“v ,,, 1. - ' z 1111 11111113211411, “1"?“ .1 1. .,, ..‘..:III‘ 1. 1‘ 11:11 .1 111111111 .11....11'1 11 1,1111 4: 21 31111111111111 ‘1?““16 111:“, ‘:I 111.114-1115 111.1%; 1 ,, 1‘81" 111111113 1'1““! “"13 1‘. :I 1,15; , . 1 1111M .,.,,,1,"1 1.1.11111 1... 1“‘1‘ 1. I 1113‘, : 11,-, 11111111“ .1 11: 11111111m111 11111.11. “‘.'""1“‘,‘{‘:‘1‘,“"1‘ “‘1 1‘ ““1‘ 1.11“, ""“ ‘11“ ‘11111'11, “"‘1“111,1I1‘1‘1“111%:1‘114‘,“x11,1-1 ..1.1,.11111,,11,1,, 11' ,1‘ 111,11“ ‘I'IIII 111.111.1111 1,111,111,111, ‘1‘1' ‘1‘." ‘11“. "111%; 111m",“' ‘11 a} ‘1 ‘ 11:111'111 1:1s“‘ ‘v; "‘31": .1 11,2...“ .. .. t “11's,, :1 4",,1" 1'14”" ".1: II, 1"" 3r W111,“ 11-1., ..’:1:I,“‘1'219“1..“‘1 1‘ ”“1 15'1”“ 31‘1111‘H‘ 1111,1111‘1.;§“"11’2‘, ,, , 1 I - 1.11:1" ‘-‘ 7111:: 111111311 1‘11 I' I11-11111-11111111:111 1".1'111‘ 31 1‘11 I 11" 1215111111111? I 1.1" 11‘ 1311::.II11211111111‘11"1'I11 1-. 1 1‘“ ' ." “-9 I111“ 1" 12‘1“ 1"{9‘1‘11‘1 ”'3". 11313211 "23".- L‘iI“‘I 1 .. . 11,1111 ' 11.1 1. 1"1‘1I12111I‘1 1.1-;1-1'1'1! .i-1e111‘."111111 . .311 €111 .11." 1.11 1“ 1“ 1.1.1;111.11.111.1111111111, ““111“ .12” 1 $111111, LAW vi?“ . .’-l ' U"E‘I‘."";" ‘ [“1 ' “ 1I ;' “i1 "5“” ‘ruxl: 9;: '3‘} shinniw ‘111'.'~“ 11.1 .111111 1 1, 1 1;“! '21 11:10?) N “.‘1‘ 1‘1‘"‘.:3"“ 1'1“ ‘ 1" “‘ “““I ““-‘ ‘1“ “‘I‘ “ ““1 ‘ “V “‘1 W 11111 "I‘“ ““3““ - 111-111111122; 3".“ .- 11,111., ' - f- 15“ 4‘1 . I111 1111 Jun ,,1, .1111" 13-3,; v, 11:, - 11,11,1‘H1I1111112 “111111“ 11.11,; 1‘1‘1.‘ ”1131111113“ 1111. ‘ '1‘ 1 , ““1" 1.1.1111“... ,. '1‘, ".I .1- ; "-.: _f .4." J: : .T—Aoo '1‘“ 1.1. 3 “1‘ 1”” 1 .. I “123:1":‘11‘11‘ ‘1“:1‘111‘1’“ 1.. “ 11111111, -. ‘1 " 3113“ 91113111111 11111111111141 ‘131111 #1 3‘1 2'3! «- ..... 411‘" 1",” «(J‘- “"1 1.43 1 '1‘““"‘ ‘ 9‘11‘11-1” '1" 1 f1", "" :13" 41‘1“ 21‘1“ ,1. ... 11111.1 ‘1"1;, .‘,1 bz‘lll.h111§('“tj's:d‘,"g': 11151.11I'1‘1I12I {1‘1 1‘11. 1,‘1‘11»-1"‘ “ f“ 111' '11-: 13"“ 1 ‘11-111‘ 1 ,“‘E“E‘:‘:1"“‘"" 1‘ ‘11“‘tL' o 1"‘ II‘.1II1 “ 1‘1‘111111‘1"1I“‘,, 11;“. 1,:.?jj11?‘,1z‘ 1'1“” “' ““., ‘1‘; ‘1‘"; 11 "" 11'“ “‘1 11.1111. "' " 1 3=" '1. 1111-111: “1511‘ 1111-1111..1 "‘ 1,1,1 ‘1‘ W111 111*”111‘, 1,111.; 4311111,;{111'3 ‘:i1§1-1§11 "1111,11 "1'1”, 1‘1“‘ 1‘1 3111‘“ 11‘ 111: 1' “J12“ , ‘11. “‘11:" 'IH'P 11:11 ' 11"“‘1'1‘ .1141 111 ,1 .{1 11 5111.1“ . 1. 1‘11 1111;11111 111‘ "”1 ‘1‘1 1111112171131 1111“", £1211“ 1‘1“"""“ 1:111:11“ '1. 51111 “111311;:qu 5 I1 "1; ‘ ,4 "1'1 ,1: 11,1 ,1 1', s" “1111:" 1111,1111, 111M '11‘11‘1; . 1‘11 1711111l11‘ 1511‘“ ‘1‘“3‘ H 1131111111 1111‘" 11‘, 1.11‘91‘1..11 111 :11 11:“ ‘43:: 1": . '. ,fx " “1“. 1311’ 1 1: ‘, E‘.“ ,1“ 11‘1“ ‘111‘11‘1 191,“! 1‘ 1‘, . " 1211414111111 . "‘-“'-“‘: 11“ ,11,“ . “"11 111.11 .1 111.1111: 1‘1‘131 11'1’1'131111 .. 40:11“ ‘ ' “‘:‘:-‘111“11‘Ié‘-1"1“'“I‘511 '1'n'1‘31 «'1. ‘II . 1 I161!"“1.1111111""1;: "' ’ ‘I. ""111 ‘ 5115,1111“ .1111“: I». 1'11‘11‘1II1'III11’3“J“ '. .'. 5:11.1I'11 ‘1‘1', 1”; 3’” "[1111 11“ 1 1111 ‘1'111x1 :1 V ,1, 1'11“ “: ' “‘U '1 '1 1-1I“.‘-:“II‘I ‘1‘211‘1I'15., |'~!"“' 1": ‘1‘-‘-‘““.‘Ir““ ' . 1 l 1:111:1111‘1‘111' 1111;; 1-111; ”‘1 ‘ .2 ;' 1"'1:1‘,: 51713.” E“. J1 111‘?“ | ‘11:: I ,1 .b ”:1 ”‘111'1‘ 1'!‘ 1‘ .13. 1:11 7,111 , 21111- ”11:1" 1115111111 ”3111114 ,1'” :I .1 '1' ‘E""'““:"‘1'C"" . ‘1 111 ‘ l11- I 11 ‘1‘: 11,1.1“ ""13 ‘ 131““ 1" 01111111! ""‘1‘ 4-111“ 1:1 I111 II .II ‘11) 111+ .1 . E.‘ 1.1;. ,‘5. I '11. 1,15. ~-.-.-.-~ 11 . =- «‘1' ’I“ W 1-1. 1.11:1 I " I1. I1 1111111,-,,.1,-. .“‘ 41129111111111‘1‘111- “1121152111“ 1" 3‘ :3} ”'3', :‘13". “" ‘1“ ““"“ 5‘ 1‘1‘1‘ '. 3,15 I: 11"“ ' ,1, 1111111,: {.1 111111111111111. .1119‘," ‘1. ‘11,...1 . .I »- - "1111111115113 111111111111111411-1," I ‘1111‘,:“1"1‘11"1"'1,',j,1-- 11w ‘, ..1 1; "1 1‘1 1‘. 11111":1:1111111111.,1111I 11-1. 111.1111: :11 . I. , 1.15-1.11 , I11 111.111.11111,1. ‘1‘1‘11. I1 . 1' . 1: l 1 ‘ 1 11 II; -._' "' 2 .—', 4 .2 v w...- ._... ___. _ . -—..,_ .m {ts-I, ~_... - ....- -. —a~‘~ ' .. .... . :r‘iz. .0 ‘ __‘.. . . _.,__.. ' L -. I ' ‘— ,-,_._..._:_--. p. willm\mlilluilwlullwwl ' 3 1293 This is to certify that the thesis entitled CATALYST DEVELOPMENT FOR SUGAR HYDROGENOLYSIS USING A 2,4-PENTANEDIOL MODEL COMPOUND presented by Weston David Twigg has been accepted towards fulfillment of the requirements for M. S. degree in Chemical Engineering fly»: £44197 Major professor Date/MM [3,: I??? / 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE lN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. I DATE DUE DATE DUE MTE DUE [042591 ”Mg 2 m1 lawman 2505 APR 12 @3005; run“ 20 19 780% 1/98 mm“ CATALYST DEVELOPMENT FOR SUGAR HYDROGENOLYSIS USING A 2,4- PENTANEDIOL MODEL COMPOUND By Weston David Twigg A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemical Engineering 1998 ABSTRACT CATLYST DEVELOPMENT FOR SUGAR HYDROGEN OLYSIS USING A 2,4- PENTANEDIOL MODEL COMPOUND By Weston David Twigg Sugars are readily available intermediate products in the conversion of renewable biomass resources to useful industrial chemicals. The conversion of sugars to currently petroleum-based chemicals has the potential to enhance the utilization of biomass, as well as reduce our dependence on petroleum. Present research explores the development of a catalyst to convert sugars to propylene glycol, ethylene glycol, and glycerol using a one step catalytic hydrogenolysis reaction. In this research, a 2,4-pentanediol model compound was used for catalyst development. The use of 2,4-pentanediol reduced the number of possible products, allowing for an efficient analysis of catalytic effects and reaction pathways. Temperature, pressure, and base effects were also studied using this model compound. Two primary reaction pathways existed, dehydration and retro- aldolization, and a catalyst that favored retro-aldolization was desired. Two types of catalysts yielded desired results: the first type was a series of metal oxides, most notably copper oxide, that promoted high selectivities, and the second type was nickel on alumina/silica which promoted high conversions. The results of these studies are examined in this paper. ACKNOWLEDGEMENTS I would like to thank Dr. Martin C. Hawley for his support and guidance throughout this project. I would also like to thank the members of the faculty of the Department of Chemical Engineering at Michigan State University for their help in transforming a chemist into a chemical engineer. And I would especially like to thank Candy McMaster, Julie Caywood, Faith Peterson, Jean Rooney, and Lynn Atzenhoffer, who answered all of my questions on how to get things accomplished at Michigan State University. Also, I am indebted to my two undergraduate students, Eric Schlegel and Elena Pacania, who ran many long experiments without complaint. This work was supported by the Crop and Food Bioprocessing Center, the Consortium for Plant Biotechnology Research, the Amoco Foundation, Proctor and Gamble, and the Department of Chemical Engineering at Michigan State University. iii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................... v LIST OF FIGURES ............................................................................................................ vi INTRODUCTION ............................................................................................................... 1 Sugar Hydrogenolysis Background ............................................................................. 1 Project Background ..................................................................................................... 2 Catalyst Literature Search ........................................................................................... 5 METHODS AND MATERIALS ........................................................................................ 8 Reaction Vessel ........................................................................................................... 8 Experimental Method ................................................................................................ 11 Sample Analysis ........................................................................................................ 13 Error Analysis ............................................................................................................ 15 RESULTS AND DISCUSSION ........................................................................................ 16 Overall Trends ........................................................................................................... 18 Pressure ..................................................................................................................... 19 Temperature ............................................................................................................... 20 Catalyst Results ......................................................................................................... 21 Base Type and Concentration .................................................................................... 22 RECYCLE AND SEPARATION TECHNOLOGIES ...................................................... 24 CONCLUSIONS AND RECOMMENDATIONS ............................................................ 31 APPENDICES ................................................................................................................... 34 GC Calibration Curves .............................................................................................. 35 Experimental Data ..................................................................................................... 42 Discussion of Variation from Previous Work in GC Analysis Method .................... 79 REFERENCES .................................................................................................................. 82 iv LIST OF TABLES Table 2.1, Approximate GC Retention Times ........................................................... 14 Table 3.1, Summary of Experiments ......................................................................... 17-18 Table 4.2, Hydrogenolysis Products and Physical Properties ................................... 25 LIST OF FIGURES Figure 1.1, 2,4-Pentanediol Reaction Mechanism ..................................................... 4 Figure 2.1, Reaction Vessel and Components ........................................................... 10 Figure 3.1, Effects of Pressure on Selectivity ........................................................... 20 Figure 3.2, Effects of Temperature on Selectivity ..................................................... 21 Figure 4.1, Sugar Recycle Through Distillation/Evaporation ................................... 28 Figure 4.2, Sugar Recycle Through Solvent Extraction ............................................ 29 Figure 4.3, Sugar Recycle Through Crystallization .................................................. 36 Figure A.l, Acetone GC Calibration Curve .............................................................. 37 Figure A.2, Ethanol GC Calibration Curve ............................................................... 38 Figure A.3, 2,4-Pentanediol GC Calibration Curve .................................................. 39 Figure A.4, Isopropanol GC Calibration Curve ........................................................ 40 Figure A.5, 2-Pentanone GC Calibration Curve ....................................................... 41 Figure A.6, 2-Pentanol GC Calibration Curve .......................................................... 42 vi INTRODUCTION Sugar Hydrogenolysis Background Currently, many industrially important chemicals are produced using fossil fuel based feedstocks. Due to the depleting reservoir of our fossil fuel resources, alternative pathways to produce these industrially important chemicals must be developed. In this research, the catalytic conversion of sugars to produce three such chemicals, propylene glycol, ethylene glycol, and glycerol, has been studied using 2,4—pentanediol as a model compound. Presently, propylene glycol is produced by the hydration of propylene oxide (1), a petroleum based process. Propylene glycol is a valuable industrial chemical which is often used as a substitute for the more toxic ethylene glycol. It is used largely in the food and personal hygiene industries, and can be found in most lotions and sunscreens. Ethylene glycol is currently produced by the hydration of ethylene oxide (1), which is a petroleum based process. Ethylene glycol is a highly valuable chemical in industry, and it is currently the second highest volume chemical produced in the United States (2). Its most common use is as an antifreeze, but it is also used in brake fluid, paints, and polyesters. Glycerol is currently produced from the chlorination and subsequent hydrolysis of propylene ( 1). Glycerol, like propylene glycol, is often used in the food and personal hygiene industries. It is also used in liqueurs, inks, and lubricants. Additionally, glycerol is a valued intermediate in many industrial chemical processes. Sugar hydrogenolysis is potentially an economically viable process to produce these high valued chemicals from renewable biomass resources such as wood, corn, or sugarcane. These renewable resources can be broken down into sugars, and the sugars can then be broken down into useful chemicals. It is expected that an efficient hydrogenolysis reaction will be economically favorable over current petroleum based processes (1). This will not only reduce our dependence on fossil fuels, but the one—step hydrogenolysis process is simpler and environmentally safer due to the use of less toxic substances and fewer harmful byproducts. However, sugar