) coordinates. For transverse deflection degrees of

freedom, an interdependent interpolation concept similar to that developed by Tessler and

Hughes [75] is utilized. The interdependent interpolations functions are:

4

WB = 2 (Piwfli + inexBi + Nyieyfli)
(4.3.3)

i=1

where N“. and Nyi are:

l 1

in = ‘§()’12N5 ‘3’41N8)’ Nyl = §(x12N5 ‘x41N8)

1 1

NxZ = "§()’23N6 'y12N5)’ Ny2 = §(x23N6 ‘x12N5) (4 3 4)

1 1 ° '

Nx3 = -§()’34N7 ‘Y23N6)’ Ny3 = §(x34N7 _x23N6)

l 1

Nx4=-§(y4lN8_y34N7)’ Ny4= §(x4lN8-x34N7) xij=xi-xj; yij=Yi—yj

where Ni are the quadratic serendipity shape functions.

The developed element locks in the thin regime even though the interdependent inter-

polation scheme was utilized. This shear locking phenomenon is mainly attributed to

inconsistent terms in the transverse shear strain fields with respect to the in-plane coordi-

nates, x and y [73,74]. The inconsistent terms do not vanish in the thin regime of the ele-

ment, which causes locking. The inconsistencies in the thickness coordinate, 2, also exist

but can be neglected relative to the inconsistencies in in-plane interpolation. Therefore, we

need to ensure only the transverse shear strain fields to be field consistent with respect to

the inplane coordinates in order to prevent shear locking. This is performed using the

approach presented in [73,74]. Through the similar procedure as in the previous chapter,
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the consistent shear strain fields in covariant frame are obtained as follows:

- (k) 1'

YXZ(§’ 1‘) = [Piuéafifpgafi’ Z + (Pi’gwfli + N§i9§6§Bi)QB]111

.. (k) -.

+ [Piunaai‘bnaflz + (Pi’flwfli + Nni'nenfli)fll31112

where i=1,...,4; 0t=1,2; B=1,2

- k ,

7,.(5. n) = [Piugafipréga , + (Pi’fiwfii + N§,.§e§,,,-)n,31121

+ [Pianamwnafl z + (mem + Nnmenflimp]in

where i=1,...,4; a: 1,2; [3: 1,2

The consistent constraint fields are recast into the following form:

+ [Pi’nwfli + (Néivn - Pi)enfli1j12

Cyfi(§a Tl) = [Pi’éwfli + (Nnigg + Pi)9§B,]j21

+ [Pi’nwfii + (”gm - Pi)9nfii]j21

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

To make sure that an element is free of locking, still the derived consistent shear strain

field and consistent constraints are required to satisfy the edge-consistency on the inter-

element edges. The edge consistency is fulfilled by mapping back the covariant-based

shear strain fields and the covariant-based penalty constraint fields to Cartesian coordinate

at element nodal coordinates. The edge consistent shear Strains are:
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4

a)“; 7i) = 2 [9x3i{-(j12)i(Nm-,§ + ADJ/721 + (j22)i(N§i’T| — P0132}

i: 1 . 7 , , (4.3.12)

+ eyfli{(]ll)i(Nni’§ + Pi)121—(121)i(N§,-.n - P9122}

4' WBi{Pi,§j21 + P;.nJ-'22}] B = 1. 2

Since the adopted method ensures to alleviate locking phenomenon, therefore an exact

number of integration points can be used to evaluate the shear strain energy without caus-

ing locking.

4.4 Numerical Results

The response of simply-supported laminated plates ‘with delamination or ply damage

under a transverse double sinusoidal loading as shown in Figure 37 is presented. In order

to investigate the ability of such a laminate model to capture the local kinematic variations

associated with damage, a very thin layer with compliant material stiffnesses is placed

between two adjacent layers. The material properties used in the analysis are listed in

Table 6., and the lamination scheme is defined in Table 7.. The current plate results

(CZZBD) were compared with the elasticity solution of Burton and Noor [98]. For a given

location in the plane of the plate, explicit expressions for the through-thickness variation

of stresses are provided by the present model. In the plane of the plate, stresses were eval-

uated at the centroid of each element, where stress is super-convergent [73]. The bending

stresses presented in the forthcoming discussion were evaluated at the center of the ele-

ment that is nearest the center of the plate. The transverse deflections are obtained at the

top surface of the center of the plate where load is applied. The in-plane displacements are
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obtained at the edges of the plate where x = O and y = 312 (for ux displacement) or y = O

and x = alZ (for uy displacement), and a is the length of each side of the plate. Due to both

the geometric and boundary condition symmetries of the panel, only a quarter of the plate

was modeled.

 
Figure 37. Simply supported laminated composite plate

subjected to sinusoidal loading.

A uniform mesh of 8x8 elements was utilized in the plane of a quarter of the plate. A

length-to-thickness aspect ratio of twenty was chosen in the present example in order to

simulate the automotive-type fiber reinforced composite thin wall structures. The influ-

ence of aspect ratios on transverse deflection is shown in Figure 38. Eight different aspect

ratios were considered to check a wide range of plate bending behavior (Uh: 4, 8, 10, 20,

30, 50, 100, 500, and 1000). The error in predicted deflection was about 3 percent for the

case a/h = 10. In Figure 39, the variation of in-plane displacement, ux, through the thick-
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ness of the laminate is plotted at x = 0 and y = a/2. The exact distribution of in-plane dis-

placement is approximately linear within each layer, and globally piece-wise linear and of

zig-zag pattern due to the difference in the shear moduli of adjacent layers. Moreover it

can be observed that there is a big change in the distribution of in-plane displacement in

the compliant layer. The bending stress, on, distribution through the thickness is illus-

trated in Figure 40. The stress was evaluated at the Gauss point nearest to the center of the

plate. It can be observed that there is a sudden change of distribution of in-plane normal

stress in each interface region, and the prediction of in-plane normal stress by the current

model agrees well with the elasticity solution. The prediction of in-plane shear stress, on,

is shown in Figure 41. It is shown that current model captures the in-plane stress distribu-

tion in interface region very accurately. The distribution of transverse shear stress, (1’Jrz

through thickness is shown in Figure 42. This component of stress is quadratic through the

thickness direction in each layer, and is under predicted compared with the elasticity solu-

tion. In Figure 43 the distribution of the transverse shear strain, 7,2, is shown. It can be

observed that the shear stress is large in the compliant layer, and the prediction of the cur-

rent model is in good agreement with the elasticity solution. Thus, the developed element

can capture delamination with a proper composite interface failure criterion when the

delamination occurs at an interface. Figure 44 shows the distribution of transverse shear

stress, 6)., through the thickness. It can be observed that 0),, varies in quadratic fashion

like on, however it is over-predicted compared with the elasticity solution. The transverse

normal strain, 8w is predicted in Figure 45. The trend of distribution of transverse strain is

predicted very well, but the strain in the compliant layer is overpredicted by approximately

a factor of two.
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4.5 Summary

An improved cubic zig-zag theory and an associated finite element model are pre-

sented. The in-plane displacement fields in a laminate are assumed to be piecewise cubic

functions and vary in a zig-zag fashion through the thickness of the laminate. This

assumption accounts for discrete layer effects without increasing the number of degrees of

freedom as the number of layers is increased. The finite element model is “regenerated” in

the form of an eight-noded three dimensional element with five degrees of freedom (three

translations and two rotations) per node. The finite element is free of shear locking, robust,

and accurate. Thus, it is suitable for implementation into commercial finite element codes.



140

Table 6. . Material properties for damaged composite plate

 

 

 

 

 

 

 

 

 

 

 

material 1 material 2 material 3]

E111 139.e9 4.3—0e9fi 4.30e6

1322 9.86e9 4.30e9 4.30e6

13.33 9.86e9 4.30e9 4.30e6

v23 0.37 0.34 0.34

v13 0.30 0.34 0.34

v12 11 0.30 0.34 0.34

(313 5.24e9 1.60e9 1.60e6

(3,2 5.24e9 1.60e9 1.60e6       
Table 7. . Lamination Scheme for damaged composite plate

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer N14Eaterial Thickness Angle

1 l 0. 16583 0.00

2 2 0.00100 0.00

3 1 0. 16583 90.0

4 3 0.00100 0.00

5 1 0.16583 0.00

6 2 0.00100 0.00

7 1 0.16583 0.00

8 2 0.00100 0.00

9 1 0.16583 90.0

10 2 0.00100 0.00

1 l 1 0. l 6583 0.00      
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CHAPTER V

FREE VIBRATION ANALYSIS

5.1 Introduction

In free vibration analysis, the mass matrix accounts for inertia and represents dis-

cretely the continuous distribution of mass in a structure. In this chapter, consistent mass

matrices for the previously developed elements are derived, and the lumped mass matrices

associated with the consistent mass matrices are obtained employing the HRZ lumping

scheme. On the basis of the derived mass matrices, free vibration analysis of simply sup-

ported laminated composites will be accomplished. Since the derived lumped mass matri-

ces render the decoupled dynamics governing equations in explicit dynamic analysis, they

will be utilized for explicit dynamic analysis in the next chapter.

5.2 Mass Matrices

Inertial effects must be included when analyzing the response of a structure if it

vibrates freely or if excitation frequencies are higher than 1/3 of the lowest natural fre-

quency of the structure. In the finite element analysis of the dynamic response of a struc-

ture, the mass matrix accounts for inertia of a structure, and represents discretely the

149
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continuous distribution of mass in a structure.

A consistent mass matrix can be obtained from the kinetic energy Eq. (3.4.3) using the

displacement fields Eq. (3.3.14) (for cubic zig-zag plate element, Eqs. (4.2.23) and

(4.2. 15)) and the same shape functions are employed as those used to develop the stiffness

matrix [55,56]. The consistent mass matrix can be written as:

N

[M] = 2 ll: p‘k’lfi‘k’lTIIi/‘k’14de (5.2.1)

k = In "“

where Nm is the number of layers in the mth sublaminate or the laminate, pm is the den-

sity of the kth layer, and [II/(1‘)] is the shape function matrix in x, y and z coordinates.

