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ABSTRACT
GRrour COMMUNICATION UNDER LINK-STATE ROUTING
By
Yih Huang

Multiparty communication, also termed group communication, is a generalization
of the traditional point-to-point communication in which more than two parties can
participate in a “conversation.” Many current and emerging communication applica-
tions, such as teleconferencing, computer-supported cooperative work, and distributed
interactive simulation, typically involve several, or a large number of, participants,
and require efficient network support for multiparty communication. Link-state
routing (LSR) is a type of network routing method that makes complete network
status information available throughout the network. Adopted by both the Inter-
net, the de facto standard for data communications, and asynchronous transfer mode
(ATM), an international standard for telecommunications, the importance of LSR
in communication cannot be overstated. In this research, we investigate and exploit
the relationship between LSR and group communication. Specifically, we develop a
collection of novel and efficient protocols that (1) use group communication methods
to improve the performance of LSR operation, (2) take advantage of LSR to provide
new network services to group communication applications, and (3) benefit both LSR
and group-based applications. Our contributions can be summarized in the following
four areas.

First, we identify an important aspect of LSR operation that can benefit from
group communication methods: the broadcast of network status information, also
known as the flooding operation. We propose a novel flooding approach for use in ATM

networks, termed switch-aided flooding (SAF), that takes advantage of underlying



ATM hardware functionality. The SAF method is shown, through both theoretical

analysis and simulation study, to be much more efficient than previous methods.

Second, we address a requirement raised by the diversity of multiparty commu-
nication applications: the need to support different types of multipoint connections
(MCs), the network entities that define the routing of traffic streams among the par-
ticipants in multiparty conversations. We develop a generic MC (GMC) protocol that
is able to accommodate multiple topology types and computation algorithms as plug-
in components. We show that a “chassis” for MC protocols can operate efficiently

under LSR.

Third, we investigate an issue involved in both LSR and group communication
— the leader election problem. We define the problem of “network-level” leader
election, where participants of an election are network switching elements rather than
hosts, and we develop an LSR-based solution to the problem, called the Network-level
Leader Election (NLE) protocol. The NLE protocol is formally proven to be robust;
it handles not only leader failures, but also much more disastrous situations, such
as network partitioning. We apply the NLE protocol to the problem of managing
traffic transit centers, or core nodes, for multicast groups. Our proposed solution,
called the LSR-based Core Management (LCM) protocol, automatically selects the
core node for a multicast group when the group is created, supports core migration to
improve multicast performance during the lifetime of the group, handles the failures
of both multicast cores and the core management server itself, and survives network

partitioning scenarios.

Lastly, we turn again to the operation and performance of LSR itself. Tradition-
ally, LSR uses two costly techniques to achieve its robustness and responsiveness:
message forwarding on every communication link in the flooding of network status
updates, and the periodic flooding of local status by each router. We conclude this
research by combining two techniques developed earlier, namely the election of a
leader and the construction of multipoint connections, to develop a totally different
approach to LSR. The resulting Tree-based LSR (T-LSR) protocol imposes only a

small fraction of the overhead of previous LSR methods, while guaranteeing to main-



tain consistent routing decisions throughout the network under any combination of
network component failures, partitioning scenarios, and undetected communication
transmission errors. Unlike the ATM-oriented SAF protocols, the T-LSR protocol is
designed for use in general-purpose, LSR-based networking environments and requires
no special hardware support.

In summary, this research reveals a mutually beneficial relationship between group
communication and LSR: many aspects of group communication (such as the con-
struction of communication channels, the management of membership, and the con-
sensus on leadership) can take advantage of the internal operation of LSR, while the
performance of LSR itself can be improved by incorporating various group communi-

cation mechanisms.
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Chapter 1

Introduction

Many modern distributed applications involve multiparty communication, in which
two or more participants are involved in a group “conversation.” A distinguishing
characteristic of multiparty communication is the requirement for a source party (for
example, a person that is currently speaking in a teleconference) to be heard by
more than one receiving parties (for example, the other participants in the confer-
ence). Applications that involve multi-party communication include teleconferencing,
computer-supported cooperative work, distributed virtual reality, remote teaching,
tele-gaming, replicated file servers, parallel database search, and distributed paral-
lel processing. This thesis concerns efficient network support for various aspects of
multiparty communication, or, interchangeably, group communication.

Previous prominent works in this direction exist in the form of multicast protocols,
especially those proposed for the Internet [1]. A multicast protocol routes communica-
tion traffic streams from their sources to multiple destinations, as opposed to exactly
one destination, as in conventional point-to-point routing. Multicast methods sup-
ported within the network are generally favored over host-level multicast methods,
where typically a source explicitly sends a copy of the message individually to each
recipient. The problem with the latter approach is that, when the paths from the
source to destinations share a common link, the message traverses the link multiple
times. Network-supported multicast methods avoid this redundancy by having the

network replicate the message after its traversal of the common link. Representative

1



2
IP multicast protocols include PIM [2], CBT [3, 4], DVMRP [5], and MOSPF [6]. An

important concept supported/used by such protocols is group addressing, whereby
more than one communication party can be referred to as a single entity. For ex-
ample, IP multicast addresses (7], which are perhaps the most well-known group
addressing mechanism, allow a data packet that is tagged with a single destination

address to be delivered to all the systems that are “listening” to that address.

Most group communication implementations must deal with two issues: the col-
lection and management of group membership information, and the routing of traffic
streams to reach group members. Alternative approaches to the former issue range
from no network support (that is, no membership management in the network), to
maintaining a member list at every network node for every active group. The latter
issue concerns the topology computation of multipoint connections (MCs), that is,
sets of communication channels that connect group members. Various methods of
MC topology computation have been devised by researchers to meet different per-
formance criteria, such as the transmission delay experienced by group members and
the total bandwidth consumed by the group (8, 9, 10]. Many multicast protocols can
be considered as distributed implementations of one, or a small set of, MC topology

computation algorithms.

Some group communication implementations must deal with a third issue, namely,
group leadership, which arises when a multicast protocol assigns special duties to
one group member. The leader of a group may serve as the center for membership
management, or as a transit point through which all traffic streams destined to the
group must be forwarded. Group leaders can be configured manually or can be
selected automatically by the network. Important multicast protocols that introduce

such “distinguished” members include PIM (2] and CBT |3, 4].

It should be noted that the use of group communication is not restricted to appli-
cations; many aspects of the operation of the network itself involve group communica-
tion. An important example is the underlying (unicast) routing protocol, a protocol
that compiles knowledge of the network for the purpose of making routing decisions.

A communication network consists of three major components: hosts, switches (or,
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synonymously, routers)!, and communication links. The hosts are computers or other
devices that allow users to access the network, while switches relay traffic streams
through the network over communication links. When requested to relay a traffic
stream toward a given destination, a switch must determine on which of its incident
links to send the traffic. To ensure the correctness and quality of this decision, the
switch requires knowledge about the rest of the network. One approach to achieve this
goal is to disseminate the status and configurations of switches and links through-
out the network so that a global picture of the network can be compiled at every
switch. As such, the routing protocol uses broadcast operations, a special case of
multicast operations in which all network nodes are recipients. In this scenario, the
entire network can be considered as a group to which switch status information is
sent. Routing in communication networks has been extensively studied in computer
science. Although not all routing methods use broadcast operations in this manner,
a very important one does.

Link-state routing (LSR) [11, 12] is an increasingly popular type of unicast rout-
ing. An LSR protocol makes complete knowledge of the network available to all
switches in the manner described above. The local status of each switch, includ-
ing the bandwidth available at incident links, buffer capacity, and the workload, is
learned by the network via the broadcast, or flooding, of link-state advertisements
(LSAs). Based on received advertisements, each switch locally maintains a complete
image of the network, which it uses to make routing decisions. The Open Shortest
Path First (OSPF) protocol [11], introduced by the Internet community, is one of
the most well-known LSR unicast protocols. LSR has also been adopted as the rout-
ing method for Asynchronous Transfer Mode (ATM), a telecommunications standard
that bases all communication on connection-oriented hardware switching of small,
fixed-size cells [13].

This dissertation addresses the interaction between group communication and

LSR. Our interest in this problem stems from the following three observations. First,

1We will not distinguish the two terms here, despite the fact that one of them may be preferred
over the other under certain contexts of discussion.
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since LSR involves the maintenance of a complete image of the network at every
switch, LSR-based networks might use this information to support a wide range of
group communication algorithms. Locally available network images at switches may
also help reduce the overhead incurred by distributed implementations of these al-
gorithms. The second major advantage of LSR is its fault tolerance. Because every
link is monitored by its incident switches, and every switch is monitored by neigh-
boring switches, malfunctioning components and congested areas are made known
to all functioning switches promptly. Even the earliest LSR protocols were able
to survive disastrous situations, such as network partitioning [12]. Building group
communication facilities upon such a solid foundation has clear implications with re-
spect to robustness. Third, because some important parts of LSR operations exhibit
characteristics of group communication, methods targeted at general-purpose group
communication may help, or be tailored to help, the LSR protocol itself. As we will
demonstrate in later chapters, an efficient group communication method can be used
to accelerate the flooding of switch status information, and leader election plays an
important role in large-scale, LSR-based networks that are organized in a hierarchi-
cal manner. Considering the fact that LSR is being used in the infrastructure of
many modern networks, improving its performance will benefit not only multiparty

communication applications, but all applications that use such networks.

