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ABSTRACT

AUTOMATIC PERSONAL IDENTIFICATION USING FINGERPRINTS

By

Lin Hang

An accurate automatic personal identification is critical in a wide range of ap-

plication domains such as national ID card, electronic commerce, and automated

banking. Biometrics, which refers to automatic identification of a person based on

her physiological or behavioral characteristics, is inherently more reliable and more

capable in differentiating between an authorized person and a fraudulent imposter

than traditional methods such as passwords and PIN numbers. Automatic finger-

print identification is one of the most reliable biometric technology. In this thesis,

our objective is to design a fingerprint-based biometric system which is capable of

achieving a fully automatic “positive personal identification” with a high level of con-

fidence. We have identified and explored the following issues: (2') feature extraction

- finding representative features from an input image for the purpose of fingerprint

matching, (Ii) image enhancement - improving the clarity of ridge structures of finger-

print images to facilitate automatic extraction of features or for visual inspection, (z'z'z')

minutiae matching - determining whether two sets of features (minutiae patterns) are
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extracted from the same finger, (in) integration of multiple biometrics - improving

the performance of a biometric system by combining several biometrics (e.g. finger-

print, face, speech, etc.), and (v) fingerprint classification - assigning a fingerprint

into one of several pre—specified categories according to its pattern formation. We

have designed two prototype biometric systems: (2') a verification system which uses

only fingerprints to authenticate the identity claimed by a user, and (22') an integrated

identification system which combines face recognition and fingerprint verification to

make a personal identification. Our systems have been evaluated extensively on a

large number of fingerprint images captured with the traditional inked method and

more recent inkless optical scanners. Experimental results Show that our systems

perform very well on these data sets.
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Chapter 1

Introduction

Personal identification is to associate a particular individual with an identity. It plays

a critical role in our society, in which questions related to the identity of individuals

such as “Is this the person who he or she claims to be?”, “Has this applicant been here

before .9”, “Should this individual be given access to our system?”, “Does this employee

have authorization to perform this transaction?”, etc. are asked millions of times

every day by hundreds of thousands of organizations in financial services, health care,

electronic commerce, telecommunication, government, etc. With the rapid evolution

of information technology, people are becoming even more and more electronically

connected. As a result, the ability to achieve highly accurate automatic personal

identification is becoming more critical [75, 34, 44, 97, 106, 109, 154].

Traditionally, two major types of automatic personal identification approaches

have been widely used: (2') knowledge-based and (ii) token-based [97, 106, 109]. Token-

based approaches use “something that you have” to make a personal identification.

Individuals are identified by demonstrating that they are in possession of certain

I
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2

token, such as passport, driver’s license, ID card, credit card, and keys. Knowledge-

based approaches use “something that you know” to make a personal identification.

Individuals are identified by demonstrating that they are in possession of information

or knowledge which only they themselves are expected to know such as password and

personal identification number (PIN). The major advantages of these traditional per-

sonal identification approaches are that (i) they are very Simple and (ii) they can be

easily integrated into different systems with a low cost. However, since these tradi-

tional approaches are not based on any inherent attributes of an individual to make

a personal identification, they have a number of disadvantages: tokens may be lost,

stolen, forgotten, or misplaced; PIN may be forgotten or guessed by the impostors.

All of these approaches are also unable to difierentiate between an authorized person

and an impostor who fraudulently acquires the “token” or “knowledge” of the autho-

rized person [34, 44, 97, 106, 109]. Therefore, they are unable to satisfy the security

requirements of our electronically inter-connected information society.

1.1 Biometrics

Biometrics, which refers to identifying an individual based on her physiological or be-

havioral characteristics (identifiers) [75, 34, 44, 97, 106], relies on “something which

you are or you do” to make a positive personal identification. It is inherently more

reliable and more capable than knowledge-based and token-based techniques in dif-

ferentiating between an authorized person and a fraudulent impostor, because the

physiological or behavioral characteristics are unique to every person. Also, the per-
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son to be identified is required to be physically present at the point-of-identification.

Biometrics provides a solution for the security requirements of our electronically inter-

connected information society and has the potential to become the dominant auto-

matic personal identification in the near future [34, 44, 106, 109, 97, 75].

1.1.1 Biometric System

A biometric system is essentially a pattern recognition system which make a personal

identification by determining the authenticity of a specific physiological or behavioral

characteristic possessed by the user. The block diagram of a generic biometric system

is depicted in Figure 1.1. Logically, it can be divided into two modules: (2) enroll-

ment module and (ii) identification module. The enrollment module is responsible

for enrolling individuals into the biometric system. During the enrollment phase, the

biometric characteristic of an individual is first scanned by a biometric reader to pro-

duce a raw digital representation of the characteristic. In order to facilitate matching,

the raw digital representation is usually further processed by a feature extractor to

generate a compact but expressive representation, called a template. Depending on

the application, the template may be stored in the central database of the biometric

system or be recorded on a magnetic card or smart card issued to the individual.

The identification module is responsible for identifying individuals at the point-of-

access. During the operation phase, the biometric reader captures the characteristic

of the individual to be identified and converts it to a digital format, which is further

processed by the feature extractor to produce the same representation. The resulting
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Figure 1.1: A generic biometric system.

 

representation is fed to the feature matcher which compares it against the template(s)

to establish the identity.

1.1.2 Requirements of Biometric Identifiers

Any human physiological or behavioral characteristic can be used as a biometric

characteristic 0r identifier to make a personal identification as long as it satisfies

the following requirements [34, 106]: (i) universality, which means that each person

should have the characteristic, (ii) uniqueness, which indicates that no two persons

should be the same in terms of the characteristic, (iii) permanence, which means

that the characteristic should not be changeable, and (iv) collectability, which indi-

cates that the characteristic can be measured quantitatively. However, in practice,

a biometric characteristic that satisfies all the above requirements may not always

be feasible for a practical biometric system. In a practical biometric system, there
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are a number of other issues which should be considered, including [34, 106] (2) per-

formance, which refers to the achievable identification accuracy, Speed, robustness,

the resource requirements to achieve the desired identification accuracy and Speed,

as well as Operational or environmental factors that affect the identification accuracy

and Speed, (22) acceptability, which indicates the extent to which people are willing

to accept a particular biometric identifier in their daily life, and (iii) circumvention,

which reflects how easy it is to fool the system by fraudulent methods. A practical

biometric system Should be able to (i) achieve an acceptable identification accuracy

and speed with a reasonable resource requirements, (ii) not be harmful to the sub-

jects and be accepted by the intended population, and (iii) be sufficiently robust to

various fraudulent methods.

1.1.3 Operational Mode

An important issue in designing a practical biometric system is to determine how an

individual is identified. Depending on the application context, a biometric system

may be either a verification (authentication) system or an identification system [106].

A verification system authenticates a person’s identity by comparing the captured

biometric characteristic with her own biometric template(s) pre-stored in the system.

It conducts one-to-one comparison to determine whether the identity claimed by the

individual is true or not. In a verification (authentication) system, an individual

desired to be identified submits a claim to an identity to the system usually via a

magnetic stripe card, login name, smart card, etc., and the system either rejects or

it
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accepts the submitted claim of identity (Am I whom I claim I am .9). An identification

system recognizes an individual by searching the entire template database for a match.

It conducts one-to—many comparisons to establish the identity of the individual. In

an identification system, the system establishes a subject’s identity (or fails if the

subject is not enrolled in the system database) without the subject having to claim

an identity (Who am 1?).

Depending on the application domain, a biometric system could be either (i) an

online system or (ii) an offline system. An online system requires that a verifi-

cation/identification be performed quickly and an immediate response is imposed.

On the other hand, an offline system usually does not. require that a verifica-

tion/identification be performed immediately and a relatively long response delay

is allowed.

1 .1.4 Performance

Due to intraclass variations present in any biometric characteristic, the identity es-

tablished by a biometric system is not an absolute “yes” or “no” answer about the

identity; instead it is an answer with a certain confidence level. Generally, the iden-

tity established by a biometric system is either a genuine type or an impostor type,

which can be represented by two statistical distributions, called genuine distribution

and impostor distribution, respectively. For each of type of identity, there are two

possible outcomes, true or false. Therefore, there are a total of four possible out-

comes: (i) a genuine individual is accepted, (22) a genuine individual is rejected, (iii)
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an impostor is rejected, and (iv) an impostor is accepted. Outcomes (i) and (iii) are

correct whereas (22) and (iv) are incorrect. The confidence associated with the iden-

tity established by the biometric system may be determined by the two error rates,

(i) false acceptance rate (FAR) and (ii) false reject rate (FRR), which are charac-

terized by the genuine distribution and the impostor distribution, respectively. The

false acceptance rate is defined as the probability that an impostor is accepted as a

genuine individual and the false reject rate is defined as the probability that a genuine

individual is rejected as an impostor. Clearly, FAR and FRR are dual of each other.

A smaller FRR usually leads to a larger FAR while a smaller FAR usually implies a

larger FRR. Generally, the capability of a biometric system in performing automatic

personal identification is specified in terms of FAR [106]. A FAR of zero means that

no impostor is accepted as a genuine individual.

An identification system is essentially a database retrieval system. In addition to

the confidence level Of the established identity, two other important accuracy mea-

sures, which characterize the retrieval accuracy of a database retrieval system, need

to be provided to indicate the capability of the system: (i) precision and (ii) recall.

Precision is defined as the ratio of genuine records in the template database retrieved

by the identification system and the total number of templates retrieved. Recall is

defined as the ratio of the genuine records in the template database retrieved by

the identification system and the total number of genuine records in the template

database.

In addition to accuracy, verification/identification speed constitutes the next im-

portant performance measure. In a verification system, since only one-tO-one compar-
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isons are performed, the Speed performance is mainly characterized by the response

time of the verification (and feature extraction) algorithm or more precisely by the

computational complexity of the algorithm. It is usually easy to meet the speed re-

quirement of a verification system. However, in an identification system, especially

for a system which consists of millions of templates, a large number of comparisons

need to be performed to identify an individual. The speed performance involves a

number of aspects, including response time, throughput, computational complexity,

and scalability.

1 .2 Applications

Biometrics is a rapidly evolving technology which has been widely used in forensics

such as criminal identification and prison security, and has a very strong potential to

be widely adopted in a broad range of civilian applications. These applications may

be divided into the following two groups: (2) applications such as banking, electronic

commence, and access control in which biometrics will replace or enforce the current

token-based or knowledge-based techniques and (ii) applications such as welfare and

immigration in which neither the token-based nor the knowledge-based techniques

are currently being used.

Electronic commence and electronic banking are one of the most important and

emerging application areas of biometrics due to the rapid progress in electronic trans-

actions. These applications include electronic fund transfers, ATM security, check

cashing, credit card security, smart cards security, online transactions, etc. Cur-
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rently, there are several large biometric security projects in these areas under de-

velopment including credit card security (MasterCard) and smart card security (IBM

and American Express). A variety of biometric technologies are now competing to

demonstrate their utility in these application areas. The market of physical access

control is currently dominated by token-based technology. However, it is predicted

that, with the progress in biometric technology, market Share will increasingly Shift

to biometric techniques. Information system/computer network security such as user

authentication and access to databases via remote login iS another important poten-

tial application area for biometrics. It is expected that more and more information

systems/computer networks will be secured with biometrics with the rapid expansion

of Internet. With the introduction of biometrics, government benefits distribution

program such as welfare disbursement programs [98] will experience substantial sav-

ings in deterring multiple claimants. In addition, customs and immigration initiatives

such as INS Passenger Accelerated Service System (INSPASS) which permits faster

immigration procedures based on hand geometry [62] will greatly increase the Oper-

ational efficiency. Biometrics-based national ID systems provide a unique ID to the

citizens and integrate different government services [106]. Biometrics-based voter and

driver registration provides registration facilities for voters and drivers. Biometrics-

based time/attendance monitoring systems can be used to prevent any abuses of the

current token-based/manual systems [86].
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1.3 Biometric Technologies

A biometric characteristic could be either (i) a physiological characteristic or a behav-

ioral characteristic. A physiological characteristic is an attribute that is innate to us.

A behavioral characteristic captures something that we do. In terms of identification

accuracy, generally, it is believed that a physiological biometric characteristic is more

reliable than a behavioral biometric characteristic, since a physiological biometric

characteristic tends to have smaller intraclass variation than a behavioral biometric

characteristic [106].

Currently, there are mainly nine different biometric techniques that are either

widely used or are under intensive investigation, including face, fingerprint, hand

geometry, hand vein, iris, retinal pattern, signature, voice-print, and facial thermo-

gram [6, 34, 44, 75, 97, 42, 106, 143, 49, 70, 155, 105, 153]. Face, fingerprint, hand

geometry, hand vein, iris, facial thermogram, and retinal pattern are physiological bio—

metrics. Signature and voice-print are behavioral biometrics. Examples of these nine

different biometric characteristics are shown in Figure 1.2. All these biometric tech-

niques, to a certain extent, satisfy the requirements mentioned in section 1.1.2 and

have been used in practical systems [34, 44, 42, 106] or have the potential to become

a valid biometric technique [106]. We will briefly review these biometric technologies.

1.3.1 Face

Facial images are probably the most common biometric characteristic used by hu-

mans to make a personal identification. Face recognition is one of the most active
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Figure 1.2: Examples of different biometric characteristics.
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area of research with applications ranging from static, controlled mug shot verifica-

tion to dynamic, uncontrolled face identification in a cluttered background [30]. In

the context of automatic personal identification, face recognition usually refers to

static, controlled full frontal portrait recognition [30]. By static we mean that the

facial portraits used by the face recognition system are still facial images (intensity

or range). By controlled we mean that the type of background, illumination, res-

olution of the acquisition devices and the distance between the acquisition devices

and faces, etc. are essentially fixed during the image acquisition process. Clearly,

in such a controlled situation, the segmentation task is relatively simple and the in-

traclass variations are small. Face recognition is a non-intrusive technique. People

generally do not have any problem in accepting face as a biometric characteristic.

Theoretically, it has the potential to become the most friendly and acceptable way

to make personal identification [6, 106, 144]. During the past 25 years, a substantial

amount of research effort has been devoted to face recognition [30, 145, 155]. In the

early 1970’s, face recognition was mainly based on measured facial attributes such

as eyes, eyebrows, nose, lips, chin shape, etc. [30]. Due to lack of computational

resources and reliable feature extraction algorithms, only a very limited number of

tests were conducted and the recognition performance of these systems was far from

desirable [30]. After the dormant early 1980’s, there was a resurgence in face recog-

nition research in the late 1980’s and early 1990’s. In addition to continuing efforts

on attribute-based techniques [30], a number of new face recognition techniques were

proposed, including principle component analysis (PCA) [144], linear discriminant

analysis (LDA) [139], singular value decomposition (SVD) [65], local feature analy-
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Figure 1.3: Multiple Personalities: all the people in this image are the same person

(The New York Times Magazine, September 1, 1996/section 6, pages 48-49).

sis [6], and a variety of neural network-based techniques [145]. The performance of

these approaches is impressive. It was concluded that “face recognition algorithms

were developed and were sufficiently mature that they could be ported to real-time

experimental/demonstration system” [114]. A number of face recognition systems are

available on the market, such as TrueFace [99] and Faceit [148]. The performance of

these systems is reasonable.

Although humans depend heavily on facial images and attributes to identify in-

dividuals, it is widely known that humans utilize a large amount of contextual infor-

mation in performing face recognition [34]. Without the contextual information, it is

questionable whether the face itself is sufficiently effective to make a personal identi-

fication with a high level of confidence. For example, without any other information

about the faces in figure 1.3, it will be very difficult for both humans and machine
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vision systems to conclude that they are all of the same person (The New York Times

Magazine, September 1, 1996/section 6, pp. 48-49). Since face recognition is sup—

posed to be the most user-friendly biometric technology, a face recognition system

should not impose any annoying controlled restrictions on how the facial images are

acquired. This requires that the system should be able to automatically (2) detect

whether there exists a face in the acquired image, (ii) locate the face if there is one,

and (iii) recognize the face from a general viewpoint. These issues highlight some of

the difficulties in face recognition [6, 144].

1.3.2 Face Thermogram

The underlying vascular system in the human face produces a unique facial signature

when heat passes through the facial tissue and is emitted from the skin [143]. Such

facial signatures can be captured using an infrared camera, which are usually called

face thermogram. It is believed that a face thermogram is unique to each individual.

They are not vulnerable to disguises. Even plastic surgery, which does not reroute the

flow of blood through the veins, cannot change the formation of the face thermogram

of an individual. Also, face thermograms are independent of ambient light. An

infrared camera can capture the face thermogram in low light or in the absence of any

light, which greatly reduces the restrictions on how face thermograms are acquired.

Clearly, face thermogram is a non-intrusive biometric technique. Identity can be

verified without contact, without full camera view, and without the cooperation of

subjects. It is claimed that face thermogram-based recognition is superior to face
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recognition using CCD cameras [143]. Although it may be true that face thermograms

are unique to each individual, it has not been proven that face thermograms are

sufficiently discriminative. Face thermograms depend heavily on a number of factors

such as the emotion of the subjects, the body temperature, etc. Like face recognition,

face thermogram recognition is view-dependent. Finally, face thermogram has not

been shown to be a permanent biometric characteristic.

1.3.3 Fingerprints

A fingerprint is the pattern of ridges and furrows on the surface of a fingertip. It

is formed by the accumulation of dead, cornified cells that constantly Slough as

scales from the exposed surface [103]. It’s formation is determined in the fetal pe-

riod [103]. Extensive studies have been conducted on fingerprints and fingerprint

identification [39, 53, 108, 85, 103, 106]. The biological properties of fingerprints

are well understood. Humans have used fingerprints for personal identification for

centuries and the validity of fingerprint identification has been well-established. In

fact, fingerprint technology is so common in personal identification that it has almost

become the synonym of biometrics [44]. A major problem with fingerprint technol-

ogy is its acceptability by a typical user, because fingerprints have traditionally been

used for criminal investigations and police work. People may feel uncomfortable in

using fingerprints in civilian applications. Another problem with fingerprint technol-

ogy is that automatic fingerprint identification generally requires a large amount of

computational resources. For more details on fingerprint matching, see section 2.2.
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1.3.4 Hand Geometry

A variety of hand geometries including the shape of the hand and lengths and widths

of the fingers, etc. can be used as biometric characteristics. Hand geometry-based bio-

metric systems have been installed at over 4,000 locations around the world, including

the Colombian legislature and the San Francisco International Airport [44, 106]. The

technique is very simple and cheap. The accuracy of a hand geometry—based biomet-

ric system is quite reasonable. Operational environmental factors generally have very

limited negative effects on the identification accuracy. It does not appear to be a

problem for people to accept this technology. A main disadvantage of this technique

is its low discriminative capability — it is very difficult for a hand geometry-based

biometric system to achieve a very high identification accuracy especially for a large

population. The physical size of a hand geometry-based system is large, which may

restrict it from certain applications such as laptop computers. Among the nine bio-

metric techniques illustrated in Figure 1.2, hand geometry is the least circumventive

biometric characteristic. It is usually not very difficult to fool a hand geometry-

based biometric system. In addition, hand geometry is not a permanent biometric

characteristic [106].

A variant of hand geometry technique, finger geometry technique, which relies on

a number of geometrical invariants of fingers such as the 3D shape of a finger has

recently been investigated. It is claimed that finger geometry is more accurate in

personal identification than hand geometry. However, such a conclusion needs some

further justification.
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1.3.5 Hand Vein

Hand veins provide a very robust and repeatable pattern that can be used as a bio-

metric characteristic to make a personal identification [106]. Digitized images of hand

vein patterns can be easily captured with an infra-red camera. Hand vein patterns

are unique to each individual. They are separated from external environment, so it

is easy to segment it from background. It is very difficult to change the formation of

the hand vein pattern of an individual by surgery. Thus, hand vein based technique

is very efficient in circumventing fraudulent attempts. A hand vein-based biometric

system has the potential to achieve a reasonable identification accuracy and people

are normally willing to accept it. However, there is no hand vein-based biometric

system available that iS able to demonstrate its superior capability in conducting

automatic personal identification. Like hand geometry, it might be very difficult for

a hand vein-based biometric system to achieve a very high identification accuracy.

The physical size of a hand vein-based system is large. Again, hand vein is not a

permanent biometric feature, especially for people in developing age group.

1.3.6 Iris

The texture formation of iris in a human eye depends on the initial conditions of the

embryonic mesoderm from which it develOpS [42, 106]. It is unique for each individual

and it never changes during the person’s life time. Iris is inherently isolated from

external environment and can not be modified surgically [42]. All of these properties

make iris one of the most secure biometric characteristic in deterring impostors [106,
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153]. The technique is simple but very efficient in performing automatic personal

identification. It has the potential to become a major biometric technique in the

future. Currently, a few iris scan-based biometric systems are available in the market

such as the IriScan developed by IriScan, Inc. which is claimed to be able to achieve

a very high identification accuracy with a very limited amount of computational

resources [42, 106]. The major problem with iris scan is that it is still not accepted

as a proven technology and its validity has not yet been well established [106]. Iris

imaging needs to project a bean of light on the iris. It appears that people may not

feel comfortable in accepting iris scan technique in their daily life, since people are

usually very protective of their eyes. In addition, the sensor needs to be placed at a

certain distance from the eye to capture the visual texture information and to register

the iris images, which is another annoying restriction. Finally, in order to capture an

iris image that is suitable for identification, a relatively expensive iris scanner needs

to be used.

1.3.7 Retinal Pattern

The retinal veins in human eyes form very stable and repeatable patterns, called

retinal patterns. They are unique to each person. Digital images of retinal patterns

can be acquired by projecting a low-intensity beam of light on the eyeball. Retinal

patterns are isolated from the external environment which is a very good property

in deterring impostors. In fact, retinal scan is currently believed to be the most

secure biometric technique. A large number of retinal scan-based biometric systems
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have been installed in several highly secure environments. Their validity has been

well established by these operational installations. For example, it has been reported

that one type of retinal scan-based biometric system, the EyeDentify, has never let in

any impostor so far [106]. The major problem for a retinal pattern-based biometric

system is that most people do not feel comfortable in using such a system and it

usually needs a high degree of cooperation from the subjects, since retinal image

capture requires peeping into an eye-piece and focusing on a predetermined spot in

the visual field so that a predetermined part of the retinal veins could be scanned.

The cost of a retinal scanner is high. Again, retinal pattern is not a permanent

biometric characteristic [106].

1.3.8 Signature

Each person has a unique style of handwriting. Signature is a kind of “fingerprint”

that can be used to make a personal identification [105, 106]. There are two ap-

proaches to signature verification: (i) static and (ii) dynamic. Static signature verifi-

cation uses only the geometric features of a signature. Dynamic signature verification

uses both the static geometric features and the dynamic features such as accelera-

tion, velocity, and trajectory profiles of the signature. An inherent advantage of a

signature-based biometric system is that the signature has been established as an

acceptable form of personal identification method. Another advantage of signature

is that it is impossible for an impostor to obtain the dynamics information from a

written signature. The identification accuracy of signature-based biometric systems
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is reasonable. For example, a false acceptance rate of 0.58% and false reject rate of

2.1% were claimed by a commercial system [106]. However, due to large intraclass

variations of signature, it is very difficult for both static and dynamic signature-based

systems to reach a very high identification accuracy.

1.3.9 Voice Print

The vocal characteristics of humans are totally determined by the vocal tract, mouth,

nasal cavities, and the other speech processing mechanisms of human body [70, 106].

They are unique to each person and are usually called voice-prints. Voice—print verifi-

cation could be either a text—dependent verification or a text-independent verification.

A text-dependent verification authenticates the identity of an individual based on a

fixed predetermined phrase. A text-independent verification verifies the identity of a

speaker independent of the phrase, which is more difficult than a text-dependent veri-

fication. Extensive studies have been conducted on voice print techniques. Currently,

there are a number of voice print-based biometric systems available in the market,

including SpeakEZ (by T-NETIX), Tespar (by Domain Dynamics), VoiceKey (by In-

ternational Electronic, Inc.), BHS-1024 (by Technologia Systems), and Veritel (by

Veritel). They can achieve a reasonable identification accuracy. Generally, people

are willing to accept a voice-print based biometric system. The main problem with

voice-print technique is that voice-prints may not be sufliciently unique to permit an

identification of an individual from a large population. Voice-prints are sensitive to

a number of factors such as background noise as well as the emotional and physical
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Table 1.1: Comparison of Biometric Technologies.

state of the speaker. It is very difficult for a voice-print based system to achieve an

accuracy comparable to fingerprint-based or retinal pattern-based biometric systems.

In addition, some people seem to be extraordinarily skilled in mimicking others voice.

1.3.10 Other Biometric Techniques

Besides the techniques mentioned above, a number of other biometric techniques have

been investigated or are currently under study, including ear shape, gait, keystroke

dynamics, body odor, lip shape, DNA, etc. Although each of these techniques has its

own advantages, so far, none of them can achieve an accuracy that is comparable to

the nine different techniques mentioned above or can be conducted fully automatically.

In fact, they do not have a strong potential to become a valid biometric technique to

be used widely in the near future.

1.3.11 Comparison of Biometric Technologies

Each of the biometric technique reviewed above has its own advantages and disad-

vantages. A brief comparison of these nine biometric techniques along seven factors

is provided in Table 1.1. The applicability of a specific biometric technique depends

i
f
.
.
.
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heavily on the application domain. No single technique can outperform all the others

in all operational environments [106]. In this sense, each biometric technique is ad-

missible. For example, it is well known that both the fingerprint technique and the

iris scan technique perform much better than the voice print technique in terms of

accuracy and speed. However, in a telephone account security application, the voice

print technique is preferred, because it can be integrated seamlessly into the current

telephone system.

It is important to point out that most of the biometric techniques reviewed in

the previous section are not acceptable (in a court of law) as indisputable evidence of

identity. In fact, the only legally acceptable, readily automated, and mature biometric

technique so far is the automatic fingerprint identification technique which has been

used and accepted in forensics since the early 1970’s [85]. Although, signature is also

a legally acceptable biometrics, it ranks a distant second to fingerprints due to issues

involved with accuracy, forgery, and behavioral variability.

1 .4 Problem Definition

In this thesis, our objective is to design a biometric system which is capable of

achieving a fully automatic personal identification with a high level of confidence

using mainly fingerprints. The research problem may be stated as follows: Design a

fingerprint-based automatic personal identification system that can (i) authenticate

whether the identity claimed by an individual is true or not (Am I who I claim I am?)

or (ii) establish the identity of individuals that are enrolled in the system (Who am
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I7). The advantages of using fingerprints are as follows: (i) fingerprint identifica-

tion is one of the most reliable personal identification technique, (ii) its validity has

long been established and justified, and (iii) it is the most commonly used biometric

technique which has the potential to stay as a dominant biometric technique in the

future [106]. We have identified and investigated the following four issues in this

thesis.

