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ABSTRACT

DEVELOPMENT OF THE DETECTOR STAGE

OF AN ADAPTIVE ALERTING DEVICE FOR

PEOPLE WITH HEARING DISABILITIES

By

Viktor Adut

Since their inception, devices which signal deaf people to the occurrence of alerting

signals (fire alarms, doorbells, etc.) have changed little. Their use is limited to highly

constrained environments and relatively few sounds. This thesis reports the results of

the first phase of a commercial research project between Michigan State University’s

Speech Processing Laboratory and Silent Call Corporation whose goal is to develop

a digital-signal-processing—based portable device which “listens” to the environment

and detects the presence of alerting signals. The device will also have the capability to

“learn” new sound sets. In this work, algorithms for detection of alerting signals under

realistic noise environments are developed, and initial simulation results quantifying

the performance of these algorithms are presented.



ACKNOWLEDGMENTS

I am indebted to Professor John R. Deller, Jr. for the guidance he provided. I

would like to thank to my committee members, Professor Marvin Siegel and Professor

Robert Nowak, for their insightful comments. I am also thankful to Mr. Dale Joachim

(M.S., Ph.D. candidate) for numerous invaluable discussions, especially during the

initial stages of the project.

This study is based in part on work supported by State Research Fund grant

monies awarded to Silent Call Corporation by the Michigan Jobs Commission. Any

opinions, findings, conclusions, or recommendations expressed in this thesis are solely

mine and do not necessarily reflect the views of the Michigan Jobs Commission.

iii



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 Introduction

2 Detector Architecture

2.1 Overview ..................................

2.2 Operating Environment .........................

2.2.1 Classification of Alerting Signals .................

2.2.2 Noise Environment ........................

2.3 Sampling Stage ..............................

2.4 Choosing a Detection Strategy ......................

2.4.1 Spectral Thresholding ...................... 0

2.4.2 Dynamic Time Warping and Hidden Markov Models .....

2.4.3 Artificial Neural Networks ....................

2.5 A Phnctional Block Description of Detector Architecture .......

3 Detector Design

3.1 Design Methodology ...........................

3.2 Detection Filters .............................

3.2.1 Matched Filter ..........................

3.2.2 Eigenfilter .............................

3.2.3 Prediction Error Filter ......................

3.2.4 Autocorrelation Detector .....................

3.3 Decision Block ..............................

3.3.1 Synchronization ..........................

3.3.2 Decision Rule ...........................

3.4 Postprocessor ...............................

iv

vi

vii

H
#
A
O
D
W

13

19

20

22

22

23

23

26

26

27

30

31

33

33

36

38



4 Performance Evaluation

4.1 Introduction ................................

4.2 Benchmarking with the SNR Improvement Factor ...........

4.2.1 Formal Developments .......................

4.2.2 Simulation Results ........................

4.3 Benchmarking Using Detection Rates ..................

4.3.1 Introduction ............................

4.3.2 Performance of the Decision Rule ................

4.3.3 Performance of the Overall Detector ..............

5 Conclusions and Considerations for Future Research

5.1 Conclusions ................................

5.2 Future Research ..............................

BIBLIOGRAPHY

4O

40

41

41

43

44

44

47

49

63

63

64

65

 



4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

Design details of the detection filters used in the simulations......

SNR improvement factors in decibels for matched filter.........

SNR improvement factors in decibels for prediction error filter. . . . .

SNR improvement factors in decibels for eigenfilter. ..........

SNR improvement factors in decibels for autocorrelation detector. . .

vi

45

46

46

46

46



2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

LIST OF FIGURES

A fire alarm signal consisting of a stationary region and a region of

silence. ..................................

A doorbell signal consisting of two stationary regions. ........

A police siren signal consisting of two stationary signal segments con-

nected by a transition region. ......................

A crying baby signal consisting of two stationary signal segments con-

nected by transition regions. ......................

Several example stationary signal segments and their frequency spec-

tra. ....................................

Several example noise waveforms. ...................

The sampling stage. ...........................

The basic detector architecture. ....................

Framewise processing of a stationary signal segment. .........

Power curves of the matched filter detector for L=750 samples and

several values of a. ............................

Power curves of the matched filter detector for L=1000 samples and

several values of a. ............................

Power curves of the matched filter detector for L=1500 samples and

several values of a. ............................

Power curves of the eigenfilter detector for L=750 samples and several

values of a. ................................

Power curves of the eigenfilter detector for L=1000 samples and several

values of a. ................................

Power curves of the eigenfilter detector for L=1500 samples and several

values of a. ................................

Power curves of the autocorrelation detector for L=750 samples and

several values of a. ............................

Power curves of the autocorrelation detector for L=1000 samples and

several values of a. ............................

vii

11

l4

17

21

25

35

50

51

52

53

54

55

56



4.9 Power curves of the autocorrelation detector for L=1500 samples and

several values of a. ............................

4.10 Overall error rate of the matched filter detector for L=1500 samples

and several values of a. .........................

4.11 Overall error rate of the eigenfilter detector for L=1500 samples and

several values of a. ............................

4.12 Overall error rate of the autocorrelation detector for L=1500 samples

and several values of a. .........................

viii

 



CHAPTER 1

Introduction

During the past decades advances in biomedical engineering combined with break-

throughs in microelectronics resulted in significant improvements in the devices for

people with hearing disabilities. For people with mild to profound hearing impair-

ments, the most widely used solution is a classical hearing aid fitted in the ear canal.

If the auditory nerves are damaged, a cochlear implant consisting of clusters of elec-

trodes which directly excite the nerves in cochlea can be considered [8]. However,

these techniques are of limited success when hearing loss is severe. They result in

poor sound quality and the problems can be so serious that the owner may opt not

to use them unless absolutely necessary, or reject them totally [18].

If neither of these solutions helps, the inability to respond to emergency signals

becomes a potentially life threatening problem. In this case the deaf person must use

alerting devices that signal the occurrence of acoustic events like doorbells, telephones,

smoke detectors, etc. Such alerting devices have changed little over the past fifty

years. They usually consist of a transmitter hard-wired to the signaling device which

activates a blinking light or a vibratory device carried by the system user. The

operation of these devices is extremely. constrained and their use is limited to the

everyday environments of the deaf person.



Recently, a digital-signal-processing (DSP) based adaptive alerting device which

solves these limitations was proposed, and its feasibility was studied by [5]. Using

DSP technology, one can develop a portable device which “listens” to the environment

and detects the presence of alerting signals. One can also equip this device with

the capability to “learn” new sound sets. The current advances in microprocessor

technology provide the required computational power for real-time implementation

of such algorithms at low cost. Given the fact that there are 28 million individuals

with with hearing impairments in United States alone [18], the world-wide utility of

this device is enormous.

This thesis was written as part of a joint research project between Michigan State

University’s Speech Processing Laboratory and Silent Call Corporation whose ulti-

mate goal is to develop a commercially-available adaptive alerting device for mass

markets. The results of the first phase of this project are presented here.