In this dissertation, we model various aspects of group communication as the
consensus problem under LSR, which is defined as follows. Due to delays in receiving
an event advertisement, switches in an LSR-based network can have different views
of the network for a short period of time. The situation is exacerbated when multiple
events are advertised simultaneously. Furthermore, a network can be temporarily
partitioned due to malfunctioning components, and the resulting subnetworks may
evolve independently. The consensus problem under LSR is to guarantee that, given
any combination of status changes, component failures, and transmission errors in
advertisements, all switches will eventually produce identical images of the network,
provided that the network is not permanently partitioned. This definition can be

generalized to incorporate group management information, if network images are



extended to include such information.

Thesis Statement: By modeling various aspects of group communications (such
as leadership, membership maintenance, and communication channel construction)
as consensus problems under LSR, we develop novel and efficient solutions for many
important issues of network group communication, including fault-tolerant leader-
consensus management, the support of multiple types of multicast communication
channels, the handling of disastrous situations, such as network partitioning, and the
improvement of the LSR itself.

The major contributions of this work can be summarized as follows.

1. Switching-aided flooding (SAF). This flooding method takes advantage of ATM
hardware cell relaying and duplication to improve the performance of flood-
ing operations in ATM networks. We first develop two SAF protocols, called
the Basic SAF and Bandwidth Efficient (BE) SAF protocols, that construct
a hardware-based data-distribution tree to accelerate the dissemination of
(network-status) information. To further improve efficiency, we develop a third
SAF protocol that uses a ring topology to handle acknowledgments efficiently.
The complexity of this Efficient and Reliable (ER) SAF protocol is shown to be
optimal in terms of bandwidth consumption, workload at switches, and flooding
delay. Improving the performance and efficiency of flooding operations can be
very important to the responsiveness of the network in meeting diverse appli-

cation needs.

2. Generic multipoint connection (GMC) protocol. The GMC protocol is based
on LSR and can be considered as an MC protocol “chassis,” that is, a frame-
work that is able to accommodate multiple existing, and future, MC topology
algorithms. Such an MC protocol is expected to benefit a wide variety of multi-
party communication applications that favor different performance criteria. For
example, a live multimedia broadcast could use an MC topology that minimizes

the transmission delays from a single source to a large number of destinations,
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while a distributed interactive simulation application may prefer an MC topol-
ogy that can efficiently accommodate a large number of participants, each of

which is both a sender and a receiver.

. Network-level Leader Election (NLE) protocol. The NLE protocol establishes
consistent group-leader bindings at network switches, maintains up-to-date
member lists at leaders, and handles network partitioning properly. Specifi-
cally, given a group ¢ and a set of network segments S;,S,,...,Sk, k > 1,
within each segment S; there will be consensus on a leader for g, and that
leader will be an operational switch in S; that maintains a member list of ¢
containing those and only those members in S;. The NLE protocol, which is
based on LSR, can be used to select traffic transit centers, or core nodes, for
individual multicast groups and to support hierarchical routing and address
mapping. In addition, we apply the NLE in the design of the LSR-based Core
Management (LCM) protocol. Rather than conducting leader election on a per-
group basis, the LCM protocol uses the NLE protocol to select a switch as the
core management server, which in turn manages core nodes for all the active
groups in the network. Specifically, the LCM protocol automatically selects
the core node for a multicast group when the group is created, supports core
migration to improve multicast performance during the lifetime of the group,
handles the failures of both multicast cores and the core management server

itself, and survives network partitioning scenarios.

. Tree-based LSR (T-LSR). Traditionally, LSR uses two costly techniques to
achieve its robustness and responsiveness: message forwarding on every com-
munication link in the flooding of network status updates, and the periodic
flooding of local status by each router. We conclude this research by combining
two techniques developed earlier, namely the election of a leader and the con-
struction of MCs, to develop a totally different approach to LSR. The resultant
T-LSR protocol imposes only a small fraction of the overheads of previous LSR

methods, and guarantees to maintain consistent routing decisions throughout
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the network under any combination of network component failures, partitioning
scenarios, and undetected communication transmission errors. Unlike the SAF
work, the T-LSR protocol is designed for use in general-purpose, LSR-based

networking platforms, assuming no hardware-based capacities of switches.

The remainder of this dissertation is organized as follows. In Chapter 2, we present
background material relevant to this work, including a discussion of the semantics
of group communication as perceived by different types of applications, a survey
of important multicast protocols, and a survey of link-state routing. We present
the SAF protocols in Chapters 3 and 4. Subsequently, we shift our attention to
the support of group communication by LSR. The GMC protocol is described in
Chapter 5. Chapters 6 and 7, respectively, describe the NLE protocol and its use in
the LCM protocol. The T-LSR protocol is presented in Chapter 8. Conclusions and

possible future directions are discussed in Chapter 9.



Chapter 2

Background

Advances in communication technology have been dramatic in the last two decades.
The Internet, which started out as an experimental project connecting a small num-
ber of military sites and universities, has reached all the continents of the Earth.
The Internet is no longer a playground for a small group of researchers and academi-
cians, but has become a part of everyday life for millions of people in all kinds of
professions. In the meantime, long-established communication infrastructures, such
as telephone and cable television networks, are being transformed into modern infor-
mation superhighways, and are expected to provide a wide spectrum of new services
(such as video on demand, multimedia telephony, data communication, tele-gaming,
information retrieval, and so forth) directly to individual homes. Moreover, advances
in communication technology are not limited to higher bit rates and lower loss rates;
they also include unconventional ways of using communication channels. One possi-
bility, which is actively being investigated by many researchers and developers, is to
support multiparty communication, whereby more than two communication parties
can conduct “conversations.” In this chapter, we discuss important multiparty com-
munication applications, existing multicast protocols that support those applications,
and link state routing, the type of network routing upon which the proposed methods

are based.
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2.1 Multiparty Communication Applications

The term multiparty communication, or interchangeably group communication, refers
to a wide spectrum of communication applications, including human-to-human inter-
action, distributed interactive simulation, distributed information management, and
efficient information distribution. Naturally, such diverse applications have differ-
ent needs and expectations regarding services provided by the underlying network.
Although this dissertation largely concentrates on core network support for group
communication, including multicast operations, membership management, and lead-
ership consensus, in this section we examine the applications and services that may
be implemented atop such network services. Our objective is to assess and classify

the requirements of such applications.

2.1.1 Human-to-Human Interaction

This class of applications brings together individuals for whom it is either difficult
or costly to meet face to face (for example, due to their locations), but who must
work cooperatively. An example is videoconferencing, which allows participants to
visually and verbally communicate with others over a network [14, 15]. A special
type of teleconferencing, called computer telephony, uses computers and data com-
munication networks, rather than public telephone networks, for transmitting audio
in real time [16]. Teleconferencing does not necessarily use multimedia; text-based
teleconferencing sessions, sometimes called chat rooms, have become popular on the
Internet [17]. In addition, Computer-Supported Cooperative Workspace (CSCW)
applications enable workers who possess different areas of expertise, and who are ge-
ographically separated, to remotely and cooperatively conduct difficult operations or
manipulate sophisticated equipment [18, 19].

An interesting characteristic of many human interaction applications is the rel-
atively loose requirements on multicast reliability. Typically, these applications can
tolerate occasional loss of multicast data at some destinations, since it is human be-

ings, rather than machines, that receive and interpret incoming messages. Occasional
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losses of characters in a text-based teleconference, for example, may be perceived as
typos, rather than transmission errors. When multimedia is used, some loss of image
pixels or audio/video frames may produce flares or jumps in playback, but the conver-
sation can continue as long as the degradation is not too severe. On the other hand,
delays and jitters in message delivery may be annoying — imagine how to conduct a
conversation if one’s voice is not heard by others until 30 seconds later. Therefore,
many applications in this category use best effort multicast, a type of multicast that
does not enforce the successful delivery of multicast data at all destinations. When
possible, such applications might reserve network resources in advance in order to

improve the Quality of Service (QoS) of the network.

2.1.2 Distributed Interactive Simulation

In a DIS application, a virtual environment (VE) is simulated collectively by a set of
hosts over a network [20]; examples include a virtual battlefield, a virtual shopping
center, and so forth. The interest in DIS originated in the military; a military training
session conducted in a virtual battlefield is much less expensive, and more importantly,
much safer than a real exercise. Civilian uses of such technology include simulation
of police and fire department exercises, as well as the playing of multiparty games
across the Internet. In such VEs, some objects are static, such as trees and lakes
in a virtual park, whereas other objects are active — they move voluntarily or react
to stimuli (people in the virtual park). Some objects may be computer simulated
(for example, enemy tanks in a virtual battlefield), while others are controlled by
users (for example, tanks controlled by trainees). In general, VE objects must sense
and interact with each other in real time. For this purpose, information regarding
the current positions, movements, and actions of objects must be disseminated to all
participating hosts in a timely manner. Network supported multicast operations and
other group communication facilities can be used to improve performance.

DIS applications are often characterized by their scale; the number of partici-
pants in a VE can range from a few to thousands, and the underlying network can

range from LANs to WANs. The size and the geographic distribution of the par-
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ticipant population raise the concern of scalability issues regarding the underlying
group communication support. Moreover, DIS applications call for a special type of
reliability, called selective reliable multicast {20, 21]. Consider a situation where user
X is engaged in a virtual battlefield and unfortunately loses track of his opponent,
user Y, due to the loss of a sequence of three messages that broadcast the positions
of Y. While the conventional semantics of reliability would force the host of X to
request retransmissions of all three messages, X is interested only in the most recent
position of Y. A selective multicast protocol ensures the “freshness” of object states
maintained at participating hosts, and does not insist on the successful delivery of all

state update messages [21].

