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ABSTRACT
LIFE HISTORIES AND POPULATION DYNAMICS
OF THREE EARTHWORM SPECIES (OLIGOCHAETA:LUMBRICIDAE)
IN A NORTHERN MICHIGAN HARDWOOD FOREST
By

Mark Timothy Thogerson

Life histories of Dendrobaena octaedra (Savigny), Lumbricus rubellus
Hoffmeister and Aporrectodea tuberculata (Eisen) are presented, based on
transition matrix population models and original field observations. The matrix
models are of a new type, being dynamic in nature and using environmental
conditions as driving varia_bles. The models themselves are intended to be adaptable
to other earthworm species, and may be useful to both soil ecologists and
vermiculturists.

Both D. octaedra and L. rubellus were found to have an approximate three-
year maximum lifespan in northern Michigan, averaging a life cycle approximately
two years in length. Small immatures hatching early in the warm season grow
rapidly, some of them becoming reproductive near the end of their first su@er.

Most of the cocoon production takes place during the second year of life, with
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about 75% of the cocoons produced during this year. These species can be
classified as r-adapted, with high juvenile mortality, rapid growth, relatively small
adult size, high cocoon production and a short life cycle.

A. tuberculata grows more slowly, reaching maturity in its second year,
with maximum cocoon production in the third year after hatching. Cocoon
production continues for several years. The maximum lifespan is about seven
years, with an approximate four-year average life cycle. This species tends toward
being K-adapted, with substantially lower juvenile mortality, slower growth, a
constant mortality rate throughout its adult life, lower cocoon production, larger
adult size, and a longer lifespan with a noticeable proportion of individuals living to
the maximum physiological age.

The A. tuberculata model is also used to explore possible population-level
effects of extremely low frequency (ELF) electromagnetic fields associated with
the operation of the United States Navy’s ELF antenna in northern Michigan.
Significant decreases in clitellate earthworm densities were found (p = 0.001)
between observed field populations and predicted model values, given mean
monthly temperature and moisture data; however, higher fecundities of those
clitellates remaining may offset the lower clitellate densities.

A new technique for permanently marking earthworms and other soft-bodied
invertebrates using tattoos is presented, as is a modified and automated technique

for soil moisture determination via time-domain reflectometry.
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Chapter 1
SYSTEMATICS, BIOGEOGRAPHY, BIOLOGY AND

ECOLOGY OF EARTHWORMS

Systematics
Earthworms are probably among the oldest of the terrestrial animals.
sils are uncommon, since earthworms are soft-bodied, decompose quickly, and
terrestrial environment is not especially good for fossil preservation. Closely
d marine polychaetes are known from Australian pre-Cambrian strata some
-570 million years old (Glaessner ef al. 1969). An Ordovician fossil segmented
m, Protoscolex latus (Bather 1920), has been placed in the Oligochaeta. It is

own whether oligochaetes were derived from polychaetes, or had a similar

stor (Lee 1972).

Annelids are segmented worms, divided into segments by septa creating a
:s of hydrostatically isolated compartments, each containing a pair of
mephridia, paired ganglia, and a number of external setae used for locomotion.
ntral, fused double nerve cord runs the entire length of the animal. The
latory system is closed, with a ventral vessel in which the blood flows

:riorly, and a dorsal vessel in which blood flows anteriorly.
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2

The Oligochaeta are set apart from other annelids by the presence of a small
jumber of setae, usually eight (arranged in four pairs) per segment, and absence of
pecialized outgrowths of the body wall. Fertilization and embryonic development
ake place within a “cocoon” formed over the clitellum of the parent producing the
va. Oligochaetes are either terrestrial or aquatic, with only a few species able to
vithstand estuarine or intertidal habitats. Polychaetes, on the other hand, are
Imost entirely marine, the Hirudinea are strictly aquatic, and Branchiobdellids are
ommensal or parasitic on aquatic invertebrates.

Some confusion exists about the higher taxonomic groups of the Annelida.
.uppert and Barnes (1994) and Brusca and Brusca (1990) list three classes of
nnelids: Polychaeta, Oligochaeta, and Hirudinida. In contrast, Clark (1978)
roups the last two into a single class, Clitellata, with three subclasses, as do
feglitsch and Schram (1991). Cladistic analysis of the major groups (Brusca and
rusca 1990) suggests that polychaetes diverged from the ancestral stock first, and
series of small changes from the basic annelid plan produced a proto-clitellate,
hich was essentially identical to the modern oligochaete. Polychaetes and
igochaetes then developed as sister clades, one in saltwater and the other in
:shwater sediments.

