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ABSTRACT

DEVELOPMENT OF THE DETECTOR STAGE
OF AN ADAPTIVE ALERTING DEVICE FOR
PEOPLE WITH HEARING DISABILITIES

By

Viktor Adut

Since their inception, devices which signal deaf people to the occurrence of alerting
signals (fire alarms, doorbells, etc.) have changed little. Their use is limited to highly
constrained environments and relatively few sounds. This thesis reports the results of
the first phase of a commercial research project between Michigan State University’s
Speech Processing Laboratory and Silent Call Corporation whose goal is to develop
a digital-signal-processing-based portable device which “listens” to the environment
and detects the presence of alerting signals. The device will also have the capability to
“learn” new sound sets. In this work, algorithms for detection of alerting signals under
realistic noise environments are developed, and initial simulation results quantifying

the performance of these algorithms are presented.
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CHAPTER 1

Introduction

During the past decades advances in biomedical engineering combined with break-
throughs in microelectronics resulted in significant improvements in the devices for
people with hearing disabilities. For people with mild to profound hearing impair-
ments, the most widely used solution is a classical hearing aid fitted in the ear canal.
If the auditory nerves are damaged, a cochlear implant consisting of clusters of elec-
trodes which directly excite the nerves in cochlea can be considered [8]. However,
these techniques are of limited success when hearing loss is severe. They result in
poor sound quality and the problems can be so serious that the owner may opt not
to use them unless absolutely necessary, or reject them totally [18].

If neither of these solutions helps, the inability to respond to emergency signals
becomes a potentially life threatening problem. In this case the deaf person must use
alerting devices that signal the occurrence of acoustic events like doorbells, telephones,
smoke detectors, etc. Such alerting devices have changed little over the past fifty
years. They usually consist of a transmitter hard-wired to the signaling device which
activates a blinking light or a vibratory device carried by the system user. The
operation of these devices is extremely constrained and their use is limited to the

everyday environments of the deaf person.



Recently, a digital-signal-processing (DSP) based adaptive alerting device which
solves these limitations was proposed, and its feasibility was studied by [5]. Using
DSP technology, one can develop a portable device which “listens” to the environment
and detects the presence of alerting signals. One can also equip this device with
the capability to “learn” new sound sets. The current advances in microprocessor
technology provide the required computational power for real-time implementation
of such algorithms at low cost. Given the fact that there are 28 million individuals
with with hearing impairments in United States alone [18], the world-wide utility of
this device is enormous.

This thesis was written as part of a joint research project between Michigan State
University’s Speech Processing Laboratory and Silent Call Corporation whose ulti-
mate goal is to develop a commercially-available adaptive alerting device for mass
markets. The results of the first phase of this project are presented here.

Before studying the development of detection algorithms, we must concisely state
the specifications of the alerting device. Our goal is to develop a device which can
detect the presence of alerting signals (sirens, doorbells, crying babies, etc.) under
realistic noise environments encountered in everyday life (people talking, highway
noise, air conditioner noise, etc.). The algorithm must be computationally efficient,
work with limited memory, and lend itself to trainability.

In this study we pursue a detection theoretic approach for the development of the
alerting device, and focus on the development of the detector stage of the adaptive
alerting device. In Chapter 2, the basic structure of the detector stage is developed
in terms of functional blocks. In Chapter 3, several detection strategies are examined
from a theoretical standpoint. Results of simulation studies are presented in Chapter

4. The final chapter discusses open points, and outlines the course of future research.



CHAPTER 2

Detector Architecture

2.1 Overview

The goal of this chapter is to describe the detector stage of the alerting device in
terms of functional blocks. The primary factors affecting any detection algorithm
are the properties of the signals to be detected and those of the noise environment;
therefore we start by classifying alerting signals according to the complexity of their
time-domain waveforms and performing an analysis of the diverse acoustic noise en-
vironments under which the alerting device is expected to operate. In Section 2.3,
we turn our attention to the sampling stage and explain how the automatic gain
controller (AGC) used in this stage complicates the detection procedure. Next, in
Section 2.4, we justify the decision to apply a detection-theoretic technique to the
development of the adaptive alerting device, and discuss the shortcomings of other
possible approaches. Finally, in Section 2.5, our observations lead to the formulation

of an alerting signal detector consisting of three stages.



2.2 Operating Environment

2.2.1 Classification of Alerting Signals

Let us consider Figures 2.1-2.4 which show frames of several alerting signals. Each
frame is indexed beginning from time 0 and is long enough to represent the salient
properties of the individual alerting signals. As every example signal in this thesis,
they were sampled at 8 kHz and quantized to 8 bits. First, let us focus on the fire
alarm signal in Figure 2.1. Every realization of this signal consists of the repetition
of a stationary signal segment followed by a region of silence. The duration of these
regions is fixed for every realization. Next, let us examine the doorbell signal shown
in Figure 2.2. It is composed of two stationary signal segments connected. Depending
on how quickly one pushes and releases the doorbell button, the length of each signal
section in the generated signal will be different; however their order will be same.
Finally, let us analyze the crying baby signal shown in Figure 2.4. This signal consists
of several quasi-stationary signal segments connected by transition regions; both their
duration and temporal order will be different every time the baby cries.

Thus we conclude that alerting signals are locally stationary; based on the above

observations we can classify them according to increasing complexity as follows:

e Type I alerting signal: The temporal order and duration of each stationary
signal segment is fixed for every realization (e.g., fire alarm).

e Type II alerting signal: The temporal order of stationary signal segments is

same across realizations; however their durations are different (e.g., doorbell).

e Type III alerting signal: Both the temporal order and durations of stationary

signal segments are variable across realizations (e.g., crying baby).
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Figure 2.1. A fire alarm signal consisting of a stationary region and a region of silence.
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Figure 2.2. A doorbell signal consisting of two stationary regions.
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Figure 2.3. A police siren signal consisting of two stationary signal segments con-
nected by a transition region.
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(b) First stationary signal segment.

