

THESIS

This is to certify that the

thesis entitled

COMPARISON OF THE Q_{LSi} ELLIPSOID AND ELLIPSOIDAL

REDUCTION SPOTS USED TO DETERMINE FINITE STRAIN IN

THE PRECAMBRIAN KONA SLATE MEMBER:

MARQUETTE COUNTY, MICHIGAN

presented by

Erick C. Nefe

has been accepted towards fulfillment of the requirements for

M.S. degree in Geology

Date November 24, 1980

O-7639

OVERDUE FINES: 25¢ per day per item

RETURNING LIBRARY MATERIALS: Place in book return to remove charge from circulation records

© 1980

ERICK CLEMENS NEFE

All Rights Reserved

COMPARISON OF THE $\mathbf{Q}_{\mathbf{LS}_1}$ ELLIPSOID AND ELLIPSOIDAL REDUCTION SPOTS USED TO DETERMINE FINITE STRAIN IN THE PRECAMBRIAN KONA SLATE MEMBER; MARQUETTE, MICHIGAN

Ву

Erick C. Nefe

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Geology

1980

ABSTRACT

Comparison of the $\mathbf{Q}_{\mathrm{LS}_{\mathbf{i}}}$ ellipsoid and ellipsoidal reduction spots used to determine finite strain in the precambrian kona slate member: marquette county, michigan

 $\mathbf{B}\mathbf{y}$

Erick C. Nefe

It has been suggested by Bennett (1972), Tilmann and Bennett (1973 a,b) and Anderson (1977) that the Q ellipsoid method may be a valuable tool for describing regional tectonic forces.

Kona slate in the Marquette synclinorium containing reduction spots has been examined by Westjohn (1978). Westjohn (1978) concluded that the reduction spots demonstrated 45% flattening in the Z axis, with extensions of 60% and 15% in the X and Y axes, respectively.

The Q_{LS_i} ellipsoid (constructed by anisotropic velocity measurements) of the Kona slate exhibited similar axial orientations and similar axial ratios. The average deviation (resultant vector) of the axes of Q_{LS_i} ellipsoid from the known reduction spot was $(1.8^{\circ}, 1.1^{\circ}, 1.4^{\circ})$ for the major axis, $(2.6^{\circ}, 6.8^{\circ}, 6.3^{\circ})$ for the intermediate axis and $(1.6^{\circ}, 6.6^{\circ}, 6.8^{\circ})$ for the minor axis using an orthogonal set of (X, Y, Z) axes and a deviation technique described by Fisher (1953) and McElhinny (1973).

Comparison of the mean axial ratios for the $Q_{\mathrm{LS_i}}$ ellipsoid demonstrated a 48% flattening in the Z axis, with extensions of 62% and 21% in the X and Y axes, respectively. It is concluded, from the close agreement between the $Q_{\mathrm{LS_i}}$ ellipsoid and the reduction spot ellipsoid orientations, that the $Q_{\mathrm{LS_i}}$ ellipsoid is a valuable tool for describing regional finite strain in an area.

ACKNOWLEDGMENTS

I would like to thank both Dr. Cambray and Dr. Long for suggestions during the laboratory work and during the early stages of writing.

I would also like to thank Dr. Hugh Bennett for helping me throughout the laboratory work and the final stages of writing of this thesis.

LIST OF SYMBOLS

- element of 3 x 3 matrix **∝** 95 - circle of 95% confidence around the resultant vector (R) - intermediate axis Io k - an estimate of the precision parameter (1,m,n)- directional cosines for a selected set of orthogonal axes X, Y and Z, respectfully - minor axis mo Mo - major axis N - number of measurements - number of measurements in the ith direction n - directional cosine matrix P - probability (for this paper p = 0.05) - density p Qį - calculated ellipsoidal value Q_{LS_i} - least square ellipsoidal value $Q_{\overline{m}}$ - average data mean Qs - average trace element R - resultant vector - distance from origin to reference Q ellipsoid r - diviation of Q from Q - deviation of Q; from Q - deviation of Q_{LS}, from Q $_{\overline{m}}$ - deviation of $Q_{\mathrm{LS}_{i}}$ from Q_{s}

e - deviation of Q from Q lsi

t - time

V - phase velocity

V₁ - P wave phase velocity

V₂ - SV wave phase velocity

V₃ - SH wave phase velocity

X - distance

TABLE OF CONTENTS

Introduc	tion	n.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Geologic	Set	tti	ng	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	4
Laborato	ry I	Proc	ced	lur	es	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	ple																			
	n Se																			
	rati																			
Sam	ple	Me	asu	ıre	eme	ent	t a	and	1 (Ca.	lcι	11a	ati	LOI	ns	•	•	•	•	24
0 7114		M = 1																		25
Q-Ellips																				
Err	or P																			
		utt:																		
	Ar	ppa	rat	us	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	31
			_		٠.															
Discussi	on_a	and	. Re	est	11t	:s	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	n Se																			
Vel	ocit	tie	s a	ınd	l Ç) I	E1 .	lip	SC)i	ds	•	•	•	•	•	•	•	•	33
Conclusi	~~																			40
Conclusi	on .	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
Appendix	Δ																			<i>1</i> 0
	les			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7)
Iub	103		• -																	
Appendix	В.		_													_			_	82
	pute											110						•	•	-
	<u> </u>			- C							•						_			
Bibliogr	aphy	7.	•		•	•		•				•				•	•	•		89

LIST OF FIGURES

1.	Northwestern Upper Penninsula of Michigan Showing the Study Area	5
2.	Sample Location Sites	7
3a-3	3e. Sample Preparation	13
4.	Schematic Diagram of Ultrasonic Apparatus	16
5.	Photograph of Ultrasonic Apparatus	16
6.	Photograph of Lathe Assembly	18
7.	Photograph of Lathe Assembly	18
8.	Schematic Diagram of Transducer Assembly	20
9.	Photograph of Transducer Assembly	20
10.	Photograph of Transducer Assembly with Sample in Measuring Position	22
11.	Photograph of a Signal on the Cathode-Ray Tube Display of the Oscilloscope	22
12.	Equal Area Stereonet Plot of the Field Orientations of the X axes of the Reduction Spots and the Respective Plots of the X axes of the Q _{LS} Ellipsoids	39
13.	Plot of Westjohn's (1973) Axial Ratios	42
14.	Plot of Q _{LS} , Axial Ratios	44
15.	Plot of the Relationship Between Westjohn's (1973) Data and the Q _{LS} Axial Ratios	

LIST OF TABLES

Ia.	Propagation Directions, Directional Cosines and Sampling Distances 50
Ib.	Propagation Directions, Directional Cosines and V ₁ , V ₂ and V ₃ Mean Velocities
II.	Q_i Ellipsoid Values and Q_{LS_i} Values with Associated Q_m , Q_s , G_m , $G_$
III.	Directional Cosines of the Principle Axes of the Q _{LS} Ellipsoids 72
IV.	Degree of Deviation Between the Known Axes of the Reduction Spots and the Computer Generated Axes of the Q _{LS}
٧.	Log $\frac{X}{Y}$ and log $\frac{Z}{Y}$ Q_{LS_i} Data
VI.	Thin Section Data 80

INTRODUCTION

Early earthquake seismologists considered that anisotropy was possible, and used it to help explain anomolies in seismic observations Rudski (1911); Neuman (1930); and Byerly (1934). These early earthquake seismologists led the way and as seismology and ultrasonic equipment became more advanced, many surface rocks were also found to be anisotropic on a small scale McCollum and Snell (1932); Weatherby, Born and Harding (1934; Ricker (1953); White and Sengbush (1953); Cholet and Richards (1954); Uhriq and Von Melle (1955); White, Heaps and Lawrence (1956); Jolly (1956); Dunoyer and Laherrere (1959); Shimozura (1960); Duda (1960); Macpherson (1960); Brace (1960); Anderson (1961); Backus (1962); Gassman (1964); Schmidt (1964); Crampin (1970); Nur (1971); Cerveny (1972); Cerveny and Psencik (1972); Anderson, Minister and Cole (1974); Crampin (1975, 1977); Meissner (1977); Schlue (1977); Levin (1978); Berrman (1979); and Crampin and Kirkwood (1979). Anisotropy in rock samples has also been indicated at the ultrasonic level Tocher (1957): Motveyeu and Martyanou (1958); Musgrave (1959); Balakrishna (1959); Kopf and Wawryik (1961); Birch (1960, 1961); Klima and Babuska (1968); Thill (1968, 1969); Tilmann and Bennett (1973 a,b) and Anderson (1977). According to the above research, velocity anisotropy may be caused by preferred crystal orientation, grain orientation, stress fields, structural

layering, microfracture and macrofracture orientation, directional porosity and/or permeability. Bennett (1972) further states that velocity anisotropy can be used as an indicator of these structural and petrofabric patterns.

Bennett (1972) developed a simple seismic model for determining principle anisotropic directions within crystal aggregates. In general his model uses an elastic stiffness figure referred to as the Q ellipsoid. With this model three different body waves with orthogonal particle motion can propogate in anisotropic media in any prescribed direction. Thus, the Q, which determines the surface of the Q ellipsoid, is the sum of the squares of the three phase velocities for a given direction, multiplied by the density. The principle axes of the Q ellipsoid are identical to the orthogonal crystallographic axes of a single crystal Bennett (1972).

Tilmann and Bennett (1973b) applied the Q ellipsoid concept to three rock types; a quartzite, a marble and a plastically deformed granitic boulder. For all three samples the elastic velocities were measured. The quartizite and the marble were compared to their respective optical petrofabric analyses, while the results of the granitic boulder were compared to its shape axes. It was observed that each rock sample behaved as a homogeneous pseudosingle crystal. Conclusions made were that the orientations of the Q ellipsoids were controlled by crystal orientations and structural effects, and that the shape axes of the plastically deformed granitic boulder closely coincided with the Q ellipsoid axes. Thus, the Q ellipsoid method may be useful in regional tectonic studies.

It has been suggested by Bennett (1972), Tilmann and Bennett (1973b) and Anderson (1977) that the Q ellipsoid may prove useful in describing regional tectonic forces. Thus it is the purpose of this research to test that hypothesis, regionally.

A study area was selected where in situ finite strain indicators are present. Westjohn (1978) used ellipsoidal reduction spots in the Kona slate member of the Marquette synclinorium (Figures 1 and 2) as one means of determining finite strain for that member. The purpose of this research is to select similar samples from similar sites and determine the relationship between the in situ ellipsoidal reduction spots and the theoretical Q ellipsoid.

GEOLOGIC SETTING

The area of study is generally south-west of Marquette in the Upper Peninsula of Michigan (Figures 1 and 2). Van Hise and Bayley (1897) were the initial investigators in this area and they have written extensive geologic reports interpreting the Proterozoic history of the Upper Peninsula of Michigan. Other geologic study was done by Gair and Thadden (1968) in the Marquette and Sands guadrangles and Puffet (1974) studied the Negaunee guadrangle. Taylor (1973) did extensive mapping of the Kona dolomite formation and lithologically described each member in detail.

The Kona dolomite formation is part of the Chocolay Group from the Middle Precambrian metasediments. Gair and Thadden (1970) felt a need to clarify the terminology of the Middle Precambrian sediments of this area. They proposed that the name "Marquette Range Supergroup" replace the term Animikie Series for the Middle Precambrian strata. For more detail regarding the lithology of the area the reader can consult any of the following references.

The major structural feature in the area is the Marquette Synclinorium, which is a west trending trough of deformed Middle Precambrian metasediments (Figure 1). The trough itself is approximately six miles wide in the north-south direction and thirty miles long in the east-west direction. The Middle Precambrian trough is surrounded by Lower Precambrian rocks to the north and south. Cannon (1973) and Van Schmus (1976) believe the Penokean Oregany, which occurred approximately

Figure 1. Map of the Northwestern Upper Peninsula of Michigan showing the study area location.

Figure 2. Map of the study area showing Westjohn's eight site locations where reduction spots "occur". Westjohn's site locations are listed above each point and the samples collected for this study are numbered below each point. Site la and 7a were added by this author. Westjohn's sites 2 and 3 were found to be in error because no Kona argillite was present in either area. This is supported by Taylor (1973).

1.85-1.95 B.y. ago was responsible for the deformation of the trough. The tectonic event included deformation, metomorphism, extrusive and intrusive igneous activity.

Cannon (1973) proposed that the Middle Precambrian metasediments were deposited on a peneplaned Archean basement complex and folded by two processes. First, regional gravity sliding produced gentle folding and then vertical faulting in the Archean basement rocks formed the folded Marquette supergroup into the Marquette trough. Klasner (1978) proposed a similar model but his model consists of four phases of deformation. With Klasner's four stage model continuing metamorphism took place during the first three stages. Phase I, consisted of gravity sliding of soft sediment off an ancestral Penokean range located in central Wisconsin. Phase II, continued regional deformation took place. Phase III, deformation was due to uplift of the lower Precambrian basement as rigid blocks. Metamorphism peaked in this phase. Phase IV, produced continued uplift of basement rocks and this uplift produced grabens such as the Marquette trough.

Westjohn (1978) suggested that more evidence was needed to support or reject Cannon's and Klasner's model. Thus he selected the Middle Precambrian Kona delomite formation for his research to determine finite strain for the area. He selected a slate (argillite) member of the Kona formation for several reasons. The Kona slate member is well exposed throughout the trough, it has a well developed secondary fabric, and it contains reduction spots and deformed veins. Westjohn used reduction spots (ellipsoidal green to yellow bodies, which were believed to be spherical prior to deformation) and deformed

veins to conclude that the Marquette trough was shortened approximately 45% normal to the trough.

The major stimulus for this research is that the slaty units of the Kona formation have a well developed secondary fabric according to Westjohn (1978). The purpose of this research is to answer the questions, will this well developed secondary fabric be detected by anisotropic ultrasonic phase velocity measurements and, if so, how is the theoretical Q ellipsoid related to the in situ ellipsoidal reduction spots for a regional study area?