Before studying the development of detection algorithms, we must concisely state

the specifications of the alerting device. Our goal is to develop a device which can

detect the presence of alerting signals (sirens, doorbells, crying babies, etc.) under

realistic noise environments encountered in everyday life (people talking, highway

noise, air conditioner noise, etc.). The algorithm must be computationally efficient,

work with limited memory, and lend itself to trainability.

In this study we pursue a detection theoretic approach for the development of the

alerting device, and focus on the development of the detector stage of the adaptive

alerting device. In Chapter 2, the basic structure of the detector stage is developed

in terms of functional blocks. In Chapter 3, several detection strategies are examined

from a theoretical standpoint. Results of simulation studies are presented in Chapter

4. The final chapter discusses open points, and outlines the course of future research.



CHAPTER 2

Detector Architecture

2.1 Overview

The goal of this chapter is to describe the detector stage of the alerting device in

terms of functional blocks. The primary factors affecting any detection algorithm

are the properties of the signals to be detected and those of the noise environment;

therefore we start by classifying alerting signals according to the complexity of their

time-domain waveforms and performing an analysis of the diverse acoustic noise en-

vironments under which the alerting device is expected to operate. In Section 2.3,

we turn our attention to the sampling stage and explain how the automatic gain

controller (AGC) used in this stage complicates the detection procedure. Next, in

Section 2.4, we justify the decision to apply a detection-theoretic technique to the

development of the adaptive alerting device, and discuss the shortcomings of other

possible approaches. Finally, in Section 2.5, our observations lead to the formulation

of an alerting signal detector consisting of three stages.



2.2 Operating Environment

2.2.1 Classification of Alerting Signals

Let us consider Figures 2.1-2.4 which show frames of several alerting signals. Each

frame is indexed beginning from time 0 and is long enough to represent the salient

properties of the individual alerting signals. As every example signal in this thesis,

they were sampled at 8 kHz and quantized to 8 bits. First, let us focus on the fire

alarm signal in Figure 2.1. Every realization of this signal consists of the repetition

of a stationary signal segment followed by a region of silence. The duration of these

regions is fixed for every realization. Next, let us examine the doorbell signal shown

in Figure 2.2. It is composed of two stationary signal segments connected. Depending

on how quickly one pushes and releases the doorbell button, the length of each signal

section in the generated signal will be different; however their order will be same.

Finally, let us analyze the crying baby signal shown in Figure 2.4. This signal consists

of several quasi-stationary signal segments connected by transition regions; both their

duration and temporal order will be different every time the baby cries.

Thus we conclude that alerting signals are locally stationary; based on the above

observations we can classify them according to increasing complexity as follows:

0 Type I alerting signal: The temporal order and duration of each stationary

signal segment is fixed for every realization (e. 9., fire alarm).

0 Type II alerting signal: The temporal order of stationary signal segments is

same across realizations; however their durations are different (e. g., doorbell).

0 Type III alerting signal: Both the temporal order and durations of stationary

signal segments are variable across realizations (e.g., crying baby).
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Figure 2.1. A fire alarm signal consisting of a stationary region and a region of silence.
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Figure 2.1. (cont’d).
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Figure 2.2. A doorbell signal consisting of two stationary regions.
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Figure 2.2. (cont’d).
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Figure 2.3. A police siren signal consisting of two stationary signal segments con-

nected by a transition region.
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Figure 2.3. (cont’d).
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Figure 2.4. A crying baby signal consisting of two stationary signal segments con-

nected by transition regions.
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Figure 2.4. (cont’d).
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Next, let us briefly consider the spectral properties of the stationary signal seg-

ments. From Figure 2.5, we see that the the energy of the stationary signal segments

of interest is concentrated in narrow spectral peaks.

In the subsequent sections we exploit the conclusions of the above analysis to

derive a detection scheme tailored to the properties of alerting signals.

2.2.2 Noise Environment

The adaptive alerting device will operate under a multitude of different acoustic noise

environments encountered in everyday life. As the example waveforms given in Figure

2.6 indicate, the noise environment can be described as additive, non-Gaussian, and

nonstationary. With the exception of very restricted cases, such noise environments

cannot be reliably modeled [9].

Comparable situations are frequently encountered in several major application

areas of signal processing, such as in communication and radar systems. In these cases,

adaptive noise cancelers are widely used to reduce background noise [6]. However, for

reasons explained in Section 2.3, our inability to estimate the instantaneous signal

and noise powers bars us from utilizing an adaptive noise canceler.

Due to these difficulties, in the remainder of the thesis we shall not attempt

to model the noise environment and develop the detection algorithm under the as-

sumption that the adaptive alerting device Operates under independent, identically

distributed Gaussian noise. The justification for this assumption will be provided in

Section 3.2.

Another important factor in designing the detector is the signal-to-noise ratio

(SNR) at which it is expected to operate. Since we do not expect to outperform the

human auditory system, we target SNR’s higher than -2 dB.
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(a) A stationary signal segment from a telephone signal and its frequency spectrum.

Figure 2.5. Several example stationary signal segments and their frequency spectra.
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Figure 2.5. (cont’d).
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Figure 2.5. (cont’d).
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Figure 2.6. (cont’d).
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2.3 Sampling Stage

Now let us turn our attention to the sampling stage of the adaptive alerting device.

This stage consists of four blocks: Microphone, amplifier, sample—and—hold circuit,

and analog-to—digital (A/D) converter (see Figure 2.7).

During the amplification stage, the weak signal from the microphone (typically

100-200 mV) is brought to a level suitable for processing by the A/D converter (typ-

ically 5-10 V). The desired amplification factor depends on the environment in which

the device operates. In a noisy environment (e. 9., background highway noise) the

amplification should be less than in a quiet environment (e.g., a library). Therefore

we use an automatic gain controller (AGC) to adjust the gain of the amplifier. The

AGC ensures that the microphone signal is amplified maximally without causing sat-

uration. Thus the resulting sampled signal has approximately constant amplitude.

This complicates the detection procedure in the following ways:

0 The instantaneous power of some Type I alerting signals (e.g. fire alarms, smoke

detectors and telephones), when considered as a function of time, is nothing

but a rectangular pulse train. The detection of such signals is a well-studied

problem in digital communications [3]. However, because of the effects of AGC,

the instantaneous power of the signal at the input of the detector stage will

be approximately constant; therefore we cannot use the instantaneous power of

the received signal as a detection feature.

0 The instantaneous signal and noise levels cannot be estimated. Therefore the

parameters of the detection algorithm must be independent of instantaneous sig-

nal and noise levels. Unfortunately, most standard statistical signal processing

and pattern recognition algorithms require a pn'ori knowledge of signal and noise

powers (see, e. g., [14, 16]). This observation suggests using techniques from ro-

bust [10] and non-parametric detection theory [11]; however these schemes are
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not widely applicable.

Thus we must develop a detection algorithm which is robust to the scaling introduced

by the AGC; the parameters of the detector should not depend on signal and noise

powers. We shall model this effect by assuming that the instantaneous power of the

signal at the detector input is constant. Strictly speaking, this model is inaccurate.

