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ABSTRACT

RELAXATION/RETARDATION MODEL FOR FULLY DEVELOPED

TURBULENT CHANNEL FLOW

By

Klaus Weispfennig

A representation for the Reynolds stress is developed in terms of a Green’s function

associated with mean field convection and viscous transport of turbulent fluctuations. The

finite memory of turbulent temporal correlations is used as an ansatz to develop a

relationship between the Reynolds stress and a single-point self-correlation of an effective

fluctuating force induced by pressure fluctuations and fluctuations in the instantaneous

Reynolds stress. The theory gives an algebraic model as a pre-closure approximation

relating the Reynolds stress to the velocity gradient and a statistical correlation termed

prestress. A phenomenological relaxation/retardation closure model based on frame-

invariant modeling relates the mean strain rate dyadic to the anisotropic part of this

prestress.

A new time scale is introduced to extend the theory to low Reynolds number regimes

such as the near wall region in channel flow. The particular form of this time scale

renders the theory realizable for simple shear flows (e.g channel/pipe flow, homogenous

shear) independent of the solution of the transport equations for the kinetic energy It and

the dissipation rate a.

 



Two distinct regimes of momentum transport are identified, a gradient transport

regime close to the channel center and an equilibrium type regime in the inertial sublayer.

~The application of the relaxation/retardation theory in the outer region of fully developed

turbulent channel flow renders an overall good agreement with both numeriCal and

experimental data. Developments for the near wall region are done and evaluated with

respect to direct numerical simulation (DNS) data available. The associated transport

equations for the turbulent kinetic energy k and the dissipation rate 8 are employed to

determine the distribution of the turbulent time scale. These equations use modified terms

for the turbulent transport derived using the same formalism as applied for the preclosure.

The parameters introduced through the Reynolds stress model are determined using direct

numerical simulation data. A parametric study of the associated model parameters

manifest their choice. The parameters of the associated transport equations are

recalibrated for the new theory using experimental data from various flow fields.

A precursor to the relaxation/retardation theory has been investigated. This isotropic

prestress representation yields a non-zero primary normal stress difference and a zero

secondary normal stress difference. The wall region is characterized by a one-dimensional

turbulence state in which all the energy is transferred into the streamwise normal

component. The relaxation/retardation closure yields an energy partition which is in

compliance with experimental and numerical data. The near wall region is characterized

by an anisotropic two-dimensional state. Relaxation effects become important near the

center of the channel for which both theories assume an isotropic state. Retardation

retains energy in the spanwise component of the Reynolds stress allowing the existence of

a nonzero secondary normal stress difference. In the low (turbulence) Reynolds number

regime (i.e. near the wall) retardation prohibits the unbounded growth of this secondary

normal stress difference.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Motivation

Turbulent motion contributes significantly to the transport of momentum, heat and

mass. Swirling flows, which are typically high Reynolds number swirling flows, are used

to separate materials with different densities. Gas cyclones have been used in cleaning

flue gas (i.e. dust removal) and deoiling hydrocyclones have been used in removing oil

from water. In order to develop a mathematical model capable of predicting the

separation efficiencies of hydrocyclones based on the description of particle/droplet

trajectories, it is necessary to devise a mathematical model which can quantitatively

describe the motion of the continuous phase. Fluidized beds used for combustion or as

catalytic reactors constitutes another example where turbulent motion contributes to

transport processes. In combustion, turbulence enhances the mixing process and, thereby,

allows a more efficient burnout of the fuels used. In catalytic reactors the turbulence

contributes to better mass transfer rates of the constituents present in the bed. It is the

interaction of the solid particles with the surrounding fluid which determines the level of

turbulence and the efficiency of the overall process. Therefore, knowledge of the motion

of the continuous phase is therefore essential for predicting efficiencies and to improve

the design of the foregoing devices.
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The presence of turbulence in almost all flows of practical interest has inspired many

researchers to devise models which are capable of describing its motion. The direct

computation of turbulent flow fields requires a three-dimensional spatial domain which is

sufficiently large to capture the large scale motion of the flow but uses a computational

grid which is sufficiently small to resolve the smallest scales of the turbulence. Since the

small scales decrease in size with increasing Reynolds number (Tennekes and Lumley,

1972), the direct computation of even simple shear flows such as a two-dimensional

channel flow is still subjected to low Reynolds number flows. Therefore, turbulence

models need to be used for the computation of high Reynolds number flows. For most

practical applications it is sufficient to know the influence of the Reynolds stress on the

mean flow field. This Reynolds stress which arises from the nonlinearities in the Navier—

Stokes equation appears explicitly in the Reynolds equation (Eq. (1.1)) and needs to be

modeled:

a<ag>+<9>v<fl>=71§V<P>+%V-(<;>-p<2'u'>
). (1.1) 

The development of many turbulence models has been done using simple flow fields

for which comprehensive experimental data for validation purposes are available.

Statistically stationary, fully developed turbulent channel flow constitutes such a simple

flow field.

Many approaches to close the Reynolds equation by prescribing an algebraic relation

for the Reynolds stress have made use of an eddy viscosity concept which models the

Reynolds stress analogously to the molecular stress as being proportional to the mean

strain rate dyadic (Eq. (1.2)). This approach is known as the Boussinesq approximation

(1877, see Speziale, 1991).

—<u'u'>=2v <S>——k1, (1.2)

 



 

 

 

where v; is the turbulent or 'eddy' viscosity, <§_> is the mean strain rate dyadic and k is the

turbulent kinetic energy. The eddy viscosity is commonly modeled in terms of local

statistical turbulent parameters as

V=C
t u

2

k_, (1.3)
e

in which 8 is the dissipation rate. If the coefficient c,Ll is kept constant, it can be shown

that in simple shear flows, such as channel flow, Eq. (1.2) in combination with Eq. (1.3)

constitutes an unrealizable turbulence model for large values of kS/e where S is a

characteristic strain rate defined as

S=,/2<§>:<§>. (1.4)

The realizability (i.e. the Reynolds stress is positive semi-definite) of this type of

model relies on the solution of the associated transport equations for k and e to keep kS/e

bounded. Thus, for turbulence models based on Boussinesq's approximation to remain

realizable some empirical modeling approaches have been used. In wall-bounded flows

the coefficient c” is commonly modeled as being a function of the distance from the wall

and/or other parameters such as the turbulent Reynolds number Re, and has been used to

provide that kS/e remains bounded, thus ensuring realizability for those type of flows.

Eq. (1.2) points out another deficiency of the Boussinesq approximation. For

vanishing diagonal components of the strain rate dyadic (which occurs for channel and

pipe flow) the normal components of the Reynolds stress are proportional to k and

isotropic. However, experimental investigations in those flows show that the equipartition

of the turbulent kinetic energy does not exist (Laufer, 1951; Kreplin and Eckelmann,

. 1979). The turbulent fluctuating velocity component normal to the wall is the smallest in

magnitude and would therefore be overpredicted by Reynolds stress models employing

Boussinesq's approximation. This leads also to the fact that turbulent mass transfer

% —-—.4 



4

normal to a wall due to velocity fluctuations of the normal components will be

overpredicted as well.

Background

The mean flow field of statistically stationary, fully developed channel flow is

characterized by the fact that the velocity field consists of only the streamwise component

which depends solely on the normal coordinate as given by

< 2 >=< u. > on. (1.5)

 Because turbulent statistical quantities do not vary in the x- and z-direction, the Reynolds

equation as given by Eq. (1.1) can be simplified for this flow field. The corresponding

equations for the streamwise and normal-to-the-wall components are given by

 

  

a<p> a , ,

O=— 8y —$(p<uyuy>) (1.6)

and

em» d d<u > d

0=— +—— Z -—— < ’ ’>. 1.782 dyfll dy ) dy(p 11,11. ) ( )

The gradient (with respect to z) of the mean pressure - since it does not depend on y - can

be calculated from an overall force balance with the result that:

8<p> tw

— =——. 1.8

dz 5 ( )

 

tw is the wall shear stress and 5 denotes the channel half width. Eq. (1.7) can be thus

integrated with respect to y to yield the following form of the momentum equation:

d<uz>

dy

 
I I _ y

—p<uyuZ >—tw(1—§). (1.9)

#_—4_4 
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An expression for the variation of the pressure across the channel can be obtained by

integration of Eq. (1.6) to

<p>(y,z)=<p>(0,z)—p<u;u;>(y). (1.10)

The Reynolds stress in fully developed channel flow consists of the normal components

and the shear component arising from the correlation between streamwise and normal-to-

the-wall velocity fluctuations and can be expressed as

’ ’ , ’
I I

I I

< u u >=< uxux > (y)§x§x+ < 11y“, > (Y)§y§y+ < uzuz > (”922. (1.11)

+ < u;u; > (y)§y§z+ < u;u; > (y)§:_zey

All components depend solely on the normal coordinate y. This coordinate can be

normalized with the viscous lengthscale v / u. to

+ yua-
= . 1.12y V ( )
 

where u. is the friction velocity defined as

u‘ z "_w , (1.13)

P

The mean velocity gradient in the viscous near wall region can be expressed as

d<uz> u?

dy v.

  
(1.14)

Upon integration one obtain the well-known linear behavior of the mean velocity near the

wall.

u+ = y+. (1.15)

The velocity is normalized with the friction velocity to

u,:<uz>.
 

(1.16)

U.
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The viscous sublayer for which Eq. (1.15) holds is observed experimentally for y+ < 5.

The turbulent flow domain which covers most of the channel is made dimensionless by

using the channel half width:

gzy-
(1.17)

If the Reynolds number is high enough, there exists a region for which the influence of

viscosity vanishes such that y+ » 1 yet E << 1 such that the flow field does not experience

the influence of being in a confined domain (i.e. the channel half width does not yet enter

the problem). The only length scale available is therefore the distance from the wall. The

mean velocity gradient is thus expressed as

d<uz>_u; (118)

dy y’

 

which - upon integration - yields the well-known logarithmic velocity profile in this

region (Tennekes and Lumley, 1972):

u+=Aln(y+)+B. (1.19)

Figure 1.1 shows some typical velocity profiles for different Reynolds numbers. It can be

seen that for y+ S 30 all profiles seem to collapse onto a single curve indicating that the

scaling with near wall values yields the prOper similarity whereas for y+ 2 30 the velocity

profile can be well represented by Eq. (1.19) (center region excluded). The region

between the viscous sublayer and the inertial sublayer is called the transition or ‘buffer’

region. In the inertial sublayer, the experimental data by Laufer (1951) for the mean

velocity indicate that B = 5.5, a value commonly accepted for channel flow over smooth

walls. The data of Reichardt (1940) for Re=7,700 yield a slightly smaller value of B:

5.37. The direct numerical simulation (DNS) data by Kim et a1. (1987) yield B = 4.79

whereas unpublished data by Kim (1989) yield B = 5.23.

The coefficient A has also been determined from experimental data as the reciprocal

—g
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of the von Karman number it. A value for K of 0.41 has been commonly accepted even

though a conceptual investigation by Tennekes and Lumley (1972) has shown that this

might not entirely be justified. The experimental data by Laufer, for example, yield a

value of K = 0.35 which can be seen in the larger slope of the curve. Reichardt’s data

yield K = 0.41, Kim et al.’s data (1987) yield K = 0.38 and the DNS-data at a higher

Reynolds number yield K = 0.41.

The central region of the channel where viscosity influences are negligible is

characterized by the velocity defect law which expresses the difference between the

velocity and its maximum to

u+ —u; =A1n(§)+B*. (1.20)

This expression can be obtained by integrating the similarity expression for the velocity

from the centerline (Tennekes and Lumley, 1972). The difference between Eq. (1.19) and

(1.20) yields an expression for the velocity maximum to

u;=A1n(5+)+B—B*. (1.21)

The parameter 8+ which is defined as

6* = 81“, (1.22)
V

 

represents the ratio of the largest (i.e. 5) to the smallest scales (i.e. v / u. ).

The velocity defect law as given by Eq. (1.20) is presented in Figure 1.2. This figure

which shows velocity profiles for three different Reynolds numbers (see Hussain and

Reynolds, 1975) indicates that similarity at the center of the channel exists if bulk flow

properties are used for sealing. The fact that the integration was carried out from the

center is expressed through the difference of the velocities (LHS of Eq. (1.20)) and thus

removes the dependence on near wall scales (upon which the individual terms do

depend). As shown in the figure, it is an increase in the Reynolds number which extends

n—— —44  
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the domain of the similarity to smaller values of E.

The integrated form of the momentum equation (i.e. Eq. (1.9)) with the expression for

the universal logarithmic law for the velocity profile can be used to give an expression for

the normalized Reynolds stress; namely,

<u’u’> 1 1
y z

_____._____ 1__ __ .

u2 ( g) K5+§t

 
(1.23)

For very high Reynolds numbers where the viscous length scale becomes vanishingly

small compared to the channel half width (i.e. 8' -—> co) the Reynolds stress follows the

straight line as indicated by the bracketed term on the RHS of Eq. (1.23) and indicated in

Figure 1.3. For E —-> 0 and y+ (58f) finite, Eq. (1.23) expresses the fact that there is a

region very close to the wall in which the Reynolds stress is approximately constant. For

finite values of the Reynolds number, the influence of the second term becomes more

important such that the Reynolds stress shows a maximum at finite values of g. It can be

seen that for smaller Reynolds numbers (with y+ fixed) the deviation from the linear

profile occurs at increasing values of 5,. The dashed line in Figure 1.3 indicates the

separation of the buffer region and the inertial sublayer and is seen to proceed towards

smaller values for y/S for 5‘1» oo.

For channel flow the eddy viscosity as introduced in Eq. (1.2) can formally be expressed

as

— < u;u; >

V1=_1 (1.25)
d<uz>

dy

 

which is valid for the entire domain. For the inertial sublayer (i.e. y+ > 30) the integrated

form of the momentum equation (i.e. Eq.(1.9)) in combination with the prevailing

logarithmic velocity distribution as given by Eq. (1.19) can be rearranged to yield
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-\:’—t=K8+(l—§)§—1. _ (126)

Figure 1.4 shows the behavior of the normalized eddy viscosity for channel flow at

different Reynolds numbers. The different magnitudes for this ratio arises through 5+ in

Eq. (1.26) which depends on the Reynolds number through the presence of the friction

velocity u... Its definition can also be interpreted as a Reynolds number based on u.

rather than the bulk average velocity ub. The form of the Reynolds number dependence of

5' can be estimated from experimental data as follows. With the definition of the Fanning

friction factor f as

f=Ap/(15—%u§), (1.27)

and the expression for the pressure drop along the channel as given by Eq. (1.8) the

friction factor can be expressed in terms of the velocity ratio ub / u. as

 _= , (1.28)

which in turn can be evaluated by integrating the gradient of the mean velocity over the

entire domain to yield

2 l g . v .

£=8+J(J(1-§)/(1+—‘—1d§)d&. (129)
0 0 V

For practical purposes it is, however, easier to estimate u. from measurements of the

wall shear stress (i.e. from the velocity gradient at the wall) since most experimental data

are commonly available in terms of <uz> rather than the eddy viscosity ratio. With given

channel dimensions, the corresponding values for 5+ can readily be calculated.

Computationally, the friction factor can be related to the mean field and the turbulent

field using the following equation
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3_ +1 (111+ 2 +

111 -5 {fl—dy.) +1: 11%, (1.301

which is obtained from the integrated form of the equation for the kinetic energy of the

mean field (see Appendix B). The integral over the production term which appears

explicitly can be represented in terms of the integral over the dissipation rate in order to

obtain Eq. (1.30). Figure 1.5 presents the ratio of ub / u. for various values of 5+ from

experimental data.

The Reynolds stress tensor as introduced by Eq. (1.1 l) is commonly normalized with

the turbulent kinetic energy to

-<EIEI>

 

R 1.31= 2k ( )

and decomposed into an isotropic and anisotropic part to

1

R=§I+R. (1.32)

From Eq. (1.31) it is clear that the trace of R equals unity which in turn - with the

decomposition according to Eq. (1.32) - renders R traceless. The fact that the trace of R

equals unity together with the property that the individual diagonal components of R are

positive - since they constitute energy contributions to R - can be represented graphically

in terms of a triangle representing an energy distribution plane (Figure 1.6). The corners

of this triangle represent one-component turbulent energy states with all the energy

transferred to the corresponding component and lines connecting the comers are therefore

two-component turbulent energy states. The center of the triangle represents energy

equipartition. The perpendicular lines on the baselines, indicated by the clashes, represent

transition curves between one-component and axisymmetric two-component energy

states. It should be noted, however, that the shear stress is not represented. Thus, the

% ———-4  
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- Kim et al. (1987; Re=3,250)

° Kim (1989; Re=7,890)

o Laufer (1951 ; Re=30,800)

° Kreplin/Eckelmann (1979; Re=7,700)
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center is generally a turbulent state in which the kinetic energy is equipartitioned and only

in special cases truly isotr0pic.

Measurements of the diagonal components of the Reynolds stress in channel flow are

shown in Figure 1.6 to illustrate the path along which the energy is distributed among its

components in the spatial domain. The z-direction denotes the downstream

coordinatewhereas the y-direction is normal to the solid wall. The point on the baseline

between Ryy and R22 is a two-component state which prevails at the wall. It can be seen

that neither the DNS-data (Kim et al., 1987; Kim, 1989) nor the experimental data by

Laufer (1951) or Kreplin and Eckelmann (1979) show energy equipartition at the channel

center.

The energy distribution path lies within the sub-triangle formed by the center (i.e.

equipartition of energy), the l-component turbulent energy state (i.e. Ru) and the two-

component axisymmetric energy state as by the line A—C. The initial tendency - if viewed

from the center of the channel - to adhere to the transition line connecting the

equipartition and l—component state indicates an energy state dominated by the

downstream energy component.

A supplementary view of the turbulence states within channel flow is given by

analyzing the second and third invariants of the anisotropy tensor R which are defined as

IIB = tr(R-R) (1.33)

and

IIIB = tr(

"
o
r
:

n
e
w

). (1.34)

Note, that the first invariant vanishes identically by definition (i.e. IB = tr(R) = 0). Since

R is a symmetric tensor, the second invariant is always positive. The third invariant can

assume positive and negative values. For fully developed channel flow, these invariants

are given explicitly by
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IIB = Bi, + B; + B; + 213; (1.35)

and

3 3 3 2

IIIB =BXX+BW+BZZ+3BYZ(BW+BZZ). (1.36)

This figure translates the existence of all turbulent states into points within the triangle

bounded by the lines given (see Figure 1.7). Lumley and Newman (1977) have

established the boundaries of this triangle from a conceptual analysis of all possible states

for the anisotropy tensor R from which it can be concluded that turbulence must occur

within this triangle. The analysis to obtain these boundaries has been with respect to a

transformation of the Reynolds stress tensor to its principal axis. The comers of this

triangle correspond to single—component (1C), two-component (2C) and three-component

(3C) turbulent states as indicated in the graph. The 2C turbulent state is characterized by

the fact that both components contain equal amounts of energy and the 3C turbulent state

is truly isotropic since both invariants vanish. The line connecting points 2C and 1C

represent two-component turbulence for which the energy is not equally distributed

among its two components. The lines connecting the 3C-state with the 1C-state and the

2C-state represent axisymmetric turbulence. The line to the left constitutes an energy state

in which two components are equal and larger than the third component whereas the right

line represents a state with the two equal energy components being smaller in magnitude

than the third one. The functional forms of the boundaries and the comers of the domain

are listed in the graph.

The symbols in Figure 1.7 indicate the trajectories of turbulence as given by DNS-

data (Kim et al., 1987; Kim, 1989) and by the experimental data (Laufer, 1951). As noted

earlier in the energy distribution plane it can be seen here that the center of the channel is

not isotropic. The path along which turbulence proceeds towards the wall is close to the

right boundary indicating a strong tendency towards two-component axisymmetric
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turbulence. Whereas the data by Kim et a1. (1987) proceed along a monotone path within

the region of y+=60 and y+=120, the DNS data for the higher Reynolds number indicate a

region over which the turbulence seems to adhere in ‘one state’. The occurrence of this

‘hook’ in the invariant plane is of yet unexplained. The tendency to assume a one-

component turbulent state is clearly visible in Figure 1.7. Very close to the solid boundary

(proximity is indicated) this tendency is changed towards a two-component turbulent state

as indicated by a deflection point. Within the invariant plane it seems that for increasing

Reynolds numbers this deflection point occurs at smaller values for H3 and THE. However,

within the spatial domain no characteristics can be found which may relate to the

Reynolds number. The turbulent state at the wall is a two-component state. Unfortunately,

no measurements at large Reynolds numbers have been made deep within the viscous

sublayer in order to supplement the tendency of the wall location towards a 1C- or 2C-

turbulence state with increasing Reynolds number. It is thus unclear whether there might

exist a critical point along the transition line between 1C and 2C which is approached for

high Reynolds numbers.

From Eqs. (1.35) and (1.36) it can readily be seen that for simple shear flows a

Reynolds stress model according to Boussinesq’s approximation with an energy

equipartition among its components does not have a third invariant of the anisotropy

tensor R and follows therefore a straight vertical line as indicated in Figure 1.7. As noted

earlier this approximation yields an unrealizable turbulence model if C11 is constant and

kS/e assumes values larger than 2/(3cu). This model does not reflect the correct turbulent

state while approaching the upper boundary representing the two-dimensional state. The

use of the Boussinesq approximation for the Reynolds stress therefore requires a

functional form for the parameter C11 as introduced in the eddy viscosity representation in

Eq. (1.3) in order to provide a realizable turbulence model (see Patel et al., 1985 for a

review).
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The distribution of the turbulent kinetic energy is shown in Figure 1.8 in terms of the

wall coordinate y”. Several experimental and numerical results for the spatial distribution

of k” are shown. Kreplin and Eckelmann (1979) used an open channel with oil as working

fluid and were thus able to measure turbulence quantities very close to the wall (i.e. y+ =

1.5). However, since all three components were not measured this deep within the viscous

sublayer, values for k+ are only available for y+23. These measurements were probably

the only detailed measurements available for the kinetic energy this close to a solid wall

in a channel.

The data of Laufer do not extend into the near wall region. His measurements reflect

the Reynolds number influence on the magnitude of k+ in the outer region which can be

seen to decrease with increasing Reynolds number. The numerical simulations by Kim et

a1. (1987) and Kim (1989), however, indicate an increase with increasing Reynolds

number. The extent to which this apparent discrepancy is based in fundamental aspects

has not been discussed yet. It can be seen that also in the near wall region (y+ < 30)some

differences occur in the magnitudes of k+. It seems unclear whether the scaling of k”r with

near wall values yields the proper similarity as was pointed out by Wei and Willmarth

(1989). The budget for the kinetic energy and dissipation for the higher Reynolds number

DNS-calculation show a slight imbalance in the region y+ < 10 (see Chapter 4) which

might explain in part the differences between the two numerical simulations. Differences

in the peak values for the normalized streamwise RMS-value can be found also in

Laufer’s data which seem to decrease from a value of 2.76 for Re=12,300 to 2.54 for

Re=30,800 and 2.04 for Re=61,600. These values occur at locations between y+=16 and

54 and need to be considered in combination with the fact that the hot wire used for the

measurements extended over a spatial domain of Ay+=3 to 13 which has certainly some

averaging effect on the values measured. Comte-Bellot (see Kreplin and Eckelmann,

1979) claimed that the scaling of fluctuating quantities with near wall values is adequate
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for values of y+ up to 100 even though her measurements indicate a similar decrease from

2.85 to 2.65 and 2.5 for Re=57,000, 120,000 and 230,000, respectively. However, the

probes lengths in these experiments were between Ay+=l3 and 36 which may cause

similar effects as in Laufer’s experiments.

Experimental data for the dissipation rate are usually unavailable due to the inherent

difficulty in obtaining them. The DNS-database provides therefore the best source for this

turbulent quantity. Figure 1.9 shows the computed profiles for 8+ for the two Reynolds

numbers indicated. The only measurements of this quantity have been made by Laufer

(1954) in turbulent pipe flow at a Reynolds number of Re=50,000. However, in obtaining

these data several assumptions about isotropy of the small scales have been made to

facilitate the evaluation of 8+. These data are included in Figure 1.9 in order to get a

general view of the Reynolds number dependence of this quantity. With the assumption

that the outer region of channel flow (y+>30 but §<<1) is in equilibrium (i.e. production of

turbulent kinetic energy is balanced by its dissipation) the functional behavior of 8+ in the

inertial sublayer where the stress is approximately constant and the logarithmic velocity

profile prevails can be deduced from Eq. (1.9) to

+_ 1

e _1<8+§ (1.37)
 

This behavior is indicated by the dashed lines in the graph and seems to hold fairly well

for the DNS-profiles as well as the experimental data by Laufer (1954).

The shear parameter kS/e which compares the turbulent time scale k/e to the mean

field time scale US is often used in the development of algebraic Reynolds stress models

inasmuch as it provides some characteristic of how the turbulent field compares to the

mean field. The spatial distribution of this parameter is given in Figure 1.10 for both

DNS-data sets as well as the experimental pipe flow data by Laufer (1954). It can be seen

that in a wide region of the channel (pipe) this parameter remains fairly constant. The
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DNS-data approach values of around kS/e = 4:03 whereas the experimental data

gradually approach a value of 3.3 after which the values increase. The constant behavior

suggests that turbulence and mean field are in some sort of ‘temporal balance’ without

any significant ‘influences’ by other physical phenomena. The magnitudes of the shear

parameter indicate that the ‘average’ life span (i.e. turnover time) of a turbulent eddy is by

a factor of 3-4 larger than the time in which momentum transport by the mean field takes

place. Indirectly, this leads to the conclusion that the presence of turbulence enhances the

transport of momentum through the comparable ‘large’ life cycle of its eddies. Towards

the centerline the momentum transport caused by the mean field vanishes, indicated by a

zero shear parameter. The more gradual approach apparent in Laufer’s data may be

attributed to the fact that those experiments were conducted in pipe flow with significant

curvature rather than channel flow. At the wall the shear parameter vanishes as well. The

reasons for this are, however, different. In the viscous sublayer there exists a region in

which viscous effects become dominant. The kinetic energy of the eddies decreases and

ultimately vanishes. The effect of turbulent eddies decreases and does not contribute to

momentum transport which - in this region - is entirely dominated by the mean field (i.e.

large shear —> small time scale). It can also be seen that the shear parameter assumes

similar magnitudes in both flow fields. which may be in accordance with the diminishing

influence of the curvature (i.e. the geometry).

A region of increased magnitudes in the shear parameter can be found close to the

wall. This region occurs within the buffer region where the majority of the turbulence is

produced. This effect is in accordance with the interpretation of highly agitated turbulent

momentum transport. The influences of molecular transport are of no major importance

within this domain.
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1.2 Objectives and Methodology

Objectives

This research pursues the development of an algebraic Reynolds stress model using

fully developed turbulent channel flow as the basis for this development. The amount of

available experimental and numerical data support the development inasmuch as in depth

comparison between the turbulence model developed herein and the data for turbulent

statistics can be made. Several key issues are subject to a detailed investigation.

Anisotropies among the normal components of the Reynolds stress as observed

experimentally and presented graphically in form of the energy distribution plane (see

Figure 1.6) form a major aspect of this research. Realizability as a fundamental aspect to

which every turbulence model ought to be subjected restricts the class of applicable

turbulence models to the invariant plane by Lumley and Newman (see Figure 1.7). This

research attempts to provide a turbulence model which is a priori realizable and does not

depend on the solution of the associated transport equations for the turbulent kinetic

energy and the dissipation rate.

Two further aspects are investigated in this research. The frame dependence of the

Reynolds stress and the correct asymptotic behavior of the individual components of the

Reynolds stress as a solid boundary is approached are addressed and incorporated into the

turbulence model developed herein.

The ubiquitously employed Boussinesq approximation - commonly used in

combination with transport equations for the kinetic energy and dissipation rate — shows

some deficiencies with respect to the key points mentioned above and as pointed out

earlier. The associated transport equations are modified in this research to comply with

realizability (Chapter 4, 5).
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Methodology

The development of the turbulence model is based on the equation for the fluctuating

velocity 3'. A formal representation of the Reynolds stress is developed from this

equation through a Green’s function technique. A smoothing approximation is introduced

to reduce the non-local structure of the model to a local structure. This representation

gives an algebraic approximation for the Reynolds stress in terms of the mean velocity

gradient due to the coupling of the mean velocity field with the fluctuating field and a

self-correlation of an effective fluctuating force induced by pressure fluctuations and

fluctuations in the instantaneous Reynolds stress as well as a relaxation time relating to

the temporal structure of the turbulence. The coupling of the Reynolds stress to the

velocity gradient V<g> rather than the strain rate dyadic <R> provides a means to insure

theframe-dependence of the Reynolds stress (Chapter 2).

This self-correlation constitutes a prestress for the actual Reynolds stress and is

decomposed into an isotropic and an anisotropic part. The representation of the Reynolds

stress through the isotropic prestress (preclosure) guarantees a priori realizability

inasmuch as the self—correlation is a positive semi-definite tensor with non-negative

eigenvalues. Some degree of anisotropy among the normal components of the Reynolds

stress is introduced at this level. A zero secondary normal stress difference does,

however, not support the level of anisotropy as shown in Figure 1.6.

Closure of the anisotropic prestress is achieved through phenomenological modeling

using a frame-independent relaxation/retardation model (Chapter 3). Adequate modeling

of the associated parameters assures realizability and an extended degree of anisotropy.

The correct asymptotic behavior of the Reynolds stress as the solid wall of the

channel is approached is achieved through modeling of the relaxation time introduced

through the preclosure. The universality in this preclosure accounts for the correct

asymptotic behavior for all components of the Reynolds stress. Functional extensions of
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the parameter cu in combination with the Boussinesq approximation as pointed out in the

introduction usually provide only an adequate representation for the shear stress

component as the wall is approached. The correct asymptotic behavior for other

components, for example, the component normal to the wall, is usually disregarded.

1.3 Summary Outline of this Research

This manuscript is divided into seven chapters plus an appendix. Chapter 1 reviews

the background for this research and presents relevant data for channel flow with which

the numerical predictions will be compared. The preclosure theory stemming from the

Green’s function technique is developed in Chapter 2. Some of its underlying properties

are discussed here. Chapter 3 presents the closure hypothesis for the anisotropic part of

the prestress in conjunction with the underlying motivation for its use. The associated

transport equations for the turbulent kinetic energy k and the dissipation rate 8 are

presented in Chapter 4. The new formulations which are introduced into these equations

are derived. Chapter 5 deals with the extensive calibration of the turbulence model

proposed using different flow fields to determine the various model parameters needed.

Special emphasis is given to the DNS-data for channel flow since they constitute a major

source for the development. Chapter 6 presents the numerical solution of channel flow for

the outer region and discusses the implementation of the new model developed in this

research. Analogies to existing non—linear algebraic Reynolds stress models are given.

The near wall region is discussed with regard to the DNS-generated database.

Conclusions and recommendations for further research based upon the findings in this

research, as well as suggestions for further research as an outgrowth of this research, are

presented in Chapter 7. The appendices list data used for the development and presents a

listing of the computer program used in Chapter 6.