There is similar confusion even within the most intensively studied family of
gochaetes, the Lumbricidae. For instance, several members of the genus
orrectodea Orley were at times included in another genus, 4/lolobophora Eisen.
is latter genus became a “catch-all” for many diverse species (Sims 1983),

inly because a type species was not designated. Omodeo (1956) rectified this
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oversight, thus forcing a revision of the genus sensu stricto. Gates (1975)
resurrected the genus Aporrectodea, and designated the type species as A.
trapezoides (Duges). Other species now recognized as part of Aporrectodea were
formerly placed in no less than six other genera, some of them now defunct. This
count does not include Nicodrilus Bouché 1972, which is now considered a junior
synonym of Aporrectodea (Reynolds 1977a). Within this genus, the “species”
dporrectodea caliginosa (Savigny) is considered by many to be a complex
somprising Aporrectodea trapezoides, Aporrectodea tuberculata (Eisen),
{porrectodea turgida (Eisen), and Aporrectodea nocturna Evans, all of which
1ave different diagnostic features, habits, and phenologies; nonetheless, the
riginal name persists, especially in Europe, because the biology and ecology of
his "species” have been widely studied and “caliginosa” has become established by
sage (Easton 1983, Sims 1983).

Almost all taxonomic literature treating North American terrestrial
ligochaetes up to the mid-1900s was penned by European workers: Beddard,
enham, Cernosvitov, Cognetti, Eisen, Pickford, Rosa, Stephenson, Ude and
edjovsky (Gates 1982). As a result, many of the extant North American
olotypes are in European collections. In the 1940's, Gates in the east, and
[acNab and McKey-Fender on the west coast began to publish distributional
formation about terrestrial species in their respective areas. With Gates’
pointment as a research fellow at Tall Timbers Research Station in Florida, and
>ynolds’ association with the same institution in the 1970's, much work was done

‘them to characterize the earthworm fauna of the eastern United States and
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Canada. Reynolds’ primary contribution was to define the distributions of native
and introduced species in the eastern U.S. and Canada. Gates worked on the
systematics of North American oligochaetes during this time, and his final
publication (Gates 1982) is a compendium of the known North American species,
their ecology, biology, and distribution. Little systematics work has been done on

North American endemics since.

The caliginosa Problem

Earthworm workers have, for many years, published investigations including
the “species™ Aporrectodea [Allolobophora] caliginosa. Despite quite convincing
arguments by Reynolds (1977a) and Gates (1982), many workers, primarily those
in Europe, continue to use this designation, although it is obvious by differences in
{cocoon morphology, adult size, coloration, external genitals, and behavior that
there are actually four species (4. nocturna, trapezoides, tuberculata, and
turgida). Three of these are sympatric in Upper Michigan forests (Snider and
Snider 1988), lending further credence to the assertion that they are not merely
ecological morphs of one species. Since many ecological studies have been done
on this species group, it is important to define clearly what is meant when one
refers to “A. caliginosa”, especially since one of the species being examined in this
~vork is A. tuberculata. When the species “A. caliginosa” is referenced here, a

‘easonable assumption using evidence presented in the cited literature is made that

he species being treated is A. tuberculata sensu Reynolds (1977a) and Gates

1982). The former species designation is used only to preserve the historical
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reference. Generic and specific names within the text are spelled according to
currently accepted usage (e.g., “Octolasion” and “fetida), bibliographic citations

retain original spellings.

North American Distribution and Zoogeography

The currently recognized taxa of native North American earthworms include
83 species in seven genera, all of which are endemic. These are contained in five
families, three of which are only found in North America (Table 1). Seven other
megadrile families (excluding the Enchytraeidae), all introduced, are also found in
North America. All of these families have been only collected south of the
Pleistocene glacial limit, in glacial refugia, or near large population centers
(Reynolds 1995).