2.1.3 Distributed Information Management

Single-server solutions have traditionally dominated the area of information manage-
ment, including the management of file systems and databases. However, for reasons
of scalability and fault-tolerance, distributed solutions have been proposed and are
gaining momentum. For example, the Coda file system [22] allows for a file system to
be replicated at more than one file server. A client to such a file system can retrieve
files from the nearest server, but must submit file updates to all servers. Further,
servers may fail, and backup systems may join the service. If the client-server com-
munication in such circumstances is modeled as a group communication problem,
clients perceive servers as a single network entity, the server group, and should not
be concerned with server membership dynamics. Similar methods can be applied to
database services, using replicated database servers for either fault tolerance or to
improve the performance of query processing through parallel searching.

Many applications in this category demand atomic multicast operations, whereby
either all destinations of a multicast message receive the message, or none of them
receives it. Consider a scenario where a file update request is sent to a group of
replicated file servers; an atomic multicast protocol guarantees that either the file
is updated at all servers, or at none of them. Although the latter case could be

considered as a failed multicast operation, at least it leaves the servers in a consistent
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state.

2.1.4 Information Distribution

This category refers to applications that disseminate information to a large popula-
tion. A defining characteristic of such applications is the existence of a single, or a
small set of, information sources and a potentially unlimited audience size. For ex-
ample, in a remote teaching application, the lecturer in a virtual classroom can reach

a large number of pupils at remote locations.

Some existing information distribution processes can also be re-examined in light
of new network technology. For example, the traditional process of distributing public
domain software works as follows: the distributor sets up an FTP (File Transfer
Protocol) [23] site and interested users individually connect to the site to download
a copy. Download requests for popular software may put a heavy load on the FTP
server, which repeatedly performs identical tasks: retrieving the software from a local
storage medium and shipping it. (It is not uncommon for servers to be brought down
by these workloads.) Recently, the HTTP (Hyper-Text Transfer Protocol) [24] and
World Wide Web [25] have largely replaced the FTP protocol in this distribution
process, but the problem remains. In fact, the situation has become worse due to the
more user-friendly interfaces and, hence, a larger number of interested users. A much
more efficient approach is to have the distributor (also known as the publisher) set
up a communication group such that group members, or subscribers, simultaneously
receive a copy via multicast. File distribution protocols, a type of multicast protocols
that is designed for this purpose, have been proposed for use in the Internet [26]. File
distribution protocols must use reliable multicast to ensure the receipt of all multicast
data at all destinations. Examples of reliable multicast transport protocols can be

found in [27, 28, 29].
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2.2 Multicast Communication

Multicast operations, which deliver messages to more than one destination, are centric
to the support of multiparty communication applications. The voice and image of a
teleconference member must reach all other members. The movements of objects and
the status changes of terrain in a VE must be disseminated to all hosts participating
in a DIS session. File update requests must be submitted to all servers. And so on.
Actually, one may argue that the use of multicast is the defining characteristic of
group communication. A multicast protocol is a network protocol that defines a set
of rules and conventions by which multicast traffic streams are routed from sources
to a set of destinations. This section reviews existing multicast solutions developed
for two important types of networks, the Internet and ATM networks. We start with

a review of routing topologies and membership management techniques.

2.2.1 Multicast Routing Topologies

While many multicast protocols concern simply the construction of individual mul-
ticast trees (a set of communication links from a source to a set of destinations),
we consider a more general form of multicast routing structure, called a multipoint
connection (MC), whereby one or more sources can reach one or more destinations.

Three major types of MC topologies have been studied:

1. Source-rooted trees (SRT). The MC topology typically comprises a forest of
trees, each individually constructed for a different traffic source. An example
in which two trees reach a set of four receivers is shown in Figure 2.1(a). This
type of topology is well suited to applications with a small number of senders
and a possibly large number of receivers, such as remote teaching and file dis-
tribution applications. SRTs are relatively straightforward to construct and
are supported by almost all existing multicast protocols. SRT-based MCs are,
however, costly to maintain: a new tree must be constructed for each source,
and every existing tree must be extended to reach a new receiver. Similar over-

heads are incurred for departing senders and receivers. SRTs are supported in
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the DVMRP protocol [5], MOSPF protocol [6], and the PIM protocol [2], all

designed for use in the Internet. The ATM multicast virtual circuit (multicast

VC) [30] also supports SRTs.

2. Symmetric shared trees (SST). A single tree is constructed to span the members
of an MC; every member is both a sender and a receiver (as in the case of
teleconferencing). Figure 2.1(b) shows an SST spanning five members. The tree
in the figure also uses an intermediate node to reach members. Compared with
an SRT-based MC, an SST counterpart tends to use fewer network resources
(in terms of the number of links) than does an SRT-based forest. The problem
of determining an optimal shared tree is the well-know minimum Steiner tree

problem [31].

3. Receiver-only shared tree (ROST). A single tree spans the receiver members of
an MC, while senders use one-to-one unidirectional paths to reach any node on
the tree. An example of a ROST with two senders and five receivers is depicted
in Figure 2.1(c). The five receivers are connected by a shared tree, depicted with
solid lines, and the sender-to-tree paths are represented by dashed lines. This
distinction between receivers from senders facilitates membership management
on both sides. For example, a group of replicated file servers can be connected
by a ROST such that clients to the server group see a single entity, the server
MC; individual servers join and leave the server group without disrupting client-
to-server communication. ROSTs are supported by the core-based tree (CBT)

multicast protocol [32] and the PIM protocol [2, 33].

Besides the type of topology, another issue associated with MC is the topology
computation algorithm. Even with a given topology type, different topology com-
putation algorithms can be used, depending on the relative importance of various
performance criteria. Such criteria include bounds in transmission delays, network
resource consumption, multicast packet loss rate, and so forth. The issue of choosing
the right topology algorithm is particularly important to multimedia applications.

Such applications typically require quality of service from the network in order to
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Figure 2.1: Three types of MC topologies.

insure the quality of media playbacks. Thus their performance relies on good MC
topology decisions so that network components involved in an MC have the capacity
and resources to sustain the traffic flowing through the MC. For instance, Zhu [9]
presented an algorithm that optimizes cost (for example, bandwidth consumption),
in the presence of delay constraints. Bauer [10] examined the multicast tree problem
under degree constraints, which may be imposed by hardware switching devices. Wax-
man (34, 35] addressed the problem of dynamic multicast trees, in which a sequence
of membership updates must be carried out one by one. Although this dissertation
does not directly address the issue of MC topology computation algorithm, it advo-
cates generic MC protocols that are capable of accommodating a wide range of MC

topology types and computation algorithms.

2.2.2 Local Membership Management

In this dissertation, our primary concern is switch/router level multicast. However,
from the viewpoint of applications, communication groups are host groups; members
of such groups are computers or other customer devices that allow users to access
networks. Typically, a host accesses the network via a router/switch, called the ingress
switch of the host, and uses a local membership management protocol to inform its
ingress switch/router of a list of groups in which the host wishes to participate. The

ingress switch maintains a list of groups, where a group is on the list if one or more
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attached host(s) of the switch is a member of this group. A switch that has at least
one attached host that is a member of group G will be referred to as the switch
member of G; all the switch members of G form a network group. With every switch
knowing its membership identity with respect to a group, a multicast protocol, when
given a multicast message destined to the group, is responsible for the delivery of the
message from the source switch, the ingress switch of the source of the message, to
switch members of the group.

Perhaps the most well known and widely used local membership management pro-
tocol is the Internet Group Membership Protocol (IGMP), which is designed for use
in broadcast-based LANs [7]. In IGMP, the router of a LAN sends Host-Membership-
Query messages destined to a reserved multicast address that includes all hosts in a
LAN as members. In response, a host returns a Host-Membership-Report message,
which includes a list of multicast addresses in which that host is interested. Via re-
ceived membership reports, a router compiles a list of multicast addresses in which the
network (LAN) is interested. This process is repeated periodically to accommodate
membership dynamics. The IGMP uses several optimization techniques to reduce the
traffic produced by Host-Membership-Report messages, which must be generated by
all hosts in a LAN. Further details of the IGMP can be found in [7].

The group communications solutions developed in this dissertation assume the use
of an existing local membership protocol, such as IGMP, by hosts to communicate

with respective ingress switches regarding membership identities.

2.2.3 Multicast in the Internet

The Internet is a connectionless network, meaning that, when a sender S wishes
to send a datagram to a destination D, the sender is not required to contact D
prior to transmission. When S and D share a common communication medium (for
example, the two are the endpoints of a point-to-point link, or they both have access
to a broadcast medium, such as Ethernet), D receives the datagram directly from
S. Otherwise, Internet routers collectively deliver the datagram to D as follows: any

router R that receives the datagram will forward the datagram via a communication
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link that constitutes the first hop of an R-to-D shortest path. This forwarding process
starts at the ingress router of S, and is repeated until the datagram arrives at D.
In this manner, the routing of a given IP datagram is dynamic and independent of
other datagrams. The Internet extends this basic point-to-point datagram delivery
model with multicast addresses. A datagram that contains a multicast address as its
destination is called a multicast datagram, and must be forwarded to all hosts that
are interested in the address.

For the discussion of IP multicast, we review four protocols that have been pro-
posed: DVMRP [5], CBT [3, 4], MOSPF [6], and PIM [2]. In this discussion, the term
router is preferred over the term switch. Also, the term multicast group refers to a
set of hosts that are listening to an IP multicast address. Following these semantics,

multicast groups in the Internet are receiver groups.