hydrogenolysis is not currently used in industry because it produces too many unwanted byproducts. Hydrogenolysis refers to the cleavage of a molecule under conditions of catalytic hydrogenation. This means that under high temperature and high hydrogen pressure, sugars can be catalytically hydrocracked into lower polyhydric alcohols in the presence of transition metal catalysts. These lower polyhydric alcohols include glycerol, propylene glycol, and ethylene glycol in addition to others. The key to making this process economically advantageous, and the focus of this paper, is to develop a hydrogenolysis catalyst that favors the production of glycerol, pr0pylene glycol, and ethylene glycol over the other chemicals produced. Project Background The main problem with sugar hydrogenolysis is its selectivity. The products which have been reported for the hydrogenolysis of fructose, glucose, sucrose, and sugar alcohols include ethylene glycol, propylene glycol, glycerol, 1,4-butanediol, 2,3- butanediol, erythritol, threitol, xylitol, 3,4-dideoxygenated hexitol, ethanol, methanol, and sometimes hydrocarbons and carboxylic acids, depending on the process. Of these products, the first three are currently high valued industrial chemicals. The goal at this time is to use the previous hydrogenolysis mechanism studies by Wang (3,4), Hawley (4), and Fumey (1,4) to help develop a catalyst that favors these three desirable chemicals. To do this, a catalyst needs to be developed that favors the C-C bond breaking mechanism over the C-0 bond breaking mechanism in sugar hydrogenolysis. If C-C bond cleavage dominates the hydrogenolysis reaction, then glycerol, propylene glycol, and ethylene glycol are the three primary chemicals produced. Wang, Hawley, and Fumey (4) previously proved that C-C cleavage occurs through retro- aldolization. Thus, if a catalyst could be developed that favored retro-aldolization, C-C cleavage would occur and the resultant products would mainly consist of the aforementioned desirable chemicals. Wang and Fumey (1,3) have shown that 2,4-pentanediol is a useful model compound for hydrogenolysis. Under hydrogenolysis, 2,4-pentanediol breaks down into two groups of chemicals, those derived from C-C cleavage and those derived from C-O cleavage. This mechanism is shown in Figure 1.1 below. Thus, the study of the hydrogenolysis reaction is simple because only a handful of products are present, and it is known which mechanism each product is derived from. It should be noted that 2,4- Pentanediol is not a sugar chain, but it is expected that the results from 2,4-pentanediol hydrogenolysis will be similar to sugar hydrogenolysis due to the same C-C cleavage mechanism. As a result of the work by Wang and Fumey, 2,4-pentanediol was chosen for the catalyst studies in the current project work. 2,4—Pentanediol Reaction Mechanism .H2 2,4-pentanediol ———> 4-hydroxy-2-pentanone CH3CH(OH)CH2C CH3COCH2CH(OH)CH3 H(OH)CH3 -HZO acetone + acetaldehyde 3-penten-2-pentanone cr13cocu3 CH3CHO cracncncocn3 +H2 l +H2 l +H2 isopropanol ethanol 2-pentanone CH3CH(OH)CH3 CH3CH20H CH3CH2CH2C0CH3 C-C Cleavage +H2 (desired) 2-pentanol CH3CH2CH2CH(OH)CH3 C-O Cleavage Figure 1.1 2,4-Pentanediol Reaction Mechanism Additional work has been conducted by Wang (3) on creating a computer model of the hydrogenolysis reaction. This model has recently been completed, however it has not yet been incorporated into the current research. A reliable computer simulation of experimental hydrogenolysis reactions will allow greater flexibility in interpolating data and identifying catalysis trends. Catalyst Literature Search Previous work on this project proved that the main C—C bond breaking mechanism in sugar hydrogenolysis is through retro-aldolization (1,3,4). Because the C-C bond breaking mechanism is the preferred pathway to produce the aforementioned high valued chemicals, an extensive literature search was conducted to review potential catalysts that would promote this mechanism. Much previous work has been conducted on sugar hydrogenolysis, but the selectivity of the C-C cleavage versus C-O cleavage has not been satisfactorily able to compete with current petroleum based production of the desired chemicals. The most common catalysts used in previous work include nickel, copper, and ruthenium on various supports, usually aided by a group IA or IIA promoter. Wang and Fumey (1,3) have tested several catalysts during the course of this project. These included ruthenium on carbon, nickel on silica-alumina, nickel kieselguhr, Raney nickel, Raney copper, copper chromite, and barium-promoted copper chromite. Bearing in mind the results of previous catalyst studies, which showed that the barium-promoted copper chromite provided the highest selectivity of the group, an exhaustive literature search was conducted to look for trends that would help select a group or groups of catalysts for extensive testing. The literature search also aided in learning a great deal about catalyst selection and catalytic properties. The literature search revealed several groups of possible catalysts that favored retro-aldol reactions, and thus C-C cleavage, in the desired range of operating conditions. These included: 0 Anion exchange resins with sodium bisulfite or sodium hydroxide (5). 0 Potassium promoted CuO/ZnO/Ale3. Group IA and HA promoters work well with transition metal catalysts for hydrogenolysis reactions (6,7). This correlates with Wang’s previous work (3). 0 Microporous clay catalysts. Molecular sieves have been used with some success in related processes (8). o Pt-Bi catalyst on charcoal (9). Platinum is a well studied group VIII transition metal catalyst. Group VIII transition metals are common hydrogenolysis catalysts. o Ru/C, sulferized, promoted with CaOH (10). Used in a similar process with moderate success. 0 CoMoS-, NiMoS-, NiWS-IA1203-Si02. Used for catalytic hydrocracking reactions (11). o BINOL—lanthium-lithium complex. Effective for nitroaldol and Michael reactions (12), and possibly retro-aldol reactions. 0 Ca(OH)2, La(OH)3, MgO, NaOH. These bases promote retro-aldol reactions (13,14,15). 0 Acid treated clay (F-24) from Engelhard. Useful in several retro-aldol reactions (16). It is known that retro-aldol reactions are best catalyzed by strong bases and high temperatures (17) , and hydrogenolysis reactions are best catalyzed by transition metals, especially group VIII metals. The literature search suggested that a good catalyst for hydrogenolysis of sugars would be mono- or bi-metallic, with a group IA or IIA promoter, and some type of alumina, silica, or charcoal catalyst support. A class of hydrogenolysis catalysts as described above with the addition of a strong base was decided upon for experimentation. METHODS AND MATERIALS All experiments were conducted using a 2,4-pentanediol model compound. As discussed earlier, 2,4-pentanediol offers an advantage over sugars because fewer products are produced, allowing for a better overall understanding of the experimental results. Again, the 2,4-pentanediol reaction mechanism is shown in Figure 1.1. The products derived from C-C cleavage are acetone, isopropanol, ethanol, and acetaldehyde, however acetaldehyde was only present in trace amounts. The products derived from C-O cleavage are 3—penten-2—pentanone, which was only present in trace amounts, 2- pentanone, and 2—pentanol. Thus, the selectivity of C-C versus C-O cleavage can be defined as the concentration of acetone, ethanol, and isopropanol versus the concentration 2-pentanone and 2-pentanol. The goal of the experimental aspect of this project was to develop a catalyst and reaction conditions that had a high selectivity toward the C-C cleavage mechanism. A high selectivity toward C-C cleavage is expected to result in a high yield of propylene glycol, ethylene glycol, and glycerol in the sugar hydrogenolysis reaction. Reaction Vessel All reactions were carried out in a 50 ml, cylindrical stainless steel batch reactor. The reactor and its components are shown in Figure 2.1. The reactor was equipped with a 1/4 inch inlet/outlet port attached to a valve system, a pressure gauge, a vacuum line, and a hydrogen line designed to allow the creation of high pressure, hydrogen atmosphere conditions within the reactor. This port was sealed during experiments once the desired hydrogen atmosphere was obtained. An outlet port was installed in the top of the vessel to allow samples to be taken during the course of the reaction. This outlet port was connected to a 1/16 inch stainless steel tube and a 0.5um HPLC filter system that reached the bottom of the reactor, allowing samples to be withdrawn from the reactor without losing any solid catalyst particles. The sample outlet ran from the top of the reactor to a two-way valve with about 6 inches of 1/ 16 inch stainless steel tubing. Samples were released from the valve into 4m] sample jars at appropriate intervals. The entire reaction vessel was placed in an oil bath at a level equal to the 1/4 inch hydrogen inlet/outlet port (see Figure 2.1) and heated with a 1000 Watt heating coil during experimental runs. Nitrogen gas was gently bubbled into the hot oil bath during experiments to help evenly distribute the heat. The heating coil was controlled with a temperature controller and a platinum probe. The temperature was monitored with a mercury thermometer. Additionally, the oil bath and reaction vessel were placed on a magnetic stirring plate to ensure continuous mixing of reactants throughout the experiment. A H2 Inlet f) To Vacuum Sample Outlet N2 Reaction Hot Oil Bath Vessel (Controlled with a 0 temperature controller, a O heating coil, and a filter p atrnum probe.) 0 0 v 0 Stirring magnet Magnetic Stirring Plate Figure 2.1, Reaction Vessel and Components 10 Chemical Components All chemical constituents, including catalysts, were ordered directly from Aldrich Chemical Company and used as supplied. Chemicals were of the highest purity offered by Aldrich. Water was used as the solvent in each experiment. The water used was RO water obtained from the engineering building RO unit, and it was regularly tested using gas chromatography to check for impurities. Although a few impurities did exist, they were relatively small, and they were present at retention times other than those of the compounds produced from the 2,4-pentanediol hydrogenolysis experiments. Experimental Method Catalytic sugar hydrogenolysis occurs at high hydrogen pressure and high temperatures, so this 2,4-pentanediol model study was operated under those conditions. Temperatures ranged from 150°C to 240°C and hydrogen pressure ranged from 3MPa to 5MPa. The standard operating procedure was as follows: 1. Fill reaction vessel with appropriate reactants and a stirring magnet. 2. Attach reaction vessel to pressure gauge and insert into oil bath. 3. Center reaction vessel and oil bath on magnetic stirring plate. 4. Check oil level — should be just below gas connection. 5. Pressurize N2 until bubbles adequately mix the oil bath. 6. Check depth of thermometer and temperature probe. 7. Make sure both needle valves to H2 are closed. Open three way valve to H2. 8. Pressurize H2 regulator to desired pressure. 9. Open needle valve nearest H2 regulator by two turns. Check line for leaks. 11 10. PURGING: Pressurize reaction vessel to approximately 2MPa by slowly turning the needle valve nearest the reaction vessel. Set the VACUUM setting on the control board to between half and full. Then slowly turn the three-way valve from the H2 line to the vacuum line until pressure drops to zero. Make sure no liquid is escaping to the vacuum. Turn three-way valve back to H2 line. Repeat step 11 five times to replace air with hydrogen in the reaction vessel. 11. Pressurize the reaction vessel to 2MPa. 12. Begin heating using temperature controller. 13. When the desired temperature is reached, pressurize the reaction vessel to the desired pressure. 14. Turn on magnetic stirring plate — set to low setting #3. 15. Take samples through sample port at desired time intervals. Maintain system pressure by adding pressure if needed. Discard first 0.5m] of sample due to dead space. Use lml for analysis. 