(i) fingerprint matching - determining whether two fingerprints are impressions

of the same finger (Figure 1.4). Fingerprint matching constitutes the fundamental

capability of a fully automatic fingerprint-based biometric system. The two most

important problems in fingerprint matching are: (i) how to derive an efl‘icient repre-

sentation that is able to capture the individuality of each fingerprint and (ii) how to

match two representations to find the similarity between them. To derive a representa-

tion is to extract a set of features from an input image. To match two representations

is to determine a confidence value with which we can claim that two sets of features

extracted from two fingerprints are from the same finger. In order to design an ef-

ficient fingerprint matching algorithm, it is necessary that a concise but sufficient

fingerprint representation be derived from the input digital fingerprint images and an

efi'ectiue matching algorithm be designed to determine whether two sets of derived

representations are of the same finger. By sufficient we mean that a representation

should contain enough class-specific (individual) information about the digital finger—

prints, while by effective we mean that the matching performance based on the given

representation should be high enough to make a confident personal identification.

(ii) fingerprint image enhancement - improving the quality of an input fingerprint
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  (a) (b) (C)

Figure 1.4: Fingerprint matching: (a) and (b) are two impressions from the same

finger; (c) and (d) are two impressions from different fingers.

image to make it more suitable for the feature extraction algorithm (Figure 1.4). The

performance of a feature extraction algorithm relies heavily on the quality of input

fingerprint images. In practice, due to variations in impression conditions, ridge con-

figuration, skin conditions (aberrant formations of epidermal ridges of fingerprints,

postnatal marks, occupational marks), acquisition devices, and non-cooperative atti-

tude of subjects, etc., a significant percentage of acquired fingerprint images (approx-

imately 10% according to our experience) is of poor quality. The ridge structures in

poor-quality fingerprint images are not always well-defined and hence they can not

be correctly detected. This leads to a significant number of spurious features as well

as missing features, which greatly degrades the performance of fingerprint matching.

In order to ensure that the performance of the feature extraction algorithm will be

robust with respect to the quality of input digital fingerprint images, an enhancement

algorithm which can improve the clarity of the ridge structures is necessary.

(iii) Integration of multiple biometric indicators - combining multiple biometric

indicators to improve the performance and applicability of a biometric system. Differ-

ent application domains impose different operational and performance requirements
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Figure 1.5: Fingerprint image enhancement: (a) corrupted image; (b) enhanced im-

age.

on a biometric system. By and large, the personal identification systems based solely

on fingerprints are able to satisfy these requirements. However, since fingerprint

matching is computationally demanding, it is impractical to require that an auto-

matic personal identification system based solely on fingerprints is able to establish

the identity of an individual by searching through a huge fingerprint database in

“real-time.” Integration of multiple clues has been shown to be very effective in im-

proving the performance of pattern recognition systems [19]. In addition, although

a necessary requirement for a biometric characteristic is that each individual possess

it, it is not necessary that a particular biometric characteristic of a specific individual

is suitable for an automatic system. By using multiple biometric characteristics, the

system will be applicable on a larger target population. We have explored the design

of a biometric system which combines multiple biometric indicators (face and finger-

print) to overcome some of the limitations of a fingerprint-based system (Figure 1.6).

(iu) fingerprint classification - assigning fingerprints into a number of categories
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Figure 1.6: Integration of face recognition and fingerprint verification.

based on the global ridge and furrow configurations (Figure 1.4). Fingerprint clas-

sification provides important information about the global pattern configuration of

fingerprints and, thus, plays an important role in fingerprint matching. In fact, if two

fingerprints are not in the same category, then it is certain that the two fingerprints

are not from the same finger. Fingerprint classification consistently assigns finger-

prints into categories according to the global pattern configurations, which essentially

provides an indexing mechanism for a fingerprint database. Since automatic finger-

print matching is a computationally demanding task, this indexing mechanism can

greatly reduce the computational complexity in searching for a match in a fingerprint

database, especially a large fingerprint database.

1.5 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the history and

methodology of fingerprint identification. Chapter 3 presents the design of our au-
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Figure 1.7: A fingerprint image and five major fingerprint Classes.

tomatic personal identification system and related issues. Chapter 4 discusses fin-

gerprint feature extraction and presents an improved minutiae extraction algorithm.

Chapter 5 emphasizes the need for fingerprint enhancement and proposes a novel

fingerprint image enhancement algorithm. Chapter 6 presents our minutiae matching

algorithm. Chapter 7 addresses the decision fusion scheme which integrates faces

and fingerprints to achieve a better performance. Chapter 8 discusses the problem

of fingerprint image classification and presents a novel fingerprint image classification

algorithm. Chapter 9 discusses the problem of performance evaluation for biometric

systems. Also, experimental results of our system on several data sets are reported.

Finally, chapter 10 contains a summary of our research, discusses the limitations of

our current algorithms, and gives a list of problems which should be explored by other
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researchers.

1.6 Summary

Accurate automatic personal identification is critical in a wide range of application

domains such as national ID card, electronic commerce, and automated banking. Bio-

metrics, which refers to automatic identification of a person based on her physiological

or behavioral characteristics, is inherently more reliable and more capable in differ-

entiating between an authorized person and a fraudulent impostor than traditional

methods such as passwords and PIN numbers. Automatic fingerprint identification

is one of the most reliable biometric technology among the nine different major bio-

metric techniques which are either currently available or are under investigation. The

objective of our research is to design a biometric system which is capable of achieving

fully automatic “personal identification” with a high level of confidence using mainly

fingerprints.
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Chapter 2

Fingerprint Identification

In the context of fingerprint identification, fingerprints or simply prints are gen-

erally used to refer to the impressions of human fingers. In this thesis, fingerprints,

prints, and fingerprint impressions are used synonymously to indicate the impres-

sions of fingertips. Operationally, fingerprint identification can be decomposed into

the following three fundamental tasks [103]: (i) fingerprint acquisition, (ii) finger-

print classification, and (iii) fingerprint matching. Fingerprints are acquired from

fingertips or impressions of the ridges and furrows. Fingerprint classification assigns

a fingerprint into a certain category according to its global ridge and furrow configu-

ration. Fingerprint matching determines whether two fingerprints are from the same

finger. Fingerprint identification is one of the most reliable and valid personal iden-

tification method, which has been in use for a long time [39, 53, 108, 85, 103, 106].

Automatic fingerprint identification has been studied since the early 1970’s and a

significant progress has been made. A large number of automatic fingerprint identi-

fication systems for both forensic applications and civilian applications are installed

29
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worldwide. However, fully automatic fingerprint identification is still a challenging

problem [85, 106].

2.1 History of Fingerprint Identification

Humans have used fingerprints for a very long period of time [39, 53, 108, 85, 103, 26,

37, 112, 124, 109, 135]. Human fingerprints have been discovered on a large number of

archaeological artifacts and historical items (refer to Figure 2.1 for some examples).

Although these archaeological artifacts and historical items provide sufficient evidence

to show that ancient people were aware of the individuality of fingerprints, such

awareness does not appear to have any scientific basis [85, 103].

It was not until the late 16th century that the modern scientific fingerprint tech-

nique was first initiated [39, 53, 108, 85, 103]. In 1864, English plant morphologist,

Nehemiah Grew, published the first scientific paper reporting his systematic study on

the ridge, furrow, and pore structure in fingerprints (Figure 2.2) [85]. Since then, a

large number of researchers have invested huge amounts of effort on fingerprint stud-

ies. In 1788, a detailed description of the anatomical formations of fingerprints was

made by Mayer [103] in which a number of fingerprint ridge characteristics were iden-

tified and characterized (Figure 2.3). Starting in 1809, Thomas Bewick began to use

his fingerprint as his trademark (Figure 2.4), which is believed to be one of the most

important milestones of the scientific study of fingerprint identification [103]. Purk-

inje, in 1823, proposed the first fingerprint classification scheme which classified fin-

gerprints into nine categories according to the ridge configurations (Figure 2.5) [103].
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hi1 . M. W ,

Neolithic Carvings Standing Stone (Goat Is-

(Gavrinis Island) [103] land, 2,000 BC.) [85]

   
A Chinese clay seal (300

An _ . rm—

B_C_) [85]
presswn on a Palestinian

lamp (400 AD.) [103]

Figure 2.1: Examples of archaeological fingerprint carvings and historic fingerprint

impressions; although the impressions on the Neolithic carvings and the Goat Island

standing stones might not be used to indicate the identity, there is sufficient evidence

to suggest that the Chinese clay seal and the impressions on the Palestinian lamp

were used to indicate the identity of the providers.

 

Figure 2.2: Dermatoglyphics drawn by Grew [103].



 

 
Figure 2.4: Trademarks of Thomas Bewick [85].
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Figure 2.5: The nine patterns illustrated in Purkinje’s thesis [103].

Henry Fauld, in 1880, first scientifically suggested the individuality of fingerprints

based on his own observation. At the same time, Herschel asserted that he had prac-

ticed fingerprint identification for about 20 years [85, 103]. This discovery established

the foundation of modern fingerprint identification. In the late 19th century, Sir

Francis Galton conducted an extensive study on fingerprints [53]. He introduced the

minutiae features for single fingerprint classification in 1888. An important advance

in fingerprint identification was made in 1899 by Edward Henry, who (actually his

two Indian assistants) established the well known “Henry system” of fingerprint clas-

sification [85, 106]. By the early 20th century, the formations of fingerprints were well

understood. The biological principles of fingerprints are now well established [103]

and are summarized below:
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0 Individual epdiermal ridges and furrows have difierent characteristics for differ-

ent fingerprints.

o The configuration types are individually variable, but they vary within limits

which allow for a systematic classification.

0 The configurations and minute details of individual ridges and furrows are per-

manent and unchanging.

The first principle constitutes the foundation of fingerprint identification and the

second principle constitutes the foundation for fingerprint classification.

In the early 20th century, fingerprint identification was formally accepted as a

valid personal identification method and became a standard routine in forensics [85].

Fingerprint identification agencies were setup worldwide and criminal fingerprint

databases were established [85]. Various fingerprint identification techniques, includ-

ing latent fingerprint acquisition, fingerprint classification, and fingerprint matching

were developed. For example, the FBI fingerprint identification division was setup in

1924 with a database of 810,000 fingerprints [108].

With the rapid expansion of fingerprint identification in forensics, operational fin-

gerprint databases became so huge that manual fingerprint identification became in-

feasible. For example, the total number of fingerprints in the FBI fingerprint database

now stands at 70 million from its original number of 810,000. With thousands of iden-

tification requests being received daily, even a team of more than 1,300 fingerprint

experts were not able to provide timely responses to these requests [85]. Starting in

the early 1960’s, FBI, Home Office in the UK, and Paris Police Department began to

I
n
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invest a large amount of effort to develop automatic fingerprint identification systems

(AFIS) [85, 108]. Based on the observations of how human fingerprint experts perform

fingerprint identification, three major problems in designing AFISs were identified and

investigated: (i) digital fingerprint acquisition, (ii) local ridge characteristic extrac-

tion, and (iii) ridge characteristic pattern matching. Their efforts were so successful

that a large number of commercial AFIS are currently installed and in operation in

law enforcement agencies worldwide. These systems have greatly improved the op-

erational productivity of these agencies and reduced the cost of hiring and training

human fingerprint experts.

Recently, due to the rising demand in our increasing electronically inter-connected

society for automatic personal identification and the success of various AFIS instal-

lations in forensics, automatic fingerprint identification technology has rapidly grown

beyond forensic applications into civilian applications [106]. In fact, fingerprint based

biometric systems are so popular that they have almost become the synonym of bio-

metric systems [44].

2.2 Fingerprint Acquisition

Depending on whether the acquisition process is online or offline, a fingerprint may

be either (i) an inked fingerprint or (ii) a live-scan fingerprint.

Inked fingerprint is a term which is used to indicate that the fingerprint image

is obtained from an impression of the finger on an intermediate media such as pa-

per. Generally, inked fingerprint is obtained using the rolled method, called rolled
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(b) 7' h (c)

Figure 2.6: Comparison of different fingerprint impressions: (a) a rolled fingerprint

(from NIST 4 database); (b) a live-scan fingerprint (captured with a scanner manu-

factured by Digital Biometrics); (c) a latent fingerprint.

inked fingerprint. An example of a rolled inked fingerprint is shown in Figure 2.6 (a).

Typically, the first step in capturing a rolled impression of a fingerprint is to place

a few dabs of ink on a slab and rolling it out smoothly with a roller until the slab

is covered with a thin, even layer of ink. Then the finger is rolled from one side of

the nail to the other side over the inked slab which inks the ridge patterns on top

of the finger completely. After that, the finger is rolled on a piece of white paper

so that the inked impression of the ridge pattern of the finger appears on the white

paper. Rolled inked fingerprints impressed on paper can be electronically scanned

into digital rolled fingerprints using optical scanners or video cameras. So far, rolled

acquisition method remains the most popular acquisition technique. In fact, it has

been essentially a standard technique for fingerprint acquisition for more than a bun-

dred years [108, 103]. Rolled inked fingerprints tend to have a larger area of valid

ridges and furrows, but have large deformations due to the inherent nature of the

rolled acquisition process. Direct feedback is not available to the subject to control

the acquisition process which, in turn, may result in difficulties in quality control.
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Acquisition of rolled fingerprints is cumbersome and slow. In the context of an auto-

matic personal identification system, it is both infeasible and socially unacceptable to

use the rolled inked method to acquires fingerprints in the Operational phase although

it may be feasible to use the rolled inked method in the enrollment phasel.

In forensics, a special kind of inked fingerprints, called latent fingerprints, is of

great interest. Constant perspiration exudation of sweat pores on fingerprint ridges

and intermittent contact of finger with other parts of human body and various objects

leave a film of moisture and/or grease on the surface of fingers. In touching an

object, the film of moisture and/or grease may be transferred to the object and

leave an impression of the ridges thereon. This type of fingerprints is called latent

fingerprint. Latent fingerprints are very important in forensics. Actually, a major

task in forensic fingerprinting application is searching and reliably recording latent

fingerprints [85, 103], which is beyond the scope of this thesis. An example of a latent

fingerprint is shown in Figure 2.6 (c).

The live-scan fingerprint is a collective term for a fingerprint image directly ob-

tained from the finger without the intermediate step of getting an impression on a

paper. A number of sensing mechanisms can be used to sense the ridge and fur-

rows of the finger impressions, including (i) optical frustrated total internal reflection

(FTIR) [3, 59, 137, 60, 77], (ii) ultrasonic total internal reflection [126], (iii) optical

total internal reflection of edge-lit holograms [2, 52, 129], (iv) thermal sensing of the

temperature differential (across the ridges and valleys) [83, 38], (v) sensing of differ-

ential capacitance [93, 130, 146], and non-contact 3D scanning [88]. Scanners based

 

1For example, Master Card relies on inked impressions for enrollment.
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(b)

Figure 2.7: FTIR fingerprint scanners: (a) manufactured by Identiar, (b) manufac—

tured by Digital Biometrics.

on these physical processes can be used to acquire the impressions, called live-scan

fingerprints, of human fingers directly. These acquisition methods eliminate the in-

termediate digitization process of inked impressions and makes it possible to build

on-line systems. Depending on the clarity of ridge structures of scanned fingers and

acquisition conditions, acquired live-scan fingerprints vary in quality. However, since

there exists a direct feedback on such type of devices, it is relatively easier to control

the quality of acquired fingerprints.

A live—scan fingerprint is usually obtained using the dab method, in which a finger

is impressed on the acquisition surface of a device without rollingz. A dab live-

scan fingerprint only captures the ridges and furrows that are in contact with the

acquisition surface. Therefore, it tends to have a smaller area of valid ridges and

furrows and smaller deformations than a rolled fingerprint.

The most popular technology to obtain a live-scan fingerprint image is based on

 

2R is also possible to capture a rolled live—scan fingerprint. Some vendors are trying to develop

such fingerprint scanners.
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Figure 2.8: Solid state fingerprint chips: (a) differential capacitance fingerprint chip

manufactured by Harris [130]; (b) differential capacitance fingerprint chip manufac-

tured by Veridicom [146]; (c) thermal fingerprint chip manufactured by Thomson

CSF [38].

optical frustrated total internal reflection (FTIR) concept [59, 125]. When a finger is

placed on one side of a glass platen (prism), ridges of the finger are in contact with

the platen, while the valleys of the finger are not in contact with the platen. The rest

of the imaging system essentially consists of an assembly of an LED light source and

a CCD placed on the other side of the glass platen. The laser light source illuminates

the glass at a certain angle and the camera is placed such that it can capture the

laser light reflected from the glass. The light which is incident on the plate at the

glass surface touched by the ridges is randomly scattered while the light incident at

the glass surface corresponding to valleys suffers total internal reflection, resulting

in a corresponding fingerprint image on the imaging plane of the CCD. An example

of live-scan fingerprint is shown in Figure 2.6 (b). Figure 2.7 shows the two FTIR

fingerprint scanners used in our prototype systems.

Optical scanners are too large to be readily integrated in a number of applications

such as laptop security, cellular phone security, and notebook security. Recently, a

number of different types of compact solid state fingerprint chips have become avail-
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able. The quality of the images acquired using these solid state chips is comparable

to the quality of images acquired using optical scanners. These solid state chips can

be manufactured with a very low cost if manufactured in a large quantity. Figure 2.8

shows the three different types of solid state fingerprint chips which are commercially

available.

2.3 Fingerprint Classification

Global patterns of ridges and furrows in the central region of fingerprints form special

configurations, which have a certain amount of intraclass variability. But these varia-

tions are sufficiently small which allows for a systematic classification of fingerprints.

Typelines

 

 
Figure 2.9: Pattern area and typelines.
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In regard to fingerprint classification, only a portion of a fingerprint, called pat-

tern area is of interest [108]. The pattern area of a fingerprint consists of those ridges

encircled by typelines which is defined as the two innermost ridges that form a diver-

gence tending to encircle or encompass the central portion of a fingerprint (Figure 2.9

shows an example of pattern area and typelines) [108]. The pattern areas of loop

or whorl types of fingerprints contain two types of singular points, (i) delta and (ii)

core. The delta, sometimes called the outer terminus, is defined as the point of ridge

at or in front of and nearest to the center of the divergence of the typelines. It may

be a ridge dot, a short ridge, the forking point of a bifurcated ridge, ending ridge,

or the point on the ridge running in front of the divergence nearest to the center

between the innermost diverging ridges. Examples of delta configurations are shown

in Figure 2.10. The core, sometimes called the inner terminus, is defined as the spe-

cific point located on or within the innermost sufl‘iciently curved ridges. Due to large

variations in the formations of curved ridges, the rules for the selection of the core are

very complicated. Figure 2.11 shows several examples of core configurations. Another

important concept in both fingerprint classification and fingerprint matching is ridge

count, which may be roughly defined as the number of ridges that touch or cross an

imaginary line drawn between the core and delta. Due to the high complexity of

ridge configurations, a precise definition of ridge count is difficult. Three simple ridge

counting examples are shown in Figure 2.12. In this thesis, we extend the definition

of ridge count to be the number of ridges that touch or cross an imaginary line drawn

between a given pair of minutiae.

With the above definitions, fingerprint categories can be described as follows. A
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Figure 2.10: Examples of delta configuration [103].

 

Figure 2.11: Examples of core configuration [103].

 

Figure 2.12: Ridge counting [103].
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loop is the type of fingerprint in which “one or more of the ridges enter on either

side, recurve, touch or pass an imaginary line drawn from the delta to the core, and

terminate or tend to terminate on or toward the same side from which such ridge or

ridges entered” [108]. There are three essential ingredients for classifying a fingerprint

into a loop: (i) at least one sufficiently recurve ridge, (ii) a delta, and (iii) nonzero

ridge count. L00ps may be further divided into lunar loop and radial loop depending

on the orientation tendency and fingers. About 60-65% of human fingerprints belong

to this category [108, 103].

A whorl is that type of fingerprint in which “at least two deltas are present with

a recurve in front of each” [108]. This definition, though very general, captures the

essence of the category. Whorls may be further divided into four sub-categories: (i)

plain whorl, (ii) central pocket loop, (iii) double loop, and (iv) accidental. About

30-35% of human fingerprints belong to this category [108, 103].

Arch is a special type of fingerprint configuration. Less than 5% of all fingerprints

are arches [108, 103]. Arch may be divided into two sub-categories: (i) plain arch

and (ii) tented arch. A plain arch is that type of fingerprint in which ridges enter one

side and flow or tend to flow out the other with a rise of wave in the center [108]. In

a tented arch, most of the ridges enter one side and flow or tend to flow out the other

with a rise of wave in the center and the rest of the ridges form a definite angle, or

up—thrush [108].

Fingerprint classification still remains a very difficult problem for both human

experts and automatic systems [108, 103]. On the one hand, only a limited number of

major fingerprint categories have been identified and the distribution of fingerprints



       

 

fa?” \ \

. «7'

r-‘f‘fi ‘

’My:
4; / ”:53-‘: "Sn.

1' . \/ .

" ._.'»y;
I

// \\§\\. / If” _;\ \\\.,

' ’ \‘ \

u
           

 

  

   (C)

Figure 2.13: Examples of fingerprints that are difficult to classify; (a) tented arch;

(b) a loop; (c) a whorl; it seems that all the fingerprints shown here should be in the

loop category.

into these categories is not uniform. On the other hand, as we mentioned above,

there exists a large variation in fingerprint configurations. The definition of each

fingerprint category is both complex and vague. A human inspector needs a long

period of experience to reach a satisfactory performance in performing fingerprint

classification. In fact, fingerprint classification is more like an art than a science,

since the long period of experience can only be gained by practice [103]. Figure 2.13

shows examples of fingerprints that are difficult to classify.

2.4 Fingerprint Matching

Although fingerprint category information and other global pattern configurations

such as the number and positions of core and delta and ridge count may indicate,

to a certain extent, the individuality of fingerprints, the uniqueness of a fingerprint

is exclusively determined by the local ridge characteristics and their relationships.

Fingerprint matching depends on the comparison of local ridge characteristics and
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their relationships to determine the individuality of fingerprints. A total of one hun-

dred and fifty different local ridge characteristics, called minute details, have been

identified [103]. These local ridge characteristics are not evenly distributed. Most of

them depend heavily on the impression conditions and quality of fingerprints and are

rarely observed in fingerprints. The two most prominent ridge characteristics, called

minutiae, are (i) ridge ending and (ii) ridge bifurcation. A ridge ending is defined as

the ridge point where a ridge ends abruptly. A ridge bifurcation is defined as the ridge

point where a ridge forks or diverges into branch ridges. Minutiae in fingerprints are

generally stable and robust to the fingerprint impression conditions. Normally, they

can be easily identified. Examples of minutiae are shown in Figure 2.14. For a given

fingerprint, a minutia can be characterized by its type, its x and y coordinates, and

its direction whose definition is also shown in Figure 2.14.

 

-- -- —"/ --9_---
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Ridge Ending Ridge Bifurcation

(a) Ridge Ending Ridge Bifurcation

  
(b)

Figure 2.14: Minutiae; (a) example of minutiae; (b) characterization of minutiae.

If two fingerprints belong to the same category and have a sufficient number of

minute details that are identical, then it can be concluded confidently that they are

from the same finger. Generally, in order to determine that two fingerprints are from

the same finger, four factors must be evaluated: (i) general pattern configuration
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Figure 2.15: Fingerprint matching result in which 18 identical minute details are

identified [103].

agreement which means that two fingerprints must be of the same pattern config-

uration, (ii) qualitative concordance which requires that the corresponding minute

details must be identical, (iii) quantitative factor which specifies that at least a

certain number (a minimum of 12 according to the forensic guidelines in the United

States) of corresponding minute details must be found, and (iv) relationship of minute

details which specifies that the corresponding minute details must be identically inter-

related. In practice, complex identification protocols have been defined for fingerprint

matching. These protocols are carefully designed based on the knowledge of finger-

print experts. A detailed flow chart is available to guide fingerprint examiners in

performing fingerprint matching.

Although various protocols for fingerprint matching may be different in the con-

cept definition and decision making process, the major steps in the associated flow

charts are essentially the same. Typically, a fingerprint matching process is executed

with an iterative three-stage process. First of all, two fingerprints to be matched
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are compared to determine whether they are similar to each other in global pattern

configuration. If the two fingerprints are totally different in terms of global pattern

configuration, it is impossible that these two fingerprint are from the same finger.

Next, a pattern alignment process is conducted in which several salient feature points

are first located from the fingerprints and, then, an approximate alignment of the

fingerprints is performed. Finally, a matching process is conducted in which corre-

sponding minute details are evaluated in the valid fingerprint pattern areas and a

decision is made based on the identified corresponding pairs and pattern configu-

ration. Due to variations in fingerprint quality, impression deformation, fingerprint

ridge configuration, and skin conditions, several steps in fingerprint matching pro-

tocols can not be clearly and precisely defined. Fingerprint examiners must depend

heavily on their experience to make decisions. For example, even the most prominent

minute details, minutiae, can not be identified easily. Some ridge bifurcations may be

inevitably identified as ridge endings if the fingerprint impression pressure is too low.

Therefore, although fingerprint matching is practiced daily by thousands of opera-

tional fingerprint experts around the world, fingerprint matching is still an art instead

of a science. Experience plays a key role in manual fingerprint matching. Figure 2.15

shows an example of fingerprint matching result in which 18 corresponding minute

details have been identified.



Chapter 3

System Design

The design of a biometric system can be characterized at two different levels: (i)

system level and (ii) algorithm level.

3.1 System Level Design

The major issues at the system level design include which biometric characteristics

should be used, which operational mode should be used, how to acquire a raw digital

representation of the biometric characteristic, the system architecture, and other

issues such as ergonomics, physical size, power supply, weight, cost, administrative

and maintenance costs, and environmental influence.

The selection of a biometric characteristic is mainly determined by the practical

requirements, especially performance requirements. The practical performance re-

quirement is very much application related. On the one extreme, from the view point

of system accuracy, a low false reject rate may be the primary objective. For example,

48
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in some forensic applications such as criminal identification, it is the false reject rate

that is a major concern and not the false acceptance rate: i.e., we do not want to

miss a criminal even at the risk of examining a large number of potential matches

identified by the biometric system. In forensic applications, it is the human expert

that will make the final decision anyway. On the other extreme, the false reject rate

may be the most important factor in a highly secure access control application, where

the primary objective is deterring impostors although we are concerned with the pos-

sible inconvenience to the legitimate users due to a high false reject rate. In between

these two extremes are several civilian applications, where both false acceptance rate

and false reject rate need to be considered. For example, in applications like ATM

card verification, false reject rate is more important than the false acceptance rate

- a false acceptance means a loss of several hundred dollars while a high false reject

rate may irritate the customers. Obviously, even in civilian applications, a high false

acceptance rate is not desirable since the main advantage of automation is defeated

if human experts are involved in examining a long list of false positives. Ideally, we

would like to have a reliable binary output - Is the subject in the system database

or not? On the other hand, a high false reject rate is also not desirable since that

would let in an impostor easily. But the risks involved in civilian applications are

not as severe as in a criminal or security system. Figure 3.1 graphically depicts the

situation discussed above.