Distance Vector Multicast Routing Protocol (DVMRP)

Given a multicast address M, DVMRP builds an SRT individually for each source
of M by means of a broadcast and pruning process. A multicast stream is initially
broadcast throughout the network. The broadcast method, called reverse path for-
warding, works as follows. A router R, upon receiving a multicast packet P that
originates from S and is destined to M, determines whether P arrived on a link that
constitutes the first hop of an R-to-S shortest path. If so, R forwards P to all neigh-
boring routers except the one from which P arrived. Otherwise, the packet is silently
discarded by R. In the meantime, routers that are not interested in M send prune
messages “upstream,” that is, one hop toward the source S. An upstream router may
further discover that all its downstream routers have been pruned from the forward-
ing tree, and also send a prune message upstream, unless it is itself a member of M.
This pruning process will be repeated until all the routers involved in the S-to-M
forwarding are either members of M or have downstream members of M, producing
an SRT that is rooted at S and reaches members of M.

We use the example shown in Figure 2.2 to illustrate. In Figure 2.2(a), a multicast

source is using a broadcast tree to reach five receivers. In Figure 2.2(b), five non-
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(c) the second step in pruning. (d) the resultant multicast tree.

Figure 2.2: The operation of the DVMRP.

member leaves of the tree send prune messages, which are depicted with dashed
lines. In Figure 2.2(c), an intermediate node in the broadcast tree receives prune
messages from all its children, and sends a prune message upstream. The multicast

tree resulting from this pruning process is depicted in Figure 2.2(d).

An interesting aspect of the DVMRP is that group membership information is
not disseminated, but discovered during tree construction by means of “negative”
membership reports, namely the prune messages. However, for this very reason,
later membership changes cannot be incorporated into established SRTs. To remedy
this problem, existing SRTs must be periodically torn down and re-constructed [5].
This approach causes delays in the handling of membership or network changes. For
example, a new member will not receive multicast packets until the next phase of
tree re-construction. Periodic tree construction also imposes unnecessary overhead
during “quiet” periods, that is, when no changes are taking place. Moreover, shared-

tree topologies are not supported by DVMRP. Additional details of DVMRP can be
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found in 1, 5]. A hierarchical generalization of DVMRP, called Hierarchical DVMRP
(HDVMRP), is described in [36).

Core-Based Tree (CBT) Multicast Protocol

Unlike DVMRP, the CBT protocol [4, 37] builds a shared multicast tree for each
group. In the CBT protocol, each multicast group is assigned a distinguished router,
called the core node of the group. A member joins the group by sending a JOIN-
REQUEST message “toward” the core node; the request will stop at the first node
that is already on the tree. A branch to the new member is set up by a JOIN-ACK
message, which follows the reverse of the path traversed by the JOIN-REQUEST
message. A member leaves the group (that is, detaches itself from the tree) by
sending a QUIT-REQUEST message to its parent node in the tree, which will also
quit if itself is not a group member and has no other children. An example of the
member join operation in the CBT protocol is given in Figure 2.3. Figure 2.3(a)
shows the shortest path P from a joining member X to the core node. It is switch
Y, the first on-tree switch along P, that grants the JOIN-REQUEST and returns a
JOIN-ACK message, as depicted in Figure 2.3(b). The result of this join operation
is shown in Figure 2.3(c).

The CBT protocol handles adverse network events, including router and link fail-
ures, by periodically sending CBT-ECHO-REQUEST messages upstream. If a cor-
responding CBT-ECHO-REPLY is not heard, a member must rejoin the group by
finding another path to reach the core. Compared to the DVMRP protocol, the CBT
protocol handles membership changes in an event-driven manner, but still uses a peri-
odic method to incorporate network status changes, causing delays in the handling of
such changes. This hybrid approach of handling changes may serve some applications
well, but could be inappropriate for critical applications that must operate seamlessly
in the presence of network changes.

Another concern with the CBT protocol is its inflexibility in MC topology: the
protocol does not support the SRT MC topology. Further, the restriction that a

multicast packet must be forwarded to the core node before being forwarded along tree
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Figure 2.3: An example of member join operation in the CBT protocol.

branches imposes unnecessary steps in multicast forwarding. To illustrate the cost of
this restriction, let us consider a scenario where group members shown in Figure 2.3(c)
are also sources to the group (for example, they are conducting a teleconference).
Figure 2.4(a) shows the forwarding of a multicast packet originated from node X,
when the session is supported by the CBT protocol. For comparison, Figure 2.4(b)
shows the forwarding of the same packet when an SST of the same topology is used.
As we can see, the CBT protocol incurs extra forwarding steps, depicted by dashed

lines in Figure 2.4, due to its restriction in the starting point of tree distribution.

Besides the CBT protocol, the concept of core based multicast has also been
adopted in other IP multicast protocols. Specifically, the Ordered CBT (OCBT)
protocol [38] addresses the concern of core failures of the CBT protocol, and the

Border Gateway Multicast Protocol (BGMP) [39] constructs core-based multicast
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Figure 2.4: Comparison of multicast forwarding in the CBT protocol and SSTs.

trees that span across the boundaries of autonomous systems (that is, routing domains

in the Internet).

Multicast Extension to OSPF (MOSPF)

The MOSPF protocol [6] is an extension of the Internet LSR protocol, OSPF [11].
In the MOSPF protocol, the identities of group members are broadcast via group-
membership LSAs, such that all routers maintain complete member lists for all active
multicast addresses. The distribution channel for a multicast group is constructed
when the first datagram destined for the multicast address is sent. Upon receiving the
first datagram that originates from a source S and is destined for a multicast address
M, a router consults its local database for the member list of M and computes a
shortest-path tree T that is rooted at the source switch of the datagram, and reaches
the switch members of M. Subsequently, the router saves a multicast routing entry
such that datagrams from S to M will be forwarded via a set of outgoing links
determined by T', and forwards the datagram accordingly. This forwarding will trigger
further topology computations at downstream routers.

An example of MOSPF operation is given Figure 2.5, where a host that is attached
to router A sends a datagram to a multicast group with members attached to routers

C and D. As shown in Figure 2.5(a), router A computes a shortest-path tree that is
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rooted at A and reaches C and D. This computation is possible because the topology
of network is compiled by the underlying LSR protocol, OSPF, while the member list
of the destination group ({C, D}, in this example) is made available by MOSPF. The
resultant tree shows that A must forward the datagram to F, which upon receipt
will perform the tree computation again and learn of its downstream routers C and
D; see Figure 2.5(b). When C and D receive the datagram, they will also carry out
the identical tree computation, only to notice that they are leaf routers and should
forward the datagram to their attached hosts; see Figure 2.5(c).

As illustrate, the MOSPF protocol imposes redundancy in topology computation
— identical computations are performed at all routers involved in a multicast tree.
This problem is exacerbated by the restriction that the MOSPF protocol supports
only SRTs; hence this computational redundancy is incurred in a per-source-per-group
manner rather than a per-group manner. Furthermore, to adapt to membership and
network topology changes after a tree construction process, multicast routing entries
created for the tree must be cleared upon the arrival of LSAs that advertise member-
ship or network changes, resulting in the re-construction (and re-computation) of the

tree when new multicast datagrams arrive.

Protocol Independent Multicast (PIM)

With the MOSPF and DVMRP protocols, every router in a routing domain (or
possibly the entire Internet) may be involved in a multicast session. In the case of
the MOSPF protocol, every router receives membership change LSAs and maintains
member lists for all active multicast groups. With the DVMRP protocol, a multicast
stream is periodically broadcast throughout the network. The overhead of network-
wide involvement may be justified when a large fraction of the hosts in the network
is interested in the multicast; such multicast sessions are sometimes termed dense
mode multicasts [2]. In contrast, sparse mode multicast refers to cases where the
participants represent only a small fraction of the hosts in the network and, therefore,
network-wide involvement is considered too costly. The PIM protocol supports both

dense mode and sparse mode multicast.
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Figure 2.5: The operation of the MOSPF protocol.

Like PIM, the CBT protocol, which is a representative approach to support
(receiver-only) shared-tree MCs, also does not incur network-wide involvement. How-
ever, the PIM protocol further emphasizes the need to support other MC topology
types, specifically the SRT topology. In addition, the designers of the PIM protocol
sought universal applicability of the protocol, and therefore designed the protocol so
as not to rely on any specific routing protocol; hence the name Protocol Independent

Multicast.

The PIM approach to supporting both dense mode and sparse mode multicast is

straightforward; it actually comprises two multicast protocols, one for each mode. In
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the dense mode, the PIM protocol uses the DVMRP protocol (the MOSPF protocol

was not chosen because of its dependence on LSR). For sparse mode multicast, the
PIM protocol “initially” builds receiver-only shared trees; the construction of SRTs
is performed selectively for some sources during the multicast session. A network
region, whether it is a LAN, a routing area, or an Autonomous System, that wishes
to participate in a sparse mode multicast, is assigned a rendezvous point (RP), which
must be a PIM-capable router in that region. The RP of a region plays a role similar
to that of the core node in the CBT protocol. Members in that region issue RP-JOIN
requests, which serve the same function as the JOIN-REQUEST messages of the
CBT protocol, producing within the region a ROST rooted at the RP. If N regions
are interested in a multicast address, N different RPs will be associated with the
address, and N shared trees will be constructed. The source of a datagram with a
given multicast address must forward the datagram to all RPs associated with that
address. Each RP will forward the datagram along shared tree branches to reach
group members. These concepts are illustrated in Figure 2.6, where two shared trees
are constructed for a multicast address that has three sources. Detailed information

about the sparse-mode PIM protocol, called PIM-SM, can be found in [33].

Sender
Rendezvous point
Receiver

Source-to-RP path
Shared-tree branch

Figure 2.6: Shared trees constructed by the PIM protocol.