LABORATORY PROCEDURES

Sample Preparation:

The Kona slate samples with reduction spots which were collected from the Marquette synclinorium (Figure 2) were large (>100 lbs.). All ten were marked with field orientation measurements. Due to a well formed cleavage, most samples were less than four inches thick (perpendicular to cleavage). After trimming of the large odd shaped samples, the samples were cut into four inch "cubes". It was critical during all cutting that opposite sides be parallel so that there would be a good coupling between the samples and the wave guides of the ultrasonic equipment (Figure 3d). Two cubes were cut from each sample, if size and condition of the sample permitted, to assure that measurements were representative of each sample. The samples were marked as 1, 1', 2, 2', etc. All samples contained reduction spots and the reduction spots determined the cutting of each cube. Figure 3a-e shows the cutting process and orientation of the reduction spots with respect to the cubes. all samples the cleavage was in the plane (XY plane) of the major and intermediate axis of the ellipsoidal reduction spots. An observed axes variation of 10° was noted between reduction spots of the same sample. After both sets of cubes were completed, the corners of the cubes which were perpendicular to the cleavage were cut at 45°, forming octagons (Figure 3b).

Tilmann and Bennett (1973b) suggest that since the P and S wave velocity surfaces may be quite complex in shape, the maximum value chosen from just a few measurements may not be the true surface maximum. So to insure that the true maximum value was chosen, the octagons were cut in such a way as to permit measurement in nine directions (Figure 3c).

Each samples nine propagation directions were marked using an orthogonal set of X, Y and Z axes (Figure 3e). Directional cosines were used to determine direction of the signal through the sample (Table I). Directional cosines are simply the angle between the signal propagation direction and the respective X, Y and Z axes (Figure 3e).

Measurements were then taken in nine directions for each sample.

Attenuation of the signal in the Z direction (0.0, 0.0, 1.0) made it necessary to cut off an approximate 2.0 cm plate from each sample. This smaller sampling distance caused less attenuation and signal time picks could be measured more accurately.

Thin Section Preparation:

Thin sections were prepared for all samples in the XY plane. Due to the very fine fabric of the slate, the grain orientations were measured at 100X or 200X. All thin sections displayed a definite lineation of ellipsoidal pyrite grains in the same direction as the ellipsoidal reduction spots. The average deviation from the X axis for 50 pyrite grains per sample are listed in Table VI and the results are discussed in the result and discussion section of this research.

Figure 3a. Shown is a typical field sample. The cleavage of the sample is in the plane of the paper.

The dotted lines represent cut directions. Two samples were cut from each large field sample if size and shape permitted.

Figure 3b Cutting was done so that nine propagation and 3c. directions could be measured.

Figure 3d. It was very important that all opposite sides were parallel for two reasons. First, so good coupling between the wave guides and the sample could be accomplished and second so that the wave path (dotted line) would be a true representation for the propagation direction.

Figure 3e. Labeling of the directional cosines with respect to the XYZ axes is shown in these two examples.

10

D W

Operation of Ultrasonic Apparatus

The apparatus is shown in Figures 4-11. The apparatus consists of two pulse generators, a lathe assembly, an amplifier, a high-low pass filter and an oscilloscope. An electrical wave form is sent out by the pulse generator. One pulse is sent directly to the oscilloscope (line B) where it is used to determine time = 0. The other pulse (A) is sent through the sample by a P-S conversion technique (Figures 8 and 9), the signal is then amplified, filtered and the visual response is shown on the oscilloscope (A). The change in time from t = 0 (B pulse) and the signal (A pulse) is determined. This is the "total transit time" it took for the signal to get through the sample and the transducer assemblies (Figures 8 and 9). The amount of "sample transit time" is found by first measuring the "time delay", which is calculated when the transmitting and receiving transducer assemblies are placed in direct contact. For this research the transducer assembly "time delay" for the P-wave was 45 µsec. and 60 µsec. for the S-waves. Thus the zero sample length times or the "time delay" substracted from the "total transit times", yields the "sample transit times". For a more detailed explanation of the electronics behind the apparatus operation consult Bennett (1968).

A similar process was used to determine the sample length. The lathe was calibrated in such a way so that one 360° clockwise rotation of handle A (Figure 6) brought the wave guides 0.2539 cm closer. Each 360° degree rotation was marked on the lathe bed platform. The shaft of the handle was further calibrated (Figure 6) to allow the measurement accuracy of $\frac{1}{2}$ 0.0025 cm.

Figure 4. Schematic diagram of the ultrasonic apparatus.

Figure 5. Photograph of the ultrasonic apparatus used for this research.

ULTRASONIC APPARATUS

- Figure 6. Handle A is located on the far left of the lathe assembly and it is used to measure sample length to an accuracy of -0.0025 cm.
- Figure 7. This gauge is located on the far right of the lathe assembly and used to insure that the same amount of pressure was exerted on each sample by the wave guides.

Figure 8. A schematic diagram of the transducer assembly. The P-S conversion was done by cutting the prisms at $\approx 48^{\circ}$ or the critical angle for the shear wave.

Figure 9. Photograph of the transducer assembly.

TRANSDUCER ASSEMBLIES

Figure 10. Transducer assembly with sample in measuring position.

Figure 11. Photograph of the cathode-ray tube display of P-S conversion transducer wave form arrival after passing through a sample of the Kona slate. The sweep speed of the oscilloscope was 20 <code>Msec.</code> per division. The bottom trace is the impulse trigger or t = 0. The top trace is the wave form arrivals. The P wave can be seen having a "total transit time" of approximately 62 <code>Msec.</code> The S wave can be seen having a "total transit time" of approximately 88 <code>Msec.</code>

Overall based on repeated measurements it was found measurements were accurate to $\frac{1}{2}$ 0.0005 cm. The total estimated error for the distance measurement is $\frac{1}{2}$ 0.0075 cm.

To insure that the pressure exerted by the closed transducer assemblies, around the sample, was the same for all samples a gauge measuring inch lbs. was used (Figure 7).

Sample Measurement and Calculations:

Apparatus operation having been explained, one sample calculation will be shown.

Sample #10', propagation direction 1

Distance: 19.0492 cm. (distance with wave guides closed)

- 9.8802 cm. (distance with sample)

= 9.1690 cm. (sample length)

Time: 59.2 µ sec. (total transit time)

-45.0 m sec. (transducer assembly transit

time for P-wave)

Velocity: $9.1690 \text{ cm/} 14.2 \times 10^5 \text{ sec} = 6.457 \text{ km/sec}$

 \mathbf{Q}_{i} and $\mathbf{Q}_{LS_{i}}$, the accompanying standard deviations, and the determination of the principle axes were calculated using a computer program shown at the appendix of this report.

The resulting velocities are listed in Table Ib and the sampling distances are listed in Table Ia.

Q-ELLIPSOID METHOD

Q Ellipsoid:

Bennett (1972) developed the Q ellipsoid as a tool for specifically detecting preferred crystallographic orientations. As stated in the introduction:

$$Q = {}^{Q}_{p} = (v_{1}^{2} + v_{2}^{2} + v_{3}^{2})$$
 (1)

where p is density and can be considered constant, V_1 is the P wave phase velocity in the ith direction and V_2 and V_3 are the phase velocities of the two orthogonally polarized shear waves for the ith direction. The principle axes of the Q ellipsoid always coincides with the optical indicatrix axes for a single crystal in the cubic through orthrombic system Bennett (1972). Therefore, for a cubic crystal the Q ellipsoid would reduce to a sphere. For uniaxial and biaxial crystals the Q surface would become an ellipsoid of revolution and a triaxial ellipsoid, respectfully. When considering crystal aggregates one can consider them as an elastic long-wave equivalent to a single crystal, so the locus of the values will be represented by an ellipsoidal surface. Tilmann and Bennett (1973b) have set three criteria if the Q surface is ellipsoidal. First, the material is homogeneous and anisotropic; second, the principle anisotropic directions are described by the principle axes of the ellipsoid; and third, the percent difference between the axes of the ellipsoid is a measure of the degree of elastic anisotropy, which is controlled by anisotropic crystal orientation and structural effects.

Equations of the elastic wave theory in anisotropic media were used to derive Equation (1), Bennett (1972). Equation (1) or $Q_{\hat{1}}$ will be treated as the calculated value of the Q ellipsoid in the ith direction. The calculated $Q_{\hat{1}}$ values can be least squares fit by using the equation:

$$Q_{LS_{i}} = 1_{i}^{2} \ll_{11} + m_{i} \ll_{22} + n_{i} \ll_{33} + 2m_{i}n_{i} \ll_{23} + 2n_{i}1_{i} \ll_{31} + 21_{i}m_{i} \ll_{12}$$

where Q_{LS_i} is the least square value in the ith direction, $(l_{\vec{I}}^m j^n_i)$ are the measurement directional cosines for an arbitrarily chosen set of orthogonal axes X, Y and Z and the \sim 's are the elements of a symmetric 3 x 3 matrix.

Equation (2) by means of referring to the principle axes becomes:

$$Q_{LS_i} = 1^2 \propto_{11} + m^2 \propto_{22} + n^2 \propto_{33} = 1^2 Q_1 + m^2 Q_2 + n^2 Q_3$$
 (3)

where \approx ij = 0, i \neq j. Thus, the (\approx 11, \approx 22, \approx 33) coincide with the major, intermediate and minor axes.

By setting:

$$Q_{LS_{i}} = \frac{1}{r^2} \tag{4}$$

where r is the distance from the origin to the reference Q ellipsoid, and by substitution of:

$$1 = \frac{x}{r}$$

$$m = \frac{y}{r}$$

$$n = \frac{z}{r}$$
(5)

one finds that

$$\frac{1}{r}^2 = (\frac{x}{r})^2 Q_1 + (\frac{y}{r})^2 Q_2 + (\frac{z}{r})^2 Q_3$$

$$1 = x^{2}Q_{1} + y^{2}Q_{2} + z^{2}Q_{3} . {(6)}$$

Equation (6) is now in the form of an ellipsoid whose principle axes have lengths of $(Q_1)^{-\frac{1}{2}}$, $(Q_2)^{-\frac{1}{2}}$, and $(Q_3)^{-\frac{1}{2}}$, which are the major, intermediate and minor axes, respectfully.

The elements of the \propto matrix in Equation (2) are determined by the least square method outlined by Nye (1957). The determination of the elements of the \propto matrix is based on the matrix equation:

$$Q = \Theta \bowtie \tag{7}$$

where the Q_i values are related to the directional cosine matrix θ and the κ matrix. The Q matrix elements are the measured Q_i values from equation (1). The θ matrix is constructed by using the directional cosines which are the 1, m and n coefficients of Equation (2). The κ matrix is determined by solving Equation (7) for :

which yields the computational form for determination of the matrix. For a more detailed mathematical explanation consult Nye (1957, p. 164-165).

The principle axes of the Q ellipsoid can then be calculated, from the best fit a matrix. By this method described by Nye (1957) unit vectors which are normal to the least squared Q surface are successively calculated until they converge onto the major axis. The minor axis is found by inversion of the matrix and repeating the process. The intermediate axis is then determined by the cross-product of the major and minor

axes. By using the directional cosines of the major, intermediate, and minor axes from Equation (2), the magnitude of these axes can be determined.

After the $\mathbf{Q}_{\mathrm{LS}_{\mathbf{i}}}$ surface has been determined it can be compared to the measured $\mathbf{Q}_{\mathbf{i}}$ values and this comparison provides a statistical test for homogeneous anisotropy. In an anisotropic media the measured $\mathbf{Q}_{\mathbf{i}}$ values will vary with direction and the values should approximate an ellipsoid. Five standard mean-square deviations can be calculated to check the accuracy of the $\mathbf{Q}_{\mathbf{i}}$ values. The equations are as follows:

$$G_{\bar{m}} = \left[\frac{1}{n} \sum_{i=1}^{n} (Q_{i} - Q_{\bar{m}})^{2}\right]^{\frac{1}{2}}$$
 (9)

$$\mathbf{6}_{S} = \begin{bmatrix} \frac{1}{n} & \sum_{i=1}^{n} (Q_{i} - Q_{S})^{2} \end{bmatrix}^{\frac{1}{2}}$$
 (10)

$$\mathbf{G}_{m\bar{e}} = \begin{bmatrix} \frac{1}{n} & \sum_{i=1}^{n} (Q_{LS_{i}} - Q_{m})^{2} \end{bmatrix}^{\frac{1}{2}}$$
 (11)

$$\mathbf{S}_{\text{se}} = \begin{bmatrix} \frac{1}{n} & \sum_{i=1}^{n} (Q_{\text{LS}_{i}} - Q_{\text{S}})^{2} \end{bmatrix}^{\frac{1}{2}}$$
(12)

$$\boldsymbol{\epsilon}_{e} = \begin{bmatrix} \frac{1}{n} & \sum_{i=1}^{n} (Q_{i} - Q_{LS_{i}})^{2} \end{bmatrix}^{\frac{1}{2}}$$
(13)

where n is the number of measurements; Q_i is the calculated ellipsoid value in the ith direction; Q_{LS_i} is the best fit Q value in the ith direction; Q_m is the mean Q value from the data,

$$Q_{\overline{m}} = \frac{1}{n} \sum_{i=1}^{n} Q_{i}$$

and Q_s is the average trace element of the symmetric matrix (\sim_{ii}) ,

$$Q_{s} = \frac{Q_{LS_{1}} + Q_{LS_{2}} + Q_{LS_{3}}}{3}$$

where

$$Q_{LS_1} = Q_{LS}$$
 along direction (1.0, 0.0, 0.0)
 $Q_{LS_2} = Q_{LS}$ along direction (0.0, 1.0, 0.0)
 $Q_{LS_3} = Q_{LS}$ along direction (0.0, 0.0, 1.0)

 Q_s serves as a radius of a best fit sphere for the data.