CHAPTER 2

REYNOLDS STRESS PRECLOSURE IN INERTIAL FRAMES

2.1 Preclosure Formulation for the Reynolds Stress

' The equation of motion for the fluctuating velocity can be obtained by subtracting the

Reynolds equation Eq. (1 .1) from the equation of motion for the instantaneous velocity to

iu'=-u'-V<u> -V-(u'u'-<u'u'> +31), (2.1)
W p ‘-

’ / \coupling of

fluctuating and Reynolds stress fluctuating

mean field fluctuations pressure

where

a 2
£=5i+<E>V—VV (2.2)

denotes the linear convective—diffusive operator associated with the mean velocity field.

The first term on the right hand side (RHS) of Eq. (2.1) couples the fluctuating

velocity with the mean field. This term constitutes the net transport of mean momentum

through the fluctuating velocity field. The second term can be interpreted as an

acceleration due to the divergence of the instantaneous Reynolds stresses and the gradient

of the fluctuating pressure. This term will be denoted as f for brevity. Thus, the term pf

represents an effective force per unit of volume of fluid and acts together with the first

30
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term on the RHS as a source term for velocity fluctuations. A formal solution of Eq. (2.1)

can be written as

~'(g x,t =—J jG(x, 113pm < g > +£'}dvc1t, (2.3)

iV

where G(~IA) denotes the Green’s function associated with the linear operator .13. Through a

formal dyadic multiplication of Eq. (2.3) with g’ and subsequent ensemble averaging a

representation for the Reynolds stress of the form:

1..jG(R, th, t)Fl (R, th, t)dth (24)

IV

can be derived. The dyadic function R is given by

<9">i (2.5)|
t
\
:
/
>

Wilt)<">29 i7<

The Green’s function spreads over a domain with a length scale comparable to (Vt)0'5

where t is a characteristic time scale for the relaxation of the Green’s function. For large

Reynolds numbers where the influence of the viscosity vanishes, the Green’s function

remains sharply peaked relative to a frame moving with the mean velocity for a period of

time during which the structure of the turbulence decays. Thus, the Green’s function only

‘allows’ the autocorrelation of the terms in brackets to be important (i.e. R = R ). With

this ‘spatial smoothing approximation’ the non-local character of the correlation is

reduced to a local structure.

The feasibility of this approximation can be examined by analyzing the

autocorrelation function of velocity fluctuations in combination with measured integral

sizes for two-point correlations which indicate the size of the energy containing large

eddies. For example, Zaric (1972) used hot-wire anemometry to obtain the

autocorrelation function in a channel at Re = 36,000 using air as fluid medium. His

measurements which were made at a wall distance of y+ = 2.2 constitute measurements of
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the fluctuations of the velocity vector such that the autocorrelation function represents

some sort of average measurements composed of all three fluctuating velocity

components. His measurements show that within At=4 ms the autocorrelation has

decreased to about 10 %. The same time span was observed by Favre et a1. (1957) in a

turbulent boundary layer (i.e. y/S = 0.25, Rex=Umxlv = 592,000) for a decrease of the

autocorrelation (for longitudinal velocity fluctuations) to 10% (see also Schlichting,

1951). Given those numbers for the relevant temporal decay, the spatial decay of the

convective-diffusive Green’s function can be estimated to 5'5025 mm. With 5:40 mm

(channel flow; Zaric, 1972) and 8:25.] mm (boundary layer; Favre et al., 1957) the

relative spatial decay lies between [78 = 0.0063 (channel) and 175 = 0.01 (boundary

layer). With average sizes for the energy containing large eddies measured in channel

flow at Re = 30,800 (Laufer, 1951) to 89:15 mm their relative magnitude (i.e. U5) is

0.236. Thus, it can be stated that by the time the turbulence has decreased sufficiently, the

ratio of the relative magnitudes for the size of energy containing eddies and the decay of

the Green’s function is still large enough for the Green’s function to be adequately

represented by a delta function. In an isotropic turbulent flow field behind a grid (x/M =

48, <ux> = 7.7 m/s, ReM =25,000) a decay time of At = 10 ms could be observed (see

Hinze, 1959). Under the same conditions an integral scale for the large eddy size of

approximately 20 mm was measured. This, in turn, renders 1*50.4mm such that a direct

comparison of L, and I. for this flow field yields M" = 50 which remains in the same order

as estimated for wall bounded flows. Therefore, the applicability of this ‘smoothing’

approximation is considered feasible and extended to the unknown statistical correlation

appearing in Eq. (2.5).

Therefore, the quantity R1 becomes independent of R and can therefore be taken outside

the volume integral in Eq. ((2.4) to yield
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< u'u'>= -— j g] (M11,?) J G(R, 113, i)dVdi . (2.6)

t

The autocorrelation of the two terms in R as given by Eq. (2.5) is modeled through

the postulation of an empirical memory function 11). This function reduces the time

dependence of 1:31 (R, tl R, i) and incorporates therefore intrinsically the character of the

autocorrelation function. Formally this gives

5(8. 98,?) wax—01;, <8, ”2510- (2.7)

The integration of 111 over the volume and over all times i up to the present together

with the Green’s function is represented by the empirical time scale 1;; to

1,. = j (mt-E) I G(R, 113, E)d\‘Idt . (2.8)

-~ v

This composite time scale TR provides a means to control the behavior of the

Reynolds stress as a solid boundary is approached. The influence of boundaries is thus

shifted towards the modeling of TR rather than the development of an explicit expression

for the memory function (11 and the Green’s function. Thus, the first part of an algebraic

Reynolds stress representation is given to

<_t_1_'g'>=—1RFI(R,tIR,t). (2.9)

Since the dyadic quantity R1 contains the unknown correlation <Q‘f'> an analogous

derivation is needed to find an expression for this term. Through a formal dyadic

multiplication of Eq. (2.3) with f and subsequent ensemble averaging, a representation

for the transpose of this unknown correlation is obtained:

<£’9’>= —1 16(8, 118,013, (8. 1180119118 (2.10)

Ev ’

The same reasoning to obtain Eq. (2.9) is applied to yield
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<fg'>= —’CRF2(R,tIR,t). (2.11)

Eq. (2.9), which formally consists of two following terms,

<g'g'>=—TR<Q'Q'>-V<g>—TR<Q'f> (2.12)

can be rearranged to read

<E'E'>'Q+TRV<E>)=—TR <g’f>. (2.13)

The same procedure can be applied to Eq. (2.11) to yield

<f_u'>-(l+IRV<y_>)=—IR<ff>. (2.14)

Upon transposing Eq. (2.14) and inserting into Eq. (2.13) a formal preclosure formulation

of the Reynolds stress is obtained:

<gg>=1§RT-<ff>-R, (2.15)

where the operator R is defined by

é=(;+tRV<g>)". (2.16)

For small dimensionless relaxation times, i.e.

TRIIV < R >|| << 1, (2.17)

the operator A reduces to the unit dyadic. Thus, the prestress, which is formally expressed

as If, < ff> , reduces to the Reynolds stress.

2.2 Turbulent Relaxation Time

The turbulent relaxation time TR as introduced by Eq. (2.8) depends on a local

turbulent time scale as well as the invariants of the mean velocity gradient:

1, = 1:,(1, ,||V < E >||). (2.18)
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IR is modeled as being proportional to the turbulent time scale ‘C[ as

IR = cR(De,)’t,. (2.19)

The explicit dependence of IR on the invariant of the mean velocity gradient is

incorporated into the scaling function cR which may depend on the turbulent Deborah

number Det defined as

Det = t,IIV < y_ >||

= turbulent timescale . (2.20)

mean field timescale

 

The norm of the mean velocity gradient is taken to be:

 

V<R>= V<g>zV<g>T, (2.21)H

and reduces to the absolute value of the mean velocity gradient for channel flow. Note

that for channel flow this term is identical with the characteristic strain rate as defined in

Eq. (1.4) The turbulent time scale 171 depends on local turbulent parameters such as the

kinetic energy and the dissipation rate a and on the kinematic viscosity v to

t, = t,(k,e,v)

(2.22)k

= —f R .e w< e.)

fw represents a wall function which empirically incorporates effects as a solid boundary is

approached. The local turbulent Reynolds number Re is defined as

k2

Re, = v—e, (2.23)

and decreases as the wall is approached. In the inertial sublayer (i.e. y+ > 30) and the fully

turbulent core region where Ret » 1 (see Tennekes and Lumley, 1972), this wall function

fw assumes unity, i.e.

fW(ReI >> 1) —> 1 . (2.24)
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The turbulent Deborah number Det reduces therefore to the shear parameter kS/e as

introduced in Chapter 1. In the near wall region where Ret —> 0, this wall function can be

represented as

fW (Ret —> 0) = c?” Re:1 . (2.25)

where c3, and n are empirical parameters to be determined from experimental and/or

numerical data. In this region, the turbulent Deborah number can thus be represented as

kS 0 if n>—%

De, =ch:Ref = cfw/v/SS if n =-%. (2.26)

°° 1f n<—%

The relevant time scale to be used here will be determined from an asymptotic analysis

for y+ —) 0 (i.e. Re. ——> 0). In previous research (Shih and Lumley, 1993) it has been

argued that a turbulent time scale which uses n=-1/2 should be used for proper scaling.

However, this research focuses on the introduction of a time scale which uses n<-1/2 in

order to comply with the asymptotic behavior for the Reynolds stress as solid boundaries

are approached. The direct numerical simulation data by Kim et al. (1987) and Kim

(1989) provide the resource for the specific determination of fw.

2.3 Properties of the Preclosure

Several aspects have been incorporated into the development of the preclosure for the

Reynolds stress and the turbulent relaxation time:

1) The non-local structure of the turbulent correlations represented by R and R2 is

represented by a local structure through a spatial smoothing approximation which

relates the duration for spatial relaxation of the associated Green’s function to the
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relaxation character of the turbulence itself. This approach is based on the assumption

that a high Reynolds number prevails.

2) The introduction of the empirical relaxation time IR is based on the assumption that the

decay of the autocorrelation functions of all associated fluctuating quantities (Eq.

(2.5)) can be represented effectively through a single parameter. This relaxation time

TR incorporates the effects of the memory function and the Green’s function.

3) The consolidation of the divergence of the Reynolds stress fluctuations and the

gradient of the pressure fluctuations into an effective force per unit mass constitutes an

a priori measure. The adequate prediction of information contained within the

individual terms of this quantity 1‘ ' is thus shifted to the closure hypothesis which

models the unknown‘ correlation <f 'f ' > in terms of local kinematic properties of the

flow rather than deriving explicit relations for those quantities. It should be noted that

an analysis of the instantaneous fields from the DNS database may provide insight in

the suitability of this approach and its benefits and/or limitations.

If the prestress is represented as an isotropic tensor to

tfi<ff>=2a—I, 2.27-- 3 = ( )

some interesting features of this prestress can be extracted. The quantity 26L is given

through the trace of the prestress and can be arranged to read

261 = 2k +2tR(V < E >T:< 1_1_' g >)+ tthr(V < E >T -< 3' g’ > -V < g>). (2.28)

Since 26L can be expressed in terms of known parameters, Eq. (2.27) constitutes a basic

closure for the Reynolds stress. For fully developed channel flow Eq. (2.27) reduces to

261 = 2k + 21Rs < u;u; > +(TRS)2 < u;u; >, (2.29)

where S is given by the mean velocity gradient to
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_d<uz>

dy

S  (2.30)

The term 61 constitutes the kinetic energy for the prestress very much like k represents

the kinetic energy for the Reynolds stress. It is composed of the kinetic energy k plus two

additional terms. The first term represents the production rate of kinetic energy k

multiplied by the local relaxation time whereas the second term represents the energy

contribution from the normal component of the kinetic energy k. For channel flow the

individual components of the Reynolds stress tensor as defined by Eq. ( 1.32) can be

developed to

- -——l———— (2 31)

W 3 + (1,3)2 ’ '

—Ry, = IRSRyy , (2.32)

Rn — Ryy = 0. (2.33)

The streamwise component R22 is given by

R22 = 1 — 2Ryy , (2.34)

because the trace of R assumes unity. Eq. (2.33) indicates that the isotropic prestress

closure does not account for a secondary normal stress difference. Despite the fact that

experimental and numerical observations show the existence of this secondary normal

stress difference it is valuable to describe the potential of this approach since it provides

the foundation for a more elaborate theory. Substituting Eq. (2.31) into Eq. (2.29) the

kinetic energy of the prestress (i.e. (it) can be rewritten to read

20L = 2k(1— IRS(-—Ryz ))

p (2.35)

= 2k(1 — 2cR E"

As Eq. (2.35) indicates it is the ratio of production of kinetic energy of the Reynolds

stress to its dissipation which determines the magnitude of the kinetic energy of the
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prestress relative to that of the Reynolds stress.

The shear component can be written in terms of an eddy viscosity representation as

given by Eqs. (1.2) and (1.3). The eddy viscosity coefficient Cu is given by

c : 2fw(Re,)cR(De,)

” 3+[De,cR(De,)]2 '

 (2.36)

The limiting case for small values of IRS (i.e. in the channel center) yields the following

expression for C113

2

911 = 3CR(O)' (2.37)

The algebraic form of -Ryz allows the identification of two distinct physical regions. For

small values of IRS (i.e. IRS « 1) the shear component is proportional to the mean velocity

gradient thus indicating a gradient type transport of momentum. For IRS » 1, Eq. (2.32)

renders -Ryz to be inversely proportional to S from which an equilibrium type behavior

can be inferred (see Chapter 5).

The near wall analysis of the individual Reynolds stress components (see Appendix

F) shows that the behavior of < u;u; > approaches the wall as O(y4) whereas — < u’yu; >

behaves as O(y3). The two remaining components behave as O(y2). From Eqs. (2.31) and

(2.32), it can be seen that IR is required to be inversely proportional to y to comply with

the near wall behavior. With cR assumed to be constant without explicit dependence on

the turbulent Deborah number Det, the exponent n in Eq. (2.26) assumes the value -3/4.

The turbulent time scale It can thus be written as

k -3/4

tx = -€-(l +cw Ret ). (2.38)

The development of the wall function cw is subject to two constraints. This function

controls when the near-wall time scale becomes dominant and thus becomes active in the

region where molecular viscosity is important. On the other hand it needs to control the

monotonic behavior of IRS in the near wall region such that Ryy and -Ryz reflect
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monotonic behaviors, facts which have been observed experimentally and numerically

(see Eqs. (2.31) and (2.32)). With the general acceptance that influences of molecular

viscosity vanish beyond y+ > 30 (see Tennekes and Lumley, 1972), the following proposal

is made for cw:

ReT
2

Re:) )- (2.39)
 

cW = ci’v exp(—(

The turbulent Reynolds number Rel as defined by Eq. (2.23) is given in Figure 2.1. In

order to ensure the vanishing influence of viscosity beyond y+=30, a reference value of

Re1=50 is chosen which effectively reduces the value for cw to about 0.01% of its initial

value for Ret=150. The monotonic behavior for IRS in the near wall region is attained by

selecting a proper value for cfv. The DNS-data for 5+=395 are used to present Ryy in a

log-log graph as a function of Its for different values of C3,. A value of ca, =15 is

sufficient to obtain a monotonic single-valued functional relation for Ryy in the near wall

region. However, to avoid very steep gradients (occurring around 1.3 E 3.3) a larger value

of 03,, = 25 is chosen. The dashed line in Figure 2.2 indicates the asymptotic behavior of

Ryy for large values of 118 (i.e. as the wall is approached). A similar behavior (i.e.

monotony in the near wall region) is observed for -Ryz. Cross-references to the spatial

distribution are indicated for Ryy and -Ryz.

The explicit appearance of a single parameter CR does not likely render a satisfactory

calibration of both the normal component Ryy and the shear component -Ryz as given by

Eqs. (2.31) and (2.32). Since -Ryz directly couples to the eddy viscosity which in turn

determines the mean velocity profile and thus the bulk average velocity (i.e. a quantity

endowed with major significance) the shear component is used to determine an estimate

of CR. Due to the quadratic appearance of CR in R”, a least square analysis rendered two

values for eg, namely cR1=0.146 and cR2=2.534. These values thus provide a first

quantitative assessment of the preclosure in combination with an isotropic representation

of the prestress. From Eq. (2.31) a maximum value for -Ryz can be determined to 0.289.
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° Kim(l989;Re=7,890)

- Kim et al. (1987; Re=3,250)
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for which TRS assume a value of 1.732. the occurrence of this maximum is intrinsic to the

IPS theory and is not influenced by any particular value for CR. The two individual values

(mat)
for CR thus shift the occurrence of -Ryz within the spatial domain since they couple TR

to It which is determined by the spatial distribution of k and 8.

With the definition for the time scale used in this research, the turbulent Deborah

number as extends over a semi-infinite domain (0 S ttS S 00) comprising the entire flow

domain (i.e. 5+ 2 y+ Z 0). Independent of the choice for CR it is possible to illustrate the

energy distribution path using a triangular plane as presented in Figure 2.3. The isotropic

prestress theory is represented by the solid line originating at the energy equipartition

point which for channel flow also represents an isotropic state since the shear component

vanishes at the center. Due to the intrinsic feature of the IPS-theory that Rxx = Ryy the

energy distribution path proceeds along the line representing axisymmetric turbulence as

indicated by the arrow (i.e. prolate energy state). All the energy is ultimately transferred

into the streamwise component Ru. The turbulence dose not achieve a two-component

turbulence state at the wall as indicated by the experimental and numerical data.

The deviation from the isotropic state at the center can be expressed in terms of an

energy distribution parameter 613 which indicates the degree of anisotropy among the

energy components. Thus, the normal components of the Reynolds stress are expressed as

Rfl=RW=%U—@L QAm

Rn =%(1+208). (2.41)

The parameter 08 therefore reads

it? = TRS(—Ryz )

cR < u;u; > S (2.42)

— 28 ’
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and can be interpreted as the ratio of production to dissipation. Figure 2.4 illustrates the

spatial distribution of this energy distribution parameter I? based on the DNS-data for

5+=395 for both estimates of cR. It can be seen from the figure that for the smaller value

for cR the energy transfer into the streamwise component occurs very close to the wall

whereas the larger value indicates the energy transfer occurring close to the center. The

DNS-data included in the figure indicate an energy transfer of approximately 40% from

the Ryy component to both remaining components. The entire energy transfer from the

normal component into Rxx and R22 is initiated around y+=100. Note that due to an

existing secondary normal stress difference, the energy is not just transferred into the R22

component as for the IPS-theory.

The transition to a one-component turbulence state can also be seen in the realizability

diagram which shows the path in terms of the second (113) and the third (IIIB) invariant of

the normalized anisotropy tensor R as a function of the turbulent Deborah number IS

The curve given by the values for 113 and THE as presented in Figure 2.5 represent the

entire channel domain here. A computation of the channel flow with the isotropic

prestress formulation is thus redundant and serves merely as to cross-reference the value

of as with a particular location in the physical domain (i.e. ’ttS='t(S(y+)) and does

therefore m); prohibit to infer the qualitative features presented here. The transfer of the

entire kinetic energy solely into the longitudinal component is a direct consequence of the

intrinsic incapability of this formulation to express secondary normal stress differences.

However, even though this energy transfer seems unrealistic if compared with

experimental or

numerical evidence it does provide a closer representation of the turbulence states in the

interior region of the channel. The most dominant feature is that this formulation provides

a fully realizable algebraic turbulence model for the Reynolds stress in channel flow

provided k and 8 are both positive.
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Figure 2.5: Realizability Diagram for isotropic Prestress

 



CHAPTER 3

PHENOMENOLOGICAL RELAXATION/RETARDATION THEORY

The preclosure derived in Chapter 2 couples the Reynolds stress tensor with the

gradient of the mean velocity through the operator R as defined by Eq. (2.16). The

isotropic closure for the prestress rendered a first assessment of the preclosure

formulation. However, qualitative properties such as the vanishing secondary normal

stress difference requires an alternative closure. This chapter deals with a more elaborate

closure approach and discusses a rational development of it. The calibration of the

anisotropic prestress closure as presented herein is done in Chapter 5.

3.1 Motivation

A closure for this anisotropic prestress formulation is presented here in the form of a

frame-invariant constitutive equation which links the anisotropic prestress to the mean

strain rate dyadic of the flow field. Constitutive equations have been used to link

transport phenomena to the physical quantities to which they are related. Newton’s law of

viscosity is an example for a simple constitutive equation relating the molecular stress in

a fluid to the strain rate using the molecular viscosity as a proportionality factor. The

Boussinesq approximation - given by Eq. (1.2) - has been used to relate the Reynolds

stress tensor in a similar way to the strain rate in order to provide a closure for the

Reynolds equation.
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Here, the proportionality factor consists of an eddy viscosity which is related to the

(turbulent) flow properties rather than fluid properties. However, this approach - which

can be considered to be a linear expansion of the Reynolds stress in terms of the mean

strain rate - has been found to be inadequate for various reasons (see Chapter 1). This

research developed a turbulent model which extends the isotropic prestress theory (IPS-

theory) in the following way:

1) Memory effects are included through the incorporation of relaxation and retardation

effects (see also Chapter 5).

2) The explicit use of terms representing retardation effects entails nonlinear expressions

in terms of the strain rate dyadic <R> through frame-invariant derivatives.

One of the key ideas of using a constitutive equation of the form above stems from

the observation of similarities between the turbulent flow of Newtonian fluids and the

laminar flow of non-Newtonian fluids. Rivlin (1957) pointed out that the velocity profile

of a turbulent (Newtonian) pipe flow has a similar shape as its laminar (non-Newtonian)

counterpart. He further noted that the flow of a Newtonian fluid in a pipe of non-circular

cross-section under fully turbulent conditions shows secondary flow patterns in planes

perpendicular to the main flow direction. The origin for those secondary flow patterns -

whose maximum velocity is approximately 1% of the magnitude of the downstream mean

velocity - lies in the existence of nonvanishing normal stress differences (see also

Speziale, 1982). Since non-Newtonian fluids also exhibit secondary flow patterns for

flow through pipes of non-circular cross-section it was suggested (Rivlin, 1957) that the

Newtonian fluid in a turbulent state may be regarded as a hypothetical non-Newtonian

fluid.

For viscoelastic fluids (i.e. non-Newtonian fluids) these secondary flow patterns in

flows through non—circular cross-sections arise through the presence of molecular normal

stress differences. In turbulent flow of Newtonian fluids it is the normal stress differences
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of the apparent (or Reynolds) stresses which cause secondary flows to occur. However,

differences in the occurrence of those secondary flow patterns do exist (see Tanner, 1985;

Leonov and Prokunin, 1994). In square-duct flow, for example, the secondary flow of

non-Newtonian fluids within the cross—section occurs along the diagonal from the comer

towards the center (i.e. inwards) whereas turbulent flows show the opposite behavior (i.e.

flow is outwards). Apparent normal stress differences have also been observed for simple

turbulent shear flows (Laufer, 1951; Kreplin and Eckelmann, 1979). In analogy to this

effect, the molecular normal stress differences are observed for laminar flows of

viscoelastic fluids. Apparent differences in these simple flows are observed in the sign of

the normal stress difierences. The primary normal stress difference in viscoelastic fluids

(i.e. ’Lu-tyy)-is positive whereas the second normal stress difference is negative (Tanner,

1985; Leonov and Prokunin, 1994). For turbulent simple shear flows of Newtonian fluids

the first normal stress difference

tin—”Cyy =(—p<u;u; >)—(—p<u;u; >) (3.1)

is negative, whereas the second normal stress difference is positive. From the general

occurrence of the described normal stress difierences as well as the appearance of

secondary flow patterns the use of constitutive equations for the description of turbulent,

Newtonian flow seems compelling.

Rivlin (1957) mentions that the 'stress tensor in general can be represented as

polynomials in terms of the velocity gradients, acceleration and higher order derivatives.

Linear constitutive equations arising through this idea were seemingly first proposed by

Jeffreys (1929, see Oldroyd, 1958) for dilute suspensions. These models were

characterized by three parameters: the viscosity; the relaxation time; and, the retardation

time. Nonlinear approaches based on the above model were implemented by Oldroyd (see

Leonov and Prokunin, 1994, Chapter 2). The necessity to incorporate relaxation times

into a turbulence model based on constitutive equations has also been shown through the
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experiments by Tucker and Reynolds (1968) and Choi and Lumley (1984). Their

experiments in turbulent, Newtonian flows clearly show that the Reynolds stress

possesses memory. Their observations indicate a finite relaxation of the Reynolds stress

towards an isotropic state after a sudden removal of the strain rate (see also Chapter 5).

3.2 Closure Hypothesis for the Prestress

The general formulation as set forth by Rivlin (1957) expresses the stress components

of viscoelastic fluids as polynomials in the gradients of velocity, acceleration, second

acceleration, etc. as

2 2

.I. — "Pl'l' (112“)‘1' (ll—fie) + 0‘32“) + (142(2) ’
(3.2)

where the CL; are scalars which may depend on the invariants of the kinematic tensors Rm.

Rm represents the mean strain rate dyadic <R> and the derivatives of these kinematic

tensors are given by

 

8A
_ =0) _ r . T .

é(1+1)_ at +2 VR(,,+ 2111 (V9) +Vy_ 2111- (3.3)

Thus, the kinematic tensors Rm describe deviations of the stress tensor ; from its

isotropic state. This strategy is employed here in a similar way to describe the anisotropic

part of the prestress. The general form for the prestress is thus given by

I + R , (3.4)

isotropic anisotropic

where the anisotropic part R will be expressed in terms of the mean strain rate dyadic.

The tensor R is modeled as a traceless tensor. Thus, the mathematical expression for
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the parameter 6L which was derived through the trace of the prestress (see Eq.(2.28)) does

not change. The model for R deviates slightly from the general form given by Eq. (3.2)

inasmuch as memory effects for R are included, explicit quadratic forms of the mean

strain rate dyadic are not considered and the general form of the derivatives employed are

of a more general form. The constitutive equation for R is hence set forth to

5.
R+Al(-8—t'

5_. .1. _ E E. l]
R tr(stR)3I)—B[<§>+7tz(5t<§> tr(6t<§>))3l. (3.5)

The trace of <R> has been omitted from Eq. (3.5) since this research only deals with

incompressible fluids for which this quantity identically vanishes. Relaxation effects -

defined as the response of the system (i.e. the prestress) to a change in the cause (i.e. the

strain rate) are incorporated through the time scale X1 whereas retardation effects are

implemented through the time scale 112. The parameter [3 acts as a viscosity coefficient for

the prestress.

The time derivatives in Eq. (3.5) are frame-invariant derivatives (Bird et al., 1977; Denn,

1990) They can be expressed for an arbitrary tensor to R to:

SCA 8A T
f=f+<g>.VR—<g> -R—R-<E>+p{<§>R+R-<§>}. (3.6)

<fl> represents the antisymmetric part of the velocity gradient. The left hand side (LHS)

of Eq. (3.5) for which R is replaced by R leaves the parameter ‘a’ in place of ‘c’, whereas

the RHS contains the parameter ‘b’ (R is replaced by <R>). Those derivatives are

convected frame-invariant derivatives in reference frames embedded in the fluid which

undergo the deformation of the flow. The choice of the parameter ‘a’ and ‘b’ depends on

imposed restrictions on the general form of the resulting algebraic expression.

The particular form of the derivatives in Eq. (3.5) and formally expressed by Eq. (3.6) is

given when the algebraic expressions for channel flow are developed. It should be noted

here that Eq. (3.3) constitutes the covariant derivative (i.e. c=+1). In flows of viscoelastic
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fluids, for example, Oldroyd (1958) showed that the use of the contravariant material

derivative (i.e. a=b=-1) successfully predicted the Weissenberg rod-climbing effect (this

type of fluid is also denoted as Oldroyd-B fluid). This effect is caused by secondary

normal stress efiects. It might therefore seem compelling to employ a covariant derivative

(i.e.a=b=+1) for turbulence models in contrast to the findings for viscoelastic fluids.

However, to date no conclusive evidence exists to promote either type of derivative for

the description of turbulent flow of Newtonian fluids. The underlying ideas and

assumptions for the choice of the derivatives (i.e. the choice of the parameters a and b) is

presented at the end of this section.

The parameters (or material functions, if a hypothetical non-Newtonian fluid is

considered) M, B, and 2»; can be scalar functions of the invariants of the mean strain rate.

The characteristic strain rate S, as given by Eq. (1.4), represents the second invariant of

<R> and is the first nonvanishing invariant. Note that the first invariant is the trace of <R>

and identically vanishes for simple, incompressible shear flow. For dimensional reasons

the material functions need to be scaled properly. The scaling factors at hand are the

characteristic time scale It given by Eq. (2.38), the turbulent kinetic energy k, and the

dissipation rate 8. The scaling yields

7», = 01.1111 A2 = CMT‘, B = 2kCB‘E, . (3.7)

Through this scaling the dependence on the invariants of <R> is shifted to the

dimensionless coefficients CM, c5 and cm.

For the case of a simple, fully developed, steady shear flow (e.g. channel flow, pipe

flow) the closure assumptions and the scaling for the material functions made in this

chapter can be evaluated to yield the following algebraic relations for the normalized

prestress R to
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2 (ac,Ll - bcA2 ) + (a - b)ci,c,,2(‘t,S)2
 

 

 

H = c 1 s , 3.8

"" “( ‘ ) 3+(3— a2)(th,S)2 ( )

H = 39.(1 sf (3+ inc,2 - (3+ 10c,l + (b— a)(1+ a)c§,,c,,(r,S)2 (3.9)

,, 2 ‘ 3+(3— a12 )(c,,t,8)2 ’

Hz, =—H,, —H,,, (3.10)

C _ _ 2

Hy, = i(1:,8)3 (ab 3),C*‘C*2(T‘S,) (3.11)
2 3+(3—a )(c,,1.-,S)

where

11
R = i° (3.12)

Bearing in mind that 0<ttS<oo within the channel domain and CM being bounded, the

parameter a can be restricted to -\/3<a<\/3 in order to avoid singular points. The

normalized Reynolds stress as given by Eq. (1.31) for fully developed turbulent channel

flow (i.e. Rij) can be written in component form in the following form:

 

1+2 1 s H +3H: (10122 n, (3.13)
W 3+(TRS)

—R,, = IRSRyy — Hfl, (3.14)

—(R,,—R,,)=—(H,,—H,,). (3.15)

For practical reasons the form of the frame-invariant derivatives as expressed by Eq. (3.6)

is chosen such that retardation effects are only important for the secondary normal stress

difference. This choice requires the influences of cm to vanish for Hyz and Hyy, thus

rendering a=-l and b=-3. The individual components of the deviatoric part of the

prestress can therefore be written as

2 (3cm '" CA1)+ 2Ci1CU(T,S)2

3+ 2(th,S)2

 1,1,, = cB(t,S) , (3.16)
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c c IS 2

n=_ M B( I ) 2 ’
(3.17)

3+2(CMT,S)

2 2

Huzcficctsf (2CD 3Ck2) ZCAICZAZCCIS) ’ (318)

3+2(th,S)

c

H Laws) 3 (3.19) 

”‘ 2 3+ 2(th,S)2 '

From Eq. (3.18) in combination with Eqs. (3.5) and (3.14) it can be seen that [3 acts as a

viscosity coefficient for the prestress Hyz whereas it exerts the opposite effect on the shear

stress -Ryz and acts thus like an ‘anti-viscosity’ coefficient for the Reynolds stress.