16. When finished, turn off heater and let cool. Cut H2 pressure. Excess pressure can be released through sample valve. When temperature drops below 100°C, release pressure to vacuum. Release excess H2 pressure from line. Discard sample to appropriate waste container. Clean reaction vessel and components. Most experiments had the following chemical components: water, base, catalyst, 2,4- pentanediol, and occasionally an additional promoter. Experiments were generally run for four hours with sample being withdrawn every thirty minutes. Because the goal was 12 to develop an efficient catalyst and reaction conditions, experiments were generally stopped at the maximum run time of four hours. Sample Analysis Slightly more than lml of sample was taken from the reaction vessel every thirty minutes during experiments for analysis. This sample was then measured to a volume of exactly lml using a N ichiryo Justor 1100DG micropipette. Using a Hamilton #701 101.11 syringe, exactly 8g] of dimethyl sulfoxide (DMSO) was then added to the sample as an internal standard for gas chromatography (GC) analysis. The sample was shaken vigorously and then analyzed in the GC. The gas chromatograph used was a Hewlett Packard 5890 Series H equipped with a 30m x 0.320mm, 1.80 micron DB-624 J &W column. The column had a temperature rating of -20°C to 260°C. Helium was the carrier gas with a purity of 99.99999%, obtained by using an Alltech All—Pure Helium Purifier. A flame ionization detector (FID) was used to analyze products. The detector was fed with a combination of hydrogen at 150 kPa, nitrogen at 300 kPa, and medical grade air at 300 kPa. The injection port was maintained at a temperature of 250°C and the detector temperature was maintained at 300°C. Samples were injected through a filtered glass liner, model HP#19251-60540. The temperature ramp was set as follows: five minutes at 40°C, followed by a rise of 30°C per minute to 240°C, and then maintained at 240°C for six minutes for a total run time of 17.66 minutes. The amount of sample injected into the GC was 0.41.11 sample and 0.21.11 air for a total injection of 0.6111, however this was only used as a guideline as the 13 use of an internal standard allows some flexibility in sample volume. The approximate retention times of each compound is listed in Table 2.1 below. Table 2.1, Approximate GC Retention Times Compound Approximate Retention Time (minutes) Ethanol 3.75 Acetone 4.36 Isopropanol 4.61 2-Pentanone 8.53 2-Pentanol 8.77 Dimethyl Sulfoxide (DMSO) 11.01 2,4-Pentanediol l 1.29 The GC was calibrated for each individual compound using dimethyl sulfoxide (DMSO) as an internal standard. These calibration curves are listed in Appendix A. It should be noted that the GC analysis method used for this work differs from the method used previously in this project. The main difference was the use of an internal standard to help standardize each sample run. Due to the difficulties that arise from trying to run an aqueous sample through the GC, an internal standard is a necessity for consistency in sample analysis. This t0pic is further discussed in Appendix C. The gas chromatography results were then entered into a spreadsheet which automatically calculated the selectivity and overall conversion of 2,4-pentanediol at each time interval. These results are listed in Appendix B. 14 Error Analysis Due to the analytical methods and the small volumes used in sample analysis, some experimental error is present. A discussion of the error present in the gas chromatography analytical method is located in Appendix C. A comparison of experimental results of selectivities and conversions yielded errors as high as 28%. However, it is estimated that the average error was not more than 15% between experiments. Although this may seem high, the results are qualitatively correct and can be used to identify catalytic trends. 15 RESULTS AND DISCUSSION A total of 43 experiments were run during this phase of the project, resulting in excellent catalytic hydrogenolysis data. Trends in temperature, pressure, and base type and concentration were investigated for various catalysts. Each catalyst is unique, making it difficult to apply these trends to all catalysts; however the trends do apply for similar classes of catalysts. Several catalysts were studied in addition to some of the catalysts previously investigated by Wang (3,18) and Fumey (l). The recent catalysts included: palladium 1% on carbon, molybdenum oxide on alumina, nickel on alumina/silica, copper (II) oxide, iron (III) oxide, boron oxide, beryllium oxide, aluminum oxide, nickel on kieselguhr, ruthenium 5% on carbon, and barium promoted copper chromite. Catalysts were studied individually and, in some cases, paired together to determine their effectiveness in obtaining both a high conversion of 2,4-pentanediol and a high selectivity toward C-C cleavage versus C-O cleavage. A complete list of experiments is given in Table 3.1 below. Some experiments were unsuccessful and are not listed in the final data, thus accounting for several gaps and modifications in the numbering of experiments. Extensive data for each experiment is listed in Appendix B. 16 Table 3.1, Summary of Experiments EXP date catalyst amt. base amt. T P avg. final (g) (ml) (C) (MPa) selectivity conversio (C-C/C-O) n (%) 4 9/26/97 Pd, 1% on Carbon 0.40 IN NaOH 0.5 210 5 1.12 32.13 6 10/10/97 Pd, 1% on Carbon 0.50 IN NaOH 1 220 5 1.24 2.94 7 10/9/97 Pd, 1% on Carbon 0.50 IN NaOH 2 220 5 0.41 -- 8 10/10/97 Pd, 1% on Carbon 0.50 IN NaOH 2 220 5 0.81 12.03 9 10/11/97 Pd, 1% on Carbon 0.10 1N NaOH 2 220 5 1.07 4.19 10 10/15/97 M-Ox on alumina 0.50 IN NaOH 2 220 5 2.20 -- 11 10/ 16/97 M-Ox on Alumina 0.10 IN NaOH 2 220 5 2.60 1.09 12 10/ 19/97 Mo Ox on Alumina 0.50 IN NaOH 2 220 5 0.00 6.90 13 10/21/97 Pd, 1% on Carbon 0.50 IN CaOH 2 220 5 1.56 21.01 14 10/23/97 Pd, 1% on Carbon 0.50 IN CaCO3 2 220 5 1.37 --- 15 10/24/97 Pd, 1% on Carbon 0.50 1N KCO3 2 220 5 0.46 2.29 16 10/26/97 Pd, 1% on Carbon 0.50 IN KOH 2 220 5 0.40 5.84 17 10/29/97 Pd, 1% on Carbon 0.50 IN NaOH 2 150 5 0.00 4.35 19 11/1/97 Pd, 1% on Carbon 0.50 1N NaOH 2 220 3 1.22 3.66 20 11/2/97 Pd, 1% on Carbon 0.50 IN NaOH 2 220 4 1.23 22.40 21 11/4/97 Pd, 1% on Carbon 0.50 IN NaOH 2 190 5 1.14 5.58 24 11/7/97 Pd, 1% on Carbon 0.50 IN NaOH 2 190 3 1.22 2.61 25 11/22/97 Pd, 1% on Carbon 0.50 IN NaOH 2 220 3 1.10 31.02 26 10/16/97 Pd, 1% on Carbon 0.50 IN NaOH 4 220 3 1.10 10.53 27 1/20/98 Ba prom Cu-chro 0.05 IN NaOH 0.2 210 3.5 3.58 1.56 28 1/22/98 Ni on Kieselguhr 0.05 1N NaOH 5 210 3.5 1.40 40.89 29 1/25/98 5% Ru on Carbon 0.05 IN NaOH 0.2 210 3.5 0.93 74.77 31 1/29/98 Ni on alumina/silica 0.05 IN NaOH 0.2 210 3.5 1.41 71.17 32 1/29/98 Copper 11 Oxide 0.05 IN NaOH 0.2 210 3.5 3.51 45.63 34 2/3/98 Ni on AlO3/SiO 0.05 IN NaOH 1 210 3.5 1.61 97.03 Copper Oxide 0.05 34III 2/10/98 Ni on alumina/silica 0.05 IN NaOH 1 210 3.5 0.90 94.00 Cu (H) oxide 0.05 35 2/7/98 Pd, 1% on Carbon 0.05 IN NaOH 1 210 3.5 1.66 65.30 Boron Oxide 0.05 36 2/10/98 Ni on alumina/silica 0.05 IN NaOH 1 210 3.5 1.18 93.03 Fe (III) Oxide 0.05 37 2/17/98 Ni on alumina/silica 0.05 1N NaOH 1 210 3.5 0.97 59.30 Beryllium oxide 0.05 35 B 2/22/98 Ni on alumina/silica 0.05 IN NaOH 1 210 3.5 0.69 84.79 Beryllium Oxide 0.05 17 Table 3.1 (cont’d). 38 2/26/98 Ni on alumina/silica 0.10 IN NaOH 1 210 3.5 0.96 98.58 Fe (HI) Oxide 0.10 39 3/3/98 Ni on alumina/silica 0.05 1N NaOH 1 210 3.5 0.93 67.69 Cu (11) Oxide 0.10 40 3/5/98 Ni on alumina/silica 0.05 IN NaOH 1 210 3.5 0.52 82.55 Cu (II) Oxide 0.50 41 3/14/98 Ni on alumina/silica 0.05 1N NaOH 1 210 3.5 0.57 100.00 Aluminum Oxide 0.10 42 3/18/98 Ni on alumina/silica 0.05 1N NaOH 1 210 3.5 0.87 85.59 aluminum Ox 0.05 copper oxide 0.05 43 3/19/98 Ni on alumina/silica 0.05 IN NaOH 1 210 3.5 0.83 93.96 Cu (H) oxide 0.05 Mg oxide 0.05 Overall Trends Several variables were studied during this phase of the project. Some of the general trends that were determined are listed here. These trends will be discussed in more detail below. It should be noted that each catalyst may have different optimum reaction conditions, and when a catalyst is selected for testing on sugars these conditions will have to be explored. The ideal experimental temperature range was determined to be between 190°C and 240°C. The ideal experimental pressure range was determined to be between 3.0 MPa and 3.5 MPa. The catalyst with the highest overall conversion of 2,4- pentanediol was determined to be nickel on alumina/silica. The catalysts with the highest selectivities toward C-C cleavage were copper (H) oxide, aluminum oxide, and iron (III) oxide. As a result, a combination of these catalysts to maximize the overall conversion of 2,4-pentanediol and C-C selectivity was determined to be a possibility for use in future sugar hydrogenolysis experiments. Additionally, several bases and base concentrations were studied. An adequate overall base was determined to be lml of 1N NaOH. 18 Pressure Pressure was determined to have an inverse affect on C-C selectivity as well as on overall 2,4-pentanediol conversion. This agrees with previous work by Wang (3) and Fumey (1). An example showing selectivity versus time at two different pressures is given below in Figure 3.1. Both experiments were run at 220°C with the following components: 38ml H2O, 0.5g 2,4-pentanediol, 0.5g Pd 1% on carbon, and 2m] 1N NaOH. Figure 3.1 shows the selectivities at 3.0 MPa and 5.0 MPa. The selectivity at 3.0 MPa is higher at almost every time interval than the selectivity at 5.0 MPa. Not shown in Figure 3.1 is the fact that the overall conversion of 2,4-pentanediol follows the same trend of being higher at lower pressures. Pressures in between 3.0 MPa and 5.0 MPa were studied, and the pressure followed the same trend. Pressures lower than 3.0 MPa were studied, but the results were erratic due to difficulties in sample withdrawal from a lack of pressure in the reaction vessel. Thus, it was determined that the ideal operating pressure for these experiments was between 3.0 MPa and 3.5 MPa. Once a catalyst is selected for further studies on sugar chains, a new reaction vessel or sample withdrawal system should be developed to allow lower pressures to be studied. 19 Selectivity vs. Time at Different Pressures I P = ship; 5 P = Eiffel Selectivity i‘ii‘il3111111111111. Figure 3.1, Effects of Pressure on Selectivity All experiments were conducted at 220 C using 38ml water, 0.5g 2,4- PD, 0.5g Pd 1% on Carbon, and 2ml 1N NaOH. (Selectivity = C-C/C-O cleavage) Temperature Temperature was found to have a directly proportional effect on C-C selectivity and overall 2,4-pentanediol conversion. A comparison of selectivity versus time at three different temperatures is given below in Figure 3.2. Each experiment was run at 5MPa with the following components: 38ml H2O, 0.5g 2,4-pentanediol, 0.5g Pd 1% on carbon, and 2m] 1N NaOH. Some variation exists between the selectivities at 190°C and 220°C, but this is mainly due to inherent experimental error. The most important result in Figure 3.2 is the fact that the selectivity at 150°C is zero at every time interval. The same is true for overall 2,4-pentanediol conversion. This implies that the hydrogenolysis reaction is not occurring to any great extent at 150°C. Temperatures were run as high as 240°C, but this was nearing the safety limit of the reaction apparatus. The results at 240°C were 20 similar to results between 190°C and 220°C. Thus, it was determined that the optimum operating temperature was between 190°C and 220°C. Selectivity vs. Time at Various Temperatures, le=1soc‘ 1.4V IT=19OC‘ .£ ' CI = 1.2: r—‘ ‘ 1,,I,32991 E 1 .g 0.8 0 LI 2 0.6 *1 0 (D 0 30 60 90 120 150 180 210 240 Time(min.) Figure 3.2, Effects of Temperature on Selectivity All experiments were run at 5MPa using 38ml water, 0.5g 2,4-PD, 0.5g Pd 1% on Carbon, and 2m] 1N NaOH. (Selectivity = C-C/C-O cleavage) Catalyst Results The ultimate goal of this phase of the project was to develop a catalyst that would promote C-C cleavage, and thus the production of propylene glycol, ethylene glycol, and glycerol, in sugar hydrogenolysis. The two main parameters used to determine the effectiveness of a given catalyst were the selectivity towards C-C cleavage and the overall conversion of 2,4-pentanediol. Initially, most experiments were conducted using palladium 1% on carbon. This was chosen as a result of the literature study conducted earlier in this phase of the project. 21 Palladium 1% on carbon proved to be a useful catalyst to study the varying trends in reactor conditions, however it yielded a low overall selectivity and conversion. When a set of optimum reactor conditions was chosen, several other catalysts were studied. Of these, nickel on alumina/silica yielded the highest overall conversion of 2,4-pentanediol with conversions nearing 100%. However, the selectivity of nickel on alumina/silica was not as high as desired at about 1.4 (58.3%). Again, selectivity is defined as the ratio of C-C cleavage to C-0 cleavage in the hydrogenolysis products. Two catalysts, copper oxide and barium-promoted copper chromite, yielded selectivities around 3.5 (77.7%), however the overall conversions were only 1.56% and 45.6% respectively. Thus, combinations of catalysts were studied to increase both the selectivity and the overall conversion. The selectivities of the catalyst combinations were not as high as desired, ranging from roughly 0.6 (37.5%) to 1.7 (63.0%). However, the overall conversions were high, often nearing 100%. These results are listed both in Table 3.1 and in Appendix B. It is expected that a combination of copper oxide, boron oxide, or iron oxide with nickel on alumina silica will yield acceptable selectivities and conversions when an optimum catalyst ratio is determined. Additionally, a catalyst with a high selectivity such as copper oxide may be used by itself if an efficient means of recycle can be developed to increase the overall conversion of the reaction. Ideas for recycle and separation are listed below. Base Type and Concentration Five bases were studied, 1N NaOH, 1N CaOH, 1N C3CO3, 1N KCO3, and 1N KOH. Of these, 1N NaOH yielded the best results in terms of selectivity and conversion. 