The PIM-SM protocol constructs SRTs by means of a topology transition process,
which operates in a data-driven manner. When router members of a multicast address
observe heavy traffic from a source S, they may determine that the source could be
better served by a private distribution channel, and issue SOURCE-JOIN requests to

S, resulting in a multicast tree that is rooted at S. Continuing the previous example,
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Figure 2.7 shows that an SRT has been built for the source Ss.

@ Receiver
— & Source-rooted tree link
—a Other MC link

Figure 2.7: The result of topology transition for the sender Sj.

PIM’s approach to supporting multiple MC topology types is elegant and efficient;
we expect wide acceptance of the protocol in the Internet. However, its topology
transition process, which builds SRTSs, is data-driven and, hence, cannot be applied
to connection-oriented networks, such as ATM networks, where routing must be es-
tablished and maintained in a manner that is independent of traffic streams. The
previous methods and current challenges of supporting group communication in such
networks will be reviewed in the next section.

An important open issue regarding the PIM protocol is the selection of RPs and
dissemination of their identities. According to the Internet multicast model described
in [7], a host should be able to listen to a multicast address simply by informing its
ingress router of the address. Since hosts are not obligated to provide RP identities,
routers must obtain RP identities via an independent mechanism, which is not yet
determined at the time of this writing [2]. As we will show in Chapters 6 and 7, mod-
eling this RP management problem as a leader election problem within the network

constitutes an important part of our research.

2.2.4 Multicast in ATM Networks

ATM networks are connection-oriented networks that relay small fixed-size cells in
hardware. An ATM cell is 53-byte long, comprising 48 bytes of payload and 5 bytes of
control information. Before transmission, a traffic source must set up a virtual circuit

(VC) that defines a path between the source and a destination. All cells belonging
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to the VC will follow this path to reach the destination. Switching fabrics at ATM
switches along the path use a virtual circuit identifier (VCI), contained in the control

bytes of each cell, to determine the outgoing link for the cell.

These concepts are perhaps best explained using an example. Figure 2.8(a) de-
picts a VC between a source host S and a destination host D. In the example, we
assume that every switch has four input ports, numbered 0 to 3, and four output
ports, again numbered 0 to 3. Before transmission, the source host S issues a VC
setup request to its ingress switch X; the conventions and procedures that a host fol-
lows to communicate with its ingress switch are termed the User-Network Interface
(UNTI) [30]. Included in the request message is an input-VCI field, which indicates
the VCI value chosen by the requesting host to identify cells belonging to the VC. In
the example, the source host S chooses the value 5. The ingress switch X determines
an output port that leads to the next-step switch defined by a shortest S-to-D path
(port 2, in this example, which leads to the switch Y'), selects an unused output VCI
value for the VC (9, in the example), replaces the value of the input-VCI field with
the new value, and forwards the request to the next-step switch (namely, Y). The set
of conventions and procedures that network switches use to communicate with each

other is called the Private Network-to-Network Interface (PNNI) [13].

Continuing the example, the same task is repeated at switches Y and Z. Switch
Y selects the output VCI 2, which becomes the input VCI for Z, and forwards the
request to Z via port 2. Switch Z selects the output VCI 6, which becomes the VCI
value that the destination host D uses to recognize cells pertaining to the VC. An
S-to-D connection has been established. When traffic flows through the connection,
an involved switching fabric uses a switching table to determine the forwarding of
cells. The switching table at the port 0 of the switch X is shown in Figure 2.8(b).
As we can see, the input VCI 5 is indexed into an entry that informs the switching
fabric of X to forward cells with that VCI value to output port 2, and to tag those
cells with the new VCI value 9. Further details of the VC setup procedure can be
found in the UNI 3.1 [30] and PNNI 1.0 [13] standards, which have been produced by

the ATM Forum, an international non-profit organization that comprises industrial
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and academic members.
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(b) the switching table at port 0 of switch X.

Figure 2.8: VC operation in ATM networks.

The connection-oriented nature of ATM requires that the topology of an MC be
determined and constructed before the presence of associated traffic streams. Further,
the maintenance of the topology must be performed in a signaling-driven manner,
that is, in response to network control messages, rather than the receipt of multicast
data itself. For these reasons, many IP multicast solutions are not applicable to ATM
networks. In this section, we discuss the ATM protocol used to establish one-to-many
VCs, or multicast VCs, which are the only MC type presently supported by ATM
standards. At the time of this writing, it is not clear which protocol(s) will be used in
ATM to support other MC types. However, we will survey two proposals that have
been discussed in the ATM Forum.



28
Multicast VCs

The concept of one-to-one VCs can be generalized to one-to-many VCs, or multicast
VCs. This generalization requires an optional hardware feature, called cell replication,
in order to forward multiple copies of an incoming cell via different output ports. This
feature has been supported in many commercial ATM switches, for example, those
provided by Fore Systems [40]. In UNI 3.1, a multicast VC has exactly one source
party, called the root, and can be routed to one or more receiving parties, called
leaves, following a tree topology. A multicast VC is set up by its root, which uses
a procedure similar to the one-to-one VC setup procedure to connect to the first
receiver. The result of this first step is a multicast VC with exactly one leaf node.
Subsequently, the root can issue as many ADD-PARTY messages as necessary to
attach additional leaves to the multicast VC. However, current ATM standards do
not support group addresses, meaning that the source must learn the identities of
receivers via a host-level protocol. In the most recent version of ATM UNI (namely,
the UNI 4.0), receiver-initiated actions are supported so that receivers can join and
leave a multicast VC without involving the source party. Again, receivers must learn
via a host-level protocol the identities of the source party, or parties, in a multiparty

communication application.

Proposals for Supporting Group Addressing in ATM

The lack of a group addressing mechanism in present ATM standards leaves the
users/hosts to deal with the membership issue in group communication. The ATM
Forum intends to add group addressing support in a future release of the PNNI
standard [13]. Here, we review two proposals that have emerged within the ATM

Forum.

1. A central-server approach for group membership management is promoted
in [41]. In this proposal, a switch in an ATM network is configured as the
group management center of the network, where the member lists of all active

groups are maintained. Changes in membership must be sent to this switch in
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order to update member lists. A host that wishes to construct a multicast VC
to a group G contacts the management center to obtain the member list of G,
and follows the UNI 3.1 standard to set up the multicast VC. This approach is
designed for membership management, and facilitates the construction of mul-
ticast VCs, which are SRTs. Other MC topology types, such as receiver-only
and symmetric shared trees, are still not supported. Further, the issue of single
point of failure at the management center is considered “not critical,” and is

not addressed [41].

. A variation of the CBT protocol for use in ATM networks, called the ACBT
(ATM CBT) protocol, is described in [42]. This protocol is similar to the CBT
protocol in that each group is assigned a core node, which is the root of a tree
that reaches group members. This tree, however, is not an ATM multicast
VC. Rather, the signaling modules of switches involved in the tree maintain
the parent/child relations defined by the tree. In the ACBT protocol, a source
party S can connect to all the members of a group via a single connection
request, resulting in a multicast VC whose topology is the concatenation of
a S-to-Core path and the shared tree rooted at the core. To illustrate, let
us consider a three-member group shown in Figure 2.9(a), where the shared
tree of the group is depicted by dashed lines. Figures 2.9(b) and (c) show the
multicast VCs for two different sources. As shown in Figure 2.9(c), a link may
be used by a multicast VC in two directions. This sometimes happens because
the source must reach the core, the only contact point in the CBT and ACBT
protocols, before the shared-tree can be used. We also emphasize that the two
multicast VCs shown in the figure operate independently, despite the fact that
they use identical sets of communication links (as defined by the shared tree)
after a packet has reached the core node; the shared tree of a group exists in the
form of signaling states, and is merely used to define the topology of multicast
VCs destined to the group. Since multicast VCs destined to a group must be
set up individually (although they share the same tree topology), it is difficult
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to support some ATM features on a “per-group” basis. For example, given a
group G, network resources must be reserved for each individual multicast VC

destined to G, rather than for the group along.

© Member Q core @ Source = MC link ——— Shared-tree link

(b) an example of resultant multi- (c) another example of resultant
cast VCs. multicast VCs.

Figure 2.9: Operation of the ACBT protocol.

In summary, the ACBT protocol supports group addressing and multicast VCs,
which are source-rooted but not necessarily shortest-path trees. Interestingly,
the protocol, albeit a CBT variation, does not support shared-tree MCs. An-
other respect in which the ACBT protocol differs from the CBT protocol is
the management of core. The ACBT protocol handles the selection of the core
node when a group is created, rather than leaving the task to users/hosts, as
in the case of the CBT protocol. When the first member of a group joins, the
ACBT protocol randomly picks a switch as the core, and advertises this core-
group binding via LSAs. This binding is recorded as part of the network image
at every switch. Subsequent joining members follow a CBT-like procedure to

connect themselves to the core, whose identity should now be available through-
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out the network. When different cores are suggested by several initial members
that join the group at approximately the same time, the core candidate with

the smallest ID wins.

2.2.5 Discussion

In summary, the designers of multicast protocols face the following challenges. First,
multiparty communication applications demand a variety of MC topology types to
meet different performance criteria. While multiple protocols could be used to achieve
this goal, a single “generic” solution promises to avoid unnecessary overheads and
redundancy. Second, it is desirable that host members of a group be aware only of
the address of the group, and not the details of the underlying MC protocol. The fact
that the group is associated with a core node, or a set of rendezvous points, should
be hidden from users and hosts. As a result, any distinguished members needed in
the protocol should be selected by the network, rather than by users or hosts. Third,
when such distinguished members are required, the concern of a single point of failure
arises. The network, rather than users and hosts, must handle such failures.
Presently, neither the IP multicast protocols nor the ATM solutions meet all these
requirements. A main theme of this thesis is to show that these difficult issues in the
Internet and in ATM networks can be appropriately addressed, when the network
uses a specific type of routing, namely, link-state routing. Specifically, an LSR-
based generic MC protocol will be presented in Chapter 5, and alternative approaches
to modeling the RP/core management as a leader election problem in LSR-based

networks will be discussed in Chapters 6 and 7.