Figure 2.4. A crying baby signal consisting of two stationary signal segments con-

nected by transition regions.
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Figure 2.4. (cont’d).
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Next, let us briefly consider the spectral properties of the stationary signal seg-
ments. From Figure 2.5, we see that the the energy of the stationary signal segments
of interest is concentrated in narrow spectral peaks.

In the subsequent sections we exploit the conclusions of the above analysis to

derive a detection scheme tailored to the properties of alerting signals.

2.2.2 Noise Environment

The adaptive alerting device will operate under a multitude of different acoustic noise
environments encountered in everyday life. As the example waveforms given in Figure
2.6 indicate, the noise environment can be described as additive, non-Gaussian, and
nonstationary. With the exception of very restricted cases, such noise environments
cannot be reliably modeled [9).

Comparable situations are frequently encountered in several major application
areas of signal processing, such as in communication and radar systems. In these cases,
adaptive noise cancelers are widely used to reduce background noise [6]. However, for
reasons explained in Section 2.3, our inability to estimate the instantaneous signal
and noise powers bars us from utilizing an adaptive noise canceler.

Due to these difficulties, in the remainder of the thesis we shall not attempt
to model the noise environment and develop the detection algorithm under the as-
sumption that the adaptive alerting device operates under independent, identically
distributed Gaussian noise. The justification for this assumption will be provided in
Section 3.2.

Another important factor in designing the detector is the signal-to-noise ratio
(SNR) at which it is expected to operate. Since we do not expect to outperform the

human auditory system, we target SNR’s higher than -2 dB.
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Figure 2.5. Several example stationary signal segments and their frequency spectra.
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Figure 2.5. (cont’d).
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(b) A stationary signal segment from a buzzer signal and its frequency spectrum.
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Figure 2.5. (cont’d).
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(c) A stationary signal segment from a tornado siren signal and its frequency spectrum.



‘ “ \H”".

1000 2000 3000 7000 8000 10000

5000
Time (norm-sec)

(a) Highway backgroud noise.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (norm-sec)

(b) People talking.

Figure 2.6. Several example noise waveforms.
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2.3 Sampling Stage

Now let us turn our attention to the sampling stage of the adaptive alerting device.
This stage consists of four blocks: Microphone, amplifier, sample-and-hold circuit,
and analog-to-digital (A/D) converter (see Figure 2.7).

During the amplification stage, the weak signal from the microphone (typically
100-200 mV) is brought to a level suitable for processing by the A/D converter (typ-
ically 5-10 V). The desired amplification factor depends on the environment in which
the device operates. In a noisy environment (e.g., background highway noise) the
amplification should be less than in a quiet environment (e.g., a library). Therefore
we use an automatic gain controller (AGC) to adjust the gain of the amplifier. The
AGC ensures that the microphone signal is amplified maximally without causing sat-
uration. Thus the resulting sampled signal has approximately constant amplitude.

This complicates the detection procedure in the following ways:

e The instantaneous power of some Type I alerting signals (e.g. fire alarms, smoke
detectors and telephones), when considered as a function of time, is nothing
but a rectangular pulse train. The detection of such signals is a well-studied
problem in digital communications [3]. However, because of the effects of AGC,
the instantaneous power of the signal at the input of the detector stage will
be approximately constant; therefore we cannot use the instantaneous power of

the received signal as a detection feature.

e The instantaneous signal and noise levels cannot be estimated. Therefore the
parameters of the detection algorithm must be independent of instantaneous sig-
nal and noise levels. Unfortunately, most standard statistical signal processing
and pattern recognition algorithms require a priori knowledge of signal and noise
powers (see, e.g., [14, 16]). This observation suggests using techniques from ro-

bust [10] and non-parametric detection theory [11]; however these schemes are
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not widely applicable.

Thus we must develop a detection algorithm which is robust to the scaling introduced
by the AGC; the parameters of the detector should not depend on signal and noise
powers. We shall model this effect by assuming that the instantaneous power of the
signal at the detector input is constant. Strictly speaking, this model is inaccurate.
The fact that the input signal has almost constant amplitude does not imply that it
has constant power. However, this assumption will still result in an algorithm that is

indifferent to the the effects of the AGC stage and thus will serve the present purpose.

2.4 Choosing a Detection Strategy

As we mentioned in Chapter 1, we shall pursue a detection-theoretic approach to
the development of the alerting signal detector. Of course, this is not the only way
of solving this problem; techniques from other fields such as speech recognition and
neural networks could also be applied. In this section, we justify our decision to use a
detection-theoretic scheme, and discuss the reasons for ruling out other approaches.

As described in Section 2.2.1, alerting signals consist of long stationary regions
connected by brief transition regions. Although the transitions play an important
role in human perception of auditory signals [1], they are very difficult to model due
to their nonstationary nature. On the other hand, for our purposes, the stationary re-
gions contain sufficient information for detection of alerting signals. This observation
enables us to reduce the detection of alerting signals to the detection of stationary
signal segments.

To form an analogy with communications theory, the stationary signal segments
composing the alerting signals to be detected form a “symbol alphabet” [19]. Thus
we can use a suitable modification of standard detector structures used in communi-

cations receivers for detection of stationary signal segments.
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Figure 2.7. The sampling stage.
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In addition to this detection-theoretic scheme, we have investigated the feasibil-
ity of techniques based on spectral analysis, dynamic time warping (DTW), hidden
Markov models (HMM), and artificial neural networks (ANN). The shortcomings and
disadvantages of these approaches are discussed in the following paragraphs. How-
ever, it should be noted that the primary advantage of pursuing a detection theoretic
approach is that — unlike the HMM, DTW or ANN-based approaches discussed

below — it promises to result in a computationally efficient solution.

2.4.1 Spectral Thresholding

A very simple detection algorithm could be based on the spectral properties of alerting
signal segments. The fact that the energy of stationary signal segments is concen-
trated in narrow spectral regions, suggests using a detector consisting of a bank of
bandpass filters and a comparator. However, under noisy conditions, the spectral
peaks are not as dominant as under noiseless conditions; therefore combined with the
inability to estimate SNR, reliable threshold selection is not possible. Additionally,
signal processing techniques based on spectral thresholding have high false-alarm and

miss rates in general (for example, formant estimation based on spectral thresholding

[4))-

2.4.2 Dynamic Time Warping and Hidden Markov Models

Another idea is to use techniques from speech recognition, such as dynamic time
warping (DTW) [4, 17] and hidden Markov modeling (HMM) (4, 15]. They are both
tailored to handle the variability among different utterances of the same word; there-
fore they can easily cope with the differences among realizations of Type II and III
alerting signals.