The lumped mass matrix is derived on the basis of the consistent mass matrix. Among

the lumping schemes that produce a diagonal mass matrix, the row-sum lumping, the opti-

mal lumping [57] and proportional lumping (so called HRZ lumping) schemes [58] are

well-known. However, since the current finite element model includes rotational d.o.f., the

HRZ lumping scheme which can treat rotational d.o.f. reasonably is employed in this

research. The basic idea of the HRZ lumping scheme is that only the diagonal terms of the

consistent mass matrix are scaled in such a way that the total mass of the element is main-

tained. The procedure of the HRZ lumping scheme is as folloWs. First, we need to obtain

the total mass of the element:

N». Z:

m = j j p‘k’dadz (5.2.2)

k = Izk_‘fl

Second, calculate only diagonal components (Mii) of the consistent mass matrix.
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[M,,]=%Hlp(k)[1V,k"T][1Il,-(k"]dzdfl (5.2.3)

k=1n '

Third, compute total masses, (3", 3,, sw) in each translational direction (u, v, w) respec-

tively:

40 N...

- " (k) (k)
s“- 2 2 ”:ka 1N,-"’71[N,- ldzdn

1:51-4 1:19

N

3,: E)" .. if" p‘k’[N,‘"’T][N,-"’1czzdn 524

j=5i—3 k=ln 2*“ ("’

40 ..

_ 1.2" (k’IIV-(“lTlN-(“ld d!)

sw ' Z 21%!" J 1 Z

j=5i—2 k=lQ

where z: 1...8

Fourth, scale all the diagonal components by multiplying them by the appropriate ratios.

Forud.o.f:

p(k) ~ (’6) 7 ~ (It)
114.. .—. N- N- dd!)

1 11] Tuglifil" [ , ’l J ’7' (5.2.5)

where j = 5i-4,i = 1...8

Forvd.o.f:

k) ~ ('0 7 ~ (’0
[M..]= ‘ [N ][N- 1(1de
”31.1%"me 1 1 (5.2.6)

where = 5i-3,i = 1...8

For w d.o.f:
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N,

— fl
[My] " SW 2 ‘11 2“ (5.2.7)

For rotational d.o.f, attention should be paid to which .9 will be used. In this dissertation,

the factor, 3, for rotations was obtained by averaging three factors as follows:

_ (su+sv+sw)

Sex = Se), — 3 (5.2.8)
 

Then, by similar procedures, the rotational d.o.f. components in the lumped mass matrix

are obtained. The most important feature of this lumping scheme is that it always produces

positive lumped masses without regard to the element type, because the diagonal terms in

the consistent mass matrix must be positive by virtue of the positive-definiteness property.

For low order elements, the accuracy of this lumping scheme in the prediction of natural

frequencies often surpasses that of the consistent mass matrix.

5.3 Free Vibration Analysis

The natural frequency of a structure can be obtained by solving the dynamic equations

without damping and external force as follows:

[M]{l'i(x, y, z, t)}+[K]{u(x, y, z, 1)} = {0} (5-3-1)

where [M] and [K] are global mass and stiffness matrices respectively. A solution to the

above equation may be obtained by assuming a displacement vector as
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{u(x, y, z. t)} = {17(x, y, z)}e""°" (5.32)

where {17(x, y, 2)} is the modal vector and a) is the natural frequency of the plate. The

acceleration vector can be derived by differentiating Eq. (5.3.2) twice with respect to time

and can be written as:

{12(x. y, z. a} = -w2{a(x.y.z)}e“°’ (5.3.3)

Substitution of Eq. (5.3.2) and Eq. (5.3.3) into Eq. (5.3.1) leads to the eigenvalue problem:

([Kl-coleMfi} = {0} (5.3.4)

Eq. (5.3.4) is solved by using the standard eigenvalue "solution schemes after boundary

conditions are imposed. Thus, the modal vectors ({fi}) and the natural frequencies ((0)

are obtained.

5.4 Numerical Results

The accuracies of the mass matrix and lumping scheme were evaluated by simulating

the response of a simply-supported laminated plate. The example is a sandwich panel

which consists of a thick core between two sets of five face sheets. In this example, a uni-

form 16x16 mesh was used for a full plate, which is equivalent to an 8x8 mesh for a quar-

ter plate. The reason why a full plate was used for free vibration analysis is that both the

geometric and boundary condition symmetries of the panel do not imply symmetry of all

vibration modes, so that all antisymmetric modes would be excluded by imposing symme-

try. The material properties used in the analysis are listed in Table 8, and the lamination
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scheme is defined in Table 9. The core occupies eighty percent of the thickness of the

plate, while each set of face sheets contains five layers and occupies ten percent of the

total thickness.

Table 8. Material Properties for Sandwich Composite Plate

 

 

 

 

 

 

 

 

 

 

      

Material 1 Material 2 Material 3 Core

E1 1 1.0e6 3.26e7 25.e6 50.e3

E22 25.0e6 1 .0e7 l .0e6 150.e3

E33 1 .0e6 l .0e7 1 .0e6 50.e3

623 0.50e6 0.5e6 0.2e6 42.0e3

Gl3 0.20e6 8.21e6 0.5e6 21 .7e3

G12 0.50e6 8.21e6 0.5e6 21.7e3

v23 0.25 0.25 0.25 0.15

v13 0.25 0.10 0.25 0.15

v12 0.01 0.10 0.25 0.01

p 0.065 0.0542 0.0578 0.0047

 
 

The predictions of the lowest natural frequency by FZZBD and CZZBD are shown in

Figures 46 and 47. The lowest natural frequencies were obtained at the various plate

aspect ratios using both a consistent mass matrix and a lumped mass matrix, and normal-

ized with the solution of Burton and Noor [98]. In Figure 46, it can be observed that the

prediction of the lowest frequency by ad hoc lumping scheme is very poor when the aspect

ratio is small. This comes from the fact that the rotary inertia terms are excluded in ad hoc

lumping. Thus we can recognize that keeping rotary inertia terms in the lumped mass



155

matrix is very important when the plate is thick. The biggest error in the prediction of the

lowest natural frequency is less than 1.6% for both the consistent mass matrix and the

lumped mass matrix as seen in Figures 46 and 47, and it can be concluded that treatment

of the total mass factor for rotational d.o.f was correct and that the HRZ lumping scheme

is effective and accurate. In Table 10, the higher natural frequencies in the 16x16 mesh

based on the consistent and the lumped mass matrices are listed. It can be observed that

the lumped mass matrix yields a lower the highest natural frequency than the consistent

mass matrix. Therefore, in explicit dynamic analysis, the lumped mass matrix not only

enables the dynamic equations to be decoupled but also gives rise to larger time step (this

fact will be discussed in the next chapter).

Figures 48, 49, 50, 51 and 52 show the first, second, third, fourth and fifth eigen mode

shapes of transverse deflection d.o.f. of the simply supported sandwich plate at the aspect

ratio of a/h = 4. From the figures we can see that all the eigen modes are linearly indepen-

dent. As the plate considered above is an orthotropic plate, we observe different eigen val-

ues for the second and thrid eigen modes given in Figure 49 and Figure 50. But in the case

of an isotropic plate, the mode shapes shown in Figure 53 and Figure 54 degenerate into a

single mode with the same eigen value. This results from the orthotropic material proper-

ties of the sandwich plate.

5.5 Summary

The consistent mass matrices have been derived from the previously developed ele-

ments and the lumped mass matrices associated with the consistent mass matrices have

been also derived. Free vibration analysis of simply supported sandwich panel has been
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carried out. From the free vibration analysis, it has been shown that the lowest frequency

predicted by the consistent and the lumped mass matrices are in good agreement with elas-

ticity solution. It was observed that the predicted highest natural frequency by lumped

mass matrix was lower than that by the consistent mass matrix. Also from the results it is

seen that the eigen modes for orthotropic materials are distinctly different from conven-

tional isotropic materials.
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Table 9. Lamination Scheme for Sandwich Panel

 

 

 

 

 

 

 

 

 

 

 

  

Layer No. Material Thickness

l 1 0.010

2 2 0.025

3 3 0.015

4 1 0.020

5 3 0.030

6 Core 0.800

7 3 0.030

8 1 0.020

9 3 0.015

10 2 0.025

1 1 1 0.010   
 

Table 10. The higher natural frequencies in the mesh

 

 

 

 

 

 

   

Mode No. consistent HRZ lumping

2478 0. 1375E+08 0.3574E+07

2479 0.1379E+08 0.3581E+07

2480 0.1380E+08 0.3581E+07

2481 0.1380E+08 0.3583E+07

2482 0.1381E+08 0.3583E+07
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Figure 48.The first eigen mode oftransverse deflection d.o.fof

simply supported sandwich panel (alh=4)
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Figure 49.The second eigen mode oftransverse deflection d.o.fof

simply supported sandwich panel (alh=4)
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Figure 50.The third eigen mode oftransverse deflection d.o.fof

simply supported sandwich panel (alh=4)
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Figure 51.The fourth eigen mode oftransverse deflection d.o.fof

simply supported sandwich panel (alh=4)
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Figure 52.The fifth eigen mode oftransverse deflection d.o.fof

simply supported sandwich panel (alh=4)
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Figure 53.The secondeigen modeoftransverse deflection d.o.f

of simply supported isotropic plate (alh=4)
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Figure 54.The third eigen mode oftransverse deflection d.o.f

of simply supported isotropic plate (alh=4)



CHAPTERVI

EXPLICIT DYNAMIC ANALYSIS

6.1 Introduction

The governing equations in general structural dynamics analysis are second order or

fourth order partial differential equations in the space domain, and hyperbolic in the time

domain. In this case, the solution is a function defined both on the space domain and on

the time domain. Methods of dynamic analysis have been developed to solve the dynamic

equations on the time domain, and the popular methods are modal methods and direct

integration methods. In modal method, the dynamic equations are uncoupled, and then

each of the equations can be solved independently of the others [99,100]. In direct integra-

tion method the dynamic equations are discretized in time, and a sequence of simulta-

neous algebraic equations is obtained [99-101]. The direct integration methods can be

divided into two types - explicit direct integration and implicit direct integration methods.