22 Additionally, IN N aOH was added to experiments in amounts ranging from 0.2ml to 4m], or 0.005M to 0.091M. It was determined that increasing the amount of base made no significant increase in selectivity or conversion. Thus, most experiments were run using lml of 1N NaOH. 23 RECYCLE AND SEPARATION TECHNOLOGIES Three processes to separate sugar hydrogenolysis products have been reviewed: distillation (or evaporation), solvent extraction, and crystallization. Current research has focused on the hydrogenolysis of 2,4-pentanediol, but it is expected that a catalyst with favorable properties on 2,4-pentanediol will have similar properties on sugars and sugar alcohols. Additionally, if a catalyst, such as copper oxide, yields a high selectivity but only a moderate conversion, the catalyst can still be useful if an efficient recycle stream can be designed to increase the overall conversion. Thus, it is helpful to consider the process design implications of separation and recycle technologies at an early stage to assist in the development of an economically favorable sugar hydrogenolysis process. In the area of chemical separation, problems arise due to the fact that the unconverted sugars are chemically similar to the products. Table 4.2 lists most of the possible products from sugar hydrogenolysis and some of their physical properties. An overview of Table 4.2 indicates that separation by distillation or evaporation may be used, as major byproducts have different boiling points. Even if each product were not separated completely through distillation, the sugars and sugar alcohols would be the last remaining components, which would allow the sugar solution to be recycled into the hydrogenolysis reactor. This is the main criteria as far as catalyst efficiency is concerned. This idea is shown in the form of a process flow diagram in Figure 4.1. The sugar and water would be fed to the hydrogenolysis reactor, then the methane vapor would be released, and the remaining solution would be sent to a distillation or evaporation column. This column would separate the sugars and sugar alcohols from the 24 rest of the products. The sugars would be sent to a recycle stream and the remaining products would continue to be separated through distillation. For the sugar separation, an evaporation column may be a better choice than a distillation column due to the simplicity of the design. The sugar stream may be somewhat syrup-like, and an evaporation column may be less likely to accumulate sugar residue. Table 4.2, Hydrogenolysis Products and Physical Properties Compound MW BP(°C) MP(°C) Glycerol 92.09 182 20 Propylene Glycol 76. 10 1 87 Ethylene Glycol 62.07 196-198 Sucrose 342.3 185-187 Glucose 186.11 150-152 Fructose 181.15 117-121 Methane 16.04 -161 -183 Methanol 33.05 65.5 Ethanol 46.07 78 -l30 1,4-Butanediol 90.12 230 16 2,3-Butanediol 90.12 183- 184 25 Erythritol 122.12 329-331 120-123 Threitol 122.12 88-91 Xylitol 152.15 95-97 The main problem that would have to be addressed is the fact that the recycled sugar stream would contain a variety of sugars and sugar alcohols. This may or may not affect the performance of the hydrogenolysis reaction. The type of starting sugar would make a difference in the extent of this problem. A smaller starting sugar chain would have fewer sugar byproducts and more desired byproducts. However, studies need to be conducted to determine the best starting sugar in terms of overall selectivity. Additional 25 problems may also arise when trying to isolate the desired products as salable chemicals. Also, the sugar stream may be prone to crystallization, which could cause difficulties in equipment performance. An alternative to separation by distillation would be the use of solvent extraction. If a leachate could be found that selectively removed the byproducts and left behind sugar water or vice versa, then solvent extraction could be a possibility. However, due to the similar chemical makeup of sugars and the hydrogenolysis products, a suitable leachate would be difficult to find. Additionally, care would have to be taken not to introduce the leachate into the recycle stream (sugar water). The leachate may also pose some problems in the separation of the desired products for industrial use. An example process flow diagram for solvent extraction is shown in Figure 4.2. Another separation process could be through the crystallization of sugar. This would likely work best in a non-aqueous environment. A chemical could be added to aid the crystallization process. Also, evaporation can induce crystallization in sugars, creating a potential for an evaporation/crystallization process. If the unreacted sugar could be crystallized out of solution, then the sugar could be separated and recycled. The compounds remaining in solution could then be separated through distillation or other separation methods. An example process flow diagram is shown in Figure 4.3. A useful tool in the above separation technologies may be the use of a solvent other than water. An alcohol such as methanol or ethanol may allow an easier separation of products from sugars, and these are already present in the system as hydrogenolysis products. The use of propylene glycol or ethylene glycol as a the solvent may be another option. Propylene glycol would probably be favored due to the less toxic nature. 26 However, the use of a different solvent would alter the current catalyst study results, and would thus require further catalyst testing. 27 :ouauona>m\aoaa==m5 sun—95H. 2933— .596 .3. 953% 49:? of _o€o:§:m-m.m 48485. 4283593 ._2EEm 409:0 0535mm 6868.; 409:0 ecu—r305 .8830 488.40 .3803 835m 2050M 3:82 .awsmhawsm ‘Il 5:200 85.6 868% 5:200 :oufiomgm d8 1.. ma» ozowo tn 543::me E23255 . 4 8 E poem Ommtawsm ONE 23 0 42845 0 28 s - . 5 2 498522 ._ 6 H m m.~ 40628594» 4 4 .ONE 4935M 428502 4830 2835m— 4830 0:23on 40.8940 28 00500.55 E020m 43.0.58 0.930% Baum .N... 0.53..— _0E>X 00040004 40400§u:m-m.m 4040.45. » ON: 428530-44 490500 40940 0004445 .88005 0000805 40940 0001305 08030 00040004 40.40940 .3825 800.45. 0.9605 40.4002 Hawsmtawsm A] 80.6 08300 000498 .000 I marmmwwwwm in V 0032455 -049»: . _ .6 3 000m Omgawsm 2040004 4‘ ONE 400045 0_ 0:0 0 - . 00050—2 406000354 4 4 .045 400045 4000502 40940 000345 40940 0003005 4000940 29 0053:3945 .3000: 0.980% uwwam .3. 0.53m .30? 0.0 _04000fism-m.m 400005. 4285.30-44 490500 40940 000305 6880.5 40940 002.305 .08020 4000940 .8805 000005 040.80% 8000?. Swsmhawsm .‘III 00:0 . 0000005 000400 000 11 494000500»: 00:04:00.5 0004:8940 000m Ommtwwam 000502 N . O I _0_00080m-m.m 400005 . . . 4040000005-... 4 000502 . N . 4 O I 00005 4000502 40940 002.35 40940 002.305 4000940 30 CONCLUSIONS AND RECOMIVIENDATIONS Two types of catalysts were found to have desirable effects on 2,4-pentanediol hydrogenolysis. The first type was a series of catalysts that included copper (II) oxide, aluminum oxide, iron (III) oxide, and boron oxide. These catalysts promoted a high selectivity toward C-C cleavage in 2,4-pentanediol hydrogenolysis, which is expected to result in a high selectivity toward the desired chemicals in sugar hydrogenolysis. The catalyst with the highest selectivity toward C-C cleavage was copper oxide. The second type of catalyst, nickel on alumina/silica, was found to promote a high overall conversion of the starting 2,4-pentanediol compound. Temperature and pressure were found to have an impact on the hydrogenolysis reactions. Ideal temperature ranged from 190°C to 240°C. Ideal pressure was around 3.5MPa. Base concentration was not a major factor in the hydrogenolysis experiments as tested. However, more studies need to be done with temperature, pressure, and base effects when a catalyst is selected for testing on sugar chains. Additionally, an alternate reaction vessel should be developed to allow a wider range in testing different temperatures and pressures. The current apparatus has upper limits of 240°C and 6MPa and a lower pressure limit of 3.0MPa. A preliminary investigation of separation technologies for sugar hydrogenolysis products has been conducted. Because it is expected that a catalyst that yields desirable hydrogenolysis results in 2,4—pentanediol will yield similar results in sugars and sugar alcohols, it is useful to look at separation technologies at an early stage to assist in the development of a complete sugar hydrogenolysis process. This is especially important if 31 the selected catalyst yields high selectivities with only moderate conversions, creating a need for an efficient recycle stream to increase the overall sugar conversion. The three primary technologies reviewed included: distillation/evaporation, solvent extraction, and crystallization. An effort should be made to continue development of the technology required for the conversion of sugars to major industrial chemicals including glycerol, propylene glycol, and ethylene glycol, which are currently produced in petroleum-based processes. If the conversion of sugars to the aforementioned products can be made more selective, biomass utilization has potential to be enhanced and our needs for petroleum can be reduced. Considering the limited supply of petroleum, there is considerable economic incentive to develop processes based on renewable resources such as sugars. If the catalytic sugar hydrogenolysis process can be made more selective, the economics of the process should become favorable over current petroleum based processes. Additionally, the production of the desired chemicals from biomass feed is expected to reduce the amount of environmentally unsafe chemicals involved in the process. The recommended future work on this project can be summed up in the following five tasks: 0 Task 1: Conduct catalyst testing on sugars and sugar alcohols. This includes optimizing reaction conditions including temperature, hydrogen pressure, and base concentration. 0 Task 2: Test alternate solvents for sugar hydrogenolysis. Potential solvents include methanol, ethanol, propylene glycol, and ethylene glycol. Alternate solvents may increase selectivity and simplify product separation. 32 0 Task 3: Redesign the sugar hydrogenolysis reaction vessel to allow testing under a wider range of temperatures and pressures. Modifications may also include increased volume, serni-batch operation, and an improved sample withdrawal system. 0 Task 4: Continue looking at potential industrial technologies required for sugar hydrogenolysis product separation and sugar stream recycle. This will allow economic factors to be taken into account as the process is finalized. 0 Task 5: Begin the patent application process for the sugar hydrogenolysis process. When the catalyst is developed and optimized for sugar hydrogenolysis, a biomass conversion process to produce the aforementioned high valued chemicals will be available. It is expected that this process will be able to compete with and exceed the economics for current petroleum based processes (1). Thus, the goal of developing a simpler, more environmentally friendly, and economically favorable process to produce propylene glycol, ethylene glycol, and glycerol will have been achieved. 33 APPENDICES 34 APPENDIX A GC Calibration Curves 35 Area (Ai/AiS) ACETONE 3.0 - 2.5 *- 2.0 *- 1.5 0* 1.0 -- F 0.5 '1'- O 0.0 x 1 ‘fi . I 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Weight (WI/Wis) Figure A.l Acetone GC Calibration Curve (i = Acetone, is = DMSO) 36 Area (AilAis) 3.5 T 3.0 - 2.5 4» ETHANOL y = 1.5260x R2 = 0.9930 2.0 ‘- 1.5 .. 1.0 4- 0.5 T 0.0 1r v 1 v 4 0.0 0.5 1.0 1.5 2.0 2.5 Weight (WI/Wis) Figure A.2 Ethanol GC Calibration Curve (i = Ethanol, is = DMSO) 37 Area (AilAis) 2,4430 4.5 T 4.0 -~ 3.5 ‘b 3.0 -- 2.5 T 2.0 1" 1.5 *- 1.0 ~* 0.5 .. 0.0 i i 4 i i i i w‘ i u 0.0 0.5 1.0 1.5 2 0 2 5 3 0 3.5 4.0 4.5 5.0 Weight (WI/Wis) Figure A.3 2,4-Pentanediol GC Calibration Curve (i = 2,4-Pentanediol, is = DMSO) 38 9.0 -- Area (AI/Ale) ISO PRO PANOL 2.0 2.5 0.5 1.0 Welght 1(ilvvwies) 3.0 Figure A.4 Isopropanol GC Calibration Curve (i = Isopropanol, is = DMSO) 39 Area (AilAis) 2-PENTANONE 5-. 454* 4.. 35*- 3“ 25-- 24.. t54~ 1di- O.5 -- o I F I I I I I O 0.5 1 1.5 2 2.5 3 3.5 Weight (WI/Wis) Figure A.5 2-Pentanone GC Calibration Curve (i = 2-Penatnone, is = DMSO) 40 45" 4.0 1- 35“ Arena (Millie) .a U! L I A O A U 2-PENTANOL 0.0 5 # I 4% I I V 41 00 05 L0 L5 20 25 30 35 i0 45 Weight (WI/Wis) Figure A.6 2-Pentanol GC Calibration Curve (i = 2-Pentanol, is = DMSO) 41 APPENDIX B Experimental Data 42 med” wodm mNKN mm. FN bmdp 5mm P 3.9 m5: 8.0 memwwoé mung—Hr whommmr... «comma... ... mevibd mempmd 2.00an o o 5.2268 £58.88 as 38>an 0-05-0"..05858093+=o=5=o9~c>=oc889808__+_oco.oom_+=oc85¢: n 3.2.00.8 8988288 28.88 8.888.. 8.2.8888 8.88888 8 8.88888. 88 8.88.888 2.8.88.8 8.2.8.. 8.888.. 8.8888 8 8.82.2.8 88 8.82.888 88388 8.2.8.8 88888.. 8.88888 8 8.888888 8. 88888.8 2.83888 8.888888 8.828.. 8.2.88 8 88822.8 88. 2.88.888 28.88 8.8888 838.88.. 8.8888 8 8.8888 88. 88288.8 883888 8.8888 8.88828 8.8.8... 8 8.8888 8 88:88 2.8888 8.8888 8.88888 8.82.8.8 8 8.88888 8 8.8.88.8 2.8888 8.888888 8.888888 8 8 8 8 3888888 2.8888 8.888.. 8.8828,. 8 8 8 8 Ol‘fi Oman— .Ocuacanu SOCSCa-N 3:80.500. occaoo< 3:05“ :55 ms: 2.8.0.25 ocean—8:350 8882.8 .8888 88:8 882.8 8882.8 8 88.3.8 88 82.88 888888 82.88 2.888 88888 8 $888. 8.8 8:888 8888 £8.88 88888 882.8 8 8:8. 8. 888888 8888 88.888 8888 82.888 8 88888. 8. 88888 82.88 .8838 888888 8888 8 88888: 88. 88888 88888 8888. 88888 88888. 8 888. 88 88888 82888 882.88. 8882. 8888. 8 88888 8 888888 888888 8888 8888 8 8 8 8 88888 88888 888888 8.83. 8 8 8 8 88.88 0838 38888.8 88888898 .8828». 8:28.. .223 .58. m!» 62< 3:088". 06 .5588 38.8 8 8.8 88.8 :8 8. 88 .8888 8.08.28 .5 8.8 88.2 8 .2 8.8 1082 2. 8888 8481.... 2!:828 .5 8 8.83 .8288 8922 8 88 8.8 8 8 88-88 8.2.8888 8.5.... 18.88% Halal... an 25¢ 00 8.32.500 cutaway. ”3:338:00 20:83.. 8.888 88x8 43 3N No.0 Nod- mvd 3.. T 53.0% mmdvm- 05v. cod .8. ovum?” ... —. mm 5N8. .. mummovm. .. mm Shun. w vow 505.0 53.0% o o o 00.22600 5.2.00.0»... 08980.0 0.0.0- "20:0:3808-8.+=0cScoafiséocmaoaoflr882008.80:850.. u 33:00.8 88.8..888 88.888 8888.8 8.2.8888 8.8.8.8 8 8.88888 88 8888.88 88:88 8.8888 8.888888 8.88888 8 8.8.8888 8.8 888.88 88:88.8 8.88.8 8.888888 8.888.... 88.88888 88.88888 8. 