2.3 Overview of Link State Routing

LSR was initially designed for use in the ARPANET [12]; fault tolerance issues as-
sociated with the original protocol are addressed in [43]. The ISO (International
Standards Organization) version of LSR, the IS-IS (Intermediate System to Interme-

diate System) protocol [44], improves the efficiency of LSR when used in networks
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interconnected by broadcast-based LANs, such as Ethernet and token ring. These im-
provements have been incorporated in a new Internet routing protocol, called OSPF
(Open Shortest Path First) [11]. Another recent application of LSR is the ATM
PNNI standard [13], whose contributions include, among others, a method for hi-
erarchically constructing large-scale, LSR-based networks, and an LSR-based group
leader election protocol.

In this section, we provide background on LSR that will be needed later in the
proposal. For purposes of discussion, the terms router, switch, and node will be used

interchangeably.

2.3.1 Basic Operation

The essence of LSR is to maintain complete network images at all switches. For this
purpose, every switch broadcasts throughout the network its local states, including
nodal states and link states. Nodal states concern the working condition of a switch,
for example, the workload at the switch. Link states describe communication links
that are incident to the switch. Typically, link states include queueing delay, data
loss rate, bandwidth, the capacity of associated buffers, monetary cost (for using the
link), and so on. For historical reasons, control messages containing either state type
are referred to as link-state advertisements (LSAs). After compiling an image of the
network incrementally via received LSAs, a switch X routes traffic to a destination D
according to a shortest X-to-D path computed locally. In general, the universal avail-
ability of complete network knowledge at every switch creates a robust infrastructure
to support various network services, including group communication.

In order to update network images to reflect network status dynamics, every switch
constantly monitors its local states and advertises changes in these states immediately.
For example, when a link fails, the value of its working state is changed from ON
to OFF, producing a link-down LSA from each of its endpoints. Similarly, link-up
LSAs are flooded when the link later returns to an operational state. The working
state of a link, which has only two values, is discrete; changes in such states are

always advertised. For continuously valued states (such as queueing delay, which is
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a positive real number), a change in state is advertised only if the change exceeds a
predetermined threshold.

The topology of a network is defined by the set of operational switches and com-
munication links. Although it may be tempting to consider the working states of
switches (as is the case for links), such states are not defined in LSR. That is to say,
there are no “switch-up/switch-down” LSAs. This is because an LSR protocol cannot
distinguish failed nodes from nodes that become unreachable due to failed links. To
illustrate, let us consider the example in Figure 2.10(a), where the node X crashes.
The five neighboring switches of X (A, B, C, D, and Y') detect the lack of respon-
siveness of the five links incident to X, and flood five respective link-down LSAs. In
this example, switch A can learn of only four link-down events, because switch Y,
which advertises the failure of the (X,Y’) link, has been isolated by the failure of X.
Figure 2.10(b) shows the network as perceived by switch A (and any other switches

other than X and Y') at this moment of time.

X0 YO
D c
(a) node X crashes. (b) the perception of nodes other

than X and Y.

Figure 2.10: Problem in correctly identifying node failure.

This observation suggests that an LSR protocol, which is not able to determine
if a switch has failed or not, should instead be concerned with “reachability” to the
switch. For example, once X and Y become unreachable, they cease to exist with
respect to the operation of A. The concept of reachability is important not only
to the handling of node failures, but also to the handling of much more disastrous

circumstances, such as network partitioning. We will return to this issue in the next
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section.

A flooding protocol, used for the broadcast of network status information, is a
highly robust protocol that guarantees that eventually all network nodes reachable
from the source of an LSA will receive the LSA. The “conventional” flooding protocol
works as follows. In order to send an LSA, the source switch sends the LSA to all its
neighboring switches. For identification, LSAs typically contain the source address
and a sequence number. When an LSA is received by another switch for the first time,
it is forwarded on all incident links, except the one on which it arrived. Copies of LSAs
that have already been seen by a switch are silently ignored. In this manner, every
LSA is forwarded by every switch exactly once. An example of this flooding protocol

is depicted in Figure 2.11; the flooding operation requires four steps to complete.

(@ Node that has received the LSA
e LSA transmission

@ Node that has finished the flooding

(c) step 3 (d) step 4

Figure 2.11: An example of the flooding operation.

The conventional flooding method has been adopted for use in both connection-

less networks, such as the Internet, and connection-oriented networks, such ATM
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networks. In the case of ATM, the hardware-based multicast method, namely the use
of multicast VC, has previously been considered unsuitable to the flooding/broadcast
of LSAs, because it cannot guarantee the delivery of LSAs to all reachable nodes,
as guaranteed by the conventional flooding method. Hence, the LSR operation in
ATM proceeds in a less efficient, hop-by-hop manner. In Chapters 3 and 4, we will
demonstrate how to take advantage of multicast VCs in flooding operations, while

providing guaranteed delivery.

2.3.2 Fault Tolerance Issues

Networks are often expected to operate for long periods of time, in the presence of
adverse conditions or even catastrophic scenarios. While many distributed applica-
tions ignore very rare adverse events, the networks themselves, and their underlying
routing protocols, are expected to survive. Two types of such events, or faults, are
of particular interest to LSR researchers: transmission errors not caught by the er-
ror detection mechanism (for example, CRC checksums) and the partitioning of the
network.

In LSR-based networks, the fault tolerance issue is closely related to the consensus
problem. Recall that the consensus problem under LSR is to ensure the convergence
of network images under the most adverse situations. Fault tolerance mechanisms
in LSR either try to eliminate deterrents to achieving consensus or try to achieve
consensus as soon as a consensus-prohibiting situation is cleared. A number of meth-
ods have been proposed to achieve this highly challenging goal [45]. Following is a
summary of the widely-accepted OSPF solution [11]; a similar solution is adopted in

the ATM PNNI standard [13].

e Switches not only advertise status changes immediately, but also broadcast
their status periodically. This practice enables temporarily isolated segments
of the network to exchange information with each other after re-unification
(one segment learns of the existence of other segments in the next flooding

cycle). Periodic flooding also controls the lifetimes of corrupted parts of network
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images that may occur due to undetected transmission errors, for the corrupted

information will be overwritten in the next cycle of flooding.

e An aging mechanism is used to identify obsolete information. Specifically, every
entry in a network image has an associated aging timer, and the entry is dis-
carded when its timer goes off. Nullified parts in a network image can later be
filled by relevant LSAs with any sequence number value. The aging mechanism
is needed to correct errors that the re-flooding mechanism along may take too
long to correct. An example is undetected transmission errors in the sequence
number field of LSAs. Let us consider an LSA with sequence number n that is
incorrectly received as n + k at some switch. Further assume that the source of
the LSA re-floods every minute. If the value of k is 228, it would take more than
500 years for the source switch to catch up (that is, to use sequence numbers
larger than n+ k) and override the corrupted information. An aging mechanism

solves this problem.

To further illustrate the use of these concepts, let us continue the example of Fig-
ure 2.10. Figure 2.12(a) depicts the local image at switch Y after the crash of X. We
point out that the local image at switch Y (incorrectly) still contains links (X, A),
(X, B), (X,C), and (X, D), because Y cannot receive corresponding link-down LSAs.
An aging mechanism solves this problem. Using this mechanism, any node other than
X and Y will remove the link (X,Y) and the nodes X and Y from its local network
image, after not hearing periodic flooding from X and Y for a predetermined pe-
riod of time. Put in another way, the {X,Y} induced subgraph “ages out” in other
parts of the network because it is no longer periodically reinforced by the two nodes.
Figure 2.12(b) depicts the network image at any non-(X,Y) node after the aging
mechanism takes effect. The network image at Y after aging consists of only one
node, Y itself, since all the other nodes will age out at Y. This image is omitted in
Figure 2.12.

To finish the story with a happy ending, we assume that node X later becomes

operational. After the revival of X, all switches learn of the existence of links incident
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(a) network image at Y. (b) network images at nodes other
than X and Y, after aging.

(c) the consenting network image,
after the revival of X.

Figure 2.12: The handling of network partitioning in LSR.

to X via link-up LSAs. Switches other than X and Y learn of the existence of these
two nodes via the periodic status broadcasts from them. Similarly, the nodes X and
Y become aware of the other parts of the network via periodic status broadcasts from
other nodes. Eventually, all the switches will learn the network topology shown in
Figure 2.12 (c), achieving consensus on the network images throughout the network.

The robustness of LSR is a major reason for its wide acceptance in many modern
networks. However, the operation of LSR may raise concerns about scalability. First,
the size of network images grows with the size of the network, which is consequently
limited by the switch with the least memory space. Second, for a network with an
average degree (the average number of incident links to nodes) d, every LSA will be
received on average d times by every switch. Further, if the network has N switches
that periodically flood their status for every T seconds, every switch needs to handle
dN/T LSAs per second. When N is sufficiently large, the workload of LSA processing

alone will exceed the computation capacity of switches, or the flooding of these LSAs
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may use up the bandwidth of the network.

Of course, there are ways to address the scalability issue. In the case of the Inter-
net, LSR is intended for use in a set of networks under one administrative authority
(in Internet terminology, an Autonomous System) which typically contains a few hun-
dred switches and possibly several thousand hosts. In some other cases, such as the
case of ATM, LSR is intended to support nation-wide, or even global, networks. In

such cases, scalability can be achieved only by means of hierarchical routing.