The fact that the input signal has almost constant amplitude does not imply that it

has constant power. However, this assumption will still result in an algorithm that is

indifferent to the the effects of the AGC stage and thus will serve the present purpose.

2.4 Choosing a Detection Strategy

As we mentioned in Chapter 1, we shall pursue a detection-theoretic approach to

the development of the alerting signal detector. Of course, this is not the only way

of solving this problem; techniques from other fields such as speech recognition and

neural networks could also be applied. In this section, we justify our decision to use a

detection-theoretic scheme, and discuss the reasons for ruling out other approaches.

As described in Section 2.2.1, alerting signals consist of long stationary regions

connected by brief transition regions. Although the transitions play an important

role in human perception of auditory signals [1], they are very difficult to model due

to their nonstationary nature. On the other hand, for our purposes, the stationary re-

gions contain sufficient information for detection of alerting signals. This observation

enables us to reduce the detection of alerting signals to the detection of stationary

signal segments.

To form an analogy with communications theory, the stationary signal segments

composing the alerting signals to be detected form a “symbol alphabet” [19]. Thus

we can use a suitable modification of standard detector structures used in communi-

cations receivers for detection of stationary signal segments.
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In addition to this detection-theoretic scheme, we have investigated the feasibil-

ity of techniques based on spectral analysis, dynamic time warping (DTW), hidden

Markov models (HMM), and artificial neural networks (ANN). The shortcomings and

disadvantages of these approaches are discussed in the following paragraphs. How-

ever, it should be noted that the primary advantage of pursuing a detection theoretic

approach is that — unlike the HMM, DTW or ANN-based approaches discussed

below — it promises to result in a computationally efficient solution.

2.4.1 Spectral Thresholding

A very simple detection algorithm could be based on the spectral properties of alerting

signal segments. The fact that the energy of stationary signal segments is concen-

trated in narrow spectral regions, suggests using a detector consisting of a bank of

bandpass filters and a comparator. However, under noisy conditions, the spectral

peaks are not as dominant as under noiseless conditions; therefore combined with the

inability to estimate SNR, reliable threshold selection is not possible. Additionally,

signal processing techniques based on spectral thresholding have high false-alarm and

miss rates in general (for example, formant estimation based on spectral thresholding

[4])-

2.4.2 Dynamic Time Warping and Hidden Markov Models

Another idea is to use techniques from speech recognition, such as dynamic time

warping (DTW) [4, 17] and hidden Markov modeling (HMM) [4, 15]. They are both

tailored to handle the variability among different utterances of the same word; there-

fore they can easily c0pe with the differences among realizations of Type II and III

alerting signals.

However, with decreasing SNR, the performance of these algorithms drops
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drastically. This lack of robustness is caused by the distance metrics used in DTW

and HMM algorithms. Regardless of the choice of acoustic features, all distance mea-

sures are very sensitive to noise. Thus we rule out the possibility of using algorithms

from the speech recognition field in the detector stage.

2.4.3 Artificial Neural Networks

Yet another detector structure could be designed using neural networks in combi-

nation with other suitable techniques [5]. Neural networks naturally account for

commonly encountered properties of real-life data, including nonstationarity and non-

Gaussianity [7]. However, their implementation can be very complex and computa-

tionally demanding; therefore, in practice, their use is reserved to situations where

signal modeling is difficult or impossible.

2.5 A Functional Block Description of Detector

Architecture

Before we proceed to the deve10pment of the detector architecture, we introduce some

notation. We henceforth use the symbol A to denote an alerting signal and the symbol

8 to denote stationary signal segments. Using a set-like notation, we shall, describe

an alerting signal consisting of n stationary signal segments as A = {81,811, . . . , 8“}.

Suppose, we want to develop an algorithm for detection of the signals shown in

Figures 2.1—2.4. Using the above introduced conventions, the fire alarm signal can

be expressed as A, = {81}, the siren signal as A, = {52,83}, the doorbell signal as

A; = {84, S5}, and the crying baby signal as A1, = {86, 87,83}. Thus the “symbol

alphabet” is Ll = {81,132, . . . ,83}.
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This notation leads us to a detector consisting of the following three stages (Figure

2.8):

0 Filter Bank Stage

0 Decision Block

0 Postprocessor

The first two stages represent extensions of similar stages in a standard commu-

nications receiver for M-ary symbol sets. They act as a detector for stationary signal

segments. In a sense, these two stages take the received signal and convert it to a

higher-level representation. The postprocessor takes the output of the decision block,

and using the duration and temporal order of stationary signal segments, makes the

following decisions:

0 Whether an alerting signal is present at the detector input or not.

0 If an alerting signal is present, which one.
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Figure 2.8. The basic detector architecture.

 



CHAPTER 3

Detector Design

3.1 Design Methodology

The non-Gaussian and nonstationary nature of the noise environment combined with

the inability to estimate SNR prevents the pursuit of a strictly analytical procedure

for derivation of the detector stages. For the same reasons, we cannot impose stan-

dard optimality criteria from statistical signal processing [14] to the solution of this

problem. These observations lead to the following design methodology which we shall

follow in the remainder of the thesis:

0 Using ad hoc techniques as well as suitable modifications of standard schemes,

we propose several potential solutions for each stage of the detector. Each

method will only approximately meet the ideal specifications stated in Section

2.5 and will have different performance, cost, and implementation advantages.

0 Because of the lack of analytical models, we cannot meaningfully quantify the

performance of different candidates. Therefore, based on simulation studies, we

shall weigh the tradeoffs of different approaches and choose the most suitable

configuration of the designed alternative blocks for use in the final device.

26
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In this chapter we shall implement the first step of this design strategy, and

develop the detector stages. Their performance evaluation will be the subject of the

next chapter.

3.2 Detection Filters

Let S be a signal segment to be detected. In this section, we develop several candidate

detection filters for S. The treatment is based on the following assumptions:

0 In practice, the realizations of S are of finite duration. However, we assume

that an infinite duration realization s(n), —00 < n < 00 of 8 exists and that

a noisy version of this signal is input to the detector. For example, suppose S

is the stationary signal segment corresponding to the fire alarm signal shown

in Figure 2.1b. In this case, we can form an “eternal” realization of S by

infinitely concatenating the signal segment with itself. This assumption enables

us to design detector filters without being concerned with timing problems.

Synchronization issues will be discussed in Section 3.3.

0 Another important problem in the design of detector filters is developing appro—

priate signal models. A careful analysis of the alerting signal waveforms shown

in Figures 2.1—2.4 reveals that some stationary signal segments are best modeled

as deterministic whereas others as stochastic. For example, let us compare the

stationary signal segments shown in Figures 2.1b (fire alarm) and 2.4c (crying

baby). Every realization of the first will be identical, i.e., it is deterministic.

On the other hand, the second one will be slightly different every time the baby

cries. Therefore it should be modeled as a stochastic process.

