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ABSTRACT

A STUDY OF PERFORMANCE OF FINITE ELEMENTS IN SHELL EIGENVALUE

PROBLEMS

By

Akmal Shah

A study is carried out to evaluate the performance of the shell finite element of

Belytschko and Leviatahan (QPH) in eigenvalue computations. The QPH element is a

four noded quadrilateral shell element with one point quadrature that is physically

stabilized to take care of spurious modes that result from reduced integration. Both

consistent and lumped mass matrices are used in the evaluation. The subspace iteration

method is used for determining eigenvalues and eigenvectors. The problems of a

cylinder, a hemispherical shell and a flat plate are analyzed in the study. All the

problems are also solved using a commercial finite element package (IDEAS).

Wherever possible, the results are also compared with analytical results. The problems

are solved for a wide range of thickness values and various boundary conditions.

Analysis using the QPH element compares well with other solutions for all the problems.
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Chapter 1

INTRODUCTION

General

Considerable research has been devoted in the recent past for developing shell

finite elements that are not subjected to the effects of locking and kinematic modes.

Reduced or selective integration techniques have been widely used but even these have

not always been successful in eliminating locking. Moreover, an excessively reduced

integration may trigger spurious kinematic modes and thus lead to a kinematically

unstable finite element model. The kinematic modes resulting from the use of reduced

integration can be controlled by using a stabilization matrix. Stabilization can be

achieved by adding artificial generalized strains that are orthogonal to all linear fields.

The magnitude of associated generalized stresses in this case are governed by user input

hourglass control parameters. These parameters are usually chosen to be just large

enough to prevent hourglassing and the results may be sensitive to these parameters.

This approach is therefore often termed as perturbation hourglass control. Many

approaches have been used to nullify the difficulty introduced by the ad hoc control

parameters in perturbation stabilization. Some of the approaches are

(1) Developing a stabilization procedure based on three field Hu-Washizu principle

as demonstrated by Belytschko and Bachrach [1].
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(2) Modifying the approach given in (1) above for nonlinear problems by augmenting

the rank of the under-integrated element by assuming an strain field that does not

require any stabilization parameters as done by Belytschko and Bindeman [2].

(3) Using an assumed stress field for the membrane and bending fields and an

assumed strain field for transverse shear field as shown by Englemann and

Whirley [3].

Brief Details of Study

Belytschko and Leviathan [4] have introduced a four noded quadrilateral shell element

using one point quadrature with physical stabilization and have named it QPH. The shell

formulation used for this element is a Mindlin-Reissner formulation which admits

transverse shear but assumes that pseudo-normals remain straight. In classical thin plate

theory, normals to the mid-surface before deformation are assumed to remain normal to

the mid-surface after the deformation, implying that transverse shear effects are

negligible. As a result the free vibration frequencies calculated by using the thin plate

theory are higher than those obtained by the Mindlin plate theory in which transverse

shear and rotary inertia effects are included. In this study, the performance of the QPH

element in eigenvalue problems is evaluated. The results for linear static analysis using

the QPH element are shown in [4] and are quite satisfactory. However, no results are

shown in [4] for the dynamic analysis and this study is thus carried out to evaluate the

performance ofQPH element in eigenvalue problems.
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A computer program is developed for the purposes of this study that uses the closed

form expression of the element stiffness matrix of [4] and the consistent and lumped

matrices for shell elements given by Hughes [5]. The mass matrices given in [5] are in

integral form and are numerically integrated in the program. The shape function matrix

given by Hughes [5] for consistent mass is simplified by assuming that the fiber

coordinate system coincides with the local Cartesian coordinate system for the QPH

element. Both consistent and lumped mass matrices are further simplified by assuming a

constant thickness over the element domain. The subspace iteration method is used for

determining eigenvalues and the subroutines given by Bathe [6] are used in the program.

Skyline storage is used for stiffness and mass matrices as required by subspace iteration

subroutines of [6]. This form of storage also minimizes the storage requirements. The

problems of a flat plate, a cylinder and a hemisphere are selected for this study as these

problems are a part of the set of standard test problems to test the performance of a finite

element given by MacNeal and Harder [7]. All problems are also solved using a

commercial finite element package, IDEAS [8] . The element used from IDEAS element

library is a thin shell linear quadrilateral element that is formulated on the basis of

Mindlin plate theory. The results using the QPH element are compared with the results

from IDEAS. For a flat plate problem, the results are also compared with analytical

results that are given by Blevins [9]. No method has been devised for plotting the mode

shapes and the same are plotted through IDEAS as the natural frequencies obtained from

QPH are almost same as those obtained from IDEAS. The QPH element performs well

when compared with IDEAS solutions and with the analytical solution of [9] in the case
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of a flat plate. The QPH element is, however, faster than the fully integrated elements as

it retains the speed of one point quadrature family of elements due to closed form

integration of the stabilizing forces.

The theoretical background of the element including governing equations, geometry

and kinematics, formulation of stiffness matrix, formulation of consistent and lumped

mass matrices and the solution technique, is given in Chapter 2. The results for the three

problems under different boundary conditions and over a range of thickness values are

given in Chapter 3. This chapter also includes the plots of the mode shapes that are

obtained through IDEAS for some specific examples. Results for both consistent and

lumped mass matrices are also given there. In Chapter 4, the results are discussed and

conclusions are drawn to conclude the study.



Chapter 2

THE FINITE ELEMENT MODEL

Governing Equations

The equations used for the QPH shell element are developed by starting with the

equations for a continuum and then applying suitable constraints. The governing

equations are then the momentum equation

0' + bi = pvi (2.1)
M

where 0'- is the Cauchy stress, bi is the body force, p is the density and Vi is the
I]

acceleration. The deformation of the continuum is measured by the rate of deformation

tensor n given by

1

nij = 5(Vij + Vj,i) (22)

The hypoelastic constitutive equation relating stress with T] is

8 = CT] (2-3)

A denoting a local coordinate system.
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The formulation of the QPH element is a Mindlin-Reissner formulation that

admits transverse shear but assumes that pseudo-nonnals remain straight. The

formulation thus begins with a full three dimensional velocity field

8

V. (Eng) = ZN?D(§,11,CM (2.4)
I=l

where NI3D are the full three dimensional isoparametric shape functions. Since the

pseudo-normals remain straight so

4 a 2_ ,_

v. (£311.) = ZN.(§,n)[v.. + EU-Vuw .. + V..w ,. )1 (2.5)
I=l

where a is the thickness. Functions N[(§,n) are the two-dimensional isoparametric

shape fimctions and V,1 and V,2 are the two nodal base vectors which are orthogonal to

the pseudo-normal at a node 1.

Geometry and Kinematics

The geometry of the 4-node shell element is defined by its midsurface, as shown in

Figure 1, with coordinate denoted by X” ( i = 1, 2, 3 representing the three Cartesian

components and I = 1, 2, 3, 4 representing the four nodes), and by its thickness 3.

