MW\\\\\\\\‘\\\T\\\"\\T\T\\‘~; mu \ujox'ni‘fmlk‘uin 311E315 3 1293 0170 LIBRARY Michigan State University This is to certify that the thesis entitled COMPARISON OF THE QLSi ELLIPSOID AND ELLIPSOIDAL REDUCTION SPOTS USED TO DETERMINE FINITE STRAIN IN THE PRECAMBRIAN KONA SLATE MEMBER: MARQUETTE COUNTY, MICHIGAN presented by Erick C. Nefe has been accepted towards fulfillment of the requirements for M. S 0 degree in GeOlogy 77L“ka <7" [4; ML; {16/ /Major professor Date November 24, 1980 0-7639 m: 25¢ per day per item RETURNING LIBRARY MATERIALS: N v. - Place in book return to remove $3315!” ‘4' charge from circutation records I "i\\\\ I. ‘ { . I II‘ ., Jim ‘1 V © 1980 ERICK CLEMENS NEFE All Rights Reserved COMPARISON OF THE QLS ELLIPSOID AND ELLIPSOIDAL REDUCTION . i SPOTS USED TO DETERMINE FINITE STRAIN IN THE PRECAMBRIAN KONA SLATE MEMBER; MARQUETTE, MICHIGAN BY Erick C. Nefe A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geology 1980 ABSTRACT COMPARISON OF THE QLS. ELLIPSOID AND ELLIPSOIDAL REDUCTION SPOTS USED TO DETERMINE FINITE STRAIN IN THE PRECAMBRIAN KONA SLATE MEMBER: MARQUETTE COUNTY, MICHIGAN By Erick C. Nefe It has been suggested by Bennett (1972), Tilmann and Bennett (1973 a,b) and Anderson (1977) that the Q ellipsoid method may be a valuable tool for describing regional tectonic forces. Kona slate in the Marquette synclinor ium containing reduction spots has been examined by Wes tjohn (1978). Westjohn (1978) concluded that the reduction Spots demonstrated h5% flattening in the Z axis, with extensions of 60% and 15% in the X and Y axes, respectively. The QLS. ellipsoid (constructed by anisotropic velocity measurements) of the Kona Slate exhibited similar axial orientations and similar axial ratios. The average deviation (resultant vector) of the axes of QLSi ellipsoid from the known reduction spot was (1.80, 1.10, 1. ho ) for the major axis, (2.60, 6.80, 6.30) for the intermediate axis and (1.60, 6.60 , 6.80) for the minor axis using an orthogonal set of (X, Y, Z) axes and a deviation technique described by Fisher (1953) and McElhinny (1973). Comparison of the mean axial ratios for the QLSi ellipsoid demon- strated a h8% flattening in the Z axis, with extensions of 62% and 21% in the X and Y axes, respectively. It is concluded, from the close agreement between the QLS. ellipsoid and the reduction spot ellipsoid orientations, that the QLS ellipsoid is a valuable tool for describing regional finite strain in an area. ACKNOWLEDGMENTS I would like to thank both Dr. Cambray and Dr. Long for suggestions during the laboratory work and during the early stages of writing. I would also like to thank Dr. Hugh Bennett for helping me throughout the laboratory work and the final stages of writing of this thesis. ii IOD'U'U 5951.4. :0 O m R It n H BI 01 BI (D 0 LIST OF SYMBOLS element of 3 x 3 matrix circle of 95% confidence around the resultant vector (R) intermediate axis an estimate of the precision parameter directional cosines for a selected set of orthogonal axes X, Y and Z, respectfully minor axis major axis number of measurements number of measurements in the ith direction directional cosine matrix probability (for this paper p = 0.05) density calculated ellipsoidal value least square ellipsoidal value average data mean average trace element resultant vector distance from origin to reference Q ellipsoid diviation of Qi from Q5 deviation of Qi from QS deviation of Q o from - Lsi Qm dev1ation of QLS. from Qs iii dl >4 <1 < < <1 rt deviation of Qi from lei time phase velocity P wave phase velocity SV wave phase velocity SH wave phase velocity distance iv TABLE OF CONTENTS Introduction . . . . . . . . . . . . . . . . . Geologic Setting . . . . . . . . . . . . . . . Laboratory Procedures. . . . . . . . . Sample Preparation. . . . . . . . Thin Section Preparation. . . . . Operation of Ultrasonic Apparatus . . Sample Measurement and Calculations . . Q-Ellipsoid Method . . . . . . . . . . . . . . Error Analysis. . . . . . . . . . . . . Cutting and Reduction Spot Variation Apparatus. . . . . . . . . . . . . . Discussion and Results . . . . . . . . . . . . Thin Sections . . . . . . . . . . . . . . Velocities and Q Ellipsoids . . . . . . . conCIuSion O O O O O O O O O O O O O O O O O 0 Appendix A . . . . . . . . . . . . . . . . . . Tables I-VI Appendix B . . . . . . . . . . . . . . . . . . Computer Program used for Calculations Bibliography . . . . . . . . . . . . . . . . . 11 11 12 15 24 25 31 31 31 33 33 33 48 49 82 89 1. 2. LIST OF FIGURES Northwestern Upper Penninsula of Michigan Showing the Study Area. . . . . . Sample Location Sites. . . . . . . . . . . 3a-3e. Sample Preparation . . . . . . . . . . 4. ll. 12. l3. 14. 15. Schematic Diagram of Ultrasonic Apparatus. Photograph of Ultrasonic Apparatus . . . . Photograph of Lathe Assembly . . . . . . . Photograph of Lathe Assembly . . . . . . . Schematic Diagram of Transducer Assembly . Photograph of Transducer Assembly. . . . . Photograph of Transducer Assembly with Sample in Measuring Position . . . . . . . Photograph of a Signal on the Cathode-Ray Tube Display of the Oscilloscope . . . . Equal Area Stereonet Plot of the Field Orientations of the X axes of the Reduction Spots and the Respective Plots of the X axes of the QLS Ellipsoids . . . . . . . . . .i. . . . . . Plot of Westjohn's (1973) Axial Ratios . . Plot of QLS Axial Ratios. . . . . . . . . 1 Plot of the Relationship Between Westjohn's (1973) Data and the Q I 0 LS. Ax1al Ratios . . . . . . . . . . .1. . . . vi _13 16 16 18 18 20 20 22 22 39 42 44 46 LIST OF TABLES Ia. Propagation Directions, Directional Cosines and Sampling Distances . . . Ib. Propagation Directions, Directional Cosines and V1, V2 and V3 Mean Velocities . . . . . . . . . . . . . II. Qi Ellipsoid Values and QLS Values 0 o G _ _ w1th Assoc1ated Qm’ 05' m’ me’ . x AO-Oa°.°u°.-vx x -N....-.. . N . 2.3.8 ..:.o...o .od. 3...... . 2.53.0 .o.o._:.o...o. :63 > 3.. .o.o.o.o.~ o m n n a n > t / \\ x X j. x x N 5° 1 \ / \ I? \ ZO_F a; e (15) 6s a 6se 7 6e (16) where 61-?! Will approach Gs and 6 me Will approach Gse whenever Equation (14) is very small or equal to zero; Ge is the best measurement of data scatter which includes sample inhomogeneity and errors in measurement. Inhomogeneous anisotropy is demonstrated by the relationship: 65 > 6e>6me (l7) and GS>6e >Gse (18) Inhomogeneity will be indicated if there is a variance of pre- ferred crystal orientation, irregular compositional or structural differences Within the sample and if errors in measurements exceed the degree of anisotropy. For the folloWing study Equations (l)-(18) were applied to seventeen rock samples and the results are shown in Tables I-VI. 31 Error Analysis: Cutting and reduction spot variation. The angles of the rocks were cut as accurately as possible, but due to clamping and other equipment used in cutting, the angles of each rock sample showed an accuracy of i2.00. The samples were always cut with the Z axis perpendicular to cleavage and the XY plane being the cleavage plane. By this method both Wood (1974) and Westjohn (1978) suggest that the re- duction spots major and intermediate axes are defined. However, a 100 variation was observed between the cleavage plane and the true major and intermediate axes of the reduction spots. This variation is further supported by Westjohn (1978). Thus, the true maximum and intermediate axes of the ellipsoidal reduction spots of these samples are accurate to 112.00. Apparatus. Bennett (1968) estimated the time measurement accuracy, the distance accuracy and the veolcity accuracy for the ultrasonic equipment as 1'0.7%, 10.33% and 1.00%, respectively. However, the sampling length in this study was shorter, so the time and distance accuracy was recalculated and the resulting velocity accuracy was also recalculated. Due to attenuation in the Z (0.0, 0.0, 1.0) direction the sampling distance was much smaller in this direction than other propagation directions. The approximate sampling distance was 1.27 cm. By using the lathe setup, measurements were good to 1'0.0075 cm. Thus, the accuracy of the distance is good to i0.59% for this study. The time accuracy was recalculated by taking 10 measurements of the same sample and finding the percent error. It was found to be 0.69% or ==O.7%. 