However, with decreasing SNR, the performance of these algorithms drops
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drastically. This lack of robustness is caused by the distance metrics used in DTW
and HMM algorithms. Regardless of the choice of acoustic features, all distance mea-
sures are very sensitive to noise. Thus we rule out the possibility of using algorithms

from the speech recognition field in the detector stage.

2.4.3 Artificial Neural Networks

Yet another detector structure could be designed using neural networks in combi-
nation with other suitable techniques [5]. Neural networks naturally account for
commonly encountered properties of real-life data, including nonstationarity and non-
Gaussianity [7). However, their implementation can be very complex and computa-
tionally demanding; therefore, in practice, their use is reserved to situations where

signal modeling is difficult or impossible.

2.5 A Functional Block Description of Detector
Architecture

Before we proceed to the development of the detector architecture, we introduce some
notation. We henceforth use the symbol A to denote an alerting signal and the symbol
S to denote stationary signal segments. Using a set-like notation, we shall describe
an alerting signal consisting of n stationary signal segments as A = {S;,S,,...,Sn}-

Suppose, we want to develop an algorithm for detection of the signals shown in
Figures 2.1-2.4. Using the above introduced conventions, the fire alarm signal can
be expressed as Ay = {5}, the siren signal as A, = {S, S3}, the doorbell signal as
Aq = {S4,8s5}, and the crying baby signal as A, = {Sg, S7,Ss}. Thus the “symbol
alphabet” is U = {5, S, ...,Ss}-
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This notation leads us to a detector consisting of the following three stages (Figure

2.8):
o Filter Bank Stage
e Decision Block
e Postprocessor

The first two stages represent extensions of similar stages in a standard commu-
nications receiver for M-ary symbol sets. They act as a detector for stationary signal
segments. In a sense, these two stages take the received signal and convert it to a
higher-level representation. The postprocessor takes the output of the decision block,
and using the duration and temporal order of stationary signal segments, makes the

following decisions:
e Whether an alerting signal is present at the detector input or not.

o If an alerting signal is present, which one.
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Figure 2.8. The basic detector architecture.




CHAPTER 3

Detector Design

3.1 Design Methodology

The non-Gaussian and nonstationary nature of the noise environment combined with
the inability to estimate SNR prevents the pursuit of a strictly analytical procedure
for derivation of the detector stages. For the same reasons, we cannot impose stan-
dard optimality criteria from statistical signal processing [14] to the solution of this
problem. These observations lead to the following design methodology which we shall

follow in the remainder of the thesis:

e Using ad hoc techniques as well as suitable modifications of standard schemes,
we propose several potential solutions for each stage of the detector. Each
method will only approximately meet the ideal specifications stated in Section

2.5 and will have different performance, cost, and implementation advantages.

e Because of the lack of analytical models, we cannot meaningfully quantify the
performance of different candidates. Therefore, based on simulation studies, we
shall weigh the tradeoffs of different approaches and choose the most suitable

configuration of the designed alternative blocks for use in the final device.

26
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In this chapter we shall implement the first step of this design strategy, and
develop the detector stages. Their performance evaluation will be the subject of the

next chapter.

3.2 Detection Filters

Let S be a signal segment to be detected. In this section, we develop several candidate

detection filters for S. The treatment is based on the following assumptions:

e In practice, the realizations of S are of finite duration. However, we assume
that an infinite duration realization s(n), —oo < n < oo of S exists and that
a noisy version of this signal is input to the detector. For example, suppose S
is the stationary signal segment corresponding to the fire alarm signal shown
in Figure 2.1b. In this case, we can form an “eternal” realization of S by
infinitely concatenating the signal segment with itself. This assumption enables
us to design detector filters without being concerned with timing problems.

Synchronization issues will be discussed in Section 3.3.

e Another important problem in the design of detector filters is developing appro-
priate signal models. A careful analysis of the alerting signal waveforms shown
in Figures 2.1-2.4 reveals that some stationary signal segments are best modeled
as deterministic whereas others as stochastic. For example, let us compare the
stationary signal segments shown in Figures 2.1b (fire alarm) and 2.4c (crying
baby). Every realization of the first will be identical, i.e., it is deterministic.
On the other hand, the second one will be slightly different every time the baby

cries. Therefore it should be modeled as a stochastic process.

In the following discussion, we assume that every stationary signal segment can

be modeled in both ways. Although incorrect, this will enable us to exploit
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both techniques developed for detection of deterministic and stochastic signals.

e Suppose we observe a realization of S in background noise. Let us denote the
SNR in decibels at the input and output of the detection filter as SNR;, and
SNRout, respectively. The design objective will be to maximize the difference
ISNRou: — SNRis|. In other words, the detection filter must accomplish one of

the following two tasks:

o Amplify the signal component while suppressing the noise component;

o Suppress the signal component while amplifying the noise component.

Because of the absence of analytic signal and noise models, we shall try
to accomplish these goals in an heuristic manner. We call the difference
ISNRou: — SNRi,| the SNR improvement factor * and this design criterion the

SNR improvement criterion.

Next, let us describe how the detection filters designed according to this criterion
will perform. Let 81, S,,. .., Sy denote the M stationary signal segments to be
detected and let F; be the detection filter corresponding to S; where 1 < i < M.
Without loss of generality, we can assume that a noisy realization of S, is at
the input of the detector. Assuming that the detection filters follow the first
version of the design criterion given in Section 3.2, F} should “resonate” with
the input signal and suppress the noise component. On the other hand, from
the perspective of all other filters, the input signal should appear to be noise
only. Therefore they should suppress the input signal as well as the noise as
much as possible. Thus the average power at the output of F) is much higher
than the output power of the other filters. The decision block should exploit

this fact to decide in favor of S;.