Different biometric characteristics possess different discrimination capability in

terms of system accuracy. At the one extreme, we have biometric characteristics such

as face and dynamic signature that are inherently better at accepting genuine indi-
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Figure 3.1: Different applications have different requirements for the FAR and FRR.

viduals, but do not perform well in deterring impostors. For example, an individual

may be easily mistaken due to changes in makeup, hair style, lighting conditions,

background, etc. At the other extreme, we have the biometric characteristics such as

retinal scans, fingerprints, and iris that are better at preventing impostors but are less

efficient in identifying genuine individuals. Somewhere in between these two extremes

are those biometric characteristics such as hand geometry and hand vein which per-

form about the same in deterring impostors and accepting genuine individuals [106].

Generally, there is no rule of thumb to indicate which biometric technique should be

used for a given application. A realistic design strategy is to examine what are the

system requirements, assess which technique is suitable for the given application, and

then tune the biometric system to satisfy the practical performance requirements.

As mentioned in Chapter 1, a biometric system may operate either in (i) verifica-

tion mode or (ii) identification mode. It is more difficult to design an identification
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system than to design a verification system [106]. For a verification system, the

major challenge is the system accuracy. It is usually not very difficult to meet the

response time requirement in a verification system, because only one-to-one compar-

ison is conducted. However, for an identification system, both accuracy and speed

are critical. An identification system needs to explore the entire template database

to establish an identity. Thus, more requirements are imposed on the feature extrac-

tor and, especially, the feature matcher. Inherently, some biometric approaches are

more feasible for operating in the identification mode than the others. For exam-

ple, the individuality of fingerprints is mainly determined by the local minute details

and their relationship. To automatically match a pair of unregistered fingerprints

is computationally expensive. A linear search of the entire template database even

for a small size database is not acceptable. Fingerprint classification may provide

a partial solution to index a fingerprint database. However, it is doubtful that an

one-finger-indexing mechanism based solely on the global fingerprint configuration,

which is difficult to be registered in a fully automatic personal identification applica-

tion, can reach the desirable accuracyl. Therefore, although a significant progress has

been made in fingerprint identification, it is still not practical to conduct a real-time

search even on a relatively small size fingerprint database of several thousand images

without dedicated hardware matchers and an efficient indexing mechanism. On the

other hand, it is feasible to design a face recognition system Operating in the iden-

tification mode, because (i) face comparison is a relatively less expensive operation,

 

lAn indexing mechanism based on multiple fingers such as the Henry System which is based on

ten-finger classification is widely used in AFIS [85]. However, using all ten fingers to make a personal

identification may not always be acceptable in a civilian application.
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and (ii) efficient indexing techniques are available and the recognition performance

is admissible [139].

Choosing the operational mode for a biometric system depends mainly on practical

requirements. Generally, an identification system is more desirable than a verification

system. However, an identification system usually requires more resources and, thus,

costs more. In addition, an identification system may not always be technically

practical. For example, an ATM card identification system needs to connect all the

ATM machines around the world, establish a template database of millions of records,

and it should be able to search through millions of template records in real time for

each access authentication.

Data acquisition is one of the critical processes in a biometric system. The quality

of the acquired data determines the performance of the entire system. However,

the selection of a data acquisition device depends on practical requirements such as

availability, cost, and size. There is no rule of thumb to determine which device

should be used. In this thesis, we concentrate on online applications. Thus, we want

a device which is able to acquire the fingerprint images directly from human fingers.

The biometric system architecture depends on the application. Logically, as men-

tioned in Chapter 1, a biometric system mainly consists of two modules: enrollment

module and identification module. Each module consists of a number of sequential

feed-forward submodules, which accept inputs from the previous submodule(s) and

produce intermediate results which are, in turn, treated as inputs to the next sub-

module(s). The design of these submodules depends on the biometrics being used. It

is tightly related to the algorithm level design.
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3.2 Algorithm Level Design

Given the system level specifications and the practical requirements, the major tasks

in algorithm level design are: (i) feature extraction and (ii) matching. Feature ex-

traction is responsible for extraction of representative features from the raw input

data. Matching is responsible for determining whether two sets of representative fea—

tures are extracted from the same source. The algorithm level design also consists of

other modules such as database management, quality control, encryption, and user

interface, which are beyond the scope of this thesis.

The fingerprint representation (features) constitutes the essence of algorithm level

design and determines almost all aspects of the recognition mechanism. A representa-

tion should have the following two properties: (i) saliency and (ii) suitability. Saliency

means that a representation should contain enough class-specific (individual) infor-

mation about the input data. Suitability means that the representation can be easily

extracted, stored in a compact fashion, and is useful for matching. Saliency and suit-

ability properties are not highly correlated. A salient representation is not necessarily

a suitable representation. There is no general representation scheme that is suitable

for all biometrics.

A matching algorithm is generally based on a similarity function to determine

whether two sets of features are from the same source. For a given representation,

deriving a similarity function is a very difficult problem because of intraclass and

interclass variations. Typically, there is no systematic way to derive a similarity

function.
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For automatic fingerprint identification, it is well known that the acquired im-

age has redundancy and tends to have large intraclass variations. Therefore, the

fingerprint image itself is not a desirable representation. Currently, the two major

representation schemes for automatic fingerprint identification are: (i) image-based

representation and (ii) feature—based representation. The image-based representation

assumes that the individuality of fingerprints may be exclusively determined in the

spatial or the frequency domain. For example, a fingerprint can be represented by

its Fourier spectrum. Due to orientation-specific flow pattern of ridges in the finger-

prints, a concise representation may be obtained using the Fourier spectrum. The

image-based representations usually require that the input image be registered. In

practice, registering an input image is as difficult as matching itself. Therefore, al-

though several image-based fingerprint representations have been pr0posed in the

literature [51, 50, 9, 1, 7, 73, 74], the validity of these representations is still far from

established.

The feature-based representation originates from the fact that if a pair of fin-

gerprints belong to the same category (e.g., arch, loop, whorl, etc.) and share a

sufficiently large number of significant local ridge characteristics then it can be con-

cluded confidently that they are from the same finger. Each fingerprint has a small

number of significant local ridge characteristics. So, a compact and efficient finger-

print representation can be obtained. In addition, feature-based representation is

widely accepted by the automatic fingerprint identification community. Its validity

has been proven by the large number of automatic fingerprint identification systems

in practical operation, which use this representation.
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There are a large number of feature-based methods which utilize different types

of minute details, including minutiae, singular points, orientation field, ridge counts,

ridge pores, and ridges [87, 5, 12, 13, 15, 29, 46, 48, 56, 58, 69, 116, 123, 134, 71,

85, 142, 152, 121, 147, 61, 66, 24, 151]. In this thesis, we focus on a minutiae-based

method, in which each fingerprint is represented by a minutiae pattern and matching

is accomplished by determining the number of corresponding minutiae between the

two patterns. There are two major tasks in minutiae-based matching: (i) minutiae

extraction and (ii) minutiae matching. The objective of minutiae extraction is to

extract the minutiae from input fingerprint images. Minutiae matching determines

whether an extracted minutiae pattern and a stored template pattern are from the

same finger or not.

3.3 Verification System

We have designed a prototype verification system which uses only fingerprints in iden-

tity authentication - conducts only one-to—one comparison to authenticate whether

the identity claimed by an individual is true or not. It is designed for applications

such as ATM card security, smart card security, information system security, and

access control. The architecture of the prototype verification system is shown in Fig-

ure 3.2. Logically, the system consists of four major components: (i) user interface,

(ii) system database, (iii) enrollment module, and (iv) verification module. The user

interface provides a mechanism for a user to indicate her identity and present her

fingerprints to the system. Depending on the application, the user interface can be
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Figure 3.2: Architecture of the prototype automatic identity verification system.

designed to fit the practical requirements. In the prototype verification system, FTIR

fingerprint scanners are used to acquire the live-scan fingerprint images. Figure 3.3

shows the graphical user interface (GUI) of our prototype verification system.

The system database consists of a collection of records, each of which corresponds

to an authorized individual that has access to the system. Each record contains the

following fields which are used for authentication purpose: (i) the profile of the indi-

vidual and (ii) fingerprint templates of the individual. Depending on the application,

the system database may be either a physical database that resides in the system or

a virtual database with the record of each individual being carried on the magnetic

card issued to the individual. For example, in information system security, a database

that resides in the system may be used to store the record of each individual. At the

point-of-access, the individual indicates her identity by entering her user name and



 
Figure 3.3: Graphical user interface of the automatic identity verification system.

the system retrieves the corresponding record from the database for authentication.

In ATM card authentication, it may not be practical to have a database which stores

all the records, since a large template database may become the point of failure.

Generally, it is more efficient to store records on magnetic cards and let each individ-

ual keep her own magnetic card. At the point-of-access, the individual presents her

magnetic card to indicate her identity and to provide the system her biometric tem-

plate(s). In this case, the template database is only a virtual database and there is

no physical database in the system. Both the number of templates and the quality of

the templates for each individual are important design parameters of the verification

system. On the one hand, the larger the number of templates and better the quality

of the templates, the better the expected accuracy of the verification system. On the

other hand, the larger the number of templates stored for each individual, the more
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resources are required. There is obviously a trade-off.

The task of enrollment module is to enroll the profile of each individual and

her fingerprint(s) into the system database. In our system, a compact but expressive

biometric template which is generated by a feature extractor is used instead of the raw

digital representation of the biometric characteristic. When the fingerprint images

and the profile of an individual to be enrolled are fed to the enrollment module,

a minutiae extraction algorithm is first applied to the fingerprint images and the

minutiae patterns which are the valid representation of fingerprints are extracted. A

quality checking algorithm is used to ensure that the records in the system database

only consist of fingerprints of good quality, in which a significant number (default

value is 25) of genuine minutiae may be detected. This is important, because there

is no point in using a fingerprint with only a very small number of genuine minutiae

as a template to make an authentication. If a fingerprint image is of poor quality,

it is enhanced to improve the clarity of ridge/valley structures and mask out all the

regions where minutiae cannot be reliably recovered. The enhanced fingerprint image

is fed to the minutiae extractor again.

The task of verification module is to authenticate the identity of the individual who

intends to access the system. The individual to be authenticated indicates her identity

and places her finger on the fingerprint scanner; a digital image of her fingerprint is

captured; minutiae pattern is extracted from the captured fingerprint image and fed

to a minutiae matching algorithm which matches it against the individual’s minutiae

templates stored in the system database to authenticate whether the identity claimed

by the individual is correct or not.
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Figure 3.4: System architecture of the prototype integrated biometric identification

system.

3.4 Identification System

The identification system we propose is mainly intended for the information system

security and access control. The goal is to design an identification system that works

in a limited environment such as an intranet environment in medium or small enter-

prises. In our identification system, we integrate multiple biometric characteristics

(fingerprint and face) to improve the performance.

An important aspect that needs to be specified about an identification system

is whether it is intended for conducting a fully automatic personal identification or

not. An automatic fingerprint identification system (AFIS) is generally not deemed

as a fully automatic system, since the candidates retrieved by the system usually

need to be further examined by human experts to reach a final decision. However,
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for certain applications such as information system security, it is not feasible to let

human experts make the final decision. Instead, the system has to be fully automatic

- the answer to a query needs to be either “yes” or “no”. In this thesis, we focus on

a fully automatic personal identification.

We have deveIOped a prototype integrated biometric system that uses both facial

and fingerprint information in conducting personal identification. The architecture of

the system is shown in Figure 3.4. The system, in fact, consists of two subsystems, a

face recognition subsystem and a fingerprint verification subsystem, which are inte—

grated by a decision fusion module. The face recognition subsystem is responsible for

retrieving the top it possible matches of a query from the template database, where

n is usually a small number (n = 5 in our design). The fingerprint verification sub-

system is responsible for matching the fingerprints of the top it possible matches of

the query and providing the corresponding fingerprint matching scores. The decision

fusion module integrates the results from the face recognition and the results from

the fingerprint verification to establish the final decision.

Like the prototype verification system, logically, the prototype identification sys-

tem also consists of four components: (i) user interface, (ii) system database, (iii)

enrollment module, and (iv) identification module. The user interface is responsi-

ble for acquiring facial and fingerprint images of the users who intend to access the

system. The system database stores the template records of all the individuals that

have access to the system. Unlike the verification system, the system database in the

identification system is always a physical database containing all the template records

of the individuals who are enrolled in the system.
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3.5 Difficult Problems

While a significant progress has been made in automatic fingerprint identification,

there are still a number of research issues which need to be addressed to improve

system performance. Some of these problems are listed below:

0 Robust live-scan fingerprint scanner

The quality of acquired fingerprint images is critical to the performance of

an automatic fingerprint identification system. It is desirable to have a more

advanced live-scan fingerprint scanner that is able to tolerate different types of

skins, cuts and bruises on the finger, and dryness of the impressed finger.

0 Fingerprint feature extraction

In practice, a significant percentage of acquired fingerprint images is of poor

quality. The performance of the feature extraction algorithms reported in the

literature on different types of poor quality fingerprint images is still far from

desirable. To design a feature extraction algorithm that is robust to different

types of image degradations is a challenge. Examples of fingerprint images that

are of very poor quality are shown in Figure 3.5. Figure 3.6 shows the extracted

minutiae obtained by our algorithm on a fingerprint image of poor quality due

to high humidity of the impressed finger.

0 Fingerprint enhancement

Fingerprint enhancement can be used to recover the genuine ridge structures

from the corrupted images. However, to design a fingerprint enhancement al-
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Figure 3.5: Fingerprint images of very poor quality.
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Figure 3.7: Fingerprint impression deformation.

gorithm that is able to handle all types of noise sources is very difficult.

Minutiae matching

The performance of minutiae matching algorithms depends heavily on the reli-

ability of minutiae and external alignment. To design a minutiae matching that

is able to handle different situations such as a large percentage of spurious and

missing minutiae and impression deformations is still a very difficult problem.

Figure 3.7 shows an example of an impression deformation.

Fingerprint classification

Although a number of automatic fingerprint classification methods have been

proposed and some of them are used in operational AFISs, fingerprint clas-

sification still remains one of the most difficult problem for both humans and

machines. Currently, the fingerprint classification framework is mainly intended



64

for human experts which may not be optimal for an automatic system.

Fingerprint compression

Without a good fingerprint compression scheme, storing hundreds of millions of

fingerprints is too expensive. A wavelet-based method which has been proposed

as the standard for fingerprint compression can compress a fingerprint image by

a factor of 10 to 25 [31]. An algorithm that can reach even higher compression

ratio is an important research topic.

Computational complexity of matching

Computational complexity is a very important issue in automatic fingerprint

identification. It is a practical requirement that all verifications should be per-

formed in “real time” for all online applications. However, to achieve both high

accuracy and high speed poses another difficulty.

Integration of multiple biometric characteristics

An integration scheme that fuses multiple cues can be used to reach a desired

performance that can not be reached using only a single biometric technique.

Performance evaluation

In designing a biometric system, an important issue is the performance assess-

ment of the system: how to evaluate the performance of a given biometric

system or how to verify that a deployed biometric system satisfies certain per-

formance specifications? Unfortunately, the performance evaluation problem is

far from well established.
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The above difficulties are not isolated, instead they are highly correlated with one

another. For example, if a perfect fingerprint scanner is available, which can acquire

a very clear fingerprint image even though the impressed finger does not have clear

ridge structuresz, then even a very simple minutiae extraction algorithm can locate

all the minutiae without any errors. In turn, the minutiae matching can be simplified

greatly.

 

2This is possible in theory by scanning the internal layers of friction skin.



Chapter 4

Minutiae Extraction

Minutiae extraction is to extract representative features, called minutiae, from the

input fingerprint images. For automatic fingerprint matching, a salient and suitable

representation of the input fingerprint images is critical. Generally, this representa-

tion should have the following properties [120]: (i) retain the discriminating power

of raw digital fingerprint images, (ii) compactness, (iii) amenable to matching al-

gorithms, (iv) robust to noise and distortions, and (v) easy to compute. The first

property requires that a representation should be able to retain the individuality of

fingerprints such that the identity can be reliablely established based solely on the rep-

resentation. The second property insists that the representation should not contain

information besides the individuality of the fingerprints. The third property postu-

lates that the representation should be suitable for a matching algorithm. Clearly,

the representation should be sufficiently robust to the quality of fingerprint images,

which is specified in the fourth property. Finally, the representation should not be

computationally demanding.

66
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The pattern of the minute details of a fingerprint forms a valid representation

of the fingerprint. It is compact, amenable to matching algorithms, robust to noise

and distortions, and easy to compute. However, as indicated in chapter 2, most of

the 150 types of minute details in fingerprint images are not stable and can not be

reliably identified. In an automatic fingerprint matching, only the two most promi-

nent types of minute details are used for their stability and robustness: (i) ridge

ending and (ii) ridge bifurcation. In addition, since various data acquisition condi-

tions such as impression pressure can easily change one type of minutiae into the

other, we do not make any distinction between these two types of minutiae in our

system. So, each minutiae is completely characterized by the following parameters:

(i) :c-coordinate, (ii) y-coordinate, and (iii) orientation (refer to Figure 2.14 for their

definition). Typically, in a live-scan fingerprint image of good quality, there are about

50-100 minutiae.

A good minutiae extraction algorithm should be both reliable and efficient. Reli-

ability means that the minutiae extraction algorithm should (i) not create spurious

minutiae, (ii) not miss genuine minutiae, and (iii) be precise in minutiae position

localization and minutiae orientation computation. Reliable extraction of minutiae

from fingerprint images is a difficult task. When the quality of fingerprint images is

good, the ridges and furrows in a fingerprint, which alternate and flow in a locally

constant direction, are well-defined and are clearly differentiated from one another. In

such situations, ridge endings and ridge bifurcations which are essentially anomalies of

ridges can be easily identified and be precisely located from the binary ridges. Exam-

ples of good quality live-scan fingerprint images are shown in Figure 4.1. However, in
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Figure 4.1: Examples of good quality live—scan fingerprint images, which were cap-

tured using a fingerprint scanner manufactured by Digital Biometrics.

 

Figure 4.2: Examples of poor quality live-scan fingerprint images, which were cap-

tured using a fingerprint scanner manufactured by Digital Biometrics.
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practice, a significant percentage of acquired fingerprint images (approximately 10%)

is of poor quality. The ridge structures in such kind of fingerprint images are not al-

ways well-defined and hence they can not be correctly extracted. Thus, a significant

number of spurious minutiae may be created, a large percent of genuine minutiae may

be ignored, and large errors in their localization (position and orientation) may be

introduced. Examples of fingerprint images of very poor quality, in which ridge struc-

tures are completely corrupted, are shown in Figure 3.5. Figure 4.2 shows examples

of poor quality live-scan images. The minutiae extraction result on a poor quality

fingerprint image is shown in Figure 3.6. Depending on the quality, a poor finger-

print image can be either rejected or enhanced prior to the minutiae extraction. A

very poor fingerprint image in which ridge structures are corrupted completely should

be rejected, while a poor fingerprint image in which ridge structures are still visible

should be enhanced before minutiae extraction. A good minutiae extraction algo-

rithm should be able to tolerate, to a limited extent, the corrupted ridge structures

and degrade gracefully with the image quality.

It is critical that a minutiae extraction algorithm is able to Operate in “real-time”

in an online application such as ATM card security, smart card security, and access

control. However, there is a trade-off between speed and reliability. In order for a

minutiae extraction algorithm to be fast in speed, only simple operations which may

not be robust to image quality can be allowed. On the other hand, in order for the

minutiae extraction algorithm to be robust, complex operations which are usually

computationally demanding are needed. A practical design strategy is to select a set

of Operations that are efficient in both speed and reliability.
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4.1 Related Work

Extensive studies have been conducted on minutiae extraction [25, 12, 85, 100, 27,

28, 95, 94, 17, 120, 91, 115, 67, 140, 84, 47, 111, 107, 35, 122]. In the following, we

will briefly review the well-known techniques used for minutiae extraction.

As indicated in the previous section, a critical task in minutiae extraction is ridge

extraction. Ridge extraction is essentially a segmentation operation which separates

ridges from the background (furrows). A global thresholding method is not able to

correctly separate the ridges from the background [85]. An adaptive thresholding

technique is necessary. One of the earliest attempts at minutiae extraction is the FBI

minutiae reader which is a typical two-stage algorithm [12, 122, 85]. The algorithm

adaptively binarizes the input fingerprint images using a “composite” approach and

extracts the minutiae from the binarized ridges. The “composite” approach is essen-

tially a local thresholding method based on the local ridge direction estimated by a

“slit comparison” formula. This algorithm has been used as a standard algorithm for

minutiae extraction in AFISs [85]. The performance of this algorithm is reasonable if

the quality of the input fingerprint images is good. Moayer and Fu’s algorithm [100]

applies the Laplacian Operator and dynamic thresholding iteratively to the gray-level

input fingerprint images to extract ridges. Chatterjee et al. [27, 28] proposed a fuzzy

approach which first enhances the input fingerprint images and then utilizes an adap-

tive thresholding method which preserves the same number of 1 and 0 pixels in each

neighborhood to extract the ridges from the enhanced images. Although the above

algorithms use the adaptive thresholding technique in ridge extraction, the perfor-
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mance of these algorithms is good only when the quality of the input fingerprint

images is reasonable. The adaptive thresholding techniques they employ do not fully

exploit the important information residing in the local ridge orientation.

Fingerprints are flow-like patterns. Therefore the local ridge orientation pro-

vides very important information about the ridge structures. By incorporating local

ridge orientation efficiently, the performance of minutiae extraction algorithm can be

greatly improved. Mehtre [95, 94] proposed an algorithm using the directional im-

age. The directional image, which represents the local ridge direction in a 16 x 16

neighborhood, is first computed and a set of eight 7 x 7 convolution masks is applied

to the gray-level input fingerprint images to improve the quality of ridge structures.

Then, the ridges are extracted by applying a locally adaptive thresholding method

and a thinning operation is applied to the ridges. Finally, the minutiae are obtained

based on the computation of the connection number. A post-processing stage based

on a set of heuristics is used to eliminate the spurious minutiae. Although this algo-

rithm established the basic principle of incorporating local ridge orientation in ridge

extraction, its performance is not very impressive due to the inefficient utilization

of the local ridge orientation. Botha and Coetzee [17] extract edges from the gray-

level input fingerprint images using the Marr-Hildreth edge operator and compute the

ridge orientation in a local neighborhood. Then, they binarize the gray-level input

fingerprint images using a segmentation algorithm which conducts local thresholding

based on the estimated local ridge orientation and extracted edges. Finally, they

apply a thinning algorithm to the smoothed binary image and extract the minutiae

from the thinned ridges. Again, due to the inefficient way that they utilize the local
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ridge orientation, the performance of their algorithm is not impressive.

Ratha et al. [120] proposed a minutiae extraction algorithm in which the flow

direction of the ridges is computed by viewing the fingerprint image as a directional

textured image. A waveform projection-based algorithm is used for ridge extraction,

the thinned skeleton of the extracted ridges is smoothed using morphological filters,

minutiae are extracted from the skeleton ridges, and a postprocessing step is applied

to delete spurious minutiae. Since the waveform projection and directional smooth-

ing operation used in the algorithm are very effective in suppressing small amounts

of noise, this algorithm performs very well. Maio and Maltoni [91] extract minutiae

directly from gray-level fingerprint images. The algorithm is essentially a gray-level

ridge tracer which extracts ridges by sequentially following each gray~level ridge until

it reaches a ridge ending or a ridge bifurcation. Although they claim that the al-

gorithm does not binarize the gray-level fingerprint image directly when conducting

minutiae extraction, binarization is still conducted implicitly by the gray-level ridge

tracer. The robustness Of this algorithm with respect to image quality is questionable,

due to the fact that the gray-level ridge tracer may behave unpredictably when ridges

and furrows are not well defined.

In practice, the occurrences of minutiae in a fingerprint image follow certain rules.

Therefore, a number of heuristics can be used to correct the minutiae errors. Xiao

and Raafat [115] describe a method to identify and eliminate spurious minutiae using

the structural information of minutiae. For each minutiae, statistics Of ridge width

and ridge attributes such as ridge length, ridge direction and minutiae direction are

used to decide the spurious minutiae. Szekely and Szekely [140] proposed a minutiae
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extraction algorithm based on the computation of the directional image divergence.

Hung [67] enhanced binary fingerprint images by equalizing the ridge widths. Direc-

tional enhancement of ridges is done after estimating the local direction in a small

window. The enhancement process has two steps: (i) direction-oriented ridge shrink-

ing, followed by (ii) direction-oriented ridge expanding. In addition, methods for

detecting bridges and breaks were also implemented.

Besides the attempts mentioned above, a number of alternative approaches have

also been investigated [84, 47, 111, 25]. For example, Engeler et al. [47] introduced

a neural network-based minutiae extraction algorithm, in which a multilayer per-

ceptron is used to extract ridges from gray-level fingerprint images. The input to

the multilayer perceptron is a set of Gabor filter responses in a local neighborhood.

Unfortunately, the performances of these approaches have not been established.

In summary, a good minutiae extraction algorithm should efficiently incorporate

local ridge orientation in ridge extraction. Directional ridge enhancement should be

employed before the ridge extraction Operation. However, it should also be kept in

mind that directional smoothing is usually a computationally expensive Operation.

Postprocessing is a very important step for minutiae extraction, which can eliminate

a significant number of errors.
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Figure 4.3: Flowchart of the minutiae extraction algorithm
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4.2 Minutiae Extraction Algorithm

We have developed a minutiae extraction algorithm which is an improved version

of the technique described in [120]. Our algorithm employs a more reliable and

more efficient way to conduct adaptive ridge extraction than the original algorithm.

Experimental results demonstrate that this algorithm not only performs very well,

but it is also fast. The overall flowchart of this algorithm is depicted in Figure 4.3. It

mainly consists of three stages: (i) orientation field estimation, (ii) ridge extraction,

and (iii) minutiae extraction and postprocessing. First, for an input image, the local

ridge orientation is estimated and the region of interest is located. Then, ridges are

extracted from the input image, refined to get rid of the small speckles and holes,

and thinned to obtain 8-connected single pixel wide ridges. Finally, minutiae are

extracted from the thinned ridges and refined using some heuristics. In the following

subsections, we will describe in detail our minutiae extraction algorithm. In our

description, we assume that the resolution of input fingerprint images is 500 dpi,

which is the recommended resolution for automatic fingerprint identification by the

FBI [85].

4.2.1 Definitions

In order to introduce our minutiae extraction algorithm, a list of notations and some

basic definitions are given below.