The standard deviations (\mathbf{G}_{m} , \mathbf{G}_{S}) measure the deviation of the Q_{i} values from the mean and best fit sphere, respectfully. The standard deviations (\mathbf{G}_{me} , \mathbf{G}_{se}) measure the deviations of the calculated $\mathrm{Q}_{\mathrm{LS}_{\mathrm{i}}}$ values from the mean and best fit sphere, respectfully. The standard deviation \mathbf{G}_{e} measures the deviation of the measured Q_{i} from the best fit Q surface. If all data points fall exactly on the ellipsoidal surface \mathbf{G}_{e} = 0 and \mathbf{G}_{ms} = \mathbf{G}_{m} .

The uniformity of sampling will in part determine the reliability of the least squared Q surface. The following equation will indicate the uniformity of sampling:

$$\frac{Q_{m} - Q_{s}}{Q_{s}} \times 100 = percent uniformity of sampling$$
 (14)

where once again $Q_{\overline{m}}$ is the mean of the data and $Q_{\overline{s}}$ is the average trace element. When the percent ratio is small, the sampling is uniform. As the sampling becomes less uniform, the percent ratio will increase. (Table 1b).

Homogeneous anisotropy and behavior as a pseudocrystal can be determined by comparison of the standard mean-square deviations. If $\epsilon_e = \epsilon_m$ and $\epsilon_e = \epsilon_s$ the data is homogeneous isotropic. Therefore, $\epsilon_e < \epsilon_{se}$ and $\epsilon_e < \epsilon_m$ occur in order for homogeneous anisotropy to be exhibited. Homogeneous anisotropy is demonstrated by:

$$6 - 26 - 26 = 26$$
 (15)

$$G_s \geq G_{se} > G_e$$
 (16)

where $\mathbf{6}_{\overline{m}}$ will approach $\mathbf{6}_{\overline{s}}$ and $\mathbf{6}_{\overline{m}e}$ will approach $\mathbf{6}_{\overline{s}e}$ whenever Equation (14) is very small or equal to zero; $\mathbf{6}_{e}$ is the best measurement of data scatter which includes sample inhomogeneity and errors in measurement.

Inhomogeneous anisotropy is demonstrated by the relationship:

$$6_{\overline{m}} > 6_{e} > 6_{\overline{m}e}$$
 (17)

and

$$G_{S} > G_{P} > G_{SP} \tag{18}$$

Inhomogeneity will be indicated if there is a variance of preferred crystal orientation, irregular compositional or structural differences within the sample and if errors in measurements exceed the degree of anisotropy.

For the following study Equations (1)-(18) were applied to seventeen rock samples and the results are shown in Tables I-VI.

Error Analysis:

Cutting and reduction spot variation.

The angles of the rocks were cut as accurately as possible, but due to clamping and other equipment used in cutting, the angles of each rock sample showed an accuracy of $\pm 2.0^{\circ}$.

The samples were always cut with the Z axis perpendicular to cleavage and the XY plane being the cleavage plane. By this method both Wood (1974) and Westjohn (1978) suggest that the reduction spots major and intermediate axes are defined. However, a 10° variation was observed between the cleavage plane and the true major and intermediate axes of the reduction spots. This variation is further supported by Westjohn (1978). Thus, the true maximum and intermediate axes of the ellipsoidal reduction spots of these samples are accurate to $^{+}12.0^{\circ}$.

Apparatus.

Bennett (1968) estimated the time measurement accuracy, the distance accuracy and the veolcity accuracy for the ultrasonic equipment as $\frac{1}{2}0.7$ %, $\frac{1}{2}0.33$ % and 1.00%, respectively. However, the sampling length in this study was shorter, so the time and distance accuracy was recalculated and the resulting velocity accuracy was also recalculated.

Due to attenuation in the Z (0.0, 0.0, 1.0) direction the sampling distance was much smaller in this direction than other propagation directions. The approximate sampling distance was 1.27 cm. By using the lathe setup, measurements were good to $\frac{1}{2}$ 0.0075 cm. Thus, the accuracy of the distance is good to $\frac{1}{2}$ 0.59% for this study. The time accuracy was recalculated by taking 10 measurements of the same sample and finding the percent error. It was found to be 0.69% or ≈ 0.7 %.

By using:

$$\frac{\Delta V}{V} = \frac{\Delta X}{X} + \frac{\Delta t}{t} \qquad \frac{\Delta V}{V} = 1.30\%$$
 (19)

where $\frac{\Delta \ V}{V}$ is the percent velocity error, $\frac{\Delta \ X}{X}$ is the percent

distance error and $\frac{\Delta t}{t}$ is the percent time error. This smaller sampling distance will indeed cause greater error, although it is possible to compensate, in part, for this by increasing the sweep speed of the oscilloscope. A reasonable estimate for the total error of the velocity measurements is $\frac{+}{2.0}$ %.

Using an example of how a velocity error of $\frac{+}{2}.0\%$ will affect the Q_i values is given below:

$$Q_{i/p} = v_1^2 + v_2^2 + v_3^2$$

if $V_1 = 6.00 \text{ km/sec}$, $V_2 = 3.00 \text{ km/sec}$ and $V_3 = 2.50 \text{ km/sec}$, then

$$Q_i = 51.520 \text{ m}^2/\text{sec}^2$$

Now if $V_1 = 6.00 + (6.00 \times 0.02) \text{ km/sec}$, $V_2 = 3.00 + (3.00 \times 0.002) \text{ km/sec}$ and $V_3 = 2.50 + (2.50 \times 0.02) \text{ km/sec}$,

$$Q_{i} = 53.865$$

Then the Q_i values are good to:

$$\frac{53.865 - 51.250}{53.865}$$
 x 100 \approx 5.0% (maximum possible error)

DISCUSSION AND RESULTS

Thin Sections:

A definite lineation of opaque pyrite crystals were noted for all samples in the XY plane. The crystals formed small ellipsoids whose major axis corresponded, within the amount of experimental error, to the major axis of the ellipsoidal reduction spots (Table VI).

Velocities and the Q Ellipsoids

Of the eighteen samples, seventeen showed excellent results. One sample, #3, was severely fractured causing very poor measurements in all directions. To define the elastic ellipsoid it is necessary to measure the three phase velocities in a minimum of six noncoplanar directions Bennett (1972).

All samples were measured in nine directions except sample #7, which was measured in seven directions due to fracturing and poor signal transmission.

The measured phase velocities showed a common relationship for all samples. V₁, V₂ and V₃ were the fastest, in propagation direction 1 for most samples. For all samples the slowest velocities were observed in propagation direction 3, which is most probably related to air spaces in between the cleavage surfaces. These two observations are quite obvious from the velocity data (Table Ib). Thus, a relationship can be seen between the "fast" propagation direction and the major axis of the ellipsoidal reduction spots. The slowest velocity direction, likewise corresponds to the minor axis of the reduction spots.

The resulting $Q_{\underline{i}}$ from propagation direction 1 is always the largest of the nine propagation directions and the $Q_{\underline{i}}$ for propagation direction 3 is always the smallest (Table II).

From Table I and Table II an obvious trend is shown. Statistical calculations from Table II prove that the fit of the Q_i values and the theoretical Q_{LS_i} values conform to the proper statistical tests mentioned in the methods section of this paper. As a second test the Q_i and Q_{LS_i} values correlation coefficients were compared by using a linear regression program incorporated in a Texas Instruments SR-56. The nine Q_i values were entered as the X coordinates and the respective Q_{LS_i} were entered as the Y data. The r values were as follows:

Sample	<u>r</u>	<pre>% probability it is a valid correlation coefficient for 9 measurements (taken from M. Lamont, L. Douglas, R. Oliva, 1977)</pre>
#1	0.964596	99.9
#2	0.910346	99.9
#2"	0.976061	99.9
#4	0.952303	99.9
#4'	0.948849	99.9
#5	0.817783	99.0-99.9
#5 '	0.774328	95.0-99.0
#6	0.996321	99.9
#6"	0.880862	99.0-99.9
#7	0.978584	99.9
#7 "	0.940235	99.9
#8	0.881884	99.0-99.9
#8"	0.872623	99.0-99.9

Sample	<u>r</u>	9 measurements (taken from M. Lamont, L. Douglas, R. Oliva, 1977)
#9	0.804959	99.0-99.9
#9'	0.784228	95.0-99.0
#10	0.856649	99.0-99.9
#10'	0.967885	99.9

% probability it is a valid

By the statistical tests of Table II and the above correlation coefficient calculations, one can assume their is a definite relationship between $Q_{\hat{\mathbf{i}}}$ and $Q_{\hat{\mathbf{LS}}}$.

The percent uniformity (from Table II) ranged from 3.9% for sample #9 to 19.9% for sample #4', which indicates a uniform sampling.

Sample homogeneity and elastic behavior as a pseudocrystal is exhibited by all samples due to the fact that:

$$6 = \frac{1}{m} \ge 6 = \frac{1}{me} > 6 = \frac{1}{me}$$

is true for every sample.

Sample homogeneity and elastic behavior as a pseudocrystal has been proven. Next the data was used to determine the principle axes magnitudes and directions.

The theoretical $Q_{\mathrm{LS}_{\dot{1}}}$ ellipsoidal axes direction (Table III) are compared to the known axial alignments of the ellipsoidal reduction spots in Table IV. The major and intermediate axes are assumed to lie precisely in the XY plane (in reality $\dot{-}$ 12.0 variation is possible, see error analysis). The $Q_{\mathrm{LS}_{\dot{1}}}$ axes directions (Table IV) show excellent correspondence in relation

to the reduction spot axes and when one considers a $^{\pm}12.0^{\circ}$ variation for the reduction spots and a $^{\pm}5.0\%$ maximum error associated with the Q_{i} values, it can be concluded that the axes directions of the theoretical $Q_{LS_{i}}$ ellipsoid and the reduction spots are very closely related. The calculated means and standard deviations of Table IV could be questioned, due to the fact that these are linear functions, while the data is in three dimensional coordinates. Fisher (1953) mathematically devised a way to check data dispersed on a sphere by using directional cosines.

To test the accuracy of a group of measurements, Fisher (1953) has shown that the true mean direction of a population of N directions lies within a circular cone about a resultant vector R, with semi-angle \ll ;, at the probability level (1-P), for k > 3 where:

$$\cos \ll \frac{1}{(1-p)} = 1 - \frac{N-R}{R} (\frac{1}{p})^{1/N-1} - 1.$$
 (20)

All of the variables in Equation (20) can be calculated so one can solve for \propto .

The resultant vector length R is calculated by using the known directional cosines,

$$R^{2} = (\sum 1_{i}^{2}) + (\sum m_{i}^{2}) + (\sum n_{i}^{2})$$
 (21)

Next, the direction of the resultant vector is found by using the following equations:

$$x_{R} = \frac{1}{R} \sum_{i=1}^{N} 1_{i}$$
 (22)

$$Y_{R} = \frac{1}{R} \sum_{i=1}^{N} m_{i}$$
 (23)

		1
		ı
	÷	

$$z_{R} = \frac{1}{R} \sum_{i=1}^{N} n_{i}$$
 (24)

Fisher (1953) gives an estimate of the precision parameter k as:

$$k = \frac{N-1}{N-R} \tag{25}$$

if k is large clustering in one area of the sphere will occur. McElhinny (1973) used equations (20)-(25) and an assumed probability level of p = 0.05 to derive:

$$\approx_{95} = \frac{140}{(kN)} \tag{26}$$

where $\mbox{\ensuremath{\,^{\circ}}_{95}}$ is the circle of 95% confidence around the resultant vector. For a more detailed mathematical explanation, the reader can consult Fisher (1953) and McElhinny (1973). The results of using equations (20)-(26) on the axial orientations of the $\mbox{\ensuremath{Q_{LS_i}}}$ ellipsoids (Table IV) were as follows:

X axis

Resultant vector orientation - directional cosines (0.9995, 0,0199, 0.0247)

- degrees (1.8°, 88.9°, 88.6°)

k = 51.903

Y axis

Resultant vector orientation - directional cosines (0.0451, 0.9930, 0.109)

- degrees (87.4°, 6.8°, 83.7°)

k = 32.328

Z axis

Resultant vector orientation - directional cosine (0.0280, 0.1154, 0.992)

- degrees (88.4°, 83.4°, 6.8°)

k = 92.592

These results show excellent correlation between the resultant vector orientations and the "known" reduction spot axial orientations. From the small \leadsto_{95} values it can be concluded that there is a very small amount of scatter for the seventeen Q_{LS_i} axial orientations.

One last method can be used to compare the relationship between the axial orientations. An equal area stereonet plot comparing the X axis of the $Q_{\mathrm{LS_i}}$ ellipsoid orientation and the field measured X axis orientation of the reduction spots is shown in Figure 12. This method however has an added $^+2.0$ error, due to the $^+2.0^{\circ}$ accuracy of field measurements. The $Q_{\mathrm{LS_i}}$ and reduction spots deviate by a mean value of 8.5° which is again well within experimental error. Sample #7 is the worst fit of all the data. This may be due to the fact that Sample #7 was measured in only seven propagation directions due to fracturing. These fractures may have caused other propagation directions to be measured inaccurately.

Similar orientations of the axes has been shown by three independent methods, so next the relationship between the axial ratios will be examined. The magnitudes of the axes for the $\mathbf{Q}_{\mathrm{LS}_{1}}$ ellipsoids are listed in Table III. The values were used to tabulate the data in Table V using the equations:

Figure 12. Equal area stereonet plot of the field orientation of the X axes of the reduction spots (iR) and the respective plots of the X axes of the Q_{LS} ellipsoids (iQ), taken from Table IV.