The local Cartesian coordinate system for the element is defined by unit vectors é, ,

A

6,, 63 where 6, and 62 are tangent to the midplane at the element center and 63 is

orthogonal to the midsurface.



 

  

 

A 0y! ’03 yl

4 C

. / A ,.

/ A —; vxl ’0) x1

my 3

——B

D A

§,x

2

l

A

Figure 1 - Midsurface of QPH element

Thus

A x

e, =M (2.6)

Is. >< g2]

where g, and g2 are covariant base vectors such that

6x 8x
g1 : —— ’ g2 = —— (2.7)

ai an

where x = ( x, , x2 , x3 ) are the spatial coordinates and g and n are the referential

coordinates. In Cartesian component form (expressed in the global system), g1 takes the

form

_a_x,_ 1+33£2_ez+§x_333 (2.8)

“6:8 an 6;
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The base vectors 6, , e, are tangent to the midsurface at the center and are orthogonal

to E3 and to each other. Thus only one can be arbitrarily selected. The selection for

QPH element is

e] = i (2.9)

[all

and e, = e, x e, (2.10)

Five degrees of freedom are defined at each node for the QPH element, three

translational velocities 0”, {721, {731, and two out of plane rotational velocities (3 x, ,

(f) y, . All the degrees of freedom are expressed in the local coordinate system defined at

the element center.

The finite element interpolation for the midsurface geometry is

£1=N1(§,n)f,, (2.11)

The velocity interpolation for QPH element in the corotational components is same as

equation (2.5) and can be written in terms of indicial notation as

91(§m,C)= N,(§.n)1</., + guano“). +6103 ).,1 (2.12)

where 5 is Kronecker delta.

Locking, Spurious Modes and Stabilization

Arbitrary combinations of displacement interpolation may prove ineffective in some

problems. The mesh shown in Figure 2 issued to illustrate this difficulty. Suppose

b
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linear displacement triangular elements are being used and the left hand side and the

bottom edges ofthe mesh are clamped.

 

 

Clamped Edge

11 IV

    
Clamped Edge

Figure 2 Mesh for which Incompressibility dictates Zero Displacements

For incompressibility condition, the volume of each element must remain constant.

For element 1, constant volume prevents the displacement at node A, dA, from having a

non-zero vertical component. For element 11, the constant volume condition precludes

horizontal motion of node A. Taken together, dA must identically be zero. The same

argument can be repeated for elements 111 and IV to conclude that the displacement at

node B, dB, must also be zero. The same reasoning can be used to conclude that every

node in the entire mesh must have zero displacement. Thus the only possible

incompressible solution is u E 0. Clearly, this type of mesh offers no approximation

power. This phenomenon is known is known as mesh locking.

9
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In the nearly incompressible case, the same phenomenon occurs, only this time u 5 0.

Thus introducing slight compressibility does not make the problem go away. To varying

degrees, a tendency to lock afflicts many standard elements. A mathematical

convergence theory for mixed finite element methods states that the elements having an

optimal rate of convergence will not lock.

A method of constraint counts is a heuristic approach to determine the ability of an

element to perform well in incompressible and nearly incompressible applications. This

method is not a precise tool of obtaining an indication of element potential. However, it

does seem to be able to predict a propensity for locking. Other issues must be considered

in an overall evaluation of element performance.

A standard mesh for two dimensional problems is given by Hughes [5] and is shown

below in Figure 3.

 

 

Clamped Edge

 

     
Clamped Edge

Figure 3 Standard Mesh



II

The total number of displacement equations after boundary conditions have been imposed

are represented by ncq, and 11C represents the total number of incompressible constraints.

The constraint ratio ( r) is defined as

 
n6

r = q (2.13)

We are interested in the values of r as the number of elements per side, nes, approaches

infinity. The idea is that r should display the behavior of the number of equilibrium

equations divided by the number of incompressible conditions for the governing system

of partial differential equations. These are nsd, the number of space dimensions, and 1,

respectively. So in two dimensions the ideal value of r would be 2. A value of r less

than 2 would indicate a tendency to lock. If r S 1, there are more constraints on the

displacement vector d, than there are displacement degrees of freedom available, and thus

severe locking would be anticipated, as was seen for linear displacement-constant

pressure triangle discussed above. A value of r much greater than 2 indicates not enough

incompressibility conditions are present and the incompressibility condition may be

poorly approximated in some problems. A summary of these ideas is as below

r > 2 too few incompressibility constraints

r = 2 optimal

r < 2 too many incompressibility constraints

r S 1 locking

In the development of plate bending elements, an important consideration is the

number of shear strain constants engendered in the thin plate limit. The constraint ratio
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r, defined in equation (2.13) is again used here, but now r1,q is the total number of

displacement and rotation equations after boundary conditions have been imposed and nc

is the total number of shear strain constraints. Again, the idea is that as the number of

equations in the standard mesh of Figure 3 approaches infinity, r should approximate the

ratio of number of equilibrium equations to number of constraints for the given system of

partial differential equations (in the present case, 3 and 2, respectively). The ideal ratio

of r here would thus be 3/2. Smaller value will indicate too many shear strain constraints

and a potential for locking. A larger value would indicate too few shear strain

constraints and may poorly approximate the Kirchoff limit.

The effect of locking can be reduced by using uniform reduced integration or selective

reduced integration. In uniform reduced integration for plate elements, both the bending

and shear terms are integrated with the same rule, which is of lower order than the one

required for exact integration. In selective reduced integration for plate, the bending

term is integrated with the normal rule (for exact integration), whereas the shear term is

integrated with a lower order rule. The reduced integration represents a considerable

improvement over normal integration. For a four noded isoparametric rectangular

element with sides aligned with global x- and y- axes, the element expansion may be

written as

Wh=Bo+B1x+Bzy+B3xy (2-14)

93 =rao+rmx+ra2y+m3xy (2.15)
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where Bi and ya, , OS i S 3, are constants that depend upon the nodal parameters w";

andOZa , Is a S 4 representing the four nodes, respectively. The conditions

0 = 1’1

= -91’+wf;

= (-vlo+Bi)-1nx+(-712+B3)y-713xy (2-16)

0 = 72

= -O'2'+w";

= (-y20+l32)+(-y21+03)x-y22y-723xy (2-17)

impose eight constraints per element and are approximately in force as t —> 0 if exact

integration of element stiffness matrix is performed, which is two-by-two Gauss

integration in this case. In a large rectangular mesh, there are approximately three

degrees-of-freedom per element, and thus the element tends to be overly constrained with

r = 3/8, which is indicative of locking. To reduce the effect of locking, using one-point

Gauss quadrature for element stiffness matrix may be considered. Clearly this results in

only two constraints per element, and now there are more degrees of freedom than there

are constraints. The value of r is now 3/2, which is the optimal value.