A gray-level fingerprint image, I, is defined as a N x N matrix, where I(i, j)

represents the intensity of the pixel at the ith row and jth column.
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An orientation field/image, (9, is defined as an N x N image, where 0(i, j) rep-

resents the local ridge orientation at pixel (i, j). Local ridge orientation is usually

specified for a region (block) rather than at every pixel; an image is divided into a

set of w x w non-overlapping blocks and a single local ridge orientation is defined for

each block. Note that in a fingerprint image, the ridges oriented at 0° and the ridges

oriented at 180° in a local neighborhood can not be differentiated from each other.

A ridge map, R, is an N x N binary image, where R(i, j) = 1 indicates that pixel

(i, j) is a ridge pixel and R(i, j) = 0 indicates that pixel (i, j) is not a ridge pixel. A

ridge in a ridge map is an 8—connected component. A thinned ridge has a width of 1

pixel and a thinned ridge map, TR, consists of thinned ridges.

4.2.2 Orientation Field Estimation

The orientation field of a fingerprint image represents an intrinsic nature of the fin-

gerprint image and defines invariant coordinates for ridges and furrows around each

local neighborhood, which plays a very important role in fingerprint image analysis.

By viewing a fingerprint image as an oriented texture, a number of methods have

been proposed to estimate the orientation field of fingerprint images [80, 118, 79, 25].

We have developed an iterated least mean square orientation estimation algorithm.

The main steps of the algorithm are as follows:

1. Divide the input fingerprint image into blocks of size to x w. For 500 dpi images,

the initial value of w is 16.

2. Compute the gradients (91(i, j) and 0,,(i, j) at each pixel, (i, j). Depending on

the computational requirement, the gradient operator may vary from the simple

Sobel operator to the more complex Marr-Hildreth operator [92].
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3. Estimate the local orientation of each block centered at pixel (i, j) using the

following equations [118]:

14% j+%

Vx(i,j) = Z 20x(u,v)8y(u,v), (4.1)

u=i—%v=j-E2’-

1+% 34%

vim) = Z _Z (a:<u,v)—a:(u.v)), (4.2)

 

1 .

9033') = -tan"l( . ), (43)

where 0(i, j) is the least square estimate of the local ridge orientation at the

block centered at pixel (i, j). Mathematically, it represents the direction that

is orthogonal to the dominant direction of the Fourier spectrum of the w x w

window.

 

4. Due to the presence of noise, corrupted ridge and valley structures, minutiae,

etc. in the input image, the estimated local ridge orientation, 0(i, j), may not

always be correct. Since local ridge orientation varies slowly in a local neighbor-

hood where no singular points appear, a low-pass filter can be used to modify the

incorrect local ridge orientation. In order to perform the low-pass filtering, the

orientation image needs to be converted into a continuous vector field, which is

defined as follows:

(bx(i,j) = cos(20(i,j)), and (4.4)

(pt/(inf) = sin(20(i,j)), (45)

where 6,, and 6y, are the x and y components of the vector field, respectively.

With the resulting vector field, the low-pass filtering can then be performed as

follows:

W¢/2 was/2

<I>;(z',j) = Z Z h(u,v)<I>x(i—uw,j—vw) and (4.6)

u=—w¢/2 v=—w¢/2

twp/2 imp/2

(Pg/(id) = Z Z h(u, v)<I>y(i — uw,j - vw), (4.7)

u=-w¢/2 v=—w¢/2

where h is a 2-dimensional low-pass filter with unit integral and wq, st specifies

the size of the filter. Note that the smoothing operation is performed at the block

level. The default size of the filter is 5 x 5.

5. Compute the local ridge orientation at (i,j) using

. . 1 <P’(i,j)
0%,] :—tan”1 y,,

( ) (9920.3)

 2 ). (4.8)
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6. Compute the consistency level of the orientation field in the local neighborhood

of a block (i, j) with the following formula:

 

cur) = 210(23): (4.9)
(1';jc91)6D

., ., . . _ d ifd<180,

lam—own — [ d_,80 aha-mm (4.10)

d _ (0(1’, j’) —O(i, j)+360) mod 360, (4.11)

where D represents a local neighborhood around the block (i, j) (the default size

of D is 5 x 5); n is the number of blocks within D; O(i’,j’) and 0(i,j) are local

ridge orientations for blocks (i’, j’) and (i, j), respectively.

\
2

. If C (i, j ) is above a certain threshold Tc, then the local orientations in this block

are re~estimated at a lower resolution level until C (i, j) is below a certain level.

With this algorithm, a fairly smooth orientation field estimate can be obtained.

Figure 4.4 shows the orientation field of a fingerprint image estimated with our algo-

rithm.
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(b) Iterated method

 

Figure 4.4: Comparison of orientation fields estimated by the method proposed

in [118] and our method; to x w = 16 x 16 and wq, x 1114; = 5 x 5.

After the orientation field of an input fingerprint image is estimated, a region

of interest localization algorithm which is based on the local certainty level of the



 
Figure 4.5: Ridge filter, ht(i,j; u, v).

orientation field is used to locate the region of interest within the input image. The

certainty level of the orientation field in block (i, j) is defined as follows:

 

7

. . _ e 1 (vz(i.j)2+vy(i,j)2)
5(2).” — waw

Ve(7;ij)

i+% 14%

Ve(i,j) = Z Z (33(uiv)+3§(u,v))-
—'__u_’. — 1.2

(4.12)

(4.13)

For each block, if its certainty level of the orientation field is below a threshold T1,

then all the pixels in this block are marked as a background pixel. The main reason

that we use 8 (i, j) to locate the region of interest within the input image is that

(i) E (i, j) is actually a by-product of the estimated local ridge orientation, so it is

efficient to compute 8 (i, j); (ii) 8 (i, j) performs reasonably well in detecting the region

Of interest. In our region of interest localization algorithm, we assume that only one

fingerprint is present in the image.
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4.2.3 Ridge Detection

An important prOperty of the ridges is that the gray-level values on ridges attain their

local maxima along a direction that is orthogonal to the local ridge orientation and

the gray-level values of furrows attain their local minima along the same direction.

Locally, ridges and furrows run parallel to one another forming a two-dimensional sine

wave. Therefore, pixels can be identified to be ridge pixels in a local neighborhood

based on this property. In our minutiae detection algorithm, a fingerprint image

is first convolved with two masks, ht(i,j;u,v) and hb(i,j;u,v), of size L x H (on

an average 11 x 7), respectively. The two masks, ht(i, j;u, v) and hb(i, j;u,v), are

essentially the same except that one is rotated by 180" with respect to the other (see

 

 

Figure 4.5):

—‘/2l7;68—%7, 1fu = (U COt(O(’l,j)) - mfg—(fix?) E Q

ht(z‘,j; um) = $65137, if u = (vcot(0(i,j))),v e a (4-14)

] 0, otherwise,

“'2 u u o

——\/21=flge737, 1fu = (v cot((9(i,j)) + 533%)” 6 Q

. . “2

hb(Z,J; “’71) = $667, ifu = (v cot(0(i,j))),v E 0 (4-15)

0, otherwise,

Lsin(0(i,j))
  (4.16)

I

2

Lsin(0(i,j)) H

2 ,

 

9:]—

Where C(i, j) represents the local ridge direction at pixel (i, j). These two masks

  

are capable of accentuating the local maximum gray-level values along a direction

that is orthogonal to the local ridge orientation. They can also adaptively smooth
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the fingerprint images along the local ridge orientation and thus enhance the ridges.

The smoothing effect depends on the value of 6. The larger the value Of 6, the more

robust are the filters to noise but more sensitive they are to highly curved ridges. In

order to speedup the algorithm, the value of 6 is set to a very large number such that

each Of the filter is actually degenerated into a filter with all the coefficients being

equal. Pixel (i, j) is labeled as a ridge pixel (R(i, j) = 1) if both the gray level values

at pixel (i, j) of the convolved images are larger than a certain threshold Tridge. By

adapting the mask width to the width of the local ridge, this algorithm can efficiently

locate the ridges. However, due to the presence of noise, breaks, smudges, etc. in

the input fingerprint image, the resulting binary ridge map often contains holes and

speckles. Therefore, a hole and speckle removal algorithm needs to be applied before

ridge thinning. Our implementation of the hole and speckle removal algorithm uses

a connected component algorithm to compute the number of pixels within each ridge

and each hole and removes those connected components with number of pixels being

less than a threshold, Twmponem (the default value is 50). After the small speckles

and holes are removed, a thinning algorithm generates the thinned ridges with each

ridge being 8-connected and single pixel in width.

4.2.4 Minutiae Detection

Minutiae detection is a trivial task when an ideal thinned ridge map is available. If

(TR(i,j) = 1) (a ridge pixel) and ( 1 _121:_17"R(i + u,j + v) = 2), then pixel
u:

(i,j) is a ridge ending. If (T72(i,j) = 1) and (( 3,24 21:_17'7Z(i + U,j + v) > 3),
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(c) fingerprint region ((1) ridge map

    r

(e) thinned ridge map (f) extracted minutiae

Figure 4.6: Results of our minutiae extraction algorithm on a live-scan fingerprint

image (512 x 512); (a) input image; (b) orientation field superimposed on the input

image; (c) fingerprint region; ((1) extracted ridges (e) thinned ridge map; (f) extracted

minutiae and their orientations superimposed on the input image.
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(e) thinned ridge map (f) extracted minutiae

Figure 4.7: Results of our minutiae extraction algorithm on a rolled image from NIST

9 database (832 x 768); (a) input image; (b) orientation field superimposed on the

input image; (0) fingerprint region; (d) extracted ridges (e) thinned ridge map; (f)

extracted minutiae and their orientations superimposed on the input image.
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then pixel (i, j) is a ridge bifurcation. However, the presence of undesired spikes and

breaks in a thinned ridge map may lead to many spurious minutiae being detected.

Therefore, before the minutiae detection, a smoothing procedure is applied to remove

spikes and to join broken ridges. Our ridge smoothing algorithm uses the following

heuristics (Figure 4.8):

o If the angle formed by a branch and the trunk ridge is larger than Time, (= 70°)

and less than Tapper (2 110°) and the length of the branch is less than Tbmnch

(2 20 pixels), then the branch is removed.

0 If a break in a ridge is shorter than Tbreak (= 15 pixels) and no other ridges pass

through it, then the break is connected.

The parameters controlling the behavior of ridge smoothing heuristic are presently

set to large values to ensure that all the genuine minutiae are detected. Although, it

is possible that the ridge smoothing algorithm may occasionally annihilate genuine

minutiae, by and large, it deletes the spurious minutiae generated due to poor quality

of images, artifacts introduced during image processing, and fingerprint creases.

For each detected minutiae, the following parameters are recorded: (i) x-

coordinate, (ii) y-coordinate, (iii) orientation which is defined as the local ridge ori-

entation of the associated ridge, and (iv) the associated ridge segment. The recorded

ridges are represented as one-dimensional discrete signals which are normalized by

a preset length parameter which is approximately equal to the average inter-ridge

distance (presently computed manually once for the given imaging setup). About 10

locations on each ridge are sampled per minutiae. The entire representation for a fin-
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Figure 4.8: Examples of postprocessing heuristics.

ger when stored in a compressed format takes, on an average, about 800 bytes. These

recorded ridges are used for alignment in the minutiae matching stage. Figure 4.6

shows the results of our minutiae extraction algorithm on a live-scan fingerprint image

captured with an FTIR optical fingerprint scanner and Figure 4.7 shows the results

of our minutiae extraction algorithm on a rolled fingerprint image from the NIST 9

fingerprint database.

4.3 Summary

Minutiae extraction finds representative features, called minutiae, from the input

fingerprint images. A minutiae extraction algorithm should be reliable as well as
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computationally efficient. A poor fingerprint image can be either rejected or enhanced

prior to the minutiae extraction. A good minutiae extraction algorithm should be

able to tolerate, to a limited extent, the corrupted ridge structures and degrade

gracefully with the image quality. We have developed a minutiae extraction algorithm

which is both fast and reliable in minutiae extraction. The new orientation field

estimation algorithm results in a smoother orientation field which greatly improves

the performance of the minutiae extraction. The adaptive ridge finder is capable

of tolerating, to a certain extent, low ridge contrast and various sources of noise in

fingerprint images such as short breaks and small smudges. The postprocessing step

further refines the extracted minutiae.



Chapter 5

Fingerprint Enhancement

The performance of currently available minutiae extraction algorithms depends heav-

ily on the quality of input images. In an ideal fingerprint image, ridges can be easily

detected and minutiae can be precisely located from the thinned ridges. However,

in practice, due to the factors mentioned early, a significant percentage of acquired

fingerprint images (approximately 10%) is of poor quality. The ridge structures in

poor-quality fingerprint images are not always well-defined and hence they can not

be correctly detected. This leads to the following problems: (i) a significant number

of spurious minutiae may be created, (ii) a large percentage of genuine minutiae may

be ignored, and (iii) large errors in their localization (position and orientation) may

be introduced. Figures 5.1 and 5.2 show typical examples of applying our minutiae

extraction algorithm to live-scan fingerprint images of both good and poor quality.

We can see that the performance of the minutiae extraction algorithm on the poor

quality image is far from desirable; a significant number of Spurious minutiae are

created and a large percentage of genuine minutiae are ignored by the algorithm.

87
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(a)

Figure 5.1: Results of applying a minutiae extraction algorithm to a fingerprint image

of good quality; (3.) input image; (b) extracted ridge map; (c) extracted minutiae

superimposed on the input fingerprint image.

  

Figure 5.2: Results of applying a minutiae extraction algorithm to a fingerprint image

of poor quality; (a) input image; (b) extracted ridge map; (c) extracted minutiae

superimposed on the input fingerprint image.

In order to ensure that the performance of the minutiae extraction algorithm will

be robust with respect to the quality of input fingerprint images, an enhancement

algorithm which can improve the clarity of the ridge structures of input fingerprint

images is, thus, necessary.

Ideally, the ridge structures in a fingerprint image are well—defined. Each ridge is

separated by two parallel narrow furrows, each furrow is separated by two parallel

narrow ridges; and minutiae are anomalies of ridges, i.e., ridge endings and ridge

bifurcations. When a fingerprint image is corrupted, such well-defined ridge structures

are no longer visible. However, despite the existence of such noise, a fingerprint expert
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Figure 5.3: Fingerprint regions; (a) well-defined region; (b) recoverable corrupted

region; (c) unrecoverable corrupted region.

is often able to correctly identify the minutiae by using various visual clues such as

local ridge orientation, ridge continuity, and ridge tendency. It is possible to develop

an enhancement algorithm that can exploit these visual clues to improve the clarity

of ridge structure in fingerprint images, which, in turn, will improve the performance

of the minutiae extraction algorithm.

Generally, for a given fingerprint image, the region of interest can be divided into

the following three categories (Figure 5.3):

o Well-defined region, where ridges and valleys are clearly differentiated from one

another such that a minutiae extraction algorithm is able to operate reasonably.

o Recoverable corrupted region, where ridges and valleys are corrupted by a small

amount of creases, smudges, etc. But, they are still visible and the neighboring

regions provide suflicient information about the true ridge and valley structures.

0 Unrecoverable corrupted region, where ridges and valleys are corrupted by such

a severe amount of noise and distortion that no ridges and valleys are visible

and the neighboring regions do not provide sufficient information about the true
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ridge and valley structures either.

We refer to the first two categories Of fingerprint regions as recoverable and the last

category as unrecoverable. It is impossible to recover the original ridge structures in

the unrecoverable regions, since no ridges and furrows are present at all within these

regions. Any effort to improve the quality of the fingerprint image in these regions

is futile. Therefore, the goal of a reasonable enhancement algorithm is to improve

the clarity of ridge structures of fingerprint images in recoverable regions and to

mask out the unrecoverable regions. In addition, since the objective of a fingerprint

enhancement algorithm is to improve the clarity of ridge structures of input fingerprint

images to facilitate the extraction of ridges and minutiae, a fingerprint enhancement

algorithm should not result in any spurious ridge structures. This is very important,

because spurious ridge structure may change the individuality of input fingerprints.

Fingerprint enhancement can be conducted on either (i) binary images or (ii) gray-

level images. The parallel property of ridges provides a number of simple heuristics

to differentiate the spurious ridge configurations from the true ridge configurations

in binary images [67]. However, after applying a ridge extraction algorithm on the

original gray-level images, information about the true ridge structures is often lost

depending on the performance of the ridge extraction algorithm. Enhancement based

on binary images has its inherent limitations.

A number Of algorithms have been proposed to enhance grey level fingerprint im-

ages [14, 40, 67, 110, 76, 35, 96, 131, 132, 81]. Most of these techniques take advantage

of the information about the local ridge structures and are capable of adaptively im-
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proving the quality of input fingerprint images [40, 110, 76, 35, 96, 131, 81]. They

usually assume that the local ridge orientation can be reliably estimated from input

fingerprint images. In practice, this assumption is mainly valid for fingerprint images

of good quality. For fingerprint image of poor quality, such an assumption is really

not true, due to the existence of noise, creases, smudges, and holes; figure 5.4 shows

some examples of estimated orientation field of fingerprint images of poor quality.

Therefore, a good fingerprint enhancement algorithm should not assume that local

ridge orientation can be easily obtained. Instead, it should focus a significant amount

of effort on reliable computation of orientation field.

. z ;.....\\\\\\.....s.~~

 

Figure 5.4: Estimated orientation fields of fingerprint images of poor quality.

We have developed a fingerprint enhancement algorithm, which improves the clar-

ity of ridge structures in recoverable regions and make them suitable for minutiae ex-

traction algorithms. Our algorithm also identifies all the corrupted regions in which

it does not have the capability of recovering the true ridge structures and labels them

as unrecoverable regions. The overview of the algorithm is shown in Figure 5.5. It
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Figure 5.5: An overview of the fingerprint enhancement algorithm.



93

consists of two main stages: (i) orientation field estimation, and (ii) enhancement.

Instead of estimating the orientation field directly from the input fingerprint image,

we estimate it from the filtered images in which noise that is orthogonal to the dom-

inant ridge orientation is greatly attenuated. Because our algorithm can obtain a

reliable estimate of the orientation field, a better performance can thus be achieved

in the enhancement stage. Its main steps are described as follows:

N . A bank of even-symmetric Gabor filters is applied to an input fingerprint image

and a set of filtered images is produced.

2. A ridge extraction algorithm is applied to each of the filtered images and the

corresponding ridge map is obtained.

3. From the extracted ridge maps of filtered images, a voting algorithm is used to

generate a coarse-level ridge map and unrecoverable-region mask. The generated

coarse-level ridge map is used for orientation field estimation.

4. An orientation estimation algorithm is applied to the generated coarse-level ridge

map, and the local orientation at each pixel is obtained.

5. From the computed orientation field and filtered images, an enhanced image is

obtained.

5.1 Filtering Of Fingerprint Image

In a small local neighborhood, the ridges and furrows in a fingerprint image approx-

imately form a two-dimensional sine wave along the local ridge orientation. Thus,

the ridges and valleys in a small local neighborhood have well-defined local frequency

and local orientation properties. A set of bandpass filters can remove the undesired

noise and preserve the true ridge structures [76, 110, 35, 131]. Gabor filters have both
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frequency-selective and orientation-selective properties and have optimal joint resolu-

tion in both spatial and frequency domains [41, 72]. Therefore, it is beneficial to use

Gabor filters as bandpass filters to remove the noise and preserve true ridge/furrow

structures.

  

 
Figure 5.6: An even-symmetric Gabor filter: (a) Gabor filter tuned to 60 cycles/width

and 0° orientation; (b) corresponding MTF.

The even-symmetric Gabor filter has the following general form [72]:

h(x _ — 1 $2 y2

,y) — exp -2- 5 + 32- cos(2rruox), (5.1)

x y

where no is the frequency of a sinusoidal plane wave along the x-axis, and 6,, and 6,,

are the space constants of the Gaussian envelope along x and y axes, respectively.

Gabor filters with arbitrary orientation can be obtained via a rotation of the x — y

coordinate system. The modulation transfer function (MTF) of a Gabor filter can be

represented as

H(u,v) = 27rdxr5y (exp{—-1- M+ f }+ exp —% M22- + 3: }) (5.2)

2 53 52
U



95

where 6,, = 1/2rr61, and 6,, = 1/2rr6y. Figure 5.6 shows an even-symmetric Gabor

filter and its MTF.

An important issue in applying Gabor filters is the selection of filter parameters.

We have observed that in a 500 dpi fingerprint image, the ridge frequency is generally

around 60 cycles per image width (height). Therefore, in our fingerprint enhancement

algorithm, the central frequency, uo, is selected as 60 cycles/width (height). The

radial bandwidth is selected as 2.5 octaves. Eight values of central orientation 60 are

used: 0°, 22.5°, 45°, 67.5°, 90°, 112,5°, 135°, 157.5°. The orientation bandwidth is

selected as 35°. For a given input fingerprint image, these 8 Gabor filters are applied

to Obtain 8 filtered images. To obtain a filtered image, a FFT is first performed on

the input fingerprint image. Then the corresponding Gabor filters with tuned radial

and orientation frequencies are applied to the frequency image and an inverse FFT

is performed to Obtain the filtered image. Figures 5.7(b)—(i) show the eight filtered

images for the fingerprint image shown in Figure 5.7(a).

The filtered image corresponding to a given Gabor filter mainly preserves the

ridges and valleys that are of the same direction as the filter direction. A channel

selection algorithm is needed to combine the filtered images to generate an enhanced

image. Ideally, a Bayesian evidence integration scheme which is based on the differ-

ence of the orthogonal channel contribution can be used to select channel(s) corre-

sponding to each block. However, in order to ensure that such an evidence integration

scheme is robust to noise, evidence should be collected from a relatively large local

neighborhood. Computationally, this approach is very expensive. Therefore, in our

algorithm, a simplifying scheme, which is based on the binary ridge maps of the fil-



 
(g) (h) 0)

Figure 5.7: Examples of filtered images for a 512 x 512 fingerprint image: (a) input im-

age; (b—i) filtered images with Gabor filters tuned to 60 cycles/width and orientations

of 0°, 22.5", 45". 67.5”, 90°. 112.5°, 135°, 157.5°, respectively.
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tered images, is used. Although the simplifying scheme is not as efficient as a Bayesian

evidence integration scheme, it is adequate in selecting the correct channels and is

computationally inexpensive.

5.2 Ridge Extraction

For each filtered image, the ridge extraction algorithm which is described in chapter

4 is applied and the corresponding ridge maps are extracted from the filtered images.

These ridge maps are not used for minutiae extraction. Instead, they are used to

generate a coarse-level ridge map of the input fingerprint image.

Due to the presence of noise, creases, smudges, etc. in the input fingerprint image,

the resulting ridge maps of the filtered images often contain a large number of non-

ridge pixels being labeled as ridge pixels. A postprocessing step is needed to remove

these non-ridge pixels. In our fingerprint enhancement algorithm, we use the following

heuristics:

0 Compute the area of each connected component appearing in the ridge map. If

the area is less than a threshold Tm," (the default value is 200), then label this

connected component as background; otherwise break the connected component

into a set of short line segments and go to the next step.

0 For each short line segment, if it is between a pair of narrow parallel ridges,

then label it as a true ridge; otherwise label it as background.

The motivation behind these two heuristics is based on the fact that a genuine ridge
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should (i) be sufficiently long and (ii) is located between a pair of ridges. The

algorithm based on these two heuristics can remove the spurious ridges as well as the

short genuine ridges and boundary ridges. Figure 5.8 shows an example of how the

above algorithm performs on a ridge map extracted from a filtered image.

 

(a) (b)

Figure 5.8: The extracted ridge map of the 0° filtered image: (a) the 0° filtered image;

(b) the extracted ridge map from the 0° filtered image; the dark lines represent the

valid ridges; grey lines represent the spurious ridges removed by the postprocessing

step.

5.3 Ridge Voting

After the ridge map of each filtered image is obtained, the next step in our fingerprint

enhancement algorithm is to generate a coarse-level ridge map and a mask of unre-

coverable regions of the input fingerprint image. The coarse-level ridge map consists

of the ridges extracted from each filtered images that are consistent with one another.

It is used to estimate a reliable orientation field. The only requirement for the gen—
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erated coarse-level ridge map is that it should roughly reflect the orientation of the

local ridge structures of the input fingerprint image. It is not necessary to impose a

requirement that this coarse-level ridge map should be very precise in terms of local

ridge structures, since the minutiae will not be extracted from the coarse-level ridge

map.

Neighboring ridges in a fingerprint image are usually oriented in the same direc-

tion. A filtered image obtained by applying a Gabor filter tuned to a certain direction

retains the ridges that are oriented approximately in the same direction as the tuned

direction Of the Gabor filter. Generally, a ridge is a genuine ridge only if it is in

a continuous region of significant size and tends to run parallel to its neighboring

ridges. We can use this property as a heuristic to differentiate the genuine ridges

from the spurious ridges. In our enhancement algorithm, the coarse-level ridge map

and unrecoverable region mask are generated from the ridge maps Of filtered images

by using the following ridge voting algorithm.

0 Divide each ridge map of filtered images into blocks of size W x W (8 x 8 in

our algorithm).

0 Label each block as foreground (with a value 1) if there are enough ridge pixels

appearing around the block; otherwise label it as background (with a value 0).

After this process, a binary block map in which a pixel value of 1 represents the

existence of ridges and 0 as non-ridges is obtained for each ridge map offiltered

images.

0 Delete all the connected components (8-connected) in the binary block maps

which have an area less than a threshold (16 in our algorithm).

0 For each block, examine all the eight filtered images and compute the coarse-

level ridge map according to the following rules (an intuitive meaning of these

rules is shown in Figure 5. .9):

Rule 1. If only one of the eight binary block map at pixel (x,y) has the value 1

and this pixel belongs to a connected component of size K, K > Tblock,
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then the pixel values of the corresponding block in the coarse-level ridge

map are duplicated from the associated ridge map. The pixel value of the

corresponding recoverable region mask is set to the value 0 to indicate that

this block is recoverable.

Rule 2. If more than one binary block map at pixel (x, g) has the value 1 and the

associated local ridge orientations are not orthogonal to one another, the

pixel values of the corresponding block in the coarse-level ridge map are

taken as the average values of the associated ridge maps. The pixel values

of the corresponding recoverable region mask is set to the value 0 to indicate

that this block is recoverable.

Rule 3. If more than one binary block map at pixel (x, y) has the value 1, the asso-

ciated local ridge orientations may be orthogonal to one another, and only

one pixel with the value 1 resides in a connected component of size larger

than a certain threshold Tblock; then the pixel values of the corresponding

block in the coarse-level ridge map are duplicated from the ridge map as-

sociated with the largest connected component and the pixel value of the

corresponding recoverable region mask is set to the value 0 to indicate that

this block is recoverable.

Rule 4. If the above conditions are not satisfied, then the block is assigned a label

1 to indicate that it is unrecoverable.