In the following discussion, we assume that every stationary signal segment can

be modeled in both ways. Although incorrect, this will enable us to exploit
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both techniques developed for detection of deterministic and stochastic signals.

0 Suppose we observe a realization of 8 in background noise. Let us denote the

SNR in decibels at the input and output of the detection filter as SNRqon and

SNRout, respectively. The design objective will be to maximize the difference

ISNRom — SNRinl. In other words, the detection filter must accomplish one of

the following two tasks:

0 Amplify the signal component while suppressing the noise component;

0 Suppress the signal component while amplifying the noise component.

Because of the absence of analytic signal and noise models, we shall try

to accomplish these goals in an heuristic manner. We call the difference

ISNRout — SNRq'nl the SNR improvement factor ’ and this design criterion the

SNR improvement criterion.

Next, let us describe how the detection filters designed according to this criterion

will perform. Let 81, 82, . . . , 8M denote the M stationary signal segments to be

detected and let F,- be the detection filter corresponding to S,- where l 5 i S M.

Without loss of generality, we can assume that a noisy realization of 81 is at

the input of the detector. Assuming that the detection filters follow the first

version of the design criterion given in Section 3.2, F1 should “resonate” with

the input signal and suppress the noise component. On the other hand, from

the perspective of all other filters, the input signal should appear to be noise

only. Therefore they should suppress the input signal as well as the noise as

much as possible. Thus the average power at the output of F1 is much higher

than the output power of the other filters. The decision block should exploit

this fact to decide in favor of 81.

 

‘ This notion is analogous to the concept of demodulation gain in communications theory.
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o For high SNR and large sample size detection problems, improper assumptions

regarding the noise environment do not significantly affect the detector perfor-

mance [9]. It is easy to see that the development of the detection filters falls

into this category. Therefore, as we remarked in Section 2.2.2 above, whenever

the need to model the noise environment arises, we shall simply assume that it

is independent, identically distributed Gaussian noise.

Now we are ready to proceed with the development of detection filters.

3.2.1 Matched Filter

Let S be a stationary signal segment, and let 3(k), —00 < k < 00 be an “eternal”

realization of 8, obtained as described above. Assuming that S is deterministic,

s(k) can be regarded as the endless repetition of a representative region consisting of

samples r(0), r(1), ..., r(N - l), i.e. it can be expressed as 3(n) = r(n mod N). For

example, Figures 2.5a, b and c show the representative regions of a buzzer, telephone,

and tornado siren signal, respectively.

Now, suppose that we observe a noisy realization :z:(k) = s(k)+n(k), —00 < k < 00

of 8 where n(k) denotes the noise sequence. An intuitive way of achieving a high SNR

improvement factor is based on the cross-correlation sequence between the received

signal and representative region. Let

y(k) -.—. §lr(l)$(k +1), - 00 < k < 00 (3.1)

i=0

be the cross-correlation sequence between x(k), —00 < k < co and r(0), r(1), . . .,

r(N — 1). y(k) can be expressed as the sum of the sequences y,(lc) = [:31 r(l)s(k +

l) and yn(k) 2 21:31 r(l)n(k + I). We expect yn(k), the cross-correlation between

noise signal and representative region to assume values close to zero. On the other

hand, y,(k), the cross-correlation between the signal to be detected and representative
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region, should take higher values. Thus (3.1) suppresses the noise component of :c(lc)

while amplifying the signal component and meets the SNR improvement criterion.

It is easy to see that (3.1) can be implemented using a matched filter F(z) with

impulse response f(m) = r(N — 1 —m), k = 0, .. ., N- 1 [14]. However, at a sampling

rate of 8 kHz, the representative region is typically 300-500 samples long. Obviously,

a filter with such a long impulse response is not suitable for real-time applications.

Therefore we shall confine ourselves to approximate implementations of F(z) which

are computationally tractable. In particular, since we are only concerned with the

average power at the output of F(2), realizing its magnitude response is sufficient.

To this end, any of the standard filter design techniques available in the literature

can be used [13].

3.2.2 Eigenfilter

Let us model 8 as an ergodic wide-sense stationary random process and let R be

its autocorrelation matrix. Under white noise, the impulse response of the opti-

mum linear detection filter maximizing the SNR improvement factor is given by

f(m) = vm(m), m = O, .. ., N— 1 where [vm(0) . . .vm(N—1)]T is the eigenvector

corresponding to the largest eigenvalue of R and N is the size of R [6]. This filter

is called as an eigenfilter and can be regarded as the stochastic counterpart of the

matched filter introduced above.

3.2.3 Prediction Error Filter

As we did in the previous section, assume that S is a stochastic signal segment. Let

s(k), —00 < k < 00 be the random process corresponding to 8 and assume that it

obeys an autoregressive (AR) model [2] of a known order. Let F(2) be the minimum-

mean-square—error one-step linear predictor for 30:) [2]. Now, let us show how the
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one-step linear prediction error filter for s(k), F'(z) = 1 — z"lF(z), can be employed

as a detection filter.

First, suppose that _s(k), —00 < k < 00 is at the input of F(z). The predictions

made by F(z) will be close to the actual values. Therefore, when §(k) is at the input

of F’(2), the average output power will be lower than the average power of s(k).

Next, assume that, a noise process n(k), —00 < k < 00 is at the input of F(z). F(z)

will try to predict future values of 1_3_(k) as if they belonged to a realization of 8.

Obviously, except by coincidence, the predictions will be erroneous. Thus, when n(k)

is at the input of F’(2), the average output power will be much higher than in the

previous case. Hence when a noisy realization of S is at the input of F’(2), the SNR

at the output will be much higher than the SNR at the input; thus F’(2) qualifies as

a detection filter.

3.2.4 Autocorrelation Detector

Another detection filter can be based on the autocorrelation functions of the signal

segment to be detected and received signal. Let x(k) = s(k) +n(k), —00 < k < 00 be

the received signal where 3(k) and n(k) are defined as above. Assume that s(k) is a

realization of an ergodic wide-sense stationary random process whose autocorrelation

function is p,(h), —00 < h < co and s(lc) and n(k) are uncorrelated sequences.

Let p,,m(h) be the autocorrelation function of a frame of :c(n) starting at the

time mN — L and ending at time mN, -00 < m < 00 where N and L satisfy

0 < N S L. In a similar fashion, we can define the functions p,,m(h) and pn,m(h)

for s(k) and n(k). Because s(k) and n(k) are uncorrelated, p,,m(h) can be written

as px,m(h) = p,,m(h) + pn,m(h). Noting that 3(k) is the realization of a wide-sense

stationary random process, we have p,,m(h) z p,(h). Thus we obtain

px,m(h) z p,(h) + pn,m(h), — 00 < h < 00. (3.2)
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Let us define the autocorrelation detector as a filter whose output is given by

y(m)—=h—2P pz,m(h)Ps(h) (3.3)

when :r(n) is at its input. We shall call P > 0 the order of the autocorrelation

detector. Note that the output rate of the autocorrelation detector is N times lower

than its input rate.