Although reduced integration alleviates the locking problem, it has an adverse side

effect of rank deficiency, that is there are zero energy modes present in excess of the rigid

body modes. These zero energy modes are known as spurious modes and can result in

oscillatory errors in certain cases and, occasionally, even in a singular global stiffness

matrix. Spurious modes are the eigenvectors of the stiffness matrix, such that
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[K] {(1),} = 0 (2.18)

A spurious mode, {(1),}, differs from a rigid body mode, {(1)0}, in that the modal strain

state

{Es} = [B] {(135} (2-19)

may not be zero everywhere. It is, however, zero at the integration points. Spurious

modes occur if the number of strain evaluations at integration points is less than the

number of independent strain states provided by the nodal displacement. Thus the linear

combinations of strain states will produce zero strains at all integration points. The

difference between the number of independent strain states and the number of strain

evaluations provide a lower limit to the number spurious modes

The selective reduced integration has the advantage of fewer spurious modes than for

the corresponding uniform reduced integration. In uniform reduced integration all the

strain components are evaluated at a reduced set of points. However, locking is a result

of incorrect interpolation of some, but not all, components of strain. In selective reduced

integration some, but not all, of the strain components are evaluated at a reduced set of

points. This should eliminate locking and may retain a sufficient number of strain

evaluations to prevent spurious modes. This method still has some undesirable side

effects. In general, the boundary conditions render the assembled stiffness matrix

positive-definite, and so the zero energy modes are not globally present. A guideline that

has been successfully used for selective integration elements is that if the boundary

conditions preclude the rigid mode from forming in one element, it is also precluded in

the remainder of the mesh. Due to the potential problems created by rank deficiency, a
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number of research efforts have been undertaken to develop Mindlin-Reissner-type

elements which have correct rank and maintain accuracy in both thin and thick plate

applications. The QPH element is also based on the Mindlin-Reissner theory.

In selective reduced integration some or all of the economic advantage of reduced

integration is given away. In situations where this advantage may be of particular

importance, it would be highly beneficial to retain uniform reduced integration while

finding some simple way to restrain or stabilize the resulting spurious modes. The basic

idea behind spurious modes stabilization is to separate the element’s modes into low

order modes which are evaluated at integration points and higher order modes whose

stiffnesses are approximated analytically. Care must be taken to preserve the accuracy of

lower order modes while assigning penalty stiffness to the higher order modes to prevent

large responses of spurious modes. Spurious modes stabilization occupies a middle

position between reduced integration and full integration with strain modification. It

retains some of the economic advantage of reduced integration and avoids spurious

modes. Its main disadvantage is that it places a burden on the user to select a level of

penalty stiffness. A level that is too low may cause the spurious modes to be evident in

the solution, while a level that is too high may allow locking to return. An acceptable

level may not always be possible.

Formulation of Stiffness Matrix

In deriving the stiffness matrix for the linear static case, the linear strains are related to

the displacements exactly as the rate of deformation is related to the velocity.
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The following orthogonalities have been used in deriving the element stiffness matrix

for QPH element:-

(a) Orthogonalities between constant in plane fields (membrane and bending) and the

non-constant ones.

(b) Orthogonalities between membrane and other fields.

(c) Orthogonalities between shear and other fields.

((1) Orthogonalities between the decomposed non constant shear fields.

The element stiffness matrix in local coordinates can then be written as

A A

K=K+KM, am»

where K, is obtained by one point quardature rule with the quadrature point §=n=0,

A

K is the element stiffness matrix in the local coordinate system that consists of 16

blocks of (K)U , each of dimension 5x5, with I and J varying from 1 to 4 and Km is the

stabilization matrix.

The constitutive law for the stabilization matrix in (2.20), given in the local coordinate

system is

6=éé a2n

where 6 and 5 are the 5x1 stress and strain vectors, respectively, and C is a 5x5 matrix

that can be partitioned into a 3x3 in plane part and a 2x2 transverse shear part as

v 0

1 O (2.22)

1

0 - 1 — v

2 ( )_

 

O
<
~
—

Cm=Cb:1 2
-V

  b



l7

1 0 G 0
(3:3): =2 (2.23)

s 121+v o 1 6 0 G

where E is Young’s modulus, v is Poisson’s ratio, G is the shear modulus and 5/6 is shear

correction factor for a rectangular cross section.

The element stiffness matrices must be expressed in global Cartesian coordinate

system while assembling into global stiffness matrix. The 6x6 transformation matrix R

maps from global to local coordinates as follows:

a, = Rd, (2.24)

where d, and cll are the nodal displacement vectors at node I expressed in local and

global coordinates, respectively. The transformation matrix R has the form

~ A 0
R : [ 3x3 3x3 ] (2.25)

03x3 A3x3

where A3,.3 is computed using the unit vectors 6, , é, , é3 in the local Cartesian

coordinate system.

The QPH element has 5 degrees of freedom per node. No stiffness is associated with

the drilling degrees of freedom. This may result in a singularity or ill conditioning of the

stiffness matrix. A value of torsional stiffness factor kd for these degrees of freedom is

calculated as below

k, = a2 [[xzaCs(1,l) + yzaCs(2,2)]dA (2.26)

or kd = a2 J-[xzaCsU ,1) + yzaCs(2,2)]di (2.27)

o
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where or is a parameter taken from Quint [10], j is the determinant of the jacobian and

[d0 indicates integration over a 2x2 master element. The jacobian maps an arbitrary

:1

element onto a 2x2 master element that is a square element with dimension of each side

equal to two in referential coordinate system. g and 1] thus vary from -1 to +1 over this

element. In equations (2.26) and (2.27), aCs is the transverse shear stiffness, Cs being

the 2x2 matrix in equation (2.23), and x and y are as below

x= €181(§)+mir(n)+h.fir(§n) (2.28)

y = €191(§) +n191(n)+ h19.(§n) (2.29)

In equations (2.28) and (2.29), hl is the product of referential coordinates 9;! and n, at a

node 1. Equation (2.27) is numerically integrated to evaluate the value of kd which

depends upon a drill stiffness parameter or that is specified as input. For thick shells,

where thickness to radius ratio is more than 1/20, this is seen to be affecting the natural

frequencies for higher modes. With the addition of these degrees of freedom the K”

block of the element stiffness matrix becomes a 6x6 block that facilitates transformation

of element stiffness matrix from local to global coordinates.

The element equilibrium equation for linear elastostatics in local coordinates can be

written as

A (1') A (e) A (e)

[K] {11} = {F} (2.30)

When the displacement and force vectors are transformed to global coordinates using

transformation of equation (2.24), the above equation becomes

 



[Kl‘e’eruw = 1111111“ (2.31)

Since nodal displacements and forces of each node are to be multiplied by R , the

matrix R in equation (2.31) would be a 24x24 matrix, for the four noded element, with

blocks of 3x3 matrix A of equation (2.25) along the diagonal and zeros in the off diagonal

positions.