888.888 88.888 8.8.88 8.88.8.8 8.88.8 8.888 8.88888... 8. 88.8888 888.888 8.8888 8.88888. 8 8 8.888888 88. .838 888. .888 83.8 83.8 .838... .838... .838... 8 88:88.8 88.888 888.888 E8888 8 8 8 8 888888 88:88 8.8888 8.88.... 8 8 8 88 888.888 888.888 8 8.88888. 8 8 8 8 88.88 0820 .8583 2.885588 .8828... 2.28.. .8858 8...... 8:: 2.5.0.0.... 000.82.002.00 88888 88888 8888. 88888 888888 8 88.888. 88 8.888 88888 88.8.... 88.88. 888888. 8 88888... 8.8 88.2.8 88888888 «888888 888.88. 88888 88888 888.8. 8. 82.88 888888 8.8888 888888 82.8 8.2.8. .888 88. 888888.. 888888 888 88.88 8 8 8888 88. 8 8 8 8 8 8 8 88 8888.8 8888 8.8888 88.88 8 8 8 88 88888... 8888888 8888 88.2.8 8 8 8 88 888888... 888888 8 8.888. 8 8 8 8 08.88 083.0 8588.8 2.885888 382.288. 8:88... .8858 .55. 8:: "82¢ 02.00801 00 8.08.28 8 88.8 88.8 88.80 8 8... .88 .8880 88.08.28 .5 88.8 88.2 8 .E . 1082 2. 8888 .gm d:— 2338& _E O? 55>) 2529.0; .28.... v8 08 888 8 .8 88-88 8.8888 8.8.8.. 8.8.8833. 8.8.8.4. .885 25¢ 00 "0:020:00 00.8080... "3:050:30 00.80001 88.8.8. 8 8x8 44 53.0% 53.0% 53.0% {005.85 53.0% N500NN5 53.0% 0558.005 53.0% o 53.0% o 53.0% o 53.0% 53.0% 53.0% 53.0% 5.8.82.8 3.58.88 3... 8898.8 0.0.0.0"..28838888.8888.58.88.58:889888..+.o=o.88.+._888588 u 3.2.8.88 035% 0530000 035% 035% 035% 035% 035% 05 00.00050 0530000 00.008000 00.0080 3... 00.000000 0 0 0.8 00.03800 0530000 00.000000 00.00050. 00.00800. 0 0 00. 00.050 .00 0530000 00.0.2.0 00.0000... 00.03.08 0 00.000056 00. 00.000300 0530000 00.00 .088 5.080800 0 0 0 08. 00.008080 0530000 00-0530 00000.9... 0 0 0 00 00030.00 0530000 00.0500. 00.000508 0 0 0 00 00.0.8000 0530000 0 0 0 0 0 00 035* 0530000 035% 035% 035% 035% 035% 0 58.4.8 0050 .0585..." 2.2.850.“ 5502.5... 055.3 .0550 .55. mi... .0508... 85555050 0 0 0 0 0 0 0 0.8 0080000 0800038 00.00. . 000.00 000000. 0 0 0 .8 080500 00005.8 0.038. 8.8000 0055 0 0 00. 008.000. 0003.000 0000008 00:00 008080. 0 8 .000. . 00. 050000 855.88 5300 .0058 0 0 0 08. 3.0805 00.0058 003.80 00008 0 0 0 00 0800008 0500.. 550.. 0.0008 0 0 0 00 0.08.0. 08.88.08 0 0 0 0 0 00 0 0 0 0 0 0 0 0 50.18 0025 55850.8 2.2.3598 5502008. 0553‘ 35:5 .58. mi... .53 55058. 00 0.08.28 8 ..8.8 8 8.8 83.80 88 e8.. .88 888.888 8.5055 .8 .00 88.2 0 .8 8 1082 2. 0880 .30 .8... 9.55.... .E 00 5.8.5 .5200 .08.... v0 00 088 0 .0 083.8 0.8.8080 8.5. . 8. 9.4.8.88 88.0.8.4. 88»... :58. 00 55.8050 555”. 5.5.5050 coco-8E ‘ 88.8.8. . 8880.. 45 328.0 o-QB.o1.88259m+__oc2c8.~§=ocaea8__+_oco.8a_+=oco£m= u 2.2.8.8 46 8.9 9.883 598°... 383890 23363 03283 3383 gmnooos 035%; 8a 2.”. «Sign. r8583 53383 3w82~o 03833 8.983 gmxuas 03883 SN 9.” 8538a m88.8o.o 38383 03883 03232 8.353 @388.» 93223 o2 84 $8886 5838.0 33383 mo.mw83.v c.3385 3&8; 0388+ 03833 on. own 888:6 880385 333890 Swamonoe mafia“... @383 gmovmmo 8.28... cm. 2.0 «38:3 95:83 63380.0 8.333.” mqumvve 8.3300 8.333 QOSmmue 8 86 5838.. 503585 38383 oo.m$omo.m amid 3mm3..v Swami; @3225.» 8 So. 2836: 83:08.“. 38383 3mm~m£~ ~9mn~o8¢ o o smoofime on 8d 0 858586 .2858d 5303:.“ Sakai o o o o 8.8258 3.38..» 93.... 3.3 .8359" 283......“ .8528». 2.8.3 .223 3.5. us: as "..E\o.o§ «5:828:00 885% «RE? 3383 «585 988“ 08%? 08:? SN 9398.. 8539. «$88? «82% 3885 «882 @958 EN 888% $835 3088 588.4. 938% 08%: «£83 o9 8888 8888 9 583 @2on 8808 Enema 8988 on. «5208 «29:9. «885 @889 8:33 0889 88QO cm? S885 832% $389 898m 3939 2303 3338 8 $888 8389 3568 Swoonm 205mm «35: 3:58 8 38me «mag £38 SR8 o o 03am: on 8&35 8mg»? Samoa 25$ o o o o 93." 8.3 .8883 888:3." 358.38. 2.8.3 355m .58. ms.» ”33 3:233... 00 38.2% :3 a 0o 898 co .5 .8. 398 358.20 .2 5o 8.2 m .2 N :02 2. 3mm .B a... 21.82.... .2 8 as; .828 3.25 «.0 oo cum a no Pixu 22.8% f ri 25 . a. gag 3.3 «an L 25¢ 00 3:03.930 c2831 "3:32.335 scan-8... 525. o axm mfv Que—.8006 and crown—.00.? Nod gramme“? No.0 30003.0 hvd. 50834.0 mo.v. INomomvd owd. o 3N? o 00.0 o 5.0.308 0.2.8.00 3... 00900.0 0.0.0.0"000000.080.+..oc0.000.0......oc000.000..+.000.80.+._o..0...0.. u 00280.00 000003000 0000000000 09000000.. 0.0000000 0.0000000 0.0000000 00.000000. 000 0000000000 0000000000 0.0000003 0.0000000 00.000000 00.000000 000000000 00 000005000 0000000000 00000000.. 00.008000 00.000000 00.000000 000000000 00. 000005000 000005000 00.00.0000 090000000 00.00000 00.000000 80000000 00. 0000000000 0000000000 090000 80000000 0 0 00000.80 00. 0.0006000 600000000 090000000 09000200 0 0 0000.000 00 000005000 0000000000 000000000 000000000 0 0 0 00 5.00.0000 P00000800 00.000000. 80.00000 0 0 0 00 000005000 000005000 00.000000. 00.000000. 0 0 0 0 00-0.0 00:0 .00-0000.0 2.830200 3000208. 2.83.. .8050 0...... 0:: 5.50.05. 25.022.02.00 00000000 0000000 0000000 0000000 .000000 0000.0 0000.0 000 0000005 00000000 0000000 00000. 0000000 000000 30000. 00 0000000 00000000 0000000 0.0000. 0000000 000000 0000.0. 00. 0000000 00000000 0.00000 0000000 0000000 0000.0 000000. 000 0000020 00000000 000.00. 00000: 0 0 000000 00. 00000000 00000000 000000. 000000 0 0 000000 00 00000000 00000000 000000 00000 0 0 0 00 00000.00 00000000 0000.0 000000 0 0 0 00 00000000 00000000 00000 000000 0 0 0 0 00.0.0 0020 .0030000 00830090 3000208. 002030 .2350 0...... 0:: ”00.2 00.3031 00 2.50.20 0 :00 0. 0.0 08.00 ..0 0... .00 00.0.00 3.50.20 .0. .00 00.2 0 .E 0 1002 2. 0000 .3 .2: 23820. _E on .235 EQZOw 00.0.0. 0.0 00 000 0 0.0 00-0.0 0.0.0000 0.5.. . c. a .0005... ma ”:3. 00 3:22—0:00 c2803.. "8:320:30 5.831 00:20. 0 9.0 47 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% gmogmmd mommhonvd omEQOoN nmommmmm. F mmvmmx. 5N 2.0an 5 .N 5050855 55.0% 53.0% 5.82.50 3.58.8 .8. 896% 0.0.90u..aco8.8a.~.+._ocm.c8.~......ocaeaom:+.oco.8m.+._o85m.. u 8.2.88 88208.0 88:8... 8.888.... 8&883 8.883 8.8.8.. 8.883.. 08 888.80... 88.58... 8.8.8.... 8.88.88 8.88.... 88.8... 8.w888 o.~ 888.80... 88.58... 8.8.8N 8.m88..~ o 8.8888 888.8 8. 88883. 88.88... 8888..“ 8m8....m o 8.8.8... 8.888... 8. 8.858... 88:08... 8.888.. 8.88.0. o 8883 8.883 8. 8.8.08... 88.8.... 888.8... 8.88.... o 8.88.... 8888.0 8 .8858... 88:08... 8.w8.8.. 8.889.». c 8.8.... $838.. 8 5.29.. 88.58... 5.28. .229. 6.29. 6.28 635.. 8 .228 88.88... 63.9. 6.29.. 5.28 .228 6.28 o 3.8 0.85 .2853 SEEN .8828... 2383 355m .58. us... ".2522... «cows—accuse 8:88 .8888 388. 88.5 8~88 888. «888 08 8888 88.8 88.3 .88... «888 8.08. .888 o.~ 8808.. 8888 888 82.8 o 8. .8 R88. 8. 88.3 8888 :88 28.... o 888. 888. 8. 8388 888.8 .88.. .880 o «.88 888 8. 8888 «888... 8:8. 888. o 88.88 888. 8 8888 08.88 «.88 888 o 8.8.. 888 8 o o o o o o o 8 o o o o o o o o 9.8." 083 .888..." 88353 .8828... 2.28.. 355m .55. mi: "3.3 3:831 00 .8sz0 m 88.0 d 88... 8.52.. co 5...... 88.8 8.088 .E 83. 8.2 m _E N :82 z. 88 .8 a... and E. 8. .28., .828 .90.... to 00 8a a no 8-8 28.88 ..lsfla 8.3433 an E3. 00 $520.25 cocoaoz ”8:32.800 5.831 83.3. o. em 48 5... 0 3555.4. and mm..moomm.~ 5.0 new .55th mad summvwmmd ooN 00050.0. N w .o Name—boo...” 5.... o mmé snowman»... 00.0 55.0% 8.2258 33.8.8 3... magma... 0.0.0.on..ococScam.+=oca.co...~...=.ocwao.aom..+_oco.oom.+=ocm£m.. u 3.5.00.8 882.8... 88.8.... 8.8888 8.8888 888...... 8808... 8.888... ..8 3.8.8.... 88....8... 8.88.... 8.888... 888...... 038...... $888... ..8 3.8.8.... 88....8... 888...... 8.888.... 888.... 8.88.... 8.8.8... 8. 88.8.... 88....8... 8.88.... 8&8». .. 8.88...» 8.888... 8. .8888. 88.58... $8.88 88888 .. 8.89.... 8.888... 8. 88.38.... 88....8... 03.88.. 8898.. o 888.... $888... 8 88.8.... 88....8... .388... 8.888... .. o .. 8 8.8.8... 88....8... o 8.8.8.... .. @388. .. 8 ..8.8... 88.58... .. .. o o .. .. 9...... 08... .8352... 82.85.... 352.28.. 8.82.. .828 .55. ms... "2.50.0.5 ace—«95:00:00 888.. 8.8.8.8 8.88 888 .88... 888 888. ..8 8.8.8 8......8 88.... 888. 8.8.8 8888 3.88 ..8 9 ..8.8... 8888 ..88. 888. 8.88 8.88. ..8.8 8. 4 8888 8888 888 «.88 .. ...N.. 8.8m 8. 838.8 8888 888 8.8.. o 88.3 888 8. 8.88 8.88... 8.8.. 88.... .. .88 ..8.8... 8 8.8.8 88.88 .88. 888 .. o o 8 .8808 880.8 .. .88 o 8...... .. 8 8....8 8888 .. o .. o o o 9...... 08... .8558... 82.353... .2388». 2.284. .828. .55. us: 82.. 3:03am 00 .5588 m 88... m 8.... 8.52.. co 6.... .858 .5585 .5 m8... 8.2 m .5 N :82 z. 88 fl magma: .5 8 .29... .828 .925 8... oo ..8 a m... 8.-.... 25.88 8541.5 «.8898. 8.854. man :51 00 3.3.2930 50.83». "8:32.85 nose-8.. 8.8.... .. axm 8.... .035... 8.. .02.... a... .029. 8... .03.... 8... .03.... .2. .03.... 8... .05.... 8... .03.... 8.0 .035... 8.22.2.0 32.8.8 3... 82.8... 0.0.0.0"..22889..+8559.......282..8..+.20.8...+..22.c.. n 22.8.8 88.8.... 88.380 0 0 0 0 0 8. 88.88.. 88.800 0 0 0 0 0 0.. 89.88.... 88.580 0 0 0 0 0 8. 8.8.8.8... 88..08.0 0 0 0 0 0 8. 88.80... 88.800 0 0 0 0 0 0.. 8288...... 88.800 0 0 0 0 0 8 8.838.. 88.800 0 0 0 0 0 8 3.8.8. 88.800 0 0 0 0 0 8 888...... 88..80.0 0 0 0 0 0 0 0...... 08.... .222... 2222... .2228... 2.28... .22.... .55. was 583.25 acct-5:850 88.8 8.088 0 0 0 0 0 8. 8888 v8.88 0 0 0 0 0 0.. 8.2.08 8.8.... 0 0 0 0 0 8. ..88... 8588 0 0 0 0 0 8. 8...... 880.8 0 0 0 0 0 0.. .888. 8.8.8. 0 0 0 0 0 8 88...... 8.8.8 0 0 0 0 0 8 88...... 8.88.. 0 0 0 0 0 8 88...... ..8.8... 0 0 0 0 0 0 9.8.. 085... .222... 2238.... .2222... 2.2.2.. .22.... .55. ms... .33 8.5.88... 00 .5585... m 88.0 m .80 2.50... :0 .6 0.2 ..8.8 .5585... .5 88.0 8.2 m, .5 . 10.2 2. 88 .3“ .2. an... .5 mm .o.m>> .528 .225 «.0 oo 0.. a ..0 0.8.. 22.2.8 ..E< . :. BIB... alodl. E... H Slag g 25¢ 00 8:223:00 5:081 ”8:350 52.2.8. 53:0. .. a... 50 ..o. ..N Nmovoovv.—. mvdw oNNmommmé 0 F .ow mmvovmoo... 3.9 Newman... N09 mwmoomomé and w vmmvmmomé 3. w mmmvnmmn .o 0...: NoFQVNOQO 00.0 o 3.33.30 3.2828 3... 88% o-0.0-0"2883598.+..oca.co9~.....8828»;+.o8.8a.+._88.o.. u 8.88.8 5.888... 88:8... 3888.: 8.888: 8.883 8.8:»... $828.: o8 28:82. 88:58... 8883... 88:88 8.88:... 8&888 8.888.: 28 88858... 88:8... 8.8888 8.8.8? 88888 38.3.: 8.888.: 8: .5868... 88:82. 88.88.... 8.888... @3888 8.8.88.8 $888... 8: 8828... 88:8... 3838... $w888 o 8.88... 8.898.» 8: 82:08... 88:88... 8.8858 8.888... 0 8.88% 8888.8 8 3:88... 88:88... 8-m888 8.8588 0 8.8988 8.8888 8 88:88... 88:08... 03888.: 8803.... 0 8888.8 8888.8 8 «88.8.0 88:08... 0 8888.8 o o o o 9.6.8 82.. .8888 8888.8 .8828... 888... .828. .55. ms: 5.522... 233253.60 888.. .8888 88:8 8888 28.8 888: .888 08 8885 888:. 8288 :88: 8888 888. 8:88 98 8888 88:8 882 : 0888 88:8 8888 .888 8: 8885 8888 8888 3888 «338 8888 8388 8: 8:23 «8888 8.88: 8882 o 888. 838: 8: 98:8 8888 888: 8:8: 0 888: 888: 8 8888 8838 888 88:: o 888 82.8 8 88:8 8888 888 v8.38 0 8.8.. 888 8 82.88 88088 c 888.. o o o o 93.8 88 .8888 8888.8 .8828... 828... 8.5m .55. ms: .33 02.2.3”. 00 88.20 m 88.0 8 no 898 co .3. an. .838 8.820 .5 88... 8.2 m _E m :08 2. 8mm .8... 8. 8.82.4. _E 8 .28. .828 .222 to 00 888 a Do 93.8 2828 g flag—9.8 a «an 25¢ 00 8888 £388 . .8888 8888 3.8.9 8 mxw 51 53.0% 00000000. .. 53.0% 050000.... 53.0% 00000000. .. 53.0% 00000000 . .. 53.0% 050030. .. 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 5.03.500 5.38200 30 396% 0-06-0"088980.0.065.590......ocmaeqom_.+.mc28m.0.825.. u 0.2.850 00.000000 0000:0000 00002.00; 000000000 00.000000 00.000000 00.00500... 00 00.000000 0000:0000 00.0.0000; 00.003000 0002.000 00.000000 00.0005: 90 00.00320 0000:0000 00.03050 00.000000 00.0.0000 00.00000 00.000090 00% 000005000 000030000 00.008000 00.030000 00.00003 00.000000 00.030000 00. 0305000 000030000 00.0.0500 00.000000 0 00.00000 000000000 00? 63.0% 0000? 500.0 63.0% 63.0% 63.0% 63.0% 63.0% 00 63.0% 0000 F 5000 63.0% 63.0% 635% 63.0% 63.0% 00 63.0% 0000 F 5000 63.0% 63.0% 63.0% 63.0% 63.0% 00 53.0% 0000p 500.0 53.0% 53.0% 53.0% 53.0% 53.0% 0 00.0.0 00:: 3550.0 88550.0 3:89.08. 882% .2550 .55. ms: 2.53.25 30.025350 00000000 0000300 00.00? 0.0003 0v00v0v 000000. 0000000 00 00000000 0000500 000000 0000000 05000.. 000000? 0000000 00 00.00000 0005000 0000000 00020? 0000000 00003 00003? 00? 00000000 300030 000030 0230.. 00000.0 500000 0000000 00? 0000000 0030000 F0303 000000? 0 000000 000.60, 00? 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00.0.0 0020 3:00:30 30:00:00.0 3:000:03. 0:393 6:050 .58. ms: "no.3 0300000 00 5:00.20 m 0000.0 Hm 0.0 :0900 :0 $3 .00. 000.200 35056 _E 08.0 was. 0 .E 0 0008 2. 3mm 1.0 0 0:. 1:320 .E 00 .203 .5200 022:. v0 00 000 0 0.0 00-0.0 28.300 22 . c. g 03.4.0.0 «an ":3. 00 8:020:00 5.830 ”85:00.50 :oauuom 000006? 3 0xw 52 53.0% mud mod 0..» mo. P- 3.0 mm.” 5.0 00.0 3... 5.20% ENNwmmmd gunmen”... powwowvd meuvommd G gamma r .o o o $02.00 3.2823 888.0 0.0.0.0"..882898.$68.8...8.....8888:+.oco.8a.+..oc8.m.. u 8.2.8.8 .228 88.38... .929. 535.. 6.29. .228 .229. o8 888.8... 88.38... oo.m8§m.m 8.8838 c 8.888... 8.8.8...v SN «8868... 88:83. 8838.... 8.8888 c 88.88 8.8838 8. 88.80... 88:89.. 8.8.8... 8.888.» c 8.888 8.83.... 8. 83.8.... 88:83. 8mg...” 8.888.... o 8.8.... 8.8868 8. 88.380... 88.68... 8.8888 8.888..” 0 o o 8 ..8.8... 88.8.... 8883.8 @383... o 88.8.. o 8 28858... 88:83. 5888+ 8.888.. c o o 8 8.888... 88.38... 3.8888 8m8. o o o o 9.68 3.3 .88...." .88...." 3:39.82 28.84 .828 .55. us... "..5335. Boa-88:8 o o o o o o o 08 @8888 8888 8888 .888 o 8.8... 888. 0.8 8888 888; 8.88. 888% o 88.. 888. 8. 88.8 88.88 328. 883.. o .88... 888. 8. 8888 .8888 888. .888 o .88 8.8.8 8. 88888 88.8 8.8. 838. o o o 8 8888 88.8 ..8.8 88.... o 88.8 o 8 8888 88888 880. 388 o o o 8 8288 8588 88m. 838 o o o o 93..“ 3.3 .8583 82.583 .8829». 88.3 .828 .55. ms: 35 3:23am 06 .88.... W88... 30 ..8.8 8 A8. .8 88.8 8.8.20 _E 8... 8.2 m, _E m 88. z. 88 .3». .E. 2:82.. a. 8 882. .828 .20.... I. oo 88 a m... 93.8 29.88 .54 . :. 8.89.88... .525. 88 25¢ 06 8.33.230 5.82:. "85:25:00 .8323: ..8.8. m. axm 53 888.0 90.0-0"0808.898.+..o8.898......88288..+.0co.80.+._88.o.. u 0.2.8.8 54 8.8- 888880 838.800 88..08.0 8.88.8.0 888.8 0 8.8888 8.88.08 08 8.8- 0 888.800 88..08.0 8.8888 8.0883 0 0 0 0.8 80.8- 088.80 8.8800 88..08.0 8.80.80 8.88... 