32 By using: = 1.30% (19) AV AX 6t AV ' V where A‘V is the percent velocity error, 4.x is the percent V X distance error and 1L2 is the percent time error. This smaller sampling distance wiIl indeed cause greater error, although it is possible to compensate, in part, for this by increasing the sweep speed of the oscilloscope. A reasonable estimate for the total error of the velocity measurements is 12.0%. Using an example of how a velocity error of :2.0% will affect the Qi values is given below: _ 2 2 2 Qi/—V1+V2+V3 if V = 6.00 km/sec, V = 3.00 km/sec and V = 2.50 km/sec, l 2 3 then Qi = 51.520 mz/sec2 Now if V1 = 6.00 + (6.00 x 0.02) km/sec, V2 = 3.00 + (3.00 x 0.002) km/sec and V3 = 2.50 + (2.50 x 0.02) km/sec, Qi = 53.865 Then the Qi values are good to: 53. - . , . _ 853.8651 250 x 100 $3 5.0% (max1mum pOSSIble error) DISCUSSION AND RESULTS Thin Sections: A definite lineation of opaque pyrite crystals were noted for all samples in the XY plane. The crystals formed small ellipsoids Whose major axis corresponded, within the amount of experimental error, to the major axis of the ellipsoidal reduc- tion spots (Table VI). Velocities and the Q Ellipsoids Of the eighteen samples, seventeen showed excellent results. One sample, #3, was severely fractured causing very poor mea— surements in all directions. To define the elastic ellipsoid it is necessary to measure the three phase velocities in a mini- mum of six noncoplanar directions Bennett (1972). All samples were measured in nine directions except sample #7, which was measured in seven directions due to fracturing and poor signal transmission. The measured phase velocities showed a common relationship for all samples. V1, V2 and V3 were the fastest, in propagation direction 1 for most samples. For all samples the slowest velocities were observed in propagation direction 3, which is most probably related to air spaces in between the cleavage surfaces. These two observations are quite obvious from the velocity data (Table Ib). Thus, a relationship can be seen between the "fast" propagation direction and the major axis of the ellipsoidal reduction spots. The slowest velocity direction, likewise corresponds to the minor axis of the reduction spots. 33 34 The resulting Qi from propagation direction 1 is always the largest of the nine propagation directions and the Qi for prOpa- gation direction 3 is always the smallest (Table II). From Table I and Table II an obvious trend is shown. Sta- tistical calculations from Table II prove that the fit of the Qi values and the theoretical QLS. values conform to the proper statistical tests mentioned in the methods section of this paper. As a second test the Qi and QLS. values correlation coefficients were compared by using a linear regression program incorporated in a Texas Instruments SR-56. The nine Qi values were entered as the X coordinates and the respective QLS. were entered as the Y data. The r values were as follows: % probability it is a valid correlation coefficient for 9 measurements (taken from M. Lamont, L. Douglas, R. Sample ‘3 Oliva, 1977) #1 0.964596 99.9 #2 0.910346 99.9 #2' 0.976061 99.9 #4 0.952303 99.9 #4' 0.948849 99.9 #5 0.817783 99.0-99.9 #5' 0.774328 95.0-99.0 #6 0.996321 99.9 #6' 0.880862 99.0-99.9 #7 0.978584 99.9 #7' 0.940235 99.9 #8 0.881884 99.0-99.9 #8' 0.872623 99.0-99.9 35 % probability it is a valid correlation coefficient for 9 measurements (taken from M. Lamont, L. Douglas, R. Sample E Oliva, 1977) #9 0.804959 99.0-99.9 #9' 0.784228 95.0-99.0 #10 0.856649 99.0-99.9 #10' 0.967885 99.9 By the statistical tests of Table II and the above correlation coefficient calculations, one can assume their is a definite relationship between Qi and QLS.’ The percent uniformity (from Table II) ranged from 3.9% for sample #9 to 19.9% for sample #4', which indicates a uni- form sampling. Sample homogeneity and elastic behavior as a pseudocrystal is exhibited by all samples due to the fact that: 6 - Z G-— > 6 m me e > 65 "' Gse >Ge is true for every sample. Sample homogeneity and elastic behavior as a pseudocrystal has been proven: Next the data was used to determine the princi- ple axes magnitudes and directions. The theoretical QLSi ellipsoidal axes direction (Table III) are compared to the known axial alignments of the ellipsoidal reduction spots in Table IV. The major and intermediate axes are assumed to lie precisely in the XY plane (in reality 112,0 variation is possible, see error analysis). The QLS. axes directions (Table IV) show excellent correspondence in relation 36 to the reduction spot axes and when one considers a 112.00 variation for the reduction spots and a 15.0% maximum error associated with the Qi values, it can be concluded that the axes directions of the theoretical QLS. ellipsoid and the re- duction spots are very closely related. The calculated means and standard deviations of Table IV could be questioned, due to the fact that these are linear functions, while the data is in three dimensional coordinates. Fisher (1953) mathematically devised a way to check data dispersed on a sphere by using directional cosines. To test the accuracy of a group of measurements, Fisher (1953) has shown that the true mean direction of a population of N directions lies within a circular cone about a resultant vector R, with semi-anglecx}, at the probability level (l-P), for k > 3 where: cos-<(l_p) = 1 - -Nl;—R<%)1/N‘l - 1. (20) All of the variables in Equation (20) can be calculated so one can solve for °¢ . The resultant vector length R is calculated by using the known directional cosines, 2 2 R2 = (21:) + (2mi) + (Zni) (21) Next, the direction of the resultant vector is found by using the following equations: 1N xR = R i=1 1i (22) 1% YR =‘R i=1 mi (23) 37 N _ 1 ZR" 1"; R 1 n. (24) 1 Fisher (1953) gives an estimate of the precision parameter k as: k = ——— (25) if kris large clustering in one area of the sphere will occur. McElhinny (1973) used equations (20)-(25) and an assumed pro- bability level of p = 0.05 to derive: ,< = 140 (26) 95 (RN) where °‘95 is the circle of 95% confidence around the resultant vector. For a more detailed mathematical explanation, the reader can consult Fisher (1953) and McElhinny (1973). The results of using equations (20)-(26) on the axial orientations of the QLS ellipsoids (Table IV) were as follows: i X axis Resultant vector orientation directional cosines (0.9995, 0,0199, 0.0247) - degrees (1.80, 88.90, 88.60) °<95 = 4.8580 - 95% of the data is within 4.8580 of the resultant vector k = 51.903 Y axis Resultant vector orientation directional cosines (0.0451, 0.9930, 0.109) - degrees (87.40, 6.80, 83.70) °‘95 = 6.1550 - 95% of the data is within 6.1550 of the resultant vector k = 32.328 38 Z axis Resultant vector orientation - directional cosine (0.0280, 0.1154, 0.992) - degrees (88.40, 83.40, 6.80) -‘95 = 3.6370 -95% of the data is within 3.6370 of the resultant vector k = 92.592 These results show excellent correlation between the resultant vector orientations and the "known" reduction spot axial orientations. From the small °< values it can be concluded 95 that there is a very small amount of scatter for the seventeen QLS. axial orientations. 