The equation (2.31) can also be written as

[R][K]“’[R]{U}‘”’= {F}“" (2.32)

and since transformation matrices are orthogonal, so [R]_l = [R]t and equation (2.32) can

be written as

[R] [K]“"[R]{U}“”= {F}“’ (2.33)

The element equation in global coordinates can be written as

[K]“’ {u}“” = {F}“” (2.34)

Comparing (2.26) with (2.27), it can easily be noticed that

[K]“’ = [R]‘[K]”’[R] (2.35)

The element stiffness matrix in the global coordinates can thus be written as

KU = R‘KUR (2.36)

where K” is a 6x6 block of element stiffness matrix after the addition of drilling degree of

freedom and I and J vary from 1 to 4 for the four nodes.
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Consistent and Lumped Mass Matrices

The consistent and lumped mass matrices for shell elements as described by Hughes

[5] are used in this study. The matrices have been used for the specific case of constant

thickness. The fiber coordinate system is assumed to coincide with the local Cartesian

coordinate system for the QPH element. The shape function matrix given by Hughes [5]

for the consistent mass matrix has thus been modified as

N, o o 0 —N,z

N, = o N, 0 N,z 0 (2.37)

o 0 N, o 0

The consistent mass matrix is therefore given by

m=[m,,] (2.38)

,

where mu = [ [N;N,pjdzda (2.39)

0-2V
2

The product N:N , , after integrating over the thickness, becomes

pN,N,a 0 0 0 0

O NINJa 0 0 0

1 O 0 NINJa 0 O

N,NJ = 1 3 (2.40)

0 0 0 —N,N,a‘ 0

12

0 0 O 0 éNINfi3  
The above expression for N}NJ is used and numerical integration is carried out to

evaluate m” of equation (2.39), assuming a constant density, to obtain the consistent mass

matrix.



21

I01

For lumped mass matrix, the procedure given by Hughes [5] is adopted. m, , except

drilling degrees of freedom, that is the mass associated with each rotational degree of

freedom of node I is initially calculated as

mf‘” = [prij1 (2.41)

CI

.. +1

where j = [de (2.42)

-1

For constant thickness a, j becomes aj. No mass is assigned to the drilling degrees of

freedom. For the QPH element

m?” = mf" I = 1,2, ..... ,nen (2.43)

where m?” is the mass associated with each displacement degree of freedom and nen is

the number of element nodes.

Proportional lumping is then done to construct the lumped mass matrix. The volume

V ofthe element is numerically integrated using the following integral

v = [360 (2.44)

D

For constant density, the mass of the element (M) is evaluated as

M = p V (2.45)

The masses associated with rotational and displacement degrees of freedom are then

normalized as

my“ +- (M / 1W" )m;°‘ (2.46)

m?” <— (M /1’\”4disp)m;“w (2.47)
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where M” = 2...: mi“ (2.48)

H

and WW = Z“ in?” (2.49)

1=l

Summations in equations (2.48) and (2.49) are carried out for one degree of freedom

only. Finally the rotational inertia terms are adjusted. For the QPH element with

constant thickness, the z-coordinate at the midsurface at each node is zero and both the

thickness at each node of the element and the average thickness of the element are equal

to the thickness a. The adjustment to rotational inertia terms given by Hughes [5] is thus

simplified as

m?“ (— 011m?” (no sum on I) (2.50)

2

where or, = max L,é (2.51)

12 8

and A is area of the element that is evaluated as

A = V / a (2.52)

The values of m1 and mf‘s" in equations (2.50) and (2.47), respectively, are used at

the corresponding diagonals of the lumped mass matrix.

Solution of the Eigenvalue Problem

The subspace iteration method is used for determining eigenvalues and eigenvectors.

The stiffness and mass matrices are stored in skyline form. A Sturm sequence check is

used to check if any mode is skipped. Subroutines given by Bathe[6] are used for the
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subspace iteration method. No method is devised for plotting the mode shapes and the

same are plotted through IDEAS after solving all the problems using IDEAS.



Chapter 3

RESULTS

Linear Static Analysis

The problems of a pinched cylinder with a rigid diaphragm at both ends, a hemisphere

with radial loads at four points of the free circumferential edge and a circular plate

clamped at the circumference with a transverse load at the center are solved to confirm

the results of Belytschko and Leviathan [4] and to check the accuracy of the program.

The circular plate problem is solved for a thin plate (a/R = 0.01) and a thick plate (a/R =

0.50). The QPH element gives satisfactory results for all the problems and in particular

performs well for a thick plate for which Kirchoff plate theory predicts poor results.

Dynamic Analysis of a Flat Plate

A circular and a square plate are analyzed in this section. The problem parameters are

shown in Table 1. The circular plate problem is solved for two thickness values, one in

thin plate region and the other in thick plate region. A thin circular plate is considered to

see the possible effects of membrane and shear locking and a thick circular plate is

considered to see the performance of the QPH element in a region where rotary inertia

24
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TABLE 1

PROBLEM PARAMETERS FOR FLAT PLATE

Length L

Radius R

Thickness a

Ratio a/R or a/L

Young’s Modulus E

Poisson’s Ratio v

Density p

Boundary Conditions

Circular

Plate

10

0.1 and 5.0

0.01 and 0.50

3.0E6

0.3

7.317372E-4

Circumferential edge

of plate is clamped

Rectangular

Plate

10

0.05

0.005

2.99938E7

0.29

7.317372E-4

1- Opposite edges clamped

2- One edge clamped and an

adjacent edge simply supported
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and shear deformation effects become important. The circumferential edge of the

circular plate is considered clamped for both the thickness ratios of the circular plate as

shown in Figure 4. The square plate is solved for two different boundary conditions that

are shown in Figure 5 and Figure 6. The problems are also solved using IDEAS software

with a thin shell linear quadrilateral element which is based on Mindlin plate theory as

stated in [8]. The analytical results for both circular and square plates could be obtained

from Blevins [9]. The QPH results for these two plate problems are thus compared with

IDEAS results as well as with analytical results. The results are shown in Table 2 and

Table 3 for two thickness values of circular plate and in Table 4 and Table 5 for two

boundary conditions for the square plate.

In the thin circular plate problem, the results of QPH element are in good comparison

with IDEAS results, but both results display an error with the analytical results, as can be

seen in Table 2. The error is small in lower modes but in higher modes the error is as

high as 12%. For the thick circular plate, the QPH results as well as the results of

IDEAS do not compare well with the theoretical results obtained from Blevins [9], as can

be seen in Table 3. This is discussed later in Chapter 4. The QPH results compare well

with IDEAS results but QPH seems to be skipping some modes in this problem which is

also discussed in Chapter 4.

