I J PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINE return on or before date due. I DATE DUE DATE DUE DATE DUE T’flLQQQ‘Q. Q U IqOV I 31200] JUL1620 09090 932 ma Wm“ Risk , Pollutit in purr DC Risk Assessment for Selecting Pollution Prevention Alternatives By Souad Benromdhane Volume I A Ph.D. Dissertation Submitted to Michigan State University in partial fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Civil and Environmental Engineering 1998 for Selecting . Ilnnactning process emis nih'de \' ofthe Clean Air .-\C reigned b} the LS. Em no: 32} 3e utilized to reduce emissi teprtterred hierareh} for emisr' . i I 17917” Went The traditional 41," .. W2», ‘uvw'v math has been dnx en b he?» i v ....t. n pollutants from one n aiidnafleo ' r eater polrutant. remind-Z! We rather than hm ' l g . rum» > ' " nth. pnonnes are her :‘Uk-X‘l v N W. ' 1th treatment solution ii" !-»I ' mill! ‘ {I {II ‘ - H e: ~ ' t \hmednxen indus'r Ew‘hifi enguscd - V toexaimted 14'. {f t l; in; lugn Industrial Operw ions l",.'l~ ..4“!~"‘3:_- ‘ ‘ “i“‘n‘al 10H. ABSTRACT Risk Assessment for Selecting Pollution Prevention Alternatives By Souad Benromdhane Manufacturing process emissions from foundries are regulated under Title I, Title III, and Title V of the Clean Air Act Amendments (CAAA) and implementing regulations promulgated by the US. Environmental Protection Agency (EPA). Several strategies may be utilized to reduce emissions. Under established principles of pollution prevention, the preferred hierarchy for emissions control is : (1) source reduction, (2) recycling, and (3) treatment. The traditional approach to emissions control has focused on treatment. This approach has been driven by the pre-1990 regulatory scheme. This ofien results in transfer of pollutants from one medium to another, i.e., a collected air pollutant becomes a solid waste or water pollutant. Risks are not reduced but rather are transferred. Costs are multiplied rather than being minimized. Currently, priorities are being given to a more preventive approach. The costs involved with treatment solutions, waste disposal and management, and control technologies have driven industries to pollution prevention. Risk assessment techniques are now being used to evaluate the impact and risk associated with the hazards generated by different industrial operations to study the feasibility of control options before implementation. The foundry industry, a major source of hazardous air pollutants (HAPs), has been designated as one of the industries to be regulated under the Maximum Achievable Control Technology (MACT) provisions of Title V of the Clean Air Act. Thus, in f. ._... ‘ n . '5 conjunction with representatives from the General Motors Corporation (GM) and the Ford Motor Company, the GM Powertrain Saginaw Malleable Iron Foundry was selected as the site to test the application of a new risk assessment modeling technique. A four component model of risk assessment is proposed. It involves: 1) identifying and quantifying of the source input; 2) modeling transport to the receptor; 3) evaluating the risks to the receptor; and, 4) assessing the impact of pollution prevention on the source. This last step allows refining the selection of the pollutants of concern and ranking of the pollution prevention alternatives. One of the important priorities to be addressed in the foundry industry is the emissions of HAPs from the casting process at the pouring cooling and shakeout steps. These emissions result from about 19 different families of resin binders in commercial use. A mass balance approach to the molding operations was selected as the method to estimate some of the HAP emissions. Alternate methods were also explored. The US. Environmental Protection Agency Industrial Source Complex dispersion model (lSC-3) was selected as the transport model. Exposure concentrations and their variability around the facility at the ground level for short term exposure were calculated to estimate the impact on the risk evaluation. A probabilistic approach as opposed to the “point estimate” approach was undertaken to assess the exposure and toxic effects of the pollutants of concern. A sampling strategy that defines exposure assessment as an inherently statistical problem was made to include randomness and representative situations. This is expected to lead to a better description of the risk, and to establish pollution prevention priorities based on realistic scenarios. Copyright by Souad Benromdhane 1 998 To my parents, who alw u h To my parents, who always prayed for my success, in particular, my father who did not live to see this day. AC h‘l praises be to Alla. ruse for presiding me With lam appreciatis'e for .J the Manufacturing R. Zuluuuld not hate been new luould like to express l. hits for his continued su shes. He has been like a in ermine. Dr. M. Kamn'n. D are; \m h‘SUOnSI l ush to express mi run-ed prayers. suppon an iii to my sister Saida and l sne- mle. lam also crate-ti hull. ACKNOWLEDGMENTS ‘19).” 01-413)." LLll page In the Name Of Allah Most Gracious. Most Merciful All praises be to Allah Subhanahu-wa-Taala, the creator and sustainer of this universe for providing me with the strength and the patience to complete this work. I am appreciative for the financial support from Michigan State University, through the Manufacturing Research Consortium. Without this support, this research work would not have been accomplished. I would like to express my sincere gratitude to my major advisor, Dr. Mackenzie L. Davis for his continued support and guidance throughout the years of my Doctoral studies. He has been like a father to me. I would like also to thank the members of my committee, Dr. M. Kamrin, Dr. S. Masten, and Dr. S. Selke for their valuable criticism and suggestions. I wish to express my greatest thanks and appreciation to my mother for her continued prayers, support and encouragement. The warmest feelings of gratitude are owed to my sister Saida and her husband Izzat, who stood by me and made this dream .come true. I am also grateful to my sister Sonia, my brothers Lassaad, Sofiane and Souheil. They have always prayed for my success and supported my pursuit of this Doctoral degree. Thanks to all the people who by a means or another, contributed to the success of this work, namely, Dr. S. S. Farinwata from Ford, Mr. J. Touma from EPA, NC., and Mr. M. Jabbur from the Air Force W. DC. for their precious help and availability. Last but not least, special thanks to all the staff at Michigan State University for all their services, in particular those in the Department of Civil and Environmental Engineering for their indefinite kindness and availability. vi Table of Contents List of Tables .................................................................................................................. xi List of Figures ................................................................................................................. xii CHAPTER 1 Introduction 1.1 Background ........................................................................................ 1 References ................................................................................................ 3 CHAPTER 2 Foundry Emissions 2.1 Foundry Overview ............................................................................. 4 2.1.1 Description of Production Steps ......................................... 5 2.1.2 Raw Materials Handling, Storage, and Preparation ............ 5 2.1.3 Metal Melting ..................................................................... 8 2.1.4 Mold and Core Production .................................................. 11 2.1.5 Pouring, Cooling, and Shakeout ......................................... 13 2.1.6 Pollutants of Concern in the Casting Operations ................ 14 2.1.7 Finishing ............................................................................. 15 2.1.8 Waste Handling and Storage ............................................... 17 2.2 Hazardous Air Pollutant Emissions from Foundry ............................ 18 2.2.1 Binders: Major Source of Hazardous Air Pollutants .......... 18 2.2.2 Organic Resin Binders Chemistry ....................................... 21 2.2.3 Binder Resin Composition .................................................. 24 2.2.4 Measured HAPs from Molding and Core Making Process.25 2.2.5 Estimated HAPs from Molding and Core Making Process 27 2.2.6 Data Used in the Transport Model ...................................... 27 References ................................................................................................ 30 CHAPTER 3 Proposed Research 3.1 Problem Statement ............................................................................. 32 3.2 Modeling Approach ........................................................................... 33 3.3 Source Model ..................................................................................... 33 3.4 Processes Selection and Research Scope ........................................... 35 3.5 Transport Model ................................................................................ 35 3.5.1 Selection of a Dispersion Model ......................................... 36 3.5.2 Source Characterization ...................................................... 36 3.5.3 Selection of Receptors ........................................................ 36 3.6 Risk Model ......................................................................................... 36 3.7 Feed Back Loop ................................................................................. 37 References ................................................................................................ 37 vii CHAPTER 4 Mass Balance Model 4.1 Methods for Developing a Source Model ......................................... 38 4.1.1 Material Balance ................................................................. 39 4.1.2 Emission Factors ................................................................. 39 4.1.3 Stack Tests .......................................................................... 39 4.1.4 Engineering Equations ........................................................ 40 4.2 Factors Affecting Emission Rate Estimates ....................................... 40 4.2.1 Capture Efficiency .............................................................. 40 4.2.2 Control Efficiency ............................................................... 41 4.3 Mass Balance as a Modeling Tool ..................................................... 42 4.3.1 Mass Balance Variables ...................................................... 43 4.3.2 Chemical Input Calculation ................................................ 44 4.3.3 Chemical Output Calculation .............................................. 44 4.3.4 Mass Balance Equation for Casting .................................... 45 4.4 Mass Balance Results and Discussions .............................................. 47 4.5 Comparison of Mass Balance and Emission Factors ......................... 55 References ................................................................................................ 57 CHAPTER 5 Transport Model 5.1 Introduction to Dispersion Modeling ................................................. 58 5.2 Selection of the Dispersion Model ..................................................... 59 5.3 Role of Atmospheric Turbulence in Air Pollution ............................. 61 5.4 Theoretical Background ..................................................................... 62 5.5 Downwash effects and Building Profile Input Program (BPIP) ....... 66 5.5.1 Input Preparation ................................................................. 68 5.6 Dispersion Modeling Implementation - Simulation Strategy ............ 69 5.6.1 Source Information ............................................................. 69 5.6.2 Selection of Receptors ........................................................ 70 5.6.3 Meteorological Data ............................................................ 71 5.6.4 Emission Rates -Variability ................................................. 71 5.7 Dispersion Modeling Simulation-Results .......................................... 74 5.7.1 Identification of Critical Zones ............................................ 74 5.7.2 Sensitivity of Area of Exposure to Emission Increase .......... 76 5.7.3 Influence of Production Variation on Exposure Concentrations ...................................................................... 76 5.7.4 Sensitivity of Exposure Concentrations to Stack Height Increase ................................................................................. 82 5.8 Synthesis PDF of Emission Rates ...................................................... 83 References .................................................................................................. 86 viii CHAPTE lHlPll CHAPTER 6 Exposure Assessment 6.1 Theoretical Background ...................................................................... 87 6.1.1 Fundamental Equations ....................................................... 88 6.1.2 “Point Estimate” Approach to Exposure Assessment ......... 93 6.1.3 Probabilistic Approach to Exposure Assessment ............... 94 6.1.3.1 Computational Methods for Estimating Dose PDFs..95 6.2 Selection of an Exposure Model ......................................................... 96 6.2.1 Review of Existing Models ................................................. 97 6.2.2 Sensitivity Analysis ............................................................. 98 6.3 Review of Probability Distribution Function (PDF) ......................... 100 6.3.1 Contaminant Concentration in Air (Cair) ............................ 101 6.3.2 Inhalation Rate IR or (IU 31,) ............................................... 101 6.3.3 Exposure Frequency (EF) ................................................... 103 6.3.4 Exposure Time (ET) ........................................................... 104 6.3.5 Exposure Duration (ED) ..................................................... 105 6.3.6 Body Weight (BW) ............................................................. 106 6.3.7 Averaging Time (AT) ......................................................... 107 6.4 Selection of PDFs ................................................................................. 109 6.5 Exposure Assessment .......................................................................... 114 6.5. 1 Implementation ....................................................................... 1 14 6.5.2 Intake Results ......................................................................... 117 References ................................................................................................... 119 CHAPTER 7 Toxicity Assessment 7.1 Inhalation Toxicology ......................................................................... 120 7.2 Source of Toxicological Data ............................................................. 121 7.3 Adverse Effects .................................................................................... 124 7.4 Carcinogenicity .................................................................................... 125 7.5 Threshold ............................................................................................. 127 7.6 Exposure to Multiple Compounds ...................................................... 128 References .................................................................................................. 129 CHAPTER 8 Risk Characterization 8.1 Point Estimate of Cancerous and Non-Cancerous Risk ..................... 130 8.2 Probabilistic Risk Evaluation ............................................................. 131 8.3 Total Integrated Risk ........................................................................... 132 8.4 Uncertainty Analysis ........................................................................... 133 8.5 Results And Discussion ...................................................................... 134 8.6 Risk Sensitivity To Exposure Factors ................................................ 140 References .................................................................................................. 143 ix CHAPTER 9 Risk Assessment Techniques as a Tool for Selecting Pollution Prevention Alternatives 9.1 The Decision Making Process ............................................................ 144 9.1.1 Difficulty in Decision Making ............................................ 144 9.2 Decision Making Under Uncertainty .................................................. 145 9.3 Application of Risk Assessment to the Selection of a Resin Binder ...................................................................................... 146 9.3.] Definition of the Problem .................................................... 146 9.3.2 Listing of Options ................................................................ 147 9.3.3 Definition of Criteria ........................................................... 147 9.3.4 Analysis of the Options ....................................................... 151 9.3.4.1 Lowest Emission ..................................................... 152 9.3.4.2 Comparison with Acceptable Risk Values ............. 152 9.3.4.3 EPA Combined Cancer Risk and HI ....................... 153 9.3.5 Selection of Course of Action ............................................. 154 References ................................................................................................ 155 CHAPTER 10 Summary, Conclusions, and Recommendations 10.1 Summary of Research Work Completed ......................................... 156 10.2 Conclusions ...................................................................................... 157 10.3 Recommendations for Reducing Risk .............................................. 158 10.4 Recommendations for Future Work ................................................. 159 10.5 Future Research ................................................................................. 160 References .................................................................................................. 161 Appendices .............................................................................................................. 162 Bibliography .......................................................................................................... 331 11.13111 Induction Furnacel 3.33 Some Foundry-Am . ‘vlold and Core Ma} (Gschssandtnet. 19" 1111233 1151 of the 113101 q Industrx (SCOIL l9? 3111231 Measured foundrsa (Ma’s'silles. 19931 1111231 Selected binder HA (Mosher. 1991; Mr 71113.6 ileuured data of H prosided bx G.\l ..... 1111211 1ssumptioiis C DIN .111 13 \lass Balance Resu ll? ‘1 Stlttitd Stack Dd‘. 1.1261 Selected Cumulatii Rates in m das b\ ted Probabilits Densits 2163 Summn of Distri @164 PDF storExrsosurr lil~65 Predicted First 111. “#11911 .............. 11.1 Resin Binders Listed toucm c1331 5 Stimates fr 51811 Time 3.111 Slimates 11011 11 16¢}: List of Tables Table 2.1 Induction Furnace Emissions for Malleable Iron (Gschwantdner, 1990) ..... 10 Table 2.2 Some Foundry-Atmosphere Contaminants Evolved During Mold and Core Making, Casting, and Cooling (Gschwandtner, 1990; McKinley, 1990) ....................................................... 16 Table 2.3 List of the Major Sand Binder Systems Used in the Foundry Industry (Scott, 1976; Carey, 1990) .............................................................. 20 Table 2.4 Measured foundry available emission data (lb/ton of iron) (Maysilles, 1993) .......................................................................................... 26 Table 2.5 Selected binder HAP emission factors (Mosher, 1994; Maysilles, 1993) .................................................................. 28 Table 2.6 Measured data of HAP emissions from the casting process provided by GM ............................................................................................. 29 Table 4.1 Assumptions Considered in the Mass Balance Calculations ......................... 49 Table 4.2 Mass Balance Results for Naphthalene ........................................................... 54 Table 5.1 Selected Stack Data ....................................................................................... 72 Table 6.1 Selected Cumulative Distribution Percentiles of Inhalation Rates in m3/day by Age (Finley, 1994) ......................................................... 102 Table 6.2 Probability Density Functions for Inhalation Rates (U.S.EPA, 1996) .......... 102 Table 6.3 Summary of Distribution Factors for Body Weight by Age and Gender ....... 108 Table 6.4 PDFs for Exposure Factors ............................................................................ 110 Table 6.5 Predicted First Highest Concentrations PDFs, peg/m3 (Lowest Scenario- 4PM/9l) ........................................................................................................ 116 Table 6.6 Predicted First Highest Concentrations in ug/m3 at R3 for Alternate Resin Binders. ............................................................................................... 1 18 Table 7.1 Listed toxicity data ......................................................................................... 123 Table 8.1 Risk Estimates from Benzene Inhalation at Receptor R3 Based on Shift Start Time .............................................................................................. 135 Table 8.2 HI Estimates from Phenol inhalation at Receptor R3 Based on Shift Start-Time ...................................................................................................... 136 Table 8.3 Comparison of Risk Estimates from Benzene inhalation at Receptor R3 for Women, Children, and Men ..................................................................... 137 Table 9.1 List of Resin Binders Ranked Based on Their Total Yearly Emissions of the Selected HAPs ..................................................................................... 148 Table 9.2 Combined Risk from Exposure to Multiple Chemicals ................................. 153 — xi light 2.1 ignil L-u ' "i 1 {If} pup ' 1.97333 l~ I "5!“: ”(m ‘4 im‘l» S 5 025.6 fries} $35.8 r‘ {anti :~ .. Naphthalene StackI . Naphthalene Stack 7 Naphthalene Stack Typical Layout ot Hypothetical strut .3 An example oftlt' (Bate, 1975;Scot1 General Formula 7 .,. . I (Bate. 19, 3; Scott Risk Assessment .‘ Desegregation of: Variable Exhaust ll Variable Exhaust ' Naphthalene Stack at 95% Control Et‘. a10°o Control Elli Coordinate S) stem .leteorological Dal. Average benzene is maximum emission 0 erage benzene is for 1991 uith 10°.oi Selected Receptors a\ cage be!- Ines “1th 1t ual aierage ber Production for 1hr 11PM m “ Setuitit'itc andalll I n ''''''''' 1 Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 3.1 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Figure 5.9 Figure 5.10 Figure 5.11 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 List of Figures Typical Layout of a Foundry ....................................................................... 6 Hypothetical structure containing ricinoleic acid in castor oil .................... 21 An example of the phenolic resin ( R) in a phenolic system (Bate, 1975; Scott, 1976) ........................................................................... 22 General Formula for Polyisocyanate for both systems (Bate, 1975; Scott, 1976) ........................................................................... 22 Risk Assessment Model for Pollution Prevention ...................................... 34 Desegregation of the Casting Process - Emissions Mass Balance ............. 46 Naphthalene Stack Concentrations vs. Capture Efficiency for Variable Exhaust Rates [m3/hr] with 95% Control ..................................... 50 Naphthalene Stack Concentrations vs. Capture Efficiency for Variable Exhaust Rates [m3/hr] with 0% Control ....................................... 51 Naphthalene Stack Concentrations vs. Exhaust Flow Rates at 95% Control Efficiency ........................................................................... 52 Naphthalene Stack Concentrations vs. Exhaust Flow Rates at 0% Control Efficiency ............................................................................. 53 Coordinate System showing Gaussian Distributions in the Horizontal and Vertical Directions ................................................... 63 Stack Configuration .................................................................................... 73 Receptor Location-Preliminary Grid ........................................................... 73 Average Benzene Concentrations in (pg/m3) for four years of Meteorological Data with Maximum Emission Rates .................................. 75 Average benzene isoconcentrations in (mg/m3) for 1991 with maximum emission rates ............................................................................. 77 Average benzene isoconcentrations in (mg/m3) for 1991 with 10% increased ....................................................................... 77 Selected Receptors for Sensitivity Analysis ................................................. 79 Annual average benzene profiles for full production for each line and all lines with 1991 meteorological data ................................................ 80 Annual average benzene concentrations in (pg/m3) for 16 hour production for three operating schedules: 7AM-11PM, 3PM-7AM, llPM-3PM .................................................................................................. 81 Sensitivity of average annual benzene concentrations in (ug/m3) to stack height with 15 feet increase .............................................. 84 Probability Distribution for Measured Emission Rates .............................. 85 Potential interactions among source term, environmental media, exposure media, and exposure routes that must be addressed in multimedia, multiple pathway, exposure assessment ................................. 89 Illustration of Exposure Pathways .............................................................. 90 Desegregation by exposure route and by exposure medium for the average daily dose to hazardous air pollutants of multimedia exposure ..... 99 PDF for Inhalation Rates in m3/hr ............................................................... 11 1 PDF for Body Weight ................................................................................. 111 xii Figure 6.6 Exposure Duration in years ......................................................................... 112 Figure 6.7 Exposure Time in hours/day ....................................................................... 112 Figure 6.8 Exposure Frequency in days/year ................................................................ 113 Figure 6.9 Receptor ID and Location ........................................................................... 115 Figure 8.1 Risk Distribution for Benzene Inhalation ................................................... 139 Figure 8.2 Cumulative Risk for Benzene from 1987 to 1991 ...................................... 141 Figure 8.3 Sensitivity Analysis Risk-Exposure Factors ............................................... 142 )ciii J" 1.1 Background 1'51 teessrnent has been used etr‘aits‘ater contaminated b} ititalj-ze the existing situatio titles. The major goal of tests that are more sx steni Tttt‘he casein the past. In a ..l ‘ - eigennat es ofall the Sig fine ’ ~ ' males and or exposure £11 attest"! teitluate eim'm‘I ‘ '1 pretention 16 Chapter 1 INTRODUCTION 1.1 Background Risk assessment has been used as part of the remediation process for cleaning soil and groundwater contaminated by uncontrolled releases of hazardous waste. It has been used to analyze the existing situation and evaluate the health risk of alternative clean-up scenarios. The major goal of the risk assessment is to help develop risk management decisions that are more systematic, more comprehensive and accountable than has often been the case in the past. In a generic sense, risk assessment is a systematic process for making estimates of all the significant risk factors that prevail over an entire range of failure modes and/or exposure scenarios due to the presence of some type of hazard (Asante-Duah 1993). It provides not only a quantitative but also a qualitative evaluation of the consequences arising from the hazard that could initiate a specific response, outcome, exposure and consequence. The process of risk assessment can establish case sPecific responses that will insure justifiable, defensible, and cost effective decisions. HYPOthetical cases and “what if” scenarios can be investigated via risk assessment models to evaluate the impact on human health of not only clean-up approaches but also pollution Prevention techniques. In particular, the risk assessment technique can be used artool to assess pollution p of hurts. to the industrial co ‘ . ,.- . tv ‘ inimi- 6 theolthe most significant .1; ‘ ' ‘5‘ afar, .. tart-rent of organic binde rerecorn licated cores and r at developed for other indus :eaze‘; 1976). Hence. little co are lot many years. in this i: rotate of the casting. As a e I en the cores. \shich a mister used to determine I s'rcot'erlooked. 0nl\ after itili‘djtll source. a maior e :fiit‘ “ a I tic clkiillCdlS alld i0 d’iic \ F A Taste" . search demonstrates "°1iitndttstn'tthe we r . L ‘ ail-Dir“ . chtoidentif} thel . s. Eli‘s t he» . as a tool to assess pollution prevention alternatives. The results of this technique will be of interest to the industrial community in facing the challenge of increasingly stringent regulations. One of the most significant advances in the foundry industry in the last thirty years is the development of organic binders. This class of binders made it possible to manufacture more complicated cores and more dimensionally accurate molds. Often the technology was developed for other industries and updated to metal casting applications (Scott and Feazel 1976). Hence, little consideration was given to the environmental impacts of their use. For many years, in this industry the focus was on how to obtain a better quality surface of the casting. As a consequence, several chemicals were added to the binders to strengthen the cores, which are the most fragile part of the molding assembly. Trial and error was used to determine the best ratios of mixing but for a long time toxic emissions were overlooked. Only after foundry, and in particular the casting process, was found to be a major source, a major effort was undertaken to identify and quantify the release of toxic chemicals and to determine their health impact. This research demonstrates the use of risk assessment as a pollution prevention tool. The foundry industry (the case of a steel foundry) has been selected as the example for testing an approach to identify the hazard, assess and estimate the human health risk associated with the exposure to the hazard, and evaluate some preventive steps to reduce the erssiorrs at the source. A n. pith for the risk assesses. References isnteDuh K. D. (1993 1. ll. Scottli'. D. and C. E. Chemistry. Birminghar emissions at the source. A major innovation in this research is to use a probabilistic approach for the risk assessment. References AsanteDuah, K. D. (1993). Hazardous Waste Risk Assessment. Boca Raton, Florida. Scott, W. D. and C. E. Feazel (1976). A Review of Organic Sand Binder Chemistry. Birmingham, Alabama, Southern Research Institute. ’1' 1.1 Foundry Oren iicugh each foundr} 39C air; of metal products. 5 bribes the foundn proce likable Iron Plant \thifih .115. manufactures and ii: mission parts for Gene £“t ' uttnsler Corporation. rerun quotas. l _. Al 2' la ‘ .‘ to. iron is produced iicu’he I turn of coke 1. ml.‘ {£10221 - ' utilise. Malleable rr :1. slim ”1de A utthll lumdi‘es l Chapter 2 Foundry Emissions 2.1 Foundry Overview Although each foundry accomplishes the same basic tasks as shown in Figure 2.1, the casting of metal products, specific materials, equipment, and processes vary. This chapter describes the foundry process implemented at the General Motors Powertrain Saginaw Malleable Iron Plant which is located in Saginaw, Michigan. The plant, established in 1917, manufactures and distributes finished automotive pieces such as pistons and transmission parts for General Motors Corporation as well as for Ford Motor Company and Chrysler Corporation. It operates 24 hours per day, 5 to 7 days per week to meet production quotas. Malleable iron is produced by the inoculation of the molten metal with carbon (which is added in the form of coke), and small amounts of silicon and magnesium during the melting phase. Malleable iron treatment also requires annealing of cooled pieces. Electric induction furnaces (EIFs) are used for melting at the Saginaw foundry. retestmp and are pumpe ritually to tuo drainage c ears the plant for reuse. l feetot‘foundry sand. Daily are million gallons of this chaired from recycled plant 1.1.1 Description of “at . .. - ' .r pant produces castings res ' ,. 11 rats materials handi liltinr ~ ' ' Neil casting luhich in I; 1.1; . tau. ntludes annealing e 5 if” i... y . it the mayor pollutants l .11 Raw Materials 11].: enter a sump and are pumped to a primary lagoon which drains first to a secondary lagoon and finally to two drainage ditches for settling. After settling is complete, the water then renters the plant for reuse. The primary pond is dredged daily of approximately 15 cubic feet of foundry sand. Daily water usage is approximately nine million gallons. Two to three million gallons of this water is purchased from the city. The remaining water is obtained from recycled plant water. 2.1.1 Description of Production Steps The plant produces castings from 100% recycled scrap. There are five major production steps: 1) raw materials handling and preparation; 2) mold and core production; 3) metal melting; 4) casting (which includes pouring, cooling and shakeout); and 5) finishing (which includes annealing, grinding, and shot blasting). A description of each production step and the major pollutants emitted follows. 2.1.2 Raw Materials Handling, Storage, and Preparation Handling operations include receiving, unloading, storing and conveying raw materials for both furnace charging and mold and core preparation. Raw materials are received in railroad cars, trucks and containers, then transferred by truck, loaders and conveyors to open piles. When needed, the raw materials are transferred from storage to process areas by similar means. .u.::..2 .. CI; .Illli- mh.Z:-UZ.Gt—O: l _ llllllll 50:..I 0:33:38: Ova-Gall: be Cine-Eb: £3)» 50663597. Tun-.30.) HleZV-Dvfl zo-htrUDA-Z- N .VOEO—Lflfitfio .uO‘ulz 0809 \ lOLh <40“ 5.- WV b|lhaa50=< ln-‘IB':U U '0:\: IOQUIQHI. a: lhnvfl—thOOnutouhityV LG 03¢. Duly-c.9243 Bloc-AV van-cs 0I=°L=\IIILM~ ussgusau< JO-.. guinea- HVZ.r~tV~ wry. : EGle Oil...“ .IU).uc-b-v align-Ilia“: oIE-IUIM-U: afinvcu'-I¢9AU=I cull-clutch- .bcgom a mo 5993 Boat? mm onE @2255 55m ”53...: 585 2% UZ—flmHZ—h . 80:82.5 +02 352:”: Eco—2:5— .52..— Ahoaashuw .5 Lou—E «mag—Mae =___ma2-._u_aE=._. .353— .830 9595; HDOHM<=W caesium Eu< Jam... ...u=..=.—..8.—< uzaméo :8: 1302:: £25 may—OD mam—MOD % mar—oz :95..— £935.33— fium 3.81.3.5 .2an new EHHW>W Qz-:_e.mo=m mat—OE GZ—AOOU 35:9: #07: 1 .52...— 3.8.3.5 HUfi< .—.Znflzmwm—WW< >,—.—nV-XAP—. why—:01 Eco: .FZm—Emmm—Wmlx “iv—31.2 XE —r :OCEJ—uzu \ Ems: CCU-31. wiCTEUm: $1.5 bEnSm :EoZE DnzahuQEUF .Emmuz wcmvg—Z Uooam USN COEUOLMQ 6:35 >«VOJOM—OHPHE 332 Sinai—t...— rdDEFJEwn— SM. flJSLDQOuL 33.69: moan—53000 9.: :0m wZC_ww_—ZH Xflvycwru «:o—lmmowm< in;— K mcoumbcoocoo 2559382 AH qmqoxumommzsfix \ m-Um_ WEE—co: :OEgon—mfiu \ mum A 86M coEmmEm NDZSVQ MWVEK wccmuh b.3233 :4\ mmmooml mUZ~W~DnUD¢ 373.1 .me; ‘Oaflz Air-i. 46 coca—am $22 maommmmfim - $8on mfiummu 2: mo notewouwomoa :q onE 55:5. .5 Sam .23 .92 a S... > 88.93 . Em __ 239.5 _. Em ”Ease.— Emw—flvh .QNZ A: 594 rwixa—R 93,0 ., . NZ A: MM.M 1 me.— + dgm .92 £5.— 82... 3&8.— 4 l... . .. .93. .92 e 3.. « m. me _ ocmfificamz n 32 we momm n Sow u Em 653 £me 50....qu m :0 9m wo:_m> =< wmmooml 02rm30n. 3.... 3.1 we; seem a. Since the goal is to dc control. Com and Q0... Cm. and the exhaus 1 53518 47 Since the goal is to determine the concentrations out of the stack after capture and control, Cout and Qout are converted, respectively, to the concentration out of the stack, Csmck, and the exhaust flow rate, Qex. Equation (4.1) is then: M dC i 1 j : cm x in ' Csac x ex ' Csan x Qsan 4'2 where Csmck concentration out of the stack of chemical, mg/m3 of air exhaust Qex = flow rate of exhaust air out of the stack, m3/unit time u = capture efficiency coefficient in % B = control system efficiency coefficient in % At steady state, it is assumed that no accumulation in the control volume of the chemical i is occurring, the change in concentration with respect to time is then zero. Equation (4.2) is reduced to: l . 0=C. . .[———J C, .. -C .. 4.3 m an [1(1-fl) sack ch sand Qsand ( ) Solving for the concentration of chemical i out of the stack, Cstack is then: C _ Cin Qin 'Csand Qsand stack _ (1/ y-(l-fl)) Qex (4-4) 4.4 Mass Balance Results and Discussions Naphthalene was selected for the initial trial calculations as a quick test of the mass balance approach. It has chosen as an example of a process where major pollutants do not react but partiallj assumed to be emitti lomr R pushed by attire preparation st iii-t eraporated dtn Filling step. Since thaction oi the chi I115’i‘trsal treatment mphMClli‘ lS assi he binder system to the material sat} ditto part I and too of binder to s tidal concentratic uhoming conside Mutated to be 64 4.1;). ,l. 17“.. , 48 not react but partially evaporate at the sand preparation step. The remaining part is assumed to be emitted at the pouring step due to the contact with the hot melted metal. Form R provided by the American Foundrymen Society shows no reaction of naphthalene at the preparation step (AF S and Association 1995). It also suggests that this chemical is 50% evaporated during sand preparation. The other 50% is then in the mold at the pouring step. Since the sand can be disposed outside of Subtitle C, it is also assumed that a fraction of the chemical is found in the wasted sand at concentrations below the universal treatment standards for land disposal (for calculations, the upper limit for naphthalene is assumed to be 5.6 mg/kg). The binder system selected for study is a phenolic urethane known as Isocure. According to the material safety data sheet, it is the combination of a two part resin. A typical ratio of 52% part I and 48% part II by weight of the phenolic urethane was adopted. A typical ratio of binder to sand between 1% and 2% by weight was assumed to determine the initial concentrations of naphthalene in molded sand. Based on the data provided and the upcoming considerations, the initial concentration of naphthalene in the sand was estimated to be 641.3 mg/kg of sand in the core before pouring (see detailed data in Table 4.1). A sand-use-rate for production of cores at the Saginaw Malleable Iron foundry was selected to study the effect of selected capture efficiencies, exhaust flow rates and environmental controls on the concentrations of naphthalene released to the atmosphere. The naphthalene co flow rates are prese control efficiencies control has been al: illustrated in Figure one order ofmagni from 15,000 to 501'. represented in Ap Table 4. 49 The naphthalene concentrations as a function of capture efficiency for different exhaust flow rates are presented in Figure 4.2 and Figure 4.3, respectively for 95% and 0% control efficiencies. The concentration of this chemical before and after environmental control has been also examined to account for the total emissions. The results are illustrated in Figures 4.4 and 4.5. The mass balance calculations showed a reduction of one order of magnitude of the concentration as a result of an increase of the exhaust rate from 25,000 to 500,000 ft3/hour (see sample results in Table 4.2). Detailed calculations are presented in Appendix A. Table 4.1 Assumptions Considered in the Mass Balance Calculations Concentration of naphthalene in phenolic urethane 10.0% Use level or percent ratio to sand 1.28% Evaporation fraction before pouring 50.0% Reaction rate 0.0% Metal poured in tons/hr 112 Core sand added in lb./hr 7329 Resin added in lb./hr 94 Universal treatment standard for naphthalene in mg/kg sand [FR, 1994 #120] 5.6 50 3.28 :3 a? ESE was: “mafim asses, no.“ GEE—bu 839$ .m> mcoumbcoocou xofim one—mfiammz NV 853m x 5:235 23nd one no no 3 no mo+mom.w I mo+mm~.v I mo+MmmN I mo+wh~. P I 3&3... I 0.0 l . oo+wood . Pomood i oo+moo. F i oo+wom. F e oo+moo.~ -. oo+mom.~ [cumin] suogmuaouoa euemnudeu 51 35:8 so as, ESE mama 535m afifi> Sm Seesaw 23qu .m> 3235:8200 xofim 2835s.? Z new oBmE _.ll l i ll- w s .8205 23.8 ‘ 8.0 ad 9o 3 ed no _ . - 8+m8.o _ I _ N ,, _ a .. .- 8+mo3 w w ti : m omens I u w 8&3: m m .- 3+moo.~ m Shana I m m m .1 ... u 8&5. F I I a -- . . v 5&8 m m Emma v I a w l s m -- . m. 5&8 4 m w. wo+moo.m l t t 52 zoqomoEm 35:00 $3 8 88m 30E $3“an .m> 2235:0080 xofim 8035332 v6 oSwE H.525” E. .80 mo+mom.w mo+mm~.¢ mo+wmmN mo+m-€ ¢o+me¢ I oo+mood 1r vo-woo.m 11 oo+wooé l I oo+mom. w [euufiw] name L I oo+moo.~ oo+mom.N 53 xocomomcm 3.280 o\oo 8 88m 32m “maxim .m> 30388850 xofim ecu—mfisnmz 0v 03E TEMEH x00 mo+momd mo+mm~é mo+MmmN mo+mn~é 3+mm~.v I - a oo+mood . 1y vo+wooé 0 8 41 Fo+wood m X. m. 6 : Fo+moo.m W al.... % Po+mooé . Fo+moo.m 54 8+mon.~ o mad mo+mom.m mo+wmmzm omood mo+mmm.m mowwmrvod 99mg... mod mad mo+momd 00$.de omood oo+mwm.m mowmmwvod ec+mmhv o mmd vo+mev mo+mwm.m omood oo+m~m.m mowmmrvmd oo+mcn.~ mod mad vo+mm~é ©o+wmm.m omood oo+MNm.m mommmvvod mEEE 62:8 o\o 0538 .x. 50:88 50533 m team he 99: Soéucmm m vcmm ho 99: £58 a a .60 2.30 :80 :6 :8 ocofifinamz 8m $33M 8.83m mmmz N6 2an 4.5Compari5( WMWMMM operations for elex'e den'Vcd in pounds 0 These were obtaine (axerage measurec _.\ ((‘(Sand 10 met From equation (4, 5, “115 Equation gix'eg Control. For naphtl‘ 2x10fib.1b.ofbi The mass balance C me Same percentag mgnf. Ms conce %xiMIely- 708 €03.an purpos< ample, An em. 18$ {Confirm MW of t 55 4.5 Comparison of Mass Balance and Emission Factors Mosher provided an easy way to calculate emissions of selected HAPs from molding operations for eleven different binder systems (Mosher 1994). Emission factors were derived in pounds of chemical released to air per pound of index or resin binder used. These were obtained based on the following formula: (average measured air concentration for a chemical) * (air volume sample) (((sand to metal ratio) * (metal in mold) * (resin in mold)) * 0.95) (4.5) From equation (4.5), one may note that a 95% capture efficiency was used by Mosher. This equation gives the total emission of the chemical before capture and environmental control. For naphthalene, with the same binder, Mosher obtained an emission factor of 22x 1 0'6 lb./lb. of binder used (Mosher 1994). The mass balance calculation, under the same conditions of 0% control efficiency using the same percentage of capture (95%), generated a concentration out of the stack of 47.3 “18/1113. This concentration is calculated for an exhaust system rate (42,500 m3/hour) approximately 708 times bigger than the sampling rate used by Mosher (60 m3/hour). For comparison purposes, this concentration was converted to fit the conditions of the study e“ample. An emission factor can be then determined using the following formula: WM the chemical out of the stack) * (exhaust flow rate per hour) (resin use rate in mold per hour) * (708) (4.6) .t naphthalene em tllllCl’S from \losl of assumptions in llosher used one tSRll to develop l the mass balance. based on regulate At this preliminar hetelationshipsl 1‘ ’he lnPUI mode “Concern? hone firmmpoSlllOn Q PhiUOllc Urethane wmlfinem, Two Solh ‘ ' ml If] [he me l [A Md 0n the m2 ftzl la ( muted t0 resnlt'e 56 A naphthalene emission factor of 66x10"6 lb./lb. of resin was obtained. This estimate differs from Mosher’s by a factor of three. It is not unreasonable considering the number of assumptions involved in both Mosher’s estimate and the mass balance. For example, Mosher used one half of the concentration reported by the Southern Research Institute (SRI) to develop his emission factor because SRI reported data at the detection limit. In the mass balance, however, the selection of the concentration remaining in the sand was based on regulatory standards rather than actual field data. At this preliminary stage, it appears that the mass balance approach is sufficient to show the relationships between the variables of concern and that with calibration it can be used as the input module for the risk assessment. It also has value in that pollution prevention alternatives may be examined as a function of changes in resin composition. Of concern, however, is the production of compounds not explicitly identified as part of the composition of input chemical. For example, benzene appears as an emission from phenolic urethane resin but is not listed on the Material Safety Data Sheet as a component. Two explanations are possible. One is that benzene was an impurity or solvent in the formulations tested by SRI that no longer exists and, therefore, is not reported on the material safety data sheet, MSDS, used for these calculations. Another explanation is that benzene is a reaction product of the casting process. More research is required to resolve this question. References AWE-“9m Arbor-l its (1973" "E (.17. us and C- I“ 5 tumdr .hhnlllh‘J hleufl‘ Amerl‘ Bnpund.Rul Exhau Cunetli.B Pollut 28(5): tueuRee‘iS 48001 ltR.Xt.Ke Chen hcheHnOIL Bune hlusher. G. i Shah [SEPAtl9 INC.7 57 References ACGIH. (1974). Industrial Ventillation - A Manual of Recommended Practice. Ann Arbor, MI., Edwards Brothers Incorporated. AF 8 (1972). “Exhaust Systems and Hood Design.” Foundry Environmental Control 1(4): 1 -1 7. AF S and C. I. S. Association (1995). FORM R - Reporting of Binder Chemicals Used in Foundries. Des Plaines,IL, American F oundrymen's Association. Allen, G. R., J. J. Archibald, et al. (1991). Hazardous Air Pollutants a Challenge to the Metal Casting Industry. 95th AF S Casting Congress, Birmingham, Alabama, American Foundrymen's Society Inc. Belglund, R. (1995). “Effective Ventilation During Plating - Capture Efficiency for Rim Exhausts.” MetaL Finishing 93: 79-83. Cooper, H. B. and W. J. Green (1978). “Energy Consumption Requirements for Air Pollution Control Equipment at an Iron Foundry.” Control Technology News 28(5): 545-548. FederalRegister (1994). “Rules and Regulations.” Federal Register 59(180): 47987- 48003. Li, R., M. Karell, et a1. (1995). “Develop A Plantwide Air Emissions Inventory.” Chemical Engineering Progress: 96-103. McDermott, H. J. (1985). Handbook of Ventillation for Contaminent control. Boston, Butterworth. Mosher, G. E. (1994). “Calculating Emission Factors for Pouring, Cooling and Shakeout.” Modern Casting: 28-31. U-S.EPA (1991). Compilation of Air Pollutant Emission Factors. Research Triangle Park, NC, US. EPA. [I 5.1 lntroductir llahematieal mode lithe atmosphere it Seigneur in 1993 (V united into the air t and removal mechar atmosphere. The be riseand buoyancy-ii ltitular etTects. L l tune towards the 2 Moon and Seig 135iW011 two lere. e a ”more rt’fined pf "i' . . hints of interest 1 «ahenatieal model Chapter 5 Transport Model 5.1 Introduction to Dispersion Modeling Mathematical models for the transport, dispersion, transformation and fate of substances in the atmosphere for use in health risk assessment were reviewed by Venkatram and Seigneur in 1993 (V enkatram and Seigneur 1993). The transport and fate of substances emitted into the air depend on source characteristics, meteorology, atmospheric chemistry and removal mechanisms. Source characteristics determine the initial dispersion in the atmosphere. The buoyancy associated with high-temperature emissions leads to plume rise and buoyancy-induced spreading. Momentum associated with exit gas velocity leads to similar effects. Large buildings near the source create wakes that drive the emitted plume towards the ground at locations near the source. Venkatram and Seigneur recommended an overall approach to health risk assessment that is based on two levels of analysis. The level 1 analysis provides a screening assessment, while a more refined assessment can be conducted for the substances and exposure pathways of interest using a level 2 analysis. A level 1 model was defined to be a mathematical model, that is applicable to any site, uses available data, and is acceptable 58 l0 59 to regulatory agencies for specific applications. A level 2 model was defined to be a mathematical model, that may take into account specific features of the local environment and, therefore, may not be applicable to all sites, may require the collection of additional site-specific and/or chemical specific data, and is acceptable to the scientific community but is not necessarily a model recommended by regulatory agencies (V enkatram and Seigneur 1993). 5.2 Selection of the Dispersion Model Because of the complex nature of the release and movement of hazardous air pollutants, a wide variety of available models have been proposed. The choice of the appropriate model for a specific situation depends on many factors, including user familiarity with the model, availability of model input data, desired precision of the estimate, and acceptability of the model by regulatory agencies and the scientific community. Venkatram and Seigneur recommend the use of the EPA’s Industrial Source Complex Version 2 (ISC2) for level 1 analysis. This model has two versions. The short-term version, ISCST2, can estimate concentrations averaged over one hour. The long-term version, ISCLT2, estimates annual averages using a statistical summary of meteorological data. This allows for short computation periods on modern microcomputers. The long- term version is more appropriate than the short-term for chronic risk assessment. The long-term version uses annual frequencies of meteorological variables whereas the short- term version uses sequential hourly meteorological data. Differences in concentrations (up to 30 percent) 1 resolution of the m in although mans loth urban and no literature surte of regulator)” G the results of fiel he “Cold heath llodel Detelopr. shorted that the Tim‘s“. The c cofi‘p-arisons of 3st on this n Iolel llSC3) “ CanbelBedloE urban indlBtri to L Imp-3C1 ofb la». 