All other taxa are presumed to have been introduced to North America as a
result of transportation by man. Reynolds et al. (1974) proposed his theory of
post-Pleistocene introduction as the only rational way to explain the present
distribution of earthworms in North America. Many species of Lumbricidae, whose
center of radiation is in Europe, and many Megascolecidae, which are Australasian

in origin, are found scattered throughout North America, wherever conditions

Epermit them to maintain viable populations. Continental drift, proposed as a
dispersal mechanism by Omodeo (1963) is too slow a process to have introduced
these taxa to North America since the most recent glaciation, which ended
ipproximately 11,000 years ago, since North America and Europe began to split

ipproximately 190 million years ago (Smith 1973). There is also no evidence of a
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Table 1. Endemic North American earthworms, adapted from Gates (1972).

Family Genus Species count Distribution
Acanthodrilidae Argilophilus * 19 Extreme northwest US
Diplocardia * 38 South and central US
Komarekionidae *  Komarekiona 1 southwestern
Appalachia
Lumbricidae Bimastos * 9 South-central US
Eisenoides * 2 Southeastern US
Lutodrilidae * Lutodrilus 1 Coastal Louisiana
Sparganophilidae * Sparganophilus 13 Southeastern US

* Entire taxon endemic to North America.

land bridge across the north Atlantic since the last glaciation to allow the
predominantly European Lumbricidae to cross (Wright and Frey 1965). Even had
there been such a land bridge, the time necessary for earthworms to cross such an
expanse and colonize American soils would surely have been long enough for
differences to arise between the American and European populations. The absence

of such differences alone is a convincing argument against natural colonization

(Gates 1970).

v

\

Pleistocene glacial refugia, either south of the limit of glaciation (Gates 1970), or

The present distributions of all endemic taxa are closely associated with

slands adjacent to the Pacific coast of North America (McKey-Fender and Fender

1982). Glaciation extirpated all earthworms from the northern United States and

il of Canada, and the native species failed to recolonize (Table 2).
Undisturbed areas in the southern Appalachians tend to support earthworm

aunas composed of a high percentage of endemics, while sites that have been
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Table 2. Distribution of introduced and native earthworm families, genera, and
species in glaciated and unglaciated areas of North America.

INTRODUCED NATIVE
LOCATION FA GEN SPP | FAM GEN SPP REFERENCE
M
Glaciated
Cape Breton 1 8 14 Reynolds 1975a
Ontario 1 8 17 2 2 2!  Reynolds 1977a
Nova Scotia 1 8 15 Reynolds 1976
Pr. Edward 1 6 11 Reynolds 1975b
Island
Massachusetts 2 10 16 1 2 2> Reynolds 19770
Rhode Island 1 3 13 Reynolds 1973a
North Dakota 2 5 5 Reynolds 1978a
South Dakota 1 3 4 Gates 1979
Upper Michigan 1 5 10 Snider 1991
Lower Michigan 1 10 19 2 2 2> Snider 1991
Unglaciated
Delaware 1 6 10 2 3 4  Reynolds 1973b
Maryland 3 8 14 3 4 8 Reynolds 1974
Kentucky 1 1 1 3 4 6 Dotson and
Kalisz 1989
Tennessee 2 9 23 3 4 14  Reynolds 1977c,
1977d, 1978b,
Reynolds et al.
1974

' One endemic species known only from a botanical garden, the other is limicolous
and restricted to the Great Lakes shoreline.

* Both species known only from arboretums or botanical gardens.

* Confined to southernmost tier of counties; largely untouched by Wisconsin
_ glaciation.
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cleared, cultivated or otherwise severely disturbed have exotic earthworms, such as
Lumbricus terrestris L., L. castaneus (Savigny), L. rubellus Hoffmeister,
Octolasion tyrtaeum (Savigny), and Pheretima spp. (Kalisz and Dotson 1989). Of
the native taxa, Komarekiona eatoni Gates and Eisenoides carolinensis
(Michaelsen) seem the most susceptible to disturbance and competition with
exotics, whereas the genus Diplocardia tends to persist.

Early settlers north of the limit of Pleistocene glaciation reported a lack of
earthworms, yet lumbricids are now found widely throughout the northern United
States and Canada (Table 3). Gates (1982) intercepted a variety of potential
introductions from all over the world, demonstrating that it is indeed probable that
earthworms were introduced to North America accidentally subsequent to
European colonization.