We see that y(m) is approximately the correlation among the sequences pz,m(h)

and p,(h). Using (3.2), y(m) can be expressed as

y(m)= y,(m) + 3111(th P.1(h) + h: Ps(h)Pn,m(h) (3'4)

h=-P h=—P

According to the analysis done in Section 2.2.1, the energy of s(k) is concentrated in

narrow spectral peaks. Therefore, p,(h), h 2 0 must be a slowly decaying periodic

sequence [2]. No similar statement can be made about pn,m(h); however, unless

p, (h) and pn,m(h) are periodic with the same frequency — which is only possible in

pathologic situations — the second term in (3.4) will be close to zero or negative.

On the other hand, the first term of (3.4) is always positive. Thus, except under

relatively low SNR’s we have y,(m) >> yn(m) for -00 < m < 00. Hence (3.3) meets

the SNR improvement criterion and can be used as a detection filter.

Equation (3.3) has an interesting explanation in frequency domain which clarifies

the points made above [14]. Let ¢x,m(w), ¢,(w) and ¢n,m(w), —1r 3 w 3 7r be the

power spectral densities of a:(k), s(k) and n(k), mN — L S k < mN. For P = oo,

according Wiener-Kitchine Theorem [12], (3.3) can be written as

y(m)= 51—]; ¢.,wm()(¢.w =52]; ¢3(w)dw+—/_: ¢,.,.,.(w)¢s(w)dw. (3.5)

Usually, the energy of 3(k) and n(k) are concentrated in non-overlapping regions of
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the frequency spectrum. Therefore the second term of (3.5) will be close to zero, and

its first term, which is always positive, will dominate y(m), except under low SNR’s.

It can be shown that the autocorrelation detector is equivalent to the locally

optimum detector for stochastic signals with unknown amplitude [14]

3.3 Decision Block

In this section we design the decision block. The decision block must accomplish the

following two tasks: Determine the decision instants (i.e. the starting and ending

points of stationary signal segments) and compare the detection filter outputs to

decide which stationary signal segment is present at the detector output.

3.3.1 Synchronization

In developing a synchronization technique, there are two main issues we have to

address: The first is the determination of optimal decision instants. The second

concerns the removal of the infinite length stationary signal segment assumption made

in designing the detection filters: How many samples should be used in making a

decision?

In this section, we answer these two questions. First, to get an insight to these

two problems, we examine how they are solved in digital communications and explain

why these approaches cannot be applied to the decision block of the alerting signal

detector. This comparison will lead to a surprisingly simple synchronization scheme.

Let us focus on the the determination of decision instants. In communications

receivers, this is usually done using a clock extraction circuit which exploits the peri-

odicity of the received signal to obtain the starting and ending instants of the symbols

to be detected [3]. However, the structure of alerting signals is quite different than

the symbol strings transmitted in a communications channel. Therefore, we cannot
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apply synchronization schemes from classical detection theory; we must develop a

technique which is compatible with the properties of the given alerting signals.

In communications applications the second issue never poses a problem, because

the symbols to be detected are of fixed and known length. On the other hand, each

stationary signal segment (or “symbol”) we have to detect is of different length; fur-

thermore the duration ofsome stationary signal segments varies with every realization.

We must find a means of overcoming this difficulty.

Having seen why standard synchronization schemes cannot be applied to the deci-

sion block of the alerting signal detector, now let us concentrate on a major difference

between the stationary signal segments we have to detect and symbols used in digital

communications: Duration.

In communications receivers, the importance of synchronization errors on per-

formance is coupled with signaling speed. The faster the bit rate, the shorter the

symbols, and therefore the more precise the clock extraction circuit must be. On

the other hand, it can be shown that the effects of timing errors on performance di-

minishes as the signaling rate decreases [3]. Since the duration of a stationary signal

segment is at least quarter of a second long, its “signaling rate” is very low. In fact, it

is so low that assigning the decision instants arbitrarily would presumably not affect

the detection rate.

To illustrate how we can exploit this conclusion to the development of a synchro-

nization scheme, let us consider the detection of the Type I alerting signal consisting

of a single stationary signal segment 8, shown in Figure 3.1a. As we see, 8 is ca.

7000 samples long. For comparison, in communications systems, the symbols to be

detected are approximately 5-20 samples long.

Now, suppose that we make a decision every 1000 samples, based on the last 1500

samples. In other words, the decision rule processes received signal using overlapping

frames of 1500 samples. This point is illustrated in Figure 3.1b. As we see the
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decision logic may miss 8 in the first and last frames; however all of the other frames

would be correctly detected. Thus the exact determination of starting and ending

points of stationary signal segments is not necessary. This synchronization scheme is

generalized as follows:

Let :c(n), —00 < n < 00 be the received signal. Suppose that the shortest

signal segment to be detected is Q samples long. The decision block will

make a decision every N samples based on a frame of x(n) starting at

time kN — L and ending at time kN where —oo < k < 00 and N and L

are integers satisfying N S L < Q.

In the above example Q is 7000 samples, N is 1000 samples and L is 1500 samples.

Both N and L were chosen arbitrarily within the above given inequality. Due to the

heuristic nature of this formulation, it is difficult to tell how different values of N and

L will affect the detection rate; therefore no strict rule for selection of N and L can

be given. The designer must choose the most convenient values by experimentation.

3.3.2 Decision Rule

In this section, we investigate the difficulties encountered in developing a decision

rule for the alerting signal detector and pr0pose a suitable decision scheme.

As before, let 81, . . . ,SM be the stationary signal segments to be detected, and

let F1, . . . , FM be the corresponding detection filters. Throughout this discussion, we

shall assume that the detection filters are designed according to the first version of

the SNR improvement criterion introduced in Section 3.2. Modification of the below

obtained results to the second version of this optimality criterion follows immediately.

According to the synchronization scheme developed above, the decision block

must process the signals at the detector filter outputs framewise. Suppose that

$(0),...,:1:(L - 1), an input signal frame, is at the input of the detection filters.
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Let us denote the corresponding frames at the output of F, as y,-(0), . . . , y,-(L — 1), I

1 g i S M. We must compare these frames to make the following decisions:

0 Determine whether a stationary signal segment, a transition region, a region of

silence, or just noise is present at the detector input.

0 If a stationary signal segment is present at the detector input, decide which one.

A simple decision rule can be based on detector filter output frame energies.

Suppose that the frame 3(0), 1(1),. . ., a:(L — 1) is at the input of the filters and

let E3 = [”3 22(n) be its energy. Let E,- = 2:3 y,-2(n) the output energy of F},
n:

1 g i S M. Eirther suppose that the detection filters satisfy the following criteria:

(i) When a noisy realization of S,- is at the input of the detection filters,

W8h3V€E§>>Ejf0rj¢fiIS‘i,jSM.

(ii) When only noise is at the input of detection filters, we have Ej << E2

for l 5 j 5 M.

At first sight, it seems that filters with good SNR improvement factors would meet

the above criteria. However, they will not unless their gains are chosen appr0priately.