0 8.088.. 8.08808 8. 8.8- 8.8880 88.800 88..08.0 88880... 8.8880 0 8.8888 88.-.08 8. .8..- 0 880.800 88..08.0 8.08.0.8 8.8888 0 0 0 08. 8.0.- 0 .08..80.0 88..08.0 8.8888 8.8.808 0 0 0 8 88.- 888880 8.80.080 88..08.0 8.8.8... 8.8028 0 88080.. 0 8 3.8- 888800 8.088.080 88..08.0 8.888.. 098888 0 8.0888 0 8 8.0 0 8.80.88 88..08.0 0 8.80800 0 0 0 0 8.8.80 880.8 0..-0.8 08.5 8880.8 88880.8 .8828: 80.8... .888 0...... ms: 33 58.0.0.5 00038200000 «88.-08 8880.8 088.0. 88.8. 0 888 88.8 0.8 8888 8.888 888. 8880. 0 0 0 0.8 088.88 08088 888. .8888 0 088.8 :88 8. 888.3 88888 .88... 8.8.8 0 88... 080.: 8. 08.88 3888 888 883. 0 0 0 08. 80888 880.88 888 8.88. 0 0 0 8 8.088.- 08.88 888 .888. 0 88.8 0 8 8830.. 0808.8 80.8 88.0. 0 88.88 0 8 080.83. 088.8 0 8.88 0 0 0 0 0..-.8 0.820 .8888 88880.8 .8828». 828... .888 .55. 8.: .33 02.00001 06 8.8.208 880 m ..0 80.00 8 0... 0.. .880 .8820 .5 80.0 8.2 m .5 8 :9. z. 88 .08 ..c. 8:82.. .E 8 8.82. .828 .90.... v0 00 088 0 8.0 08-88 2888 .§< . C— 2 .aflhasfih E305 g. 25¢ 00 8:020:00 00:002.. “020008.500 00.808... 58.0. 0. axm 00.0. 00.0.- 0.0.0 .00- 00.. 00.0 .00 00.0- 00.0 00.20000 33:00.00 .0... 000000000 00050.0 0-0.0-0n0000000000.+=000.000-005.003230:+_000.000.+__0000.0.. u 23:00.00 00. .0 .0000 00m. .0000 00.000 .00 00-0 30.0.0 0 0 0 00m 0 ..N0.0000 000. .0000 00.00 .000 00-00.0000 0 0 0 0 .N 000 . N .0000 000. .0000 00-00000. 00000000.. 0 o 0 00. 00000 .0000 000. .0000 00.00 .00 00.00000 ..0 0 0 0 00. 00.00 .0000 000. .0000 00.00000. 00-000000. 0 0 0 00. .0000 .0000 000. .0000 00.00000. 00-000 .000 0 0 0 00 0.00. .0000 000. .0000 00.0.0. ..0 00000000.. 0 0 0 00 00000 .0000 000. .0000 0 00-00 .0.0.0 0 0 0 00 00000 .0000 000. .0000 0 00-00000... 0 0 0 0 00.0.0 00.20 3080000 00008000." 300000000. 000.00< .00050 .000. ms...- n...0.0_0.0. 000000000000 00000. .0 N0 .0080 000000 00. .00 0 0 0 00m 0000 .000 000.0000 00 .00. 0.0000 0 0 o 0 .0 00000000 00000000 000000 000000 0 0 0 00. 0000.50 «0000. .0 000000 000000. 0 0 0 00. 08000.0 0000.000 .0050 000000 0 0 0 cm. 00000000 000.000 0.0000 000.00. 0 0 0 00 00000000 00000000 0000. . 0..-000. 0 0 o 00 00000000 00000000 0 000000. 0 0 o 00 «0.000000 0.00 .05 0 00000 0 0 0 0 0..-0.0 00.20 .00—3000-0 00008000-" 300000000. 00800.0 .00050 .50.. 0.2:. “00.3 00000001 00 €00.20 8800.0 0 0.0 08.00 00 a... .00 8.3.00 E00020 .0. 0000 00.2 0 .0. N 1002 2. 0000 .30 .00. 0.500000. .0. 00 00.03 .00200 00.0.... 0.0 00 8. 0 0.0 00.00. 0.2.300 .003 . 0. a 00:20.0 00H.” .03. 00 "0000.050 0000001 "800000000 00.00001 .0000. x. . mxm 55 8.0 w- NEON. and T 3.0.. P- end..- 8.0m- 3. ..N- 26w. cod mm 500090 No FNvao. w mvmomhom. P mmoovvkv. _. mmvommmm. _. 00mg . _. m wmowmvn. e o Pvmwmmhd vwon rum F .0 5.22.30 23.8.8 3... 89620 o.06-o"=30:2:38—+__ocm.cma.~_i=ocmaoaom=+_oco.oom_+=oca£m= u b.2823 «8888... 88:8... 8.88.: 8.88.... 88.888 8.88.8 8.88»? 08 88:83 88:88... 3883 83888.8 8.888 £8888 8.888: 28 88:83 88:8... 8.888.: 8888.... 8882... 8838: 8.888.: 8: 88.88... 88:83 8.8883 8888.8 8388.8 8.888 89888..” 8: 89:83 88:08... 8.8888 8888.... 8.88.... 888.8 8.8888 8: «88:83 88:8... 3883.: 8.828.: 8.883 8.888.: 8.888.: 8 88:8... 88:58... 8888...... 8.8888 o 8.888.» 8.833.... 8 88583 88:58... 8.8888 8.8888 c 8.888.» 8.838.» 8 88:8... 88:83 8.888.: 8.888... o 888: o o 9......" 02.... 3:88.... 28:5...“ 8825.3. 2.8.3 .828 .55. ms: 2.83.05. «coach—32.00 «8:8 88:8 28:8 888:. :88 888: 88.8 98 8888.. 8888 8:88 8888 898.. 888: 88:8 28 8888 8:888 .888 2888 588.. :83: 8888 8: 8888 88:8: 88:8 8888 8888 888: 8888 8: 8888 8888 5:88 8288 8:88 888: :88 8: 8:88 8888 8:88 8:38 888 :88: 88.8 8 8888 8888... 888 8.5: o 888 88:: 8 8:88.. .8888 888: 82.8 o 8:8 888 8 88:8 8898 8:8 8:88 o 888 o o 9....“ Oman .Sscau 28858.8 .8828». 2.88.. 355m .55. ms.» 393 3:83: 00 .5588 m 88... m 3 858 8 x; .on. .828 .5588 .5 .8... was. 8 .5 m :82 2: 8mm .2 .8. 84.184.“ .5 8 .28. .828 .925 I. oo 88 a 3 8-8 29.88 ..5< . 5. 8888M 8188...... «an E3. 00 3:236:00 9.0.831 ”85:35.5 c2831 5:: a: axw 56 OYNN Fwd Nvd Nod 3.0.. EN. 2.. w- 3...? 8.0 othmmmv... 001mg... 8 mm 5 3mm... _. anmmmod o mmmnovowd among _. .o o c 85.30230 3.2303 33 898.0 o-06.0"88:8.c8.~_+__8289niacaeaomiocsooaa+8858 u 2388.8 88.888 88:88.8 8.828... 83:83 88.888 $m888 8.8888 ova 88:8... 88:88 8.8288 8.8883. 8.m88.v 88888 89888.8 28 88:88.8 88:83 8.8888 8988888 8.88% 89883 8.8888 8: 88:83 88:88 8.8888 8.8888 8.888 c 8.m8kv8 8: 88:88.8 88:83 8.88:8 8.88:? o o o 8: 888888 88:83 838888 8.88? o o 8.888.: 8 82883 88:83 8.8838 8.8888 8 o 8.888.: 8 8.883 88:88.8 8.882.: 8.8888 c o o 8 88883 88:83 8.8888 8.883.: c o o 8 on..." case .838..." .885..." .8828». 2.8.3 .828 .55. was 5:86.... 8:88.88 8888:. 88:88 888: 8888 28:8 888: 858: 98 8.888 8888 .8888 88:8 8888 888: 8:28: 28 8888 88.88 :88: 8888 £888 888: 888: 8: 8888 8:888 888: 888: 8888: o 888 8: 88888 886.8 85.8 88: o o o 8: 8388.. 88838 888 8:8: 8 o 888 8 88888 83888 8888 8388 o o 88.8 8 88:8 88:8 8888 8888: o o o 8 98:3 8888 288 R88 8 o o o 93.8 088 3:38..." 88853 .8888. 2.883 .828 .52. ms: 82< 3:881 00 €58.20 8 888 873 898 8 5 .E .898 .2585 .E 888 8.2 v .5 N 1082 2: 8am .05 as 833& .5 mm .052, EmZow 4925 3 oo 88 8 3 8+8 2888 €81.85 3.83 E35 an E3. 00 3:285:00 5.831 ”8:32.600 83.8.3. 88:: 8 axm 57 8.0- up .0..- and med. mod 5.00 T 5.0. or .07 cod monommw _. .F swpomvomd N80009:, moovmwmmé 8&th ..m .o 30938.0 vumoommmd nmmnmmmw .w gumwnmé 53.32.00 £33923 3... 0098.0 0.29o"A$802890.+8583?808208.200283$60050: u £2.88 8820000 88:80.0 8.808: 8980.0 03803. 0 8.88:... 000 088.080 88:80.0 8.983.. 8.9850 8.88; 0 8.858.. 03 088.080 88:80.0 8.80.03 00988.0 8.88.0 0 8.9083 8. 8030000 88:80.0 8.888s 8.388.. 00.8.8.0 0 00983.0 8. 838800 883080 8.828.. 8988.0 8.8.8e 0 03880.0 09 88880.0 883080 0888000 89008.0 8.983 8.923 3908: 00 83280.0 88:80.0 8.38s 8.88:0 amid 0 8.9.08.0 8 883800 88:08.0 8.8880 8.8380 3858.0 8.8830 8.80088 8 0800.080 88:08.0 88883 8.8228 3885 8.88.0.0 0328; 0 0..-!" 320 .8550." 28553 .00-0203. 0:082 .828 .52. m!» 5.522... «5:82.350 888% 8888 Q 808 8:30. 8088 0 £880 08 8:88 803.08 8028 0:3: 25:. 0 888m 08 «.2800 20:80 .888 $083 F0808 0 0:080 02 08808 8.8.8 «8500 03:8 «8008 0 00.080 8. 808.8 8838 8880 .8380 883,0 0 0888 08 «0803, 3.88 8802 0.088 8028 880: 03.88 00 8883, 8880 08:8 888; 8208 0 2032 8 8838 8:88 «880 8880 08020 288 2480. 8 03888 889.8 V088, 08:3 8800? 288 28:; 0 00.0.0 350 30850.0 80:808.." 3000208. 8802 .0028 .55. m2: 303 02.2.81 06 38.20 m 88.0 J00 000.8 00 .x; .00 .898 .5588 .5 08.0 8.2 m .E m :82 z? 88 ..flaul... .E. 2:82.. .5 8 828 00.26 0.0 00 00. 0 m0 00-0.0 2880.0 .22 . c. 89.0% .0082 :51 00 3:035:00 c2831 "8:32.800 c2831 52: 02W... axm 58 wmdN. Nomvrmnoé mmNN- 382:5 CNN-N. m vmoowmvé Exam. 0 595mm... 53.0% 53.0% 53.0% 53.0% 53.0% 53.0% 5.0.0. o 00.0 o 00.2208 308.8 .0... 0850.0 0.0.0.010008.800.0.000.000.0.00.08.00.00»:+.000.80.+..08...0.. u 02.008 80030000 883800 800080 8.8880 8.00880 0 8.000080 80 03880.0 88:80.0 0980800 8.000080 0 0 8.08080 00 8002080 88:08.0 3008000 8.0880 0 8088.0 8.80800 8' 208.0000 0000:0000 8.000080 8.08088 098080 8.8000...- 00000080 8. 03.0... 0803080 03.0.. 03.0... 03.0... 03.0... 03.0... 00. 03.8 88:08.0 03.0... 03.0.. 03.0... 03.0... 03.8 00 03.8 88:08.0 03.0.. 03.9.. 03.0... 03.0.... 03.0... 8 83208.0 885800 8.8880 3080:... 0 0 0 8 880.800 88:80.0 0988... 0 0 0 0 0 00.10 02.0 .00-000.0 00003030 050203. 828... .2350 0.5. ms: 2.83.0.5 30.022.02.00 80808 080.80 00800 0.008. 08008 0 0880 80 08088 .8088 80:0 0088 0 0 00008 000 8:88 000808 00000 .8000 0 00080 8008 8. .8088 8800:. 8008. 800000 .8800 08:2 8000: 8. 0 0 0 0 0 0 0 00. 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 8 8088:. 800800 .808 80.00: 0 0 0 8 08808 08888 0880 0 0 0 0 0 00-8.0 0220 00550.0 00008590 00.0208. 8202 .0028 0..... us: .092 023030. 00 0008307 800.0 m 0.0 000.00 00 0... .00 80.0.00 008.20 _E 08.0 00.2 0 .E 0 1002 20 080 .2 .0. minimum .0. 8 .203 .0028 090.5 8.0 00 00. 0 0.0 00-8.0 0.9.008 .25.. . 0. 00.0.0803 0'83... 80H ”:3. 00 3:205:00 00.803. "8:230:30 02831 - 0 i 005: - v0 0.xm S9 53.0% 53.0% 53.0% 55.0% 53.0% 53.0% No. 5 km ..vavmd RMCN 09580.0 8.: mmm.m~ov... N05 gunmen... mad. mVNVNmNm... 00.0 o 00.8208 8.80.00 .0... 00050.0 0.0.0-0"200000.000.N.+=oc£c¢00§=ocmn€0000+.0co.80.+=00050= u 5.2.80.3 03.8 0000.880 03.8 03.8 03.8 03.8 03.8 000 03.8 0000.800 03.8 03.8 03.8 03.8 03.8 0.0 038 080.800 03.8 03.8 03.8 03.8 03.8 8. 0000.080 0000.880 090880 090.800.. 0 00.00000. 00.000000 8. 8000.080 0000.800 00.0...000 00.000000. 0 00.00000 090000000 00. 000.0.800 0000.800 8.000080 0.00000. 0 00.000000 0.0008000 00 0.08.080 0000.880 8.0000000 000.000.. 0 0900000.. 090000.00 8 0800.080 0000.880 0.0000000. 80000.0. 0 00000.0. 090.8000 8 0008.080 0000.880 0 50003.0 0 0 0 0 00.0.0 00.20 .00-000.0 0000-0090 .00-0208. 2.88.0 .2050 0..... 0:... "c.5305. ace—00.55050 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 00. 0.000000 00000000 00008. 00000.0 0 0.8000 .0800. 8. 000800 0000080 08000 0000000 0 00.00. 000000. 00. 0800.00 00000000 00800 0. .0000 0 00.0000 000. .0. 00 00000.0 000.000 0800. 0000000 0 .0080 00.0.0. 8 00000000 8000000 00.000 00000.0 0 0000000 00080 8 00000000 8.0.0.0 0 00800 0 0 0 0 00.0.0 00.20 0030000 80050090 00.0208. 000.00... 00050 00.. 0:: "08¢ 3:003: 00 0.50.200 008.0 0 0.0 00900 00 0... .00 00.0.00 0.50.20 0. 08.0 00.2 0 0. 0 1002 2. 0000 .lnl.0.0 .0. 0040.01.80, 0. 00 0.03 00200 0.00. 0.0 00 000 0 0.0 00.00 0.00080 .02 . 0. 001.0808 09.0040. 8H ":3. 00 3:205:00 02.0.31 "8:230:30 c283: 0000... 00 0x0 60 and? 90.3. 0.20..- N06 mod 8.» was..- 50.0 05.0 $0. $9058... .50QO 5... nmauvmveé mnnmmmmré 592.350 5050 50.0.0 0 o 0 00.82000 0.2.8.00 00800.0 O-0.0.0"200000.030.$600030.:30:008000..+_0co.000.+=oc050.. u 3.2.00.3 0000.800 0000.580 8.0000000 00.00008. 8.000000 0.000000 00000000.. 000 8000.080 0000.800 8.0000000 09000000. 0 8.0.0000 00.00.0000 0.0 00.80800 0000.800 00.000000. 000000000 0.00.800 0.0000... 00.0808. 8. 0.80.800 0000.800 0908.000 00.0.0000. 8.00080 0.0000000 00.08.80 8. 8000.080 0000..08.0 8.00000... 0.00080... 0 8.000000 8.0000000 00. 008.080 0000.580 090.0080 8.000000 0 09000000 090.0080 00 000000080 0000.680 09000000.. 09080000 0 0 0 8 .0000.80.0 0000.800 00000000 8000000 0 0 0 00 0000.800 0000.680 0 00.000.00. 0 0 0 0 00.0.0 00.20 008800 80080090 0000208. 000.8... .2050 00.. 0...... 2.5.0.2... 000.02.000.30 00000.00 00.00000 000.000 8880 800000 00.000. 00.000. 000 00080.0 0000.000 000000. 8:00 0 000.00. 0.000.. 0.0 00000.... 0000000. .000000 000.000 800000 0.00.00 00.0000 8. 88.0.0 8088 0000.0. 0000000 080000 0000.0. 00.0000 8. 0.00.0.0 0080000 000000. 000800 0 0.800 .00000. 00. 00000000 0000800 000000. 0000000 0 000000. 00000.. 00 000.000. 00.00.00 0000.0 000000. 0 0 0 00 00000.8 00000000 0000.0 0008.. 0 0 0 00 00000000 00000000 0 000000 0 0 0 0 00.0.0 00.20 00350.0 00003800 00000.08. 0028.0 00050 .00.. 0.2.. "00.3 00.3000: 00 0.50.20 .0 0000.0 0. 0.0 000.00 00 .0... .00. 000.00 050.20 0. 000.0 00.2 0 0. 0 ..502 z. 0000 .0. .0. 800m 0. 00 .203 00200 .000. 0.0 00 000 0 0.0 00.00 0.00080 .03 . 0. M08888 0040.8 000.... 25¢ 00 ”0:20.230 02.0000. "80:00.50". 020003. 00.0. 00 0x0 61 one incommd 3N. 5350.6 30... agongd 0N6 o..wmwwmu.o 30.0 ”wagon... on... 080. ..omoN mod anmmwomd NON. mmmmmvSVd cod 0 0.0.0.0208 3.2.00.0» .0... 00080.0 0-0.0.0"0880.800.+._oc0.000.0......800208_.008.803.8050.. u 0.2.8.00 0080.080 0000.680 $000.00 09000000.. 8.000000 80000.0 8.000800 000 0800.800 0000.680 8.0000000 8.00800. 8.0080 8.000000 090000.00 0.0 0800.080 0000.580 8.0..0000 8.00.0000 8.000000 00.0.08. 30.0.80 8. 00000800 0000..080 00.088... 8.000000. 0 8.000.... 090000000 00. 0800.080 0000.800 0 090.0.000 0 8000.0 0 00. 0.00.800 0000.380 00.008000 0008.000 0 8000.0. 8.00.0...0 8 0800.080 88.800 8.000080 8.0.0800 0 00000.80 8.0000...0 8 0080.800 0000..080 0 3.0.0.000 0 8080.0 0 8 00.00.80 0000.580 $0000.00 0 0 0 0 0 00.0.0 0020 .0080090 000080090 30002000. 000.004 .8050 0...... 0..... 2.5.0.0.... 000.08.202.00 00000000 008800 0000.0 ..0000 0000000 885 .88.. 000 00008.0 00000.8 00.000 0000.. 0.8000 000.8. 0800.. 0.0 00000000 00.0.000 00000.. 0.0000. 08.000 000.80 0.0000. 8. 0008000 00000000 008.0 0.0000 0 0000000 00080 00. 00.00000 00000.00 0 000000 0 000000. 0 00. 00000000 0080.00 .0080 000000 0 0.0000 0000.0 8 00000000 00000000 .0.000 080000 0 0:080 000000. 8 00.0008 00000.00 0 .0000. 0 ..8.0. 0 8 00000000 00000000 000000. 0 0 0 0 0 00.0.0 00:0 .00-$00.0 000050000 6:00.53. 0:0.00< .8050 .50.. 0...... ”02¢ 02.00000. 00 0500.20 0 008.0 m 00.0 25.00 0.20 00 80.0.8 E00020 _5 080 00.2 0.0 .2 0.0 .0002 2. 0000 leu... ..0. 05000.0 .0. 00 .8200 .20.... 0.0 00 0.0 0 0.0 00.00 0.8.080 .25. . 0. 0.131.303 .0082 25¢ 00 "0:03.230 0.2.0001 "£33500 0.0.0000... 00.00.. 00 0X0 62 @053. mmmflflxwa 8.00 mmwwammo... Nada unvohnmm. P 9.5m w ..vmmmwmé mmNN moon ..nNoN mud? ”gamed ..v. ..m N 5033K... and. a23§booé 005. o 5.83.30 5.38...» s... 898.0 0.0.0.o"288989“.+..o8.:8.~..a_oc828m_.+.oco.8a.+..oca£o.. u 22.8.8 88888 88:8... 388:3 88:8... 8388.: c 88588 8N 88:8... 88:83. mqm888~ 8.882 8.88.: o 8.m:o:m.~ Sm 85:82. 88:86 8.88: 8.888.» 8.8:? o 8.88:3 8: 88:8... 88:8... 8.838.~ 8888:: 88:8,: 8.888 8888§ 8: 8:88... 88:8... 8.888.: 8.888.: 8880... o 8.888.: 8. 88:82. 88:8... 8.888 8m:82.~ 8888.8 o 8388: 8 8.888.: 88:8... 38:8: 8.888... 888...: 8.98...» 8338...: 8 :8888 88:08... 88:88 8.888.» 8888.» 8.93:... 8.8.88... 8 8.868... 88:88 59083 58898 c o o o 9.3." 32.. .885...“ 8858...... .8828». 2.83 .828 .52. m2: 2.53.2... «coagoocoo :883 888.. 3:88: 8:8.“ 838: o 88:8: 08 8:88 8m:8n «:88 8858 :88 o :888 o: 888: 8888 288: §~8~ 8:5: o .88: 8: 8228 88:: 8888: 288.. 