60 (up to 30 percent) may occur between the two versions because of the difference in resolution of the meteorological data. The ISC model is applicable to distances up to 20 km although many studies extend this to 50 km from the source. It includes options for both urban and rural environments, that differ by their dispersion (Gratt and Levin 1995). A literature survey conducted by Gratt and Levin in 1995 of studies comparing the results of “regulatory” Gaussian plume models, such as ISC2 (the current version is ISC3), with the results of field tracer tests designed to evaluate those and other models (for instance the “Cold Weather Plume Study” by Vaughn in 1987 and the “Green River Air Quality Model Development: VALMET- A Valley Air Pollution Model” by Whiteman in 1985), showed that the Gaussian models have limitations, but are quite good for predictive purposes. The comparison was limited due to temporal and spatial variations. Recent comparisons of concentrations generated by current models with field measurements showed an agreement within a few percent (Gratt and Levin 1995). Based on this literature review, the revised version of the EPA Industrial Source Complex model (ISC3) was selected for this work. It is a steady state Gaussian plume model that can be used to assess pollutant concentrations from a wide variety of sources associated with an industrial source complex. The impact of both short ( ISCST3) and long (ISCLT3) term modeling on the ground level concentrations used for evaluation of risks due to acute, and chronic exposure were considered. It to particular study 1 horttenn mode such as: settling mint and Volurr point sources; 3 areas, flat and c averaging time: 53 Role 0] ‘lmOSpheric t in 5' lhel' are :oneemmi 0115 is i“llllillllgg & Wing until i Tang 10 rep W Speed. 3 film-tonal I honey“ hig direction and 61 considered. It was decided that, the short term version was more appropriate in this particular study because of the lack of meteorological data and the highr precision of the short term model. This model in its short version considers site-specific characteristics such as: settling and dry deposition of particles; downwash due to nearby buildings; area, point and volume sources; plume rise as a function of the downwind distance; multiple point sources; and limited terrain adjustment. It is appropriate for both rural and urban areas, flat and complex terrain, transport distances smaller than 50 km, different averaging times fiom one-hour to a year, and for continuous toxic air releases. 5.3 Role of Atmospheric Turbulence in Air Pollution Atmospheric turbulence is the mechanism that dilutes and mixes pollutants with ambient air as they are transported by the wind. It plays a major role in determining ground level concentrations. Turbulence is produced mechanically by air flowing over obstacles such as buildings and hills, and thermally (process of convection) by warmer air rising and cooling until it reaches the temperature of its surroundings and conversely, by cooler air sinking to replace warm air. There are three important factors influencing turbulence: wind speed, atmospheric stability and mixing height. Concentration is inversely proportional to wind speed, i.e., the higher the wind speed the lower the concentration. However, high wind speeds are often associated with persistence in the downwind direction and can result in high ground level concentrations. During unstable conditions (e.g., stability class A) the plume from a tall stack will be mixed to ground level relatively close to the source, resulting in high short term concentrations. These concentrations can lesignifieantly in mixing height. St concentrations du conjunction with dounnard sooner conditions. (e.g.. honzontal disper main close to tl ornament; decreases. S“hearer- little qufi 011 j ttttptor b}. {he C For av _ dead-l Stan anossnind dig. ~u altonodb. 62 be significantly increased when the unstable conditions occur in conjunction with a low mixing height. Some plumes will have their greatest impact on ground level concentrations during near neutral conditions (e.g., stability class D) and ofien occur in conjunction with high wind speeds. The high wind speed causes the plume to bend downward sooner and not reach as great a height as under a low wind speed. For stable conditions, (e.g., stability class F) the plume’s vertical spread is severely restricted and horizontal dispersion is also reduced. Pollutants released during very stable conditions remain close to the ground. Finally, mixing height determines the volume of air available for pollutant dispersal; as the mixing height increases, the ground level concentration decreases. 5.4 Theoretical Background The ISC3 short term model for point source emissions uses the steady-state Gaussian plume equation for a continuous elevated source. The hourly concentrations for each source at each receptor are summed to obtain the total concentration produced at each receptor by the combined source emissions (U.S.EPA 1995). For a steady state Gaussian plume, the hourly concentration at downwind distance, x, and a crosswind distance, y, (Figure 5 .1) as suggested by Pasquill (1961) (F.Pasquill 1962), and modified by Gifford (1961) is given by Equation 5.1. All J Fit 63 ; Z / p Q Q x (x. -v. Z) (x. 0. 0) ' (x. -v. 0) Figure 5.1. Coordinate System showing Gaussian Distributions in the Horizontal and Vertical Directions H=Q Axle! ) 271' there his equation iS ' that is no thrills“ continuous file“ tween the sour for his studl'- ll l on; enough 00m he etleet of stab Structure of the at oer uhieh the co ll oer l967). 64 2 2 2 x(x,y,z;H)=—Q———ex —05[—}-’—] - ex 45(‘2—H] +ex 4562441) (5.1) 27m30'y0', 0', 0'2 0, Where I = concentration of gas or aerosols (particles less than 20 pm in diameter) at x, y, z from a continuous source with an effective height, H, jag/m3 Q = pollutant emission rate, g/sec K = a scaling coefficient to convert calculated concentrations to desired units (default value of 1x 106 for Q in g/s and concentration in pig/m3) V = vertical term accounts for the vertical distribution of the Gaussian plume. D = decay term, accounts for pollution removal by physical or chemical processes 0,, dz = standard deviation of lateral and vertical concentration distribution, m u, = mean wind speed, m/s, at release height H = effective emission height, m This equation is valid where diffusion in the direction of the plume travel is neglected, that is no diffusion occurs in the x direction (see Figure 5.1). This is the case of continuous release or when at least the duration of release is greater than the travel time between the source and the receptors of interest (Turner 1967). This is exactly the case for this study. The release is continuous for sixteen hours, and the duration of release is long enough compared to the travel time. The effect of stability is considered in the values of 0y, 0;. These vary with the turbulent Structure of the atmosphere, height above the surface, surface roughness, sampling time, over which the concentration is to be estimated, wind speed, and distance from the source (Turner 1967), lhe effective stacl physical stack heig stack The ditlere hased on experimt true value (Turner Fat ON 00 x lithe ground let' Zlhllzfl‘) Vs ~ it the eenterline ( ”100” 65 The effective stack height, H, is used to account for the sum of the plume rise and the physical stack height, h. Rarely will this height correspond to the physical height of the stack. The difference between those heights, AH, as developed in Holland’s equation, is based on experimental data. It provides a slight safety factor since it underestimates the true value (Turner 1967). Holland’s equation is: Asz‘ d-(l.5+2.68x10'3p-L—TL-d] (5.2) u 5 Ta Where AH = rise of the plume above the stack, m v, = stack gas exit velocity, m sec’l u, = wind speed, m sec'l d = inside stack diameter, m p = atmospheric pressure, mb T, = stack gas temperature, °K T. = air temperature, °K 2.68 x 10'3 = constant, mb'l m‘I At the ground level (2 = 0), the diffusion equation (5.1) is simplified to: 2 2 l(x,y,O;H)=—QK—V—Q—-exp —0.5[ y] ~exp[—0.5[—Ij—) ] (5.3) 27z'u30'y0'z a 0', y At the centerline of the plume (y = 0), a further simplification results: 2 nusa ya I Z 2 1(x,0,0;H)= QKVD “pf-0.56311) ] (5-4) hmgmuul gomdhtdi 10.0.0 lounhnti, it sound 1 lUShO“€\Q fmhoongb hddhg.b( tho; Th ISC300de Digsbuild 5. (ll Don is)! ,2; kdalx“ dO‘W 5‘)- IN‘ lht EPA \t‘: 66 For a ground-level source without effective plume rise (H = 0), the concentration at the ground level is finally: QKVD z(x,0,0;0) = 27ru30' ya (5.5) 2 Equation (5.3) is used in this study since the region of Saginaw is flat. Concentrations at the ground level will be considered. It is however, necessary for this study to test the sources for possible downwash of the emissions by the nearby buildings. Since all the stacks are on the roof of the main building, both the main and the administration buildings will have potential downwash effects. This will be accounted for by the Building Profile Input Program (BPIP). The ISC3 code will then utilize BPIP to decide if the plume at any time will be influenced by these buildings. 5.5 Downwash effects and BPIP If the plume is caught in the turbulent wake of the stack or a building in the vicinity of the stack, the effluent will be mixed rapidly downward toward the ground. This effect is called downwash. Different building downwash models were investigated and evaluated by Paine in 1996 (Paine 1996). The Building Profile Input Program (BPIP) provided by the EPA was selected for use in the calculation of the width and the height of influence 61'5“. implemented e) lhe BPIP tBuil projected build Practice) 513Ck to be manual l.‘ henceforth ider Bulletin Board GEP and is des from Structures hailing height Which stacks at The Second par liierent BH ar calculations on lttnatted for El isset by BPIP 1 horror 5,1 be 67 influence every 10 degrees for 360 degrees. This model has the advantage of being implemented exclusively for ISC3, which led to its selection. The BPIP (Building Profile Input Program) is designed to calculate building heights and projected building widths based on an implementation of GEP (Good Engineering Practice) Stack Height and building downwash guidance. The output data from BPIP has to be manually edited into the appropriate ISC2 input runstream. This program is henceforth identified by its name and a Julian date; i.g., BPIP (dated 93320) in the EPA’s Bulletin Board. The BPIP is divided into two parts. The first part is based solely on the GEP and is designed to determine whether or not a stack is being subject to wake effects from structures. Several values are determined such as the GEP stack height, GEP related building height (BH) and the projected building width (PBW). Flags are set to indicate which stacks are being affected by which structure wake. The second part calculates building downwash BH’s and PBW’s which can lead to different BH and PBW values than those calculated for GEP. This part performs the calculations only if a stack is being influenced by structure wake effects. Output is formatted for editing either into the ISC3 input runstream (U .S.EPA 1995) or, if the flag is set by BPIP to indicate that downwash is to be considered, then ISC-3 modifies Equation 5.1 by adjusting 0y. 5.5.11an The structure dhtllltl‘ash gt building who nultitiered b inthis Stud}. administrator Sills can b dlhlluind f. designed to 3 “115 is com; [Hm data to ill) on .3 car. 68 rput Preparation ture-source relationships must be assessed with respect to the GEP and building h guidance. Two methods are available. The first way is as a multitiered where each tier is treated as a stand-alone structure. The alternative is as a d building with two towers that may be combined. The first method was used .dy, since only two buildings were considered: the main building, and the ation building next to it. n be on top of roofs and also can be more than 5 times the building length, L, d from an upwind roof edge. The main algorithms in the BPIP were not to process these stacks if they are further than 5L downwind from a roof edge. intrary to guidance. An algorithm was written to automatically detect when a n a roof. In our case all stacks are on top of the main building roof. 1 to the BPIP uses normal building dimensions and orientation in all cases. The I calculate 36 pairs of BH and PBW values for input to the ISC3 model for each ’ processes input data on a structure by structure basis. In the case study, two were identified by a name (maximum of 8 alphanumeric characters) and base . The number of tiers and tier heights for each structure was determined along lumber of comers for each tier. For details on the file structure and program e Appendix B. Sillispe lhe lndustriz lfoPA l‘. the source. modelutg, [' 5.6.1 So he data it Mutant ' l DQC lot} molding 69 5.6 Dispersion Modeling Implementation - Simulation Strategy The Industrial Source Complex (ISC3) dispersion model in the short term version (U .S.EPA 1995) was implemented for a two kilometer by two kilometer grid centered at the source. The following is a discussion of the data needed to perform the dispersion modeling, the sources of these data and assumptions used in implementing the model. 5.6.1 Source Information The data were gathered on site at the facility. A tour of the entire plant and the different manufacturing processes was made to compile the following information: 0 Map of the plant; 0 Identification of stacks by source (e.g. mold, core, etc.); 0 Number and location of stacks; 0 Height of buildings and ground elevation; 0 Stack internal diameters; 0 Stack heights; 0 Stack temperatures; 0 Stack exit velocities; 0 Mass emission rates (g/s) by stack; and 0 Control equipment for each stack. Due t0 the diverse types of pieces produced, three lines are in production to meet different molding needs and capacities. Line 1 produces: gears, yokes, and pistons; Line 2 produces: housings and line 3 produces: connecting rods. These lines can function SirnultEureously or individually depending on the furnaces’ performance, the clients’ demand and.< has a specific hinders. All sources 0 lines in the t] mop of Star do:ignated i. Ollie tastir meted by steels f0r p call} Step ' items. at htlghp lllll ”Lites CO .:t- . ‘ {Emil lS] 70 and, of course, the specifications of the metal produced. As expected, each line :cific mold and core make-up and very often requires different kinds of resin :es of emissions are stacks collecting the fiunes from the three casting process he foundry elected as the case study. They are assumed to be point sources. Each "stacks is collecting emissions from one particular line. These stacks are also ed to collect separately emissions from the pouring, cooling, and shakeout steps sting process at each line. The line with the highest production rate (Line 1) is by six stacks (1 for pouring, 2 for cooling, and 3 for shakeout). Line 2 has two tr pouring, one for cooling, and one for shakeout. And, Line 3 has one stack for ). These stacks are equipped with different kinds of capture systems, control and exhaust systems. They also have different physical properties such as mer diameter, and elevation. Table 5.1 is a compilation of the data for the :onsidered in this research. A mapping of their location with respect to the s illustrated in Figure 5.2. lelection of Receptors rary 50 m x 50 m grid was built around the facility to screen the region on a two ilometer square centered at the plant. This primary grid (Figure 5.3) was used to the pattern of concentration variability at the ground level and refine a more = set of receptors for investigation in the exposure assessment. 5.6.3 Mete hleteorologic olEntironme used in the si niomtation 5.6.4 Em limited do his dliiel’m all mus h it fest d3! I“"0 orders rain ace he bee; titration i 71 5.6.3 Meteorological Data Meteorological files for the Saginaw region were acquired from the Michigan Department of Environmental Quality (DEQ). Data for the five years between 1987 and 1991 were used in the simulations. Only an electronic copy of these files was accessible. Detailed information is available in the ISC-3 output Appendix C. 5.6.4 Emission Rates -Variability Limited data are available to characterize foundry emission rates due to the complexity of the different processes involved in the manufacturing process. Laboratory measurements and mass balance calculations with emission factors are among the methods used to develop the few data available. Data disagreement is, however, common and differences of one and two orders of magnitude are typical. Obviously, rigorous stack sampling is the only way to obtain accurate measurements of the real emissions but very few measurements have been made because of the cost. The selection of a set of data that best represents the real situation is a major challenge. Traditionally, a point value, most likely the maximum emission rate, has been used in determining the atmospheric concentrations at the receptor to be used in exposure assessment. The EPA base estimate line for exposure concentrations assumes the individual is exposed to the 95th percentile value over their lifetime. Historically, the only variability introduced in the risk evaluation is the meteorological data. In the casting process, toxic emissions are highly variable. Scott, James and Bates in their study (Scott, James et al. 1976) observed changes over time (30 to 40 min.) of these emissions corresponding to two peaks. lQVC were K .\ wvcmmku‘ 0‘ NW «00» lilo count 1“ ltr...lilt\ VFH.\2\ NFNCP\ l f\ <<<<<<< h a q: (I 1 . ll ’...\ ) Il‘ I ‘ |...llt.. il. l l ll . it. (Ch; Y (vhf/s.‘ (1 Il <..f\lf\f\ t. ti|U\-.nil°um x . llmeuuw. :udufih luv-nay. Unvahunv~mvvr u .Vi h0~h~..~,~. 72 8.: :0: 8.8 8.: 00088.: :8 6880: 0.808 8.: t: 8.8 8.: 0888.0 :9 «0&8: 8&8: 8.: 00.0: 8.8 8.8 8088.0 :0 8.808: 8.0008 :00 8.: 8.8 8.: 0000800 :2 0.808: 0&8: 8.: :8: :08 8.: 80888 8.0: 8.808: :808 8.: 8.8 :08 8.8 8088.0 00.: 8.808: 8.808 8.0 8.04 :08 8.8 0882.0 88 «.808: 888 8.: 80: :08 8.0: 08080.: 8.8 8.808: N808 0.2958 258028 08.88 8.: 8.0: :08 8.0: 08080.: 8.8 8.088: 0808 0.98ch 958028 8808 8.: 8.: :08 0:: 08080.: 8.8 8.808: 0.888 0.9088 :50928 8058 50.: :8: 8.8 8.0: 080808 00.: 0.808: «.808 952 902308 8088 8.: 8.8 8.8 8.8 08088.0 8.: 8.088: 0.808 802 82:08 808%. 8.: 8.8 :08 :8 80880 8.: 5088: 5:08 0002 52.80.. 888“. E 2E E 220 money. E E E E50 Eoo_o> “:20: unauzxm :O_ww_Em .>o_m > X 35:00 ho OQPF coaucgmfln O— 80 8.00: 0.08 0008 00088.: 00.8 «.8808 88:08 .2808 saomggooogom 28.58 82:08 00888 00.0 00.00: 0.08 0008 0888.0 00.8 0.0888 3:08 5828 53800.35.00888.58 $08028 8508 00.0 00.8 0.08 0008 8088.0 00.8 0.8808 0858 82m 8800 0.28 808 22: :28”. 00.8 0088 00.8 0008 8880.0 00.8 0.8808 :.::08 8.62.8 anm8.3288888: «Scuxém 888". 8.0 8.8: 00.8: 0008 0888.8 00.8 «.8308 8:08 :08 02:800__80.._§ 82:08 8808 00.0 00.8 00.8: 0008 888:0 8.8 «.8808 3808 05m 0.288800 Ems. ~88 22.2 088“. 88 8.8 00.8: 0008 00808.0 00.: 8.8808 08:08 mimdceaoajsfi 82.82 808m“. 00.0 00.00: 00.8: 0080 08080.: 00.: 08:88 0.8008 8888 25888 8808 00.0 8.00: 00.8: 088 0888.: 8.2 3888 8.8008 «5888 :Someziw 880m“. 8.». 00.00: 00.8: 0008 0888.: 00.: 8:88 0.8008 088009.08 508028 8088 8.8 .0002 00.8 0008 08080.”. 00.8 00:88 88008 30010280888008 «62:08 5.088 8.8 00.00: 00.8 08: 08080.0 8.8 3:008 @0808 3:02 250 02:08:80 £02.68 808": 00... 00.8 8.8 088 8088.0 00.8 8.8808 4.858 0.5;. 888.05. 8 62.82 8888 .8. E .8. Eu 88¢ 08.. .8. .8. 9 E20 .052. 20.0: 02.25 00.8.5 sum > x 8002; 02.80.25 0.08m 8Q 088 02028 3 038 \ NH nu a.” can. _ nu-v—N K 3.1-N unvmvuunuualfisz: EQL< ~ s:...~ 73 0:0 858:2 mama...”— méouuooq “838% m.m 23E Ba x .5." "033.2... 8% .83888 8.8 N N on: u on: n 28E WMMU thermore. difierem line: CUUSIEHI {2116 5.7 DiSpe ISC3- Was US: Variation, {0 ‘0 Slack heig inthe exam; 5'11 lde Th6 first Sin We“ n1min pre""i'Oush'. 74 The first occurs at the pouring step and a less important peak is found at the mold break-up. Furthermore, the process is cyclic and depends on the production rate which varies for different lines in the foundry. It is then unrealistic to assume that the facility is emitting a constant rate of air toxics for 24 hours per day 365 days a year. 5.7 Dispersion Modeling Simulation-Results ISC3 was used to identify critical exposure zones, to determine the sensitivity to emission variation, to examine the influence of production change, and to estimate the sensitivity to stack height increase. To firlfill these goals, the input file was implemented as shown in the example in Appendix D. The results are discussed in the following paragraphs. 5.7.1 Identification of Critical Zones The first simulation was run with the maximum production rate assuming all three lines were running for 24 hours per day for 5 different years from 1987 to 1991. As mentioned previously, site specific meteorological data including ambient temperature, wind speed and direction, atmospheric stability and mixing height on an hourly basis for the region were acquired from the Michigan Department of Environmental Quality (see sample in Appendix C). This screening step was undertaken to identify critical zones of exposure. As can be seen in Figure 5.4 for benzene emissions, three critical regions with three Peaks are observed and are persistent over the five years of the meteorological information. Results for all years from 1987 to 1991 are illustrated graphically in Appendix E. ........ ........ ----- ........ ....... mmmrnmE\—w3 C. mcomewguchCOU @QNLQs’NuLIVN GCQNCQW kmmhumE\D3 Cm mcozmkgthCDU QMWKQbfluLCVN QCQNCQm 75 88M c2848”!— EinaE firs San 308280802 mo 88» .58 H8 $89.: 5 3085:8000 ozoncom omfio>< ed 253"“ 83883586 - one- “Systocéocfimi 8:88-80an5 08:- 89- “Eustocéucfimfi ODO— E (gm/5n) ouoo ‘— ‘— ommecE? E 8028:0808 mmm.m>w.Evm mcmwcmm mmmeEE: 5 828508000 wmegoévw 9.35m HEW 83.3886 89- 89- “Ewctocéocfimfi “$838005me 89- 89- 8:20:80:ng .l D 89 E (gwffin) ouoo ‘— v- .u. 89.95? E 20:2ch:00 mmmamcaazvm mcmncmm $9853: 5 22825300 $290..va 2.35m 5.7.2 56! To better \' are illmtrai observed. sources \ta Bl’fompar names 1 “Mills dl. milfdses II 5.73 In! Co A Sensith-[l Piédicted at me“ Mr Nlutam as W in the I mission lal: M .. ‘ ”145% “t 76 5.7.2 Sensitivity of Area of Exposure to Emission Increase To better visualize the area impacted by a particular concentration, isoconcentration lines are illustrated in Figure 5.5, showing where the 3 zones mentioned previously are observed. The same scenario with an increase of 10% for the emission rates of all point sources was run for sensitivity analysis (see Figure 5.6). By comparing Figure 5.5 and 5.6, one can see that not only the exposure concentration increases 10% as expected but also that the area of influence for a given concentration expands dramatically. For example, the area encompassed by the 0.6 rig/m3 contour increases 100% in comparison to its original size. 5.7.3 Influence of Production Variation on Exposure Concentrations A sensitivity analysis was conducted to study the effect of production rate on the predicted atmospheric concentration. Three lines implemented in the manufacturing process were used to produce different pieces of cast. Benzene was selected as the model pollutant as discussed in Chapter 3 Section 3.4 based on its toxicity and predominant level in the measured data. Benzene was also the model pollutant as a carcinogen. The emission rates ranged between 6.08E-02 and 6.21E-01 g/sec. The hazardous air Pollutants were released into the atmosphere through multiple stacks. 77 38205 82 5:5 33 :8 58%.: E 8:285:8882 0:85: 08:36. 9m oSwE “Ev «$83022: fun uuou-aouelsm t + - . I80: °§ '4'! C.) (gm/6n) auoo '— ‘— 88:: 2:888 82:32: 53 82 :8 £58: 5 80:80:888: 0:35: owmb>< Wm 05mm HEW 8.8-3586 tun uuou-eouelsm °§ '0. C3 (gut/6n) auoo '- To explore re: simulations \\ Comidering t Wdflngr Selected reeee Different em Whining a] one Can obsc the mffiimm necessarily C differences '1 “fix-“83 in 78 To explore realistic scenarios, the stacks were grouped in different combinations and simulations were run to study the effect on exposure concentrations at specific receptors. Considering the patterns observed in the first results, a transect was established to follow the dispersion of the pollutant moving southwest and northeast from the source. The selected receptors are illustrated in Figure 5.7. The plant is located at the mid point. Different emission rates were investigated based on various scenarios obtained from combining appropriate sources grouped in the three production lines. From Figure 5.8, one can observe a shift of the highest concentration. From this figure, it can be seen that the maximum concentration results from the combination of lines 1, 2, and 3 but does not necessarily derive from the sum of the three independent maxima. This is due to differences in stack heights and emission rates. This means that a potentially critical receptor in one scenario may be safer in another scenario. Three conservative scenarios were investigated to simulate the influence of production schedules. These were based on operational constraints where the maximum production can only be sustained for 16 hours. Eight hours are required for recovery. Then, three scenarios of 16 hour maximum production starting at 7 AM, 3 PM and 11 PM and allowing “”0 8 hour shifts separated by an 8 hour recovery periodwere selected. The results are Presented in Figure 5.9. 79 ea; 3.32an 5: ashes: 830m 2 ea: I '—C At. arflflrvulo.»l600fl 30-00... 50‘ OCGzisutiutOO IuIsO>( .I3Ct( OCONCOQ 8O .sé 3338308 32 a? an: =5 98 9:: some :8 5:268: =3 :8 3an 83:3 owflog 355a w.m onE 9.02:5: a. 533.0... rv on rm on wN or I. w ~..|».u1*|u.»|.lvlflnlu+ullu+u..u L-.. . w. n.» L4.d.»1.|¢ - 33.5.. nee... l | l was: ...... 3:: I - . l :oaS.ao_..a:oom :80...» so. «2032:3330 0:22; _u:::< econ—.00 -It: IfIs ITllqutllelwlfl iii; .- ‘hIOJ ‘|“ -\| _. 1 vwod owed 090.0 81 $75-35: .§ ”mo—:uosom wfiabmo 00:8 :8 58260:: So: 3 :8 @933 :8 3088:5050 0:35: 03:02: _::::< .06 EswE SEE: A: 53308 9. 3 mm on ma om m: S m o .1 . o e :55 -1 mood : 89° :25 SE: in 1. v8.0 :2: sin ...... :Em s_<:.l .. mood -- wood :3: -mocfiaom 2.20:5 fits 2am :ozosuoi So... 3 :n 3:: :8 28:0on 2233:2300 ow::o>< _a:::< gut/fin u! suogmnuaouog lltissimulatio: ground level cc A more compr Shift all PM u 30% reduction is the sun beg the lnt'ersion 1; millallOH has it 373- generalle- h ml'ftsion lay er lllls eff“ inte; Bell. This CO“ the dilemma 5' iluion of the e SJASeHSlti 82 This simulation indicates that a 16 hour shift beginning at 3 PM would result in the lowest ground level concentrations. A more comprehensive hour by hour shift on the start time revealed that starting the 16 hour shift at 4 PM would result in the lowest concentrations. Starting at 4 PM would result in a 30% reduction in the highest concentration observed on the 7 AM shifi. As the sun begins to heat the ground surface by mid-morning, wind speed increases, and the inversion layer built during the night breaks down. By early afiemoon, the solar radiation has reached its maximum. The mixing height is extremely high and the winds are, generally high due to convection. At dusk, the ground begins to cool and an inversion layer begins to form. Due to reduced convection, the wind speed is very light. This effect intensifies as the ground cools further until sunrise when the process repeats itself. This could explain the lower concentrations observed in the scenarios starting in the afiernoon, such as 3 and 4 PM. At this time the mixing height is large and favors the dilution of the emitted chemicals producing lower concentrations at the ground level. 5.7.4 Sensitivity of Exposure Concentrations to Stack Height Increase As one can expect, an increase in stack height increases the dispersion and reduces the Pollutant concentration at the ground level. As an example, a 15 foot increase in the stack heights was simulated with the 24 hour- maximum and the second highest production rates representing re Show in Flgu A15. foot lncr anticipated the stack height a. 5.8 Syntht Based on thes imbabilistic e mission T3165 Were detErmjn Clllltt] 1995). comm to ME \tirh PE limo” {Or th 83 representing respectively all the three lines together and Line 1 separately. The results are shown in Figure 5.10. A 15 foot increase in the stack height, increased the stack height approximately 20%. As anticipated the concentration decreased about 30%. This implies that small changes in the stack height do not greatly influence the aerodynamic downwash effect of the building. 5.8 Synthesized PDF of Emission Rates Based on these simulations and the need for probability distributions to develop a probabilistic exposure estimate, a probability distribution was synthesized to describe the emission rates compiled from stack sampling analysis. The mean and standard deviation were determined to build a distribution function (Finley, Proctor et al. 1994; Frey and Cullen 1995). Using Monte Carlo simulations, and a log-normal distribution, a PDF was constructed to describe the emission rate variability see Figure 5.11. Full concentration results with PDF characteristics (e. g., mean, and standard deviation) at the selected receptors for the chosen scenarios are in Appendix F. 84 0306:: :08 m: :83 Emmo: 800:0 0: Amfihnv :: 0:0::0:::00:00 0:0N:0: 32:5: 09:62: .:0 b:>::_m:0m c: .m 053:: 30:83: 0: :030008 ov mm on mm om mw o_. m 0 :21290: 0.00:0 0000085 ...... 290: 0.005 30:30 L l 2003038 :0303003 :30: 3-37:. 0 :0 00:080 3:: 0:: :< :8 0:0~:0m.:0 m:0_:=:_::m_n :0_:0:::00:00 :0 38:0 E30: 0.02m wood vood mood wood :06 Nwod vwod gut/Snug suouenuaouog 85 .85 558.0 85302 80 803.520 $3380 :6 2:0; .53.. E 0003. co_mm_Em 0:0N20m wmdv mmév mm.mm mohw omdw omd ONd . la... oooo mwod otd vmmd mmmd vmvd mcmucwm .8 22:55.05 38.52.00.— All'IISVGOHd Referenc EPaiquiH. I from Finley. B.. I Freq Frey. H. C. EXp! Gran. L B. Con Am Paine. R. j_ 891] M W [ Mo “mm, D. De] LSEPA ( MC Sta [SEPA ( MC 1." “31m AS 8: ‘ 86 References F .Pasquill, D. S. (1962). Atmospheric Diffusion - The Dispersion of Wind-borne Material from Industrial and other Sources. London W. 14, England. Finley, B., D. Proctor, et al. (1994). “Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment.” Risk Analysis 14(4): 533-553. Frey, H. C. and A. C. Cullen (1995). Distribution Development for Probabilistic Exposure Assessment. 88th Annual meeting 7 Exhibition, san Antonio, Texas. Gratt, L. B. and L. Levin (1995). An Analysis of Dispersion Model Options in the Comprehensive Risk Evaluation of Electric Utility Air Toxic Emissions. 88th Annual Meeting & Exhibition, San Antonio, Texas. Paine, R. J. (1996). Evaluation of Building Downwash Models with Several Data Bases. 89th Annual meeting & Exhibition, Nashville, Tennessee. Scott, W. D., R. H. James, et al. (1976). “Foundry Air Contaminants from Green Sand Molds.” American Industrial Hygiene Association: 335-343. Turner, D. B. (1967). Workbook of Atmospheric Dispersion Estimates. Cincinnati, Ohio, Department of Health and Welfare. U.S.EPA (1995). User's Guide for the Industrial Source Complex (ISC3) Dispersion Models. Research Triangle Park, NC., Office of Air Quality Planning and Standards. U-S.EPA (1995). User's Guide for the Industrial Source Complex (ISC3) Dispersion Models (Revised), EPA. Venkatram, A. and C. Seigneur (1993). “Review of Mathematical Models for Health Risk Assessmentzll. Atmospheric Chemical Concentrations.” Environmental Software 8: 75-90. Exposure a Contaminar impact. Tn C0mmon ro route “ill 6 one or mor llThe IWEI-tor. h the Meme panjC‘qlar ‘ SlgqjfiCam Em. . hfllmg dcflfi in m his ”1031 0 Holster. E Chapter 6 Exposure Assessment - Probabilistic Model Exposure assessment is the translation of the transport and fate of environmental contaminants from their source or point of formation to the point of their biological impact. The human body can take up toxic chemicals through one or more of the three common routes: inhalation, dermal contact, and ingestion. The uptake by a particular route will depend essentially on the properties of the toxic chemical, its concentrations in one or more environmental media (air, water, and soil) and its human behavior. 6.1 Theoretical Background The objective of an exposure assessment is to estimate how chemicals travel to a receptor, how those chemicals traverse epithelial barriers to gain entrance to the body of the receptor, and whether those chemicals present in the environmental medium at a Particular concentration be present within a receptor at a level presumed to cause Significant adverse effects (Finley and Paustenbach 1994; Finley, Proctor et al. 1994). Estimating the magnitude of exposure to those chemicals of potential concern can be done in two ways: the point estimate and the probabilistic assessment. To date , exposure has most often been calculated using point estimates recommended by the EPA. However, some scientists suggest that the probabilistic method over the point estimate 87 approach is disputes 0V- mcasure of 6.1.] F u Human ex; and {God as COfllacts \ri mlfltiple ml The Nature human fact Mum,“ “mmrn ImPORam f Meals! W] mimics a; mfiilaijgn‘ 1 0mm em 88 approach is more appropriate because it provides more meaningful information, avoids disputes over the best point estimates, and associates the risk estimates with a quantitative measure of the uncertainty. 6.1.1 Fundamental Equations Human exposure to chemicals can result from contact with contaminated soils, water, air, and food as well as with drugs and consumer products. Exposure may be dominated by contacts with chemicals in a single medium or may reflect concurrent contacts with multiple media. The nature and the extent of multimedia exposures depends largely on two things: (1) human factors and (2) the concentrations of the chemical substance in the contact media. The human factors include all behavioral, sociological, and physiological characteristics of an individual that directly or indirectly affect the contact with the substance of concern. Important factors in this regard are contact rates with air, soil, and water. The activity Patterns, which are defined by an individual’s allocation of time spent at different activities and locations, are also significant because they directly affect the magnitude of inhalation, ingestion and dermal exposure to substances present in different indoor and outdoor environments. 89 #:0880000 05085 $03509 03:38 0:03:22: 5 000000200 09 00:8 005 000:8 050098 E0 .3008 080098 .0608 3:085:30 .8000 00.38 @880 30300085 3000qu ._6 0.59m 0000000 _0§0Q 0050?: "0 All Al Al. =00 Eonomsom . T wean. 00003 m3. . T :0 ~0aofi0m . T 00003 950.5 fl hon—m3 oommgm .50. P9 _ .zom g All , a: u- .- are: ULAvahB-hnqu-rht Ila-EUIUQI‘A- .Uli‘a Min-uh axe-Vina! It- u .-.:~Ah 9.0 = {Ayah i 0‘ w 90 9.0.233 0Bmomxm .0 8.05:... .N6 03.“. 32% 00.03-103.91 00003605000 5:502 tommafih/ jllllllll 030%. 00003 ”—5.000: 9.0m. , 50.55005. 300.0% E3005. 00:02.08— 00.:_0m 0.003 002.09% /. saw. Jufiawm Eng—5:00.). 800.0% m ,. .. . . .. mi . 050% . . .. 0.58an «0.0% 0:50an a :0..0~...~0.0> 50.53002 030.0% E3602 3.3% Each—NH 22.2.0.5. 808.5 053 05320 Ii. Based on ll total expos and concen Hi1): CS llhere equailm Calculated . U: 91 Based on the logic illustrated in the Figure 6.1, and the pathway scheme in Figure 6.2, the total exposure can be constructed as a function of time, pathway, environmental medium, and concentration as follows: H(()=Cs(0)x< Z Z Z [QJ(LADDU,.)X[LA_IC)D£]x¢[Cs(o)—>Ck(t)]] j k i k routes, environ, exp osure mental media media I (6.1) where H(t) C.(0) Qi (ADDijk) LADDijk/Ck ¢ [Cs(0) —> Ck(t)] v is the distribution of individual carcinogenic lifetime risk at some time t in the future within a population exposed for an exposure duration, ED, to a contaminant in a medium at an initial time zero the contaminant concentration in mg/m3 measured at time zero is the dose-response function that relates the potential dose, ADDijk, by route j to the lifetime probability of detriment per individual within the population, mg/kg-d the unit dose factor (average daily potential dose over a specific averaging time) from exposure medium i by route j ( inhalation, ingestion, or dermal uptake) attributable to environmental department k divided by Ck when Ck is constant over the duration ED the multimedia dispersion function converting the contaminant concentration C,(0) in mg/m3 measured today, into contaminant concentration Ck at a time t in the future for a duration of exposure ED in environmental medium k (units of Ck are in mg/kg for soil, mg/m3 for air, and mg/L for water). The equation 6.1 applies only to carcinogenic compounds. Instead, a hazard Index is calculated using an average daily dose (see equation 8.3). The distribution of the individual do cnxiionmemz llhen an em ED. the popu i-LiDDJLlfOI mmgkgd bi “00W “here 1““ [0 be lb The» Jim fOr in 92 individual dose is developed by summing the dose and effects over exposure routes, over environmental media, and over exposure pathways. When an environmental concentration is assumed constant over the exposure duration, ED, the population-average potential dose is the lifetime average daily dose rate (LADDjk)f0r carcinogens or average daily dose (ADDjk) for non-carcinogens. It is given in mg/kg.d by: Ck (6.2) k Where [Ci/Ck] = the intermedia-transfer ratio, which expresses the ratio of contaminant concentration in the exposure medium i to the concentration in an environmental medium k [IUU /BW] = is the intake or uptake factor per unit body weight associated with the exposure medium i and route j such as m3(air)/kg-hour EF = is the exposure frequency for the exposed individual, in days per year ET = is the exposure time in hours per day ED = is the exposure duration for the exposed population in years AT = is the averaging time for the exposed population, in days Ck = is the contaminant concentration in the environmental medium k After a sensitivity analysis, it was found that the foundry pollutants of concern are most likely to be found in the air; the percentage of their partition to the air is higher than 90% (USEPA, 1993). For a single medium, for example air, the average daily dose (ADD) in mg/kgd for inhalation will be then calculated by the following equation (U.S.EPA 1989). LiDDUkOT‘ Were lL‘mB‘ EF ET ED AT Frequently. 1} “MW dur; f0! dlllamic ( EXMire acu descrlI‘llon 0 SimPlistic wi- dlflamics. Pmbabilisric Falling at \‘a 6.1.2 “Poi 93 (6.3) LADDij-korADDm-r = Cap, [”10”]. EF 'ET-ED BW AT Where Q ll 01” Contaminant concentration in the air, mg/m3. IUair/Bw = Intake factor by unit body weight of the exposure medium, m3/kg-hr. EF = The exposure frequency of the individual, days/year. ET = The exposure time, hours/day. ED = The exposure duration for the exposed population, years. AT = Averaging time for the exposed population, days. Frequently, the environmental concentration C 0,, is considered constant over the exposure duration. A general limitation of the current models is that they do not account for dynamic concentration variations in microenvironmental control volumes in which the exposure actually occurs. Despite the level of sophistication with respect to the description of environmental fate and transport, most exposure models are relatively simplistic with respect to the description of the microenvironment and population dynamics. Probabilistic exposure models account for population dynamics and human activity patterns at various level of sophistication, considering time-space distributions and sensitive subpopulations. Often these models treat exposure concentration dynamics in a simplified manner (Georgopoulos, Walia et al. 1996). 6.1.2 “Point Estimate” Approach to Exposure Assessment Historically, regulatory decisions based on risk assessment used a point estimate approach, Where a uIlique value was selected for each of the variables involved in the risk equation. In addition It has the ad lnowledg. Paustenba medrod ra' limpet disr reluctant tr assessmen 94 addition to the fact that it is readily accepted by state and federal regulatory agencies, it also has the advantage of being a straight forward calculation of the health risk that requires little knowledge about the scientific foundation of the different exposures (Finley and Paustenbach 1994). Two other major reasons drove decision makers to this conservative method rather than a probabilistic method. The first was the lack of consensus on the proper distributions for key exposure factors. In addition, regulatory agencies were reluctant to accept the probabilistic approach as a methodology for exposure and risk assessment due to the lack of guidance and policy (Finley, Proctor et al. 1994). The pitfalls of the point estimate method are, however, numerous. The repeated use of upper-bound point estimates, as recommended by the US. EPA to determine a reasonable maximal exposure, leads typically to unrealistic estimates of health risk and most likely unreasonable clean-up goals. Because the resulting exposure estimate is applicable to individuals well above the intended 95th percentile, it is overly protective for the vast majority of the population. Another major disadvantage in the point estimate method in Which a single value of the risk to the entire population is determined is that it provides a limited amount of useful information to the risk manager (Finley and Paustenbach 1994). Nevertheless, this method has the merit as an easy screening method to obtain a worst case Scenario of a potentially exposed population. 6.1.3 Probabilistic Approach to Exposure Assessment In contrast with the point estimate method, the probabilistic method will result in a more comPlete characterization of the exposure information available for decision-making. llie prob. tmcertain variance . degree of additiona Aprobab a Milan mgniric Whittier r{Present “ingle n if) pellbp 95 The probabilistic approach offers the possibility of an associated quantitative measure of the uncertainty around the value of interest. A sensitivity analysis is also possible based on the variance determined from a probability distribution function (PDF). This will determine the degree of confidence with which the variables are known and will also indicate whether additional data are needed to increase reliability of the results. A probabilistic approach means that decision-making is no longer based on a comparison of a standard desirable limit with a worst case undesirable value. It is instead based on a recognition of the most likely occun'ing value that should be given more weight in the evaluation process. In addition, a better understanding of the risk is provided by a graphical representation of the probability distribution describing the variables of interest. Instead of a single number assigned to the variable, the full range of possible values and some measure of the probability of occurrence of each value can be included. 6.1.3.1 Computational Methods for Estimating Dose PDFs To perform the probabilistic exposure evaluation, a computer program (entitled “@RISK”) that was developed to employ random sampling was implemented (Palisade 1 997). @RISK provides two sampling techniques: Monte Carlo random sampling and Latin Hypercube random sampling. Both methods of generating ADD probability distribution functions (PDFs) were investigated. Despite the fact that Monte Carlo simulations are more widely used in this kind of practice, some runs were conducted with both for comparison. The Latin Hypercube method has two advantages. The first is that it forces 5 distributi- till recrt without r number t courage CUUISQ‘ [ Simulati SliltllIZe iteration Mk ECG-Slim m r . “item ‘3 it'- , F 1"4ldnr 96 it forces sampling to represent values in each interval. By stratifying the input probability distribution into equal intervals in the cumulative probability scale (0 to 1.0), sampling will recreate the input probability distribution. Also, the technique used is “sampling without replacement”. This means that the number of stratifications will equal the number of iterations so that no value can be considered twice. Second, this method converges to a stable outcome more quickly than the Monte Carlo method which, of course, means shorter run times. Simulation results, in particular, the mean and the standard deviation of the outcome, stabilized after about 5,000 iterations. However, with Monte Carlo sampling, 10,000 iterations were required for convergence. 6.2 Selection of an Exposure Model An overall total exposure assessment approach is being developed by the EPA’s Risk and Exposure Assessment Group (REAG). It has been designated as the Total Risk Integrated Model (TRIM). A complete residual risk evaluation will include short-term acute exposure from air and non-air sources, urban area toxic exposures from pollutant mixtures, and use of explicit dose estimates as alternatives to the Reference Doses (Rst). This model will be capable of assessing risks to both humans and sensitive ecosystems resulting from multimedia contamination in air, water, soil, and food and multi-pathway exposure via inhalation, ingestion, and absorption exposure routes to Pollutants of concern. 6.2.1 R 1111995. i were four W35 narrt 97 6.2.1 Review of Existing Models In 1995, investigations of EPA and non-EPA approaches were made. Only two models were found to have sufficient capabilities for potential use by TRIM. The list of models was narrowed based on the following factors: 0 availability of distributional data for input parameters; a distinction between environmental concentrations and exposure concentrations; a use of human activity and microenvironmental data; and - consideration of uncertainty in a systematic fashion. The two models retained for more in-depth evaluation and comparison are : o EPA’s multimedia risk methodology, the Indirect Exposure Methodology (IEM2) with an addendum completed in 1993; and 0 California Department of Toxic Substance Control’s multimedia risk computerized model, CalTOX updated in 1995, with continual enhancement underway. IEMZ was retained primarily because it represents current EPA choice for indirect exposure assessment, and so any other model selected should at least be compared to it. On the other hand, CalTOX was retained as the model-of-choice, primarily because it SuI'passed all other models reviewed in a level of sophistication. In addition to that, the deveIOper of CalTOX claims that sophisticated regional atmospheric disPersion/deposition models such as ISC3-ST and LT could be added to CalTOX without much difficultY- ll CalIOX, 2 includes ts uith the a air. surfac exposure Contact m 6.2.2 S The defa “Mun mestig; the hitza their big Coimbu thfimlrx r"lute as 98 CalTOX, an overall model for multimedia, multiple pathway exposure assessment, includes twenty-three potential exposure pathway scenarios. CalTOX analysis begins with the assumption that through modeling or measurement, concentrations for ambient air, surface water, ground water, surface soil, and root-zone soil can be determined. The exposure assessment process consists of relating contaminant concentrations in the contact media (personal air, tap water, foods, household dusts and soil, etc.) to the intake in the population of concern. 6.2.2 Sensitivity Analysis The default values provided in CalTOX were used to asess multimedia multiple pathway exposure from the compounds of interest released fi'om the casting resins. The investigation showed that there was no need to consider multimedia exposure models for the hazardous air pollutants. Due to their chemical and physical properties, in particular their high volatility, the inhalation route was predominant in terms of its major contribution in the intake values. This was mostly due to the high partitioning of these chemicals to the air. Figure 6.3, based on a multi media, multiple pathway, and multiple route assessment, indicates where it is most valuable to focus research resources to more thoroughly characterize distributions of population exposure. 99 3:00.. 05 a. 8:05:00 :.0 00000050: 0. 050098 00 0000 .200 0w000>0 05 m0 83.00:: 050098 .3 0:0 0.00: 0.50096 .3 0050903000 .00 0&.% 03-3 003:.» .303 :00 0:00 00.30: .0E00n .000m :00 70.0.0000 r 000......m a 00003 ._< 3.3:. :020005 03000... 