Since the developed elements are implemented into Argonne National Laboratory’s in-

house code, NEPTUNE [102-104], which utilizes explicit direct integration method, only

the explicit direct integration method is studied in this chapter. In NEPTUNE the internal

force vector is calculated from the developed elements at each time step.
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6.2 Explicit Dynamic Analysis

In structural dynamic analysis, the major goal is to investigate how a structure moves

with time under external excitation, that is the time-history of movement of the structure.

The dynamic equations for the undamped forced vibration of an elastic system under-

going small displacements can be derived by the principle of virtual work and rewritten as

follows by describing displacement fields in terms of nodal displacement and shape func-

tions.

[M1{a(r)}+[K1{u(t)} = {R"“(r)} (6.2.1)

where [M] is the global mass matrix, [K] is the global stiffness matrix, {Rw(t)} is the

external time varying force vector due to body forces, traction, concentrated forces:

{R"“} = [V [N1T{F}dV+ IS [N1’{‘11}dS+ 2 {p}.-

i=1

(6.2.2)

{F}: body force vector, {‘I’}: traction vector, {p}: concentrated load vector

{u(t)} and {ii(t)} are global displacement and acceleration vectors respectively. The

above dynamic equation is a system of coupled, second order and ordinary differential

equations in time. Although displacement and acceleration vectors are discrete functions

of space, they are still continuous functions of time. Methods of dynamic analysis "have

been developed to solve this equation, and direct integration methods are the popular

methods to deal with a large problem. In the direct integration method, the finite element

method is used in the space domain, and the finite difference method is applied in the time

domain. Thus, the dynamic equations are discretized in time, and a sequence of simulta-
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neous algebraic equations is obtained [99-101]. At a specific instant of time, the dynamic

equation is:

[M1{fi(t)},,+[K]{u(t)},, = {Rmunn (6.2.3)

where n represents time MM and At is the size of time step.

The explicit direct integration method utilizes the central difference method to solve a

sequence of simultaneous algebraic equations. In the central difference method, velocity

and acceleration at time (MM) is approximated as follows by expanding {u(t)},, +1 and

{ u(t) },, _1 in Taylor series about the time nAt.

{(20)}, = fiuuunwl—{uunMn

1 (6.2.4)

—,({u(r)},..1-2{u(t)},,+{u(r)},,_,)
At

{fi(t)},,

Substituting Eq. (63-4) into 31 (6.2.3), the dynamic equation can be described as:

gl—ZIM]{u(I)}n +1 = {Rext(t) }n - [K]{u(t)},, + Zl—ZlMKZh‘U) },, — {u(t)},,_1X6.2.5)

"
t

In Eq. (6.2.5), the term, [K]{u(t)}n is called the internal force vector and represents

loads at nodes caused by straining of the material. The internal force vector can be rede-

fined as:

{R(t)""'}. = [Kl{u(t)},, = I, [BlrlDllBldV'{u(t)},, = j, [B]T{6},,dV (6.2.6)

where [B] is the strain - displacement matrix, {0'} is the stress vector, and [D] is the
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material property matrix. It can be seen in Eq. (6.2.6) that the internal force vector at each

time step can be calculated by using the strain - displacement matrix and the stress vector,

and the element stiffness matrix does not need to be calculated and assembled into a glo-

bal stiffness matrix. Thus, the computing time can be decreased by reducing the number of

matrix multiplications, and computer storage can be saved because element and global

stiffness matrices need not be stored. In NEPTUNE the internal force vector is calculated

for the developed element at each time step. Since the internal force vector needs to be cal-

culated at each time step, the use of reduced integration quadrature can decrease computa-

tional cost, but in this case, hour glass control or a stability matrix is required to add

artificial stiffness to the element to suppress the zero-energy modes [106,107]. Thus, the

reduced integration quadrature will not be used.

If [M] is a diagonal matrix, then the Eq. (6.2.5) is a system of decoupled linear alge-

braic equations. By solving Eq. (6.2.5), the displacements at the end of the time step, n

are obtained.

Since {0'} in Eq. (6.2.6) could be a nonlinear function of strain, Eq. (6.2.6) is valid for

both linear and nonlinear material behavior. Therefore, the explicit method is well suited

to treating material nonlinearity.

6.3 Critical Time Step

The central difference algorithm is relatively simple; however, it is only conditionally

stable. To assure a stable solution, the computational time step must be equal to or less

than the critical time step. Thus, the determination of the critical time step is a key to

reducing computational time and maintaining a stable solution. Overly conservative esti-
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mates will increase computing times and estimates that are too large will produce numeri-

cal instabilities.

Stability Analysis ofthe Equations ofMotion

The method of assessing stability of the equations of motion based on direct integra-

tion methods can be roughly divided into two categories: spectral (Fourier) and energy sta-

bility analysis. In spectral stability analysis, a single equation of motion is derived by

modally uncoupling the original global equations of motion, and then the effects of a time

integration method on a single equation of motion are examined. While energy stability

method utilizes the original global stiffness and mass matrices, and leads to the conditions

that a norm of the solution at time, t = nAt can be bounded a norm of the solution at

time, t = 0. Since spectral stability analysis usually provides insight to interpret the

results (stability conditions) and sometimes predicts more precise results, the spectral sta-

bility analysis will be discussed.

If the equations of motion based on direct integration methods are stable without any

external loading, they will also be stable with external loading. Thus, we need to consider

only the homogeneous form of the equations of motion in stability analysis. The modally

uncoupled, undamped, and homogeneous equations of motion are given by:

Z’, + (0,22,. = 0 (6.3.1)

where Z,- and 0),- are the modal amplitude and natural frequency of mode i, respectively.

The subscript i will be omitted for brevity hereafter. Applying the central difference

method Eq. (6.2.4) to Eq. (6.3.1), a central difference approximation of Eq. (6.3.1) at time
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t = nAt can be written as:

z,+1 + (mzAtZ- 2)z,, + z,,_1 = 0 (6.3.2)

The exact solution of a central difference approximation, Eq. (6.3.2), consists of a linear

combination of two parts as follows:

2 = C,7t’,'+cz7t’2' when 11.0.2 (6.3.3)

2 = C,7t’,'+nAtczxg when 3., = 2., (6.3.4)

where Cl and C2 are constants and determined using initial conditions, and

2.. = . 2““ i = 1, 2 (6.3.5)
I

in which 11, and 112 are generally complex. Z,, of Eq. (6.3.3) will decay or remain steady

only if 2., at 3.2, Pull S 1 and [22] S l . Therefore, the criterion of time step size, At, pro-

viding a stable computation can be derived by assuming that A, at 12 and selecting initial

conditions such that C 1 or C2 is zero. Zn of Eq. (6.3.4) becomes:

Z = C71." where A" = 81mm 1 (6.3.6)

Substituting Eq. (6.3.6) into Eq. (6.3.2) and dividing by C2." - 1 , the following characteris-

tic equation can be obtained:

2.2 + (cozAtz — 2)>.+ 1 = 0 (6.3.7)
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The solutions of Eq. (6.3.7) are:

2 2 (2 2
7*. _ 2—(0 At imAt a) At —4 (6.3.8)

1,2 _ 2

Since the characteristic equation of Eq. (6.3.7) is quadratic, we can recognize that the mul-

tiplication of the solutions of the quadratic equation, 2.12.2 is 1. If the radicand of Eq.

(6.3.8) is positive, that is, »,/(:)2At2 —4 > 0, then both 3., and 2.2 are real and 2.13.2 = 1

implies that the absolute value of one 2. is less than unity while that of the other is greater

than 1. Thus instability results because one 9. does not satisfy Ill 5 l . If the radicand is

negative, that is, AjmzAIZ — 4 < 0 , then 3., and 2.2 are complex conjugates and each is of

unit modulus by virtue of 2.13.2 = 1. Thus the dynamic equation is always stable. If

MAR—4 = o, 2., = 2.2 = —1 is obtained. This violates 2., $2.2, which is required

for stability. The stablity condition of the equations of motion associated with central dif-

ference method is such that:

At < — (6.3.9)

However the equation of motion of Eq. (6.3.1) is only one of many uncoupled equations.

Thus we need to evaluate Eq. (6.3.1) for every possible modeand select the most conser-

vative critical time step as follows:

At < (6.3.10)
 

max

where (om,r is the maximum natural frequency. From Eq. (6.3.10) it can be observed that
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the size of the time step depends on the highest frequency of the mesh. Moreover, it is

known and mathematically proven that the highest frequency of the mesh is bounded by

the maximum frequency of a single, unsupported element. For structural and continuum

elements a bound on the critical time step can normally be obtained from the highest

eigenvalue of the unconstrained elements. Simple formulas based on element eigenvalues

have been derived for some elements [111,112], however, isotropic elastic material prop-

erties were assumed. The upper bound of the highest frequency of an element can be

obtained by Gerschgorin’s theorem [113].