3.3 Properties of the Closure Theory

In order to develop an understanding of the influence of the various terms in the

closure approximation (Eq. (3.5)) on the normalized Reynolds stress a formal

representation of the Reynolds stress is developed here in terms of the mechanistic

influences of those terms (i.e. relaxation, retardation and ‘anti—viscosity’ effects). The

Reynolds stress can be expressed using the preclosure (Eq. (2.15)) and the formal closure

as given in Eq. (3.4) to yield

2

R = RT {5011+ R}. R , (3.20)

with

a

01 = —. 3.21

2k ( )

An expression for or can be obtained by tracing Eq. (3.20) to

2 I-trté’e-A)_0,:____=;.

3 ATzR
(3.22)
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Upon evaluating Eq. (3.20) and using Eq. (3.22) the Reynolds stress can be rewritten as

  

 

follows

R AT'A 1(AT H A)AT A AT H A (323)== =—r -- = =+ --. m

= ATzA == ATzA = ==
= = k =v=

isotropic anisotropic prestress

prestress

As indicated in Eq. (3.23), it is the first term which stems from the isotropic prestress

formulation. The remaining terms arise through the incorporation of the anisotropic part

of the prestress. These terms can be further decomposed into contributions stemming

from the ‘antiviscosity’ formulation and the incorporation of retardation, thus yielding

  

 

AT-A AT-A

R==1 =-tr(AT-E‘”-A)=1 =+AT-_I:I‘”-_
=e=a -- -2e=- -

(3.24)

AT A

—11(§-a"’e>:1.: +23 5” e

where

H=Rm+Rm, 623

R“) : contribution including c,3 ,

Hm : contribution including CBC”.

For a vanishing velocity gradient (i.e. V<R>=R) the isotropic prestress contribution

reduces to one third of the unit dyadic. Thus, the contribution to the Reynolds stress

stemming from the isotropic prestress formulation can be interpreted as consisting of an

isotropic part and an anisotropic part (i.e. R') whereas the remaining terms including R“)

and Re) both represent anisotropic contributions to R, thus

i=5.“ +2“’+2"’- (3.26)

. l,
5; + R (3.27)
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However, due to the formulation of the isotropic prestress, it is not possible to express

this contribution in tensorial form explicitly in terms of Eq. (3.27). The closure

hypothesis for the anisotropic prestress is implicit in the mean strain rate dyadic due to

the implementation of frame-invariant derivatives. An algebraic formulation relating the

prestress explicitly to components influenced by either the coefficient B or B12 is thus

given here for the case of fully developed channel flow. The Table 3.1 shows how the

individual Reynolds stress components can be decomposed into the various terms.

It can be seen that the term containing B influences all components of the Reynolds stress.

The relaxation parameter CR stemming from the preclosure and the dynamic relaxation

parameter CM both moderate the contributions of CB on the Reynolds stress due to the

explicit occurrence of 1,8 in the denominator of the appropriate terms. By construction,

the retardation parameter cm does not influence the component normal to the wall and the

shear component. Provided B > 0 the magnitude of the shear stress -Ryz is reduced and

constitutes therefore an ‘anti-viscosity’ coefficient for the Reynolds stress. This is in

contrast to the shear component of the prestress where B acts as a viscosity.

3.3.1 Approximation for Small Time Scale Ratios

An approximation to the earlier derived equations for the Reynolds stress can be made

by assuming that the characteristic relaxation time as derived from the preclosure

formulation is small compared with the mean field time scale (see also Chapter 2). This

can be interpreted as the region of the flow domain where changes in the mean field

happen very slowly compared to changes in the turbulence. Mathematically this is

expressed as
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tJV<g>Bx0. 62&

For channel flow this region can be identified to be near the centerline where the

mean velocity gradient vanishes and the mean field time scale approaches infinity. The

mathematical description of this approximation neglects all terms in IRS which are

quadratic or of higher order. For CR = 0(1) this restriction can be transferred to 118 being

small. The components of the Reynolds stress as presented in Table 3.1 can therefore

readily be reduced to the following subset.

RH=RW=RH=%, 82%

C C

R =-i——& s. ' 330fl (2 310.) ( )

Whereas the contribution to the isotropic prestress formulation as presented in Table 3.1

is moderated by IRS and the anisotropic contribution by IRS and cuttS, the approximation

given here shows isotropic behavior. It is interesting to note that the shear component

might serve as a first source to estimate a value for C3 in this flow domain. If one were to

compare the expression for the shear components given by Eq. (3.30) with the common

approach using the Boussinesq’ approximation as given by Eq. (1.2) with its definition

for c”, the term in parenthesis can be expressed as

C c C

gwgc—ga o3n

This incorporates that 113 reduces to kS/e within the flow domain of consideration. This

relation is, however, strictly valid in the close neighborhood of the centerline for which

as « 1. The Boussinesq approximation is often employed with a value of c,Ll = 0.09. The

DNS-data by Kim et al. (1987) yield cu = 0.1266 whereas the higher Reynolds number

data render C11 = 0.0946 (data obtained from least squares analysis for 0.24 < 118 < 0.71)

from which a fairly good agreement can be inferred for larger Reynolds numbers.
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3.3.2 Other Phenomenological Models

It is of particular interest to examine other turbulence models which are based on a

phenomenological modeling ground. Very few models have been developed with a direct

expression for the Reynolds stress in terms of a series expansion of the mean strain rate

dyadic. Most models which derived some sort of algebraic prescription for the Reynolds

stress used the exact transport equations for the Reynolds stress as a basis and introduced

different kinds of physical assumptions to reduce the equation set to an algebraic

prescription. However, some general ideas have been developed - even though they have

not been implemented in actual computations - from a more general standpoint of

phenomenological modeling. This section briefly describes some issues of these various

modeling approaches.

It should be borne in mind that every turbulence model presented here is associated

with the transport equations for the turbulent kinetic energy and the dissipation rate.

These equations, which are generally also subjected to modeling assumptions, constitute

an integral part of the complete model. However, this section deals exclusively with the

algebraic expression for the Reynolds stress. The associated equations for k and e are

presented in Chapter 4. Thus, the conclusions drawn here stem solely from the algebraic

Reynolds stress expression.

Nonlinear Turbulence Model Using Frame-Invariant Modeling

Speziale (1987) used an asymptotic expansion to obtain a nonlinear Reynolds stress

model which constitutes an extension of Boussinesq’s approximation. His motivation to

extend the linear Reynolds stress model was - besides the prediction of the anisotropy

among the normal stress components in channel flow - the prediction of secondary flow
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patterns in square ducts and an improved prediction of the reattachment point in turbulent

flows over a backward facing step. The general form of his model is given by Eq. (3.32)

120

2 1

gz—Epkl+p\/El<§>+CDplz(<§>~<§>—-§<§>z<§>I)

8<§> _1_t 5<=S=>I (3'32)

81 3“ 81 ’9'

  

+ CEplz(

The length scale appearing explicitly in Eq. (3.32) has to be solved for using the transport

equations for the length scale or for the dissipation rate in conjunction with the definition

of the length scale which is given as

k%

I: C:— . (3.33)

Speziale used the frame-invariant upper convected Oldroyd derivative in Eq. (3.32),

which is given as a special case of Eq. (3.6) with c=-1. This derivative was included for

consistency reasons since terms involving the derivatives of the mean strain rate dyadic

consist of the same dimensions as the nonlinear terms in <R>. The calibration of this

nonlinear turbulence model was done using experimental data by Laufer (1951). With the

assumption that the parameters CD and CE introduced in Eq. (3.32) are constants, a one-

point evaluation in the middle of the flow field yielded

cD = CE = 1.68. (3.34)

With this choice for the model parameters CD and CE, both the nonlinear term as well as

the term containing the derivative of the mean strain rate dyadic can be consolidated to

the following form

<S> 51<§>
_ _2_ 2L. _1- _

;_—3pk;+pJEe<§>+chE( 81 —3tr( 51 )1), (3.35)

where the parameter ‘c’ determining the particular form of the derivative can be evaluated
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to c=—1/2. The true nature of the form of the frame-invariant derivative and its basis are

therefore changed. Thus, a more thorough investigation needs to be performed in order to

evaluate the consequences of this form for the derivative and its use in the near wall

region of channel flows. In order to evaluate the general performance of the model,

Speziale (1987) did not solve any computational flow problem but took empirical data

from Laufer to determine the length and velocity scales which in turn were used to

algebraically predict the normal components of the Reynolds stress using Eq. (3.35). The

results of this ‘performance preview’ will be presented in combination with the results

from this research in Chapter 6.

Shih and Lumley (1993) developed a more general form of an algebraic Reynolds

stress model in terms of different orders of the mean velocity gradient following

principles of invariant theory. The model, thus derived, contained eleven undetermined

coefficients which - in general - can be taken as invariants of the tensors involved. These

coefficients needed to be determined using further constraints and experimental data.

Shih et al. (1995) deduced an algebraic turbulence model from this more general form by

truncating the series and retaining only quadratic terms in the velocity gradient V<u_>.

Thus, the model for an incompressible fluid can be given to

2 k2 k3
<R'R'>=—kI—2c ——<S>—2c2-7{—<S>-<W>+<W>-<S>}. (3.36)

3 = “ e = e = = = =

The tensor <R> denotes the symmetric part of the velocity gradient whereas the tensor

<fl> constitutes the antisymmetric part. The parameters c“ and 02 are given by the

following formulas:

_ 1 J1—963(s'){)2

“ ’ A. +A;(U‘%>’ C~ " C. +68%10%1 ’

 

  

c (3.37)

where
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.1. 1 ..

AS = J6cos¢ , and (b = garccos(\/6W ). (3.38)

The parameters 8*, W* and U* constitute characteristic values which are defined as

 

 

. , (<S>.<S>):<S>

S=,/<S>:<S>, W=——E L 5—, 3.39

= = (<§>:<§>)% ( )

and

U'=J<§>z<§>+<l>;<g>. (3.40)

The values of 6.5 and 1.0 are assigned to the parameters A0 and Co, respectively. With S

as a characteristic strain rate according to Eq.(1.4), the individual components of the

Reynolds stress are given to

R111 =%, (3.41)

Ryy = %—%(583—)2, (3.42)

R.. = %+-C—2’-<%>2. (3.43)

_ Ry, 235:3 (3.44)

From Eq. (3.37) it can be seen that for a vanishing velocity gradient (i.e. U*=0) clLl

assumes a value of 0.154 (e.g. at the center of a channel) and represents a larger value as

commonly used with the Boussinesq approximation. This formulation, however, does

predict primary and secondary normal stress differences as can be seen from Eqs. (3.41)-

(3.43). The model given by Eq. (3.36) is not intended to be valid in the near wall region

where molecular influences become dominant. A comparison of this algebraic model by

Shih et al. (1995) with other models mentioned in this section will be given in Chapter 6

together with the results for the theory developed in this research.
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Algebraic Formulationsfrom Reynolds Stress Transport Equations

Some researchers have used the transport equation for the Reynolds stress as a basis

for the development of an algebraic formulation. The exact equation of the Reynolds

stress can be written as

—D—<—E—E—>= —{< R'R'> -V < R> +(V <E>)T' < E'E'>}+ < %{(VE')T I'VE} >
 

 

 

Dt 9 r

V . Production <P> k V

Convection " Pressure/Strain

— 2v < (VR')T -V_t_r_ >— V - {< R'R'R'> -vV < R'R'>} (3.45)

DissiIfation Diffusion <2; (turb.+mol.)

— {(V < R'R >)T + V < R'E >}.

\ p p l
 

Pressure Diffusion <2>p

Rodi (1976) noted that the eddy viscosity as introduced in Eq. (1.2) is direction sensitive

in complex flows like, for example, swirling flows, and stated that the viscosity

coefficient 011 as given through by Eq. (1.3) can not be a constant. He derived an explicit

expression for the Reynolds stress by invoking an approximation for the convection and

turbulent diffusive terms in the Reynolds stress transport equation. The molecular

diffusion term has been neglected in his analysis due to the consideration of high

Reynolds number flows. The modeling for the pressure/strain term is taken from the

analysis of Launder et al. (1975) who modeled this term as

' 2

< %{(VR' )T + VR'} >= —cl -:—{< R'R'> —§kl} — y{< R > —%Pl}. (3.46)

The term designated as <R> constitutes the production of the Reynolds stress due to the

velocity gradient, as can be seen in Eq. (3.45). The symbol P denotes the trace of the

“production” dyadic. The major assumption made by Rodi involves an approximation of

the convection and turbulent diffusion as



 

 

D<n'u’> <uu'> Dk

Dt _<Q>: k Dt D"

.
(3.47)

<uu'>

= "‘ P—e,k ( )

where Dk denotes the diffusion of turbulent kinetic energy. With this approximation his

expression for the Reynolds stress assumes the following form

<u'u'>-k EI+1_Y <E%-%%l—

-- ' 3= 1:, 1+%,(%—1)'

 

(3.48)

While this expression yields an improvement over the Boussinesq assumption of

equipartition of energy among the normal components, it does not, however, predict

secondary normal stress differences. It does, though, provide an improved result for the

shear stress in simple shear flows such as channel flow. For this flow field, this implicit

expression can be rewritten and an expression for the viscosity coefficient cpl can be

evaluated to

=_2_1—y[1-%.(1—Y%)]

“ 3 c. [1+%,(V.-1)]2'

 

C (3.49)

The values of 2.5 and 0.4 were assigned to the parameters C] and 7, respectively. An

estimate of this model in combination with the direct numerical simulation (DNS) data by

Kim (1989) will be given in Chapter 6.

Reynolds Stress Formulations from Statistical Theories

Nisizima and Yoshizawa (1987) used an algebraic Reynolds stress formulation for the

prediction of turbulent channel and Couette flow which has been developed from a two-

scale, direct-interaction theory by Yoshizawa (1984). The formulation constitutes a

nonlinear model in terms of the mean strain rate dyadic and can be expressed as
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2 3 1

<R'R'>=-3-kI—2v,<§>+Ztm <§m>—§tr<§m>; . (3.50)

m=1

The first two terms on the right hand side (RHS) of Eq. (3.50) make up the Boussinesq

approximation while the additional terms arise from Yoshizawa’s (1984) analysis. They I

can be expressed as follows

<§I>=<§>-<§>+<fl>—<l>-<RV__>, (3.51)

<§2>=<§>-<§>+<1>-<E>, (3.52)

<§,>=<§>-<§>—<§_fl>-<R>-<EV__>1 (3.53)

where

<§_W_>s<§>-<V_V>+(<§>~<W>)T. (3.54)

Tm = Cum—2. (3-55)

The eddy viscosity v, is given by Eq. (1.3). For channel flow this set of equations yields

the following expressions for the normal components of the Reynolds stress

1 1 k8

R“ = 3 - g(Ct, + C13 )(—€—')2 , (3.56)

l 1 kS

Ryy = 5 - C(Cfl — 2C13 )(‘:')2 , (3.57)

1 1 kS

R =—+— 2C —C —2. 3.58
zz 3 6( 1:] r3)( 8 ) ( )

It can be seen that the coefficient C12 does not appear explicitly. The coefficients Cu and

C13 have been given the values of 0.07 and -0.015, respectively. It is interesting to note

that this nonlinear formulation predicts primary and secondary normal stress differences.

For channel flow the shear component is not affected by the formulation given by Eq.
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(3.50) and constitutes the same formulation as Boussinesq approximation. Thus,

(—)- (3.59)

Even though the general Reynolds stress formulation as given by Eq. (3.50) does not

include further parameters which need to be adjusted, several components of the

governing equations will be extended empirically using a wall damping function similar

to van Driest’s (1956) damping function to extend the applicability of this Reynolds stress

formulation to the solid wall. The shear component as given by Eq. (3.59) will be

extended in the following way

 

c f kS
—R = “ d -— , 3.60,. 2 <8 ) < )

with fd given by

fd =1—exp(—-):-) and A=5.2. (3.61)

The results of this formulation will be presented in combination with the results of this

research in Chapter 6. The modifications made to the transport equations for k and 8 are

presented in Chapter 4.



CHAPTER 4

TRANSPORT EQUATIONS FOR TURBULENT KINETIC

ENERGY AND DISSIPATION RATE

Transport equations for the turbulent kinetic energy k and the dissipation rate a are

necessary to obtain proper scaling factors for the variables introduced through the closure

for the Reynolds stress. Modeling assumptions for higher order terms in the exact

equations required to obtain a closed form of the equations are elicited. The final

transport equations for k and 8 associated with the phenomenological models presented in

Chapter 3 are given here. Some additional approaches which have been discussed in the

literature are introduced here for reasons of comparison.

4.1 The Exact Equations

The exact equation for the turbulent kinetic energy k (see Appendix D) is given by

aa—l:+< R>1Vk—szk = — < R'R'>:V <R> —v < VR':(VR')T >

I II HI IV V

—Vl-(< R'3 > + < Rig >).

p 2

VI VH (4.1)

The three terms on the LHS of Eq. (4.1) are the basic part of the structure of any

68
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transport equation and represent the partial derivative of k (I), convective transport by the

mean velocity (H), and the viscous diffusion (III) (see Hinze, 1987). Those terms do not

need any modeling. The terms denoted as IV and V represent the production of turbulent

kinetic energy through the work of the Reynolds stress against the gradient of the mean

velocity field and the dissipation rate a, respectively. They both reflect the effect of a

source and a sink term. Since both terms do not contain any new unknowns they do not

need to be modeled either (it is assumed that an adequate closure for <R’R’> exists). The

terms VI and VII do contain the unknown pressure/velocity and energy/velocity-

correlation and therefore need to be modeled.

The exact equation for the dissipation rate 8 (see Appendix E) is given by

985+< u > -Ve— vV’e = -2v < (V1!)T - Vu'>IV < u > -2V < Vii-(V11! )T >:(V < u>)T

I II III IV V

—2v < R'(VR')T >EV(V < R >)T —2v <{(VR')T1VR'}:VR'>

VI VII

— VV- < R'(VR' )TzVR'> -2VV- < V%- VR'> —2v2 < V(VR' )T§V(VR')T >.

VIII D( X (4.2)

The first three terms represent the substantial derivative of e (I and H) relative to the

mean velocity and viscous diffusion (III). Like the k-equation, they do not need to be

modeled. The first four terms on the RHS are commonly referred to as production terms.

They are, in detail, mixed production (IV), production by mean velocity gradient (V),

gradient production (VI) and turbulent production (VII). The next term designates the

turbulent transport (VIII), followed by the pressure transport (DC) and the destruction of

dissipation (X). All terms on the RHS need to modeled (Rodi and Mansour, 1992).
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4.2 The Closure Hypothesis

The closure for the transport equations for the turbulent kinetic energy and the

dissipation rate is divided into different sections according to their respective modeled

terms (i.e. transport, production and destruction). A comparison to existing modeling

approaches is done where applicable. In order to obtain a model expression for the

transport terms (i.e. terms VI and VII of the k-equation; terms VIII and IX of the 8-

equation) a general formulation is given here which will be subsequently applied to the

transport terms in the equations of consideration. This general expression stems from the

equation for the fluctuating quantity analogous to that one for the fluctuating velocity R’

derived in Chapter 2. An approximation leads to the final model for the transport terms.

The production and destruction terms for the kinetic energy equation do not need

modeling. Thus, they will be presented only in combination with the final model

equations.

4.2.1 Turbulent Transport Terms

The general equation for the transport of a scalar (I) in an inertial frame of reference can be

written in the following form

a

p%+pn-V¢-V-B,V¢=S.f”. (4.3)

The first two terms on the left hand side (LHS) represent the substantial derivative of (I).

The third term is the transport due to molecular viscosity with Pt as the molecular

diffusion coefficient and S¢M represents the net effect of all source and sink terms for 0

per unit volume. Upon decomposition of (1) and R into their mean and fluctuating parts,

division through the density p and subsequent ensemble-averaging the transport equation
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for the mean value of q) (i.e. <¢>) is obtained (Eq. (4.4):

8<¢>

a1

 

+<R>-V<11)>+<R'.V¢'>—V-D¢V<¢>=<S¢>. (4.4)

D.» represents the ratio of the diffusion coefficient to the density and can be regarded as

the molecular diffusivity (i.e. D¢=B¢Jp). Analogously, the value Sq, now constitutes the

specific net source (i.e. per unit mass). If the mean field equation is subtracted from the

transport equation for the instantaneous field, the evolution equation for 41’ is obtained to

88%3- < y- > .V¢'—D¢V2¢': —E'-V < (I) > —E'-V¢'+ < E'VCB > +8; . (45)

Using the continuity equation (i.e. V ' R’ = 0), the second and third term on the RHS of

Eq. (4.5) can be rearranged to represent the divergence of the fluctuating component of

(R’tb’), i.e.

- 2"V¢'+ < u'-V¢ >= -V - (MY- < u'¢'>). (4-6)

The divergence of the fluctuating correlation between R’ and (I) in combination with the

specific source term 8; will be denoted f; . Thus, Eq.(4.5) can be rewritten as

£111: —g-V < 9 > _1', (4.7)

with

58 a 2 I 1 1 1 1 I
=§+<R>-V—D¢V , and f¢=V°{R¢—<R¢>}-S¢. (4.8)

A formal solution to Eq. (4.7) can be obtained in the same way previously done for the

fluctuating velocity (see Eqs. (2.1)-(2.3)) in terms of a Green’s function for the

fluctuating scalar value 0’ to

¢'(R, 1) = —II G(R, 113, my? < (11> #3119111 . (4.9)

In order to obtain a statistical expression for the transport of this quantity 0’ due to
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velocity fluctuations, Eq. (4.9) is multiplied by R’ and ensemble-averaged. Using the

same spatial smoothing approximation for the non-local statistical correlations and

substituting the explicit time dependence into a composite time TR (see also Chapter 2)

the transport term <R’¢’> can be written as

<R'1’p'>=—tR <R'R'>-V<<p>—tR <R'f,j>. (4.10)

The applicability of the spatial smoothing approximation made previously was based on a

comparison of the spatial spread of the Green’s function during times for which the

autocorrelation of the relevant turbulent quantities decays (see Section 2.1). Two

observations were made for this comparison to justify the spatial smoothing: a) the

diffusive character of the linear operator was given by the kinematic viscosity, and, b) the

relevant decay of the autocorrelation function was taken to be same for all the turbulent

quantities in question.

The formal procedure to obtain a transport term for 41’ (i.e. Eq. (4.10)) is applied to

the transport equations for the turbulent kinetic energy and the dissipation rate (see

Appendix C and D). For those equations the diffusivity, expressed in Eq. (4.5) as D¢, can

be replaced by the kinematic viscosity v. It is postulated that the same composite time

scale TR can be used to incorporate the temporal decay for the autocorrelations involved

(cf. Section 2.1).

To obtain an expression for the unknown correlation < _1_1_' f; > a similar procedure is

performed which in essence parallels the development of Eq. (2.14). The starting point is

Eq. (2.3) for the fluctuating velocity. A formal multiplication with f; and subsequent

application of the spatial smoothing approximation yields

<f,g'>.R“ =—1, <f,;f>, (4.11)

where R is given by Eq. (2.16) and f’ denotes the divergence of the instantaneous

Reynolds stresses and the gradient of the fluctuating pressure as they appear in Eq. (2.2).
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After multiplication of Eq. (4.11) by R and insertion into Eq. (4.10), a representation for

the turbulent transport of the fluctuating quantity 4)’ by the fluctuating velocity is given to

<R'¢'>=—1R <R'R'>-V<¢>+tf, <f¢f§'>-R. (4.12)

Thus, a representation for the turbulent transport of a fluctuating scalar quantity (11’ can be

expressed as being proportional to the gradient of its mean value <¢1> with tRl|<R’R’>l|

representing the effective transport coefficient and the unknown correlation of the

fluctuating term f with the quantity f; . As a first approach of implementing the concept

developed and expressed in Eq. (4.12) the consequences of setting If, <fgf>sg are

explored. For isotropic flow fields, for example, it has been shown that any correlation

between a vector-valued quantity and a scalar vanish (see esp. Hinze, 1987, p. 178 ff.).

With 1,2, < f;_f_'>a 9, Eq. (4.12) reduces to a gradient transport hypothesis relating the flux

of a fluctuating quantity to the gradient of its mean value to

<R'¢'>=—1:R <R'R'>-V<¢>. (4.13)

In order to apply the concepts developed herein to obtain transport expressions for the

turbulent kinetic energy and the dissipation rate it is necessary to derive an equation

which expresses the transport of the instantaneous quantity (1) rather than (11’. With the

identity,

<R'¢'>=< R'{¢—<¢1>}>=< R'¢>, (4.14)

Eq. (4.13) can be rewritten to

<_11'(t1>=—rR <R'R'>-V<¢>, (4.15)

which relates the flux of an instantaneous quantity to the gradient of its mean value.
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Turbulent Kinetic Energy

As mentioned earlier, it is the pressure diffusion and the (instantaneous) energy

diffusion terms which need to be modeled, (i.e., terms VI and VII). The approach made in

this research is the representation of both terms using the gradient transport hypothesis

(i.e. Eq. (4.15)) developed in the previous section, i.e.

<E'%>"'<1~1-'-2--'>=—ck'tR <R'R'>-Vk (4.16)

The earlier used variable <¢> is replaced by k. The parameter ck is a dimensionless

coefficient which has been introduced for adjustments of the transport term to

experimental data and thus needs to be calibrated (see Chapters 5 and 6). This approach

of combining both contributions to the turbulent transport follows common approaches

applied by researchers using k-e-type modeling approaches. It is interesting to note

Harlow and Nakayama’s (1967) approach to obtain a gradient type expression for the

turbulent transport is similar in appearance to the one expressed by Eq. (4.16) (see Table

4.1). However, instead of including the pressure diffusion into the general gradient

hypothesis they used the same concept of expressing the transport of an instantaneous

quantity as being proportional to its mean gradient to the modeling of the pressure

diffusion. Thus, they proposed the following expression,

 <g'—p—>—_-——- , (4.17)

p

where 0' denotes the kinematic eddy viscosity. 0 and 7 denote dimensionless adjustable

parameters. Besides the explicit incorporation of Eq. (4.17) into the modeling of the

turbulent transport, it is the use of an isotropic eddy viscosity-type representation for the

diffusivity which distinguishes their derivation from the one in Eq. (4.16). The approach

as expressed by Eq. (4.17) was seemingly the first one to offer an explicit model proposal

for the pressure diffusion term. Applications of this proposal were not pursued, though.
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However, it seems possible to follow this approach as long as the pressure Poisson

equation which can be derived by taking the divergence of the Navier-Stokes equation,

i.e.

—%V2p=VR2VR, (4.18)

is satisfied.

The model developed by Hanjalic and Launder (1972b) for boundary-layer flows uses

the transport equation for the shear stress in combination with the transport equations for

k and e. The k-equation in this context is derived from the contraction (i.e. the trace of

<R’_t_1_’>) of the general Reynolds stress transport equation which has been laid out in their

derivation for more general flow problems. In the Reynolds stress equation only the triple

velocity correlations have been modeled (see Eq. (3.45) - turbulent diffusion term, i.e.

<R R R >). The explicit modeling of the pressure diffusion has not been considered. The ,

modeling they applied for the turbulent diffusion led to the following form for the

turbulent transport of kinetic energy,

I. I k I. I

< R'-Ez—E>= —cs;{< R'R'>:V < R'R'> +< R'R'> -V <% >}. (4.19)

From Eq. (4.19) only the second term in the brackets on the RHS compares with the

approach presented in Eq. (4.16). However, the time scale here is taken to be the turbulent

time k/e whereas in Eq. (4.16) it was TR (see also Chapter 2). The parameter cs is an

adjustable parameter and was assigned a value of 0.08 obtained from computer

optimization. The additional term in Eq. (4.19) arises from the modeling of the triple

correlation in the Reynolds stress equation. For the transport of k normal to the wall (i.e.

only the y-component is relevant) Eq. (4. 19) can be reduced to

u'-u' k a

< u; -“—2:- >= —cs ;{< u;u; > 53,—(k+ < u’yu; >)+ < uQu’y > B—y < u;u; >}. (4.20)
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Experimental data were taken from homogeneous shear flows (see Hanjalic and Launder;

1972b) in order to develop an algebraic relation between < u'yu’y > ,< ugu’y > and k. With

relations thus obtained and incorporated into Eq. (4.20), they arrived at:

, R'-y_' k2 Bk

<uy—2_>= —0.8c —E———, (4.21)

an approach commonly taken for the modeling of turbulent transport terms (see also

Jones and Launder, 1972). This approach (Eq. (4.21)) has also been used by Speziale

(1987), Nisizima and Yoshizawa (1987) and Shih et al. (1995) in combination with their

respective nonlinear Reynolds stress models (see Chapter 3). In all of their models,

however, the explicit modeling of the pressure diffusion term has been omitted. Nisizima

and Yoshizawa (1987), however, introduced an additional variable parameter function fd

as given by Eq. (3.61) besides the general adjustable parameter cs. This was done in order

to extend the applicability of their model to solidwalls (see also Appendix F).

Durbin’s (1991) expression for the transport term also uses the Reynolds stress in

combination with a turbulent time scale as an anisotropic viscosity coefficient. The

general form of his suggestion can be written as

v

<R'¢'>=—:—’.V<¢>, (4.22)

k

where the diffusivity is represented by a tensorial quantity. The adjustable parameter 6k is

introduced for adjustments of the transport terms to experimental data and given the value

of 1.3. The only component of the diffusivity applicable to channel flow is the yy-

component. This component applies to the transport equations of k and e as well as the

momentum equation (see Eq. (1.7)). The diffusivity is expressed as

v,yy = c,, < u’yu’y > 1,. (4.23)

The turbulent time scale I. is taken to be the larger value of the two time scales k/e and
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(V/8)0'5 and the parameter c,1 was assigned a value of 0.2 in accordance with the analysis

of the DNS data by Kim et al. (1987) and Kim (1989). This approach has also been used

in Rodi’s (1976) derivation for the transport of kinetic energy.