The degrees of difference between the iR and iQ were measured directly from the stereonet and are listed below:

Sample Number	Deviation of iQ from iR		
1Q	6°		
2 Q	5 ⁰		
2'Q	12 ⁰		
4 Q	40		
4 'Q	6 ⁰		
5Q	ı°		
5 ' Q	80		
6Q	11 ⁰		
6 ' Q	0.5 [°]		
7 Q	22 ⁰		
7 ' Q	4 ⁰		
8Q	ı°		
8 ' Q	2 ^o		
9Q	15 ⁰		
9 ' Q	16 ⁰		
100	11°		
10'Q	16 ⁰		
	Mean 8.3 ^O		

$$\log \frac{X}{Y} = A \tag{26}$$

$$\log \frac{Z}{Y} = B \tag{27}$$

where X is the magnitude of the major axis, Y is the magnitude of the intermediate axis and Z is the magnitude of the minor This allowed comparison of the Q_{LS} , axes ratios to Westjohn's (1978) axes ratio data. Figure 13 shows Westjohn's values plotted from all samples throughout the study area. Figure 14 shows the Q_{LS} , axes ratios after using Equations (20) and (21). Figure 15 is a combination of Q_{LS} axes ratios and Westjohn's reduction spot axial ratios. A definite similarity between both sets of data can be observed. Westjohn did extensive work in the Harvey syncline (site 8) and the Negaunee outcrop (site 1). Sample #1's (from the Harvey syncline) Q_{LS} axial ratio shows a direct relationship with Westjohn's reduction spots axial ratios. Sample #2 and 2' (from the Negaunee outcrop) Q_{LS} , axial ratios show a poorer Sample #2' fits fairly well into Westjohn's twenty-three plotted points. Sample #2 however, does not fit as well into Westjohn's Negaunee area data. Trying to correlate the $Q_{\mathrm{LS}_{i}}$ axial ratios and the reduction spots axial ratios on a one to one basis is impossible due to scatter in both sets of data. Thus a plot of the average values would be of more importance. The mean values for the axial ratios of the reduction spots for the Harvey syncline and the Negaunee outcrop are both very close to the $Q_{\mathrm{LS}_{\div}}$ mean axial ratio (Figure 15).

Figure 13. Plot of 46 deformation ellipsoidal reduction spots showing the variation of data from the site 8 or the Harvey syncline (each o represents one ellipsoid from the Harvey syncline) and the variation between site 1 or the Negaunee outcrop (each • represents one ellipsoid from the Negaunee outcrop). Taken from Westjohn (1978). Means are plotted with large symbols.

L06 Z/Y

100 11

Figure 14. Plot of 17 Q_{LS_i} surfaces to show variation of the data throughout the study area. Each \emptyset represents one Q_{LS_i} ellipsoid. Correlation between Westjohn's sites and the numbered Q_{LS_i} ellipsoids is given below:

Westjohn's Sites	Numbered Samples Taken
Site 1 (Negaunee)	2 and 2'
Site la (Negaunee)	8, 8', 9 and 9'
Site 4	10 and 10'
Site 5	7, 7'
Site 6	4, 4', 5, 5'
Site 7a	6 and 6'
Site 8 (Harvey)	1

L06 Z/Y

• .

Figure 15. Plot of the relationship between Westjohn's reduction spot data (\bullet Negaunee area, o Harvey area) and the $\mathcal{Q}_{\mathrm{LS}}$ ellipsoid data (\emptyset). Means are plotted in large symbols.

0.50

0.25

0.32

0.40

0.50

0.63

0.79

1.58

. -٠. ٠. ١, .

Conclusions:

Statistically the Q ellipsoid has been shown to be very similar to the reduction spots, in both axes direction and axial ratios. Thus, the Q ellipsoid method can be used, as reduction spots can be used, to determine finite strain, regionally, for this area.

APPENDIX A

Table Ia

Propagation direction, directional cosines and sampling distance.

Propagation Direction	Directional Cosines	Sampling Distance (Meters)
	#1	
1 2 3 4 5 6 7 8	(0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70911, 0.0) (-0.70711, 0.70711, 0.0) (0.97030, 0.0, 0.24192) (0.97030, 0.0, -0.24192)	0.1029038 0.0978221 0.0203201 0.1158244 0.1117604 0.0980443 0.0988063 0.0939803 0.0932183
	#2	
1 2 3 4 5 6 7 8	(0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89490, 0.0, 0.44620) (0.89490, 0.0, -0.44620)	0.1018543 0.1092204 0.0609602 0.1181104 0.1186184 0.0985523 0.0977903 0.0999493 0.1037593
	#2'	
1 2 3 4 5 6 7 8	(0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0)	
	#4	
1 2 3 4 5 6 7 8	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95630, 0.0, 0.29237) (0.95630, 0.0, -0.29237) (0.0, 0.95630, 0.29237) (0.0, 0.95630, -0.29237)	0.1069344 0.1028703 0.0200661 0.1193804 0.1168404 0.1036323 0.1033783 0.0980443 0.0990603

Propagation Direction	Directional Cosines	Sampling Distance (Meters)
	#4"	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.97815, 0.0, 0.20790) (0.97815, 0.0, -0.20790) (0.0, 0.97815, 0.20790) (0.0, 0.97815, -0.20790)	0.0930913 0.1023623 0.0157481 0.1113794 0.1113794 0.0947423 0.0989003 0.1018543 0.0972823
	#5	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95882, 0.0, 0.28401) (0.95882, 0.0, -0.28401) (0.0, 0.95882, 0.28401) (0.0, 0.95882, -0.28401)	0.1092204 0.0946153 0.0960123 0.0930913
	#5 '	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.92387, 0.0, 0.38268) (0.92387, 0.0, -0.38268) (0.0, 0.92387, 0.38268) (0.0, 0.92387, -0.38268)	0.0980443 0.0993143 0.0170181 0.1051563 0.1031243 0.0923293 0.0939803 0.0982983 0.0982983
	#6	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.87036, 0.0, 0.49242) (0.87036, 0.0, -0.49242) (0.0, 0.87036, 0.49242) (0.0, 0.87036, -0.49242)	0.1046483 0.1059183 0.0182881 0.1193804 0.1168404 0.1021083 0.1028703 0.1035053 0.1037593

Propagation Direction	Directional Cosines	Sampling Distance (Meters)
	#6 °	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.93041, 0.0, 0.36650) (0.93041, 0.0, -0.36650) (0.0, 0.93041, 0.36650) (0.0, 0.93041, -0.36650)	0.1028703 0.0970283 0.0173991 0.1106174 0.0988063 0.0991873 0.0990603 0.0913133 0.0908053
	#7	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504)	0.1054921 0.1008383 0.1013463 0.0990603
	# 7 "	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.84805, 0.0, 0.52992) (0.84805, 0.0, -0.52992) (0.0, 0.84805, 0.52992) (0.0, 0.84805, -0.52992)	0.1031243 0.0974093 0.0157481 0.1122684 0.1109984 0.0957583 0.0962663 0.0973492
	#8	
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89101, 0.0, 0.45399) (0.89101, 0.0, -0.45399) (0.0, 0.89101, 0.45399) (0.0, 0.89101, -0.45399)	0.1021083 0.0960123 0.0210821 0.1096014 0.1099824 0.990603 0.990603 0.0919483 0.0920753

Propagation Direction	Directional Cosines	Sampling Distance (Meters)
1 2 3 4 5 6 7 8 9	#8' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.86603, 0.0, 0.50000) (0.86603, 0.0, -0.50000) (0.0, 0.86603, 0.50000) (0.0, 0.86603, -0.50000)	0.1013463 0.0972823 0.0152401 0.1104904 0.1089664 0.0986793 0.0993143 0.0960123 0.0961393
1 2 3 4 5 6 7 8	#9 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.81915, 0.0, 0.57358) (0.81915, 0.0, -0.57358) (0.0, 081915, 0.57358)	0.1089664 0.1041403 0.1043943 0.0904243
1 2 3 4 5 6 7 8 9	#9' (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504)	0.1003303 0.0967743 0.0170181 0.1073154 0.1092204 0.1007113 0.1002033 0.0919483 0.0947423
1 2 3 4 5 6 7 8 9	#10 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.91706, 0.0, 0.39875) (0.91706, 0.0, -0.39875) (0.0, 0.91706, 0.39875) (0.0, 0.91706, -0.39875)	0.1089664 0.1028703 0.0193041 0.1186184 0.1193804 0.1054103 0.1046483 0.0980443

Propagation Direction	Directional Cosines	Sampling Distance (Meters)
	#10'	
1	(1.0, 0.0, 0.0)	0.0906783
2	(0.0, 1.0, 0.0)	0.0929643
3	(0.0, 0.0, 1.0)	0.0157481
4	(0.70711, 0.70711, 0.0)	0.0968378
5	(-0.70711, 0.70711, 0.0)	0.0988063
6	(0.87882, 0.0, 0.47716)	0.0906783
7	(0.878882, 0.0, -0.47716)	0.0901703
8	(0.0, 0.87882, 0.47716)	0.0908053
9	(0.0, 0.87882, -0.47716)	0.0906783

Table Ib

Propagation directions, directional cosines and \mathbf{V}_1 , \mathbf{V}_2 and \mathbf{V}_3 mean velocities.

Propagation	Directional	Veloci	ies (km/	/sec)
Direction	Cosines	velocity 1	v ₂	v_3
	#1			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.97030, 0.0, 0.24192) (0.097030, 0.0, -0.24192) (0.0, 0.97030, 0.24192) (0.0, 0.97030, -0.24192)	6.899 4.996 4.515 6.436 5.882 6.587 6.587 5.221 5.122	3.499 2.385 1.992 2.597 2.517 3.083 2.559 2.349 3.329	2.780 1.932 1.494 1.631 2.192 2.159 2.196 1.880 2.589
	# 2			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89490, 0.0, 0.44620) (0.89490, 0.0, -0.44620) (0.0, 0.89490, 0.44620) (0.0, 0.89490, -0.44620)	6.701 6.277 3.332 5.320 5.815 6.009 6.189 5.152 5.188	3.223 3.309 2.622 3.374 3.057 3.159 3.134 3.163 3.183	2.380 2.061 2.420 2.461 1.990 2.722 2.686 2.603 2.688
	# 2 °			
1 2 3 4 5 6 7 8 9		5.922 6.025 5.968 4.760		
	# 4			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.95630, 0.0, 0.29237 (0.95630, 0.0, -0.29237) (0.0, 0.95630, 0.29237) (0.0, 0.95630, -0.29237)	3.541 6.079 6.350 5.956 6.006 5.160	2.465 2.528 2.901 2.935	2.700 2.246 1.674 2.676 1.866 2.115 2.034 2.113 2.006

Propagation	Directional	Veloci	ties (km,	/sec)
Direction	Cosines	$\frac{v_{1}}{v_{1}}$	v ₂	v ₃
***************************************	#4'	-		
1	(1.0, 0.0, 0.0)	7.165	3.003	2.135
2 3	(0.0, 1.0, 0.0) (0.0, 0.0, 1.0)	6.146 3.228	3.002 1.549	2.497 1.519
4	(0.70711, 0.70711, 0.0 (-0.70711, 0.70711, 0.0)	6.471 6.914	3.027 3.060	2.916 2.175
5 6	(0.97815, 0.0, 0.20790)	6.672	2.979	2.369
7 8	(0.97815, 0.0, -0.20790) (0.0, 0.97815, 0.20790)	6.537 4.897	2.886 2.927	2.483 2.186
9	(0.0, 0.97815, -0.20790)	5.154	3.047	2.212
	#5			
1 2 3	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0)	6.856 5.120	3.196 2.857	2.766 2.730
3 4	(0.0, 0.0, 1.0)	4.031	1.932	1.892
5	(0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0)		3.055 3.092	2.487 2.629
6 7	(0.95882, 0.0, 0.28401) (0.95882, 0.0, -0.28401)	5.151 5.255	2.902 2.321	2.351 2.321
8 9	(0.0, 0.95882, 0.28401) (0.0, 0.95882, -0.28401)		2.633 2.839	2.024 2.382
-	#5'	11105	2.003	2.302
1	(1.0, 0.0, 0.0)	6.528	3.242	2.967
1 2 3	(0.0, 1.0, 0.0) (0.0, 0.0, 1.0)	5.518 4.612	2.623 2.086	2.192 2.038
4 5	(0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0)		3.039 3.033	2.577 2.672
5 6 7	(0.92387, 0.0, 0.38268)	5.108	2.971	2.239
8	(0.92387, 0.0, -0.38268) (0.0, 0.92387, 0.38268)	5.026 4.693	2.990 2.933	2.487 2.152
9	(0.0, 0.92387, -0.38268)	5.149	3.027	2.429
	# 6			
1 2	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0)	6.708 5.695	3.133 2.878	1.938 1.629
3	(0.0, 0.0, 1.0)	4.156	1.345	1.270
4 5	(0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0)	6.215	3.192	2.003 2.101
6 7	(0.87036, 0.0, 0.49242) (0.87036, 0.0, -0.49242)			1.919 2.125
8 9	(0.0, 0.087036, 0.49242)	5.335	2.828	2.193
J	(0.0, 0.87036, -0.49242)	5.136	2.556	2.256

Propagation	Directional	Veloci	ties (km,	/sec)
Direction	Cosines	$\frac{\mathbf{v}_{1}}{\mathbf{v}_{1}}$	v_2	V ₃
	#6'			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.93041, 0.0, 0.36650 (0.93041, 0.0, -0.36650) (0.0, 0.93041, 0.36650) (0.0, 0.93041, -0.36650)	6.429 5.880 4.579 6.012 6.199 5.166 5.054 4.659 4.935	3.164 3.109 1.540 3.225 2.943 2.867 3.076 2.801 3.089	2.091 1.702 1.487 1.941 1.659 2.740 2.580 1.776 1.949
	#7			
1 2 3 4 5 6 7	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504)	6.126 3.492 5.985 5.042	2.975 1.917 2.395 2.083 3.147	2.197 1.814 2.304 1.867 2.572
8 9	(0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504) #7'		2.514 2.719	2.372 2.117 2.078
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.84805, 0.0, 0.52992) (0.84805, 0.0, -0.52992) (0.0, 0.84805, 0.52992) (0.0, 0.84805, -0.52992)	5.477 5.094 5.477 5.170	3.105 1.917 1.549 3.153 2.891 2.616 2.395 2.518	
1 2 3 4 5 6 7 8 9	#8 (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.89101, 0.0, 0.45399) (0.89101, 0.0, -0.45399) (0.0, 0.89101, 0.45399) (0.0, 0.89101, -0.45399)	7.091 5.121 3.482 6.563 6.625 5.214 5.106 4.839 4.651	3.283 3.085 1.770 3.321 3.293 2.966 2.948 2.736 2.970	2.745 2.574 1.741 2.609 2.391 2.144 2.476 1.973 2.423