Gerschgorin ’s Theorem

The approach followed here to obtain an estimate for the critical time step is to apply

Gerschgorin’s theorem to the unassembled element stiffness matrix of each element in the

mesh. The time step, Are”, for the ith degree-of-freedom of node I of element e can be

expressed as [114]:

0.5

z(milil)
A13, 3 (6.3.11) 

0.5

Kilil+ 211(11le

it j

I at]

where mm, is the element nodal mass of node I in the ith direction, Kim is the diagonal

stiffness, and KiljJ is an off-diagonal stiffness. The maximum time step for the mesh is

determined from:

At = min(Ate.-1) (6.3.12)
crit
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In order to decrease computational cost, it is desirable to decrease the highest frequency of

a single element. It is known that a lumped mass matrix provides for larger time steps.

Moreover, a lumped mass matrix provides uncoupled dynamic equations and generally

more accurate results than a consistent mass matrix.

6.4 Amplitude and Period Errors in Central Difference Approximation

In order to analyze the errors in using the central-difference method, the modally

uncoupled, undamped, and homogeneous equation of motion, Eq. (6.3.1), is utilized. The

exact solution of Eq. (6.3.1) is given by:

exact

Zn
= C1(coswt + isinmt) + 632(cosmt — isinwt) ' (6.4.1)

where C] and C2 are determined from initial conditions, and i = J3. However, the

approximate solution of Eq. (6.3.4) obtained by the central difference method may have

amplitude error and period error. Amplitude error can be either amplitude increase or

amplitude decay. The amplitude increase can be interpreted as instability, and amplitude

decay can be viewed as artificial damping or viscosity. Period error can be either period

elongation or period contraction [99]. These errors are illustrated in Figure 55. Since 2.,

and 71.2 of Eq. (6.3.5) are complex conjugates, u, and 1.12 are also conjugate and can be

written as:

It, 2 a+ib 1.12 = a—ib (6.4.2)

Thus,
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unAt

3.?=e" -

A 'b A At . .
ea" "e" n " = ea" (cosbnAt+tsmbnAt)

n uznAt anAt -ibnAt anAt . . (6.4.3)

2.2 = e = e e = e (cosbnAt-tsrnbnAt)

Substitution of Eq. (6.4.3) into the exact solution of a central difference approximation,

Eq. (6.3.3) gives:

N ll,, C 2."+C 2."

’ 1 2 2 (6.4.4)

C, eanA"( cosbnAt + i sin bnAt) + CzeanA"( cosbnAt — i sinbnAt)

When the exact solution of the central difference approximation, Eq. (6.4.4) is compared

with the exact analytical solution of Eq. (6.4.1), the possible errors can be distinguished. If

a at 0 , amplitude error occurs, and if b ¢ (11 , period error result.

Period Error

Period error, P, is defined as:

_ 21t/(o _

P- 21t/b '-

(6.4.5)

W
I
S

where 21t/o) and 21t/b are the period of the actual system and the period of the system

created by the central difference algorithm. In order to characterize the period error, we

need to determine b of Eq. (6.4.5). b is obtained by using Eq. (6.4.3) with n = l in the fol-

lowing procedure:

ImO.) _ sin(bAt)

Re(2.) - —cos(,,A,) = tan(bAt) (6.4.6)

Using Eq. (6.3.8) (remember that the radicand in Eq. (6.3.8) is complex), the following
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equation is derived:

Im(7L) _ toAtA/4- (02At2 (6.4.7)

R60") — 2-(112At2

Equating Eq. (6.4.6) and Eq. (6.4.7), b is found to be:

2 2

b = itam[‘"A"“4"° A" ] (6.4.8)

A 2 — (112m2

Substitution of Eq. (6.4.8) into Eq. (6.4.5) yields the period error of the central difference

method as:

2 2

P = (wAt)/atan[mAw4-m A‘ ] (6.4.9)

2 — 6121512

The possible period error can be one of the followings:

P > 1 period elongation

P = 1 no period error (6.4.10)

P < 1 period contraction

From Eq. (6.4.9), we can see that the period error is subject to the value of At. Further-

more, the frequency, (1) is the natural frequency for mode i among many possible modes

that a multi-d.o.f structure can have. Therefore the appropriate selection of the time step,

At , can prevent period error only for one mode. In addition, even though At is chosen to

be small enough to maintain the stable condition of the equations of motion, the period

error occurs. Hence it can be concluded that the period error always happens in the central
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difference method. However it is observed that period error is partially compensated when

a lumped mass matrix is used with the central difference method.

Amplitude Error

The following amplitude errors are possible:

a > 1 amplitude growth (instability)

a = 1 no amplitude error (6.4.11)

a < 1 amplitude decay (artificial damping)

Amplitude error in the central difference method can be checked as in the following proce-

dure by obtaining the expression for a. The sum of 71, and 3.2 using Eq. (6.4.3) with n = 1

is expressed as:

2. +2. = eaA"(cosbAt+isinbAt) +eaA"(cosbAt—isinbAt)
1 2

  

(6.4.12)

= 2eaAtcosbAt

While the sum of 2., and 2.2 using Eq. (6.3.8) is derived as:

2. 2. _ 2 - (112m2 + (11At2,/c02At2 - 4 2 — cozAt2 - (11At4/c02At2 — 4
1 + 2 — +

2 2 (6.4.13)

= 2 — (112/5:2

Equating Eq. (6.4.12) to Eq. (6.4.13) provides:

ZeamcosbAt = 2 — 6122112 (6.4.14)

Substitution of the expression for b of Eq. (6.4.8) into Eq. (6.4.14) leads to the following

expression:
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1 — (mzAt2)/2
1

f 2 2

C08["" [mAt 4-(1) At ]]

2 — (DZAIZ

(6.4.15) aAt = ln<

  

If Eq. (6.4.15) is evaluated for 0 S toAt < 2 , it is shown that aAt = 0. Hence we can con—

clude that the central difference method has no amplitude error. However, we need to pay

attention to the fact that this does not imply that the amplitude predicted by the central dif-

ference method agrees with the exact one. When the time step is very close to the critical

time step, the radicand of Eq. (6.3.8) approaches to zero. Thus, 3., and 2.2 are almost

equal and the expressions in the parentheses of Eq. (6.4.4) are almost linear combinations

of one another. In this case, C, and C2 of Eq. (6.4.4) may be very different from C1 and

C2 of Eq. (6.4.1), and hence the beating phenomenon occurs. Thus, zero amplitude error

in central difference method implies that the numerical solution provides a mean value of

amplitude that does not grow or decay in comparison with the exact solution.

6.5 Geometrical Nonlinearities - Corotation Approach

The use of the present element in crashworthiness simulations requires the capability to

handle geometrical nonlinearities. Geometrical nonlinearities can be accounted for using a

co-rotation approach [108-111], wherein a local coordinate system is attached to the ele-

ment and moves in space with the element. For this eight-noded hex-plate element, a coro-

tational coordinate system is embedded in the mid-plane of the element and translates and

rotates with the element. The coordinate system is developed as follows. A set of mid-
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plane pseudo-node coordinates, 27,-, I7,- and Z- , is defined between each pair of comer

nodes as follows:

— 1

._ 1 .

Yi = i(y,-+y,-+4) l= 1...4 (6.5.1)

- l

i = 5(Zi+zi+4)

The orthonormal basis vectors e,, e2, and e3 are computed from the pseudo-nodes. The e,

basis vector is taken to be along the line connecting pseudo-nodes l and 2. The e3 basis is

normal to the cross product of the diagonal vectors between pseudo-nodes 1 and 3 and

psuedo-nodes 2 and 4. The remaining basis vector, e2, is obtained from the cross product

of e3 and e,.

 

pseudo nodes

 

 
global coordinates

Figure 56.The corotational coordinate system
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6.6 Numerical Results

The numerical convergence and accuracy of the transient behavior of the previously

developed element are investigated through several cases. In order to prove the validity of

the present formulation, the results obtained are compared with those available in the liter-

ature. In the examples, it is assumed that the plates remain elastic.

Example 1. Simply Supported 0" Orthotropic Plate

A simply supported 0° orthotropic plate subjected to a suddenly applied uniformly dis-

tributed load of 0.1 MPa is considered. The dimensions. of the plate are 0.25 m x 0.25 m

with aspect ratio 5. A 4 x 4 mesh is used in a quarter plate model due to the biaxial sym-

metry of the problem. The material properties of material 1 in Table 11 are used. The load-

ing and boundary conditions and the geometry are shown in Figure 57. From the

Gershgorin’s theorem, Eq. (6.3.11) the critical time step, At = 1.2337e-7 sec. was

obtained. However, the larger time step At = 8.542e-7 sec. derived by the trial and error

method was used in the analysis. The deflection at the center of the plate is obtained and

compared with Kant et al.’s solutions using nonlinear first and high order shear deforma-

tion theories [115], and Swaddiwudhipong et al.’s nonlinear results [116]. It is shown in

Figure 58 that the amplitude and the period response at the center of the plate are in good

agreement with Kant et al. and Swaddiwudhipong et al.’s predictions. The small deviation

in the amplitude and period of the response may come from the fact that the plate is very

thick (a/h = 5) so that the transverse normal effect, which only the current element has the

ability to predict, is significant. The top and bottom deflections are different, and a

through-thickness (barrelling) mode of vibraiton can be observed in Figure 58.
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Example 2. Simply Supported Two-LayeredAngle-Ply Plate

The behavior of a simply supported two-layered angle-ply (45°/45°) plate is investi-

gated in this example. The thickness of each layer is 0.025 m. The material properties, the

loading and the geometry are the same as in the example 1. However, the biaxial symme-

try can not be utilized even when the plate geometry and boundary condition are symmet-

ric, because the bending is coupled with stretching in an angle ply. Thus, the full plate is

modeled with 8 x 8 mesh. The purpose of this example is to demonstrate the effect of lam-

ination scheme on the transient response of a composite plate. The transient response of

center deflection of plate is shown in Figure 59, and it indicates good agreement with Kant

et al. and Swaddiwudhipong et al’s prediction. If Figure 59 is compared with Figure 58, it

is observed that the difference in the lamination scheme causes a big difference in both the

amplitude and period distribution in the dynamic response of a laminated plate.