By applying this algorithm to the set of ridge maps of filtered images, a coarse-

level ridge map and an unrecoverable region mask are generated. An example of ridge

voting is shown in Figure 5.10.

5.4 Enhanced Image

The coarse-level ridge map generated from the ridge maps of the filtered images pre-

serves the local orientation information of the ridge structures of the input fingerprint

image. The orientation field of the input fingerprint image can now be estimated from

the coarse-level ridge map by ignoring the unrecoverable regions. The orientation field

estimated from the coarse-level ridge map is more reliable than the orientation field

estimated directly from the original image, because the steps introduced in the previ—
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Figure 5.9: Intuitive meaning of the voting algorithm; here for simplicity, we assume

that the input image is decomposed into two filtered images; (a)-(c) correspond to

rule 1; (d)-(f) correspond to rule 2; (g)-(h) correspond to rule 3; the left two columns

show the inputs to the voting algorithm while the third column shows the voting

results.
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result.
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ous sections are able to suppress the harmful effect of noise, speckles, creases, holes,

etc. The orientation estimation algorithm described in chapter 4 is used to compute

the orientation field.

After the orientation field is obtained, the fingerprint image can then be adaptively

enhanced by using the local orientation information. Let f,(x, y) (i=0, 1, 2, 3, 4, 5,

6, 7) denote the grey level value at pixel (x, y) Of the filtered image corresponding to

the orientation 0,, 6, = i =1: 225°. The grey level value at pixel (x, y) Of the enhanced

image can be interpolated according to the following formula:

 

 

fenh($i y) = “(317, ylfpfriyflxr y) + (1 — 0(1), y))fQ($,y)(xa :9), (53)

where

1903,31) = 16:35“) J, (5.4)

(103.31) = [£33312] mod 8, (5-5)

deny) 0(x,y)2;513(x,y), (56)

(5.7)

and 0(x,y) represents the value of the local orientation field at pixel (x, y). The

main reason for interpolating the enhanced image directly from the limited number

of filtered images is that the filtered images are already available and the above in-

terpolation is computationally efficient. Obviously, the quality of the image obtained

from such an interpolation scheme is not as good as the quality of the image ob—
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tained by adaptively filtering the original image using the Gabor filters. However, it

is sufficient for our minutiae extraction algorithm, which, in fact, has the capability

of tolerating the unsmoothed effect of the enhanced images.

5.5 Summary

We have introduced our fingerprint enhancement algorithm. This algorithm, unlike

other algorithms, concentrates a large amount of effort on a reliable estimation of the

orientation field, which plays a critical role in the minutiae extraction algorithm. Our

algorithm is capable of obtaining a relatively good estimate of orientation field even

if the quality of the input fingerprint image is poor. Our algorithm also identifies

the unrecoverable corrupted regions in the fingerprint and masks them out. This is a

very important property because such unrecoverable regions do appear in some of the

corrupted fingerprint images and they are extremely harmful to minutiae extraction.

We note that our algorithm does not perform very well around singular regions where

ridges and valleys have relatively high curvature values. It tends to mask these

regions as unrecoverable regions. However, because minutiae around singular regions

are usually assigned lower weights during matching, such a deficiency is not serious.

The major disadvantage of the current algorithm is that it is relatively slow.

It takes approximately 13.8 seconds for our enhancement algorithm to process one

512 x 512 fingerprint image on a UltraSPARC 1 workstation. Obviously, this is

too slow for an online application. Therefore, this algorithm is only used in the

enrollment module. We have also proposed a fast enhancement algorithm which is able
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(e)

(T)

Figure 5.11: Results of applying the enhancement algorithm to a fingerprint image

of poor quality: (a) input image; (b) coarse-level ridge map; (c) unrecoverable-region

mask which consists of white pixels; (d) estimated orientation field; (e) enhanced

image; (f) minutiae extracted from the enhanced image superimposed on the input

image.
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to adaptively enhance the ridge and valley structures using Gabor filters controlled by

the local ridge orientation and local frequency information [64]. Experimental results

have demonstrated that the fast algorithm can improve the performance of minutiae

matching. It takes 2.3 seconds for the fast algorithm to enhance a 512 x 512 image

on a UltraSPARC 1 workstation.



Chapter 6

Minutiae Matching

Given two (an input and a template) minutiae patterns, the minutiae matching algo-

rithm determines whether they are from the impressions of the same finger.

6.1 Problem Specification

A minutiae matching problem is essentially a point pattern matching problem. The

similarity of two minutiae patterns is determined by the total number (or normalized

total number) of corresponding minutiae and the decision is made by comparing the

value of the similarity with a pre-specified threshold. Formally, it can be stated as fol-

lows: Let P = (of. if. 6f), (art, it, at» and Q = «$9,219, 9?), (act. that»

denote the M minutiae in the template and the N minutiae in the input image, re-

spectively. Find the number, MW", of corresponding pairs between P and Q and

compare it against a threshold value Tminutiae-

In the ideal case, if (i) the correspondence between the template and input is

107
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known, (ii) there are no deformations such as translation, rotation and deformations

between them, and (iii) each minutiae present in a fingerprint image is exactly local-

ized, then minutiae matching is only a trivial task of counting the number of spatially

matching pairs between the two fingerprints and comparing it against a pre-specified

threshold value.

In practice, determining whether two minutiae patterns extracted from two fin-

gerprint impressions, possibly separated by a long duration of time, are indeed from

the same finger, is an extremely difficult problem. The difficulty can be attributed

to two primary reasons. First, even though the test and template minutiae patterns

are indeed mated pairs, the correspondence between the test and template minutiae

patterns is generally not known. Secondly, the imaging system presents a number of

peculiar and challenging situations some Of which are unique to fingerprint image cap-

ture scenario: (i) Inconsistent contact: The act of sensing distorts the finger. Based

on the pressure and contact of the finger on the glass platen, the three-dimensional

shape of the finger gets mapped onto the two-dimensional surface Of the glass platen.

Typically, this mapping function is uncontrolled and results in different fingerprint

images across the impressions. (ii) Non—uniform contact: The ridge structure of a

finger would be completely captured if ridges of the part of the finger being imaged

are in complete Optical contact with the glass platen. However, dryness of the skin,

skin disease, sweat, dirt, humidity in the air all confound the situation, resulting in

a non-ideal contact situation; some parts of the ridges may not come in complete

contact with the platen and regions representing some furrows may come in contact

with the glass platen. This results in “noisy” low contrast images, leading to either
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spurious minutiae or missing minutiae. (iii) Irreproducible contact: Manual work,

accidents, etc. inflict injuries to the finger, thereby, changing the ridge structure of

the finger either permanently or semi-permanently. This may introduce additional

spurious minutiae. (iv) Feature extraction artifacts: The feature extraction algorithm

is imperfect and introduces measurement errors. Various image processing Operations

might introduce inconsistent biases to perturb the location and orientation estimates

of the reported minutiae from their gray scale counterparts. (v) The act of sensing

itself adds noise to the image. For example, residues are leftover from the previous

fingerprint capture. A typical imaging system distorts the image of the Object being

sensed due to imperfect imaging conditions. In the FTIR sensing scheme, for exam-

ple, there is a geometric distortion because the image plane is not parallel to the glass

platen.

In the light Of the Operational environments mentioned above, the design of the

minutiae matching algorithms needs to establish and characterize a realistic model of

the variations among the representations of mated pairs. This model should include

the properties of interest listed below:

1. The finger may be placed at different locations on the glass platen resulting in

a (global) translation of the minutiae of the test representation from those in

the template representation.

2. The finger may be placed in different orientations on the glass platen resulting

in a (global) rotation of the minutiae Of the test representation from those of

the template representation.
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3. The finger may exert a difierent (average) downward normal pressure on the

glass platen resulting in a (global) spatial scaling Of the minutiae of the test

representation from those in the template representation.

4. The finger may exert a different (average) shear force on the glass platen re-

sulting in a (global) shear transformation (characterized by a shear direction

and magnitude) Of the minutiae of the test representation from those in the

template representation.

5. Spurious minutiae may be present in both the template as well as the test

representations.

6. Genuine minutiae may be absent in the template or test representations.

7. Minutiae may be locally perturbed from their “true” location and the pertur-

bation may be different for each individual minutiae. (The magnitude of such

perturbations, however, is assumed to be small and within a fixed number of

pixels.)

8. The individual perturbations among the corresponding minutiae could be rela-

tively large (with respect to ridge spacings) but the perturbations among pairs

of the minutiae are spatially linear.

9. The individual perturbations among the corresponding minutiae could be rela-

tively large (with respect to ridge spacings) but the perturbations among pairs

of the minutiae are spatially non-linear.
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10. Only a (ridge) connectivity preserving transformation could characterize the

relationship between the test and template representations.

A minutiae matcher may rely on one or more of these assumptions, resulting in a

wide spectrum of behavior. At the one end of the spectrum, we have the “Euclidean”

matchers which allow only rigid transformations among the test and template rep-

resentations. At the other extreme, we have a “tOpological” matcher which may

allow the most general transformations including, say, order reversalsl. The choice

of assumptions often represents matching performance trade-offs. Only a highly con-

strained system with not too demanding accuracies could get away with restrictive

assumptions.

Figure 3.7 illustrates a typical situation of aligned ridge structures of mated pairs.

Note that the best alignment in one part of the image may result in a large amount of

displacements between the corresponding minutiae in the other regions. In addition,

observe that the distortion is non-linear: given distortions at two arbitrary locations

on the finger, it is not possible to predict the distortion at all the intervening points

on the line joining the two points. In our opinion, a good minutiae matcher needs to

accommodate not only global similarity transformations, but also shear transforma-

tions, linear and non-linear differential distortions. In our experience, assumption 10

is too general a model to characterize the impressions of a finger and its inclusion

into the matcher design may compromise efficiency and discriminatory power of the

matcher. In addition, the minutiae matchers based on such an assumption need to use

 

1Order reversal means that the minutiae in the test representation are in totally different spatial

order with respect to their correspondences in the template representation.
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connectivity information which is notoriously difficult to extract from the fingerprint

images of poor quality.

6.2 Literature Review

A large number of minutiae matchers (point pattern matchers) which are essentially

“Euclidean” matchers have been proposed [46, 56, 4, 8, 11, 54, 24, 117, 128, 127, 138,

136, 141, 121, 147]. These matchers assume similarity transformation (assumptions

1, 2, and 3) and can tolerate, to a limited extent, both spurious minutiae as well as

missing genuine minutiae (assumptions 5 and 6). Also, some of them can be modified

to tolerate assumption 7, i.e. to be “elastic” in accommodating a small bounded local

perturbation of minutiae. But they are not able to handle large displacements of the

minutiae from their true locations. The relaxation approach [117] iteratively adjusts

the confidence level of each corresponding pair based on its consistency with other

pairs until a certain criterion is satisfied. Although a number of modified versions

of this algorithm have been proposed to reduce the matching complexity [141], these

algorithms are inherently slow because Of their iterative nature and are unable to han-

dle large distortions. The generalized Hough transform-based approach [11, 138, 24]

converts point pattern matching to a problem of detecting peaks in the Hough space

of transformation parameters. It discretizes the parameter space and accumulates

evidence in the discretized space by deriving transformation parameters that relate

two point patterns using a substructure or feature matching technique. A hierarchical

Hough transform-based algorithm may be used to reduce the size of the accumulator
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array by using a multi-resolution approach [24]. However, if there are only a few

minutiae points available, it is very difficult to accumulate enough evidence in the

Hough transform space for a reliable match. Again, it is difficult for this approach

to handle large distortions. Tree-pruning approaches attempt to find the correspon-

dence between a pair of point sets by searching over a tree Of possible matches while

employing different tree pruning methods such as branch-and-bound to reduce the

search space [8]. To efficiently prune the tree of possible matches, this approach tends

to impose a number of requirements on the input point sets such as an equal number

Of points and no outliers. These requirements are difficult to satisfy in practice, es-

pecially in a fingerprint identification/verification system. The energy minimization

approach to point pattern matching establishes the correspondence between a pair of

point sets by defining an energy function based on an initial set of possible correspon-

dences and uses an appropriate Optimization technique such as genetic algorithm,

neural network, simulated annealing, etc. [4, 136, 147, 128, 127, 54] to find a possi-

ble subOptimal match. These methods tend to be very slow and are unsuitable for

a real-time identification/verification system. They can tolerate only a very limited

percentage of spurious and missing minutiae.

There also exist a number of graph-based matchers [134, 116, 69, 66, 61], which

are essentially a “topological” type of matchers. They allow general transformations,

positional errors, missing minutiae, and spurious minutiae. Since a general graph

matching is a NP-complete problem, ridge features such as the position of the core

points, ridge counts, inter-minutiae ridge counts and/or external alignment informa-

tion are widely used to reduce the exponential search problem to a tractable problem.
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The performance of these algorithms depends heavily on the availability of the ridge

features and external alignment information. In a semi-automatic fingerprint identifi-

cation system, these algorithms usually perform well, since the minutiae patterns can

be aligned and the errors in minutiae and ridge features can be corrected interactively.

However, a fully automatic fingerprint matching may not always be able to guarantee

the availability of the correct ridge features and external alignment information.

6.3 Alignment-based Algorithm

We have developed an alignment-based matching algorithm, which is simple in the-

ory, efficient in discrimination, and fast in speed. The alignment-based matching

algorithm decomposes the minutiae matching into two stages: (i) alignment stage

and (ii) matching stage. In the alignment stage, an alignment hypothesis, including

translation and rotation between the input and the template is first generated and the

input minutiae are aligned with the template minutiae according to the hypothesis.

In the matching stage, the input minutiae and the template minutiae are first con-

verted to a string representation in the polar coordinate system and an elastic string

matching algorithm is used to evaluate the similarity between the two strings. The

hypothesis that results in the largest similarity value is determined as the optimal

alignment. The corresponding minutiae pairs are determined based on the optimal

alignment. The main steps of our algorithm are as follows:

1. For each pair of minutiae in P and Q, find the translation and rotation param-

eters between the ridge associated with input minutiae and the ridge associated

with template minutiae and align the two minutiae patterns according to the

estimated parameters.
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2. Convert the template pattern and input pattern into the polar coordinate rep-

resentations with respect to the corresponding minutiae on which alignment is

achieved and represent them as two symbolic strings by concatenating each minu-

tiae in an increasing order of radial angles:

PP: ((7.1’61P,6P)m (7.11:1! eff/Ii OFM))

Q1): ((Tl ,CIQ,01Q)...(7‘N,8N,6Q))

where r..., e.., and 0... represent the corresponding radius, radial angle, and nor-

malized minutiae orientation with respect to the reference minutiae, respectively.

3. Match the resulting strings PI) and Qp with a modified dynamic-programming

algorithm described below to find the ‘edit distance’ between Pp and Qp.

4. Find the minimum edit distance between Pp and Qp. Use the minimum edit

distance to establish the correspondence of the minutiae between Pp and Q, and

compute the total number of corresponding minutiae, Mpq. The matching score,

5', is then computed according to

100MPQMPQ

5: MN

 (6.3)

6.4 Alignment Hypothesis

Ideally, two sets of planar point patterns can be aligned completely by only two

corresponding point pairs. A true alignment between two point patterns can be

obtained by testing all possible corresponding point pairs and selecting the optimal

one. However, due to the presence of noise and deformations, the input minutiae

cannot always be aligned exactly with respect to those of the templates. In order to

accurately recover pose transformations between two point patterns, a relatively large

number of corresponding point pairs need to be used. This leads to a prohibitively

large number of possible correspondences to be tested. Therefore, an alignment by

corresponding point pairs is not practical even though it is feasible.
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Figure 6.1: Alignment Of the input ridge and the template ridge.

It is well known that corresponding curve segments are capable of aligning two

point patterns with a high accuracy in the presence of noise and deformations [68].

Each minutiae in a fingerprint is associated with a ridge. Therefore, it is clear that

a true alignment can be achieved by aligning corresponding ridges (see Figure 6.1).

During the minutiae detection stage, when a minutiae is extracted and recorded,

the ridge on which it resides is also recorded. This ridge is represented as a planar

curve with its origin coincident with the minutiae and its x-coordinate being in the

same direction as the direction of the minutiae. Also, this planar curve is normalized

with the average inter-ridge distance. By matching these ridges, the relative pose

transformation between the input fingerprint and the template can be accurately

estimated. To be specific, let Rd and RD denote the sets of ridges associated with



117

the minutiae in the input and the template, respectively. Our alignment algorithm is

described as follows:

1. For each ridge d 6 Rd, represent it as an one-dimensional discrete signal and

match it against each ridge, D 6 RD according to the following formula:

251:0 diDi

V iL=O (1?th

where L is the minimal length of the two ridges and d,- and D, represent the

distances from point i on the ridges d and D to the x-axis, respectively. The

sampling interval on a ridge is set to the average inter-ridge distance. If the

matching score S (0 S S S 1) is larger than a certain threshold T, (0.8), then

go to step 2, otherwise continue to match the next pair of ridges.

 s = (6.4)

2. Estimate the transformation between the two ridges (Figure 6.1). Generally, a

least-square method can be used to estimate the pose transformation. However,

in our system, we observe that the following method is capable of achieving

the same accuracy with fewer computations. The translation vector (Ax, Ay)T

between the two corresponding ridges is computed as

Ax x“ x0

(Ail—(ydl—(Wl’ (6'5)

where (xd,yd)T and (xD,yD)T are the x and y coordinates of the two minu-

tiae, which are called reference minutiae, associated with the ridges d and D,

respectively. The rotation angle A6 between the two ridges is computed as

= £37.- — n), (6.6)
i=0

A0

where L is the minimal length of the two ridges d and D; 7,- and F,- are radial

angles of the ith point on the ridge with respect to the reference minutiae asso-

ciated with the two ridges d and D, respectively. The scaling factor between the

input and template images is assumed to be 1.

3. Denote the minutiae (xd,yd,6d)T, based on which the transformation parame-

ters are estimated, as the reference minutiae. Translate and rotate all the N

input minutiae with respect to this reference minutiae, according to the following

formula:

Ax cos A0 sin A9 0 x,- — xd

2 Ag + sin A0 — cos A0 0 y,- — yd , (6.7)

014 A9 0 0 1 9,- - 0d
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where (x,,y,~,6,)T, (i = 1,2,...,N), represents an input minutiae and

(xf‘,y{4,6{‘)T represents the corresponding aligned minutiae.

Note that, because the aspect ratio of the pixels in our acquisition devices is not

one (non-square pixels), a rectification is performed before the alignment.

6.5 Alignment Hypothesis Evaluation

If two identical point patterns are exactly aligned with each other, then each pair

of corresponding points are completely coincident. In such a case, a point pattern

matching can be simply achieved by counting the number of overlapping pairs. How-

ever, in practice, such a situation is rarely encountered. On the one hand, the error in

determining and localizing minutiae hinders the alignment algorithm to recover the

relative pose transformation exactly, while on the other hand, our alignment scheme

does not model the nonlinear deformation of fingerprints which is an inherent prop-

erty of fingerprint impressions. With the existence of such a nonlinear deformation, it

is impossible to exactly recover the position Of each input minutiae with respect to its

corresponding minutiae in the template. Therefore, the aligned point pattern match-

ing algorithm needs to be elastic which means that it should be capable of tolerating,

to some extent, the deformations due to inexact extraction of minutiae positions and

nonlinear deformations. Usually, such an elastic matching can be achieved by placing

a bounding box around each template minutiae, which specifies all the possible posi-

tions Of the corresponding input minutiae with respect to the template minutiae, and

restricting the corresponding minutiae in the input image to be within this box [121].

This method does not provide a satisfactory performance in practice, because local
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Figure 6.2: The string matching of a pair of point patterns.

deformations may be small while the accumulated global deformations can be quite

large. We have proposed an adaptive elastic matching algorithm with the ability to

compensate the minutiae localization errors and nonlinear deformations.

Our adaptive elastic matching algorithm consists of two main steps: (i) represent-

ing minutiae patterns as a string in the polar coordinate system and (ii) matching

the strings with a dynamic programming algorithm to establish the correspondence.

Minutiae matching in the polar coordinate system has several advantages. Although

the deformation of fingerprints depends on a number of factors such as impression

pressure and impression direction, the deformation in a local region is usually con-

sistent and it may become less consistent as one moves further away from the region

where the fingerprint patterns are consistent (see Figure 3.7). Consequently, it is eas-

ier to represent and manipulate the representations in polar coordinate space (with
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81(m,n
)\

Template minutia

81(m.n) ,. ’

  
u <——Reference minutia

Figure 6.3: Bounding box and its adjustment.

origin at a point of maximal consistency between the reference and aligned test tem-

plate). At the same time, it is easier to formulate rotation, which constitutes the main

part of the alignment error between an input image and a template, in the polar space

than in the Cartesian space. The symbolic string generated by concatenating points

in an increasing order of radial angle in polar coordinates uniquely represents a point

pattern. This reveals that point pattern matching can be achieved with a string

matching algorithm.

A number of string matching algorithms have been reported in the literature [37].

Generally, string matching can be thought of as the maximization/minimization Of

a certain cost function such as the edit distance. Including an elastic term in the

cost function of a string matching algorithm can achieve a certain amount of error

tolerance. Given two strings Pp and Q1, of lengths M and N, respectively, we define
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the “edit distance”, C(M, N) recursively as follows:

   

  

0 if m = 0 and n = 0

C(m — 1, n) + it

C(m,n) = l (6.8)

minl C(m,n_1)+Q )0<m§Mand0<n§N,

L \ C(m—1,n—1)+w(m,n)]

where

alri—rf,’ +fiAe+7A0 if]r,’,’,—rf,3<6,Ae<candA0<g

w(m, n) = (6.9)

Q otherwise,

a if (a 2 (e5, -— e? + 360) mod 360) < 180

Ae = (6.10)

a — 180 otherwise,

a if (a = (of; — 0,? + 360) mod 360) < 180

A0 = (6.11)

a — 180 otherwise,

a, 0, and 'y are the weights associated with radius, radial angle, and minutiae direc-

tion, respectively; 6, e and 9 specify the bounding box; and fl is a pre-specified penalty

for a mismatch. Such an edit distance, to some extent, captures the elastic property

of string matching. It represents the cost of changing one polygon to the other. The

intuitive meaning of the string matching is depicted in Figure 6.2. However, this

scheme can only tolerate, but not compensate for, the adverse effect on matching

produced by the inexact localization of minutiae and nonlinear deformations. There-

fore, an adaptive mechanism is needed. This adaptive mechanism should be able
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to track the local nonlinear deformation and inexact alignment and try to alleviate

them during the minimization process. However, we do not expect that this adaptive

mechanism can handle the “order flip” of minutiae, which, to some extent, can be

solved by an exhaustive re-ordering and matching within a local angular window.

In our matching algorithm, the adaptation is achieved by adjusting the bounding

box (Figure 6.3) when an inexact match is found. It can be represented as follows:

 

 

 

61(m, n) < (r5, — r3) < 6h(m,n)

a Inf. — r? + we + 7A0 if mm, is < Ae < than, n)
wl(m, n) = <

(6.12)

A0 < p

L (2 otherwise,

where

51(mm) < (7‘5. - 7‘3) < Mm”)

r5, — r3

Ara if 61(m, n) < Ae < ch(m,n)

Aea A0 < p

0 otherwise,

61(m +1,n +1) 2 61(m, n) + nAra, (6.14)

6,,(m + 1, n +1) 2 6,,(m, n) + nAra, (6.15)

61(m+1,n+1) = q(m,n) +r1Aea, (6.16)

ch(m +1,n +1) 2 6,,(m, n) + nAea, (6.17)

w'(m,n) represents the penalty for matching a pair of minutiae (r;,e,’,’,,0,’,3,)T and
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(r3, e3, 0,?)T, 6,(m, n), 6,,(m, n), 51(771, n), and ch(m, n) specify the adaptive bounding

box in the polar coordinate system (radius and radial angle), and r} is the learning rate.

This elastic string matching algorithm has a number of parameters which are critical

to its performance. We have empirically determined the values of these parameters as

follows: 61(0, 0) = —8; 6,,(0, 0) = +8; 6;“), 0) = —7.5; ch(0, 0) = +7.5; 9 = 30; a = 1.0;

0 = 2.0; 7 = 0.1; Q = 200(a +,B+'y); r) = 0.5. The values of 6)(0,0), 6h(0,0), ((0,0),

and ch(0,0) depend on the resolution Of fingerprint images. Figure 6.4 shows the

results of applying the matching algorithm to an input and a template minutiae set

pair.

6.6 Summary

Given two minutiae sets, minutiae matching determines whether they are extracted

from the fingerprint impressions of the same finger. Minutiae matching is an ex-

tremely diflicult problem for the following reasons: (i) the correspondence between

the minutiae sets is not known, (ii) presence of relative translation, rotation, and

impression deformations between the two minutiae sets, (iii) presence of a significant

number of spurious minutiae and missing minutiae, and (iv) minutiae may not be

precisely located. A good minutiae matching algorithm should be able to accom-

modate these transformations, missing minutiae, spurious minutiae, small position

errors, shear transformation, and linear and non-linear differential distortions. We

have proposed an alignment-based elastic matching algorithm. This algorithm is
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v

 
(c) (d)

Figure 6.4: Results of applying the matching algorithm to an input minutiae set and

a template; (a) input minutiae set; (b) template minutiae set; (c) alignment result

based on the minutiae marked with green circles; (d) matching result where template

minutiae and their correspondences are connected by green lines.
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capable of finding the correspondences between minutiae without resorting to an ex-

haustive search. It achieves a good performance in minutiae matching because of

its capability to adaptively compensate for the nonlinear deformations and inexact

transformations between mated fingerprints.
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Chapter 7

Decision Fusion

A biometric system can be based on either a (or one snapshot of a) single biometric

characteristic or multiple biometric characteristics (or multiple snapshots of a single

biometric characteristic) to make a personal identification. We define a biometric

system which uses only a single biometric characteristic as a unimodal biometric

system and a biometric system which uses multiple biometric characteristics as a

multimodal biometric system.

7.1 Multimodal Biometrics

A unimodal biometric system is usually more cost-effective than a multimodal bio-

metric system. However, it may not always be applicable in a given domain because

of (i) unacceptable performance and (ii) inability to Operate on a large user popula-

tion. A multimodal biometric system can overcome, to a certain extent, these limita-

tions. First of all, identification using multiple biometrics is essentially a sensor fusion
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problem, which utilizes information from multiple sensors to increase fault-tolerance

capability, to reduce uncertainty, to reduce noise, and to overcome incompleteness

of individual sensors [33, 133]. A multimodal approach can increase the reliability

of the decisions made by a biometric system [20, 45, 82, 16]. Although a necessary

requirement for a biometric characteristic is that each individual possess it, it is not

necessary that a particular biometric characteristic of a specific individual is suitable

for an automatic system. By using multiple biometric characteristics, the system will

be applicable on a larger target population. Finally, a multimodal biometric system is

generally more robust to fraudulent technologies, because it is more difficult to forge

multiple biometric characteristics than to forge a single biometric characteristic.