Propagation	Directional	Veloci	ties (km,	/sec)
Direction —	Cosines	Veroci V ₁		V ₃
	#8"			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.86603, 0.0, 0.50000) (0.86603, 0.0, -0.50000) (0.0, 0.86603, 0.50000) (0.0, 0.86603, -0.50000)	6.410 6.017 6.017	2.017	2.791 1.938 1.373 2.361 2.369 1.701 2.197 1.861 2.334
	#9			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.81915, 0.0, 0.57358) (0.81915, 0.0, -0.57358) (0.0, 0.81915, 0.57358)	7.006 6.383 5.752 5.976 6.233 4.866 5.931 4.861 5.692	3.296 3.234 1.686 3.078 3.287 2.590 2.451 1.966 2.968	2.784 2.494 1.657 2.239 2.698 2.170 2.139 1.706 2.601
	#9'			
1 2 3 4 5 6 7 8 9	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.85717, 0.0, 0.51504) (0.85717, 0.0, -0.51504) (0.0, 0.85717, 0.51504) (0.0, 0.85717, -0.51504)	6.425 4.706 5.330 4.421	3.272 3.290 3.033 3.191 2.179	2.818 2.794 1.519 2.567 2.411 2.189 2.753 1.940 2.533
	#10			
1 2 3 4 5 6 7 8	(1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.70711, 0.70711, 0.0) (-0.70711, 0.70711, 0.0) (0.91706, 0.0, 0.39875) (0.91706, 0.0, -0.39875) (0.0, 0.91706, 0.39875) (0.0, 0.91706, -0.39875)	6.218 5.667 4.757	3.061 2.991 1.697 3.089 3.109 2.252 2.844 2.200 2.814	2.471 1.994 1.424 2.188 2.287 2.233 2.265 1.865 2.293

Propagation	Directional	ional Velocities (km/sec)		/sec)
Direction	Cosines		v ₂	v ₃
	#10 '			
1	(1.0, 0.0, 0.0)	6.457	3.119	2.830
2	(0.0, 1.0, 0.0)	5.738	3.099	2.626
3	(0.0, 0.0, 1.0)	3.262	1.594	1.495
4	(0.70711, 0.70711, 0.0)	6.093	3.027	2.645
5	(-0.70711, 0.70711, 0.0)	6.025	2.994	2.341
6	(0.87882, 0.0, 0.47716)	5.038	2.963	2.699
7	(0.87882, 0.0, -0.47716)	4.901	2.892	2.390
8	(0.0, 0.87882, 0.47716)	4.681	2.987	2.377
9	(0.0, 0.87882, -0.47716)	5.334	3.084	2.591

Table II

 Q_i ellipsoid values and Q_{LS_i} values with associated Q_m , Q_s , $G_{\bar{m}}$, G_s , $G_{\bar{m}e}$, G_{se} , G_{e} , and percent sample uniformity.

Sample #1

Propagation Direction	Q _i	Q _{LS}
1 2 3 4 5 6 7 8	67.568 34.381 26.585 50.827 45.738 57.555 54.759 36.311	60.984 38.155 26.571 52.114 47.026 60.368 57.522 33.623
9 $= 12.051$	$Q_{\overline{m}} = 46.416$	41.332 $Q_s = 41.903$
m = 12.868	-m	*S
$G_{me} = 11.622$ $G_{se} = 12.468$ $G_{e} = 3.183$	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100\% =$	10.7%

1	60.956	58.395
2	54.598	48.158
2 3	23.833	24.999
4	45.743	52.589
4 5	47.120	53.965
6	53.497	50.821
6 7	55.340	52.665
8	43.323	43.070
8 9	44.272	44.019
	4462/2	44.01)
6 = 10.110	$Q_{\rm m} = 47.631$	$Q_s = 43.8507$
$6_{s} = 10.794$		
6 = 9.204	0 -0	
6 se = 9.9502	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 = 8.6\%$	
⁶ e = 4.184	5	

Sample #2'

Propagation Direction		Q _{LS} i
1 2 3 4 5 6 7 8	57.180 44.771 15.452 55.562 49.980 47.480 48.837 35.254	55.754 43.012 14.133 52.174 46.593 50.206 51.565 38.158
9 $= \frac{12.034}{}$	$Q_{m} = 43.634$	41.110 $Q_s = 37.6330$
$G_{s} = 13.4472$ $G_{me} = 11.746$ $G_{se} = 13.1899$ $G_{e} = 2.618$	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 = 15$	_

1 2 3 4 5	59.244 46.856 18.248 53.485 49.881	54.694 43.188 16.967 50.743 47.139
6	46.338	50.325
7	48.625	52.612
8 9	39.705	43.209
9	35.178	38.683
$c_{\bar{m}} = 11.309$	$Q_{\rm m} = 44.173$	$Q_s = 38.2830$
$c_{s} = 12.7514$		
$G_{me} = 10.770$	$\frac{Q_{m}-Q_{s}}{m} \times 100 = 15.4$	
se = 12.2755	$\frac{Q_{\rm m}-Q_{\rm s}}{Q_{\rm s}} \times 100 = 15.4$	8
$\epsilon_{\rm e} = 3.451$		

Sample #4'

Propagation Direction

1 2 3 4 5 6 7			
8 9			
9			

$$6 = 15.128$$

$$\epsilon_{me} = 14.354$$

$$\epsilon_{\text{se}} = 16.5837$$

$$\epsilon = 4.776$$

Q_i

40.741

$$Q_{m} = 49.866$$
 $Q_{s} = 41.5607$

QLSi

63.747

46.648

14.287

54.019 56.377

62.497

60.721

43.542

46.956

$$\frac{Q_{m}-Q_{s}}{Q_{s}}$$
 x 100 = 19.9%

$$\frac{1}{m} = 10.922$$

$$6_{s} = 11.7433$$

$$\frac{1}{100} = 8.932$$

$$G_{se} = 9.9167$$

$$\epsilon_{e} = 6.285$$

$$Q_{\rm m} = 41.401$$
 $Q_{\rm s} = 37.0943$

$$\frac{Q_{m}-Q_{s}}{Q_{s}}$$
 x 100 = 11.6%

Sample #5'

Propagation Direction	Q _i	Q _{LS}
1 2 3 4 5 6 7 8 9 $\mathbf{\bar{m}} = 9.798$ $\mathbf{\bar{m}} = 10.3882$	61.928 42.133 29.775 53.257 55.878 39.932 40.386 35.258 41.575 Q _m = 44.458	52.962 43.695 26.364 47.019 49.639 48.839 49.293 37.997 44.315 Q _s =41.0070
$G_{s} = 10.3882$ $G_{me} = 7.587$ $G_{se} = 8.3348$ $G_{e} = 6.200$ Sample #6	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 =$	8.4%

1	58.569	58.112
2 3 4 5 6 7 8 9	43.369	43.931
3	20.694	
<u> </u>		21.481
	46.462	47.639
3	53.229	54.406
6	49.675	49.200
7	49.736	49.260
8	41.269	40.122
9	38.001	36.854
	30.001	30.034
$G_{m} = 10.289$	$Q_{m} = 44.556$	$Q_s = 41.1747$
s = 10.8307		
$\frac{6}{me} = 10.251$	0 -0	
$6_{\mathbf{se}} = 10.7947$	$\frac{Q_{m}-Q_{s}}{Q_{s}} x 100 = 8$. 2%
$6_{e} = 0.882$	•	

Sample #6'

Propagation Direction		Q _{LS}
1	55.722	50.682
2 3 4 5 6 7	47.137	42.509
3	25.550	22.970
4	50.312	46.832
5	49.841	46.360
6	42.414	47.336
7	41.661	45.582
8 9	32.706	37.390
9	37.695	42.378
$\frac{6}{m} = 8.933$	$Q_{m} = 42.560$	$Q_s = 38.7203$
6 s = 9.7234		
$G_{me} = 7.7541$		
se = 8.6032	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 =$	9.9%
$\epsilon_{e} = 4.2318$	'8	

1 (1,0,0)	51.205	47.117
2 (0,1,0)	_	
3 (0,0,1)	19.160	17.683
4 0(1/2, 1/2,0)	46.865	46.865
5 (-1/2, 1/2,0)	_	-
6 (0.857,0,0.515)	33.246	36.028
7 (0.857,0,-0.515)	39.809	42.591
8 (0,0.857,0.515)	28.720	28.720
9 (0,0.857,-0.515)	25.445	25.445
	,	23.443
$\frac{6}{m} = 10.765$	$Q_{\rm m} = 34.921$	$Q_{s} = 32.400$
6 s = 11.056		
$G_{me} = 10.534$	0 -0	
se = 10.836	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 =$	7.8%
6 e = 2.216	3	

Sample #7'

Propagation Direction	Q _i	Ls _i
1 2 3 4 5 6 7 8	56.498 35.974 14.314 42.658 41.943 37.527 39.658 37.065	50.626 39.458 15.523 45.399 44.685 39.703 41.834 32.737
$G_{\overline{m}} = 10.270$	$Q_{m} = 38.078$	$Q_{s} = 35.202$
G = 10.665 G = 9.656 G = 10.075 G = 3.497	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 = 8$	3.2%

1	68.595	60.526
2	42.367	45.287
3	18.288	12.916
4	60.909	53.136
4 5	60.451	52.678
6	40.580	50.557
7	40.892	50.870
8	34.794	37.851
9	36.324	39.380
$G_{m} = 14.849$	$Q_{m^*} = 44.800$	$Q_s = 39.5763$
6 s = 15.7413		
$6_{me} = 13.095$	$\frac{Q_{m}-Q_{s}}{m} = 13$	
se = 14.0986	$\frac{\text{m s}}{Q_{s}} \times 100 = 13$.2%
e = 7.001		

Sample #8'

Propagation Direction		Q _i	Q _{LS}
1 2 3 4 5 6 7 8 9		63.654 52.316 29.760 57.528 57.347 44.269 47.718 33.064 32.600	60.344 45.718 23.519 53.122 52.941 49.413 52.863 40.401 39.937
$G_{m} = 11.680$ $G_{s} = 12.1315$ $G_{me} = 10.192$ $G_{se} = 10.7070$ $G_{e} = 5.704$		$Q_{\rm m} = 46.473$ $\frac{Q_{\rm m} - Q_{\rm s}}{Q_{\rm s}} \times 100 = 7.69$	Q _s = 43.1937
	Sample #9		

1 2 3 4 5 6 7 8 9	67.698 57.425 38.674 50.120 56.934 35.095 45.759 30.405 47.973	56.972 50.691 30.375 50.465 57.199 42.890 53.554 35.223 52.791
$G_{\overline{m}} = 11.201$	$Q_{\rm m} = 47.796$	$Q_s = 46.0127$
6 s = 11.3392		
$G_{me} = 9.018$	0 -0	
6 se = 9.1922	$\frac{Q_{\rm m} - Q_{\rm s}}{Q_{\rm s}}$ x 100 = 3.99	s ·

e = 6.644

Sample #9'

Propagation Direction	Q _i	Q _{LS}
1	69.635	59.520
1 2 3	59.108	47.538
3	37.066	28.353
4	58.589	53.865
5	57.918	53.194
6	36.137	46.236
7	46.170	56.269
4 5 6 7 8 9	28.057	34.382
9	44.192	50.517
$\frac{1}{m} = 12.341$	$Q_{\rm m} = 47.764$	$Q_s = 45.1370$
6 s = 12.6178	•	
$G_{me} = 9.679$	0 0	
se = 10.0287	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 = 1$	5.8%
$\epsilon_{e} = 7.658$	5	

Sample #10

 $\epsilon_{e} = 6.979$

1	58.562	53.387
2 3	46.313	41.774
	17.411	12.520
4 5	57.757	49.680
5	53.560	45.482
6 7	42.173	50.052
	35.848	43.727
8	25.791	33.291
9	33.453	40.954
$6_{m} = 13.529$	$Q_{m} = 41.207$	$Q_s = 35.8937$
$c_{s} = 14.5357$		
$G_{me} = 11.590$	0 -0	•
$\epsilon_{se} = 12.7503$	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 =$	14.8%

Sample #10'

Propagation Direction	^Q i	Q _{LS}
1 2 3 4 5 6 7 8	59.430	53.316
2	49.424	49.324
3	15.416	13.176
4	53.283	52.590
5	50.745	50.051
6	41.445	45.852
7	38.096	42.502
8	36.484	36.998
9	44.676	45.190
$6_{\bar{m}} = 12.060$	$Q_{\rm m} = 43.222$	$Q_{s} = 38.6053$
$6_{s} = 12.9140$		
$\epsilon_{\overline{m}e} = 11.673$	0 -0	
6 se = 12.5528	$\frac{Q_{m}-Q_{s}}{Q_{s}} \times 100 = 1$	L1.9%
$\epsilon_{e} = 3.032$	U	

Table III

Directional cosines of the principle axes of the Q_{LS_i} ellipsoid; with the associated cosine between major (M_O) and minoe (M_O) axes to show axes fit using Nye's approximation technique.