3.3:. :o.0a.0::_ W r 3.02..» m w L D. .w 302.... m , m. 3-00»... m m J u . a ., no 000 0 r n. ., 3000.0 6.3 R Ofi ii; .1; : 100 6.3 Review of Probability Distribution Function (PDF) The probabilistic approach to exposure assessment involves performing iterative calculations using probability distributions of each of the appropriate exposure factors. However, a major problem with probabilistic modeling is the agreement upon “standard” data distributions. Since this is a relatively new practice there is limited information available. There are several suggestions, though , including those published in “Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment” (Finley, Proctor et al. 1994) and the Ohio EPA’s “Support Document for the Development of Generic Numerical Standards and Risk Assessment Procedures” (U.S.EPA 1996). It should be noted that there are a number of technical issues that should be addressed When characterizing a “standar ” distribution. One of these issues is factor interdependence, such as for body weight and skin surface area. To minimize errors, Certain age-specific distributions are used to account for these (Lioy 1990). The only interdependence between exposure factors considered in this research are age-body Weight and age-inhalation rates. All other parameters are assumed to be independent. It is also important to select the appropriate data set(s) for characterizing a distribution. Often there are several published estimates that differ widely in data quality, credibility, accuracy, collection/analysis techniques, measured end points, and data collection Objectives (Lioy 1990). #l 6.3.1 C( Contamina Complex S account In: buildings v Since ISC3 emission r; Hfince. hou fimcrions 0 OUIput. Ba fine“110 a k is Presented 6°32 Int IR is depem 101 6.3.1 Contaminant Concentration in Air (C31,) Contaminant concentration in air is chemical and scenario specific. The industrial Source Complex Short Term air dispersion model along with annual emission rates takes into account meteorological conditions, source type, geography, and the effects of nearby buildings when estimating airborne concentrations (Copeland, Holbrow et al. 1994). Since ISC3 was not developed to introduce emission rates as an explicit function of time, emission rate variability determinations were possible only from one hour to another. Hence, hourly-averaged emission rates were used and no generation of distribution functions of the predicted concentrations at the receptors was possible from the ISC3 output. Based on an analysis of the variability of emissions (Chapter 5) the Ca, data were fitted to a log-normal distribution. A graphical illustration of an example of this behavior is presented in Figure 6.9. Detailed results for all scenarios are shown in Appendix F. 6.3.2 Inhalation Rate IR or (IUair) IR is dependent on the activity being performed. It is described by inhalation rates that are given in m3/day. Some examples of proposed PDFs are shown in Table 6.1 and 6.2. Detailed analysis of some of the existing PDFs is offered in Appendix H. Table 6.1 Selected Cumulative Distribution Percentiles of Inhalation Rates in m3/day by Age (Finley, Proctor et al. 1994) 102 Percentile (m3/day) Age 5th 10th 25th 50th 75th 90th 95th 99th 42/0 <3 3.3 3.6 4.1 4.7 5.5 6.2 6.7 7.8 3-10 6.1 6.5 7.3 8.4 9.7 10.9 11.8 13.8 10-18 9.1 9.8 11.2 13.1 15.3 17.7 19.3 22.5 18-30 10.5 11.3 12.8 14.8 17.1 19.5 21.0 24.6 30—60 8.4 9.1 10.2 11.8 13.6 15.4 16.7 19.2 <60 8.5 9.2 12.4 11.9 13.7 15.6 16.7 19.6 Table 6.2 Probability Density Functions for Inhalation Rates (U.S.EPA 1996) Pathway Distribution Mean SD Min. Max. Inhalation Rate (m3/hr) Residential Triangular 0.80 - 0.52 1.02 Adult Thalation Rate (m3/hr) Residential Child Triangular 0.47 1.8 0.38 0.56 6.3.3 Ellss Ellsn lCCOml These differe IheL‘E Dtpar F0r re EP and El Nisd madu 33mm 103 6.3.3 Exposure Frequency (EF) EF is site- and scenario-specific. It could be influenced by season, activity and age. The EF is measured in units of days per year, or events per year. For example, the PDF recommended by the Ohio EPA for commercial land use is: (U .S.EPA 1996) EFwork ~ Triangular[Min = 125 d/yr, Likeliest value = 214 d/yr, Max = 290 d/yr] These parameters are defined by a triangular distribution based on the climate patterns in different regions of Ohio, and assumptions about vacation leave, sick leave, holidays, and part-time/full-time status of workers. This distribution will not be the same in all parts of the US due to different weather conditions affecting exposure. For instance, the Oregon Department Environmental Quality adopted different distributions. These were : EFwork ~ Triangular[Min = 125 d/yr, Likeliest value = 214 d/yr, Max = 290 d/yr] For residential land use, two EF distributions were given by the Ohio EPA: EFrcsidemia] ~ Triangular[Min = 323 d/yr, Likeliest value = 351 d/yr, Max = 365 d/yr] and EFmsidcmia. ~ Triangular[Min = 261 d/yr, Likeliest value = 330 d/yr, Max = 365 d/yr] This distribution based upon best professional judgment assumes a maximum value for an adult/child receptor to be home every day of the year. However, the Oregon DEQ assumes: EFrcsidcmia. ~ Uniform[Min = 50 week/yr, Max = 52 week/yr] Finley an El dislri constant mlh the thm mlnlmul lngestio: inallpa] l0r the l dlfiireni 6.3.4 I Hfide 313351361 WM 0 Vi leg ET, 104 Finley and Paustenbach (Finley and Paustenbach 1994) do not recommend a “standard’ EF distribution. In the three case studies involving air, water, and soil, they proposed a constant EF value of 350 days. This is an upper bound point estimate that is in agreement with the US. EPA. California’s approach to EF is a uniform distribution with a maximum value of l and a minimum value of 0.58. They define EF as a fraction of a year as used in inhalation, soil ingestion, and dermal absorption pathways. Again, this would not be a good assumption in all parts of the United States based on climate differences. For the purpose of this study, a central tendency was adopted. A simulated average of the different distributions recommended by the Ohio EPA was implemented based on the climate similarities with the region of Michigan. 6.3.4 Exposure Time (ET) ET is defined by an hour per day or hour per event that a person is exposed. It is measured as by time spent in shower, bathroom, household, or at work. Some examples of distribution that can be used are: 0 Values defined by a custom distribution based on the assumption that some residents spend 8 hr/d at work, reducing the time spent at home: EThouschold = uniform, minimum value of 8 hr/d, maximum value of 20 hr/d, arithmetic mean of 14 (McKone and Bogen 1992; Finley, Proctor et al. 1994); 105 ETmsidcmiaHdun = 50 percent probability: 16 hr/d, 50 percent probability: 24 hr/d; ETresidcmiathd = 25 percent probability: 16 hr/d, 75 percent probability: 24hr/d (U .S.EPA 1996). o A custom distribution based on the assumption that children may spend 8 hr/d away from home. ETcommcrcial = minimum value of 4 hr/d, likeliest value of 8hr/d, maximum value of 12 hr/d (U .S.EPA 1996). o A triangular distribution based on best professional judgment. ETindustrial = 0.90 relative frequency: 8 hr/d, 0.10 relative frequency: 9- 12hr/d (U .S.EPA 1996). o A custom distribution based on best professional judgment and the assumption that most industrial workers are at the property for 8 hr/d and 10% are present as long as 12 hr/d. The EThousehom, was used for calculations to focus on residential health risk as it was intended in the scope of this study. 6.3.5 Exposure Duration (ED) Exposure duration will vary with each different scenario and pathway of exposure. For example, ED for a residential-adult is a custom probability distribution based on residency occupancy periods. The PDF’s for Ohio are listed below (U .S.EPA 1996). “16 exp derived 1 all work 6.3.6 E There ha' dlSlfibml dlSIIjbuti‘ C 0—1 (J. :_n AllOlher E l . . “65¢le [$.49 kg. 8 lie 0th l :14 all. 106 The exposure duration values for the commercial/industrial land use scenario were derived from a Bureau of Labor Statistics survey using workers that are 25 and older in all work categories and are as follows: Year at One Job 1 2t05 6to9 10to 14 15to 19 20 to 40 6.3.6 Body Weight (BW) Relative Probability 0.209 0.317 0.134 0.14 0.08 0.12 There have been several recommended distributions for the body weight factor. One such distribution was described by Copeland et al [Copeland, 1993 #193] as a normal distribution with the following parameters: 0-1.5 year Mean= 10kg 1.5-5year Mean= 14kg 5 - 12 year Mean=26 kg 12 - 70 year Mean=62 kg SD = 0.12 SD = 0.13 SD = 0.75 SD = 0.30 Another BW distribution from the same author, (Copeland, Paustenbach et al. 1993) describes BW as a normal distribution with a mean of 62.4 kg and a standard deviation of 13.49 kg. The Ohio EPA defines BW as a normal distribution for an equal population of residential adult men and women, with an arithmetic mean of 71 kg and a standard deviation of 15.9 1 kg. The] weigh les normal d5 15 kg ml 011 the or momma Each of 11 HOV-6V6!" mIdard‘ [he lumre 63.7 A. :lCCQrd 111g Soon er al. efilial [0 El mm x. 3 or.“ an lion {,1 a]. 107 kg. The minimum body weight was set at 32 kg to account for elderly residents who may weigh less than other adults considered. The residential child BW is described by a normal distribution for an equal population of male and female children with a mean of 15 kg with a standard deviation of 1.95 kg (U.S.EPA 1996). On the other hand, Finley, Proctor, and Scott, Harrington, Paustenbach, and Price recommend the BW distribution shown in Table 6.3 (Finley, Proctor et al. 1994). Each of these distributions is very similar, differing only by a factor of about 4 kg. However, for a conservative approach, the Ohio EPA’s distribution is recommended for “standar ” use since it tends to agree with other studies and will most likely be adopted in the future. Review of a second study can be examined in Appendix H. 6.3.7 Averaging Time (AT) According to the U.S.EPA (U.S.EPA 1989) and Finley, Scott and Paustenbach (Finley, Scott et al. 1993), AT is specific to each exposure scenario. For non-carcinogens it is equal to ED x 365 d/y. For carcinogens AT is represented by a point value of 25550 days (70 yrs x 365 d/yr). This is a very conservative estimate because it is assumed that both children and adults are exposed to the contaminant 365 days per year for 70 years (Finley, Scott et al. 1993). 108 Table 6.3 Summary of Distribution Factors for Body Weight by Age and Gender Age (yr) Gender Mean (kg) SD(kg) 0.5-1 Both 9.4 1.2 1-2 Both 1 1.8 1.4 2-3 Both 13.6 1.6 3—4 Both 15.7 1.7 4-5 Both 17.8 2.3 5-6 Both 20.1 2.8 6-7 Both 23.1 3.5 7-8 Both 25.1 3.8 8-9 Both 28.4 5.2 9-10 Both 31.3 5.0 10-11 Both 37.0 7.5 11-12 Both 41.3 10.5 12-13 Both 44.9 10.0 13-14 Both 49.5 10.5 14-15 Both 56.6 10.3 15-16 Both 60.5 9.7 16-17 Both 67.7 11.6 17-18 Both 67.0 11.5 >18 Men 78.7 13.5 >18 Women 65.4 15.3 >18 Both 71.0 15.9 6.4 Sr The to Pl)? lune dail; EP; ail 109 6.4 Selection of PDFs The recommended distributions selected were chosen using the following criteria: a consistency with other studies a derivation of the distribution from a survey population representative of the general population, 0 minimization of confounding variables, and sufficient data to reasonably characterize the variability and extremes of the distribution. Despite the lack of consensus on the proper distributions for key exposure factors, the PDFs illustrated graphically in Figures 6.4 to 6.8 was selected. These distribution functions, for the different parameters affecting the intake value or precisely the average daily dose (ADDair) were chosen based on advice from several experts in the field (e. g., EPA office experts in Washington DC., Dr. M. Kamrin from the Institute of Toxicology at Michigan State University). They may be introduced into the exposure calculations as shown in Table 6.4. 110 32 500.25 ”32 £25 “a. we: is...“ ”5 as ease: «N 2 30:8 E 52.3. a 08: usmaxm Q 2285 o... _ weakens. 8 73% a 808:: 058%”.— .523 S 3285 25 a: a Siamfiummgm 33m a 3.802... eaaxm ad .282 2.2 mm: Renegade 30.8 as: a £0.03 €00 a... 3285 0.2: 86 8.33 :3: was. came. a can: 80%? 2.2.0 as? .52 890022502 .52 52 a: 00: 0:0u0m 25:05...— :e.«=£.=na mean—2.9.:— Eeuoah 0.5027”.— maouoam 0.58%.”. 8.. 0&9. v.0 030... 111 £0.03 .80 é "a: 3 050.: use a as: 8.0%? a: "E: 4.0 2:9... 112 Figure 6.7 Exposure Time in hours/day on myears ti Figure 6.6 Exposure Dura 113 magnum: a. 3:03.00... oaaxm we 0.53m 6.5 l The n mean. erpos 1996] ll'llt‘ilé‘ Thfi Cl I“'0 k; 114 6.5 Exposure Assessment The need for using explicit time profiles of exposure concentrations in order to calculate meaningful estimates of biologically effective doses rather than average or cumulative exposures has been stated and justified by Smith (Smith 1992; Georgopoulos, Walia et al. 1996). These distributions were picked for the best possible fit to our population of interest and to realistically simulate the case study conditions. 6.5.1 Implementation The concentrations of emitted hazardous air pollutants in the air in a surrounding area of two kilometers on two kilometers centered at the source were estimated using the transport model (chapter 5). These simulations showed three critical zones of high atmospheric concentrations that were persistent for a period of five years (from 1987 to 1991) despite the meteorological data variation. These three zones are designated by their centers as point receptors R1, R2, R3. Four other receptors at each comer of the physical limits of the study area, designated R4, 5, 6, and 7 were specified for control purposes (see Figure 6.9). The predicted concentrations for selected chemicals (benzene, formaldehyde, phenol, t01uene, and xylene) were calculated for different scenarios based on real production rates. Their variations were fitted to log-normal distributions that are statistically characterized in Table 6.5. 115 80.0003 .05 mm: 08:000.». a6 05m... 2305 :_ .80 8:30.: oovwx. game! 088 . . 116 ”we... m3... 3m. com... co. .o £2 can... .3... .3: .N. ._ new... Om mm owed 3m. 03.3 mwmé mmfim .802 2b.. 93.. 386m mend Nmmé 082 05.5% 0:033. 3:23 01.3020808— 0:05:3— naozanuia hex—000% 222%-..Ec8m 0833x5501 £2 882588 08:05 E... Bees: 3 23¢ 6.5.2 I Intake 6 Imestig lowest 3 binders .' results a Characte' Based 0r WEdiCtec 117 6.5.2 Intake Results Intake evaluation for deifferent populations was performed for all the selected receptors. Investigation of different scenarios at different starting times were done to determine the lowest average daily dose. Simultaneously, evaluations were performed on eleven resin binders as comparisons for the binder system used in the case study (see Table 6.6). All results are illustrated in Appendix I. These are further used in Chapter 8 for risk characterization. Based on the dispersion results of chapter 5, the receptor R3 exhibited the highest predicted concentrations. Therefore, it was targeted in most of the investigations. Table 5 I'll 'n I] M] - -‘\ I S lm lm m. m M i. \ \fi ln ll um l.lln \v .ull m e e .M W .N .uut W. le Fm um 4% ”U rlL «5 IN. A S 118 Table 6.6 Predicted First Highest Concentrations in ug/m3 at R3 for Alternate Resin Binders. Cone. of Benzene Receptor R3 —‘] in ug/mJ Benzene Formaldehyde Phenol Toluene Xylene Case Study Resin Binder 3.755 4.982 25.957 1.518 0.196 Phenolic NoBake 30.025 0.027 2.612 1.698 0.260 Phenolic Urethane 14.334 0.059 10.457 2.231 1.176 Phenolic HotBox 2.684 0.016 10.457 0.487 0.324 Green Sand 1.637 0.011 0.351 0.169 0.056 Core oil 6.279 0.257 0.153 1.280 0.640 Shell 17.859 0.094 6.579 7.519 1.567 Low Nitrogen Furan 1.736 0.715 0.064 0.324 5.965 Med. Nitrogen Furan-TSA 12.145 0.174 0.270 23.642 0.651 F uran HotBox 1.438 0.024 0.043 0.086 0.086 Alkyl lsocynate 14.293 0.284 0.005 0.068 6.756 Sodium Silicate-Ester 3.777 0.453 0.731 0.755 0.252 Refe Copel Copel lhfley lhfley lhfley Georg. lit); 1 lklio L135] USE} 153-El 119 References Copeland, T. L., A. M. Holbrow, et al. (1994). “Use of Probabilistic Methods to understand the Conservatism in California’s Approach to Assessing Health Risks Posed by Air Contaminants.” Air & Waste Management Association 44(December): 1399—1413. Copeland, T. L., D. Paustenbach, et a1. (1993). “Comparing the Results of a Monte Carlo Analyis with the EPA's Reasonable Maximum Exposed Individual (RMEI): A . Case Study of a Former Wood Trestment Site.” Regulatory Toxicology and Pharmacology( 1 8): 275-312. Finley, B. and D. Paustenbach (1994). “The Benefits of Probabilistic Exposure Assessment: Three Case Studies Involving Contaminated Air, Water, and Soil.” Risk Analysis 14(1): 53-73. Finley, B., D. Proctor, et al. (1994). “Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment.” Risk Analysis 14(4): 533-553. Finley, B. L., P. Scott, et al. (1993). “Evaluating the Adequacy of Maximum Contaminant Levels as Health-Protective Cleanup Goals: An Analysis Based on Monte Carlo Techniques.” Regulatory Toxicology an Pharmacology 18: 43 8-455. Georgopoulos, P. G., A. Walia, et a1. (1996). “Integrated Exposure and Dose Modeling and Analysis System. 1. Formulation and Testing of Microenvironmental and Pharmacokinetic Components.” Enviro. Science & Technology 31(1): 17-27. Lioy, P. J. (1990). “Assessing total human exposure to contaminants.” Environ. Sci. Technol. 24(7): 938-945. McKone, T. and K. Bogen (1992). “Uncertainty in Health Risk Assessment: An Integrated Case Study Based on Tetrachloroethylene in California Groundwater.” Regulatory Toxicological Pharmacology 15: 86-103. Palisade (1997). @RISK. Newfield, NY, Palisade Corporation. Smith, T. J. (1992). American Journal Ind. Med.(21): 35-51. U.S.EPA (1989). Risk Assessment Guidance for Superfund - Human Health Evaluation Manual. Washington DC., EPA. U~S-EPA (1993). CalTOX, A Multimedia Total Exposure Model for Hazardous-Waste Sites. Sacramento, California. Ca EPA. U~S-EPA (1996). Support Document for the Development of Generic Numerical Standards and Risk Assessment Procedures. Ohio, Ohio EPA. ln th man the c Vola Opq ltnz Sela- Their 7.1 alier Chapter 7 Toxicity Assessment In the process of selecting the pollutants of concern for the case study, different manufacturing processes were explored, and it was found that the binders used to form the cores and the molds for the casting Operation were the major source of the most volatile hazardous air pollutants. Based on the data available and discussions with the operating personnel, five compounds were selected for investigation. These were benzene, formaldehyde, phenol, toluene, and xylene. Benzene and formaldehyde were selected based on their carcinogenicity and abundance. The rest were chosen based on their non-carcinogenic toxicity and abundance. 7.1 Inhalation Toxicology The potential toxic effects that need to be considered following inhalation exposure include irritation of the respiratory tract, behavioral changes, pathologic change to vital organs or tissues within and distal to the respiratory tract, immune system responses, pulmonary function alterations, metabolic disturbances; carcinogenicity, and even death (Hayes 1994). Studies to measure the effects of chemical agents on the biological system after entering the respiratory tract must follow carefiilly designed protocols. Regulatory 120 agent inhal: EPA, and tl. Stand: Répro. W16: 10 relat Clk‘mlc animal. llteref lhfmie leads to 121 agencies have adopted standardized protocols for both short-term and long-term inhalation testing. Different regulatory institutions all over the world, such as the US. EPA, the organization for European Economic Cooperation and Development (OECD), and the Japanese Ministry of Agriculture, Forest and Fisheries (MAF F) have agreed on standardized protocols alayes 1994). Reproducing, experimentally, the atmosphere in a form that can be inhaled by a test species requires very sophisticated equipment. In addition to that, it is inherently difficult to relate the inhaled dose to the retained one. The total dose depends on the physical and chemical properties of the compound, the physiological characteristics of the tested animal, and the numerous factors involved in deposition and clearance in the lungs. Therefore, it is very difficult, if not impossible, to find consistent research results for all chemicals. In addition to quality issues, the need to study a huge number of chemicals leads to deficiencies in the amount of pertinent toxicological data. 7.2 Sources of Toxicological Data A review of different databases revealed a large number of on-line resources, and written documentation. Among the sources available, the following are always highlighted (Wexler 1995): 0 TOXNET (the Toxicology Data Network developed by the National Library of Medicine’s Toxicology and Environmental health Information Program in 1985 as an expansion of the former Toxicology Data Bank TDB) covers the broad areas of toxicology, hazardous chemicals, and the environment; The 11 001151: We: 10 {he The re 122 o ATSDR (Agency for Toxic Substances and Disease Registry) provides information about toxic chemicals including their classification, and a summary of research results; and o IRIS (Integrated Risk Information System) contains an EPA file with data related to carcinogenicity and non-carcinogenic risk assessment, including oral reference doses (Rst), inhalation reference concentrations (Rsz), and cancer slope factors and wit risks. The Integrated Risk Information System (IRIS) presents the most reliable source. It is considered a starting point in the risk assessment data sources hierarchy. IRIS updates are posted by EPA on a monthly basis. Gaps are, however, observed in some of the data due to the lack of studies and inconsistency of results. The results of the toxicity data search are summarized in Table 7.1 for the selected HAPs. 123 .003 83 m5: 3008 A8 609 00Ew0m Rho—00.0 A: ”30500 “0.0:: r .Es.mc.m $8.03 a 053x Eoc-mo.m a: c.mN. _ AS: o.mo.~ Q 2.020% <2 85808.0 Q .825 @303 58-03 5 3202288 :cmo.ma.m €8.th _< ocunaum .3355 Eargé barga— ma—Tuéufi 0300.. 0800.. ex 5:32.:— em :26 2.0.0. .5522...— one.» .95 nan—U mg 3032—339 300:0 030359—0052 800:0 030350.50 9% €2on Ba: E 22¢ 7.3 lnth selee lhe r depre er11h 80m Ch’pos in to Base: Healtj coma; The. 'T' I . L‘éestl ”Lima 124 7.3 Adverse Effects In the following paragraphs, the adverse effects (non-cancerous) of the five compounds selected for study are summarized. The major systemic effect associated with chronic benzene exposure in humans is depression of bone marrow resulting in pancytopenia, which is a decrease in numbers of erythrocytes, leukocytes and thrombocytes, sometimes progressing to aplastic anemia. Some evidence of impaired immune system is observed in humans who have been exposed to chronically. Decreased serum complement, IgG, and IgA, levels were found in workers exposed to benzene, IgM level was slightly higher (Calabrese and Kenyon 1991; U.S.EPA 1994). Based on the Agency for Toxic Substances and Diseases Registry (ATSDR) Public Health Statement, formaldehyde is an irritant to the skin, eyes and mucous membranes in humans. At high concentrations, it may cause bronchitis, pneumonia or laryngitis. Skin contact can lead to whitening and anesthetic effects due to superficial coagulation necrosis (Calabrese and Kenyon 1991; U.S.EPA 1994). The effects on inhalation of phenol by humans are unknown. However, when it is ingested in food or water it produces diarrhea and mouth sores in hmnans. Laboratory animal experiments yielded effects such as muscle tremors and loss of coordination. At nun andl Sher inn, prim; COOK liar}- Eyes. VOHn 125 higher concentrations for longer periods of time, exposure resulted in paralysis and severe injury to the heart, kidney, liver, and sometimes the lungs, followed by death (Calabrese and Kenyon 1991; U.S.EPA 1994). Short term exposure to toluene at high concentrations is associated with irritation of the skin, nose, and throat, difficulty in breathing, and impaired function of the lungs. The primary target is the nervous system and symptoms include headaches, lack of coordination and loss of balance (Calabrese and Kenyon 1991; U.S.EPA 1994). Very limited data are available on xylene. At 200 ppm, xylene is a definite irritant of the eyes, nose, and throat. At higher concentrations pulmonary edema, anorexia, nausea, vomiting, and abdominal pain are observed (Calabrese and Kenyon 1991; U.S.EPA 1994) 7.4 Carcinogenicity Benzene is a known human carcinogen, under the EPA weight-of-evidence classification. Mutagenicity of benzene is observed in both humans and animals. It induces chromosomal aberration in bone marrow cells and peripheral lymphocytes. Benzene was noted as genotoxic and fetotoxic at doses that are also maternally toxic. However, because of limited data, the ATSDR stated that there is not sufficient evidence to show reproductive effects result from exposure to benzene. In epidemiological studies of ob F01 tln hon Ken Pher nun- eflec Phen 3380\- 126 people exposed primarily to benzene, statistically significant excesses of leukemia were observed (Calabrese and Kenyon 1991; ATSDR 1992). Formaldehyde is a probable human carcinogen under the EPA weight-of-evidence classification. It is a mutagen but requires bioactivation. It causes chromosomal aberrations and forms adduct with DNA and protein in vivo and vitro. It also inhibits DNA repair in cultured human cells. Although no evidence of teratogenicity is reported, fetotoxicity in rodents resulted from inhalation exposure. It is carcinogenic via the inhalation route in experimental animals based on the nasal squamous cell carcinomas (a rare tumor type) in both sexes of F344 rats, multiple rat strains, and mice. Generally, however, tumors were not observed beyond the initial site of nasal contact (Calabrese and Kenyon 1991, Stine, 1996 #304). Phenol is not classified a carcinogen in the EPA weight-of-evidence classification. It is a mutagen that most likely acts on DNA synthesis, replication and repair. Non-teratogenic effects were reported, including a decrease in fetal weight due to maternal exposure to phenol. Cancer was produced in animals through the skin route but it has not been associated with cancer in humans (Calabrese and Kenyon 1991). Toluene is not classified a carcinogen in the EPA weight-of-evidence classification. Although, studies in animals suggest, it may produce adverse effects in the fetus in Pregnant women. Exposure of animals to high concentrations have resulted in increased fetal hoot Xyle assoc whet teratt aCllV 127 fetal deaths, decreased weight, changes and delay in the skeletal development. It is not however considered teratogenic (Calabrese and Kenyon 1991; ATSDR 1993). Xylene is not classified as a carcinogen in the EPA weight-of-evidence classification. No associated cancer cases have been reported. The xylene isomers are not genotoxic, whether administred in combined form or individually. They are considered also non- teratogenic, although delayed development, decreased fetal weight, and altered enzyme activities were observed (Calabrese and Kenyon 1991). 7.5 Threshold No no-observed adverse effect level (N OAEL) or lowest observed adverse effect level (LOAEL) were proposed for reproductive toxicity due to benzene. However, NOAEL of 10 ppm for both maternal and fetal toxicity in rats has been suggested (Calabrese and Kenyon 1991; ATSDR 1992). At concentrations between 0.1 and 3 ppm of formaldehyde, irritation of the eyes, skin, nose and throat are observed. Slightly higher concentrations, around 5 ppm, result in coughing and chest tightness (asthmatic’s problem). More than 50 ppm can cause severe injury, and lead to pneumonia and pulmonary edema (Calabrese and Kenyon 1991). {Or 128 Based on systemic toxicity, OSHA has established a threshold limit value (TLV) for phenol of 0.024 ppm (0.009 mg/m3) for an 8-hour time-weighted average (TWA) (Calabrese and Kenyon 1991; ATSDR 1992). Based on systemic toxicity, the ACGIH has established a TLV for toluene of 0.38 ppm (1.4 mg/ m3) based on an 8-hour TWA (Calabrese and Kenyon 1991; ATSDR 1993). Based on systemic toxicity, the ACGIH has established a TLV for the combined isomers (o-, m-, p-) for xylene of 1.2 ppm (5.2 mg/m3) based on an 8-hour TWA (Calabrese and Kenyon 1991; ATSDR 1992). 7.6 Exposure to Multiple Compounds It is apparent that toxicity testing under realistic environmental conditions is a much more complex enterprise than determining the effects of a unique chemical on a unique specie under controlled laboratory settings. The insult to the total organism fi'om multiple compounds is difficult to assess. For example from a toxicological point of view, all carcinogens do not cause the same form of cancer. Thus, the burden from different chemicals should not be combined linearly without specific information that the same target organ is affected. None-the-less, one would expect that exposure to multiple compounds is a greater burden than to one compound and that, potentially, from a holistic point of view, the total impact is greater than the sum of the individual impacts. Al Ca llaj US We 129 References ATSDR (1992). Case Studies in Environmental Medecine, U.S.Departrnent of Health and Human Services. ATSDR (1993). Case Studies in Environmental Medecine, U.S.Department of Health and Human Services. Calabrese, E. J. and E. M. Kenyon (1991). Air Toxics and Risk Assessment. Chelsea, Lewis Publishers, Inc. Hayes, A. W. (1994). Principles and Methods of Toxicology. New York, Raven Press. U.S.EPA (1994). Instant EPA's Air Toxics. Austin, Texas, Instant Sources, Inc and Digital Liaisons. Wexler, P. (1995). TOXNET: An Online Resource for environmental and Toxicological Inforrmation. Chapter 8 Risk Characterization Risk characterization is a summary of the information gathered during the exposure and toxicity assessment to present qualitative and quantitative conclusions about the risk. The risk characterization should contain not only a risk estimate for a given exposure scenario but also a summary of the relevant biological information, the assumptions used and their limitations, and a discussion of uncertainties in the risk assessment (Paustenbach 1989). 8.1 Point Estimation of Cancerous and Non-cancerous Risk For low-dose cancer risk (smaller than 0.01), the quantitative risk for a single compound by a single route is calculated as (Hertz and Thomas 1983; U.S.EPA 1991): Risk = Intake x Slope Factor (8.1) Where Intake SIOpe factor — characteristic of the contaminant obtained from Integrated LADD calculated in the exposure assessment. Risk Information System, IRIS. For higher carcinogenic risk levels (greater than 0.01), the following equation is used: 130 131 Risk 1 - exp [-Intake x Slope Factor] (8.2) To describe potential non-carcinogenic effects occurring in individuals due to hazardous air pollutants, a noncancerous hazard quotient or hazard index (HI) is used instead of the risk expression. The EPA recommends the use of the following equation (Hertz and Thomas 1983; U.S.EPA 1991): Intake RfD HI= (8.3) where RfD = Reference Dose , mg/kg-day (RfC is used for inhalation) Risk interpretations from the hazard index are quite different from those of the cancer risk. While the latter is interpreted as a statistical probability, the former is a reference of the level of concern. The greater the value above the unity, the greater the concern. 8.2 Probabilistic Risk Evaluation As it is shown in Equations 8.1 and 8.2, the cancer risk value is derived from the product of two parameters. In the point estimate approach, a single value is assumed for each of them. For example the slope factor is the 95% upper confidence limit of the slope calculated from the dose response curve. Only a single, unique value (as opposed to a as I “'8. faet 8.3 n It] allPIt' the 0. We llple er en t 03 1h e Elma 132 PDF) is available due to the lack of information (slope factor literature review is available in chapter 7). A variety of intake values associated with different pathways and population ages as well as exposure duration were explored in the present research. A PDF for the “Intake” value was developed and, because there was no alternative, a point estimate of the “slope factor,” “RfC” or “RfD,” depending upon the compound, was used. Hence, rather than a single value of the risk corresponding to a certain exposure to the chemical, a range of risk values is given that describes the risk to the associated population with the specified pathway and route of exposure. 8.3 Total Integrated Risk In terms of risk evaluation, a value integrated over multiple chemicals is not always appropriate. One can not simply add the risk values of individual chemicals to calculate the overall risk. With the new risk assessment guidelines and the weight of evidence procedure (U.S.EPA 1997), a new approach to carcinogenic risk characterization is being implemented. This includes the idea that all chemicals act in the same fashion. Thus even though several chemicals may be shown to induce cancer, they don’t necessarily act on the same organ. For example, benzene and formaldehyde are both carcinogenic. Formaldehyde induces nasal cancer (Andjelkovitch, J anszen et al. 1995), while benzene causes leukemia (Hayes 1994). Thus, their residual cancer risk is not cumulative. hot for the] Dirt Ins lnon ll’l'i'et 133 On the other hand, considering the foundry as the only source in the risk evaluation without investigating possible other sources that might contribute to the atmospheric concentration at the ground level or in the indoor environment might lead to an underestimation of the hazard of some of these chemicals. It has been reported, for example, that homes, especially mobile homes, release pollutants such as formaldehyde into the indoor air. Formaldehyde is an indoor air pollutant of particular concern for houses with low indoor air exchange and urea-formaldehyde foam insulation (Stock 1987). Because individuals are inside their homes 60-75 percent of the time (Sexton, Liu et al. 1986), in-home concentrations are often the single best determinant of individual exposure. Concentrations of formaldehyde in indoor air ranged from 0.05 to 0.18 ppm in some studies (Sexton, Liu et al. 1986; Stock 1987). Thus, cumulative risk from indoor and outdoor formaldehyde exposure must be considered in future risk assessment. The same situation holds for benzene. Exposure from smoking, consumer products in the home, and personal activities such as driving or painting have been estimated to account for more than 80% of the nationwide exposure to benzene (Lioy 1990 304 ). It is, therefore, very important to recognize the potential contributions from other sources and perform exposure assessment for air pollutants within a frame that takes consideration of this issue. 8.4 Uncertainty Analysis Another key component of the risk characterization is the discussion and analysis of the uncertainty. There are a variety of ways of expressing uncertainty. In the classic point €511 mil bee: 11168 llfire. ltee large 1?qu: Stew ziE 134 estimate approach in describing the dose, a phrase such as “it is plausible that someone might absorb as much as 5 mg/kg-d” might be used to exposure uncertainty (Paustenbach 1989). A more rigorous analysis provides a distribution of exposure assessment. This may be expressed as a PDF, a CDF or a verbal description of the distribution such as “0.5% of the population might absorb as much as 5 mg/kg-d, 70% might absorb 0.5 mg/kg-d and 29.5% is likely to absorb less than 0.1 mg/kg-d” (Paustenbach 1989). The probabilistic risk assessment used in this research explicitly includes uncertainty because the final output is presented as a PDF. Thus, risk values incorporate both a measure of uncertainty and results from uncertainty in the input parameters. 8.5 Results And Discussion Risk values for the five identified chemicals were determined for different times during the day from 7:00AM to 11:00PM, and at different receptors (R1, R2, and R3). Results for both the case study resin binder, and the selected comparison binders are summarized here. The assessment for only the carcinogen benzene, and the noncarcinogen phenol for three particular scenarios for men are presented (see Table 8.1 and Table 8.2). Different target populations: children, women, and men were also examined and the assessment results are shown in Table 8.3. Detailed risk and HI results for all chemicals, different scenarios, and binders are available in Appendix J. The numbers in tables 8.1, 8.2 and 8.3 represent the mean values corresponding to distribution functions of the risk for the particular scenarios. 135 8-003 808.0 8.005 08000.0 0200-0288 8000.0 808.0 8000.0 8008 .0 200280.. 00.2 00.0000 8-08.0 00-0000 0808.0 .808... . can“. 8-08.0 8-08.0 8-08.0 000.800 000.850. 80202 00.080 00.0000 8-08.0 8008.0 0050 50902 8.020 8.080 8-00.0.0 08000.0 .000 8.08.0 8005 8-000.? 000000 .0 __o 28 8.080 8-0000 8-08.0 00008 .0 0:00. 520 8-08. F 8-000.» 8000.0 00 88.0 603: . 2.820 8-0000 8-0000 8.0.8.0 8080 .0 20505. 2.220 00-00: 8090 8-0000 0088.0 9.082. 2.820 8-000.. 8-08.0 8-0 0 E 00 008.0 .0050 0000 0620 0000 co: 00:3 :0: :00 :3 .2000 020250 080 000 000080.00 00E 08:. gm aim co c000m mm SERBM 00 :02 00-0 :28ng 000N00m Bob 03¢ :05 cc SHEEN 070% 0005.0 mm 0300- 136 00-000. 0 00-00 _.. F 00-mvw. 0 000000 .0 00000-00806 8-08.0 8.08.0 8000.0 200000 0080080.. 0.0.2 00-0000 00-0000 00-0000 0000000 x0000: . 0050 00-0000 8-08.0 00-0000 080000 500-0050. 08202 00-000., 8-08.0 00-08; 00080.0 850 000002 00-03.. _. 00-03. F mo.m~ _.. 0 0023 .0 :05 00.00.00” moflnmd 00-000N 00.0000 .0 =0 0000 00-0000. 00-0000 00-030 000000 .0 0000. c0000 mo-mwmd mo-mmoe 00-0050 ovmvmmd x0000: . 2.00000 mo-mmNN mom-No... mo-mwn. F 9&va .0 000505. 2.0005 00-0000 00-0000 00-0000 000000 .0 9.0002. 2.0020 8-0000 8-08.0 8-0 00.0 00080.0 .850 580 >020 .800 :0... :23.— 000-05. :0: :00 :5 20.00.20 080 .00 8.05.000 0.0.0 0800-050 020 8 0080 8 09080.0 00 80228 3800 880 080050 8008000 E S 2000 137 00-mNnK moflucd m9m~md 30 0.500 9 x21 =an mofiaod 0?mm 0.0 vac-mafia «a: 000> :0! 09m 36 mafia-n “mo-man.” ram 7th —. 80.x =Eo>0 vo-mmo. —. 06¢va 00-m0 v.» 30 r 30> cos—o; “ya-mau- _. Smaad may-mix _. 30 0.500 _. 0.0.x =Ea>O 0°..an _. Aha-mu? —. mo-m _. w. _. v00 —. 30> cos—v.30 in. S. in” '5: 8:238 :02 0.5 £2220 .5803 .80 2 Hammond 00 sown—0:5 «Baum 80¢ GEM “ED .5 mofifiwmm me .5280 .00 0850800 ma 030-0 138 These distributions are all lognorrnal as shown in the example of Figure 8.1 As it can be seen from these numbers, the case study resin produces a risk similar to the one produced by Silicate-'-Ester. Results from other binders show a potential risk reduction up to 60% by using an alternate binder such as Furan 'HotBox instead of the current binder. This is based, of course, on the potential emissions. Other factors have to be considered to determine if such an alternative is feasible. While all risk values are in the range of acceptable risk 1045 to 104, it is important to note that only the residual risk from exposure to a single chemical, in a single medium, and through a single route was considered in this study. Thus, cumulative effects from other sources, and other chemicals can lead to increased cancer risk values that could exceed the acceptable value. Risk values for different populations did not show major variability. Children’s risk was lower due to the shorter exposure time in comparison to the adult exposure time. A slight difference was also observed between women and men and that was due to the difference in body weight. The Figure 8.1 illustrates the risk distribution function for benzene averaged over the five years of meteorological data for production that started at 7:00AM. The risk distribution was fitted to a log-normal distribution that was characterized by a mean of 7 E-OS and a 95% value of 2.5 E-O4. For comparison purposes, the EPA point estimate risk value was 139 85%? 888m E sausage “Ex 3 Baa L: «Wu H Jug gma calc mic Cur yea} l03 8.( Va (“T—7 140 calculated. It was about 6 E—O4 as shown in Equation (8.4). This value was more than twice as big as the 95th percentile of the risk resulteing from the probabilistic approach. (527;g/rrf)-(2(h1’ /h)-(365d95/y)-(40y)-(24hs/dcy) _, _, 4, - 2910 / . =5.9910 8.4 (70kg)°(70m)-(365rb}s/)r) ( (’3 kg‘by) ) ( ) Cumulative distribution functions are also plotted separately on the same graph for each year from 1987 to 1991 to show the impact of the meteorological variation from one year to another on the risk values (Figure 8.2). 8.6 Risk Sensitivity To Exposure Factors As mentioned before, exposure assessment efficiency and accuracy depend largely on the choice of the key factors involved and their representative distributions. Selecting one distribution rather than another will probably affect the results. Therefore, a sensitivity analysis was carried out to determine the key factors that have the most impact on the risk values. This will allow for future exploration of the influence of different distribution functions on the risk. The tornado graph shown in Figure 8.3 gives a sense of the magnitude of the sensitivity of the risk to each of these factors. The sensitivity analysis uses either a multivariate regression or a rank order correlation, which are both linear. The sensitivity results showed a strong correlation of the risk with the exposure duration, ED, with a coefficient higher than 0.9. The second highest correlation is with the inhalation rate, IR, third is the exposure time, ET, and the fourth is the body weight, BW. This ranking suggests the parameters that should be focused on in future investigations, and for which more elaborate sensitivity analysis should be performed to study their impact on the risk evaluation. 141 33 8 53 88m oaunaom no.“ xma 0333850 N.” 85E 142 .0;ng 038%.“.me £9393. bSEmcom m.» 0am.» cmELE ,,, Ow H: Li( Pal Se) $10 US US 143 References Andjelkovitch, D. A., D. B. Janszen, et al. (1995). “Formaldehyde Exposure Not Associated with Cancer of the Respiratory Tract in Iron Foundry Workers.” Chemical Industry Institute of Toxicology (CHT) 15(7): 1-9. Hayes, A. W. (1994). Principles and Methods of Toxicology. New York, Raven Press. Hertz, D. B. and H. Thomas (1983). Risk Analysis and its Applications. Chichester . New York . Brisbane . Singapore, The Pitman Press Ltd. Lioy, P. J. (1990). “Assessing total human exposure to contaminants.” Environ. Sci. Technol. 24(7): 938-945. Paustenbach, D. J. (1989). Risk Assessment of Environmental and Human Health Hazards: A Textbook of Case Studies. Alameda, John Wiley & Sons. Sexton, K., K. S. Liu, et al. (1986). “Formaldehyde Concentrations Inside Private Residences: A Mail-Out Approach to Indoor Air Monitoring.” Journal of the Air Pollution Control Association 36(6): 699-704. Stock, T. H. (1987). “Formaldehyde Concentrations Inside Conventional Housing.” JAPCA 37(8): 913-918. U.S.EPA (1991). Risk Assessment Guidance for Superfund - Human Health Evaluation Manual(Part B, Development of Risk-based Preliminary Remediation Goals). Washington DC., EPA. U.S.EPA, Ed. (1997). Integrated Risk Information System. Chapter 9 Risk Assessment Techniques as a Tool for Selecting Pollution Prevention Alternatives 9.1 The Decision Making Process A rational approach to decision making is based on an educated, documented, open judgment. Most importantly, the process of decision making must be explicit and communicable, objective and self-correcting, and verifiable and reproducible (Baird 1989) The minimum critical steps in decision making are: 0 Definition of the problem; 0 Listing of options; 0 Definition of criteria; 0 Analysis of the options; a Choice of course of action. 9.1.] Difficulty in Decision Making Some decisions cannot, of course, be reduced to simple deterministic algorithms. In some cases, the number of solution alternatives may be infinite, and consideration of all 144 145 options is, hence, impossible. Also, multiple objectives to be achieved as an outcome to the process might be difficult to weigh, in particular the ones that are in direct conflict with others. Ofien, more than one decision maker is involved in the process and this raises the problem of group dynamics and interpersonal relationships. On the other hand, what is “ best” for one individual, one organization, or one society is not necessarily best for others. Finally, a “good” judgment is still based on the information available to the decision maker and might not be the “correct” one based on the outcome of the decision. Therefore, any decision should remain open to verification and correction (Lindley 1985; Baird 1989). 9.2 Decision Making Under Uncertainty A decision problem occurs whenever there is a choice between at least two courses of action. Having all the information regarding decision choices does not lead, necessarily, to making the right decision, because decisions are based on judgments (Lindley 1985). It is a precept of decision making that a more educated choice results when a good knowledge of the risk involved is available. The natural reaction of decision makers to uncertainty is to acquire more information to minimize as much as possible these uncertainties. The problem, however, is how much it costs to obtain the information and how useful this knowledge will be in reducing the uncertainty. 146 One of the most valuable benefits of the probabilistic risk approach is the broad range of choices that this method can give to the decision maker. With a better description of the risk and the different factors that impact on its value, it is possible to consider different options instead of merely a “yes” or “no” to a particular scenario. A risk PDF allows not only an assessment of the range of importance but also provides a symbolic measure of the risk. An essential goal in decision making is to choose an action that can be carried out. It is rather useless to select an option that can not be realized. Hence, feasibility is an essential factor to consider in decision making. Feasibilty may reflect the availability of monetary or technical resources or the chance of public acceptance. 9.3 Application of Risk Assessment to the Selection of a Resin Binder The following discussion outlines the “critical steps in decision making” for applying risk assessment to the selection of a binder that minimizes atmospheric pollution from VOCs. 9.3.1 Definition of the Problem As one may note from the investigations reported in previous chapters, alternative means of reducing the risk from the air emissions from the casting process have been examined. Some of these options, such as schedule alternation and stack height alteration, do not 147 prevent pollution but only redistribute the pollutants so that the risk is reduced. For the selection of pollution prevention alternatives the “problem definition” must be narrowed. The simple statement of the problem is: “how can the foundry prevent pollution of the air by emissions from the casting process?” For the purpose of this research, the problem is bounded, that is to say: “of the pollution prevention alternatives, based on risk, which is the most desirable?” The problem is further bounded, from an outsiders point of view, in that the alternatives for pollution prevention are restricted to the selection of resins from those commercially available. Reforrnulations or new formulations, innovative casting techniques, new metals (such as aluminum), etc. are beyond the purview of this work. 9.3.2 Listing of Options Under the bounded problem definition, the options for pollution prevention are limited to the 19 binder formulations commercially available. Of these, the risks of only eleven could be analyzed because of the availability of data. These alternative resins and their estimated emissions are listed in Table 9.1. 9.3.3 Definition of Criteria Although the criteria for selection of a resin include such things as the type and size of the cast, the characteristics of the sand, and the cost, the bounded problem for this research limits the criteria to selection of the resin that minimizes the total inhalation risk. _ cannem .53 148 _ .5<._ _ :o nouns mcicam e _ F _ _ o n J m _ 2 _ _ 3 _ _ a _ _ N _ _ k _ has 3... 3.6 an." and ms... 2.6 and mad mmfi mud nlmd 2.6 no.” 2:. an.” N6 1 $6 5..." 3...” ooodmm oomfimm oow.mmm 80de 08de oowfimm 09.3% 806% oowdmm ooofiwm ownd coma on; 856 8nd 85w 8nd comm oofim 8nd a... :6 o6 oé a.“ a.“ A: o... o6 o6 En :n In In Zn In In En En tn <8; <8... 3.: $0.. 3.: $94 $99 $9? $9.. 3.: $mé ”Wm; «had $99 «a $96 $97-. $o.u .xbé 39' Quannd Tush». nfluuud Wuhan anuod 7!. r to «fine... p N.w «N v. _. ”flowed «.mmvné Tmoumd «.m. run; «.msoué Yuan.» Qua»; .> 5021.. > thlefixvxmzmumk. “If \coh ubfimamo :22 .322 a z E: omsufyxwzeu $83 $33 383 «was.» $93 $83 $83 $83 $03.0 $5.8m 2.3.8 $82 $82 $83 $93 38$ 38$ 39? E83 E83 383 .25.... $8; $83 38mm 380... E83 $2: $85 m-mooo.n 383 $8: 2353 $8; $83 $83 $83 $5.... $83 385 ES? 383 $8: 2.2%.: E83 $83 $83 383 E23 383 $83 $83 383 $83 0152253. 323 "Mung 7356 $83 $83 35: ESE 383 «.52. $83 2523 Xmoz_-£ bcwc_EmEoo-n_ .233 2>> 928“. 862:5 wa chose 9.0% Part II is 1-5% Naphthalene by weight ===> chose 5.0% Therefore, the initial amount of naphthalene available should be: 163 23.82*(.09)= 2.14lb/hr 23.75*(o.05) = 1.19 lb/hr 5. Pouring operation was selected for HAP emission analysis within the mass balance 6. Percent evaporation, percent reaction, and percent remaining in core information is only available for the stage where the sand is mixed with the binder. The following was obtained for naphthalene from a Form R reporting of foundry binder chemicals (AF S, 1 995). Partl(2.14lb/hr) Part II (1.19lb/hr) 0% reacts 0% reacts 50% evaporates 50% evaporates 50% remains in core 50% remains in core There, the amount of naphthalene entering the pouring operation is what remains in the core. For the two parts: 2.14(.5) + 1.19(.5) = 1.67 lb/hr 7. In determining how much of this remaining naphthalene will enter the air as a HAP during pouring, the worst case is to assume 100% volatilization. However, it was assumed that the Universal Treatment Standard amount of naphthalene remained in the sand for disposal. Universal Treatment Standard (5.6 x10—6 lb naphthalene/lb sand) (3665 lb Sand/hr) = 0.021 lb naphthalene/hr There , 1.67 - 0.021 = 1.65 lb/hr of naphthalene is assumed to volatilize during pouring. 8. This 1.65 lb/hr is to be captured by a hood with a variable capture efficiency, u, with an air flow rate of Q = 25,000 fi3/min. 9. The amount captured, 1.65*u, is assumed to be controlled with a variable control efficiency, 13. 10. The amount of naphthalene emitted from the stack as a HAP from the pouring operation is then Mout*u*(l-B) lb/ft3 air. 1 1. The foundry operates 16 hours a day, 5 days a week, and 260 days a year 164 POURING PROCESS All values are on an hour basis Sand: Sin = Sout = 3665 lbs Nap = Naphthalene 1.65*C*( l -T) 1.65*C*T I Control Device 1.67 lb Nap. Evap. 1.65 (l-C) 4 1. 65*C f t 1.65 lb Nap. Evap. 3.33 lb Nap. Core Making 1.67 lb Nap. remains Pouring ’ Process process Sin ¢ 0.02 lb Nap. with Sout (to landfill) 165 Table 1 Effect of Varied Capture Efficiency on yearly Emissions HAP Emission Capture Control Foundry Stack During Efficiency Efficienccy Operation Emission Pouring Schedule of HAP (lb/hr) % % (hrs/year) (tons/yr) Naphthalene 1.65 50% 95% 4160 0.0858 1.65 60% 95% 4160 0.1030 1.65 70% 95% 4160 0.1201 1.65 80% 95% 4160 0.1373 1.65 90% 95% 4160 0.1544 1.65 100% 95% 4160 0.1716 Figure 2 Yearly Naphthalene Stack Emissions Stack Emlsslons from the Pourlng stage 3 0.1800 7; 0.1600 . y g.“- 0.1400 - «a 'saLOJZOO : ==l§°i°°° 33:» 0.0800 . 3.... 