It is not known why endemic species have failed to colonize the areas of
North America affected by the Wisconsin glaciation. S.W. James (pers. comm.)
has performed transplant experiments with native Diplocardia spp. and E.
carolinensis in northern and western Minnesota, where frost annually extends to
depths of 1.5 m. After three years the populations persisted, demonstrating that
climate is not a factor in halting the northward expansion of their range into

previously glaciated areas.

Earthworm Anatomy and Biology
The general body plan of the Annelida is cylindrical, consisting of two

concentric tubes. The outer layer consists of the integument and outer
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musculature, and the inner is composed of the alimentary tract and its associated
organs, as well as another muscle layer. These layers are separated by a coelomic
cavity bounded by a peritoneum and divided longitudinally by a series of septa,
creating fluid-filled compartments whose dimensions can be changed by sets of
opposing muscles.
The body wall consists of four layers (Seymour 1978):
s The cuticle, consisting of laminated layers of collagen fibers, running roughly
diagonal to the long axis of the worm and alternating left- and right-handed
helices in adjacent layers. This gives strength and flexibility to the animal's

hydrostatic skeleton.

¢ The epidermis, mainly a supportive layer of columnar cells that produce the
collagen fibers.

¢ An outer layer of circular muscle fibers and an interior layer of opposing
longitudinal muscle fibers. The gut is also surrounded by two layers of muscle,
the inner layer of circular and the outer transverse muscle fibers.

¢ A peritoneal membrane that defines the inner boundary of the body wall.

The septa, which divide the coelom into segments, have pores with
sphincters that can allow the passage of small amounts of coelomic fluid or
completely isolate the segments. They consist of a layer of connective tissue
between two layers of peritoneal cells (Stephenson 1930).

The typical earthworm has eight setae per segment (sometimes more),

arranged in four pairs. The spacing of these setal pairs around the segment is used

as a key character to distinguish species (Reynolds 1977a).



Organ S
D
Ti
esophagu
intestines
procure a
gizzard ar
Th
which, by
absorptioy
S0zymes t]
Edwards 5
lter-feeg,
Caligingsg
tesompog,
dowy comy
Organics
Alth
LT
Oimg gy
ltge ofthe ‘

o gy a



10

Organ Systems and Function

Digestive System, Intestinal Flora and Enzymes

The lumbricid digestive system consists of a buccal cavity, pharynx,
esophagus, crop, gizzard, and anterior secretory and posterior absorptive
intestines. The anterior portion, from the buccal cavity through the crop, is used to
procure and store food prior to processing; material is fragmented in the muscular
gizzard and passed on to the intestine.

The intestine is basically a tube with a more or less convoluted typhlosole
which, by nature of its increased surface area, aids in both enzyme secretion and
absorption of nutrients. The anterior portion secretes an acid mucus and various
enzymes that break down proteins, chitin and carbohydrates (Laverack 1963,
Edwards and Fletcher 1988). Cellulase and chitinase are present in the gut of the
litter-feeder Dendrobaena octaedra Savigny, but not in the geophagous species A.
caliginosa (Nielsen 1962). As epigeic species feed on raw litter and little-
decomposed humus, it seems reasonable that they would have a means of breaking
down complex structural molecules; those feeding in the soil on well-decomposed
organics would have less need for such enzymes.

Although a variety of extracellular enzymes have been found in the
earthworm gut and surrounding tissue, many of these enzymes have specific pH
optima that are not met in the earthworm gut (Laverack 1963). It seems that very
little of the plant tissue and detritus ingested by earthworms is actually broken

down and assimilated; indeed, the digestive processes of earthworms may enhance
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polymerization of aromatic compounds, resulting in more complex humins (Lee
1985).

The posterior portions of the intestine absorb the low molecular weight
organics resulting from the chemical reactions in the anterior intestine. This part of
the gut is also very important in osmoregulation, as it absorbs a variety of ions and
water (Lee 1985), forming castings which are eliminated via the anus.

Much of the gut tract is surrounded by layers of chloragogenous tissue,
which is similar in function to the vertebrate liver. It is able to store glycogen, and
has been implicated in the ability of certain earthworm species to undergo resting
stages (Semenova 1967). It has also been shown to absorb and sequester a variety
of toxins, such as heavy metals, pesticides, and herbicides (Fischer and Molnar
1992). High levels of certain toxins can deplete the chloragogenous tissue.
Individual cells become detached from the tissue as a whole, and these
chloragocytes float free in the coelomic fluid. Senescent cells autolyze, liberating
ammonia and other waste products into the coelom where they are eliminated via

the nephridia and dorsal pores (Laverack 1963, Edwards and Lofty 1972).