1 One last method can be used to compare the relationship between the axial orientations. An equal area stereonet plot comparing the X axis of the Q ellipsoid orientation and LS. 1 the field measured X axis orientation of the reduction spots is shown in Figure 12. This method however has an added 1'2.0 error, due to the :2.00 accuracy of field measurements. The Q and reduction spots deviate by a mean value of 8.50 which LS. is :gain well within experimental error. Sample #7 is the worst fit of all the data. This may be due to the fact that Sample #7 was measured in only seven propagation directions due to fracturing. These fractures may have caused other propaga- tion directions to be measured inaccurately. Similar orientations of the axes has been shown by three independent methods, so next the relationship between the axial ratios will be examined. The magnitudes of the axes for the QLS. ellipsoids are listed in Table III. The values were used 1 to tabulate the data in Table V using the equations: 39 Figure 12. Equal area stereonet plot of the field orienta- tion of the X axes of the reduction spots (iR) and the respective plots of the X axes of the QLS. ellipsoids (iQ), taken from Table IV. 1 The degrees of difference between the iR and iQ were measured directly from the stereonet and are listed below: Sample Number Deviation of iQ from iR 10 6° 20 5° 2'Q 12° 4Q 4° 4 'Q 6° so 1° 5 'Q 8° 6Q 11° 6'Q 0.5° 7Q 22° 7'Q 4° so ° 8'Q 2° 90 15° 9'0 16° 100 11° lO'Q 16° Mean 8.3 ’ / / I ’ IORO‘:‘-"IOQ 40 .050 SR \ \ I \5 0 2'! /"—_°20 / (I 2'0 9R P‘x‘ I ‘s‘ / ‘90 IR an/ 00 Reg ’\ so , '0 o, [070 9G / / / / / / / / of..7'o 41 log (26) MIX ’ ll 3’ NH“ log = B (27) where X is the magnitude of the major axis, Y is the magnitude of the intermediate axis and Z is the magnitude of the minor axis. This allowed comparison of the QLS. axes ratios to Westjohn's (1978) axes ratio data. Figur: 13 shows Westjohn's values plotted from all samples throughout the study area. Figure 14 shows the QLS. axes ratios after using Equations (20) and (21). Figure 15 is a combination of QLS. axes ratios and Westjohn's reduction spot axial ratios. A definite simi- larity between both sets of data can be observed. Westjohn did extensive work in the Harvey syncline (site 8) and the Negaunee outcrop (site 1). Sample #l's (from the Harvey syn- cline) QLS. axial ratio shows a direct relationship with Westjohn's reduction spots axial ratios. Sample #2 and 2' (from the Negaunee outcrop) QL axial ratios show a poorer Si fit. Sample #2' fits fairly well into Westjohn's twenty-three plotted points. Sample #2 however, does not fit as well into Westjohn's Negaunee area data. Trying to correlate the QLSi axial ratios and the reduction spots axial ratios on a one to one basis is impossible due to scatter in both sets of data. Thus a plot of the average values would be of more importance. The mean values for the axial ratios of the reduction Spots for the Harvey syncline and the Negaunee outcrop are both very close to the QLS mean axial ratio (Figure 15). Figure 13. 42 Plot of 46 deformation ellipsoidal reduction spots showing the variation of data from the site 8 or the Harvey syncline (each 0 repre- sents one ellipsoid from the Harvey syncline) and the variation between site 1 or the Negaunee outcrop (each 0 represents one ellip- soid from the Negaunee outcrop), Taken from Westjohn (1978). Means are plotted with large symbols. - -._..__——— ____..- 43 ON.- OO.N _n.N 0..» >\N @O .._ 60‘. #6.. r 4 r d t r - O O O O O O J I00 0’ 4 .A. 60/0 1' o $ Aw I .1 OGW o¢.o 10* I 10* AA AA AA A A I ‘ - A A A A A A A «.0 «.6 >\x 00.. ¢.O 0.0 pl . . L Q‘ K , A \ ._ I bl . t n A t . x u \A \ ,I \/ ( (\VA 1 ..1. <1 x 2‘ \ \x \ \\ r \ I x x a \ s p N .. x... u... 0 ... 44 Figure 14. Plot of 17 QLS. surfaces to show variation of the data throughout the study area. Each O represents one QLS. ellipsoid. Correlation between Westjohn's sites and the numbered QLS. 1 ellipsoids is given below: Westjohn's Sites Numbered Samples Taken Site 1 (Negaunee) 2 and 2' Site la (Negaunee) 8, 8', 9 and 9' Site 4 10 and 10' Site 5 7, 7' Site 6 4, 4', 5, 5' Site 7a 6 and 6' Site 8 (Harvey) l 45 >\N 00.. ~20: 0.0a 0.0: ¢.Oo 0.0.. N0. ..0: 0‘ . .O- N 1 h A o .0 no, . ”N — I °_‘ .0 A _.o o .w Ln \ C \ O . 0 . 1 _ 0 $ . Aw. _ . I or... s s w.‘ «d A. A V i . cod T .3 >\x 00.. fit O/V * a 200 00 W0 6 4. 0.2.... x . .9 1 .T A J w 0/ #00 ohwx 1 A .N t .o o .s. A .0 4 w t 0 a? I 4 [Var/O 1’ ”Oh\ . s O b I 0.00’\ A 0..» t A. we 4 1 0.0 O °~ . . 0e. 20 . 4' . a... U 4 0N0 0N0 «0.0 0v.0 00.0 00.0 05.0 .010; .o u. s. 0.1.. a O L . s ..D .. n a . . . .1.... . n . n . 0,. u t... . , v p. . 46 Figure 15. Plot of the relationship between Westjohn's reduction spot data (0 Negaunee area, 0 Harvey area) and the QLS ellipsoid data (0). 1 Means are plotted in large symbols. 47 0«.. 00.. 00.« .0.« 0..» >\N 004 5.0-. 0.0: 0.0: v .0- 0.0- «.0- ..0- 1- --J-- I - 14-4444- -44-- 4- dlri- 4- i)<.- A a .0. . N o u . n . O. . .o i I \ O o . N O . O C‘ . ‘ n N o 0‘ . o o .v 00 n o 0 our % . O _ O O... o I . A . ..x o A Oh: . v C 1 C _ . O ‘ A C C C . C V a an. 00/ x. . _° C “O . 0 0x 4 a. o« . 0 . Ax . ooo ms 1 0/ It Wx . OF 60 $0 I ‘ A 4- * A . A! O A O \ 9/ 1v 00.3 1 .1v 1‘- o . n a .00 4 .. o 4 1. «so no \ I 0? .o . Jr . . s 00 .o n P b p p 0«.0 0«.0 «0.0 00.0 00.0 00.0 05.0 ..e «.0 no (X 00-. 0.0 -.Oh'r-— rl.-.‘|-JI.II"I|I' N -.1‘..t‘llllo I‘tlxil.l. A. f..u| - ..t - it‘ll .I... - 4"! l. v... - ..i ‘1‘ Die-1!: (, Illitfl-Iu-o'l! s .DJIDI -.D Jill». i-.'ll|l¢l.l'.o.l|l'.$ 4| . . t . . . .. . I . I . r \ s . \. . .. I A I 1/ w I s , . . r . . Ht.-.— a, . a. \ . . . - s \t . .. . -..-(- st. . v-(lllf'pi 1.39.11»... .. nut. iilbhu slit-.01.-. vt.( « . :ttlll.‘ . .. . I . -..-I.1l .1.- r“- 48 Conclusions: Statistically the Q ellipsoid has been shown to be very similar to the reduction spots, in both axes direction and axial ratios. Thus, the Q ellipsoid method can be used, as reduction spots can be used, to determine finite strain, regionally, for this area. APPENDIX A 49 50 Table Ia Propagation direction, directional cosines and sampling distance. PrOpagation Direction \OmxlO‘Ul-waI-J \OCDxlO‘U‘lIbb-JNH \DmdeI-waI-J \OQQO‘U‘l-waH 51 Directional Cosines (0.0, 0.0 (0.70711, 0.70911, 0.0) (-0.70711, 0.70711, 0.0) (0.97030, 0.0, 0.24192) (0.97030, 040, -O.24l92) (0.0, 0.97030, 0.24192) (0.0, 0.97030, -0.24l92) #2 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89490, 0.0, 0.44620) (0.89490, 0.0, -0.44620) (0.0, 0.89490, 0.44620) (0.0, 0.89490, -0.44620) #2' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.93969, 0.0, 0.34202) (0.93969, 0.0, -0.34202) (0.0, 0.93969, 0.34202) (0.0, 0.93969, -0.34202) #4 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95630, 0.0, 0.29237) (0.95630, 0.0, -0.29237) (0.0, 0.95630, 0.29237) (0.0, 0.95630, -0.29237) Sampling Distance (Meters) 0.1029038 0.0978221 0.0203201 0.1158244 0.1117604 0.0980443 0.0988063 0.0939803 0.0932183 0.1018543 0.1092204 0.0609602 0.1181104 0.1186184 0.0985523 0.0977903 0.0999493 0.1037593 0.1140464 0.1102364 0.0165101 0.1203964 0.1150624 0.1087124 0.1099824 0.1085854 0.1092204 0.1069344 0.1028703 0.0200661 0.1193804 0.1168404 0.1036323 0.1033783 0.0980443 0.0990603 Propagation Direction 52 Directional Cosines \OGDQO‘W-bWNH \OQOU'lobLQNE-J \OmxlO‘IU'l-QWNH \qummbwwl‘ #4' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.97815, 0.0, 0.20790) (0.97815, 0.0, -0.20790) (0.0, 0.97815, 0.20790) (0.0, 0.97815, -0.20790) #5 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95882, 0.0, 0.28401) (0.95882, 0.0, -0.28401) (0.0, 0.95882, 0.28401) (0.0, 0.95882, -0.28401) #5' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.92387, 0.0, 0.38268) (0.92387, 0.0, -0.38268) (0.0, 0.92387, 0.38268) (0.0, 0.92387, -0.38268) #6 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) {-0.70711, 0.70711, 0.0) (0.87036, 0.0, 0.49242) (0.87036, 0.0, -0.49242) (0.0, 0.87036, 0.49242) (0.0, 0.87036, -0.49242) Sampling Distance (Meters) 0.0930913 0.1023623 0.0157481 0.1113794 0.1113794 0.0947423 0.0989003 0.1018543 0.0972823 0.0972823 0.0985523 0.0180341 0.1066804 0.1092204 0.0946153 0.0960123 0.0930913 0.0962663 0.0980443 0.0993143 0.0170181 0.1051563 0.1031243 0.0923293 0.0939803 0.0982983 0.0982983 0.1046483 0.1059183 0.0182881 0.1193804 0.1168404 0.1021083 0.1028703 0.1035053 0.1037593 Propagation Direction \DCDQO‘U’IDDJNH \OCDQQU‘Irfi-DJNH \DG)\IO‘W:>U)Nl—' \DCDQO‘UIubUJNH 53 Directional Cosines #6' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.93041, 0.0, 0.36650) (0.93041, 0.0, -0.36650) (0.0, 0.93041, 0.36650) (0.0, 0.93041, -0.36650) #7 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504) #7' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.84805, 0.0, 0.52992) (0.84805, 0.0, -0.52992) (0.0, 0.84805, 0.52992) (0.0, 0.84805, -0.52992) #8 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89101, 0.0, 0.45399) (0.89101, 0.0, -0.45399) (0.0, 0.89101, 0.45399) (0.0, 0.89101, -0.45399) Sampling Distance (Meters) 0.1028703 0.0970283 0.0173991 0.1106174 0.0988063 0.0991873 0.0990603 0.0913133 0.0908053 0.0990603 0.0992491 0.0203201 0.1092204 0.1054921 0.1008383 0.1013463 0.0990603 0.0993143 0.1031243 0.0974093 0.0157481 0.1122684 0.1109984 0.0957583 0.0962663 0.0973492 0.0965232 0.1021083 0.0960123 0.0210821 0.1096014 