0.0600 -, . , - :5 0.0400 E 0.0200 .3 0.0000 50% 70% 80% 90% 100% Naphthalene emltted [tons/year] APPENDIX B 166 Appendix B BPIP File Structure for Downwash Calculations Buildings considered in the BPIP calculations were multitiered. Each tier corner's location was identified by a pair of X - and Y - Cartesian or respective UTM coordinates. Each stack or source structure name used was the same name as used for the source emissions data in the respective ISC3 input runstream. The ISC3 programs restrict the stack or source name to a maximum 8 characters and so does BPIP. A stack base elevation and stack height were determined for each stack along with its X - and Y - Cartesian or UTM Easting and Northing coordinates. The direction for UTM 'north' is assumed to be the same as True North, but there can be a slight difference that the user can adjust for by setting a value other than 360.0 for 'plant north'. The case study plant plots are not oriented to True North. The direction of 'plant north' was determine with respect to True North. BPIP will adjust the plant coordinates to True North coordinates after any UTM adjustments are made but before any GEP processing begins. Once this data has been determined, an input file to BPIP was written (Table 5.1a) Data entry is in 'Free F orrnat'. 'Foundry Building' 081‘! 'METERS' 1.0 'UTMY‘ 105.5 2 'L - Blg' 1 10.0 8 8.9 78988.27 79045.96 79027.74 79031.94 78993.47 78972.68 78990.86 78935.80 's -Blg' 1 6 5.0 78661.08 78661.08 7891 1.86 7891 1.86 78934.17 78934.17 13 1465971 . l 7 146589787 146587918 146587503 1465835 .05 146585582 146586864 146592258 10.0 146588845 1465821.70 146581 1.16 146589881 146589881 146588799 Table 5.1a Input file for BPIP calculations 'FFF5845’ 18.90 25.91 78988.27 1465971.l7 'FFF5946' 18.90 22.86 79045.96 146589787 'FFF6047' 18.90 22.86 79027.74 1465879.]8 'FSC1953' 3.96 39.01 78990.86 146586864 'FSC2155' 3.96 39.01 78942.40 146591551 'FSC2256' 3.96 39.01 78950.84 146592435 'FEF5437' 18.9 21.95 78992.81 146595439 'FEF5640' 18.9 21.34 78985.52 1465927.83 'FSC2783' 16.76 19.51 78983.10 146592539 'FEF2094' 13.11 22.86 78982.36 146592601 'FEF1774' 9.14 14.94 78999.81 146592028 'FSC3199' 13.11 19.51 78992.55 146592028 'FSC32100'13.11 20.12 78993.86 1465921.74 0 lull? BPI} incrcI proce value definj is set 1 14513 param InitialP MB MT MT MS] ML 8P0,” Was “T11 N0OPE: 168 Initial Program Settings BPIP has been programmed with parameters that the user can set to accommodate increases in the number of structures, tiers per structure, or stacks that need to be processed without changing the dimensions of over two dozen arrays. The parameter values are arguments in PARAMETER statements that are located shortly afier the definitions in the main program and at the beginning of each subroutine. Initially, BPIP is set up to process a maximum of 8 buildings with a maximum of 4 tiers per building and 14 stack locations. In order to change the dimensions of these variables, the following parameters need to be changed: lnitialParameter Definition Setting 0 MB Maximum Number of Buildings 8 0 MT Maximum Number of Tiers/Building 4 o MBT Maximum Building-Tier Number (MB*MT) 32 o MTS Maximum Number of Sides/Tier 8 - MSK Maximum Number of Stacks 14 0 MD Number of Sectors - ISCST2 36 0 ML Number of Sectors - ISCLT2 16 BPIP will need to be recompiled after changing any one of the above parameters. BPIP was written to F ortran 77 standards and compiled with Microsoft's Fortran 5.0 compiler. No OPEN statements were used in the source code. Execution of BPIP 0m The‘ BPU 3m BPIP 1 data SL lSCSl file see Which : 169 Once the input file has been prepared and saved to disk, BPIP is ready to be executed. The execution line is as follows: BPIP input_filename output_filename summary_filename BPIP output files and formats BPIP runs generate two output files. A primary output file contains the essential output data such as the preliminary GEP stack height values and the BH and PBW for an ISCST2 or ISCLT2 input runstream file. This file is considered to be the primary output file see Table 5. A second file is a summary file and it contains detailed output such as which tier(s) are affecting which stack for a particular wind flow direction (Table 5.1b). 170 Table 5.1b BPIP Output file BPIP (Dated: 95086) DATE : 3/ 5/97 TIME : 23:13:52 Foundry Building BPIP output is in meters SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5845 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FFF5845 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FFF5845 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FFF5845 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDWID FFF5845 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FFF5845 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FFF5845 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FFF5946 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FFF5946 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FFF5946 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FFF5946 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDWID FFF5946 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FFF5946 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FFF5946 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDHGT F FF6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F F F6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F F F6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F FF6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F FF6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F FF 6047 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FFF6047 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FFF6047 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID F FF6047 SO BUILDWID FFF6047 SO BUILDWID FFF6047 SO BUILDWID FFF6047 SO BUILDHGT FSC1953 SO BUILDHGT FSC1953 SO BUILDHGT FSC1953 SO BUILDHGT FSC1953 SO BUILDHGT FSC1953 SO BUILDHGT FSC1953 SO BUILDWID F SC1953 SO BUILDWID F SC1953 SO BUILDWID F SC1953 SO BUILDWID FSC1953 SO BUILDWID F SC1953 SO BUILDWID FSC1953 SO BUILDHGT F SC21 55 SO BUILDHGT FSC2155 SO BUILDHGT F SC21 55 SO BUILDHGT FSC2155 SO BUILDHGT FSC2155 SO BUILDHGT FSC2155 SO BUILDWID FSC2155 SO BUILDWID FSC2155 SO BUILDWID FSC2155 SO BUILDWID FSC2155 SO BUILDWID FSC2155 SO BUILDWID FSC2155 SO BUILDHGT FSC2256 SO BUILDHGT FSC2256 SO BUILDHGT FSC2256 SO BUILDHGT F SC2256 SO BUILDHGT F SC2256 SO BUILDHGT FSC2256 SO BUILDWID FSC2256 SO BUILDWID FSC2256 SO BUILDWID F SC2256 SO BUILDWID F SC2256 SO BUILDWID FSC2256 SO BUILDWID FSC2256 110.49 135.99 84.08 1 10.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 110.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 110.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 110.49 171 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 rn (A (,5 rn_m 'A " (I? mmmmmmmmrnrnrnrn 172 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5437 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FEF5437 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FEF5437 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FEF5437 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDWID FEF5437 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FEF5437 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FEF5437 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF5640 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FEF5640 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FEF5640 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FEF5640 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDWID FEF5640 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FEF5640 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FEF5640 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FSC2783 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FSC2783 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FSC2783 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FSC2783 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDWID FSC2783 135.99 135.29 130.48 121.71 109.23 93.44 SO BUILDWID FSC2783 84.08 88.79 99.55 107.28 111.76 112.84 SO BUILDWID FSC2783 110.49 106.16 102.48 113.84 125.10 132.56 SO BUILDHGT FEF 2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT F EF2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF 2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF 2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDHGT FEF 2094 8.90 8.90 8.90 8.90 8.90 8.90 SO BUILDWID FEF2094 SO BUILDWID FEF2094 SO BUILDWID FEF2094 SO BUILDWID FEF2094 SO BUILDWID FEF2094 SO BUILDWID FEF2094 SO BUILDHGT FEF1774 SO BUILDHGT FEF1774 SO BUILDHGT FEF1774 SO BUILDHGT FEF1774 SO BUILDHGT FEF1774 SO BUILDHGT F EF1774 SO BUILDWID F EF1774 SO BUILDWID F EF1774 SO BUILDWID FEF 1774 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT F SC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDWID FSC3199 SO BUILDWID F SC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 SO BUILDWID F SC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 135.99 84.08 110.49 135.99 84.08 110.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 1 10.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 110.49 8.90 8.90 8.90 8.90 8.90 8.90 135.99 84.08 110.49 135.99 84.08 110.49 173 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 135.29 130.48 121.71 109.23 93.44 88.79 99.55 107.28 111.76 112.84 106.16 102.48 113.84 125.10 132.56 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 8.90 APPENDIX C NOTE: MET IS INCLUDE ‘ > as (5 U ('1': *1 W)» a O ”7171 STAE CATE .7000OE -700001 .IOOOOE ~150001 .35000E .55000E STAB CATE -00000E -OOOOOE ’OOOOOE. ~000005. NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT 174 Appendix C Sample of Meteorological Data PROCESSED BETWEEN START DATE: 9] / l /1 I] AND END DATE: 91/ 12 /31/ 24 IS INCLUDED IN THE DATA FILE. mmg0w> mmonw> m UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES m (METERS/SEC) 1.54, 3.09, 5.14, 8.23, 10.80, *" WIND PROFILE EXPONENTS *" STABILITY WIND SPEED CATEGORY CATEGORY 1 2 3 4 5 6 .70000E-0 1 .70000E-01 .70000E-01 .70000E-0 1 .70000E-0 1 .70000E-01 .70000E-01 .70000E-01 .70000E-01 .70000E-01 .70000E-01 .70000E-01 . 10000E+00 . 10000E+00 . 10000E+00 . 10000E+00 . 10000E+00 . 10000E+00 .15000E+00 .15000E+00 .15000E+00 .15000E+00 .15000E+00 .15000E+00 .3 5000E+00 .35000E+00 .35000E+00 .35000E+00 .35000E+00 .35000E+00 .55000E+00 .55000E+00 .55000E+00 .55000E+00 .55000E+00 .55000E+00 *** VERTICAL POTENTIAL TEMPERATURE GRADIENTS "* (DEGREES KELVIN PER METER) STABILITY CATEGORY .00000E+00 .00000E+00 .00000E+00 .00000E+00 .20000E-0 1 . 35000E-0 1 1 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .20000E-0 1 .3 5000E-0 1 WIND SPEED CATEGORY 2 3 4 5 6 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .OOOOOE+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .20000E-0 l .20000E-0 1 .20000E-0 1 .35000E-01 .35000E-01 .3 5000E-01 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .20000E-0 l .35000E-01 M —_l. FILE: I SURF‘ LENGTH 21' YEAR MONT (mmrHR) 175 *** THE FIRST 24 HOURS OF METEOROLOGICAL DATA *" FILE: C:\AC\SIMULA~1\MET1\MBS91_T.TRI SURFACE STATION NO.: 72639 NAME: UNKNOWN YEAR: 1991 FORMAT: UNFORM UPPER AIR STATION NO.: 14826 NAME: UNKNOWN YEAR: 1991 FLOW SPEED TEMP STAB MIXING HEIGHT (M) USTAR M-O LENGTH Z-O IPCODE PRATE YEAR MONTH DAY HOUR VECTOR (M/S) (K) CLASS RURAL URBAN (M/S) (M) (M) (mm/HR) 91 1 1 1 351.0 4.63 264.3 4 742.9 742.9 .0000 .0 .0000 0 .00 91 1 1 2 8.0 4.63 265.4 4 729.9 729.9 .0000 .0 .0000 O .00 91 1 l 3 24.0 4.12 265.9 4 716.9 716.9 .0000 .0 .0000 0 .00 91 1 1 4 23.0 5.66 265.9 4 703.9 703.9 .0000 .0 .0000 0 .00 91 1 1 5 13.0 5.66 265.9 4 691.0 691.0 .0000 .0 .0000 0 .00 91 1 1 6 22.0 6.17 265.9 4 678.0 678.0 .0000 .0 .0000 0 .00 91 1 1 7 15.0 5.14 266.5 4 665.0 665.0 .0000 .0 .0000 O .00 91 1 1 8 13.0 3.09 267.0 5 652.0 426.0 .0000 .0 .0000 0 .00 91 1 1 9 347.0 3.60 266.5 4 74.1 445.1 .0000 .0 .0000 0 .00 91 l 1 10 1.0 5.14 267.6 4 174.1 470.9 .0000 .0 .0000 0 .00 91 l 1 11 354.0 5.14 268.7 4 274.0 496.7 .0000 .0 .0000 0 .00 91 1 1 12 346.0 6.17 269.3 4 374.0 522.4 .0000 .0 .0000 0 .00 91 1 l 13 3.0 6.17 270.9 4 474.0 548.2 .0000 .0 .0000 0 .00 91 1 l 14 9.0 4.12 270.9 4 574.0 574.0 .0000 .0 .0000 0 .00 91 1 l 15 32.0 5.66 272.6 4 574.0 574.0 .0000 .0 .0000 0 .00 91 l l 16 24.0 6.69 272.0 4 574.0 574.0 .0000 .0 .0000 0 .00 91 l l 17 1.0 4.12 271.5 4 574.0 574.0 .0000 .0 .0000 0 .00 91 1 1 18 27.0 5.14 271.5 4 579.5 579.5 .0000 .0 .0000 0 .00 91 l 1 19 54.0 6.17 272.0 4 585.4 585.4 .0000 .0 .0000 0 .00 91 1 1 20 57.0 4.63 272.0 4 591.2 591.2 .0000 .0 .0000 0 .00 91 1 l 21 80.0 2.06 271.5 4 597.1 597.1 .0000 .0 .0000 0 .00 91 1 1 22 92.0 5.14 272.6 4 603.0 603.0 .0000 .0 .0000 0 .00 91 1 l 23 80.0 4.12 272.6 4 608.9 608.9 .0000 .0 .0000 0 .00 91 1 1 24 100.0 5.66 272.0 4 614.7 614.7 .0000 .0 .0000 O .00 APPENDIX D 176 Appendix D Sample of Dispersion Simulations Input File ISCST3 - (DATED 96113) IBM-PC VERSION (3.04) ISCSTBR Run Began on 2/21/1998 at 10:21:11 " BREEZE AIR ISCST3 - C:\AC\SIMULA~1\SIM\FULL\FULL91.DAT " Trinity Consultants Incorporated, Dallas, TX CO STARTING CO TITLEONE TRIAL CO MODELOPT DFAULT CONC RURAL CO AVERTIME 24 ANNUAL CO POLLUTID BENZENE CO TERRHGTS FLAT CO RUNORNOT RUN CO FINISHED SO STARTING SO ELEVUNIT METERS SO LOCATION FFF5845 POINT 78971.8 14659508 18.9 " SRCDESCR POURINGI SO LOCATION FFF5946 POINT 78967.02 146594984 18.9 ‘”" SRCDESCR COOLINGll SO LOCATION FFF6047 POINT 78964.3 14659464 18.9 " SRCDESCR COOLING12 SO LOCATION FSC1953 POINT 78958.68 14659388 3.96 " SRCDESCR SHAKEOUTII SO LOCATION FSC2155 POINT 78963.3 146593983 3.96 “ SRCDESCR SHAKEOUT12 SO LOCATION FSC2256 POINT 78965.25 146593783 3.96 " SRCDESCR SHAKEOUT13 SO LOCATION FEF5437 POINT 78992.81 146595489 18.9 " SRCDESCR POURING-RMIP2 SO LOCATION FEF5640 POINT 78985.52 1465927.83 18.9 " SRCDESCR MAIN PURING2 SO LOCATION FSC2783 POINT 78983.1 146592589 16.76 “ SRCDESCR COOLINGZ SO LOCATION FEF2094 POINT 78982.36 146592601 13.11 " SRCDESCR SHAKEOUT2 SO LOCATION FEF1774 POINT 78999.81 146592028 9.14 ‘”" SRCDESCR MAIN POURING3 SO LOCATION FSC3199 POINT 78992.55 146592028 13.11 " SRCDESCR SHAKEOUT3 SO LOCATION FSC32100 POINT 78993.86 1465921.74 13.11 ” SRCDESCR COOLING3 SO SRCPARAM FFF5845 8.681209E-02 25.91 302.5889 26.68 1.22 SO SRCPARAM FFF5946 6.205366E-01 22.86 310.9278 8.98 1.07 SO SRCPARAM FFF6047 6.205366E-01 22.86 310.9278 12.14 1.07 SO SRCPARAM FSC1953 1.319192E-01 39.01 310.9278 16.9 1.07 SO SRCPARAM FSC2155 1.319192E-01 39.01 310.9278 16.98 1.22 SO SRCPARAM FSC2256 1.319192E-01 39.01 310.9278 16.98 1.22 177 SO SRCPARAM FEF5437 1.335578E-02 21.95 302.5889 49.7 0.76 SO SRCPARAM FEF5640 1.335578E-02 21.34 302.5889 21.83 1.22 SO SRCPARAM FSC2783 3.817736E-01 19.51 310.9278 16.17 1.22 SO SRCPARAM FEF2094 1.215880E-01 22.86 373.15 17.25 0.91 SO SRCPARAM FEF1774 1.335578E-02 14.94 302.5889 19.41 1.22 SO SRCPARAM FSC3199 6.079398E-02 19.51 310.9278 16.17 1.22 SO SRCPARAM FSC32100 1.908868E-01 20.12 310.9278 10.11 1.22 SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID F FF5946 F FF5946 FF F5946 FFF5946 F FF5946 F FF5946 F FF 5946 F FF5946 FFF 5946 FFF5946 F F F5946 FFF5946 F SC 1 953 FSC1953 FSC1953 F SC 1 953 FSC1953 FSC1953 FSC 1953 FSC1953 F SC 1 953 FSC1953 FSC1953 FSC1953 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 FSC2155 F SC2256 FSC2256 F SC2256 F SC2256 F SC2256 F SC2256 FSC2256 FSC2256 F SC2256 FSC2256 FSC2256 F SC2256 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDWID SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDHGT SO BUILDWID FEF5437 FEF5437 FEF5437 F EF5437 FEF5437 FEF5437 FEF5437 FEF5437 F EF5437 FEF5437 F EF5437 FEF5437 FEF5640 FEF5640 FEF5640 FEF5640 FEF5640 FEF5640 F EF5640 FEF5640 FEF5640 FEF5640 F EF5640 FEF5640 FSC2783 F SC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FSC2783 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF2094 FEF] 774 FEF 1774 FEF 1774 FEF1774 FEF 1774 FEF1774 FEF1774 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 178 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDWID FEF1774 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDHGT FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDWID FSC3199 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDHGT FSC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 SO BUILDWID F SC32100 SO BUILDWID FSC32100 SO BUILDWID FSC32100 SO EMISFACT FFF5845 SO EMISFACT FFF5845 SO EMISFACT FFF5845 SO EMISFACT FFF5845 SO EMISFACT FFF5946 SO EMISFACT FFF5946 SO EMISFACT FFF5946 SO EMISFACT FFF5946 SO EMISFACT FFF6047 SO EMISFACT FFF6047 SO EMISFACT FFF6047 SO EMISFACT FFF6047 SO EMISFACT FSC1953 SO EMISFACT FSC1953 SO EMISFACT FSC1953 SO EMISFACT FSC1953 SO EMISFACT FSC2155 SO EMISFACT FSC2155 SO EMISFACT FSC2155 SO EMISFACT FSC2155 SO EMISFACT F SC2256 SO EMISFACT FSC2256 SO EMISFACT FSC2256 SO EMISFACT FSC2256 SO EMISFACT FEF5437 179 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 135.98 135.28 130.47 121.69 109.22 93.43 84.09 88.79 99.55 107.28 111.76 112.84 110.49 106.17 102.48 113.83 125.09 132.55 HROFDY 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY 0.6205 HROFDY 0.6205 HROFDY 0.6205 HROFDY 0.6205 HROFDY 0.6205 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 HROFDY 0.1319 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 HROFDY 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 HROFDY 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 HROFDY 0.1319 0.1319 0.1319 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.08681 0.6205 0.6205 0.6205 0.6205 0.6205 0.6205 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 0.1319 HROFDY 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 SO EMISFACT FEF5437 HROFDY 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISF ACT SO EMISFACT SO EMISFACT SO EMISF ACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT SO EMISFACT FEF5437 F EF5437 FEF5640 FEF5640 FEF5640 FEF5640 FSC2783 FSC2783 F SC2783 FSC2783 FEF2094 FEF2094 FEF2094 FEF2094 FEF 1 774 FEF 1 774 FEF I 774 FEF 1 774 FSC3 199 F SC3 199 FSC3 199 FSC3 199 HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY HROFDY 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.38177 0.38177 0.38177 0.38177 0.12159 0.12159 0.12159 0.12159 0.01336 0.01336 0.01336 0.01336 0.06079 0.06079 180 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.38177 0.38177 0.38177 0.38177 0.38177 0.38177 0.38177 0.38177 0.12159 0.12159 0.12159 0.12159 0.12159 0.12159 0.12159 0.12159 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.06079 0.06079 0.06079 0.06079 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.38177 0.38177 0.38177 0.38177 0.12159 0.12159 0.12159 0.12159 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.38177 0.38177 0.38177 0.38177 0.12159 0.12159 0.12159 0.12159 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.06079 0.06079 0.06079 0.06079 0.06079 0.06079 0.01336 0.01336 0.01336 0.01336 0.01336 0.01336 0.38177 0.38177 0.38177 0.38177 0.12159 0.12159 0.12159 0.12159 0.01336 0.01336 0.06079 0.06079 0.06079 0.06079 0.06079 0.06079 HROFDY 0.06079 0.06079 0.06079 0.06079 0.06079 0.06079 SO EMISFACT SO EMISF ACT FSC32100 HROFDY 0.19089 0.19089 0.19089 0.19089 0.19089 0.19089 FSC32100 HROFDY 0.19089 0.19089 0.19089 0.19089 0.19089 0.19089 SO EMISFACT FSC32100 HROFDY 0.19089 0.19089 0.19089 0.19089 0.19089 0.19089 SO EMISFACT FSC32100 HROFDY 0.19089 0.19089 0.19089 0.19089 0.19089 0.19089 SO SRCGROUP LINE] FF F5845 FFF5946 FFF6047 FSC1953 FSC2155 F SC2256 SO SRCGROUP LINEZ FEF5437 FEF5640 FSC2783 F EF2094 SO SRCGROUP LINE3 FEF1774 FSC3199 FSC32100 SO SRCGROUP LINE12 FFF5845 FFF5946 FFF6047 FSC1953 FSC2155 F SC2256 FEF5437 SO SRCGROUP LINE12 FEF5640 F SC2783 FEF2094 SO SRCGROUP LINE23 FEF5437 FEF5640 FSC2783 FEF2094 FEF1774 F SC3 199 FSC32100 SO SRCGROUP LINE13 FFF5845 FFF5946 FFF6047 FSC1953 FSC2155 FSC2256 FEF1774 SO SRCGROUP LINE13 FSC3199 FSC32100 SO SRCGROUP ALL SO FINISHED RE STARTING RE GRIDCART CART] STA RE GRIDCART CARTl XYINC 78000 41 50 1465000 41 50 RE GRIDCART CARTI END RE FINISHED ME STARTING ME INPUTFIL C:\AC\SIMULA~1\MET1\MBS91_T.TRI UNFORM MEANEMHGHT 10.0 METERS ME SURFDATA 72639 1991 MEUAIRDATA 14826 1991 MESTARTEND 91 01 01 1 91 12 31 24 ME FINISHED OU STARTING OU RECTABLE 24 FIRST OU FINISHED "" SETUP Finishes Successfully *** APPENDIX E 181 Appendix E Sample of Dispersion Simulations Output File Concentrations of Benzene for 1991 THE ANNUAL ( 8760 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: LINE] INCLUDING SOURCE(S): FF F5845 , FFF5946 , FFF6047 , FSC1953 , F SC2155 , FSC2256 , *** NETWORK ID: CART] ; NETWORK TYPE: GRIDCART *** ** CONC OF BENZENE IN MICROGRAMS/M**3 ** Y-COORD | X-COORD (METERS) (METERS)| 78000.00 78050.00 78100.00 78150.00 78200.00 78250.00 78300.00 78350.00 78400.00 146700000 | .20165 .20159 .201 13 .2027] .20765 .21596 .22656 .23 768 21540686995000 I .2094] .21 100 .21069 .21037 .21254 .21831 .22736 .23 832 21540656290000 | .21737 .21979 .22102 .22045 .22032 .22314 .22970 .23934 21540686585000 | .22730 .22890 .23098 .23176 .23090 .23 102 .2345] .24175 21541696180000 I .24004 .24015 .2414 1 .24304 .24326 .24209 .24250 .24662 21544636975000 | .25578 .25447 .25418 .25498 .25603 .25554 .25402 .25473 21548696270000 | .27427 .27216 .27032 .26948 .26970 .26996 .26859 .26610 21646626255000 | .29442 .29297 .29029 .28772 .28618 .28560 .28417 .28079 217636760000 | .31440 .31548 .31385 .31042 .30685 .30374 .30120 .29779 21942646455000 | .33326 .33747 .33906 .33728 .33234 .32640 .32133 .3167] 31140666850000 I .35110 .35796 .36318 .36522 .36237 .35535 .34674 .3389] 3134126645000 | .3662] .37646 .3 8503 .39080 .3929] .38940 .37996 .36746 31545656540000 I .3 7683 .39082 .403 12 .41280 .41959 .42222 .41813 .405 7 1 312768625000 | .3 8488 .401 13 .41644 .43019 .44135 .44903 .45190 .4472] .41341656530000 | .39085 .40884 .42636 .443 1 1 .45819 .47025 .47807 .48025 .4124616625000 | .39016 .41095 .43 151 .45140 .46999 .48629 .49890 .50579 5125616220000 | .38125 .40330 .42623 .44952 .47232 .4934] .51 143 .52438 .52962 182 146615000 I .36690 .3 8861 .41 150 .43538 .45978 .48412 .50705 .5265] 51349656710000 | .34595 .36674 .38875 .41 181 .43555 .45958 .48300 .5045] 51242606705000 I .32258 .34086 .3602] .3805] .40149 .42284 .443 82 .46333 41749::00000 I .30747 .32348 .34016 .35734 .37466 .39176 .40788 .42196 .41342655295000 I .29729 .31 193 .32705 .34243 .3577] .37246 .38590 .39694 .41?6056900.00 I .27850 .2899] .30120 .31204 .32195 .33034 .33630 .33868 3133695985000 I .2410] .24695 .25205 .25597 .25832 .25870 .25667 .25184 2:43695780000 I '. 19636 . 19904 .20129 .203] 1 .20453 .20568 .20659 .20722 21317635875000 I . 16558 .1693] . 17343 . 17797 . 18293 .1883] . 19425 .201 19 21140605070000 I . 15249 .15818 . 16450 . 17170 . 18025 . 19084 .20414 .22007 21346645665000 I . 14916 . 15722 . 16699 . 17899 . 19344 .20974 .22585 .23 842 211425460000 I .15476 .16693 .1808] .19576 .21006 .22147 .22857 .23187 2133655955000 I . 16749 .18084 .1930] .20280 .20946 .21364 .21667 .21854 21117685150000 I . 17607 . 18453 . 19048 . 19457 . 19817 .20176 .20423 .20498 2947655745000 I . 17247 .17630 . 17997 .183 89 . 18775 . 19039 . 19240 . 19772 213968520000 I . 16287 .1666] .1709] . 17474 . 17742 . 18053 . 18767 .20063 21141685435000 I . 15503 . 15907 .1625] . 16545 . 16952 . 17776 . 19073 .20414 .2122645630000 I . 14845 .1514] . 15434 .1592] . 16817 . 18067 . 19305 .20099 21215655825000 | .14147 . 14452 .14979 .15874 .17060 .18207 .18949 .19387 21041615920000I .1358] .14135 .15007 .16093 .17118 .17816 .18246 .18856 21211635015000 I .13374 .14209 .15198 .16112 .1674] .17130 .17654 .18709 21944625710000 I .13474 .14372 .15187 .15754 .16105 .16542 .17397 .18825 2138605205000 I .13609 .14338 .14849 .15167 .15535 .16236 .17410 .19082 .21 103 Y-COORD I X-COORD (METERS) (METERS) I 78450.00 78500.00 78550.00 78600.00 78650.00 78700.00 78750.00 78800.00 78850.00 146700000 I .37750 146695000 I .39134 146690000 I .40460 146685000 I .41770 146680000 I .43052 146675000 I .44257 146670000 I .45303 146665000 I .46106 146660000 I .46505 146655000 I .46297 146650000 I .45224 146645000 I .42994 146640000 I .39378 146635000 I .34375 146630000 I .28315 146625000 I .21598 146620000 I .14228 146615000 I .08193 146610000 I .04844 146605000 I .03242 146600000 I .02774 146595000 I .01655 146590000 I .01448 146585000 I .02327 146580000 I .04438 146575000 I .09308 146570000 I . 14489 .27003 .26792 .2659] .26492 .26517 .26623 .26997 .27706 .28785 .3028] .3218] .34383 .36979 .40646 .45482 .49493 .52397 .54245 .53240 .49028 .43745 .40517 .32643 .2330] .20680 .22142 .24844 .29083 .29100 .28886 .28532 .28110 .27796 .27730 .28000 .28647 .29659 .31073 .32955 .35202 .37927 .42070 .47040 .50499 .5305] .53060 .49154 .43395 .39752 .30806 .21904 .20558 .23389 .25100 .30644 .31130 .31385 .3131] .30793 .30046 .29320 .28865 .28852 .29340 .30218 .31435 .33138 .35274 .38047 .42587 .47036 .49900 .51032 .47855 .41849 .3778] .27924 .20203 .2047] .24095 .24283 183 .31673 .32429 .33141 .33616 .33709 .33337 .32472 .31289 .30190 .29575 .29642 .30240 .31100 .3237] .34140 .36834 .41379 .4462] .46510 .44515 .38702 .34272 .23949 .18175 .20449 .23377 .22367 .33078 .33700 .34395 .35007 .35562 .35917 .35860 .3516] .33767 .31938 .30297 .29449 .29433 .29695 .30174 .31213 .33639 .37298 .39152 .38526 .33598 .29016 .19068 .15870 .19886 .20847 .19674 .35219 .35868 .36424 .36817 .37174 .37517 .3780] .3790] .37518 .36293 .34058 .31220 .2878] .27480 .26767 .26033 .25957 .27842 .29663 .29516 .26057 .2180] .13583 .1348] .17437 .16672 .17696 .36869 .37924 .38828 .39501 .39967 .40200 .40189 .39992 .39620 .39003 .37854 .3566] .32085 .27740 .24207 .21946 .19730 .18365 .19050 .18826 .17107 .13868 .08414 .10965 .12286 .12716 .15952 .37428 .38786 .40059 .41223 .42259 .43087 .43592 .43684 .43234 .42172 .40498 .38257 .35366 .31378 .25840 .1978] .15397 .11750 .09645 .09755 .08685 .06594 .04262 .06953 .06909 .10032 .15635 146565000 I .19048 146560000 I .22616 146555000 I .25303 146550000 I .27174 146545000 I .28387 146540000 I .29096 146535000 I .29414 146530000 I .29422 146525000 I .29180 146520000 I .28738 146515000 I .28146 146510000 I .27435 146505000 I .26640 146500000 I .25790 Y-COORD I (METERS) I .2448] .22988 .21659 .21742 .22433 .22326 .21718 .21450 .2169] .22185 .22678 .22979 .22904 .22420 78900.00 79250.00 79300.00 146700000 I .37810 146695000 I .38950 146690000 I .40296 146685000 I .41768 146680000 I .43405 146675000 I .45170 146670000 I .46943 146665000 I .48523 146660000 I .49687 146655000 I .50226 .38510 .39897 .4120] .42493 .43760 .44962 .46052 .4696] .47579 .47761 .23932 .22374 .2221] .23122 .23232 .2280] .22822 .23383 .24103 .24653 .24812 .24466 .23637 .22465 78950.00 .38932 .40396 .41773 .43144 .44487 .45756 .46914 .47875 .4853] .48738 .22715 .22198 .23342 .23793 .23693 .24177 .25160 .26095 .26603 .26478 .2573] .24553 .2319] .21804 184 .21448 .22780 .23743 .24215 .25390 .26884 .27981 .28294 .27769 .2664] .25232 .23799 .22470 .2128] .21030 .22705 .24087 .26220 .28272 .29415 .29417 .2853] .27207 .25802 .24478 .23290 .22234 .21285 X-COORD (METERS) 79000.00 79050.00 79100.00 79150.00 79200.00 .38656 .40114 .41485 .42842 .44163 .4540] .46516 .47422 .48012 .48140 .38222 .39625 .40937 .42224 .43478 .44663 .4573] .46634 .47277 .47542 .38364 .39845 .41278 .42709 .44150 .45568 .46899 .48084 .48992 .4946] .20216 .22909 .2623] .28814 .29907 .29680 .28739 .27576 .26420 .25339 .24340 .23395 .22497 .21638 .39433 .4105] .42626 .44126 .45559 .46862 .47956 .48799 .49337 .49562 .20198 .24740 .27774 .28965 .29000 .28544 .2790] .27169 .2638] .25558 .24723 .23890 .23079 .22299 .40236 .4163] .42923 .44033 .45045 .4598] .4688] .47833 .48876 .49984 .20967 .24472 .26437 .27523 .28046 .28153 .27955 .27550 .27016 .26408 .25763 .2509] .24407 .23714 .3940] .40432 .41483 .42497 .43639 .44963 .46475 .48140 .49775 .51048 A J- 146650000 I .50263 146645000 I .50335 146640000 I .50674 146635000 I .50829 146630000 I .51297 146625000 I .52762 146620000 I .54669 146615000 I .52181 146610000 I .42135 146605000 I .34799 146600000 I .34494 146595000 I .35925 146590000 I .32918 146585000 I .36810 146580000 I .38693 146575000 I .40290 146570000 I .39050 146565000 I .34628 146560000 I .33 185 146555000 I .341 15 146550000 I .33320 146545000 I .31 198 146540000 I .29503 146535000 I .28576 146530000 I .27802 146525000 I .26722 146520000 I .25332 .47307 .4595] .43366 .39199 .33198 .25502 .16617 .08984 .03875 .01181 .00567 .00354 .00084 .00994 .03514 .07700 .12977 .18540 .23309 .27193 .30038 .31879 .32856 .33149 .32929 .32343 .31507 .48298 .46956 .40327 .34496 .27014 .18079 .10185 .04690 .02107 .00649 .00000 .0029] .01367 .0476] .09976 .16003 .2213] .26993 .30543 .32824 .34032 .34415 .34200 .33570 .32666 .31589 .47614 .46193 .43594 .39536 .33855 .26704 .18298 .10836 .05310 .02097 .0112] .00462 .00974 .01269 .0452] .09862 .15460 .20712 .24779 .2780] .2982] .30972 .31432 .31370 .3093] .30232 .29360 185 .47268 .46239 .44183 .40786 .35779 .29133 .20900 .12846 .06683 .05078 .02594 .01709 .0225] .02918 .05859 .09806 .14772 .19902 .24044 .26966 .28709 .2954] .29737 .29502 .28980 .28270 .27439 .4929] .48272 .46232 .43087 .38784 .32959 .24710 .16270 .12746 .10285 .05136 .03995 .03906 .0612] .08122 .12743 .17413 .21088 .23244 .25003 .26647 .2791] .28602 .28725 .28396 .27755 .26919 .4950] .49155 .48334 .46344 .41989 .35289 .2937] .25258 .22062 .1652] .09908 .08506 .0810] .10186 .12903 .16240 .21248 .23995 .26482 .27740 .27594 .27068 .26731 .26580 .26440 .26176 .25735 .50947 .51235 .50023 .46919 .43136 .40118 .37654 .35760 .31822 .22074 .16727 .15944 .14617 .17479 .21286 .22425 .24388 .27995 .28832 .29230 .29856 .29610 .28444 .27010 .25765 .24814 .24087 .51496 .50806 .4939] .48198 .47174 .46313 .46215 .45599 .39056 .27994 .25646 .25903 .2360] .27977 .30030 .32007 .29985 .30043 .3220] .31918 .3061] .30010 .29644 .28750 .2731] .25698 .24214 146515000 I .23824 146510000 I .22398 146505000 I .21 144 146500000 I .20074 ‘YJCCKDRIDI (METERS) I .30511 .29434 .28298 .27150 79350.00 79700.00 79750.00 146700000 I .32959 146695000 I .34000 146690000 I .35036 146685000 I .36173 146680000 I .37626 146675000 I .39562 146670000 I .41978 146665000 I .44787 146660000 I .48091 146655000 I .51888 146650000 I .55262 146645000 I .56856 146640000 I .56159 146635000 I .53858 146630000 I .50938 146625000 I .48741 146620000 I .48983 146615000 I .5 1349 146610000 I .53 184 146605000 I .54309 .37006 .38482 .40128 .41853 .43542 .45148 .46548 .47612 .4838] .49120 .50125 .51190 .52038 .53412 .55885 .59305 .60364 .54456 .43976 .41660 .30416 .29214 .27988 .26779 .36903 .38438 .40020 .41600 .43017 .44277 .45363 .46398 .47613 .49060 .50418 .51672 .53588 .56590 .60688 .64096 .61898 .53783 .46456 .47324 .2838] .27360 .26300 .2524] 186 .2654] .25605 .24650 .23698 .25983 .24993 .23993 .23008 X-COORD (METERS) 79400.00 79450.00 79500.00 79550.00 79600.00 79650.00 .36697 .38066 .3943] .40767 .42002 .43138 .44386 .45868 .47449 .48877 .50360 .52556 .55761 .60022 .64585 .65302 .60482 .52386 .49324 .51394 .36142 .37353 .38552 .39738 .41006 .4239] .43940 .45497 .46944 .48523 .5082] .54033 .5818] .63077 .65794 .6367] .57653 .51590 .51828 .53988 .35426 .36515 .37634 .3889] .40354 .41926 .43395 .44800 .46430 .48738 .51823 .55729 .60502 .64336 .64346 .60558 .54723 .51498 .53547 .55397 .25132 .24389 .23557 .22675 .34649 .35723 .36956 .38340 .39785 .41207 .42602 .44222 .46469 .49420 .53034 .57468 .61727 .63318 .61355 .56984 .52412 .51714 .54409 .55917 .23482 .22903 .22307 .21672 .3398] .35163 .36439 .37736 .39009 .40332 .41975 .44168 .46937 .50253 .54282 .58573 .61190 .60708 .5776] .53636 .50829 .51868 .54524 .55792 .22978 .21972 .21145 .20439 .33488 .34646 .35807 .36952 .38176 .3972] .41807 .44452 .47523 .51143 .55213 .58384 .59110 .57368 .54182 .50865 .49768 .51762 .54060 .55210 146600000 I .56866 146595000 I .58907 146590000 I .57856 146585000 I .54206 146580000 I .51698 146575000 I .53588 146570000 I .56433 146565000 I .55738 146560000 I .53624 146555000 I .52173 146550000 I .50401 146545000 I .47315 146540000 I .43040 146535000 I .38186 146530000 I .33316 146525000 I .29129 146520000 I .26150 146515000 I .24296 146510000 I .23152 146505000 I .22282 146500000 I .21363 Y-COORD I (METERS) I 146700000 I 146695000 I 146690000 I 146685000 I 146680000 I 146675000 I 146670000 I .42153 .44437 .41244 .43037 .4671] .4685] .46503 .42424 .3669] .34370 .34418 .33420 .31111 .28819 .27277 .26297 .25424 .24360 .23107 .21787 .20506 79800.00 .32312 .33255 .34316 .35684 .37483 .39696 .42230 .48260 .51066 .48010 .47245 .52612 .52039 .51660 .48952 .43096 .36979 .34258 .33727 .32659 .30470 .2801] .26075 .24779 .23855 .22989 .22018 .20914 79850.00 .31600 .32596 .33884 .35558 .3759] .39889 .42483 .52725 .55758 .53007 .50210 .55736 .56094 .54969 .53253 .48766 .42125 .36189 .33367 .32477 .31398 .29445 .27079 .24968 .23417 .22344 .21502 .20695 187 .55704 .58752 .56363 .52339 .56614 .58799 .57022 .55708 .52535 .47012 .40283 .34803 .32047 .30952 .29897 .28174 .26015 .23920 .22232 .2099] .20095 .57448 .60377 .58343 .53784 .56183 .59876 .58335 .56757 .54649 .50412 .4446] .3805] .33127 .30534 .29335 .28293 .26786 .24869 .22880 .21156 .19835 X-COORD (METERS) 79900.00 79950.00 80000.00 .31002 .32217 .33778 .3565] .37744 .4006] .42762 .30672 .32129 .33860 .35775 .37857 .40257 .42953 .30602 .32205 .33964 .35846 .37983 .40423 .42848 .58220 .60958 .59240 .54619 .55183 .59437 .59015 .56972 .55408 .52398 .47552 .41607 .35720 .31358 .28940 .27703 .26692 .25354 .23657 .21852 .20198 .58258 .60769 .59320 .54913 .54016 .57923 .58937 .56803 .55203 .53178 .49497 .44414 .38714 .33416 .29578 .27355 .26110 .25114 .23934 .2247] .20864 .57755 .60029 .58800 .54747 .52842 .55836 .58036 .56406 .54502 .53002 .50397 .4629] .41237 .35934 .31227 .27842 .25780 .24566 .23638 .22602 .21335 146665000 I 146660000 I 146655000 I 146650000 I 146645000 I 146640000 I 146635000 I 146630000 I 146625000 I 146620000 I 146615000 I 146610000 I 146605000 I 146600000 I 146595000 I 146590000 I 146585000 I 146580000 I 146575000 I 146570000 I 146565000 I 146560000 I 146555000 I 146550000 I 146545000 I 146540000 I 146535000 I 146530000 I 146525000 I 146520000 I 146515000 I 146510000 I 146505000 I 146500000 I .45150 .48575 .51980 .54208 .54403 .52895 .50546 .48198 .47123 .48254 .50618 .52049 .53207 .55725 .57546 .56637 .53388 .50582 .51393 .54322 .5468] .52713 .51049 .49719 .47550 .44150 .39838 .35256 .30867 .27207 .24603 .2293] .21855 .21039 .45526 .48732 .51217 .52157 .51452 .49687 .47602 .45980 .4585] .47487 .49632 .50730 .5195] .54394 .56009 .5521] .5234] .49452 .49370 .51964 .53219 .51747 .49872 .48617 .47079 .44493 .40910 .36794 .32598 .28684 .25478 .23189 .21677 .20667 .45720 .48285 .49687 .49608 .48363 .46649 .45035 .44206 .4477] .46632 .48457 .49318 .5061] .52954 .54380 .53669 .51139 .48305 .47547 .49564 .51403 .5065] .48705 .4725] .46063 .44242 .41449 .37895 .34040 .30222 .26734 .23918 .21895 .20523 188 .45483 .4718] .47624 .46876 .4546] .43967 .4282] .42632 .43693 .45623 .47139 .47865 .49223 .5145] .52705 .52063 .49833 .47135 .45897 .4722] .49265 .49243 .47522 .45902 .44810 .43535 .41473 .38570 .35132 .3156] .28097 .24989 .22506 .20709 .44708 .45554 .45280 .44189 .42854 .41662 .41004 .41308 .42625 .44438 .45620 .46275 .47698 .49806 .50910 .50323 .48347 .45814 .44273 .44976 .46988 .47654 .46375 .44672 .43496 .42519 .41054 .38808 .35884 .32619 .29332 .26194 .23422 .21224 Y-COORD I (METERS) I THE ANNUAL ( 8760 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: LINE2 FEF5437 , FEF5640 , FSC2783 , F EF2094 , ** CONC OF BENZENE IN MICROGRAMS/M**3 ** 78350.00 78400.00 146700000 I .04108 146695000 I .04081 146690000 I .04062 146685000 I .04053 146680000 I .04068 146675000 I .04124 146670000 I .04220 146665000 I .04376 146660000 I .04596 146655000 I .04857 146650000 I .05144 146645000 I .05497 146640000 I .06009 146635000 I .0671 1 146630000 I .07416 146625000 I .07992 146620000 I .08530 146615000 I .08849 .03418 .03548 .03674 .03827 .04026 .0428] .0459] .04937 .05282 .05603 .05914 .06212 .06454 .06633 .06766 .06803 .06674 .06423 INCLUDING SOURCE(S): .03394 .03552 .03697 .0384] .04013 .04236 .04522 .0487] .05256 .05632 .05980 .06317 .0662] .06856 .07029 .07113 .07022 .06767 *** NETWORK ID: CART] 189 X-COORD (METERS) .03362 .0352] .03693 .03856 .04018 .04212 .04463 .04786 .0518] .05610 .06018 .06395 .06754 .07048 .07265 .07399 .07366 .07124 .03366 .03490 .03655 .0384] .04023 .04207 .04425 .04708 .05077 .05526 .06002 .06434 .06826 .07185 .07472 .07664 .07700 .0749] .03428 .0350] .03625 .03796 .03997 .04199 .04407 .04653 .04975 .05397 .05893 .06399 .06852 .07265 .07629 .07895 .08008 .07856 .03549 .03576 .03646 .03767 .03943 .04158 .04384 .04618 .04894 .05243 .05710 .06268 .0681] .07283 .07715 .08069 .08270 .0820] ; NETWORK TYPE: GRIDCART *** 78000.00 78050.00 78100.00 78150.00 78200.00 78250.00 .03714 .03710 .03733 .03798 .03917 .04096 .04325 .0457] .04816 .05109 .05503 .06039 .06660 .07226 .07714 .08163 .0847] .08507 78300.00 .03896 .03883 .03878 .03898 .03959 .04074 .04254 .04475 .04724 .04992 .05315 .05762 .06375 .07050 .07626 .0814] .08574 .08737 190 146610000 I .0608] .06405 .06745 .07097 .07452 .07813 .08160 .0847] .01347606805000 I .05680 .05968 .06270 .06584 .0690] .07224 .07538 .07828 ”1840676200000 I .05389 .05637 .0589] .06150 .06405 .06658 .06894 .0710] 012265295000 I .05237 .05467 .0570] .05936 .06165 .063 85 .0658] .06739 “01648645090000 I .04995 .0519] .05387 .05578 .05757 .05919 .0605] .06136 01641655585000 I .04448 .0456] .04660 .04742 .04796 .04817 .04794 .04715 .01445665980000 I .03652 .03685 .03 705 .03 709 .03694 .03663 .03616 .03554 01341675875000 I .02980 .03007 .03035 .03065 .03097 .03134 .03 173 .0321 1 3134225870000 I .02628 .02692 .02762 .02838 .0292] .03015 .03130 .03275 .0134265065000 I .02497 .02590 .02694 .02819 .02974 .03167 .03398 .03645 01348655460000 I .02489 .02635 .02808 .03014 .03247 .03484 .03687 .03817 0134265255000 I .02633 .02840 .03057 .03270 .0345] .03578 .03649 .03677 01346665050000 I .02844 .03036 .03198 .03313 .03389 .0344] .03474 .03474 01344635245000 I .02935 .03042 .03 122 .03180 .03233 .03273 .03284 .03276 '01:?61510000 I .02853 .02913 .02976 .03037 .03079 .03098 .03 120 .03205 01343675535000 I .02722 .02786 .02847 .02893 .02922 .02968 .03082 .03265 01344615530000 I .02616 .02670 .027] ] .0275] .02823 .02954 .03139 .03312 0134215725000 I .02509 .02547 .0259] .02675 .02818 .03004 .03 168 .03270 ‘01:?645820000 I .02398 .02448 .02539 .02682 .02856 .03014 .03] 17 .03189 .0132615915000 I .02320 .02415 .02554 .02715 .02857 .02953 .03025 .0314] 01345615610000 I .0230] .02434 .02582 .0271 1 .02798 .02862 .02959 .03 135 11344605105000 I .02322 .02457 .02574 .02654 .0271 1 .02792 .02939 .03164 0134255500000 I .02340 .02446 .025 19 .02570 .02639 .02762 .02952 .03206 .03500 Y-COORD | X-COORD (METERS) (METERS) I 78450.00 78500.00 78550.00 78600.00 78650.00 78700.00 78750.00 78800.00 78850.00 146700000 I .04402 .04718 .04949 .05097 .05300 .05656 .05995 .06157 .06218 146695000 I .06412 146690000 I .0660] 146685000 I .06765 146680000 I .06918 146675000 I .07050 146670000 I .07144 146665000 I .07197 146660000 I .07180 146655000 I .07065 146650000 I .06828 146645000 I .06448 146640000 I .05929 146635000 I .0531 1 146630000 I .04635 146625000 I .03844 146620000 I .02828 146615000 I .01937 146610000 I .01514 146605000 I .01026 146600000 I .01442 146595000 I .01551 146590000 I .00808 146585000 I .00851 146580000 I .00912 146575000 I .01254 146570000 I .02162 146565000 I .02998 .04350 .04299 .04260 .04239 .04233 .04258 .04338 .0448] .04690 .04953 .05254 .0564] .0623] .07013 .07707 .08298 .08789 .08818 .08235 .07352 .06857 .06083 .04347 .03387 .03289 .03673 .03963 .04700 .04645 .04570 .04495 .04416 .04369 .0437] .04433 .04555 .04744 .04994 .05298 .05718 .06399 .07226 .07877 .08482 .0873] .08270 .0734] .06760 .05888 .04046 .03277 .0335] .03852 .03937 .05002 .05018 .04985 .04887 .04746 .04607 .04504 .04460 .0449] .04586 .04737 .0495] .05239 .05696 .06468 .07263 .0788] .08365 .08109 .07186 .06513 .05540 .03670 .03137 .03442 .03895 .03765 191 .05190 .05274 .0533] .05309 .05218 .05056 .0485] .04657 .0453] .04500 .04549 .04643 .04789 .05034 .05527 .06360 .0703] .07622 .07660 .06835 .06082 .05010 .03236 .02970 .03515 .03720 .03439 .05369 .05450 .05525 .05573 .05587 .05538 .05394 .05155 .04862 .04597 .04445 .04415 .04430 .04465 .04629 .05160 .05957 .06482 .06833 .0623] .0544] .04290 .02767 .02802 .03423 .03288 .03092 .0571] .05758 .05779 .05791 .05804 .0581] .05785 .0569] .05474 .05120 .04692 .04336 .04154 .04063 .03942 .03978 .04545 .0515] .05566 .05315 .0456] .03383 .02272 .02650 .02982 .02713 .02890 .06107 .06200 .06233 .06232 .06199 .06140 .06063 .05980 .0587] .05686 .05348 .04818 .04206 .03753 .03516 .03217 .0308] .03649 .03930 .04052 .03483 .02375 .01746 .02336 .02203 .02303 .02706 .06332 .06495 .06613 .06700 .06745 .06729 .06655 .06510 .06300 .0604] .05747 .05384 .04853 .04078 .03260 .02787 .02352 .01992 .02506 .02654 .02366 .01438 .01246 .01568 .01578 .02016 .02812 .08020 192 146560000I .03827 .03699 .0349] .03337 .03299 .03214 .03306 .03590 .013456352550.00I .03579 .03474 .03463 .03533 .03527 .03620 .0394] .04089 “0134962520000 I .0341 I .03494 .03628 .03676 .03 770 .04094 .0439] .04339 .014426OSZ5000 | .03457 .03624 .03704 .03798 .04097 .04472 .04592 .04458 .w675640000 I .03554 .03652 .03743 .04005 .04399 .04664 .04619 .04504 .w675250.00 I .03 549 .0363 7 .03 858 .04232 .045 85 .04676 .04565 .04498 “0:45:5130000 I .03 500 .03684 .04019 .04402 .04622 .04576 .04479 .04454 01445615825000 I .03 502 .03790 .04163 .04469 .04533 .04432 I .04378 .04385 .01445635820000 I .03 563 .03905 .04249 .04424 .043 72 .0428] .04266 .04300 01315605515000 | .03647 .03992 .04250 .04289 .04192 .04136 .04148 .04207 .03655210000 I .03 725 .04026 .04163 .04108 .04015 .03998 .04029 .041 12 .033685305000 I .03 769 .03989 .0401 1 .03915 .03 852 .03 865 .03908 .04016 01445605100000I .03760 .0387] .0382] .03732 .03705 .03737 .03789 .03919 .04208 Y-COORD I X-COORD (METERS) (METERS) I 78900.00 78950.00 79000.00 79050.00 79100.00 79150.00 79200.00 79250.00 79300.00 146700000 I .06329 .06428 .06405 .063 13 .06274 .06397 .065 87 .06577 11643646595000 I .06522 .06632 .06613 .06510 .06472 .06619 .06800 .06729 31644686290000 I .06706 .06824 .06808 .06694 .06662 .06840 .07007 .06876 11646616185000 I .0687] .06998 .06986 .06857 .0683] .07034 .07165 .06992 11648616780000 I .07030 .07164 .07156 .07010 .06995 .07220 .0730] .07103 0110616175000 I .07178 .07318 .07313 .07147 .07149 .0739] .07413 .07228 '011226870000 I .07300 .07447 .07443 .07258 .07286 .07533 .07499 .07376 D1146st’is65000 I .07403 .07554 .07552 .07345 .07406 .07643 .07569 .07552 £57636160000 | .07463 .07620 .07618 .0739] .07493 .07704 .07634 .07755 .(1196‘6455000 I .07462 .07628 .07625 .073 80 .07530 .07705 .07700 .07953 0184065250000 I .07375 .07559 .07552 .07297 .07497 .07639 .07770 .08086 146645000 I .07876 146640000 I .07776 146635000 I .07829 146630000 I .07947 146625000 I .08041 146620000 I .08070 146615000 I .0800] 146610000 I .07212 146605000 I .05409 146600000 I .05128 146595000 I .04773 146590000 I .04946 146585000 I .04906 146580000 I .05736 146575000 I .05907 146570000 I .05829 146565000 I .05240 146560000 I .05073 146555000 I .05362 146550000 I .05350 146545000 I .05092 146540000 I .04899 146535000 I .04805 146530000 I .04696 146525000 I .04507 146520000 I .04260 146515000 I .04006 .07169 .06804 .06242 .05459 .04488 .03436 .0245] .01472 .00947 .00624 .01180 .00502 .00606 .00753 .01513 .02183 .02882 .03463 .0393] .04314 .04614 .04827 .04959 .05018 .05019 .0497] .04889 .07386 .07083 .06620 .05978 .05159 .04165 .0312] .02202 .01637 .01013 .00218 .00134 .00953 .01300 .01687 .02443 .03273 .04013 .04589 .05005 .05273 .05415 .05460 .05432 .0535] .05233 .05090 .07375 .07066 .06598 .05953 .05136 .04155 .0315] .02307 .01889 .01179 .00000 .00375 .0078] .01522 .02002 .0274] .03483 .04105 .04566 .04892 .05096 .05198 .05220 .05182 .05100 .04988 .04854 193 .0712] .06827 .0639] .05789 .05007 .0403] .02967 .02068 .01819 .03075 .0118] .01749 .0182] .01795 .01485 .02179 .03093 .03808 .04276 .04562 .0472] .0479] .04799 .0476] .04690 .04596 .04484 .07366 .07105 .06687 .06095 .05344 .04470 .03519 .03013 .03192 .02359 .02056 .01907 .02430 .01778 .02590 .02942 .03115 .03404 .03827 .04232 .04519 .04669 .04708 .04669 .0458] .04465 .04335 .07507 .07310 .07035 .06623 .05962 .05114 .04689 .04532 .03796 .02433 .02020 .01898 .02723 .02639 .02614 .0351] .03930 .04160 .04198 .0416] .04176 .0425] .04335 .04386 .04388 .04342 .04256 .07816 .07762 .07478 .06912 .06362 .06208 .06065 .05536 .04635 .03153 .02685 .02675 .03387 .03779 .03549 .03652 .0436] .04589 .04689 .04760 .04666 .04467 .04278 .04150 .04074 .04024 .03978 .08059 .07813 .07459 .07273 .07290 .07252 .07029 .06586 .05086 .04165 .03659 .03755 .04128 .04708 .04923 .04510 .04493 .04987 .05066 .04948 .04916 .04869 .04703 .04453 .04199 .03986 .03826 194 146510000 I .04782 .04933 .04709 .04364 .0420] .04148 .03922 .03706 .03777 146505000I .04658 ‘ .04770 .04558 .04236 .04063 .0402] .03850 .03612 .03586 146500000 I .04522 .04602 .04402 .04105 .03926 .03886 .0376] .0353] .03432 Y-COORD I X-COORD (METERS) (METERS)| 79350.00 79400.00 79450.00 79500.00 79550.00 79600.00 79650.00 ‘ 79700.00 79750.00 .0853] 146700000 I .06160 .06141 .06173 .06142 .06042 .05909 .05777 .05688 31546626995000 I .06355 .0638] .0640] .06332 .06199 .06048 .05934 .05 869 .01548606590000 I .065 85 .06637 .06625 .065 10 .06347 .06202 .0612 1 .06062 01549676785000 I .06844 .06900 .06836 .06673 .06496 .06388 .06330 .06254 .012136680000 I .07099 .07 133 .07017 .06823 .06673 .06607 .06544 .0644] .0133636175000 I .07355 .07325 .07145 .06966 .06894 .06843 .0675] .06640 .01645676270000 I .075 85 .07465 .0725 1 .07139 .071 18 .07068 .06966 .06894 .01648696465000 I .07755 .07548 .07377 .073 56 .0734] .0727] .07223 .07239 ”122696260000 I .07833 .07606 .0756] .07589 .07553 .07520 .07562 .07656 .01726655000 I .07834 .07718 .07781 .07807 .07802 .07868 .07990 .08124 01842656950000 | .07829 .07905 .08005 .08045 .08152 .08312 .08488 .08665 01847696345000 I .07915 .081 18 .08238 .0839] .08599 .08837 .09066 .09210 11941696240000 I .08085 .08330 .08562 .08839 .09143 .0943] .09589 .09530 0194268635000 I .08260 .08608 .08978 .09380 .09736 .09884 .09773 .09474 .0194065330000 | .08463 .08955 .0948] .09908 .10044 .09887 .09529 .09065 3184566225000 I .08685 .0936] .09857 .09986 .09796 .09393 .08889 .08388 .0119666220000 I .08907 .0947] .09612 .09394 .08957 .08477 .08079 .0780] .0131662671 50.00 | .08633 .08778 .08529 .08163 .07895 .07776 .07758 .07779 o1317696510000 I .07296 .07195 .07235 .07435 .0769] .07915 .08067 .08140 1184126105000 | .05966 406631 .07233 .07698 .08018 .08213 .08307 .08325 .01842686700000 I .05969 .06697 .07294 .07759 .08100 .0833] .08470 .0853] 195 146595000 I .05819 .06744 .07500 .08078 .0849] .08760 .08913 .0897] .08957 146590000 I .06033 .06972 .07725 .08287 .08680 .08927 .09058 .09095 .0906] 146585000 I .05674 .06415 .0707] .0761 1 .08024 .08316 .0850] .08595 .08616 146580000 | .06693 .07364 .0774] .07928 .08019 .08066 .08090 .08093 .08074 146575000 I .0675] .07546 .08226 .08679 .08865 .08834 .0867] .08452 .08222 146570000 I .06819 .0752] .08062 .08505 .08858 .09085 .09149 .09054 .08838 146565000 I .0643] .07359 .07970 .08366 .08620 .0879] .08912 .08975 .08959 146560000 I .05685 .06714 .0756] .081 14 .08444 .08609 .08666 .08669 .08655 146555000 | .05394 .05879 .06742 .07505 .08019 .08324 .08465 .08486 .08430 146550000 I .0552] .05512 .05888 .06601 .07279 .07762 .0806] .08213 .08237 146545000 I .05456 .0552] .05487 .05776 .06359 .06955 .07410 .07712 .07877 146540000 I .05146 .05424 .05416 .05368 .0559] .06066 .06588 .0701 1 .07309 14653 50.00 | .04837 .051 14 .05300 .05247 .05196 .05369 .05756 .06207 .06596 146530000 I .04647 .04754 .0501 1 .05122 .05046 .04994 .05129 .05444 .0583] 146525000 I .04528 .04482 .04652 .04865 .04913 .04826 .04777 .04883 .05132 146520000 I .04398 .04318 .04337 .04524 .04684 .04690 .0460] .0455] .04624 146515000 I .04214 .04194 .041 16 .04195 .04374 .04485 .04458 .04365 .04317 146510000 I .03989 .04057 .03968 .03938 .04054 .04203 .04267 .04224 .04139 146505000 I .03756 .03887 .03 847 .03756 .03773 .03 897 .04019 .04055 .04004 146500000 I .03539 .03687 .0371 1 .03620 .03563 .03620 .03744 .03 839 .03854 Y-COORD | X-COORD (METERS) (METERS) I 79800.00 79850.00 79900.00 79950.00 80000.00 146700000 | .05559 .05465 .05360 .05277 .05239 146695000 I .05714 .05606 .05515 .0547] .05472 146690000 I .05868 .05770 .05720 .05720 .05745 146685000 I .06042 .05986 .05984 .06013 .06042 146680000 I .06269 .06268 .06300 .06334 .06358 146675000 I .0657] .06608 .06648 .0668] .06713 146670000 I .06938 .06987 .0703] .07074 .07100 146665000 | .073 52 .0741 1 .07466 .07490 .07452 146660000 I .07823 .07890 .07907 .07840 .07686 146655000 I .08347 .08348 .0824] .08033 .07753 146650000 I 146645000 I 146640000 I 146635000 I 146630000 I 146625000 I 146620000 I 146615000 I 146610000 I 146605000 I 146600000 I 146595000 I 146590000 I 146585000 I 146580000 I 146575000 I 146570000 I 146565000 I 146560000 I 146555000 I 146550000 I 146545000 I 146540000 I 146535000 I 146530000 I 146525000 I 146520000 I 146515000 I 146510000 I 146505000 I 146500000 I .08804 .09007 .08919 .08585 .08089 .07628 .07517 .0779] .08089 .08212 .08485 .08889 .08976 .0858] .08035 .0801] .08556 .08849 .08618 .0834] .08170 .07924 .07490 .06885 .0617] .05449 .04824 .04377 .04098 .03928 .0380] .08644 .08692 .08493 .08117 .07675 .07382 .07435 .07749 .0799] .08106 .0840] .08780 .08852 .0850] .07972 .07816 .08242 .08650 .08547 .08246 .08050 .07876 .07556 .07053 .06428 .05754 .05097 .04543 .04147 .03894 .03733 .08372 .08286 .08029 .07677 .07336 .07199 .07360 .07673 .0786] .07979 .08287 .08640 .08698 .08385 .07886 .0764] .07929 .08384 .08427 .08149 .07904 .07736 .07508 .07128 .06606 .06000 .05372 .04778 .04287 .03935 .03705 196 .08032 .07859 .07580 .07266 .0704] .07042 .07277 .07566 .07710 .07837 .08152 .08478 .08523 .08245 .0778] .07479 .07637 .08074 .08238 .08018 .07736 .07558 .07394 .07122 .06708 .06183 .05606 .05025 .04488 .04052 .03739 .07657 .0744] .07173 .06920 .06800 .06888 .07150 .07404 .07522 .07666 .07986 .08287 .0832] .08070 .0764] .07303 .07342 .07718 .0798] .07865 .07585 .07377 .07237 .07048 .06738 .06303 .05788 .05245 .04710 .04226 .03837 197 THE ANNUAL ( 8760 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: LINE3 INCLUDING SOURCE(S): FEF1774 , FSC3199 , F SC32100, *** NETWORK ID: CART] ; NETWORK TYPE: GRIDCART *** ** CONC OF BENZENE IN MICROGRAMS/M**3 ** .02954 Y-COORD I X-COORD (METERS) (METERS)| 78000.00 78050.00 78100.00 78150.00 78200.00 78250.00 78300.00 78350.00 78400.00 