* This notion is analogous to the concept of demodulation gain in communications theory.
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e For high SNR and large sample size detection problems, improper assumptions
regarding the noise environment do not significantly affect the detector perfor-
mance [9]. It is easy to see that the development of the detection filters falls
into this category. Therefore, as we remarked in Section 2.2.2 above, whenever
the need to model the noise environment arises, we shall simply assume that it

is independent, identically distributed Gaussian noise.

Now we are ready to proceed with the development of detection filters.

3.2.1 Matched Filter

Let S be a stationary signal segment, and let s(k), —oo < k < oo be an “eternal”
realization of S, obtained as described above. Assuming that S is deterministic,
s(k) can be regarded as the endless repetition of a representative region consisting of
samples r(0), r(1), ..., 7(IN — 1), i.e. it can be expressed as s(n) = r(n mod N). For
example, Figures 2.5a, b and ¢ show the representative regions of a buzzer, telephone,
and tornado siren signal, respectively.

Now, suppose that we observe a noisy realization z(k) = s(k)+n(k), —oo < k < 00
of S where n(k) denotes the noise sequence. An intuitive way of achieving a high SNR
improvement factor is based on the cross-correlation sequence between the received

signal and representative region. Let

y(k) = Ii_:lr(l)x(k +1l), —oco<k<oo (3-.1)
=0

be the cross-correlation sequence between z(k), —oo < k < oo and r(0), r(1), ...,
r(N —1). y(k) can be expressed as the sum of the sequences y,(k) = Yo' r(l)s(k +
I) and yo(k) = TN r(l)n(k + 1). We expect yn(k), the cross-correlation between
noise signal and representative region to assume values close to zero. On the other

hand, y,(k), the cross-correlation between the signal to be detected and representative
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region, should take higher values. Thus (3.1) suppresses the noise component of z(k)
while amplifying the signal component and meets the SNR improvement criterion.

It is easy to see that (3.1) can be implemented using a matched filter F(z) with
impulse response f(m) =r(N—1-m), k=0, ..., N—1[14]. However, at a sampling
rate of 8 kHz, the representative region is typically 300-500 samples long. Obviously,
a filter with such a long impulse response is not suitable for real-time applications.
Therefore we shall confine ourselves to approximate implementations of F(z) which
are computationally tractable. In particular, since we are only concerned with the
average power at the output of F(z), realizing its magnitude response is sufficient.
To this end, any of the standard filter design techniques available in the literature
can be used [13].

3.2.2 Eigenfilter

Let us model § as an ergodic wide-sense stationary random process and let R be
its autocorrelation matrix. Under white noise, the impulse response of the opti-
mum linear detection filter maximizing the SNR improvement factor is given by
f(m) = vpaz(m), m =0, ..., N—1 where [vnaz(0) . . . Umaz (N —1)]7 is the eigenvector
corresponding to the largest eigenvalue of R and N is the size of R [6]. This filter
is called as an eigenfilter and can be regarded as the stochastic counterpart of the

matched filter introduced above.

3.2.3 Prediction Error Filter

As we did in the previous section, assume that S is a stochastic signal segment. Let
8(k), —0o0 < k < oo be the random process corresponding to S and assume that it
obeys an autoregressive (AR) model [2] of a known order. Let F(z) be the minimum-

mean-square-error one-step linear predictor for s(k) [2]. Now, let us show how the
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one-step linear prediction error filter for s(k), F'(z) = 1 — 27! F(z), can be employed
as a detection filter.

First, suppose that s(k), —o0 < k < oo is at the input of F(z). The predictions
made by F(z) will be close to the actual values. Therefore, when s(k) is at the input
of F'(z), the average output power will be lower than the average power of s(k).
Next, assume that, a noise process n(k), —0o < k < oo is at the input of F(z). F(z)
will try to predict future values of n(k) as if they belonged to a realization of S.
Obviously, except by coincidence, the predictions will be erroneous. Thus, when n(k)
is at the input of F’(z), the average output power will be much higher than in the
previous case. Hence when a noisy realization of S is at the input of F’(z), the SNR
at the output will be much higher than the SNR at the input; thus F'(z) qualifies as

a detection filter.

3.2.4 Autocorrelation Detector

Another detection filter can be based on the autocorrelation functions of the signal
segment to be detected and received signal. Let z(k) = s(k) +n(k), —oo < k < 0o be
the received signal where s(k) and n(k) are defined as above. Assume that s(k) is a
realization of an ergodic wide-sense stationary random process whose autocorrelation
function is p,(h), —00 < h < 0o and s(k) and n(k) are uncorrelated sequences.

Let pzm(h) be the autocorrelation function of a frame of z(n) starting at the
time mN — L and ending at time mN, —oo < m < oo where N and L satisfy
0 < N £ L. In a similar fashion, we can define the functions p, ,(h) and p,m(h)
for s(k) and n(k). Because s(k) and n(k) are uncorrelated, p,m(h) can be written
as prm(h) = psm(h) + pnm(h). Noting that s(k) is the realization of a wide-sense

stationary random process, we have p, ,(h) = ps(h). Thus we obtain

pzm(h) = ps(h) + ppm(h), —oo<h <oo. (3.2)
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Let us define the autocorrelation detector as a filter whose output is given by

P
y(m) = Y pzm(h)ps(h) (3.3)
h=-P

when z(n) is at its input. We shall call P > 0 the order of the autocorrelation
detector. Note that the output rate of the autocorrelation detector is N times lower
than its input rate.

We see that y(m) is approximately the correlation among the sequences p; m,(h)

and p,(h). Using (3.2), y(m) can be expressed as

h=P h=P
y(m) = ya(m) + yn(m) ~ 2 Pf(h) + z pc(h)pn,m(h)- (34)
h=-P h=-P

According to the analysis done in Section 2.2.1, the energy of s(k) is concentrated in
narrow spectral peaks. Therefore, p,(h), h > 0 must be a slowly decaying periodic
sequence [2]. No similar statement can be made about p,m,(h); however, unless
ps(h) and pp m(h) are periodic with the same frequency — which is only possible in
pathologic situations — the second term in (3.4) will be close to zero or negative.
On the other hand, the first term of (3.4) is always positive. Thus, except under
relatively low SNR’s we have y,(m) > y,(m) for —oo < m < oco. Hence (3.3) meets
the SNR improvement criterion and can be used as a detection filter.