0.1099824 0.990603 0.990603 0.0919483 0.0920753 Propagation Direction “DwQO‘LnubWNH \Omflmtfl-hWNH koooqmmc-wwld \DCDQGLNDLUNI" 54 Directional Cosines #8' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.86603, 0.0, 0.50000) (0.86603, 0.0, -0.50000) (0.0, 0.86603, 0.50000) (0.0, 0.86603, -0.50000) #9 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.81915, 0.0, 0.57358) (0.81915, 0.0, -0.57358) (0.0, 081915, 0.57358) (0.0, 0.81915, -0.57358) #9' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504) #10 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.91706, 0.0, 0.39875) (0.91706, 0.0, -0.39875) (0.0, 0.91706, 0.39875) (0.0, 0.91706, -0.39875) Sampling Distance (Meters) 0.1013463 0.0972823 0.0152401 0.1104904 0.1089664 0.0986793 0.0993143 0.0960123 0.0961393 0.1057913 0.0970283 0.0195581 0.1130304 0.1089664 0.1041403 0.1043943 0.0904243 0.0967743 0.1003303 0.0967743 0.0170181 0.1073154 0.1092204 0.1007113 0.1002033 0.0919483 0.0947423 0.1089664 0.1028703 0.0193041 0.1186184 0.1193804 0.1054103 0.1046483 0.0980443 0.0990603 Propagation Direction 55 Directional Cosines \OQQGU'IuwaI" #10' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.87882, 0.0, 0.47716) (0.878882, 0.0, -0.47716) (0.0, 0.87882, 0.47716) (0.0, 0.87882, -0.47716) Sampling Distance (Meters) 0.0906783 0.0929643 0.0157481 0.0968378 0.0988063 0.0906783 0.0901703 0.0908053 0.0906783 56 Table Ib Propagation directions, directional cosines and V1, V2 and V3 mean velocities. Propagation Direction 57 Directional Cosines KDCDQO‘U'IDUJNH \DmQO‘UIhWNl-J \DmNO‘U‘IQWNH \DmQOSUIanNH #1 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.97030, 0.0, 0.24192) (0.097030, 0.0, -0.24192) (0.0, 0.97030, 0.24192) (000' 0097030, -0024192) #2 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89490, 0.0, 0.44620) (0.89490, 0.0, -0.44620) (0.0, 0.89490, 0.44620) (0.0, 0.89490, -0.44620) #2' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (“0.70711, 0.7011, 0.0) (0.93969, 0.0, 0.34202) (0.93969, 0.0, -0.34202) (0.0, 0.93969, 0.34202) (0.0, 0.93969, -0.34202) #4 (1.0, 0.0, (0.0, 1.0, (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95630, 0.0, 0.29237 (0.95630, 0.0, -0.29237) (0.0, 0.95630, 0.29237) (0.0, 0.95630, -0.29237) 0.0) 0.0) Velocities (km/sec) V1 6.899 4.996 4.515 6.436 5.882 6.587 6.587 5.221 5.122 6.701 6.277 3.332 5.320 5.815 6.009 6.189 5.152 5.188 6.307 5.575 3.370 6.258 5.922 6.025 5.968 4.760 5.176 6.520 5.715 3.541 6.079 6.350 5.956 6.006 5.160 4.717 v2 3.499 2.385 1.992 2.597 2.517 3.083 2.559 2.349 3.329 3.223 3.309 2.622 3.374 3.057 3.159 3.134 3.163 3.183 3.050 2.966 1.437 2.864 2.831 2.465 2.747 2.582 2.552 3.073 3.025 1.705 3.061 2.465 2.528 2.901 2.935 2.984 V3 2.780 1.932 1.494 1.631 2.192 2.159 2.196 1.880 2.589 2.380 2.061 2.420 2.461 1.990 2.722 2.686 2.603 2.688 2.816 2.212 1.425 2.863 2.626 2.259. 2.382 2.433 2.212 2.700 2.246 1.674 2.676 1.866 2.115 2.034 2.113 2.006 Propagation Direction \oooqmmwaI—I \Dmflamofi-WNH \DmflmU'lnwaH \OCDQO‘UInbUJNI—i 58 Directional CoSines #4' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0 (-0.70711, 0.70711, 0.0) (0.97815, 0.0, 0.20790) (0.97815, 0.0, -0.20790) (0.0, 0.97815, 0.20790) (0.0, 0.97815, -0.20790) #5 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95882, 0.0, 0.28401) (0.95882, 0.0, -0.28401) (0.0, 0.95882, 0.28401) (0.0, 0.95882, -0.28401) #5' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.92387, 0.0, 0.38268) (0.92387, 0.0, -0.38268) (0.0, 0.92387, 0.38268) (0.0, 0.92387, -0.38268) #6 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.87036, 0.0, 0.49242) (0.87036, 0.0, -0.49242) (0.0, 0.087036, 0.49242) (0.0, 0.87036, -0.49242) Velocities (km/sec) V1 7.165 6.146 3.228 6.471 6.914 6.672 6.537 4.897 5.154 6.856 5.120 4.031 5.569 5.553 5.151 5.255 4.638 4.439 6.528 5.518 4.612 6.114 6.288 5.108 5.026 4.693 5.149 6.708 5.695 4.156 5.527 6.215 6.303 6.197 5.335 5.136 V2 3.003 3.002 1.549 3.027 3.060 2.979 2.886 2.927 3.047 3.196 2.857 1.932 3.055 3.092 2.902 2.321 2.633 2.839 3.242 2.623 2.086 3.039 3.033 2.971 2.990 2.933 3.027 3.133 2.878 1.345 3.450 3.192 2.503 2.611 2.828 2.556 V3 2.135 2.497 1.519 2.916 2.175 2.369 2.483 2.186 2.212 2.766 2.730 1.892 2.487 2.629 2.351 2.321 2.024 2.382 2.967 2.192 2.038 2.577 2.672 2.239 2.487 2.152 2.429 1.938 1.629 1.270 2.003 2.101 1.919 2.125 2.193 2.256 ProPagation Direction 59 Directional Cosines mmxlONUIhUJNH @QOUIIbWNP-J \DCDQO‘Mowat-J \omqmmwai-I #6' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.93041, 0.0, 0.36650 (0.93041, 0.0, -0.36650) (0.0, 0.93041, 0.36650) (0.0, 0.93041, -0.36650) #7 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504) #7' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.84805, 0.0, 0.52992) (0.84805, 0.0, -0.52992) (0.0, 0.84805, 0.52992) (0.0, 0.84805, -0.52992) #8 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89101, 0.0, 0.45399) (0.89101, 0.0, -0.45399) (0.0, 0.89101, 0.45399) (0.0, 0.89101, -0.45399) Velocities (km/sec) Vi V2 V3 6.429 3.164 2.091 5.880 3.109 1.702 4.579 1.540 1.487 6.012 3.225 1.941 6.199 2.943 1.659 5.166 2.867 2.740 5.054 3.076 2.580 4.659 2.801 1.776 4.935 3.089 1.949 6.126 2.975 2.197 3.492 1.917 1.814 5.985 2.395 2.304 5.042 2.083 1.867 4.826 3.147 2.572 4.233 2.514 2.117 3.706 2.719 2.078 6.366 3.105 2.515 5.477 1.917 1.517 3.099 1.549 1.520 5.197 3.153 2.389 5.477 2.891 1.894 5.094 2.616 2.176 5.477 2.395 1.981 5.170 2.518 1.999 5.170 2.518 1.999 7.091 3.283 2.745 5.121 3.085 2.574 3.482 1.770 1.741 6.563 3.321 2.609 6.625 3.293 2.391 5.214 2.966 2.144 5.106 2.948 2.476 4.839 2.736 1.973 4.651 2.970 2.423 Propagation } Direction, \DQQO‘Wnwal-J \DmflmU‘lbWNl" \OWQO‘U‘IbWNH \OCDQO‘U‘IIwaI-J 60 Directional Cosines #8' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.86603, 0.0, 0.50000) (0.86603, 0.0, -0.50000) (0.0, 0.86603, 0.50000) (0.0, 0.86603, -0.50000) #9 (1.0, 0.0, (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) 0.0) (0.81915, 0.0, 0.57358) (0.81915, 0.0, -0.57358) (0.0, 0.81915, 0.57358) (0.0, 0.81915, -0.57358) #9' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504) #10 (1.0, 000' 000) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.91706, 0.0, 0.39875) (0.91706, 0.0, -0.39875 (0.0, 0.91706, 0.39875) (0.0, 0.91706, -0.39875) Velocities (km/sec) V1 6.756 6.196 5.080 6.424 6.410 6.017 6.017 5.053 4.492 7.006 6.383 5.752 5.976 6.233 4.866 5.931 4.861 5.692 7.166 5.752 5.673 6.426 6.425 4.706 5.330 4.421 5.206 6.564 5.779 3.530 6.590 6.218 5.667 4.757 4.180 4.503 V2 3.197 3.189 1.438 3.269 3.263 2.274 2.586 2.017 2.641 3.296 3.234 1.686 3.078 3.287 2.590 2.451 1.966 2.968 3.216 3.349 1.605 3.272 3.290 3.033 3.191 2.179 3.267 3.061 2.991 1.697 3.089 3.109 2.252 2.844 2.200 2.814 V3 2.791 1.938 1.373 2.361 2.369 1.701 2.197 1.861 2.334 2.784 2.494 1.657 2.239 2.698 2.170 2.139 1.706 2.601 2.818 2.794 1.519 2.567 2.411 2.189 2.753 1.940 2.533 2.471 1.994 1.424 2.188 2.287 2.233 2.265 1.865 2.293 Propagation Direction \oooqoxmwaI-J 61 Directional Cosines #10' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.87882, 0.0, 0.47716) (0.87882, 0.0, -0.47716) (0.0, 0.87882, 0.47716) (0.0, 0.87882, -0.47716) Velocities (km/sec) V1 6.457 5.738 3.262 6.093 6.025 5.038 4.901 4.681 5.334 V2 3.119 3.099 1.594 3.027 2.994 2.963 2.892 2.987 3.084 V3 2.830 2.626 1.495 2.645 2.341 2.699 2.390 2.377 2.591 62 Table II Qi ellipsoid values and Q values with associated Qm’ Qs’ 5,, and percent sample uniformity. G;- HV 6 6se’ e s’ GI-I-le' 63 Sample #1 Propagation Direction Qi QLSi 1 67.568 60.984 2 34.381 38.155 3 26.585 26.571 4 50.827 52.114 5 45.738 47.026 6 57.555 60.368 7 54.759 57.522 8 36.311 33.623 9 44.020 41.332 6 — = _ = = m 12.051 0111 46.416 03 41.903 6 s = 12.868 6 - = 11.622 me - 12 468 Qm-Qs lO 7% G‘se — . Qs . 