146700000 I .01005 .01005 .01000 .01004 .01028 .01071 .01129 .01 189 .01142616995000 I .01041 .01051 .01050 .01045 .01053 .01081 .01130 .01 190 .01112656290000 I .01078 .01093 .01 101 .01098 .01094 .01106 .01140 .01 192 .0122656585000 I .01124 .01135 .01149 .01155 .01150 .01148 .01164 .01202 01142656980000 I .01185 .01 187 .01197 .01209 .01213 .01207 .01206 .01226 01142666975000 I .01262 .01256 .01257 .01265 .01275 .01276 .01267 .01269 0114269270000 I .01354 .01344 .01335 .01334 .01339 .01346 .01343 .01333 .012363665000 I .01454 .01447 .01434 .01423 .01418 .01420 .01423 .01412 .0113696660000 I .01552 .01559 .01552 .01536 .01520 .01510 .01505 .01499 01:27:55000 I .01644 .01667 .01677 .01670 .01650 .01625 .01605 .01592 .01145676550000 I .01735 .01768 .01796 .01810 .01802 .01773 .01736 .01706 .0114661145000 I .01817 .01866 .01907 .01941 .01956 .01947 .01909 .01858 3114860610000 I .01877 .01946 .02008 .02058 .02096 .02117 .02108 .02056 01149611525000 I .01920 .02003 .02085 .02157 .02217 .02264 .02291 .02281 '012526830000I .01956 .02048 .02141 .02231 .02316 .02389 .02437 .02472 .01244676325000 I .01970 .02076 .02182 .02287 .02391 .02489 .02566 .02632 .0124662920000 I .01938 .02057 .02179 .02305 .02432 .02545 .02663 .02766 01248616115000 I .01876 .01994 .02121 .02256 .02401 .02542 .02693 .02837 11249666210000 I .01787 .01901 .02024 .02157 .02300 .02448 .02613 .02784 198 146605000 I .01671 .01775 .01888 .02012 .02143 .02284 .02441 .02606 01247686000000 I .01574 .01665 .01763 .01868 .01975 .02098 .02228 .02364 .01245605595000 I .01521 .01604 .01693 .01788 .01883 .01992 .02105 .02220 3123635590000 I .01459 .01533 .01611 .01693 .01773 .01863 .01956 .02047 0124135585000 I .01324 .01375 .01425 .01475 .01516 .01560 .01597 .01623 01146635580000I .01107 .01132 .01154 .01173 .01186 .01199 .01210 .01219 .01142625875000 I .00906 .00923 .00941 .00961 .00984 .01009 .01042 .01079 '01:]:5270000 I .00792 .00818 .00847 .00880 .00918 .00959 .01013 .01080 .01141665765000 I .00750 .00783 .00822 .00867 .00924 .00993 .01083 .01185 .01142685860000 I .00744 .00792 .00849 .00919 .01000 .01089 .01172 .01239 01142685155000 I .00783 .00849 .00921 .00996 .01064 .011 18 .01 153 .01181 31142605350000 I .00845 .00908 .00965 .01009 .01040 .01065 .01090 .01109 .01141625145000 I .00873 .00910 .00937 .00959 .00982 .01007 .01028 .01040 01:01:530000 I .00844 .00863 .00884 .00909 .00933 .00952 .00969 .01004 01140675035000 I .00798 .00819 .00843 .00866 .00883 .00904 .00944 .01012 0114068520000 I .00763 .00785 .00804 .00821 .00845 .00889 .00954 .01024 01140675225000 I .00732 .00748 .00765 .00791 .00836 .00899 .00962 .01006 .012035320000 I .00699 .00716 .00743 .00788 .00845 .00902 .00943 .00968 .01206?150.00 I .00673 .00701 .00744 .00796 .00846 .00883 .00906 .00937 .039695610000 I .00663 .00703 .00751 .00796 .00828 .00848 .00874 .00923 0140:5305000 I .00666 .00709 .00749 .00778 .00796 .00818 .00858 .00923 01140615500000 I .00671 .00707 .00733 .00749 .00767 .00800 .00854 .00931 .01027 Y-COORD I X-COORD (METERS) (METERS)I 78450.00 78500.00 78550.00 78600.00 78650.00 78700.00 78750.00 78800.00 78850.00 146700000 I .01333 .01433 .01515 .01568 .01621 .01718 .01819 .01869 01148615295000 I .01327 .01433 .01536 .01606 .01659 .01748 .01864 .01934 .01955 146690000 I .02030 146685000 I .02102 146680000 I .02174 146675000 I .02245 146670000 I .02303 146665000 I .02362 146660000 I .02406 146655000 I .02426 146650000 I .02416 146645000 I .02368 146640000 I .02286 146635000 I .02178 146630000 I .02044 146625000 I .01844 146620000 I .01538 146615000 I .01280 146610000 I .01221 146605000 I .01434 146600000 I .02048 146595000 I .02062 146590000 I .01 184 146585000 I .01065 146580000 I .00799 146575000 I .01073 146570000 I .01400 146565000 I .01649 146560000 I .01722 .01324 .01325 .01329 .01339 .01358 .01397 .01460 .01547 .01648 .01768 .01916 .0213] .02415 .02669 .02875 .03055 .0311] .02956 .02649 .02446 .02213 .01629 .01239 .01174 .01277 .01367 .01304 .01424 .01413 .01406 .01400 .01403 .01422 .01460 .01519 .01608 .0172] .01853 .02024 .02287 .02607 .0286] .03092 .03232 .03127 .02792 .02546 .02277 .0160] .01253 .01244 .01393 .01407 .01306 .01546 .0154] .01523 .01497 .01476 .01470 .01482 .01517 .01579 .01666 .01782 .01925 .02126 .02448 .02786 .0305] .03289 .03276 .02927 .02626 .02315 .0155] .01272 .01340 .0148] .01406 .0128] 199 .01640 .01665 .01668 .01649 .01614 .01573 .01542 .01540 .01569 .01627 .01709 .0182] .01973 .02216 .02602 .02930 .0324] .03369 .03047 .02675 .02318 .01482 .01296 .01457 .01500 .01355 .01267 .01700 .0174] .01773 .0179] .01789 .01757 .01699 .01640 .01603 .01609 .01656 .01728 .01826 .0198] .02286 .02716 .03049 .03357 .03137 .02680 .02269 .01399 .01340 .01539 .01428 .01280 .01324 .01780 .0181] .01842 .01874 .01904 .01916 .01907 .01858 .01775 .01686 .01639 .01655 .01707 .01778 .01933 .02327 .02748 .03168 .0317] .02624 .02150 .01313 .01417 .01490 .01270 .01288 .01387 .01906 .01937 .01960 .01980 .01999 .02012 .02032 .02039 .02016 .01939 .01808 .01676 .01616 .01632 .01663 .01819 .0232] .02726 .03074 .02487 .01935 .01225 .01454 .01248 .01190 .01345 .01476 .01999 .02054 .02103 .02144 .02165 .0218] .02183 .02175 .02159 .02133 .02076 .0195] .01748 .01554 .01486 .01474 .01637 .02205 .02756 .02282 .01612 .01156 .01218 .01017 .0124] .01464 .01669 146555000 I .01718 146550000 I .01697 146545000 I .01667 146540000 I .01630 146535000 I .01587 146530000 I .01543 146525000 I .01498 146520000 I .01454 146515000 I .01410 146510000 I .01371 146505000 I .01328 146500000 I .01286 Y-COORD I (METERS) I .01210 .01135 .01129 .01153 .01140 .01103 .01078 .01078 .01092 .01110 .01122 .01122 78900.00 79250.00 79300.00 146700000 I .01951 146695000 I .02002 146690000 I .02059 146685000 I .02121 146680000 I .02193 146675000 I .02278 146670000 I .02379 146665000 I .02483 146660000 I .02601 146655000 I .02707 146650000 I .02782 146645000 I .02821 .01915 .01987 .02060 .02132 .02207 .02285 .02356 .02436 .02513 .02582 .02637 .02667 .01207 .01186 .01218 .01212 .01176 .01157 .01170 .01192 .01213 .01222 .01212 .01177 78950.00 .01954 .02029 .02105 .02180 .02258 .02338 .0241] .02493 .02574 .02650 .02716 .02769 200 .01234 .01314 .01380 .01274 .01339 .01395 .01280 .01327 .01446 .01252 .01345 .01509 .01248 .01387 .01545 .01272 .01423 .01537 .01303 .01433 .01486 .01324 .01413 .01408 .01321 .01358 .01329 .01291 .01286 .01251 .01238 .01210 .01181 .01171 .01137 .01120 X-COORD (METERS) .01449 .01544 .01626 .01653 .01618 .01543 .01456 .01373 .01304 .01239 .01183 .01131 .01625 .01720 .01727 .01669 .01588 .01507 .01435 .01369 .01312 .01256 .01203 .01154 .01764 .01750 .01693 .01630 .01568 .01508 .01448 .0139] .01336 .01288 .01240 .01196 79000.00 79050.00 79100.00 79150.00 79200.00 .01953 .0203] .02110 .02189 .02270 .02354 .02430 .02517 .0260] .02679 .02749 .02803 .01929 .02004 .0208] .02155 .02232 .02309 .02379 .02456 .02530 .02596 .0265] .0269] .01916 .01990 .02066 .02140 .02216 .02295 .02369 .02453 .02536 .02617 .02692 .02755 .01946 .02027 .02112 .02195 .0228] .02370 .0245] .02539 .0262] .02694 .02756 .02807 .02007 .02090 .02175 .02252 .02326 .02396 .02460 .02519 .02584 .02656 .0274] .02843 .0202] .02085 .02149 .02205 .02260 .02319 .02388 .02463 .02565 .02684 .02807 .02910 146640000 I .02853 146635000 I .02930 146630000 I .03056 146625000 I .03231 146620000 I .03463 146615000 I .03670 146610000 I .03597 146605000 I .02861 146600000 I .02642 146595000 I .02670 146590000 I .02854 146585000 I .02912 146580000 I .03116 146575000 I .02926 146570000 I .02760 146565000 I .02328 146560000 I .02106 146555000 I .02077 146550000 I .01946 146545000 I .01778 146540000 I .01670 146535000 I .01603 146530000 I .01530 146525000 I .01436 146520000 I .01335 146515000 I .01244 146510000 I .01164 .02658 .0259] .02445 .02218 .01938 .01618 .0119] .00956 .01265 .01906 .00755 .00600 .00879 .01282 .01483 .01568 .01637 .01687 .01720 .01737 .01737 .01722 .01694 .01655 .01608 .01556 .01505 .0280] .02804 .02769 .02687 .0254] .02308 .01944 .0145] .00788 .00708 .00357 .00733 .01044 .01215 .0148] .01714 .01882 .01979 .02022 .02022 .0199] .01939 .01873 .01800 .01722 .01644 .01573 .02835 .02835 .02794 .02704 .0255] .02344 .02095 .01836 .01297 .00007 .00000 .00964 .01493 .01690 .01889 .02009 .02069 .02080 .02060 .02018 .01959 .0189] .01816 .01737 .01659 .01582 .01513 201 .02708 .02697 .02653 .02576 .0246] .02314 .02143 .02040 .02090 .01226 .01368 .01335 .01364 .01384 .01666 .01832 .01884 .01879 .01852 .0181] .01762 .01706 .01646 .01583 .01520 .01456 .01399 .02802 .02821 .02807 .02758 .02690 .0261] .02488 .02643 .0247] .01743 .02164 .01982 .01640 .01719 .01769 .01702 .01696 .01738 .01764 .01752 .01711 .01653 .01587 .01519 .01452 .01386 .01329 .0285] .02899 .0295] .02969 .0287] .0276] .02979 .03017 .0247] .0190] .02109 .02313 .02136 .01882 .01928 .01906 .01887 .01772 .01659 .01595 .01564 .01539 .01507 .01465 .01415 .01359 .01306 .02953 .0303] .03018 .02933 .02966 .03182 .03328 .03180 .02260 .02155 .02357 .02753 .02507 .02270 .02045 .02062 .01945 .01890 .0183] .0171] .01579 .01475 .01404 .01353 .01313 .01275 .01242 .02957 .02946 .02953 .03059 .03250 .03460 .03535 .03132 .02397 .0241] .02609 .02900 .02790 .02700 .02337 .02111 .02104 .01964 .01833 .01768 .01694 .01585 .01465 .01358 .01274 .01213 .01165 202 .03044 146505000 I .01449 .01500 .01442 .01339 .01270 .01249 .01201 .01125 0114160500000 I .01392 .01430 .01375 .01282 .01215 .01194 .01159 .01089 .01047 Y-COORD I X-COORD (METERS) (METERS)I 79350.00 79400.00 79450.00 79500.00 79550.00 79600.00 79650.00 79700.00 79750.00 146700000 I .01872 .01843 .01839 .01825 .01796 .01761 .01722 .01688 .(11416156295000 I .01935 .01921 .01917 .01894 .01858 .01816 .01776 .01747 .01147626090000 I .02010 .02007 .01997 .01964 .01919 .01873 .01838 .01811 .01147676785000 I .02097 .02099 .02078 .02033 .01981 .01938 .01908 .01876 .(114836580000 I .02190 .02190 .02156 .02101 .02047 .02013 .01981 .01940 01148696675000 I .02290 .02277 .02226 .02165 .02125 .02094 .02054 .02007 .01149676270000 I .02393 .02358 .02290 .02236 .02208 .02175 .02128 .02089 3124067565000 I .02491 .02428 .02357 .02322 .02294 .02252 .02214 .02201 .012412620000 I .02566 .02480 .02439 .02417 .02379 .02340 .02330 .02344 .012266255000 I .02629 .02551 .02528 .02508 .02473 .02464 .02483 .02512 01245616250000 I .02681 .02646 .02632 .02600 .02594 .02632 .02670 .02712 112476215000 I .02755 .02756 .02740 .02743 .02780 .02835 .02896 .02934 11249626140000| .02861 .02873 .02891 .02944 .03013 .03085 .03131 .03100 31249696935000 I .02985 .03032 .03108 .03201 .03291 .03322 .03258 .03127 01249656030000 I .03151 .03260 .03384 .03492 .03505 .03402 .03224 .03015 01248616825000 I .03386 .03546 .03663 .03646 .03500 .03286 .03052 .02833 01246656120000 I .03656 .03770 .03714 .03526 .03276 .03026 .02818 .02662 11245656515000 I .03764 .03667 .03427 .03153 .02935 .02793 .02707 .02652 012425710000 I .03416 .03134 .02939 .02859 .02840 .02836 .02823 .02791 .23‘762305000 I .02762 .02822 .02917 .02982 .03004 .02989 .02946 .02885 '(1‘31861200000 I .02833 .02964 .03041 .03077 .03080 .03058 .03016 .02961 '23::5950001 .02884 .03051 .03163 .03224 .03241 .03223 .03180 .03118 203 146590000 I .03047 .0319] .0328] .03323 .03323 .03292 .03237 .03165 .03082 146585000 | .02927 .02973 .03026 .03066 .03082 .03075 103045 .02997 .02936 146580000 I .03316 .03345 .03265 .03 151 .03043 .0295] .02875 .02807 .02742 146575000 I .031 19 .03288 .03395 .03407 .03330 .03196 .03042 .02892 .02757 146570000 I .02998 .03135 .03218 .03268 .03287 .03265 .03195 .03082 .02943 146565000 | .02710 .02958 .03085 .03137 .0314] .03120 .03088 .0304] .02976 146560000 I .02264 .02587 .0283] .02962 .03014 .03009 .02969 .02914 .02863 146555000 I .0205] .02164 .02427 .02656 .02792 .02854 .02859 .02822 .02769 146550000 I .02003 .01964 .02046 .02256 .0246] .02599 .0267] .02699 .02678 146545000 I .01890 .01905 .01862 .0192] .02088 .02267 .02405 .02489 .02526 146540000 I .0172] .01808 .01796 .01754 .01798 .01930 .0209] .02218 .02304 146535000 I .01583 .01655 .01712 .01685 .01648 .01686 .01793 .01925 .02042 146530000I .01497 .01508 .01580 .0161] .01584 .01553 .01579 .01664 .01777 146525000 I .01434 .01402 .01445 .01507 .01519 .01485 .01459 .01479 .01547 146520000 I .01372 .01339 .01330 .01379 .01426 .01426 .01393 .01371 .O 1385 146515000| .01295 .01285 .01251 .01264 .01313 .01346 .01337 .01306 .01286 146510000 I .01212 .01227 .01195 .01177 .01204 .01247 .01267 .01254 .01226 146505000I .01133 .01163 .01148 .01116 .01113 .01146 .01182 .01193 .01 178 146500000 I .01062 .01095 .01098 .01069 .01046 .01057 .0109] .01120 .0] 125 Y-COORD I X-COORD (METERS) (METERS) I 79800.00 79850.00 79900.00 79950.00 80000.00 146700000 I .01635 .0160] .01565 .01534 .01516 146695000 I .01686 .01648 .01613 -01593 .01587 146690000 I .01738 .01700 .01676 .01669 .01673 146685000 I .01794 .01767 .01758 .01762 .01768 146680000 I .01865 .01855 .01859 .01866 .01869 146675000 I .01960 .01965 .01973 .01979 .01984 146670000 I .0208] .02090 .02099 .02108 .021 15 146665000 I .02220 .02232 .02245 .02252 .02243 146660000 I .023 80 .02397 .02404 .023 85 .02337 146655000 I .02567 .02569 .02537 .02470 .02376 146650000 | .02747 .02697 .02605 .02486 .023 55 146645000 I 146640000 I 146635000 I 146630000 I 146625000 I 146620000 I 146615000 I 146610000 I 146605000 I 146600000 I 146595000 I 146590000 I 146585000 I 146580000 I 146575000 I 146570000 I 146565000 I 146560000 I 146555000 I 146550000 I 146545000 I 146540000 I 146535000 I 146530000 I 146525000 I 146520000 I 146515000 I 146510000 I 146505000 I 146500000 I .02854 .02853 .02763 .0263] .02508 .02477 .02570 .02688 .02740 .02828 .02965 .02997 .02872 .02685 .02648 .02804 .02893 .02808 .02702 .02627 .02523 .02352 .02128 .0188] .01639 .01439 .01298 .01210 .01153 .01109 .02738 .02688 .02586 .02472 .02395 .02415 .02522 .02618 .0266] .02754 .0288] .02907 .02798 .02623 .02549 .02661 .02784 .02745 .02638 .0256] .02487 .02364 .02179 .01959 .0173] .01517 .01342 .01219 .01140 .01087 .02592 .02520 .02427 .02340 .02308 .0236] .02468 .02543 .02582 .02677 .02794 .02815 .02719 .02559 .02462 .02529 .02663 .02673 .02577 .0249] .02427 .02339 .02199 .02013 .01806 .01598 .01408 .01256 .01148 .01076 204 .02440 .02362 .02283 .02230 .02236 .02309 .02409 .02465 .02503 .02600 .02707 .02723 .02639 .02494 .02385 .0241] .02537 .02587 .02514 .02418 .02354 .0229] .02190 .02042 .0186] .01668 .0148] .01312 .01178 .01083 .02293 .02223 .02162 .02138 .02169 .0225] .02339 .02382 .02424 .0252] .02619 .0263] .02556 .02425 .0231] .02303 .02406 .02484 .02445 .02353 .0228] .02229 .02159 .02047 .01896 .01723 .01546 .01376 .01226 .01109 205 THE ANNUAL ( 8760 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL F F F5845 , FFF5946 , F F F6047 , FSC1953 , FSC2155 , FSC2256 , FEF5437 , FEF5640 , FSC2783 , FEF2094 , F EF 1774 , FSC3199 , FSC32100, INCLUDING SOURCE(S): *** NETWORK ID: CART] ; NETWORK TYPE: GRIDCART *** ** CONC OF BENZENE IN MICROGRAMS/M**3** Y-COORD I X-COORD (METERS) (METERS)I 78000.00 78050.00 78100.00 78150.00 78200.00 78250.00 78300.00 78350.00 78400.00 .63868 146700000 I .24588 .24558 .24475 .24642 .25220 .26216 .27498 .28853 3134616695000 I .25530 .25703 .25640 .25572 .25809 .26489 .27575 .28904 3133686190000 I .26489 .26769 .26896 .26798 .2675] .27066 .27843 .29004 31214606185000 | .2768] .27865 .28103 .28173 .28036 .28017 .28413 .29275 312560380000 I .29214 .29215 .293 56 .29537 .29536 .29359 .29373 .29846 31047676675000 I .31 120 .30939 .30886 .30970 .31077 .30988 .30766 .30816 31143606970000 I .3337] .33082 .32829 .32707 .32716 .32726 .32526 .32196 31241686065000 I .35833 .35615 .35249 .34903 .34689 .34598 .3441] .33966 31345606960000 I .38274 .38363 .38118 .37655 .37180 .36777 .3644] .36002 31543616955000 I .40573 .41046 .41 193 .40924 .4028] .39508 .3 8848 .38255 .3115606050000 I .42759 .43 545 .44132 .44333 .43932 .43018 .41913 .40912 .3129666145000 I .4465] .45829 .46805 .47455 .47646 .47155 .45944 .44366 .41248656840000 I .46014 .47650 .49073 .50164 .50906 .51 149 .5058] .4900] .41641586g5000 I .47040 .48972 .50776 .52360 .53617 .54449 .54707 .54053 5124069680000 I .47807 .4996] .5204] .54014 .55764 .57129 .57957 .58123 517336425000 I .47790 .50285 .52732 .55090 .57285 .59186 .60618 .61352 .61141676‘20000 I .46737 .49409 .52168 .54957 .57671 .60156 .62277 .63 778 61443621 50.00 I .44988 .47622 .50395 .53285 .56235 .59155 .61905 .64225 61547666810000 I .42463 .4498] .47644 .50435 .53307 .56218 .59072 .61705 206 146605000 I .39609 .41830 .44179 .46646 .49192 .51792 .54360 .56767 “51318616700000 I .37710 .39649 .41669 .43752 .45846 .47931 .49909 .51661 51340615995000 I .36486 .38264 .40099 .41968 .43819 .45622 .47275 .48653 .41945685190000 I .34304 .35715 .371 17 .38475 .39724 .40816 .41636 .42051 41148685885000I .29873 .30631 .31290 .31813 .32143 .32247 .32058 .31522 3316605180000 I .24394 .24721 .24987 .25192 .25333 .25431 .25485 .25495 21544615475000 I .20444 .20861 .21319 .21823 .22374 .22975 .23640 .24409 2153675070000 I .18669 .19329 .20059 .20888 .21863 .23058 .24556 .26361 21842675165000 I .18162 .19095 .20214 .21585 .23242 .25134 .27066 .28672 21946615560000 I .18708 .20120 .21737 .23508 .25254 .26720 .27715 .28242 2184162155000 I .20165 .21772 .23280 .24546 .25461 .26060 .26469 .26712 “21641661350000 I .21296 .22397 .23210 .23778 .24246 .24682 .24987 .25081 21543615315000 I .21054 .21581 .22056 .22528 .22990 .23319 .23551 .24088 2154363440000 I .19984 .20437 .20952 .21421 .21754 .22102 .22857 .24272 2154352525000 I .19023 .19512 .19941 .20304 .20758 .21648 .23099 .24692 2154875930000 I .18224 .18596 .18949 .19493 .20485 .21909 .23398 .24435 21540615725000I .17389 .17747 .18336 .19340 .20715 .22110 .23079 .23663 21445605020000I .16678 .17300 .18290 .19563 .20819 .21732 .22306 .23013 23655315000 I .16366 .17325 .18496 .19623 .20444 .20966 .21585 .22786 21447665910000 I .16438 .17509 .18520 .19260 .19731 .20252 .21230 .22883 21542605605000] .16597 .17505 .18172 .18598 .19042 .19845 .21207 .23168 21545675300000| .16570 .17173 .17559 .17940 .18607 .19736 .21384 .23502 .25747 Y-COORD I X-COORD (METERS) (METERS)I 78450.00 78500.00 78550.00 78600.00 78650.00 78700.00 78750.00 78800.00 78850.00 146700000 I .32737 .35234 .37108 .38337 .39999 .42593 .44683 .45453 .4112995000 I .32469 .35232 .37668 .39225 .40728 .43327 .45896 .47053 .4750] 146690000 I .49091 146685000 I .50638 146680000 I .52144 146675000 I .53552 146670000 I .54750 146665000 I .55665 146660000 I .56090 146655000 I .55788 146650000 I .54466 146645000 I .51809 146640000 I .47594 146635000 I .41864 146630000 I .34993 146625000 I .27285 146620000 I .18594 146615000 I .11410 146610000 I .07579 146605000 I .05701 146600000 I .06264 146595000 I .05268 146590000 I .03440 146585000 I .04242 146580000 I .06149 146575000 I .11635 146570000 I .18051 146565000 I .23695 146560000 I .27870 .32214 .32076 .32085 .32195 .32613 .33442 .34725 .36517 .38783 .41405 .44535 .49008 .54909 .59869 .63570 .66088 .65168 .60218 .53747 .49820 .40938 .29277 .25306 .26605 .29794 .2981] .28119 .34955 .34514 .34010 .33611 .33502 .33793 .3454] .35733 .37424 .39670 .42352 .45670 .50755 .56872 .61236 .64625 .65024 .6055] .53528 .49057 .3897] .2755] .25088 .27983 .30345 .29276 .27379 .37948 .37837 .37202 .36288 .35403 .34839 .34794 .35348 .36383 .37838 .3987] .42438 .45869 .51503 .57085 .6083] .62686 .59239 .51961 .46920 .35779 .25425 .24880 .28878 .29659 .27886 .26969 207 .40055 .40612 .40686 .40204 .3914] .37714 .36389 .35645 .3571] .36416 .37452 .3898] .41146 .44577 .5034] .54582 .57372 .55544 .48583 .43028 .31276 .22893 .24715 .28349 .27587 .26242 .27385 .41544 .42273 .42907 .43296 .43186 .4231] .4062] .38439 .36497 .35503 .35505 .35852 .36464 .37823 .41085 .4597] .48682 .48715 .42967 .37136 .25626 .20036 .24028 .25808 .24390 .25402 .27328 .43963 .44407 .44806 .45195 .45517 .45602 .45115 .43625 .40952 .37599 .34756 .33289 .32538 .31753 .31868 .34714 .37562 .38250 .34543 .28986 .19117 .17066 .21504 .21143 .21679 .24394 .27510 .46933 .47671_ .48160 .48380 .48328 .48067 .47632 .46914 .45556 .42948 .38711 .33621 .29575 .27094 .24609 .23264 .25020 .25482 .24233 .19838 .12724 .13935 .16076 .16166 .19444 .24250 .29522 .48553 .4989] .51063 .51976 .52486 .52520 .51928 .50647 .48698 .46137 .42826 .38182 .31666 .24595 .19670 .15576 .13274 .14466 .14094 .11243 .07312 .09355 .09695 .12627 .18892 .25242 .2973] 146555000 I .30945 146550000 I .33070 146545000 I .34430 146540000 I .35204 146535000 I .35533 146530000 I .35513 146525000 I .35216 146520000 I .34697 146515000 I .34008 146510000 I .33189 146505000 I .32269 146500000 I .31284 Y-COORD I (METERS) I .26448 .26287 .27020 .27033 .26406 .26054 .26272 .26826 .27417 .27814 .27795 .27302 78900.00 79250.00 79300.00 146700000 I .46106 146695000 I .47434 146690000 I .48996 146685000 I .50705 146680000 I .52609 146675000 I .54685 146670000 I .56810 146665000 I .58741 146660000 I .60231 146655000 I .60986 146650000 I .61064 146645000 I .61032 .46755 .48406 .49967 .51496 .52997 .54424 .55708 .56800 .57555 .57805 .57318 .55787 .2689] .27802 .28074 .27664 .27634 .28225 .29063 .29750 .30017 .29713 .28837 .27514 78950.00 .47313 .49056 .50702 .5232] .53908 .55412 .5677] .57922 .58724 .59015 .58573 .5711] .28038 .28695 .28677 .29172 .30265 .31386 .32070 .3205] .31302 .30007 .28440 .26796 208 .28590 .29230 .30515 .32234 .33600 .34119 .33672 .32478 .30880 .29193 .27595 .26150 .28994 .31385 .33815 .35323 .35547 .34689 .33225 .31582 .29999 .28556 .27268 .26110 X-COORD (METERS) 79000.00 79050.00 79100.00 79150.00 79200.00 .47014 .48758 .50403 .52016 .53589 .55066 .56389 .57490 .58230 .58443 .57914 .5637] .46464 .48139 .49712 .51236 .52719 .54119 .55367 .56435 .57196 .57517 .57215 .56050 .46554 .48307 .50006 .51680 .53360 .55012 .56554 .57943 .59020 .59607 .59479 .58393 .31299 .3445] .36005 .35997 .35032 .33695 .32308 .30993 .29779 .28632 .27545 .26506 .47776 .49696 .51577 .53354 .55059 .56623 .57940 .5898] .59662 .5996] .59896 .59468 .33340 .35075 .35318 .34832 .34054 .33155 .32193 .31192 .30183 .29175 .28190 .27242 .48830 .5052] .52105 .53449 .5467] .55790 .56840 .57920 .59093 .60339 .61457 .61893 .32290 .33612 .34197 .34287 .3402] .3351] .32849 .32098 .31305 .30492 .29663 .28829 .47999 .49246 .50508 .51694 .53002 .54510 .56239 .58154 .60095 .61684 .62388 .61774 1wmmmn .61302 146635000 I .61588 146630000 I .62299 146625000 I .64033 146620000 I .66201 146615000 I .63852 146610000 I .52944 146605000 I .43069 146600000 I .42264 146595000 I .43368 146590000 I .40718 146585000 I .44627 146580000 I .47544 146575000 I .49123 146570000 I .47639 146565000 I .42196 146560000 I .40364 146555000 I .41553 146550000 I .40615 146545000 I .38068 146540000 I .36073 146535000 I .34984 146530000 I .34028 146525000 I .32666 146520000 I .30927 146515000 I .29074 146510000 I .27338 .52829 .48032 .41103 .32208 .21990 .13052 .06538 .03085 .02455 .03439 .01341 .02200 .05146 .10495 .16643 .22990 .28408 .32811 .36073 .38229 .39420 .39830 .39641 .39017 .38087 .36955 .3572] .54290 .49750 .43243 .34860 .24784 .15614 .08837 .05195 .02450 .00926 .00782 .03053 .07105 .12878 .19926 .27118 .32888 .37111 .39850 .41326 .41822 .41599 .40875 .39816 .38544 .37150 .3572] .53494 .48968 .4260] .34544 .25005 .1633] .09713 .0582] .03598 .00469 .01349 .03014 .07535 .13555 .20090 .26204 .30952 .34447 .36773 .38086 .38589 .38480 .37929 .37070 .36006 .34817 .33582 209 .53717 .49874 .4422] .36716 .27393 .18126 .10895 .08936 .07759 .04116 .05367 .06074 .09019 .12676 .18617 .24827 .29736 .33120 .35122 .36073 .36290 .36007 .35387 .34543 .33554 .3248] .31368 .56138 .52594 .47685 .4106] .31869 .2240] .18247 .16119 .09966 .07794 .07977 .10533 .11540 .17052 .22124 .25905 .28343 .30568 .32643 .34182 .34982 .35086 .34652 .33855 .32836 .31704 .30523 .58495 .56277 .51563 .44220 .37356 .32707 .29573 .23334 .14813 .12427 .12108 .15222 .17678 .20737 .26686 .2983] .32528 .33710 .33414 .32840 .32545 .32453 .32333 .32028 .3149] .30747 .29844 .60738 .57428 .53065 .49412 .46826 .45007 .40686 .29888 .22140 .20784 .19649 .23619 .2757] .28244 .30085 .34419 .35365 .35808 .36446 .35987 .34490 .32764 .31318 .30242 .29424 .28735 .28067 .6016] .58602 .57399 .56662 .56716 .56087 .49177 .36212 .32208 .31973 .29964 .35005 .37528 .39630 .3683] .36647 .39292 .38948 .37392 .36693 .36206 .35038 .33229 .31254 .29473 .28017 .26843 146505000 I .25829 146500000 I .24553 Y-COORD I (METERS) I .34405 .33065 793 50.00 79700.00 79750.00 146700000 I .40251 146695000 I .41524 146690000 I .42791 146685000 I .44154 146680000 I .45853 146675000 I .48106 146670000 I .50948 146665000 I .54286 146660000 I .58199 146655000 I .62689 146650000 I .66801 146645000 I .68971 146640000 I .68441 146635000 I .65862 146630000 I .62319 146625000 I .59357 146620000 I .59164 146615000 I .61751 146610000 I .64068 146605000 I .65408 146600000 I .68292 146595000 I .70907 .45038 .46772 .48723 .50793 .52830 .54793 .56526 .57858 .58780 .59582 .60635 .61860 .62983 .64656 .67498 .71376 .72926 .66852 .54687 .50387 .50955 .53139 .34258 .3281] 79400.00 .44886 .46739 .48664 .50599 .52340 .53879 .55185 .56374 .57699 .59329 .60969 .62547 .6479] .68229 .72903 .77002 .75138 .66227 .56784 .56777 .57920 .60860 210 .32300 .30225 .29327 .31018 .29085 .28149 1K4CCXDRI)(LIETTHKS) .28827 .27755 .27358 .26592 .25882 .25059 79450.00 79500.00 79550.00 79600.00 79650.00 .44708 .46384 .48053 .49680 .51174 .52508 .53926 .55602 .57448 .59185 .60995 .63534 .67214 .72106 .77449 .78822 .73807 .6434] .59497 .61543 .63060 .66420 .44109 .45579 .47026 .48444 .49930 .51522 .53315 .55175 .56949 .58838 .61465 .65167 .69963 .75657 .79193 .77303 .70572 .62906 .6212] .64667 .66540 .70053 .43263 .44572 .45899 .47368 .49074 .50944 .5272] .54435 .56362 .59013 .62569 .67107 .72657 .77363 .77894 .73854 .66955 .62328 .64077 .66420 .68627 .72108 .42318 .43586 .45030 .46665 .48404 .50144 .51844 .53744 .56330 .5975] .63977 .69139 .74242 .76524 .74643 .69662 .63914 .62282 .65159 .67118 .69609 .7294] .41479 .42873 .44398 .45973 .47534 .49138 .51069 .53604 .56828 .60725 .65439 .70534 .73909 .73739 .70513 .65577 .61725 .62333 .65414 .67045 .69743 .7286] .40865 .42263 .43679 .45082 .46557 .48367 .50790 .5389] .57522 .61777 .66590 .70527 .71739 .69968 .66262 .62086 .60231 .62193 .6499] .66419 .69246 .72118 21] 146590000 I .50324 .58173 .64012 .67972 .70346 .71459 .71613 .71060 .69998 146585000 I .51637 .56632 .60307 .63015 .64890 .66009 .66458 .66339 .65758 146580000 I .56720 .6332] .66742 .67692 .67243 .66199 .64979 .6374] .62514 146575000 I .5672] .62872 .67714 .70884 .72070 .71467 .69635 .67179 .64567 146570000 I .56320 .62315 .66249 .68795 .70480 .71364 .71280 .7017] .68214 146565000 I .51565 .59269 .64307 .67210 .68517 .68883 .68803 .6842] .67673 146560000 I .44640 .52396 .59157 .6361 1 .66107 .67026 .66837 .66084 .65142 146555000 | .41815 .45022 .51294 .57173 .61222 .63 576 .64502 .64309 .63372 146550000 I .41942 .41734 .44123 .49139 .5420] .57912 .60229 .61308 .61316 146545000 I .40765 .41 153 .40716 .42500 .46497 .50829 .54229 .56492 .57717 146540000 I .37978 .3989] .39689 .39170 .40516 .43716 .47392 .50466 .52652 146535000 I .35239 .37239 .38409 .37884 .37378 .38413 .40965 .44066 .46824 146530000 I .3342] .34273 .36036 .36630 .35965 .35486 .36285 .38334 .40923 146525000 I .32259 .31959 .33176 .34546 .34725 .34014 .3359] .34204 .35808 146520000 | .31193 .30436 .30634 .31917 .32895 .32808 .32104 .31702 .32159 146515000 I .29869 .29333 .28783 .29379 .30556 .31186 .30910 .30237 .29899 146510000 | .28308 .28274 .27507 .27347 .28138 .29107 .29469 .291 15 .28516 146505000 I .26676 .27068 .26497 .25863 .26042 .26895 .27672 .2785] .27464 146500000 I .25107 .25695 .25504 .24783 .24444 .24875 .25699 .26293 .2634] Y-COORD I X-COORD (METERS) (METERS) | 79800.00 79850.00 79900.00 79950.00 80000.00 146700000 I .39505 .38666 .37926 .37483 .37356 146695000 I .40655 .39849 .39346 .39193 .39264 146690000 | .4192] .41354 .41 173 .41249 .41382 146685000 I .43519 .43310 .43393 .43549 .43655 146680000 I .45617 .45714 .45903 .46057 .46210 146675000 I .48226 .48462 .48682 .48916 .4912] 146670000 I .51249 .51560 .51892 .52135 .52062 146665000 I .5472] .55169 .5543] .55224 .54402 146660000 I .58778 .59020 .58595 .57406 .55577 146655000 I .62894 .62134 .60465 .58127 .55409 146650000 I .65759 .63497 .60585 .57394 .54200 146645000 I 146640000 I 146635000 I 146630000 I 146625000 I 146620000 I 146615000 I 146610000 I 146605000 I 146600000 I 146595000 I 146590000 I 146585000 I 146580000 I 146575000 I 146570000 I 146565000 I 146560000 I 146555000 I 146550000 I 146545000 I 146540000 I 146535000 I 146530000 I 146525000 I 146520000 I 146515000 I 146510000 I 146505000 I 146500000 I .66264 .64667 .61894 .58918 .57259 .58248 .60978 .62826 .64158 .67037 .69399 .68610 .6484] .61302 .6205] .65682 .66423 .64137 .62092 .60517 .57997 .5399] .4885] .43307 .37955 .33470 .30278 .28239 .26937 .25949 .6288] .60868 .58304 .56126 .55627 .57337 .59902 .61338 .62718 .65548 .67670 .66970 .63639 .60046 .59734 .62866 .64653 .63039 .60755 .59228 .57442 .54412 .5014] .45180 .40083 .35297 .31363 .28556 .2671] .25487 .5924] .57198 .55138 .5388] .54278 .56353 .58598 .5972] .6117] .63918 .65813 .6518] .62244 .58750 .57649 .60022 .62450 .61751 .5943] .57646 .56226 .54088 .50775 .46514 .41846 .37193 .32920 .29460 .26979 .25303 212 .55759 .53908 .52370 .51902 .52970 .55209 .57113 .58039 .59563 .62202 .63889 .63308 .60716 .57409 .55760 .57268 .59875 .60067 .58054 .56056 .54722 .53219 .50785 .4732] .43176 .38836 .34603 .30789 .27736 .25532 .52588 .51058 .50086 .50244 .51682 .53839 .55363 .56179 .57787 .60313 .61815 .61275 .58973 .55879 .53887 .5462] .5711] .58119 .56684 .54609 .53153 .51986 .5026] .47593 .44083 .40129 .36122 .32280 .28874 .26170 *** THE SUMMARY OF MAXIMUM PERIOD ( 8760 HRS) RESULTS *** 213 ** CONC OF BENZENE IN MICROGRAMS/M**3 ** NETWORK GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZFLAG) OF TYPE GRID-ID LINE] lST HIGHEST VALUE IS 2ND HIGHEST VALUE IS LINE2 lST HIGHEST VALUE lS 2ND HIGHEST VALUE 1S LINE3 lST HIGHEST VALUE IS 2ND HIGHEST VALUE IS LINE12 lST HIGHEST VALUE IS 2ND HIGHEST VALUE IS LINE23 lST HIGHEST VALUE IS 2ND HIGHEST VALUE IS LINE13 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS ALL 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS .65794 AT ( .65302 AT ( .10044 AT ( .09986 AT ( .03770 AT ( .03764 AT ( .75701 AT( .75159 AT ( .13632 AT( .13549 AT( .69285 AT ( .68966 AT ( .79193 AT ( .78822 AT ( ”‘" RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY 79500.00, 79450.00, 146630000, 146625000, 79550.00, 79500.00, 146630000, 146625000, 79400.00, 793 50.00, 146620000, 146615000, 79500.00, 79450.00, 146630000, 146625000, 79500.00, 79550.00, 146625000, 146630000, 79500.00, 79450.00, 146630000, 146625000, 79500.00, 146630000, 79450.00, 146625000, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00) GC .00) GC .00) GC .00) CC .00) GC .00) GC .00) CC .00) CC .00) GC .00) GC .00) GC .00) CC .00) GC CART] CART] CART] CART] CART] CART] CART] CART] CART] CART] CART] CART] CART] .00) GC CART] 214 *** THE SUMMARY OF HIGHEST 24-HR RESULTS *** ** CONC OF BENZENE IN MICROGRAMS/M**3 ** DATE NETWORK GROUP ID AVERAGE CONC (YYMMDDHH) RECEPTOR (XR, YR, ZELEV, ZFLAG) LINE] HIGH 1ST HIGH VALUE 1S 9.62033 ON 91051724: AT ( 78400.00, 146565000, .00, .00) LINE2 HIGH 1ST HIGH VALUE IS 1.60427 ON 91051724: AT ( 78400.00, 146560000, .00, .00) LINE3 HIGH lST HIGH VALUE IS .60768 ON 91051724: AT ( 78600.00, 146570000, .00, .00) LINE12 HIGH lST HIGH VALUE 1S 10.95743 ON 91051724: AT ( 78400.00, l465650.00,.00,.00) LINE23 HIGH 1ST HIGH VALUE IS 2.13750 ON 91051724: AT ( 78400.00, 146560000, .00,.00) LINE13 HIGH lST HIGH VALUE 1S 10.04036 ON 91051724: AT ( 78400.00, 14656500000, .00) ALL HIGH 1ST HIGH VALUE IS 11.37746 ON 91051724: AT ( 78400.00, 146565000, .0000) 215 *" ISCST3 - VERSION 96113 "* "* TRIAL 02/21/98 it! "MODELOPTS: CONC RURAL FLAT **"‘ Message Summary : ISCST3 Model Execution *" ------- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 0 Warning Message(s) A Total of 721 Informational Message(s) A Total of 721 Cairn Hours Identified "*""‘"‘ FATAL ERROR MESSAGES """** an NONE "It #******* WARNING MESSAGES ******#* it! NONE tit t###¥#***#*¢##¥**¥**ttittfititttttttt "“" ISCST3 Finishes Successfully *" itt##0##itti*tttttittittttfit*ttll*tt **# DFAULT 10:21:11 PAGE 212 **# 216 Appendix F Graphical Results of Dispersion Modeling under Full Production Rates distance-north (m) Benzene 24hr—average concentrations in 11ng - 1991 conc (ug/m3) _o 0'! ._L 8 0° 1000 O distance—east (m) 217 Graphical Results of Sensitivity Analysis to a 10% Increase in Emission Rates distance-north (m) —1(1010000 —800 -600 -400 —200 0 200 400 600 800 1000 Benzene 24hr—average concentrations in ug/m3 — 1991 +10%ER conc (ug/ma) .0 01 _A O O OO ’03 i distance-east (m) 218 EL $318565 AEV €213,655 ooo .. 89 I 9E3: 5 22532880 mmEmEIEK ocoucom 219 95 «08.8586 80 T 807 89 - 0E3: s meowflfioocoo ouflguévm econ—.3 :5 stocéocaufi .....1....../ _..o I ”.0 220 EC $8805.05 82- 82- c5 5.285% 08— / 82 - mean =_ 29.3.8880 SEQ—mesa 255.3 cm 221 E unisex“. coo T AEV stocnoocufiu coo w ff! 55...... a, _ 4.43 .. 4 . . . 4 n .. . alto .. .43.... .... u ...... .4 .4. .4 . ) ..... . . ... .w. i 1. . o ) a 0 last. n ... ( . .0. .. .. 4.....s 7.. .. ----- n 59.. ~83: s 23.22380 oqu>uEN ozoncom APPENDIX G Predicted Concentrations - PDF Characteristics Development L+_—l 222 $3843 $383 $3843 $3843 $383 $3333 $383 84.5 33333.3 333.3 3334.3 8333 33334 33 33 43434.3 34333.4 $333.44 83333 33334 480.4: 434 >343 53: 3346:: 34 25 338.: 34 25 3 25 3 6:: 4 2.: 4 x E 43882 04.500”. «.130 hmmIQI “.0 5.52.230 m1... 400.0 0N¢.0 00000.0 000010 N400.0 00034.0 0NON0.0 00000.0 00000.0 000003 03304 ~00 .4: EN 383 333.3 33433.3 3344.3 33333 333333 8333.3 3338.3 3333.3 8333 33334 483.4: .34 >03 :33: 3348.: 34 8.: 338: 34 3:: 3 3:: 3 3:: 4 3:: 4 x 9 46.88: 34.5333 .33... 3343 430.334. 53:32: “_O >3<2233 3:4 333.3 434.3 3333.3 4333.3 34333.3 3333.3 33434.3 «3433.3 333.3 33333 33334 4: 33.3 334.4 4333.4 43333.4 44333.3 83.4 3333 34333.3 3333.4 3833 33333 3: 433.3 333.3 3434.3 4433.3 3343.3 4333.3 4344 4.3 333333 333$.3 333333 33333 3: 433.3 333.4 334 43.4 833.4 33443.3 44334.4 33333 334333 33.3.4.4 333333 3834 34 333.3 333.4. 43343.3 3333.3 3334.3 34343.4 33344.3 33333.3 $333.44 333333 33334 3: 434.3 3434 33343.3 33333.3 334333 334.43 3433.3 3334.3 33343.3 33333 33334 N34 3333 43.3 3344.3 44$3.3 4.33.3.3 33333.3 .333 3333.3 33443.3 333333 33.34 434 >940 :3! 3424.5 04 244.4 «Nasw N 4 on: 0 244.4 N 244M 4 244.4 4. x 9 48440001 34:40: 5 30003003000 432.9... 33:". 333.3 343.3 3333.3 3334.3 3433.3 4333.3 438.3 34333.3 3334.3 3833 33334 34 $33 33.3 3334.3 4334.3 3333.3 4334.3 3483.3 44333.3 333343 333433 33333 3: 333.3 333.3 8433.3 33 $33 33333.3 33333.3 84 43.3 3333.3 433 $3 333333 33333 32 040.0 444.0 00 N40 03 4 .0 Nquo.0 0004 4.0 003000 004 40.0 43000.0 00030444 00004 34.4 430.0 0Nv.0 00000.0 «00044.0 N..00.0 44003.0 VNON0.0 00000.0 00000.0 000003. 03304 at 000.0 00.4.0 84043.0 «43040.0 343000 0003440 00NN0.0 00000.0 00000 004303. 03304 NM $33 4343 3834.3 3433.3 3333.3 43334.3 44433.3 3333.3 83343 333333 334.34 4: >33 :8: 3346:: 34 6:: 3324: 34 24: 3 2.: Im 2.: 4 2.: 4 x e 48880 3.50: 5 3000245050 3023>< .3353 _40 33> :24 0:34.30 223 $33343 3333343 3333343 333843 33333343 $33343 $33343 8330 33333.3 33333.3 3334.3 8333 33334 3433.3 3333.3 3333.3 3333.3 333333 33334 .334: 434 0N 424.44 04 24.4.4 0No=3 N4 24.3 0 24.4.4 N 243 4 24.3 a x 9 48440334 04.50%. 3.1-3 40930.: “_O 5.52.230 m:._. 333.3 433.3 333.3 43343.3 33443.3 3333.3 33343.3 33433.3 433333 333333 33334 E 3.43 333.3 333.3 33333.3 43333.3 33333.3 33333.3 33333.3 33333.3 33333.3 334333 33334 .333: .34 >33 :8: 33 42.... 3. 2.... 332.: 3. 2.... 3 2.... 3 2.... 4 2.... 4 x a. 48883. 35:33.... .33: 3343 30.333 23:32.... ".0 3.3.2.203 3:4 333.3 333.3 3433.3 33334.3 33333.3 33433.3 33333.3 34333.3 43333.3 333433 33334 43. 433.3 333.3 33343.3 33433.3 44333.3 3343.3 33333.3 33333.3 33334.3 333433 33333 33. 333.3 33.3 3343.3 43333.3 33333.3 44333.3 333:3 33333.3 33333.3 333333 33333 33. 333.3 333.3 33434.3 33433.3 33343.3 3433.3 33343.3 33333.3 33433.3 333333 33334 3: 333.3 333.3 3333.3 33333.3 4334.3 3333.3 3343.3 43333.3 3333.3 8833 33334 33. 334.3 343.3 33333.3 3333.3 33333.3 3334.3 33333.3 33334.3 33343.3 334333 33334 33. 333.3 33.3 43333.3 44333.3 33333.3 33333.3 34334.3 3333.3 33343.3 333333 33334 4: >940 53! 334243 04 244.4 43244.“ N4 24.4.4 0 24.3 N 244“. 4 244.4 A x 9 .48198! 3840: 5 000334303200 «3:2... 33...”. 333.3 333.3 33333.3 33433.3 3333 44333.3 33333.3 33333.3 3333.3 8333 33334 43. 333.3 43.3 34333.3 33333.3 43333.3 3333.3 33333.3 33333.3 33333 333433 33333 33. 333.3 333.3 33333.3 3333.3 3333.3 3433.3 33333.3 43333.3 333333 333333 33333 3: 333.3 333.3 433:3 33333.3 3433.3 33333.3 33333.3 33333.3 33433.3 333333 33334 3.3 333.3 433.3 333.3 33343.3 33443.3 3333.3 33333.3 33433.3 43333.3 333333 33334 33. 38.3 333.3 33333.3 43333.3 33333.3 33333.3 33333.3 33333.3 333333 334333 33334 3: 333.3 333.3 33434.3 3333.3 33333.3 33333.3 33433.3 33333.3 43333.3 333333 33334 434 >33 38.2 3332... 33 2.... 332.. 33 S... 3 8... 3 8... 3 9.... 4 x 9 42:83. 34:40: :. ocozgccocoo mfl023>< .3352 140 33> E< 0 23:30 J 224 «nioono vufioouo $383 $385 vfimoono voioouo $383 «83 oooood Boomd vooond 83o: oooos 383 $83 533 $33 oooooi doom» .39: 5 >93 :3: 33:3 2 2.: «~23 2 25 o 25 N 25 F 25 A x Q 3.381 953mm”. «14% ...mm:0=.. no >¢98 58: $35: 2 2.: owns: .2 25 o 25 ~ 25 h 2.: A x 9 338cm mhqammm $1... 35 vooimn. 55552: no >¢Eo 53: «.28: 2 2.: onus... 2 2.: o 8.: a a5 . 25 a x 9 3.38: ”EB: E meow—3:00:00 32.9: «at oood oEd Sooud oooowd mouvod ofiuud oooood ouoood oooopd ooohoi oooon um omod ooFd toopd ooofid voRod Sow; ooood voewod ouwovd ooohoE ooooo om «odd oumd ofiowd woSNd ooovod S33 oooFod vonood oooowd ooooofi ooooo om oFod oo P .o oot to «Soto o3~od odor Pd Novood ooorod ooood ooooo! oooon wt mood wood voomvd o6ood oNEod «voovd oorod onoood ooovod oooooi doom» om oood Food oofied no? So oooood ourowd on Food oo Food ooood 83o: oooon «m opod mid oonowd 359d oNRod Boid 38od voodoo ooomto ooooo! ooco» E >95 :8: 3:25 2 2.: RME up 25 o 25 ..~ 25 o 2.: A x 9 58393... ”EB: :. ocean—«50:00 ouflo>< _a:::< _ 3 30> .53 35:25 _ 225 w~w2oo2o w~w2oo2o wooooo2o w~w2oo2o wumoooB w~w2oo2o w~w2oo2o «.23 ooowod 583 $33 oo2oow2 82: :3 2: ENE ooooww wowow 223 882.2 882 232: .82 >98 :8: 2.225 2.2 25 2.25 2 25 o 25 u 25 2 25 > x E 28228: 953mm”. «1.3 kmmxwi “.0 >¢Eo 58: 2.225 2.2 25 2.25 2 25 o 25 w. 25 2 25 > x Q 33832 953mm”. Amy—I coho vac—amn— EDEXSZ “.0 >¢95 :8: 2.2.25 «.2 25 2.25 2 25 o 25 m 25 2 25 > x 9 28.2882 «E29. 5 acouubcoucoo 32.9... out... oood o2~d ooooud oooomd 223 ooooud oooood 383 582d 8222 882 E oood 83 233 323 223 $23 wooood 9.83 5d 822: ooooo on. wood omud good :33 woowod o22w~d 823 853 owoomd ooooow2 ooooo om 23 33 o2222d oooood Roood 22o2d oowood 22o2od oooood ooooow2 882 wt owod wood oooood oo2wod oooood 2w2ood owtod o2ood 288d ooooow2 82: ot 2ood o2wd Roowd oooood w2oood Kowd 222~od oooood 2w22od oo2oow2 oooo2 «m wood BS 853 853 833 ooo2d ow2ood ooouod 282d 882: 8:: 2: >95 :8: 2.285 2 25 «2:15 2 25 o 25 iu 25 2 25 > x 9 .8383. ”EB: E «coup—«50:00 oqu>< .352 _ 222; :< 22.2.25 226 w~o~o22o wuomofio wmoooono wwowofio wunwoo>o wwoooowo w~o~o22o 339 333 oonoow2 oooon oo2o2.w onod 2ooo2..o oo2oo.w o~>2od owoo2..o ooooow2 oooos 239: 32 25 :3: 2.228.: 2.2 2.: mag: 22 2S m 2.: o 25 2 2.: 2 x 9 3.38m ofioomm «1.3. 52.5.: “.o 52:23 E: onod onod ooouwd ooosod oomood w2~omd wNo2od oo>wod oww2md ooooow2 oooon :3 .2: tea wood owwd omoowd ooomwd ooonod >o2wd o2o~od oooood wmmood oouoow2 oooon 239: 32 >95 :8: 28: m2 2.: 225 2 2S m 2.: 2 2.: 2 2.: 2 x 2 222.8: widow”. .om: oo2o dooimo 232.52: "_o 52:23 m2: oond onod Cosmo oow2.o mooood www2o.o ooo~2d nowmwd noouod ooonoi oooon km mowd omo. 2 woow2 .N oowoo. 2 Snood t. 59. 2 2o~ood omoomd 2ooow. 2 ooonow2 ooooo om oood oood oEooN nooood oooood otowd o2oo2d 2~oood oooood ooooow2 ooooo om oowd Bu. 2 m>o3.~ ounwu. 2 moonod w>oo. 2 ooonod owoomd monom. 2 ooooow2 oooo2. wt oood wow.w o>o2.o nwooww 2ooo2d oon2o.w oo~>2d o~>2od owoouo ooooow2 oooou at 2ood 2oo.o ooo 2o.w oooooo Hmond omnond mooo 2 .o omwood 2 282“ oomooi oooon NE hood womd wooood wmoomo 2m~owd onoowd 2ooo2d noumd mowuod ooooow2 oowow 2m >o2o 53: 2223 2 2.: 28: 2 2.: o 2.: u 2.2“. 2 2.: 2 x 2 222.8: "EB: :_ 3032250200 32.9: «Er... wood omud NNooNd nooowd oo2wod oo2-d wwoood owmmod ouoo2d o8>ow2 oooon km omod «3 .o «39 d moww2 .o nomod Noom 2d 2oood oowod No2 2d coco: ooooo om 2ood owud 2oooud ow2o~d o2owod onowmd >ooSd ownood wooomd ooooow2 ooooo om omod 32d ooo~2d ooo2d ooomod oowo2d 2owood ooo2od wwoood ooooow2 oooou Vt o3d o>od ooomwd oooumd oooood w2~ood w~o2od oonwod oww2md ooooow2 oooon om wood ouwd omoowd oooowd ooonod >o2wd o2ouod omoood womood oonoow2 oooos mm wood 83 .333 o2o2d 2o>~od owwo2d wonood tomod omwo2d ooooow2 oowon 2m >Eo 5.: 228.: m2 2.: 22»: 2 2.: 2.2.: u 2.: 2 2.: 2 x 2 3.88m _ 22 8> .5 222.225 2.53: c. «coup—2:00:00 omaoo>< _u:::< 227 «N235 wNN22o2o w2Noo2o ¢NN22o2o 3.235 «2253 wNN22o2o 323 823. mwoooo oowo2d 22oo2.w 2oooNd woowod owNooo oo2oow2 822. 825: 82: 232: 22 >o2o 53: «.235 2 25 «No.5 2 25 o 25 N 25 2 25 >. x Q 2838: 953mm”. 11.3 hmmrwi “.0 >m95 :8: 2.225 2 25 «No.5 N2 25 m 25 N 25 2 25 > x 9 283252 ofloomm .om... oo2o 39mm“. 2:232: "_o >m05 :8: 2.225 2 25 oNoch N2 25 m 25 N 25 2 25 > x 9 2838.1 ”E20: 5 23:22:00,200 2.32.2... 2mg". oood 23 883 $83 B23 883 oooood 223 2.33 82.2: oooo2 2m omod 2o2d wootd oowo2d oooNod ooow2d ooood oo2Nod oooN2d ooo2ow2 ooooo om 2ood med 2ow2Nd ooomNd ooowod 2oNNd $o2od owomod 333 8322 ooooo om 23d 83 NwoN2d 8.33 2:3 233 2wwood owo2od oooood oooooi oooo2 wt m2od wood mooowd 2o2omd oooood omowmd o2o2od oowwod 883 882: oooo2 om oood 2wwd zoood 353 2.23 ooomwd 2ooNod oo2ood ooo2md oo2oo$ oooo2 Nm 28d 2.3 583 32.3 2oNod oNNw2d oooood 2.33 $83 8322 oowo2 2m >Eo 58: «.225 2 25 32”: N2 25 o 25 who: 2 25 > x 9 281822 oEB: c. ocozubcoocoo ooflo>< .353 .5 28> 2.22 2.225 228 wN~2 EB 339 Nwod womw 2.2.6 ownon thond ooowow N22. 2w.o oooood oooood 83o: oooon 2269: U2 >Eo :8: 2.225 2.2 25 825 N2 25 o 25 N 25 2 25 2 x o. 2832.: whammy. 2..-wN 52.0.: ”_o >m<=zoo 2:. 23d 2wmd Snood Swood oowood oooomd N22. 2od nowwod oooowd oomoow2 oooos «no 2: 354. 2ood wNwd oooowd m2wmwd onBd 2Nw2wd ooo 2od Nwwood oooood 83o: oooos 309: 32 >Eo 58:. 2225 2.2 25 oN25 N2 25 o 25 N 25 2 25 2 x o. 222.8... 253mm 62.. oo2o 30.22.. 55.2.22... ".0 252.225 2.... osod owoN Kowwd hooood 2 2oood oNoo.N nowN 2d wow 2w.o oooowd ooonow2 Soon «I oowd mood ooonN ooo 2w.N oooowd oooN.N 2. 2 2 2d 2NwoNd 333.. 829.2 ooooo om osod mood ooo2~d somood {Bod oo 2w2.N oN2N2d Nwo 2w.o oNoNoN ooooow2 ooooo o! ohwd 2.8.2 NNooN 3322 Sound 2232 Noohod owooNd ooooo.2 ooooow2 ooooh Vt onod o 2o.w Nowoo.w whoooé oooood wooood oowo 2d 2 2wod wRoom ooooow2 oooon at 2ood owo.w oonooo onohw 222ohd ooowow N22. 2w.o oooood mooood oouooi oooon NE o2od oood Nwoowd o2oN2d ooNNwd 22o 3...” 39 2d oooood w2wo2..N ooooow2 oowo» 2t >Eo 53:. 2.22.5 m2 25 oNosN N2 25 o 25 N 25 2 25 2 x o. 222.com 2222.29. 2.. moat—22:32.00 32.9... 23.". oood o2Nd ooNoNd NNNNd ooomod o2m 2w.o oooood oooood woNo 2d ooosoi oooo2. ht hood oo2d o232.o No2o2d ooNod oowo2d oooood BNNod No 2m 2d oooNow2 ooooo om oood oNNd oowoNd Nooomd oowwod mooNNd o2oood Rwood oooo2d ooooow2 ooooo mt wNod uo2d 2No2 2d oooo2d moo 2od oooood Rwood oow2od Nowood ooooow2 ooooh Vt 23d 2wod 32oo.o 2mwood oohood oooood N2w2od nomwod ooooNd ooooow2 ooooo at 2ood wNwd oooowd o2wowd owwhod 2Nw2wd ooo 2od Nwwood oooood oohoow2 oooon NE oNod om2d Nwoo2d o2oo2d o2o~od oo 2m2d Nooood 2.2. 3d 83 2d ooooow2 832 $2 >Eo 58: 2.225 2.2 25 «.2»... N2 25 o 25 N 25 2 25 2 x o. 222.8: _hw hfl0> 2.22 2.225 ”EB: 2.. 28.282.23.30 0.92.23 3:53 229 wN~2 35 330 oood ooo.w oowood ohm 2o.w moo 2od 2Nooo.w wwoNNd nooood wowoN.w 82oow2 oooon 3092: 32 >92o 58:. 2.225 2.2 25 oN25 N2 25 o 25 N 25 2 25 2 x Q 3238: 953mm msz 52.5.: “.0 >m98 522.. 2.225 2 25 «.25 N2 25 o 25 N 25 2 25 2 x o. 2233: 2532.. .om: oo2o 59%... 55.2.2222 no >m95 23:. .225 m2 25 22.19 N2 25 o 25 N 2.2.1. 2 25 2 x o. 2&8: 2E3: .2. 30.222.23.30 325.: 22:". oood o2Nd ooooNd Sommd oooood ooo 2w.o oooood oooood oooo 2d ooonow2 882 E owod oo 2 d Nooo 2 d owmn 2d oo 2ood oowo 2 d wwnood oowNod oow 2 .o ooohow2 ooooo om oood oNNd ooooNd ooNNd 2oowod w 2o-d onoood oowood oooo 2d 8983 ooooo mt owod B2d owN2d nooo 2d 22o 2od oooo2d owwood owo 2od oooood ooooow2 oooon 2.! oz... owod 3N2... Naomd 2ooood Boom... 2.2.3... N23... 2.83 oooooi oooo2 om oood ond owoowd oooowd Ronod ooo2wd woo 2od oooood 2o 2omd oonoow2 332 N! Rod om 2d woow2d oooo 2d oo 2mod oan2d nooood ohm 3d 58 2 d ooooow2 oowo2. 2m >o2o 23:. 2.225 2.2 25 2.2m... N2 25 o 25 LNF 25 2 25 2 x a. 282.228. _ 222; EN 2.2.25 2.2.3: 5 30.282.23.80 oo2o>< .3524 230 wNN2 2o2o wNN2 2o2o wwwwwono wNN22o2o wNwNBoho wmwmnono w~N2 53 ”Ban wooooé wowomw 8532 oooon o2ooo.o on2o.w 2wood oonNd 2.2 22d ooooow2 oooo2 «was: 32 >o8 :8: 2.225 2.2 25 oN25 N2 25 o 25 N 25 2 25 2 x 9 28222.82 22.58%. m:-wN 82.0.... ".0 52.2.28 2.2 oBo oood 2222.... 2822.... Rood... .223 2. 3... 283° 2o 2 2o... ooooo: 882 28 2: EN oood 22 2oz... 83.... 229.. oooovd .283... N38... 833 83o: 822 282: 282 >o8 522.. 2.22.5 2 25 2.2:... N2 25 o 25 N 25 2 25 2 x o. 282.8»: o2._oomm 8m: oooo 30.52. 555.225. “.0 23.4.2228 m1... 2ood KEN o2» 2w.o 283d owwood ooN 22am 2o2.22.o owsood o2o~o.N ooono! 882. E Nwod hood oooRN oooww.N Nooowd oo 2oo.N 22 2 2d oohNod $33.. 8232 ooooo om oood wood 22NNo.o N2on.o ooowod oo 2oN.o o2ow2d oooowd w2oo2.N ooooow2 ooooo mt 2Nod owod. ooowwd o 2wN2.N ooo 2w.o hwwood oooood 2oo~od ooo 22.2 ooooow2 oooo2. VI 2. 2. 2 on ooood o 22oo.w 2wood owoow oonNd 2. 2 22d ooowoo ooooow2 oooos mt wood ooo.w ooosoo o2ooo.o ooo 2od whooow owoNNd ooood wowoN.w oooooi oooos NM o2od oood on: 2.w oo2o2..o oooowd 2ooNo.o oN2o2d owoood o2ooN.o ooooow2 832 2G >98 :8: 2.225 2.2 25 oNosN N2 25 o 25 N 2.2.2 2 25 2 x o. 22382. 22:29.. E occzubcoocoo 82.9: 82.". owod o2Nd owooNd 2NoNNd oooood o~2 2Nd oooood oooNod 2o 2o2d ooosow2 832 E owod oo2d ooo 2w.o Nooo2d NNwood ooo22d oonood owomod o~o2d ooohow2 ooooo om oood and ooomd ow2o~d ooowod oo2NNd oooood wowood $83 8892 ooooo om oNod 3 2d o2No2d 82 2d ooomod R2 2 2d o2wood ~2o2od o2oood ooooow2 oooo2. Vt onod oood 2ow2wd wooSd Roood wNoood oo 2od 283d 82 2od ooooow2 oooon om oood o2wd 2o2wd oNond ooosod oooowd ooo 2od ~w2ood oowood ooooog oooos NE owod ~N2d 2ooo2d wowN2d owoNod 83 2d o2oood sow 2od 2wwo2d 89.63 832 21 >98 :8: 2.225 2.2 25 225 N2 25 o 25 m 25 2 25 2 x a. 282.23: _ 2o 23> zoo otocooo .":23: .2. 23.222.23.30 ooEo>< 3:52 231 N2 38 wNN2 2o2o wNwN2o2o wNN2 2o2o wNwN2o2o wNwN2o2o wNN2 38 323 o2ooo.w moNNo.w oo2oo.w oo2oow2 oooo2. o8o 2.... 883 2oode 2ow 22d ooooow2 oooo2. 239: 82 >95. :32 «2.223 2.2 223 «Not: N2 0:3 o 223 N 0:3 2 223 >. x 9 28.293! won—3mm”. tsz hmmxwi no >t<52=w m...» Rod Bod oNNowd wooowd o2mood Boood Ro2od 2wowod oonod oomoow2 oooo2 8o 2: 35 2ood wNwd o2oowd o 2wmwd 228d oww2wd 2oo2od moNood 98.3 882: oooo2. 23oz... 82 >95 :32 32223 2 223 «No.2: N 2 223 o 223 N 0:: 2 223 a x 9 202.2332 952mm”. Amt... oowo vooimn. 555525. “.0 >t95 :32 «N222: o2 2.: oNoSM N 2 223 o 223 N 2.22.... 2 223 A x 9 281031 ”EB: 5 220.222.23.200 82.2: 8...". owod o2Nd 2oooNd 2NoNNd woood 22w2Nd 2oood ooood 2ooo2d ooo2ow2 oooo2. Nt owod oo2d oooNNd o2ooNd Nooood oNNo2d oooood oooNod $33 8283 ooooo ot oood omNd woooNd 2oooNd owwwod omoNNd oooood 833 383 ooooow2 ooooo ot 83 23 383 $33 N22Nod o2o22d oowood oNo2od owood 832.2 882 wt Rod Sod oNNowd wooowd o2mood 2ooomd 22o2od $33 82.3 ooooow2 oooo2. ot 2ood wNwd 28.3 23.3 2.2Nod oww2wd 2oo2od moNood 9.33 8882 oooo2 Nt 83 23 333 883 2oo2od wwo22d Nwoood owo2od 833 8892 oowo2 2t >95 :32 320:: M2 22: «Nomi N2 223 o 223 M 223 2 223 A x 9 2810001 22:29. E occagcoocoo oo8o>< .5352 E 23> saw eta—Bum 232 vwfi 85 «um. 68 EN. 33 vmfi 32d vNNSdE vmvfidB vufi 82d no.3 Red vs} 3.83 «3» 2 .v 823d 88m... Edemd 812d $3.3 domed: 882 .39: 32 >Q2m :3: MN 2 2.3 M2 2.3 «Nat: N2 2....— n 2.3 N 2.3 2 «:3 A x 9 52108.1 whqammm mzéN hwmrwi "_O >m95 53! $22.: «2 0:: «No2: N2 2.3 n at: N on: 2 2.3 A x 9 3.19.3.1 mbdmmm am... 85 39%... 23.2.52. “.0 5.3.25.0. my: umod mRN «Swmd 252d Snood 825 «Kid 288d 3R2 82.03 882 2: «Ed Edd dmdkd mmmwvd uddmvd 853 2:3 Band 833 82.32 8on 9: «add 83 «28¢ 33nd tuned 6&1” $53 ommdmd 82mm 889.2 88» 2.. «Ed Eva mmuddd 5&3 modded ”razed 38de 285d «fined 8803 882 3. um: $5. 829m 983 dode 883 593 832d 335d 8803 832 mm mddd «one :6de 2.83 dfiddd 833V 828d Noddmd 283d 82de 832 Nm End oood ms‘dvd noun; modded 88d 322d vummd «need 8803 8de 22 >92” 53! 320:: N2 0:3 «N95 N2 0:: n «:3 N 2.w..— 2 on: A x Q 28188... ”EB: 5 2.0322350 32.2: angu— ovdd mdud 228d <8de Eomdd «,5de Snood Nudwdd «mtd 8201 82:. 2t owod Swd «~33 mmiud 330d dmmdud modded dammed dmmtd 8232 odddd em Edd 28d Stud mdfiud momvod 828d Redd dammed $0de 8892 ddddd mm Rod 22d 982d -§d 828d «otd udmddd 233d dmdddd 88m: 882 wt wood and 283d Sumvd mnmddd «8:3 .8de «added «83 88o! 882 mm owod umwd «dmdvd 851d 968d dvfivd 35d 828d 328d 8283 882 N: owod 82d Paid 922d ddudd 582d modded nomad 8:3 880! 832 2.... >98 :8: 822.: 2 2.: «~22: N2 2.: a 2.: m 25 2 25 2 x a. 3.88m nEB: E «couch—.350 0580>< .a:::< E .2; 5% £28.... 233 32.0820 32.0820 2.03820 33320 33820 v~v~2e20 33820 330 220.0 VNvé 03.0004‘ 03.0036 00200.0 000006 3003.0 2032.0 30300 000003 00002 “000.2: ~02 3.2m Eel: 223.... 2.2 3.: «~25 N2 2.: 2. 25 w 25 2 25 2 x 9 338m 0.2.5me— mzéu 20010.: ".0 5.52550 012. 200.0 00v.0 2 2N0v.0 Nmovvd 30320.0 000Nv.0 00030.0 00 300.0 30000.0 000003 00002 300.5 ch 000.0 20.0.0 2030.0 @0230 0.0.2200 N020v.0 NO0N00 00200.0 0830 002003 00002 3000.2: 002 >920 53$ 3222.24 02 05.2 03:: N2 0:3 0 at: N 22.3 2 3:3 A x 9 3.33.3 0.5300”. 20”.: 0020 .nOEmm 555525. 00 5.52.230 m_.:. 28d 022.0 0820.0 3200.0 oevemd 03.220 0e22 2d 20203 00000.0 e833 e802 2.: 200.0 ~0N.N 3030.0 0223.0. .220 3.0 2000 3 .N _.2 200.0 00200.0 3000.3 000203 00000 0t 000d «00.0 0200: 2822.0 eemwod 20000.0 v22m2d 3203 0208.0 8803 880 mm 200.0 0N2.N 000NN.0 0v002.N 3300.0 3000M NO0NV.0 003010 00080 000003 00002 VI «0 2.2 202.2. 000 20.0 0386 002med 00000.3. 303d .833 530.0 80003 e082 0.: 000. 3 0N0.v 00000.0 0003+ 0NN00.0 000 303 00VNN.0 20200.0 33000.0 002003 00002 NE 200d 08.0 03010 802.0 00003 0880 0020; 300d 0830 80003 82.02 2.: >920 .302 3222.3 02 22.2.2 0322.5 N2 0:3 0 at: N 22.5 2 0:: A x 9 3330K I 2E20: 5 303033230 33:03.. 