The square plate is analyzed for one thickness ratio only which is in very thin limit

(a/L = 0.005), L being the length of a side of the square plate. The QPH results for this

plate are in very good comparison with IDEAS and theoretical results as can be seen in

Table 4 and Table 5. This was an expected result as the classical thin plate theory, on



27

 

\

Clamped Edge 
Figure 4 Circular plate with clamped edge
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Clamped Edge Clamped Edge

 
Figure 5 Square Plate with Opposite Edges Clamped

Clamped Edge

 
Simply Supported Edge

Figure 6 Square Plate with one Edge Clamped and

an Adjacent Edge Simply Supported
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TABLE 2

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR FLAT

CIRCULAR PLATE WITH CLAMPED EDGE (a/ R=0.01)

211.55

THEORY IDEAS QPH

31.52 31.79 31.69

65.56 68.21 67.86

68.21 68.23

107.56 112.78 112.88

114.98 114.48

122.64 133.50 133.22

157.40 169.14 168.61

169.14 169.45

187.56 211.55 210.72

211.57
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TABLE 3

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR FLAT

CIRCULAR PLATE WITH CLAMPED EDGES (a/ R=0.50)

THEORY IDEAS QPH

1575.8 1038.5 1035.9

3278.1 1771.4 1762.7

1771.4 1770.1

5378.2 2102.7 2094.2

2102.7

6132.2 2452.1 2492.4

2498.8 2499.0

2509.8

7870.0 2787.9 2784.8

9378.0 3255.4 3239.4
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TABLE 4

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR SQUARE

PLATE WITH TWO OPPOSITE EDGES CLAMPED

THEORY IDEAS QPH

108.23 108.65 108.65

128.93 129.30 129.38

212.18 213.28 213.28

298.73 303.80 303.80

328.28 333.03 333.03

388.29 392.80 392.79

TABLE 5

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR SQUARE

PLATE WITH ONE EDGE CLAMPED AND AN ADJACENT EDGE

SIMPLY SUPPORTED

311.27 310.22

THEORY IDEAS QPH

26.07 26.07 26.13

93.16 93.46 92.53

120.38 119.77 121.10

209.89 208.12 211.75

257.57 261.56 255.35

318.39
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which the analytical results of Blevins [9] are based, predicts good results in this thin

region.

Dynamic Analysis of a Cylinder

A right circular cylinder having a rigid diaphragm at each end, as shown in Figure 7, is

analyzed here. The problem parameters are shown in Table 6. The problem is also

solved using IDEAS software with a four noded quadrilateral element. In the absence of

any analytical results, the QPH results are compared only with IDEAS results and are

shown in Table 7. The QPH results compare very well with the IDEAS results.

Analyses are carried out for this problem for thickness to radius ratios of l/1200 to 1/30

and QPH results compare well with the IDEAS results except for high thickness to radius

ratios. The QPH results in this region could be improved by adjusting the value of drill

stiffness parameter or (see equation (2.19)) and results are then in good comparison with

IDEAS results.

The effect of mesh refinement is studied in this problem and a 16x16 and a 20x20

mesh are considered. The natural frequencies are seen to be decreasing as the mesh is

refined from 16x16 to 20x20, irrespective of the thickness of the cylinder. The effect of

thickness is also studied in this problem and the thickness of the cylinder is varied from a

very thin cylinder to a rather thick one (a/R from 1/1200 to 1/30) for both 16 x 16 and 20

x 20 meshes of the cylinder. Throughout, the QPH results are comparing very well with

the IDEAS results.
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Figure 7 Cylinder with rigid diaphragm at each end
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TABLE 6

PROBLEM PARAMETERS FOR CYLINDER

Length L

Radius R

Thickness a

Ratio a/R

Young’s Modulus E

Poisson’s Ratio v

Density p

Boundary

Conditions

600

300

0.25 - 10.0

1/1200 - 1/30

3.0E6

0.3

7.317372E-4

Supported at each end by a

rigid diaphragm ux=uy=02=0
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TABLE 7

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR A CYLINDER

WITH A RIGID DIAPHRAGM AT EACH END

16 x 16 Mesh 20 x 20 Mesh

IDEAS QPH IDEAS QPH

4.52 4.51 4.46 4.45

4.78 4.78 4.76 4.76

7.30 7.28 7.11 7.09

11.70 11.68 11.21 11.17

11.72 11.70 11.69 11.68

13.05 13.02 12.76 12.70

TABLE 8

EFFECT OF DRILL STIFFNESS PARAMETER or ON NATURAL

FREQUENCIES OF CYLINDER IN HERTZ (a/R=1/30)

IDEAS QPH RESULTS WITH BELOW VALUES OF or

RESULT 1E-4 5E-4 8E-4 lE-3 lE-2 5E-2 lE-l SE-l

7.26 7.22 7.23 7.24 7.25 7.32 7.37 7.55 11.47

11.79 11.78 11.78 11.78 11.78 11.80 11.83 11.92 14.34

13.01 12.96 12.97 12.99 12.99 13.07 13.11 13.21 15.89

23.00 22.90 22.97 23.05 23.02 23.01 23.12 23.18 24.84

23.27 23.08 23.22 23.08 23.1 1 23.39 23.56 24.06 34.22

23.29 37.16 32.64 23.16 23.18 23.53 23.71 24.22 35.68
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The effect of drill stiffness parameter or is also considered in this problem. At higher

thickness values (a/R > 0.03), QPH does not calculate the higher modes frequencies

correctly if the value of drill stiffness parameter or is not carefully adjusted. When this

adjustment is done, QPH results compare well with IDEAS results. The adjustment to

the value of or is done to have a good comparison of QPH results with IDEAS results. In

the absence of any results to compare with, no method is available to adjust the value of

or. A possible strategy is, however, suggested in Chapter 4. In a cylinder with thickness

to radius ratio of 1/1200 to 1/30, results that compare well with IDEAS results are

obtained with the value of drill stiffness parameter or equal to 1.0E-3. The results tend

to drastically deviate for higher modes if the value of drill stiffness parameter or is

decreased down to 1.0E-4 or below. If the value of or is increased beyond 1.0E-3, the

results remain stable till 1.0E—l but are erroneous for the all the modes when the value is

increased beyond 1.0E-1. The value of drill stiffness parameter or can thus be selected

in the range of 1.0E-3-1.0E-1 for this problem. The results for various values of drill

stiffness parameter or are shown in Table 8. Selection of the drill stiffness parameter or

is further discussed in Chapter 4.

Dynamic Analysis of a Hemisphere

In this section the natural frequencies of a hemisphere under different boundary

conditions are determined and analyzed. This problem was the most general problem

addressed in this thesis and is thus studied in most detail. Problem parameters are shown

in Table 9. The problem is analyzed for three different sets of boundary conditions that
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TABLE 9

PROBLEM PARAMETERS FOR HEMISPHERE

Radius R 10

Thickness a 0.01 - 1.00

Ratio a/R 0.001 - 0.100

Young’s Modulus E 6.825E7

Poisson’s Ratio v 0.3

Density p 7.317372E-4

Boundary l-Circumferential edge clamped

Conditions

2-One quarter of circumferential

edge clamped

3-Four points on circumferential

edge at interval of 90 degrees

simply supported
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Clamped Edge

Figure 8 Hemisphere with Circumferential Edge Clamped

V
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\Clamped Portion

Figure 9 Hemisphere with Quarter Circumferential Edge Clamped

V
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sym

sym

 

  
L Simple Supports

Figure 10 Hemisphere with four points on circumferential edge simply

supported
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are shown in Figure 8, Figure 9 and Figure 10. In the problem shown in Figure 10, one

quarter of the hemisphere is shown as symmetry was used in this problem. For the

whole hemisphere in this problem, four points on the circumferential edge of the

hemisphere at an interval of 90 degrees are simply supported. All rigid body modes are

not restrained in this problem, as the displacements in the plane of circumferential edge

are not restrained anywhere. Both QPH and IDEAS encountered singularities when the

full hemisphere was used for this boundary conditions set without using the frequency

shift option which was available in IDEAS. The problem with this boundary condition

set could not be solved using QPH element without making use of symmetry, as the

program developed in this study does not have the frequency shift option, and was thus

solved using symmetry boundary conditions at one quarter of the hemisphere. The full

hemisphere is considered in the other two boundary condition sets and no symmetry is

used. The problem is also solved for all three boundary conditions sets with IDEAS

software using a thin shell linear quadrilateral element.