In designing a multimodal biometric system, a number of issues need to be consid-

ered: (i) what is the main purpose of utilizing multiple biometrics? (ii) what is the

Operational mode? (iii) which biometrics should be integrated? and (iv) how many

biometrics are sufficient? Since the applicable population and system robustness de-

pend mainly on the characteristics of the selected biometrics, the main problem in

designing a multimodal biometric system is the integration of individual biometrics

to improve the performance of personal identification. Typically, performance refers

to (i) accuracy and (ii) speed. System accuracy indicates how reliable and confident a

biometric system is in differentiating between a genuine individual and an impostor.

System speed refers to the time taken by a biometric system in making a personal

identification. By properly incorporating those biometrics that are relatively fast, the

overall Speed of a biometric system can be improved.

A biometric system can operate in either a verification mode or an identification
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Figure 7.1: A generic multimodal verification system.

mode. The integration schemes for these two modes are very different. Since only a

one-to—one comparison is performed in a verification system, multimodal biometrics

cannot really improve the verification speed. Therefore, integration of multiple bio-

metrics in a verification system is mainly intended to improve the accuracy of the

system. The block diagram of a generic multimodal verification system is shown in

Figure 7.1. In a typical identification system, a large number of matchings need to

be performed to identify an individual. A biometrics that has a large discriminating

power can improve the identification accuracy, while a biometrics that is computa-

tionally efficient can improve the identification speed. The block diagram of a generic

multimodal identification system is shown in Figure 7.2.

Which biometrics and how many of them should be integrated depend very much

on the application domain. It is difficult to establish a systematic procedure to deter-

mine which biometrics should be used. Intuitively, the larger the number of integrated

biometrics, the higher the system accuracy, but more expensive the system. In this

thesis, we mainly concentrate on improving the system performance by integrating
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Figure 7.2: A generic multimodal identification system.

two specific biometrics, namely face and fingerprint.

7.1.1 Multimodal Biometrics for Verification

Integration of multiple biometrics for a verification system may be performed in the

following scenario: (i) integration of multiple snapshots of a single biometrics, for

example, several fingerprint images of the same finger in fingerprint verification (Fig-

ure 7.3) and (ii) integration of a number of difl'erent biometrics (Figure 7.4). In this

sense, multimodal biometrics is a conventional decision fusion problem - to combine

evidence provided by each biometrics to improve the overall decision accuracy. Gen-

erally, multiple evidences may be integrated at one of the following three different

levels [19]: (i) Abstract level; the output from each module is only a set of possible

labels without any confidence value associated with the labels; in this case, the sim-

ple majority rule may be employed to reach a more reliable decision [156], (ii) Rank

level; the output from each module is a set of possible labels ranked by decreasing
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Figure 7.3: Integration of multiple snapshots of a single biometric characteristic.

confidence values, but the confidence values themselves are not specified; (iii) Mea-

surement level; the output from each module is a set of possible labels with associated

confidence values; in this case, more accurate decisions can be made by integrating

different confidence values.

Dieckmann et al. [45] have proposed an abstract level fusion scheme: “2—from-3

approach” which integrates face, lip motion, and voice based on the principle that a

human uses multiple clues to identify a person. This approach uses a simple voting

algorithm to find whether the decision made by each individual classifier is consistent

with the other two classifiers. Brunelli and Falavian [20] have proposed two schemes

to combine evidence from speaker verification and face recognition. The first scheme

is a measurement level scheme in which the outputs of two different speech classifiers

and the outputs of three different face classifiers are normalized and combined using

geometric average. The second scheme is a hybrid rank/measurement level scheme
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Figure 7.4: Integration of different biometric characteristics.

which uses HyperBF network to combine the outputs of these five classifiers. The

authors have demonstrated that the system accuracy can be improved by using these

fusion schemes. Kittler et al. [82] have demonstrated the efficiency of an integra-

tion strategy which fuses multiple snapshots of a single biometrics using a Bayesian

framework. In this scheme, the a posteriori class probabilities for each individual are

estimated and the decision is made based on the average or maximum or median of

the a posteriori class probabilities for a given set of snapshots. Bigun et al. [16] have

proposed a Bayesian integration scheme to combine different evidences based on the

assumption that the evidences are independent of one another. Their scheme results

in an improved recognition accuracy by combining voice and face as well as voice and

lip motion. Maes et al. [89] have proposed to combine biometric data (e.g., voice)
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with non-biometric data (e. g., password).

7.1.2 Multimodal Biometrics for Identification

All the decision fusion schemes mentioned above can be used to improve the identifica-

tion accuracy in a multimodal identification system. However, since an identification

system needs to perform one-to—many comparisons to find a match, the average com-

putational complexity for each comparison should be as low as possible to enable a

reasonable response time, especially for a large database. However, the integration

schemes mentioned above increase the computational complexity for each compari-

son. Therefore, it is not practical to directly apply these schemes to an identification

system; an integration scheme that is able to improve both the speed and the accu-

racy should be used. We introduce a multimodal biometrics scheme which integrates

two biometrics (in particular, face and fingerprint) which complement each other in

terms of identification speed and identification accuracy: a biometric approach (e.g.,

face recognition) that is suitable for database retrieval is used to index the template

database and a biometric approach (e.g., fingerprint verification) that is reliable in

deterring impostors is used to ensure the overall system accuracy. In addition, since

each biometric approach provides a certain confidence about the identity being es-

tablished, a decision fusion scheme which exploits all the information at the output

of each module can be used to make a more reliable decision. We have designed a

integrated biometric system which uses this decision fusion scheme to integrate face

recognition and fingerprint verification in making a personal identification [63]. The



 

f
f
)

'
’
1

U
1

tior

stag

fror

n p«

fina

and

7.2

In th

front

the f;

we H

devic

fixed

the se



133

system essentially consists Of a face recognition subsystem and a fingerprint verifica-

tion subsystem, which are integrated by a decision fusion module. It operates in three

stages: (i) the face recognition subsystem retrieves the top n matches of a query face

from the template database, (ii) the fingerprint verification subsystem verifies the top

n possible matches and provides the corresponding fingerprint matching scores, and

finally (iii) the decision fusion module integrates the results from the face recognition

and the results from the fingerprint verification to establish the final decision.

7.2 Face Recognition

In the context of personal identification, face recognition refers to static, controlled full

frontal portrait recognition [30]. By static we mean that the facial portraits used by

the face recognition system are still facial images (intensity or range). By controlled

we mean that the type Of background, illumination, resolution of the acquisition

devices and the distance between the acquisition devices and faces, etc. are essentially

fixed during the image acquisition process. Obviously, in such a controlled situation,

the segmentation task is relatively simple and the intra—class variations are small.

Generally, there are two major tasks in face recognition: (i) locating faces in input

images and (ii) recognizing the located faces. Face location itself continues to be a

challenging problem for uncontrolled and cluttered images [30]. Fortunately, in the

context of personal identification, the background is controlled or almost controlled,

so face location is generally not considered to be a difficult problem for a face-based

biometric system. Face recognition from a general view point remains an open prob—
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lem because transformations such as position, orientation, and scale and changes in

illumination produce substantially large intra-class variations [114]. Again, in the

context of personal identification, the variations in acquired face images can be re—

stricted to a certain limit, which enables the current techniques to achieve a desirable

performance [30, 114].

In our system, the eigenface approach is used for the following reasons: (i) in the

context of personal identification, the background, transformations, and illumination

can be controlled, (ii) eigenface approach has a compact representation - a facial

image can be concisely represented by a feature vector with a few elements, (iii) it is

feasible to index an eigenface-based template database using difl'erent indexing tech-

niques such that the retrieval can be conducted efficiently [139], and (iv) the eigenface

approach is a generalized template matching approach which was demonstrated to be

more accurate than the attribute-based approach [20].

The eigenface-based face recognition consists of the following two stages [144]:

(i) training stage in which a set of training face images are collected; eigenfaces that

correspond to the M highest eigenvalues are computed from the training set; and each

face is represented as a point in the M-dimensional eigenspace, and (ii) Operational

stage in which each test image is first projected onto the M-dimensional eigenspace;

the M-dimensional face representation is then deemed as a feature vector and fed to

a classifier to establish the identity of the individual.

A W x H face image I (x, y) can be represented as a W x H-dimensional feature

vector by concatenating the rows of I (x, y) together. Thus, each W x H face image

becomes a point in the W x H-dimensional Space. The value of W x H is typically
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Figure 7.5: First eight eigenfaces obtained from 542 training images of size 92 x 112;

they are listed, from left to right and top to bottom, in decreasing values of the

corresponding eigenvalues.

large, on the order of several thousands for even small image sizes. Face images in

such a high dimensional space are not randomly distributed. Therefore, it is efficient

and beneficial to project them to a lower dimensional subspace using principle com-

ponent analysis [144]. Let \Ill,\I12,\IIN denote the N W x H—dimensional training

vectors with zero-mean. Let the M basis vectors, u1,u2, ..., uM be a set of orthonor-

mal vectors that best describe the distribution of face images in the M-dimensional

subspace (eigenspace), M < N. The kth vector, uk,k = 1,2,...,M, is computed

such that [144]

N

/\k = 2(UE‘I’1V (7.1)
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is maximum, subject to

1, ifi =j

iruj = (7-2)

0, otherwise.

The value /\,c is the kth largest eigenvalue of the covariance matrix 2 which can be

estimated using the training samples by

. 1 N

2 = —Z waif. (7.3)

N i=1

The vector uk is the kth eigenvector of the covariance matrix 2 corresponding to M.

With the M-dimensional eigenspace defined, training vectors, \1'1, \112, ~ - - , \IIN, can

be represented as a set of M-dimensional feature vectors, (1)1, <I>2, - ' - , (EN:

4),, = uT\IIi, i: 1,2, . --,N, (7.4)

where u = (111, 112, ..., uM). Figure 7.5 shows the first 8 eigenfaces corresponding to

the 8 largest eigenvalues.

In the operational phase, a detected face image, I‘, which is normalized to zero

mean, is vectorized and projected onto the eigenvectors according to H = uTI‘.

With both training samples and test samples being projected onto M-dimensional

eigenspace, face recognition can be accomplished by a classifier operating in the

eigenspace. In the context of personal identification, only a very limited number

of training samples is available for each individual [106]. Thus, a k-nearest neighbor
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classifier is typically used, in which the distance, (1, called Distance From Feature

Space (DFFS) [144] between a template, <I>, and a test pattern, II, is defined as

||<I> -— II“, where H 0 || means L2 norm.

7.3 Decision Fusion

The decision made by each biometrics has an associated confidence value. A decision

fusion scheme should utilize all these confidence values associated with individual de-

cisions to reach a more reliable decision. As we mentioned early, in order to derive a

decision fusion scheme, we need to define (t) a confidence measure for each individual

biometrics and (it) a decision fusion criterion. The confidence of a given biomet-

rics may be characterized by its false acceptance rate (FAR), which is defined as the

probability of an impostor being accepted as a genuine individual. In order to esti-

mate FAR, the impostor distribution which is defined as the distribution of similarity

between biometric characteristic(s) of different individuals needs to be computed.

7.3.1 Impostor Distribution for Fingerprint Verification

A model that can precisely characterize the impostor distribution of a minutiae match-

ing algorithm is not easy, since (2) the minutiae in a fingerprint are distributed ran-

domly in the region of interest, (it) the region of interest for each input fingerprint

may be different, (zz'z') each input fingerprint tends to have a different number of

minutiae, (iv) there may be a significant number of spurious minutiae and missing

minutiae, (v) sensing, sampling, and feature extraction may result in errors in minu-
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tiae positions, and (v2) sensed fingerprints may have different distortions. However,

it is possible to obtain a general model of the overall impostor distribution by making

some simplifying assumptions.

Let us assume that the input fingerprint and the template have already been

registered and the region of interest of both the input fingerprint and the template is

of the same size, a W x W (for example, 500 X 500) region. The W x W region is

tessellated into small cells of size 21) x 22). These cells are assumed to be sufficiently

large (for example, 40 x 40) such that possible deformation and transformation errors

are within the specified bound. Therefore, there are a total of g x 113—(:2 NC) different

cells in the region of interest. Further, assume that each fingerprint has the same

number of minutiae, Nm (3 NC), which are distributed randomly in different cells

and each cell contains at most one minutiae. Each minutiae is directed towards one

of the D (for example, 8) possible orientations with equal probability. Thus, for a

given cell, the probability, Pempty, that the cell is empty with no minutiae present is

%‘:l and the probability, P, that the cell has a minutiae that is directed towards a

specific orientation is 5532M. A pair of corresponding minutiae between a template

and an input is considered to be identical if and only if they are in the cells at the

same position and directed in the same direction (see Figure 7.6). With the above

simplifying assumptions, the number of corresponding minutiae pairs between any two

randomly selected minutiae patterns is a random variable, Y, which has a binomial



  

  

  

  

 
  

           
  

Template Minutiae Set Input Minutiae Set

Figure 7.6: Minutiae matching model. A solid line indicates a match and a dashed

line indicates a mismatch.

distribution with parameters Nm and P [113]:

Nm!

90’) = Y!(Nm — Y)

 'PY(1 — P)(N""Y). (7.5)

The probability that the number of corresponding minutiae pairs between any two

minutiae patterns is less than a given threshold value, y, is

0(2) = W < y) = ”S: gas). (7.6)
k=0

The decision made by the proposed minutiae matching algorithm for an input

fingerprint and a template is based on the comparison of the “normalized” number
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of corresponding minutiae pairs against a threshold. Therefore, under the assump-

tion that minutiae in the region of interest of fingerprints of different individuals are

randomly distributed, the probability that an impostor is accepted is (1 — G(311)).

7.3.2 Impostor Distribution for Face Recognition

The characterization of impostor distribution for face recognition is more difficult.

Due to the relatively low discrimination capability of face recognition, this module

needs to keep the top n matches to guarantee that the genuine individual will be

identified if he or she is in the database.

Let (P1,<I>2, ...,CDN be the N face templates stored in the database. The top n

matches, (DE, g,...,<1>;, are obtained by searching through the entire database, in

which N comparisons are conducted explicitly (in the linear search case) or implicitly

(in organized search cases such as the tree search). The top 72 matches are arranged

in the increasing order of DFFS (Distance From Feature Space, Section 2) values.

The smaller the DFFS value, the more likely it is that the match is correct. Since the

relative distances between consecutive DFFSs are invariant to the mean shift of the

DFFSs, it is beneficial to use relative instead of absolute DFFS values. The proba-

bility that a retrieved top n match is incorrect is different for different ranks. The

probability that the first match is incorrect tends to be smaller than the probability

that the second match is incorrect, the probability that the second match is incorrect

tends to be smaller than the probability that the third match is incorrect, and so on.

Thus, the impostor distribution should be a decreasing function of rank order and
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it is a function of both the relative DFFS values, A, and the rank order, 2', which

has the following form: F,(A)Porde,(2'), where FAA) represents the probability that

the consecutive DFFS between impostors and their claimed individuals at rank 2' are

larger than a value A and Porderu) represents the probability that the retrieved match

at rank 2' is an impostor. In practice, 17,-(A) and Porder(2') need to be estimated from

empirical data.

In order to simplify the analysis, we assume that each individual has only one face

template in the database. Thus, there are a total of N individuals enrolled in the

database and 11, 12, ..., IN are used as identity indicators. Let X0' denote the DFFS

between an individual and her own template which is a random variable with density

function fa(X°) and let X15, X53, ..., Xf,_1 denote the DFFSs between an individual

and the templates of the other individuals in the database, which are random variables

with density functions, ff (Xf3 ), ff(X2fi), ..., f£_1(X164), respectively. Assume that

X“ and X€,X€,...,X£-_l are statistically independent and f16(Xf3) = f2fl(X25) =

...fg_1(X,HV_1) = f5(X3). For an individual, II, who has a template stored in the

database, {(191,<I>2, ...<I>N}, the rank, R, of X“ among X?,X2B,...,X£,_l is a random

variable with probability

 

where
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When p < 1 and N is sufficiently large, P(R) may be approximated by a Poisson

distribution [113],

 P(R = 2) e , (7.9)

where a i np. Obviously, P(R = 2) is exactly the probability that matches at rank i

are genuine individuals. Therefore,

Porde,(2') = 1 — P(R = 2'). (7.10)

Although the assumption that X15, Xg, ..., X{Ll are 2'.2..d may not be true in practice,

it is still reasonable to use the above parametric form to estimate the probability that

retrieved matches at rank i are impostors. Our experimental results support this

claim.

Without any loss of generality, we assume that, for a given individual, H,

X13 , X5 , ..., X54 are arranged in increasing order of values. Define the non-negative

distance between the (2 + 1)th and 2th DFFS values as the ith DFFS distance,

A,- =Xf’+, -Xf’, 13 2' < N— 1. (7.11)

The distribution, f,(A,-), of the 2th relative distance, A,, is obtained from the joint

distribution 212,-(X5, 13,-) of the 2th value, X'6 , and the ith relative distance, 13,-,

m.) = /_°° Mata-MW, (7.12)
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more, A.) = CF"(X3)“1[1 — F300” + A2)]N"'f"(xfi)ffi(xe + 21,-), (7.13)

N—l !

C = (2—1()!(N—)2—2')!’ (7'14)

 

where F5(X*3) = If: f5(X5)dX5 [57]. With the distribution, f,(A,-), of the 2th

distance defined, the probability that the DFFS of the impostor at rank 2' is larger

than a threshold value, A, is

FAA) = /: f.(A.)dA.-. (7.15)

The above equations do not make any assumptions about the distributions of

X15,X23,...,Xf(,_1 as long as they are 2'.in The equations also hold even if the

mean values of X{3 ,Xg , ...,X£4 shift. Therefore, it can tolerate, to a certain ex-

tent, DFFS variations which is a desirable property. In our system, we assume that

X15,X2B,...,X1€_1 are distributed with a Gaussian distribution with unknown mean

and variance.

7.3.3 Decision Fusion

The impostor distribution for face recognition and the impostor distribution for finger-

print verification provide confidence measures for each of the top n matches retrieved

by the face recognition module. Without a loss of generality, we assume that at most

one of the 72 possible identities established by the face recognition module for a given

individual is the genuine identity of the individual. The final decision by integration

either rejects all the 72 possibilities or accepts only one of them as the genuine identity.

0
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In practice, it is usually specified that the FAR of the system should be less than a

given value [106]. Therefore, the goal of decision fusion, in essence, is to derive a

decision criterion which satisfies the FAR specification.

It is reasonable to assume that the DFFS between two different individuals is

statistically independent of the fingerprint matching score between them; facial sim-

ilarity between two individuals does not imply that they have similar fingerprints,

and vice versa. This assumption should not be confused with the situation where an

impostor tries to fool the system by counterfeiting the face and/or fingerprints of the

genuine individual. Let F,(A)Pm-der('i) and C(Y) denote the impostor distribution

at rank 2' for face recognition and fingerprint verification modules, respectively. The

composite impostor distribution at rank 2' may be defined as

am, Y) = mmemexacm. (7.16)

Let {11,12, ..., In} denote the 72 possible identities established by face recognition,

{X1, X2, ..., Xn} denote the corresponding 72 DFFSs, {1"1,Y2, ..., Yn} denote the corre-

sponding n fingerprint matching scores, and FARO denote the specified value of FAR.

The final decision, ID(II), for a given individual II is determined by the following

criterion:

Hk(Ak, Yk) < FARO, and

1k, if

1W1) = Hum, Y2) = min{H1(A1, Y1), Hummus} (7-17)

impostor, otherwise,
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where A,- = X,“ — Xi. Since H,(A, Y) defines the probability that an impostor is

accepted at rank 2' with consecutive relative DFFS, A, and fingerprint matching score,

Y, the above decision criterion satisfies the FAR specification.

Note that the decision criteria in Eq. (7.17) depends on the number of individuals,

N, enrolled in the database, since F,- depends on N. However, it does not mean that

the distributions of Rs have to be recomputed whenever a new individual is enrolled

in the database. In fact, if N >> 1, the distributions of F,s for different values of

N are quite similar to one another. On the other hand, the decision criterion still

satisfies the FAR specification when N increases, though it may not be able to take

full advantage of the information contained in the N comparisons. In practice, an

update schema which recomputes the decision criteria whenever the number of added

individuals is larger than a pre-specified value can be used to exploit all the available

information.

7.4 Summary

A biometric system which is based only on a (or one snapshot of a) single biomet-

ric characteristic may not always be able to achieve the desired performance. A

multimodal biometrics technique, which combines multiple biometrics in making an

identification, can be used to overcome the limitations. Integration of multimodal

biometrics for an identification system has two goals: (2') improve the identification

accuracy and (22') improve the identification speed (throughput). We have developed

a decision fusion scheme which integrates two different biometrics (face and finger-
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print) that complement each other. In this scheme, a biometrics that is suitable for

database retrieval is used to index the template database and a biometrics that is

reliable in deterring impostors is used to ensure the overall system accuracy. In ad-

dition, a decision fusion scheme which exploits all the information in the decisions

made by each individual biometrics is used to make a more reliable decision.

The decision fusion schema may be applied to similar scenarios in other domains

to provide a better discrimination performance. For example, in image database

retrieval, a less reliable but computationally attractive algorithm may be used to

retrieve the top 72 matches; then a more reliable, but computationally more expensive

algorithm may be used to verify the t0p 72 matches; and finally a decision fusion

scheme can be used to reach a more reliable decision.
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Chapter 8

Fingerprint Classification

The main advantage of fingerprint classification is that it provides an indexing scheme

to facilitate efficient matching in large fingerprint databases; if two fingerprint images

are the impressions of the same finger, then they must belong to the same category.

Therefore, a query fingerprint needs to be compared only with the database finger-

prints of the same category in the fingerprint matching process. Without an effective

fingerprint classification scheme or some other indexing scheme, fingerprint identifi-

cation involves an exhaustive matching of query fingerprint to all the fingerprints in

the database, which is computationally demanding [85].

8.1 Automatic Fingerprint Classification

An automatic fingerprint classification algorithm classifies a fingerprint into a number

of pre—specified categories according to the features extracted from the fingerprint.

Generally, the pre-specified categories could be either the categories defined in Chap-

147
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ter 2 or a “new” set of categories which have not been used by forensic experts, but

may be easily recognized automatically.

For automatic fingerprint classification, the following five issues are of great in-

terest: (2') number of fingerprint categories, (22') distribution of fingerprints among

the categories, (222') consistency of classification scheme, (2'22) classification accuracy,

and (v) computational requirements of the classification algorithm. Property (2')

specifies that a classification algorithm should be able to classify fingerprints into a

sufficiently large number of categories. The effectiveness of the indexing mechanism

depends on the number of categories; the larger the number of categories, the more

efficient the resulting indexing mechanism. Property (22') emphasizes that fingerprints

should be distributed uniformly among the categories of interest; it is desirable that

each category should contain the same number of fingerprints. The more uniformly

the fingerprints are distributed among the categories of interest, the more effective

the resulting indexing mechanism. Property (222') suggests that the fingerprints in

each category of interest should be similar in terms of global pattern configuration.

Property (2'21) stipulates that classification scheme should be able to reach a desirable

classification accuracy. If the classification scheme can not reach a desirable accuracy,

then the classification scheme will be useless for the purpose of indexing. Property (2))

says that the classification should be performed quickly. If the classification is more

expensive than conducting a linear search of a fingerprint database, then it is mean-

ingless to use the classification scheme to index the fingerprint database. Ideally, an

automatic fingerprint classification algorithm should be able to quickly classify finger-

prints into a significant number of categories consistently with a desirable accuracy.
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In practice, due to the complex and noisy nature of fingerprint ridge configurations,

it is a major challenge to design such a fingerprint classification algorithm.

Due to large variations in the ridge pattern configuration, the definition of the

global pattern features used to specify the classification criteria used by fingerprint

experts is very complex and vague. When the quality of input images is not very

good, it is extremely difficult for an automatic algorithm to reliably extract these

“high level” features from the images. Therefore, the performance of the fingerprint

classification algorithms based on these global features is far from desirable. On the

other hand, the classification criteria used by fingerprint experts is sufficiently vague

that it may classify fingerprints with similar pattern configurations into different

categories. Figure 8.1 shows examples of fingerprints that appear similar but are

classified into different categories according to fingerprint experts.
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Figure 8.1: Examples of fingerprints from different categories; (a) tented arch; (b)

loop; (c) whorl; it seems that all the fingerprints shown here should be in the loop

category.

As mentioned early, the fingerprint classification is intended for quickly providing

an indexing mechanism and to give an indication of general pattern agreement. It is

not necessarily required that fingerprints should be classified according to the tradi-
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tional classification scheme. Essentially, what is needed is a classification scheme that

is able to consistently and correctly classify fingerprints into a number of uniformly

distributed categories with large intra-class similarity and small inter-class similarity.

A central problem in designing such a classification scheme is to decide what features

should be used to classify fingerprints and how categories are defined based on these

features. These fingerprint features should be invariant to the translation and rota-

tion of the input fingerprint images and be able to capture the inherent nature of

the global fingerprint pattern configuration. Global fingerprint features are mainly

derived from the orientation field and global ridge shape. The orientation field of

a fingerprint consists of the local ridge orientation tendency in local neighborhoods

and forms an abstraction of the local ridge structures. It has been shown that the

orientation field is highly structured and can be roughly approximated by a core-delta

model [104]. Therefore, singular points and their relationship can be used to derive

fingerprint categories.

Previous approaches to fingerprint classification can be roughly divided into two

categories: (2') statistical approach [22, 21, 23, 10, 17, 55] and (22') structural ap-

proach [32, 78, 80, 119, 101, 90, 102]. A statistical approach classifies a fingerprint

using feature vectors derived directly from the orientation field of the input images.

A structural approach extracts and represents fingerprints using a number of salient

fingerprint properties and their relationships. These algorithms perform reasonably

well when the input fingerprint images are of good quality. When the quality of

the input fingerprint images is poor, the performance of these algorithms degrades

rapidly. The major reason for the brittleness of these algorithms is that they do not
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Figure 8.2: The flow-chart of the fingerprint classification algorithm.

utilize robust features.

We have designed two fingerprint classification schemes based on the features

mentioned above. One follows the approach to classify fingerprints into five categories

(arch, tented arch, left loop, right loop, and whorl) according to the extracted cores,

deltas, and ridge shape. The other scheme classifies fingerprints into four categories

which depends on pattern similarity based on cores and deltas. The main stages of

the classification algorithms are depicted in Figure 8.2, which can be divided into two

parts: (2') feature extraction and (22') classification scheme. The feature extraction

module extracts two types of features: (2') singular points, and (22') fingerprint ridges.