6e = 3.183 Sample #2 1 60.956 58.395 2 54.598 48.158 3 23.833 24.999 4 45.743 52.589 5 47.120 53.965 6 53.497 50.821 7 55.340 52.665 8 43.323 43.070 9 44.272 44.019 6 a = 10.110 Qm = 47.631 QS = 43.8507 6 s = 10.794 6 file = 9.204 Qm-QS G = 9.9502 x 100 = 8.6% se Q3 6 e = 4.184 64 Sample #2' Propagation Direction 1 2 3 4 5 6 7 8 9 <3 - = m 12.034 6 s = 13.4472 - = 11.746 me Gse = 13.1899 Ge = 2.618 Sample #4 1 2 3 4 5 6 7 8 9 G - = 11.309 m 6.3 = 12.7514 6 - = 10.770 me 6 se = 12.2755 6» = 3.451 e 57.180 44.771 15.452 55.562 49.980 47.480 48.837 35.254 38.197 Qm = 43.634 59.244 46.856 18.248 53.485 49.881 46.338 48.625 39.705 35.178 Qm = 44.173 Qm-Qs Qs Q LSi 55.754 43.012 14.133 52.174 46.593 50.206 51.565 38.158 41.110 Qs = 37.6330 54.694 43.188 16.967 50.743 47.139 50.325 52.612 43.209 38.683 QS = 38.2830 65 Sample #4' Propagation Direction Q Q i LS. i 1 64.913 63.747 2 53.020 46.648 3 15.127 14.287 4 59.540 54.019 5 61.898 56.377 6 59.002 62.497 7 57.227 60.721 8 37.326 43.542 9 40.741 46.956 6 i = 15.128 Qm = 49.866 QS = 41.5607 6 s = 17.2578 6 me = 14.354 Qm-Qs 6 se = 16.5837 05 G = 4.776 e Sample #5 1 64.880 51.908 2 41.830 37.687 3 23.561 21.688 4 46.532 44.410 5 47.308 45.186 6 40.482 48.686 7 42.050 50.254 8 32.540 35.947 9 33.439 36.846 C- 1.11 = 10.922 QIn = 41.401 Qs = 37.0943 6 = 11.7433 3 6 me = 8.932 Qm-Qs G - = 9.9167 x 100 = 11.6% se Q8 6 = 6.285 66 Sample #5' Propagation Direction = 9.798 Q10.3882 O 0) ‘\ \oarqchUMbgguaH - = 7.587 8.3348 n 0 n 6.200 Sample #6 - - 10.289 m. = 10.8307 8 - =10.251 me = 10.7947 e as 6) 0 fl 5) U3m~JOHJGIWbOPI =0.882 8 61.928 42.133 29.775 53.257 55.878 39.932 40.386 35.258 41.575 0111 = 44.458 Qm-Qs Qs 58.569 43.369 20.694 46.462 53.229 49.675 49.736 41.269 38.001 x 100 = Qm =44.556 Q 52.962 43.695 26.364 47.019 49.639 48.839 49.293 37.997 44.315 03 =41.007o 58.112 43.931 21.481 47.639 54.406 49.200 49.260 40.122 36.854 05 = 41.1747 67 Sample #6' Propagation Direction 1 2 3 4 5 6 7 8 9 «6 - = 8.933 m. = 9.7234 6's; G.- = 7.7541 me = 8.6032 G'se c = 4.2318 e Sample #7 1 (1,0,0) 2 (0.1.0) 3 (0,0,1) 4 0(1/ 2' 1/ 210) (‘l/ 2: 1/ 2:0) (0.857,0,0.515) (0.857,0,-0.515) (0,0.857,0.515) (0,0.857,-0.515) a mmqmm m G = 11.056 8 me 6 = 10.836 se 6 =2.216 e 55.722 47.137 25.550 50.312 49.841 42.414 41.661 32.706 37.695 Q = 42.560 m meos Qs 51.205 19.160 46.865 33.246 39.809 28.720 25.445 x 100 Qm =34.921 9.9% Q 50.682 42.509 22.970 46.832 46.360 47.336 45.582 37.390 42.378 Q =38.7203 47.117 17.683 46.865 36.028 42.591 28.720 25.445 Qs = 32.400 68 Sample #7' Propagation Direction 1 2 3 4 5 6 7 8 9 G .. = 10.270 m 6 fl =‘- 10.665 G.- = 9.656 me 6 = 10.075 se 6 = 3.497 e Sample #8 1 2 3 4 5 6 7 8 9 <3 _ - m 14.849 6 s = 15.7413 6 - = me 13.095 5 se = 14.0986 6 =-- 7.001 e Qi 56.498 35.974 14.314 42.658 41.943 37.527 39.658 37.065 37.065 Qm = 38.078 meos Qs 68.595 42.367 18.288 60.909 60.451 40.580 40.892 34.794 36.324 Q .= 44.800 m x 100 = Q LSi 50.626 39.458 15.523 45.399 44.685 39.703 41.834 32.737 32.737 Qs = 60.526 45.287 12.916 53.136 52.678 50.557 50.870 37.851 39.380 35.202 Q =39.5763 S 13.2% 69 Sample #8' Propagation Direction 1 2 3 4 S 6 7 8 9 G - = 11.680 111 -=-.- 12.13 5 Gs . l c,- = 10.192 me = 10.7070 Gse = 5.704 Ge Sample #9 1 2 3 4 5 6 7 8 9 G a - 11.201 6 s = 11.3392 6 .— = me 9.018 Gse = 9.1922 6 =6.644 e 63.654 52.316 29.760 57.528 57.347 44.269 47.718 33.064 32.600 Qm = 46.473 Qmugs Qs 67.698 57.425 38.674 50.120 56.934 35.095 45.759 30.405 47.973 x 100 = Qm =47.796 7.6% Q LSi 60.344 45.718 23.519 53.122 52.941 49.413 52.863 40.401 39.937 56.972 50.691 30.375 50.465 57.199 42.890 53.554 35.223 52.791 05 = 46.0127 Q =43.1937 70 Sample #9' Propagation Direction 1 2 3 4 5 6 7 8 9 G - = 12.341 In _ G s = 12.6178 me 6 se = 10.0287 = 7.658 G e Sample #10 l 2 3 4 5 6 7 8 9 G - - m 13.529 6 s = 14.5357 G fie = 11.590 6 se = 12.7503 6 =6.979 (D 69.635 59.108 37.066 58.589 57.918 36.137 46.170 28.057 44.192 m 58.562 46.313 17.411 57.757 53.560 42.173 35.848 25.791 33.453 Qm =41.207 Q = 47.764 Q LSi 59.520 47.538 28.353 53.865 53.194 46.236 56.269 34.382 50.517 Q 3 45.1370 8 53.387 41.774 12.520 49.680 45.482 50.052 43.727 33.291 40.954 05 = 35.8937 14.8% Propagation Direction 0 a (x 6) & 'mcn~umtnou»uaw ii = 12.060 3 512.9140 iie = 11.673 8 = 12.5528 3.032 71 Sample #10' 59.430 49.424 15.416 53.283 50.745 41.445 38.096 36.484 44.676 111 Qm-Qs Qs Q = 43.222 x 100 = 11.9% Q 53.316 49.324 13.176 52.590 50.051 45.852 42.502 36.998 45.190 ‘ Q _= 38.6053 5 72 Table III Directional cosines of the principle axes of the QL ellipsoid; S. i with the associated cosine between major (Mo) and minoe (Mo) axes to show axes fit using Nye's approximation technique. 73 Magnitude (m2[sec2) Directional Cosines Sample #1 61.396 (0.994,0.0930,0.061) 21.942 (-00097'00461'00882) 42.371 (0.054,-0.883,0.467) 0.000034 = cosine between Mo and mo axes Sample #2 58.478 (0.998’*00063'-00033) 24.943 (0.035,0.026,0.999) 48.131 (-00060p-00998'00029) -0.000007 = cosine between MO and mo axes Sample #2' 56.392 (0.977,0.212,-0.036) 13.935 (0.020,0.077,0.997) 42.572 (0.215,-0.974,0.071) -0.000000 = cosine between Mo and mo axes Sample #4 55.023 (00989'0014GI-00037) 16.220 (0.059,-0.152,0.987) 43.606 (0.138,-0.978,-0.159) -0.000000 = cosine between Mo and mo axes Sample #4' 63.952 (0.996,-0.078,0.050) 13.670 (-00040’00125'00991) 47.059 (-0.084,-0.989,0.121) 0.00000 = cosine between Mo and mo axes 'Sample #5 51.984 (0.999’-00227'-00469) 21.576 (0.048,0.052,0.997) 37.723 (-00020'—00998'00053) -0.00007 = cosine between MO and mO axes H- 0 0303 H 5 3 H0802 OHOBOE: 0H0 000 H33 00 74 Magnitude (mg/secz) Directional Cosines Sample #5' 53.147 (0.990,-0.l38,0.011) 25.267 (0.022,0.236,0.971) 44.607 (-0.136,-0.962,0.237) 0.000003 = cosine between Mo and mo axes Sample #6 58.884 (0.976,-0.218,-0.012) 21.319 (-0.007,-0.085,0.996) 43.322 (-00219'_00972'00084) -0.000000 = cosine between Mo and mo axes Sample #6' 50.696 (0.999,0.027,0.016) 22.296 (-0.021,0.l78,0.984) 43.169 "(0.024,-0.984,0.178) 0.000003 = cosine between Mo and mo axes Sample #7 50.618 (0.927,0.366,-0.084) 16.550 (0.176p-00229'00957) 28.108 (0.331,-0.902,-0.277) 0.000012 = cosine between MO and mO axes Sample #7' 50.677 (0.999'0003gy-00034) 15.482 (0.337’-000005'00999) 39.447 (00038p-00999'-00002) 0.000000 = cosine between Mo and mo axes Sample #8 60.530 (0.999,0.018,-0.004) 12.887 (0.004,0.029,0.999) 45.311 (0.018p-00999'00029) 0.000000 = cosine between Mo and mo axes Sxmbol H O 0303 #43:: H H H 00 00 0030;; 000 H 3 0 030 75 Magpitude (mz/secz) Directional Cosines Sample #8' 60.451 (0.998100009'-00054) 23.408 (0.054'-00013'00998) -0.000004 = cosine between Mo and mo axes Sample #9 58.573 (0.956,-0.274,-0.103) 25.385 , (0.202,0.363,0.910) 54.080 (-0.212,-0.891,0.402) -0.000029 = cosine between Mo and mo axes Sample #9' 60.859 (0.958,0.182,-0.219) 23.948 (0.144,0.355,0.924) 50.604 (0.246'-00917'00314) -0.000023 = cosine between Mo and mo axes Sample #10 54.045 (0.987,0.137,0.085) 11.105 (-0.109,0.175,0.979) 42.532 (0.119,-0.975,0.187) 0.000000 a cosine between Mo and mO axes Sample #10' 53.693 (0.959,0.282,0.013) 12.415 (-0.052,0.133,0.990) 49.708 (0.277,-0.950,0.142) H 05 H33 000 H 00 H 3 O 030 76 Table IV Degree of deviation between the known axes of the reduction spots and the computer generated axes of the QLS , which was calculated from the measured velocity data.. mush/N GHMHmquHmu.CH HO COHHUGHHD mwxfi HOCHZ mo COHUUDHHQ Mde HOan MO GOfluomuflQ vmwmm.aa wmvmo.m ammov.m «mmbmom wmwwh.oa mvmmmov mmvmo.v memmm.m mmmmm.w .>mo .m mamma.vm mmmmm.~HI Hmom¢.hm mmmvm.oa mmmmo.vm mmbmm.mm mmmv¢.Hm ovmwmobm Hmmmm.m sum: «Humm.am Nmmma.mHI mv¢om.mb mmoHN.m HMObm.~m wmmoo.mm H¢mmm.mm mnmmm.mn mmmmm.wH .0H* whaam.mh haoam.NHI Nvmha.mm omahm.HH ~mv¢m.mh mmmvm.wm mbwoaomm vmmva.mm scorn.m oa* mmonm.ah haomm.mml mvamh.mh hummm.mm mmmha.mm wmadb.am Hrmmm.moa mmmmm.mh mmvmm.ma .m* vmmmm.mm ommmo.hNI mwmwm.moa mmomm.vm mmmm>.mm mm¢¢m.mh mamomomm NmHmm.moH wmmvo.ha mw mmmmb.om mwhmm.o;I oneam.mm mmmma.m mvmmm.om mmaam.mm anamo.mm Hmmh¢.mm mammaom .mw mmmmm.mm bmmmm.H:I bmmmm.mm omomm.a vsomm.mm ovmh>.mm bmvmm.om mwmmm.mm ommmo.a m¢ mmmoa.om movmma.m I mneom.hm ummwmm.a mmmmo.om mammo.mm Hmmmm.am momom.hm vaNm.N .hw vamo.moa mmvwm.mml momhm.o> mmmmb.ma mmmHN.moa mmmmm.mb mmbmh.vm memm.mm mommo.mm hw mmmah.mh mmabm.oal wmmmw.mm NO¢NM.OH H>m¢h.mb mmHmH.Hm mmomo.mm Nmm¢¢.mm mmaamxa. .mw mmovm.vm omaom.mal ommmm.moa maomm.v manhm.vm mvmmm.om mmmmw.om mmmmm.moH mhmvo.ma m¢ _/ oammm.mb hmOFm.mHI mommm.bm bmwmb.ma mwwmm.mb mamab.mm Nmmmm.mm mmmdm.hm mmawm.h .m* 7 maomm.mm mmam~.m I mvbmH.Hm bmomo.v ormao.hm ham¢m.bm mmhmm.mm maoom.am Nmmma.m m¢ vamwo.mm 8mmm¢.m I mmmmb.vm mhmmm.b wmvmm.~m ommom.~m oamaa.bm mmahv.vm mvamm.m .v¢ wmmva.mm mwva.NHI mmmmo.~m mmbmm.m mmv¢h.mm vwmwm.mm ommma.mm NHmmm.Hm vahm.m v¢ mbH¢m.mm mmmmo.mHI wmvmm.