The thickness of the hemisphere was varied from a very thin limit to a thick limit (afR

from 0.001 to 0.100) for all the boundary conditions. The behavior is exactly same as in

the example of cylinder. The natural frequencies increase as the thickness is increased

and the QPH results compare well with the IDEAS results. At higher thickness values

the natural frequencies of higher modes given by QPH fall considerably as compared to

those obtained from IDEAS. This situation is also controlled by increasing the value of

drill stiffness parameter or. The increased value of or is to be carefully selected as the
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results are sensitive to the value of this parameter. The selection of the value of or is

further discussed in Chapter 4.

The results for the three boundary condition cases are shown in Table 10, Table 11

and Table 12. The results are shown for six different thickness to radius ratios, starting

from a very thin shell and going into the thick shell limit. In the thick shell region, the

value of drill stiffness parameter or had to be increased to a very high value as compared

to its value in the thin shell limits. For low thickness to radius ratios a value of 1.0E-3

for or is found to be appropriate but for high thickness to radius ratios the value of or has

to be increased in the range of 0.5E0 to 1.0E0 to get results comparable with those of

IDEAS in cases where full or part of the circumferential edge is clamped. The results

shown in Table 10 are for or =1 .0E-3 for thickness to radius ratios upto 0.06 and are for or

= 1.0EO for a/R equal to 0.08 and 0.10. Similarly the results shown in Table 11 are for a

value of a = 1.0E-3 for thickness to radius ratios upto 0.80 and are for 01= 5.0E-1 for

a/R= 0.1. The results shown in Table 12 are for or = 1.0E-3 upto a thickness to radius

ratio of 0.06, for or = 7.0E-2 for a/R = 0.08 and for or = 8.0E-2 for a/R = 0.1.

The effect of mass lumping is also studied for this problem. The clamped boundary

condition example is selected to study the effect of mass lumping. Symmetry boundary

conditions are used as the results for the same with consistent mass matrix were already

obtained in the early part of the study. The results of both mass matrices are shown in

Table 13. The QPH results obtained with lumped mass compare very well with the

IDEAS results with the lumped mass option. The natural frequencies obtained using

lumped mass matrix are found to be lower than the natural frequencies obtained using
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TABLE 10