Magnitude (m ² /sec ²)	Directional Cosines	Symbol					
<u>s</u>	ample #1						
61.396 21.942 42.371	(0.994,0.0930,0.061) (-0.097,0.461,0.882) (0.054,-0.883,0.467)	M m ^O I ^O					
0.000034 = cosine between	M and m axes						
<u>s</u>	ample #2						
58.478 24.943 48.131	(0.998,-0.063,-0.033) (0.035,0.026,0.999) (-0.060,-0.998,0.029)	M m O I					
-0.000007 = cosine betwee	n M and m axes						
<u>s</u>	ample #2'						
56.392 13.935 42.572	(0.977,0.212,-0.036) (0.020,0.077,0.997) (0.215,-0.974,0.071)	M m O I					
-0.000000 = cosine betwee	n M and m axes						
<u>s</u>	ample #4						
55.023 16.220 43.606	(0.989,0.146,-0.037) (0.059,-0.152,0.987) (0.138,-0.978,-0.159)	M m ^O I ^O					
-0.000000 = cosine betwee	n M and m axes						
Sample #4'							
63.952 13.670 47.059	(0.996,-0.078,0.050) (-0.040,0.125,0.991) (-0.084,-0.989,0.121)	M m O I O					
0.00000 = cosine between	M_{O} and m_{O} axes						
<u>s</u>	ample #5						
51.984 21.576 37.723	(0.999,-0.227,-0.469) (0.048,0.052,0.997) (-0.020,-0.998,0.053)	M m O I					
-0.00007 = cosine between	M _o and m _o axes						

Magnitude (m ² /sec ²)	Directional Cosines	Symbol				
<u>s</u>	ample #5°					
53.147 25.267 44.607	(0.990,-0.138,0.011) (0.022,0.236,0.971) (-0.136,-0.962,0.237)	M m O I				
0.000003 = cosine between	$_{\rm O}^{\rm M}$ and $_{\rm m}^{\rm O}$ axes					
<u>s</u>	ample #6					
58.884 21.319 43.322	(0.976,-0.218,-0.012) (-0.007,-0.085,0.996) (-0.219,-0.972,0.084)	M m O I O				
-0.000000 = cosine between	n M _o and m _o axes					
<u>s</u> .	ample #6'					
50.696 22.296 43.169	(0.999,0.027,0.016) (-0.021,0.178,0.984) (0.024,-0.984,0.178)	M m O I				
0.000003 = cosine between	M and m axes					
Sample #7						
50.618 16.550 28.108	(0.927,0.366,-0.084) (0.176,-0.229,0.957) (0.331,-0.902,-0.277)	M m o I				
0.000012 = cosine between	M_{O} and m_{O} axes					
Sample #7'						
50.677 15.482 39.447	(0.999,0.038,-0.034) (0.337,-0.0005,0.999) (0.038,-0.999,-0.002)	M m o I				
0.000000 = cosine between	M and m axes					
<u>s</u>	ample #8					
60.530 12.887 45.311	(0.999,0.018,-0.004) (0.004,0.029,0.999) (0.018,-0.999,0.029)	Mo mo Io				
0.000000 = cosine between	M_{O} and m_{O} axes					

Magnitude (m ² /sec ²)	Directional Cosines	Symbol
<u> </u>	Sample #8'	
60.451 (0.998 23.408 45.721	,0.009,-0.054) (0.054,-0.013,0.998) (0.008,-0.999,-0.013)	M m o I
-0.000004 = cosine between	en M and m axes	
<u> </u>	Sample #9	
58.573 25.385 54.080	(0.956,-0.274,-0.103) (0.202,0.363,0.910) (-0.212,-0.891,0.402)	M m O I
-0.000029 = cosine between	en M and m axes	
<u>:</u>	Sample #9'	
60.859 23.948 50.604	(0.958,0.182,-0.219) (0.144,0.355,0.924) (0.246,-0.917,0.314)	M m I O
-0.000023 = cosine between	en M and m axes	
<u> </u>	Sample #10	
54.045 11.105 42.532	(0.987,0.137,0.085) (-0.109,0.175,0.979) (0.119,-0.975,0.187)	M m O I
0.000000 = cosine between	n M _o and m _o axes	
<u>:</u>	Sample #10'	
53.693 12.415 49.708	(0.959,0.282,0.013) (-0.052,0.133,0.990) (0.277,-0.950,0.142)	M m O I

Table IV

Degree of deviation between the known axes of the reduction spots and the computer generated axes of the $\mathbf{Q}_{\mathrm{LS}_{\dot{1}}}$, which was calculated from the measured velocity data.

		Directi (Direction of Major (Degrees)	r Axis	Direction (De	ion of Minor (Degrees)	r Axis	Direction	of Intermediate (Degrees)	ediate Axis
Known reduction spot orientation (see sample preparation section)	reduc- spot tation sample ration on)	o ^{0=X}	°06=¥	006-z	o06=x	o ^{06-x}	0-z	о ^{06-х}	х-0 ₀	06-z
$Q_{\mathrm{LS}_{\mathtt{j}}}$ orien tation (be fit by com puter)	ien- (best com-									
	#1	6.38349	84.66608	86.49992	95.58256	62.54189	28.11543	- 00916.98	-28.05823	62.14212
	#2	4.00333	93.51386	91.91060	87.99366	88,47747	2.52382	93.45933 -	- 3.82711	88,35825
	#2.	12,42193	77.75690	92.06137	88.85172	85,59420	4.55612	77.63434 -	-13.03563	85.94179
	#4	8.67492	81.59612	92.12960	86.58544	98.74459	9.39725	82.03663 -	-12.17446	99.14886
	#4.	5.32148	94.47132	87,11910	92,30850	82.83426	7.53279	94.79322 -	- 8.45954	83.04614
	#2	2.98852	91.30015	92.68758	87.24817	87.01870	4.06037	91.15745 -	- 3.25169	86.96018
	#22	7.94136	97.91825	89.38692	88,71819	76.33645	13.72637	97.83669	-15.87097	76.28810
	9#	12.64373	102.62388	90.68355	90.39248	94.87315	4.89013	102.63680 -	-13,56120	94.84095
	19 #	1.81193	88.44652	89.08036	91.18152	79.74671	10.32402	88.63566	-10.37186	79.71935
	#7	22,02505	68.55672	94.79782	79.82996	103.21996	16.79395	70.67902 -	-25.54459	106.05441
	# 2.	2.92184	87.80503	91.92951	88.06819	90.02865	1.93462	87.80733 -	- 2.189402	90.10256
	8#	1.05650	88.95945	90.25497	89.77540	88.33074	1.68030	88.95257 -	- 1.96827	88, 33532
	#8#	3,12813	89.47631	93.08171	86.91198	90.69845	3.16985	89.51470	- 0.88763	90.72538
	6#	17.04594	105.93162	95.90619	78,34489	68,73328	24.53055	102.26245 -	-27.05630	66.28234
	. 6#	16.56438	79.52538	102.68671	81,71136	69.17959	22.55377	75.76143 -	-23,53017	71.67058
	#10	9.27007	82.14654	85.10672	96.24326	79.94462	11.87190	83.17542 -	-12.81017	79.21174
	#10.	16.38863	73.62875	89.25341	93.00654	82.37031	8.21053	73.90445 -	-18,15262	81.82714
Mean		8.85831	87.54840	91.44565	88.39728	84.03959	10.34539	87.48021 -	-12.98528	84.15619
S. Dev.		6.32366	9.88849	4.05439	4.93649	10.74456	8,27654	9.40521	9.08424	11.22454

Wood's (1974) technique of plotting $\log \frac{X}{Y}$ and $\log \frac{Z}{Y}$ was used for the Q_{LS_i} data, where X is the magnitude of the major axis, Z is the magnitude of the minor axis and Y is the magnitude of the intermediate axis. The ratios were then used to compare to Westjohn's plots, Figures 12, 13 and 14.

	$\frac{\log \frac{X}{Y}}{}$	$\frac{\log \frac{Z}{Y}}{}$
#1	.161	286
#2	.085	286
#2 •	.122	485
# 4	.232 .	429
# 4 °	.133	536
#6	.133	308
#6 "	.070	-2.87
#7	.256	230
#7 "	.109	406
#8	.126	546
#8"	.121	291
#9	.035	329
#9 "	.080	325
#10	.104	583
#10°	.034	602
#5	.139	243
#5 °	.076	247
Mean = 0.119		Mean = 0.376
S. Dev. = $.061$		S. Dev. = 0.132
Variance = .004		Variance = 0.017

Table VI

Thin sections were done for all samples. Ellipsoidal pyrite grains were observed at 100-200X. The average orientation direction of the major axis of 50 pyrite grains is compared to the major axis of the ellipsoidal reduction spot.

Sample #	Deviation (clockwise rotation of the microscope stage are positive)
1	- 0.5°
2	+10.0°
3	+ 0.5 [©]
4	- 0.5°
5	+ 0.5°
6	+ 9.5°
7	+ 0.5°
8	- 3.5°
9	0.0°
10	- 6.0°

APPENDIX B

Computer Program used to Tabulate Tables I-IV, written by Tilmann and Bennett (1973).

PROGRAM SON	74/175	OPF = 1	FTN	4.6+498	03/17/60	.17.33.53	PAGE	
	PROGRAM SOLIC	(CMPUT,OUTPUT)						
33	PEOSTA M HILL STANDA PO DEV	REDUCE TEASURED VEL	CCITIES TO DEST F	CANCE OF ELLIPSOI	Dio.			
٠	DIMENSION 4 (1 CUMMON ALPHA,	331 THE TE (13 66) TO E	[41(6,6), THETA2(6,	13) ,THEFAT(6,13	١,			
100	PEADI DO N							
		MATRIX, WHERE D IS	DIRECTION OF HEAS	UREMENTS.				-
101	DC10I=1, N READ101; (DC1, FORMAT (3F20, 1 CONTINUE	J), J=1,3) x,10HDIRECTIONS,//,		· - · - 				
200	FORMAT (1H1,10 DOZOI=1,N PRINTZCI, (DCI FORMAT (1H0,5X CCHTINUE	x,10HDIRECTIONS,//, ,J),J=1,3) ,(3f10.5,2x))	10×1HX, 10X, 1HY, 10	X,1HZ,/)				
	READING THEY HATRIX FEAD I	MATCIX: WHERE VIS HUST OF LISTED GORR	THE VALUE OF THE	HEASUREMENTS E GIRECTIONAL				
10000	CONTINUE DC 11I = 1. N							
102 11 205	PEADIO2, (V(1, FCR 4AT (3F20.1 CUNTINUE PEINT 235 FORMAT (1H1,10	J), J=1,3) 0) x,10HVELOCITIES//10	X,6HP WAVE12X7HS1	HAVE10X7HS2 HA	/E			
202	DUZII=1,N PE NI 202, (VII FORMAT (1H0,5X CUNTINUE	; (3F15.5,10X))						
ž.	GENERATING TH	E THETA HATRIX						
	DC1I=1,N THETA(+,1)=0(THETA(+,3)=C(THETA(+,3)=C(THETA(+,3)=(2 THETA(+,6)=(2	1,1)**2 1,2)**2 1,5)**2 1,5)**2 1,5)**0(1,3) 1,5)**0(1,3) 1,5)**0(1,3) 1,5)**0(1,3) 1,5)**0(1,3) 1,6)**0(1,3)			•			
20 6	PEINT 206 FORMAT (1H1, 10	X,12HTHETA HATRIX//)					
210						7		
·	GENERATING "A							-
2 204	DOZI = 1,N A(1) = V(1,1) ** CCNTINUE PHINT 204, A FURMAT (16110X	2+V (I,2)**2+V (I,3)* 8HA MATRIX,//,(10X,	*2 F 20.10/))					
	GENERATING THE	ETA1 MATRIX, WHERE	THETA1 MATRIX IS T	HETA HATRIX TIP	ES	100 may 14 may 27 / 27		
30	D050I=1,6 DC50J=1,N THETAT(1,J)=TI CONTINUE Print230	(I,L)AT3H	:		T 04 W			-
230	FURNAL (IMI, 10)	X,15HTHETA TRANSPOSI						

OGRAM SO	NIC 74/175	OPT = 1	F	TN 4.8+498	03/17/80 .17.33.53	PAGE	2
274	DO481=1,6 PRINT231, (THE	CA ST		- 1	a = a = 11, an		
231	CCHTINUE DOSI=1,6 DCSJ=1,6	ETAT (I, J), J=1, N)	1 1 1	-			
_	THE TAIL ()=]	HETAT (I, K) + THETA (K,	,J)				
,	CONTINUE THETAL (1, J)=S	SUM					
220	PF.INT 220 FCF.MAT (1H1.10	X.13HTHETA1 HATRIXA	· ·				
221	DC 301=1,6 PFINT221, (THE FOR 14T (1H0,5X CONTINUE	DX,13HTHETA1 MATRIX/ ETA1(I, J), J=1, 6) (6E12.5, 6X))					
		GENERATE INVERSE					
•	M=6 CALL BNVHAT(H	, THETA1, CATINV, DET)				•	
. با		ETAZ MATRIX, WHERE		INVERSE TIMES	THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, AS NOT THE OWNER, A		
	DO4I=1,6 DC4J=1,N SUM=0						
6	THETAS TO JOES SUM-SUM-THETA CONTINUE THETAS (T, J) = S CONTINUE	ATINV(I,K)*THETAT(K Z(I,J) SUH	(6,				
ž	GENERATING AL	PHA MATRIX					
	DC5I=1,6 SUH=0 D08K=1,N ALP42(I)=THET SUM=SUM+ALPHA	A2(I.K)*A(K)			THE R. LEWIS CO., LANSING, MICH. LANSING, ASSESSMENT AS		
8 5	SUM=SUM+ALPHA CONTINUE ALPHA(I)=SUM CONTINUE PEINT222	(I)					
- 222		X,17HINVERSE OF THE	TA1//)				-
223 31	PRINT 223 . (CAT FORMAT (1H0.5X	INV (I,J),J=1,6),(6E15.5;10X))					
31 203	PRINT 203, ALFH	A 12HELPHA MATRIX//(1	0x-F20-10/11				
		ERMINES STANDARG DE					
Ü	CALL STODEY						
g		ERMINES ELLIPSOIDAL	AXES.				
	CALL AXIS						
9333	DATA CALOS 11	THE FOLLOWING ORDER PONUMBER OF HEASU THRY 1) ARE DIRECT! THRU 19 ARE VELOCI	REMENTS CAAL COSINES OF TIES MEASURED	MEASUREMENTS			
٠	STOP END						
			Teller of				