>h Nammm.v omwmm.mw whamm.mm hmamo.mm ommmh.>h mmHN¢.NH .~* mmmmm.mm Harmm.m I mmmm¢.mm mmmmm.mw bvhb¢.mm mmmmm.hm owoam.am wmmam.mm mmmoo.v ~* NHNvH.Nm mmmmo.mmI oomam.mm mvmaa.mm mma¢m.mm mmmmm.mm mmmmv.mm wommm.vm mvmmm.m aw Ammusm Isoo an 040 ummnv sowumu Iswwuo quo Acowuowm OomIN OOIM Oomlx OoIN Oomlw Oomux OomIN Oomuw 0o" MMMHMMMMMMW soflumucmfluo pomm coma Inapmu s3ocx Amwmummav Ammmummav Ammmummov Table V WOOd'S (1974) technique of plotting log % and log é-was used for the QLsi Z is the magnitudetof the minor axis and Y is the magnitude of data, where X is the magnitude of the major axis, the intermediate axis. The ratios were then used to compare to Westjohn's plots, Figures 12, 13 and 14. #1 #2 #2' #4 #4' #6 #6' #7 #7' #8 #8' #9 #9' #10 #10' #5 #5' Mean = 0.119 S. Dev. = .061 Variance = .004 79 KIN log .161 .085 .122 .232 .133 .133 .070 .256 .109 .126 .121 .035 .080 .104 .034 .139 .076 H .0 a Nun -.286 -.286 -.485 -.429 -.536 -.308 -2.87 -.230 -.406 -.546 -.291 -.329 -.325 -.583 -.602 -.243 -0247 Mean = 0.376 S. Dev. = 0.132 Variance = 0.017 80 Table VI Thin sections were done for all samples. Ellipsoidal pyrite grains were observed at 100-200X. The average orientation direction of the major axis of 50 pyrite grains is compared to the major axis of the ellipsoidal reduction spot. 81 Sample # Deviation (clockwise rotation of the microscope stage are positive) 1 - 0.5° 2 +10.0° 3 + 0.55" 4 - 0.50 5 + 0.50 6 + 9.50 7 + 0.5° 8 - 3.5° 9 0.0° 10 - 600 APPENDIX B Computer Program used to Tabulate Tables I-IV, written by Tilmann and Bennett (1973). 82 823 .11.:3.ss PAGE 03/17/00 FIN B .0 0800 7"! 175 0"! 1 q 1 PROGRAM SONI urur,ourvurl FROG?! M $08.10 ( s .5 01 «1‘ I no It '45L 3 09.5 1 51" 0 PLO 6 IL... 1| LET vl L ru 0 [‘2‘ ol 09‘ E u I H 0590 0| I c 0 NO I: 7". 3 1c 1 3.10 9 F... 6 T. .L ( SUN 2 ES. 0 3. 0‘ SE E 0 F N TEE cl ER I 55 \o E 0 6 ISL 0 T7,: 6|: I N (3 co: 0. V Cr." ‘3 LNR cl! El... El. VH7 hV R.‘ Cl 0 DEC I) Ev! )6 .KEO 6 0 U05 IO 5 l. 3“ LEI: 1V 9 Snow. (6”) IA...» ‘13 .K YT... ESA EA‘ C“ HUF— JAIAI. v: I I 2A 9.." €7.10 )3 0 R05 3 .0 . KY 13 I LV. . 0'. LEL 10‘ 7.0L DP “ I. ll. all. 0 0" "RF 77° 00° S‘N ‘0 N00 nfius EVI- DAI MPH .I—IX .1an 95‘ 00c I bufvb b I wheat 0 1s oxnectzou or MEASUREMENTS. RE‘JZNG IN 0 HAIRIX, _ . u ' I ’ z N In D x 1 i a I 1 u 0 . _ V .. H ,. 0; I . HA . o 1 , x H IA x o I. D I I O o 0 I I: '0 x C )2 \l E 3, 3 R Is, 0 v. 1: 1 D :0 a H J1 J o It? I c. ’3 ‘1’ l J‘ Jo x '0 1 o 9.x ..0 1 (5 (0 I C! 02 1 (o ”(F “NI” '00Q01’11... 11‘ 0(10‘U .. ”TN-Col .- Z'IN __ E _. v M . ‘ _ V a 5“ 2 1 TN S . N0 . N . flu; . 7 _ o0 _ . .8 , n u 1 RE _ 1 1 UR . E 1 sm u . A .u i E _ I . NE 1 . H u 1 . at _ m 1 .IO _ 7 T _ X F . 2 on a 0 _ 56 V _ UN A . LI I _ _ A0 a VN P cc H ED. 6 Hi i 0 .IEI X R... 0 SRT 1 7.00 I «ca y I)) 00 E ) X 312 EET I I I 9 I 9 RT T X .K III E I 0 r- ((.l H... C )1 .u 000 "IV. ‘a 0 3 3 Mn 0 O i 0. 3 L 5 ))) than I E 1 c A 222))) XSC 1 V :5 T o u u 231 I C ._ H J1 E 4 u y 1 2 .. 1.9).» J 0 Ir H )))v.!.. . Til I 1 )3 .I 123((( .AU )0: .. Jl. l J 000 NH" Jo x 9 I E III. C c I 11 0 IX H (((222 V5 .4 u 1 (5 T 30L((( E0 (0 .. .V .. __ = .. = = z NU‘ V2 1 (0 G )))))) .r-L. N(F H N )H N 123.956 ..uL. W l 13:51 .21... 7. 5V 12(0):. 10(U T N X Nan-IN; :7.le A 1;! 1110.350 fffit. .1 053m VIIDHTVH iiflol E 0.5.. N1ARH‘P.)Z. QKN l EHA ceicuficiofio a R!" CDPFCPF/DPF G O 0 0 o 2 5 2 . 0 01 0 _ I. 11 Z _ ..v 9010.... 1, 10X,12HY'IETA HETRXX/ll g 'NG '4- narnix “III-H N i I! I I l...b1 01E 1?... 3.1....1U01‘11‘U 6 o z I T f I T E 1 ~I 2 NI .1 Y GENEQAT , NMERE THETAI. HATKX IS THETA MATRIX TIMES I: ) I n- I _ I I: , a z z u 0 F E I I s 6' x o 3 n P 9 1 s ( u p M V I R O I cl 2 I X o X 1 I O 0.. n \I T I: v. 2 m A u. E I I H J .l u H II .H v . u I s I o H T E .u 2 0 E H X 0 x “E vl o J 0 T5 3 4‘ iv 1 (v .0. l 1 AI. 69. J 1 I ’h "5 bid 6. H Near. #1 :N 01: 0.1 I‘U0( T.» 11‘ 3‘ ALVNZ'I ‘R a 2 TNZV. ,U .1. -._-.. . FROG!!! 50410 N .00 p 220 2 J I. ‘2 L {-f (4’ 21 0 CIR-(v. 0‘ u p N O U 668‘- r ((K'II'K' f.t.C: ’ I 'rouLouznc ozrznu:uss ELLIPSOIOflL Ax:s."'” £34 74/175 opt-1 FTN 6.0..96 00401-1 6 A A Pnzurzsl (THETAttl ),J=1 NI Vehiat(l60,5¥.(9F10.5.7x)) figurxnu- 5:31,; ~ Dch'i ,6 éggigl N “67:11;JJIerEIATII.xI-rnaraIK,JI 7 _ unasuno#H£T&1(x,J ONTlNY‘ HEYII ..JI:sun , CNYINUL 1. ...... -.i --__i ___..- Pazwrzzo C5157 (1H1110X11 3117045711 N‘YRIX/I) 0301:} 6 n:vrz 1( HETA1(I J). 4:1 _. .. __ .._ ,_,___. ng:if(180,5x,(GE12.5 'exI)” SWIJUTZNE 1’0 GENERATE DIVERSE .. .. _ ..- .._.. -._ 1.. ._ n 6 ciLL auvnAIIn.1u6141.cnvxuv.ner GENERATING THETAZ n4. RIX. wuss: TNEIAZ "Aszx IS xuvznse IIHES" 'hEl’l TF. ANtPOS 03/17/00 .11. 33.53 ...-.__.....a -._. _ 'pacs 0011.1, . 5. . .---.. __...,_ ._.__.....__.._-i___ 004J=1fi 8d Harizi. J)=CATINV(I,K)'THETIT(K,J) ..7 m ._-i_1 i-_i__i__i__.,_i su~:sunofM€TAZII.JI gcyrzuug H:!AZ( ,J)=sun crurxnuz -. - __-_ .._i --_. GENERATING ALPHA MATRIX ocsz=1,6 ._-_ _ --___-_ SUH=0 08K=1,N LP4£(.)=TFETA3(I,K)‘A(K) SUM:SUmALPm.(.) --11 _ ccwtruu: AEPHA(11=$UH g_~txuu; k117222 5 ,..__ _.-__.__ rckqar(1HI,10X,17H1~VERS£ or THETAIIID ognx=16 _ _ P.1Nf223.(CAT.uv(I JI.J=1 FCKHLI(1H0,5X,\6E15.5,10X)? .._ . ._-.._ 3 ,-___.,., conrzuus sznrzos ALPHA FCENIT(16110X12HLLPHA nAtnIxIIIIoX.Ezn.Io/II 2 TOLLOVING [ETERNINES STANDARC DEVIAYICNS CALL STDDEV CALL nus DNA OE'K V THE FOLLnuING 03054 » iii’g °?Eé S‘¥°EJ"%1“SEE°S126‘?f“E:§“ I§sz n: or .E.su.E,,N,$ 341‘ EL. .05 11 ‘me 19 A»(E VELSC 71E 50? 0 . $109 . 1 03/17/00 .17.33.53 ~no: FTN 8.00690 85 75/175 O’T‘1 1” S 0 V CUHVON L M 6).)(13,3).EHEAS(13).E(13).N 500230? E T P ( SUOROUTZNE STDOEV . z . m . m . _ _ “ m . v “E . . . . u H M . _ 1 _ 1 M G _ H _ w . _ . _ fi 1 , n n _ . n . _ . * . _ h _ _ 1 . . . _ . H . . _ H m _ . m . w . u . u _ _ . M H _ w .. w . - “ u m . a . . .. _ u _ _ . _ . . . 1 . . . . . i n I 3 m _ . _ _ _ 3 u . 1 w _ H 1 m an . _ . _ _ . . _ _ _ m . . . . . .. _ . . w 1 .. _ _ . . _ . 2 . 3 . , _. . . — . _ _ . . . . _ . 1 _ _ _ _ . i m _ _ 7 n . . 1 . . _ . n _ _ _ _ _ H _ 1 1 _ _ _ h . _ _ _ m . . . _ m I u M _ . ._ . . 1 _ 1 . 1 i . . . . m o . . — — . . _ — ~ — N g _ . a . I _ . 1 . . 1 _ 7 . . w _ . . . . fl _ . 1 . M . _ 1 . _ 1 i _ _ . l I . . _ i . . . 3 L! H I w I _ _ a P o c .R AA . _ . u . _ I Di 0 H . _ . u L T PIN )P . 1 H H . b . _ . g L .1 1.0 .ZL _ . . . S , . h . _ _ . E c. .051 O 4h . . N _ E . . . _ _ N T o. H m h , U u _ . _ . . _ . M T. mun! \l, H . __ L . _ . s 0.x 32 H 1 . 0 h _ u . . . _ c E SFV Io . . V . . . r _ 1 . I 0 .u H.£ I, . . _ a _ u u u m _. ..I 9 u “.1.—D 1' . u D I . . u . . . E I‘ O 2‘.- 01 .2 0 . . . . R I 1. I 0 I. I R 5 i . . . _ 0 0 I XOR 1.1 09:. . . i E o X 6H..- 01 0c¥t1 . . H h 5 113 )0 EAOL . i u m I I N )0 1 . ackaL ” . i _ _ m N i 5 .INA 2) . UMPE M _ _ . . 0 0 OCT .1 H1 ETLT . x F 045 Q P}. H I. m 0 112 1. L0 .._. E E EV I an. S SOLOL I 5 1L! ca 0‘ w .QTCTFU _ _ _ s P. .E06 E )0 U R R . . _ E I 0 U 20 L LEIEI U L 05/ L O I. I ‘LCLC L L HR! 0 0 .l V VC C a 0 E R/u I V )5 RT RT V 05 2‘ 0 L111: _ 0 SN”. L II) E ICFCF L T SCAI A To”, on“ D . ‘ CIVIC. 0 (F6 10 ITTTT _ . D E HTS: O (00 SA SFEFE 0 5 C5 I155 .8 (o H PE 9. B 0 S o R .50.? z )2 L L LSSSS 2 . I 1 CIHQX L )0 0 L0 LEUEU I. o I L F 1 FR 6R It 1). T 2.8N5N 2 O . l. 0 T 0 ID 0 :. .()) .1 I O ) 2 F. x v591R/N ‘32 0E SSHSfl O S 2 o 0 FTP. u/O L H .0 TL "U U ) E O O 0 )h. “00 .9. a P...) W N". N .- .I H O ) . E I 0. STLHHVJT L...) F 314....n , I C ) C 2 A P. (5 E8884 ..u .._. ”"02 L1 8 NHJFC I. R S R u W .p. o 1 "EV I70... T I fix» . S I. . v1 10 3 AUG “231V 5 )3. . w. m... 1301.3 A C u... _ I. 3 I. I p. )1 T : HDUIFF “ 22‘ 70.. .I 3 23:36»: E o I. “M 1 . .I a 1 5 1r ” TGFH 5 ID 0 (a ..V. I H N 1R9). F H1 ) )1 1 1 E )1 1 I. E I. 0. 035.42.. r. 0 7.0 F (c... I UUIIJI E: E I:- E E V. :9— E T1! V N) 3x 0 1U I 9 D H )() E SEC 1 SSLSL .V V (V V , CV & (V V CV A 75 no CXSLXOK T 101 IT 119 E hALAL )A 1 51 N4 .4 NS c NA .1 N5 2E E2 3 €54.5HA) .1. I F5 .01 NV {CECE 1... N... .uS IS )5 .41. .5. .IS )5 4‘ )U M. I 9. it .609 5 7.1... E HOE [A "H H. (O [:0 E0 1!. It ET E. El. 10 ET 1... £0 1 («0"an N o N ((1 TV N)C6V ES 5 5 NEE ET NHE VT "(E V? NHL VT N‘E Vk HANIN M I“ IHNLO I N003... 5.. Iv... JAEV: 557...... :4.va . ..EVE an... 6VC30. ..EVEAF. IEVEAQiiv .21 31.0.. 