Example 3. The Efl‘ect ofMaterial Orthotropy on the Transient Center Deflection

Analysis

In order to examine the effect of material orthotropy on the transient center deflection

analysis, the following case was analyzed. The loading, boundary conditions and geome-

try used are as shown in Figure 57. Due to the biaxial symmetry of the problem, a 4 x 4

mesh is used in the quarter plate. The Materials 2 and 3 in Table 11 is used for orthotropic

plate and isotropic plates, respectively. It is shown in Figure 60 that even though only E,,’

s are different among the material properties, the effect of orthotropy results in decreasing

both amplitude and period of center deflection [117].
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Example 4. An Impulsively Loaded Cylindrical Sandwich Panel

The panel is clamped at both ends along its length and simply supported at both ends

along the circumferential direction as shown in Figure 58. The dynamic response of the

sandwich panel was obtained in the elastic range when the impact load is applied on the

panel at the initial velocity of 5650 in/sec over a 3.08 in x 10.205 in area. The material

properties and the lamination scheme of the panel are shown in Table 8 and Table 9,

respectively. A mesh of 16x8 elements was utilized in the panel. Using Eq. (6.3.11) At =

2.92459E-07 was obtained as the critical time step. However, the larger time step At =

2.60E-06 was derived by the trial and error method.

In Figure 61, the time history of displacement in the y direction of the panel subjected

to impulsive loading is represented at the middle of the outer surfaces of the panel and at

node 13 (x = -1.31 134E-07, y = 3, z = -9.42). By comparison of examples 1, 2 and 3, it is

shown that the response of the sandwich panel is irregular in the periodicity of amplitude

and period, primarily due to geometric nonlinearity.

6.7 Summary

For explicit structural dynamics analysis, the elements are, implemented into Argonne

National Laboratory’s in-house code, NEPTUNE wherein the internal force vector at each

time step is calculated for the developed element. Gerschgorin’s theorem predicts the

lower bound of critical time step of an element, and the larger time step can be obtained by

try and error method based on the prediction of Gerschgorin’s theorem. Numerical results

demonstrate that the current models are accurate, efficient, and robust for dynamic analy-

sis of laminated plates.
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Table 11. Material properties

 

  

  

 

 

 

 

 

 

 

 

  

Material 1 Material 2 Material 3

J

13,, 5 25e11=1 5.25e11 21e9

1322 21e9 21e9 21e9

E33 2169 2169 2169

11,, 0.25 0.25 0.25

v23 0.25 0.25 A 0.25

v13 0.25 0.25 0.25

(3,, 1.05e10 8.4e9 8.4e9

c323 1.05e10 8.4e9 8.4e9

G,3 1.05e10 8.4e9 8.4e9

p 0.8e3 0.8e3 0.8e3      
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Figure 61.An Impulsively Loaded Cylindrical Sandwich Panel
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CHAPTER VH

CONCLUSIONS

7.1 Summary

The primary goals of the current research to develop the first order and the third order

zig-zag C0 laminated plate theories and associated finite element models are

accomplished. On the basis of the developed elements, static, free vibration, and explicit

dynamic analysis for sandwich and laminated composite panels were performed. The first

order zig-zag model allows the representation of a laminate as an assemblage of

sublaminates in order to refine the model through the thickness, when needed. In the third

order zig-zag model, discretization through the thickness of a laminate is not allowed.

However, since in-plane displacement fields are assumed to vary in a piecewise cubic

fashion through the thickness of a laminate, accurate analysis. of composite behavior can

be achieved without any discretization through the thickness. In particular, the associated

element is very efficient to analyze and predict the crack (delamination) propagation as

time marches in explicit dynamic analysis of composite plates under impact loads. In these

plate theories, all variables are required to be CO continuous, and the total number of

degrees of freedom is independent of the number layer in a laminate. The first order zig-

zag theory has some common features of other approaches of laminated plate theories,

192
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namely the discrete layerwise and the zig-zag plate theories. The cubic zig—zag plate

theory has some common characteristics of conventional cubic zig-zag theories. However,

both the first order and the cubic order zig—zag theories can be distinguished from the

already existing theories in that the variables are expressed in terms of surface quantities

in order to facilitate the development of convenient finite element models. In each of these

models, the transverse normal strain is improved by assuming a constant normal stress.

7.2 Conclusions

With regard to the use of the proposed laminated plate theories and associated finite

element approximations for static and explicit dynamic structural analysis of sandwich

and laminated composite panels, the following conclusions can be made:

. Zig-zag discrete layer-wise plate theories wherein local effects are accounted for very

well are developed on the basis of 3-D kinematics.

. The continuity conditions of transverse shear stresses are explicitly satisfied in the der-

ivation of displacement fields, and hence transverse shear stresses are continuous

through the thickness.

- The transverse shear stresses in the first order zig-zag theory are constant within a sub-

laminate.

- The number of degrees of freedom of the finite element model associated with the

plate theory are independent of the number of layers in the composites.

- The developed finite elements are “regenerated” elements in the form of an eight-

noded three dimensional element, and they have only engineering degrees of freedom

(3 translations and 2 rotations) to facilitate implementation into commercial finite ele-
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ment codes.

The constant transverse normal strain is improved by assuming constant transverse

normal stress instead, and the Poisson stiffening effect in the associated finite element

is thus alleviated.

The element stiffness coefficients are integrated exactly, yet the element exhibits no

shear locking. This is achieved by using the consistent transverse shear strain fields as

well as the edge-consistency of the tangential shear strain on any common inter-ele-

ment edge.

To be used in structural dynamics problems, the consistent mass matrices are devel-

oped. On the basis of the consistent mass matrices, the lumped mass matrices accord-

ing to the HRZ lumping scheme are developed.

The predicted highest natural frequency for the given mesh by employing a lumped

mass matrix is lower than that by employing a consistent mass matrix.

When the plate is thick, rotary inertia terms are found to play a very important role in

the prediction of natural frequencies. Thus, the rotary inertia terms should not be

neglected in the lumping scheme.

Gershgorin’s theorem predicts a conservative critical time step for explicit structural

dynamic analysis.

In structural dynamics problems, the internal force vector is calculated for the devel-

oped element.

Numerical results demonstrate that the current models are accurate, efficient, and

robust for analysis of a wide variety of thick or thin laminated plates in static and

explicit dynamic analysis.
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7.3 Recommendation

There are many needs to improve the proposed plate theories and associated finite

elements in order to obtain better prediction of static and dynamic responses of laminated

plates and sandwich panels.

The developed elements have the capability to simulate shell analysis by allowing the

in-plane integration points of Gauss quadrature to be varied in each layer. The shell

geometry can not be described exactly by this method, however, reasonable results can

be obtained when the curvature radius is not too small. Thus, by introducing transfor-

mation matrix to transform stiffness matrix and force vector in local coordinate to glo-

bal coordinate, shell analysis can be performed.

In the develOped plate theories, it is assumed that the thickness of a laminate is con-

stant. To account for the change of thickness of a laminate due to ply drop-off etc., it is

desirable to add the capability to model non-uniform thickness through in-plane direc-

tions.

For computationally efficient explicit dynamic analysis, an element with a larger criti-

cal time step needs to be developed. This can be accomplished by adding rigid motion

in the transverse direction between the top and bottom nodes.

In order to predict the location and time of delamination commencement due to

dynamic loading, it is desirable to obtain the time history of stress in the composite

plate.
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APPENDIX A

- Shape Functions:

The rotational variables 111,, and my are eliminated in favor of the translational variables u,

and v,, the inplane translations at the top surface of the sublaminate. In that process the fol-

lowing variables are obtained.

N,,, N...

A = h+ 201-21)",- 3 = 201—2001

1:] i=1

N. N... A.(l)

C: 201—296,. D=h+2(h—z,)a, A=A-D—B-C

i=1 i=1

where h is the thickness of mth sublaminate, and a,, b,, e,, d,- are defined in Eq. (3.3.11).

On the basis of the variable of Eq. A.(1), new variables are introduced as:

  

 

01,: I; on, ___ _g, 03 = {B.C—D_-(A—h)}’ a4=_B'h

A A 2A

A.(2)

,, =_g 11 _4 5:-C_oh g={B'C-A'(D-h>}
‘ Z’ 2 [1’ 3 23’ 4 271

k-l k-l k—l k-l

i=1 i=1 i=1 i=1

k—l k-l k—l . 1-1

Bl =a2+1322€i+a22di BZ=BZZciZi+a22dizi

i=1 i=1 i=1 i=1

k-l lk-l k-l lk-l

C, = 013+B32ci+(a3+§)2d, C2 = B32c,z,+(a3+-2-)2d,z, A.(3)

1:] i=1 i=1 i=1

lk-l k-l lk-l k-l

i=1 i=1 i=1 i=1

k-l k-l k—lk-l

Al=Bl+Blzai+alei A2=Blzaizi+a12bizi

i=1i=1 i=1 i=1
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k-l k-l k- —1 '

31=Bz+322ai+a22bi 32=B220,z,+a22b22,

i=1 i=1 i=1 i=1

k-l lk-l k—l 11-1

6, = B3+B3Za,+(a3+§)2b, C2 B32a,z,+(a3+§)2b,z,

i=1 i=1 1:1 i=1

111—1 k-l lk—l k-l

D1=B4+(B4+2)zai+a42bi D2 = (B4+§)Xaizi+a42bizi

i=1 i=1 i=1 i=1

The shape functions for ail") are:

(bgk) = -AIZ+1+A2, (13(12)=A12-A2, (by:1)=-§1Z+§2, ¢(2I2)=§12—§2

A.(4)

og’” = <1>("2’-= 1212-132, <1>f,"’=<1>‘4’2’=—C,z+Z‘2

(k)
The shape functions for uy are:

‘1’",k’=—Az+A2, ‘P,2’=Alz— A2, ‘1’2,’=—B,z+32+1,\1122’=8,z-82

(k1,,,_(k) (k) .,,(k)_ MS)

The shape functions for ugk’ are:

2 z

The shape functions associated with 82, based on a constant transverse normal stress

assumption are:

2.(,’,-= E12+E2, 2.",’2=F,z+F2, 2.22’,=G,z+(—}2, 2(22=H,z+H2

11,31 = 7‘32= I,z+12, 711,31 = A1% =71:+72

21% = Elz+Ez, 2.y,’2 = F12+F2, 2.,2’,—-Giz+G2, 2.;"2’2 = le+Hz A-(7)

2.‘,’;’, = 2.322 = llz+22, 2.32,: 2.-‘,’f,’2_ Lu),

Xi = “K1, X2=K1
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where coefficients associated with the shape functions are:

(k)

.13-

C(3k)‘l

(k)

36 —

(UCI’

(1k) (1‘)

 

_ C36 +P,+ 56

E" = ‘(210421" C702” C'—(_k1

C33 33

(k) (k)
— C13 - C36 ~ P2 S6

F2C(k1A2 + (‘71’42+—(_1.)
33 C33 C33

(k1 (k1

Gz—--V)Bz-Tk)(82+1)+ (k)

33 33 33

— C‘i'é’- C‘s? - P3 + 58

H2: (1:132 "(k—132+ (k1
C33 C33 C33

- C","§’_ C¥2C P4 + $9

"2 " C(k1 ”Cm 2'" C00
33 33 33

(k1 (k1
- C13— C36 Ps‘l'Sro

"FWDZ + (7102+ (k1
C33 C33 C33

(k1 (k1
C2 Q, + S,

E; - -(z—k-SAZ— (3-—k)(A2 + 1)+ (k) A-(3)

33 33 33

,. c121. c_g:>- - o .5,
2 371""2 Cm 2 + (k1

33 33 C33

an no
. 23 36 — Q2 “l” 53

62 ‘ (“(32 + 1’ (1:132 Can
33 33 33

H- C_(2_3_k)3+ i32- Q3 -

2: Car) 2 C7132+_(k)
33 C33

22 _C_(2_,3)C 13,2- Q4 + S4

= (k1 2 (k1C2 + (k1

]_ C_-(2§130+ Ci;- Qs "’ 55

2=C1k1 2 C—(Ic1D2 0:1

33 33 C33
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The coefficients defined Eq. (3.3.21) are given as follows:

P, =P3={N2 R‘3",’—[ Ax2+x, (1+Az)]}/A P2 ={N32 R§"’[A,x2—x, A2]}/A

k =

N

k

l

R""[ A "

lI
I
M
z

R
-

R§§’[—B,x2+x,(32+ 1)]}/A ng)[31K2-K,Bz]}/A

1

:
M
2
F
M
z

R§"’[D,x2 — 1c,D2]}/A

l

N

2 ng)[-A1K2+K,(1+A2)]}/A ng)[A1K2—K,A2]}/A
R
'
-

I
I
M
z
"
M
z

{ .

{ R§"’[— Clx2+x C2]}/AA.(9)

k 1a
.

ll

u
—
o

3
M
2

R(k)[-131K2+ K1A2]}/A

l_

={

=1

={

P4

Q1

Q3

Rg;)[— C1K2+K,C2]}/A Q5

52

S4

S6

53 M
2

57: 2R“):31K2+K,(§2+1)]}/ARgi)[31x2—K,BZ]}/A

a
-

II 1

N

(k ‘ ‘ k
59 = {ZRRg4)[- C1K2+ C2]}/A SlO—_{ 21RR()[b1K2-K,D2]}/A

k =1 k =

T1= {1:2ng’x,/h}/A

(k) (k)
(k)

where Ry?) - —23 (3’3) — .93 (3’3) — _1. R“) - C36

- (k) " (k) ' (k) 34 - ‘77,

C33 C33 C33 C33

2 2
N

(Zk —Zk- l)
(k)

K2 = 2 K] = (Zk-Zk-l) A=-2R33K1

k=l
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- Plate Inertias:

’aBrp" N2 I p(k1¢(k1<,,(:1dz, 13M_ 2" I p(k1‘,,(k1.,,£:1dz

= 111: 1 = 11k— 1

N,— ZR

1‘”,3 = 2 j pmflfiflpdz a,r = 1...4; [3,12 = 1,2

k = 11,“,

- Shape Functions in the Covariant Frame.

(7.3.1)

The shape functions defined in Eqs. A.(4), A.(5) are expressed in covariant frame through

the transformation matrix Eqs.(3.5.38) and (3.5.44) as follows:

(10+ 111 (k) _j22 (k) 112 0:)

(DUB = (1’14'1351—2‘122134 ‘I’azB - j—‘I’BB ‘j—‘I’4B
11 11

(11+ 122 (k) 121 (k) 111 (k)

%B=‘I’1+B —¢2l3’ ¢n2B=‘j—¢3B‘j—‘1’4B
12

111 (k1+ (k) 122 (k) 112 (k)

TUB:—‘*’1+B ‘2’2B’ ‘P:2B=713‘?3'75‘2’4B

j-‘—:\P‘,"’ (Pm 121 (k)+111 (k)

1"B 213’ ‘Pn2B=‘j—2"'3+JB‘2‘24‘1’wnlfl = 4B

A.( 10)

A.(“)



° Stress Resultants:

NxaB = i IOUQCDUd
e

1:17-21

N=zafl N2 } 6(k);\'(ka)d
e,

5:12-3:11

R215 = N2 Iaif’xfidz,

k = 12:,

RyB ‘1‘? }T(k)§gdz,

= 13:1

RxB = kNZ 3‘“TxJQBdZ:

= lzk- 1

201

N=yaB E
I 01")‘1’“)

k=l:1- 1

N" 0:) (k1

QzaB= 2 Ion Ade

k=:zk- 1

N" 0:) (k)

anB= 2
3:1” ‘I’afizdz

A.(12)

k=lzkz— 1

N" (k1 (k1
QxaB=

z Zfrxz¢aBZdz

k=lzk- 1

nyafl= 2'” I 10011300212,
RyxaB' E

JT(k)‘i’(k)(I
z

k=lZ‘l

“121:1
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APPENDIX B

- Shape Functions:

The rotational variables VI, and w), are eliminated in favor of the translational variables u,

and v,, the inplane translations at the top surface of the laminate. In that process the fol-

lowing variables are obtained.

=2(h— z,)d,,.,B,= z(h- z,)c,,,C,=2(h—~ z,)b,,,D,= 2(h- z,1a,,

i=1 i=1 i=1 i=1

N N N N

A2 = 2 (h—z,)d2,,B2= 202—2,19,, C2: 2 (h—z,)b2,-,D2 = 201-4.1%,.

i=1 i=1 i=1 i=1

N N N A.(13)

243:2(h Zi)d3i’B3=2(h Zi)c3i’C3=Z(h zi)b3i’D3=2(h 2903i

i=1 i=1 i=1 i=1

N N N N

A4: 20' zi)d4i ’34: z(h'zifilv C4: z(h—Zi)b4i’D4= 202-39““

[:1 i=1 '=l i=1

 
 

 
 
 

  
 

 

 

A=A,+h, D=D,+h, A=A-13—B,.C,

where hrs the thickness of the laminate, and ab, bij’ Ci}, (1,1-i, = 1...4 are defined in Eq.

(4.2.11).

13 B, B,C2-f)(h2-A2) B,(h2+D2)-f)B2
(1,= :, (1.2 = —T, (13 = _ , (X4 = _

A A A A

B,C —D(h3 +A3) B,(h3+D3)—bB3 b(A,,-A,)+B,(C,-C4)
(15-— (I6 = _ , (17 = _

A A A

bus —B 1+3 (D -D B C -13A B D _133as: 4 1 _ 1 1 4), a9 = 1 4_ 4’ 0‘10 = 1 4_ 4 A.(14)

A A A

C, A C,(h2+A2)-AC2 C,B2-A(h2+D2)
B, = —-:_—, [32 = :, B3 = __ , B4: _

A A A A

3 ~ ~ :-

=C,(h +A3)-AC3 B =B3C,—A(h3+D3) [5 =A(C,—C,1+C,(A,-A,1

A" ’ 6 71' ’ 7 A
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A 9-

“512,011+0‘1k2d11'» 24.2

i=1 i=1]

2Jflzzcli+a2kzdw 32

i=1 i=1

k-l k-l k-

 

, 1o=

D
I

A

k-l k-l

612 c,,-z,+a, 2 d121,-

i=l i=1

k-l k-l

= B22cuzi+a22duzi

i=1 i=1

1

a8+(138+ 1)2c,,+a82d,,— 2C4,

1:1 [:1 i=1

k-l k—l k- l

-(33 +1); 01121—“3 2 (111214” 2 64:21

i=1 i=1 i=1

k-l k-I k-l

—B72c,,—(1+a7)2d,,+ 2"“

k-

B72 c,,-z,+(l+(17)2 (1],-Z,-

i=l i=1

1 k—l

i=1

k- 1

2 d4iz1'

i=1 i=1 i=1

,a."[
1+2d3,

3+kB3Zl Cli+a3kzldli+ kzlei’E

i=1 i=1 i=1

4+k54261fia4kzdli+ [(2621,

i=1 i=1 i=1

5+kBS2161i+a5kzldli+kzld3v

i=1 i=1 i=1

6"”1‘362611'1'0‘61‘2‘1114' kzcw

i=1 i=1 i=1

i=1 ] i=1 i=1

i=1 i=1 i=1

k— 1 k- 1A(15)