		-
		:
		;
		į
		•
		<u>!</u>

s	UBROUTINE	STODEV	74/175	0-1-1			FTN 4.8+498	03/17/60 .17.33.53	PAGE	1
1		l.		DDEV 6),3(13,3),6						
5				EORITICAL EL						
10		E(I)= *PHA(3: *5))+(1 CGNTI	((0(I,1)))+((10(((2(I,1) NUE	**2)*ALPHA(1 1,21,0);42); *3(2,2))42);	 * 2) * ALPHA(ALPHA(6))) 2) -ALPH 1) + ((((() ())	A(2))+((D(I,3)**2 ,3)*O(I,1))*Z)*AL	PHAC		
				FIRCLE TO						
15	ì	نا								
28		DC141: CIRC=! CIRC#! SAVE=:	* 0 0 1 N E () ES = EH LAS SAVE + CIP SAVE 1+ C	(I)				A COMMISSION OF SECTION OF SECTION	- Carabana da anti-	
		SAVE 1: 14 CONTIL	ESAVEÎ+C NUE RAVEZE:	I RO:4ES		· · · · · ·				
25	_	CTF CHI SAVE = 1	SAVE/N ES=SAVE1 0 0	/N		. ••				· · · · <u>-</u>
30		PHO E RHO SI	E IS HEAS E IS HEAS E IS HEAS E IS HEAS E IS ELL	URE 1 MIMUS E URE 3 MIMUS E IPS 010AL MIP URE 1 MIMUS E URE 1 MIMUS E	LLIPSOIDAL BEST FIT CI NUS BEST FI BEST FIT CI NUS BEST FI	VALUES ROLE TO ME T GIROLE T ROLE TO EL T GIROLE T	ASURED O MEASURED VALUES LIPSOID O ELLIPSOID			
							•			
35 		15 ÇONÎLÎ	SÁVĚ÷SÁV NUE SÁVEZII	eme4s(I)) ** 2 E1						
40		RHOE=	SOLT (BAV	E)						
		D016I: \$AVE1:	IN EHEAS(I)-CIRCHES) *	+2					
45		16 CONTIL SAVEL	SAVE+SAV NUE =SmVk/N	I)-CIRCHES) 4						-
		RHON=: SAVE=:	5 GF: 1 (5 AV)	FII						
50		DO17I	1,N (5,(1)-C	IRC IES) **2						
55	<u>.</u>			TRD 1ES) **2 E 1 YE1)	•• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			-	
		SAVE 1: 00161: 544F1:	= 0 = 1. N = (FME45 (I)-DIRC)**2 E1	~			y y sandy ya make a maji man me ser dhi kiri		-
i 0		48 ECNITI	4116		ar +			 		
>5		\$AVE 1: \$AVE = 1	SÄVE/N SGRT (SAV O O							***
		SAVE E	1, N = (iro) **2 E 1						
ra		PHOSE	=SQLT(SA							
		PRINT PCHMA SCIDAL	201 T (1H1,27 L VALUES	HMEASUMED EL	LIPSOIGAL	VALUES, 30 X	, 30HT HEORETICAL E	LLIP		
'5		00201 Phint 202 FCF.M4	=1.h 202,EHEA T (1H0,20	HMEASUMED EL S([],E(I) X,F10.5,40X,	f 10.5)	•				
	. -		•							
	UERCUTINE	STODEV	74/175	3PT=1			FTN 4.8+498	03/17/80 .17.33.53	PAGE	2
		26 CONTIN	1 UE 2 03 , CIRC	• CIRCHES		51. 3 00 5	A R E EY TAMBECT E			
10		203 FÖRMAN IPOLF FRINT	T (140,5X TU MEAS 204,FHCL	,26HBEST FIT UMFD VALUES, ,44UM,2HDMI,	F10.5) RHOSLAHOSE	ELLIPSE, F	74. 14. 0. 10. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		· · · · - · · · ,	
15		POPULATION OF THE PROPERTY OF	T (140,5% T 2(N 640 HST4NDAM ,F10.5)	, 24 istainait D'SEVIATION) DEVIATIČŇ 6x,25HSTAH RHO S,510.	RHO E,F10 CARC OEVIA 5,//,6X,25	10.5,5%,3-HBEST F: .5,//,6%,24HSTAND TICN RHG ME,F10.5 HSTANDARD DEVIATION	apo Čn ^o Ř		

	SUBROUT[NE	AXIS	74/17	5	•	FTN 4.8+498	03/17/80 .17.33.53	PAGE	1
. 1			SUBROUTINE COMMON ALPH DIMENSION A	AXIS 4,0UH,0UH1,((3,3),H(71)	DUM2,DUM3 ,x (71),Y (71),G(7	1),8(71),C(71).BA(3.3).W			
\$			A(1.1)36LPM	- ())	; 38 (715, C3 (71) °	1),8(71),G(71),BA(3,3),W			-
18		-	A(1,2)=ALPH A(2,3)=ALPH A(2,3)=ALPH A(2,3)=ALPH A(3,1)=ALPH A(3,1)=LLFH	A(5) A(5) A(6) A(2) A(2) A(5) A(5)					• / •
15	. !		A 13/3/-ALPIN		70 ALGUA MATOTY :	NE BENNEER EN TROATRA: M	4 9 0 7 W		
•		č				OF REDUCED ELLIPSOIDAL M	AIRIX		
20		200	FOFMAT (1H1,:	10x,23HCALG	JLATED ALP+A MAT	EIX)			
25	,	201	PETTZD1, (A FURMAT (1HO, CCNFINUE H(1) = 0.5773 X(1) = 0.5773	5	JLATED ALP+A MAT				
38			Al, al, cl Al	ST ITERATIVE USED TO CH	JE DIRECTION NECK ZERO OF FINA			•	
35			A1=A(1,1)+A B1=A(1,1)+A C1=A((2, 2) 4 (3, 3) (2, 3) 4 (3, 3) (3, 3, 1(3, 3)	-A(3,3)+A(1,1)- (2,3)4(1,2)4(2,3)+ (1,3)4(3,3)+(3,1)	A(3,3) - (A(1,2) **2) - (A(2,3) {} **(3,1)) - (A(1,1) *(A(2,3)) {**(2) **(3) **(A(2,3)) **(A(2,3))	3) **		
40		202	DOTUT 202		RMINATION OF PRI				
A.E.			W(N+1)=W(N)4	A (1, 1) + X(H) A (3, 1) + X(H)	*A(1,2)+Y(N)*A(; *A(2,2)+Y(N)*A(; *A(3,2)+Y(N)*A(;	, 3) (, 3) (, 3)			
7,			G,B,C ARE 1:0						• •
58			SOP) T=SOFT (b G(N) = W (N+1)/ B(N) = W (N+1)/ B(N) = W (N+1)/ H(N+1) = G(N)/ W (N+1) = D(N)/ W (N+1) = D(N)/ W (N+1) = D(N)/ W (N+1) = D(N)/ W (N+1)/ W (N+	((N+1) ** 2+X ('SQROT 'SQROT	 	22)			
55	9	· S					IS HAG		
-		•				AGNITUDE OF MINCR AXIS IN NORMALIZED VECTOR, EVEN	TUALLY		
68			BAG=3(N) BAG=3(N) CAG=C(N) CCNFINUE PHINT203.GAG	- 6AG - CAG	· · · · · · · · · · · · · · · · · · ·	HG AHHA1,/, F15.5,2F20.5)			
65		203	FORMAT (160,8	X, GHĀLPHA1,	15X,5H8ETA1,13X6	HGAMMA1,/,F15.5,2F20.5)			
	9	•	DEIEKUTYO LW	MITITUDE OF	IUTS WYTS				
76			D=GA5*4(1,1) E=GAG*4(2,1) F=GAG*4(3,1) HAG=50F1(0** HAG=50F1(0**	+875 7 (2,2) +875 8 (3,2) 2+64 2+642 2+64 2+642	· ČĀĞ-Ā (2, 3) · CAG-A (3, 3)]				
75	ğ	204	FCRMAT (1H0,1 CHECK ZERO	7HHAGNITUDE	NO. 1 = ,F11.6)				

, † - -
:
í
;
1
2
e E
r
6
1
1
•

SUBROUTINE	AXIS	74/175	OP 7=1		FTN 4.8+493	03/17/00 .17.33.53	PAGE	2
••	208	ZLP1=HAG**3-(PRINT206, ZLF1 FCF, NAT (1H0, 6H IF (A3S (ZEP1))	A1*(HAG**2))+(ZCR)1 = .F18.5 GT. (. 0)Gh T3.3	81°H&G}-C1)				
	Ç Ü		HATRIX FOR LA		•	No. of the second		
95	Ū	DO7 I = 1 . 3						
	7	DO71=1,3 DO7J=1,3 AKEEP(1,J)=A() CONTINUE	(L, I	• ••				
96			FIND INVERSE	OF *A* HATRIX				
	Ċ	H=3	4 D4 D571					
95	99	M=3 CALL BNVMAT(M D0991=1,3 PFINT201, (EA () CGNTINUE	[,J),J=1,3)					
•	i i	RETRIEVING ALI	PHA MATRIX			The second secon		
10	•	0001=1,3 003J=1,3 A(1,J)=AKEEP() CONTINUE	(L,)					
15		WH(1) = 0. XX(1) = 0. YY(1) = 1.0						
	Ų.	H=0	. m 1 4****					
LB	Ç	CALCULATING H	IOU (NATO					
15		N=11+1 WW (N+1) = WW (N) XX (N+1) = WW (N) YY (N+1) = WW (N) SQROT=SQRT (HW GG (N) = WW (N+1)	POA(1,1)+XX(N)* + da (2,1)+XX(N)* (3,1)+XX(N)* (N+1)**2+XX(N+1 (1050T	PBA(1,2)+YY(N)*PA - 3a (2,2)	(1,3) (2,3) (3,3)		<u> </u>	
			SQPOT		** ** ** ** ** ** ** *****************			
20		HM(N+1)=GG(N) XX(N+1)=E8(N) YY(N+1)=CC(N)						
		E4s GG (N)						
25	5	84=88 (N) C4=55 (N) CCHTINUE						
39	206	FORMAT (1/10,6X, 00=G++A(1,1)+i EE=G++A(2,1)+i FF=34+A(3,1)+i	, 544 PHA 2, 15X , 5 34* A (1, 2) + C 4* A 34* A (2, 2) + C 4* A 34* A (3, 2) + C 4* A	5HBETAZ,13X,6HGAH [1,3] [2,3] [3,3]	MA2,/,F15.5,2F20.5)			
5	207	FEINTZOT, HAGTI FCKHAT (1H0,17) ZERZ=HAGTHUP+3 PRINTZ13, ZL32	HAGNITUDE NO.	2 = ,F11.6) 2))+(81*HAGTHO)-	C1			· · ·
	213	IF (ABS (ZER 2) .	FROZ = .F10.5)					
LO		PROGRAM HILL FELLIPSOID. COS	PROCEDE IF CALC	CULATED AXIS COIN AXIS ARE HM, XX,	CIDES WITH MAJOR AXI	S OF		
15	į	INTERHEDIATE C	XIS IS DETERMI	NED BY GROSS PF?	DUCT OF THO FOUND AX	IS		•
	Č	G3=34G #C4-C4G4	PR ₄					
50	209	#3=CAG *G4-GAG* C3=GAG *B4-LAG* FGK**A7 (140,6X) FGK**A7 (140,6X) D3=G3**A(3,1)*E3=G3**A(3,1)*	G4 C7	HBETA3,13X,6HGAM 1,3) 2,3)	MAJ,/,F15.5,2F20.5)			
	4470	74/175	0P7= 1		FTN 4.8+498	03/17/80 .17.33.53	PAGE	3
ZNAKONITME	4×12	, , , , , , ,			F 4 M → 4 M → 70	war 11700 +11+ 33+73	PAUL	•
55	210	HAGNO3=SQPT(03 PF:247210, HAGNO FCF 447 (1H0, 17F ZLF 33=HAGN(3*** FE 14725-7556	TO CALL CHAGNOST	2) *21,	-G1			
60	215	FCF. 4AT (1H), EHZ SUM= MAG+ MAGTHO PFINT 211, SUM FCR 4AT (1H)	ERO3 = ,F10.5) +HAGNO3 SIM OF ELLIPSE	3-1, [[]] 6 AGNO3)	.6)			
65	; ;			JOR AND MINOR &X		· · · · · · · · · · · · · · ·		
	č		+(R++1AG)+(C++					

CCSIZ= (G4-GAG) + (D4-HAG) + (C4-CAG)
PI_NTZO, CCSIZ
FCX+T (110,5x, 35) COSINE BETHEEN MAJOR AND MINOR AXIS, 2x, F10.6)
RFTURN
END

			•	•	•	*.***
 SU	AHVNE BRITUORB	T 74/175 ()PT=1	FTN 4-6++98	03/17/60 -17-33-53	PAGE
1		SUBROUTINE DING DIMENSION E(II)	4AT(N,9,8I,DET) (),6I(N,N)			
5	ر دین	FINDS INVERSE A M=GIM. MATRIX &	AN J DETERMINATE OF MAG, BI-INVERSE OF 3, D	TRIX 8 OF OROER N BY PIVOT ET=JETERMINATE OF 8	AL CONDENSING	,
10		A=1.8 Generate Identi	TY MATRIX		<u> </u>	
15	15 20	0015I=1,N 0015J=1,N 01(1,J)=0.0 0020I=1,N BI(1,I)=1.0	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
		BEGIN PIVOTAL C J IS PIVOTING P	ONDENSATION			
26		0060J=1,N P=8(J,J) A=A•P	i a i a i Nazi par i i a a i i i i i i i i i i i i i i i			and the control of th
25	Ş		5 ROM RY DIAGONAL ELI	EMENT		<u></u> i
38	بان در	I IS THE RCH TO	BE REQUOED			
35	50	00551=1,N (F(1.E 0.J) 55,50 5AVE=8 (1,J) 0053==8 (1,H) 0053==8 (1,H) +6 011,H)=B (1,H) +6 00111NUE 00111NUE 00111NUE 00111NUE 0011NUE 0011NUE	 {J±H}}*SAYE			
40	53 55 66	CONTINUE CONTINUE CONTINUE CONTINUE CET=A	-81(J, n) *SAVE			
		END	· · · · · · · · · · · · · · · · · · ·			
	y y war and the second					
			and the second of the second o			
					,	
				<u></u>		
** - * - *						
· • .						