Because of the heuristic nature of the detection filter design procedure, no rule for gain

selection can be given. The designer must adjust the filter gains based on simulation

studies and characteristics of individual filters. Criteria (i) and (ii) immediately

suggest the following decision rule which is an extension of the “choose maximum”

scheme from classical detection theory [3]:

L813 E; = max{E1, . . . ,EM} and Ej = max{E1, . . . , Ei_1,E.'+1, . . . ,EM}.

Let a > 1 be an experimentally determined parameter which we shall

 

1 For the sake of simplicity, we overlook the fact that when a frame of length L is at the input of

a filter, the output signal may be of different length. Additionally, the output of one of the detector

structures proposed in Section 3.2 is a single number per input frame. The modification of the

decision logic explained in this chapter to this detector is straightforward.
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call as sensitivity parameter. If g; > a, decide in favor of 5,; otherwise

conclude that no stationary signal segment is present at detector input.

The basis for this technique is easy to understand: At low SNR’s when 5,- is

present at detector input, E,- must be substantially higher than the output energies

of other filters. On the other hand, if only noise is present at the detector input, all

filter output energies must be close to each other. The ratio at is a measure of this

closeness. If a is small, the detector will have a low miss rate but a high false alarm

rate. If a is large, the opposite will occur. Thus the term sensitivity parameter for a.

At high SNR’s, typical of the environments where the adaptive alerting device will to

operate, a wide range of a values will result in a low miss and false alarm rate. This

point will be verified by simulation in Chapter 4.

3.4 Postprocessor

The duty of the postprocessor is to complete the job of the decision block and translate

the detected stationary signal segments into alerting signals. The degree of sophisti-

cation required in the postprocessor depends on the reliability of the decision block.

To compensate for a high error rate by the decision block, the postprocessor can ex-

ploit the length and temporal order of the detected stationary signal segments. For

example, algorithms from syntactic pattern recognition could be used to this end.

On the other hand, if our confidence in the decision block is high, the translation

procedure can be accomplished relatively easily. In this case, the following algorithm,

which is a generalized majority selection rule, can be used:

At every decision instant, consider the last P signal segments detected.

If at least 0 percent of them belong to a given alerting signal, declare

its presence at the detector input. Otherwise conclude no alerting signal

present.
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As all parameters we introduced in this chapter, P and 0 must be experimentally

determined. This postprocessor algorithm is strikingly simple; therefore we should

first evaluate its performance in combination with the techniques developed in the

previous pages; and only if we do not obtain satisfactory results we should attempt

to develop a more complicated but robust postprocessor block.



CHAPTER 4

Performance Evaluation

4.1 Introduction

In this section, we report the results of simulation studies that evaluate the strengths

and weaknesses of the various alternative approaches considered, and draw conclusions

about the appropriate detector structure to use in the ultimate device.

There are two levels at which individual detection filter design strategies can be

benchmarked: At the lower level, the success of a particular filter is determined by

its SNR improvement factor. At the higher level, the performance is specified by the

detection rate obtained.

In Section 4.2, we report results of simulations used to obtain the SNR improve-

ment factor achieved by the filter design techniques presented in Section 3.2. In

Section 4.3, we quantify the performance of detector strategies based on the forego-

ing developments.

40
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4.2 Benchmarking with the SNR Improvement

Factor

4.2.1 Formal Developments

Let F be a detection filter designed for a stationary signal segment 8. Let s(k), -00 <

k < 00 be a realization of the eternal extension of S, and let n(k), — 00 < k < 00

be a noise sequence. Without loss of generality, we assume that the signal and noise

are both unit power sequences. Additionally, we assume that the two processes are

mutually uncorrelated sequences.

Let y,(k), — 00 < k < 00 and yn(k), - 00 < k < 00 be the response of F to the

signal and noise, respectively. Assume that the signal

11(11): (1;, s(k) + J13; 1101), — 00 < k < 00 (4.1)

is at the input of F where P, and P" denote the power of signal and noise components.

Thus we have

SNR,~,, = 10 log 11}. (4.2)

Next, let us derive expressions for SNR“, and ISNRout — SNRinI. The forms of

these expressions depend on the characteristics of F. The filters derived in Section

3.2 can [be grouped in two categories: Linear filters (matched filter, prediction error

filter, and eigenfilter) and the quadratic autocorrelation detector. We treat these

cases separately:

Linear Detection Filter. The output of F can be expressed as

We) = «51.3) + 751.0). — oo < 1. < —oo. (43)
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Ps Egg—co y2(k)

SN u = 1010 3 4.4

R0 t g Pn Zkz—oo yn(k) ( )

and

00 2

|SNR.,,,, — SNR,,,| = [10 log 2"?” 11.06) (4.5)

221.... 113(k) '

Quadratic Detection Filter. The response of a quadratic filter to input sequence

:r(k), — 00 < k < 00 can be expressed as

y(k)= P,y,() + Pug/"(k)+ VP,Pn<p(s(k),n ), — 00 < k < 00 (4.6)

where <p(-) is a linear function determined by filter parameters. Thus SNR,“ is given

by

P32 xiii-00 313(k)
 

 

SNR,m = 1010 4.7

‘ 319.223-3130 +PP 22:... 120(3) nae» ( ’

Since s(-) and n() are uncorrelated sequences, we have

2 <p(s(lc), n(k)) = 0 for all k. (4.8)

kz—oo

Hence the SNR improvement factor of a quadratic detection filter is

ISNRou, — SNRin] = 1010g 2"?” 313(k) + 1010g—P (4.9)

Zkz-oo 311109) P"

Unlike the SNR improvement factor of a linear filter, Equation (4.9) is dependent on

SNR,-,,.

Adjustments for Finite-Time Analysis. The results above assume infinite

length signals and cannot be used in practice without proper modifications. The

fact that the synchronization and decision schemes introduced in Section 3.3 process

the input signal framewise suggests that evaluating the SNR improvement factor of
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detection filters on finite length frames might be a better indication of their perfor-

mance. This observation leads us to the following algorithm:

Suppose that we observe a stationary signal segment 8 in a particular noise

environment. Let F be a detection filter designed for 8. Let sJ-(k), 0 <

k<L—landn,-(k), 0<k<L—1,with1SjSQbeframesofa

realization of the signal and noise, respectively, assumed, without loss of

generality, to each be of unity power. Let y,j(k), 0 < k < L — l and

ya]. (1:), 0 < k < L — 1 be the response of F to the signal and noise frames,

respectively. Now fix j and assume that the frame

1.3(k) = sj(k) + nJ-(k), 0 g k S L — l (4.10)

is input to F. Thus SNR,” = 0 dB. Modifying (4.5) and (4.9) appropri-

ately gives

EL;3313,06)

g2k=0y2ynj (k)

Note that since SNR4,, J =0 dB, the expression for SNR improvement factor

ISNRout — SNR,-,,|,-=1010g (4.11)

  

is same for both linear and quadratic F. For a quadratic detection filter,

modification of (4.11) for other SNR,n follows immediately from (4.9).