8.2 Feature Extraction

For local orientation estimation and ridge extraction, we use the same procedure as

used for minutiae extraction algorithm. Our algorithm spends a significant amount

of effort to improve the quality of extracted orientation field and ridges, which results

in a more robust feature extraction and classification. In order to understand the
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core delta

Figure 8.3: Singular points.

algorithm, some additional definitions are given.

8.2.1 Definitions

A Recurring ridge is defined as a chain of pixels, r1, r2, ..., rn, in a thinned ridge map,

where r1 is the first ridge pixel, r" is the last ridge pixel, and each pair of consecutive

pixels, (r,_1,r,-) is eight connected, which cumulatively turns more than a certain

degree when traveling from r, to r,, where 1 S i < j S n.

A singular point is either a core point or a delta point which is characterized by

its position and type (see Figure 8.3). A core is defined as a point in the orientation

field where the orientation in a small local neighborhood around the point presents

semi-circular tendency. A delta is defined as a point in the orientation field where a

small local neighborhood around the point forms three sectors and the orientation in

each sector presents hyperbolic tendency.
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8.3 Ridge Verification

Since ridge structures in poor-quality fingerprint images are not always well-defined, it

may lead to: (i) incorrect local ridge orientation estimates and (ii) incorrect extracted

ridges. It is very difficult to correctly classify a fingerprint based on the incorrect

orientation field and incorrect ridge structure. Therefore, a noise removal algorithm

should be applied to obtain more precise orientation estimates and ridges.

A direct way to ensure that orientation field estimation and ridge extraction are

robust with respect to the quality of input fingerprint images is to enhance the in-

put images before orientation estimation and ridge extraction. As long as the ridge

structures are not corrupted completely, it is possible to develop an enhancement

algorithm to improve the clarity of ridge structures in corrupted fingerprint images.

However, the extraction of local orientation and ridge structure are intertwined; a

correct estimate of either one will result in a correct estimate of the other.

Fingerprint ridges are highly structured both locally and globally. Locally, each

ridge runs parallel to the neighboring ridges. Globally, ridges form families of similar

types of smooth curves. In an extracted ridge map, ridges in the well-defined regions

satisfy the above properties, while in the corrupted regions, they do not have such

properties. Therefore, we can use these properties to differentiate the corrupted

ridges from the true ridges. The orientation field in the regions where the true ridges

appear can be correctly estimated as the tangent direction of the ridges. If the

true regions occupy most of the fingerprint image, we can correctly interpolate the

local orientation in those regions where true ridges are not identified using these true
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local orientations. Obviously, if the corrupted regions occupy a significant portion

of the fingerprint image, the true local orientation may not be recovered using the

interpolation method.

We have developed a ridge verification algorithm which receives as input a thinned

ridge map and outputs a refined thinned ridge map, a refined orientation field, and

a quality index which indicates the goodness of the input ridge map. Let ’R, 0’, and

72’ be the input ridge map, the interpolated orientation field, and the verified ridge

map, respectively. The major steps in our ridge verification algorithm are as follows:

I. Initialize (9’, ’R’, and A which is a map used to indicate the true regions.

2. Delete all ridge pixels in ’R. which have more than two 8—connected neighboring

pixels to ensure that each ridge is a single 8-connected chain.

3. Trace and label all the ridges in R.
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4. For each traced ridge, r = {(x1,y1), (x2, yg)..., (xn, yn)}, represented in terms of

the coordinates of points on it, do the following:

o smooth r.

0 let (3322,3116) and ($(i+1)ea y(i+1)e) denote the starting point and ending

point of a segment in r, where e is the length of the segment and i =

0,6,26, ..., [n—z-Eje. Find the 2 nearest neighboring ridge points which are

on the line that crosses (x16, y“) and perpendicular to the ridge segment on

both sided of the segment: (22, u) and (u’, u’) and the 2 nearest neighboring

ridge points which are on the line that crosses (x(,-+1)E, y(,-+1)¢) and perpen-

dicular to the ridge segment on both sided of the segment: (p, q) and (p’, q’).

Note that (magic), (x(,-+1)(,y(,-+1)6), (p, q), and (u,u) form a quadrilateral

at one side of the segment and (3316,3116), (113011)“ y(,-+1)¢), (p’, q’), and (u’, '0')

form a quadrilateral at the other side of the segment.

0 for each quadrilateral, find the minimum rectangle that contains the quadri-

lateral. Compute the ratio, 77, between the area of the quadrilateral and the

area of the minimum rectangle. If r) is larger than a threshold (770 = 0.75),

then label all the pixels inside the quadrilateral as foreground pixels. 0th-

erwise, label them as background pixels.

5. Remove in A all the foreground connected components whose area is less than

a threshold (we 2 15)

6. Fill in A all the background connected components whose area is less than a

threshold (r0 = 15).

7. Compute local orientation at all the pixels in 0’ where the corresponding pixels

in A are foreground pixels as the orientation of the nearest ridge segment.

8. Interpolate the local orientation at all pixels in 0’, where the corresponding

pixels in A are background pixels.

9. Return the percentage of the area of the foreground regions in A with respect to

total area of A as the quality index.

An example of ridge verification is depicted in Figure 8.5, which demonstrates that

a better orientation field can be obtained by using our ridge verification algorithm.

8.3.1 Singular Point Detection

A singular point is defined as the point where the vector field is not continuous, which

can be characterized using Poincare index. The Poincare index at a given point, (x, y),
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Figure 8.5: Ridge verification; (a) input image; (b) orientation field; (c) thinned ridge

map, ((1) verified ridge map, where the verified ridges are marked with gray shade;

(e) interpolated orientation field.
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in a vector field, V, is defined as follows:

27r

Poincare(x, y) = 517—; 113(1) {/0 glitz: + 5 cos 6, y + 5 sin 6)d0}. (8.1)

If the Poincare index at a given point (x, y) is not equal to zero, then the point (x, y)

is called a singular point. The Poincare index of a core-shaped singular point in a

vector field has a value of 1 and the Poincare index for a delta-shaped singular point

has a value of -1.

It has been shown that the orientation field of a fingerprint image can not be

unambiguously represented as a vector field [104]. The definition of Poincare index

needs to be extended to the orientation field. Let 0’ be the orientation field. The

Poincare index at a given point (i, j) is defined as follows:

 

. . . 1 . 2" 3 , . . .
P02ncare(2,]) — 57? 113(1) {/0 50 (2 + ecos 0,] + esm 0MB} , (8.2)

where

d6, if |d6| < 7r/2,

8

50’(i + ecos 0,j + esin 0) = 7r + d6, if d6 S _W/g, (8.3)

7r — d6, otherwise,

d6 = lim 0 (2 +ecos(0 + 11),] +esm(6+ V)) — 0 (2 +ecosl9,] +es1n6’). (8.4)

u—>0 V

In an orientation field, the Poincare index of a core-shaped singular point has a value

of 1 /2 and the Poincare index of a delta-shaped singular point has a value of -1 /2. In



158

a digital image, the computation of the Poincare index is implemented by replacing

the integration in Eq. (8.2) by a summation of all orientation differences along a

closed digital curve. Let \III(-) and \Ily(-) represent the x and y coordinates of a closed

digital curve with ‘1! pixels. The Poincare index at pixel (i, j) which is enclosed by

the digital curve can be computed as follows:

17

Poincare(i,j) = 21; Z A(k), (8.5)

1:20

where

d6(k), if |d6(k)| < 7r/2,

A(k) = 71 + 216(k), if 215(1) 3 41/2, (8-6)

77—d6(k), otherwise,

d6(k) = o'(\11.((z'+1)Moo\11),\p,((z'+1)Mooxr))—o'(\p,(2),\11,(2)).(s.7)

The size of the closed digital curve is crucial for the performance of a singular point

detection algorithm using the Poincare index. If it is too small, then a small per-

turbation of orientations may result in spurious singular points being detected. On

the other hand, if it is too large, then a true pair of core and delta which are close

to one another may be ignored because the Poincare index of a digital curve that

includes an equal number of cores and deltas is 0. We have developed a singular

point detection algorithm which uses a closed square curve with a length of 25 pixels.

We have empirically determined that a curve of 25 pixels is a good trade-off between

detections and misses of singular points. Let (9’ be the interpolated orientation field.



 

Figure 8.6: Singular point detection: a core is labeled by a rectangle and a delta is

labeled by a triangle.

The main steps in our singular point detection algorithm are as follows:

1. Initialize A, which is a label image used to indicate the singular points.

2. For each pixel (i, j) in (9’, compute the Poincare index and assign the corre-

sponding pixel in A a value 1 if the Poincare index is (1/2} and a value 2 if the

Poincare index is {-1/2).

3. Find each connected component in A with pixel values 1. If the area of the

connected component is larger than 7, a core is detected at the centroid of the

connected component. If the area of the connected component is larger than 20,

then two cores are detected at the centroid of the connected component.

4. Find each connected component in A with pixel values 2. If the area of the

connected component is larger than 7, a delta is detected at the centroid of the

connected component.

5. If more than two cores or more than two deltas are detected, smooth the orien-

tation field 0’ and go back to step 1.

Although the heuristic that at most two cores and two deltas exist in a fingerprint

is not always true, it is rarely observed that a fingerprint has more than two cores

and two deltas. Results of applying our singular point detection algorithm on two

fingerprint images are shown Figure 8.6.

8.3.2 Recurring Ridges

The global shape of ridges determines the global configuration of fingerprints. Ridges

in fingerprints are highly structured. Generally, in the upper region (which can be
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roughly defined as the region above the highest core points in loops, tented arches,

and whorls and the region above the most curved ridges in arches) of a fingerprint,

ridges are a family of uni-modal smooth curve segments. In the bottom region,

ridges form a family of relatively flat curves. In the middle region, depending on

the fingerprint class, ridges may be of the following types: uni-modal curve segment,

recurring segment, circular segments, multi-recurring segments, spiral segments, etc.

The presence of a particular type of ridges defines the class of a fingerprint. If the ridge

type can be accurately determined, then the fingerprint can be correctly classified.

We classify ridges into three categories: (i) non-recurring ridge, (ii) type-1 re-

curring ridge, and (iii) type-2 recurring ridge. Let r = {r1,r2, ...,rn} be a ridge of

length n, where r1 is the first ridge pixel, rn is the last ridge pixel, and each pair of

consecutive pixels is eight connected. Then r’ = {r1, r2,, ..., rm}, where m = [Hz—9],

is obtained by sampling r at intervals of length 6. Define the cumulative orientation

of r as:

A01) = 15:: WW

pa), if 111/«)1 < 1.

w(k) = 2n + p(k), if p(k) 3 —7r,

2n — p(k), otherwise,

WC) = 190$) - :90: -1),

where 29(k) represents the angle from r’ (k) to r’ (k + 1). Define any sequence of ridge

pixels in r, {r,-,r2,...,rj}, where 1 S i < j _<_ n, a sub-ridge of r. A non-recurring
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ridge, r, is a ridge such that the cumulative orientation of any sub-ridge of r is less

than a threshold, Tnon 2 150°. A type-1 recurring ridge, r, is a ridge such that

the cumulative orientation of any sub-ridge of r is between the two thresholds, Tnon

and Tree = 270°. A type-2 recurring ridge, r, is a ridge such that the cumulative

orientation of any sub-ridge of r is larger than a threshold, Tm or a ridge such

that there exist multiple disjoint sub-ridges of r, which are type-1 recurring ridges.

Obviously, uni-modal ridge segments and flat ridge segments are non-recurring ridges.

Circular ridge segments, multi-recurring ridge segments and spiral ridge segments are

type-2 recurring ridges.

It is very difficult to correctly extract all the true ridges from an input fingerprint

image, especially when the quality of the input fingerprint image is poor. It is essen-

tial that a ridge classification algorithm be able to handle the following undesirable

situations: (2) spurious ridges, (22') broken ridges, and (iii) missing ridges. Ridge ver-

ification (see Figure 8.5) can be used to remove all the spurious ridges from a ridge

map. Broken ridges can be connected based on the information present near the end

of broken ridges. However, it is very difficult to recover missing ridges. This needs

both high-level structural analysis and local structural analysis of the ridge pattern,

which is very difficult to formulate and implement. We have developed a ridge clas-

sification algorithm which traces each ridge in the verified ridge map and classifies

each ridge into one of the three categories mentioned above (Figure 8.7). The main

steps of the algorithm are depicted as follows:

1. Trace and label all the ridges in 72’.

2. For each traced ridge, r : {r1,r2, ...,rn}, expand r at both ends to generate a

new ridge and repeat the expansion operation until the new generated ridge can
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Figure 8.7: Ridge classification; (a) ridges classified as non-recurring ridges; (b) ridges

classified as type-1 recurring ridges; and (c) ridges classified as type-2 recurring ridges.

not be expanded anymore. Ridge expansion is to connect r with a ridge in ’R.’

at the end points to generate a new ridge with the condition that the expanded

ridge is consistent with the original ridge at the expansion points.

3. Compute the A0 of the expanded ridge and classify it according to the criteria

mentioned above.

Examples of ridge classification are shown Figure 8.7.

8.4 Classification

Fingerprints can be classified into a number of pre—specified categories based on the

features extracted from the orientation field and ridge map.

8.4.1 Classification Scheme I

This classification scheme classifies input fingerprints into five categories according

to the number of singular points detected, their relative position and presence of

type-1 and type-2 recurring ridges. These categories are: (i) arch, (ii) tented arch,

(222) left loop, (iii) right loop, and (v) whorl. A prototype of each class is shown in

Figure 8.8. Let 0’ be the interpolated orientation field; NC and Nd be the number of
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(8)

Figure 8.8: Fingerprint class prototypes; (a) arch; (b) tented arch; (c) left loop; ((1)

right loop; and (e) whorl; the dashed lines in (b), (c), and (d) are the symmetric axes.
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cores and deltas detected from 0’, respectively; N1 and N2 be the number of type-1

recurring ridges and type-2 recurring ridges in 72’. The classification criteria used in

our algorithm is depicted as follows:

1.

2.

9.

1 0.

If (N2 > 0) and (NC = 2) and (Nd : 2), then a whorl is identified.

If(N1 = 0) and (N2 = 0) and (Nc = 0) and (Nd = 0), then an arch is identified.

If (N1 > 0) and (N2 = 0) and (Nc = 1) and (Nd = 1), then classify the input

using the core and delta assessment algorithm given below.

If (N2 > T2) and (NC > 0), then a whorl is identified.

If (N1 > T1) and (N2 = 0) and (Nc = 1) then classify the input using the core

and delta assessment algorithm.

If (NC = 2), then a whorl is identified.

If (Nc = 1) and (N; = 1), then classify the input using the core and delta

assessment algorithm.

If (N1 > 0) and (NC = 1), then classify the input using the core and delta

assessment algorithm.

If (NC = 0) and (Nd = 0), then an arch is identified.

If none of the above conditions is satisfied, then reject the fingerprint.

The core and delta assessment algorithm is used to classify an one-core and one-

delta fingerprint into one of the following categories: (i) left loop, (ii) right loop, and

(iii) tented arch. It is depicted as follows:

1.

2.

Estimate the symmetric axis which crosses the core in its local neighborhood.

Compute the angle, oz, between the line segment from the core to the delta and

the symmetric axis.

Compute the average angle difference, 5, between the local ridge orientation

on the line segment from the core to the delta and the orientation of the line

segment.

Count the number of ridges, 7, that cross the line segment from the core to the

delta.

If (a < 10°) or (,6 < 15°) and (7 = 0), then classify the input as a tented arch.
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6. If the delta is on the right side of the axis, then classify the input as a left loop.

7. If the delta is on the left side of the axis, then classify the input as a right loop.

8.4.2 Classification Scheme 11

This classification scheme classifies fingerprints into four categories according to the

number of singular points detected and their relative positions. Let Nc and Nd be the

number of core and delta points detected from 0’, respectively; (C¢1,Cy1), (C12, Cyg),

be the x and y coordinates of the cores, respectively; If (Nc = 1), then (C32, Cyg) =

(—1,—1); if (Nc = 0), then (Cx1,Cy1) = (C22,Cy2) = (—1,—1); Let (Dthyl),

(D22, Dyg), be the x and y coordinates of the deltas, respectively; if (Nd = 1), then

(ng,Dy2) = (—1,—1); If (Nd = 0), then (D31,Dy1) = (D32,Dy2) = (—1,—1). The

definition of the four categories is as follows:

1. If (NC = 2), then the fingerprint is a class-1 fingerprint.

2. If (Nc = 1) and (Nd = 1) and (d((C31,Cy1), (D11,Dy1)) > S) and the

delta is at the right side of the symmetric axis, where S is a threshold and

d((Cxl,Cy1), (Du, Dy1)) is the distance between (Cxl,Cy1) and (D31, Dyl), then

the fingerprint is a class-2 fingerprint.

3. If (N, = 1) and (N, = 1) and (d((C11,Cy1),(Dx1,Dy1)) > S) and the

delta is at the left side of the symmetric axis, where S’ is a threshold and

d((Cxl,Cy1), (D11, Dy1)) is the distance between (C31,Cy1) and (D31, Dyl), then

the fingerprint is a class-3 fingerprint.

4. If none of the above conditions is satisfied, then the fingerprint is a class-4

fingerprint.

In this classification scheme, a class-1 fingerprint corresponds to a whorl in the

traditional classification scheme. Class-2 fingerprints and class-3 fingerprints are fin-

gerprints of loop, and tented arch with the distance between core and delta being
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rather large. Class-4 fingerprints consist arches and loops and tented arches with a

small distance between core and delta.

8.5 Summary

Fingerprint classification provides an important indexing mechanism for automatic

fingerprint identification. At a first glance, the fingerprint classification problem

appears to be rather simple. But, because of large intraclass and small interclass

variations in global pattern configuration and due to poor quality of input images,

the desired accuracy of 1% error rate at 20% reject rate is very difficult to achieve.

We have designed two fingerprint classification algorithms. One classifies input fin-

gerprints into five categories according to the number of singular points detected,

their relative positions, and presence of type-1 and type-2 recurring ridges. The other

scheme classifies fingerprints into four categories. Since we invest a significant amount

of effort in feature extraction so that the features are robust to interclass variations as

well as poor quality of input images, the resulting classification algorithms are more

robust to image quality.



Chapter 9

Experimental Results

The biometrics community is slow in establishing benchmarks for biometric sys-

tems [44]. Although, benchmark results on standard databases in themselves are

useful only to a limited extent and may result in excessive tuning of the system pa-

rameters to “improve” the system performancel, they constitute a good starting point

for comparing the gross performance characteristics of the systems.

No metric is sufficiently adequate to give a reliable and convincing indication

of the identification accuracy of a biometric system. In principle, we can use the

false (impostor) acceptance rate (FAR), the false (genuine individual) reject rate

(FRR) and the equal error rate (EER)2 to indicate the identification accuracy of

a biometric system [106, 42, 43]. In practice, these performance metrics can only

be estimated from empirical data and the estimates of the performance are very

data dependent. Therefore, they are meaningful only for a specific database in a

 

1Several additional techniques like data-sequestering [114] and third party benchmarking [18]

may also help in obtaining fairer performance results.

2Equal error rate is defined as the value where FAR and FRR are equal.
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specific test environment. For example, the manufacturer of a particular biometric

system claimed that the system had an FRR of 0.3% and an FAR of 0.1%. An

independent test by the Sandia National Lab. found that the same system had

an FRR of 25% with an unknown FAR [75]! In order to provide a more reliable

assessment of a biometric system, some more descriptive performance measures are

necessary. A receiver operating curve provides an empirical assessment of the system

performance at different operating points which is more informative than FAR and

FRR. The statistical metric (1’ gives an indication of the separation between the

genuine distribution and impostor distribution [43]. It is defined as the difference

between the means of the genuine distribution and impostor distribution divided by

a conjoint measure of their standard deviations [43]:

 

(1,: ”MW“... — 2119......“ , (9.1)

Jon-2mm... + SD3....-...)/2

where Mgenume, SDgenume, Mimposm, and SDimposto, are the means and standard

deviations of the genuine distribution and impostor distribution, respectively. Like

FAR, FRR, and EER, both ROC and d’ also depend heavily on test data and test

environments. For such performance metrics to be able to precisely generalize to the

entire population of interest, the test data should (i) be large enough to represent the

population and (ii) contain enough samples from each category of the population [43].

To obtain fair test results, enough samples should be available, the samples should

be representative of the population, and adequately represent all the categories (im-

postors and genuine). Further, irrespective of the performance measure, error bounds
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that indicate the confidence of the estimates are valuable for understanding the sig-

nificance of the test results.

9.1 Test Databases

The MSU fingerprint database contains 10 images (640 x 480) per finger from 150

individuals for a total of 1,500 fingerprint images, which were captured with a scanner

manufactured by Digital Biometrics. When these fingerprint images were captured,

no restrictions on the position and orientation of fingers were imposed. The captured

fingerprint images vary in quality. Figure 9.1 shows some of the fingerprint images

in our database. Approximately 90% of the fingerprint images in our database are

of reasonable quality similar to those shown in Figure 9.1, while about 10% of the

fingerprint images in our database are not of good quality (Figure 9.2), which are

mainly due to large creases and smudges in ridges and dryness of the impressed

finger.

A portion of the NIST 9 fingerprint database is also used in our experiments. NIST

9 fingerprint database contains 1,350 mated fingerprint card pairs (image size is 832 x

768) that approximate a natural distribution of the National Crime and Information

Center (NCIC) fingerprint classes (examples of fingerprints in the NIST 9 database

are shown in Figure 9.3) [149]. It is divided into multiple volumes. Each volume has

3 CD’S. Each CD contains 900 images of card type 1 and 900 images of card type

2. Fingerprints on card type 1 were scanned using a rolled method and fingerprints

on card type 2 were scanned using a live-scan method. The fingerprint images in



Figure 9.1:

Biometrics;

same finger.
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Fingerprint images captured with a scanner manufactured by Digital

the size of these images is 640 x 480; images in each row are from the
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Figure 9.2: Fingerprint images of poor quality.

NIST 9 database are more challenging compared to the live-scan fingerprint images

for a number of reasons, including: (i) the NIST 9 fingerprints are a combination of

dabs and rolled impressions; large discrepancy between the number of minutiae in

test and reference template inherently skews the matching score normalization; (ii)

a large number of NIST 9 images are of much poorer image quality than a. typical

live-scan fingerprint image; (iii) NIST 9 images often contain extraneous objects like

handwritten characters and other artifacts common to inked fingerprints. Although

only one-half of the fingerprint images in NIST 9 fingerprint database are live-scan

images and there exists a large distortion between 3 rolled fingerprint and a live-scan

fingerprint, we can still use this database to generate some statistics and comparative

performance numbers for our matching algorithm.

NIST 4 fingerprint database contains 4,000 images (image size is 512 x 480) taken

from 2,000 different fingers, two images per finger. Five fingerprint classes are de-

fined: (2) Arch, (ii) Tented arch, (iii) Left Loop, (iv) Right Loop, and (v) Whorl.
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Figure 9.3: Examples of fingerprints in the NIST 9 database; the size of these images

is 832 x 768.
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Fingerprints are uniformly distributed among these five classes. NIST 4 database

is compiled for evaluating the performance of a fingerprint classification algorithm.

Examples of fingerprints in the NIST 4 database are shown in Figure 9.4 [150].

A database from IBM which contains 1,044 live-scan fingerprint images (varying

image size) was also used to test the performance of our classification algorithm.

Fingerprints in the IBM database are classified manually by fingerprint experts into:

(2) Arch, (ii) Tented arch, (222) Left loop, (iv) Right loop, (v) Whorl, (vi) Twin,

and (vii) Composite. Examples of fingerprints in the IBM database are shown in

Figure 9.5.

A composite public domain face database was used in the performance evaluation

of the identification system. The face database contains a total of 1,132 images of 86

individuals (examples of images in this database are shown in Figure 9.6); 400 images

of 40 individuals with 10 images per individual are from the Olivetti Research Lab.,

300 images of 30 individuals with 10 images per individual are from the University

of Bern, and 432 images of 16 individuals with 27 images per individual are from

MIT Media Lab. The images were re-sampled from the original sizes to a fixed size

of 92 X 112 and normalized to zero mean.

9.2 Feature Extraction Performance

It is very difficult to independently assess the performance of feature extraction algo-

rithms. Accuracy of the extracted minutiae was subjectively confirmed in two ways.

Visual inspection of a large number of typical minutiae extraction results showed that
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Figure 9.4: Examples of fingerprints in the NIST 4 database; the size of these images

is 512 x 480.
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Figure 9.6: Examples of faces in the composite database.
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Figure 9.7: Receiver Operating Curves; the vertical axis is (1-FRR); the ROC shows

the improvement in verification performance of the new minutiae extraction algorithm

in contrast to the algorithm in [120].

our algorithm rarely missed minutiae in reasonable quality fingerprint images.

We have compared the performance of our feature extraction algorithm with that

of the feature extraction algorithm in [120]. The premise underlying this experiment

is that given an identical matcher, the accuracy of the system indicates the perfor-

mance of the feature extraction algorithm. We extracted fingerprint representations

from a sample set of fingerprint images using our feature extraction algorithm. The

verification accuracy was estimated using a Hough-transform based matcher [121] by

performing an “all against all” verification test to obtain distributions of match and

mismatch scores. The same test was also performed on the features extracted from

our previous feature extraction algorithm [120]. The ROCs resulting from these two

experiments are shown in Figure 9.7. The CPU time required by our new feature

extraction algorithm to process a 640 x 480 fingerprint image is, on an average, 1.1
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seconds on a UltraSPARC workstation whereas the CPU time for the old algorithm is

16.1 seconds. Thus, we can see that the new minutiae extraction algorithm results in

a significant improvement in the overall accuracy as well as the speed of the system.

Note that the above accuracy improvement is context dependent, i.e., it reveals the

accuracy improvement when the Hough-transform based matcher is used. However,

since the accuracies of both the matchers depend solely on the correctness of the ex-

tracted minutiae, the performance of our matcher should also improve with the new

minutiae extraction algorithm.

9.3 Fingerprint Enhancement Performance

The purpose of a fingerprint enhancement algorithm is to improve the quality of

input fingerprint images and make them more suitable for the minutiae extraction

module. Therefore, the ultimate criterion for evaluating such an enhancement algo-

rithm is the amount of performance improvement when the algorithm is applied to

the noisy fingerprint images. In order to evaluate the performance of our fingerprint

enhancement algorithm, we have conducted two experiments using the verification

system on a subset of the MSU fingerprint database which consists of 700 images of

70 individuals.

In the first experiment, the fingerprint enhancement algorithm was not applied.