BIBLIOGRAPHY

BIBLIOGRAPHY

- Anderson, C. W., 1977. Large Scale Velocity Anisotropy and the Q-ellipsoid Method, M.S. Thesis, Michigan State University, East Lansing, Michigan.
- Anderson, D. L., 1961. Elastic Wave Propagation in Layered Anisotropic Media, J. Geophys. Res., V. 66, No. 9, pp. 2953-2963.
- Anderson, D. L., Minister, B. and Cole, O., 1974. The Effect of Oriented Cracks on Seismic Velocities, J. Geophys. Res., V. 79, pp. 4011-4015.
- Backus, G. E., 1962. Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res., V. 67, No. 11, pp. 4427-4440.
- Balakrishna, S., 1959. Effect of Dimensional Orientation on Ultrasonic Velocities in Some Rocks, <u>Indian Acad. Sci. Proc.</u>, Sec. A, V. 49, No. 6, pp. 318-321.
- Bennett, H. F., 1968. An Investigation into Velocity Anisotropy through Measurements of Ultrasonic Wave Velocities in Snow and Ice Cores from Greenland and Antartica, Ph.D. Thesis, University of Wisconsin.
- Bennett, H. F., 1972. A Simple Seismic Model for Determining Principle Anisotropy Direction, J. Geophys. Res., V. 77, pp. 3078-3080.
- Berryman, J. G., 1979. Long-wave Anisotropy in Traversely Isotropic Media. Geophysics, V. 44, No. 5, pp. 896-917.
- Birch, F., 1960. The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 1; <u>J. Geophys. Res.</u>, V. 65, No. 4, p. 1083-1102.
- Birch, F., 1961. The Velocity of Compressional Waves in Rocks to 10 Kilobars, Part 2, <u>J. Geophys. Res.</u>, V. 66, No. 7, pp. 2199-2224.

- Brace, W. F., 1960. Orientation of Anisotropic Minerals in a Stress Field, Discussion, Chap. 2, G.S.A. Memoir, No. 79, pp. 9-20.
- Byerly, P., 1934. The Texas Earthquake of August 16, 1931, Ball. Seismological Soc. Am., V. 24, pp. 81-99.
- Cannon, W. F., 1973. The Penokean Orogeny in Northern Michigan in Huronion Stratigraphy and Sedimentation (ed. G. M. Young), Geol. Assoc. Canada, Spec. Paper 12, pp. 251-271.
- Cannon, W. F. and Gair, J. E., 1970. A Revision of Stratigraphic Nomenclature for Middle Precambrian Rocks in Northern Michigan, Geol. Soc. Am. Ball., V. 81, pp. 2843-2846.
- Crampin, S., 1970. The Dispersion of Surface Waves in Multilayered Anisotropic Media, Geophys. J., V. 21, pp. 387-402.
 - 1975. Distinctive Particle Motion of Surface Waves as a Diagnostic of Anisotropic Layering, Geophys. J., V. 40, pp. 177-186.
 - 1977. A Review of the Effects of Anisotropic Layering on the Propagation of Seismic Waves, Geophys. J., Roy. Astr. Soc., V. 49, pp. 9-27.
- Crampin, S. and Kirkwood, S. C., 1979. Approximations to the Velocity Variations in Systems of Anisotropic Symmetry, Geophys. J., V. 57, pp. 697-703.
- Cerveny, V., 1972. Seismic Ray Trajectory Intensities in Inhomogeneous Anisotropic Media, Geophys. J.R. Astr. Soc., V. 29, pp. 1-13.
- Cerveny, V., and Psencik, I., 1972. Rays and Travel Time Curves in Inhomogeneous Anisotropic Media, Z. Geophysik, V. 30, pp. 565-577.
- Cholet, J. and Richards, H., 1954. A Test on Elastic Anisotropy
 Measurements at Berriane (North Sahara), Geophys.
 Prosp., V. 2, pp. 232-246.
- Duda, S. J., 1960. Elastic Waves in Anisotropic Medium According to a Macroscopic Measurement Underground.

 Geophy: Prosp., V. 8, No. 3, p. 429-444.
- Dunoyer, De Segonzac and Laherrere, J., 1959. Application of the Continuous Velocity Log to Anisotropic Measurements in Northern Sahara; Results and Consequences, Geophy. Prosp., V. 7, No. 2, pp. 207-217.

- Fisher, R. A., 1953. Dispersion on a Sphere, Proc. Roy. Soc. London, A217, pp. 295-305.
- Gair, J. E., 1968. Preliminary Geologic Map of the Palmer 7½ Minute Guadrangle, Marquette County, Michigan, U.S.G.S., open file.
- Gair, J. E. and Thadden, R. E., 1968. Geology of the Marquette and Sands Quandrangle, Marquette County, Michigan, U.S.G.S., V. 197.
- Gair, J. E., Thadden, R. E. and Jones, B. F., 1961. Folds and Faults in the Eastern Part of the Marquette Iron Range, Michigan, U.S.G.S., Research Article 178, pp. 76-78.
- Gassman, F., 1964. Introduction to Seismic Travel Time Methods in Anisotropic Media, <u>Pure Applied Geophy.</u>, V. 58, pp. 53-112.
- Hagedoorn, J. G., 1954. A practical example of an Anisotropic Velocity Layer, Geophys. Prosp., V. 2, pp. 52-60.
- Irving, E., 1964. Paleomagnetism and its Application to Geological and Geophysical Problems, Wiley, New York.
- Jamieson, J. D. and Haskin, H., 1963. The Measurement of Shear Wave Velocities in Solids using Axially Polarized Ceramic Transducers, Geophysics, V. 28, pp. 82-90.
- Jolly, R. N., 1956. Investigation of Shear Waves, Geophysics, V. 21, No. 4, pp. 905-938.
- Klasner, J. S., 1978. Penokean Deformation and Associated Metamorphism in the Western Marquette Range, Northern Michigan, Geol. Soc. Am. Ball., V. 89, p. 711-722.
- Klima, K. and Babuska, V., 1968. A comparison of Measured and Calculated Anisotropies of Marble, Studia Geophys. Geodaet, V. 12, pp. 377-384.
- Kopf, M. and Wawryik, M., 1961. Acoustic Velocity and Susceptibility Measurements on Rocks of the Triassic and Zechstein from the West Thurington Basin, Geologic, V. 10, No. 2, pp. 214-230.
- Kraut, E. A., 1963. Advances in the Theory of Anisotropic Elastic Wave Propagation, Rev. Geophys., V. 1, No. 3, pp. 401-448.
- Lamont, M. D., Douglas, L. L., and Oliva, R. A., 1977. <u>Calculator Decision-making Sourcebook</u>, (Texas Instruments Publication), pp. 2-18.

- Levin, F. K., 1978. The Reflection, Refraction and Differention of Waves in Media with an Elliptical Velocity Dependence, Geophysics, V. 43, pp. 528-537.
 - 1979. Seismic Velocities in Traversely Isotropic Media, Geophysics, V. 44, pp. 920-928.
- Macpherson, J. D., 1960. Anisotropy of the Rock in the Approaches to Halifax Harbor, Nova Scotia, Seismol. Soc. Am. Ball., V. 50, No. 4, pp. 575-579.
- Matveyer, A. K. and Martyanor, Ye, G., The Dependence of Ultr-sonic Velocity in Coals on their Degree of Metamorphism, Akad. Nauk. SSSR Do klady, V. 122, No. 3, pp. 459-461.
- McCollum, B. and Snell, F. A., 1932. Assymmetry of Sound Velocity in Stratified Formations. Early Geophys. Papers, Soc. Exploration Geophysicists, pp. 216-227, 1947, Reprinted from Physics, 1932.
- McElhinny, M. W., 1973. Paleomagnetism and Plate Tectonics, Cambridge University Press, pp. 77-83.
- M eissner, R. and Fakhimi, M., 1977. Seismic Anisotropy as Measured under High Pressure, High Temperature Conditions, Geophys. J., V. 49, No. 1, pp. 133-143.
- Musgrave, M. J. P., 1959. The Propagation of Elastic Waves in Crystals and other Anisotropic Media, Report Progr. Phys., V. 22, pp. 74-96.
- Neuman, F., 1930. An analyses of the S-wave, <u>Ball. Seismological Soc. Am.</u>, V. 20, pp. 15-30.
- Nur, A., 1971. Effect of Stress on Velocity in Rocks with Cracks, J. Geophys. Res., V. 76, pp. 2022-2034.
- Nur, A. and Simmons, C., 1969. Stress Induced Velocity Anisotropy in Rock: Experimental Study, J. Geophys. Res., V. 74, pp. 6667-6674.
- Nye, J. R., 1957. Physical Properties of Crystals, London: Oxford Clarendon Press.
- Postma, G. W., 1955. Wave Propagation in Stratified Medium, Geophysics, V. 20, pp. 780-806.
- Puffet, W. P., 1974. Geology of the Negaunee Quadrangle, Marquette County, Michigan, <u>U.S.G.S.</u>, Professional Paper, 788.
- Ricker, N., 1953. The Form and Laws of Propagation of Seismic Wavlets, Geophysics, V. 18, pp. 10-40.

- Rudski, M. P., 1911. Parametrische Darstellung der Elastischen Wellen in Anisotropen Median, Acad. Sci. Cracovic Ball., V. 8a, pp. 503-536.
- Sato, R. and Lapwood, E. R., 1968. SH Waves in a Transversely Isotropic Medium-1, Geophys. J. Res. Ast. Soc., V. 14, pp. 463-470.
- Schlue, J. W., 1977. A Physical Model for Surface Wave Azimuthal Anisotropy, Ball. Seis. Soc. Am., V. 67, pp. 1515-1519.
- Schmidt, E., 1964. A Case of Anisotropy of Seismic Velocity, Geoexploration, V. 2, pp. 28-35.
- Schimozura, D., 1960. Elasticity of Rocks and some Related Geophysical Problems, <u>Japanese Jour. Geophysics</u>, V. 2, No. 3, 88 pp.
- Talbot, C. J., 1970. The Minimum Strain Ellipsoid using Deformed Quart Veins, <u>Tectonophysics</u>, V. 9, pp. 47-76.
- Taylor, G. L., 1973. Stratigraphy, Sedimentalogy, and Sulfide Mineralization of the Kona Dolomite, Ph.D. Thesis, Michigan Technological University, Houghton, Michigan.
- Thill, R. E., 1969. Correlation of Longitudal Velocity Variation with Rock Fabric, J. Geophys. Res., V. 74, No. 20, pp. 4897-4909.
- Thill, R. E., McWilliams, J. R., and Bur, T. R., 1968. An Accoustical Bench for an Ultrasonic Pulse System, Bu Mines Rept. Invest., V. 7164, 22 pp.
- Tilmann, S. E. and Bennett, H. F., 1973a. Ultrasonic Shear Wave Birefringence as a Test of Homogeneous Elastic Anisotropy, J. Geophy. Res., V. 78, pp. 7623-7629.
 - 1973b. A Sonic Method for Petrofabric Analysis, J. Geophys. Res., V. 78, pp. 8463-8469.
- Tocher, D., 1967. Anisotropy in Rocks under Simple Compression, <u>Transactions American Geophysical Union</u>, V. 38, No. 1, pp. 89-94.
- Tullis, T. E. and Wood, D. S., 1975. Correlation of Finite Strain from both Reduction Bodies and Preferred Orientation of Mica in Slate from Wales, <u>Ball.</u> Geol. Soc. Am., V. 86, p. 632-638.

- Uhrig, L. F. and Van Melle, F. A., 1955. Velocity Anisotropy in Stratified Media, Geophysics, V. 20, No. 4, pp. 774-779.
- Van Schmus, W. R., 1976. Early and Middle Proterozoic History of the Great Lakes Area, North America, Phil. Trans. R. Soc. London, A, 280: pp. 605-628.
- Van Hise, C. R. and Bayley, W. S., 1895. The Marquette Iron Bearing District of Michigan, <u>U.S.G.S.</u>, 15th Ann. Rep., pp. 485-650.
- Van Hise, C. R. and Leith, C. K., 1911. The Geology of the Lake Superior Region, U.S.G.S., Mon. 52, 614 pp.
- Weatherby, B. B., Born, W. T. and Harding, R. L, 1934. Granite and Limestone Velocity Determinations in the Arbuckel Mountains, Oklahoma, Ball. A.A.P.G., V. 18, pp. 106-118.
- Westjohn, D. B., 1978. Finite Strain in the Precambrian Kona Formation, Marquette County, Michigan, M.S. Thesis, Michigan State University, East Lansing, Michigan.
- White, J. E., Heaps, S. N. and Lawrence, P. L., 1956. Seismic Waves from a Horizontal Force, Geophysics, V. 21, No. 3, pp. 715-723.
- White, J. E. and Sengbush, R. L., 1953. Velocity Measurements in near Surface Formations, Geophysics, V. 17, pp. 54-70.
- Wood, D. S., 1974. Current Views of the Development of Slaty Cleavage, Ann. Rev. Earth Sci., V. 2, pp. 1-35.