2.3.3 Hierarchical LSR

Hierarchical routing reduces the burden on individual switches by hiding the com-
plexity of the entire network. Different ways of supporting a routing hierarchy with
LSR have been developed and deployed [11, 13]. In the Internet, the OSPF protocol
defines a two-level LSR hierarchy such that a router sees only the subnetwork to which
it belongs and the subnetwork’s boarder routers, that is, routers that connect to the
backbone subnetwork [11]. While intra-subnetwork traffic is routed as described in
the previous section, cross-subnetwork traffic is routed in three stages: first through
the home subnetwork to a boarder router, from there across the backbone network
to reach a boarder node of the destination subnetwork, and finally through the des-
tination subnetwork.

A more general method of hierarchical LSR is described in the ATM PNNI 1.0
standard [13], which allows for arbitrary hierarchy depth. In this method, a physical
network is divided into several peer sub-networks, called routing domains. For exam-
ple, the network shown in Figure 2.13 can be divided as shown in Figure 2.14. This
division is performed manually by configuring every switch with a domain ID.

After division, each domain runs a separate instantiation of LSR, that is, switches
within a domain exchange status information so that each of them maintains a “do-
main image.” Continuing the previous example, the image of domain A.4 is depicted
in Figure 2.15. As shown, a domain image contains not only intra-domain links, but
also outgoing ones. An outgoing link, or inter-domain link, is advertised in the do-

mains containing its endpoints. Hence, the link (A.4.1 A.2.3) in Figure 2.13 will be
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Figure 2.13: A network topology.
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Domain A.3

Figure 2.14: Breaking up the network into routing domains.

advertised in domain A.4 by switch A.4.1 and in domain A.2 by switch A.2.3. The
presence of inter-domain links in the image of a domain enables the domain to see
neighboring domains. For a domain to see all the other domains in the network, one
must run a copy of inter-domain LSR.

To perform LSR among domains, a leader switch is elected within each domain.
In ATM PNNI, the nodal states of a switch include two election-related states: leader
priority and preferred leader. The former is manually configured by network managers
to determine the rank of the switch. The latter is determined as follows: Every switch
independently searches in its domain image for a reachable switch that has the highest

leader priority, and calls the result of the search its preferred leader. As with other
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Figure 2.15: The image of the domain A.4.

LSR states, any change in the preferred leader state must be flooded immediately.
If the preferred leader at a switch is the switch itself, this switch shall, after waiting
for a period of time, inspect its local domain image for the preferred leaders of other
switches. Only if unanimity is obtained will the candidate switch proclaim victory.

For illustration, consider a network where the administrator configures a default
leader switch X with leader priority 3 and a backup leader Y with priority 2. The
remaining switches are all configured with priority 1. We assume that initially switch
X is the preferred leader of all other switches. Now consider what happens when
the established leader X crashes. As described earlier, neighboring switches of X
will advertise link-down LSAs for the incident links of X. Using these LSAs, every
network switch finds the current leader unreachable, and searches through its local
image for a switch with the next highest priority. In this case, the result would be
Y with priority 2. Since every switch changes its value of the preferred-leader state
to Y, every switch advertises this change immediately. These advertisements can be
considered as “ballots,” which the switch Y must collect before claiming itself the
new leader.

Once elected, a leader learns the identities of neighboring leaders, namely the

leader switches in neighboring domains, via the LSAs regarding inter-domain links.
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(Preferred leaders of endpoints are included in such LSAs.) The leader then sets up
a VC to connect to each neighboring leader. The inter-domain LSR is performed
collectively by domain leaders as follows: each leader uses inter-leader VCs to flood
to all the other leaders nodal states that present a simplified representation of its
home domain and link states that describe its connectivity to neighboring domains.
As such, each leader compiles a simplified view of the entire network. In this view, a
node represents a routing domain and a link represents the adjacency of its endpoint
domains. For the example of Figure 2.13, corresponding simplified network image is
depicted in Figure 2.16.

In ATM PNNI, the division-and-simplification process just described can be ap-
plied recursively to build routing hierarchy of any depth. For example, when the
network of Figure 2.13 is connected to an internet, the simplified network view shown
in Figure 2.16 constitutes a domain in the internet, and a leader is elected among the

domain leaders to represent the entire network in the next routing level.

A.2 B' 1

Figure 2.16: The simplified/high-level network image.

2.4 Discussion

The main theme of this thesis is to demonstrate and exploit the mutually beneficial
relationship between group communication and LSR. Three facets of group commu-
nication will be examined for being supported by LSR: use of multicast VCs in LSR
flooding, MC construction and maintenance, and leadership consensus. Let us now
briefly introduce each of these problems, given the background information that has

been presented in this chapter.



42

First, LSR itself can benefit from group communication techniques, because many
aspects of LSR operation exhibit characteristics of group communication. In LSR,
switches in a routing domain form a communication group: they broadcast to the
group, receive broadcast messages (that is, LSAs) from the group, maintain member
lists of the group (which are implicitly included in local domain images), and elect a
leader to represent the group in the next routing level. Moreover, such group commu-
nication characteristics in LSR are even more obvious in hierarchical LSR networks:
At higher routing levels, the LSR tasks of flooding, membership management, and
leader election are performed collectively by domain leaders. Since leaders are not
necessarily physically adjacent with each other, a flooding operation among leaders
forms a true multicast operation in the entire network. In this thesis, we identify an
important aspect of LSR that can benefit from group communication: the flooding
operation. We note that, while present ATM standards use hardware switching and
cell replication to speed up host-level multicast, flooding operations still proceed in a
store-and-forward manner as described earlier. Our first main contribution is to show
that flooding operations can make use of the hardware capability of ATM switching
fabrics to improve performance, while in the meantime guaranteeing delivery to all
nodes reachable from an originating node, as in the case of the conventional flooding
protocol. In Chapters 3 and 4, we describe a family of switch-aided flooding (SAF)

protocols that work in this manner.

Second, the construction of MCs can benefit from the complete network informa-
tion made available by LSR. We have discussed one multicast protocol, the MOSPF
protocol, that takes advantages of LSR; it uses LSR to disseminate membership in-
formation so that every router has a member list for every active MC. However, the
MOSPF protocol is restrictive in supporting different MC topology types, and incurs
computational redundancy. As we noticed in previous sections, multiparty communi-
cation applications need different MC topology types. Further, the rising importance
of QoS service is leading to new, sophisticated MC topology computation algorithms,
many of which are not supported by existing MC/multicast protocols. This thesis

will show that the availability of complete network and MC membership information
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at switches/routers in LSR-based networks makes it possible to design a “chassis” for
MC protocols to accommodate existing and future MC topology computation algo-

rithms. The resultant generic MC (GMC) protocol will be presented in Chapter 5.

Third, we consider the problem of leader election. Although leader election is not
directly required by all group communication applications, some prominent multicast
protocols, such as the CBT and PIM, assign a network node as the multicast traffic
transit center, or the core node, for the group. Arguably, the core node of a group
must be selected by the network; if the identity of the core is provided by host
members, then the host-network interface for multicast depends on the choice of
multicast protocol within the network (some multicast protocols require core identities
from the interface, while others do not). Further, the introduction of a traffic transit

center raises the concern of single point of failure.

The problem of assigning of core nodes to groups can be modeled as a leader elec-
tion problem (the leader of a group undertakes the responsibility of the core node).
The fault tolerance of LSR enables the design of robust election protocols, such as
the ATM leader election protocol, that handle not only leader failures but also dis-
astrous scenarios, for example, network partitioning. However, the overhead of the
current ATM leader election protocol (every group member uses flooding to report its
preferred leader) may be prohibitively expensive if used to support multicast groups
because a large number of such groups may exist simultaneously in a network. The
design of efficient LSR-based support for the election problem constitutes the third
part of this research. Our NLE protocol, presented in Chapter 6, accommodates a
membership management mechanism that achieves the following consensus property:
a set of mutually reachable group members reach consensus on a leader, which main-
tains a member list containing exactly those members. The LCM protocol, presented
in Chapter 7, uses the NLE protocol to elect a leader switch as the centralized core
management server, which manages the core nodes for all active groups within the

network.

Finally, we come full circle. ‘By combining two group communication techniques

developed earlier, namely the election of a leader and the construction of multipoint
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connections, we develop a totally different approach to LSR. The resulting Tree-based
LSR (T-LSR) protocol is lightweight, imposing only a small fraction of the overhead
of previous LSR methods, and robust, guaranteeing to survive not only network
component failures and partitioning scenarios, but also undetected communication
transmission errors. As we discussed earlier, properly handling the latter type of
faults is a vital requirement for an LSR protocol. Unlike the ATM-oriented SAF
protocols, the T-LSR protocol is designed for use in general-purpose, LSR-based
networking environments and requires no special hardware support.

At the first glance, the advocation of group-communication-supported LSR oper-
ations and LSR-based group communication introduces a “chicken and egg” dilemma
— which one should exist first so as to support the other? Our results show that,
with careful design, the circular dependence can be avoided. The SAF and T-LSR
protocols demonstrate how a multiparty communication channel can be constructed
and used to improve the performance of flooding operations, which advertise rout-
ing information (namely, LSAs) necessary for the construction and maintenance of
the channel. On the other hand, the GMC protocol can take advantage of LSR
performance improvements by T-LSR and SAF methods to enable the use of any
topology computation algorithm and hence provide support for any MC topology
type. Moreover, the NLE protocol, which itself is LSR-based, finds applications in
both the internal operations of LSR (such as hierarchical routing) and the support of
multiparty communication applications (for instance, the management of multicast
cores used by such applications). Such results demonstrate the mutually beneficial

relationship between LSR and group communication.