3:". Sod 202d mmemmd 222eNd Ended ~e~e2d e20eed -2~ed $03 8203 89: 2t 300.0 0~N.0 N200N.0 0 30NN.0 0002.00 020 50 00000.0 V0 200.0 0N3 3 .0 000203 00000 002 200.0 00N.0 0002N.0 20va.0 0003.0 20NON.0 0030.0 00000.0 00003.0 000003 00000 0t 2N0.0 02 3.0 0020 _. .0 V0030 293.0 0003 3.0 0030.0 32020.0 20000.0 000003 00002 St 000.0 203.0 2030.0 v022v.0 0N220.0 «0202.0 NNON0.0 00200.0 0830 000003 00002 at 200.0 0010 2_‘N0v.0 N830 30320.0 000~v.0 00030.0 00300.0 30000.0 002003 00002 NE 30.0 003.0 0000 F .0 «03.3.0 020 30.0 0003 2.0 0300.0 0030.0 0000 3 .0 000003 0302 2m 3.2m EoF 228: «.2 25 28: «2 25 2. 25 u 8.: 2 25 2 x E Enact 2.320: E 0003033300 3003>< 33:52 _ 20 30> 5'00 23:30 _ 234 0032020 0032020 0032020 00002020 0032020 00002020 0032020 330 220.0 000.0 00000.0 00002.0 00200.0 00000.0 2003.0 2032.0 20000.0 000003 00002 300222 32 >03 :8... 2.222.... «2 2.... 2.8... «2 2.... a 2.... u 2.... 2 2.... 2 x n. 32.8.... 0.5000... «:00 30:0... 3 30.2200 0:2 000.0 000.0 02000.0 00000.0 00020.0 02000.0 000 20.0 20000.0 02020.0 0000002 00002 2 .2: 22.20 002.0 000.0 00020.0 02020.0 00000.0 20000.0 22200.0 02000.0 00000.0 002003 00002 300.222 32 >03 :8: 2.22.... 2.2 2.... 22.... «2 2.... a 2.... N 2.... 2 2.... 2 x n. .2882 02.50%. .mm: 82.0 30.0mm 5.0.2.5.: 3 225.2200 m2: 0 20.0 000.0 2000.0 02000.0 02 2 20.0 20000.0 00000.0 0030.0 00000.2 000203 00002 202 000.0 000.0 2002.0 20200.0 020 20.0 00000.0 2 3000 00200.0 00000.0 0002002 00000 02 000.0 000.0 00000.0 20222.0 0000.0 00000.0 0020 2 .0 20000.0 22 200.0 08003 00000 002 002.0 200.0 02000.0 2 3000 00200.0 02 222.0 0000 2 .0 000000 0030.0 0000002 00002 3. 002.2 202.0 00020.0 00000.0 00200.0 00000.0 2003.0 2032.0 20000.0 000003 00002 02 000. 2 0 20.0 02000.0 00002.0 0 3000 00000.0 00000.0 0200.0 02000.0 002003 00002 00. 200.0 000.0 00000.0 00002.0 00000.0 00000.0 00202.0 0000.0 00200.0 0000002 00002 22 >03 :8... 20.22.... ...2 2.... 28.... «2 2.... ... 2.... a 8.“. 2 2.... 2 x n. 32.83. 2.8.0: 2.. «3.3.3330 32.0.... 3...". 000.0 022.0 00000.0 20002.0 00000.0 02022.0 00200.0 20000.0 00002.0 0002002 00002 202 000.0 200.0 20000.0 20000.0 00000.0 00000.0 00000.0 00000.0 220020 0002002 00000 0.2.. 000.0 000.0 02020.0 00000.0 20000.0 02000.0 00020.0 00000.0 20202.0 0000002 00000 B. 000.0 02 2.0 0000 2 .0 0002 2.0 00 200.0 00222.0 20000.0 3020.0 0000.0 0000002 00002 3.2 002.0 000.0 00020.0 02020.0 00000.0 20000.0 22200.0 02000.0 00000.0 000003 00002 0t 000.0 000.0 02000.0 00000.0 00020.0 02000.0 00020.0 20000.0 03200 0020002 00002 NE 000.0 00 2 .0 0000 2 .0 003 2 .0 3000.0 0002 2.0 00000.0 0030.0 0000 2 .0 0000002 00002 2t >92» :8... 222.... 2.2 2.... 22.... N2 2.... 2. 2.... LN 2.... 2 2.... 2 x a. .288... 25.0: :. «00.233030 000322 .3052 .20 .2; 2.... 2.2.80 235 vuvfioum vuvfioE «0.0.0003 «$205 «$0005 vfiomoz vmvNBB 380 000.0 0!; 30006 00086 0003.0 5900.0 vwmvwd 335.0 «0000.0 000003 00005 0391 an“ >95 :32 0325 2 25 «~25 up 25 a 25 m 0:3 F 2.2 x x 9 3.382 0.530%. «in hmmzoi ”.0 5.52.230 m:... «00.0 93.0 2000.0 039.0 0030.0 099.0 0300.0 53.0.0 «38.0 00000! 080.0. .3 .i 05 0w 9.0 80.0 00000.0 0080.0 0 500.0 530.0 880.0 0500.0 503.0 02003 0002 ~39: .3 >95 :3: «.325 2. 25 «~25 N» 25 0 25 N 2.: u 25 A x 9 333mm 0500mm .mm: 02.0 Scam“. 50:02: “.0 522.200 m5 0.0.0 «mud $00.0 3.08.0 033.0 390.0 8000.0 0030.0 0083 002.03 0002. B. 0N0.0 NO0N 0390 mmnmvd 3.0 5.0 V0000N P 300.0 0030.0 3000a 000503. 00000 at «00.0 «00.0 P0~0~é N560 00000.0 0.03.0 302.0 3000.0 snags.” 000003 00000 02 00nd menu umwmwd 00.2mm 00000.0 00000N 309.0 N0~0¢0 EO0FN 000003. 0000» VI 00~é N36 3000.0 0000.0 0003.0 0300.0 Vumvwd 3.350 $000.0 000003 00005 at x. F0... 0 36 03.00% N05 5+ 3 _.~0.0 00E. 3‘ 00080 F: 00.0 0009.0 00303 00005 NE 30.0 000.0 503.0 309.0 0003.0 00000.0 35.0 «30.0 musvmd 00009? 003K 5. >95 :8! «.225 2 25 30:...“ N» 25 m 25 N 25 h 25 a x 9 08303.. ”EB: E «couch—.3000 «02.0.: «2r... 000.0 «000 03.3.0 00v0fi0 0003.0 F0090 00000.0 memod 03.0 000503 0000.0. ht 000.0 0N~.0 0v00~.0 0000020 0090.0 mmwud {000.0 0300.0 00:30 00203 00000 at 000.0 vad 050080 033.20 503.0 «008.0 0300.0 $000.0 «38.0 000003 00000 at 30.0 0? v.0 v30 F .0 .0: F0 00 K00 003 F0 330.0 000.00 0N000.0 000003 0000K Vt o F P ”0 mafia 000000 0050.0 0 600.0 50». 3.0 «080.0 0600.0 603.0 000003 00005 at «no o .3 o 980 0 mm . . . . . . ”Mme 83 883 afim mmmmmm ”MM” ”HUMANS 530.0 35 o 0203 0002 «m m :00: 03.054 «.0 2.3 «wt: 0 0 N003 0 000.. _..0 000003, W E: :5 A 8‘2 E .3 30> n E 0:0 . In; Otucouw U figs-00:00 GOEO>< _fl:::< 1r _ Os beset 236 00005050 00005050 00005050 00005050 00005050 00005050 00005050 @806 000.0 000.0 30000.0 00000.0 00050.0 50500.0 00000.0 3505.0 0.0000 000003 00005 00.09: was - >950 :00! 003:3 0n 0:3 000:3 0 p 0:3 0 0:3 0 0:3 p 0:3 A x 9 081000! 0.53001 11.00 5.0019... ".0 535.550 m1... 000.0 500.0 05030.0 00500.0 05050.0 50000.0 00000.0 50000.0 5000.0 000003 00005 ~00 3 3:0 03 3.0 000.0 00000.0 00000.0 00000.0 55000.0 0 3000.0 0000.0 50000.0 005003 00005 300.5 .00 >95 :00! 003:3 0.. 0:3 000:3 0.. 0:3 0 0:3 0 0:3 s 0:3 A x Q :ouu0o0t - 0.5300”. A01: 0050 Vooimm 555525 “.0 5.52230 m1... 000.0 000.0 03030.0 00050.0 00500.0 03050.0 05303.0 0000.0 00000.0 000503 00005 500 000.0 000.0 00005.0 00500.0 30 30.0 00000.0 3 3000.0 00500.0 30000.0 000503 00000 02 000.0 000.0 00 300.0 03 305.0 00000.0 0050.0 0000 3 .0 0000.0 00000.0 000003 00000 01 005.0 050.0 0003.0 00005.0 00300.0 00030.0 0000.20 55000.0 5000.20 000003 00005 VG 000. 3 0 30.0 00000.0 0000.0 00050.0 00500.0 00000.0 3505.0 0 «0000 000003 00005 02 5 30.3 000.0 00 300.0 00000.0 05 300.0 3003 .0 00000.0 35 _.0.0 3000 .0 005003 00005 NE 300.0 000.0 00000.0 00003.0 00000.0 00000.0 00303.0 0000.0 00000.0 000003 00005 3‘ >95 :00! 030:3 03 0:3 000:3! 03 0:3 0 0:3 0 05H 3 0:3 A x E 08:000.: ”E30: :_ 000380000000 000:2: «8E 000.0 353.0 50003.0 05053.0 30000.0 00503.0 00500.0 00000.0 .0030 000503 00005 52 000.0 000.0 0500.0 00000.0 00000.0 00000.0 00000.0 50000.0 00303.0 000503 00000 0t 000.0 000.0 00000.0 03000.0 30000.0 55000.0 00030.0 00000.0 00503.0 000003 00000 0k 500.0 53 3.0 0000 3 .0 000.. 3.0 55 300.0 003 3.0 00000.0 00030.0 30500.0 000003 00005 3! 03 _..0 000.0 00000.0 00000.0 00000.0 55000.0 03000.0 0000.0 500000 000003 00005 02 000.0 5000 05030.0 00500.0 05050.0 50000.0 00000.0 50000.0 5000.0 005003 00005 «t 08.0 03.0 0009.0 53.0 000000 533.0 0000.0 00530.0 03003.0 000 >950 000:. 030:2 0. 0:3 000:3 0. 0:3 0 0:3 0 0:3 3 0:3 ”“003 00H05 9 3“ E30: 5 0.3—005:0 . . :8 0001 n . . 0:0 E 30> .200 25:30 i— o 0020>< .0052 1’. 1‘ 237 8883 8888 8888 8888 000038 8838 00838 080: 80.0 83 608.0 0008.0 808.0 58.0 0800.0 383 830.0 08003 802 .80.: .0. >050 000: 003:: 2 0:: 000:: 0.. 0:: 0 0:: 0 0:: 0 0:: a x 9 080080 050000 01.00 Burg... “.0 $525.00 0...: 80.0 03.0 030.0 2800 8:00 8800 880.0 500.0 380.0 0800: 802 .00 E 000 0:0 r80 830.0 808.0 380.0 803.0 680.0 38.0 880.0 880: 802 0000.5 8. >050 :8: 008:: 2 0:: 000:: 2 0:: 0 00.: 0 0:: p 0:: 0 x 9 3.0080 0500mm am: 0050 000.000 55203.. ".0 >m<2200 m...» 80.0 08.0 8005 820.0 800.0 308.0 880.0 $08.0 $80.? 880: 088 E 80.0 20.0 53.0 083.0 03.0 E80 580 880.0 308.0 0088. 0008 0: 80.0 80.0 880.0 0:20 8800 220.0 082.0 080.0 803.0 8803 808 mm 83 20.0 3.80.0 08:0 580 085.0 08.0 $800 885 8803 808 0: 08.0 80.0 85.0 £800 808.0 8:? 0880 35.0 830.0 08003 88» 0: 08.0 30.0 2.08.0 308.0 3080 80:0 R83 280.0 88.0 8803 802 «m 80.0 08.0 0000.0 080.0 0.88.0 808.0 85.0 008.0 820.0 08003 83: E >050 53: 020:: 2 0:: 00005.. 2 2.3 0 0:: u 2»: 0 0:: a x E .8008: 0.50: E 30.00.59.350 «00:2... «2E 80.0 3.0 0800 020.0 0800.0 .083 £080 0800.0 85.0 0800: 088 E 80.0 80.0 320.0 088.0 203.0 880.0 508.0 880.0 88:0 8203 808 0: 80.0 80.0 8:00 8080 083.0 2000.0 063.0 880.0 0300.0 883 0008 0: 800 93 802.0 883 880.0 80:0 830.0 053.0 080.0 8880 088 00 23 08.0 830.0 808.0 680.0 808.0 0080.0 33.0 880.0 08003 802 0: 80.0 03.0 030.0 0:80 0830 8500.0 880.0 380.0 580.0 0800: 802 00 000.0 8.0 0002.0 0002.0 0800.0 0053.0 2000.0 3008.0 00003.0 0000003 8005 E >950 :00! 003:3 0» 0:3 000:3 0 0 0:3 0 0:3 0 0:3 0 0:33 A x 9 081000 099:“: P: “camaNhCGOP—OU 0520>< _N=:=< IL 750 30> Eng. crap—oom— 238 000.0.00 000.0.00 000.0...0 000.0.00 000...00 000.0000 000.0.00 8.00 00000.0 0080.0 0000.0 0000.0 000000. 00000 000.0 00000.0 00000.0 00000.0 000000. 00000 .000... .0. >000 08:. 00.2.... 0. 2.... 002.... 0. 2.... 0 2.... 0 2.... . 2.... .0 x 0. 00.00000. 9...:me 1...-.." ...mm...0=.. “.0 >155sz m1... 000.0 000.0 00000.0 00000.0 000000 .0000 0..00.0 00000.0 00000.0 000000. 00000 .30.... .000 .0..0 000.0 00000.0 00000.0 00000.0 0.00.0 00000.0 .00000 00000.0 000000. 00000 .30.: .0. >000 :00... 0.0.0:... 0. 2.... 000..... 0. 2.... 0 0...... 0 0...... . 2.... .0 x 0. .8080... 953mm”. Amy... 000.0 .ooimn. .23—2:25 ".0 >m<223m m1... 0.0.0 00.0 00000.0 000.0.0 00000.0 0000.0 00000.0 000.0.0 00000.. 000000. 00000 00. 000.0 000.0 .00000 000000 000.0.0 0000.0 .0.00.0 00000.0 00000.. 000000. 00000 00. 000.0 000.0 00000.0 00000.0 00.000 00000.0 00.0.0 .0080 000.0.0 000000. 00000 00. 000.0 0000 00000.0 00000.0 00000.0 00000.0 000...0 .0080 00.000 000000. 00000 00. 000.. 000.0 .0000 00.000 00000.0 00000.0 00000.0 0.0000 00000.0 000000. 00000 00. 000.. 000.0 00000.0 0800.0 00000.0 0000.0 00000.0 00000.0 00000.0 000000. 00000 00.. .000 000.0 0000.0 0000.0 00000.0 00000.0 00.0..0 0000.0 000.00 000000. 00000 .0. >000 08:. 00.2.... 0. 2.... 000.5 0. 2.... 0 2.... 0 0...“. . 2.... .0 x 0. 00.00000. 0.55: :. 0003000000000 0000.9... 00...... 000.0 00.0 0000.0 0000.0 00000.0 0.00.0 0000.0 0.0000 0000.0 000000. 00000 00. 000.0 000.0 00000.0 00000.0 00000.0 0000.0 00000.0 00000.0 008.0 000000. 00000 00. 000.0 000.0 00000.0 0000.0 00000.0 .00000 000.00 00000.0 0000.0 000000. 00000 00. 000.0 ....0 0000.0 .00...0 00000.0 .880 0000.0 0.0.0.0 00000.0 000000. 00000 00 .0..0 000.0 00000.0 00000.0 00000.0 0.00.0 00000.0 .00000 000000 000000. 00000 00. 000.0 0000 00000.0 00000.0 00000.0 .0000 0..00.0 00000.0 00000.0 000000. 00000 00. 000.0 00.0 0000.0 0000.0 0000.0 00.0..0 00000.0 00.000 0000.0 8000... 00000 E .600 :8: 00.2.... 0. 2.... 002.... 0. 2.... 0 2.... 0 2.... . 2.... 0 x 0. .2008... E E2... :0... 2.0080 A 0 .0: 0. 00000008000 0020.00 .0052 I! ll 239 88:8 «08:8 88:8 88:8 88:8 88:8 88:8 8.3 R050 82:8 880.? 8.3.0 0880 088.0 0890.0 8983 082 0080: 0809 08:2: 0». >98 :8: 8.25 2 25 «8.5 u. 25 0 25 u 25 9 25 > x Q 2888: mHSmmm mIéN hwngz ..._O >m95 :3! 0.225 2 25 825 up 25 0 25 N 25 9 25 > x Q 3282.: abammm am... 008 30.2mm 222.02: “.0 >525...” 2.: «80 83 903.0 89.9. 828.0 883 8902.0 83.0 $08.0 0883 808 E 080 «EN 8.2.” 88.0 8080 3.3.3 98:0 0380 88mm 00083 0008 0: 80.0 83 088.» 8.23 88.0 8808 88:0 880 883 00083 0008 mm 2.0.0 83 383 880.0 8.8 58$ 032.0 508.0 88: 8083 0008 E 85 903. 2093 880+ 880.0 880.". 8&0 «890.0 899.0 8803 0809 at 0:: E0 088.» 988.0 883 890.0 088.0 088.0 880.0 00983 0809 «m 80.0 8.8 883 850.0 889.0 898.8 2850 8800 889a 0088. 0089 E >95 :8: «20:5 2 25 «~25 2 25 n 25 w «Eu 9 25 > x 9 3.2601 ”SB: 5 «coagcoocoo «3:9: «Er. ~30 09.0 8.80 082.0 880.0 85.0 8900.0 088.0 803.0 00098, 0008 E 30.0 98.0 88.0 0280 £800 880 880.0 880.0 S83 0883 0008 0: 090.0 08.0 088.0 808.0 880.0 8.800 820.0 «88.0 088.0 00083 0088 mm :00 :00 880.0 «890.0 820.0 880.0 888.0 8020.0 988.0 80082 088 um 0:0 900.0 208.0 888.0 880.0 808.0 880.0 88.0 «88.0 00803 0809 mm ”me WNW” ommwmo ”930 8.050 895.0 280.0 380.0 Sound 02.83 082 «m . «2.0 898.0 083.0 . . . >ka .30: «what: up 0:: «“054 NF 0:: ”mg.” ”OWN.” ”was.” commov _‘. oofimw “K I! . F» 23> .25. 2553 J— «EB: :. meow—5:350 3823 .352 r 3.331 1 240 1‘ «80. .00 «80. .00 «80. .00 «000. .00 «000300 «80. .00 «80300 08.5 «309.0 9.900.« 00.0... 0.«00.0 009000 90300 .0090.« 009003 00009 000003 00009 32.0.: 2... >990 .9on 00.2.3 0. 0:: 0029.... N 9 0:3 0 0:3 N 0:3 9 0:3 >. x 9 90.9000! 0.9.5001 114.0 90900.... “.0 5.52220 m:... 90.0 .0«.0 00000.0 0«.9«0 00000.0 «80«.0 «0.80 00000.0 0.0000 000003 00009 .3: .5 0:0 6v. .6 0006 06009.6 90900.6 000. .6 . .0606 0306.6 03066 000006 669003 60009 323.5 ~09 >090 :3! 0090:: 0. 0:3 000:: N 9 on: 0 0:3 N 0:: 9 0:: >. x 9 986.032 0.9.509. .01: 6090 vnOEmn 55.2.52. ".0 5.52550 m1... 000.6 090.0 .90.«. .0 0009.0 00.006 06000.0 0996 .6 .00 .v6 . .0600 666900. 66609 9t 000.0 0.9.0 0.00.0 00009.0 009«.0 00000.0 003.0 00000.0 00000.0 000903 00000 02 000.0 «09.0 00«00.0 000.0.0 00.000 00000.0 0000.0 000«0 00000.0 000003 00000 02 090.0 000.0 90000.0 0«0000 00«0 9003.0 0«....0 .00000 0«009.. 000003 00009 wt 000.0 .90.« 9.9000 09000.« «009.0 99«9«.« 00.0..0 .«0000 00«90.0 000003 00009 00. 000. . 03.0 .90 .00 3.69.0 00 .0... 0 .0000 00960.6 90306 .00906 669000. 60009 NI v0 ... 009.0 0 .900... 00600.0 .0906 06000.0 «0000.6 000 .96 0.03.0 660003 6309 9.: >990 :00! 00.293 0. 0:3 0N05N N 9 0:3 0 0:3 N 05M 9 0:: >. x 9 98.0302 0E3: 5 3000350200 .0002... .0..."— 0«00 09.0 0000.0 0000.0 .00000 0033 00900.0 0«08.0 «0030 000903 00009 90. 006.6 0.0.6 000006 .00006 00.0.6.6 0630.6 0.0666 .0086 09.0.6 666900. 66660 02 906.6 000.6 090.0.6 0906 00006.6 90000.6 00. .66 09 .36 .0.00.6 666003 66660 0k 0.0.0 .900 0.0000 00.900 «00.0.0 00000.0 0080 30.0.0 00000.0 000003 00009 E 90.0 .0«.0 00000.0 0«.9«0 00000.0 «000«0 «0.00.0 00000.0 0.0000 000003 00009 0: m3 .0 0000 00009.0 90900.0 000. .0 . .0000 0.0000 0380 00000.6 669003 60009 02 066 .«.6 030.6 .6336 00006.6 0.90.6 00 . . . >990 533. «0.25. 0. 0:3 000:: N9 0:: 0 ”9%.” WWW.“ ”on...“ 660mg. 66H09 9 969N000 Hi. . 0 F0 23> 52 0 25:30 1— . . 03:00:00 00203. .0652 m 241 000 .300 0060. .00 000.300 000.300 0060. .00 000.300 0060. .00 3.00. 000 .00 06000.0 003.. 00606.0 09090.6 .0009.6 .0000.0 669000. 60009 30.5.... .0.. >9...» :00: 00. 05.. 0. 05.. 0005.. 0. 05.. 0 0:... N 0:... . 05.. A x Q. 30:000.. 0.530%. 0.1.00 hmmzmzz ".0 5.52.230 m1... 3. .6 0006 .00.0.6 06000.6 00006.6 00000.6 09606.6 00006.6 ...90.6 660000. 60009 .3: .... b:N 90 . .6 6.0.6 00069.6 00000.6 90. . ..6 .00006 .00066 00006.6 000.06 669000. 60009 .0059... .0.. .590 :00! 0N .05.. 0. 0:... 0N0:... N . 0:... 0 0:... N 0:... . 0:... A x G. 3.10000. 0.530%. .01... 6090 .nOEma Ens—=2: "_O >m 52.0 eta—Bow {— 0 . . U 0 E03. .0552. L 1‘ $383 $885 «95% $885 vmwowog $885 £385 8.8 89.3 552 33.0 2:8: 032 oonwmfim owmmmvd oogvmé omNormd oomoovr ommmn “3:5.‘1 um“ >Em 53: «.28.: 2 2.: «No.5 2 25 m 25 N 2.: h 2.: a x E 338$ mhgawmm mzéu Emu—*0...— n_O >¢E.w 58: «.225 2 25 3.33 N“ at: m. at: N 2:4 p 0:: A x Q 33391 953mm”. $5. 85 .ooEmm 55552.2 ".0 >mEm 53: 23:: 2 25 «was... 2 25 n 25 u on: F 2.: a x 9 338mm nEB: 5 2.0522350 «3:9: “Er. Sod «mud 58.0 883 «356 883 883 398.0 583 08%: 82K E mmod 9.3 $23 233 228d 3.9.3 3086 330.0 a3 8053 088 at Bed 9.3 $83 $53 .3de 23.3 883 858.0 $83 0883 088 mm owod 8 F .o “flute at F to :83 Echo 8306 305.0 880.0 8803 82K 3: owod 80o 809.0 383 Raced 353 $23 28.0 5&3 880$ ommmn at god was 3.: Eco finned «88.0 Into Emod moaned SE6 9:83 862 «m v8.0 Ste 85; 853 8R8 mmmfio mfiood mmomod Sago >Em 53: 33:: 2 25 .33.: a. 25 n 25 N 25 F 25 Saw: 8H2 F“ . . . .6 nE3: E mcozabcmocoo $205 .352 9 w 89: s.< o rat—230m 243 28808 80808 282208 8888 «N238 822.08 28808 2.23 083.0 8200.2. 22000.2 282% 88.0 882.0 2820.2 8200: 0082 28:02:22 >95 :3: 2.225 2 25 «No.5 N2 25 0 25 N 25 2 25 2 x 9 22.20822 wfiammm mzéN 23:2: ".0 52.2.23 2: 80.0 08.0 203.0 088.0 8200 200200 8200 0:80 2880 882.2 0802 23.2222 2EN 82.0 20.0 880.0 8080 23.0220 880.0 228.0 80200 228.0 82003 882 32202: 22 >98 5822 0225 2 25 825 N2 25 0 25 N 25 2 25 2 x 9 22.2882 whsmmm am: 0020 EoEmE 55:02.2 ".0 E02223 m_._2 2.0.0 0va 0085 883 2820 028a 8800 803.0 2228.2 8020: 0082 E 22.0 83 803 883 288.0 083.2. 288.0 2.880 088.2 80203 0008 002 20.0 85 0228.0 2284. 328.0 822 302.0 32.0 280$ 00802 0008 0: 2.20.0 20N.N 883 803 8202.0 833” 2222.0 8080 223.022 882.2 0082 E2 N202 80.2 88.0 2202... 8000.0 228.2 8002.0 208.0 2220.0 0802.2 0082 2.2 020.2 020.0 8022.0 20220.0 2280.2 2222.0 808.0 882.0 820.2 00200: 0802 N: 82.2 22.0 0280.2 238.0 8220.0 0820.0 8280 00002.0 823 08002 0082 2: 262m 58: 0225 2 25 «No.5 N2 25 2. 25 N 25 2 25 2 x E 282.com 282m: 5 «count—23:00 «3:9... 29:". N30 022.0 808.0 822.0 880.0 2.220 028.0 280.0 083.0 80203 0082 2m 80.0 23 288.0 808.0 88.0 2028.0 880.0 880.0 0822.0 0822.2 088 002 28.0 2.3 088.0 288.0 «208.0 NNN2N0 2020.0 8800 N80 8002.2 0008 22 020.0 000.0 2208.0 0820.0 820.0 0200.0 880.0 8020.0 2200.0 8002.2 0082 2.1 80.0 08.0 N830 880.0 0820.0 2820.0 820.0 0228.0 2280.0 0082.2 0082 22 02.0 200 880.0 880.0 2302.0 8800 N280 8020.0 20202.0 8200.22 0002 Nm 08.0 02.0 28.2.2.0 0002.0 208.0 20022.0 00000.0 00220.0 00202.0 000003 002.02 >92.” 22mg: «4.2.05.2 «.2. 22.2.2 «dot: N2 222.2 M 0222 222 Ft . ..2 N ..2 2 22.2.2 22 x E 28:93: s.< r ratnccum 282m: 5 aces—22:32.00 $2032 .3522 vmwrvowm vwomnoww vmo gown vmo 30mm VNF rmoww «wagon» vmomnomw hogan nvwd 000mm: 03.2. 9.806 mmwcfv Nw Emd Nommmé @0506 0003.0 000mm: ommmn «”2292 war >92.” 223: MNFQEQ m.“ 02.2: «‘22: N2. 022: M 02.2.2.2 N 022: r 22: A. 00 Q2 20229.51 mhdammm MIéN hwmrgz “.0 >¢95 :32 32222.2 0.2 22.2.2 8qu N2 2.2.2.2 0. 22.2.2 N 22.2.2 2 22.2.2 A x 9 202228002 @53me 2mm: 002.0 0 oOEmm 552.525. ".0 >m95. :32 0.20.2223 0.2 222.2 0N25 N2 25 .0 22.2.2 N 22.2.2 2 22.2.2 A x 9 222200002 08220: 5 02220205050 000:9... 20:". 000.0 N020 002 80 20002.0 N0000.0 00222.0 20200.0 20080 002020 0002.002 00002 202 000.0 0 Ed 0000N.0 000 Rd 2 2000.0 200 50 00000.0 02 200.0 0 202 2.0 0002.002 00000 002 200.0 20N.0 0000N.0 020N.0 00000.0 NN20N.0 00020.0 02200.0 0000N.0 0000002 00000 002 2200 2.00 880.0 02.2.0.0 0020.0 N2000.0 00000.0 2N020.0 00000.0 0000002 00002. 2.02 000.0 000.0 000N0.0 00N20.0 22000.0 N0000.0 2020.0 0280 00000.0 0000002 00002 0.02 02.0 000.0 0N000.0 02000.0 00000.0 20000.0 000N0.0 00020.0 N0000.0 0020002 00002 N1 0N0.0 00 2.0 00 N20 00002.0 NO0N0.0 20202.0 0N000.0 8050 00000.0 80 >50 :8: 0225 02 25 0N25 N2 25 0 25 N 25 2 25 “002 00H02 22w“ . . 2o 0 0.2.29. 5 macs—05:00:00 058032 .0353 Q 31 .2me oracwuw 245 0N5 0000 0N 00 0000 0N000o00 0N3 0000 0N000o00 0N0 00000 030300 065G 02000.0 0000N.0 00NN0.0 002.0002 00002. 000.0 000.0 00000.0 NN000.0 00000.0 0000N.0 000000.. 00000 «06:93 000 >93 :3! 0N225 02 25 0N25 N2 25 0 25 N 25 2 25 A x 9 28.200002 00.50%. m:-0N ...mm:0=.. ".0 5.32550 m1... 000.0 000.0 3800 00000.0 0N0000 00000.0 00020.0 00000.0 N000N.0 0000002 00002. 2022 22.2 05 02 2.0 S00 20 200.0 0N000.0 00N00.0 00000.0 000N0.0 00000.0 0000.0 0000002 00000 20220.2: 202 >93 :33 0N225 02 25 0N025 N2 25 0 25 N 25 2 25 A x 9 28.20302 02.5000 .00: 0020 000.00.. 22202.2 “.0 >m<2200 0:: 000.0 0 EN 0002.0.N 00 200.N 0N000.0 0NO0N.N 00000.0 0000.0 02.000. 2 0000002 00000 0: N000 000.2 000 EN 00000. 2 N2NN0.0 00 200. 2 00000.0 0000N.0 N0000. 2 0002.002 00000 00.2 000.0 N000 00000.0 0NON0.0 0000.0 00000.0 00000.0 00N00d 000N0.0 800000 880 0! 000.0 00N.N N0000.N N000N.N 0 000.0 NN00_..N 00 0 0.0 300.0 N030. 0 080000 0800 VI 000.2 2.00.0 N0000.0 00000.0 02020.0 00000.0 0000N.0 0020.0 0000N.0 0000002 00000 2002 002.2 020.0 00000.0 00002.0 02000.0 N000.0 0000N.0 00NN2..0 N000: 002.0002 00000 Nm 000.0 00 ...0 0000.0 N0 000.0 00000.0 8000.0 0000Nd 00000.0 0N 000.N 800000 8000 0K >900 500: 0N225 02 25 0N222m N2 25 0 25 N 25 2 25 A x E 28.2301 0.2220: 5 00200205300 0002.9: 002.". 000.0 002.0 2030 20202.0 00000.0 0N002.0 00000.0 0200.00 00002.0 0002.002 00002. 002 200.0 02N.0 NONON.0 002NN.0 0N000.0 00N2N0 02000.0 02 200.0 2.2 202.0 0000002 00000 0: ~80 00N.0 0NO0N.0 0000N.0 20000.0 0000N.0 202 20.0 00000.0 N000N.0 0000002 00000 002 2.20.0 2.00 0N00.0 02.0.0 2N0200 00000.0 20000.0 N020.0 0N000.0 0000002 00000 002 000.0 000.0 0080.0 00000.0 0N000.0 00000.0 00000.0 00000.0 N000Nd 800000 00000 at 02 2.0 N00 20 200.0 0N000.0 00N00.0 00000.0 000N0.0 00000.0 00000 0000002 00000 NI 0N0.0 000.0 02002.0 00000.0 N00 80 00000.0 00000.0 000 00. . >95 :3! 0.2225 00 225 020.225 N 2. 225 0 0225 N as.” 000mw2.” 00020.0: 00.0000 9 030002 E20: .2 0:0. E 50> 5...: ctucoow J 0 _ .uubccocoo 0502030 .0352 1' [Ill 0N 20 2000 0N 2c 2000 0N0 20000 0N 20 2000 0N0 20000 0N0 20000 0N 2c 0000 mgwfi 00000.0 000N.o 0 20N0.0 0000002 00000 00000.0 NN000.0 00000.0 0000N0 0000002 00000 80205.2: 30 >Q0m 003: MthSd m0. 022: mwwsd N0 0:: m 055 N 0:: 0. 055 A. 00 Q2 0050001 mhdzwmm £1.0N ...mmrgz "_O >m5m m1... 000.0 000.0 00020.0 Nowmd 00000.0 00000.0 0N000.o 0N00o.o 00000.0 0000002 00000 «mm—29:30:00. 202.0 000.0 00000.0 000N0.0 00000.0 2000.0 000N0.0 20000.0 00000.0 0000002 00000 802090.250 >Q0m. :00: 0N2m:5 02 0:5 0N0:5 N2 0:5 0 0:5 N 0:5 2 0:5 A x 9 2210001 00.5000 201: 0000 000.00.". 55559.5. ".0 5.52550 0:0 000.0 000.0 0200.0 00002.0 00000.0 22 200.N 00000.0 20200.0 00002. 2 0002002 00002 01 000.0 200.2 20020.0 00002. 2 20000.0 2000.2 00000.0 00000.0 00000. 2 0002002 00000 002 200.0 002.0 00000.0 00000.0 0000.0 00000.0 00002.0 20000.0 0002.0 0000002 00000 01 020.0 000.0 00000.0 00000.0 0 200.0 00002.0 02 2 2.0 0000.0 00002. 2 0000002 00002 002 m 000 2 000.0 00000.0 20200.0 0 20 20.0 02000.0 00000.0 000 20.0 00000.0 0000002 00002 01 202.2 000.0 20002.0 00020.0 00000.0 0222.0 0200.0 02002.0 20000.0 0020002 00002 N: 002.0 000.0 0000.0 0000.0 20000.0 02000.0 20002.0 0000.0 00000.0 0000002 00002 2: >920 :3: 220:5 02 0:5 0N0:5 N2 0:5 0 0:5 N 0:5 2 0:5 A x 9 28020001 0.50: 5 0022225250 202.9: 20:". 000.0 002.0 00020.0 00002.0 20000.0 22022.0 00200.0 00000.0 02002.0 0002002 00002 0.: 000.0 220.0 00000.0 020.0 0000.0 02000.0 00000.0 02000.0 0022.0 0002002 00000 002 000.0 000.0 0220.0 00220.0 02200.0 02000.0 02200 00000.0 00020.0 0000002 00000 01 220.0 2000 20000.0 02020.0 00020.0 00000.0 00000.0 20020.0 20000.0 0000002 00002 0.0 000.0 000.0 20020.0 0000.0 00000.0 20000.0 0N220.0 20000.0 00000.0 0000002 00002 mi 2 2 2.0 020.0 20000.0 00000.0 20000.0 2000.0 00000.0 20000.0 00000.0 0020002 00002 Nm ”Mom mm“... Mmemo 00 WW0 20020.0 00020.0 2000.0 20220.0 N0000.0 0000002 00000 2: 3 02 2.. 002: 02 25 0 0:: No.5 2 0:: A x 02 280000: 00:20: E 0022022000000 0020>< _0:::< SEN eta—50m 247 N888 N838 «N238 «N888 $238 «N888 3888 «83 $3: SEN.‘ 823 $83 $23 N386 N38,”. 8503 82K 8803 $62 835...: 8. >95 :32 «NEE .2 2:4 «Not: N» on: m 2.3 N 2:4 N 2:4 A x Q 3:331 95.5mm KIéN ...mmIOE "_o >m<_>.s_:w m:._. 59o $3 NNNNvd $23 NNooo‘o mmmmmd NE :3 325.0 28.0 8803 032 629: EN 8 S 33 823 6 Ed N386 33.8 :83 £83 mmwNv‘o 8S2: 93,2 .639: u: 35 :8: «NE: 2 25 «N3: N. 25 m 25 N 25 F 25 a x 9 338mm 9.5me .mm: 85 .09me 55.2525. ".0 >m<_2_2:w w_.:. N30 ”NON RNQN FERN 882. :. ENN 385 833 m2 a; 82m: 82:. E N98 n8; EVEN 883 883 333 «$85 $83 3 53 8203 88» at :2. NV: 833 839m 330 $80...” 883 ENde 83; 88m: 88» mm 33 3 FN NsmmN N? r FNN mNoSd 88E mNBS 80° 8%: 8°me 8o? 3: N85 R: 8NNN.m mmNNoe 883 553. 883 mNmmmd NNwaN 88m: 232 mm 33 8:. 583 News... 823 £33 383 N38... N3N3 Sumo: 932 NK 53 MEN 3.83 mNFNoN N886 NSSN SSS mmNSd NNFNoN Sumo: 83K E >95. :32 «.32.: 2. 0:: «Nat: N» at: m 2:4 N 0:: F «:3 A x Q .6339! nE5... E mcozahcmucoo “mo—.9: “mg". 95.0 83 mNSNd «88.0 339° 353 R86 mNoNod 833 82.03 82: E N86 83 3.63 RN86 83d NENNd 88¢ NN8.o 883 82m: 88m em oood {No 828 8R3 ”.886 383 £23. $83.“. mSNNd 88m: 808 9: ~85 Rod 883 22.3 Nico 329° 883 N88... N386 8803 82: wt :55 30° NNNNvd 323 N88,.” 333 Noted momvod «Boo 88$, 83. mm 83 v8.0 323 5:3 N386 mmvad NNNNod 2.83 83; Sumo: “.32 Nm 32. 89° 2.08... N285 3N5." 8%: 389° N585 833 883. 8va E >98 :3: «N33: 2 25 325 N» .25 m on: N 25 N me: A x Q 338»: ”EB: 5 20382350 amfio>< _m:::< 5:...” crap—wow 248 Na 3000 N0 3000 VNm 3000 3.6 3000 N0 $000 3.6 3000 035.0 «0qu mmommé 033.0 035.0 MNNrné 5&0 038.0 00303 032. 03050.0 000003 0002 59:9: an“ >93. :35 020:3 2 0:: «Not: N F at: m 0:: N 0:3 p me: A x n: 39108! mkdammm mIéN ...mMIOE ".0 >¢03 :82 «N32: 2 25 8.2.: N“ 25 m 2.: N 25 N 25 A x 9 338mm 3.43me am... 005 v 00.1w."— 555.025. ".0 >m25 :8: «N35 2 25 «No.5 N. 25 m 2.: N on: F 0:: a x Q afloat nE5: E aces-«3:00:00 $29: «2E 30.0 05.0 ongNd N0 F30 SNmod mans—.0 5200.0 SmNod 303.0 00050: 0000p km 30.0 mmNd F :30 8&0 5.9.0.0 vmnnNd 0800.0 $000.0 n 38.0 00050: 00000 01 N000 mNNd mmNde mv BNO 5300.0 038.0 3w 3.0 m 30.0 wthNd 0030!. 00000 mt 05.0 :00 5300.0 003.0 m 35.0 Nomad 8000.0 500 3.0 3.30.0 00000: 00005 V1 50.0 000.0 #00010 #00010 3050.0 0300.0 :0 5.0 mm 30.0 0500.0 00000: 032. mm ”mm ”Mme 383 883 «88¢ :32. 0.88.0 353. E83 85.03 ommfi Nm . .o N885 F886 8290 328.0 m . . . >95. 53: «NBC: 2. mt: «dot: N F «54 Mwflw” “000%.“. ”own.” 000mm: 8va Ft AWEE: E wcowwbcwocoo omEo>< _m x 9 5030001 Saw eta—Bow :::< 249 «$00000 38500 33300 35800 «NFOF000 38300 «NFOF000 0800 000.0 0006 F0v0vé 0000.0 0300.0 0003i 0NO0N.0 NN000 .0 000F0.0 000003 0000» 000:9: 00F >050 :00! 030:: 0F 0:3 0N0=3 NF 0:3 0 0:3 N 0:: F 0:3 A x 9 330.com 0.5300”. mzéN F0019: ...0 52.2550 0:... F000 FNvd 00000.0 009.0 230.0 2.03.0 0003.0 330.0 $000.0 000003 0002. .3: ..1 EN 090 000.0 F F0000 0NNF00 $000.0 #000000 NNON0.0 00N00.0 0009.0 02.003 0002. “00:92 00F. >90 :3: 020:3 0F 0:3 «No.5 NF 0:3 0 25 N 0:3 F 0:3 A x E 30:30: 0.53001 .01: 02.0 000.10; 555.02.: ..._0 >m90 53! 0NF25 0F 25 0No=3r NF 0:3 0 0:3 N 2.w. F 25 A x 9 3338‘ 0.50: E «coagcaocoo «02.9... «0.0.... 000.0 09.0 0009.0 053.0 0900.0 0v0F.0 00000.0 00VN0.0 3.03.0 000003 0000s. NE F000 0VN.0 0RON0 00NON.0 303.0 NON¢N.0 0003.0 F0300 F000N0 00203 00000 0! 000.0 NON.0 00000.0 N330 NFv00.0 0F0\.N.0 0NNF0.0 033.0 n00N.0 000003 00000 01 0 F00 F000 0000.0 00N00.0 0030.0 V0030 3000.0 N3 .00 NOF000 000003 0000F Vt F000 FNvd V0300 00010 033.0 {03.0 0005.0 3000.0 20000 000003 0000s 0! 00 F .0 000.0 F 8000 0NF F00 3000.0 «0.0010 NFON00 00N00.0 0009.0 8003 0002 NE 30.0 000.0 0008.0 $00.0 $20.0 0900.0 0080.0 0300.0 5000 000003 8wa Ft >Em 58:. 0225 2 25 «No.5 NF 25 0 0...: N 23 F 0:: A x 0 080 0.50: :_ ocoagcaocoodLamug a: 9E E 30> 5.00 202300 J . < _ cc< ll 250 VNV 30000 VN30000 VN3300 VN30000 .340—.000 ¢N03300 VN_. .0000 00009 VN03.0 000003 00000 03000.". 030030 .3300 0003N0.v 0000N.0 0000000 000003 00000 000:9: ~00 >Q0m :00: «“0054 «.0 0:: «“054 N0 0:: M 0:: N 0:: 0 0:: A k 0: 0810001 mhdawwm 1:13 ...0m:0=.. “_O >m000 53: 83:: 0F 0:: 0N3: NF 0:: 0 0:: N 0:: F 0:: A x Q 33802 00.50%. Ammz 0000 v oOEma 555.025. ".0 >152an MI... N000 000.N 00000.N N000v.N 03000 000 3N 00000.0 000N0.0 N300._. 000003 00000 02 03.0 000.N 03NvN 00000.N 303.0 0300.3 030 _. .0 0300.0 0003. F 000003 00000 02 03.0 03.0 00036 000N0.0 00000.0 00000.0 0000 3 .0 330.0 0003.0 000003 00000 02 00v.0 v0 3 .N N0000.N 000_.N.N 00000.0 0000 3 .N 30000 0 33N0 0003. 3 000003 00000 31 N000 000+ NONON.0 000.0. 3003.0 3300.3. 0000N.0 N030.0 00000.0 000003 00000 at 000.0 N 30.0 0003.4. 3000.0 00NN0.0 000N0.0 3N0 3 .0 303.0 0 30 3 .0 000003 00000 NE 03.0 00N.N 030.N 0NO0N.N 000 30.0 N000 3 .N 0003 30 30000.0 30000.3 000003 0030 0K >900 =00: 0N 00:: 00 0:: 035.. N 0 0:: 0 0:: N 0:: 0 0:: 0. x 0.: 3.00002 I 0.50... 5 0020055300 0.02.05 00:". 000.0 00 F .0 0000 F .0 0000 F .0 000N0.0 0000 F .0 0008.0 00NN00 003” F .0 000003 00000 00 000.0 00N.0 0000N.0 00..0N.0 0003.0 300N.0 v00 3.0 0 3000.0 003N.0 000003 00000 000 300.0 00N.0 00000.0 0 300N0 0 300.0 00NON.0 3N 3.0 0003.0 300N.0 000003 00000 0& 0 3.0 N000 00000.0 3000.0 000 30 00000.0 33000.0 0N0 3.0 0N000.0 000003 00000 31 000.0 00v.0 000N0.0 3N00v.0 00000.0 303.0 38.0 0300.0 00000.0 000003 00000 0.1 003.0 0 30.0 300.0 00 300.0 N0000.0 00000.0 0330.0 330.0 3N30 000003 00000 NM ”New wwwo Smwod 3000.0 00F 80 0 F0000 00000.0 0000.0 8300 000003 0030 E 2 «NF 5.. 2 3.: 0N3: NF 25 0 2.: N 25 F 25 0 x 0. .6380: .50: E 05:03:35 00 n . . 20> a 5E0 3.230 o <_ :52 251 va Fooww va Fmomw vmvaomm vNF Fmomw vaFvowm vaFvoww «NF Fmoww mama ~me; 283 5800 0283 Swan 838.». ommmmF.v onpommd onmwmmd 8803 032 “00:95 3F >Em 53: «28.: 2 25 «~83 NF 25 n 25 N 25 F 25 a x Q 338$ mSDmmm mzéu hmMIQI ".0 >525sz mxh move 03.0 mvmvmd 803.0 «38¢ 88; 8 E3 8 Food $38 88va 03? 30:9: Ea NF 3 800 505.0 393 F530 055.0 vawod 88.0 8%; 8B9; own? 339: SF >Em =3: 23:: 2 2.: 2.8: «F 25 n 25 N 2.: F 2.: a x E 3389: mfiSmmm .mm: 85 v 003mm 555.525. ”.0 >m5m m_.:. «86 EN 823 8.83 353.0 $3: $83 893 mumBN 829: 80? km 96.0 mmod vavN 3 Fm F .N 3036 avowed mvmo F .o ncmmmd No F FF. F ooonovF oooow at mmwd Em; omvmmé 885m mmmwod memm.m 5% F .o mommmd mmmuod ooomovF oooom mt movd E F .N «moomd omeNN F8000 mwom F .N 580.0 038.0 mmmvm. F ooomovF 08$. 31 mood 89¢ meFNd mommmé mummod mnommé a: F .o monumd $086 0883 ommmn at «.36 Re."‘ F Fm F: 38 F .v «~83 mmwmod 38 F .o 583 $83 85va ommfi mm $0.0 5: 280m «8me 89nd oFNNwN one 3 883 $85. 0883 8ku E >th :33 23:: MF at: «Not: NF 2.3 M «:3 N 2:4 F at: A x 9 339.52 «E3: 5 305955200 $9.9: FEE 89° 33 SEE 836 F886 F836 «.386 308.0 mFoNFd 2683 083 um mood mmmd mmvmmd wmwmwd 083.0 Nmnvmd 08 5.0 nmmmod mmF Fwd ooonovF oooow at Kod omwd Fovmd Fwomwd 038.0 vomwwd 533.0 233.0 mnmmmd ooomva oooow mm o 5.0 mood 8206 Boned EN 56 w 3.8.0 mmwood Nomood mmnmod ooomovF ooown V! we F .0 onto mvmvmd $83.0 Nvmmod Nommvd mwFNod mm Food 5536 oomoovF ommmn mm NF F.o Nmmd 505.0 mewmd FF Fmod me Fwd FwVNod mowed owwmvd 8%va ommmn N2 mFod «8.0 353 mmood F850 8890 $806 Snood mommod 08mm: 8va E >95 :3: «.223 «.F 25 .3qu NF 2:4 n 2: m5 En.» oracoom fi.59. :_ mcozabcoocoo omfio>< _a:::< 252 F330 N000N.0 3.50.0 02.3 00003.6 2.500% oFmemé 00300.0 000003 0000s. 30ch: FMF >th :32 «22.: 0F 0:3 «Nat: N F 0:3 n on: u 2.: F 0:3 x x 9 3.1301 953mm”. 11%“ ...mmIQI “_O >¢95 :3: «22.: 0F 2.3 32.2 «F 25 m 25 N 2.: F 2.3 a x E Bigot mfiammm 6m... 88 50.1mm 55:02: ".0 52:23 mi 0000 weed 0F00.~ FFOFON 053.0 FFmFVN FOF.0 053.0 NO0FON 000.83 0000s NE 03.0 00N.N ~00F0.~ mmmmmd 303.0 08me 039.0 0500.0 omvmwF 009.03 00000 ct N000 03.0 F33; 0300.0 «00:0 000.050 009.0 «2.3.0 33;” 000003 00000 mt 09.0 EFN «wooed 000FNN 5000.0 0000:“ 50000 03080 moova 000003 0000F Vt 000.0 «006 «009.0 #0006 «0«000 N5 FF;q 085.0 «wound 0300.0 000003 0002 at 000. F owod F00 F06 N000 F .v R030 0 F50 «008.0 0550.0 0 300.0 00303 0000s. N2 vmwd 90.0 3300.0 02.000 3000.0 monmmd 059.0 03.000 wmmmvd 000003 oovwn Ft >93 :38 33:: 0F 2.: 2251 «F on: n 25 m 20H F 25 A x Q .6383. ".23: E «cough-.3000 32.2... «8:. 000.0 FmFd moan—.0 0009.0 00v~00 BFNFd 00000.0 F050 309.0 00053 0000» 52 000.0 mmwd 000320 «080 03.3.0 035.0 FFOF00 0500.0 mmuFmd 00053 00000 01 03.0 BNO 00000.0 mmmud 00000.0 0000N0 Fawn—.00 0003.0 F280 000003 00000 mt 30.0 000.0 50000.0 0«08.0 «0030 02.000 0300.0 00000.0 0003.0 000003 0000s ‘2 09.0 03.0 530.0 «00010 F F0000 on {#0 033.0 0500.0 F0310 000003 0000» mm 2w.o 8nd «860 29.3 F880 F830 v5.8.0 F880 «9.9.0 8303 802. «m FF .0 muod 330.0 009.00 $90.0 $03.0 0mm . . . >9.“ :8: 03.2.3 2. on: «Not: N F at: a 0mm.” “Nahum ”3”.on 08ng comes Q ““0 E a: E a: . . F F8 no E 50> in» 8.395 1— n F own—«50:00 009.22 .352 It ll 253 60FF0000 60F F0000 60FF0000 6000FF00 600F6000 602.0000 3an 00000.0 8000 00000.0 000003 00000 0660006 0006006 0000006 000036 000003 00000 30:91 FMF >03 :8: 028.: ...F 2.: 28: «F 2.: F. 8.: u 8.: F 2.: a x 9 .3382 05:00”. 01.60 0310.: "_o >m20 :8: 38: 0F 2.: 003.... «F 8.... F. 2.: 0 2.: F 2.: 0 x s .388: 0500mm .00... 0000 Scam“. 50:025. ”6 5.32550 m5 000.0 006.0 050.0 FO0F0.0 0F066.0 FO0F6.0 FOF.0 0F060.0 00000.0 000003 00000 01 F000 000.0 00000.0 00006.0 00066.0 000.0 0009.0 3000.0 0000.F 000003 00000 02 000.0 03.0 06066.6 F0000.0 000F0.0 5000.0 0003 00060.0 0060F.0 000003 00000 01 006.0 60F.0 00000.0 000F0.0 00000.0 0009.0 5000.0 0F600.0 00060.F 000003 00000 Vt 000.0 000.6 00000.0 06060.6 6000.0 00000.6 00FOF.0 06000.0 00036 000003 00000 0! 00F.F 0006 0000F.0 060066 3050 06000.6 00F00.0 00000.0 F6000.0 000003 00000 NE 000.0 000.0 00000.0 00000.0 00F00.0 0FO0F.0 0FOF.0 00000.0 685.0 80003 00600 Ft >20 :8: 022.: ...F 25 Rosa «F 8.: 0 2.: 0 8.0 F 23 0 x 9 5&8: 0.50: 5 «cowgcaucoo «00:21 am..."— 0000 00F.0 303.0 0890 00000.0 0600F.0 00000.0 0003.0 0009.0 000006F 00000 00‘ 000.0 600.0 00000.0 00000.0 06060.0 00060.0 0005.0 0000.0 000F0.0 000003 00000 02 000.0 000.0 00000.0 00600.0 66600.0 00000.0 8080 00060.0 00000.0 000003 00000 02 63.0 000.0 5000.0 00000.0 508.0 0000.0 06000.0 00000.0 06060.0 000003 00000 Vt 090 006.0 0000.0 0000.0 0000.0 0006.0 0000.0 0000.0 00F6.0 000003 00000 01 00F.0 000.0 00060.0 0800.0 0000.0 00060.0 0000.0 0000.0 00006.0 000003 00000 0m 000.0 000.0 0000.0 00000.0 000 30 00000.0 60000.0 00F F00 . >90” 53: 0000:: 00 2F: MNOFJ N0 20.5 M 0:: N at: “Envy 08ng 8W0 Q~ honuooo E .2; 5% £280 1_ ”.50: :. «cough—.808 00222 .352 15 1‘ 254 Saar 25:00.0: 603 30000 603 30000 60036000 603 F0000 60003 300 60036000 603 30000 00.0: 00000.0 00300.0 00000.0 000003 00000 0660006 0006006 0000006 00003.6 000003 00000 “00:92 00.0 >900 :003 0000:: 00 0:.5 000:.5 00 0:.5 0 0:.5 0 0:.5 0 0:.5 A x Q 08:000.! 0.53000 «:60 00010.: ".0 >m000 :8: 003:: 0F 25 000:: 0F 2.: 0 0:: 0 2.: F 25 0 x 9 33800 0.0.5000. A01: 0000 0 00.0.00 55.2.52: ”.0 >m900 :00: 000055 00 0:.5 000:5 0 0 0:.5 0 0:.5 0 0:.5 0 0:.5 A x 9 0810001 0E5: E 0coaabc0ucoo “00:9... «9:... 000.0 003.0 0003.0 6003.0 0000.0 03603.0 0000.0 0008.0 0003.0 000003 00000 00 000.0 000.0 03 30.0 0000.0 00000.0 00000.0 00 3 30.0 0000.0 00000.0 000003 00000 00.0 000.0 000.0 06000.0 00000.0 60000.0 0 3000.0 003 _.0.0 00 360.0 00000.0 000003 00000 mm 30.0 000.0 00000.0 03000.0 003 30.0 00000.0 00000.0 00000.0 33060.0 000003 00000 3.0 33.0 300.0 0 3000.0 00030.0 5000 00006.0 00000.0 00000.0 00 306.0 000003 00000 at 603 000.0 00000.0 00000.0 692.0 00060.0 00000.0 00600.0 30606.0 000003 00000 0: 000.0 000.0 003 to 00003.0 000 80 00000.0 06600.0 00 30.0 000000 >900. :00: 0000:: 0... 0:5 «.0055 00 0:5 0 0:5 0 0:5 0 0:5 80W03 co“? *1 . . . .3 fiE00: E 0:05—3:0050 000..0>< .0352 Q .1000: 255 «$988 «388 «$38» war 28% «3:58 «3:38 $383 325 25% ~83 8:3 0323 0883 0383 8584‘ 88m: 83» “3:9: 3. >95 =3: 23:: 2 23 «~23 2 25 n 2.: m 2.: F 25 a x 9 .888: mhqnwmm mzéu ...wng... “.0 >¢<253m m1... :3 «:3 $83 383 398d 983 «386 $.83 2.53 88c: 88» .3: .i tea auto the .286 833 2.83 SS3 5 {mod @885 2 Sta 8$m3 88» 830...: .3 >95 :32 «4.3:: 2 25 «Non: N. 0:3 n 2.3 N on: n 2.3 A x 9 3:332 953mm”. Gm: 85 2.9me 22232.2 “.0 >m95 53! 33:3 2 2.: nuocfmp 0:2 n 2.3 N «SH u 2.: A x 9 Bantam flEB: 5 2.0522350 $2.2... «Er. owod 83 $33 «32¢ {80.0 233 «wooed $93 :83 8203 082. E wood 83 533 883 weaved 83.3 9:3 883 $23 2533 88» em wood tad 83.3 mummd 2336 $2.2. 8:3 ENS... «Sumo 8083 88» 3. Sad oood 223 28.0 833 883 mmmood 3890 3086 8803 258. wt 33 $90 $80... $83 389° $83 $33 «585 £53 8803 88» at onto {no 562. 833 £83 253 52.8.0 @886 «:93 839V 88» «m Rod 2 to 3mm; «9 to B 390 533 «$86 3906 no Sod 880$ 83» E >98 :8: «.225 2 2.: «~83 2 25 n 2.: Hag: . 2.: a x Q Sufism «EB: E manages—80 oa2o>< _a:::< Fm 30> in: _. atacoom J 256 om ann. oowmovF 0055 Mama $88.0 830: 88F 83% 852.9 053.3 83:6 883m 88m: 82: F8chIFmF >98 :8: «~35 «F 25 23: NF 25 F. 25 N 25 F 25 F x 9 338mm mHADwmm KIéN hmmImu—I ".0 >m<555m m1... Fmod Fovd vmmom‘o mommvd wamwod omevd meNod mommod Nmtvd oomoovF ommmn nmwcufilbtw 2.0.0 nvmd vmoomd vmommd wmwoFd momwmd mmwmod mowed wmmmvd ooBovF ommmn umwcmmtuwh RE =8: «wa5 FF 85 88.: NF 25 m 25 N 25 F 25 F x e 3388. whSmmm am: 85 39mm“. 55.2252 ".0 5.52.23 mIF End 8m. F FmR F .N mu me. F F 58.0 wmomod mowood N Fommd :va F 82va ooowp kt mmmd Fmod Fm Fond mFNB. F vaNvd vmmomd mommod mmmmmd m Foam. F 805va oooow em onto wmod mbm.m vwonwd Find mwvvmd mvde meFmd SENEN ooomovF oooow mt vde mwnd mm Fo.m menmd 53nd NvaN ow Fv F .0 894.0 mvomvd ooomovF ooown SK «2.0 Eva omnmmd 5mm F .w 530. F mmmvud Fm vad mmmmnd mmwmm.m 88o: ommmF. at 850 mmoh wmmmm.m mnmmwd mmwmmd 5.8mm ommmwd mnmmfio 880v 8503 ome. NM and 30v 8F F F.m Nam F3‘ 380. F vomnme Nommmd m {and noted 88va 8va FM 35 =8F|F 235 «F 25 285 «F 25 n 25 N 25 F 25 F x e 3383. nEB: 5 205555300 30:9: FEE wwod 83 9.83 E33 moaned F083 883 282. 833 820$ 82: E owod 33 RES $23 3986 F83 583 $83 $83 82va 88w 3 Sod ammo $de 923 Ego 583 «35.0 5%: Bag 889; 088 mm Sod 2 3 £53 £5 E 3386 283 880.0 223 FOF.0 880$ 82: 3F 53 F98 383 88; 8306 853 880.0 883 F235 8803 862 at F50 #3 «88° «83.0 883 833 880.0 83o mmmato 08.33 982 um mmod 9nd 586 nwmomd vwovod mmmmwd FvoFo. . . >95 :3: «~35 «F 25 «~25 «F 25 F. as.” Wme WWW.” comma: 08% E FEB: :. mcoaabcwocoo omfla>< 3.5.2/x 9 333cm E98 :8: 23.5 2 25 825 2 25 n 25 a 25 F 25 a x 9 Bios: «Sammy. 11.5. 59.6.: "_o >mEm 58: 83.5 2 25 «~25 NF 25 n 25 N 25 F 25 2 x e 3382.. I ”EB: E acozahacwocoo «3:9: FEE Rod mm F .o vwF Fwd FvaFd gmod momowd Fowood mmmwod mg F .o 805va 885 um mmod 5 F .o mmmw F .o Q So F .0 «586 an? F .0 028.0 mnmmod mmom F .o 0853 oooow cm 98.0 mFNd vomvmd mooomd «wowed nmmmmd FNoFod mmomod mmmmFd ooomva oooom mt Cod mF F.o mFmFd VNNF F.o Fmvwod mommFd momood $83.0 $096 88va ooomn wt wmod mmvd vaovd mmmovd Rmnod 83.0 F Fomod 058.0 3800 88va ommmn at 20.0 “and E036 oF Fwd 38 F .o #386 wnmod ¢ Fde 83.0 oonmovF ommm» NE mmod mFNd ommmmd mmmowd «named Fvwwmd mFoFod nFmNod vmmmFd 83va 85» F2 35 52E 83.5 2 25 «5.5 2 25 n 25 N 25 F 25 2 x e 3.2.2.: _Mm ..wa> _2< w 2.3—Bum ”E3: 5 «cozubcoocoo oun..o>< _a:::< 258 8888 «8088 8888 8888 «2088 82008 8088 no.3 00N««0.F 8E8. 088.: 098 88.0 0283 088 888.8 08:: 888.0 88F Fm. 0883 088 «3:9: .8 >Em 53E «285 «F 25 «N25 2 25 « 25 N 25 F 25 F x 9 22:82: mun—3mm”. miéu hmMIQI “.0 >m08 :8: «225 «F 25 «N25 2 25 « 25 N 25 F 25 A x E 33802 ”Sammy. Amy—I own» V 003mm .23—239:: ".0 >mEm 53: «225 «F 25 «N25 2 25 « 25 N 25 F 25 a x 9 3.083. I «EB: E meow—«3:350 omahc>< _u=:=< Haw Fa¢> Em 2.3—Bum _ 259 8000000 24.000000 22000 2000000 022000 0290000 2000000 «23 F00000 :00NN0 000:0 00:00: 0000: 20:00.0 000000... 0N0N000 880:0 00«§F 0000: 82.0.: .2 >98 :8: «225 «F 25 «N25 2 25 « 25 N 25 F 25 a x 9 3.2.02: 0.588. «1.8 80.10.: ".0 52222.0 m1: 030 0:00 0020.0 3600 000000 20000 :::F00 F280 :N0000 000002 0000: .02: .2 EN 000.0 :03 30000 F0080 N0:00.0 00000.0 20N00 0:00 000000 00:00: 0000: 80:00:02 3:0 :8: «225 «F 25 «N25 NF 25 « 25 N 25 F 25 a x S 3.2.8: 9520mm .01: 00:0 .0950 $52.02: no >m30 :3: «225 «F 25 «N25. 2 25 « 25 N 20“. F 25 2 x Q .288: «£3: E acowahcoocoo «3:2: FEE 0N00 00F.0 80:0 0020 000000 0280 F00000 2000.0 000:F0 000:0: 0000: :m NN00 00F.0 «0020 «N020 0:000 000000 00000.0 280 0220 000:0: 00000 00. F000 080 0002.0 22.0 F0030 F00FN0 00000.0 000000 0220 000002 00000 0m :30 0:0 :020 0:20 2080 «002.0 3000.0 F0200 223 00000: 0000: E 030 0:00 00200 3600 000000 20000 :28 F280 :N0000 000§F 0000: «m 0000 :80 3000.0 F0080 N0:00.0 00000.0 2020 0:00 000000 00:00: 0000: N0: 080 02.0 F0020 0::F0 02000 00:20 :00000 000N0.0 2020 000002 003: F0. :68 :8: «225 «F 25 «NW5 2 25 « 25 m 25 F 25 a x 9 33820 «E3: :. acougcaocoo 09223 .352 30.2; 02 22.280 260 vmmooomm vuwomomw vmwoowmw vwwowomw vwmwogw wwwvmomm vwmoooww 09qu oooorm. oommoi 83.: 00000.0 00:00: 0000: 80:00.0 0000000 0000000 0:030. 00000:.0 00000: 0000: 002.2: 00F >98 :00: 0NF05 0F 25 0N05 NF 25 0 25 N 25 F 25 N x a. 3.0.0000. mismmm m:-0N 5.0.0.0.... 0.0 52.2.23 0...: 03.0 mend 2030.20 «036 288.0 035.0 E. 5.0 395.0 Emmd oomomvr ommmn “00:9: bFFN 000.0 F000 0:000 00000.0 00F000 00N000 20000 ::80 0:0F00 00:00: 0000: 0800.: 00F >95 200:. 0NF05 0F 25 0N05 NF 25 0 25 N 25 F 25 a x a. 3.0.800. 05300.0. .00.... 00:0 . 00.0.0.0. 55.2.02: ".0 52.2550 0...: 000.0 :00.: 000000 0:00: 00000.0 :00F0.F :00000 0:000 00:03 000:0: 0000: :0. Nvmd mvm: woman... @830 53nd 900:0 @3006 98de 550.0 0853 oooow at 038 «and «209.0. mmoofiw mmvwod Emod NNomFd 35.0.0 Nmmomd ooomovF oooom at 000.0 00:0 0002.0 00:00.0 :00:0 00:00 F020 F00000 000:0.0 00000: 0000: 00: 9.00 9 fin $6me mm: 540 m 35.0 Fouomh vaFNd 0336 mmuoné comma: ommmn at 0:00 000.0 00000.0 N00000 00000 :00000 :000F0 NN0F00 00000 00:00: 0000: N0. 0000 0000 00000.0 00000.0 0000:.0 00000.0 00N0F0 200 000000 00000: 0000: F0. >95 :02... 0NF05 0F 25 0N05 NF 25 0 25 N 25 F 25 N x a. 3.2.80: 0E3: :. 2.2022350 000:9: NEE :N00 00F.0 0:00 00F0F0 00000.0 00000.0 00000.0 000N0.0 :N0:F0 000:0: 0000: :0. 000.0 00F.0 2:0 8:30 00000.0 N:00F0 000000 :0000 55:0 000:0: 00000 00. mmod mmFd vumFNd $80.0 9.3.0.0 3:86 580.0 «886 mnvtd some: oooow mt :80 0:0 N00NF0 00020 N00N00 00020 00000.0 000F0.0 080 00000: 0000: 00. :000 0000 F00000 00000 F0080 00:00 :60 :0000 320 00000: 0000: 00. 0000 F000 0:000 00000.0 02000 000000 0:0000 FN:00.0 0:0F00 00:00: 0000: N0. 0000 83 00:20 00000 0:00 N00:F0 00000 20000 0000F0 00000: 0000: F0. 3:0 52:: 0NF05 0F 25 0N05 NF 25 0 25 N 25 F 25 N x a. 3.0.000: 0:.sz :. 020.20.552.00 055.830 _a:::< Eua> E< 32.5.8.5 _ F mama 261 VNwowomw vmwowomm VNVFNme VNwomomw VNmNowmw wNfiwNwmw VNwomoow hogan hmgd 0N0 00.0 ooomofi 00005 0 0200.0 omvowmé ouc~om.m ooofi 0N. ommwofiu. oomoo: ommmh 30:91 was >ka. :3: Mtht: Mn 0:: MNwFJ NF 2:: n 0:: N 2:: F 0:: > X G: :ONQwoom 953mm”. mzéN hwngz ”_O >m<_>_s_:w NIP mvod vmmd wamd omwmmd womood thomd 0005.0 Nwwvod 0NNm.o oomoovw ommm: 39.09:th mood vad wamvd mm0m¢.o Powwod wthto vommod nmvwod 3000.9 oonmovr ommmn 50:91“: >th. 2022 «$023 2. 0:: MNwEd N: 02.5 m 02.5 N 0:3 0 0:3 >. x 9 :91000! waDwmm am: cwhm V 09mm."— EDs=Xmth. :33 MNFoEq m: 0:: «Nut: NF 2:: m 0:: N 2:: 0 2:: A X E .3300?! 0E5: E 0:200:5300 002.2... 00...". :N0.0 00 0.0 000 N0 0 F0 0.0 0:000 N: 00N.0 00000.0 883 00N: 0.0 08:03 0000: :1 No.0 00 0.0 0000 0 .0 :0N0 0 .0 NO0N00 0000 0.0 00000.0 0:NNo.0 0000 0.0 08:03 00000 00... 0N0.0 00 0.0 0N0 0N.0 000: 0.0 00000.0 00 00N.0 00000.0 00 000.0 N0: 0.0 0000000 00000 00: :000 0N0.0 NON000 00000.0 NO0N00 000N0.0 00000.0 00000.0 0:000 0000000 0000: 0m 0000 000.0 00000.0 00000.0 00000.0 N:000.0 00000.0 N00000 0NN00 0000000 0000: at 000.0 N000 N00000 00000.0 00000.0 00N:0.0 000N0.0 :00000 00:00.0 00:0000 0000: mm 0N0.0 00 0.0 N000 0 .0 0:00 0.0 000N0.0 N000 0.0 0:000 00 0N0.0 0N00 00 0000000 0000: :m >th :3: MN0054 n: 0:: MNoEd N: on: n at: N 2:: h 2:: A X 9 :ONQwuom 083: E meow—05:00:00 090.830. _0:::< _0‘0 03> 5.0—N0 atmceum _ 262 0N:00000 0N:00000 0NOFN000 0N:00000 0N:00000 0NO0N000 0N:00000 0205 :N 00.0 NNF 00.0 800000 0000: 00000.0 :00N0.0 000:0.0 N00 0N.0 0000 0.0 005000 0000: 50:9: 5: >95 :00: 0NF05 0F 25 0N25 NF 25 0 25 N 25 F 25 > x a. 300.080. 953mm”. mxéu hmmzwi "_O >m05 :02... 0NF05 0F 25 825 NF 25 0 25 N 25 F 25 A x a. 320800. mfiSwwm Awm: 00:0 . nO_mwn_ E:s=xm95. cam 0.20:3 m: 0:3 0.N0:3 N: 0:3 m. 0:3 N 0:: 0 0:: >. x 9 33000.! 00:5: 5 0.000.003.0030”. 50:9... 5:". 0N0.0 000.0 N000N.0 05:00 05000 N00000 0000.0 000N0.0 00:00.0 000:000 0000: :m 0N0.0 000.0 0500.0 5000.0 000N0.0 :00000 05000 000N0.0 00000.0 000500 00000 0...: 0N0.0 N0 0.0 05 0N0 0000 0.0 0 0000.0 0 000N... 00000.0 00 000.0 00 0: 0.0 0000000 00000 0! 0 00.0 0N0.0 N000 0.0 0000 0.0 000N0.0 000N 0.0 00000.0 0 00 00.0 0:0 0 0.0 0000000 0000: 00m N000 :000 00:00.0 0 55.0 000000 00 500 0:0 80 00000.0 N0:00.0 0000000 0000: mm N000 500 R030 00000.0 00:00.0 0:0:00 00N0.0 00000.0 00000.0 00:0000 0000: «x 000.0 :000 :00000 :0000 508.0 :0NOF.0 0000.0 5000.0 00N00 0000000 0000: Ft >Q:m ..on 0.02.25. 0: 0:3 3054 N: we: 0. 0:3 N 2:3 0. 0:3 >. x 9 3010091 0E3: E 00.0.0-05:00:00 090.030 .03—.50 _00 50> .20. _. ctmcoom _ 263 0N000000 0N000000 0NO0N000 0N000000 0NO0N000 0NO0N000 0N000000 000000 00000.0 00000.0 N0000.0 0000000 0000: 0 00000.0 00000 0.0 00:0 00.0 o 0N000.0 0000000 0000: 00.0.03: 00: >95. 500: 0.2.05.0 00 0:3 0N0:0.0 N0 0:3 0 0:3 N 0:3 0 05.0 A x 9 30100000 00.5000 01-00 000:0... ”.0 >m<2200 0:: 000.0 000.0 :000.0 00000.0 0:0000 000N0.0 :00 00.0 :0000.0 0000N.0 0000000 0000: 000: E ch 000.0 000.0 00000.0 0:0 00.0 0000.0 0000.0 0:NN0.0 N0 .000 00000.0 00:0000 0000: 000.55 000 3:0 :8: 0.0025 00 25 002.... «F 25 0 25 N 25 F 25 0 x 0. .8380 0.50000 .00... 00:0 30.000 20:02.... ”.0 5.52.200 0...... 00N.0 000. 0 NN000.N 0 0000. 0 30:00 00000.N 00000.0 0 000N.0 :N0::. 0 000:000 0000: :t 0NN.0 :80 0:0000 0:0 00.0 :000 00N0:.0 :0N:0.0 0000N.0 0:00.00 8053 00000 00.0 00N.0 000. 0 NO0N.N 00000. 0 00NN0.0 0000 0.N 00000.0 00:N0.0 0000:. 0 0000000 00000 at 000.0 :00.0 0:000.0 0000:.0 00000.0 :000 0.0 00000.0 N0000.0 00000.0 0000000 0000: 0% 000.0 000.0 0000:.0 000NN.0 0N000.0 N0:00.0 :00:0.0 00N00.0 0N000.0 0000000 0000: 0.1 000.0 000.0 0N0:0.0 N000 0.0 : 00N:.0 :00:0.0 00000.0 0:0000 00 000.0 00:0000 0000: N1 :000 00N.N N000.N 000 0 0.N N0000.0 N0000.N 00000.0 00000.0 00000.0 0000000 0000: 000 >000 23: 00025 0.0 25 002..“ «F 25 0 25 0 2:..n F 25 a x 0. 52.8.0 0E3: E 0020000000000 000:9... 000.". 03.0 000.0 :000N.0 000:0.0 00:00.0 00000.0 00000.0 N:0N0.0 0N0:0.0 000:000 0000: :1 No.0 000.0 :00:0.0 :0N0 0.0 0000.0 :0000.0 :00.0 00N0.0 :00000 08:03 00000 01 0N0.0 :000 :000N.0 000:0.0 00000.0 N0:0 0.0 0:080 0N000.0 00:00.0 0000000 00000 at :00.0 0N0.0 00N00.0 00000.0 000N0.0 :0N0.0 00000.0 00000.0 00000.0 0000000 0000: 0.! 000.0 000.0 :000.0 00000.0 0:0000 000N0.0 :0000.0 :0000.0 0000N.0 0000000 0000: at 000.0 000.0 00000.0 0:0 00.0 0000.0 0000.0 0:NN0.0 N0 000.0 00000.0 00:0000 0000: NI 000.0 0N0.0 :00000 00000.0 NNN0.0 0N000.0 00000.0 0N000.0 :000 0.0 0000000 0000: 0! >20 :8: 0.0025 2 25 002.... «F 25 0 25 J0 25 F 25 a x 0. 282.80 0050: E 000300050000 0000030 .0052 _ 00.2; 0.00 82.80 A 264 $383 $5.88,” KENS» v8.88» 5888 «Newman v2.88» «Sun 883 333 8803 88» «9.3+ 3.3 3 E E: 58 to 83m.” 852; 932 “3:9: «3 >95. 53! NN3=3 2. 2:4 «Not: NF «5.. m 2.: N «S.— .. 0:3 A x 9 58.300! 953mm”. mréN ...wmIQ... "_O 5.52.2.5 ME. Rod and N086 NmnmNd 5390 5 wde vaEd manned nmnmNd conce: ommmn yam: ~I th «mod 5v... 82.2. 38¢... $33 3946 summed ommmod 88.3 8501 932 “3:9: “as >98 :8: «.22.: 2 2.: name: 2 2.: n on: u 2.: F as: a x Q .838: m._.._:mmm .mm: 35 .00—mun. 5.3.2.522 no >522.sz m1... and FNvN manned wvooNN @336 §N mused 35nd 8% PN 82.0: coach km mnwd no». F F F E. F ms F E. F «885 v 52.. F Sde 883 2.8m. F 829: Soon em 33 Ba. F 883 88». F Emmi. «mm. ..m 383 883 835 F 889? 88» mm $3 2.3 «nuke $2.9m 883 one»: 383 Emmmd 85v...” 88m! 88» Vt note mm F6 hnwwvé #384” N 58.0 m 3 34. a 30 F .o 38.3 mNon.m cameo: ommmn mt mmmd 036 mm 55‘ mum ...v N326 gimme snow to mo¢mmd 303d 8303. ommmn NM 33 End :33 2.33 538 353.. 3.23 2.82 82.3 88m: 83:. E >Em 58: 83:: 2 2.: «mos... a. 2.: n 2.: u osw . 25 A x 9 3.38: ”£5: 5 303830800 32.9: «mg...— nmod 83 $33 $83 manned mmofid 383 Souad $83 830! 82:. E Nod $3 2.3; 88; «:86 9.2.3 «2.8... 386 833 82.03 258 cm awed 83 35c 88:. moaned 333 883. gonad $2.3 Some: 88» mm \. Ed mm; 55 to an: to movwod mm 5 to 2.33 0835 8m? to 8803 82: V! Rod and N036 NmnoNd $9.66 ..aFde oNvPod manned 93de 8303 ome. M! Sod Etc .8de «336 «Quad @836 Emuod @336 683 8303 82% Nm 39o NF ...o 3 FNFd Nana Pd ONa Ed New _..o «Nmood N336 83 to 8303 032. Ft >95. :32 33:3 2 2.3 Nch: N u 2.3 m. 0:3 N 2.3 u 0:3 A x 9 ..oquoot _ 3 .2; 2%. 0558 ”ER: 5 233828230 omEa>< 3:53 265 «N338 «NFomoao «Nooooam «NFomomw «Noomomo «N888 «NFomomo mean 62.3. F, F8...” 888 5 F8.” $8 8 888... R F3.” 83m: 988 82.9: 8F >95. :32 MNF0=3 NF 2.: «Nae: NF 2.3 m 2.: N 2F: F 0:3 A x Q 3:381 95.5mm m:-«N .5955 no >¢Q.Fm 53! «NFqu NF 2:4 «Not: NF 2.3 m. at: N 2:4 F 0:3 A x Q .6323! 9.4—6mm 31... 8F» .00—mum Ens—=25. ".0 5.5355 m1... 8”... Futw 883 383 2.38 o«o«m.~ 82:... F888 88F.~ 82.03 82:. .E 88 8: SE? 833 888 «F85 588 888 2.83 82b! 88» at 88 F8.F 883 883 588 ~8FF.~ «88.8 «2.88 88: 88! 88» mm «86 8m.” 8mg.» «85.» 83.8 ~88.” 3.83 «88.8 3F...” 88m: 888 «m N98 c 3.» can {an «mmofin one 5.0 «mmd co Fo F .c N336 :3 Fa cons: 2.32 at 88 F8.” 8v? 8308 2.88 895+ 38:. 8988 F238 8:83 88F NM «88 $3 FF«8.~ «FFaNN F2; 858 moNFFd 888 82.5 88o! 83F Ft >Q.Fm can: MNF¢=3 NF 2.: NNGSN NF 0:3 n at: N 05M F 2:4 A x Q 33931 «EB: E 303823.30 $2.9: FEE n88 «cud ~38 882. 888 8va5 ~88... F888 F088 F883 88F E 83. 88 888 mentd ~28... 888 F888 F886 «$28 8°83 828 at 89° SF... 828 388 «ad 288 8de F888 8R3 SSSF 88m 91 F 36 «NF.o 8026 an: F.o «««No.0 «89.0 «$8.: moo 36 3.. F F.o 8303. 803. Vt 868 and 83nd «85o 888 2.83 «838 8266 F888 88m: 982. mm F86 F98 FF F23 898 8888 833 F888 F888 8888 8303 88F Nm 29o 8F.o «FNFFd 888 8:8 283 838 838 F988 8803 282. Ft >95 :32 MNFoSq NF 9:3 «No.5»: NF 2.3 n 0:3 IN 2.3 F 0:3 A x 9 ..oKauom «.83: 5 23.33.5250 amflo>< .352 _8 .2; 2% 2.238 266 «Nhomomm «Nhomomw «Nmomomw «Nnomomw «Noowomw «Ncowoow «Nhomoam ”Dawns NNNNN FoFF«.N NFomFd 3036 3.096 wN«mm6 mmmmNN 66303 032 3235 FmF >95 :32 NNFaSq NF 0:3 NNoti NF 0:3 N 2:4 N at: F at: A x Q 33031 9563mm m:-«N ...mmIQI ".0 5252.5 m1... N36 mmm6 F286 NFmNN6 «6866 336 FNoFod NFN«66 F386 6689; 632. F3: .5 DEN $66 mN«6 FNmF«6 FFFF«6 NNowod mFNm«6 NFNN66 F866 mommmd 66303 309. 30:92 3F >9Fw 53! NNFo=3 NF 2.: NNo=3 NF 0:: N 0:3 N 2.3 F at: A x 9 333mm 95.4mm”. am: 85 voofimn. 2:5:sz ".0 >m95 :3: NNFo=3 NF 2.: NNccfir N F 0:3 N 0:3 N as“. F 0:3 A x 9 33032 "E3: 5 2.0322350 «3:2: F2."— 88 88 888 888 988.0 «88.0 «888 8808 888 08F8F 82K Ft 036 mmFd m«oFN6 Nowad «2.86 @386 8066 «336 N356 66653 ocean at wNod 636 mFFFN6 N6096 N6636 0mm6N6 65666 mmomod NFFFFd Some: 6666» at Sod 83 888 838 «888 «88.0 8868 8208 888 888F 82: 3: N36 886 F286 mFmde «6366 :96 FNoFod NFN«66 F386 0883 632 NE 88 88 F858 :58 «88.0 388 «Famed 888 88nd 8863 88F Ne N F66 3 F6 «mmF F6 88 F 6 Now F66 m««F F6 F Fmood FmN F66 NmooF6 comma: 663x. Ft >Em 58: 83:: 2 2.: 82v: 2 2.: F. 25 .N 25 F on: a x 9 3.38m «£3: E acougcaocoo ouflo>< .353 _8 a; :8 2.28m 267 vmnomomw vNFomomw vmoowomw vmnomomw vmuomomw vwmowomw vmnomomw 83G :N F©.v F Fmooé mmomnd 892v vwmowd wmvmmd nwmomd oonmovF ommmn 30:9: 3F >Em :8: «.225 2 25 «No.5 NF 25 N. 25 N 25 F 25 a x E 833mm 9.53.... «ii 526.... ”_o 532.sz sz mvod Fond mmwmmd vvovmd Nmeo.0 3200 FNnFod mevod mmmwmd oomoovF ommmw mecmxt btw oood movd mowomd vovvvd mvmwod mommvd Vmwod mommod vmomvd commovF ommmm “8:91 an >05 :3: 83.5 2 25 «NE: N. 25 N 25 N 25 F 25 N x e 33802 miammm am: 83 . ooEma 5.22325. ”.0 >m< .5353 8 .2; 2% 2.288 _ 268 VNFomomm $888 «88me $888 $05me «85me vfionomw mean 323‘ $32” $33. 9.33 2:33 032 omkom. oomnmN. 0338. 83va ommmn “3:9: “3 >Em 58: NNF25 NF 25 NNN5 NF 25 N. 25 N 25 F 25 a x 9 338mm ”Sammy. mIéN .mezwi ".0 >mEm F622 NNFN5 NF 25 NN25 NF 25 N. 25 N 25 F 25 F x 9 338mm 95.55... Amy—I 85 v DOEmE 55.2.52: ".0 >m<255w m1... ommd FmvN vaooN mvmomN mooovd immN vaFd mmwmmd mmanN ooonovF ooown mm ode 33 88 F .N 38¢. F $88 8%: @886 8%: 85F. F 82va 258 at and wva wmomnN NvamN oomde wommoN mnF F.o okovd NmmNNN ooomovF oooom mm N de wmmN NwamN NmvaN Vmemd movaN Vva F .o 896 m FmomN 88va 083 VI N36 on.m wanmflv vmmmmd 3.58.0 wvao.v mnmNd 330.0 530m 889: 032 Mm «8.0 33. RS: 39.3 883 Rmva F.8d 8300 $33” 8%va 032 Nm movd NmmN N vaN NF FYN mRmd wwwaN 5va .o mmvad mmmmNN commovF 8me Ft >95 can: 83:: MF «:3 32.: NF 2:3 m 2:3 N 0:: F 0:: A x n: 33009: FEB: E mcouuhcoocoo F359: FEE Rod 23 883 253 mmNmod 823 $890 933 833 829: 88F um mNod mONd N3NN.o Fomed Emmod mNmFNd mFmood Famed wwmde ooonovF oooom bk «Nod B F .o m FN FN.o NNmm F .0 895.0 mmBNd m Fmood mmomod mot F .o 88va oooom mt vFod vo F .o me F F.o mNmmod NNONod vao F .0 330.0 mmm Fod mmmmod ooomva 80mm 31 Sod mnmd 533.6 836 0:86 mmommd meFod nmwvod F338 88va ommmn mm Nood Nnvd mom Fmd 0N Fmvd 088.0 mm Fmvd MGMNod 2500.0 mmKNvd 8%va ommmn NM wFod mF F.o momNFd mnoF F.o mvaod 89 F6 oFmood vaFod nmmoFd 88va 8va Ft >Em :NNFIF NNFu5 NF 25 NN25 NF 25 N. 25 N 25 F 25 a x 9 338cm nEB: 5 305535300 amEo>< .353 mm Fa¢> En: eta—Bow _ 269 VNmFome «N293 «N903» «N298 «N823 «N928 «NmFome n83 888d 08%? 838. 083: 838. 38:. 