Equation (3.3) has an interesting explanation in frequency domain which clarifies
the points made above [14]. Let ¢, m(w), ¢5(w) and @pm(w), —7 < w < 7 be the
power spectral densities of z(k), s(k) and n(k), mN — L < k < mN. For P = oo,

according Wiener-Kitchine Theorem [12], (3.3) can be written as

vm) = 5= [ bem@)sw)do = 5= [ G+ o [ gnm@)bi(w)do. (35)

Usually, the energy of s(k) and n(k) are concentrated in non-overlapping regions of
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the frequency spectrum. Therefore the second term of (3.5) will be close to zero, and
its first term, which is always positive, will dominate y(m), except under low SNR’s.
It can be shown that the autocorrelation detector is equivalent to the locally

optimum detector for stochastic signals with unknown amplitude [14]

3.3 Decision Block

In this section we design the decision block. The decision block must accomplish the
following two tasks: Determine the decision instants (i.e. the starting and ending
points of stationary signal segments) and compare the detection filter outputs to

decide which stationary signal segment is present at the detector output.

3.3.1 Synchronization

In developing a synchronization technique, there are two main issues we have to
address: The first is the determination of optimal decision instants. The second
concerns the removal of the infinite length stationary signal segment assumption made
in designing the detection filters: How many samples should be used in making a
decision?

In this section, we answer these two questions. First, to get an insight to these
two problems, we examine how they are solved in digital communications and explain
why these approaches cannot be applied to the decision block of the alerting signal
detector. This comparison will lead to a surprisingly simple synchronization scheme.

Let us focus on the the determination of decision instants. In communications
receivers, this is usually done using a clock extraction circuit which exploits the peri-
odicity of the received signal to obtain the starting and ending instants of the symbols
to be detected [3]. However, the structure of alerting signals is quite different than

the symbol strings transmitted in a communications channel. Therefore, we cannot
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apply synchronization schemes from classical detection theory; we must develop a
technique which is compatible with the properties of the given alerting signals.

In communications applications the second issue never poses a problem, because
the symbols to be detected are of fixed and known length. On the other hand, each
stationary signal segment (or “symbol”) we have to detect is of different length; fur-
thermore the duration of some stationary signal segments varies with every realization.
We must find a means of overcoming this difficulty.

Having seen why standard synchronization schemes cannot be applied to the deci-
sion block of the alerting signal detector, now let us concentrate on a major difference
between the stationary signal segments we have to detect and symbols used in digital
communications: Duration.

In communications receivers, the importance of synchronization errors on per-
formance is coupled with signaling speed. The faster the bit rate, the shorter the
symbols, and therefore the more precise the clock extraction circuit must be. On
the other hand, it can be shown that the effects of timing errors on performance di-
minishes as the signaling rate decreases [3]. Since the duration of a stationary signal
segment is at least quarter of a second long, its “signaling rate” is very low. In fact, it
is so low that assigning the decision instants arbitrarily would presumably not affect
the detection rate.

To illustrate how we can exploit this conclusion to the development of a synchro-
nization scheme, let us consider the detection of the Type I alerting signal consisting
of a single stationary signal segment S, shown in Figure 3.1a. As we see, S is ca.
7000 samples long. For comparison, in communications systems, the symbols to be
detected are approximately 5-20 samples long.

Now, suppose that we make a decision every 1000 samples, based on the last 1500
samples. In other words, the decision rule processes received signal using overlapping

frames of 1500 samples. This point is illustrated in Figure 3.1b. As we see the
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decision logic may miss § in the first and last frames; however all of the other frames
would be correctly detected. Thus the exact determination of starting and ending
points of stationary signal segments is not necessary. This synchronization scheme is

generalized as follows:

Let z(n), —oo < n < 0o be the received signal. Suppose that the shortest
signal segment to be detected is @ samples long. The decision block will
make a decision every N samples based on a frame of z(n) starting at
time kN — L and ending at time kN where —oo < k < oo and N and L

are integers satisfying N < L < Q.

In the above example @ is 7000 samples, /N is 1000 samples and L is 1500 samples.
Both N and L were chosen arbitrarily within the above given inequality. Due to the
heuristic nature of this formulation, it is difficult to tell how different values of N and
L will affect the detection rate; therefore no strict rule for selection of N and L can

be given. The designer must choose the most convenient values by experimentation.

3.3.2 Decision Rule

In this section, we investigate the difficulties encountered in developing a decision
rule for the alerting signal detector and propose a suitable decision scheme.

As before, let S),...,S) be the stationary signal segments to be detected, and
let F},..., Fy be the corresponding detection filters. Throughout this discussion, we
shall assume that the detection filters are designed according to the first version of
the SNR improvement criterion introduced in Section 3.2. Modification of the below
obtained results to the second version of this optimality criterion follows immediately.

According to the synchronization scheme developed above, the decision block
must process the signals at the detector filter outputs framewise. Suppose that

z(0),...,z(L — 1), an input signal frame, is at the input of the detection filters.
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Let us denote the corresponding frames at the output of F; as %;(0),...,y:(L — 1), !

1 <1 < M. We must compare these frames to make the following decisions:

e Determine whether a stationary signal segment, a transition region, a region of

silence, or just noise is present at the detector input.
o If a stationary signal segment is present at the detector input, decide which one.

A simple decision rule can be based on detector filter output frame energies.
Suppose that the frame z(0), z(1),..., z(L — 1) is at the input of the filters and
let E; = YLl 22(n) be its energy. Let E; = YL-242(n) the output energy of F;,

1 < i < M. Further suppose that the detection filters satisfy the following criteria:

(i) When a noisy realization of S; is at the input of the detection filters,
we have E; > F; for j #1,1<1%,j < M.

(ii) When only noise is at the input of detection filters, we have E; < E,
for1<j;j< M.