The SNR improvement factor obtained for each value of j will be slightly

different. We compensate for this effect by averaging

Q

ISNR... — SNmnl = 321—2: ISNR... — SNRanlj- (4.12)
i=1

4.2.2 Simulation Results

The algorithm above was used to obtain the SNR improvement factors for the various

detection filter designs presented in Section 3.2 for several stationary signal segments
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and realistic noise environments. The performance results appear in Tables 4.2-4.5.

In all simulations Q=20 and L=1500 samples. Implementation details are shown in

Table 4.1 .

Comparing Tables 4.2-4.5, we conclude that the SNR improvement factors

achieved by the autocorrelation detector are superior to all other design techniques.

Additionally, we note that the performance of a given approach can show significant

variation among different stationary signal segments and noise environments.

4.3 Benchmarking Using Detection Rates

4.3.1 Introduction

Several difficulties had to be overcome in developing a performance evaluation scheme.

First, we were unable to assign a priori probabilities and decision costs to the sta-

tionary signal segments to be detected. Both quantities depend on the specific needs

of the device user (pragmatic knowledge). For example, in a car the probability of en-

countering an ambulance siren is quite high, whereas the probability of encountering

a doorbell signal is zero. The opposite is true in a home setting.

Similar situations occur in classical detection problems for communications. In

these cases, the performance of the detectors are often evaluated via receiver operat-

ing characteristics (ROC) analysis [14]. However, ROC curves are most appropriate

for problems involving binary hypotheses and are not particularly well-suited to the

present application.

The second difficulty concerns the number and choice of the stationary signal

segments to be used in simulation. Both of these factors depend on the user’s needs

and lifestyle.

The performance of the decision block was evaluated on a set of alerting signals
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Table 4.1. Design details of the detection filters used in the simulations.

 

Matched Filter Representative region of length 512 samples chosen

via manual inspection of alerting signal frames. An

all-pole filter of order 16 fitted to the representative

region using Yule-Walker equations [2]
 

Eigenfilter Autocorrelation matrix of alerting signals estimated

using a Bartlett estimator [2]. Order of filter 16.
 

Prediction Error Filter Autocorrelation matrix computed same as above. An FIR

predictor of order 16 designed solving Yule-Walker

equations.
 

 Autocorrelation Detector  Autocorrelation computed same as above based on

non-overlapping frames of length 1000 samples.
 

 



Table 4.2. SNR improvement factors in decibels for matched filter.
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White Laugh Highway Party Keyboard

Fire 10.796 12.675 12.845 11.476 10.237

Siren 18.716 21.669 19.977 19.839 21.186

Telephone 13.049 12.357 19.571 14.899 11.730

Buzzer 5.726 10.797 18.224 9.408 8.353
 

Table 4.3. SNR improvement factors in decibels for prediction error filter.

 

 

 

 

 

      

White Laugh Highway Party Keyboard

Fire 12.850 5.366 2.286 7.437 7.074

Siren 26.545 19.000 9.517 21.562 23.670

Telephone 11.978 10.670 9.657 10.908 11.515

Buzzer 7.065 7.271 13.932 7.495 7.689
 

Table 4.4. SNR improvement factors in decibels for eigenfilter.

 

 

 

 

 

      

White Laugh Highway Party Keyboard

Fire 7.248 10.443 15.522 8.906 6.746

Siren 9.437 10.662 5.773 9.785 11.582

Telephone 6.950 5.387 19.000 7.663 5.484

Buzzer 6.693 15.007 19.652 12.764 11.052
 

Table 4.5. SNR improvement factors in decibels for autocorrelation detector.

 

 

 

 

 

      

White Laugh Highway Party Keyboard

Fire 50.976 40.449 33.731 53.669 43.789

Siren 67.391 58.135 75.178 55.299 58.156

Telephone 61.893 45.268 34.621 55.933 58.131

Buzzer 55.286 27.242 23.504 33.697 38.979
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and in various noise environments that are representative of the diverse needs of the

prospective users of the device. We employed stationary signal segments from four

Type I signals (fire alarm, telephone, buzzer, and tornado siren) which are likely

to be of interest to any device owner. We selected four typical noise environments

commonly encountered in daily life (laughing people, party noise, background highway

noise, and computer keyboard noise).

The assumption was made that the stationary signal segments and the chosen

noise environments are equiprobable and cost of an error is same for all signals to

be detected. Obviously, these assumptions are not valid in practice. For example,

probability of a telephone signal is much higher than the probability of a fire alarm

signal. On the other hand, the cost of missing a fire alarm is much higher than the cost

of missing a telephone signal. The results of the simulations performed under these

assumptions, however, provide a reasonable estimate of the expected performance of

the decision block when deployed in the field. They also indicate how the choices of

the sensitivity parameter, a, and frame length, L, are likely to affect the detection

rate.

4.3.2 Performance of the Decision Rule

To evaluate the performance of the decision rule the following procedure was used:

We sampled 20 frames of each stationary signal segment and noise environment from

the test set. Next, we constructed noisy test frames by scaling the powers of the signal

and noise frames according to the desired SNR before adding them. To simulate the

effects of the AGC, we normalized the power of the generated test frames to unity

(see Section 2.2). Using this procedure, we constructed a collection of test frames.

We constructed this collection in such a way that all signal and noise environments of

interest have the same weight so that they satisfy the equiprobable priors assumption

described above. This collection of noisy observation frames was then input to the
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various detector structures to assess performance.

The tests were first conducted under noiseless conditions. To simulate a noise-

less environment, we set SNR = 00 in the algorithm. All filter designs (matched

filter, eigenfilter, prediction error filter, and autocorrelation detector) yielded 100%

detection rate under these conditions.

Next, for the above signal set, we performed simulations to obtain the power

curves [9] of the detectors for the SNR range —5 - 5 dB. The resulting error rate

curves are shown in Figures 4.1—4.9 for several values of frame length, L, and decision

threshold (sensitivity parameter), a.

As indicated in Section 2.2.2, the alerting device is not expected to operate at

SNRs below 0 dB; however obtaining the performance for unrealistically low SNRs

is important for theoretical studies and design of more robust methods. We observe

that detection rate initially increases with increasing L. However, if L becomes too

large, the adverse effects of arbitrarily assigning the decision instants will reduce the

detection rate.

Caution must be taken in interpreting the power curves shown in Figures 4.1—4.9.

As presented, these curves represent extremely conservative indications of perfor-

mance capability. It is important to recall that the final decisions regarding the

presence of an alerting signal is given by the postprocessor block. In making this

final decision, the postprocessor uses a number of outputs (typically 7—15) from the

decision block; therefore, for an incorrect final decision, the decision block must make

numerous erroneous decisions in a very short time frame. Accordingly, the error rate

of the postprocessor will be much lower than the error rate of the decision block. The

majority selection rule used in the postprocessor algorithm effectively corrects the

errors made by the decision block.