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR HEMISPHERE

5263.9

a / R = 0.001

IDEAS QPH

2729.3 2778.7

3632.7 3648.0

4306.2 4324.3

4307.4 4324.3

4393.8 4401.7

4401.9 4414.3

2728.8 2734.1

4515.5 4549.7

4629.4 4651.0

4637.7 4651.1

a I R = 0.060

IDEAS QPH

2901.6 2903.2

2902.5 2903.2

3950.4 3956.2

4542.2 4545.5

4556.2 4562.0

4726.2 4734.5

4726.5 4734.5

5045.8 5059.3

5050.3 5059.3

5287.9

a / R = 0.012

IDEAS QPH

2778.7 2780.5

3725.5 3733.4

4375.3 4386.8

4376.4 4386.8

4412.2 4415.8

4426.9 4432.4

2777.9 2780.5

4587.2 4617.1

4678.8 4690.6

4683.0 4690.7

a / R = 0.080

IDEAS QPH

2945.2 2949.9

2946.1 2949.9

4041.4 4053.0

4634.2 4646.3

4647.6 4663.3

4943.1 4963.7

4943.8 4963.7

5282.2 5314.9

5286.9 5314.9

5677.9 5715.7

WITH CLAMPED EDGE FOR VARIOUS a/ R RATIOS

a / R = 0.020

IDEAS QPH

2803.8 2805.2

3769.8 3776.5

4418.1 4428.0

4418.9 4428.6

4424.8 4428.6

4440.0 4445.0

2802.9 2805.2

4651.4 4681.4

4719.1 4730.6

4723.1 4730.6

a / R = 0.100

IDEAS QPH

2987.4 2991.8

2988.4 2991.8

4137.4 4148.6

4743.9 4756.6

4756.6 4773.7

5184.7 5203.5

5185.6 5203.5

5551.3 5587.2

5556.2 5587.2

6037.2 61 16.8
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TABLE 1 1

WITH QUARTER EDGE CLAMPED FOR VARIOUS a/ R RATIOS

a / R = 0.001

IDEAS QPH

23.2 23.5

25.3 25.4

75.1 75.5

82.0 82.5

101.8 162.3

162.3 163.6

264.8 266.6

279.0 278.0

397.6 399.4

419.6 421.7

a I R = 0.060

IDEAS QPH

148.0 148.8

203.1 203.0

476.4 478.7

647.0 644.4

1126.9 1123.6

1371.0 1371.5

1947.7 1949.5

2081.4 2076.8

2907.1 2896.1

2997.2 2995.8

a / R = 0.008

IDEAS QPH

39.3 40.3

42.9 43.7

131.4 132.9

138.6 139.2

273.3 275.0

296.2 297.7

478.1 480.1

482.4 486.0

687.0 692.0

741.8 744.7

a / R = 0.080

IDEAS QPH

184.6 185.5

238.0 238.5

551.8 553.7

810.7 808.0

1394.2 1390.3

1549.0 1553.3

2263.4 2258.4

2474.5 2470.6

3425.9 3397.1

3440.0 3407.9

a l R = 0.020

IDEAS QPH

73.0 73.7

86.5 86.5

257.5 258.1

286.2 287.1

527.8 530.9

600.6 600.8

896.6 898.4

1059.9 1061.3

1421.2 1422.9

1549.0 1555.9

a / R = 0.100

IDEAS QPH

220.3 226.2

263.6 269.7

629.0 635.7

952.4 960.2

1629.7 1642.3

1663.7 1677.3

2574.7 2595.1

2763.9 2786.1

3785.2 3806.3

381 1.1 3839.9
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TABLE 12

RESULTS OF NATURAL FREQUENCIES IN HERTZ FOR HEMISPHERE

WITH FOUR POINTS SIMPLY SUPPORTED FOR VARIOUS a/ R RATIOS

a/R=0.00l a/R=0.004 a/R=0.040

IDEAS QPH IDEAS QPH IDEAS QPH

38.5 36.6 126.2 126.8 895.3 896.5

90.1 85.9 296.2 297.0 1888.1 1900.3

165.6 159.2 550.9 550.1 2988.6 3021.3

253.0 244.2 849.9 844.5 3548.7 3571.7

367.4 354.3 1244.9 1232.7 4369.7 4368.4

497.0 476.8 1696.4 1675.7 4590.2 4609.1

667.1 642.5 2313.8 2286.1 4704.0 4700.3

861.1 838.0 2937.4 2928.8 5124.5 5151.3

1135.2 1108.9 3622.8 3629.1 5172.7 5204.6

1518.7 1483.0 4108.8 4128.4 5204.7 5209.4

a/R=0.060 a/R=0.080 alR=0.l00

IDEAS QPH IDEAS QPH IDEAS QPH

1213.1 1215.4 1471.0 1492.0 1673.8 1700.2

2259.6 2284.6 2431.8 2478.4 2524.7 2573.9

3248.5 3280.7 3430.5 3475.5 3617.9 3659.5

4207.4 4172.1 4649.6 4666.7 4766.0 4784.4

4541.3 4548.3 4775.5 4796.0 4972.7 4991.0

4708.8 4722.0 5044.9 5094.6 5248.8 5294.1

5059.5 4948.5 5166.5 5210.1 5745.1 5803.8

5600.4 5004.7 6134.7 6143.0 6715.6 6720.1

5659.1 5172.9 6234.5 6263.0 6850.2 6867.0



TABLE 13

COMPARISON OF NATURAL FREQUENCIES WITH CONSISTENT(C) AND

LUMPED(L) MASS MATRICES FOR CLAMPED HEMISPHERE WITH

QPH ELEMENT UNDER SYMMETRY BOUNDARY CONDITIONS

a / R = 0.001

C L

3648.2 2795.4

4401.8 2834.9

4549.9 2839.0

4734.8 2840.1

4764.1 2924.6

4790.7 2928.3

4882.3 2950.1

4891.1 2999.0

4917.4 3001.8

4961.2 3032.4

a / R = 0.016

C L

3755.8 3718.1

4421.5 4368.0

4646.9 4508.2

4800.1 4632.6

4867.7 4678.0

5004.7 4743.7

5097.0 4766.2

5140.2 4869.7

5241.8 4910.3

5482.0 4953.8

a / R = 0.004

C L

3678.0 3629.9

4406.0 4068.5

4567.9 4099.3

4736.9 4126.7

4778.9 4128.6

4809.9 4143.2

4884.2 4149.3

4926.6 4193.1

4932.0 4211.3

5012.3 4230.2

a / R = 0.040

C L

3868.5 3840.0

4474.9 4429.0

4930.5 4793.0

5112.6 4957.7

5180.6 5055.1

5936.7 5596.6

6061.1 5724.9

6101.6 5807.6

6181.5 5865.9

7400.0 6827.0

a / R = 0.008

C L

3708.2 3672.9

4410.8 4357.5

4591.3 4452.3

4749.1 4556.4

4802.1 4564.8

4849.7 4578.9

4927.6 4592.8

4977.8 4604.2

5027.5 4617.6

5095.1 4665.8

a / R = 0.060

C L

3957.8 3930.7

4548.0 4503.5

5293.3 5155.1

5525.6 5366.2

5574.8 5442.7

6876.8 6568.5

7144.0 6826.4

7242.3 6846.1

7273.6 6920.9

8110.9 7854.6

alR=0.012

C

3733.4

4415.8

4617.1

4771.2

4832.8

4915.0

4999.7

5048.0

5137.8

5246.4

a/R=

C

4144.6

4751.4

6106.5

6531.4

6549.5

7845.8

9434.2

9466.0

9555.5

9862.2

L

3702.4

4367.8

4494.6

4615.9

4641.0

4704.7

4706.9

4744.2

4803.1

4858.8

0.100

L

4123.5

4714.0

6003.0

6386.2

6419.3

7723.5

9078.7

9097.0

9190.2

9474.6
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consistent mass matrix. The error is, however, found to be not more than 5% except in

thick region. The error for the first few frequencies is even smaller. The results with

very low thickness to radius ratios (a/R < 0.01), however, display much greater errors in

both QPH and IDEAS solutions which is discussed in Chapter 4.



Chapter 4

DISCUSSION OF RESULTS AND CONCLUSION

General

The QPH element is based on Midlin-Reissner theory that takes into account the

rotary inertia and shear deformation effects and thus performs better for thick shells

where classical plate theory displays poor results. The QPH element displays good

results for all the problems that are addressed in this study. It performs well in very thin

shell regions where many elements face the effect of locking which verifies the

stabilization scheme used for QPH element. The element is sensitive to the drill stiffness

parameter or, especially for thick shells where the value of a must be carefully adjusted in

order to get desirable results. The element works well with lumped mass matrix also but

in very thin plates the performance deteriorates when lumped mass matrix is used. No

study of computation times has been carried out but the QPH element should be much

faster in comparison to the fully integrated elements due to the closed form integration of

the stabilizing forces. The mode shapes plots have been made through IDEAS, as no

method was devised in the program for plotting the modes.

48
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Effect of Thickness

For a thick circular plate the QPH results compare well with the IDEAS results but

both QPH and IDEAS results are far off from the analytical results of Blevins [9]. This is

because Blevins [9] has based his results on classical thin plate theory and has neglected

the rotary inertia and shear deformation effects. In the problems where the rotary inertia

and shear deformation terms become significant, the analytical results of Blevins [9] for

natural frequencies are expected to be higher than those predicted by Mindlin plate

theory. The thick circular plate considered for analysis has thickness to radius ratio of

0.5 for which the rotary inertia and shear deformation effects would be very significant.

The natural frequencies obtained from Blevins [9] are thus higher than those obtained

from QPH or IDEAS. The comparison of QPH results with IDEAS results for this

problem indicates that some modes are being skipped when QPH element is used, as can

be seen in Table 3. This is discussed later in this chapter. For thin plate, where the

rotary inertia and shear deformation effects are far less important and can easily be

ignored, the theoretical results obtained from Blevins [9] conform to the QPH or IDEAS

results.

In the thin circular plate problem, the natural frequencies of higher modes, obtained

from both QPH and IDEAS have an error of about 12% in comparison to the analytical

results of Blevins [9] as shown in Table 2. The error may be reduced by using a finer

mesh. This error can not be attributed to the classical plate theory on which Blevins [9]

has based his results, because if the rotary inertia and shear deformation effects are

present the classical plate theory will predict higher frequencies whereas the results
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shown in Table 2 indicate lower theoretical frequencies. Further as the mesh is refined

the natural frequencies are known to converge to a lower value and thus refining the mesh

further is expected to bring both QPH and IDEAS results closer to theoretical results. A

very good comparison of QPH results with IDEAS results for the same mesh further

proves this point. It can also be seen in Table 2 that both QPH and IDEAS have repeated

modes which are not repeated in the analytical results. This is because the repeated

modes in QPH and IDEAS have a certain number of half waves along one of the axes in

the plane of the plate in one mode and the same number of half waves along the other

axis in the second repeated mode. In the analytical results of Blevins [9] these modes are

combined. The number of half waves along the radial direction is considered by Blevins

[9] which could be along any of the axes in the plane of the plate. The plots for the

second and third modes for this problem, which are repeated modes with both QPH and

IDEAS, are plotted through IDEAS and are shown in Figure 11 and Figure 12,

respectively, to illustrate this point.