At first sight, it seems that filters with good SNR improvement factors would meet
the above criteria. However, they will not unless their gains are chosen appropriately.
Because of the heuristic nature of the detection filter design procedure, no rule for gain
selection can be given. The designer must adjust the filter gains based on simulation
studies and characteristics of individual filters. Criteria (i) and (ii) immediately
suggest the following decision rule which is an extension of the “choose maximum”

scheme from classical detection theory [3]:

Let E,‘ = ma.x{El, ceoy EM} and EJ' = max{E'l, ceny E,'_l, Ei+11 coey EM}

Let @ > 1 be an experimentally determined parameter which we shall

t For the sake of simplicity, we overlook the fact that when a frame of length L is at the input of
a filter, the output signal may be of different length. Additionally, the output of one of the detector
structures proposed in Section 3.2 is a single number per input frame. The modification of the
decision logic explained in this chapter to this detector is straightforward.
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call as sensitivity parameter. If % > a, decide in favor of S;; otherwise

conclude that no stationary signal segment is present at detector input.

The basis for this technique is easy to understand: At low SNR’s when §; is
present at detector input, E; must be substantially higher than the output energies
of other filters. On the other hand, if only noise is present at the detector input, all
filter output energies must be close to each other. The ratio {::—; is a measure of this
closeness. If a is small, the detector will have a low miss rate but a high false alarm
rate. If a is large, the opposite will occur. Thus the term sensitivity parameter for a.
At high SNR’s, typical of the environments where the adaptive alerting device will to
operate, a wide range of a values will result in a low miss and false alarm rate. This

point will be verified by simulation in Chapter 4.

3.4 Postprocessor

The duty of the postprocessor is to complete the job of the decision block and translate
the detected stationary signal segments into alerting signals. The degree of sophisti-
cation required in the postprocessor depends on the reliability of the decision block.
To compensate for a high error rate by the decision block, the postprocessor can ex-
ploit the length and temporal order of the detected stationary signal segments. For
example, algorithms from syntactic pattern recognition could be used to this end.
On the other hand, if our confidence in the decision block is high, the translation
procedure can be accomplished relatively easily. In this case, the following algorithm,

which is a generalized majority selection rule, can be used:

At every decision instant, consider the last P signal segments detected.
If at least B percent of them belong to a given alerting signal, declare
its presence at the detector input. Otherwise conclude no alerting signal

present.
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As all parameters we introduced in this chapter, P and § must be experimentally
determined. This postprocessor algorithm is strikingly simple; therefore we should
first evaluate its performance in combination with the techniques developed in the
previous pages; and only if we do not obtain satisfactory results we should attempt

to develop a more complicated but robust postprocessor block.



CHAPTER 4

Performance Evaluation

4.1 Introduction

In this section, we report the results of simulation studies that evaluate the strengths
and weaknesses of the various alternative approaches considered, and draw conclusions
about the appropriate detector structure to use in the ultimate device.

There are two levels at which individual detection filter design strategies can be
benchmarked: At the lower level, the success of a particular filter is determined by
its SNR improvement factor. At the higher level, the performance is specified by the
detection rate obtained.

In Section 4.2, we report results of simulations used to obtain the SNR improve-
ment factor achieved by the filter design techniques presented in Section 3.2. In
Section 4.3, we quantify the performance of detector strategies based on the forego-

ing developments.

40
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4.2 Benchmarking with the SNR Improvement

Factor

4.2.1 Formal Developments

Let F be a detection filter designed for a stationary signal segment S. Let s(k), —oo <
k < oo be a realization of the eternal extension of S, and let n(k), —oo < k < o0
be a noise sequence. Without loss of generality, we assume that the signal and noise
are both unit power sequences. Additionally, we assume that the two processes are
mutually uncorrelated sequences.

Let y,(k), — 0o < k < 0o and yn(k), — 00 < k < 0o be the response of F to the

signal and noise, respectively. Assume that the signal

z(k) = \/P, s(k) + \/Pa n(k), —oc0o<k<oo (4.1)

is at the input of F' where P, and P, denote the power of signal and noise components.
Thus we have

SNR;, = 10log ;’- (4.2)

Next, let us derive expressions for SNR,,; and |[SNRoy — SNRiy|- The forms of
these expressions depend on the characteristics of F. The filters derived in Section
3.2 can be grouped in two categories: Linear filters (matched filter, prediction error
filter, and eigenfilter) and the quadratic autocorrelation detector. We treat these

cases separately:

Linear Detection Filter. The output of F' can be expressed as

y(k) = /Pays(k) + y/Paga(k), —o00 <k < —c0. (43)




42

Thus
P, Y% o Y2 (K)
SNRyt = 10lo X8 4.4
Rou = 10l0g 5 5= 2 (%) (44)
and
00 2
|SNRou — SNRyn| = IlO log M' (4.5)

T Y2(K) |

Quadratic Detection Filter. The response of a quadratic filter to input sequence

z(k), — oo < k < 0o can be expressed as

y(k) = Pyys(k) + Payn(k) + \/ P Pop(s(k),n(k)), —oo<k<oo  (46)

where ¢(-) is a linear function determined by filter parameters. Thus SNR,, is given

by
P2y yi(k)

SNRoy = 1010 - 2 : A7
R = 108 Py W) + PR SE g GO )
Since s(-) and n(-) are uncorrelated sequences, we have
00
> o(s(k),n(k)) =0 for all k. (4.8)
k=-o00
Hence the SNR improvement factor of a quadratic detection filter is
Eke—o0 U (K) P,
SN — SNRin| = [10log ===—=2=2"—° + 10log —|. 4.9

Unlike the SNR improvement factor of a linear filter, Equation (4.9) is dependent on

SNRin.