It is observed that for 1 < a < 1.2 and for all tested values of L, the total error

rate of the eigenfilter and autocorrelation detector is very close to 0% for the range of
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practical interest. The matched filter performs slightly worse. Nevertheless, its total

error rate is less than 5% for individual frames.

Although the prediction error filter has a good SNR improvement factor, it re-

sulted in rather poor performance on the detection rate benchmarks. An examination

of the filter output values showed that the reason for this was the gain scaling problem

described in Section 3.3.2.

We note that the test procedure employed in this study is not suitable for de-

termining the effects of synchronization on performance. A meaningful scheme for

testing the effects of synchronization requires a large database of alerting signals

which is currently not available.

4.3.3 Performance of the Overall Detector

Based on the simulation results above, we can reliably estimate the performance of

the overall detector including postprocessing.

Consider the postprocessor algorithm developed in Section 3.4. Let P = 10 and

B = 0.6. These parameters were chosen based on the experience gained by analyzing

alerting signal waveforms. Next assume that the decisions made by the postprocessor

algorithm are independent, and that the error rates for individual stationary signal

segments are equal.

Under these assumptions, using the Bernoulli distribution, the overall detector

performance for the given alerting signal set can be estimated. Let PM be the error

rate of the decision block at a given SNR and let 1: be the nearest integer to 6P.

Then the overall error probability of the detector at this SNR will be approximately

given by

P P

P8,, z 1 — Z Pfgka — PM)". (4.13)

k=x k

The overall performance curves determined in this manner appear in Figures
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Figure 4.9. Power curves of the autocorrelation detector for L=1500 samples and

several values of a.
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4.10—4.12. We observe that the error rate of the autocorrelation detector is below

2 - 10’3 even for —3 dB, and the rate is practically 0 for the SNRs at which the device

will ordinarily operate.

Other meaningfully chosen values of P and 6 also give similar performance. The

ultimate selection of these parameters should be based on synchronization consider-

ations.
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CHAPTER 5

Conclusions and Considerations for

Future Research

5.1 Conclusions

The simulation results reported here show exceedingly good detection performance

of the developed algorithms with excellent false alarm rates over the battery of tests

performed in the study. The results also imply very robust performance in rather

extreme noise environments for the alerting signals tested. This demonstration of

feasibility projects a very viable, useful, and commercially successful product based

on the developed technology.

The biggest difficulty in developing the detection algorithm presented in this thesis

was caused by the presence of the AGC block. If the SNR could be reliably estimated,

we could design a much more reliable decision block and devise a rigorous criterion

for adjusting the gains of the detection filters. This would make the error rate of the

alerting device practically zero. This study has employed readily available sampling

boards on personal computers. These boards do not give access to the instantaneous

gain of the AGC. Using custom-designed sampling circuitry which gives access to

(and, perhaps control over) the gain of the AGC would permit estimation of the
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instantaneous SNR of the Operating environment. Even a gross estimate of SNR

would enable the design of a vastly improved decision rule, and this would significantly

enhance the performance of the developed algorithms. Such a sampling board should

serve as the prototype of the sampling circuitry of the final device.

5.2 Future Research

The scope of this work was limited with the development of the detector stage of the

adaptive alerting device. The next major phases of this project which will eventually

lead to a commercially available alerting device are briefly summarized below:

I Testing of the developed algorithms: In this thesis, only interim simulation

results pertaining the first two stages of the adaptive alerting device, namely the

detection filter bank and decision block were presented. More extensive studies

incorporating the performance of the postprocessor block should be performed.

Additionally, effects of microphone placement and different microphone types

should be addressed.

I Development of training algorithms: As indicated in the introductory

chapter, the ultimate device will be user-trainable for any alerting signal. Easy

to use training algorithms for determining filter bank responses in an unsuper-

vised manner must be deve10ped.

I Hardware Implementation: As with any DSP system operating in real time,

computationally efficient forms of the suggested algorithms must be developed.

Effects of quantization of detection filter parameters must be investigated. Fi-

nally, a suitable DSP-processor for use in the ultimate device must be chosen.



BIBLIOGRAPHY



BIBLIOGRAPHY

[1] Jont Allen, “How do Humans Process and Recognize Speech?,” IEEE Transac-

tions on Speech and Audio Processing, vol. 2, no. 4, October 1994.

[2] Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Fore-

casting. New York: Springer, 1996.

[3] George R. Cooper and Clare D. McGillem, Modern Communications and Spread

Spectrum. New York: McGraw—Hill, 1986.

[4] John R. Deller, Jr., John G. Proakis, and John H. L. Hansen, Discrete-Time

Processing of Speech Signals. New York: Mcmillan, 1993.

[5] John R. Deller, Jr., An Adaptive Alerting System for Persons with Hearing Dis-

abilities, Grant Application submitted to State Reseach Fund (Michigan). Wa-

terford: February 1996

[6] Simon S. Haykin, Adaptive Filter Theory. New Jersey: Prentice Hall, 1996.

[7] Simon S. Haykin, “Neural Networks Expand SP’s Horizons,” IEEE Signal Pro-

cessing Magazine, vol. 13, no. 2, pp. 24-49, March 1996.

[8] http://www.cochlear.com.au

[9] Saleem A. Kassam, Signal Detection in Non-Gaussian Noise. New York: Springer

Verlag, 1988.

[10] Saleem A. Kassam and H. Vincent Poor, “Robust Techniques for Signal Process-

ing: A Survey,” Proceedings of the IEEE, vol. 73, pp. 433-481, 1985.

[11] Saleem A. Kassam and John B. Thomas, Non-parametric Detection: Theory and

Applications, Stroudsburg: Dowden, Hutchinson & Ross, 1980.

[12] Jae S. Lim and Alan V. Oppenheim (editors), Advanced Topics in Signal Pro-

cessing, New Jersey: Prentice Hall, 1988

65



66

[13] Alan V. Oppenheim and Ronald W. Schafer, Discrete- Time Signal Processing.

New Jersey: Prentice Hall, 1989.

[14] H. Vincent Poor, An Introduction to Signal Detection and Estimation, Second

Edition. New York: Springer Verlag, 1994.

[15] Lawrence Rabiner, “A Tutorial on Hidden Markov Models and Selected Applica-

tions in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, February

1989.

[16] Robert J. Schalkofl, Pattern Recognition: Statistical, Structural and Neural Ap-

proaches. New York: John Wiley, 1992.

[17] Harvey F. Silverman and David P. Morgan, “The Application of Dynamic Pro-

gramming to Connected Speech Recognition,” IEEE Acoustics, Speech, and Sig-

nal Processing Magazine, vol. 7, pp. 6—25, July 1990.

[18] Michael Valente, Strategies for Selecting and Verifying Hearing Aid Fittings. New

York: Thieme Medical Publishers, 1994.

[19] Andrew J. Viterbi and James K. Omura, Principles of Digital Communications

and Coding. New York: McGraw-Hill, 1979.



STRTE UNIV L IBRRR

IILIIIIIIIIIII IIII1|I7I|II| IIIIZIIIIIIIIIIIII

 