Dissipation Rate

In the 8-equation the terms denoted as VIII and D( represent the turbulent transport

and need to be modeled. The strategy as outlined earlier in this section and represented

through Eq. (4.15) is applied to yield a representation of these terms. The turbulent

transport term VIII can be expressed as

V<R'{(VR')T:VR'}>=< R's», (4.24)

where 8’ denotes the fluctuating value of the dissipation. Thus, application of Eq. (4.15),

with <¢> replaced by 8, leads to

v < R'{(VR')T:VR'} >= —c,t,, < R'R'> V8. (4.25)

The parameter cE is - analogue to ck in Eq. (4.16) - a dimensionless parameter which can

be adjusted to conform with experimental data. The diffusional transport of 8 by pressure

fluctuations is neglected in this modeling approach. This approach follows the reasoning

of Hanjalic and Launder (1972b) who pointed out that this term leads subsequently to

higher order derivatives which are presumed to be small compared with the remaining

diffusional term. They derived a comparable form for the turbulent transport from an

analysis of thin shear flows (i.e. boundary layers). Like before, they took experimental

data from homogeneous shear flow to establish an algebraic relation between

< u’,u’y > and k. Thus, Hanjalic and Launder (1972b) proposed a gradient-type model for

the transport of dissipation by velocity fluctuations:
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2

v < R'{(Vy_' )TzVR'} >= —05cc L92. (4.26)

8 8y

Daly and Harlow (1970) used a similar approach by setting the turbulent transport of 8

proportional to the gradient of its mean value. However, they proposed an explicit

modeling expression for the contribution to the transport by the fluctuating pressure to

< V% - VR'>= G'V- < R'R'> (4.27)

where 0* has the unit of s'1 and incorporates adjustable parameter. This approach follows

in analogy to the derivation of Donaldson (1969) (see Daly and Harlow, 1970) who

developed an expression for the pressure diffusion in the Reynolds stress equation as

being proportional to the divergence of the Reynolds stress. Durbin (1991) used the

analogue modeling of the turbulent transport as he proposed for the kinetic energy (i.e.

Eq. (4.22)). However, (11’ is replaced by 8’ and the adjustable parameter - now denoted 0'g -

assumes a value of 1.6. The explicit algebraic Reynolds stress models by Nisizima and

Yoshizawa (1987) and Shih et al. (1987) both use a gradient transport hypothesis for the

turbulent transport term which has commonly been applied in conjunction with the

standard 8-equation as given by Eq. (4.35). Nisizima and Yoshizawa (1987) used in their

modeled transport term the same damping function as was used in the equivalent term for

the k-equation. Rodi (1976) does not specify the exact form of the dissipation equation.

The model of Speziale (1987) uses a transport equation for the length scale rather than the

dissipation rate. The approach taken, however, resembles an analogue gradient transport

hypothesis similar to the ones used for the dissipation rate.

4.2.2 Production and Destruction Terms

The production and destruction terms of turbulent kinetic energy as denoted in Eq.
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(4.1) as IV and V do not need to be modeled. The equivalent terms in the 8-equation,

however, need to be modeled and those approaches are described. The reason for the

presentation of both terms here stems from the approaches taken in the literature (see for

example, Hanjalic and Launder, 1972b; Mansour et al., 1989) where often the difference

between those terms is modeled rather than their individual influences. The production of

the dissipation in the exact transport equation for the dissipation rate consists of four

different terms which are given by

0 IV: P,I = —2v < (VR')T - VR'>:V < R > (mixed production)

0 V: P2 = —2v < VR'~(VR' )T >:(V < R >)T (production by mean velocity gradient)

0 VI: P: = —2v < R'(VR')T >EV(V < R >)T (gradient production)

0 VII: P: = —2v < {(VR')T -VR'}:VR'> (turbulent production)

whereas the destruction is given by the term denoted as X to

o X: —y=—2v2 <V(VR')TEV(VR')T >

The modeling of those terms has undergone a variety of approaches. Some of the ideas

represented in the literature are presented here. The model adopted for this research will

be given in conjunction with the remaining modeled terms (i.e. transport and destruction

terms) in the final equation presented in section 4.3.

Tennekes and Lumley (1972) inferred that at high Reynolds numbers the turbulent

production (VII) due to stretching of vortex filaments and the destruction of dissipation

(X) due to viscosity tending to reduce instantaneous velocity gradients outweigh the other

terms. Their difference, however, is in the same order of magnitude as the turbulent

transport terms (VIII and IX). Launder et al. (1975) modeled the net effect of the terms

VII and X as
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_ _ 1 _ 8
P: — y = —c1,, 1 — c£2 ? (4.28)

with the turbulent time scale 1.} given by We However, Hanjalic and Launder (1972b)

model this net effect as being proportional to the second term on the RHS of Eq. (4.28).

The mixed production of 8 (IV) as well as the production of 8 by mean velocity gradient

(V) are closely related to the production of turbulent kinetic energy (Rodi and Mansour,

1992) and were therefore modeled as being proportional to it. Hanjalic and Launder

(1972b) used this idea earlier and modeled those terms as

P,‘ + P: = —c,, E < 11' 11; >:V < R > (4.29)

whereas the destruction term 7 was modeled in conjunction with P84 to

£2

13:- y = —c,, T (4.30)

A revision by Hanjalic and Launder (1976) of this earlier developed model yielded an

approach similar to that used by Launder et al. (1975) as presented in Eq. (4.28).

However, the revised model contained an additional function fE as a multiplicative factor

for the second term on the RHS of Eq. (4.28). This additional function incorporated the

effect of the local turbulence Reynolds number Ret as given by Eq. (2.30) and assumed

the following form

0.4 1
f =1—— - —R 2 4.31

and was introduced through an analysis of experimental data for isotropic decay behind a

grid. Tennekes and Lumley (1972) argued that the terms denoted as P,1 and P82 are

smaller than the other terms by a factor of Reto'5 and PE3 is smaller by a factor of Re, and

could therefore be omitted for high Reynolds number flows. Therefore Hanjalic and

Launder (1976) did not use an explicit representation for P1:1 and PE2 in their revised
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model version. They did, however, model PE3 as

P,3 = cgvg < R'R'>:{V(V < R >)T:V(V < R >)T} (4.32)

which was suggested by Taylor’s (1915, see Hanjalic and Launder, 1976) vorticity—

transport theory. The models for the production and destruction terms by Durbin (1991)

and Shih et al. (1995) are of the form as given by the RHS of Eq. (4.28) whereas the

model by Nisizima and Yoshizawa (1987) is given by the following expression

{
v
i
a . 8

P,‘ —y=2c,,k<§>-<§>—c,2fd21— (4.33)

1:1 I

The turbulent time scale used in Durbin’s model is the same as employed in Eq. (4.23)

whereas Shih et al. and Nisizima and Yoshizawa use k/8. The additional function fd in Eq.

(4.32) is the same as used for the eddy viscosity in their algebraic Reynolds stress model

(see Eq. (3.61)). The introduction of this function has its origin in the otherwise divergent

behavior of this term when a solid wall is approached (see also Section 5.6).

4.3 The Final Model Equations

The final form of the transport equations for the kinetic energy and the dissipation as

they are used within this research are presented here. The kinetic energy equation can thus

be written in its final form as

dk

The unknown parameter ck explicitly appearing in this equation is subjected to calibration

against experimental data and its determination will be explained in Chapter 5. The

equation for the dissipation rate is given to
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§+ < R > -V8 — sze = V (0,1,, < R’R'> -V8)

 —c,r,, "1' - «010:. (4.35)

The time scale It is given by k/8. The parameters cp and cD are used for calibration against

experimental data (cf. Launder et al., 1975; Hanjalic and Launder, 1976). The functions fp

and f1) are introduced to comply with the asymptotic behavior of those terms when a solid

wall is approached. Details for their development are given in Chapter 5.

4.4 Discussion

For a better understanding of the variations in the individual modeling terms of the

transport equations the different model approaches have been summarized in Tables 4.1,

4.2 and 4.3. The tables include the so-called standard k-8 model because it provides the

basis for most variations developed by different researchers. It can be seen that the

turbulent transport terms in the standard k-8 model are expressed as being proportional to

the gradient of their respective mean values. The effective diffusivities in those gradient-

type transport terms have commonly been represented by an isotropic eddy viscosity

which does not take a directional dependence into account. This approach, however, has

been successfully used for modeling purposes and proved to be adequate for high

Reynolds number flows and is frequently used in present Reynolds stress models using

transport equations for the turbulent kinetic energy and the dissipation rate. The first

modifications to better incorporate near wall effects can be found in the model of Jones

and Launder (1972) some of which were introduced because of computational

advantages. The function f,1 (see Table 4.1 and 4.2), for example, was used to decrease the

magnitude of the (predicted) eddy viscosity in the near wall region and was therefore

‘characterized’ as a damping function. The function f8] served the same purpose as flLl
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whereas fez also served the purpose that the modeled dissipation term could be integrated

to solid walls (see also Patel et al., 1985, for a review of near wall modifications). The

representation for the eddy viscosity developed by Hanjalic and Launder (1972b) - even

though its derivation was strictly speaking done for thin shear flows - proved to be a

better choice for the diffusivity. The tensorial character of the transport coefficient

accounts for directional dependencies of transport effects. This was also demonstrated by

Durbin (1991) who used the recent direct numerical simulation data for simple shear

flows to verify the adequacy of this approach. The transport terms derived in this research

distinguish themselves in two aspects from the ones presented by Hanjalic and Launder

(1972b) and Durbin (1991):

1) The derivation was done from a more general standpoint rather than for a specific

flow field. The particular form used in this research stems from the a priori omission of

an additional term resulting from this derivation (see Eqs. (4.12) and (4.13)). It is

therefore surmised that their range of applicability extends the one previously presented.

2) The relevant time scale for the transport coefficient was derived from the Green’s

function technique applied. This time scale allows to control the explicit near wall

behavior and distinguishes itself from the time scales used in earlier approaches (see also

Chapter 2).

The pressure diffusion in the k-equation has commonly been incorporated into the

gradient transport hypothesis. Approaches like the one by Harlow and Nakayama (1967)

have gone unnoticed and were not pursued. However, if the explicit expression of Eq.

(4. 17) does allow for the pressure Poisson equation to be satisfied, this approach might be

a viable choice.

The modeling assumptions made for the transport equation of the dissipation rate 8

has to most of its parts been accepted from the form in which it was originally given in

Hanjalic and Launder (1972b). The assessment of the single terms appearing in the exact
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equation for 8 has not been available until the recent direct numerical simulations (DNS)

by Kim et a1. (1987) and Kim (1989) for fully developed turbulent channel flow. Their

simulations were done at Reynolds numbers of Re=3,250 and Re=7,890 based on the

centerline velocity and channel half width. Mansour et a1. (1989) used the low Reynolds

number calculations for the modification of the eddy viscosity for the Reynolds stresses.

Rodi and Mansour (1992) used the DNS-data obtained at the higher Reynolds number for

a systematic analysis of the modeling assumptions made in Eq. (4.20). A comparison of

the sum of the mixed production (IV), production by mean velocity gradient (V),

turbulent production (VH) and destruction (X) with their modeling in the standard k-8

model as given by Eq. (4.28) revealed differences in the near wall region of the channel

(5 < y+ < 20). The prediction of the net effect of turbulent production and destruction

which certainly depends on the numerical values of cp and CD slightly overpredicts the

equivalent terms evaluated using DNS-data. Therefore, the functions fp and f1) introduced

into the standard k-8 model overtake - besides the already mentioned purpose - the role of

damping functions for those terms. Suggestions for fp and fD are made in Chapter 5.



CHAPTER 5

MODEL CALIBRATION

The model parameters appearing in the turbulence model developed in this research

have to be evaluated using different flow fields. These flow fields are chosen as to isolate

specific physical phenomena of the flow which are associated with a single parameter or a

subset of those model parameters. Thus, their numerical values are determined by

comparing the reduced set of equations resulting from the turbulence model with the

corresponding experiments. The fact that the calibrated constants should be able to

predict the class of flows from which they were calibrated is self explanatory. However,

since the experiments used for the calibration are subjected to initial and/or boundary

conditions it is clear that the representation of this class of flows through a single constant

will not be able to recover all possible (i.e. subjected to all different possible initial and/or

boundary conditions) experiments within this class with exact numerical predictions.

The respective flow fields for the parameter estimates with a cross-reference to the

equations in which they appear are listed below. The determination of the transport

parameter ck is part of the numerical calculation of channel flow and will be done by

matching the centerline value for k+ using experimental data by Laufer for Re=30,800.

o Isotropic Decay CD Eq. (4.35)

- Return-to-Isotropy cu Eqs. (3.5), (3.7)

0 Channel Flow cR Eqs.(2.8),(2.18)

CB, Cu Eqs. (3.5), (3.7)

88
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o Equilibrium Region in Channel Flow c5 Eq. (4.35)

o Asymptotic Homogeneous Shear cp Eq. (4.35)

. Near Wall Analysis fp, 10‘" Eq. (4.35)

0 Channel Flow Calculation ck Eq. (4.34)

The calibration of the function fD as it appears in the transport equation for the

dissipation rate is done in two separate parts. fl) is composed of f}, , a function which can

entirely be developed from the flow field of isotropic decay, whereas fl? constitutes a

near wall function which becomes important for shear flows.

5.1 Isotropic Decay

Isotropic turbulence represents a flow field where no mean strain rate is present and

the turbulence - however generated - is homogeneous. It has been studied extensively

since it reflects the simplest type of turbulence and a minimum number of quantities and

relations are required to describe its structure (Hinze, 1987). However, it is also a

hypothetical type of turbulence, because no actual turbulent flow shows true isotropy. The

equations which represent a description of this flow field can be reduced from the general

model equations (i.e. Eqs. (4.34) and (4.35)). The spatial homogeneity of this flow field

requires it to be nonstationary. This can be seen from the transport equation for the

kinetic energy in which - after the omission of the transport terms due to the spatial

homogeneity - the only term left to balance the dissipation is given by the nonstationary

term on the LHS of Eq. (4.37).

A physical flow field which resembles very closely an isotropic decaying flow field is

the downstream development of grid-generated turbulence. Batchelor and Townsend

(1948a) measured the initial decay of the streamwise velocity fluctuations downstream of

 

“)fD = flgfgv (see Sections 5.1 and 5.6)
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grids with different mesh sizes. The isotropic nature of their flow field was implied. No

measurements of lateral velocity fluctuations were made to verify whether the assumption

of true isotropy holds. From the analysis of the experimental data, they concluded that the

intensity of the streamwise velocity fluctuations (and thus k) decays asymptotically as

< uf >~ ti, with n=1. (5.1)

The experimental data did not allow to deduce a universal upper limit of the (temporal)

extent of this initial decay period. It seemed that different initial correlation functions are

likewise influencing this extent as does the Reynolds number ReM defined as

<uz>M

ReM — v (5-2)

M denotes the mesh size used to generate the turbulence and <uz> denotes the mean

stream velocity. Mohamed and LaRue (1990), who also tried to determine whether and

how the decay exponent n can be related to the Reynolds number, mesh size and solidity,

found no systematic dependence on these parameters. Measurements by Comte-Bellot

and Corrsin (1966) revealed that a contraction behind the turbulence generating grid

improved the degree of isotropy. They found that the exponent for the decay should be n

= 1.25 rather than 1.0.

The mathematical description of this flow field can be obtained from the modeled

transport equations for k (Eq. (4.34)) and 8 (Eq. (4.35)) to

52% = —8 ' (5.3)

and

d8 82
a? : —CD _12- ,

(54)

The function fD as introduced in Eq. (4.35) assumes unity for high Reynolds numbers
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such that its influence becomes negligible for large Ret. An analytical solution for the

decay of turbulent kinetic energy can be obtained to

1

k:ko{1+(cD—l)§k—°—(i—to)}‘-°v. (5.5)

O

 

From Eq. (5.5) in combination with Eq. (5.1) Batchelor and Townsend (1948a) obtained a

value of cD =2. The proposed value of n=1.25 by Comte-Bellot and Corrsin (1966) rather

than n=1 suggests a value of cD=1.80. In view of the fact that the data obtained by

Batchelor and Townsend (1948a) were most likely obtained in an anisotropic flow field,

the value obtained by Comte-Bellot and Corrsin (1966) seems more reliable. Additional

measurements by Comte-Bellot and Corrsin (1971) brought forth a value of cD=1.66.

However, the fact that very few data were available to obtain this low value decreases the

reliability of this low value. Therefore, a value of cD =1.80 is adopted for this research.

Hanjalic and Launder (1976) reexamined the experimental data by Comte-Bellot and

Corrsin (1966) and likewise concluded that the value of cD =1.80 is a reasonable choice.

The final decay period of isotropic turbulence (i.e. small Ret) is characterized

according to Batchelor and Townsend (1948b) by the law of energy decay as

< uf >~ ti, with n=2.5. (5.6)

Several other researchers (see Mansour and Wray, 1993) tried to determine the decay

exponent for this low Reynolds number regime either experimentally or theoretically and

values ranging from n=3/2 to n=5/2 have been assigned. Mansour and Wray (1993)

computed the decay of isotropic turbulence using direct numerical simulation (DNS) in

order to obtain a general understanding of the behavior of n for different Reynolds

numbers Rex with Re}, being defined as

12

Re, : 1/< uV > 7». (5.7)
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A denotes the Taylor microscale and is related to the gradients of the velocity fluctuations

such that it can be interpreted as the dissipative length scale for isotropic turbulence. Re),

can be related to the turbulent Reynolds number Rel as given in Eq. (2.23) in the

following way

3
Re, = ERek. (5.8)

The DNS-data revealed that for Re}, —> O (i.e. Ret —> 0), an asymptotic value of CD =1.4 is

obtained. This compares with the derivation of n=2.5 in Eq. (5.6) by Batchelor and

Townsend (1948b). However, for a different initial energy spectrum a value of CD =1.67

resulted. This value compares with Saffman’s (1967, see Mansour and Wray (1994))

analysis of n=1.5. The equivalent high Reynolds number results (i.e. Re}, —> oo) could be

obtained to CD =1.83 and CD =1.7, respectively. These high Reynolds number values are

within the range which was determined experimentally by Comte-Bellot and Corrsin

( 1966 and 1971). The variation of the parameter cD with the turbulence Reynolds number

was usually incorporated into the transport equation for 8 by adding a multiplicative

factor as expressed in Eq. (4.35) by fly. The proposal made by Hanjalic and Launder

(1976) for the function fD was given as

0.4 1 2

fD =1- ‘1—.8—6Xp[—(g R6,) ], (5.9)

which — in combination with their adopted high Reynolds number value of cD=1.8 -

renders cD=1.4 for a vanishing Reynolds number. An important consequence of their

model to describe the low Reynolds number decay (i.e. the final decay process) is the fact

that it provides a realizable model, i.e. the turbulent kinetic energy and the dissipation

rate vanish both simultaneously. This can be seen from a combination of Eqs. (5.3) and

(5.4). Both equations can be rewritten to yield the following form
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{ls-F = 3. (5.10)

ko 8o

The parameters kO and 80 denote the initial values for the kinetic energy and dissipation

rate for a given decay process, respectively. For any finite positive value for cD the

kinetic energy becomes zero when the dissipation rate vanishes, and vice versa. For the

limit of vanishingly small Reynolds numbers (i.e. Rel—)0) in the final decay period the

exponent in Eq. (5.10) is replaced by chD which approaches a value of 1.4. Thus, for the

final decay (i.e. chp z constant), the differential equation describing the behavior for the

turbulence Reynolds number as defined by Eq. (2.23) can be expressed as

dRe k

t=— —2. 5.11dt V(cD ) ( )
 

From Eq. (5.11) it can be seen that for value of cD < 2 the Reynolds number decays until

the kinetic energy becomes zero.

This research adopts the high Reynolds number value of cD=1.80. The form of f9 as

given by Eq. (5.9) will be taken as the part of fD developed from isotropic decay, i.e. ff).

The necessity of introducing an additional function f1? becomes clear when examining

low Reynolds number asymptotes (i.e. Ref->0) for simple shear flows. Whereas the

product of CD and fl; assumes a finite value for Ret—>O (here: CD fé—>1.4), the entire

dissipation term in Eq. (4.35) becomes unbounded because k—>O. The necessary

additional aspects for fD (i.e. f3“ ) are developed in Section 5.6.

5.2 Return-to-Isotropy

The Retum-to-Isotropy of homogeneous turbulence constitutes a flow field in which

an initially strained flow field is subjected to a sudden removal of the strain rate.

Experiments of this kind were conducted in distorting ducts (Choi and Lumley, 1984;
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Tucker and Reynolds, 1968). Through the straining of the flow field in the ducts an

anisotropic turbulence state is achieved. After the removal of the strain rate the

development of the flow is entirely left to itself. Thus, this flow field demonstrates the

self-interaction of a turbulent field since no shear is present and therefore tends towards

an isotrOpic state. As noted by Lumley and Newman (1977) this decay towards an

isotropic state takes place on the same time scale as the decay of energy. The return of the

individual Reynolds stress components is therefore accompanied by a simultaneous decay

of kinetic energy (and thus dissipation).

For this flow field the Reynolds stress transport equation as given by Eq. (3.45) can

be written as

d < I l> I

———§tg =<%{(VR')T+VR'}>—2v<(VR')T-VR'>. (5.12)

The pressure/strain - whose trace vanishes - is solely responsible for redistributing the

energy among its components and is therefore a crucial part for the return towards an

isotropic state. Lumley (1978) developed the following form of the Reynolds stress

equation to

d<RR> 2

=— —— I, .dt 82 38= (513)

in which R represents a dimensionless and traceless tensor which is defined as

— 89 =< %{(VR' )T + VR'} > ~{2v < (VR' )T - VR'> —%8l}. (5.14)

The term in the brackets on the RHS of Eq. (5.14) can be interpreted as the deviatoric part

of the dissipation tensor. Thus, if the turbulence assumes an isotropic state the tensor R

vanishes. It seems therefore reasonable to assume that 51; only depends on the anisotropy

tensor R (see Eq. (1.32)) and its invariants. Thus, a first order representation of the above

yields
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(b = C2 (5.15)

Thus, Eq. (5.13) can be rewritten in terms of the anisotropy tensor Q as

2 - (2 C)B (5 16)

ch: — =' '

in which the dimensionless time dt has been introduced (dt=E/2kd‘t).

Rotta (1951) suggested that the pressure/strain correlation can be represented as being

directly proportional to the Reynolds stress. His model proposition rendered the

parameter C to assume a value of three. Gence and Mathieu (1980) have found that the

dynamics of the retum-to-isotropy is influenced by the sign of the third invariant of the

anisotropy tensor R (see Eq. (1.34)). The comparison of their experiments with the ones

conducted by Tucker and Reynolds (1968) revealed a slower return if the third invariant

is positive (i.e. for the experiments by Tucker and Reynolds) which corresponds with a

tendency towards an axisymmetric, prolate turbulence state (see Figure 1.7b). Lumley and

Newman (1977) analyzed the experimental data by Comte-Bellot and Corrsin (1966) and

found that for large Reynolds numbers (i.e. when viscous effects become negligible) the

dynamic process of return-to-isotropy is entirely nonlinear. With this conclusion they

argued for the apparent slow return rate for small anisotropic initial states.

The operator 4 developed in the preclosure and given by Eq. (2.16) reduces to the

unit dyadic. The quantity 26c (Eq. (2.27)) represents twice the kinetic energy. Thus, a

combination of the preclosure with the closure as given by Eq. (3.3) shows that the

deviatoric part of the prestress (i.e. H) equals the anisotropy tensor B. Therefore, the

closure hypothesis as set forth by Eq. (3.4) can be evaluated to yield

dB

B(1—cM)+cM—E=0. (5.17)

The high Reynolds number data of Choi (1984) are used to evaluate the model constant

P
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cM since they constitute experiments for which [[IB > 0. Both the experimental data sets

for plane distortion and axisymmetric expansion yielded a value of ch = 0.644. An

evaluation of the experiments by Tucker and Reynolds (1968) for which H13 < 0 showed

that CM assumes the lower value of cm = 0.295. This confirms the slower retum-to-

isotropy for [H3 > 0. However, since Figure 1.8 shows that simple shear flows assume

turbulent states for which IIIB > 0 only, the analysis of the experiments of Choi and

Lumley (1984) are considered to be applicable here.

5.3 Channel Flow

The following section presents the calibration of the algebraic form the Reynolds

stress model. The particular form of the frame-invariant derivatives as introduced through

Eq. (3.6) is controlled through the parameters ‘a’ and ‘b’, which are set forth to a=—1 and

b=-3 (see Section 3.2). The algebraic form of the normal component Ryy is given to

1+ 2(1RS)H,, +3Hyy

W ’ 3+(1RS)2

 

(5.18)

With the specific form of the prestress Hyz as given by Eq. (3.19) and the equation

relating Hyz to ~Ryz as given by Eq. (3.14) the shear stress can be written as

c l
—R =chR "Ens .

’2 R' W 2 l+§(c,u*t,S)2

 
(5.19)

The secondary normal stress difference, which is related to the prestress via Eq. (3.15),

can be expressed as

R” — Ryy = c,c,,(r,3)2. (5.20)

For the evaluation of the parameters 0;; and c5 a least square minimization is performed

which stems from the comparison of predicted values for Ryy and -Ryz and the numerical

l
I
“
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data for 8+=395 (Kim, 1989). The quantity chosen for the minimization is expressed as:

E: 2m?” — Rx”)? +2911?” —(—R;';“’S’))2 . (5.21)

The data in the range of 30 S y+ S 395 were used for the estimate. Figure 5.1 graphically

shows a contour plot for the range of CR and CB investigated. Two distinct areas are

obtained for which E assumes a minimum. Included in the figure is the relation between

cR and c5 as given by Eq. (3.31). This relation is valid near the center of the channel (i.e.

138 small) and for c,Ll = 0.09. With the idea that constant values for the parameters under

investigation adequately describe the behavior of Ryy and -Ryz within the channel and the

fact that one of both areas shows close proximity to the indicated relation a direct

connection as indicated in the figure rendered CR = 0.428 and 03 = 0.195.

The determination of cm is subjected to a more quantitative investigation. This becomes

clear if one examines experimental and computational data both of which indicate that the

stress difference Rxx-Ryy assume a finite value at the wall. For a constant op, Eq. (5.20)

shows that cm should be inversely proportional to (”1:18)2 for large values of 1:8. Thus, it

becomes clear that the parameter on serves as to retard the unbounded grth of the

secondary normal stress difference as the wall is approached. A graphical representation

of Rxx-Ryy in terms of 1:8 indicates a region for Its for which the secondary normal stress

difference remains constant. This region occurs in close proximity to the wall and is

indicated in Figure 5.2 as ‘Plateau’. In order to represent the functional behavior for C); a

two parameter base model with a functional extension for this ‘Plateau’ region is

suggested.

0

Caz

_1+b,,_(z,S)2 ”'

 
(5.22)

Cm

The functional extension is introduced in order to adequately describe the occurrence of

the ‘Plateau’ region as indicted and is hence set forth as
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b2T S —

f,2 =1— aexp(—(—‘—:——) ), (5.23)

with a=0.5, b=20 and c=40. This functional extension decreases the magnitude of cm by a

factor of 2 for ”as = 20 such that a better representation of the indicated region is

achieved. The function fig does not influence the asymptotic behavior for large values of

118. For this asymptotic approach the secondary normal stress difference as given by Eq.

(5.20) can be expressed as

 

2.2

c c°

—1n(R,, —R,,)=—ln{ EM}, (5.24)

from which the ratio of c312 to bu can be obtained. This analysis requires though the

knowledge of a representative finite value for the secondary normal stress difference at

the wall. From both DNS-data sets (i.e. Kim et al., 1987; Kim, 1989) an average value of

(Rxx-Ryy)”=0.25 has been taken. The analysis for small values of 138 (i.e. its—90) yields

the following form for Eq. (5.20):

—1n(Rxx —Ryy)=—ln(cflc§:2ff2)—21n(t,S). (5.25)

With a value of ffz =0.61, the analysis yields ciz =0.083. Therefore, bu can be estimated

to be 0.082. The functional behavior of the secondary normal stress difference as given by

Eq. (5.20) is indicated in Figure 5.2 by the solid line.

With these parameters the algebraic structure of the model is given. As for the

isotropic prestress theory (see Chapter 2), the entire channel domain is characterized for

Its extending over the semi-infinite domain 0 .<_ 15 S oo. The energy distribution in terms

of this parameter as is graphically illustrated in the energy distribution plane as given by

Figure 5.3 and the invariant diagram as given by Figure 5.4. The arrow in Figure 5.3

indicates the energy distribution path for increasing values of Its (i.e. from the channel

center to the wall). The incorporation of the second normal stress difference into the
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anisotropic formulation of the closure (cf. Chapter 2) causes the energy distribution to

deviate from the path for the isotropic prestress theory. Initial deviations (i.e. for small

values of 1(8) proceed closer to the prolate energy state and are therefore in better

agreement with experimental data. The deviations from the isotropic prestress theory

become significant very close to the wall where a two-component turbulent state

dominates. A finite secondary normal stress difference at the wall emphasizes this two-

component character. This effect, i.e. the seemingly sudden break-away from the original

tendency towards a one-component turbulent state to a two-dimensional state at the wall,

can also be observed in the realizability diagram (Figure 5.4). The modeling of the second

normal stress difference through the retardation parameter cm qualitatively captures this

effect. The arrow indicates the path of the invariants for increasing values of {(8. It is

noteworthy that for small values of Its the anisotropic prestress theory is in better

agreement with the numerical data than the isotropic theory in terms of the path of the

invariants. For clarity, cross-references to the spatial locations for numerical data are

omitted from Figure 5.4. Those are included in Figure 1.7 (see Chapter 1).

5.4 Asymptotic Homogeneous Shear

A homogeneous shear flow is characterized by a constant lateral velocity gradient and

a homogeneous distribution of turbulent statistical quantities. This flow field is widely

used to calibrate constants for turbulence models since the homogeneity eliminates the

transport terms (Tavoularis, 1985). Through the presence of the (constant) velocity

gradient the direct influence of the production of turbulent kinetic energy on the

magnitude of C1) can be determined (see Eq. (4.38)). For the calibration of this parameter

only the asymptotic behavior of this flow field is considered. The transient behavior may
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be used to verify the existence of the asymptotic state and to extract additional

information about the dynamic behavior of the theory developed in this research. This

goal, however, is not pursued here. The governing equation for the turbulent kinetic

energy for this flow field can be written as

3_k_
—<uu>:V<R>—8. (5.26)

The implementation of homogeneous shear is done in a channel with a shear flow

generator. The constant velocity gradient is generated by a ‘honeycomb’ generator whose

resistance varies over the height of the channel. This experimental setup used to

implement this flow field results in a developing kinetic energy profile along the

downstream direction of the channel. Taylor’s hypothesis (see Hinze, 1987) is used to

relate the time derivative in the LHS of Eq. (5.25) to a convective derivative. Thus, Eq.

(5.26) can be written as

<R>-Vk=—<R'R'>:V<R>—-8. (5.27)

The spatial homogeneity in the lateral direction which has been verified experimentally

(Tavoularis and Karnik, 1989) to hold reasonably well yields the fact that the transport

terms for this direction could be neglected in Eq. (5.27). Experimental data show that the

omission of the transport terms in the downstream direction can be justified a posteriori.