[13k2cuzi +a32duz, + 2112,:

i=1 i=1 i=1

1-1 k-l k-l

7’2 = 542 €1121+a4 z dlizi+ Z 32121

i=1 i=1 i=1

k-l k-l k—l

GZ=BSECliZi+a52d1izi+zd3izi

1:1 (=1 [:1

k—l . k-l k-l

= 136 Z C1121+ 0‘6 2 dlizi+ 2 “31°11

i=1 i=1 i=1

5
|

11-1 11-1

+3103: 611+ k2 C41412 =‘Blokz 6112102102‘111'7-1“ 2 04121

i=1 i=1 i=1

k-l 11-1 k—I _ 11-1 k-I k-l

1+ 2‘2”]“592911' 2d4,,12 = B92C1121+a92d1121+ 2‘141'7-1'

i=1 i=1 i=1

 



204

1-1 k-l k—l k-l

31 = 51+B1 20114411 21211 A2 = Bl zalizi+al 2b,,z,

[:1 i=1
t=l i=1

1-1 k-l k-l k-l

B1 = 52+522011+a22b11 32 = 52201121+a22b1121

. i=l i=1 i=1 i=1

k-l k-l k-l

a1=1321'*'(I33"’1)Z‘,‘211"”2‘112bu- 2041'

i=1 1:1 i=l

k-l k-l k—l

C2 = -(I33+1)2011'Z1‘a82 b11212" 204111

i=1 i=l i=1

k-l k-l k—l

D1: 437437201141 +0‘7)2b11+ Eb“

i=l i=1 i=l

k-I k-l 1-1

D2 = B72a,,z,+(1+a7)2b,,z,- 2b4,z,

i=1 i=1 i=l

11-1 11-1 11-1 k—l k-l 11-1

51: B3+B32a,,+a32b,,+ szv 52 = B32alizi+a3zblizi+ 2122121

i=1 1:1 i=1 i=l i=l i=1

11-1 k-l k-l 11-1 11-1 11-1

F1= B4+B42a,,+a42b,,+ 2021', F2: B42alizi+a42blizi+ 202121

i=l i=1 i=l i=l i=l i=l

k—l k-l k-lk-l k—l k—l

G] = B5 + 55 2 “11+ 015 2 1211+ 2 1231', G; = 35 2 “1121'" 0‘5 2 121121" Z 123121

i=l i=l i=l i=l i=l i=l

k-l k-l k-lk-I 1-1 k—l

H1=B6+B6Zali+a62bli+ 2031', HZ: 512011z1+a12b11z1+ 203121

i=1 i=l i=l i=l i=l i=l

k—l k—I 11-1 k‘-1 1-1 k—I

21=B10[1+ z “11]+ [3102 1211+ 2 “41172 = “5102 “1121‘0‘102 blizi_ 2 “4121'

i=l i=l i=l i=l ' i=l i=l

11-1 k-I 11-1 11-1 11-1 11-1

~71=-B9{1+ Zari]’°‘92b11‘ 2b41~72 = B9Zalizi+a9zblizi+ 2124121

i=l i=l i=l i=l i=1 i=l

The following variables are obtained when Eq. (4.2.14) is evaluated.

ab 1, utl, vb], vtl, 0xb1, Oxtl, Bybl, Gytl, ub2, ut2, vb2, vt2, 0xb2, 0xt2, 0yb2, 0yt2,

ub3, ut3, vb3, vt3, 0xb3, 0xt3, 0yb3, 0yt3, ub4, ut4, vb2, vt4, 0xb4, 0xt4, 0yb4, 9yt4
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The shape functions for “£111 are:

(DY? = ub2-23+ub1~z2+(—Zl+ubl~El+ub3-F,+ub2-(_}1+ub4~H1)°z

+1+Az—ubloE‘z-ub3oF2-ub2-62-ub4oi—12

(DY? = ut2-z3+ut1-22+(Z,+utl°E1+ut3°F1+ut2-§l+ut4oI—il)-Z

—Az—ut1-EZ—ut3-F2-ut2-(-;2—ut4-I72

1119;) = vb2-z3+vbl~22+(-§,+vbl-E,+vb3~F,+vb2-6,+vb4-I7,)-z

+§2—vb1-E2-vb3-F2—vb2-32—vb4-172

(D212) = vt2-z3+vt1-22+(§,+vt1-E,+vt3-F,+vt2--C-}1+vt4-F11)-z

—Bz—vtl ~E2—vt3-F2-vt2 - Gz—vt4-H2 A.(16)

419;): 9xb2-z3-I-0xb1 -22+(C,+9xb1 ~l—i'1-1-9xb3-F,+9xb2-C—}1+0xb4-I—Il)z

+E‘z—0xbl~E2-0xb3-F2-0xb2o(_?2—0xb4-I72

111;) = 0xt2 - 23 +9111 -zz+(7,+6xt1131+Oxt3-F,+0xt2-51+6xt4-l71)z

+72-0xt1~52-0xt3~F2-0xt2-32—0xt4ol72

411?: 9yb2-z3+0ybl -zz+(I-),+9yb1 .E,+eyb3-F,+eyb2-C,+eyb4.17,1z

+I-DZ—0yb1~32-0yb3-F2—0yb2-32—0yb4-I72

«115,? = 9yt2-z3+(9ytl)-22+(7,+9ytl T5,+9y13-F‘,+6yt2-(—}1+9yt4-I71)z

+72-0yt1-F2—0yt3-F2—9yt2-52-0yt4-fi2

The shape functions for 14;“ are:
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11“,? = ub4-z3+ub3-zz+(—A1+ub1-E1+ub3-F1+ub2-Gl+ub4ofll)-z

+A2-ubl-Ez—ub3-F2-ub2-Gz—ub4-Hz

TE? = ut4~23+ut3~zz+(A1+utl-El+ut3-F1+ut2-Gl+ut4-f11)-z

-A2—utl~32—ut3-F2-ut2-Gz—ut4-Hz

Tali) = vb4-23+vb3'zz+(—Bl+vbl-El+vb3-F1+vb2-Gl+vb4-H1)~z

+1+Bz—vb1-E2—vb3-F2-vb2-Gz-vb4-Hz

T2? = vt4-z3-I-vt3-zz-I-(Bl-I-vtl~51+vt3-F1+vt2-Gl+vt4-Hl)~zz

—32—vtl -£’2-vt3 - Fz—th . Gz—vt4 - H2 A.(17)

4115'? = 911114 . 23 + (91113) - z2 + (C, + bel -E, +0xb3-F1-I- 0xb2- 611+ 911114 131,1

“CZ—911111.Ez—exb3.Fz—exszz—exm-Hz

W212) = 0xt4-z3+(0xt3)-z2+(71+0xt1~El+0xt3-F1+0xt2-Gl+0xt4-Hl)z

+72—9xt1-Ez—6x13~F2—6xt2-Gz—9xt4-flz

114;? = 6yb4 - 23 + 0yb3 12 + (D1 + Gybl -E, + Obe - F, + Gbe - G, + 0yb4 . 19112

+D2-6yb1-Ez-0yb3-F2-9yb2-Gz-0yb4-Hz

‘11:? = 0yt4-z3+0yt3-zz+(.71+0ytl ~31+6yt3-F1+6yt2-Gl+6yt4-Hl)z

+32—0yt1-Ez—0yt3~F2—0yt2'Gz-0yt4-Hz

The shape functions for “£111 are:

{22 = A.(18)

B
'
I
N

The shape functions associated with 8,, based on a constant transverse normal stress

assumption are:
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13(1),: R(k)d>(,k)+R(k)‘P(,k)+ R(k)(P, +S9)

2(1)2 _ R§'j’<l>‘,"’+ R(k)‘1'(1k) 0:1,,D2 +510)

1921-: R‘,"’<1>‘2*2+R§,"’\14‘2"’+R§"3(P3+s,,1

1:11—= 111111) 11111111111111.1111)
1512‘_ R<k1¢1k1 R(11,,,(111+(11(P5 + 513)

11(32_ R0041“) +R(k)‘P(k)-I- R(k)(P6 +314)

lit), = R(k)¢(k)+ R(3k)\P(k)+ R(k)(P7+Sls)

1135,22-: R§’§’¢§*’+R§’§’W§,"’+R§§’(P8+S,6)

21111: R§§1,,,(k1 ,,(Ic1,,,<k1,,uc1(Ql +51)

13:22 = ng’wf’” + R‘k’of") + R§"’(Q2 + 521

133)] = Rg§)\P(k)+ Rg§)¢(k)+ R(k)(Q3+S3)

,(212 _ #315121“) R‘k’cp‘k’ R("2(Q4+S41

1%), = R""~P""+R§"’<I>§,"’+R§"3(Q5145)

1:5; _ R(k)\P(k)+ R(k)¢(k)+ R(k)(Q6+S6)

2&1] _ R‘k’w‘“ R<I<1,,,(Ic1+ R(k)(Q7 + 57,

1:522-R(k)‘P(k)+R(k)<b(k)+R(3k)(Q8 +S8)

K, = R§"’(T,1

where coefficients associated with the shape functions are:

P1

_1,kleg*>{112 thk4+ut1 K3+(A,+utl E1+ut3 F1+ut2 G,

+ur4-H,)x2+(—Az-ut1 -E2—ut3-F2-ut2-Cz—ut4ol72)x,}

A.(19)

_T,k21R(3k){ub2 thk4+ub1 K3+(—A1+ub1 1314111113 F1+ub2 G,

+ub4-H,)K2+(1+A2—ubl -l_§2—ub3-F2—ub2--C_?2—ub4-712)K,}

A.(20)
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- —T,kle§k){vb2 K4+vb1 K3+(—B,+vbl E,+vb3 F,+vb2 G,