838a oom§F 88F F855 .3 >ka :8: NNFuFF: «F 2&4 «Nut: NF 0:3 n 2F: N 2F: F 0:3 A x 9 2838K 3.1—Damm— mIéN ...wmIQI ..._O >m98 :32 «.22.: NF 0:: «Non: NF 2F: N 2F: N 2F: F 2F: A x 9 3.399% 953mm”. Amy—I 85 . 00.1mm 55.2.sz ".0 5255.5 ml... 8.3 mFNN 9%qu FmFmFN 833 9&3 £83 2.23 $83 085$ 82: N: 9N5 SFN 333 08an 23de «FNNNN 88.0 82.3 923 822: 825 am {no 8N 883 NNNXUN @8de 883 NNFFd 2.33 NmmNNN 8803 88m 3 Bio 23 £33 mNmNcN F223 mFNFN mNFde 831° SBNN 882: 82: wt 33 N2? N83 833 «$86 as”: 383 N85 33a.» 0883 032 at 890 F5...” 383. «88¢ F836 E83 383 333 328 22.81 032 N: 83 mmoN SFSN momEN mtg mFmNmN F836 88% 883 88¢! 8va Ft >95 53! NNFuFFZ NF 0:: «No.51. NF 22.5 N 2F: N «SH F 2F: A x Q hangout «SB: 5 2.322.350 $2.9... FEE F8... 83 8:3 8%; 2086 83:6 880.0 223 83.0 82va 82: N2 mNod 23 $83 FmoNd 2:35 «NFNNd 3086 2:86 883 82m: 258 cm 08.0 83 883 833 82.3 mNNFNd 889a 3255 223 88m: 088 at $3 83 NFNFFd 3285 F823 983 $33 883 $33 8263 88F v: owod Fond N228 :23 32.3 883 83.0 833 FNmed oom§F 822 at 83 Ed 823 2223 38.0 8823 £86 3806 853 8S9: 8an N: m 66 «N F .o 88 F .0 Nat 3 8 Rod NNmNFd «886 3m 66 mNN F 3 2683 8.5. Fm >98 :8: 83.5 «F 25 28: NF 25 N. 25 N 25 F 25 a x S 5&8: _l FEB: E 28322350 3222 .352 an 30> 5E» atacoom J— «82:8 «868 F838 838 .858 5228 F838 «23 8882‘ 088$ 858. 088+ 838. 0894.. 838.8 882: 88F 330...: FmF >95 53! «NF25 «F 25 «N05 NF 25 N. 25 N 25 F 25 a x 9 3.30am 95.3mm 11.5 .me191 ".0 5.525% wt... F30 80o 883 8586 8:3 8:8 823 2.83 :83 8~§F 88F 83 F: EFN wood NF; 2:3 358 088.0 N88... :85 @586 F823 832: 822 825.: BF >95 :3: 335 «F 25 «N25 NF 25 F. 25 N 25 F 25 A x Q 32882 953mm”. Gm: 85 .99me 55552.: no >mEm 58: «NF25 NF 25 «N25F NF 25 N. 25 N 2...“ F 25 A x 9 F838: F"EB: E «cowgcoocoo 32.9: FEE No.0 83 333 NwNde :83 £83 883 NNNNod 2.83 820$ 82: N: 89° 83 338 058.0 8836 853 880.0 9890 F83 822: 828 at 89° 8N6 883 FNNmFd 8N3.o F85... F886 880.0 883 882: 088 mm Sod 8 F .o 8NF 5 830.0 NONod 88 F .o 825.0 F8 Fod 3.80.0 8083 82: V: Food 83 808d 855.0 886 8:8 F850 8806 F83 oom§F 082. at «86 NF; 2:3 85.3 883 F885 :86 980.0 F896 2:83 822 N2 “MUM. “new“... “Hum. ”Nam; 88o... «2.de F886 N850 883 8883 098 Ft . F. 0: w: a mausfificfinafim :5 2 2 22.2 E 50> Ema Otacoow J . . < _a=::< eNnFoF8 F8328 «82:8 82:8 8998 838 5828 «2.5 85QO 03.565 055“: onVNmmh 0855. onv F». 0F 595v 8803 559 50:92 5F >95 :3: NNF25 5F 25 «No.5 NF 05 N 25 N «5 F 25 >. x 9 35932 whqammm «FINN ...mmrwi no 535235 m1... 89o FFF.o 885. 8886 F88... 3.83 «83... «F83. F886 882: 88F 52: F: EFN wood 83 94de F8; 883. 883 «28... 883. 8 F93 898$ 88:. 525: FmF >95 :35 MNFm:5 5F 2:5 «5:5 NF 2:5 m 2:5 N 2:5 F 0:5 >. x 9 352085 555mm 62: 88 30.8.. 552:2: “_o 5.52.25 2.: mFNd mNoN NENNN VNVNQF @356 NmeFN nomad wFomNd 3mmwF 8653 682. E 5N6 n5.F momFFN mommwF 059.6 FmomoN N586 5056 23th 6853 cocoa at F56 wmvN wacmFN NvamN oomde wommmN a: F6 02.36 NmmNNN ooomoeF ocean at 5nd nmNN monomN §NFN NNFomd Nvome nNmN F6 02.56 mVNooN ooomovF 862. VI 1 83 N86 8088 :28...” 883 883 82.8 838 FEF: 88m: 988 at N N85 F88 883. 82m...” 883 2.8.” 883 838... «58.8 8982 88:. N: 88 F8.N SEN...” 85.5. 8286 F88.” F836 888 885 8803 8va Fm >95 :32 NNF25 NF 25 NNmE NF 25 N 25 N 2:“: F 25 > x Q 35322 F”52. :_ acozubcoocoo 52.2: FEE oNo.o mid 883 E83 N882. 8825 F886 oFFNod anFd 82.03 258 km 086 oNN.o VNFVNd 5586 NNNvod am FmNd 55666 5.566 N836 685: 88» ct owod mONd omoNNd 55 F6 FNNvod 30 FN 6 N586 58.86 m F5 F6 68me F ocoom mt m3... 3; 813 «886 885 88F.o :8... 86.0 «886 8801 88:. wt #36 936 @336 3556 5556 «536 #5 56 9566 F856 8503 omnow at mood 256 94de F036 5506 @536 5506 «5006 $236 8503 952 NE 83 83 803 8.de 883 283 N286 Sad 38:. 88va BEN Fm >95 :32 NNF25 NF 25 «~25 NF 25 N 25 N 25 F 25 a x 9 F853: «E3: 5 mcozubcmucoo omEc>< .552 F» L52> 55°F Otmcoom J— 2858 282:8 2838 2888 2838 2858 2838 222: 23666.6 o69F66.6 266966.F 262N666 26669N. 2N62F6. 026992 68663 66669 32:91.3 >996 :22: 6NF2:5 6F 2:5 6N2:5 NF 2:5 6 2:5 N 2:5 F 2:5 >. x 9 332229.: 69.56%. ¢:-2N hwmrwi ".0 52:25.36 m1... 966.6 622.6 96662.6 266N26 6NF666 66662.6 NF FN6.6 6 F6666 N96666 666662.. 66669 «22: .5 EN 966.6 662.6 696N66 F29626 66266.6 66N666 N92N66 96666.6 66N626 669662F 66669 32:91 62F >28 :8: 2225 2 2:: 8.2:: NF 2:: 2 2:: N 2:: F 2:: a x 2 3.2282 25:62”. .21: 892 30.22.. 26:62: “.0 $525.62 2:9 69N.6 6N6.N N26NN.N 2N2N6.F 62666.6 NF66F.N 6666.6 6F66N6 26666... 86963 66669 99.. 666.6 66N.N 266 EN 262F F.N 2F6 F66 2662.N 26NF F6 6662.6 6 ..66.N 666962F 66666 62 F966 662.N 66669.N NN626.N 666N66 66666.N 69F F6 69962.6 N66NN.N 8863 66666 6t 666.6 N6N.N N6666.N 66 F6F.N 666F66 6N6N2.N 669NF6 96666.6 6N266.N 666662F 66669 2.2 m 669.6 NN6.6 66666.6 99F66.6 66966.F 62N66.6 6669N.6 N62F66 FF699.2 666662F 66669 62 966.6 666.6 6669N.2 6666.6 69226.6 96696.2 66N6N6 69N266 26662.6 669662.. 66669 NM 266.6 266.6 96626.2 66962.6 N66696 6N666.6 6669F.6 22966.6 66F6N.6 666662F 66269 F: >996 :22: 6NF2:5 6F 2:5 6N25r NF 25 6 2:5 N 255 F 25 > x 9 3.2222: ”.56: c. meow—25:22:20 «22:6... F2..."— 6N6.6 62F6 696F.6 6666.6 2236 6666F.6 N66666 N6FN66 666NF.6 666962F 66669 91 666.6 NNN6 2262N6 F26FN6 69N266 6666N.6 69666.6 66666.6 6666N.6 666962F 66666 62 666.6 66N.6 666NN.6 F6F6F.6 69..26.6 6N2FN6 F26666 66N666 2.96 8863 66666 3: 6 F66 66 F .6 N6F F6 2N6 F .6 96FN66 662F F6 96266.6 6656 66966.6 66863 66669 2m 966.6 622.6 96662.6 266N26 6N F666 66662.6 NF FN6.6 6 F6666 N96666 68663 66669 mm 98.2 81o 8282 3962.2 828.6 886.6 9286 9686.6 882.6 89661 66669 Nu mNod 96:6 628:6 F9663 F8666 629F.6 6F6 . . . >992 :22! 6NF2:5 6F 2:5 6N2:5 NF 2:5 6 29%.” £qu 6 6666.. 6 8363 66269 Ft 2% a .25 .2 x e .2282 E 23> in: crap—20.0: J— 6 . . O O EO>< _u=::< vNEmoom vNEmoom $625 $325 «N388 v2.88 «N388 323 03086 omgné enema 2... 028mm OAVNAN. 820d. 00291. 8303 owod» 30:91 .2 >95 :25 «N225 2 25 22.: N2 25 N 25 N 2.3 2 2.3 A x 9 ..238m mhdammm mzéN ...wmxoi “.0 >152sz m1... mood vmvd NNdmwd 2.2.10 Nm Sod menmvd MANNod msdood wamd conce: 032. “no: ..I DCN Edd Svd 830d Fmoowd mmoed wNumd 33.0 330.0 {.033 demo: ommmx. 323.5 “2 >95 :3: «.225 2 23 «Noe: N 2 25 N 2.3 N 2.3 2 2.: A x 9 3.38m 95.5mm 81.... d2.» . 00.1mm .23232: ".0 >m95 :32 «.225 2 «:3 «Nos... N 2 25 n 25 N 25F 2 25 A x 9 .2263. m"EB: 5 233825055 32.9... «2E NNdd Nd _. d 2 FNd Fde _. d mowmod 8NONd 380d m3~od 2‘2. 2 d 0853 089. NE 80.0 Nde SNNNd mvomFd Addgd X” 3.0 Snood 228d 322.0 002.03 ocean at mmod dNNd meVNd moded Budd vvmmNd mNowdd whomdd 082d 0080: added at 20d m 2 F d mNMNFd mNod F d VNNdd mow _. 2 d good on Ed mm _‘d _. d 0030: coeds VI mood vmvd NNOdvd 9:. 3d No Edd 9&de mANNod mnmmod Nwmmd domed: 032. at Edd _‘dvd @3de Soovd mmoo..d mNmFmd mmNod mmvnod Kovvd 8303 83» N2 wNod Etc 233 223 $23 333 883. Rod 882d 0833. 8th 2m >Em 53:. «.225 2 25 «~23 2 2.3 N 2.3 N 2.3 2 25 A x 9 581232 ”55.. 5 2.822.850 3222 .352 Ed 2wo> :5. atucoom 1— VNdeom VNvSooo 2.9288 2.2288 VNvSoom vaEoom VNEmoom 00qu gown 0932+ 0282.2 005de oNvNNN. 0028. 8291‘ 82mm: 832 3229: 22 >Em 53: N28: 2 25 22.... N2 2.: N 8: N 2.: 2 25 2 x Q 3§8m mfidmmm mzéN 23:9: no 5.52:3 m5 28d coed @336 298d Emmod 32Nvd NN2Nod 230d 2800 8803 832 23.2 .2: 225 Edd N23 228d mNmmvd 38d Snood enmNod 820d 2mvad 82mm: 832 3229: 22 >95 58: 222.: 2 2.: 28.: N2 2.: N 2.: N 2.: 2 25 2 x 9 3.3on 2.53m 6m: 82» 39mm“. a:s__xEm 53: 2223 2 2.: 23m N2 2.: N 2.: N as“. 2 2.: 2 x 9 3.28m NEE: :_ goagcoucoo 32.2: 22.". Rod 22d 282Nd mNom2d mmdmdd Nm2de deod doomed 3222.2. 2529.2 882 A! oNod 82d mm2oNd 2N22d m2mod 282d Ended m2mNdd 332d 08203 088 at Nmod 22Nd onmNd 32m 2 d m 2mvod 3NNd waged demod 2 2mm 2 d doomoi added at o2od N2 2d 2NN 2 d ammo 2 d «83.0 2 2 2d 830d N2 2od So 2 d 8332 coo? 3.2 28d docd @333 293d 288d 329d NN2Nod o2vmod 2800 8892 882 at 020.0 vad 223d mNmmvd 38d 2mmdmd vamNdd 820d Svad 82mm: 832 NE mNod N26 2826 92.3 Smmod N283 2.686 283 325 8832 832 22 >92.” :00: MN—bfla O: 0: 2 2 «“32“ :_Na2:“.nwbcwuonn auN 2.3 2 22: A x 9 28332 E uflo> E a Otwcaum J n O E¢>< 33:5 275 vuvrmoom vwvwmoom vuvrmoom vwvwmoom vwvwmoom vwvrmoom Vermoom memo "383 92.3: 8.82.. 8283 oNvNNN. 828. 828.: 2:33 822 2.39: .2 >Ew :82 835.. 2 8: «ch5 N2 2: N 2.: N on: F on: > x 9 .838: ”Sammy. mzéu ...mmzoi “.0 53.2.sz m1... Sod find 323 2.33 883 533 323 2.806 83° 8892 032. .8: .i EN mood 2w.o ENde Saved :28... 23% N88... NNNBd 8&3 8N8: ommmN #39: .2 >95 :32 NNES 2 2: NNoc: NP 95 n on: N 2: F 25 > x 9 333cm 3.5mm”. am: 85 Scam“. 2:23;. “_o >m95 :3! «4.3:: 2 2.5 32%“ up 0:3 N. on: N as“. n 2.3 A x Q .3303! NEE: c_ acouabcoocoo «3:2... NEE N86 83 323 2.33 N385 N83 883 «386 8026 82c: 253 3. «No.0 83 3N»; 883 «886 823 «28.0 9886 826 82.03 88» at N86 2N.o 883 2.83 833 EoNNd 883 N385 N326 88m: 88» mm 22. 83 N33. 833 550.0 833 2.33 223. 2286 8803 8o? 3: N8... :3 94:3 283 883 $33 3an :83 88.0 88m: 032 at mood 2w.o ENde 893 .286 N233 NomNod NNNBd 8&3 2:32 862. N: «No.0 23 $53 883 2.83. 383 £86 8&2. 883 88c: 83:. E >93 :8: «.28: 2 on: 23: N. 2.: N. 2.: .NPME.‘ 2 25 A x 9 .838”. «gm: 5 acorn—«50:00 oaa3>< _a:::< g .5; 52m atucoom _ 276 vagmoom VNVSOOQ vmv2moom vmw2moom vvaoom vuvgooa vuvwmoom 828 0532.3 "vague 05mm: 002mg...” oNeNNN. 8N5». 082912 03322 onmmn 28.5.2: was >25 :8: 2225 2 2: 22: N2 2: .2 2: N 8: 2 2: 2 x 9 22.2.82. 92.5me 1:-.2N 2319... ...o 52:23 m:.2 oood 28.0 308.0 23223 02 236 «836 N9 56 3806 onmmNd 8892 comm» 23c .22 new awed 222.0 520° mNNSNd 0886 832.6 2omNod 3256 «NNNvd 839.2 8222 23:9: 32 >96 :82 222... 2 2: 22: N2 2: N 2: N 2: 2 2: 2 x Q 3288: whammy. am... 82» 39mm“. 2:252: “.0 >553 m2: Bad No 2 .N mmmmmd monoN Nammvd 2moom.N Nommod $86 29.8. 2 82.9.2 ooomn NE ooNd mmoN EmmNN NowNm. 2 38nd Name 2 .N Nicod Numomd 83. 2 082922 808 at BN6 N82 oNNN2.N 02mm... NNoovd mNomoN 328.0 mind 8322 Some: ocean at ENd 30. 2 EmmoN 32.2. 2 vomovd m 20 SN Nmowod N 2m 2w.o 3 2mm. 2 88922 ooowx. wt «and mute «momma $2”va v2mde 332....” 9282.0 3236 Nomod 8892 come. at Nowd mNo.m mwmmmh 93:. 2082.2 o2mNm.m NvNNNd N286 8292.2. 82mm: 032 N2 80o mug. 882.2. 2082.22 mNNvmd Kmmmé omooNd Nnmmmd movmmd 08mm: 832 2m >Em 58: N222: 2 22: «NSF N2 22.: N 22.: N 8m 2 on: N x 9 32.2.28: «ER: 5 macaw—2:00:00 23:9... 22E 23.0 526 mwmoNd mow; 828.0 928.0 vmmood mowNod omNtd 082.922 ooown NE VNod 82d RN36 8826 manned 832.0 22286 883. 8222.0 0833 cocoa at 286 8N6 N2oNN.o 582.0 canvod ~32Nd momood 2986 @2326 88922 88¢ a! m 56 no 2 .o 222 2 26 NN 2o 2 .o 2.2 2No.o 082 2d 8306 @3206 308.0 80mm: 882 Vt owod 28.0 382.6 23 2w.o 02 236 $836 Now 5.0 conned mnmmNd 8802.2 832 «.1 wood 22.2.0 536 mNvad 808.0 8328 2omNod 323.0 «NNNvd 8302.2 ommmu NE «Nod 32.0 0082.0 382.0 NmNmod mmNtd NNmood :NNod wva2.o 83922 82.2. 22 >Em 53: 2.225 2 2.: NNMm: N2 25 N 2.2.2 E: 2 2.2.2 a x S .858: «ER: 5 «2.05.22.32.00 $222. .2522 _oeaer :< Sotacaom 277 $30000 330000 330000 330000 $30000 $30000 VNv20000 0.0an 00030.0 3000:2 03002.2 00530.0 000NNN. 03000. 0202010 005003 0000.2. 323.2: 002. >95 :85. 09.95 02 0:: 0N2... N2 05.. 0 we... N 0:: 2 0:: a x 9 Neacucm 050000 mzéN 20.019... “.0 5425200 0:2 030 000.0 300.0 2NO0N.0 0.20000 3 2N0.0 0N020.0 0203.0 00250 000003 0000p «no: .2: EN 000.0 002.0 0000.0 N000v.0 2.0000 00 20v.0 NNvNod 0300.0 2N2¢.0 005003 0000» 32.0.2: 202 >90 :82 8205.. N2 2: 88: N2 9.: N 8: N 2: 2 2: > x 02 28.2832 0243mm am: 85 39%: 50:02: ".0 5:22:00 2.: 30.0 N0 2 .N 00000.N 00N00.N N000N.0 20000.N N0000.0 0000.0 202.00. 2 000503 0000» km 0NN.0 000. 2 030 2 .N 0N000. 2 0030.0 200N0.N 00000.0 2NN00.0 #005 2 000N03 00000 0t 00N.0 N33 000N2N 20200.2 232.0 N0000.N N2N00.0 0030.0 00005.2 000003 00000 at 2.0N.0 v00. 2 2N000.N 00km. 2 «000.20 0 20 SN N0000.0 N 20 20.0 no 200. 2 000003 0000s Vt N000 002.0 002 20.0 0NON.0 00000.0 R030 00N.0 2 .0 000.200 330.0 000003 0000s 02 200.0 0N0.0 0030.0 2002+ 3002.2 0550.0 0NNN.0 3000.0 202032 00503 00002. NE 000.0 0006 0332 003.2. NONv0.0 0RN06 N000N.0 0000.0 0NN¢0.0 000003 0003 2k >020 53: N28: N2 2.: NNBJ N2 2.: N 2.: N 25 2 2.: 2 x 9 33800 N250: :_ 000002203000 30:9: 20:”. 0N0.0 002.0 NO0N.0 0N002.0 3.50.0 0000N.0 N0000.0 000N0.0 055.0 00003 0000» um 0N0.0 N020 0205.0 00N02.0 0300.0 32.2.0 0280.0 00N0.0 5003.0 00303 00000 0m 000.0 002.0 00N2N.0 0202.0 R2000 0200N.0 N000.0 NON00.0 00050 000003 00000 0t 020.0 002.0 2.03 2.0 3000.0 NON0.0 002 2.0 5030.0 0 2020.0 2. 22.000 000003 0000N wt 02.0.0 000.0 300.0 2NO0N.0 0300.0 3 N00 0N0 20.0 0 203.0 00 2NN.0 000003 000mm 0m 000.0 002.0 0000.0 N000v.0 2.0000 00200.0 NNVN0.0 0300.0 2N2v.0 002.003 0000s N2 NN0.0 002.0 02.320 0302.0 00200.0 00002.0 3000.0 0NON0.0 0003.0 000003 00.202. 22 >020 53: N225 N2 222.2 «Now: N2 25 N 2.2.2 N 2.2.2 2 25 N x 02 5582.2 _ 38> E< :Otucoom N250: 2.. «coup—2:00:00 muumho>< .0052 278 0N0—.0000 0N0—.0000 0N020000 0N0 20000 0N0—.0000 0N0—.0000 0N0 00000 mama 0550NN0 30000.0 80002.2 0000000 00000N. 00200. o5NONN.0 0050002 00005 23:02: 202 >020 :8: N98... N2 2.: NNNS N2 0...: N 2.: N 25 205.. 0 x 9 08008.0 0.0.505. 1:-0N 0095.: “.0 5.52.230 m1... N000 50N.0 0 25 20.0 NN5N0 N00000 0 2N000 500 20.0 00000.0 0N50N0 000003 00005 50: 22.2 BEN 000.0 2000 00000.0 200N00 N0 2000 0 2050.0 050N0.0 0N5000 50000.0 005003 00005 30.291 32 >020 =82 NN2N=_._ N2 2.... NNN=_._ N2 2: N 2.: N 2: 22: 0 x 02 2833: 0.530%. 20m: 0050 2 GOP—mn— 552025 to >m950. 228: 0322: 02 22: mumsu N2 0:3 .0 223 N 222...? 2 05.2 A x 9 3210002 N250: E 0020022000000 200:9: 202E 0N0.0 002.0 50NON.0 20052.0 NN0000 2N002.0 0N000.0 000N0.0 02002.0 0005002 00005 51 0N0.0 50 2 .0 0500 2.0 5050 2.0 0 2000.0 5005 2.0 00500.0 050N0.0 0000 20 0005002 00000 0.1 0N0.0 00 2.0 000 2N0 000 2.0 00 200.0 5500N0 0 2000.0 00N000 N005 2.0 000003 00000 0m 0 20.0 00 2.0 000 2 20 00000.0 000N0.0 00 2 2 20 00000.0 000 20.0 000000 000003 00005 Vt N000 50N.0 0 25 20.0 NN5N0 N00000 0 2N000 500 20.0 00000.0 0N50N0 000003 00005 «I 000.0 2000 00000.0 200N00 N02000 0 2050.0 050N0.0 0N5000 50000.0 0050002 00005 NE 2N00 00 2.0 N 25 2.0 2000 2.0 2N0000 00002.0 N05000 00NN0.0 0000 2 .0 000003 00005 2.1 >95 :00: 002223 02 0:3 0.0.22: N2 223 0 223 00.1222 2 222.2 A x 9 221031 NEE: 5 00030222200000 00020>< .0053 30.822 202 £280 L 279 0N020000 0N020060 0N020000 0N020000 0N0 20000 0N0—.0000 0N020000 320G o 2000N.0 o0 2N00.0 050 20 2. 2 0 20500.0 0 2NO0N. 050000. 0000N2.0 005003 00005 20220.2: 202 >020 2.00.2 NN28... N2 2.... 82... N2 05.. N S... N 2.0 2 2.... > x 02 22008: 02.5000 00-20 20000.... ".0 >m<0000 0:2 50.00 00N.0 05NON0 0000N.0 05N00.0 5000N0 000 20.0 50000.0 0N.0 0000002 00005 2022 22.2 ch 000.0 2000 00000.0 20000.0 50000.0 NON500 000N0.0 00000.0 00000.0 005003 00005 20229: 202 >90 000.2 0N200... 02 0:... 0N2... N2 0:... 0 00... N 0:... 2 00... > x 9 28.20001 02.5000 .00.. 0050 .0000... 00002.... “.0 >m<0000 02.2 500.0 202.N 0000.N 00N00.N 00000.0 0N000.N N00000 00000.0 N0000.2 000503 00005 502 NON.0 000N 02N00.N 00 200.2 00N20.0 200 2N.N 00200.0 00N00 25000.2 000503 00000 0.! 50N.0 000.2 5000 2.N 000.2 50000.0 50500.N 0 200.0 5030.0 2005.2 000003 00000 01 50N.0 000.2 25000.N 00555.2 00000.0 02020.N N00000 N20 200 50200.2 0000002 00005 05.2 500.0 000.0 005N0.0 00200.N 205 25.0 0000N.0 00252.0 00000.0 0N025.N 000003 00005 0.2.2 055.0 000.0 N000N.0 02N00.0 00 202.2 20500.0 2NO0N0 50000.0 000N2.0 005003 00005 NM 050.0 200.0 2 2002.0 55N0.0 0000.0 N0050.0 00 2020 20000.0 20000.0 000003 00005 202 >020 =8: N222... N2 2.... NNosm N2 25 N 2.: N 3.0 2 23 2 x 0. 28.2080 N820: 0. 000.202.03.30 202.0... 202.". 0No0 002.0 N050N0 0005 20 00500.0 02002.0 00000.0 500N0.0 500520 000503 00005 5t 0N0.0 0020 050020 0500 20 00000.0 N552.0 00500.0 000N0.0 0N 20 2.0 000503 00000 0m 0N0.0 002.0 0000N.0 02052.0 50000.0 20502.0 55000.0 0000.0 200020 0000002 00000 002 020.0 202.0 2002 2.0 5N0000 N50 200 0N0020 00000.0 000 20.0 00000.0 000003 00005 01 500.0 00N.0 05NON0 0000N0 05N00.0 5000N0 000 20.0 50000.0 0N.0 000003 00005 02 000.0 2000 00000.0 20000.0 50000.0 NON500 000N0.0 00000.0 00000.0 005003 00005 NE 0N0.0 03.0 20002.0 5000 2.0 505N0.0 00N0 2.0 0 2500.0 000N0.0 00N.N 2.0 000003 00005 202 >020 :8: N22: N2 2.: NNS: N2 2.: N 2.2.. imgz 2 2.: 2 x 0. 2808...: 002 c.2280 H010 50> NEW: 0. 000.2-022000000 0002020 .0053 280 0N0—.0000 0N020000 0N0—.0000 0N020000 0N0 20000 0N0 20000 0N020000 0806 02000N0 002N002. 050202.2 30500.2. 02NO0N. 050000. 00082.0 0050002 00005 200.202: 202 >020 0.00.2 0N2o=_._ 02 0:... 0N2... N2 oz... 0 05.. N 05.. 2 0.... > x 9 202.2081 0.2.5me 1.....0N 2.00:9... ".0 5.52550 m1... N000 5NN.0 N000N.0 002N.0 02000.0 0NO0N.0 00220.0 N0000.0 5500N.0 0000002 00005 2022 22.. EN N000 02.0.0 05N00.0 500N2..0 0500.0 0000.0 0NON0.0 00000.0 0 2000.0 0050002 00005 202202.22 202 >90 000.2 0N 200... 02 00... 0N2... N2 .00... 0 00... N 0:... 2 00.... > x 9 202020002 02.50%. .01... 0050 .aOEmn. .23—2.52.2 ".0 5.52.230 m1... 500 000N 00000.N 00000.N 2NON2..0 00N.N 00000.0 050N0.0 0N000.2 0005002 00005 50.. 0NN.0 050.N 50000.N 0000N.N 0N202..0 000000 0032.0 N000N.0 2NN02.N 0005002 00000 00.. 00N.0 000.2 20N02.N 2500.2 20000.0 20050.N N000 20020.0 2005.2 0000002 00000 02.2 50N.0 000. 2 25000.N 00555. 2 00000.0 0 20 SN N00000 N 20 20.0 50 200.2 0000002 00005 02... N000 000.0 2800 00200.N 00005.0 0000N.0 00252.0 0000.0 0N025.N 0000002 00005 00.. 055.0 000.0 N000N.0 02N00.2. 00202.2 20500.0 2NO0N.0 50000.0 000N: 0050002 00005 Nm 050.0 200.0 2 200 2.0 55N0.0 0000.0 N0050.0 00 20 2 .0 20000.0 20000.0 0000002 00005 202 >95 22002: 0N20=3 02 05.2 0N0.0“ N2 0222.. 0 0222.2 N 05M 2 222.2 22 x 02 2210001 N520: :. 0082022000000 2002.0... 20...“. 08.0 002.0 0050N.0 00052.0 N0000.0 00002.0 00000.0 000N0.0 20052.0 0005002 00005 50. 0N0.0 052.0 2 2002.0 05002.0 00000.0 2002.0 20000.0 NN5N0.0 05002.0 0005002 00000 01 0N0.0 002.0 0000N.0 0N0520 00000.0 0000N.0 20000.0 02200.0 00002.0 0000002 00000 00. 020.0 000.0 00002.0 00000.0 N0020.0 20002.0 00000.0 00020.0 NN000.0 0000002 00005 00. N000 5NN.0 N000N.0 002N.0 02000.0 0NO0N.0 002 20.0 N0000.0 5500N.0 0000002 00005 002 N000 02.2.0 05N00.0 500N00 0500.0 0000.0 0NON0.0 00000.0 02000.0 0050002 00005 NE 520.0 N020 50002.0 050N2.0 NO0N0.0 0N5020 0N000.0 00520.0 00022.0 0000002 00005 202 >950 000: 020.205.. 02 0222.2 32% N2 222.. 0 05... m 0222.2 2 0.22.2 >. x 9 2810001 , , N820: 0. 000.20.2000000 0002032 .00::< .0022; 0.0 2.280 A 281 0Nv2moom VNVPQOON 0N02moom Vvamoom «vaaoom 0N¢waoom VNewaoom 0805. 0000000 0020000 0502022 0005000 020000. 050000. 0200020 0050002 00005 002.002. 002 >920 2.00.2 0020:: 02 05.. 0005.. 02 05.. 0 05.. 0 05.. 2 05.. > x 0.. 583000. 3...:me «1-00 .5950... ".0 >m<25=m m1... 200.0 000.0 02000.0 00520.0 5000.0 05000.0 00220.0 00000.0 00000.0 0000002 00005 00.0.. .I 2.N 000.0 000.0 0 2000.0 55000.0 00500.0 00050.0 20000.0 00000.0 002 20.0 0050002 00005 00000.... 002 >90 000.2 00205.. 02 05.. 0005.. 02 05.. 0 05. 0 05.. 2 05.. > x G. 3.10000. 90.5mm”. am: 0050 .oOEmn. 2:22.025. “.0 >m95 :33. 0.N—.05.. 0.2 2.... 0N0...“ N 2 0.5... 0. 05... N 05“. 2 2.3 A x 9 5810000.. 05.9. E 05.00.02.350 0002.9: 00...". 000.0 002.0 00002.0 20052.0 20000.0 00202.0 02000.0 00500.0 00002.0 0005002 00005 50. 000.0 002.0 00200.0 00052.0 00000.0 50002.0 00000.0 02000.0 00002.0 0005002 00000 00. 000.0 002.0 00020.0 20002.0 00200.0 00000.0 52000.0 00200.0 00052.0 0000002 00000 00. 020.0 000.0 00002.0 02200.0 020.0 0202.0 00000.0 05020.0 00000.0 0000002 00005 00.. 200.0 000.0 02000.0 00520.0 5000.0 05000.0 00220.0 00000.0 00000.0 0000002 00005 0.0.. 000.0 000.0 02000.0 55000.0 00500.0 00050.0 20000.0 00000.0 00220.0 0050002 00005 N... 020.0 0020 50022.0 0002.0 00020.0 20002.0 00000.0 55020.0 00000.0 0000002 00005 2: >050 53:. 0020:... 02 0:... 000:... 02 0:... 0 2.... L013... 2 0:... 0 x a. .8300: 05.0: c. 02.030.355.50 090.030 .0350 _IcQuo> 5.0.0 atucaow 282 00020000 00020000 00520000 00020000 00520000 00520000 00020000 083 0000200 000000.0 00550.0 052000.0 00000.0 20505.0 0500000 0050002 00005 20000.... .02 >050 000.2 00205.. 02 05.. 0005.. 02 05.. 0 05.. 0 05.. 2 05.. a x 5.. 32.0000. mhgawmm 0....-.0N ...mmzwi “.0 532.230 m1... N000 50N.0 0503.0 0NONN.0 5300.0 5020N0 222 20.0 0000.0 200 20.0 000000.. 0000.. 0.0.2. .2. 225 000.0 000.0 00000.0 50000.0 20000.0 00000.0 00000.0 0 2000.0 00000.0 0050002 00005 32.0.... 202 >020 000: 00205.. 02 05.. 0005.. 02 05. 0 05.. 0 05.. 2 05.. a x a. 3.0.0000. 05.0000 .00... 0050 30.000 2:502... ".0 >m<2500 0:2 200.0 00 2.0 00000.0 00000.0 20000.0 00000.0 00000.0 05000.0 00000. 2 0005002 00005 50. 80.0 N50.N 00000.N 0§NN 0N200.0 N000.N 003.0 0000.0 0202.N 0005.002 00000 0.... 000.0 000.0 00020.0 00000.2 00520.0 00002.0 50000.0 50000.0 00005.2 0000002 00000 00. 000.0 020.0 0000.0 00000.0 20000.0 00000.0 00022.0 52500.0 05000.0 0000002 0000.. .00. 000.0 000.0 00000.0 50050.0 00000.0 00202.0 02002.0 50500.0 02005.0 0000002 00005 00. 200.0 002.0 05000.0 20000.0 00550.0 02000.0 00000.0 20505.0 50000.0 0050002 00005 N0. 000.0 000.0 20000.0 50000.0 00000.0 00050.0 02002.0 00200.0 00000.0 0000002 00005 2.... >95 :3! 0022.... 02 2.... 000...... N2 2.... 0 2.... N 2....F 2 2.... .2 x G. 3.10000. 08.0: 2.. 000..-0.2000000 0002.2... 29...... 000.0 0020 00000.0 00052.0 00000.0 00202.0 02000.0 2500.0 00002.0 0005002 00005 5... 000.0 002.0 00020.0 00502.0 05000.0 0000.0 02000.0 00000.0 000520 0005002 00000 00. 200.0 000.0 20500.0 2 2002.0 5 2000.0 005 20.0 50000.0 0000.0 0000 20 0000002 00000 00. 020.0 000.0 20502.0 00000.0 02020.0 0002.0 20000.0 00020.0 00000.0 0000002 00005 3. 000.0 500.0 00000.0 00000.0 00000.0 00500.0 552 20.0 00000.0 50020.0 0000002 00005 00. 000.0 000.0 00000.0 50000.0 20000.0 00000.0 00000.0 02000.0 00000.0 0050002 00005 N0. 020.0 000.0 00002.0 00200.0 00020.0 00000.0 50000.0 50020.0 00000.0 0000002 0000.. 20. >95 500:. 0.022.... 02 2.... 0.02.... N2 2.... 0 2.... N 2.... 2 2.... A x Q. 580.0000. 05.0: c. 000.08.502.00 000.020 .0052 Ffluc> 5E0. 0.02.25 283 vwh2voom VN22vooo 0N22voom 0N22voom vwh2voom VN22voom VNm2N2om 00.00. 50002.0 50000.0 00000.0 00520.0 0020.0 250.0 00000.0 0050002 00005 .00...0... .0. >020 000.2 00.05. 02 05.. 0005.. 02 05.. 0 05. 0 05.. 2 05.. 2 x 0. 3.0000... 02.50%. mzéN 209.0... 0.0 5.35.550 m1... 000.0 0000 00050.0 05000.0 05500.0 00500.0 00200 02000.0 20000 0000002 00005 .00.. .0. 0:0 000.0 500.0 52000.0 000.0 05000.0 00000.0 00000.0 52200.0 00000.0 0050002 00005 .0000... .02 >020 0005. 00205.. 02 05. 0005.. 02 05.. 0 05.. 0 05.. 2 05.. 2 x 0. 3.0000... 02.5000... .00: 0050 .00...0... 002.02.... ".0 >m020 :00... 0020:... 0. 0:... 000:.“ 0. 0:... 0 0:... 0 3F 2 0:... 2 x 0. 3.2.000. 020.00 2.. 000.28.002.00 202.0... 00...“. 000.0 0020 00200.0 22052.0 00000.0 52002.0 02000.0 00500.0 00020 0005002 00005 50. 000.0 0200 00000.0 00200.0 00000.0 00000.0 00000.0 000.0 00020 0005002 00000 00. 200.0 020.0 02000 05502.0 00000.0 00200.0 00000.0 50000.0 005020 0000002 00000 00. 020.0 500.0 20002.0 05200.0 50020.0 02002.0 00000.0 00020.0 00500.0 0000002 00005 0... 000.0 0000 00050.0 05000.0 05500.0 00500.0 00200 02000.0 020000 0000002 00005 0.... 000.0 500.0 52000.0 000.0 0.0000 00000.0 00000.0 52200.0 00000.0 0050002 00005 00. 220.0 500.0 02000.0 50000.0 000200 20000 00000.0 050.00 200500 0000002 00005 2... >050 :00... 0020:... 0. 0:... 0001.3. 02 0:... 0 0:... 0.0.0:... 2 0:... 0 x 0. 3.00000. 0.0.00 2.. 02.002.02.000 000.020 .005... 50.0.0.2 :00 5.2.000 284 vmtvoom vwm2ooom vm52voom vat—0000 vutvoom thvoom vmm2ooom manna 00000.0 00050.0 00000.0 20005.0 00000.0 05500.0 25000.0 0050002 00005 202.0... .02 >020 :022 0020:: 02 0:: 00003 02 0:: 0 0:: N 0:: 2 0:: > x Q. .83an 02.500: 0:-00 200:9: "_o >m<2200 0:2 000.0 «00.0 05020.0 00050.0 02000.0 00000.0 25020.0 00200.0 00000.0 0000002 00005 .02. .1 202.N 500.0 000.0 05050.0 20520.0 00200.0 00000.0 50200.0 00000.0 00000.0 0050002 00005 202.0... 202 >020 2.00.2 0020:: 02 00: 000.5 02 05.. 0 00: 0 00: 2 0c: .2 x 0.. 33000.. 02.5000 .00: 0050 .0900: 20:02... 00 5.02200 0:2 500.0 005.0 0008.0 050.0 02500.0 00050.0 2002.0 00000.0 0000.0 085002 0805 5.1 500.0 500.0 00000... 0000.0 00050.0 00000.0 0002 2.0 00000.0 00002.0 0005002 00000 cm. 050.0 005. 2 50550. 2 20050. 2 00500.0 0 2000. 2 00000.0 00000.0 00000. 2 0000002 00000 9.... 000.0 500.0 02000.0 NN000.N 00050.0 00000.0 0502 2.0 20000.0 00500.0 0000002 00005 3. 050.0 052.0 00020.0 02020.0 00000.0 0500.0 00052.0 5000.0 0200.0 0000002 00005 0.2 000.0 000.0 05000.0 00020.0 00000.0 00000.0 00000.0 05500.0 25000.0 0050002 00005 «1 50 2 .o 050. 2 002 20.0 00000. 2 0000.0 00000. 2 5550.0 250 2 .0 00005. 2 0000002 00005 5.1 >050 :00... 0022.... 02 2.... 000.....5 02 2.... 0 0...... 0 0...“. 2 0...... a x 0. .2008: 05.0: E acougcoocoo 2002-0.: 20:“. 000.0 002.0 50000.0 05052.0 00000.0 02002.0 00000.0 00500.0 00502.0 0005002 8005 5! 200.0 020.0 20200.0 00500.0 00000.0 00200.0 00020.0 00000.0 00502.0 0005002 00000 cm. «00.0 020.0 2 2000.0 N0 200.0 «0300.0 0000a... 08 20.0 05000.0 00 20 2 .0 0000002 00000 mt 020.0 000.0 05000.0 02000.0 00520.0 00000.0 00000.0 00020.0 20200.0 0000002 00005 3... 000.0 000.0 05020.0 00050.0 02000.0 00000.0 25020.0 00200.0 00000.0 0000002 00005 at 500.0 000.0 05050.0 20520.0 00200.0 00000.0 50200.0 00000.0 00000.0 0050002 00005 at 020.0 0000 50000.0 5030.0 00020.0 00000.0 0008.0 0020.0 00050.0 800002 8005 5Q >95 :00! 0020:... 02 0...... 302.... N2 2.... 0 0...... N 02...... 2 2.... A x Q. .8330”. 02:50 E acouabcoocoo 0020>< .0352 E 30> 20.0 atucgw 285 wmmrmoom vampmoom vwbwvoom vumvmoom vwmrmoom vwnwvoom VNonocm «0an :83 $93 332 $83. $33 883 882...” 853 88» “35...: .3 >05 :82 32: 9 2: 82: 9 9.: m 2: N 2: F 8: > x Q 5381 953mm”. mzéu hum—#2... no >m05 :82 835.. 9 8: 895 9 2: n 2: N 2: F 2: > x E .8893. whammy. 6m: 85 Scam“. 2:52: “.0 5.5253 mi 83 55 .omBN £93 983 853 853 853 263.? 828, 88» E and 82 883 5.33 wooed 88$ 583 «38¢ $83 82m: 88m cm A :3 :5 :83 83 £33 933.? $83 2&3 $23 8803 88» mm 82 82 $83 983 896 533 383 8%.? 833 88c: 82: E :2. 3m.” 38.” £95.». 82.3 938.” ESE $83 383 0883 982 mm 33 $3 833 . R98.» «886 E83 332 @830 885.0. 83m: 032 «m 33 $3 853 $8.. $33 823 {ES 93:. 28: some: 8:: E >Em 53: 23:: a. 23 «~25 2 25 n 25 u 25? F 25 x x 9 58.382 ”ER: 5 macaw—«50:00 32.2... “2?... Rod $3 :33 883 «886 523 $8.0 «88.0 “82.0 808: 88» E 53 82 832 Sofia 3355 833 «3:3 3.8.0 383 823 88» cm ~85 :3 883 853 .836 «8&6 392. 533 853 888. 88» mm «:3 mood 5.8.0 383 8:3 386 380.0 892. 323 883 885 3. 3.3 8.3 RS2. 883 «385 833 803.0 203.0 88d 88%. 88» mm m8... 03.0 833 883 883 39.0 8.0.8.0 38¢ 833 2:8: 88» «m :3 wood 283 333 3.22 K86 833 «23.0 380.0 883. 83: E >Em 53: «~35: 2 2.: Row: 2 25 n 25 E: . 25 a x S 588: , ”EB: :_ 2.0322350 oqu>< .352 Em 30> in: oracoom A 286 tum Fmoom vmm Fmoom vwm Fmoom «mm 308 van Fmoom Van Fmoom vmm Fmoom nous Fummmd mmmmmé mwmmd moaned vamNd ommNFd «Some 83va onmmu 30:9: FmF >95 :35. 83:... mF 0c... mug... NF 05.. m 0:... N ac... F we... > x Q Feast 953mm”. mzéu ...mm:0=.. ”.0 >¢95 :35. 85:3 9 cc... mums: NF me... n ma... N 0:3 F 0c... > x Q F8382 953mm”. am... 83 .oofimm 232—x52 “.0 >m95 :3! 33:: ...F 2.3 ”was.“ NF 2.3 n 25 N «5.... F at... a x 9 3.3qu ”EB: :. acowuhcoucoo 32.9... FEE Fuod 3F... 389.0 @336 633.0 35F... mmood momuod mammFd 82.03 coon» 52 «mod RNA. mmavwd NFvFNd mmmvod mmmmmd wwo 3.0 F 58.0 3386 89.va cocoa at «mod vFNd mmmwd mVFowd Fmvvod nomad F06 F386 mmeFd ooomeF oooom at F 3... «mod «38... «EB... «Sod 38o... mmmood F836 «88... 0883 88F 3. m3... new... $33 m Eng 8806 F 38... FE 8... $08... «amend 88va 33.. at F8... F9... @886 853 momma... 2.25 98¢... «58... 82.3 02.83 83F «m «36 89o 832. 883 mmoFod mime... 3.8... aged 02.8... 8803 83: Ft >Em 53: 9225 ...F 2.: «~23 «F 25 F. 25 N 25 F 25 A x a. .838: E3: E acoaubcooco a . n . . o F95¢> Emu Otacoom J O 20>< _a:::< 1‘ vumuaooo 3388 «um F88 vmmmmdg van Fmoom can Fmoom vwowmoom 03.5 omNF Fed "#8de 38d $386 .90de ommwnd 838d 83va 8mg 323.5 3F >oFm 58: «92: 9 on: 82: 9 2: m 2: N 8: F 2: > x a. 3.38: 343mm mzéu Euro... ".0 E5253 me mmod FFmd «Faded mmmmmd Fovnod demand mFmFod ovmmod Fvamd oommva ommmF F3: 5 ES wood Fde me Fmd 083d modded mommvd dammed modded mmmmvd 8503 comm» 323.5 FmF >0...w 53.2 «99.... 9 9.: mums... NF 25 m we: a we... F «5.. > x Q. 33302 mfiammm .mm: 8.8 .noEmE 222.5: .3 >¢Em 53: «98: 9 2.: 28: «F 2.: n 25 a 8n. F 25 F x e .8382 ”ER: 5 303535300 «3:9... “2.". mFod Fde 333 Nemed FFFNod FvaFd vwoood mmomod mRNFd 82va ooomF ht «mod med mmoomd momumd «F.6d ohmvud mooFod Fmomod mFmFNd 8053 Soon at Fmod FFNd Sammd FommFd mmvwod mammmd 880d ngd 583 8899 oooom mm NFod mood vamod 088d wdoFod cummod {mood :93. 893. 88va 803. Vt mood Fund 38...... Nmmmmd Fode mommmd 990... 033.0 Fvamd 88m: 932 at wood and meFmd 083d mammod mowed dammed wooded mmmuvd 85o: ommmn NE 90.0 oood NNmoFd 350d Bead mooFd Nwfiood . . >95 :3! «.chch «.F 0:3 «~25 NF 25 F. 2.3 8M"... o mFFmo o 898: deg E if... :5 . x 2 3.33,. _B 28> ”53: a. 232.588 3222 .255 Sam eta-Foam 1- 288 VNmFaooa vuowaooa VNmFoooa vumFaooo fiumFmooa VNmFmoom «Nomaoom «Bun. F28... 88me 5.99 5.8... 38...... 3.3... 223m 839: 8...... 32.9... .mF >95 522 .92... 9 2.... 82... 9 2.: m 2.: m 2.... F 2.... .. x Q. .238... w....=..mmm 11...... ...mmrwi “.0 5.32.2.6 m1... 8.... .8... 33.... 999.... 09...... 9%... :58... 8.8... $8.... 8.3ch 8...... 32.9... 2.N <8... 2.... 89m... «59.... 92...... «$2.... 3%.... 3.8... 89$... SSS. 88.. 83...... .5 >05 522 «92: 9 2: 82: NF 2: n 2: N S... F 2... .. x a. .238... 3.5mm... .mm... 8... 30.5.. 2:5...2... ".0 52.223 2: FR... 8... FF..8.~ Q92; .88... 88.... 83.... ~82... 9.83 829.. 88. F... New... ..9.~ 383 voted 088... 833 ~38... ..88... Saw... 8039 2...... 8. mum... 9mm 38: .822 86.... 82% ~32... F88... $3.... 88.... 8...... my. 8m... 33 REE 883 89.... 82...... .98... 2.8... 99.... 889: .82 F... 9.... 33 9%.... :83. SE... 2%.... .89... .93... .98.. 8803 88. 2. 9o... .8... 9.9.... 3.8.. .89. $83. 38”... «3.3.... :83... .239 .82 «x 8m... Emu 28$ 383 .88... 5.3.... .38... 93... 593 .883 ..82 Ft >95 532 «.22.... m... 2.... duo...“ NF 2.... m 2.... N 2...... F 2.... ... x Q. .8133. ."E3: 5 20.3.3350 7.2.9... .2.“— 9..... .9... «99... 8.9... 88.... 39.2. 88.... .88... 8.9... 8203 8...... b... «8... SN... 28...... 95.... .22.... 98.0.... .83... 89...... $92. 82...: 2...... cm «8... 9m... 2:8... 88...... 99...... 8.2... 82.... 82...... .99... ooomSF 2...... mm 9.... 8.... «9.2.... 9.3.... $8... 88.... .58... 29.... 3.5.... 8899 8...... F... m8... 3F... 3%.... 098... 82...... 9%... F83... 8.8... $8»... 88va 8...... mm .8... «9.... 89m... 2%.... 93.... ~32... 33...... 2.8... 83¢... 8.8! .32 N... n F..... o F F... mmoNFd 82:... mm Fwd... ..Nm F F... ~88... mmde 38.... good: 83.. >05. 53:. 9.3:... ...F 2.... 32.... NF 2.... m. 2.... m 2.... F 2.... ... x Q. . Fm 8 r ”EB: :. «caspagocoo 3222 .352 m ca.uo> 5.3.. Otucoow J I] vuowmoom vuowmoom vmeooom vuomooom vwm Fmooo vmemooo cwowoooo «.800 839%. oFoooom NvFvFF oFmNoFo mmmoo... ooFmod commovm 8FmovF 33.. 32.5.: .mF >05 :82 83:: 2 2: 82... NF 9.... m 2.: N 9.... F 2..., > x n. .838: whammy. m1..." Bozo... ...0 5.5223... sz woo... ouvd ooFFv... oomov... ooooo... ommvvd oumwod o..moo.o oowo... oomooeF ommmF 32. ..F. 2.N moo... Fde mmoFm... $53.... mFFoo... «mmmv... Fovmo... v....oo.o onwvd ooFmovF 38.. 32.9... 3F 55 =8: 83.... 2 2: 82.: NF 2: m 9.... m 2.: F 2.: a x Q. .832... «53mm .9... 8.... 39%... 5523.... "_o 5.4.2.23 sz ..mu... mmF. F mooom. F moomo. F vomoo... oomo. F mote... Fomow... mmNFm. F oooFovF ooooF .3. van... oFNN moomvd oFFooN voFmvd ooommd FFooF... FOFmod FoFomF oooFovF ooooo om owod «mud FFond Fomood «Fame... movaN ~39... Fmomd mmmomF ooomoi ooooo oz can... Food FFFFm.~ mFmFNN 3va... «wooed ooooo... omFomd voquN ooomovF ooooF 3. w 0mm... owod VFF Fo... «mama... FNoFFd movmoé moFoFd Noomm... momma... oomoovF come. at 2 Foo... mme va¢mo meoFm «Ev: oonwo women... 328... ommocm ooFmoFF ommmF «I Fo¢.o Food FmFomo mFooo.~ owwmod ovFoF...” oovad omoom... movmod ooomovF oovoF F... .65 :8... .22.... 2 2.... agar «. 2.... .2... w 2F . 2.... F x E 3:38... F.EB: c. ocoauhccocoo 32.9: FEE one... 3F .0 ooom F .o mvom F .o mmFNo... NF Fm F .o voooo... FoFmod F 32.... ooOFovF 88.. FF... wood va... oumow... ..Fomm... Nonod o¢m~.o oooFod vino... oVFFNd oooFowF 808 ct «no... 3N... NFFmN... FoFom... mmmvod Fmed «836 meoo... 2.32. ooomoeF ooooo mt «Fe... oood ..mvoo... mmFoo... mFoFod ..omod Fomoo... oomFod «2.3... 0833 803 Vt woo... owv... ooFFv... oomov... oooood 32%... omuuod oFmoo... oowo... oomoovF come at moo... F55 mmoFmd oFoSVd mFFmod mmumvd Fovuod vFFood oFeucd ooFmovF ommmF «I nwmw um“... «New F... ~32... F88... 9&3... #8.... F08... 88F... 88o: 83F F... 3. «NF :3 «F 2.... «Nova... ...NaFcuflfibcme...” oow 2.... F 2.... A x Q. .833! So 30> a . o Eo>< .352 in. F F atucoow 290 «.3305 3985 vwoFooFm vmoFmoFm $385 $985 «.3305 33D FFovvm 85o... mmuooF not. F .m 3Fm~d m3 Fo... goon... OQFmovF ommoF 3.2.9... .mF .53 :8... «.22.... 2 2.... 22.... 2 2.... a 2.... a 2.... . 2.... . x n. .238... 3.3mm”. EEK Bozo... ..o 5.522.... 2.: oood Foe... muowm... «Named 380... monom... omvwo... Foooo... Fmvov... 889: 032 .3... .... .EN 036 mFm... o Fom.o 33.... 28.3 moomm... ..mvwod oFoFo... F Foov... SFmovF ommmF 32.9.... .oF .53 :8... «.22.... 2 2.... 23.... 2 2.... n 2.... ~ 2.... . 2.... .. x 9 32.82. 95.52. .mm: 8.... 32%... 2:23.... “.0 5.4.2.23 m5 FFN... Foo. F ooomoN oFmoo. F vaom... mFF FoN oooood «mommd me FF. F 0853 ooooF Fm omm... mmFN Food mmommF Fovom... omoFNN NoooF... moomod mmNooF 829: 088 mm. Foo... momF NoFmFN FNoFoF «mowed memo.~ 550... 5:5... moFFF ooomovF ooooo ow. van... «NNN mFmvN woFoFN voFmed «Fmvod oFooFd 9.3m... ooommF ooomowF 083 3. oood o FF... #5 F .m vmwmv... F Fwoo... muooo... o Foam... omooF... ommuw... ooooovF com? 2. SF... to... FFovvm oNFmo... mouooF mmFmFm «Emu... m3 Fo... comma... ooFmovF ommmF «m. o Fv... Fo F .o voomvd omo Foo ooomm... 3F Fm... mva .o moms... oFmooN ooomovF oowoF F2 >Em 53:. «28... 2 2.... 22.... 2 2.... «2.... N 2... . 2.... a x a. .222... nEB: :. «cowuhcoucoo 32.9: “2.“. Fuo... omF... ovwoFd 3:2... 938... NoFmF... vooood 380... ..ova... oooFovF 803 k. moo... mow... Foomm... vomFNd ovoeod ..mvw... FmoFod ..Fooo... mmmom... oooFovF ooooo om. owod «FF... FoooF... mmFoFd oooood mmFoF... «coco... ooouod mmomF... ooomovF ooooo o... F 5... NNFd N33 F .o meF F... mmvmo... EomFd ovmood F Fm Fod mooo F .o ooomovF 88.. 3... 30... oFmd ooFomd Foov... ooomod omommd omvwod oFmFod ..Fmovd oomooeF ommmF om oood Fovd mmommd ommmv... momma... mmmom... Favmo... Femood 53...... 859: 83.. «w. 8.... 3F... mvau... «FEF... <83... .58... F35... «8%... F92... 8892 83F F. 22% 58:. 33:... ...F 2.... ”UM.“ :.~nFc2.... F. 2.... M2... . 2.... A x a. .838... . can :00:0 0 E 30> .2: 3.2.25 J F. .5 U Eo>< _a:::< 291 ..00FO0F0 V0030 3 30303 «0030 .0 30303 30303 «00303 0806 0500.0 3000... 00F00.F 00000.0 F0000 0F .000 3000.0 000003 00000 03.3.... .00 >96 :8: 2.8... 2 2.... 2...... 2 2.... .. 2.... «2.... . 2.... 0 x 0. 2&8... 050000 0...-..0 002.0... ".0 52:20... 0.: 000.0 0010 00000.0 000010 90000 00000.0 0030.0 00000.0 000010 000003 00000 .02. .1 3:0 000.0 0010 F0030 000010 0300.0 3000.0 0030.0 00F00.0 0F F010 000003 00000 002.0... .00 >05 :8... 2.2.... 2 2.... 22.... 2 2.... .. 2.... « 2.... . 2.... . x n. .232... 050000 .00: co... .00...0. 502.02.... ".0 >m<2200 0:0 F000 0 3. F 99 10 000 F0. F F3000 00000.0 00000.0 00000.0 00000. F 000003 00000 00. 000.0 0010 00000.0 00000.F 000F0.0 00000.0 99 10 00010 00000.F 000003 00000 0t 000.0 000. F 0000 F .0 00F F0. F 310 00 F000 000.0 03.0 000F0. F 000003 00000 02 30.0 000.0 00010 «00010 30010 0003.0 0.0010 033.0 00000.F 000003 00000 3. 000.0 90... 000010 00001.. 90000 00000.. 30000 00000.0 0.00... 000003 00000 00. 03.0 000.0 0300.0 3000.0 0050. F 00000.0 F0000 0F F000 3000... 000003 00000 00. 000.0 000.0 00000.0 F0000.0 000F0.0 000010 000010 $000.0 00000.0 000003 0030 0.... ..Em 53:. 2.2.... 2 2.... 22..“ 2 2.... » 2.... 0 afir . 2.... . x 0. 52.8.. nEB: :. 000.02.03.30 «02.0.... .0...“— F00.0 0010 00310 0033.0 0000.0 000010 00000.0 00000.0 00310 000003 00000 0.... F000 «00.0 0003.0 00F F0.0 03.0 00000.0 3000.0 0030.0 90000 000003 00000 00. «00.0 F010 000010 8510 00000.0 000F.0 00000.0 00000.0 02.30 000003 00000 00. 05.0 03.0 000010 000010 0000.0 000F.0 00000.0 3060 000010 000003 00000 3. 000.0 0010 0003.0 03010 00000.0 3000.0 0030.0 00 F000 0F F010 000003 00000 00.. 000.0 0010 «0000.0 000010 00000.0 00000.0 0030.0 00000.0 000010 000003 00000 0.... 000.0 0010 0000.0 000010 00000.0 03010 0003.0 3000.0 000010 000003 0030 0Q >000 :8... 022.... 2 2.... 002.... 0. 2.... 0 2.... 1.0%.... . 2.... 0 x 0. .8083. «5.0: 5 00002003000 0020>< .0005. F0 30> 5.4 0 3.2.30 J— ‘IIIIIIw 000303 0000030 003003 000303 0000030 003003 000303 00.00. 00000... 033.0 0030.0 000003 00000 .035... .055... 331.. 00030. 00000.0 000000. 000003 00000 32.0.... .00 >000 08:. 022.... 2 2.... 22.... 2 2.... ... 2.... 0 2.... . 2.... 0 x 0. .2008... 00.5000 0:40 000:0... 0o >m<2200 0:0 000.0 0010 3000.0 0003.0 00000.0 00010 3000.0 0030.0 000F10 000003 00000 .02. .1300 000.0 310 00000.0 033.0 00300 000010 00000.0 3000.0 3030 000003 00000 32.0.... .00 >000 08.. 022.... 2 2.... 002.... 2 2.... 0 2.... 0 2.... . 2.... 0 x 0. .2088. 01.0000 .00... 8.... 50.000 5.0.202... 0o 5.5.5.50 0:0 000.0 0F0.F 000F.0 00F0.F 00000.0 000F0.0 00000.0 0000.0 00000.F 000003 00000 00. 000.0 00 F .0 330.0 3000. F 000 3.0 330.0 0 FOF 10 00010 F0000. F 000003 00000 0.... 000.0 000. F F0000.0 00000. F 000000 00 F000 0300.0 030.0 3000. F 000003 00000 00. 000.0 000.0 00010 000010 30010 0003.0 039.0 033.0 00000.F 000003 00000 3. % 000.0 30... .0000... 3310 0003.0 0300... 00000.0 0000.0 0030.0 000003 00000 02 2 30.0 000... 00000... 0003... 00000.0 033... 0330 00000.0 0030.0 000003 00000 00. 000.0 000.0 00000.0 0030.0 0003.0 F0000.0 000010 3000.0 0F010 000003 0030 00. >000 53:. 022.... 2 2.... 0020.0 2 2.... 0 2.... 0 20“. . 2.... 0 x 0. .2022... ”8.0: 0. 00002003000 .02—0.... .0..."— 000.0 03.0 000010 000010 300.0 00310 F3000 00300 000010 000003 00000 0.... 000.0 000.0 00000.0 000F0.0 003.0 0300.0 0000.0 0030.0 00000.0 000003 00000 0.... 000.0 0010 30010 0003.0 3000.0 F00010 00000.0 00000.0 0003.0 000003 00000 00. 03.0 00 F .0 000F 10 000010 00000.0 003 10 0030.0 000 3.0 3000.0 000003 00000 3. 30.0 310 00000.0 005.10 03000 000010 3000.0 30000 30210 000003 00000 .00. 88 ~23 283 3:3... 38... 22... 220.. 2.08... 22.3 8.8... 802 00 000.0 0010 00000.0 000010 00000.0 F010 00000.0 00000.0 0 . >00...” :33. 0.002.... 0.. 2.... 902.... N0 2.... 0. 2.... N 2.... WWW...” 000W03 0030 pt 8.0: a. 0:32.528 o0 . . x 0. .2083. F0 ..w0> Em Otwcoow J 0 . . U auo>< _a=::< 1‘ 293 00002.0 000023 0002.5 «0002.0 0002.; «002:0 00002.0 0200 3000.0 280.0 89.0... 8000... 8000 80.0 20... 00000... 22.... 8003. 5000.0 8083 0000.. .0000... .0. >000 =2... 00. 2... 0. 2... 002... 0. 2.... 0 2.... 0 2... . 2.... 0 x 0. .8080... 0.53000 01-3 000:0... ...o >0900 000:. 0002... 00 2... 002%.... 00 2.... 0 2... 0 2..“ 0 2... A x O. 002.300. «8.0: 0. 00000303000 «02.0.... .0.... 000.0 3.0 .02... 802.0 0300.0 022.0 2.08... 8000.0 0002.0 8000... 800.. 00 .8... 000.0 003.0... 0020.0 0030.0 003.0... 088.0 03.8... 080.0 08002 880 00 000.0 02.0 802.0 022.0 «28.0 802.0 808.0 02.00... 0022.0 8000.2 880 00 08.0 02.0 02:... 8.2.0 .2000 .23 0030.0 0020.0 «008.0 08002 880 3. 08.0 20.0 80010 200...... 88.0 2.02.... .8000 00000.0 00000.0 880... 00000 0.. .8... 2...... 082.... 082.... 0008.0 0020.0 0000.0 0008.0 000...... 80002 00000 00. 3.0 0010 000F0.0 30010 300.0 00310 0300.0 0300.0 003 . >900 200! 9002.... 00 2.... 0&2... N0 2.... n 2.... N 0...... 0 2.w.” 000...“.03 SW0 Q. .20—”.— E.0: :. 2.0. a :02. F022; 5:. 03.22.30 1— . a a 00 000.25. .0000... 1 #0355 53.0.0 00003.0 v0.5.0.0 0.00033 0000.20 vwvo.o.0 8.09 3.00.0 0000.0 0.03.0.0 8000... 0000.. 00.0.0 000... 00002.. 00000.... 000006 0300.0 8000... 00000 32.0.... .0.. >000 :8: 00.3.... 0. 2.... 002.... 0. 2.... 0 2.... 0 2.... . 2.... 0 x a. .2082. 050000 0:-..0 .00...0... .o >m<2200 0.... 000.0 ..020 000020 000020 00000.0 03.20 0.0.0.0 00000.0 00000... 00000... 00000 32. .13.... 3.0 0020 00000.0 000020 0030.0 00020 0.000... 00.00... 000.20 8000... 0000.. 32.0.... .00 >20 :8... 00.00.... 0. 2.... 002.... 0. 2.... 0 2.... 0 2.... . 2.... > x a. .2008... 05000.0 .00: 0000 .0900“. 55:02... .0 >¢000 08.. 00.2... 0. 2.... 000R... 0. 2.... 0 2.... 0 2.w. . 2.... 0 x 0. .2002... 0.50: :. «cow—05:00:00 .00...0... 00...“. 000.0 .00.... .00...0 .00.... 00000.0 080.0 038.0 5.00.0 0000.... 0800... 0800 0.... 000.0 000.0 3000.0 0030.0 303.0 02.00... 0008.0 0008.0 00.0.... 08003 880 at 000.0 00.... 0000.0 000.0 5.00.0 0000.... 308.0 00.00... 0000.0 8000... 0080 mm 000... o. ..o .000 . .o 000. ..o 00000.0 080 . .o .0030... 000 .0... 00000.0 8000... 8000 V! 000.0 v~2o 000020 8002.. 00000.0 03.20 0.0.0.0 00000.0 00000.0 80003 00000 0.... 3.0 «020 00000... 000020 0030.0 00020 0.000... 00.8.0 002.20 80003 00000 «0... 03.0 00. .0 00. .00 0000. .0 .3000 0.00 . .0 00000.0 00000.0 .0 .0 . .0 00000... 00000 3. >900 53:. 00.2.... 2 2.... 0001mm 0. 2.... 0 2.... 0 2.... . 2... 0 x a. .8038. 05.0: 0. 05.02.5050 000.03. .0352. F0.ao> E< r 3:230» 295 $365 $355 Ewes; «~33; «~38; $383 $333 «23 2.3 83. 8m 54 $83. 83.3 m a 5+ 838. 32.3 58+ 88va 232 839: .3 >95. :3: @3qu m... 2:4 MN054 N» «:3 m 0:3 N 2.: h 0:3 A X 9 531082 thDmmm MIéN ...mm:0.: u.0 >m<223m m1... god mote «mm»; 332. 2&8... 883 523 conned 23nd 880$ 38» #6: E 35. 5 to 2.3 Rafi... .8de 339° 85:. v88... 3%: 3 31° 2:33 88» 323$ um» >95“ :3: «.3654 m» 0:: 9&qu NF 2&4 M 2:4 N 0:3 h $54 A x Q xenmumt whqawmm am: can» v Gnu—1mm E:E_Xm<223m ml... ~98 2; minim 82d 82. aged £83 383 98: 82b: 88» E 33 $3 832 883 $33 $83 8585 $83 330.. 82.3. 88» cm onto .8: 5.83 88.. 883 8R: «$35 533 ENS... 8803 88» my. mate 3.3 3.83 835:0. 55....5 889m $2.3 2.33 83L Some: 82:. wt 33 2: «~83 R23. 853 22: $83 mSKmd 38+ 83m: 932. mm to... m3.” 383 035.” 893 «out.» 533 $.83 {mud 838; 9.32. mm 53 93.. 833.” «32¢ «38... 8R9». 2.8:. 382. 889.0. 83m: 83: E >th :8: MNhoSd 2. 0:: NNGSH N» 0:: M 0:: N 2:41 h me: A x 9 38.3001 m"ct—w: 5 30.22.5050 $2.9: «man. Sod 33 «$8... $83 33o... 33:5 .885 «.885 853 829.. 82:. E ~85 «mud :82 ~83 «~33. 32nd mmaood 3:85 883 82m: 88» cm 28,5 53 «82... $33 8:55 $33 883 5.85 mango 8803 88» mm «8.: 33 834.3 38; $23. 333 v9.86 Bflod ~88... 88m! 88» wt 82. oowo «8:8 322. avfiod 88nd Saved 83o... 233 88c! 88» mm 33 2.2. R93 833 333 $51. Emuod 3335 9.33 2:83 83» mm owod 83 32:6 «new; 3386 5mm; Snood mwmod 583 Some: 83» pm >Em 53: 23:: 2 25 «~33 2 2.: m 25 ~ 2.: F 2.: a x 9 .8381 ”ER: 5 «5:823:00 mma..o>< .5353 E bw¢> 2.3.. 35:25 3333 «$63 3 vmmowo Fm vmvo 33 3333 wmvo 3 Fa «Ned FoFo «.er oood ovwé ooomoé «$3~ o Fonds. oNFva. omwsom. ommomd Fwwood conce: ommoF. 30:91 Us >Em 58: «22: ...F 2.: 22.: NF 2.: n 2.: a 2.: F 25 a x Q F2382 wSommm «FIN F353 "_o #2223 m1» mood oood nonvvd Fooomd oooood Round vFo Fod Noomod «wound conce: ommoF. 3255 EN vood owed Fovad Romvd mesod 809d FvFNod ommod do Food 8303 oowo» 5:9: Fan >Em 53: 83:: «F 2S 82: «F 2.: F. 25 ~ 25 F 2.: a x 9 .238: whammy. am: 2:.» 39mm... 23.22% “.0 >m95 53:. «.23: «F 2.: 23: NF 2.3 o 23 ”ME.” omewFF.” oooWovF 8H2. Q Fowuo I Finer En: eta—Bow J— "EB: E w:o_FmFF:¢o:oo ooa3>< .252 F not 297 $353 3383 «~35; «~33; vmveFeFa vwveFeFe «~36; «.83 med 33 ~33: ~88...” Seine 2 Fe FF. 8F F~.e FBme 8&0.» e883 e32. 323.: FmF >th :8: mum—.054 2. 2F: «4.0:: NF. «:3 m. 0:: N 2.: F. 2:4 A x 9 seafloot 953mm”. MIéN ...wmIQ... “.0 >Mth 23: nabs.» ”F. 0:: $4.054 NF. 2.: n 2F: N 2F: F. 2:4 A x 9 seafloot 953mm”. Amy—r. Oahu . 00.1mm 232322: “.0 >m<223w m1... and mum. F omnvw. F Snow. .. memond woman. F 3086 wafimd a 5mm. F ooonmv F coach E m3... «8. F «8 FNN om F3. F 83nd 3 F8. F F88... «88... 088. F 8203 88.. em hwmd 8a... Named «named Foo—.10 ..VNmaF Nnowod mgwnd NNNNCF ooomm: cocoa mm 8v... one. F 3.83 358. F 8985 mvemm. F 82.3. Home 330. F 8803 e82. 3. «mad 33. ~83... «Fae: meet... 2 Fe: 853 {one e38.» e88! 932. at 036 new...” mmmomé 2.3m...” mmmood mmmwd Sac—ac as...” Ed ..mwom.m oowmva 932. NE Bee Feed 833 SEN {meme 853 ~83... eomute 383 8894 835 Ft >9.“ :3: MN—bsd 2. 2F: mums“? NF. 0:3 m 2:4 N 2:H F. 0:: A x 9 53.3001 FEB... :. mcozwbcmocoo 32.9... 3...”. awed mote 38F... ENC... 8:5... :62... «2.86 unwed 53.3 82.2: 88F um Fmod a Fwd hovmmd whnNNd moved hmv 5.0 0300.0 .3. 35.0 mg» ...e Goose: cocoa 01 See 63 38F... 83F... oNFmee emFmFe Bee owvmee 88F... 880! Seen 3. «Ned 3F... mNFNFe 38F... e83... 983 ”Fee... 2.33. 55.3 889; Sean Vt Fwod chad NNmmvd mmownd ahmood meomd Q: ..od wanted F Fund cameo: 9.32. M! awed Rte 983 88v... Sde 8036 $98... aemmee ~38... 85o! e32 at once eNFe 89.3 3&er «Sued 883 9886 F836 88F... Some: 83:. Ft >98 =8: 23:: ...F 2.: BMW... 2 2.: n 2F: m 25 F 8: a x 9 Enos: .392; an." orgasm L A"FF—Fm: :. mcozfiFccoF—oo 0333‘ .u:::< 888... 888... 8883 888... 88...... 83...... 888... 2.8.. ~88... 88...... 858. 88. .88... 2.8.... 28.... .88... 8.8... 888. 88.. 80%.: 8F >Em 53:. 88:... «F 2.... «~23 ~F 2.... m 2.... ~ 2.... F 2.... a x a. .838... mhdammm aria ...mm:0.... ".0 >m95 :8: «~85... mF 2.... «doc... ~F 2.... F. 2.... ~ 2.... F 2.... a x e. .8882 3.58m .mm: 8... 39%... 23.2.5.5. “_o 52.2.23... m5 0...... 8... 8FF...~ 3.8.... 88... 83:... 82...... .88... 38.... 828. 8...... E 8.... 8.... 883 88.... 88...... 88.... F88... ~F8~... ~88. .88.: ..88 at ..8... -..~ 823 88.... 83.... 88...~ ~88... .88... 88... 888. 88. 8. 8.... a... «8:.~ 88.. ~88... 38.... ~88... .~..~... .28.. 88...: 8...... 3... 8 F8... .8... 83...... 88¢... 28.... 33.... .88... 88.... 8.8.... 88...; 88. mm m 3...... 8.... NE... :83. «3.8... 88.... 88.... 3.8.... 88...... 8.8: 88. mm 8.... ..~...~ 3.8.... 8~8~ ~88... ~82..~ 88.... 88.8 883 888. 8...... Ft >E.m 53:. «.22.... ...F 2.... Koch. ~F 2.... n 2.... ~ 2.N. F as... a x a. .8381 "E3: :. mco.FEF:oocco 59.5.... FEE 8o... 8.... 88.... 82.... 88.... 88.... :8... 2.8.... :3... 8.8.: 8...... E 8.... .-... 8.8... .88... 8.8... ..8-... 8...... F88... 8...... .883 8...... 8. 8o... 8.... $8.... 88.... 8.8... 88.... 88.... 88... 88.... 8.8: 8...... 8. 8o... .2... 8...... 28.... 8...... .88... 2.8... 8...... 88.... 888. 8...... E 8o... 8.... 88¢... 88...... .88... ~88... «8...... .88... .88... 888. 88. 8. F8... 8...... .28... .88... 8.8... .83.... 88... 3.8... .88... 8.8... 88. ~m 8.... 8:... 38.... 32.... .88... «8:... 88.... 8...... 8.8... 8.8: 88. E >Em 58:. «~85... «F 2.... 82.... ~F 2.... m on... wig... F 2.... a x e. .8881 E. .2... :8 8808 "EB: :. acctubcmocoo muu.m>< .~:::< «~88.» ..~»-»F» F.~..»F»F» ¢~»-»F» ...~v»F»F» «~38; ¢~»-»F» v.83 83...... 88»... 8.8.» F88.» 88»: 88.. 8.20... 6.2.... $88.» 88 F.» F88.» 88»: 88.. 323.... ...F >95 :32 NNFqu NF 2.... NNot... NF 2.... m 2.... N 2.... F 2.... a x Q. 3:303. 95.5mm mzéN hmmzo... “.0 >m95. ..on MNFwt... mF 2.... 32.... NF 2.... m 2.... N 2.... F 2.... A x Q. 3:33.... mkqammm .wm... emu» .ooEmn. 23.2.53: “.0 >m95 :3: 83:... «F 2.... «NEG NF 2.... n 2.... N «5.x. F 2.... a x Q. 3338.. »E.m: :. 30.3.3030". 32.2... 3...... evo.» 2. F... »F»»~.» 82. F... »»F»».» F 88.» F~..»».» £88.» 2.3:.» 82.»: »»»»F Ft .8.» :8.» »»»»~.» »»»»~.» »»~...».» »~»-.» v..8».» ~88.» 88F.» 82»: 88» 2.. F3.» 8F.» »»..»F.» .82.» »»~»».» 82.» 889» v~»~».» 89:.» 88»: 88» 8. »~».» SF.» 888 82.» 88.» »:»F.» F~8».» 8:».» 2.8.» 88»: »»»»F 3... »»».» 8...» 88...» ~83.» »F»»».» 38.» ~88.» F88.» 89...» 88»: 8»... 2.. 8».» -¢.» ~»~»v.» 88v.» »..»..».» 8:...» 889» 898.» :F»».» 8..»8F 88.. N... F8.» 8».» 8: F.» ..» F» F.» 9.. Fe.» 88.» 8.8.» 8~ F».» :48.» 88»: »»v». F... >95 .30: «.22.: «F on... «NEW. NF 2.... m. 2.... m 2.... F 2.... A x Q. 3303K «8.9. 5 «3.3.3330 3983. .352 _F» 28> 2% 888» v~m-oFm v~m-oFm v~m-oFm v~m-oFm v~m-oFm v~m-oFm v~»-»F» 00an 88...... F: F.v mm-F.» mF»~».v 888 888.» :28.» SB»: 88.. 32.»... 3F >8.» :8... 822.: ...F 2.... 22.... «F 2.... 82.... ~25 F 2.... F x a. 3.38m whammy. 8..-: 8:»... “.0 >525...» m5 F»».» v~F..» ~08...» 88¢.» »FF..».» 9%de F36.» mmFmo.» F308.» 88»: 382 32. ..I 2.N 88.» »»v.» F88...» Ban...» F~F».» F83.» »F»~».» v»~»».» RE...» 88»: »»»»F 32.9.... 3F .5.» =8: 32.... ...F 2.... 22.... ~F 2.: 82.... ~ 2.... F 2.... F x a. 3.3.88. 8.58”. .mm: 82» .895“. 285......» ".0 >525...» mi 03..» 9.». F ~FF.» F .~ ~»..»». F .838.» ammo». F 8:88 wok.» 88». F 82.»: 88.. Ft FF...» »»»~ 8» Fv.~ ~F8F F.~ »m~..».» FF F3.~ mmmFo.» mov»~.» :FvF. F 82»: 88» at ~»».» mw~.~ ~F»»».~ »»»»~.~ 88...» £83 858.» 838.» »»~»».F coon»: 88» at 93.» ..~». F FvFv~.~ ~38. F Fvvmm.» B». F ~88.» »»F...~.» F F~ F». F coon»: »»»»F 3... m m»».» 83. man»... F39.» 38.» F»v~.v FmFFF.» »»»Fm.» 59K.» come»: on»? 2.. 08.» «F»... 3»»~.» 888... vm-...» 2.2.... » N» F .» 888.» F Ev...» 88»: 88F NE SE.» 3».~ 8..»FF.» 8»»...~ ~38.» F0»~».~ ~¢FvF.» F~»v.» FmFF- 88»: »»5F Fm. >9.» :8... 23:... 8F 2.... 835$ ~F 2.... 82.... ~ 251 F 2.... F x a. 3.38: FEB: E acowuhcoucoo 32.9: 35. F3.» ..FF.» ..m»~.» ~..»»F.» 2&8.» Rat.» 9&8.» »»v~».» »~»:.» 8»..th »»»».. Fm. ~»».» F-.» »~F.»~.» 8~»~.» oFFvo.» ~m-~.» F88.» »F~»».» mmomF.» 82»: 88» 2. F3.» 8F.» 33:.» »»~..F.» »~»».» :89.» m»..»».» »~»~».» 88:.» 88»: 88» mm »~».» ~»F.» o»: F.» 8..» F .» ~ F» F».» 3.88.» F F39» F»:».» «.38.» coon»: »»»».. F.~... »»».» m~¢.» ~83...» 8.3....» F»~..».» 58¢.» :85.» 3.0.8.» F38.» 88»: 88.. at F»».» »~v.» Fmoov.» ~59.» mmFFo.» 08F...» »F»~».» omFmo.» F808.» 83»: 88.. NM Fwo.» N» F .» F FFF F.» 94» F .» mg 3.» ~38.» 83o.» »»~F».» m»»»».» 8%»: Sq? F». >8.» :8... 828... ...F 2.... 2N.N. ~F 2.... » 2.... ~ 2.... F 2.... F x e .8888. ”EB: c. «coup—2350 ouflo>< _u:::< 5...» 3.2.8» L :22; vmmwwo F0 vmmwwo F0 vwmwmo Fm vwmmwo Fm vmmmuo Fm vwmwwo Fm vmmwmo Fm mean 30.0 FNN.v mmFmv.v on: F4. 90 F50 vmmé 000F.0 hwmmmd FNommM. oonmovF ommmn 08:9: 0%: >Qhw two: «duos-F Mp at: MNGEU NF 2:4 M at: N on: F 2.: >. k OF Loutouom l whqnmmm mIéN ...wmIQI "_O >mEm 58: N28: 2 25 «NB: NF 25 N 8: N 2.: F 25 N x e 338% mfizmmm 6m... 85 Scam“. 5.22025. ”.0 >m< .352 Eco oracoow 302 «0wa F 5 VNmNF F F0 «000003 «0ch F F0 3.00005 «000003 «NSF F F0 no.3 00303 0000004. 30000. 00030.0 3002. 000000. 00003.0 000003 00000 0300.5 00F >900 :32 030:: «F 205 «No.05 NF 0:3 0 on: N 0:3 F 0:3 0. x Q angst 0.53.00”. 1:40 00010.: ".0 535.550 0:... 000.0 000.0 00 F010 000010 0000.0 0003.0 00000.0 00000.0 0300.0 000003 00000 «no: .0: DEN 00F.0 000.0 0000.0 0000.0 00000.0 30010 0000.0 00000.0 0FOFv.0 000003 00000 000:3: 00F >900 :3! 020:: «F at: 000:: NF 0:3 0 at: N 0:: F 0:3 A x 9 330002 00.5me .01: 0000 000.100 .23—2.025. “.0 >¢<5230 0:... 90.0 02.0 02.9.0 0003.0 0000.0 00000.0 00000.0 «0000.0 003: 000003 00000 Fm F010 0F0.0 F0300 03000 F0300 0003 00300 000000 00003 00053 00000 0: 000.0 00.. .0 0F F000 000F0.0 003.0 000F F.0 0030.0 F003 .0 00000. F 000003 00000 02 000.0 000.0 0003.0 030.0 0000.00 5000.0 0030.0 00 F000 00000. F 000003 00000 V1 000.0 000% 000010 000006 3000.0 0005.0 0000.0 0000.0 0003.0 000003 00000 0.2 000.0 0004‘ 00000.0 000006 F 50.0 0 F003. 0F F0 F .0 0000v.0 00000 000003 00000 NE 0 5.0 000.0 000.0 000 F00 0 F00v.0 00000.0 000 F F .0 F0000.0 000 F00 000003 0000 FM >900 :00: 00354 0F 205 000cm NF 0:: 0 0:3 N 05M F 0:: A x 9 58:03! 