As Gibson and Kanellopoulos (1987) pointed out, the implementation of statistically

stationary, homogeneous shear flow is strictly speaking not possible. The reason becomes

clear as one analyzes Eq. (5.27). Whereas the RHS of Eq. (5.27) is independent of the

lateral coordinate (the Reynolds stress and the dissipation rate have been shown to be

constant, and the velocity gradient is constant through the experimental setup) the LHS

depends explicitly on the lateral coordinate through the presence of the convective term

(the velocity varies linearly with the lateral position). It is for this reason that this flow

field is commonly termed a ‘nearly homogeneous’ shear field.
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The turbulent kinetic energy k and the dissipation rate 8 have been found to grow

exponentially at the same rate in homogeneous shear flow (Tavoularis, 1985). Thus, the

ratio of k/8 develops an asymptotic state. The asymptotic behavior of k/8 can therefore

formally be expressed as

E. £)=lgl(.__kz_d—EEO. (5.28)

dt 8 8dt 8 dt

The two contributions to Eq. (5.28) are evaluated from the transport equations for k and 8

which can be written as

 

 

dk d<u >

—=—< ’ ’> 2 S—8 5.29

dt uyuz dy ( )

and

d8 8 ,, d<uz> 82
Ez—CP—<Uyuz> dy —CD?. (5.30)

The existence of an asymptotic state characterized by a single time scale k/8 implies an

asymptotic state for the Reynolds stress and the dimensionless prestress since both

tensors are function of kS/8 only (S=constant). From Eqs. (5.29) and (5.30) it can be seen

that both contributions in Eq. (5.28) assume constant values in the limit as the turbulence

structure assumes an asymptotic state. They furthermore provide an explicit algebraic

expression for the asymptotic value of the shear component of the Reynolds stress to

1 l—cD

-R = .

’2 2(kS/8)1-—cp

 

(5.31)

In order to obtain the possible asymptotic states for homogeneous shear, the equations for

the preclosure (Eqs. (2.15) and (2.16)) and the closure hypothesis (Eqs. (3.4), (3.5) and

(3.6)) have to be solved. The parameters ‘a’ and ‘b’ in Eq. (3.5) are chosen to a=~1 and

b=-3 (see Section 3.2). The evaluation of the closure hypothesis yields the following

expression for the deviatoric part of the prestress:





106

1
 

 

H =—c c TS 2 , 5.32

W B R( ‘ ) 3(l+p)2+2(c,,1:,3)2 ( )

3 1+p

H =—c rs , 5.33

’7 2 ”( ‘ )3(l+p)2+2(c,,r,3)’- ( )

C C

Hxx — Hyy = —"——*l(s,3)2. (5.34)

1+p

The factor p appears because the partial derivative with respect to time in Eq. (3.5) does

n_ot vanish as this was the case in fully developed, stationary channel flow. The factor p

appearing in Eqs. (5.32) - (5.34) can be expressed as

p z 93.1 __, (5.35)

The algebraic form for the Reynolds stress components for homogeneous shear thus

changes from the ones developed for channel flow (see Chapter 3) and can be expressed

in the following way:

1 + 3cB('t,S)2(cR(1+ p)—c,,)
 

 

 

= , 5.36

y’ 3 +(1:RS)2 (3+(TRS)2)(3(1+ p)2 + 2(c,,t,S)2) ( )

3 1+ p

—R =1 SR ——ctS , 5.37

’2 R W 2 B ‘ 3(1+ p)2 + 2(c,,«.-,S)2 ( )

c c

Rxx -Ryy = 1‘ *2 (15)? (5.38)

1+ p

An alternative expression for the factor p can be developed using the k-equation to

1 dk kS

=c ——=c 2—R ——1 . 5.39P M 8 dt x1{ ( yz) 8 } ( )

It can be seen that Eqs. (5.35) - (5.37) reduce to the algebraic Reynolds stress structure as

developed for channel flow for p=0. The solution of Eqs. (5.35) - (5.38) is iterative

because Eq. (5.30), which links the 8-equation into the algebraic structure and thus the
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shear stress to the parameters cp and cD, also needs to be satisfied. The value for cD used

in this iteration process has been determined from isotropic decay to be 09:18. The result

of this evaluation is the determination of the parameter Cp as a function of kS/8. If Cp is

known, the theory predicts the existence of exactly one asymptotic state (see also Parks,

1997). Asymptotic states for homogeneous shear for values of kS/8 as high as 6.0 have

been reported (Tavoularis and Corrsin, 1981). However, more recent experimental results

by Gibson and Kanellopoulos (1987) and Tavoularis and Kamik (1989) indicate

asymptotic states with kS/8=4.27 and 4.18, respectively. Figure 5.5 shows Cp for the range

3.0<kS/8<6.5. The dotted line (iterated at discrete points) represents the iterative solution

of the relaxation/retardation theory whereas the points indicate the asymptotic states from

experiments. As Figure 5.5 indicates the parameters set forth do not allow for an exact

match with any of the experimental data. However, the close proximity of the predicted

asymptotic states to the actual observed ones indicates that the theory is capable of

describing asymptotic homogeneous shear qualitatively. The closest distance of the

(averaged) experimental data by Tavoularis and Kamik (1989) to the curve is taken to

obtain an estimate for Cp of 1.51 (see Figure 5.5). The Reynolds stress associated with the

asymptotic states found experimentally are listed in Table 5.1 with references to their

origin. Figure 5.6 graphically displays the experimental data for the Reynolds stress. The

predicted Reynolds stress is included for the range 3.0<kS/8<6.5. It can be seen that the

downstream (i.e. Ru) component and the shear component are estimated to be larger than

observed experimentally. The normal component (i.e. Ryy) is slightly lower in magnitude,

whereas Rxx is in fair agreement with the data by Tavoularis and Kamik (1989). The

remaining experiments show stronger deviation from the predicted curves. However,

those experiments may be interpreted as ‘not yet having attained an asymptotic state’

caused by the inappropriate size of the experimental facility (i.e. the wind tunnel was too

short). The predictions indicate, however, that the shear stress is larger in magnitude than

the cross stream component. The physical significance of this is as of now not clear.
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This ‘phenomenon’ is, however, not observed in any of the cited experiments

notwithstanding at what value for kS/8 the asymptotic state is attained. In view of the

strong reliability of the experimental data by Tavoularis and Kamik (1989), a value of

Cp=1.51 will be assumed for the further development of the theory.

5.5 Equilibrium Region in Channel Flow

The equilibrium region in channel flow designates a domain in which turbulent

kinetic energy is balanced by the dissipation (Tennekes and Lumley, 1972; Abid and

Speziale, 1993) and often called the constant-stress region. The analysis of this inertial

sublayer (see also Chapter 1) yields an a priori expression for the transport coefficient ca

in the 8-equation. This region extends over a small portion of the channel domain outside

the buffer layer for which y+ 2 30 (Tennekes and Lumley, 1972; Chapter 1). The use of a

velocity profile which is entirely represented by a logarithmic behavior (i.e. Om-order

approximation) in this region of the domain does not satisfy the momentum equation. For

this reason a ls‘-order analysis (see Appendix E) is done which retains an additional term

in the expression for the velocity profile. This extension therefore ‘allows’ variations in

the shear stress. The algebraic relation of ca derived from the Om-order approximation is

unaffected by this expansion. Higher order expansions are not considered. It does,

however, provide an a priori expression for the transport coefficient ck in the k-equation

if data for the kinetic energy k, the dissipation rate 8 and the eddy viscosity as defined by

Eq. (1 .25) are available.

The derivation for the 15‘-order approximation is given in Appendix E whereas the

Om-order formulation is presented here since it is the basis for the determination of the

transport parameter cg. Some qualitative results from the ls‘-order expansion will be used

in the discussion for the numerical study of the channel flow calculation (see Chapter 6).
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The equilibrium layer in channel flow is characterized by a vanishing influence of the

viscosity. For high Reynolds numbers an asymptotic analysis eliminates the explicit

dependence of the shear stress on the distance from the wall (i.e. y/S) (see also Chapter 1).

The integrated momentum equation as given by Eq. (1 .9) can therefore be reduced to

— < u;u; >= uf. (5.40)

The wall shear stress in Eq. (1.9) has been substituted using Eq. (1.13). From this

asymptotic analysis it can be seen that the equilibrium region is often referred to as a

constant stress region. The premise that the production and dissipation of kinetic energy

are balanced can therefore be expressed as

e . 1

"RV: = 2(kS/8)"“' ’ (5'41)

which provides an analytical expression for the magnitude of the Reynolds shear stress

for a given value of kS/8. With the parameters cR=0.428, c5=0.195 and CM=O.644 the

expression for the shear component (i.e. Eq. (5.19)) is used to determine the equilibrium

value for kS/8 to 3.05. The fact that the production and dissipation of kinetic energy

balance can be used in combination with Eq. (5.40) to relate the dissipation to the

gradient of the mean velocity in the following way

 + _—_ 2*. (5.42)

With a logarithmic profile for the mean velocity according to

u’ zi—ln y+ +B. (5.43)

The functional behavior of 8 can be given as

8+: 1 . (5.44)
+

icy
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Eqs. (5.41) - (5.44) can be used to derive an expression for the eddy viscosity as defined

by Eq. (1.25) to

V
_:= +, 5.45
v Ky ( )

which indicates a linear behavior for the eddy viscosity ratio in the inertial sublayer. The

transport equation for the dissipation rate 8 (Eq. (4.39)) can be written as

d k2 d8 8 , , d<uz> 82
_d—y(2CRCE?RWd—y):—Cpk<uyuz> dy —cD?. (5.46) 

The functions fp and fly in Eq. (4.37) are assumed to have a negligible influence in the

inertial sublayer where the turbulence Reynolds number is large. Therefore, in this

analysis both these functions assume unity. With a constant lead term for k+ (i.e. k+=k+eq)

in the inertial sublayer the behavior of Ryy is subsequently constant and can thus be

removed from the derivative. Eq. (5.46) can therefore be rearranged to read

d_(1d€) <u;;u>d<uz> c 82 (547)——_—' _ —C _ _. .

“2“Ryydy 8dy Pk dy Dk

 
—2cRck

With S+ derived from Eq. (5.43) and 8+ from Eqs. (5.44), the following analytical

expression for cE is obtained

(cD —cP)

=—_, 5.48
c5 2K2cRRyyk+3 ( )

The values for Ryy and k+ have to be evaluated at (kS/8)eq.=k+cq which was determined to

k+eq=3.05. With cD=l.8, Cp=1.51, cR=0.428 and K=0.41, an estimate for 05:0.374 is

obtained. With the eddy viscosity represented by Eq. (5.45) and the velocity profile by

Eq. (5.43) the momentum equation as given by Eq. (1.7) can be expressed as

d<uz>

dy

 
d , , d

d—y(—<uyuZ >)ZEW' )=0 (5.49)
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This asymptotic analysis resembles the O‘h-order approximation. It indicates that the net

change in the turbulent momentum is not balanced by the pressure gradient as illustrated

by Eq. (1.7). Note that the molecular viscosity does not influence this result (y+ » 1).

The 15t-order approximation does not constitute an asymptotic analysis in the strictest

sense since it allows linear terms in y/5 to enter the analysis while retaining the condition

that y+ » 1 (see Appendix E). If the linear term is retained in the representation for the

velocity profile (Eq. (E.4)), the momentum equation for channel flow,

 = —_ (5.50)

is exactly satisfied. This analysis can be used to derive an analytical expression for the

transport parameter ck to:

2 + a1 + cl

2b,i<2ch;f_R;;A '

Ck—

 (5.51)

The parameters a1, b1 and c1 denote the coefficients for the 15t-order expansion of the

eddy viscosity Vt, the kinetic energy k and the dissipation rate 8 (see Appendix E). The

appearance of c] requires knowledge of the behavior of 8, a statistical turbulent quantity

which is hardly assessable experimentally. Thus, Eq. (5.51) emphasizes the importance of

direct numerical simulation data for modeling purposes inasmuch as estimates of

parameters difficult to assess can be given.

5.6 Near Wall Behavior

The algebraic structure of the Reynolds stress model is developed to comply with the

correct near wall behavior as outlined in Appendix F. The functions fin and additional
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provisions for fD introduced into the associated transport equations for the dissipation rate

will be developed here in the context of channel flow. The algebraic structure for the

normal component of the Reynolds stress is given by Eq. (3.13) to

1+ 2(IRS)HYZ +3Hyy

’7 _ 3+(TRS)2

 (5.52)

The isotropic prestress formulation was used to develop the functional form of ”CR to

extend the applicability of this theory for the near wall region. For large values of 1.8 the

shear component of the anisotropic prestress, i.e. Hyz, behaves as (1.8)] whereas its

normal component Hyy is on the order of one (see Eqs. (3.17) and (3.19)). Thus, the

anisotropic prestress formulation renders Ryy ~ (1(8)2 or Ryy ~ y2 which complies with the

correct asymptotic near wall behavior (see Appendix F). The correct near wall behavior

for the shear component can readily be deduced from

- Ry, = 1:,SRyy - Hy, (5.53)

which behaves as being proportional to (“1:18)1 or -Ryz = 0(y). For large values of Its, Eqs.

(5.52) and (5.53) yield restrictions as to the admissibility of combinations of CR and CB.

For ttS—) oo, Eqs. (5.52) and (5.53) can be evaluated subject to Ryy > 0 and -Ryz > 0

(experimental data for Ryy and -Ryz indicate that both Reynolds stress components are

positive in the near wall region), respectively, to yield

 

2

C13 < 3 C“ (5.54)
3 cM —cR

and

4 2

c, < ———9A—, (5.55)
3 2c“ —cR

of which the latter includes the former restriction. With the selection for cR and c5 made

based on the least square analysis, the compliance of these restrictions is given.
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The pressure diffusion in the transport equation for the kinetic energy behaves as O(y)

whereas the turbulent energy transport behaves as O(y3) (see Appendix F). The modeling

approach taken to represent the turbulent diffusion in this research has been developed

(see Eq. (4.16)) to be

V-(< R'%>+<R'%>)=—V~(CRTR <R'R'>-Vk). (5.56)

The RHS of Eq. (5.55) behaves as O(y3). With the provision made in Chapter 4 that both

terms are represented by a gradient type model it can be seen that the modeling approach

taken here strictly accounts only for the correct behavior of the (instantaneous) energy

diffusion term and not the pressure diffusion term. The modeling of the transport terms in

the 8—equation has been done in analogy to the modeling of the equivalent terms in the k-

equation. The model expression for the transport term is given to

vV- < R'{(VR')T:VR'} >= —V-(c€'tR < R'R'> V8). (5.57)

The RHS of Eq. (5.57) can be determined as O(yz). The LHS of Eq. (5.57) is, however, of

O(y). A consequence of the model expression as it is developed in Chapter 4 for the

transport term in the 8—equation is thus not capable of correctly describing the near wall

behavior if cE is assumed to be constant. The modeling of the diffusional transport of 8 by

pressure fluctuations which is - analogue to its counterpart in the k-equation - the

dominant term as the solid wall is approached is omitted in this approach.

The behavior of all production terms (see Eq. (4.2)) can be evaluated from a Taylor

series expansion as

4

2?; = O(y). (5.58)

In accordance with Eq. (4.35) those terms are represented by
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<RRxV<R>

2P; = —c,.f,, . (5.59)

1:] T!

 

The time scale It - taken to be k/8 - behaves as O(yz). For channel flow the only Reynolds

stress component contribution to the production term is the shear component. Thus, for

0pr of order unity, the RHS of Eq. (5.59) behaves as O(y). Therefore, the function fp is

not used for adjustments towards the correct asymptotic near wall behavior. If the

dominant terms contributing to all the production terms (Mansour et al., 1989; Rodi and

Mansour, 1992) is examined, the function fp can be crafted to comply with numerical

values. The high Reynolds number value for Cp (i.e. fp=1) has been as determined from

homogeneous shear to be 1.51. To determine the equivalent value for small turbulence

Reynolds numbers Rel (i.e. near wall approach in a channel) the numerical results from

the DNS-calculations by Mansour et. al (1989) and Rodi and Mansour (1992) are

examined. Eq. (5.59) can be rearranged to read

d<uz>

dy '

 

4

2 P; = 2c,f,e(—Ry,) (5.60)

1:]

The asymptotic behavior of -Ryz for large values of IS (i.e. small turbulence Reynolds

number in channel flow) can be obtained using Eqs. (3.13), (3.14), (3.17) and (3.19). The

numerical data available are reported in a normalized form (i.e. normalized with

(u?/ v2 )) which renders the normalization of Eq. (5.60) necessary. For small Reynolds

numbers an evaluation of Eq. (5.60) yields

 

4 . J5 7 +

2F,“ V00 : {2—5C‘°")c,,fpo(8:v )A}y , (5.61)

i=1

with C(°°) given by

c

8‘") = 1+ 2—‘-’-(C—R— 2). (5.62)

CM CA!

The parameter fpo represents fp for small Reynolds numbers (Re.—>0). From Figure 5.7
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which presents the behavior of the production terms P; +Pfi2 +P: for the DNS-data

obtained by Kim et al. (1987) and Kim (1989) in channel flow the coefficient for the

linear term (i.e. the bracketed term on the RHS of Eq. (5.60)) is obtained. With Cp=1.51,

an average value of fpo=2.66 was obtained. A proposal for the functional dependence of fp

on the turbulent Reynolds number is made to

fP =1+(2.66—1)exp{—B—&}. (5.63)

a

The value for ‘a’ is chosen such that the function fp deviates by no more than 2% from

unity in the equilibrium region which is taken to occur at Ret=150 (see Section 2.3). This

criterion renders a to a value of 30.

The function fl) is decomposed into two independent terms, ft!) and f9,” , respectively.

The function f1’) has been determined from an isotropic flow field (see Section 5.1). f: is

necessary in order to be able to adequately represent channel flow. The reason becomes

clear by examining the structure of the destruction term in the transport equation for the

dissipation rate (Eq. (4.35)). Since the kinetic energy vanishes at a solid wall, the

destruction term becomes unbounded and can therefore not be integrated towards the

wall. Furthermore, the DNS-data by Mansour et al. (1989) and Rodi and Mansour (1992)

show that this term assumes a finite value at the wall. Therefore, the functions fl’, and fgv

are used such that both flow fields (isotropic decay for small turbulent Reynolds numbers

and channel flow in wall proximity) are adequately represented. A formal representation

of the destruction term in the 8-equation is given to

2

w§_
'y = —ch[I)fD k . (5.64)

The function fl; is taken from the proposal made by Hanjalic and Launder (1976). The

function f9)” constitutes the necessary extension in order to properly describe the near

wall behavior in channel flow and insures that the destruction term can be integrated
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towards the solid wall. A formal proposal for fl? can be given as

1

fw =———. 5.65

D 1+b(1:,S)2 ( )

The reason for the introduction of the turbulent Deborah number 1,8 stems from the

necessity that ff)” has to assume unity in an isotropic decaying flow field and needs to

provide a means to compensate for the kinetic energy appearing explicitly in Eq. (5.64).

The parameter ‘b’ is used as an adjustable parameter to comply with the DNS-data for

channel flow. With respect to the limiting behavior as a wall is approached (i.e. 138—>00;

Ret—>0) the destruction term can be rewritten as

2%

7w = -CDf§;W. (5.66)

The subscript ‘0’ indicates the use of values for which Ret—>0. S represents the mean

velocity gradient and c3, arises through the time scale 13:. Available numerical simulation

data present the destruction term in normalized form similar to the production terms (i.e.

normalized with (uf/v2)). Thus, after a normalization of the RHS of Eq. (5.84), the

parameter b can be expressed as

+2.5

8

b = — f‘” —‘1—— . 5.67
CD Do Viv-11038” ( )

With available DNS-data (7;, =-0.02 for 52180; 7;, =-0.03 for 52395) and S+ assuming

unity at the wall, an average value of b=1.48-10’3 was determined. With the equilibrium

value of 1:.S=3.05 the function fly assumes unity within 2% such that b can be taken to be

constant.
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5.7 Summary and Discussion

The parameters of the turbulence model developed in this research are summarized in

Table 5.2 with respect to their origin. The determination of the transport parameter ck is

integral part of the numerical predictions and is described in Chapter 6. The flow fields

have been analyzed to the degree that was necessary for the determination of the model

parameters used in this research. The algebraic structure of the theory with the time scale

as introduced in Chapter 2 for compliance with the asymptotic near wall region has led to

a realizable Reynolds stress model provided the kinetic energy and dissipation rate are

both positive.

The decay of isotropic turbulence has been decomposed into two temporal regions for

the purpose of analysis, i.e. the initial and final decay period. The high Reynolds number

experimental data (i.e. the initial decay period) seem to be fairly reliable since those data

could be reproduced well through direct numerical simulations experimental data. The

final decay period (i.e. Ref->0) has been analyzed theoretically and numerically. The

limiting behavior for Rep->0 developed theoretically to yield the parameter CD to be 1.4

was confirmed through the DNS-data for very small Reynolds numbers. The initial

energy spectrum used as an input to the simulations by Mansour and Wray (1994) and the

increasing lengthscale for very small Reynolds numbers endow the exact determination of

CD with some ambiguity. The numerical proximity to the theoretical predictions, however,

amplify the reliability of those simulations. The functional behavior for f1; was adopted

from the proposal for fD made by Hanjalic and Launder (1976) and constitutes only one of

many proposals available in the literature. Improvements of this function are primarily

based on empirical fits to DNS- or experimental data (if available). The proposal adopted

satisfies the limiting behaviors and provides the important feature that it renders a

realizable decay process inasmuch as the turbulent kinetic energy k and the dissipation

rate 8 vanish simultaneously (see Section 5.1).
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The model developed for the flow field initially anisotropic through the presence of a

shearfield returning to an isotropic turbulence state constitutes the precursor to the

isotropic decay process. The time scales for the return process are of the same order as the

mean field time scale such that the return to isotropy occurs simultaneously to the decay

of kinetic energy. This flow field is modeled through the closure hypothesis set forth in

this research as a linear model as given by Eq. (5.16). Lumley and Newman (1977)

concluded that the rate of return for high Reynolds numbers is entirely nonlinear. The

model set forth in this research to describe retum-to-isotropy does not account for those

nonlinearities. However, the experimental data of Choi (1984) for plane distortion and

axisymmetric expansion can be fairly well represented with the proposed form of the

model (see Section 5.2).

The calibration of the algebraic form of the Reynolds stress model has been done in

strong compliance with DNS-data acquired for turbulent channel flow. The correct

limiting behavior of the turbulence model for 1.8—>00 is achieved through the empirical

extension of the time scale as presented in Chapter 2. An analytical expression relating CR

and CB is obtained from the asymptotic behavior of the shear component for small values

of 1.8 (i.e. in the core region of the channel). The normal component Ryy does not enter

the analysis for t.S—>0 since the structure of the model predicts an isotropic turbulence

state whereas an anisotropic state with a somewhat smaller magnitude for Ryy is observed

experimentally. The particular form of the time scale chosen provides a realizable theory

for simple shear flow (provided k>0 and 8>0). The retardation term introduced in the

phenomenological closure prohibits the unbounded growth of the secondary normal stress

difference. An important issue arises through the question of whether the general form of

the new time scale It used for the algebraic formulation of the model restricts the theory

in its applicability in wall proximity. The asymptotic near wall behavior as outlined

indicates a unique behavior for the Reynolds stress components. In a simple shear field
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such as channel flow the components are destined to proceed in the range of O<ttS<oo.

This behavior leads to the two-dimensional state at a solid wall. However, Lee et a1.

(1990) investigated the structure of turbulence at a high shear rate without the presence of

a solid boundary (i.e. the kinetic energy does not vanish) and found that similar structures

can be found. Their conclusion was that the presence of high shear is sufficient to

produce similar structures as the presence of solid boundaries. However, their conclusion

that high shear ultimately generates a one-component velocity field is subject to further

investigation since their data do not reveal unambiguous evidence for this. Thus, the

particular form of the time scale used in this research provides a means to increase the

magnitude of the shear parameter 1,8 in the near wall region through the unbounded

growth of 1:... Without the presence of a wall, the same effect is achieved through a large

shear.

The evaluation of homogeneous shear does show the similarity to channel flow which

also constitutes a simple shear field. Some scatter in the experimental data did not ‘allow’

the determination of a universal parameter. However, in the context of this research the

estimated value of cp=1.51 is considered an universal parameter. The existence of a range

of possible asymptotic states for the long time behavior may yield alternative

formulations of the high Reynolds number limit for the parameter c1: and probably include

dependencies on the turbulent Deborah number ms. The existence of multiple asymptotic

states is intrinsic for two-equation models using eddy viscosity models as Speziale (1991)

pointed out.

The analysis of the equilibrium region from asymptotic considerations provided an a

priori estimate for the transport coefficient CE. The extension to the first—order solution

proved necessary for the momentum balance to be satisfied. It moreover provides an a

priori estimate for the transport parameter if adequate data are available (esp. for 8). The

reevaluation of the transport parameter ck which has been omitted by many researchers is
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done using the centerline value of k since ck directly relates to the transport of k and thus

determines its magnitude. The fairly easy experimental access to this value endows the

choice for the determination of ck with some importance.

From the near wall behavior, qualitative and quantitative information are derived and

incorporated into the functions fp, f1; and fl? . Numerical values for small Reynolds

number regions (i.e. in wall proximity) are estimated from numerical simulations (Kim et

al., 1987; Kim, 1989). The modeling of fp was done in compliance with values for the

turbulent production of dissipation for turbulent Reynolds numbers Re, in the range of

0<Ret<100 (Mansour et al., 1989; Rodi and Mansour, 1992). The modifications to

incorporate low Reynolds number regions for fD was done by separately considering the

near wall region (i.e. f9," , channel flow) and isotropic decay (i.e. ff) , for which the strain

rate is absent).



CHAPTER 6

MODEL PREDICTIONS FOR FULLY DEVELOPED CHANNEL FLOW

The turbulence model developed in this research is investigated with regard to three

different aspects. The first part contains a parametric study in order to obtain insight into

the energy distribution and its dependence on the parameters CR and C5. The consequence

of variations of these parameters with respect to the turbulence states as illustrated in the

invariant plane are presented and discussed. The second part of the study consists of a

numerical study in the outer region of channel flow in order to test the influence of the

Reynolds number. For this part a complete well-defined boundary value problem is

solved. Explicit influences of molecular viscosity are omitted from the transport terms in

the associated differential equations and enter the system through the boundary

conditions. The determination of the transport parameter ck is an intrinsic part of this

calculation. The numerical method employed is presented as part of the investigation and

the numerical code including an example can be found in Appendix F. The last part

involves the investigation of the influences on the Reynolds stress exerted by the prestress

as given through the anisotropic closure. The purpose of this investigation is to extract

some key features of this closure approach and is therefore done at a constant Reynolds

number.
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6.1 Parametric Investigation of the APS-theory

The parametric study is performed by changing the parameter CR within certain limits

to obtain an understanding of its influences on the energy distribution path and the

attainable turbulence states. Since the parameter C5 is coupled to CR via Eq. (3.31) the

explicit variation of this parameter is not required. This coupling restricts moreover the

parameter space to investigate to a one-dimensional space. The specific formulation of

the normal component Ryy and the shear component -Ryz allows the uncoupled

investigation of the above parameters from the behavior of the second normal stress

difference (i.e. the second normal stress difference is not influenced). The study is

performed using the algebraic structure of the theory as given by Eqs. (3.13) — (3.15) and

does therefore not require the solution of the associated transport equations.

The isotropic prestress theory as developed in Chapter 2 rendered a vanishing

secondary normal stress difference for which

dRu

on
Y)’

 
=—2. (6.1)

The implication of this theory (IPS) is that all the energy is transferred into the

longitudinal component. For small values of Its, the relative change of Rzz with respect to

Ryy for the anisotropic prestress theory (APS) developed in this research (i.e. for

cR=0.428) assumes a value -1.576 (cf. 5+=180 —-> —0.936, 8":395 —> -1.088) and indicates

a more ‘rapid’ energy transfer into the longitudinal component (i.e. Ru) than the DNS-

data show. This effect may reflect the fact that the numerical results show an anisotropic

turbulent state at the channel center whereas the anisotropic as well as the isotropic theory

reflect isotropy. This can be seen in Figure 6.1 in the enlarged section for the center

region. A transfer of energy to equal amounts from Ryy into Rxx and Ru would be attained

both for cR=0.188 and cR=1.377. It appears that in the outer region (see cross-reference to

the spatial locations) larger parameters for CR agree qualitatively better with the energy
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states as illustrated by the DNS-data whereas within the equilibrium region smaller values

show better agreement.

In the near wall region, for which the influence of the second normal stress difference

plays a dominant role (see also Chapter 5), it is the smaller magnitude for cR which

provides more influence of the normal component Ryy. For small values of Ryy, it is the

secondary normal stress difference which causes the two-dimensional turbulence energy

state near the wall. The almost parallel energy distribution path of the DNS-data in the

near wall region indicate that once Ryy is small enough the energy distribution takes place

entirely among Rxx and R22 both of which are controlled by the secondary normal stress

difference in this region (see enlarged region for the wall region). The value of cR=0.428

developed for the APS-theory adequately describes this behavior.

The turbulence states associated with the parametric study are further illustrated in the

realizability diagram as given by Figure 6.2. The tendency that for small values of ‘ttS (i.e.

close to the center) larger values for cR would represent the invariant path more

accurately, as the energy distribution plane indicated, can not be confirmed. Small values

for CR do not show good agreement with data. A value of cR=0.188 even causes the

flowfield to follow an initial path towards an oblate turbulence state for which IIIB<0, a

fact not observed experimentally or obtained numerically. This trend (i.e. IIIB<0) is also

observed for very large value of CR (i.e. cR=l.377), even though the region of influence

decreases significantly. The improvement of the anisotropic prestress theory (APS) over

the isotropic prestress theory (IPS) in this region is achieved through the presence of the

second normal stress difference which has already been pointed out in Chapter 5. The

value for cR adopted for this research indicates an adequate representation in this region.

For the equilibrium region (see Figure 1.7 for spatial cross-reference) slightly smaller

values for on seem to better follow the invariant path as indicated by the numerical

simulations (esp. for the data by Kim, 1989). This is also observed in the energy
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distribution plane. Thus, explicit dependencies of CR on local turbulent parameters may

prove beneficial for numerical predictions. The parametric study also shows that smaller

values for CR cause larger deviation from the numerical results in the near wall region.

An alternative view of the influences of cR is offered through the spatial distribution

of the normal stress component Ryy near and at the channel center (i.e. the approach

towards isotropy) presented by Figure 6.3. The rate at which the isotropic state is attained

is controlled by the magnitude of On. A larger magnitude tends to force the turbulence

‘faster’ towards isotropic (indicated by the arrow for increasing values of CR). However,

for values beyond a certain limit this tendency seems to be reversed towards a slower

approach for a position close enough to the center (i.e. indicated by cR=1.377). Whereas

the IPS-theory predicts energy equilibrium for cR=O, the APS-theory tends to shift energy

into the normal component for a value of cR=0. This effect is caused by the imposed

restriction according to Eq. (3.31) which renders on negative. The consequence is that the

prestress component Hyy constitutes a (positively) contributing component to Ryy (cf. Eqs.

(3.13) and (3.17)).