82.2.2 88:9 58:. 8: 8888 8883 8895 :88: 2888 o 388.. 8: :888 858:. 8:98 888 «883 o «358 8 «888 8868 8:98 8:28 888 8:8: «888 8 88:28 82.35 8838 9888 $888 828. 8:88 8 «8:88 88:8 888: :88 o o o o on..." case 3:88.... 285:2...“ .8888. 828... .828 .55. ms: 693 3:881 00 8.820 m 88... m 8... a8: 8 .z 398 8.8.20 .5 .8... 8.2 on .E m :82 2: 8am IWII... a... 2:82.. .5 8 .23 .828 .90.... v... 00 o: a 8... 8.3;. 22.88 22.... 94.2% 28.5.. g 25¢ 00 3:03.360 p.283: "8:32.800 gaze-om 8.8: 8 axw 63 then Dodo won mad» ova 8.0m 8.8 No. 5. 00.0 s 59‘me _. mums wmmwd mu $558.0 whammump . w gnaw .o ..Nommmw. r ummmmomod muonnmwmd 0 5.22:8 33:83 33 $3520 0-20.Unaccocmfiam$89599:..ocmaoaom:+_oco.8m_+=ocm£oc u b.2623 momomqum 88:83 mavmflmmmn 03353 398.. o c.3233 ova 03833 «83085 3m8:m.o oo.m£w3.m 8.mm~8.~ o 8.582.» Eu 25823 88:83 gummmfie 8mn$8.. 3mm? o anNvae 9: @328; 88:83 03223 3.38»? 0358.0 o RENEE.» on. 0335.» 88.58.“. mqmmoofio o9m8$.a 81383 81mmtom 93.8%: on, m23.8o.o 88:08.0 magenta 09mg; 0388.. 9383.0 mommkfi... 8 «$3586 Ragga 8&333 aligns 2583 $2.83 mqwmfimme 8 33283 $8.586 oommBSN Smummmz swoon? o gunman; on 59983 88:83 8983 @3853 o o o o 93." 023 .8859... 2.83:3." Baggage... 2.2.3 .823 Es. us: x3338. 303-35800 «~88: 8889. £289 883 8%?! o 5880 own 398% 888mm 359% 9&8: 3.53% o 82.3 EN 886% 8288 8888 883 858» o 898v 8? $888 £388 8830 £38 88 an o 9323 o9 8358 $838 389% 885 822: 338. 8336 on. 33:8 3:88 5383 82§ 8393 88m? 258% 8 cont?” 883mm 882: «828 808: 3:83 338m 8 8.5me 3888 «888 8:33 888v o 33%. on 83.8% £538 88mm 52% o o o 0 mafia owzo .8553 22.553 .8328... 828< 655m .55. us: ”3.3 3:093. 00 Eamzo good m mod 8&8 so 3. $0 328 38.20 .5 wood 8.2 on .5 No :02 2? 8% .Emluc. g _E 9. as; 69.8 6.22 to 00 EN a mac PEN 22.85 ..E< . c. a waded man 25¢ 00 3:020:00 c263: "8:32.53. 5.63: 833 an axm 64 55.0% n _. . E. omfiv 9 .mm 00.3 mafia omdN Emma cod 3... 53.0% ovowoowd wwoovamé gummmd mvo 3990... ~98on _. ._‘ 5330009 rmmommnmd rmmnmmood 5.888 33.8.8 393.0 0.0.0.0u:ococm.c3.~_+=ocm.cma.~_Eco:328m:+_oco.8m_+=ocm£mc u 3.282% .229. 88:8... 6.29.. 53.0... 53.8 .228 .228 8a 3.8833 88:08... 89:28. o 8.88: o 8.88:.» 03 8.882... 88:80... 388:... SE88: amid o 38:03 8: m9m88$ 88:8... @3888 ..9m883 8.8.8.: o mo.mmBm:.~ 8: 3888.8 88:80... 8.8888 8.988.: 8.88%.... o 8.838... 8: 8328... «8:8... 8.988; 8888.: 8.8.8.: o 3w8o$~ 8 «83:8... 88:8... mqwQOva 8.88.4.3 8.88.: 8883 8.883 8 «2:88... 88:08... 3883.: $588~ 898...» 385: 3888.: 8 o§:8.o «8:8... 5w8~8¢ 8.882 c 8.888 c o 9.6.“ 083 .8883 888a: .8883. 88.3 .828 .55. 2...: 2.83.2... 28282350 0 o o o o o 0 8m 8888: 88:8 888 o 888: o «833: Ba 8888 0888:. 888mm 288 8888 o «8:8: 8: 8R8 «88:» 2.88: 888 «888: o 883... 8: «2888 .8898 888mm 888 @888: o 388: 8: 2288. «858 8822 888 8282 0 83:8 8 8:88 8298 8882 385 «83:: @883 8:88 8 8358 8888 88m? 888: 858 98:8 888m 8 8888 8888 0888 :85 o 288: o o 93.8 8.3 .888." 8888." .8828». 8822 .888 .55. us: "so? 3:033. 00 8.08am 88.0 #8... 888.58 8 .2 88.8 .8820 .5 wood 8.2 on _E No :82 2: 88 .2m '8. and... .E 8 as; .828 8.2:. to co Sm a m... 8-8 2838 .82 . 8. 3.88M, 8% an :51 00 3:03.230 c2531 "8:25an0 cone-om 88: 8 axw 65 8.0V modm 5.: ”rd? 8.0m mvN. 05v. NwN. cod mmwhvmmné womanhood no Cbmvmd vomQNQNmN gummomd make ..N: .m sumo womoN o «Nag. P 8.8280 $38.8 as 085% o-oa.ou=oco8.cm9~_$2283.Eacaaeqirwcofim.L688: u 3.2.8.8 8.888s 88:98.0 8.388: 3mg: 8.88.8 8988: mo.m83v.~ 8” 3885.8 88:86 8.8838 8.8.83 8883 8.3.8.» 3883.? Em «8858.0 88:86 8.988.. 38803 388.. 833$; 8.8888 8. 88:80.o 88888 n¢m8~8~ 838R; 38:3 8.835.. 8.82.3.8 8. «88:83 88:85 8288.» 8.88%.» 8.888 8388.8 83883 8? 88386 88:88 8.339.» 8.888 889.3 8.8de 8.883 8 88283 88:98.0 8.889.. 8.838N o 8.8808 8.8888 8 $53.88 88:83 3.8388 88:2,? o o o 8 889686 88:83 8.883 8.m8$.~ o 8.883 8.888N o 93." 0.23 .8853 22.553 3:328... 2.222 .823 .55. ms: 2.53.2... «caste—.350 88:88 88:83 888» 823 388B 888 522 SN 2888 8888 «888 882 558 @338 8888 EN 888:. 8355 8888 888. 8388 8888 3.88 o2 8888 82 38 58885 0888 3882 9888 «8&8 89 8:88 8888 V85; £9.88 32.35 888m 9038 8. 2888 880%» «8:: 9883 2898 235. «2.83 8 8585 «8888 889. 088: o :88. 0:89 8 088.3, .888 882 83:. o o o 8 8:88 8828 888 883 o 388 238 o 3.} 8.3 6:859" 2.28:8." .832a8. 2.8.3 .828 .55. was ”no? 3:831 06 2.522% 888 a 8.0 8.5 __ 5&8 7.8.8 3820 .5 88.0 as. on .2 «.0 :82 2, 38 All... .2: 2:88.. _E 8 582, .828 ..825 Yo 00 em a no oaéd 28.88 .23 . :. 8'22. .35.. oh «930:3 a :51 00 3.83.230 cozuaom "8:33:30 .3338. 83m: 8 axm 66 mesa gnawwmm .N 86m ammo Fmvmé N. do mammmwm F. r no.5 hmwmoNQVé ms .ov mvmmmmmm. P .90? a: 530... an N” mmvwmmom. F 3.3 Nmmnovnvd cod 38mm Ed 8.2.2.30 3338.8 3.. 89.8.0 0-0.9ou..82.3.8....+..oc2c8.~......28982.+.oco.8m.+..oca5m.. u 33.8.8 888.8... 88.82. 388.8 8.888.. 3888... o 888.8... 28 88883. 88.58... .8208... 888...... 8.8.8.8 8.m8.o.. 8.88.8... 28 8388... 88.88... 8.8.8... 8888.... 88.8... 3m88. 8.888.... 8. 8888.... 88:8... 38.388 83.8.0.8 8.888 88...... 8.88.... 8. 388.8. 88.38... 8.8.88 sugar. 883.8 8.888... 8.88.8.8 8. 8.88.8... 88.88... 8.8.8....” 8.888.. 38.8.» 8.88.... 8.8.8.. 8 88.0.»... 88.88... 38.88 888.0. 8.8888 8.8.8.8 8.8888 8 8.888.... 88.58... 8888... 8.m8.8.. 3883 38.8.8 8.8.8... 8 «88.8... 88.38... 8888 38:8,. 88.8.. 0388.8 8888... o 93." 09.3 .8853 2.8353 832.3. 2383 .828 .55. 8... 2.83.2... «cos-35800 88.8. 88.88 8888. 88 8888 o 8.8... 08 8888 888.8 888.8 8.88 8.8. .8 8888 8.88... EN .388 8888 8888 88m. 0888.... 8.8..» «.888. 8. 88.8.. 888.8 8888. .888 .888... 8.88. 88.8 8. 883.8 .8888 8.8... 8.838 888.8 8.8.8 8.8... 8. 3.88.8 888.8 88.8. 8.8.8 8.8.8 8888 888 8 8.8.8 8888 .888. 988. 8.8.8 8.8.8.8 888. 8 88.88 8.8.8 «888 88.88 8.888 888... 888... 8 8.8.8 888..” 888. .828 8888. ..8.8. 888.. o 9.8.. 8...... 3:82... 2.83:2... .8828». .88... 355m .55. ms... .33 3:331 00 m mod Q86 .08. .5588 m 88... a 8... 0.802 8 .z N .5583 .E 88... 8.2 8 .E . :82 2. 8|... .8. legs. .5 8 .80.... .8 00 em a 8. 8.8.8 22.88 .23 . c. 15:: Elm... 850:3 ":3... 00 3:020:00 c283...— ”EcoiomEoo cove-om QQQN 67 00.00 05.00 00.00 00.00 50.05 0. .00 00.50 00.0. 00.0 00.500050 0.5500500 0050000. . 0 .000 .500 000000050 00000000. . .00500050 0.505000. . 500000500 00.0.0230 33300.00 30 00960.0 O.0.0.0"20:89:00-0.+_.0c0.c00.0=>50008000..+_0:0.000_+=0:0£0s u 82.00.00 00000 .00.. 00050000. . 000000500 0000000. .0 000000.00 000055000 0000. .0000 00.00 .0000 90.0.0 050.000 0000500 0050500 0000000. 0.00000. 0000.500 000000.0 00.00005 00000000 0.5.0.0 0000. .0000 0000. .0000 0000. .0000 0000. .0000 0000. .0000 0000. .0000 0000. .0000 0000. .0000 05000000 00000000 000.0000 050.0000 00000000 05000050 05505500 0.000500 00.005.0 00:0 0000 .5000 00.00.5000 000000000 0000000.. . 0000.50 . .0 00005050.. 000 .50000 80000.5. 0.00.0000 0000.380 0 0050 308000.. 0:003:09. 3500.000. 000000. . 00.00 .0 . 000 .000 0000000 00000.0. 0000055 0050000 0.0.00 0 300200.. 00003000.. 3:30.000. 000 .05 .50 0000.00. .0 0000 .0050 000 .0500.0 000005 .0.. 0000000 . .0 000000000 000500000 00000000 .000000 0000000 500 .050 500055. .000050 0005550 005000. 000.00. 000000 . 0000000.. 000000... 000 .000. 500 . .00 .5 0000. . .. 00000.00 00000.00 00000000 0 0000000 0 .55005 0500000 000500 5 .00005 0 .50000 0000050 0000500 0 0000000.. 00.0.0000. 0000000.. 00000.00. 0000.0... 00.0.0000. 80000.0 000000000 0003.0. 000000.... 00000.0 00.000000. . 00.00000 00.000 .0... 00.00....» 8.8.0.00 00.0.0000 0 000.02 3.8.0.0.... 000080000000 .8000. 0000000 0000.0. 0000000 00000.. ..00000 00.000. 0000000 000 .00. 0000000 800.0. 0.0.000 0000000 08.30 00000.. .0000». 00.0.0. 0 000.004. .828. .8... ms... .888 0...... 8... "00.3 02.00000 00 000 0.0 000 0 .0 00. 00. 00. 00 00 00 0 m 8... 8.6 .3 so_ .8005... m 88.0 m 8... 888.520 co .2 .m 0.8 8.0020 .5 80... 8.2 8 .5 . 1002 2. ..u. .0. .IE. 2182....-. .E 0.. .90.... .8 00 88 a 0... 00-8 28.88 glam. 88.838 8.8.00 :50 00 ”0:020:00 0000000 ”0.0003800 000000: 86.8 3.8 $0. 68 5.0m 00.8 05.8 Nada nmhw 00.0 mud ‘86 8.0 Non ammo... 553036 N.. SN? 5.? vanmth magnum... 2.9859 mmwmmmwn: 5094086 0 5.32.8 33:83 3... 393.0 0.06.QuamcocmacfiszocwEma.aEsocwaegmzzgsoom.$0550: u E2523 8.3830 88:82 8.389.. 8wa83~ 8&2”; o 8938+ ova $m£~§é «8958.0 Bags.” @3333 8.983 8&9: 2382: SN QOENmms 88:83 Swammsa $382.? awake o 8.893 2: 93553 88:83 gummams $m8§~ 8.883 8.m28.v momavoi 8P mqmfiomvd 88:83 amazed 03853 $m28.m Saga; 8.88am.» on, mmmomsood «82686 $m83§ mqmmoonne .9385; 8mg: gmzoae 8 2.0.8386 83:83 3&5? 3958+ 8.358..“ $m68¢ 3383 om Bomfioood 88:83 8.9km: $w§8s 8.33» 8.983 03883 8 EENEood 98.68.“. c amuse...“ o c o o 93." 023 .8859" 28383 .2328». 2382 .823 .55. 2.: 2.83.2... 2825:3300 8§3~ 8899 «8:8 32;? mmvzfi o @5an ova $883 ~88on «885 «Egg O88: awoke 9389 SN 8833 8:89 SEEN 88% 8808 o 55va 8. $383 S883 «288 8:5: @558 0882 28m? 8. 888% 3889 883v 288? 9659. N532 mvmvmmm ow. 833%» 8888 mvmtom 882v wofimfi .832 0838 8 8883. magmas” 9320 888m 853m osmium 888v 8 3388 858K R805 «33.3 888m 938m .539 8 83%: «888m 0 93% o o o o 3.3 8.3 .838..." 88353 .8258». 80:2 .825 2.5 mi: ”3.3 3:331 uo & 8d 5.6 :98 3820 m 88¢ a 3o 898 8 x; .8 $5.28 38.20 .5 wood 8.2 on .5 v :22 2? 8mm 13m. Ila... elaaeu .2 8 .235 Eozow 4925 to 00 em a no oa-v.~ 22.85 g g Elam flaw. 25¢ 00 3:03.230 c283: Sago—.8500 .3303: 8th on axm 69 53.0% 535% modm vomvwmfimd mNdN. moan Pmnmé «CNN vammhowé of: 935030.? 2‘: 3:89.? Nada hammer ._. mvdw nomopmmmé 00.0 whommmmmd 5.8250 £38...» 3... 393.0 0-0.0-0nA_mcocm.coa.N.+=ocE:3.muzzogoeaomaLocoomoaéocmfioc u b_>_.oo.mm 53.9.. 88:83 .229. .229. 53.9.. .229. 53.9.. ova oo.ma£oo.. noma:ooo.o onooovao 8.388.. 3maaaov 3min... oomtoaav oFa o¢mvoaaoo «moaproooo oomvvaaoo amomaoo... oqmaoooe momma: mo.mooooo.a o2 oo1wvoootv 88.58o oomooaoov oomotooe oomoavoa momooao. oomaoooao o2 oomooaoav mooaPFoooo o9maa§v oomvovaoa oqmooaa momoooe momovoooa oa. oqmroovav SoaSoooo onoooaoa aqueoova momoaooe momoaooe oqmvooooa oo oomofivno RoaSoooo momoaooaa mqmoooooo oojmoooo; mowoovaa @3883 oo oooozoooo ordaioooo common: momaoaooa oowoooo oomovvoa onmoavve oo aoaovpoooo Soagooo Smaooaoe oo.mva£oo o oqwaooo. 8.398... o 2.5 8.3 3528a 88:53 .8828». 8.2.3 .833 .58. ms: 3.53.2... 8oz§=8ooo o o o o o o o ova voo.aaa ovoooaoa vaoraooa 838v vaoo. E aoovvaa maaaooo ova oafiaofl voooovov vaaraaor oozooo 9828 v88; aoooooo. o8 oooaox: ooaooovv ovoooova vooaaoo vavoovva ooaooov vvmooo: o2 Samaoor 88:8 38:2 ovooooo otozv. opooooo opoaaoo oa. 9889 8388 Evan: 225a aavoaoov onaoto oooaoov oo oaoaoooo ooaoo.vo oooovoo vovaooo. vooaooo. ooooovo 928% oo vaaovaS amataoo oomoaoa voovooo mooooao vavaoov aoaoooo oo vvooaooo vaaooooo 89% 889.. o ooavooo ooaooa. o oa.v.a case .8383 ooocscaa .8323: 8°82 655m .55. ms: 32< 3:033. 00 m moo 8.6 2... on; .Eamzo m ooooo o moo 8.53553... co .2 a .28 .5530 .5 oooo 8: no .5 F 192 2. 3mm Iall... a... g .5 ov .235 .828 .90.... v.o co ova o mo Eva 28.33 as... . o. 3 .582 «an ”:31 00 ”0:230:00 6089001 ”3:239:00 3030.01 oeota 8 axw 70 Dado «0.8 5. 5 and.“ ova 2.8 cram tum. cod 803.08... mmwommmod Shawna... meow—N550 vwghwmmd mowmwmofip vmwnwmmd Doom: {N o 3.20230 2.3828 35 898.0 o.o\o.ouaococsc8.a+__ocscoor~§=ocaea8__+_oco.8a_+__oco£o= u 23803 mqmoamos 88:83 gunmavms 8.m~88.o 8.983 REES; 3mmp8~v ova 8.538.» 88386 3238.0 8.923d 3933 8.983 $mm88d 9N 3%85.» 88:83 Sienna» Smaunoa 8.92.: 8m32¢ 03833 8. 3w88o.o 88:83 momwvoxuo 8.9km? $m28~ 03.4.93 mommnmmoN 8P 3m8m8¢ 88:83 8%93.» 23353 SENS.» 0338.0 m9m~o83 our @3685 88:83 2385» 8.928.? 0383 @398; amuvofle 8 83983 83:82. mommomvme 3330: 8.983 3393 3mm38n 8 8828“...” 88:83 8.“.833 Smwmosod 8.350 oo.m28.m gummm8¢ on REFS: 88:83 o Smovoomo o o o o 93." 8.3 .8383 8835...“ .8323». 2.823 .823 .52. was 5.5225 30:93:08.6 822% «>358 8335 .22.? 2898 8368 8:33 own @228“ 2388 #33: 888» $332 ~88: «832 EN «893» «.988 2.3%: 0838 8.98: Swan: 38m? 2: «BER $328 836% .583 9.852 8.5% $532 84 8389 8333 85m; 895 82on 89K. 9523 our 325% 8863 ovovmmfl @825 «858? «888 Simon, 8 E388 8288 8532 Room; £332 ~83: $832 8 8328 882R 3:83 «989 28va 88m: 0528 8 ormvamm «5085 o 828 o o o o one." 093 .885..." 2.88:3." .8328». 2383 .223 .55. mi.» 30.2 3:831 06 J 3o 8.6 52.353 .EBmsad 88.0 a 8.0 8.335835 8 .z .398 3820 .5 mood was. on .5 r :02 2F 38 .2m .2. an: .5 9. .225 .828 68.5 «.0 00 2a a no oaéw 2235 j 3* .525 gm. 35¢ 00 8:050:00 .3338. ”85:09:00 5.831 85a 3 axm 71 mmém Banged mNdn 5908306 NQNN 09583.6 mode Nannwvmmd Node vmokmmoo. w 8.2. ammonom _. . P mod. 5000000 _. .m CNN. 53.0% 00.0 53.0% 8.9.0230 325003 3... 89.8.0 0-0.0.0"888.53.+._o8.:8.~....._oc89aom_.+.oco.8a.+885»: u 3.2.8.8 3888.. 88.38... 8.8888 8.888.. 8888.. o 8.88.... 98 8.882... 88.58... 38.8... 8.8.88.8 3888 8383.8 8.8858 9.. 8.8888 88.38... 8.88.5 8.8.88 888%.. o 888.... 8. 83.88... 88.58... 8338... 8.888... 8.88.... 888.8 8.838...» 8. 888:... 88.58... 833.8. 8.838.. 8.888.. 8.388 883.88 8. «63.08... 88.88... 8.8828 8.888... o 8.888.. 8.mm88.~ 8 5.3.8.... 88.58... o 8.888... a 8888.. 88.888 8 888.80... 88.68... c o o o o 8 .3838... 88.83. c o o o o c 9....“ 8:9 .855...“ 88883 .8323: 88.2.. .828 .52. ms... 2.5.0.2... «coaches—30 888. 8.88.” 0.88.. 888 2.88 o 883m ovm 8.38 8888 83.38 .888 88.8w :85. 88.8. SN «.85.. 3.8.88 «83.. .888 8.888 o .888 8. 88.8w «5.8.. 888. ..8.8. .888 888 88.8 8. .838... 8&85 2.8% 0888 8.8.8 88m... 3:3. 8. 88:8 3.888 288 88.8 o :28. 8.8. 8 8888 8888 o 8... .3. o 88.8 888. 8 8mg 8888; o o o o o 8 «.888 888; o o o o o o 9......“ 093 .8353 ococscau .8328». 23:2 355m .55. ms... 893 02.2.8”. 00 w 8... 8.5 52.83 38.20 o1 88... a 8... 8.33558 co .2 .m .28 .559)... .E 88.0 8.2 no .5 . :82 z. 38 .8 ..c. 2:82.. _E 8 .295 .828 .92.: I. 00 Eu 9 no PEN 22.38 .5. . :. 3.48.5.4. 