0:00: :_ «:000.0-80:00 «00:00.. FEF... 000.0 00F.0 F000F.0 0000F.0 0300.0 0000F.0 00000.0 00.000 033.0 000003 00000 01 000.0 000.0 0500.0 0.00 00060.0 00000.0 000F0.0 0030.0 3300 000003 00000 02 000.0 00 F .0 0000 F .0 0000F.0 300.0 00 5.. .0 3000.0 0000.0 0000 F .0 000003 00000 0t 000.0 000.0 0009.0 5000.0 000 3.0 0030.0 0000.0 0008.0 00000.0 000003 00000 Vt 00F.0 v0v.0 0000.0 00000.0 00000.0 3000.0 0000.0 00000.0 0FOFv.0 000003 00000 at 000.0 000.0 00300 0003.0 0000.0 00200 00000.0 0800.0 03000 000003 00000 00. 0.00.0 00F.0 00FOF.0 0009.0 0003.0 0009.0 00000.0 0030.0 00000 000003 00000 Ft >50 :8: 0225 «F 2.: 20.5 «F on: n 25 ..N 25 F 2.: a x 9 538m ”EH: 5 00002003000 00222 .0352 _fl0 03> 5.00 3.2.30 L 303 ll 0000F F F0 0000F F F0 000000 F0 0000F F F0 000000 F0 000000 F0 0000F F F0 00an 0000000 0000000 000000. 000300 00000F. 000000. 0000000 000003 00000 00200.0: 00F >000 :32 003:3 0F 0:: 000:3 0F 0:2 0 0:3 0 0:3 F 0:: 0 x 9 30:83. 00.500”. £1-00 00010.: ".0 5.52550 0:... 000.0 000.0 00000.0 00000.0 00000.0 00000.0 000 50 00000.0 0000.0 000003 00000 320$: DEN 0F F0 0 F00 0000.0 0000.0 0000.0 0000.0 0000.0 000.0 0000.0 000003 00000 00200.5 00F >000 :3! 003:3 0F 0:3 000:3 0F 0:3 0 0:: 0 0:: F 0:3 0 x 9 0800.80 0.0.500”. am: 0000 .02me 55552.2 ".0 5.52230 0:... 0 20.0 00 F .0 F F0000 0003 .0 00000.0 00000.0 00000.0 00000.0 00000. F 000003 00000 00‘ 000.0 03.0 0300.0 00000.0 00F00.0 0000.F 00000.0 00000.0 00000.F 000003 00000 0.00 000.0 000. F 0000 F .0 00000. F 00000.0 00000. F 50000 00000.0 00000. F 000003 00000 0m F000 000.0 00000.0 00000.0 00000.0 000F0.0 0009.0 0000.0 00FOF.0 000003 00000 02 000.0 000.0 00000.0 00000.0 00000.0 00000.0 0000F.0 0000.0 00000.0 000003 00000 at 000.0 00F .0 00000.0 05000 F F0000 00000.0 0F F0 F .0 00000.0 000 F00 000003 00000 NE F000 000.0 00000.0 0000F.0 00000.0 F0000.0 0FOF F.0 00000.0 00000 000003 00000 F! >90 :3: 003:3 0F 0:3 0033.1 0F 0:3 0 0:: 0 05“ F 0:: 0 x E 3300000 F.200: E 0:00—20:00:00 002—0:.— 00:". 000.0 00F.0 0000F.0 0009.0 5000.0 0FO0F.0 F0000.0 0000.0 0000F.0 000003 00000 000 000.0 000.0 0000.0 5000.0 00000.0 0500.0 0830 00000.0 00000.0 000003 00000 01 000.0 00F.0 0000F.0 0000F.0 00000.0 F000F.0 F0000.0 00000.0 0000F.0 000003 00000 5% F000 000.0 0003.0 0050.0 0003.0 00000.0 00000.0 000F0.0 00000.0 000003 00000 00.. 0F F .0 0 F00 0000.0 0000.0 0000.0 0000.0 0000.0 000.0 0000.0 000003 00000 at 000.0 000.0 N0N000 00000.0 00000.0 000000 00050 000000 0000.0 000003 00000 00— 000.0 FFF.o F000F.0 0003.0 0000.0 F000F.0 0000 . . . >900 :3! 003:3 0F «:3 000:3 0F 0:3 0 2.0”.” 000005“. ”WM“ 000mg; 00H00 9 Fuc H051! :0 00 E 50> 5&0 eta—.000 1— 0 Fa . 020593050000 00293 .0353 w 1E 304 0000F F F0 0000F F F0 0009 F F0 0003 F F0 0003 F F0 0009 F F0 0003 F F0 080: 0000000 0000000 000000. 000 F000 3000 F. 000000. 000 F000 000003 00000 30:33 30 >900 :33 00 3:3 0F 0:3 000:3 0 F 0:3 0 0:3 0 0:3 F 0:3 0. x 9 08100003 00.50%. 5.000 ...mmxwi ".0 5.52.230 MI... 03.0 F000 0030.0 00000.0 0500.0 0900.0 0000.0 00000.0 00000.0 80003 00000 .00: .0.. 0:0 00F.0 000.0 00000.0 0000.0 00000.0 300.0 3000.0 00F00.0 00000.0 000003 00000 30:93 30. >90” :33 00 3:3 00 0:3 000:3 0F 0:3 0 0:3 0 0:3 F 0:3 A x 9 00300003 00.50%. .01: 0000 .oOEmn. 535.02.... ".0 532230 MI... 03.0 00F.0 0300.0 0003.0 00000.0 00000.0 00000.0 00000.0 303.... 000003 00000 02 000.0 F00.F 000000 00003 00000.0 FF000.F 00000.0 00000.0 0093 08003 880 0: 03.0 03. F 0003. F 00000. F 0000.0 00000. F 0F F000 00000.0 00000. F 000003 00000 at F000 000.0 3000.0 3000.0 00000.0 000 F00 0000 F .0 0000.0 00 F0 F .0 000003 00000 0.2 F00. F 000.0 F0000.0 00000.0 00000.0 00 F000 F000 F .0 00000.0 00 F000 000003 00000 mm 03.0 000.0 00000.0 00000.0 3000.0 0300.0 0000 F .0 00000.0 00 F00 .0 000003 00000 NR F000 00F .0 0F F00 00000.0 3000.0 0000 F .0 003 F0 00000.0 000 F0.0 000003 00000 02 >900 :33 00 3:3 0F 0:3 0005M 0F 0:3 0 0:3 0 oSH F 0:3 0. x 9 330002 F.EB: :_ 2.0333300 «00.3.... 3...“. 08.0 00F.0 000000 00003 0800.0 000000 0008.0 0900.0 000000 08003 0800 0: 000.0 000.0 00000.0 00000.0 00000.0 0000.0 0350 00000.0 00000.0 000003 00000 at 000.0 00F .0 0000 F .0 F000F .0 00000.0 F000 F .0 0000.0 00000.0 0000 F .0 000003 00000 01 F000 000.0 0002.0 0008.0 0850 00000.0 0008.0 0005.0 8000.0 0800.: 00000 0: 0F F.0 000.0 00000.0 00000.0 00000.0 0 F000 0 F0000 0330 00000.0 000003 00000 at 000.0 F000 00000.0 00 F000 0 F0000 00 F000 0000.0 00000.0 00000 .0 000003 00000 NE 000.0 00 F .0 000 F .0 0000 F .0 00000.0 0000 F .0 00000.0 0 F0 50 000 F F .0 000003 00000 02 >Q0m :33 00 3:3 00 0:3 000:!3 0 F 0:3 0 0:3 N 0:3 F 0:3 x x 9 3010001 n2:0: :. 0:035:0300 ommu0>< .a:::< _Fm 5.; 2% 0:230 «3225 v3.0.3; .22 A 8 $235 .22 F 3 v32 2 5 v22 F 3. «.23 0mm? 2.0 030qu 080mm. 2&de ommoow. ommomo. 08de 8233 33A “mocha: an“ >95 :3! «225 2 25 «~25 2 25 n 23 N 25 2 25 A x 9 332.01 952mm”. mzéu ...mm:0=._ “_O >m<255m m1... 30.0 946 N2 Ed @593 355.0 vmwmvd «mowed @586 3200 00303 ommmn 30: .i EEN m2.o mend mammwd 2536 A396 9236 owowod ..Nond summed conce: ommmn «8.3.5 was >95 :3: «.233 2 23 «~25 2 2.3 n 25 N 2.3 2 2.2 A x E 332.32 9...:me $1: 83 VDOEmn. 53:52: “_O >m<523m m1... 2w.o meta 223$ 23d 8810 Smog Nomad mmowmd 32: 829: 802 um 31o 2m... Ammud 203.2 mmmwmd A382 880.0 mmkmd Nwmmmé 82.03 oooom at «and $82 88.2 mmowcé new 56 m2 Em; «mood 9&de Amomé 08mm: oooom wt 5 No.0 oumd Smood Fomumd «53.0 amend «33.0 3.86 mwrmpd 000mm: ocean Vt w N3... $5.0 N Snub mmmw ...m mmmmwd vwmvmd muoowd mmomod mcmnmh conce: ommmn at «5.0 new...” 2 311‘ 2 read «886 525m N326 mvd nwumwd 02mm: ommmn NM mtd mmwd «336, mvmvmd mmmod nova—am mmnvwd Route mow-LN oowmmi. 003» st >93 =3: «.23: 2 25 «~25 2 25 n 25 u 2.N 2 25 A x Q .8323: n"EB: E acozubcoocoo 32.2: «9:...— vmod 94.0 232.0 33.5 2236 N036 vmoood Bowed mmmmfo 085$ ooowu Am mmod Sud mnwmud momowd 1236 31.3.0 @836 @886 mAS‘Nd 0003!. ocean at mmod now .0 80¢ F .o «82.0 F 2 59¢ wmmm F .0 325.0 Aowmod 5mm 2 .o some? cocoa mt _‘Nod god Sword 3236 @356 358d $806 3206 2:90 0883. coon» Vt m2.o mood mammod vknmd 2.39.0 3336 mwowod wwmnod Rmnvd conce: ommmx. at 306 94.0 «2 end @593 wmkod 3323 $08.0 $83.0 wmtmd 02mm: ommmn NZ owod med $32.0 mommfio waned oummfio stood Kmuod mama—ac 8303 8ch pm >95 :3! «225 2 2.: 32”: 2 2.3 m 25 M 2.3 2 25 A x E .6328: ”EB: 5 235230050 oafla>< 3:53 13 .2; :2: 2.23m _ 306 «N255 «N222; 2.2285 «$225 22283 .2285 2.2.2223 v.23 omme2 2.w unmet; 0328. 3Ne2e.m 8N2eN. oeNeee. omee2N.m eemeeg 09.32 2323.21 22 >93 :32 2.222: 2 2.3 222.: N2 22.3 N. 22.2.2 N 05.2 2 2...... A x 9 28309.2 9525mm mzéN ...mmIQI ".0 5325.10. m1... need 936 veeeme 2emve 3229c eveNve meeNee 2eemee 2eN2m.e ee2mev2 emme2 2322 .22 EN eN2.e Need m2N2e.e mmmemd NNve 2 .e mmeeme eeNee NV22e.e 2 2 2ev.e e883 emmm2 28225.2: 22 >Q2m :3: 220:: 2 2.: «Noe: N2 0:3 N 222.2 N «:3 2 2.: A x 9 32229822 9...:me Amm: ee2e eeoimm 555525. ".0 >m98 :8: 228.: 2.2 25 «No.2: N2 25 2. 2.: mu: 2 25 A x 9 3.88: ”EB: :_ meow—22:00:00 aeu3>< .2552 _ 222; :5: 3.233 APPENDIX H 307 Appendix H Selected Exposure Factor Studies 1.0 INTRODUCTION Two parameters which Table 1 Body Weight of Adults“ (kilograms) are widely used in Men and exposure assessment, Men women women relatively constant Age gears) Mean (kg) Std. Dev. Mean (kg) Std. Dev. Mean 92 throughout the general mummies“ iii? £3“; 13'} 23'? ii"; 7,13 numerous Stud"?s 0f 45—55 80.9 13.6 68.0 15.3 74.5 reasonable quallty are: 55—65 78.8 12.8 67.9 14.7 73.4 body weight (BW) and 65-75 74.8 12.8 66.6 13.8 70.7 inhalation rate (IR). 1&75 78.1 13.5 65.4 14.6 71.8 The EPA’s standard Note: 1kg = 22046 11> weight and inhalation Percentile data provided in Appendix A (A-1 and A-2) rate are 70 kg and 20 Source: Adapted from National Center for Health Statistics (NCHS), 1987 m3/ day, respectively. These values may be inaccurate for the national population and may be inappropriate for the sub-populations under consideration.‘ assumptions for body I. Includes clothing weight, estimated as ranging from .09 to .28 kg The purpose of this report is to provide additional choices and considerations for selecting body weight and inhalation values for use in probability distributions. This will allow the reader to develop a critical viewpoint based on a compilation of relevant facts. 2.0 BODY WEIGHT The body weight of individuals is not expected to vary significantly from setting to setting. For this reason, one would suspect a standard distribution to be derived quite easily. Several distributions have been developed based on the enormous amounts of body weight data published by the US Public Health Service. The following body weight studies utilized data taken from the second National Health and Nutrition Examination Survey (N HANES II), conducted from February 1976 through February 1980. This survey represents the most comprehensive and reliable data set for body weight in the United States.2 308 StUdX 1 Table 2 Body Weight of Children3 (kilograms) This study consisted of W 20,322 subjects, based Boys J Girls Girls on a civilian {1011— Age Mean (kg) Std. Dev. Mean (kg) Std. Dev. Mean gag); institutionalized population aged 6 6-11 months 9.4 1.3 8.8 1.2 9.1 2...... 1;: :2 :2: 1: :1: Ultmiely ““3 Study 3 years 15.7 2.0 14.9 2.1 15.3 résults 11} the normal 4 years 17.8 2.5 17.0 2.4 17.4 dismbutlons 5 years 19.8 3.0 19.6 3.3 19.7 summarized in Tables 1 6 years 23.0 4.0 22.1 4.0 22.6 and 2. 7 years 25.1 3.9 24.7 5.0 24.9 , , 8 years 28.2 6.2 27.9 5.7 28.1 Exmnatlon 0f Table 1 9 years 31.1 6.3 31.9 8.4 31.5 shows a mean body 10 years 36.4 7.7 36.1 8.0 36.3 weight of 71.8 kg (for 11 years 40.3 10.1 41.8 10.9 41.1 adult men and women 12 years 44.2 10.1 46.4 10.1 45.3 combined). This 13 years 49.9 12.3 50.9 11.8 50.4 closely compares to the 1: years 21(1) :18 3‘5”: 19181 :2? . years . . . . . 70 kg EPA.assumpt.‘°n' 16 years 67.1 12.4 58.1 10.1 62.6 meta“, Ems Study ‘5 17 years 66.7 11.5 59.6 11.4 63.2 given 3 111811 order 0f 18 years 71.1 12.7 59.0 11.1 65.1 confidence by the US 19 years 71.7 11.6 60.2 11.0 66.0 EPA. It is Note: 1kg = 2.2046 lb recommended for use, ‘ Includes clothing weight, assumed as ranging from .09 re .28 kg due to high peer review Percentile data provided in Appendix A (A-3 and A4) of the NH ANES I] Source: Adapted from National Center for Health Statistics (NCHS), 1988 source data, large sample size (28,000 persons), lack of bias, and low measurement error. Study 22 The second study focuses on persons less than 18 years of age, due to the greatest variance in body weight existing within this group. Burmaster, examined a group of 4,079 females and 4,379 males between the ages of 6 months and 20 years, extracted from the N HANES II data. The data employed was statistically adjusted for non- response and probability of selection, as well as stratified by age, sex and race to reflect the entire United States population prior to reporting. Burmaster et. al. (1994) found that lognormal distributions give strong fits to body weight for persons between 6 months and 20 years.1 Corresponding statistics for the lognormal probability plots are presented in Table 3. This particular study is listed by the EPA as a relevant alternative information source on body weights and is believed to give a good approximation for a young subject group. 309 Table 3 Statistics for Probability Plot Regression Analysis Male Fem ale Afl MeanII (kg) Std. Dev.’ Mean' (kg) Std. Dev.‘ 6 months - 1 year 2.23 0.132 2.16 0.145 1 to 2 years 2.46 0.119 2.38 0.128 2 to Lyears 2.60 0.120 2.56 0.112 3 to 4 years 2.75 0.114 2.69 0.137 4 to 5 years 2.87 0.133 2.83 0.133 5 to 6 years 2.99 0.138 2.98 0.163 6 to 7 years 3.13 0.145 3.10 0.174 7 to Slears 3.21 0.151 3.19 0.174 8 to 9years 3.33 0.181 3.31 0.156 9 to 10 years 3.43 0.165 3.46 0.214 10 to 11 years 3.59 0.195 3.57 0.199 11 to 12 years 3.69 0.252 3.71 0.226 12 to 13 years 3.78 0.224 3.82 0.213 13 to 14 years 3.88 0.215 3.92 0.216 14 to 15 years 4.02 0.181 3.99 0.187 15 to 16jears 4.09 0.159 4.00 0.156 16 to 17 years 4.20 0.168 4.06 0.167 17 to 18 years 4.19 0.167 4.08 0.165 18 to 19 years 4.25 0.159 4.07 0.147 19 to 20 years 4.26 0.154 4.10 0.149 Note: 1kg = 2.20461b ‘ Mean, Std. Dev. - correspond to the mean and standard deviation of the lognormal distribution of body weight (kg). Source: Burmaster etal., 1994. 3.0 INHALATION RATE Breathing rates (inhalation rates) are dependent on various individual characteristics, including: age, gender, weight, level of health and degree of activity. Since inhalation rates are unlikely to be influenced by site-specific conditions, standard distributions should be appropriate. The inhalation studies discussed in the following pages, present several interpretations based on different choices of individual characteristics for a population. Study 1 This study utilizes measured values gathered by the US EPA (1985) for inhalation rates based on various age and gender categories from early studies. The data was compiled at multiple activity levels as summarized in Table 4. Activity patterns (hours spent at a particular activity) were determined for three microenvironments by activity level for all age groups (Table 5). From the data presented in Tables 4 and 5, daily inhalation rates were calculated using a time-activity ventilation approach. These rates are summarized in Table 6. 310 Table 4 Summary of Hurmn Inhalation Rates for Men, Women and Children by Activity Level (m3/hr)‘ F n Restingc n Ugh“ n Morbrate' n [Envy' Adlt Male 454 0.7 102 0.8 102 2.5 267 4.8 Adlt Fm 595 0.3 786 0.5 106 1.6 211 2.9 £39 Adlt - 0.5 - 0.6 -- 2.1 -- 3.9 ‘ Clild, sf 6 8 0.4 16 0.8 4 2 5 2.3 Clild, 10 10 0.4 40 l 29 3.2 43 3.9 “ Values ofinhalationrates forrmles, ferrules andchildrermnleandfennle)presentedinthistablerepresent themeenofvaluesreportedforeachactivitylevelin 1985. (SeeAppendixBGH) foradetailedlisting ofthe data from US. EPA, 1985.) n = mrberofobservationsateachactivity level. Includes watching television, reading and sleeping Includesmostdomestic work, attendingtopersomlmdsandeere, hobbiesandoondrctingmirmintbor repairs andhome improvements. Includes heavy indoor cleemp, perforrmme of major indoor repairs and alterations and climbing stairs. Includes vigorms physical exercise and climbing stairs earrying a load. Source: Adapted from US EPA, 1985. The main limitation of this study arises due to values based on early studies. The US EPA neglects to discuss the accuracy and validity of the values used. This introduces a degree of uncertainty. Actual measurements taken for a large nmnber of subjects and data presented for both adults and children are among the advantages. Table 5 Activity Pattern Data For All Age Groups Average Houra Per Day Activity In Each Mlcroenvlronment M lcroenvlronment Level at Each Activity Level Indoors Resting 9.82 Light 9.82 Moderate 0.71 Heavy 0.098 TOTAL 20.4 , iOutdoora Resting 0.505 Light 0.505 Moderate 0.65 Heavy 0.12 TOTAL . 1.77 In Transportation Resting 0.86 Vehicle Light 0.86 Moderate 0.05 Heavy 0.0012 TOTAL 1.77 Source: Adapted from U.S. EPA, 1985. 311 Table 6 Summary of Daily Inhalation Rates Grouped By Age and Activity Level Daily Inhalation Rate (m3/day)' Total Dally Subject Restin Li ht Moderate Heavy m" (m3/daL) Adult Male 7.83 8.95 3.53 1.05 21.40 Adult Female 3.35 5.59 2.26 0.64 11.80 5.60 ' 6.71 ' 2.96 0.85 16.00 Child (Age 6) 4.47 8.95 Child (A e 10) 4.47 11.19 In this table, inhalation rate was calculated by using the following equation: 1 l [R = 7'21“ 1R iti where: IR, = inhalation rate at ith activity (Table 4) ti = hours spent per day during ith activity (Table 5) = number of activity periods = total time of the exposure period (e.g., a day) Total daily inhalation rate was calculated by summing the individual daily inhalation rate Source: Generated Mata from Tables 4 and 5. Study 2 The International Commission Table 7 Daily Inhalation Rates Estimated From Daily Activities‘ on Radiological Protection Inhalation Rate. (“9 (ICRP) also estimated daily Rei‘mg “fl" ”mi,” . ti n rates for a“ a CS Subject (in lhr) (111 /hr) IR (in /day) lnhala o , , g Adult Male 0.45 1.20 22.80 and genders usmg a time- Adult Female 0.36 1.14 21.10 activity ventilation approach. _Adult Avera e -- -- 21.95 Using compiled reference Child (10 years) 0.29 0.78 14.80 values for inhalation rates Infant (1 year) 0.09 0.25 3.76 from various sources ANCWbT“ d 0'03 b d 0:: t. 3:681) . ssump ions ma e were ase on ours res lng an ours (Appendix B)’ the ¥CRP light activity for adults and children (10 yrs); 14 hours resting preceded by 353mg the and 10 hours light activity for infants (1 yr); 23 hours resting hours spent for various age and 1 hour light activity for newborns. Compiled reference and gender categories within Hp values in Appendix B(B-2). specific activities (described 1 in Table 7 footnotes). Table IR = 71:2 :1 IR,ti 7 presents the results of this study. where: [kg = inhalation rate at ith activity t, = hours spent per day during ith activity The obvious limitation Of this lt = number of activity periods study lies within the accuracy T = total time of the exposure period and validity of employed ("°" 3 “a” inhalation data- Assuming the Source: International Commission on Radiological Protection hours spent in specific (ICRP). 1981. 312 activities may also limit this study’s precision. Overall, these assumptions may over or under-estimate calculated inhalation rates. Therefore, this approach poses a large degree of uncertainty. Study 3 The Exposure Assessment Group (EAG) of the EPA’s Office of Research and Development conducted a study on ventilation rates between March 1984 and January 1985. For each age-sex activity level for which data were available, minimum, maximum and mean rates were determined. Some values were presented without minimum and maximum values from the original data, making them representative only of available individual measurements.4 Table 8 summarizes the ventilation ranges determined by the EAG. Table 8 Ventilatim Sex and Level Adllts Fermle 0.25“ 0.70 0.34 0.25"I 1.76 0.49 1.24* 2.05“ 0.16 1.40" 6.89 2.87 Male 0.14 1.13”“ 0.73 0.14 L66" 0.83 86 4. 45 2.08 1. -— any or Some of the values in Table 8 are marked as means, indicating that the true minimum or maximum for the group may lie outside the value given. This presents a large amount of uncertainty and potential error in final inhalation calculations. Inhalation rates may be calculated by choosing times spent at each activity level, similar to that summarized in Table 5. This study is included to allow experiment with assigning data, such as that in Table 8, to a triangular distribution. Typically triangular distributions are used as a conservative estimate of the actual distribution, taking into account large amounts of uncertainty in available data.3 Summary Of EPA Recommendations The EPA (1989) summarizes the recommended inhalation rate values in Table 9. The values for males and females differ slightly from the EPA’s original 20 m3/day assumption. These recommendations consider many key studies, including some discussed in this report. As in all cases, assessors are encouraged to use values which most accurately reflect the population in question. 4.0 CONCLUSION The application of Monte Carlo analyses to environmental health risk assessment is far from routine. One of the primary obstacles of probabilistic modeling is the lack of consensus on proper distributions to use for key exposure factors.3 This report focused lightly on two exposure factors (body weight and inhalation rate) along with some relevant studies. Body weight values were shown to fall between 70 and 72 kilograms 313 for adults, suggesting consistency among studies. Inhalation rates ranged from 11.3 to 21 m3/day for females and from 15.2 to 23 m3/day for males, posing a sensitive outcome based on distribution selection. Due to the large numbers of studies, the risk assessor must make critical decisions as to which distribution best represents the population in question. In some cases a “best guess” may have to be employed where data is limited and unavailable. The purpose of EPA’s Risk Assessment Handbooks is to provide users with acceptable distributions for exposure factors, applicable to a general population. In most cases, the recommended distribution contains a high level of confidence based on peer review. Risk assessors should use caution when adopting these distributions. Typically they are grossly generalized for a large population. Table 9 Summary of Recommended Values for Inhalation Jl’opulation Mean Long-term exposures 4.5 m3/day Children (1 year) Children (1-12 years) 8.7 m3/day Adults ‘ Males ‘ 15.2 ins/day Females 11.3 m3/day Short-term exposures Adults and Children Rest 0.3 m3/hr Sedentary Activities 0.4 m3/hr Light Activities 1.0 m3/hr Moderate Activities 1.2 malhr Heavy Activities 1.9 m3/hr Outdoor Workers Hourly Average 1.3 m3/hr Slow Activities 1.1m3/hr Moderate Activities 1.5 m3/hr Heavy Activities 2.3 ms/hr Source: EPA Exposure Factors Handbook, Volume I, General Factors, M ay 1989. The goal of this report was to provide the decision maker with an opportunity to see the wealth of studies on probability distribution characterizations as an option to:5 0 Increase flexibility 9 Consider more possibilities and; 0 Provide alternatives which might not be allowed or feasible if the risk characterization was a “bright line” or “single number”. 314 REFERENCES 1. US EPA (May 1989). Exposure Factors Handbook, Volume 1 of 3, General Factors, Washington DC., EPA. 2. Burmaster, D.E.; Lloyd, K.J.; Crouch, E.A.C., “Lognormal Distributions of Body Weight as a Function of Age For Female and Male Children In The US”, 1994. 3. Finley, Brent; Proctor, Deborah; Scott, Paul; Harrinton, Natalie; Paustenbach, Dennis; Price, Paul, “Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment”, Risk Analysis, Vol. 14, No. 4, 1994. 4. Anderson, 5.; Browne, N.; Duletsky, S.; Ramig, J.; and Warn, T., “Devolopment of Statistical Distributions or Ranges of Standard Factors Used In Exposure Assessments”, Office of Health and Environmental Assessment, US EPA, Washington DC, 1985. 5. Hairnes, Yacov Y.; Barry, Timothy; and Lambert, James H., “When and How Can You Specify a Probabiltiy Distribution When You Don’t Know Much?”, Risk Analysis, Vol. 14, No. 5, 1994. APPENDIX I Intake Results from Selected Chemicals for all Binders 315 2... .N.. o... 8.. 8.. 8.. 8.. 8.. .... 8.. N... 8.. 8.. o... a... 8.. o... .8. 8.. .N.. .N.. .N.. 8.. 8.. 8.. N... 8.. ...N ...N ...N ...N ...N ...N ...N ...N .8. 8.. 8.. 3... s... 8.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. 8.. 8.. ...N ...N ...N .8. .l..ol.:t N..N 8.. N... N... 8.. .N.. v... .N.. 8.. N... N... ...N ...N o... ...N ...N 8.. .8. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. m... 8.. 8.. 8.. 8.. 8.. :8. :8. :8 :8 :8 :8 :8 :8 :8 :8 :e. :8. :<.. :8. :8 :8 in 8..... ...N ..N ...N ...N N... N... E. 8.. N... 8.. ..N 8.. 8.. .N.. 8.. 8.. ...N .8. 8.. 8.. 8.. 8.. .N.. .N.. .... 8.. 8.. SN 8N 8N N..N ...N ...N ...N ...N .8. ...N 8.. E... e... 8.. 8.. 8.. e... e... 3... 8.. 8.. .8 .8 ...N ...N ...N 8.. 5.202. ...N ...N ...N 8.. 8.. 8.. 8.. N... 8.. 8.. ...N NeN N...N ...N ...N ...N .8 .8. 8. 8.. 8.. 8.. 8.. 8.. 8.. 8.. ...N 8.. 8.. 8.. ...N .N.. N..N ...N ...N 8.. :8. :8. :8 :8 :8 :8 :8 :8 :8 :8 :a. :8. :<.. :8. :8 :8 :8 8..... NN.. NN.. .N.. .N.. .... .... .... e... e... .... .N.. .N.. .N.. .... .... .N.. .N.. .8. .N.. m... m... m... N... .... N... N... t. .N.. .N.. .N.. .N.. .N.. 8.. 8.. 8.. .8. .N.. .... .... ...o t. o... o... e... o... m... .... m... .N.. .N.. .... .... 8.. 8.. u...._...loi .N.. .N.. NN.. .N.. .... m... e... e... 2.. N... .N.. .N.. .N.. NN.. .N.. .N.. .N.. .8. .N.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. .N.. NN.. .... .N.. .N.. .N.. 1.8. - _:.... :8. :8 :8 :8 :8 :8 :8 :8 :8 :a. :8. :<.. :8. :8 :8 :8 8..... 8.7%.... .93... as..— .N. .N.. o... 8.. ...N ...N ...N ...N N..N ...N 8.. 8.. 8.. 8.. ...N 8.. o... .8. ...N ...N .8 .NN 8.. 8.. N... ...N ...N 8.. 8.. ...e 8... 8... ...e e... 8... .8. 8.. ...N ...N ...N ...N ...N ...N ...N ...N .8 .8 .8 8.. 8.. 8... 8.8 8... .8. 8.. 8.. .N.. 3.. ...N .8 ...N ...N ...N ...N .N.. e... e... 8. .N.. 8.. 8.. .8. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 8.. 3.. .N.. 8.. .... e... v... [8.. :8. :8. :8 :8 :8 :8 :8. :8 :8 :8 :8... :8. :e... :8. :8 :8 :8 8...... .53.. ....o..< e. .88 8... £512.... 598mm. .88.... 8... 5.8... 8...: H 8..: 8.8.0 9.. .82.... .m .8 coat 3 02.85 new 32.8.8300 2.35m 316 CCN CCN CCN CNN NvN CvN CVN CCN CCN C_.N NCN CCN NNN NC... CCN NNN VCN FCC. ..NC CFC CCN ..CN NNN CC.. ..CN CNN EN EN ..CN CCN CNN CNN CNN CNN CNN CCCF NCN CC... CFN CCN CPN CNN CC._. NCN CCN ..CN CvN 5N 5N CCN CCN vNN VNN CCCF :0: 3N CVN CCN CFN C_.N CCN CNN NCN CCN CCN CCN FNN CCN CCN CCN CCN CC.C CCC. ..CN CNN CNN CNN CvN CvN CvN ..NN NCN NCN CCN CCN NCN CCé CVN CVN CvN NCC. Ear—.Emcpima SAC in: EQC 2mm in; SQC EnN in: S..N—.E<3!<32U=um fluflU flflflfl flflflflu "flu" "Mn". "flu". flflflfl flflflfl" "flu". "II-fl" Hull-fl. "flu" flflflflu flflflfln flflflflu flflflfl "flflfluflflflfl :0... SJ 23:25.30 235m ...sxcsm. 319 N-mm N-mm N-wm mm... mm. N... .N..? NCC N-mm N-wm NM... N-m_v N-mv «MN NM. N-mv N-mv N. N-mm NCC N-mm N-wm N-wN NCN N-m_N N-mN N-mN N-wN N-mN N-mN N-wN N-w. N-m_N Nun-_N N-mN .. .-.. .-.. .-.. .-.N .-.N .-.N .-.N .-.N .-.N .-.N .-.N .-.N ...N .-.. .-.N .-.N .-.N .. N-wN N.wN «-mN N-MN N-m_. N-m. N-m. N-m. N-w. N-m_. N.m. N-m. N-w. mmm N-m. N-m. Nd. N-m_C N-wC N-wC N-m_N N-mC N-mC N-wC N-MC N-mm «-mm NCC N-m_C N-mo N-wv ”we N-mC NCC N-m. N-m_. N-m. C-mC ..-me mm:- C-MN CCC m-wN n-mN C-wC C-wC m-m_N Cmm C-mN m-m_C C-wC N-.. N-.. N-.. N-.N N-.N N-.N N-.N N-.N N-.N N-.N N-.N N-.N N-.N N-.. N-.N N-.N N-.N mm. mm. mm. mm. Tum YMC TmC TNN YwC ..CC TwC TMC ...wC Ymm TwC YmC Yum C-wN 9mm 9mm CHAN 9w. mm. mm. mm. mm. m-w. mm. mm. mm. TwC mm. mm. mm. .-.. .-.. .-.. .-.. .-.m .-.m .-.m .-.. .-.m .-.. .-.m .-.. .-.m .-.. .-.. .-.. .-.. mm. own Cm. 9mm C-MN CmN CCN m.m_N C-m_N 9mm m-m~ C-wN m-m~ mm. mmN C-wN CCN ..mm ..mm .-mm .-Wr. ..mv .-mv .-mv ..mn .-wv ..mv .-mv .-mv .-m... ..m. ..m. .-wv .-mv 5.... an... .2... 2... _EN .2... s... .2... .2... ...N 5... ...N. :5. s_<..:<. :5 SE not... 22.298. 22.5. .32.... 52.225 N. 3.8:. .2: .53. k6... CN.C CN.C NN.C ..C.C NC.C NC.C NC.C mvC NC.C NC.C CC.C NC.C CC.C ..C.C CC.C NC.C NC.C ..C.C-C C10 mvd mvd Cvd CC.C CC.C CC.C CN.C CC.C NC.C ..C.C CC.C CC.C .NC CC.C CC.C CC.C CCCCCC 3.0 3.0 3.0 CC.C CC.C mod CC.C NC.C CC.C CC.C CC.C CC.C CC.C NC.C CC.C CC.C CC.C VCCCCC .6901 cm..."— CNC CN.C CN.C CN.C NN.C CN.C CN.C NNC CN.C CN.C .NC NN.C CN.C ...C CN.C NN.C NN.C m... n... v... No. CC.C CC.C CC.C NN.C NC.C NC.C CC.C CC.C CC.C ..C.C VCC CC.C CC.C CNC CNC CNC CNC NNC ...o ...C CC.C ...C ...C ...o N..o ...C NC.C ...C N..o NNC ...C ...C ...C NC.C NC.C CC.C CC.C CN.C CN.C CN.C .md NC.C CC.C CNC CC.C NC.C NC.C NC.C NC.C NC.C NC.C .90 5.0 .CC .CC 5.0 5.0 5.0 .CC 5.0 5.0 .CC .90 5.0 CC.C CC.C CC.C NC.C NC.C NC.C NC.C NC.C NC.C NC.C NC.C NC.C NC.C .CC NC.C NC.C NC.C CC.C CC.C CC.C CC.C NC.C NC.C NC.C CC.C NC.C NC.C NC.C NC.C NC.C ..C.C NC.C NC.C NC.C 3.0 ..C.C ..C.C ..C.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C NC.C mod CC.C CC.C CCCCCC «immoz. o__o.cwc.A NC.C CCN CCN CCN CN.C CN.C mfim Cad CN.C CN.C NC.C CN.C CN.C CN.C CC.C mud mN-C CC=NC 503:5 >635 ammo flflflfl flflflflu "Hun flflflfl flflflfl "flu". flflflfl "flu" flflflfl flflflfl. “flu". flflflflu flflflfln "HM". flflflfl "flu“.nflflflfl c9: .3.— "SN ”EB: :30 ._< E 5:228:00 AS. .3. 9mm... 0.68.... SEE 255 3.0 FNMV‘IOCONQO) ...w.-_-28___.m.. 2.2.2.230 235m C512... .lfllfiqllfil... x m. x . x x. x <0 u 9.8... m._.>_mc< .35. .2me :95: 3.0.2 me© 9: .82.. 320 N-MC N-wC N-wC N-MN N-mC N-mC N-mC N-mm N-MC N-mC N-wC ”we NC.C N-m¢ N-mC NflC N-wo Yum Yum Yum Yum wi va wi Tum va Tm? Ymv Ymv wi. YwN va Ymv YwV C-wC C-MC CMC Cm... Cmv Cmn Cm.” C-mm C-mm C-wC m-mm C-mv Cmn C-mN C-MC Cmv Wm? N-mC N-wC N-mm N-MC N-MN N-mN N-wN N-mN N-MN N-MN N-wN N-wN N-wN N-m. N-wN N-mN N-m_N C-wN C-wN C-mN C-wC C-wC QMC C-m_C C-wv C-wC C-wC CC.C C-MC CMC C-wm C-mC C-wC CC.C .-wN .-mN .-MN .-MC ..NC ..NC ..NC .-mv ..NC ..NC ..NC .-wC .-wC .-mm .-wC ..m0 ..m0 N-mN N-wN N-m_N N-m. N-w. N-m. N-m. N-m. N-m. N-w. N-m. N-m. N-m. mum—C N-m. N-m. N-m. N-w.. N-mv N-mv N-wn N-wC N-wm N-mm N-MN N-mm N-wm N-mm NNC Nun-_C N-wN N-wC N-mm N-mC C+m. C+m_. C+m. C+m. .-MC .-MC .-wC .-wN .-wC .-mC .-MC .-MC ..NC ..NC .-wC .-wC .-MC C+m. C+m. C+m. C+m. .-mC .-wC .-MC .-MN .-wC .-MC .-MC .-MC .-MC .-mC .-m_C .-MC .-wC .-mm .-mm .-mm .-mN .-wN .-mN .-mN .-MN .-MN .-MN .-mN .-mN .-MN .-m. .-wN .-mN .-MN C+wn C+mn ewe C+mN C+mN C+mN C+wN C+WN o+mN C+mN C+mN C+mN C+mN C+w. C+mN C+mN C+mN OI-N 1.1—‘— wxmmoz. 26.3.... ..ousm 33¢. .30 FNMVIDQDI‘wCD actoA 2.2.2.93.— 229:3 C... N... N... 3.. NC.C CC CC CN.C CC CC CC.C NC.C CC.C CC.C CC.C NC.C NC.C Cam—.C.C LOCCNInQNOEW .C.C .C.C .C.C .C.C .C.C .C.C .C.C CC.C .C.C .C.C .C.C .C.C .C.C CC.C .C.C .C.C .C.C NC.C NC.C NC.C CC.C CC.C CC.C CC.C ..C.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C 3.0 CC.C CC.C CC.C VCC .C.C .C.C NN.C .C.C .C.C CC.C 3nd .C.C CN.C NC.C VCC 3nd CNC CNC CNC CC.C CC.C NC.C NC.C CC.C NC.C NC.C CC.C CC.C NC.C CC.C CC.C CC.C CC.C CC.C. VCC. .C.C. NC.C .C.C CCN CCN CC.C CCN CCN CCN CN.C VCN NC... CCN CN.C CN.C CN.C VNC VNC NN.C CNC CNC CNC CNC NNC NNC CNC CNC CNC NNC CNC CNC CNC CC.C CC.C CC.C CC.C 3.6 .vC .vC CC.C CNC ovd NYC {...C ...C NN.C .C.C 3.0 3.0 CC.C. CN.C. .N.C. CC.V. CN.C. NCN. NCN. CNC. NC... NC... CCN. 3C. CNN. CCN CNN. CNC. NNC. CC.C. CN.C. .N.C. CCé. CN.C. NCN. NCN. CNC. NC... NC... CCN. 3C. CNN. CCN CNN. CNC. NNC. CN... CNV NNV NN.C CC.C NC.C NC.C .CN CCN CCN CNC CN.C CC.C NC.. CC.C CN.C CN.C CN..V CC.C 8.; CC.CC NNNC CC.CN NC.CN CC.CN .N.CN .N.CN CC.C CCNn CNCC .C.C. CC.CC CCNC CCNC I'll IIIII I'I'. II'I. I'll. 'III. II'III II'I'I I'll. «co—uacCfioo 22.5w $3.3... w_.>_mc< .65 :28: sac-SI H 6.82 ...N... 8. .822. 321 CC.C CC.C CC.C NC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C CC.C v0.0 CC.C CC.C CC.C N. .wumw-.uouwo_.__m .C.C .C.C .C.C .C.C .C.C .C.C .C.C CC.C .C.C .C.C .C.C .C.C .C.C CC.C .C.C .C.C .C.C .. .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C CC.C .C.C .C.C .C.C C. CCN VCN ..CN CNN .CN CC. CC. CC. NC.. NC.. NC.. CC. CC. CN.. CC. CC.. CC. 3.0 CC.C CC.C CC.C CC.C CC.C CC.C NC.C NC.C NC.C CC.C CC.C CC.C NC.C CC.C CC.C CC.C .C.C .C.C .C.C NN.C ..C.C CC.C CC.C .C.C CC.C CC.C .C.C CC.C CC.C CC.C CC.C CC.C CC.C v.6 v..C v.6 NNC ...C CNC C..C CC.C C..C C..C C..C ...C C..C CC.C C..C ...C ...C NC.C NC.C NC.C NC.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C .C.C CC.C CC.C CC.C CC.C 3.0 106 3.0 CC.C 3.0 VCC ..C.C ..C.C CC.C NC.C 3.0 3.0 «Cd VNC VNC VNd .N.C C..C NNC NNC C..C NNC NNC C..C C..C NNC ...C C..C C..C C..C C..C C..C C..C C..C v..C CNC CNC ...C C..C CNC v.6 ...NC CNC CC.C C..C v.6 ...C C..C CNC C..C CNC C..C NNC NNC C..C NNC NNC NNC CNC NNC CC.C NNC C..C C..C ...N—0.2.. 2.0.93 .ouEC >25 33 PNNVLDCDled') SA... SAC. SAC SAC SAN SAC SAC SAV SAC SAN SA. SAN. S<.. S35 02.0 2.2.2.930 23:5 Csxim. $.29... iv. .23: ...C... H 6.22 wa© 2. .82... ”H. I IIIIHI131é‘III‘Iu‘r II. Im‘VII.'IJ.V..:IIIrII I L ‘kIlIrI’.D.I III I . I W. 1. .. 1I IIrIII. .. .r .7 v ... ‘Clnv.’ I i'llalllllll'llI I .I .4. ,, rips..- 1%:JIflpme. or» E 2.» a... a: a: 3.1 3.1 v3 8.. 3.1 .3 .3 3.. 1.: 8... . q. ..1.» .1.” a: 1...... 9.... mo. 3.. x: 31.1 can 1....» 13.. 81 .8... 3h 9.» n 2:” 4.»... m... 81 mu... 5.. ....n ..mw..m...o1n....mI 1......” pm. 2.... on.» P1» . .1 fl... 1...... or... .N..... ...... ..11 ,I "..1... I; 1.3... ...... ......o 1..... a... ...... 1.3.. 3909 74 I an « .n ... ...C. . I” 1. . I , .... I. H ...I. .1. .I . CW ... t .1 .... Jn C ”V. 11.). 1 NT. .5.0 .1.. ...X r m . .. VI I Iv. .. .1 I 1 . ....1 ... _ .IIu .. .... . SI: 1 ...,w ”Iv. . .11.... ......1 .1 w1w1quC..fiu 3WD 1 .. 1 ..1 .... I . I II. S. .. ..v I. .Iv ... mg“... 0 ......me . _ . . . 4 . . ...m «6 ..mIm1 .....IIW...1.u1:+.S I .. ..... .I . I ..w ... I . ..m ......I. . 1.... ... ....mwmgxw ...»..IMI. .. .. . ... ......I_... ”A”. u . 1. I . ... :I. I . . . . . . II . I ......qu .I (1&1? a. .I 1.». u ...N. ...1,.I .. . .. “....I ..1.1... I \ .II I I III. IIIIIIIIII .I I)... . .I . III I|.II.II-I¢IIII.I‘I'IJ “1..; . ... I. I I! . .I... III I......III.I..-. . . I ,. . .. g. WK» . .... ..1... «11)....30 . marzwnurpw. ......JEmw U. “I Hwy IHI IIIIIIIHIIII MF|IMI§ I! -IIIOII‘.I’1 Iw. :1... “M1911. 1 1 n W 2*. I.» I .1 we; I I... I5... I .1 0. ... t.— .. I0 1%."... .... ....PIO «OJQH .. JJII.-\I1.. f"... w , _I. ...... . I. 1.1.1.11... « .... I. L C . n .\.l% .w» I» v . I . I. h. n .1 1 I» . I/ > I . I. n. g . v.35..- ...N , I .1... . ... I I L .1 . . I. . Man: “.1. 19 ...S .... . . m. nxaflauflfi .....OIII... $11. ....I . ... :44 u. . I.v "A. Mivx. . M {1%.38. ......1. III: .IIIIII . I . 1 I II. I 1 I II I. . I I I ‘19.!wa HII . III I I III IIIIIIIIIIII II I.I.II IIIC'II II I I I I‘ II'IIIIIIIIIIII I I FILIQIJU. «I. .IIIIIMIHIII.I.....-IVIIL.P1IKIm-Wi\«h...1ruwmrt. I. I. uIIuInIIII .. . III IuIIII I I I . I .1 I I IIIWMI. I. III IIVII.III . II. LII. LI. WW.“ I III I I ...II.II. I .IIIIIIII . IquII ..II. I I I .III. I I ... . I. I1. I IIX‘v ....... I111I . .1... .. . 1HI\I4|I‘I II. I I . I. I I. I I . II II I I , I I. ..I 1 I II .. I I. I I I I .. . I 1 . . . I I I I 1 III . I . I I u . . . I. . 1 I I I I . I I . I . I I. I I I I . . I 1 I. . .1. II I .I . IIII I . II I I ...I I I . I I I .. I I I . I . I‘luu. . I . IIIIIIIIIIE'EIIIIrJ! Ia. . I 1. I II N1wo awn N1wo N1wN N1wN N1wN N1wN N1wN awn N1wN N1wN N-wN N1wN N-w_. N1wN N1wN N1wN NP mumww.19wo.__w Twh wa. Twh Two Two Two Two Two Two Two Two Two Two Two Two Two Two 2. . .. .U 33......» Two Two Two o1wo own own ow» n1wo own own own own own ow? own «wk own or .8901 :93. . . . N1ws ~1w~1 N1wh N1wo N1wo N1wo N1wo «w? N1wo ~1wo N1wo N1wo N1wo N1wo N1wo N1wo N1wo @ .. .......... ...... 1111...... . Two Two Two Two Two Two Two Twc Two Two Two Two Two Two Two Two Two TwN TwN TwN Tww Tww Tww Twp Tww Twp Tww Tww Twp Twp N1wo Twp Twp Twp . _ ......1.>1.... N1wh ~1wh N1wh N1wo N1wo N1wo ano «w? N1wo N1wo N1wo N1wo N1wo N1wo N1wo ~1wo N1wo =0 9.50.. m 393.”. cmmoéz \. . . o 5.8 mm... 3.. 3m 3m 31 mm... mm... mm... 3.. ”mm am» mm. mm... mm... 9% 9% m ......E..................... 11.1%.-.. v m N .. I! «L: 6v.) ..l.. Wh.‘1 “hafil 11.1%....1?o.l - CQRéV “.91\\,Vfl*uof\rff #l‘v N1wv N1wm N1wo N1wo N1wm N1wm N1wo N1w~ N1wN ~1w~ ~1wo N-wn awn N1wN N1wm N1wm N1wo .890... 9.9.9.5 va Tww Tw_. Tw_. Tww N1wm N1wm ~1wo N1wm N1wm Twp Twp Nuwa N1wo N1wo Twp Tww N1wn N1wm N1wm N1wN N1wN N1wN N1wN N1wN ~1wN ~1wN N1wN N1wN N1wN N1ww N1wN N1w~ N1w~ Twp Twp Twp N1wa ”do «w» «w» N1wo N.w~. «wk N1wo N1wo «wk N1wo «wk N1wo N1wo \ ...... r 1. .l .....Hq..1.....-.v.0..1.1.....1..........Alana-...CJJSUNI: .3302. 26.5.5. coucfi 33m 030 carom 2.032.230 £85m «VJ... 3 62.225.59.33E1233 3.: 51d d¢d Ed ond Nnd dmd dud mud mNd mNd 0nd and and 3d dud Nod Nnd vomood ..mumw--9mo.__o nodw no.3 11;: mod and do.» do.» oso MKS mus owd mvd om.» 96 do.» 3d ocd Nmropd, . 3d 3d 3d wwd 3d dwd dwd add 9d dwd 9d :d dwd odd dwd 3d :d ooé x: 3: mad and mud mud mod mud .Rd and mod osd mvd ohd and and cod omd mod dvd mm: mod and 5d and mod KN a: mad 56 odd a: o: NON EN cod mud on; 3.? 5... so; an; an; 8.? ndé No; or; moé 5... 5.. 8% no; No.9 3d 5d vnd Ed cod and mud \Ld cod Ed o¢d mud and add add ddd add odd Bd odd odd odd odd odd nod nod nod vod nod nod 8d and and mod ovd de sad sad and 5d nod and 3.0 and cud omd Pvd Fwd moé on... R: no; ové one oné or; om: one NY? oté wné mod omé wt; 9: vmomod uvd Ned wcd 5d and and and omd end end 5d and dad dad and and and womood wxmooz.o__ocmcn. at; at; we... «né up... so... 36 nod 86 2: «...? 2.... no... and do... 2... 2.... dddwod sovermnbuauo oouu Hull" "flfluflflflflflflfll llflfll flflnflflllflflflflfl.flflfluflflflfluflflfllllllllluflflufiu “flu“ £2.51— !m: 2&3 and in.» in: 2mm 2% 2% Sun inn 2a.. 2%.. ES... 54:: 543 .2» :5. “in 2.032.980 £35m 18.33 ....o ..< ... 5322.850 .2... 82 95:55. warms... xvi $.31 583: Mm so» “at ~u ”BEEN 3.5.35500 ED: «.0.—85 DEQ u=03g2¢0=00 0:2 X w .305. me© 9:. @3022”. APPENDIX J Risk and Hazard Index Calculation 323 0&0 0&0 0&0 0&0 0&v 0&v 0&0 0&0 0&v 0&0 0&0 0&0 0&0 0&0 0&0 2&3. 2&3. 2&0 0&0 0&0 0&0 0&0 0&v 0&v 0&5 0&0 0&0 0&5 0&0 0&0 0&0 0&0 0&0 2&3. 2&0? 2&0 0&0 0&0 0&0 0&0 0&V 0&V 0&5 0&0 0&0 0&0 0&5 0&0 0&0 0&0 0&0 Il'| 'l'-‘ Il"- "" "" 'l'- 'l" 'l" II'II ll'l I"'. 'III' "'I' ""' "ll II'I I"" l'I' '|ll- "II' 'I" "|I |"l "'| ||" ""I 'l" 'l'-‘ '||" 'l'|' |"'- 'll' l"l ."'l 2&3 2&0v 2&0 5N0 5N0 9.0 000 00d 0nd 00.0 00.N 00d #00 00.0 0N.0 00.0 00.0 50.0 0&0 0&v 0&v 0&w 0&v 0&v 0&w 0&0 0&0 0&0 0&v 0&v 0&v 0&v 0&v 0&v 0&V 0&v 0&0 0&v 0&0 0&0 0&V 0&v 0&0 0&0 0&0 0&0 0&0 0&0 2&0 2&5 2&0 2&0 2&0. 2&0 0&0 0&0 0&0 0&0 0&0 0&0 0&v 0&0 0&w 0&0 0&0 0&0 0&0 0&0 0&0 0&v 0&w 0&v 0&0 0&0 0&v 0&v 0&v 0&0 0&0 0&0 0&0 0&0 0&0 0&5 2&0 2&5 2&0 2&0 2&v 2&0 0&0 0&0 0&0 0&0 0&0 0&0 0&v 0&v 0&¢ 0&v 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&v 0&v 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 2&0 2&5 2&0 2&0 2&v 2&0 00.0 00d 00d 00d 0¢.N N0.N mud 00... 00... N0... 0¢N 00.N 00.N 00d Fwd 00.N 00.N 00d 3.0 00d VNN 0rd 00.N v0.~ 50.0 50.0 50.0 50.0 00.0 00.0 0&v 0&0 0&0 0&0 0&0 0&v 0&v 0&0 0&0 0&0 2&N 2&r 0&0 0&0 0&5 0&5 0&v 0&v 0&0 0&0 0&0 0&0 2&N 2&—. 0&0 0&5 0&5 0&5 0&v 0&v 0&0 0&0 0&0 0&0 2&N 2&_. 00.N 00.0 00.0 00.0 0N.N 0NN 00.N 0N.0 50.0 50.0 9mm 9mm 9mm owe 9% 9mm 52 9mm 3: mm: mm: mm: mm: 82 Ev 9mm mm» mm: mm: mm: 82 clad 9mm 9mm 9mm 9mm 9mm 9mm 89 mm... mmm mmm mummmmmmm 32. :aa. :5. :3. :5 :5 :5 .35.. 9mm 9% an”: 9mm 30 3o 52 9mm 9mm 9mm 9mm 3m 3m 82 3v 9% 9mm 9mm 9mm 9mm 82 lease; 3: 3: 9mm 3» mm: mm: 82 9mm 9mm 3: 9mm 9mm 9mm 52 :fi. :5. :(2 :3 :5 :5 62...... 9mm 9mm @mv own 9% 9mm 32 9mm 35 01mm 35 9mm 9mm 82 mm: mm: 3: 9mm 9mm 35 82 '35 mm: 3: 9% mm: 3: $5 82 9% 35 mm; 9% 9% 9mm [52 2.3.50 .0 :92 :5. :3. :3 :5 5:35.. 532.... EB. 8...; {EI— mod 8.” Se 8N 8d 9.” 32 8e one and 8+ 3+ Se 82 and 9.” 91m and m3. m? 82 E.» in mom 2.w m3 2% 82 B.” an 8.? m; 3.” 3a 52 an" F25? 2&2. 2&0 2&0 2&5 2&0 2&0 2&Q 2&0 2&0 2&—. 2&N_. 2<_.—. 2<0v 2(0 2(0 2(5 noto& np50: ....o ._< c. .230 um 02 981 an «33> :ME «canton .23". 30.0 x 9.5:. u me 59-509 m_m>_mc< $3 5.3:. :95: H 3.82 me© 9: 80ng 324 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&5 0&0 0&0 0&0 0&5 0&¢ 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&0 0&0 0&5 0&5 0&5 0&0 0&0 0&5 0&0 0&0 0&0 0&5 0&5 0&5 0&0 0&0 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 ¢&—. 0&0 0&5 0&5 0&5 0&5 0&5 0&5 0&0 0&0 0&0 0&5 0&5 0&0 0&¢ 0&5 0&5 0&5 2&5. 2&0—. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&N 2&_. 2&«-. 2(3. 2(0.. 2(0 2<0 2(5 0&5 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&0 0&0 0&0 0&0 0&0 Twp Tm? v&_. 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 7&9 ¢&—. 0&0 0&0 0&0 0&0 0&0 0&5 0&0 0&0 0&0 0&0 0&0 0&0 ¢&_. 0&5 7&9 Tm? V&_. 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&0 0&0 0&0 0&0 2&3. 2&3. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&0 2&—. 2&2. 2(2. 2<0v 2(0 2(0 2(5 0&0 0&0 0&0 0&_. 0&r 0&r 0&—. 0&_. 0&w 0&0 0&0 0&0 0&9 0&5 0&_. 0&—. 0&_. 0&_. 0&w 0&_. 0&_. 0&—. 0&0 0&0 0&5 0&—. 0&_. 0&_. 0&« 0&v 0&_. 0&_. 0&r 0&—. 0&0 0&0 0&0 0&0 0&0 0&_. 0&0 0&0 0&_. 0&r 0&w 0&0 0&0 0&w 0&9 0&_. 0&F 0&_. 0&r 0&_. 0&0 0&0 0&0 0&0 0&_. 0&_. 0&r 0&_. 0&r 0&—. 0&0 0&_. 0&_. 0&v 0&_. 0&_. 0&—. 0&w 0&F 0&_. 0&_. 0&_. 0&_. 0&_. 0&_. 0&_. 0&0 0&0 0&v 0&_. 0&_. 2&..-. 2&0? 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&N 2&.. 2&Ne 2(-.-. 2(0.. 2<0 2(0 2(5 50.0 50.0 00.0 0w¢ 00¢ 50¢ 50¢ ¢¢¢ 00¢ 3.0 05.0 00.0 NN¢ 00.N 00¢ 00.0 N0¢ 50.0 ¢0.0 0¢.0 00¢ ¢w¢ N00 ¢5.0 0w¢ 00¢ 00¢ 00¢ 55¢ 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 ..0.0 00¢ 00¢ 00.0 00.0 ¢0¢ F0¢ N0¢ 00¢ 00¢ 00¢ 00¢ 0.0 9.0 00¢ 0¢¢ 00¢ 00¢ 00¢ 5.0 N0¢ N¢¢ 00¢ 00¢ No.0 ¢0.0 ¢0.0 00.0 NN.0 00.0 3.0 00¢ 50¢ ¢N¢ NN¢ r0¢ 00¢ 00¢ 00.0 00¢ 00¢ 00¢ 00¢ 00.0 _.0.N 0¢¢ 5¢¢ 5¢¢ “a" fifiufi"fifiuflunuaufiufiflflfiufiafififififi 2&2. 2&0_. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&N 2&—. 2&2. 2(3. 2<0w 2<0 2(0 2(5 I _.00 w 000 —. 000 F 000 _. 500 F octo& F00 F 000 _. 000 w 000 _. 500 _. mep cam? mmmr mom. 1%? 5:33 230 not»; Fmor cam? wear mam? 15mmF 2.3.30 3 00320::— th 002n> 0.0—m noto& h.20: :30 ...< 5 .230 «a 33300 «a no:.w> :30 0:05.00 .205“. 2.0.0 x 3.8:. u :20 52$2 322... ix 5.8: 5.2:: . 6.8.2 xwa© 9: @8sz 325 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&0 0&5 0&5 0&5 0&5 0&5 0&¢ 0&5 0&5 0&5 900.. 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 000.. 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 ¢&_. ¢&v 000.. 0&5 0&0 0&5 0&5 0&5 0&5 0&5 0&5 0&5 0&0 0&0 0&5 0&5 0&0 0&5 0&5 0&5 000v 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&5 0&0 0&0 0&0 0&5 0&0 0&5 0&5 0&5 500.. 2&_.—.2&0_. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&0 2&—. 2&3. 2(5. 2<0w 2<0 2<0 2<5 acto& ¢&P ¢&_. ¢&_. ¢&_. 0&0 0&0 0&0 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 F00? 0&0 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&5 000v ¢&_. ¢&_. 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 ¢&F 7&9 ¢&_. Tm? wa ¢&_. 000.. 02.00; 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 000w 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 500w 2&—._.2&0_. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&0 2&—. 2&2. 2(3. 2<0_. 2<0 2<0 2<5 uo...o& 0&w 0&_. 0&_. 0&F 0&0 0&0 0&0 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 _.00_. 0&0 0&0 0&0 0&5 0&5 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&5 0&5 0&5 0&5 0&0 000.. 0&_. 0&5 0&0 0&0 0&5 0&5 0&0 0&5 0&0 0&0 0&0 0&_. 0&_. 0&_. 0&_. 0&—. 0&_. 000.. 230 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&_. 0&_. 0&0 0&0 0&_. 0&0 0&0 0&0 000? 0&_. 0&_. 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 0&0 500.. I "nu" "nun" "nu" """fl "nu-Ila" "nu" "nu" "nu" "flu" "nu" "nu" """H" """fl" """fl" "flu" "flu" .uuun 0:028 ho 2&_.—.2&0—. 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&N 2&9 2&N—. 2(2. 2(0-. 2<0 2(0 2(5 Bato& 0030.0—.5 Eat 8:_a> xuWPI— .00 No.0 00.0 00.0 ¢5¢ 00¢ 00¢ 05.0 00¢ 00¢ ¢0¢ N5¢ 00¢ ¢0.N 00¢ 95¢ _.5¢ r00? N¢¢ 00¢ _.0¢ ¢0.0 00.0 2.0 No.0 00.0 5.20 50.0 50.0 00.0 0¢.0 5¢.0 0¢.0 0¢.0 V0.0 000_. 00.0 «0.0 0¢¢ 0¢¢ _.0.0 05.0 0N.0 _.¢.0 0_.¢ 00¢ N¢¢ 2.0 .....0 .....0 00.0 .00 5¢.0 000w 55¢ 00¢ 05¢ 00¢ ..0¢ ¢0¢ 00¢ 00¢ 00¢ 50¢ 50¢ 05¢ 00¢ v0.0 00¢ 50¢ 00¢ 000.. 00¢ 00¢ _.0¢ w0¢ 05¢ 05¢ 05¢ 05¢ 05¢ 00¢ N0¢ N0¢ 0¢¢ 00.0 0¢¢ N0¢ 5¢¢ i..m..00_. an“ fififiufifififififi" -TIT fifififififi" 2&5. 2&0? 2&0 2&0 2&5 2&0 2&0 2&¢ 2&0 2&N 2&_. 2&5. 2(3 2<0v 2(0 2<0 2<5 toto& ”EH: ...-0 .._< c. 6:00 .88". 8.06 x 9.5:. u Em Rm 758 F m_m>_mc< me 5.31.383: 0m. .3530”. «a nu:_u> xvi «:0N—.00 . Enos. xm_m© 9: muoEmE 326 mm. mm. mm. A...N: 9mm 9mm 9mm 9m. 9m... owe 9mm 9mm 3.. 9mm 3.. 9mm 35 N. 0.3.. 062:0 3.. ma"... ....mv 3.. R: an 9mm 9mm En 9mm mm.” .3... man 9mm 3... 3.. 0mm .. _ 9mm 3.. 3.. 9m... 93 9mm 9mm 9mm 9mm 9mm mm.” ...N... own 9% own 3.. mm: 0. mm: 3.. mm... 9mm 9mm 9mm mm 9% 3... Own 9mm Own 0m.” 3w 9mm 9mm mm.” m own 9% 9mm 9mm @mv 9.... 3.. 9mm 3.. 9% Que 9m... 3... mm.” mm... Wmv 3.. 0 9mm 9mm mmm an 3.. 3v 93 En 3v 3.. 99 mm... mm... mm.” mm... 3.. mm... 5 ...... 9% 9% mmm 9% mm mm. mm. mm. mm. mm. mm. mm... 9m. 9mm 3.. 9% 3m 0 9m... 9m... 9m... 9m... 3.. 3v 3.. 9mm om... 3.. 9% mm: mm: 9mm 3.. 3... mm? m _ 3.. 9mm 9m... 9m. 9m. 9% 9mm om... 9mm 9mm 9mm 9m. 9% on"... 9% mm: 3. v 9% mm... mm: mm... 9m. mm.” mm.” mm.” mm... own 9mm 3... 9mm 3... mm.” mm... mm? m .— 9mm 9mm 3.. mm» mm. mm. 3. 9mm 3. mm. mm. 0w. 3. mm... mm. mm. mm. N ,oxmmozbaocmzn. 9m. Wu. 3. 9m. flu. 9m» own 9m. 9m» own 3... $3 33 9mm Qua 3... Wu. F 2.50 >030 oowo &: 2&0r 2&0 2&0 2&5 2&0 2&0 2&v 2&0 2&N 2&r 2&N_.2<..—.2<0r 2<0 2(0 2(5 toro& 0:030:0—00D Bog—E can—«20:... 5”. ED...— xwfizsu< FE 8... no... 30 8.... Rd 8+ mm... and an... «3 8... E... and new «.... v: ....v 00500 .m.m.m-.-w.8_0 5.8 8.- 3.3 3.8 8.». 8.2 8.0. 3... 8..: com. 8... mm... 8.0. 8.2 NS. 3... 8... 05de , , . New 8.... SN 8.” 8.. mm. 8.. ...... 8.. 3.. v... 8.. 8.. 8.. 3.. .9. 8.. . x0061. 093...... 3.2 9.2 ....m. on... non. mo... 8.... m2... 8..: 8.2 3.... 8..... ...... 8.... on... .N..... .N..... .......n_._..._ 2.N 2.N ...N ...N 2.N 8d 8.” z... 8.. 8.. 2.N «...N 84. 5.. 8a 2.N 2.N 28 3.8 «now 9.3 3.3 ~98 No.8 8... 3.8 3.8 ......N n...- :8 98. 8.8 «...NN otuw ...o. 8.0. 8.0. 3.» 8.. ...N. mm. 8... m... a... or... 8.. mm. ...... 3.. 8.. 8.. mod Now 3.... SN Ba 8.. 8.. 5.. 5. 3.. 8.. 8d 8.. cu. 5.. 3.... mod ...... «n... on... a: «on an.» 9.... 2.w 8a 8...” B.” «N... .3 N...“ 8N ......” .3 .3 8.8 Sam 5% ....8 0...: m3. m3. 8.... ....c. 9...: ...... 8.2 3.0. 8.2 2.... 8... 8... _ 8.3 ...? 8.... 2.9. 5.8 8.x” 8....” 8.8 3.3” 8.3 5.8 ...B 8.3 38 ...mn 8.8 3.8 mxmmoz.o__o_.._.mcm 3.0 no.» 8... 8.... «5 8.. and 2... 8.: 8+ 3+ «5 one 3." and .5 ...v .535 >250 ouao 2&0 2&¢ 2&0 2&N 2&r 2&Nv2<:2<0_. 2<0 2(0 2<5 :2. :83; &2m 5|: 0:00-2.0.30 Bot—=0 .23“. 2.0.0 x 9.5:. gm. 202mg me ....mm: :25... U 682 wa© 9: 2529a "xxx 327 9m. 9m. 9m. 9m. 9m. om. 9m. .-mo mm. mm. mm. mm. mm: .-m. 9m. 3. 9m. N. .-mm .-mm .-mm .-mw .-m. .-mm .-mo .-mm .-mo .-mo .-m. .-m. .-mo .-mv .-mo .-m. .-m. .. mm... 9mm mm» mm. 9% 9mm 9mm 3m 9% 9mm 9mm 9mm 3.. mm: 9% 9mm 9% 0. .-mm .-mm .-mm .-mm. .-mv .-mv .-mv .-mm .-mv .-mv .-mw .-mv .-mv .-mm .-mv .-mv .-mv m 3. 9mm 9mm 9mm 9% cm. 9mm 3. 9% mm. own 9% 9m. mm: mm. om. mm. m .-mm .-mm .-mm .-mm .-mN .-mu .-mm .-wu .-mu .-mu .-mm ..mm .-mm .-m. .-mw .-mN .-mm . .-mm .-mm .-wm .-m. .-mo .-mw .-mm .-wm .-mo .-mo .-wm .-mo .-mw .-mv .-mo .-mm ..mo 0 9mm ”mm mm.” 9mm 9mm EN EN mmm 9mm 9mm mm.” mm... MEN MEN 9% En mm" m 9% 9mm 9% 3v 9% mm... mm... mm... 3.. ”m... 3.. mm; 3.. mm. mm; 3.. 3.. v .-mw .-mm .-mm .-mm .-w. .-w. .-m: .-m. .-m. .-m. .-m. .-m. .-m. 3.. .-m. .-m. .-w. m : 9mm 9mm mm... mm. mm. 9% $0 35 3m 9mm 9% 3. 9% 3v 9% mm. mm. N 9.802282; 3" 9m. ...-mu 3. ....m. ....m. ....m. 9m. 3. mm. mm. mm. ...-m. 9m. 9m. 9m. 9m. . .225 .630 33 "NH" merufl¢> .... 5.3. 5.; 5E» 5.... 2% in... 2% sin sin 2.: Emu. :5. 5:3. :5. :5 :<. 3.3.. 22.29on 22.50 5:22.... .2: ES. in .33 ...W. m..o ...... NE 3d .3 «no «no 98 «no woo 3.0 .3 and 3.0 8.0 .3 .3 v.o.oo§mm-.-98 w. 3.0 98 98 8.0 8.0 8.0 8.0 3.0 8.0 mad :8 8.0 8.0 .~.o 8d 8.0 8.0 0886...... 3... 3.0 3.0 8... 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8... 388.0 69%.: 86 3.0 and 3d «No one 8.0 ...o 8.0 and .N... «No cm... 2d 8d «No .3 889°... m... n... v... 8.. 8.0 8.0 8... .3 «no «.3 3d 8d 8.0 3:0 :3 8.0 m3 3d 2d who .3 ...o ...o go ...o ...o ...o N... ...o .0... ...o ....o ....o ....o ....o mad 8... 8.0 mm... and 3o .3 «no on... 2d 8.0 8.0 no.0 No.0 mod .8 .o.o 8.0 .3 .o.o 5.0 .3 So .05 8.0 .o.o 8d 8... 8.0 S... So 8... No.0 8d 8.0 mod 8... mod 8... .o.o No.0 8... 8° 8... 8.0 .od .0... 8.0 8.0 .0... .0... 8.0 8.0 .o.o 3d Ed .0... .o.o «28.0- 3.0 3... 3d 3.0 8.0 Ba 8.o mod 8.0 86 8.0 8.0 8.0 No.0 8... 8d 8.0 088.0 2302282; no... 8.. 8.. 8.. mm... .....m m; 8+ 2.... 2.... 8.... mm... 2.... o... 8.... ...N... ...N... .255 3.30 33 :2. =5 “_Em 0:25:9ch 0.2.50 .82.“. 2.20 x 9.8:. n :0.”— .8. m_m>_mc< xmi 56m: cmEzI .. 6.82 me© 9.. $225 328 7w. vumw vim. Tm. me 0mm 0mm 0mm Wma m-wm Tm. Tm. Twp mumw Tww Wm. Twp NF ..90MJ $.8....W.. ”mm Wmm ..-mm Ema 5mm ”mm ”mm ...-mm Wwo ”we WE. 5mm Wmc Wmv Wmo Wm... Wm. ..F Tug 9mm 9mm ouww om: muwm 9mm 9mm 9mm 9w... 9mm 9mm Wmm ouww mumv 9mm oumo 9mm or 0mm m-mm wrmm m-mv 0-N? mflm min own m-mn m-mm m-mv mm? 0-N? 0mm mm? mm; 0-N? m 0-N. 0-N. 9m: mm: Qua 9mm ovum mxwx. 9mm @ww 9mm wumm mum.» 9mm 9mm me 9mm m 0-N. 0-N. mm... 0-N. Yum Yum Yum Tux. Yum Yum Yma Yum Yum Yum Yum Yum 7mm x. 0-me 0mm wrwm m-m~ mum—N m-m~ m.wN 0mm wrwN m-wN m-w~ m-wN 0mm mflw m.m.N m.mN 9mm m m-mm mmo m-wm 0mm. mmfi m-wm 9mm mumv mlwv mum—v mmm 0mm muwm m-wm n-wm 9mm muwm m v m N Qwu m-wN m-wN m-wN Wm. 9w. 0-N. 0-N? 0-N. mm: 0-N. nun... adv Tum 0-N. mm. 9w. ”mu «flu m-m~ 0mm 0-N. ”mp 0-N. mm: 0-N. Wm. 0-N. mm. 0-N. Ywa 0-N. m-mw 0-N. x090... ..o..._.o.:m..m 330.2,... 0:92... 9mm flumm 9mm ”.mv 0.N? mama nxmn Gnu” ”(Wm ”WM nnmv numv mum" ”nun 9mm va 0.N? r .0050 225% 0000 2.2.2.902. 23:3 5.5.2.... .2... E2. .... ==u< a... .... .... 3.. 8.0 3... 3... n... 3... 3.0 8.0 8... 3o 3... 8... «a... 8.0 5.0 3... 5... 8.0 8.0 5... .2. 8... 5.0 .3. .0... .3. 5.0 8... 5... 5... 5... B... B... .0... 8... 8... 8... 3o 3... 8.0 no... 8... 3° 3° 8... no... no... 3o 3... «...... .N..... 8.0 a... .3 .3 .N... .3 .3 8... 3.0 .2. on... «no «no 3.... 0.... O... 0.... 8.0 8... B... .o... 8.0 .0... 8... 3o 8.0 8... 8... 8d 8.0 8... and. 3.0. .....o. .3 .3 mm... 8.. 8... on. 8.. 3.. on... 3.. ...... 8.. an ...N... 3° ...... «No NN... m..o S... ....o m... ...o ...o 8... m... ...... N... a... m... ...... 8... one one 8... 3... ....o ....o 8... ow... 9.... ...... 3.... ....o .N... .3 3... .....o 8.8 3.2 ...o. 8.... own. .3... 8... 0...... .m... ...... 8... ....n. 2.N. 8.. RN. .....n. ...... 8.... 2.... ...o. 8.... 8.2 .3. ...N. 3.0. .m... .m... 85 ...... m..~. 8.. an... ...... ...N. . on... a... .... N... on... No... no... .0.. 8N 8.. 2.w own mod 3.. mod own 8..” .mxmmoz.o_.ocmcn. 2.5 2.: 3... 3.8 ...N." 8.... 8.2 8.3 ...... ...2. on..." 8.2 2.3 3.2 8.8 and» on...” 218... 32.0 >250 ammo IIII flflllfln flflflfln flflflflu "flu" "flu“ "flu" flflflfl "flu" "flu" "flflfl flflflfln flflflflu "flu“ flflflfl flflflflflflflfl :0...— «3..— En—ww finer Ema Ema in: Ema 5mm in? Ema En—N En. v Eva E<= E<3 E<0 E250 030 ...: 59.3.. Ema Ema in.» Emu 5mm En; in.” Sun in: Emue 2(325: E<0 E<0 2: vote... 2.032.202”. 0.22.5 ...C—«20....— L06 mud and 8.0 5.0 mad and 506 00.0 00.0 mad Nmmwod ...mumw... ”ENE—6 :d 3.0 3.0 26 mod no.0 mod no.0 mod mod mod mod mod mod 8.0 mod mod vm 30.0 3.0 3.0 3.0 NZ. :6 ofio 36 mod 2.0 9.0 9.0 :6 owd mod ofio Inc :6 «050.0 8.00 8.50 an...” 8.00 modm mNNN OMEN v0.0a 8NN 8.5m wmdu ONmN vaN 00.: mwKN hwdu 8.0a $m~md mod and de 9.6 :6 .06 ~06 de 50.0 had and 3.0 and .N... 00.0 3.0 3.0 mahood 2.N. mod. Nod. {.0. mvd 8.0 8.0 NmN 5.0 5.0 mod 3.0 and wow and 3.0 mvd vamvd mod mod mod wwé «0.. 3.. 3... an... 5%.? hvé mm. woé mvé mad 00.. rm... 5... moaned ...Nd had ...Nd vmd .N.C 9.0 2.0 Cd 3.0 2.0 0N.0 .N.C 0N.0 mvd 0N.0 .N.C Fwd 3.0006 and mud mud mod No.0 8.0 8.0 mvd omd and and 56 no.0 nmd No.0 rod 56 Nmovod 00.0 and .520 3.0 mad and mmd MNN mmN mmd end end mmd 00.. EN end end 0003.0 MEN NNN KN NYN 3d 8... 8.. on. vmé vmé mod mwd nmé mm; 00.. 2.N 2.N 30006 :.N ntu 3d 0rd N04 mu... mu... «0.? 2.6 2.6 00... r0; 2.... 22' uhé 34 oaé $53.... 9.8%.... ..... H. ,, .. wxmmoz. 0:9.ch .350 >30 030 2.2.2.2000 0.350 Ema En: EmNr E