6.2 Numerical Prediction for the Outer Region of Channel Flow

6.2. 1. Model Formulation

The mathematical model for the momentum equation is developed from the Reynolds

equation given by Eq. (1.1). The associated transport equations for the kinetic energy and

the dissipation rate are given by Eqs. (4.34) and (4.35). This section deals therefore solely

with the formalism involved for the numerical implementation of these equations. Upon

integration of the momentum equation and application of the associated boundary
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conditions the following form is obtained (see Section 1 for details) to

—p<u;u;>=tw(1—%). (6.2)

The molecular viscosity was neglected in Eq. (6.2) since the outer region of the channel is

under consideration. Similarly, under omission of molecular transport, the transport

equations for k and 8 can be reduced to

 

 

0 d( k< ’ ’>dk) < ’u’>d<uz> 8 (63)=—cc— uu —- u — .

d kR8 ’y dy ’2 dy

and

O ( k‘< ,,>d8) 8< ,,>d<uz> 82 (64)

=—cc— uu ——c— uu —c —. .

dy‘R8 yytly Pk H dy Dk

The functions fp and fly (see Chapter 5) assume unity. Explicit influences of molecular

viscosity enter through the boundary conditions (esp. in the equilibrium region).

However, for the numerical implementation Eqs. (6.2) through (6.4) are normalized using

the kinematic viscosity v, the friction velocity u* and the channel half width 5 as given

below. This normalization follows the practice often encountered for this type of

flowfield (see Yang and Shih, 1993; Demuren and Sarkar, 1993).

  

  

5u.

nzi, 11*: 1‘1, 8+: u+:<uz>,

5 p V u.

k 8v - <u’u’ > < u’u’ >
[(+2 M 8+: , —R =___Y_Z__, R :__Y__Z__. (,5

u: u? ’2 2k ” 2k ( )

Eqs. (6.2) through (6.4) can thus be rewritten to read

_1__du’ _€+(1-T])

8‘ dn — gk+2 ’

 

(6.6)
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d 1t+2 1dk” 1t+2 1 cm4’
   

  

—— 2 -—R — = — 2 —5+ ’, 6.7
dT]( Cch 8+ yy 5+ dT] ) g 8+ 8+ CIT] ) 8 ( )

and

d 1t+2 1 d8’ , 1 du’ ,t:+2

__(2C8CR FR” 57-31?)=Cpgk g:( d,“ )2 "CD5 k+ ' (6'8)

The normalized shear stress has been incorporated into Eqs. (6.3) and (6.4) using the

following definition

- R = ———'+—— , (6.9)

where g is given by

CB
g=2c R — .

R ” 1+-§-(e,,1tS/e)2

 (6.10)

The velocity gradient S is given by Eq. (2.30). Eq. (6.10) resembles the analogue of the

coefficient cu for the eddy viscosity as defined by Eq. (1.3). The boundary conditions in

the equilibrium region at y+ = 30 are derived from the Om-order analysis as given in

Chapter 5 whereas the boundary conditions on the centerline of the channel are given

through the symmetry condition which states that the flux of k and 8 must vanish. Thus,

11 = n... = (%),q,: k’ = 3.225, e+ = 0.081, u+ = 13.8, (6.11)

and

  

= 0 and =0. (6.12)

The value for neg. is found by substituting expressions for y and 8 in terms of y+ and 5+

(i.e. Eqs. (1.12) and (6.5)).
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6.2.2 Solution Strategy

The numerical scheme uses a finite difference scheme to approximate the differential

equations for k and 8. The formal implementation for the finite difference scheme

includes the convective term in these equations which can thus be given as

 
 

 
 

 

316 a 1t+2 1 316 1t+2 1 du" , + +
u BE, =an(2ckch—a, R”5—+an)+g8+ 5+(dn) —58 (6.13)

and

+88“ 8 k+2 1 38+ + 1 du 2 +8+2

u 5E =a—n-(2ccR—8+ RW—5+ —)+CP31‘|g—-k57 CD5 k” , - (6.14)

where g represents the coordinate normalized by 5. The normal velocity component

v’ =< uy > /u. is set to zero such that convection is only represented through streamwise

terms. The finite difference scheme resulting from this formulation is implicit in the

streamwise direction (i.e. z-direction) inasmuch as the diffusive terms are evaluated at the

location of interest whereas the coefficients of the convective terms are evaluated at the

previous streamwise location. The momentum equation is used in its integrated form to

update the velocity gradient and the velocity at each new location along the channel. The

source terms are linearized such that numerical stability is ensured. This approach follows

“common practice” and can be found explained in detail in Patankar (1980). Details of

this procedure and the complete implementation of the finite difference scheme is given

in Appendix G.

Convergence of the numerical solution is given when the dependent variables do not

change in the streamwise direction, thus representing a fully developed state. To verify

this, several local dependent variables as well as some integral properties are monitored.

The monitored local variables are the kinetic energy, the dissipation rate, and the velocity

at the centerline. The global properties chosen for monitoring are an average velocity (for
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neq.<n<1) given by

= 1 J<uz>(n)dn, (6.15)8V.

 

and values for the global production and dissipation given by

   

 

1 ‘ k+2 l du’ ,
= — d 6.16

01. 1_neq‘ neq‘g 8+ 8+ dn ) Tl ( )

and

1 1 8+2

80,. = j CD5+FdT]. (6.17)

1- n... 4,,

Two different computational grids have been investigated, one resembling the (cosine-

distribution) mesh used by Kim et al. (1987) given through

j-l

M—

 

n .

n=(1-neq.)(1—cos( 13))+n,q. j=1,2,...,M (6.18)

while the other is given using a power law expression according to

j—l

M—l

 

n=(1-n.q.)( )" +n,,, j=1,2,...,M (6.19)

The difference between the global production and dissipation (i.e. the difference between

Eqs. (6.16) and (6.17)) can be interpreted as the flux of kinetic energy at 11:11“). which

can be verified by integrating Eq. (6.7) and applying the boundary conditions (i.e.

Eq.(6. 12)). Thus, a connection between a local property of the flow to a global property is

given. This fact was also used to investigate the influence of the different computational

grids. It was found that a mesh size consisting of 150 grid points is sufficient for both

meshes under consideration.
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6.2.3 Results

The computations for the outer region of fully developed channel flow are presented

here. The unknown transport coefficient ck in the k-equation is evaluated by matching the

value of k+ on the centerline with the one given by experimental measurements (Laufer,

1951). The experimental value was found to be k+CL=0.77. The fact that the level of k+ is

directly influenced by its transport term led to the choice of this quantity for the

determination of ck. The value thus obtained for ck was 0.558. The provisions made to a

priori estimate this transport coefficient using Eq. (5.51) (see Section 5.6) is employed to

investigate the feasibility of this approach. A least squares analysis for the DNS—data by

Kim et al. (1987) and Kim (1989) for 30<y+<40 according to Eq. (5.51) yields values for

ck of 0.165 and 0.824, respectively. This analysis illustrates the potential of using Eq.

(5.51). The scatter in the parameter ck thus obtained, however, does not indicate a

‘universal’ value for ck. The value for ck obtained by matching the value for k+ at the

centerline is therefore endowed with more reliability.

The computations presented here were repeated for various Reynolds number (i.e.

various values of (y/5)cq,). The results are compared with other Reynolds stress models

introduced in Chapter 3 wherever applicable. The results for the eddy viscosity are

compared with the approximation as given in Chapter 1. Rodi’s (1976) explicit

prescription for the eddy viscosity coefficient on will be estimated using DNS-data for

5+=395 in order to compare his derivation with the prediction made in this research.

Estimates of the friction conclude the numerical computations.

Turbulent Kinetic Energy and Dissipation Rate

Profiles for the kinetic energy profile are given in Figure 6.4 The experimental data

from measurement by Laufer (1951) in channel flow at a Reynolds number Re=30,800
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compare to 5+=1,200. The DNS-data for Re=3,250 (5+=180) and Re=7,890 (5+=395)

calculation are also included in the Figure. Additional computational data by Nisizima

and Yoshizawa (1987) and data from a feasibility study by Speziale (1987) are included.

Both of the latter data are comparable to Laufer’s data. The comparison between the

predicted profile and the experimental data show similar monotonic behavior. The

deviation between those profiles within the domain ranges from about 7% to 20%. The

smallest deviation is observed for Re=30,800. For high Reynolds numbers, the predicted

turbulent kinetic energy is in fair agreement with experimental data. It is evident from the

graph that the computed profile shows a steep descent near its equilibrium value. The

value of k+ at the centerline increases slightly with decreasing Reynolds number. The

behavior of k+ at n=1 shows the boundary condition of a vanishing derivative.

The computed dissipation rate is shown in Figure 6.5. Experimental results extracted

from Laufer’s (1954) pipe flow data as well as the computations by Nisizima and

Yoshizawa (1987) are included for general comparison. All computed profiles show a

monotonically decreasing behavior starting at a value of 8+=0.081 (n=neq). A decrease of

8+ with increasing Reynolds number (i.e. increasing 5+)is observed at the centerline.

Whereas the experimental/numerical data indicate the approach towards some limiting

value as illustrated by the small graph inside, the computed profiles seem to continue to

decrease. The overall agreement of computed values and DNS-data is evident from the

figure.

Mean Velocity Profile and Shear Stress

The mean velocity profile for the outer region is given in Figure 6.6. The

experimental data resemble the experiments by Laufer (1951) for the various Reynolds

numbers
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indicated (Re based on 5 and U0). Included in the figure are the DNS-data. The data are

presented in wall-coordinates. All profiles show the anticipated logarithmic profile in the

equilibrium region. The arrow shows where deviations from the log-law can be seen

(5+=1,200), indicating that the equilibrium region is indeed a small region of the flow

domain. The calculated velocity profile for 5+=180 is in accordance with the DNS-data.

The underprediction in comparison with Laufer’s data has been attributed to the small

value for the Karman constant of K = 0.35 (see Chapter 1). A slight overprediction can be

seen for 5+=395. The region outside the log-layer is the core region (see Figure 1.2). This

region is characterized by the velocity defect law which resembles the similarity law for

the mean velocity profile at and near the centerline (see Chapter 1). Figure 6.7 shows the

velocity defect profile for flows at different Reynolds numbers (Hussain and Reynolds,

1975) and computed profiles at two different Reynolds numbers. The high Reynolds

number DNS-data are also included. The computed velocity profiles show good

agreement with the experimental data by Hussain and Reynolds (1975) as presented.

The shear stress profile (normalized by 2k) is given in Figure 6.8. Experimental data

by Laufer (1951), direct numerical simulation as well as computations by Nisizima and

Yoshizawa (1987) are included. The predictions done with the relaxation/retardation

model show a slight Reynolds number dependence at the boundary in the equilibrium

region which diminishes once the Reynolds number is large enough. The fact that

Reynolds number influences only enter through the boundary condition at ncq causes all

curves to collapse for n—>1. This behavior is moreover expected since for small values of

as all profiles satisfy Eq. (3.31). Thus, the influence of the Reynolds number is only

given for predictions with 10w Reynolds numbers. The largest deviations (up to 50%) of

the predictions occur near the equilibrium region if compared with the DNS-data.

Comparable results are obtained with respect to the experimental data.
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Turbulent Shear Parameter

Figure 6.9 shows the computed profile for the turbulent shear parameter ttS. The

dependence on the local turbulent Reynolds number does not affect the calculation since

it only appears in the near wall function cw which has been omitted from this calculation

in the outer region. Thus, with cR, CB and cm specified (see Chapter 5), it is the spatial

distribution of the turbulent shear parameter which uniquely determines the spatial

distribution of the Reynolds stress and the prestress. Therefore it is crucial to examine the

behavior of this shear parameter in order to draw upon the behavior of the Reynolds

stress. In the equilibrium region the shear parameter assumes a finite value of 138:3.05

(for Re large). 1,8 is determined from the asymptotic solution of the equilibrium region

for which the dissipation rate 8+ equals the velocity gradient 8*. Thus, the value for Its

equals k+ and can be determined from the algebraic structure of the normalized shear

component (see Chapter 5). The value for 1.8 increases slightly to a value of 1(S=3.10

which prevails to about 11:04 and decreases monotonically thereafter towards zero at the

centerline. The almost constant behavior of this parameter over a wide region of the

channel is a phenomenon which has also been observed in the DNS-calculations by Kim

et al. (1987), Kim (1989) and the channel flow computation by Demuren and Sarkar

(1993). Since the predictions of the mean velocity profile compare well with experimental

(Laufer, 1951) and numerical data (Kim et al., 1987; Kim, 1989) it is presumed that the

dynamics of the k and 8-equation determine the behavior of Its in this region. The

experimental data by Laufer (1954) appear to agree in magnitude near the equilibrium

region.

Budgets ofKinetic Energy and Dissipation Rate

In order to understand the behavior of the shear parameter it is necessary to examine

the budgets for the transport equation as given by Eqs. (6.7) and (6.8). Their respective
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budgets are given in Figures 6.10a and 6.10b for 5+=1,200. The dissipation terms in both

figures is accounted for as a loss and therefore presented as negative values. The first pair

of the small graphs inside the figures show the relative magnitude of the individual terms.

The balance equation for k states that the production of (turbulent) kinetic energy is

balanced by the net transport of this energy and its dissipation. The small graph for the k-

budget shows that the balance of production and dissipation is given within i10 % for a

very large region (Ileq.<n< 0.6) which indicates that the net transport of energy is

negligible small and that the principle of local equilibrium (see Townsend, 1976) is a

reasonable approximation. Beyond 71:06 the ratio of production to dissipation decreases

towards zero, thus indicating that the diffusive term balances near the centerline. At

n=ncq, the exact equilibrium for production and dissipation - used to derive the boundary

conditions for k and 8 - is not achieved. The second pair of small graphs indicates how

the ratio of production to dissipation for both transport equations vary as a function of 5+

(i.e. with the Reynolds number) at 11:116.}, For 5+=2,280 (which compares to Laufer’s high

Reynolds number channel flow data) the ratio of Pk/Sk (i.e. production to dissipation of

kinetic energy) assumes a value of 0.94, thus indicating of being close to the asymptotic

state of unity (i.e. true equilibrium). The equivalent ratio for the dissipation rate (i.e.

P5/8g) assumes a value of 0.85, indicating that the transport is still contributing in this

balance.

Distribution ofNormal Stress Components

The spatial distribution of the normalized (by 2k) diagonal components of the

Reynolds stress tensor is shown in Figure 6.11. No apparent Reynolds number

dependence can be found over the entire domain. Whereas the model prediction compare

very well with the high Reynolds number measurements by Laufer slight discrepancies

are noted incomparison with the data for 5+=1,200. The anisotropy at the centerline
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evident from the measurements is not reproduced. This feature of the existence of an

isotropic state is an intrinsic property of the relaxation/retardation model. The models set

forth by Speziale (198.7) and Nisizima and Yoshizawa (1987) are crafted in a similar

manner inasmuch as they render an isotropic state at the center. Speziale’s model predicts

a somewhat larger streamwise component R27‘ and spanwise component Rxx whereas the

model by Nisizima and Yoshizawa overestimate only the Ru-component whereas Ryy is

underpredicted. However, both those models seem to attain a somewhat larger secondary

normal stress difference if compared with experimental data.

Distribution of the Eddy Viscosity and its Coefi‘icient

The ratio of the eddy viscosity to the molecular viscosity and the eddy viscosity

coefficient as defined by Eq. (1.3) are given in Figure 6.12. It can be seen that in the fully

turbulent regime the eddy viscosity is by far larger than the molecular viscosity (Figure

6.12b). At n=neq, the ratio assumes values of around ten independent of the Reynolds

number indicating that molecular viscosity exerts some influences around the equilibrium

region. The linear profile at 11:11ch which is expressed by Eq. (E.1) (see also Chapter 5) is

readily visible in Figure 6.12b. Very good agreement is obtained for predictions at 5:395

up to y/d=0.5 after which the simulation data indicate a slight decrease. The available

experimental data by Laufer (1951) are in fair agreement with the predictions. The

approximation given for the inertial sublayer (i.e. Eq. ( 1.26)) slightly overpredicts the

experimental values as well as the calculation with the relaxation/retardation model.

The eddy viscosity coefficient reveals a maximum value of approximately cp=0.12

near y/5=0.8. This behavior can be attributed to the modeling approach given by Eq.

(6.10). Towards the equilibrium region this maximum decreases to the asymptotic value

of cp=0.l 1. Near the center, where the coefficient is related to Eq. (3.31), it assumes the
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(prescribed) value of 0.09. The derivations given by Rodi (1976) and Launder et al.

(1975) do indicate a region between 0.2<y/5<0.6 where the magnitude of cu is

comparable to the predictions made by the relaxation/retardation model. However, both

approximations show a strong increase towards the centerline. Note that the model by

Launder et al. (1975) constitutes a variation of Rodi’s (1976) development with different

parameters in Eq. (3.49). Rodi’s derivation for c“ was also made under the premise that

<R’R’>/2k remains fairly constant. Since this is not observed experimentally, a rigorous

application of Eq. (3.49) for the entire channel region may prove inadequate.

Friction Factor

The friction factor f can be estimated using Eq. (1.29). Due to the fact that

computations are only available in the outer region, exact (computational) estimates are

not given. The following analysis shows, however, how (upper and lower) bounds are

established. Neglecting the viscosity ratio in Eq. (1.29) an exact expression for the

friction factor in laminar flow is obtained. Extrapolating this result into the turbulent

region (i.e. for higher Reynolds numbers) this expression serves as a true lower bound for

f (or upper bound for (2/00‘5). A closer estimate of the lower end magnitude for f, though

not true upper and lower bounds, can be obtained using the following approach. The bulk

average velocity ub+=ub/u* is given by

|

u; = Iu+dn, (6.20)

O

and can be decomposed into 2 parts, a contribution near the wall given by the equilibrium

value for which u+ remains constant (see Eq.(6.11)) and the contribution in the outer

region (i.e. neanSI) to



u+‘n,iq.u+d II“ tfifl "}b— cq_n+_I “es-+5i dn cm, (6.21)

where F represents the eddy viscosity ratio. Eq. (6.21) employs the fact that molecular

influences are unimportant for neq_<n<l. The first contribution, as expressed in Eq.

(6.21), to ub+ (i.e. ubl") leads to an upper end magnitude for ub+ since the local value for

the velocity in this region is represented by the constant value ueqf. This, in turn, leads to

an (improved) estimate for the lower end magnitude of f or an (improved) estimate for the

upper magnitude of (2/f)0‘5 (see Eq. (1.28)). To obtain the upper end magnitude for f,

Eq.(6.21) is evaluated omitting the‘first term (i.e. neglecting the contribution ub1+). It

should be borne in mind that both magnitude estimates are made using Eq. (6.21) which

does not consider influences of molecular viscosity and therefore do not constitute true

lower and upper bounds for f. The results of these estimates are presented in Figure 6.13.

Experimental/numerical data are included to demonstrate the adequacy of these estimates.

It can be seen that only the measurements by Wei and Willmarth (1989) and the DNS-

data lie within the indicated bounds. The measurements by Laufer (1951) show a

consistent higher value for ub+. This is consistent with the earlier observations that his

mean velocity measurements are above the logarithmic layer. The empirical correlation

by Dean (1978) can be seen to underpredict the bulk average velocity ub+ by up to 20% if

compared to the curve fit of experimental/numerical data which in turn causes a

significant overprediction of the friction factor.

6.2.4 Summary of the Numerical Predictions

The overall performance of the new relaxation/retardation model for the outer region

of channel flow seems adequate. The algebraic structure of the relaxation/retardation
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model developed in this research and its behavior in terms of the parameter ttS was

presented in Chapter 5. The calculation made here used the solution to the associated

boundary value problem to cross-reference the behavior of the parameter IS with spatial

locations in the channel.

The fact that the explicit influence of molecular viscosity is omitted from the

associated equation system and only enters through the boundary condition in the

equilibrium region causes negligible Reynolds number influences. Only for very low

Reynolds numbers some influences of molecular viscosity extend into the channel

'domain towards the center.

The spatial distribution of the turbulent kinetic energy and the dissipation rate are

within acceptable limits. Comparisons of computed velocity profiles with direct

numerical simulations agree, deviations are seen for comparisons with the experimental

data (Laufer, 1951) (cf. Chapter 1). The logarithmic layer and a wake region are

identified. Early deviations from the logarithmic profile (i.e. for a small range of yJr

beyond y+=30) justify the 15l-order analysis of the equilibrium region (cf. Chapter 5).

Budgets for the turbulent kinetic energy and the dissipation rate confirm the justification.

For low Reynolds numbers the shear stress predictions indicate some influences of

molecular viscosity over some spatial region. Negligible Reynolds number effects are

seen for all normal components of the Reynolds stress. The isotropic state at the channel

center is intrinsic to the model as set forth by Eqs. (3.4) and (3.5) and does not reflect the

outcome of the calculations. The predictions for the eddy viscosity ratio serve as a useful

engineering tool for magnitude estimates of the friction factor as a function of the

Reynolds number.
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6.3 Mechanistic Influences of the New Closure Theory on the Reynolds

Stress

The anisotropic prestress introduced through the phenomenological closure exerts

certain effects on the behavior of the Reynolds stress. Those effects are controlled by the

parameters cR, c5, CM and 01.2, the dynamic behavior of the turbulent shear parameter 68

as well as the general algebraic structure of the closure hypothesis. For the parameters

chosen the behavior of the prestress is examined from a mechanistic point of view. The

influence of the prestress on the Reynolds stress is examined in terms of the individual

contributions through their spatial distribution (see also Chapter 3).

Prestress Analysis

The prestress as defined by Eq. (3.4) is analyzed in terms of its anisotropic part. The

distribution of this part of the prestress as a function of 1.8 and/or the spatial position is

done using the results from the numerical analysis for Re=30,800 (i.e. 5+=1,200) as a

representative high Reynolds number flow. For a better understanding of the influences of

the various terms, the anisotropic part of the prestress is analyzed sirrrilar to the Reynolds

stress (see Table 3.1). It is of particular interest which mechanism transfers energy into

the various components of the prestress and thus ultimately into the Reynolds stress.

Table 6.1 shows the individual contributions to the deviatoric part of the prestress. As

can be seen from the table the parameter c5 does transfer ‘energy’ from the spanwise

(Hxx) and normal component (Hyy) of the prestress into the longitudinal component to

equal parts. Thus, the linear term in the phenomenological closure (i.e. Eq. (3.5)) does not

provide a secondary normal prestress difference. For small values of ttS (i.e. close to the

center of the channel) a steady increase can be observed for H22. Once ttS becomes large

enough, the relaxation effect in the closure moderates this growth towards a steady value

for H22. A secondary normal prestress difference is the direct consequence of the
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retardation parameter cxz which moreover provides the inhibition of an unbounded

growth of Hxx through its particular modeling (see Eqs. (5.20) and (5.22)). The ‘energy’

contained in the prestress is transferred from the streamwise component sz into the

spanwise component H“. The shear component of the prestress is initially (i.e. for small

values of 18) dominated by the strong influence of the parameter c5 and decreases for

larger values of 1.3 through the influence of the relaxation term.

A graphical representation of these effects is given in Figure 6.14. From Figure 6.14a

the onset of the moderation through the relaxation parameter CM can be seen around

y/5=0.9. This moderation effect is more pronounced for the shear component Hyz since it

starts initially with a linear behavior (near the center). Here, the moderation causes the

shear component to decrease slightly before assuming an asymptotic value in the

equilibrium region.

Reynolds Stress Analysis

Through the algebraic coupling of the Reynolds stress to the prestress, several more

interactions become important. The analytical analysis of the various contributions to the

Reynolds stress from the isotropic and anisotropic prestress formulation may be

unfeasible or even impossible for most general flow fields as was indicated in Chapter 3.

For channel flow with only one off-diagonal component for the mean strain rate dyadic,

the individual contributions to the Reynolds stress in terms of their association with the

isotropic and anisotropic prestress formulation are given in Table 3.1. As Table 3.1

indicates there are two contributions to the normal component Ryy whereas Rxx and R22

consist of three parts. A decomposition of the isotropic prestress into an isotropic and

anisotropic part for the Reynolds stress increases the total number of terms to three and

four , respectively (see also Eq. (3.27)). The shear component -Ryz consists of two parts,

one of which, however, consolidates several parts through the incorporation of Ryy
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in its algebraic prescription (see Eq. (5.19)). For Ryy this decomposition can be written as

_1 1 (inst
_ -————. 6.22

W 3 33+(TRS)2 ( )

In order to obtain a better overview, the individual contributions to the Reynolds stress

with the decomposition of the isotropic prestress contribution according to Eq. (6.22) is

presented in Table 6.2. To facilitate the assessment, the contribution of the prestress

parameter C5 is expressed in term of the anisotropic part g itself. The spatial distribution

of the normal component of the Reynolds stress (i.e. Ryy) is shown in Figure 6.15 with the

individual parts indicated. It can be seen that the major contribution to Ryy is given

through the isotropic prestress formulation. The anisotropic contribution Byym only

contributes a small amount and therefore decreases the magnitude of Ryy only moderately.

This term consists of the deviatoric part of the prestress (Hyym) which itself is moderated

by the relaxation parameter c“ and is furthermore moderated by the relaxation parameter

on. Both effects constitute relaxation effects. However, whereas CM stems from the

dynamic equation for g, it is the implicit coupling of the prestress to the Reynolds stress

which renders a moderating effect from cR.

The spatial distribution of Rxx and R22 including their contributing terms are presented

in Figure 6.16. The only difference between Rxx and Ryy can be attributed to the existence

of the retardation term. The effect of the retardation term to prohibit the unbounded

growth of the secondary normal stress difference Rxx—Ryy near the wall also controls the

behavior within the channel domain. This effect which is reflected through Bxxa) causes

Rxx to retain some of its energy and thus serves as a redistribution term which lags behind

the one caused by the isotropic prestress formulation.

The contributions of the isotropic prestress and the anisotropic prestress on the shear

component is shown in Figure 6.17. The isotropic prestress contribution only consists of

the component which stems from the off-diagonal strain rate term (no isotropic
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contribution). In general there are two distinct effects contributing to -Ryz from the

isotropic prestress contribution. Even though the first term appearing on the RHS of Eq.

(5.19) is formally the same as for the IPS-theory developed in Chapter 2, the additional

terms included in Ryy (see Eq. (5.18)) impose additional effects on this term. These

additional effects can be attributed to the parameter c5 and thus can be consolidated with

Hyz as Table 6.2 indicates. However, the figure indicates the decomposition into both

parts appearing explicitly in Eq. (5.19) as well as a decomposition according to Table 6.2.

It can be seen that the isotropic prestress contribution overpredicts the shear stress by a

factor of almost two. It is interesting to note that the first term on the RHS of Eq. (5.19)

which contains both the isotropic prestress contribution as well as the additional effects

according to Eq. (5.18) does already diminish the magnitude and thus serves as a

corrective contribution. The (positive) parameter c5 therefore acts as a reducing agent, a

‘pre-viscosity’ for the Reynolds stress, but as a viscosity-type coefficient for the

anisotropic part of the prestress.

Summary

The energy transfer among the components of the prestress is entirely controlled by

the three parameters CM, c5 and cm. A linear closure hypothesis (i.e. no retardation) does

result in a zero secondary stress difference for the prestress. The contributions of the

linear term (i.e. cB-term) provides an energy transfer from H“ and Hyy to H22 in equal

parts. The nonlinear interaction of the relaxation term moderates the rate of this transfer.

Retardation provides a means for nonzero secondary normal stress differences through its

energy-retaining effect on the HXX-component. Relaxation influences are more

pronounced for, the shear component Hyz than for the normal components of g. This

moderation effect on Hyz through CM counteracts the linear increase through c5.
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The interactions of the prestress with the Reynolds stress through the implicit

algebraic preclosure adds another level of complexity to the assessment of the energy

transfer. Retardation effects on Hxx are directly passed on to R“, and constitutes the

mechanism by which a non-zero secondary normal stress difference Rxx-Ryy is created.

Both isotropic prestress contributions as well as viscosity effects introduced through c5 do

not render Rxx-RyyatO. The energy retaining mechanism of the retardation increases the

energy level for H“. For very large values of the shear parameter, the effect of retardation

is not only to distribute energy by retaining it but also to prohibit unbounded growth of

Rxx-Ryy. The magnitude of the shear component is lowered due to the presence of the

prestress. A nontrivial part of this adjustment is caused by the influence of the parameter

CB on the contributions from the isotropic prestress formulation.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A new representation for the Reynolds stress has been developed based on a Green’s

function technique which reduces the non-local structure of turbulent two-point

correlations to a local structure through the application of a spatial smoothing

approximation. This smoothing approximation makes use of the fact that the decay of

turbulent two-point correlations relax faster than the associated Green’s function. The

validity of this assumption has been shown to hold in regions of large turbulent Reynolds

numbers (Chapter 2). The introduction of the phenomenological time scale 1p, (introduced

through the presumed existence of a memory function common to all correlations

appearing explicitly in the formulation) ‘allows’ the extension of this structure into the

near wall region for which the local turbulent Reynolds number is small and ultimately

vanishes. The algebraic structure obtained through this preclosure relates the Reynolds

stress to IR, the mean velocity gradient and a correlation which was subject to further

modeling. This correlation can be considered as a prestress to the Reynolds stress.

A first assessment of this new model is invoked by closing the theory with an

isotropic representation of the prestress. The unrestricted realizability of this closure for

all values of 15 can be guaranteed a priori and therefore constitutes its most valuable

property. The symmetry of the prestress and the way the Operator A acts on the prestress

168
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(see Eqs. (2.15) and (2.16)) does not change the non-negative character of the Reynolds

stress. Thus, non-negative eigenvalues of the prestress translate into non-negative

eigenvalues for the Reynolds stress.

For simple shear flows, the algebraic structure of this closure predicts a primary

normal stress difference (Eqs. (2.31) and (2.34)) through the coupling with the operator

A. Vanishing velocity gradients, as observed on the symmetry line of channel flow, cause

the prediction of an isotropic turbulent state. An important key feature of this closure lies

in the fact that the operator A, through the explicit appearance of the velocity gradient,

preserves the frame-dependent character of the Reynolds stress. The time scale tp, is used

to bridge the gap between the high (turbulent) Reynolds number region in which the

smoothing approximation was applicable and the near wall region for which viscous

effects become dominant. Its form is specifically chosen to guarantee a correct asymptotic

behavior for the Reynolds stress component Ryy and the shear stress -Ryz. For wall-

bounded simple shear flows, such as channel flow, a direct consequence of this closure

and the representation of the time scale In is the transfer of the entire energy from the

normal components, i.e. Rxx and R ,, into the streamwise Reynolds stress component Rzz

as the wall is approached. Even with this one-component energy state at the wall, a

condition which is attributed to the intrinsic incapability of predicting secondary normal

stress differences (see Eq. (2.33)) and which is not observed experimentally, this closure

bears its own potential as it constitutes a significant improvement over the Boussinesq

approximation commonly employed (Eq. (1 .2)).

Two distinct regimes are identified, a gradient type transport region for small values

of IS and an equilibrium type regime for large ttS, consistent with the analysis of the

equilibrium region (Section 5.5). The magnitude of the shear stress exceeds those

observed experimentally, with a maximal value of -Ryz=0.289 for ttS=1.73. Through this

change of transport regimes, the eddy viscosity coefficient assumes a shear thinning
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behavior. This behavior arises naturally through the theory whereas various turbulence

models introduce artificial damping to the eddy viscosity.