Adjustments for Finite-Time Analysis. The results above assume infinite
length signals and cannot be used in practice without proper modifications. The
fact that the synchronization and decision schemes introduced in Section 3.3 process

the input signal framewise suggests that evaluating the SNR improvement factor of
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detection filters on finite length frames might be a better indication of their perfor-

mance. This observation leads us to the following algorithm:

Suppose that we observe a stationary signal segment S in a particular noise
environment. Let F' be a detection filter designed for S. Let s;(k), 0 <
k < L-1and nj(k), 0 <k <L-1,withl <j<Q be frames of a
realization of the signal and noise, respectively, assumed, without loss of
generality, to each be of unity power. Let y,.(k), 0 < k¥ < L -1 and
Yn;(k), 0 <k < L—1 be the response of F' to the signal and noise frames,

respectively. Now fix j and assume that the frame
z;(k) = sj(k) + nj(k), 0<k<L-1 (4.10)

is input to F. Thus SNR;, ; = 0 dB. Modifying (4.5) and (4.9) appropri-

ately gives

o v2 (k)

Txco U3, (k)|

Note that since SNR;, ; =0 dB, the expression for SNR improvement factor

10log

SNRou — SNRyu; = (4.11)

is same for both linear and quadratic F'. For a quadratic detection filter,

modification of (4.11) for other SNR;, follows immediately from (4.9).

The SNR improvement factor obtained for each value of j will be slightly

different. We compensate for this effect by averaging

Q
SNRow — SNRaa| = 53 [SNRow = SNRaly.  (412)
i=1

4.2.2 Simulation Results

The algorithm above was used to obtain the SNR improvement factors for the various

detection filter designs presented in Section 3.2 for several stationary signal segments
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and realistic noise environments. The performance results appear in Tables 4.2-4.5.
In all simulations Q=20 and L=1500 samples. Implementation details are shown in
Table 4.1 .

Comparing Tables 4.2-4.5, we conclude that the SNR improvement factors
achieved by the autocorrelation detector are superior to all other design techniques.
Additionally, we note that the performance of a given approach can show significant

variation among different stationary signal segments and noise environments.

4.3 Benchmarking Using Detection Rates

4.3.1 Introduction

Several difficulties had to be overcome in developing a performance evaluation scheme.
First, we were unable to assign a priori probabilities and decision costs to the sta-
tionary signal segments to be detected. Both quantities depend on the specific needs
of the device user (pragmatic knowledge). For example, in a car the probability of en-
countering an ambulance siren is quite high, whereas the probability of encountering
a doorbell signal is zero. The opposite is true in a home setting.

Similar situations occur in classical detection problems for communications. In
these cases, the performance of the detectors are often evaluated via receiver operat-
ing characteristics (ROC) analysis [14]. However, ROC curves are most appropriate
for problems involving binary hypotheses and are not particularly well-suited to the
present application.

The second difficulty concerns the number and choice of the stationary signal
segments to be used in simulation. Both of these factors depend on the user’s needs
and lifestyle.

The performance of the decision block was evaluated on a set of alerting signals
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Table 4.1. Design details of the detection filters used in the simulations.

Matched Filter

Representative region of length 512 samples chosen
via manual inspection of alerting signal frames. An
all-pole filter of order 16 fitted to the representative
region using Yule-Walker equations [2]

| Eigenfilter

Autocorrelation matrix of alerting signals estimated
using a Bartlett estimator [2]. Order of filter 16.

Prediction Error Filter

Autocorrelation matrix computed same as above. An FIR
predictor of order 16 designed solving Yule-Walker
equations.

Autocorrelation Detector

Autocorrelation computed same as above based on
non-overlapping frames of length 1000 samples.




Table 4.2. SNR improvement factors in decibels for matched filter.
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White | Laugh | Highway | Party | Keyboard
Fire 10.796 | 12.675 | 12.845 | 11.476 | 10.237
Siren 18.716 | 21.669 | 19.977 | 19.839 | 21.186
Telephone | 13.049 | 12.357 | 19.571 | 14.899 | 11.730
Buzzer 5.726 | 10.797 | 18.224 | 9.408 8.353

Table 4.3. SNR improvement factors in decibels for prediction error filter.

White | Laugh | Highway | Party | Keyboard
Fire 12.850 | 5.366 2.286 7.437 7.074
Siren 26.545 | 19.000 | 9.517 | 21.562 | 23.670
Telephone | 11.978 | 10.670 | 9.657 | 10.908 [ 11.515
Buzzer 7.065 | 7.271 | 13.932 | 7.495 7.689

Table 4.4. SNR improvement factors in decibels for eigenfilter.

White | Laugh | Highway | Party | Keyboard
Fire 7.248 | 10.443 | 15.522 | 8.906 6.746
Siren 9.437 | 10.662 | 5.773 9.785 11.582
Telephone | 6.950 | 5.387 | 19.000 | 7.663 5.484
Buzzer 6.693 | 15.007 [ 19.652 | 12.764 | 11.052

Table 4.5. SNR improvement factors in decibels for autocorrelation detector.

White | Laugh | Highway | Party | Keyboard
Fire 50.976 | 40.449 | 33.731 | 53.669 | 43.789
Siren 67.391 | 58.135 | 75.178 | 55.299 | 58.156
Telephone | 61.893 | 45.268 | 34.621 | 55.933 | 58.131
Buzzer | 55.286 | 27.242 | 23.504 | 33.697 | 38.979
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and in various noise environments that are representative of the diverse needs of the
prospective users of the device. We employed stationary signal segments from four
Type 1 signals (fire alarm, telephone, buzzer, and tornado siren) which are likely
to be of interest to any device owner. We selected four typical noise environments
commonly encountered in daily life (laughing people, party noise, background highway
noise, and computer keyboard noise).

The assumption was made that the stationary signal segments and the chosen
noise environments are equiprobable and cost of an error is same for all signals to
be detected. Obviously, these assumptions are not valid in pracfice. For example,
probability of a telephone signal is much higher than the probability of a fire alarm
signal. On the other hand, the cost of missing a fire alarm is much higher than the cost
of missing a telephone signal. The results of the simulations performed under these
assumptions, however, provide a reasonable estimate of the expected performance of
the decision block when deployed in the field. They also indicate how the choices of
the sensitivity parameter, o, and frame length, L, are likely to affect the detection

rate.