2:25. «am 35¢ 00 6:25:30 .3303... "3:32.500 3.831 888 .m. 8 axw 72 8.8 mamwmmon: vam ongovad 8.5m n wmhmnmoé 3.8 mxmvommd No.3 mammomomd 3.8 comm 33.? No.8 Bow ..ONNN mm. _. F noonooow .F cod 53.0% 5.89500 €320...“ as 39620 0-06-0naococmacau+=ocuEm9~§..ocwaoaoma+_mco.8m.+__ocm£m= u E2823 83%qu 88:83 3mn88.. gunman; 033.. 8.383 8.88m: ova gunman.” 88:80.“. majmmvotw Smormomd ammuke 8.983 equated 9N summioa 88:83 03:8: 03.883 033:; 8.353 Sauna?» 8. REENNS 88:83 3&8: 035mm: 8mg? 8.993 amnmowod on. 8mmkm3 88:83 $w§8§ 03233 awesome 033%.. gunfire; o9 ““3833 88:83 3382~ QOmmm8.. 3m38¢ 3mmfio.. 3m~8o3 8 @333: 88:83 among; N383? $m~§d 033v; $m8m8¢ 8 805585 88:83 03332.. 8983.” o @383.” 8m8v8~ 8 33:83 88:83 o o o o o o 93." 023 3522.." 82.35..." .8328: 2.2.3 .823 .55. ms: 3.533.... 8832580 88: 828% F885 «38%. 82:: 29m: 835 ova «3&9 8888 £35 3638 2983 235: 88% 2m 88%. «$88» 838m 3083 2880 ~88: 582 8? 838. 3588 388m 83o? Room: @888 09.88 o9 308mm «388» 5288 5:08 8835 «$58 :3me our 8882 8888 8085 823. BNEE 838m 33% 8 803mg 388mm «883 «2 § 585 mvmmomm P883 8 3583 8823 $83 3:32 o 862 8va 8 NaoEm «983” o o o o o o 93." case .835..." 32.353 3:32.23. 2382 .823 .52. 25 ”no.3 3533. 00 m to 8.5 cam“; E820 m 88¢ a to 8:59.233 8.2 a 28, 3820 .5 mood as. on .5 P :02 2. 8am ammu— Baga _E 9. .562 Emzow .63.... v.0 00 SN 9 no 9.3 92.33 .25 . c. a .525 m5 25¢ 00 3:03.930 c2831 "85:39:00 5:33. 85$ 8 axm 73 88a... 0.0.9o£38838?m.+88.8...a.E..o..8o.a8..+_oco.8m.+8858 u 3.2.88 8.8 8.888 83888... 88:83. 3888... 8.888... 88.8.... 8.88.... mo.m88o.~ 8a 8.8 88.88... 38.88... 88.68... 88.858 8.8.8.... 8.8.8.. 8.888 3888.. SN 8.8 8.888... 8.8888 88:8... 8.8888 88888... 8.8.8.. 8.8.8... 8888... 8. 8.8 8888.. 88.85... 88.68... 8.883 8.8888 8.88.... 83.8. 88888.. 8. 8.8 8838.0 8388.88 88.58... 888.88 8389.. 8.88.... 8.88.... 898.8. 8. 8.8 8888.. 8.8.82. 88:88. 8.8.8.8 8.8.8.. 898...... 8.88... 8.8.8.... 8 8.8 85...... 8.8.83. 88.88... 8888.8 3888.. 8.88.... 38.8.. 3888.. 8 2.? 888.8. 88858... 88.38... 88.888 88.88.. 0 8.8.8.. 8.88.8 8 8... 088888 8.88... 88.808 0 3888.. o 8888.8 o o 5.2350 3.2.8.8 9...} 88 .835...« 2.2.859... .8828. 2882 .828 .58. ms...— 33 "c.5208. «snub-.0300 8.8.... 8888 88.3. 2.88 8888. .88.... «838 28 888.. 8888 888... 2.8.8 288.. 888. 2388 En 8.88. 88.88 8888. 8.88 .888. 888. 88.8 8. 8868 «8.88 888... 888.. 8888 8.88 8888 8. 8888 8:88 .888 8.8 .888 888w 88.8 8. 8888 .888 8.88 28.8 88.8 «888 8:5. 8 8888 «888 8888 .888. 888... 88.8 8.88 8 88:8 8888 888. 8.88 o 888. 8:... 8 8888... 808v... o 088. o 08.8. o o 93.... Oman .ocasau 825:8... .8828». 2.2.2 .828 .58. us... ”3.2 3:093... 0G 4.8 8.5532 38.20 m 88.... a 8... 82.88.22... 8 .2, .m .98 3.5920 E. 88... 8.2 on _E . :82 2. 88 [68.1.5 I288... E. 8 .225 .828 8.2... I. 9. Eu 0 m... E-..“ 22.88 1.83.4. g. .4834 82H 2.3. 00 gag—223.0 c2831 , nacocanoo 5.8.3. 888 8 axw 74 «88o... Q0.0.8:882:88.+..oca.8..8....._o..888.788.832.228: u £2828 75 8.8 8228... 8.8288 88.38... 892.88.... 8.2888 8.8288 8882.8 88.8.8.8 ..8 8.8 288.8... 8882... 88.8.... 3828.8 8.8888 8.2.8.. 8.888.. 88.8.... ..8 8.8 88888... 8.888... 88:88... 8.8.2288 88888 8.82.... 8888.8 8.8.8.88 8. 2.8 8288... 838.8... 88:88. 8.2888 888.8... 8.88.. 8.8.88.8 88888.. 8. 8.... 8.8.8... 8.8.3.... 88....8... 8.8.88... 8.2.88... .. 8.8888 8.8888 8. 2.8 .88.... 8.888... 882.08... 8.8.28.8 8.8.8.8 .. 8.8.88.8 8.8.2.8 8 8.8 8.88.... 888.88... 88:..8... 8.882... 8.28.8 .. 8.828... 8.8228 8 8.8 28888.. 88:88... 88.88... 888...... 3888 .. 8.828 88888 8 8... 88.88.. 8238.... 88.88... 8.8.2888 88888.8 .. 88.88.... 8.288... c 5.82.8 3.58.8 93.8 028 .8888 2.2.3598 882.8. 2.2.3 .828 .55. ma: 3... ...E.u.oe. 85.5.2880 .288 8888 8.28. 8888. 288.. 8888 882. ..8 3882 8288 8.38 ..888. 888. 8888 288. ..8 2282 88.2.8 «888. 8228 88v... 888.. 8882 8. 8882 8828 8.8.. 8.88. 88.8 8:... 2:2. 8. 8888 8888 88.8 8:22 o .888 .88... 8. 8.888 8822.. 888. 2288 o 8.88 82.8. 8 288... 8828 8.83. 8822 .. 88.... 8.8... 8 88:8 8888.. 28.2. 288... .. 8888. 2.828 8 888...... 2838.. 88... 88... .8 .. 8.88 8882 o 93.8 8.2.. .8888 2.85:8." .8888: 2.88... .838. .55. ms... .33 3.3901 00 Man... 8.5 m... .6 .5528 m 88... 8 8... 82.88.52... 8 .2. .m .28 .2688 .E 88... 8.2 .8 .E . :82 z. 8.8 3 2:32... _E 8. .o.m>> Eczow 8.0.... v... 0.. ..8 a 8... ..8-8 22.83.... as 8.4.39.4. 23...... «a»... 25¢ 00 ”23.20.30 .3333. ”£33500 5.831 8.8.. 8 axm 55.0% 53.0% 8.00.. wovonnoad mmdm mvoommmd «v.8 03088.0 5.0m vmmvrommd «0.: Fv—bomond 843 nnmgmowd n _. .0.. o cod 535% 8.2280 33.8.8 3... 888.0 Qo.o.ou..88ca.co...8_2.88.898........8..e..8..282887.685.... u 8.2.88 .229. 88.88... .858... .22.... .92.... 83.9. .22.... 88 .. 88.88... 8.8.88... 8.828.. 8.28 8.8.88 38888 28 8.8828 88.88... 8.822... 8.2888 8.888.. .. 3822.. 8. 8.882.... 88288... 88888... 8.288.. 88888 8.888... 8.2828 8. 83.88.. 88.88... 8.882.... 8.888... 8.88.. 8.82.... 8.8.2.... ..2 8.288... 88....8... 8388.... 8.882... 8.828.. 8.82: 8.822.. 8 .8888... 88.88... 8.8228 838.88 89828 8.888... 388.88 8 8828.8 88.88... .. 8.88.3 .. .. .. 8 8828.... 88.88... .. .. o .. .. .. 93.8 08... .2888 88358.8 .8828». 2.88... .22.... .55. 8... 2.5.0.0.... «coach—89:00 .. .. .. .. o .. .. o8 .. 88888 888.8 8888.. 888.2 28%. 28.8 28 .82. 8888 8882 .888... 82.8 .. 28.8.8 8. 8882 2888 2888 88.8 .8888 8828 888. 8. 8288 3.88.. 2882 888. 8888 28.... 8888 ..2 28.2. 88888.. 3.8.8 888 888... 888.8 8288 8 82.8.. 88888 288.8 8.88 8.888 28.2 8.88 8 8888.. 8:88 .. 888. .. .. .. 8 882... .8888 .. .. .. o .. .. 93.8 8.8 .8853 885898 .8828». 2.88... .828 .52. us: 38< 3:83: 00 JW ..o 28.0 83582....— .E.Ows_o8w88... a 8... 888.528 co .2 .m .28 .5585... .E ..8... 8.2 8 .E . :82 z. 88 .88 .2. 888d, .5 8 .28.... .828 .20.... v... ..o 28 8 m... 938 28.88 .52 . :— 3 #50:? mmxH 25¢ 00 "8.03.850 c2831 .85:an0 .3303». 8.3... ..v 88 76 898.0 0.20.o"288383.$6583......ocaeaom:+_cco.8a.+=2o£o.. u Ezsaam 8.8 @8383 033%? 88:83 $meva ammumvmd 8&3va oo.m58.o nqmmomSa ova 5.8 «853 8&835 88:83 39803 93338.? momnuvva 03ng 03883 EN 53.9 .229. 6.2% 88:83 63.9.. .229. 63.9.. 63.9.. 63.9 2: 8.8 96833 Swanson 88:83 39:63 8&883 8.5.3.? 3&3; mqmwmmoma on? 8.8 68$.de 3m~mm5o 88:95.0 magnum... 8.883.? 8983 Swamfid momNENE cm? 8.2 2.2855 3933.0 88:83 0385... 03883 8.333 macaw? 3m9§~ 8 3.5 88.83 ~88P8od 88:83 03333 3%an 03:5,.“ 0388.? 8.98%.m 8 8.8 2830: «9858... 88:82. 93.883 038va 8.2.8.? 3&5: 03983 on cod «382.3 32068... 88:83 8m3o3~ Swmmom: o 8.283 c o 5.8330 33.828 0...} 093 .8353 885:8.“ .8328: 2383 625m .55. m2.» 3... 5.522... 2.2.2.588 SE85 328mm 383% $25 8332 88m: :25. o3. 833: 8688 oéomvu R83... 888: E88 23:3 SN 0 o o o o o o 2: 8362 8338 $888 298v 8833 25.5 «556 o? 3888 «Ron?» 888: «88% .8388 8:58 0828 8' 38:8 8268 3882 F588 8332 Samoa 398% 8 «Rag 0358mm 03»va gamma X882 883m @858 8 «N: :3 8828 80.58 883m 895: 89 an 388m 8 «888m, 3888 88:: 888. o $208 o o 2.3 3.3 .855..." 22.85..." .2328». 2.2.2 355m .55. ms: "3.323.831 00 _ 1018.0 x0 E:c_E:.m m mod 8:8 Ename— .E.ows_o @933 a mod 8.635533 8 .z. 7. .28, 358.20 .5 mood was. on .E F :92 2? 38 .u .E. g .E 9. 85>) .828 .925 3 00 em a 00 9.3 29.38 3 animal». Ham m5. 25¢ 00 3:03.930 c2831 "ScoconEoo c2823. 83% we axm 77 @8820 0.0.0-0"£88350..0..+=oc2co9~§=8waoa8=+_mco.ooa_+=ocw£oc u b.2823 78 8.8 R8080 8.8858 88:08.0 8.8828 8.888.: 00.888 8.823 8.888.” 08. 8.8 .8283 $8000.: 88:80.0 8.8088 88.8: m0.w80.~ 8880.“ 88380.0 08 8.8 8:083 8.8.800 88:80.0 3882.... 883:... 8.908.: @388... 8.888.: 8. 8.8 8828.. $988.” 88:80.0 8.88... 3838.0 3880.: 00.88: 3888.0 8: :8 8838.0 388.3 88:80.0 385.»... 8.8080.“ 8.828.: 8.883 nLayman»; 0w. 8.8 8883.. 38:83 88:08.0 8.8088 388: 8.882 888:... 8.889.» 8 2.8 8388.0 3885.0 88:80.0 8.8888 8.883.: 8.84.8.0 8.88.: 8.888: 8 8.: 8383 88880.0 88:80.0 $805; A23:82.: 8.88.: 388.: 8.888.. 8 00.0 88008.: 90030000 88:80.0 8.888.: 588.0 0 8.88: 3888.... 0 8.2268 328.8 9.4." 083 .888.“ 8888.“ 82.282 88.3 .828 .55. ma: as 5828.. 8828.88 8088 8988 88.03 0838 .8808 .888 802.8 08 8280 88:3. 88.88 898m «088: 83.8: «888 0:. «808 8888 «:88: 8830 8:80 88:. 888 8: 28.8: 8893 8.88: 0:88 «888. 08020 00088 8: 8088: 8888 988: 0888 «885 «N88: 888.. 0m. 8835 «8.88 08:88 883 0888 8.88 8880 8 2838 38:8 883: «8.8.. 8088 828: 88:.» 8 $808.. 830:” 8.88 8088 880:. 8.9:. 8:00.. 8 8898 8880.. 08.8 88% 0 02.85 888 0 93." 08.5 .888." 8888.~ .8828». 88.2 .828 .8... m2.» 324‘ 3:381 00 d. m 8.0 8068.2 m 8.0 8.6 2. Br .8820 88.0 0 8.0 888.50.... 00.2 59.98 .8820 .5 80.0 8.2 on .E F :82 2: 88 .u .8. madman .5 0.. .28, .828 .90.... v0 00 EN 0 m0 PEN $9.38 ..E< . c. a 8% «an ”:3. 0G 3:020:00 c0383... "8:00.350“. c2831 8.020 8 axm APPENDIX C Discussion of Variation from Previous Work in GC Analysis Method 79 Discussion of Variation from Previous Work in GC Analysis Method Previous work by Wang (3) and Fumey (1) used analysis by gas chromatography for sample analysis. This work proved to be irreproducible due to the lack of an internal standard in their analysis method. The samples run in all of the experiments discussed in their work and in this paper are largely aqueous. It is difficult to inject an aqueous sample in a gas chromatograph with reproducible results without a special column, which was not available for this project. The problem with injecting an aqueous sample into the gas chromatograph arises from the rapid expansion of the aqueous sample in the heated injection port, resulting in a form of sample backlash and the overall loss of sample. Thus, each injection of an aqueous sample may produce widely different results, depending on how much sample actually passes through the column. It is estimated that errors of up to 80% were present using this method. The way to eliminate much of the error inherent in injecting aqueous samples into the gas chromatograph is to use an internal standard. For the work discussed in this paper, dimethyl sulfoxide (DMSO) was used. A known amount of DMSO was added to 1ml of sample, and the sample was then injected into the gas chromatograph. The resulting peaks were then analyzed in comparison to the amount of DMSO that was present in the analysis. Thus, no matter how much of the sample was lost due to backlash, the analysis was adjusted according to the amount of DMSO recorded by the detector. However, it should be noted that the addition of an internal standard did not eliminate error in sample analysis. It is estimated that errors of up to 15% were present using this method. 80 REFERENCES 81 10. 11. REFERENCES . Todd D. Fumey, "A Mechanism and Selectivity Study of Sugar and Sugar Alcohol Hydrogenolysis using 1,3-Diol Model Compounds." MS Thesis, Department of Chemical Engineering, Michigan State University, 1995. Chemical Market Reporter, v. 253, n. 18, May 4, 1998, p. 25. Wang, K., “Biomass Conversion: Sugar Hydrogenolysis, Glycerol Dehydroxylation, and HF Sacharification”, Doctoral Thesis in Progress, Department of Chemical Engineering, Michigan State University, 1995. Keyi Wang, Martin C. Hawley, and Todd D. Fumey, "Mechanism Study of Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds." Ind. Eng. Chem. Res., v. 34, n. 11, 1995, pp. 3766-3770. Kolah, A. K.; Sharma, M., “Removal of Formaldehyde From Aqueous Solutions”, Separations Technology, v 5, n 1, Feb. 1995, pp 13-22. Boz, 1.; Sahibzada, M.; Metcalf, I. S., “Kinetics of the Higher Alcohol Synthesis Over a K—promoted CuO/ZnO/A1203 Catalyst”, Industrial & Engineering Chemistry Research, v 33, n 9, Sept. 1994, pp 2021-2028. Slaa, J. C.; Van Ommen, J. G.; Ross, J. R. H., “Synthesis of Higher Alcohols Using Modified Cu/ZnO/Ale3 Catalysts”, Catalysis Today, v 15, n 1, May 1992, pp 129- 148. Lourvanij, K.; Rorrer, G. L., “Dehydration of Glucose to Organic Acids in Microporous Pillarded Clay Catalysts”, Applied Catalysis A: General, v. 109, n. 1, Feb. 1994, pp. 147-165. Kimura, H., “Selective Oxidation of Glycerol on a Platinum-Bismuth Catalyst by Using a Fixed Bed Reactor”, Applied Catalysis A: General, v 105, n 2, Nov. 1993, pp 147-158. Montassier, C.; Menezo, J. C.; Hoang, L. C.; Renaud, C.; Barbier, J ., “Aqueous Polyol Conversions on Ruthenium and on Sulfer Modified Ruthenium”, Journal of Molecular Catalysis, v. 70, n. 1, Nov. 1991, pp 99-110. Schulz, H., “Selectivity Control Through Hydrogen Availability in Catalytic Hydroconversion Reactions”, American Chemical Society: Hydrogen Transfer in HJvdrocarbon Processing Preprints, v. 39, n. 3, July 1994, pp. 442-449. 82 12. 13. 14. 15. 16. 17. 18. Sasai, H.; Arai, T.; Shibasaki, M., “Catalytic Asymmetric Michael Reactions Promoted by a Lithium-free Lanthanum—BINOL Complex”, Journal of the American Chemical Society, v 116, n 4, Feb. 1994, pp 1571-1572. Arisz, P.; Boon, J. J ., “pyrolysis Mechanisms of O-(2-hydroxyethyl)celluloses", Journal of filmical and Applied Pyrolysis, v 25, June 1993, pp 371-385. Lipert, S.; Baumann, W.; Thomke, A., “Secondary Reactions of the Base-catalyzed Aldol Condensation of Acetone”, Jorflal of Molecular Catalysts, v. 69, n. 2, Oct. 1992, pp. 199-214. Niitsu, T.; Ito, M.; Inoue, H., “Analysis of the Formose Reaction System”, Journal of Chemical Engineering of Japan, v. 25, n. 5, Oct. 1992, pp. 480-485. Shah, N., et. a1., “Cross-dimerization of Alpha-methylstyrene with Isoamylene and Aldo] Condensation of Cyclohexanone Using a Cation-exchange Resin and Acid Treated Clay Catalysts”, Reactive Primers, v 22, n 1, Feb. 1994, pp 19-34. Solomons, T.W. Graham, Organic Chemistry, Fifth Edition, Wiley, New York, 1992, pp. 732-739. Keyi Wang, Todd Fumey, Martin Hawley, "A Selective Study of Sugar Hydrogenolysis using a 2,4 Pentanediol Model Compound." Proceedings of 5th World Congress of Chemical Engineering, San Diego, CA. July 14-18, 1996. 83 MICHIGAN STATE UNIV. LIBRARIES 1“1|WW”WWNIIIHIWNWINHIWIWWI 31293017102876