Nontrivial representations for the anisotropic part of the prestress H are implemented

using a phenomenological modeling approach with frame-invariant derivatives which

include both relaxation and retardation terms. The observation of secondary flow patterns

in non-circular ducts for laminar flow of viscoelastic fluids as well as for turbulent flows

of Newtonian fluids, both of which are caused by normal stress differences, lead to the

idea of using the mathematical structure of constitutive equations as they are used in the

field of viscoelasticity.

Terms to describe relaxation effects became necessary to describe flow fields where

explicit memory effects of the Reynolds stress are present, such as retum-to-isotropy. The

associated parameter c,1 obtained from the calibration of the turbulence model against

this flow field was done for a positive third invariant of the anisotropy tensor (i.e. IIIB>0)

and estimated to 0.644. Parameter estimates for which IIIB<0 were omitted on the

grounds that channel flow only attains turbulence states for which IIIB>0. It is therefore

concluded that for flow fields with IIIB<0 and IIIB>0 a more general formalism may be

necessary to adequately represent cfl.

It was found that retardation is necessary to reproduce two effects, both of which are

directly related to the second normal stress difference: a) retardation causes the retention

of energy in the spanwise component of the Reynolds stress Rxx for moderate values of

1,8 (i.e. 0 S ttS S 3) and is thus directly responsible for the existence of a second normal

stress difference within the channel domain (see Figures 6.9 and 6.11). b) For Its —-) oo

(i.e. as the solid wall is approached), the unbounded growth of the secondary normal

stress difference is prohibited and a unique two-component turbulent energy state is

attained (Section 5.3). The latter of these effects, i.e. the partition of energy among two

Reynolds stress components, is paralleled by similar observations in simple shear flows
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with high shear but without the presence of walls and lead to the conclusion that the

unique existence of this asymptotic state seems justified (Lee et al., 1990).

The extension of the isotropic prestress theory (IPS) with an anisotropic prestress

(APS) representation added a level of complexity which made it impossible to a priori

guarantee realizability. However, for channel flow as a simple shear flow, and with the

parameter estimates made (Chapter 5), realizability for all values of 12:8 was shown a

posteriori (Figure 5.4).

The choice of the parameters a=-l and b=-3, describing the particular form of the

convected derivatives, was done for practical purposes and enabled an independent

analysis of influences of the scaling parameter CR, as introduced through the time scale TR,

on the behavior of the energy partition and the turbulence states. From paths in the energy

distribution plane (Figure 6.1), it may be concluded that a variation of cR with local

turbulent parameters, such as the turbulent kinetic energy and the dissipation rate, yields a

better representation of energy partition among the normal components of the Reynolds

stress. For example, larger values for cR might better represent conditions at or near the

channel center (i.e. for small tIS), whereas smaller values seem to better represent the

equilibrium region (i.e. “C(S = 3.5). A mapping into the invariant plane (Figure 6.2)

indicate similar trends and moreover show all case studies to be entirely realizable.

The application of the Green’s function technique used to develop the algebraic

coupling of the Reynolds stress to the prestress was also employed to develop the

associated transport equations for the turbulent kinetic energy and the dissipation rate.

This approach rendered a new expression for the representation of the turbulent transport

of a scalar quantity (Eq. (4.12)). The additional term appearing explicitly in these

expressions and the fact that the time scale IR is an integral part indicate a range of

validity which is surmised to have more universality as common approaches (e.g.

Hanjalic and Launder (1972b)). Common approaches have been followed inasmuch as
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the pressure diffusion term in the kinetic energy equation was incorporated into the

resulting gradient type representation (Eq. (4.16) through an adjustable transport

parameter, the equivalent term in the dissipation rate equation was omitted.

The numerical procedure chosen to solve the nonlinear two-point boundary value

problem proved to be adequate and robust for the calculation of the outer region of fully

developed channel flow. The solution of the associated transport equations was done

sequentially using a standard tri—diagonal matrix solver. The sequential solution of the

transport equations in combination with initial profiles for the velocity, kinetic energy and

dissipation rate indicate an iterative nature of this procedure. A solution is attained by

calculating a developing flow towards a fully developed state, implemented through

convective terms for the streamwise direction. Computational time was negligible.

7.2 Recommendations

The recommendations presented here reflect two aspects. On the one hand, they stem

from the findings obtained through this research and are therefore a direct consequence of

them. The second aspect aims at the outgrowth of the theory set forth at the onset of this

research. This outgrowth comprises extended research from fundamental aspects as well

as the application of the new theory to different flow fields. The latter aspect of the

recommendations therefore consists of a more qualitative nature.

Preclosure and Closure

The spatial smoothing approximation is based on the assumption that the Green’s

function associated with the operator given by Eq. (2.2) peaks spatially for time intervals
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long enough for the turbulence structure to relax. The local character of the two-point

correlation thus obtained reflects, however, a high Reynolds number approach not

through the operator .8 but through the space-time structure of the turbulence. For wall-

bounded flows where viscosity becomes dominant it is the spatial and temporal decay of

the Green’s function which picks up non-local effects from the two-point correlation of

the terms given by Eq. (2.4). The approach taken in this research employs the

phenomenological extension of the time scale ‘L'R to incorporate low Reynolds number

regions. A more direct approach is to incorporate effects of the wall on the behavior of

the Green’s function, thus employing some sort of Greens function for a semi-infinite

domain. This can be done using the method of images (Morse and Feshbach, 1953).

Along with a modified Green’s function, an adequate representation of the two-point

space-time correlation can be incorporated as solid walls are approached. Two issues

need to be addressed with respect to this suggestion:

a) It was shown that the spatial smoothing can hold up to y+=2.2 (Chapter 2). With a

postulation that this approximation can be extended towards the wall, the research

here used the empirical time scale IR to describe near wall phenomena. A better

description of the autocorrelation of the associated fluctuating quantities might be a

viable choice to avoid the introduction of the empirical time scale TR and yield a

better description of the turbulent statistics.

b) The implementation of the Green’s function for a semi-infinite domain does not

only ‘allow’ values for which R = 3 to be of importance. Therefore, its use entails a

complete description for the two-point space-time correlations of the associated

turbulent quantities.

Analytical expressions for the form of the two-point correlations have been given for

homogeneous flow field (see Hinze, 1987). For inhomogeneous flow fields and for

correlations involving higher order moments very little is available. The assumption of a
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general exponential decay of the space-time correlation, a practice employed by various

researchers, can therefore be understood as a first step towards a more detailed analysis.

The applicability of a suitable representation for the space-time correlation of the

prestress <ff> needs further research. The detailed investigation of the instantaneous

fields obtained through the direct numerical simulation might serve as a guideline for the

feasibility of this aspect.

The assumptions that the gradient of the fluctuating Reynolds stress and the gradient

of the fluctuating pressure can be consolidated to the single quantity 1” constitutes a

facilitation inasmuch as the physical effects of the individual terms might be different.

The description of the influences of these terms was shifted to the relaxation and

retardation terms in the closure approximation. The analysis of the (instantaneous) DNS-

data might serve as a guideline and direct the thinking of whether this consolidation is

justified.

The choice of the parameters a and b determining the particular form of the frame-

invariant derivatives in the closure enabled an adequate representation of the problem at

hand. From a more general point of view it might prove necessary to subject those

parameters to a similar optimization routine as employed for the determination of the

parameters cR and c5. Relaxation effects have been observed experimentally such that a

mathematical representation capable of describing this effect is compelling and some sort

of time derivative is justified (LHS of Eq. (3.5)). The use of retardation for turbulent

channel flow was justified a posteriori as it could be related to the secondary normal

stress difference. Whether or not the same level of description of secondary normal stress

differences could be obtained using nonlinear strain rate terms rather than retardation

effects needs to await further research and is thus a strong recommendation.
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Transport Equations

The modeling of the transport equation for the kinetic energy is considered adequate

through the new formulation developed in this research. The direct application of this

formalism to the pressure diffusion terms in both associated transport equations has not

been pursued in this research. However, the open question remains whether this violates

any basic principles. From a fundamental point of view it seems generally possible as

long as, for example, the pressure Poisson equation is satisfied at all times. The general

idea of doing so has been employed by other researchers (Harlow and Nakayama, 1967)

who modeled this transport term as being proportional to the gradient of the mean

pressure (Eq. (4.17)), a result which could be obtained in a similar way using the

formalism used in this research.

The modeling of the transport terms in the equation for the dissipation rate needs

further evaluation. Modeling approaches of the omitted correlation explicitly appearing

through the derivation here might seem a suitable way to proceed in order to obtain an

improved representation for this term. The representations of the production and

destruction terms in the 8-equation proved an adequate description of channel flow and,

moreover, provide a realizable representation for the decay of isotropic turbulence.

However, recent direct numerical simulation data for this flow field indicate differences

in the decay process depending on the initial energy spectrum supplied to the simulation

process. Thus, a more thorough investigation of this term in particular might prove useful.

Numerical Aspects

The numerical method for the solution of the two-point boundary value problem

employed in this research was adequate. The explicit calculation of the near wall region

was, however, not possible. Preliminary calculations in this region showed that the
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implicit appearance of the shear parameter (i.e. the inverse proportionality) in the

description of the shear stress seem to be the reason for the failure of the method at hand.

A further test was initiated to determine which of the equations to be solved pose

problems with the implementation of the new theory as laid out for the near wall region.

An existing turbulence model based on a Boussinesq representation was used as a basis.

The substitution of the turbulent transport terms with the descriptions developed in this

research did not show any problems related to the numerical solution. Moreover, it could

be confirmed that the differences between the different implementations of the transport

terms in general did not show any notable differences in the mean velocity profile. The

further substitution of the eddy viscosity representation in the momentum equation did

not result either in any problem. Only the substitution of the eddy viscosity into the

production terms of both the k- and 8-equation showed an unstable behavior of the

numerical method with the result that no convergence was obtained. From this

preliminary study it was concluded that the steep gradients of both the kinetic energy and

the dissipation rate in the near wall region in combination with the earlier mentioned

implicit appearance of the shear parameter contribute to the observed numerical

instability. A recommendation which results from this observation is the search for more

robust numerical methods to compute regions where the mentioned effects are important.
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A. Direct Numerical Simulation Data

During this research extensive use has been made of the direct numerical simulation

data (DNS-data) which were acquired during computations of turbulent channel flow by

Kim et al. (1987) and Kim (1989). Those data have been provided by Dr. Kim from the

Turbulence Research Center (TRC) at Stanford University. For purposes of reproduction

of any modeling steps made during this research the available data are presented here.

1) Direct Numerical Simulation Data for 5+=180 (Kim et al., 1987)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

y+ < u1u; >+ < u;u; >+ < uQu; >” — < u;u; >+ 8+ u+

0.000 0.000 0.000 0.000 0.000 0.165 0.000

0.054 0.000 0.000 0.000 0.000 0.164 0.053

0.217 0.002 0.000 0.006 0.000 0.161 0.213

0.488 0.008 0.000 0.030 0.000 0.157 0.479

0.867 0.023 0.000 0.095 0.000 0.152 0.850

1.354 0.051 0.000 0.231 0.002 0.148 1.325

1.948 0.092 0.000 0.475 0.006 0.143 1.902

2.650 0.148 0.002 0.864 0.014 0.138 2.576

3.459 0.215 0.004 1.430 0.030 0.131 3.340

4.374 0.290 0.009 2.173 0.057 0.124 4.180

5.394 0.370 0.017 3.058 0.098 0.117 5.077

6.520 0.452 0.028 4.008 0.152 0.1 13 6.007

7.751 0.534 0.045 4.925 0.218 0.111 6.940

9.085 0.615 0.066 5.716 0.291 0.1 12 7.850

10.522 0.694 0.093 6.321 0.365 0.113 8.713

12.061 0.769 0.126 6.713 0.436 0.114 9.513

13.702 0.840 0.164 6.900 0.500 0.1 13 10.240

15.442 0.905 0.206 6.908 0.555 0.1 10 10.892

17.282 0.964 0.252 6.774 0.600 0.106 11.470

19.220 1.014 0.300 6.536 0.636 0.101 11.980

21.254 1.056 0.349 6.229 0.664 0.096 12.430

23.384 1.089 0.397 5.883 0.683 0.090 12.825

25.609 1.1 16 0.445 5.519 0.697 0.084 13.174

27.926 1.137 0.490 5.156 0.705 0.078 13.484

30.335 1.153 0.531 4.805 0.709 0.072 13.759

32.835 1.165 0.569 4.471 0.708 0.066 14.007

35.423 1.173 0.602 4.159 0.705 0.061 14.232

38.098 1.177 0.630 3.871 0.699 0.056 14.438

40.858 1.176 0.653 3.608 0.692 0.051 14.628

43.702 1.170 0.671 3.369 0.682 0.047 14.806

46.629 1.160 0.685 3.154 0.671 0.043 14.974

49.636 1.146 0.693 2.959 0.658 0.040 15.133

52.721 1.129 0.698 2.783 0.645 0.037 15.286

55.883 1.108 0.699 2.625 0.631 0.034 15.432

59.119 1.083 0.696 2.481 0.616 0.031 15.574
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62.429 1.056 0.691 2.352 0.600 0.029 15.71 1

65.809 1.028 0.683 2.236 0.584 0.027 15.844

69.258 1.000 0.672 2.130 0.567 0.025 15.974

72.774 0.971 0.660 2.032 0.549 0.023 16.101

76.355 0.940 0.646 1.942 0.531 0.021 16.226

79.997 0.908 0.631 1.858 0.512 0.020 16.348

83.700 0.876 0.615 1.779 0.492 0.018 16.467

87.462 0.843 0.599 1.705 0.473 0.017 16.583

91.278 0.809 0.582 1.634 0.453 0.016 16.696

95.149 0.776 0.565 1.566 0.434 0.015 16.805

99.070 0.744 0.549 1.500 0.414 0.014 16.911

103.040 0.712 0.532 1.434 0.393 0.013 17.014

107.060 0.681 0.516 1.369 0.373 0.012 17.113

111.120 0.651 0.501 1.305 0.352 0.011 17.209

115.220 0.622 0.487 1.241 0.331 0.010 17.301

119.360 - 0.594 0.473 1.178 0.309 0.010 17.389

123.540 0.567 0.460 1.117 0.287 0.009 17.474

127.750 0.542 0.448 1.057 0.265 0.009 17.555

131.990 0.518 0.436 0.999 0.243 0.008 17.632

136.260 0.496 0.424 0.943 0.221 0.008 17.705

140.560 0.476 0.414 0.890 0.199 0.007 17.771

144.880 0.458 0.404 0.839 0.177 0.007 17.832

149.230 0.441 0.395 0.793 0.155 0.006 17.887

153.590 0.426 0.388 0.750 0.132 0.006 17.936

157.970 0.412 0.382 0.713 0.110 0.006 17.978

162.360 0.400 0.377 0.682 0.088 0.006 18.013

166.760 0.390 0.373 0.657 0.066 0.006 18.040

171.170 0.382 0.371 0.640 0.044 0.005 18.060

175.580 0.377 0.369 0.629 0.022 0.005 18.072

180.000 0.375 0.369 0.625 0.000 0.005 18.076

2) Direct Numerical Simulation Data for 5+=395 (Kim, 1989)

y+ < u;u; >" < u;u; >" < u;u’z >+ — < u;u,’z >+ 3+ u+

0.000 0.000 0.000 0.000 0.000 0.221 0.000

0.053 0.000 0.000 0.000 0.000 0.219 0.053

0.211 0.003 0.000 0.007 0.000 0.213 0.210

0.476 0.013 0.000 0.035 0.000 0.206 0.473

0.846 0.037 0.000 0.1 1 1 0.000 0.198 0.841

1.321 0.080 0.000 0.270 0.002 0.190 1.312

1.902 0.146 0.000 0.553 0.007 0.181 1.886

2.588 0.233 0.003 1.005 0.018 0.172 2.557

3.379 0.337 0.007 1.651 0.038 0.161 3.317

4.275 0.452 0.014 2.489 0.071 0.149 4.152

5.275 0.572 0.025 3.465 0.120 0.139 5.041

6.380 0.692 0.042 4.487 0.184 0.132 5.958

7.588 0.809 0.065 5.450 0.259 0.130 6.873

8.901 0.921 0.094 6.264 0.340 0.130 7.760

10.317 1.029 0.131 6.874 0.422 0.130 8.596       
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11.835 1.132 0.175 7.267 0.499 0.129 9.366

13.457 1.228 0.225 7.458 0.567 0.126 10.065

15.180 1.315 0.280 7.481 0.627 0.122 10.689

17.005 1.394 0.340 7.371 0.676 0.117 11.244

18.932 1.462 0.401 7.166 0.717 0.110 11.733

20.959 1.520 0.464 6.896 0.749 0.104 12.165

23 .086 1.567 0.527 6.589 0.774 0.097 12.547

25.312 1.605 0.588 6.263 0.794 0.091 12.885

27.638 1.636 0.646 5.931 0.808 0.084 13.187

30.062 1.659 0.701 5.602 0.818 0.078 13.456

32.583 1.677 0.753 5.284 0.825 0.072 13.699

35.202 1.691 0.799 4.983 0.829 0.067 13.921

37.917 1.702 0.841 4.706 0.830 0.062 14.123

40.727 1.710 0.877 4.453 0.830 0.057 14.311

43.633 1.715 0.909 4.227 0.828 0.053 14.485

46.632 1.715 0.936 4.024 0.826 0.049 14.649

49.725 1.712 0.958 3.843 0.821 0.045 14.803

52.910 1.705 0.976 3.681 0.816 0.042 14.948

56.186 1.697 0.990 3.535 0.809 0.039 15.088

59.554 1.686 1.000 3.403 0.802 0.037 15.221

63.01 1 1.673 1.007 3.279 0.793 0.034 15.352

66.557 1.660 1.01 1 3.163 0.783 0.032 15.479

70.191 1.645 1.012 3.056 0.773 0.030 15.604

73.91 1 1.627 1.010 2.958 0.764 0.028 15.727

77.718 1.606 1.006 2.871 0.754 0.027 15.848

81.610 1.582 1.000 2.793 0.745 0.025 15.966

85.585 1.555 0.993 2.722 0.736 0.024 16.082

89.644 1.526 0.985 2.657 0.726 0.022 16.195

93.784 1.496 0.977 2.596 0.717 0.021 16.306

98.004 1.468 0.969 2.537 0.707 0.020 16.416

102.300 1.441 0.959 2.482 0.697 0.019 16.524

106.680 1.414 0.949 2.431 0.688 0.018 16.632

1 1 1.140 1.388 0.938 2.382 0.679 0.017 16.739

1 15.670 1.365 0.926 2.337 0.670 0.016 16.844

120.280 1.344 0.913 2.294 0.662 0.015 16.948

124.960 1.323 0.899 2.251 0.653 0.015 17.049

129.710 1.299 0.886 2.211 0.643 0.014 17.148

134.530 1.272 0.872 2.171 0.632 0.013 17.245

139.430 1.242 0.858 2.132 0.620 0.013 17.342

144.390 1.212 0.845 2.096 0.607 0.012 17.437

149.420 1.182 0.830 2.063 0.594 0.011 17.531

154.510 1.153 0.815 2.032 0.582 0.011 17.622

159.670 1.125 0.800 2.001 0.570 0.010 17.711

164.890 1.099 0.784 1.967 0.557 0.010 17.799

170.170 1.072 0.769 1.930 0.544 0.009 17.885

175.520 1.046 0.755 1.891 0.531 0.009 17.971

180.920 1.020 0.741 1.851 0.518 0.009 18.056

186.380 0.994 0.728 1.81 1 0.504 0.008 18.141

191.890 0.968 0.715 1.770 0.491 0.008 18.226

197.460 0.942 0.702 1.730 0.477 0.008 18.31 1

203.080 0.915 0.689 1.690 0.463 0.007 18.395   
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208.760 0.888 0.675 1.652 0.449 0.007 18.478

214.480 0.862 0.661 1.613 0.436 0.007 18.558

220.250 0.838 0.647 1.574 0.422 0.006 18.638

226.070 0.815 0.633 1.535 0.408 0.006 18.715

231.940 0.793 0.619 1.494 0.394 0.006 18.790

237.840 0.768 0.605 1.454 0.380 0.005 18.863

243.790 0.743 0.591 1.415 0.366 0.005 18.934

249.780 0.718 0.578 1.378 0.352 0.005 19.003

255.810 0.695 0.564 1.342 0.338 0.005 19.071

261.880 0.673 0.550 1.306 0.324 0.005 19.137

267.980 0.653 0.537 1.269 0.310 0.004 19.200

274.120 0.635 0.524 1.232 0.295 0.004 19.262

280.280 0.618 0.513 1.194 0.281 0.004 19.321

286.480 0.602 0.502 1.156 0.266 0.004 19.378

292.710 0.586 0.492 1.117 0.251 0.004 19.433

298.970 0.569 0.484 1.076 0.235 0.004 19.486

305.250 0.553 0.477 1.037 0.220 0.003 19.538

31 1.550 0.540 0.472 0.998 0.204 0.003 19.587

317.880 0.530 0.468 0.958 0.188 0.003 19.635

324.230 0.521 0.464 0.917 0.172 0.003 19.681

330.590 0.513 0.461 0.876 0.157 0.003 19.725

336.980 0.506 0.458 0.836 0.141 0.003 19.766

343.380 0.498 0.455 0.799 0.125 0.003 19.804

349.790 0.492 0.454 0.765 0.109 0.003 19.838

356.210 0.486 0.453 0.735 0.094 0.003 19.869

362.650 0.481 0.452 0.710 0.078 0.003 19.896

369.090 0.476 0.452 0.691 0.062 0.003 19.918

375.550 0.472 0.452 0.677 0.046 0.003 19.935

382.000 0.469 0.452 0.667 0.031 0.003 19.948

388.460 0.467 0.452 0.662 0.015 0.003 19.956

394.920 0.466 0.452 0.660 0.000 0.003 19.959
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B. Friction Factor Analysis

The equation for the mechanical energy - derived from the Navier-Stokes equation -

and the equation for the turbulent kinetic energy form the basis for the derivation of the

relation given by Eq. (1.30) which relates the friction factor to the mean velocity gradient

and the dissipation rate for channel flow. The mechanical energy balance is obtained by

multiplying the equation of motion (Eq. (1.7)) with the mean velocity <uz>. Minor

rearrangement yields:

 

  

la< > d2<u > d
<uz>— p =v<uz> 2‘ —<uz>—<u’u;>. (B.1)

p 32 dy dy ’

i E E

The individual terms (i.e. I, II and [11) can be integrated over half the channel domain (i.e.

O<y<5) with the result:

  

  

 

 

 

18<p> 18

1=j<u>p az dyzg <82 >:10; >dy

] 1:w 2

= -E(F)(ub0) == —ubu.. (B2)

5 d2<u> 8 d d<u> d<du>

H=Jv<uz>—Tz—dy=IV{—-(<uz> z )—( )2}d

0 dy o dy dy

d<u>55d<u> 5d<u>

=v<<u.> . >—( ‘ )Zdy}=—v( z fay. (13.3)
dy 0 1 dy i dy 

L
 

V0

8 8
d d d<u >

111: —<uz>—<u’u;>dy= —{-——(< uz>< u’u;>)—<u'u;>——--—z}dy

1 dy y i dy y ’ dy

d<uz>

dy

5

d< >

dy =J<u’yu;>-—-ul—dy. (3.4)

0 dy

 

=v —(<u ><u’u’z:>)|+1<u;;u >

 

g
4
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Upon arranging the individual contributions:

d<uz>

dy

  

5 d<u > 5

—ubu3 2 —VJ( z )2dy+1< u’yu; >

0

dy (B5)

0 dy

is obtained. In the second part, an expression is obtained relating the integral of the

production of kinetic energy to the integral of the dissipation. The transport equation for

the turbulent kinetic energy as given by Eq. (C3) is evaluated for statistically stationary,

fully developed channel flow to

            
 

    

 

 
 

 

1d dzk , , d<uz> d ,u'-y_'
= — y z ——<u — . (B.6)

pdy dy dy dy ’ 2

Eq. (B6) is integrated over the entire channel

26 d2

0=-'1-2J§—<p’;u >dy+V'([':—y—dy— Zfi-Zdy

, , d<u >d Q'E'
—J<uyuz> yif——<u’—>dy, (B.7)

0

with the result

I ’ 25 dk 25 28

0=——<pu > +v-—- —Iedy

3 y 0 dyo 0

g T

25 1 1 28

d< >

— I<u’u’ > uz dy—< u’ E—E-> (B8)
1’ Z d y

0 y 0 

Thus, an expression relating the integral of the production to the integral of the

dissipation has been developed to

28 28
d<uz >

0=—Jedy—J<u;u; > dy. (B.9)

o o dy
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With the fact that channel flow is symmetric across the center it readily follows that

d<uz>

dy

 

5 5

0=—jedy—j<u;u; > dy. (13.10)

0 0

Substituting Eq. (B.10) into Eq. (B.4) one obtains

d<uz>

dy

 

5 5

—ubu3=—vj( )Zdy—Jedy, (13.11)

0 0

which -with the normalization given by Eq. (6.5) and the definition in Eq. (1.28)- yields

2 .‘ du*. .
\Eza {[(df) +8 116, (3.12) 
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C. Derivation of the Exact Turbulent Kinetic Energy Equation

The derivation of the exact transport equation for the turbulent kinetic energy k stems

from the transport equation for the fluctuating velocity which is given by

' 1

a—Et+ < u > ~Vu': —3Vp'+szu'—u'oV < u > —u'-Vu’+ < _u'-Vu'>. (CD

I H III IV V VI VII

Through a scalar multiplication of Eq. (C.1) with u‘ and subsequent ensemble-averaging

the exact transport equation for k is obtained. The derivation is devided into 2 parts, one

of which is the scalar multiplication to obtain the instantaneous value for the kinetic

energy of the fluctuating field. This intermediate equation is used in the derivation of

expressions for the transport terms. For purposes of clarity the symbol <k> denotes the

mean kinetic energy of the fluctuating velocity field whereas k represents the

instantaneous value. This convention does only apply within this appendix. The

subsequent ensemble average of the instantaneous equation finally renders the transport

equation for the mean turbulent kinetic energy. The terms in Eq. (C.1) are treated

separately. Constant properties (i.e. density and viscosity) are assumed.

.122; =132'-2'_ 3_k

‘ at 2 8: —0t

 

H: u'-(< u > -Vy_')=< 31> -(u'-(Vu')T)=< u > ~V—E—é—E— =< u > -Vk

1H: —lg'-Vp'=—lV-(g'p')+lp'V‘u'=-1V°(u'p')

p p 9 :0 9

IV: VE'.VZE': VE'°(V ' V2) = V{V ’(V21'E.)_ VE':(VE' )T}

= V{V°%V(E"E')* 172507201}
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= V{V2k — Vu’:(Vu’ )T}

V: — u'-(u’-V < u >) = —(u"-V < u >)- '= u u'2V < u >2 —u'u':V < u >

V1: - B"(E"VE') >= —(2"V2' ) - 2'= E'E'ivfl'

VII: u'-(< u'-Vu'>) = u" < u’-Vu'>

The transport equation for k (instantaneous) is thus given by

3§+<E> .Vk z—lV -(p'E')+(VV21( —€)-_1_1'_l}_'2V < E>

t P

I H 111 IV V

—V-(u'-E—;;)+u_'.<u_'-Vu'>. (C.2)

VI VII

The designation with roman numbers used here refers to the individual term in the

equation for the fluctuating velocity (i.e. Eq. (C.1)) such that their origin is apparent. This

designation differs from the one used in Chapter 4. Upon ensemble-averaging of Eq.

(C2) the transport equation for the mean kinetic energy of the fluctuating velocity field is

 

obtained.

a<é9i(>'+<_u>-V<k>:-1V.<p'u'>+(\/V2 <k>—<£>)

I H 111 IV

—<u'u'>2V<u>—V-<y_'%>. (C.3)

V VI

It is noteworthy that the Reynolds stress itself - appearing in Eq. (C.1) as term VII -

contributes to Eq. (C.2) but not to the mean kinetic energy equation. The terms in the

equation for <k> are designated as follows
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1: Time Derivative IV: Diffusion and Dissipation

II: Convection V: Production

III: Pressure Transport by u' VI: Energy Transport by u'

The terms III and VI are combined to the turbulent diffusion since the pressure

fluctuations and the instantaneous turbulent kinetic energy are simultaneously transported

by velocity fluctuations. Their explicit form need to be modeled in order to obtain a

closed form of the transport equation for the turbulent kinetic energy.

After applying the same formalism as used in Chapter 2 for the fluctuating velocity

field (i.e. Eqs. (2.1)-(2.3)) to the equation for the fluctuating kinetic energy (Eq. (C2)),

the following form for k' is obtained

my) 2 —j jG(_x, 113,?){g'y <12> +i;}dvdf, (04)

ii?

where f; is given by

f; : lV - {py— < p'u'>}+(e— < e >)+ {E'E'— < E'E'>}IV < u>

P

+ {u'-Vk'— < u'-Vk'>}— {u’-(V- < _u'u’>)— < u'-(V~ < u'u'>) >}. (C5)

A formal representation for the average transport of k' due to velocity fluctuations can

therefore be obtained to

< u'k'>= —j jG(x,tlg,i){< u’fib V < 12> + < u'f; >}dVdi. (C.6)

Ev

With the same reasoning as applied before (see Chapter 2) that the turbulence structure

decays faster than the Green’s function such that only the autocorrelation dominates the

RHS of Eq. (C6) and that the temporal structure can effectively be consolidated into the

time scale TR (i.e. it is assumed the same common memory function (1) exists) the transport

term can be written as
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< u'k'>= —‘CR <_u'_u'> 8V < k > —‘CR < u'fk' >. (C7)

The second term in brackets on the RHS of Eq. (C.6) can analogously be deve10ped using

the equation for the fluctuating velocity (i.e. Eq. (2.3)) as a basis to

<f;u'>: —TR <fgu'>~V<u>—1R <f,:f>, (C.8)

where f‘ represents the consolidation of the divergence of the fluctuating Reynolds stress

and the gradient of the fluctuating pressure. From Eqs. (C7) and (C8) the following form

for the transport of the fluctuating kinetic energy due to velocity fluctuations can be

obtained.

<u'k'>= —‘ER <u'u'>-V7<k>--'cfz «(£52. (C9)

The operator A is defined by Eq,. (2.16).
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D. Derivation of the Exact Turbulent Dissipation Rate Equation

The derivation of the exact transport equation for the dissipation rate 8 stems from the

transport equation for the fluctuating velocity which is given by

1 I

a—E+ < u > Vu': —V£ + VVzu—Q'V < u > —u_'-Vu_'+ < u'-Vu_'>. (D.1)

1- P

I II III IV V VI VH

To obtain the transport equation for e the following steps are performed. First, the

gradient operator V is applied to Eq. (D.1). Second, a scalar multiplication with (V_u')T is

performed. After multiplication with the kinematic viscosity the scalar equation for the

instantaneous dissipation rate is obtained. This equation is used in the derivation of the

transport term. The subsequent ensemble averaging yields the transport equation for the

mean value of the dissipation rate. For purposes of clarity the symbol <8> denotes the

mean dissipation rate of the fluctuating velocity field whereas 8 represents the

instantaneous value. This convention does only apply within this appendix. The terms in

Eq. (D.1) are treated separately. Constant properties (i.e. density and viscosity) are

assumed.