The results for two boundary conditions of a square plate are in very good comparison

with IDEAS and theoretical results. Only a thin plate was analyzed and classical plate

theory based results of Blevins [9] are, as expected, very close to the Mindlin-Reissner

theory based results of QPH.

For the cylinder and hemisphere problems no analytical solutions could be found and

the study of the effect of thickness is restricted to the performance of QPH element in thin

and thick shells in comparison to the IDEAS solutions. For a thin hemisphere problem

with clamped edge, the performance of the QPH element declines in comparison to the
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IDEAS when lumped mass matrix is used. This is further discussed later in this chapter.

Effect of Drill Degree of Freedom Stiffness

The effect of the drill stiffness parameter or is found to be very important for the QPH

element. In linear static analysis the value of or is required to be kept low, somewhere in

the range of 1.0E-3. The increase in the value of or results in considerably lower

deformations but reduction in the value of or does not have any significant effect. In

dynamic analysis also the value of or is to be kept in the same range of 1.0E-3 for thin

shells. However, when the thickness is increased enough to move into the thick region,

the higher modes frequencies are not found correctly if the same value of or is used. In

the hemisphere problem the value of or was increased to a value in the range of 0.5E0-

1.0E0 to obtain results that compare well with the IDEAS results. In the cylinder

problem, results that compared well with IDEAS results are obtained with the value of or

equal to 1.0E-3. If the value is decreased to 5.0E-4 or below, the natural frequencies of

the higher modes tend to increase sharply. However, when the value is increased beyond

1.0E-1, all the natural frequencies show a sharp upward trend. The natural frequencies

thus appear to depend upon or in a quadratic manner. A graph is plotted in Figure 13 for

the natural fiequency of 6th mode for the cylinder problem against the values of or to

illustrate this phenomenon. A higher value of or is noted to be required for higher

thickness ratios indicating that the proper choice of or directly depends on the thickness to

radius ratio of the shell. The results shown in Table 10 verify this dependence where a
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gradual increase in the value of drill stiffness parameter a was required as the

hemisphere was made thicker.

Effect of Mass Lumping

The use of lumped mass matrices is very common and is highly desirable due to the

advantages of less storage space requirements and high computation speed. The study

would thus be incomplete without studying the effect of mass lumping. The QPH results

obtained with lumped mass compare very well with the IDEAS results with the lumped

mass option. The real effect of mass lumping can only be studied if the same problem

with same boundary conditions and using same element is solved with consistent and

lumped mass matrices and a comparison of the two results is made. Hence the QPH

results for the clamped hemisphere problem with consistent and lumped mass matrices

are compared in order to study the effect of mass lumping. The results are shown in

Table 13. The natural frequencies obtained using lumped mass matrix are found to be

lower than the natural frequencies obtained using consistent mass matrix. The error is

found to be not more than 5% except in thick region where error is higher. The error in

results for the natural frequencies of first few modes is even smaller. For very thin shells

(a/R < 0.01), both DEAS and QPH display much greater errors when lumped mass matrix

are used which appears to be the result of mass lumping. The results of natural

frequencies with consistent and lumped mass matrices for a very thin shell (a/R =0.001)

and for a thick shell (a/R = 0.100) are shown in Figure 14 and Figure 15, respectively.
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Skipping of Modes

The Sturm sequence check is used in the program to determine if a mode has been

skipped. For the thick plate problem it reported 10 eigenvalues missing. However, in

comparison to the IDEAS results in Table 3, it appears that QPH element is skipping only

two modes. This indicates that IDEAS is also skipping some modes for this problem.

In the absence of enough evidence, it could not be ascertained if a particular mode i.e.

membrane or bending was being skipped by QPH.

The Sturm sequence check was also used for the hemisphere problem with clamped

edge. The Sturm sequence check reported skipping of modes with the QPH element for

thickness to radius ratios of 0.004, 0.040 and 0.080 indicating that the tendency of mode

skipping exists for both thin and thick shells. The QPH and IDEAS results compare well

for the clamped hemisphere but Sturm sequence check reported some modes being

skipped with QPH element. Probably the same modes have been skipped by IDEAS

also. The skipping of modes by IDEAS was observed in thick plate problem as well

where out of the 10 modes that were reported to have been skipped by QPH, 8 were also

skipped by IDEAS.

Conclusion

To conclude this study it can be said that QPH element performs very well for very

thin shells where many elements would encounter locking. The stabilization scheme

used in QPH element by Belytschko and Leviathan [4] is thus quite effective. However,

a possible after effect of this stabilization is observed in the thick region where better
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performance is generally expected with the Mindlin-Reissner plate theory. Since thick

shells having thickness to radius ratio of 1/10 or more are not very common, QPH can be

regarded as a very efficient element for eigenvalue computations.

The results for dynamic analysis using the QPH element depend upon a drill stiffness

parameter or. The results for thick shells greatly depend on the drill stiffness parameter

or which requires careful adjustment. A general rule can be stated about the parameter or

that the natural frequencies depend upon the value of or in a quadratic manner with good

results at the apex. Thus if the natural frequencies are higher than expected then the

value of or should be adjusted and if the frequencies further increase instead of reducing

then the value of or should be changed in the other direction. If no other results are

available with which the results of QPH can be compared, then the QPH results can be

obtained for two more values of or in the vicinity of the value of or initially used. The

new two values should be selected on either side of the initial value of or. The results for

these three values may be used to determine the accuracy of results and any firrther

adjustment required in the value of or. A value of 1.0E-3 appears to be the best choice

for or in most situations and if the results with this value are not satisfactory then the

value ofa needs to be increased in almost all situations.

A tendency of skipping of modes has been noticed with both QPH element and

IDEAS. The tendency is observed in both thin and thick shells. In the absence of

enough evidence it can not be said that the modes being skipped with QPH element are

membrane or bending modes.
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The use of mass lumping is highly recommended as it predicts frequencies that are

very close to those predicted by consistent mass matrix. The small error that it gives is

more than acceptable for the gain in storage requirements and solution time, that we get

when lumped mass matrix is used. The error is somewhat greater in higher modes but

even there it is not too significant. Further, in most practical situations we are interested

in the first few modes only and there lumped mass matrices give good results. The

results in very thin regions (a/R < 0.01) display much greater errors in both QPH and

IDEAS solutions when lumped mass matrix are used which appears to be an effect of

mass lumping. The use of lumped mass matrix for very thin shells should thus be

exercised with caution.
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