+vb4-H,)x2+(E2—vb1-E2—vb3-E2—vb2-62—vb4-H2)x,}

_Tl2le"){v:2 K4+vt1 x3+(E,+vzl E,+vr3 E,+v:2 G,

+vt4-H,)x2+(—E2—v:1-E2—vt3-E2—vt2c';2—vt4-Hz)x,}

-1, 2R§"’{exb2 K4+6xbl K3+(C,+6xbl E,+exb3 F,+exb2 G,

+ be4 - H, 1112 +162 -6xb1-E‘2—6xb3-f‘2— 9xb2 - 62 - 9xb4 . 172119}

_1, 2 R§’§’{9x:2 - x4 + Oxtl .113 +1}, + Oxtl ,' E, + 6xt3 - E, + 9x126,

+9xt4 ~1'L'1{,)1<2 + (iz—thl -E2—6xt3 - 755-9th - (“h-91cm - I72)1<,}

_T1§R(k){6yb2 K4+6ybl K3+(D,+6ybl E,+eyb3 E,+eyb2 G,

+ eyb4 - H, 1112 + (1‘)2 — eybl -E2 — 6yb3 - EZ— 11yb262 — 6yb4-I—12)K,}

_T, 2Rg"){ey:2 K4+9ytl K3+(J,+9yt1 E,+ey:3 E,+ey12 G,

+9yt4-H,)1<2+(.72—9yt1~52—9yt3-F2—6yb2~62—9yt4-l72)x,}

_T,2R§“{ub4 K4+ub3 x3+(—A,+ub1E,+ub3~ E,+ub2 G,

+ub4-H,)x2+(A2—ub1-E2—ub3-E2—ub2-Gz-ub4.H2)x,}

_le2R(k){ut4 K4+ut3 K3+(Bl+utl E,+ut3- F1+ut2 G1

+ut4-HI)K2+(32—utl~52-ut3-F2—ut2-GZ-ut4-Hz)l(,}

—T,21R‘3’;’{vb4 K4+vb3 K3+(-B,+vb1 E,+vb3 E,+vb2 G,

+vb4-H,)K2+(1+Bz—vbl-Ez—vb3-F2—vb2-Gz-vb4~flz)xl}

—T1k21ng){vt4 K4+vt3 K3+(8,+vt1 El+vt3 F1+vt2 G,



Q6

Q7-

Q3-
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+vt4ofll ).x2+(—Bz—v11-Ez—vt3.F2—v12.Gz—vt4-Hz)-x,}

_Tllegk’wxm x4+6xb3 K3+(C,+6xbl E,+exb3 F,+exb2 G,

+ be4 - H,)1<2 + (C, — (3be F, - 6xb3 - F2 — 9xb2 . G, - 9xb4-Hz)1c, }

- —T121R(k){9xt4-K4+9xt3 K3+(7,+9xt1- E,+6xt3 F,+6xt2 G,

+Oxt4-Hl)-K2+(72—9xt1~52-9xt3-F2-9xt2-32—9xt4-92)K1}

_leng){6yb4 K4+Oyb3 K3+(D,+6yb1 E,+eyb3 F,+eyb2 G,

+6yb4 . H, )x2 + (b, — Oybl .52 —9yb3 - F2 — eybz - Gz- 6yb4 - £12m}

_leng){9yt4 K4+6yt3 x3+(3,+9y:1 E,+eyt3 F1+9yt2 G,

+6;t4-H,)-K2+(.72—0yt1oEZ—Gyt3-F2-Gyt2-Gz—9yt4-HZ)K1}

—T,2R§§’{ub2 K4+ubl K3+(—A,+ub1-E‘,+ub3-F1+ub2-(_3,

+Ub4'H1)°K2+(1+Zz-ub1'Ez-ub3'F2-ub2°az-ub4°I—12)K1}

- —T12ng){ut2 K4+utl K3+(A,+utl E1+ut3 F1+ut2 G,

+u:4'H1)'K2+(-Zz-utl -Ez—ut3~72—ut2-52—ut4-I72hc1}

- —T121R(k){vb2 K4+vb1- K3+(—B,+vb1 E,+vb3 F,+vb2 G,

:Vb4'H1)'K2+(§2-Vbl 'Ez—Vb3'Fz-Vb2‘62-Vb4'fizhcl}

- -T1k21Rg:){vt2 K4+vtl K3+(B,+vtl E,+vt3 F,+vt2 G,

+vt4-H1)-K2+(-§2—vtl .Ez—vt3-F2—v12-(‘;2—vt4-fi2)x,}

- _1,zng’wxbz K4+9xb1 K3+(C,+9xb1 E,+exb3 F,+exb2 G,

+ 9xb4 411,)1:2 + (‘62 - exbl - 1'32 — exb3 . F2 — 9xb2 - (‘22 — 9xb4-I-12)K,}
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N

—T1 2R§§){6xt2 K4+9xtl K3+(i, +9xt1 -E‘, +6xt3 - F, +9th - Z7,

+6xt4-I—11) - K2+(72-6xt1 -E2—6xt3 - 172—6th - Gz—exm -I72)1c,}

- —T,2R‘3’f,’{6yb2 K4+6ybl K3+(D,+6ybl E,+9yb3 F,+6yb2 G,

:fyb4-H,)K2+(l_)2-6ybl~Fz—6yb3-72—9yb2-62-0yb4-712)K1}

- —T,21R§4){9yt2 K4+9ytl-K3+(.71+9ytl E,+6yt3- F,+6yt2 G,

+0yt4-I7,)-K2+(.72-6yt1~E2—9yt3-F2—6yb2-C—;2—9yt4-T12)K,}

— —T,2R§"’{ub4 K4+ub3 K3+(-A,+ub1E,+ub3 F,+ub2 G,

+ub4.H, )-x2+(Az—ub1 -Ez-ub3-F2-ub2-Gz-ub4-F12)K,}

- —T,21R(k){ut4 - K4+ut3 - x3 +(1‘3, +ut1 .H, +ut3 ~F1+ut2° G,

+kut4-fl,).K2+(§2—utl-Ez-ut3~F2—ut2-Gg-ut4~flz)xl}

-T,k21g‘,R)-{vb4 K4+vb3 K3+(— B,+vb1 E,+vb3 F,+vb2 G,

+vb4-H,)-K2+(1+Bz—vb1~Eg—vb3-F2-vb2-Gz-vb4-Hz)x,}

_leleg:){vt4 K4+vt3 K3+(B,+vt1 E,+vt3 F,+vt2 G,

+vt4-FI,)-K2+(—Bz—vtl~Ez-vt3~F2—vt2-G2-vt4-thcl}

—T,k2 R(34k){6xb4-K4+9xb3 - K3+(C’, +9xb1 ~E, +9xb3oF, +9xb2-C’,

+ 0xb4 . H,)x2 +(G2—exb1~Hz—exb3-F2—exb2-G2—exb4-H2)x,}

_T,Zng’wm K4+6xt3 x3+(i,+extl H,+ex:3 F,+ex:2 G,

+9xt4-F11) - x2+(22—ext1 -E'2-9xt3 -F2—9x12- G2-9x14-H2)1c,}

-1,2R(k){9yb4-1c4 + 9yb3 . x3 + (b, + eyb1 .H, + Obe - F, + 6yb2 - G,
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+6yb4-H,) - K2+(D2—9ybl -Ez—0yb3 - FZ—eybz - Gz—Gyb4-Hz)x,}

N

5,6 = —TI 2 R§§){9yt4 K4+9yt3 x3+(], +6yt1 -E, +6yt3 -F, +6yt2 - G,

 

k=l

+0yt4-H,)eK2+(.72-9ytl-E’2—9yt3-F2-6y12-Gz—Byt4-thcl}

1 4 1 3 3 1 2 2

T, = N , K4 = z(b,-21-1). K3 = 3(Zk-zk-l)’ K2:3,(Zk‘zk-1)

2 Kg“ thkl

k=1

(k) (k) (k)

_ R1k)_ C31 R1k)_ C32 Rm 1 R00 C36
K1“(Zk‘zk—1)’ 31 ' ‘71,”), 32 ‘ "W, 33 "m, 34 ‘75

C33 C33 C33 C33

Plathnertias:

N Q

(k) (k) (k) V _ (k) (k) (k)

IaBrp= Z 3“) ¢a13r¢pdz’ IaBrp ' 2 JP ‘1’aB‘Prp dz

k=l k=l
Q 1 Q-1 .AJZI)

N Q

k
1;, = Z Ip( ’52,!)de a,r = 1...4; B,p = 1,2

k=lzk-—l

Stress Resultants:

(k) (k)dz (k) (k)d

N=xaB ZJGHOIBM N=yaB 2}°yyabdz‘l’

=11:1kN=l:k-1

(k) (k) (k) (Dd

N=Zafl k2}OMXBdZ’ QzaB=kz}ouWABd

N=lz—Q 1 k=le- 1

_ (k) (1‘)
R2,, - £3] a:kxfidz, an5= 2 j rwapzdz A.(22)

:IQ1k=le-1

_ (k) (k) (k)
R”- 2 It” dez, (2,0,3: 2 j: (Dapzdz

k;l7-:- 1 k=lQ— 1

R4; = 2 ]' 1(k)Qde,nyaB_ 2 ]‘ munch“)dz, Ryxap- 2 3' 1:(Ic),l,(k)dz

k=lQ1k=lQ1k=lQ|
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. Shape Functions in the Covariant Frame.

The shape functions defined in Eqs. A.(16), A.(17) are expressed in covariant frame

through the transformation matrix Eqs.(3.5.38) and (3.5.44) as follows:

_ (1k) 111 (k) _ (141112 (k)

A.(23)

(1k) 122 (k) _ 121 (k) 111 (k)

111 (k) (k) _ 122 (k) 112 (k)

‘Pm = 3'11?15 “'23, T5213 - E‘I’asf"—1311,4B

A.(24)

Jjl:\P(lk)+ ‘1’“)

‘I’nw =1+p 213, ‘I’nza = -—
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