8(Vu') 1 B(Vu')T:Vu' 182

1; V 'T:——-— =— - -=——

W E) at 2V at 23t

 

II: V(Vu’)T:V(< u > Vu') = V(V_u')T:(V < u > -V_u'+ < u > ~VVu')

= V(Vu')T:(V < u > ~Vu') + V(Vu')T:(< u > -VVu')

= V(V2' )T:{(V_11')T -(V < .11 >)T}T Jrév < 2 > -V((Vu')TIVu')

= V(Vu’):{(Vu')T -(V < u >)T}+%< u > -Vc
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= _2XV . (Vp'-V_u')+{VV28 - 2v2V(Vg')TEV(Vg')T}
9

III IVa 1V6

— 2v((V_11')T -V1_1.’):V < 2 > -ZV(2'(V9')T )3V(V < 11 >)T

va vb

- 2v{ (V1.13 )T ‘Vu' } :V9'-vu'-V{(Vu' )T:V2'}

VIa VIb

+2v(Vu_')T:V<u'-Vu'>. (D.2)

VII

The designation with roman numbers used here refers to the individual term in the

equation for the fluctuating velocity (i.e. Eq. (D.1)) such that their origin is apparent. The

designation in Chapter 4 is done with respect to the individual terms appearing in the 8-

equation and differs therefore from the one used here. Through ensemble-averaging the

equation for the mean dissipation rate is obtained.

8<e>
 + {2v < Vg-(Vu'f >:(V < E >)T+ < E > -V < e >}

1 11;. H6

= —2XV- < Vp'-Vu'> +{VV28 - 2V2 < V(VE' )TEV(VH' )T >1
9

III IVa IVb

— 2v < (Vu')T 'Vu'>:V < u > —2v < u'(Vu')T >EV(V < E >)T

Va Vb

— 2v < {(Vu’ )T -Vu' } :Vu'> —v < u'-V{(Vu’ )T:Vu'} >. (D.3)

V1a VIb
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The Reynolds stress itself - appearing in Eq. (D. 1) as term VII - does not contribute to

the transport equation for the dissipation rate <e>. Through the application of the gradient

Operator on Eq. (D.1) additional terms arose in the equation for <S> which are designated

as follows (Rodi and Mansour, 1992):

1: Time Derivative IVb: Dissipation

Ila: Convection Va: Mixed Production

11b: Production by Mean Velocity Gradient Vb: Gradient Production

111: Pressure Transport V13: Turbulent Production .

1V3: Viscous Diffusion VIb: Turbulent Transport

The terms 111,, Va, Vb and VIa are combined to the turbulent production and terms III

and VIb are combined to the turbulent diffusion Both turbulent production and turbulent

diffusion as well as dissipation need to be modeled in order to obtain a closed form of the

transport equation for the dissipation rate.

After applying the same formalism as used in Chapter 2 for the fluctuating velocity

field (i.e. Eqs. (2.1)-(2.3)) to the equation for the fluctuating dissipation rate (Eq. (D.2))

the following form for 8' is obtained

8'(x, t) = —j J G(x,tl§,f){fi'-\7 <12> +ig}dvcif, (D.4)

EV

where fe’ is given by

f,’ : 2vV . {VR- Vg— < Vg- Vu'>} + 2(8— < e >):V < g > +2{82Vu'— < e:Vu'>}

P P = = " = =

+ 2{_§__:Vy_'— < EIVE'>} + 2v2{V(Vu')TEV(Vg' )T— < V(Vu')TEV(Vu')T >} (D5)

+ 2v{(_u’(Vu')T)EV(V < _u >)T— < g'(V_t_1_')T >EV(V < u >)T}+ V - {3'6— < u'e'>}.

A formal representation for the average transport of 8' due to velocity fluctuations can

therefore be obtained to
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< u'e‘>= —j jG(x,tIX,E){< u‘g'> V < 8 > + <3"; >}dVdI . (D6)

\7H
)

With the same reasoning as applied before (see Chapter 2) that the turbulence structure

decays faster than the Green’s function such that only the autocorrelation dominates the

RHS of Eq. (D6) and that the temporal structure can effectively be consolidated into the

time scale TR (i.e. it is assumed the same common memory function (1) exists), the

transport term can be written as

<u'e‘>=—1:R <u'u‘>-V<8>—tR <E'fe'>- (D7)

The second term in brackets on the RHS of Eq. (D.6) can analogously be developed using

the equation for the fluctuating velocity (i.e. Eq. (2.3)) as a basis to

<fs’u'>= —1'R <fe’_u'>-V<u>—’tR <f£’_f_'>, (D.8)

where f’ represents the consolidation of the divergence of the fluctuating Reynolds stress

and the gradient of the fluctuating pressure. From Eqs. (D7) and (D8) the following

form for the transport of the fluctuating dissipation rate due to velocity fluctuations can

be obtained:

<u_'e'>= —TR <u'u'>-V<e>—IZR <fe’f>~é. (D9)

The operator A is defined by Eq,. (2.16).
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E. First Order Approximation of the Equilibrium Region

The basis for the development of a first-order solution are the expansions of k, e and

vt around the equilibrium region. These expansions are expressed as

vt =v1cy+(1+a,1), (E.1)

k“ = k; + b, %, (E2)

1’

2+ = Iii? (E3)
icy

The momentum equation as given by Eq. (5.49) in combination with the definition for the

eddy viscosity (i.e. Eq. (1.25)) can be integrated twice with respect to y in order to obtain

the corresponding velocity profile. It is expressed in terms of a series representation

(Takemitsu, 1990) to

+

u+ zilny++B— a__I_y—+-—'(a +00%)-g;(a1+1)(1)3+0(y7)- (E4)
K K 8 5

With the velocity profile extended by the linear term only and the eddy viscosity

according to Eq. (5.50) the evaluation of the LHS of Eq. (5.50) reads

d d<uz> uf'

d—y-(Ve dy )z— 8 , (E-S)

  

which satisfies the momentum equation exactly. The transport equation for k and e are

 

    

given to

d dk“ du+ 2
__ v __ ___ V _y, E.6
dy+ (Ck D dy+) t( d +) ( )

d de” 8+ du” 2 cDe+2

8 D dy+) 1(+ Cp ((der) 1(+
( )
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The term vD arises through the consolidation of various terms given by

V k+2

.._D : 2CR

V

 
R (E8)

+ yy ’

E

and constitutes the ratio of the effective transport viscosity to the molecular viscosity for

this particular coordinate direction. Ryy may be expanded around the equilibrium region

10

_ . y
Ryy _ R3 +1213, (E9)

so that v1) can be expressed as

VD y y
—=N1c—1+d—, 13.10V 5( 1 5) ( )

with

N = 25*cif-kijgj- . (E.11)

Upon inserting ve, k+, 8+, u+ and VD into Eq. (B.7) and comparing the coefficients which

have the same power in y one obtains

0(1); 0:5——8—, (E.12)

y K K

8+

0(1): —ckNxb,=—?(2+a,+c,). (E13)

Eq. (E. 12) shows that the Olh-order solution is equivalent to the balance of production and

dissipation. Eq. (E.13) provides an a priori expression for the transport coefficient ck to

2+a,+cl

Ck :— 2 +2 eq. '

2b11< cheqRyy
(E.14)

However, the requirement of c. which stems from experimental data for 8+ may render

this expression unreliable for an a priori estimate (cf. Chapter 6). The evaluation of the 8-
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equation yields the following result

 

mi.) —EE—N£fc—:‘:—C—E—fl3-.
y 8 K“ 1c“

1 c N + c c

O(;): — 5+2 (blcR +f1keq.):-K—:(Cl_31—2)—2K—3C1'

(E.15)

(E. l 6)

Eq. (E15) yields the analytical expression for the transport coefficient ca (see Eq.(5.48)).

The evaluation of Eq. (E16) can provide information about the behavior of CR, which

may, however, render unreliable because of the earlier mentioned requirement of c1. The

results of the lst-order analysis are used for an a posteriori evaluation of the transport

parameter ck. The general concept of expanding the kinetic energy profile in the inertial

sublayer proves helpful in the discussion of the results of the numerical study of the

channel flow.
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F. Near Wall Analysis

The general derivation of the near wall behavior of the individual terms appearing

explicitly in the transport equations for the turbulent kinetic energy k and the dissipation

rate 8 are given here. The basis for this derivation is given through the Taylor series

expansion of the fluctuating velocity and pressure. The near wall behavior for the

fluctuating velocity can be written as

u’ = aly + by2 + higher order terms

u = bzy2 + higher order terms (Fl)

)1

i

u; = a3y + by2 + higher order terms

The coefficients a, b, and the coefficients for the higher order terms depend in general on

x, z and t. Due to the property of the fluctuating velocities which must vanish when

ensemble averaged, the ensemble averaged values of the coefficients must likewise

vanish. The fact that u; behaves as O(yz) stems from the continuity equation for the

fluctuating velocity which can be written as

V - u“: 0 (F.2)

Eq. (F.2) - evaluated at the wall - renders the coefficient of the linear term for u; zero.

The near wall behavior of the fluctuating pressure can be obtained from the Navier—

Stokes equation for the fluctuating velocity. This equation can be determined by

subtracting the mean field equation as given by Eq. (1.1) from the instantaneous equation

and is given by

D!‘ 1 l 2 I O l I l 1

—DT=—-6Vp+vV u—u-V<u>—u~Vu+<y_-Vy_> (F3)

This equation - when evaluated at the wall - yields a boundary condition for the pressure

gradient to
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—Vp'= VVzu' (1:4)

From Eq. (F4) the pressure gradient with respect to y can be estimated to behave as O( 1 ).

Thus, the fluctuating pressure can be written in a general form as

p’ = p(,, + 2ub2y + higher order terms (F.5)

Using Eq. (F.1) the behavior of the individual components of the Reynolds stress can be

written as

< u u >=< alal > y2+ < blb, > y4 + higher order terms

>= < bzb2 > y4 + higher order terms

2 4 .
(F.6)

< u u >=< a3a3 > y + < b3b3 > y + higher order terms

I I

x x

I I

Y y

I I

z z

I I

y z
< u u >=< bza3 > y3 + higher order terms

From the summation of the normal components - which sum up to 2k - it can be seen that

the leading term of the kinetic energy behaves as O(yz). The next order term for k behaves

as O(y4). The behavior of the dissipation rate can be developed using its definition (see

Appendix C) and Eq. (F. 1 ). Thus, the near wall behavior of e is given to

e = 8w + asy + b5y2 + higher order terms (F7)

The coefficients in this expansion are — like the ones in Eq. (F.1) - functions of x, z and t

with vanishing ensemble averages. The value for the dissipation rate at the wall can be

written in terms of the coefficients for the fluctuating velocities as

8w 2 v(< a12> + < a§ >) (ES)

The mean velocity profile may similarly be expressed in terms of a series expansion to

< uz >= ay + by2 + cy3 + higher order terms (F.9)

However, the coefficients in the series expansion for the mean velocity are not functions

of x, z and t neither do they vanish when ensemble averaged. The individual terms of the

transport equations for the kinetic energy and the dissipation rate can be obtained using
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these basic relations as given by Eqs. (F.1) — (F9). Their evaluation is given here with

respect to channel flow. Only the leading term is presented.

Transport Term for k

d p_’

—-—<u’—>= —2b_ w—y (F.10a)

dy p p

u'-'u

—’<u:>=2b2(<a,a1>+<a33a3>)y (F.10b)

dy 2 _

Transport Term for E

d

— vd—y < u;(Vu')T:Vu'>= —2v2(< bzalal > + < b2a3a3 >)y (F.11a)

d p. I 7 7

—2v——<V—-Vuy >=—8v‘<b;> (F.11b)

dy 9

Production Terms for 8

d<u >
 

 

 

PE' =—2v<Vu;-Vu; > d Z =—4v<a3b2>ay (F.12a)

y

P 2v<au all>d<uz> 2v{< 8‘" >+< 3a >}a (F12b)=— — —— =— a — a .

5 8y 82 dy ' 8 3 8—2 y

3 ,du; d2<uz>

P, :-2v<u >—2=—8v<a,b,>by (F.12c)

y dy dy ' '

P: =—2v< {(Vu‘)T ‘Vu'}:Vu'>

aa, (F.12d)8a 8
=(< a,(2a]b2+a —+a3—(_;l—l)>+<a3(2a3b2+a3%+alax—)>)y

82 2

8a

' 8x
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Destruction Terms for e

— Y = -—2V2 < V(Vu' )T§V(Vu' )T >

: —4v2{< (%
2 Ba] 2 8a. 7
)->+<(—) >+<(—’)‘> (EB)

82 8x

8a3 2 2 2 2
+<(E) >+2<bl +b2+b3 >

The modeling approaches for the transport terms in the k— and e-equation as developed in

Chapter 4 (i.e. Eqs. (4.16) and (4.25)) are likewise given here in terms of their near wall

behavior. Thus, the order of modeled transport term in the k—equation given by

d , , dk
Elm“ <11qu >E}=O(y3) (FM)

and the equivalent term in the e-equation is given by

d , , d8 3

971C517 < uyuy >E} = O(y) (F.15)
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G. Computer Program For Fully Developed Turbulent Channel Flow

The general methodology applied to obtain the numerical solution is explained in

Chapter 6. The finite difference scheme (Yang and Shih, 1993; Patankar, 1980) is

illustrated here and the resulting matrix formulation is given here. The governing

equations for the numerical implementation are presented in Chapter 6. The momentum

equation is used in its integrated form as given by Eq. (6.2). The treatment and numerical

implementation of the transport equation for the kinetic energy is explained here. The

equation for the dissipation rate parallels this procedure. The finite difference scheme is

developed for interior grid points.

' z

———->

For ease of reading, the k-equation is rewritten in terms

i i+l

of the following dimensionless variables (i.e. y=n, k=k+,

1+1 . + + + - - -

8:8 , u=u , 8:8 ). The dimen51onal var1able 2

y j introduced through the convective term is normalized

with 5.

j-I 0

Thus, the (normalized) k-equation is given by:

u£_i(v_d_k)+8V_S2_5,3 (G1)
d2 dy 8 dy '

The viscosities vk and vI are given by

 

+2 k+2

vk = 2cch .E—R” vl = g 8+ (G2)

and S is defined as

_E _ 2 (G 3)

— dn 11 _ 8 '

The finite difference scheme for the nodes as indicated by the sketch above thus reads
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u ki+1.j_ km _ 1 V k1+1.j+1"' ki+l.j _ V k12.1.,” — ki+1,j—l

H AZ 5(Yj+.5 — yi—5) “1+5 Yj+1 — Yj kid-'5 Y; " Yj-I (6.4)

v1 2

+ (:8 )i'j - 08“-

With

V18) = Vki,j+.5 V18) = Vki,j—.5 Ay = Yj+5 _ yj-.5 = yj+1_ Yj = Y) — yj-l ((35)

and

V1 2 8

skl : (8S )1.) sk2 = —6(E)i.jki+l.j (G6)

the difference equation can be expressed as

  

V17 uj'. V(,') +v(+)
V(+) ui.‘

_ “1:302 ki+l.j-| +{ All + 5(Ay): —Sk2 km.) —_5(Aky)2 ki+l.j+l :Skl +TA—Ziki'j ((3.7)

which can be written in matrix notation as

(b. c, 0 0 0 )Wk, W” (d, )‘1’

a2 b2 c2 0 0 k2 d2

0 .. .. .. O .. = .. (G8)

0 0 a b c k d
n-l

(00 0 a bn)(kn) (an)      

in which denotes a continuation in this tri-diagonal matrix scheme and n is the number

of grid points. The coefficients a, b and c as well as the parameter (1 can be readily taken

from Eq. (G7). The boundary condition at y=y(°q’) leads to the following result for the

matrix coefficients at this points:

a1=c1= O bI =1 (11:19.1 (G.9)

Eq. (G7) is also applied at the nth grid point. The zero derivative condition (i.e. dk/dy=0)

at the centerline is used to eliminate the coefficient cm... Thus, the transport coefficient

V12”) is given by v(<”. Whence,



 

217‘," ui n 2v? ui n
an=————, "2 ‘ + ,—sk, c =0 d = ' k. (G.10)

8(Ay)“ A2 8(Ay)‘ “ A2 ‘

 
 

The expression for dn incorporates the fact that no turbulent production exists at the

centerline. The solution of this is obtained by applying the ‘Thomas’-algorithm, i.e. a

readily available tri-diagonal matrix solver (Press et al., 1992).

The computer program used to calculate the boundary value problem as well as input

files are given here. The variable names are consistent with the notation used in the

general body of the text. Exemptions are explicitly stated here. For purposes of

readability, the font to display the source code has been changed. The first file serves as

input. The numerical values can be taken as an example.

 

Input File

&input1

re=395., 8‘

ymax=1.0, Outer Boundary

dz=0.80, Step Size in z

ystrch=1.03, Stretch Factor for Grid 1

/&end

&input2

np=150, Number of Points

nst=800, Number of Steps

inp=O, 0 —> Top Hat Initial Profile, 1 —> Specified Input Profiles

Ipr=10, Monitor Control Parameter

ng=1, Grid Indicator

apow=1.5, Power Exponent for Grid 2

/&end

&input3

yw=30.0, Inner Boundary

uw=13.8, BC for u‘

hw=3.225, BC for k’

ew=0.0813, BC for 8‘ (Note: eps=re*e)

vs=0.0, Control parameter for molecular viscosity

/&end

&input4

u0=1.0, Top Hat Profile for u’

akO=1.0e-O, Top Hat Profile for k’

eO=1.0e-1, Top Hat Profile for e’

tiny=1 .Oe-ZO, Small Parameter to control overflow



/&end

&input5 Model Parameter

cro=0.6667,

br=0.237,

lle=20.0,

ecr=0.5,

911 =2.0,

cbo=0.355,

bb=0.1 1 9,

ttsb=20.0,

ecb=0.5,

612:2.0,

Afb=0.30.

be=3.3,

Cfb=2.0,

cgo=0.0068,

bg=0.027,

ecg=2.0,

Afg=0.50,

Bfg=1 2.0,

Cfg=8.0,

/&end

&input6
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cp=1.56,

cd=1.80,

ck=0.400,

ce=0.240,

Production Coefficient

Destruction Coefficient

Transport Coefficient for k‘

Transport Coefficient for 8’

/&end

 

C
 

 

Program Source Code

 

 

program relax

parameter (n=401)

common/velo/ u(n),dudy(n)

common/turb1/ak(n),eps(n),anutao(n),anutak(n),anutae(n)

common/para/ re,np,ist,nst,tiny,lpr,ng,vs,apow

 c

call init

call mesh

181:0

istpr=1

c --- Loop Start

10 ist=ist+1

if((lpr.gt.0).and.(ist.eq.istpr*lpr)) then

write(',110) ist,ak(np),eps(np)/re,u(np)

1 10 format(1x,i4,2f8.4,f8.2)

istpr=istpr+1

endif

call stress

call velocity
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call model

call kequat

call eequat

if(ist.lt.nst) goto 10

c Loop End

call stress

call result

stop

end

 

subroutine init

parameter(n=401)

common/velo/u(n),dudy(n)

common/grid/xdx,,ymaxystrch,y(n)l,dy(n)

common/turb1/ak(n)pnqlnl ‘ ' ’\. ‘ f :

common/para/ re,,np ist,nsttiny. lpr, ng,vs,apow

common/ketra/cp,cd,ckce

common/msu1/ryy(n),ryz(n),g(n),rxxyy(n),tts(n),rey(n)

"’ :‘ h(n) nnfn) hyxyy(n)hyy(n)hyz(n)

common/relax1/cro,br,ttsr,ecr,ef1,cbo bb,ttsb,ecb,ef2

common/relaxZafb,bfb,cfb,cgo,bg,ecg,afg,bfg,cfg

common/bound/yw,uw,hw,ew

namelist/input1/re,ymaxdx,ystrch

r net inn Inrng:1an

namelist/inputS/yw,uw,hw,ewvs

namelist/input4/u0akO,e0,tiny

"" hrttsrerrM1 cbo,bb,ttsbecbef2,

+ Afb, be,Cfb,,cgo bg,ecgAfg, Bfg,Cfg

namelist/inputG/cp,cdckce

 

open(3,fi|e='Relax.inp')

read(3,input1)

read(3,input2)

read(3,input3)

read(3,input4)

read(3,input5)

read(3,inpu16)

close(3)

c

c Convert First Point

yw=yw/re

c Initial Profiles

if(inp.eq.0) then

do10j=1,np

u(j)=u0

ak(j)=ak0

eps(j)=e0

10 continue

elseif(inp.eq.1) then

open(10,fi|e='Relax.ini')

do 20j=1,np

read(10,100) y(j),ak(j),eps(j),u(j)

eps(j)=eps(j)'re

100 format(7f10.4)

20 continue

close(10)
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end”

return

end

 

D

subroutine kequat

parameter (n=401)

real a(n),b(n),c(n),d(n),phy(n)

common/velo/u(n),dudy(n)

common/grid/x,dx,ymax,ystrch,y(n),dy(n)

common/turb1/ak(n),eps(n),anutao(n),anutak(n),anutae(n)

common/turb2/pk(n),sk1(n),sk2(n),pe(n),se1(n),seZ(n)

common/para/ re,np,ist,nst,tiny,lpr,ng,vs,apow

common/bound/yw,uw,akw,ew

do 10 j=1,np

phy(i)=Pk(i)/dy(i)

10 confinue

c Coefficients for Matrix A

do 20 j=2,np-1

phyp=lphym+phy0+1))/2-

phym=(phy(i)+phy(i-1))/2-

a0)=-phym/dy(i)

b0)=u(j)IdX+(phyp+phym)/dy(i)-sk2(i)

c0)=-phyp/dy(i)

20 d(j)=u(j)'ak(j)/dx+sk1(j)

c BC (Equil. Region)

ak(1)=akw

b(1)=1.0

C(1)=0.0

d(1)=ak(1)

c --- BC (Center Line)

a(np)=-2-'phy(np)/dy(np)

b(np)=u(np)/dX+2.‘phy(np)/dy<np)-sk2(np)

d(np)=u(np)'ak(np)/dx

c Solve Equations

call tridag(a,b,c,d,ak,np)

return

end

 C—————

 

subroutine eequat

parameter (n=401)

real a(n),b(n),c(n),d(n),phy(n)

common/velo/u(n),dudy(n)

common/grid/x,dx,ymax,ystrch,y(n),dy(n)

common/turb1/ak(n),eps(n),anutao(n),anutak(n),anutae(n)

common/turb2/pk(n),sk1(n),sk2(n),pe(n),se1(n),se2(n)

common/para] re,np,ist,nst,tiny,lpr,ng,vs,apow

common/bound/yw,uw,akw,ew

do 10 j:1,np

phy0)=Pe(i)/dy(j)

1O confinue

c Coefficients for Matrix A

do 20 j=2,np-1

phyp=(phy(i)+phy(i+1))/2.

phym=lphy0)+phy0-1))/2.

a0)=-phym/dy(i)
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b(i)=UO)/dX+(Phyp+phym)/dy(i)-3e2(1)

C(i)=-phyp/dy(i)

d(j):u(j)‘eps(j)/dx+se1(j)

20 continue

c BC (Equil. Region)

eps(1)=ew're

a(1)=0 0

b(1)=1.0

c(1)=0.0

d(1)=eps(1)

c BC (Center Line)

a(np)=-2-'phy(nP)/dy(nP)

b(np)=u(np)/dx+2.'phy(np)/dy(np)-se2(np)

d(np)=U(np)'eps(np)/dx

c ._- Solve Equations

call tridag(a,b,c,d,eps,np)

return

end

 

subroutine velocity

parameter (n=401)

common/velo/u(n),dudy(n)

common/grid/xdx,ymax, ystrch,y(n), dy(n)

common/turb1/ak(n1pne(n1 ‘

common/para] re,,np ist, nstt,iny,lpr, ng,vsapow

common/bound/yw,uwakw,ew

c

c Calculate the velocity gradient

dudy(1)=re'(1.-y(1))/(vs+anutao(1))

do 10 j=2,np-1

dudy(j)=re'(1.-y(j))/(vs+anutao(j))

10 continue

dudy(np)=0 O

c Calculate the velocity

u(1)=uw

do 20 j:2,np

u(j)=u(j—1)+O.5'((1.-y(j))/(vs+anutao(j))'dy(j)

1 +(1.-y(j-1))/(vs+anutao(j-1))’dy(j-1))‘re

20 continue

c

return

end

 

subroutine mesh

parameter(n=401)

common/velo/u(n),dudy(n)

common/grid/x,dx,ymax,ystrch,y(n),dy(n)

common/para/ re,np,ist,nst,tiny,lpr,ng.vs,apow

common/bound/yw,uw,hw,ew

if(ng.eq.0) then

ymaxpr=0.

do 20 j:2,np

y(i)=y(J-1)+dyy

ymaxpr=ymaxpr+dyy

dyy=dyy'ystrch
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20 continue

A

v

beta=(ymax-yw)/ymaxpr

 

do 30 j=1,np

y(i)=YW+y(i)*beta

30 continue

n

v

elseif(ng.eq.1) then

pi2=acos(0.0)

do 35 i=1,np

y(i)=(ymax-VW)'(1--costpi2‘(i-1.0)/(np-1-)))+yw

35 continue

elseif(ng.eq.2) then

y(1)=yw

do 45 j:2.np

y(i)=(ymax-yw)'((j-1.>/(np-1-))"aPOW+yw

45 continue

elseif(ng.eq.3) then

pi = 2.‘acos(0.0)

do 55 j:1,np

y(j)=(ymax-yw)'(1.-cos(pi'(j-1.0)/(np-1.)))/2.+yw

55 continue

endif

dy(1)=(-y(3)+4.0‘y(2)-3.0'y(1))/2.

dy(np)=(y(np-2)-4-0‘y(np-11+3.0'y(np))/2~

do 40 i=2,np-1

dYO)=(Y(l+1)-ytj-1))/2-

40 continue

return

end

 

subroutine model

parameter(n=401)

common/velo/u(n),dudy(n)

common/turb1/ak(n)eps(n), ‘ \ ,, 'f ), ‘

common/turb2/pk(n),sk1(n),sk2(n), e(n),se1(n),se2(n)

common/para] re,np,ist,nst,tiny,lpr,ng,vs,apow

common/ketra/cp,cd.ck,ce

common/msu1/ryy(n),ryz(n),g(n),rxxyy(n),tts(n),rey(n)

’ "’ 1Irho”)Pg(n).hflyy(n).hyy(n).hy2(n)

I\ l\

\ I

 

do 10 j=1,np

anutaoti)=9(i)'rey(i)

anutak(j)=2.‘ck‘cr(j)'rey(j)'|'yy(j)

anutae(j)=2.'ce’cr(j)'rey(j)"ryy(j)

pk(j)=(vs+anutak(j))/re

pe(j)=(vs+anutae(j))/re

10 continue

 

do 20 j:2,np-1

sk1(j)=anutao(j)/re‘dudy(j)“2

sk2(j)=-eps(j)/(ak(j)+tiny)
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tt=re'ak(j)/(eps(j)+tiny)

fp=1,+(3.24—1.)'exp(-(rey(j)/30.)“1.0)

se1(j)=cp'fp/(tt+tiny)'re'sk1 (j)

fd=1.-O.4/1.8'exp(-(rey(j)/6.)"2.)

fdw=1./(1.+0.0837'tts(j)'exp(-(rey(j)/50.)))

se2(j)=—cd'fd'fdw/(tt+tiny)'re

20 continue

I.

v

return

end

 

write(1,')’ y',‘ U <-uv>

1 .

subroutine result

parameter (n=401)

common/velo/u(n),dudy(n)

common/grid/x,dx,ymax,ystrchy(n), dy(n)

common/turb1/ak(n1pncfn1 ‘ .

common/para/ re, np, ist, nst,tiny, lpr, ng,vs,apow

dimension uvbar(n)

open(1,fi|e=‘Relax.dat‘)

k‘,' eps '

do 10 j=1,np

uvbar(j)=anutao(j)'dudy(j)/re

write(1,100)y(j)‘re,u(j),uvbar(j),ak(j),eps(j)/re

10 continue

100 format(1x,6e12.4)

close(1)

return

end

 

subroutine stress

parameter (n=401)

common/velo/u(n ), dudy(n )

common/para/ re,,np ist, nst,tiny, lpr, ng,vs,apow

common/turb1/ak(n1 pn<(n1

common/msu1/ryy(n) ryz(n) g(n), rxxyy(n),ttsr1(),rey(n)

"’ 1‘rh(n1r~g(n1hxxyy(n)hyy(n),hy2(n1

common/relax1/cro, br,ttsr,ecr, ef1,cbo,bb.ttsb,ecb,ef2

common/relax2/afb,bfb,cfb,cgo,bg,ecg,afg,bfg,cfg

do 10 j=1,np

ak(j)=abs(ak(j))

ePSU)=ab5(ePS(j))

dudy(j)=abs(dudy(j))

rey(j):ak(j)2."/(eps(j)+tiny)re

tts(j):ak(j)/e(ps(j)+tiny)'dudy(j)

f1=exp(-(tts(j)/ttsr)"ef1)

12=exp(-(tts(j)/ttsb)"e12)

cr(j)=cro/(f1+br‘sqrt(tts(j)))

fb=1 .-Afb'exp(-((tts(j)-be)/Cfb)“2.)

cb(j)=cbo/(f2+bb'sqrt(tts(j)))‘fb

fg=1.-Afg'exp(-((tts(j)-Bfg)/Cfg)"2.)

cg(j)=cgo/(1.+bg'(tts(j)"2.))'fg

ryy(j)=1./(3.+(cr(j)'tts(j))"2.)

g(j)=2.‘cr(j)'ryy(j)-cb(j)/(1.+2./3.‘(cr(j)'tts(j))*"2.)



10
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anutao(j)=g(j)'rey(j)

rxxyy(i)=<=9(j)‘(11801"?-)

W201=9(i)/2-‘ttS(i)

hyy(j)=-cb(j)‘cr(j)/3.'(tts(j)“2.)

+ /(1.+2./3.*(cr(j)‘tts(j))"2.)

hxxyy01=rxxyv(i)

hyz(j)=cb(j)/2./(1.+2./3."(cr(j)*tts(j))“2.)*tts(j)

confinue

return

end

 

 

11

12

subroutine tridag(a,b,c,d,u,n)

parameter (nmax=401)

dimension gam(nmax),a(n),b(n),c(n),d(n),u(n’)

if(b(1).eq.0.)pause

bet=b(1)

u(1)=d(1)/bet

do 11 j:2,n

gam(j)=c(j-1)/bet

bet=b(i)-a(j)*gam(i)

if(bet.eq.0.)pause

v(i)=(d(i)-a(i)*U(J-1))/bet

conflnue

do 12 j=n-1,1,-1

u0>=u<1>-gam0+1>*u<1+1>

confinue

return

end
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