Circulatory System and Respiration

The oligochaete circulatory system, unlike that of most invertebrates, is
closed. It conmsists of two to five pairs of esophageal vessels which are strongly
muscular and provided with valves and function as hearts, an efferent ventral vessel

which distributes the blood via segmental branches to the somatic vessels,
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networks of capillaries in the gut and the body wall, and an afferent dorsal vessel
which pumps the blood forward by peristalsis.

Blood is oxygenated in the subcuticular capillaries and is mixed with non-
oxygenated blood from the gut in the dorsal vessel. Some species have particular
areas of the cuticle modified for gas exchange. In 4. caliginosa, the lateral regions
of segments IX-XIII have a thinner than normal cuticle with flattened epithelial
cells and numerous capillaries (Stephenson 1930). An East African glossoscolecid
worm utilizes a similar modification together with specialized musculature in the
caudal region to form a roughly conical “lung” which is protruded above the
waterlogged, anoxic soils and sediments which it occupies (Beadle 1957).

Oxygen is carried in both the plasma and in the respiratory pigment
erythrocruorin, analogous to vertebrate hemoglobin. Unlike vertebrates, this
molecule exists free in the plasma instead of in erythrocytes. Erythrocruorin has a
much lower oxygen binding potential than mammalian hemoglobin, and seems to
act most efficiently at low oxygen tensions (Weber 1978).

As long as the cuticle remains moist, oxygen can be readily absorbed from
the air or soil atmosphere. Oxygen uptake from water is also possible, as long as
the water has sufficient surface area to permit adequate diffusion from the air
above (Lee 1985). Immatures of Aporrectodea turgida can be kept in water at 5-6
°C for several months, although the worms do not grow or mature (pers. obs.).

Earthworms can tolerate very high CO, tensions, substantially higher than
that normally found in the soil atmosphere (Lee 1985). Anaerobiosis can also be

tolerated for short periods, energy being derived from glycogen stores (Weber
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1978). This is advantageous especially during periods of heavy rain, when burrows

may become flooded and available oxygen depleted.

Excretory System

The typical earthworm has paired nephridia in each segment, save the first
and last. These are true metanephridia, with the nephrostome opening into the
coelom of the immediately anterior segment and the bladder opening to the outside
on the ventral surface. In some earthworms (Pheretima s.1. group), several pairs of
nephridia in the anterior portion of the worm open into the gut rather than to the
outside. This may serve to decrease water loss, and probably changes the pH in the
anterior portion of the gut (Edwards and Lofty 1972, Oglesby 1978, Lee 1972).

Nitrogenous wastes are eliminated primarily as ammonia, diluted in a
copious amount of urine. Some species are able to produce urea when under water
stress. Salts are resorbed as the urine passes through the nephridium, Na* being

actively removed, while CI" as well as other ions passively diffuse out of the

nephridial lumen.

Nervous System

The nervous system consists of a ventral nerve cord with ganglia in each
segment, and three pairs of nerve branches per segment which innervate the
muscles, epidermis, gut, and the posterior septum. The first two pairs form nearly
complete nerve rings meeting at the mid-dorsal line (Edwards and Lofty 1972).

The first four segments deviate from this: segment III contains the cerebral
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ganglion and is innervated from the ganglia of the fourth segment, the second
segment nerves arise from the junction of the circumpharyngeal connectives in
segment ITI, and the first segment is innervated by a pair of nerves arising from the
subpharyngeal connectives in segment II. The prostomium is innervated by two
nerves originating at the cerebral ganglion in segment III, and its epidermis
contains many sensory organs capable of receiving light, chemical, and tactile

stimuli (Laverack 1963).

Reproductive System

The typical earthworm is hermaphroditic and often possesses mechanisms to
prevent self-fertilization, insuring amphimixis (Reynolds 1977a). However,
parthenogenesis, together with reduction of the male reproductive organs has been
observed in some species (Lee 1972). Pseudogamy, in which spermatozoa play no
part in embryonic development other than as a stimulant, is also known from a few
observations (Reynolds 1977a).
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