1....I1 T 0!.)10U Es 0 1(SASUAS 0 o 0 . I 1(Abnu 01((AUSQ 01‘ Anus: 01(AUSCO 1(IflU53000 10‘ 7 01.7013. .SF 0 1‘)..." BE 3085255.."5503 E E :85NSSVU:8SN:SV::25N::08:aSN:SaV::SN:sZTL.—ZT VZT ZTTH’N a 33311 a! 1:131:113H31 EHHSS 11:1:s3111211:zillzllExllisll:1:11:I1ETI:1T4 TT‘FTRJhEQ .0 T)I\OT .1.. FEBC. affoXv-tr. 5EETEEth...bE-CT:.H...E/E.TE1~CEO£ET:.S€:.9EETESNHO0NH TVNLVHIZSJ N le)N RR VV1........VVN.r.F.VV mmmow 1VVNVOVV1VVNV VV1VVNVOVVIVVNVOVVlVVHVOIv... .21.... NIKC.AP.V I Tm E O‘N)o Y: ‘ahCIIAJO. 998‘ EAOAHA‘OA‘O‘ AAOAAP.AH.AAO. AC.nhAA0InACAH..HCCOL..C CECE HCFXOTI 0 OEWSC cc 55060538035 [0.89. DgCSRSSDch-RSS.OgsphssofiscSRSSQQ-SgPPFWOPF U CTFHLFFMUWOHHC O . O o . o 1 a. 2 T .a H b . 0 r. .0 . 9 0 0 S 0 0 HUB 1.9.9 0.0 1 .930 b 9.90 H , 1 1 1 . 1 Z . Z 3 Z Z _ , . . . . _ _ m . 1 . I m _ _ 1 . . .. . u . , i .c I I _ R 8 i . U . .s . s I u z a 3 u w w. n n _ m 5.. r .._. . I m £36 "‘3!” ... ..1‘. ’ suaaouvzuc IXIS 70/175 007-1 rru 0.0.090 03/17/00 .17.:3.53 '“5102 1 . 1 s- noutzur 0x13 . A . - ggggg'ohP215001'3991302?;i?u:%71 01711 01711 01711 0113 31 HU(71 :111733 7317!? .61711:30171I.c:¢)l1 ' ’ ’ ’ ’ s ¢ususzvfi txccpis 30 . ~ - .— 0-050310" “190115! 0 1.11:01051 1 1 1,2)=ALEHAib£ - 1p3)8‘L)‘M 5 - 11 - - _. 10 0 2.11:010n016) a 2,2)8ALPHA’2 ‘ 3.3)3‘LFH5 ‘0 . a .112019H115 _- - 1-1. - -- _..__.. 1.11.1.1.- 1 A 3.21::Lph1<~1 15 A 3.3)IALPHA(3) U . '3 'A’ na7n1x coauzsrcuo 70 ALPnA uttRIX or azoucco ELLIPSOIDAL narnxx ~—-———-1 ~——- 9&103200 ‘ 70 200 gogggl(1H1.10x,23H00100107£n ALPoa n1731x1 ' 02303251 (111 3:1,31 ' ' ' “’ 231 F3§‘§L¢i‘°m 3F50.101 zs Buhoims - 1 1 1.....1... 1-1-1---- 1.1-1.1-... -111- - xz1120.57735 , 7 11:0.57735 . 3 x v 7 IS r:Psr 37:007zvs oxnecrxsn - - . 1-.111111111111111111.11.11.111.--_111_1_ 30 g Ai.51.01 ALE use: 70 cuecx 2100 as 73011 AXIAL V010: " a1-u1,1;ou2.21uu,31 1 - {'111511;553I2’.“2, .210013,311111.110013,31-¢0¢1,z10'21— (012.31'¢ -..__1111_1_1,_1 - 11111-- 1. 35 g :01 31": ~ 0013 3 o: 21.02 ,3 .. 11-111 1 o 0 z 3 '0 “fig-(3% .29011?§.110‘211-701§101151’2; 5311 ( ’ ’ ( ‘ ’ ’ ‘"" “ ”'Paznrzoz ' ‘ '""” 502 roaqar11n1.20x,3:u0£7£nuxuattou'07 003001911 axxs.///1 .0 agagi1,10 - "" ""‘"““" "u uo11=u1n '01:.11ox1u10111.2107(n1'011,31 x NolgsH‘N v .1 9X:v)‘a(2p2)OY(N)'AtZ,3; ‘5 0 v No1 an n '1 5.1 ox "10013.2101101'113,3 3 0,0.c ARE NCHHALIZEO u.x.v ”"‘””""”“'"""’”*"”"”' ”" ”' ’“" 37101". 1-vzox«uo11-¢2ov1no11-°21 - - 4§7N1u§n 11/sa.5 . .111-11111111111111111111 s0 u1=x¢u+1 (SONG c u1s711o1 ISORO? H N01 3 iN . X ".1 89 fl - .. .._“..- -.-..--. .- -._..1_.-.._1.1.1.. -._—.1- ’5 9 Y 7461):: m _ 10 7 Min 0 AXIS r LIP o ”A mru r n 1 1x H06 1 E 115. S8. 205 A36 new 0331 fiku 013' roan R5220 vécgéa. 351§UALLI 00 6 6:3‘flf T 1- A an," - -1 - -11. 1--1-1.--1111111_._1_111_11 1__ I0 CNHNUEG ‘5 b203 rd 00310.0 .60 LPHA10151.5NBETA1.13XEHGAHHA1.I.F15.S,2F20.5) q ostcanznc HAGnItuoe or tars 0x13 ‘ ‘ ‘ ”"“ ‘ “‘““ b 3501 1 ooA'-0¢1 211c00-111 3 5:3160535’ 11o00§011212100 00-012:31 1 -- 11.1- 1- -1 70 2019-113 11o035;0¢3‘21oc 100113.31 a» e ;:s a: US$331." '5' .200 :cu00711ho,17u000N1700£ no. 1 . ,r11.s1 " "“”“ ”‘ ‘ b 0 cutcx 2: no 0. , - - — - -_. 1-11 — .._..- -. d If 2 03117100 .17.33.53 PAGE FIN 50 . .59. £37 "3-(‘1'1HJG’WH ) O‘Bl'fll‘lfl'tfl 7&1175 O’Yi1 SUBROUYINE AXIS —— u- a...” .. .. a _ - .. ——-. .——. —.—.-. . '05: u 1» HAJOR AX or 7v, naéuzr 'c or Aifs ._---—.._- . --..‘.._ . .--. -._—_——.. _ . -o “.._.-4--- ..-- - ..——-..... -n- .. .. .._-~.. .._—.._-.. A2913!,6HGIHHAZ.’9F1§.5.2FZO.5) ,” . 333 . ’ i . 1.23 1 ls“ c .3 II ham». h . o o 0 I 0 X NNN’ .l I . g“ ‘ ’6 R. VVJIO . .6‘ T YYYN . .fl I 000‘ . 10 N ‘1’" . 11 E 222' F8 5 O 9 9 9. 9‘ u ‘ (.0232 I), 9 O (‘1... E333 8 I: R “‘O a 9 9 9’ ‘1 .t F 8353! HQEEJZ 22‘ ol 0 O O O 0.. 5“l\0 0 lo ‘ ‘1’” O’HA‘. o. 56 L E NNNN X. 0 I F 00 o s (I‘l‘l\ 5“.“ CF N“ g a a a XX“ five. vl 1.4 O E 3 X x!!! 96092 EC F F V. 7. D 1; ca 011.. 9:1,); .UA £0 N M 1 R u ’11)? 52220 UH G X I a T. 111. H a 9 :E T.( I... J o J A A 0990777 P123E I. 0 fl .0 .A .v H I. «#:333200 :3!((o.un1 as. U M I 8 ” fl (((1WER “MAAIa GA 01 x O ISA-O 3...... an... R. H a F A I M a. & 063N3wm lanai. 3a.. ET 9.. ’ I P I m O O O I)” “ ’dUBDHHs 26 I“ u w m M AL“ ‘ ,’)W))’\l’"~ 8x0 9 O 0.17. 2H 0 "Pub” 111", 8"],(64LO «‘6’ m 8 T B 9 G ‘(l‘l‘O 6 § ((1! .Q 31.11....“ ’0... ll. l. \a E ‘ C to E N HHHTNNNGBC GO 9 I )KHOHZO I J N H3 I N K 0 f. U HRhFE‘CEC 0H123Q ’41... DH” 33 i I V 81 v. 33‘ o o o r- 1 s .. .. BXY x x 3)) {6111(5715311 G a! T N10 V 1.... 001 A o 1))SHXY)))NNMUD(AAA=0(A1(( N 11‘! U 332" E 111N333 L 1 111s:s:111(((N2foooOZtHZYS 1 3:3... 3 If... x ..IJI),) U 810007)...)Ooocesf3llb QBHTI 371.5 m. XJET .I 1.9"... 2‘ .._.J 97-111 c JONVNONNNVNNGAXaf81533fNNZNHI 1 77am m “trim fl ooumuwi m MNHXHMWMCHIN .wWJMWfihmmmfiuflfl S Wmac s ”on”: R DDAORXVN Dmuxv smut? MCGHFDEFHFFZPFI . . a 1. .5 . 6 . n 1 . 9. .6 1 .5 I. 9. 2 .b b b 76.90 9.5.96 .0 500 Z "’—6ac£ -..-_.-..--_H ..‘.. 03117150”.17.33.53 -- —-. -._-n— _- _..—.—. ..-. .._- . T 0F 7ND FOUND ‘X13 0 rtu 5.00593 ' 31.61 XX. was?a33:..sez_§5#:;2~9;usg°§§3:22:35 2, GOING I N 53.13x.6nc:nnA3./,rzs.s.zrzo;s) .6 I éfivuio F C 03‘ 3'02»): HMGN DE N '3- uiI‘a’mu8 SJ'! 0F CLLIPSCIDAL “15.68.80.“ CHECKXNG 0LTHOGO MLIT" OF NAJOR ”.0 MINOR 1X15 (nb‘flAGDOCC«’CAG) 2 8.0 3 Z 1 (sz :23" 0.5!.ssucosxuc actuzeu HAJOR AND nxuon axxs.zx.rxo.e) W 9.1103” ZOEB".29F3002, 75/115 opt-r s QHIGNO 3 123(65‘016 gfignrzzo cosa’° rev-1“" ' ‘ (N5 Suanoutxus Axxs : 55 a 220 7. 8E3 ‘ " suannurzuz BNNHAt rurxrs opts: FYN b.09q98 03/17/00 .17.33.53 éisé' . 1 suaaourzut Ouvutftu a,ax.ocra n.“ - ‘ ozncusxou atu,u».eziu,ut 3 rzuas nv ‘ auJB DETERH INA vs at navn can u av PIVOYAL conneusxuc a s 3 u=cxn.‘u Agfi a. alsxuve “as or a. 0:1 =a£r£ zn§r£ or a , r ~ ,h- —— - a A=1.a -1. g ccucaars xoautztv «Atnxx - ._n - .mm-w-.. b 01:13:," ~ 912.}: g," . .15 a J =0.o .- -mw -- -_----- .~ —-- - .—_.___ _- - oozof=1.u 15 go 81:1,!)s1.o 3 . BEGIN PIVOTAL couocu3A7zcu .171 --A-u m - _ -_ - -_ _~____.-..H--wm--.f..__.n.- . 2 J Is szorzuo nan 20 o ”-1 n .. - .. - 388(J’ J, 4‘... _. - Wm..._~.... . ,W, ..................1 .._...” .... J... ....... m...“ ‘ ACA'P z, 5 ozvxas szorrxu; now av DIABONAL ELENEN! h . . ..V _. - --_... _J_.... .___-_..___ 1.- . , -._—1...- -. -. . tJ’ x229 J,x)/P '0“, g.’ ”(5.x)a (J,x)/P 3. "g 1 1s tut new to as aenuzco " ‘""""‘“""“’"'“““"“"‘“‘”"”' ‘—““‘”'“"" V b 225ft'1'" _- so.J)ss.so -- .. - - - _.. _ -.m__.--"- _,. - "a- __.- __ ___u____u._. 5.888(1 J) 35 s§f34=1 K ni=L ' M)~a(g uw'sava . _u - - 53 '1! N)=8 1:.uz- in (J.ny‘sava ._,J,. - 11.- -._. -- ."1.___,“"_.._. - -._..-"_- 55 cEnrinue so o~r1~uz no er: . TUiN ..--_ - -- _ -_ -- .._..- .._ -..~___-- -._ -._—.._ __ :‘o 1 BIBLIOGRAPHY 89 BIBLIOGRAPHY Anderson, C. W., 1977. Large Scale Velocity Anisotropy and the Q-ellipsoid Method, M.S. Thesis, Michigan State University, East Lansing, Michigan. Anderson, D. L., 1961. Elastic Wave Propagation in Layered Anisotropic Media, J. Geophys.'Res., V. 66, N0. 9' pp. 2953-2963. Anderson, D. L., Minister, B. and Cole, 0., 1974. The Effect of Oriented Cracks on Seismic Velocities, J; Geophys. Res., V. 79, pp. 4011-4015. Backus, G. E., 1962. Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., V. 67' NO. 11' pp. 4427-4440. Balakrishna, S., 1959. Effect of Dimensional Orientation on Ultrasonic Velocities in Some Rocks, Indian Acad. Sci. Proc., Sec. A, V. 49, No. 6, pp. 318-321. Bennett, H. E., 1968. An Investigation into Velocity Aniso- tropy through Measurements of Ultrasonic Wave Veldcities in Snow and Ice Cores from Greenland and Antartica, Ph.D. Thesis, University of Wisconsin. Bennett, H. E., 1972. A Simple Seismic Model for Determining Principle Anisotropy Direction, J. Geophys. Res., V. 77' pp. 3078-3080. Berryman, J. G., 1979. Long-wave Anisotropy in Traversely Isotropic Media. Geophysics, V. 44, No. 5, Birch, F., 1960. The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 1; J. Geophys. Res., V. 65, NO. 4' p. 1083-1102. Birch, F., 1961. The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 2, J. Geophys. Res., V. 66, NO. 7' pp. 2199-2224. 