Each fingerprint image in the database was directly matched against the other finger-

print images in the database. In the second experiment, our fingerprint enhancement

algorithm was first applied to each fingerprint image in the database. Then, the ver-



 

100 1 Y V ' V "YI I V V Y W r f1 I V 1 Y YYYYY I T t ' U v v

w/ enhancement M    

90

80

7o~ ~

60-
x

40" -(

A
u
t
h
e
n
t
i
c
A
c
c
e
p
t
a
n
c
e
R
a
t
e
(
%
)

0
|

0

l l

   
20- 4

1o- —

O 1 L L 1 J#.l . 1 L L 1 A 111 L 1 i A . i ..l . i i A 1 141

1 o‘2 10‘1 10° 10‘ 102

False Acceptance Rate (%)

Figure 9.8: Receiver Operating Curves; the ROC shows the improvement in verifica-

tion performance of the enhancement algorithm.

ification is conducted on the enhanced fingerprint images. The ROCs resulting from

these two experiments are shown in Figure 9.8. From these experimental results, we

can observe that the performance of the online fingerprint verification system is signif-

icantly improved when our fingerprint enhancement algorithm is applied to the input

fingerprint images. In particular, using the enhancement algorithm has substantially

reduced the reject rate while maintaining essentially the same recognition rate.

9.4 System Performance

We first evaluated the matching scores of correct and incorrect matches and then eval-

uated the performance of the verification system in conducting identity authentication
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and the performance of the identification system in conducting personal identification.

9.4.1 Matching Scores

  (a) (b) '1

Figure 9.9: Fingerprint images from the same finger.

In test 1, each of the first 1,500 fingerprints in the MSU fingerprint database was

matched with all the other fingerprints in the database. A matching was labeled

correct if the matched fingerprint was from the same finger, and incorrect otherwise.

A total of 2,248,500 (1, 500 x 1, 499) matchings were performed. The distributions

of correct and incorrect matching scores are shown in Figure 9.12(a). In test 2, each

of the 900 fingerprints of card type 1 in the NIST 9 (CD No. 1) was matched with

all the 900 fingerprints of card type 2. A matching was labeled correct if a matched

fingerprint was from the same finger. A total of 810,000 (900 X 900) matchings were

performed on this database (to our knowledge, no comparative results are available

on NIST 9 database). The distributions of correct and incorrect matching scores

are shown in Figure 9.12(b). Table 9.1 lists the d’ values in addition to the mean

and standard deviation of correct and incorrect matching scores. The large variance

of correct matching scores is mainly due to different number of detected minutiae,
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Database d’ Mean Standard Deviation Mean Standard Deviation

(correct) (correct) (incorrect) (incorrect)

MSU 2.26 23.46 13.59 1.56 0.71

NIST-9 2.01 18.76 11.22 2.39 0.83       
 

Table 9.1: d’ and mean and standard deviation of the correct and incorrect matching

scores.

quality of acquired fingerprint images, and fingerprint distortion. For example, the

fingerprint images shown in Figures 9.9(a) and (b) are captured from the same finger.

However, only a small region of interest is common to these two fingerprint images

(approximately 30%). Obviously, it is very difficult to make a highly confident decision

based only on the limited number of minutiae appearing in the region of interest which

are common to both the fingerprints. In practice, such a problem can be solved

by requiring that each input fingerprint image should have a sufficient amount of

overlapping region of interest with its stored template(s). Figure 9.10 shows a mated

pair in the MSU database that has a relatively low matching score (8). Figure 9.11

shows a pair of fingerprints from different fingers in the MSU database that has a

relatively high matching score (9).

9.4.2 Authentication Test

In test 1, for each individual, we randomly selected 3 fingerprint images which passed

the quality checking as the template minutiae patterns for the individual and inserted

them into the system database. The major reason why we use 3 fingerprint templates
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Figure 9.10: A mated pair in the MSU database that has a relatively low matching

score: (a) and (b) fingerprint images from the same finger; (c) and (d) thinned ridge

maps; (e) and (f) extracted minutiae superimposed on the input images and the

corresponding minutiae pairs established using our matching algorithm.
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Figure 9.11: A pair of fingerprints from different fingers in the MSU database that

have a relatively high matching score: (a) and (b) fingerprint images from different

fingers; (c) and (d) thinned ridge maps; (e) and (f) extracted minutiae superim-

posed on the input images and the corresponding minutiae pairs established using

our matching algorithm.
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Figure 9.12: Distributions of correct and incorrect matching scores; vertical axis

represents distribution of matching scores in percentage; (a) MSU database; (b) NIST

9 (CD No. 1).
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is that a significant number of acquired fingerprint images from the same finger in the

MSU database do not have a sufficient amount of common region of interest due to

the unrestricted acquisition process. Even if two images are of good quality, if they

share a small common region of interest, it is unlikely that the matching algorithm

can establish a sufficient number of corresponding minutiae pairs to reach a correct

decision. Using more than one template is a simple solution although it may result in

a higher FAR. The remaining 1,050 (150 x 7) fingerprint images were used as input

fingerprints to test the performance of the system. An identity is established if at least

one of the 3 matching scores is above a certain threshold value. Otherwise, the input

fingerprint is rejected as an impostor. In test 2, we used 798 out of the 900 fingerprints

of card type 1 in NIST 9 database (CD. No. 1) as templates, which pass the quality

checking. The 900 fingerprints of card type 2 were used as input fingerprints. An

identity is established if the matching score is above a certain threshold value. The

false acceptance rates and false reject rates with different threshold values on the

matching score are shown in Table 9.2, which are obtained based on 157,500 (150

x 1,050) matches for test 1 and 718,200 (798 X 900) matches on test 2. Since the

matching scores are discretized with a large sampling interval, only an approximate

EER can be obtained by averaging the most similar FAR and FRR. The EER was

approximated to be 3.07% in test 1 and 2.69% in test 2. The ROCs of the two tests

are shown in Figure 9.13. In each ROC, authentic acceptance rate (the percentage of

a genuine individual being accepted) is plotted against the FAR. Each point on the

curve corresponds to a decision criterion. In the ideal case, if the genuine distribution

and the impostor distribution are disjoint, i.e. each genuine individual is accepted
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Threshold False Acceptance False Reject False Acceptance False Reject

Value Rate Rate Rate Rate

(MSU) (MSU) (NIST 9) (NIST 9)

7 0.07% 7.1% 0.073% 12.4%

8 0.02% 9.4% 0.023% 14.6%

9 0.01% 12.5% 0.012% 16.9%

10 0 14.3% 0.003% 19.5%       
 

Table 9.2: False acceptance and false reject rates on test sets with different threshold

values.

and each impostor is rejected correctly, then the ROC is a horizontal line segment

hovering at the authentic acceptance rate of 100%. On the other hand, if the genuine

distribution and the impostor distribution are exactly the same, then the ROC is a

45° line segment with one end point at the origin. In this case, decisions can only be

made by a random choice. In practice, a ROC is a curve between these two extremes.

The closer the ROC is to the upper boundary, the better the system performance.

The numbers shown in Table 9.2 are the performance measures of our verification

algorithm. They should not be treated as the ultimate performance numbers of the

system. In practice, a number of techniques can be employed to ensure a sufficient

amount of common region of interest in fingerprint images and good image quality

and to restrict the distortion of input images, which can substantially decrease both

the FAR and FRR.

In order for an automatic identity authentication system to be acceptable in prac-

tice, the reSponse time of the system needs to be within a few seconds. Table 9.3 shows

that our implemented system does meet the practical response time requirement.
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Figure 9.13: Receiver Operating Curves; (a) MSU database; (b) NIST 9 (CD No. 1).
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Minutiae Extraction Minutiae Matching Total

(seconds) (seconds) (seconds)

1.1 _ 0.3 1.4

 

     

Table 9.3: Average CPU time for minutiae extraction and matching on a Sun ULTRA

1 workstation.

9.4.3 Identification Test

We randomly assigned each of the remaining 86 individuals in the MSU fingerprint

database to an individual in the face database (see Figure 9.14 for some examples).

 

Since the DFFS between two different individuals is statistically independent of the

fingerprint matching scores between the two individuals, such a random assignment

of a face to a fingerprint is admissible. One fingerprint for each individual is randomly

selected as the template for the individual. To simulate the practical identification

scenario, each of the remaining 590 faces was paired with a fingerprint to produce a

test pair. In the test, with a pre-specified confidence value (FAR), for each of the 590

fingerprint and face pairs, the top 5 matches are retrieved using face recognition. Then

fingerprint verification is applied to each of the top 5 matches and a final decision is

made by decision fusion.

We randomly selected 640 fingerprints of 64 individuals as the training set and the

remaining as the test set. The mean and variance of the impostor distribution (Fig-

ure 9.15 (a)) were estimated to be 0.70 and 0.64 from the 403,200 (640 x 630) impostor
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 (h)

Figure 9.14: Face and fingerprint pairs; the face images (92 x 112) are from the

Olivetti Research Lab.; the fingerprint images (640 x 480) are captured with a scanner

manufactured by Digital Biometrics.
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Figure 9.15: Impostor distributions; (a) impostor distribution for fingerprint verifica-

tion; (b) the impostor distribution for face recognition at rank no. 1, where the stars

(*) represent empirical data and the solid curve represents the fitting result.
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False Reject Rate (FRR)
FAR . . .

Face Fingerprint Integration

1% 15.8% 3.9% 1.8%

0.1% 42.2% 6.9% 4.4%

0.01% 61.2% 10.6% 6.6%

0.001% 64.1% 14.9% 9.8%       
Table 9.4: False reject rates (FRR) on the test set with different values of FAR.
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Figure 9.16: Receiver Operating Curves; the vertical axis is (1-FRR).

matching scores of “all against all” verification test by fitting the probability model

described in Section 4.1. A total of 542 face images were used as training sam-

ples. Since variations in position, orientation, scale, and illumination exist in the face

database, the 542 training samples were selected such that the training set contained

several representative views. Eigenfaces were estimated from the 542 training sam-

ples and the first 64 eigenfaces were used. The top 5 impostor distributions were

approximated. Figure 9.15 (b) shows the impostor distribution at rank no. 1.

The pre-specified FAR for a biometric system is usually very small (< 0.0001). In

order to demonstrate that the biometric system does meet such a specification, a large
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Face Recognition Fingerprint Verification Total

(seconds) (seconds) (seconds)

0.9 2.1 3.0

 

    
 

Table 9.5: Average CPU time for one test on a Sun UltraSPARC 1 workstation.

set of representative samples is needed. Unfortunately, obtaining such a large number

of test samples is both expensive and time consuming. In our test, we re-use faces by

different assignment practices. In order to diminish the possible gain in performance

due to such a re—use schema, we multiplied the estimated impostor distribution for

face recognition by a constant of 1.25, which is sufficiently conservative. On the

other hand, fingerprint verification operates in the one-to-one verification mode, so

different assignments may be deemed as different impostor forgeries. Therefore, the

test results using such a random assignment schema are able to reasonably estimate

the underlying performance numbers. In our test, 1000 different assignments were

tried. A total of 590,000 (590 x 1000) face and fingerprint test pairs were generated

and tested. The FRRs of our system with respect to different pre—specified FARs, as

well as the FRRs using only fingerprints or faces are listed in Table 9.4. Note that the

FRRs in integration column include the error rate (1.8%) of genuine individuals not

present in the top 5 matches. The receiver operating curves are plotted in Figure 9.16,

in which the authentic acceptance rate (the percentage of genuine individuals being

accepted, i.e., 1 — FRR) is plotted against FAR. We can conclude from these test

results that integration of fingerprints and faces does result in a significantly better

recognition performance. Table 9.5 shows that our implemented system does meet

the response time requirement.
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9.5 Classification Performance

We have tested our fingerprint classification algorithms on (i) NIST 4 fingerprint

database, (ii) NIST 9 fingerprint database, and (iii) a set of live-scan fingerprint

images from IBM.

9.5.1 Classification Scheme I

We first present the performance of our classification algorithm on the NIST 4

database. The five-class error rate in classifying these 4,000 fingerprints is 12.5%.

The confusion matrix is given in Table 9.6; numbers shown in bold font are correct

classifications. Since a number of fingerprints in NIST 4 database are labeled as be-

longing to two different classes, each row of the confusion matrix in Table 9.6 does not

sum up to 800. For the five-class problem, most of the classification errors are due to

misclassifying a tented arch as an arch. By combining these two arch categories into

a single class, the error rate drops to 7.7%. Besides the tented arch-arch errors, the

other errors mainly come from misclassifications between arch/tented arch and loops

and due to poor image quality. Four examples of misclassified fingerprints are shown

in Figure 9.17. A lower error rate can be achieved by adding the reject option, which

is based on the quality index of the input image. The error rates corresponding to

different reject rates are listed in Table 9.8.

When testing on the NIST 9 database, if a fingerprint is not an arch or tented

arch or loop then classify it as a whorl, since our classification scheme only classifies

fingerprints into five classes. The five-class error rate in classifying the 5,400 finger-

 



193

 

  
  
      
 

 

 

  

 

True Class Assigned Class

Arch ] Tented Arch LLeft Loop ] Right Loop [Whorl

Arch 885 13 10 11 0

Tented Arch 179 384 54 14 5

Left Loop 31 27 755 3 20

Right Loop 30 47 3 717 16

Whorl 6 1 15 15 759

Table 9.6: Five—class classification results on NIST 4 database.

   

  
      

 

Assigned Class

Tm Class Arch 1 Left Loop 1 Right Loop 1 Whorl

Arch 1461 64 25 5

Left Loop 58 755 3 20

Right Loop 77 3 717 16

Whorl 7 15 15 759  

 
Table 9.7: Four-class classification results on NIST 4 database.

  
    

 
 

Reject rate 0% 5% 10% 20%

5-class Error 12.5% 11.6% 10.1% 7.5%

4-class Error 7.7% 6.6% 5.1% 2.4%  

 
Table 9.8: Error-reject tradeoff.
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(C) ((0

Figure 9.17: Misclassified fingerprints in NIST 4 fingerprint database; (a) a left loop

is misclassified as an arch; (b) a tented arch is misclassified as an arch; (c) a left loop

is misclassified as a whorl; (d) a whorl is misclassified as a right loop.
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True Class Assigned Class

Arch Tented Arch Left Loop Right Loop Whorl

Arch 357 10 6 3 3

Tented Arch 38 121 8 5 2

Left Loop 32 32 1506 15 65

Right Loop 21 82 23 1481 72

Whorl 5 8 93 58 1293       
Table 9.9: Five-class classification results on NIST 9 database (5,400 images).

 

 

 

 
 

 

 

 

True Class Assigned Class

Arch Left Loop Right Loop Whorl

Arch 526 14 8 5

Left Loop 64 1506 15 65

Right Loop 103 23 1481 72

Whorl 13 93 58 1293         
Table 9.10: Four-class classification results on NIST 9 database.

prints in NIST 9 database is 10.9%. The confusion matrix is shown in Table 9.9.

The classification errors are due to misclassifications between arch/tented arch and

100ps and poor image quality. Examples of misclassified fingerprints are shown in

Figure 9.18. A lower error rate can be achieved by adding the reject option, which

is based on the quality index of the input image. Table 9.11 shows the error rates

corresponding to different reject rates.

In classifying the fingerprints in the IBM database, we assume that twins and

composites are whorls. The classification error rate on the IBM database is 10.1%

with a 2.6% reject rate. The confusion matrix is listed in Table 9.12. Examples of

misclassified fingerprints are shown in Figure 9.19. The error rates corresponding to

 
 

 

 

  

Reject rate 0 5% 10% 15% 20%

5-class Error rate 10.9% 9.6% 8.2% 7.4% 6.4%

4-class Error rate 10.0% 8.6% 7.7% 6.9% 6.2%      

Table 9.11: Error rates corresponding to different reject rates on NIST 9 database.
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Figure 9.18: Misclassified fingerprints in NIST 9 database; (a) a tented arch is mis-

classified as an arch; (b) a whorl is misclassified as an arch; (c) a whorl is misclassified

as a left loop; ((1) a whorl is misclassified as a right loop.
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True Class Assigned Class

Arch Tented Arch Left Loop Right Loop Whorl

Arch 62 0 1 1

Tented Arch 25 65 2 3

Left Loop 10 4 266 3 6

Right Loop 9 7 345 4

Whorl 3 0 10 173     
 

Table 9.12: Five-class classification results on the IBM database.

 

 

 

 

 

 

 

 

 

Assi ed Class

True Class Arch [Left Loopgl]1 Right Loop ] Whorl

Arch 152 5 3 4

Left Loop 14 266 3 6

Right Loop 16 3 345 4

Whorl 3 7 10 173     
 

 

 

Table 9.13: Four-class classification results on the IBM database.

different reject rates are listed in Table 9.14.

9.5.2 Classification Scheme II

It is difficulty to evaluate the performance of classification scheme 11, because the

ground truth is not available. However, since the essence of fingerprint classification

is to classify fingerprints from the same finger to the same category, we can use

individuality property to verify the validity of the classification accuracy implicitly.

If two fingerprints from the same finger are classified into the same category, then

we claim that the classification is correct, otherwise incorrect. Let N be the number

of mated pairs in a database (a total of 2N fingerprints), and Nc be the number of

 

 

 

 

 

Reject rate 2.6% 5% 10% 15% 20%

5-class Error rate 10.1% 9.3% 7.5% 6.9% 5.8%

4-class Error rate 7.7% 7.0% 5.2% 4.9% 4.1%      
 

Table 9.14: Error rates corresponding to different reject rates on the IBM database.
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Figure 9.19: Misclassified fingerprints in the IBM database; (a) a left loop is mis-

classified as an arch; (b) a right loop is misclassified as a tented arch; (c) a whorl is

misclassified as an arch; (d) a tented arch is misclassified as an arch.
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fingerprint pairs that are consistently classified. Then, the inconsistency rate, e,-, is

defined as

100Nc

61‘ = . (9.2)
 

Let c be the misclassification rate, and define c = 1 — e. For a given mated pair,

there are four outcomes: (2) both images are correctly classified, (ii) the first image is

correctly classified and the second image is incorrectly classified, (iii) the first image

is incorrectly classified and the second image is correctly classified, and (iv) both im-

ages are incorrectly classified. Outcome (2) corresponds to a consistent classification.

Outcomes (ii) and (iii) correspond to an inconsistent classification. For outcome (iv),

the mated images may be misclassified into (a) the same category and (b) different

categories. Outcome (a) corresponds to a consistent classification and outcome (b)

corresponds to an inconsistent classification. Therefore,

e,- = ce + ce + be2, (9.3)

= e+e+ (1 —b)e2, (9.4)

> 6, (9.5)

where b < 1 denote the probability of outcome (b).

We have tested classification scheme II on both NIST 4 database and NIST 9

database. The inconsistency rate in classifying all the 2,000 mated pairs is 7.0% with

a 1.4% reject rate. The confusion matrix is given in Table 9.15; numbers shown in
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First Class Second Class

Class-1 ] Class-2 ] Class-3 Class-4

Class-1 774 28 15 3

Class-2 19 355 6 9

Class-3 30 7 360 8

Class-4 3 9 5 339        

Table 9.15: Consistency test results on the NIST 4 database.

 

 

Reject rate 1.4% 5.0% 10.0% 15.0% 20.0%

Inconsistency rate 7.0% 4.3% 4.3% 3.1% 2.7%

 

       
 

Table 9.16: Inconsistency rates corresponding to different reject rates on the NIST 4

database.

bold font are the number of times when the mated pairs are classified in the same

category. A lower inconsistency rate can be achieved by incorporating the reject

option, which is based on the quality index of the input image. The inconsistency

rates corresponding to different reject rates are listed in Table 9.16.

The inconsistency rate in classifying all the 5,400 NIST 9 fingerprints is 7.6% with

a reject rate of 4.2%. The confusion matrix is given in Table 9.17; numbers shown

in bold font are the number of consistent classifications. A lower inconsistency rate

can be achieved by adding the reject option, which is based on the quality index of

the input image. The error rates corresponding to different reject rates are listed in

 

 

 

 

 

 

 

 

Table 9.18.

. Second Class

FlrSt Class Class-1iClass-2 I Class-3] Class-4

Class-1 349 18 17 5

Class-2 21 714 14 22

Class-3 27 8 718 21

Class-4 2 21 30 599        

Table 9.17: Consistency results on the NIST 9 database.
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Reject rate 4.2% 5.0% 1.0% 15.0% 20.0%

Inconsistency rate 7.6% 7.3% 5.4% 4.8% 3.3%

 

        

Table 9.18: Inconsistency rates corresponding to different reject rates on the NIST 9

database.

9.6 Summary

In summary, the number of tests conducted on an automatic fingerprint identifi-

cation/verification system is never enough. Performance measures are as much a

function of the algorithm as they are a function of the database used for testing. The

biometrics community is slow at establishing benchmarks and the ultimate perfor—

mance numbers of a fingerprint identification/verification system are those which you

find in a deployed system. Therefore, one can carry out only a limited amount of

testing in a laboratory environment to show the anticipated system performance. In

field testing, in addition to the real performance of the system, the system designer

has to pay attention to the perceived performance of the system, especially in the

context of the authentication applications which are sensitive to false negatives.

 



Chapter 10

Summary and Future Research

In this chapter, we will summarize the work we have done, discuss the limitations of

our current approaches and some possible solutions.

10.1 Summary

The goal of our research is to design a fingerprint-based biometric system which is

capable of achieving a fully automatic positive personal identification with a high level

of confidence. We have develOped a prototype verification system and a prototype

identification system. The verification depends solely on fingerprints to authenticate

the identity claimed by an individual. The identification system which is designed for

a limited environment, uses multiple biometric characteristics (fingerprint and face)

to make a personal identification. In the design of these two prototype systems, we

have identified and investigated the following problems:

202
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o Minutiae extraction

We have developed a new minutiae extraction algorithm which is faster and

more reliable than the earlier algorithms reported in the literature, e.g., [120].

The new orientation field estimation algorithm results in a smoother orientation

field which greatly improves the performance of ridge extraction. The adaptive

ridge finder is capable of tolerating, to a certain extent, low ridge contrast and

various sources of noise in fingerprint images such as short breaks and small

amount of smudges.

Fingerprint enhancement

We have developed a new fingerprint image enhancement algorithm. Unlike

other enhancement algorithms, we expend a large amount of effort on the es-

timation of orientation field, which plays a critical role in fingerprint enhance-

ment. We can obtain a relatively good estimate of orientation field even if the

quality of input fingerprint image is poor. The algorithm also identifies the

unrecoverable corrupted regions in the fingerprint and removes them. Experi-

mental results reveal that the pr0posed fingerprint enhancement algorithm can

significantly improve the quality of input images, resulting in better matching

performance.

Minutiae matching

An alignment-based elastic matching algorithm has been developed to imple-

ment minutiae matching. This algorithm is capable of finding the correspon-

dences between minutiae without resorting to an exhaustive search. It can
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achieve a good performance in minutiae matching because of its capability to

adaptively compensate for the nonlinear deformations and inexact transforma-

tions between mated fingerprints.

Decision fusion

We have developed an integration scheme which can be used to fuse multiple

biometrics that complement each other in terms of speed and accuracy. We have

tested our scheme by integrating fingerprint verification and face recognition.

Experimental results demonstrate that our scheme is able to improve both the

accuracy and speed of identification. The multimodal biometric system over-

comes some of the limitations of face recognition and fingerprint verification.

Fingerprint classification

We have designed two fingerprint classification algorithms. The first algorithm

classifies input fingerprints into five categories according to the number of sin-

gular points detected, their relative positions, and presence of type-1 and type-2

recurring ridges. The second algorithm classifies fingerprints into four categories

according to the number of singular points detected and their relative positions.

Our algorithm invests a significant amount of effort in feature extraction to

make the system robust to intraclass variations as well as poor quality of input

images. Experiment results demonstrate that our algorithm has better classi-

fication performance than previously reported in the literature on the NIST 9

and NIST 4 databases.
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0 Performance evaluation

The performance of the entire verification system and the identification system

as well as the performance of various system components (e.g., minutiae extrac-

tion and the fingerprint enhancement) were evaluated extensively on a number

of real fingerprint databases. The experimental results reveal that both the ver-

ification system and the identification system can achieve a good performance.

10.2 Future Research

Despite the fact that both the verification system and the identification system can

achieve a good performance in making a personal identification, we believe that a

number of problems still need to be solved to make these systems more effective in

practice. The following is a list of limitations of our current approaches and the direc-

tions which are significant for the performance improvement of our implementation.

0 In order to determine whether a pair of fingerprints are from the same finger, two

conditions must be assessed: (2) the two fingerprints must be of the same pattern

configuration, e.g., whorl, arch, etc. and (ii) they must share a substantial

number of identical minute details. Currently, our minutiae matching algorithm

depends only on the assessment of the second condition to make a decision.

Obviously, this is not sufficient. A fingerprint classification scheme assigns a

fingerprint into one of the prespecified categories based on its global pattern

configuration. If two fingerprints are from the same finger, they must belong

to the same category. Although fingerprint classification is still a challenging
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Figure 10.1: Minutiae with different degrees of importance; the minutiae labeled by

the circle is more important than the minutiae labeled by the square.

problem and it is very difficult to achieve a very high classification rate, it is

nonetheless beneficial to incorporate the category information into a minutiae

matching algorithm to improve its performance.

0 All the minutiae extracted by our algorithm are weighted equally in minutiae

matching. In fact, different minutiae have varying degrees of importance in

matching (see Figure 10.1). Therefore, it will be beneficial to systematically

assign a weight to each minutiae to indicate its importance and to incorporate

this information in minutiae matching.

0 Currently, the minutiae extraction algorithm does not assume any model of the
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input fingerprints. In fact, in a verification system, as soon as the individual

indicates his/her identity, the template of the individual is available. Such a

template provides a model of the input fingerprint. The minutiae extraction

algorithm should use this model to facilitate the minutiae extraction.

Since the minutiae matching does not make any assumptions about the relative

translation and rotation between the input minutiae pattern and the template,

it needs to evaluate the edit distance corresponding to each pair of aligning

ridges to find the best match. Computing the edit distance is computationally

expensive. The speed of the minutiae matching can be greatly accelerated if

the unreasonable alignments achieved by the ridge matching can be quickly

rejected.

A number of factors are detrimental to the correct localization of minutiae.

Among them, poor image quality is the most serious one. By integrating an en-

hancement mechanism into the minutiae extraction module, this problem can,

to a limited extent, be solved. However, currently, our fingerprint enhancement

algorithm is computationally expensive, which is not suitable for incorpora-

tion into the minutiae extraction algorithm. A fast enhancement algorithm is

needed.

In order to show that a deployed biometric system is capable of achieving certain

benchmarks, a systematic and objective performance assessment of the system

is necessary, which, unfortunately, is far from established. The expected error

rate of a deployed biometric system is usually a very small number (<< 1%). A
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maximum likelihood estimate of the error rate is usually not reliable. In order to

estimate such a small number reliably and accurately, large representative data

sets are needed and the corresponding confidence intervals should be provided

to characterize the reliability of the estimate. Two major issues need to be

addressed: (2) how should the samples be selected from the population? and

(ii) how many samples are needed to estimate the error rate with the expected

confidence?
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