4.3.2 Performance of the Decision Rule

To evaluate the performance of the decision rule the following procedure was used:
We sampled 20 frames of each stationary signal segment and noise environment from
the test set. Next, we constructed noisy test frames by scaling the powers of the signal
and noise frames according to the desired SNR before adding them. To simulate the
effects of the AGC, we normalized the power of the generated test frames to unity
(see Section 2.2). Using this procedure, we constructed a collection of test frames.
We constructed this collection in such a way that all signal and noise environments of
interest have the same weight so that they satisfy the equiprobable priors assumption

described above. This collection of noisy observation frames was then input to the
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various detector structures to assess performance.

The tests were first conducted under noiseless conditions. To simulate a noise-
less environment, we set SNR = oo in the algorithm. All filter designs (matched
filter, eigenfilter, prediction error filter, and autocorrelation detector) yielded 100%
detection rate under these conditions.

Next, for the above signal set, we performed simulations to obtain the power
curves [9] of the detectors for the SNR range —5 — 5 dB. The resulting error rate
curves are shown in Figures 4.1-4.9 for several values of frame length, L, and decision
threshold (sensitivity parameter), a.

As indicated in Section 2.2.2, the alerting device is not expected to operate at
SNRs below 0 dB; however obtaining the performance for unrealistically low SNRs
is important for theoretical studies and design of more robust methods. We observe
that detection rate initially increases with increasing L. However, if L becomes too
large, the adverse effects of arbitrarily assigning the decision instants will reduce the
detection rate.

Caution must be taken in interpreting the power curves shown in Figures 4.1-4.9.
As presented, these curves represent extremely conservative indications of perfor-
mance capability. It is important to recall that the final decisions regarding the
presence of an alerting signal is given by the postprocessor block. In making this
final decision, the postprocessor uses a number of outputs (typically 7-15) from the
decision block; therefore, for an incorrect final decision, the decision block must make
numerous erroneous decisions in a very short time frame. Accordingly, the error rate
of the postprocessor will be much lower than the error rate of the decision block. The
majority selection rule used in the postprocessor algorithm effectively corrects the
errors made by the decision block.

It is observed that for 1 < a < 1.2 and for all tested values of L, the total error

rate of the eigenfilter and autocorrelation detector is very close to 0% for the range of
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practical interest. The matched filter performs slightly worse. Nevertheless, its total
error rate is less than 5% for individual frames.

Although the prediction error filter has a good SNR improvement factor, it re-
sulted in rather poor performance on the detection rate benchmarks. An examination
of the filter output values showed that the reason for this was the gain scaling problem
described in Section 3.3.2.

We note that the test procedure employed in this study is not suitable for de-
termining the effects of synchronization on performance. A meaningful scheme for
testing the effects of synchronization requires a large database of alerting signals

which is currently not available.

4.3.3 Performance of the Overall Detector

Based on the simulation results above, we can reliably estimate the performance of
the overall detector including postprocessing.

Consider the postprocessor algorithm developed in Section 3.4. Let P = 10 and
B = 0.6. These parameters were chosen based on the experience gained by analyzing
alerting signal waveforms. Next assume that the decisions made by the postprocessor
algorithm are independent, and that the error rates for individual stationary signal
segments are equal.

Under these assumptions, using the Bernoulli distribution, the overall detector
performance for the given alerting signal set can be estimated. Let P, 4 be the error
rate of the decision block at a given SNR and let z be the nearest integer to SP.

Then the overall error probability of the detector at this SNR will be approximately

given by
P (P
Pom1-3 P11 - Poa)*. (4.13)
k=z k

The overall performance curves determined in this manner appear in Figures



50

035 ! T ! ! ! ! ! L—
o=1
R : : : : : === o=12
03_ ......... ......... _ ......... .......... .......... .......... ..... - a=1.5 . -
:'. . . . - . L R a—:a
0.25

Error Rate
o
M)

0.15

0.1

0.05

SNR (dB)

Figure 4.1. Power curves of the matched filter detector for L=750 samples and several
values of a.
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4.10-4.12. We observe that the error rate of the autocorrelation detector is below
2-1073 even for —3 dB, and the rate is practically 0 for the SNRs at which the device
will ordinarily operate.

Other meaningfully chosen values of P and [ also give similar performance. The
ultimate selection of these parameters should be based on synchronization consider-

ations.
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CHAPTER 5

Conclusions and Considerations for

Future Research

5.1 Conclusions

The simulation results reported here show exceedingly good detection performance
of the developed algorithms with excellent false alarm rates over the battery of tests
performed in the study. The results also imply very robust performance in rather
extreme noise environments for the alerting signals tested. This demonstration of
feasibility projects a very viable, useful, and commercially successful product based
on the developed technology.

The biggest difficulty in developing the detection algorithm presented in this thesis
was caused by the presence of the AGC block. If the SNR could be reliably estimated,
we could design a much more reliable decision block and devise a rigorous criterion
for adjusting the gains of the detection filters. This would make the error rate of the
alerting device practically zero. This study has employed readily available sampling
boards on personal computers. These boards do not give access to the instantaneous
gain of the AGC. Using custom-designed sampling circuitry which gives access to

(and, perhaps control over) the gain of the AGC would permit estimation of the
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instantaneous SNR of the operating environment. Even a gross estimate of SNR
would enable the design of a vastly improved decision rule, and this would significantly
enhance the performance of the developed algorithms. Such a sampling board should

serve as the prototype of the sampling circuitry of the final device.

5.2 Future Research

The scope of this work was limited with the development of the detector stage of the
adaptive alerting device. The next major phases of this project which will eventually

lead to a commercially available alerting device are briefly summarized below:

e Testing of the developed algorithms: In this thesis, only interim simulation
results pertaining the first two stages of the adaptive alerting device, namely the
detection filter bank and decision block were presented. More extensive studies
incorporating the performance of the postprocessor block should be performed.
Additionally, effects of microphone placement and different microphone types

should be addressed.

e Development of training algorithms: As indicated in the introductory
chapter, the ultimate device will be user-trainable for any alerting signal. Easy
to use training algorithms for determining filter bank responses in an unsuper-

vised manner must be developed.

e Hardware Implementation: As with any DSP system operating in real time,
computationally efficient forms of the suggested algorithms must be developed.
Effects of quantization of detection filter parameters must be investigated. Fi-

nally, a suitable DSP-processor for use in the ultimate device must be chosen.
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