90 91 Brace, W. F., 1960. Orientation of Anisotropic Minerals in a Stress Field, Discussion, Chap. 2, G.S.A. MemOir' NO. 79' pp. 9-20. Byerly, P., 1934. The Texas Earthquake of August 16, 1931, Ball. Seismological Soc. Am., V. 24, pp. 81-99. Cannon, W. P., 1973. The Penokean Orogeny in Northern Michigan in Huronion Stratigraphy and Sedimentation (ed. G. M. Young), Geol. Assoc. Canada, Spec. Paper 12, pp. 251-271. Cannon, W. F. and Gair, J. E., 1970. A Revision of Strati- graphic Nomenclature for Middle Precambrian Rocks in Northern Michigan, Geol. Soc. Am. Ball., V. 81, pp. 2843-2846. Crampin, S., 1970. The Dispersion of Surface Waves in Multi- layered Anisotropic Media, Geophys. J., V. 21, - 1975. Distinctive Particle Motion of Surface Waves as a Diagnostic of Anisotropic Layering, Geophys. J., V. 40, pp. 177-186. - 1977. A Review of the Effects of Anisotropic Layering on the Propagation of Seismic Waves, Geophys. J., Roy. Astr. Soc., V. 49, pp. 9-27. Crampin, S. and Kirkwood, S. C., 1979. Approximations to the Velocity Variations in Systems of Anisotropic Symmetry, Geophys. J., V. 57, pp. 697-703. Cerveny, V., 1972. Seismic Ray Trajectory Intensities in In- homogeneous Anisotropic Media, Geophys. J.R. AStr. Soc., V. 29' pp. 1'13. Cerveny, V., and Psencik, I., 1972. Rays and Travel Time Curves in Inhomogeneous Anisotropic Media, Z. Geophysik, V. 30, pp. 565-577. Cholet, J. and Richards, H., 1954. A Test on Elastic Anisotropy Measurements at Berriane (North Sahara), Geophys. PI‘OSE. ' V. 2' pp. 232-246. Duda, S. J., 1960. Elastic Waves in Anisotropic Medium Accord- ing to a Macroscopic Measurement Underground. Geophy;.Prosp., V. 8, No. 3, p. 429-444. Dunoyer, De Segonzac and Laherrere, J., 1959. Application of the Continuous Velocity Log to Anisotropic Measurements in Northern Sahara; Results and Consequences, Geophy. Prosp., V. 7, No. 2, pp. 207-217. 92 Fisher, R. A., 1953. Dispersion on a Sphere, Proc. Roy. Soc. London, A217, pp. 295-305. Gair, J. E., 1968. Preliminary Geologic Map of the Palmer 7% Minute Guadrangle, Marquette County, Michigan, U.S.G.S., open file. Gair, J. E. and Thadden, R. E., 1968. Geology of the Marquette and Sands Quandrangle, Marquette County, Michigan, U.S.G.S., V. 197. Gair, J. E., Thadden, R. E. and Jones, B. P., 1961. Folds and Faults in the Eastern Part of the Marquette Iron Range, Michigan, U.S.G.S., Research Article 178, pp. 76-78. Gassman, F., 1964. Introduction to Seismic Travel Time Methods in Anisotropic Media, Pure Applied Geophy., V. 58' pp. 53-112. Hagedoorn, J. G., 1954. A practical example of an Anisotropic Velocity Layer, Geophys. Prosp., V. 2, pp. 52-60. Irving, E., 1964. Paleomagnetism and its Application to Geolog- ical and Geophysical Problems, Wiley, New York. Jamieson, J. D. and Haskin, H., 1963. The Measurenent of Shear Wave Velocities in Solids using Axially Polar- ized Ceramic Transducers, Geophysics, V. 28, pp. 82-90. Jolly, R. N., 1956. Investigation of Shear Waves, Geophysics, V. 21, No. 4, pp. 905-938. Klasner, J. S., 1978. Penokean Deformation and Associated Metamorphism in the Western Marquette Range, Northern Michigan, Geol. Soc. Am. Ball., V. 89, p. 711-722. Klima, K. and Babuska, V., 1968. A comparison of Measured and Calculated Anisotropies of Marble, Studia Geophys. Geodaet, V. 12, pp. 377-384. Kopf, M. and Wawryik, M., 1961. Acoustic Velocity and Susceph tibility Measurements on Rocks of the Triassic and Zechstein from the West Thurington Basin, Geologic, V. 10, No. 2, pp. 214-230. Kraut, E. A., 1963. Advances in the Theory of Anisotropic Elastic Wave Propagation, Rev. Geophys., V. 1, NO. 3, pp. 401-448. Lamont, M. 0., Douglas, L. L., and Oliva, R. A., 1977. Calcula- tor Decision-making Sourcebook, (Texas Instruments 93 Levin, F. K., 1978. The Reflection, Refraction and Differention of Waves in Media with an Elliptical Velocity Dependence, Geophysics, V. 43, pp. 528-537. - 1979. Seismic Velocities in Traversely Iso- tropic Media, Geophysics, V. 44, pp. 920-928. Macpherson, J. D., 1960. Anisotropy of the Robk in the Approaches to Halifax Harbor, Nova Scotia, Seismol. Soc. Am. Ball., V. 50, NO. 4' pp. 575-579. Matveyer, A. K. and Martyanor, Ye, G., The Dependence of Ultr- sonic Velocity in Coals on their Degree of Meta- morphism, Afiad. Nauk. SSSR Do klady, V. 122, No. 3, pp. 459-461. McCollum, B. and Snell, F. A., 1932. Assymmetry of Sound Vel- ocity in Stratified Formations. Early Geophys. Papers, Soc. Exploration Geophysicists, pp. 216- 227, 1947, Reprinted from Physics, 1932. McElhinny, M. W., 1973. Paleomagnetism and Plate Tectonics, Cambridge University Press, pp. 77-83. M eissner, R. and Fakhimi, M., 1977. Seismic Anisotropy as Measured under High Pressure, High Temperature Conditions, Geophys. J., V. 49, No. 1, pp. 133- 143. Musgrave, M. J. P., 1959. The Propagation of Elastic Waves in Crystals and other Anisotropic Media, Report Progr. Phys. ' V. 22' pp. 74-96. Neuman, F., 1930. An analysés of the S-wave, Ball. Seismo- logical Soc. Am., V. 20, pp. 15-30. Nur, A., 1971. Effect of Stress on Velocity in Rocks with Nur, A. and Simmons, C., 1969. Stress Induced Velocity Aniso- tropy in Rock: Experimental Study, J. Geophys. Res., V. 74' pp. 6667-6674. Nye, J. R., 1957. Physical Properties of Crystals, London: Oxford Clarendon Press. Postma, G. W., 1955. Wave Propagation in Stratified Medium, Geophysics, V. 20, pp. 780-806. Puffet, W. P., 1974. Geology of the Negaunee Quadrangle, Marquette County, Michigan, U.S.G.S., Profes- sional Paper, 788. Ricker, N., 1953. The Form and Laws of Propagation of Seismic Wavlets, Geophysics, V. 18, pp. 10-40. 94 Rudski, M. P., 1911. Parametrische Darstellung der Elasti- schen We11en in Anisotropen Median, Acad. Sci. Cracovic Ball., V. 8a, pp. 503-536. Sato, R. and Lapwood, E. R., 1968. SH Waves in a Transversely Isotropic Medium-1, Geophys. J. Res. Ast. Soc., V. 14' pp. 463-470. Schlue, J. W., 1977. A Physical Model for Surface Wave Azimuthal Anisotropy, Ball. Seis. Soc. Am., V. 67, pp. 1515-1519. Schmidt, E., 1964. A Case of Anisotropy of Seismic Velocity, Geoexploration, V. 2, pp. 28-35. Schimozura, D., 1960. Elasticity of Rocks and some Related Geophysical Problems, Japanese Jour. Geophysics, V. 2, No. 3, 88 pp. Talbot, C. J., 1970. The Minimum Strain Ellipsoid using De- formed Quart Veins, Tectonophysics, V. 9, pp. 47-76. Taylor, G. L., 1973. Stratigraphy, Sedimentalogy, and Sulfide Mineralization of the Kona Dolomite, Ph.D. Thesis, Michigan Technological University, Houghton, Michigan. Thill, R. E., 1969. Correlation of Longitudal Velocity Vari- ation with Rock Fabric, J. Geophys. Res., V. 74, Thill, R. E., McWilliams, J. R., and Bur, T. R., 1968. An Accoustical Bench for an Ultrasonic Pulse System, Bu Mines Rept. Invest., V. 7164, 22 pp. Tilmann, S. E. and Bennett, H. F., 1973a. Ultrasonic Shear Wave Birefringence as a Test of Homogeneous Elastic Anisotropy, J. Geophy. Res., V. 78, pp. 7623-7629. - 1973b. A Sonic Method for Petrofabric Analysis, J. Geophys. Res., V. 78, pp. 8463- 8469. Tocher, D., 1967. Anisotropy in Rocks under Simple Compression, Transactions American Geophysical Union, V. 38, NO. 1' pp. 89-94. Tullis, T. E. and Wood, D. S., 1975. Correlation of Finite Strain from both Reduction Bodies and Preferred Orientation of Mica in Slate from Wales, Ball. Geol. Soc. Am., V. 86, p. 632-638. 95 Uhrig, L. F. and Van Melle, F. A., 1955. Velocity Anisotropy in Stratified Media, Geophysics, V. 20, No. 4, pp. 774-779. Van Schmus, W. R., 1976. Early and Middle Proterozoic History of the Great Lakes Area, North America, Phil. Trans. R. Soc. London, A, 280: pp. 605-628. Van Hise, C. R. and Bayley, W. S., 1895. The Marquette Iron Bearing District of Michigan, U.S.G.S., 15th Ann. Rep.’ pp. 485-650. Van Hise, C. R. and Leith, C. K., 1911. The Geology of the Lake Superior Region, U.S.G.S., Mon. 52, 614 pp. Weatherby, B. B., Born, W. T. and Harding, R. L, 1934. Granite and Limestone Velocity Determinations in the Arbuckel Mountains, Oklahoma, Ball. A.A.P.G., V. 18, pp. 106-118. Westjohn, D. B., 1978. Finite Strain in the Precambrian Kona Formation, Marquette County, Michigan, M.S. Thesis, Michigan State University, East Lansing, Michigan. White, J. E., Heaps, S. N. and Lawrence, P. L., 1956. Seismic Waves from a Horizontal Force, Geophysics, V. 21, No. 3, pp. 715-723. White, J. E. and Sengbush, R. L., 1953. Velocity Measurements in near Surface Formations, Geophysics, V. 17, pp. 54-70. Wood, D. S., 1974. Current Views of the Development of Slaty Cleavage, Ann. Rev. Earth Sci., V. 2, pp. 1-35. "‘Wll’llllflflll’llflr