Chapter 3

Switch-Aided Flooding

In this chapter, we demonstrate an example to support the claim that some aspects
of LSR operation can benefit from group communication. Specifically, we propose
a flooding method, called Switch-Aided Flooding (SAF), for use in ATM networks.
SAF-based protocols take advantage of hardware-supported cell relay and cell duplica-
tion, characteristic of such networks, in order to reduce the time needed to disseminate
changes in network topology and resource availability. SAF protocols use a spanning
multipoint connection (SMC), which is a hardware-switched network spanning tree,
but revert to conventional link-by-link flooding when the spanning MC is unavailable
or under construction. Two flooding protocols based on this methodology, as well as
an accompanying protocol to construct and maintain the SMC, are described in this
chapter; a third SAF protocol is described in Chapter 4. The results of a simulation
study reveal that the proposed flooding protocols deliver network updates several
times faster than conventional approaches. Further, the bandwidth consumed by a

flooding operation is also significantly reduced.

3.1 Motivation

As described in Chapter 2, ATM is a connection-oriented communication technology
that relays small fixed-size cells in hardware. Many ATM switching fabrics support

hardware cell duplication, whereby an incoming cell can be forwarded via multiple
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output ports. Although current ATM standards use this feature to support only
multicast (or one-to-many) VCs, such switch functionality enables the construction
of a more generic form of group communication channels, namely, many-to-many VCs,
or multipoint connections (MCs). An example of an MC is depicted in Figure 3.1(a),
where a set of eight switches is interconnected with a tree topology. The responsibility
of each member switch is to forward cells arriving on one link of the tree to all the
other tree links that are incident to that switch. As illustrated in Figure 3.1(b),
cells arriving on any of the four links incident to the switch z are forwarded on
the remaining three incident links. Hardware-supported MCs facilitate multiparty
communication applications, such as multimedia teleconferencing, distributed virtual
reality, tele-gaming, and computer-supported cooperative work. MCs used in such
applications typically involve only a small subset of the network switches. A special
type of MC is the spanning MC (SMC), which includes as its members all switches
in a network. A spanning MC of the network used in Figure 3.1(a) is depicted in
Figure 3.1(c). Since every message transmitted on an SMC is received by all switches,

the SMC can be considered as a virtual broadcast medium of the network.

Although hardware switching and cell duplication may greatly improve the com-
munication performance observed by end hosts and their applications, the signaling
activities within ATM networks, as defined in UNI 3.1 [30] and PNNI [13] standards,
proceed largely in a connectionless manner. Since signaling must take place prior to
the existence of corresponding VCs [30], VC-setup request messages are forwarded
and processed in a hop-by-hop manner. Switches along the route of the VC under
construction invoke signaling modules to perform functions related to the requested
VC, such as routing and call admission control. In addition, the ATM PNNI standard
specifies the use of the flooding protocol described in Chapter 2, which was originally
designed for the ARPANET, a connectionless point-to-point network. Not surpris-
ingly, the protocol proceeds in a hop-by-hop manner, and does not take advantage of

the hardware capabilities of ATM switching fabrics.

We model the ATM flooding operation as a group communication problem, where

an LSA is considered as a multicast message delivered to a group comprising all
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Figure 3.1: Examples of multipoint connections.

switches in the network. The proposed SAF method uses a common group communi-
cation topology, the tree topology, to facilitate the dissemination of LSAs. Specifically,
the SAF method constructs a spanning MC, which is used as a “broadcast medium”
for distributing LSAs. The use of an SMC improves the performance of flooding
operations by taking advantage of both hardware cell relaying and cell replication.
However, such an approach must address the challenge of retaining the robustness of
the conventional flooding method, that is, an LSA must reach all switches reachable

from the source of the LSA.

The main contribution of this chapter is to develop and evaluate two SAF-based
flooding protocols, called Basic SAF and bandwidth-efficient (BE) SAF protocols,
that satisfy these criteria. In addition, an efficient protocol for the construction
and maintenance of spanning MCs is presented. The results of a simulation study
reveal that these two SAF-based flooding protocols can distribute messages to network

switches several times faster than the conventional flooding algorithm. In the next
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chapter, we will develop a even more efficient SAF protocol by using a second group
communication topology, the ring topology, to implement reliability. A robust and
efficient flooding protocol can lead to better routing decisions by reducing reaction
time to faulty network components and congested areas. This in turn reduces the
probability of call blocking. Furthermore, general-purpose, LSR-based MC protocols,
such as the MOSPF protocol [6] and the GMC protocol (discussed in Chapter 5), must
disseminate group membership and/or MC topology advertisements, and therefore
can also benefit from efficient flooding protocols.

The remainder of this chapter is organized as follows. A protocol that constructs
and maintains a network-wide spanning MC is presented in Section 3.2. In Section 3.3,
two SAF protocols are presented. The Basic SAF protocol extends the conventional
flooding algorithm to incorporate the use of an SMC. The BE SAF protocol further
addresses the issue of bandwidth consumption in flooding operations. The perfor-
mance of these two protocols is investigated through a simulation study, the results
of which are presented in Section 3.4. A summarization of this work is presented in

Section 3.5.

3.2 The Spanning MC Protocol

The SMC protocol constructs and maintains an SMC for use in the SAF protocols.
The protocol is a variation of the CBT protocol (3, 4], a general MC protocol in
which the topology of the MC is the union of shortest paths from the members to
a specific node, called the core (see Figure 3.2). The SMC protocol differs from the
CBT protocol in the way that the core node of the MC is determined. In the CBT
protocol, the core node is static and is determined by an “outside” mechanism (for
example, by network management procedures). In the SMC protocol, the core node
is dynamic for reasons of robustness, since the SMC protocol must survive extensive
network changes, including failure of the core node itself.

In the SMC protocol, the core node selection problem is modeled as a leader

election problem under LSR. In this approach, every switch z uses the same core node
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Figure 3.2: An example MC built by the CBT protocol.

selection algorithm to independently identify a new core of the SMC. The choice of
switch z will be referred to as c;, and the computation will be denoted by C(G, z),
where G is the network image at z. For now, we use the function C(G, z) that simply
sets ¢, to the preferred leader at switch z, that is, we use the domain leader switch
elected by the ATM PNNI as the core node of the SMC. The generalization that allows
the use of any core selection algorithm C(G, z) can be achieved by using our Network-
level Leader Election (NLE) protocol, which is discussed in Chapter 6. Discussion

and evaluation of a variety of core selection heuristics can be found in [46, 47].

After selecting the core node locally, each switch tries to establish a connection to
its choice of core node. For a switch z to reach its core selection c;, the switch sends
a reach_core request one hop towards the core, according to an z-to-c, shortest path
computed locally. The receiving switch grants the request after it has successfully
reached the core itself. Using the network shown in Figure 3.1 as an example, the
process of SMC construction is illustrated in Figure 3.3. Let us assume that all nodes
initially select, as the core, the darkened node in Figure 3.3(a); this figure also shows
the direction of sending reach_core requests. The core node immediately grants
the reach_core requests from its neighboring switches, which subsequently approve
reach_core requests from downstream switches. In this way, SMC links are granted

and established in a “radiating” manner; see Figures 3.3(b) to 3.3(f).

Under the SMC protocol, each switch z in the network G executes a set of con-
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Figure 3.3: An example of the SMC protocol.

stituent protocol modules and maintains the following data structures: a local net-
work image G, a core selection ¢;, and an z-to-c; path P;. (In the following, we
may omit the subscripts if they are clear from context.) Whenever a data structure
must be accessed by concurrent protocol modules, access to the data is assumed to
be atomic, in order to avoid race conditions among protocol entities. Critical regions

and semaphores are well-known techniques to achieve atomic access.

SMC protocol operation is triggered by the receipt of an event LSA (link-down,
link-up, and so on). Periodic LSAs are ignored by the SMC protocol so that the
protocol, and hence reconstruction/reorganization of the SMC, will not occur unnec-
essarily. As shown in Figure 3.4, upon receiving an event LSA, the SMC protocol
at switch z updates the local image G, of the network. The protocol then decides
whether it has to re-connect to the core node because 1) its core selection changes,
or 2) the LSA ¢ reports a failed link that is used in P,. When it is necessary to
re-connect to the core, the switch z tears down the present MC link that leads to the

core node and initiates an attempt to reach the core node by signaling another pro-
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tocol entity, the ReachCore module. We emphasize that the inclusion of maintaining
network image G, in SMC algorithms is for the purpose of self-contained discussion;

in real-world contexts, G is most likely maintained by the underlying LSR protocol.

Algorithm: Process_Event_LSA.
Input: switch ID z, received LSA ¢.

Update G according to ¢.
IF (¢; # C(G,z)) or (LinkDown(¢)=TRUE and Link(¢) in P;)
Let y be the next hop to c; in P;.
Disconnect the tree link (z,y).
c; = C(G,x).
Wake up the ReachCore module if it is sleeping.
ENDIF

Figure 3.4: The handling of event LSAs.

The ReachCore module at switch z is started after the initialization of z, and
loops indefinitely. This module is responsible for setting up an SMC link that will
lead to c;. For this purpose, the module sends a reach_core(c,) message one step
towards the core, and will continue doing so until a positive reply is received from the
appropriate neighbor, indicating that the request has been granted and the desired
link established. We note that the value of c, may change during this period, because
the Process_Event_LSA module may update the value upon receiving new event LSAs.
After obtaining a positive reply, the ReachCore module records the new to-core path,
P,, and suspends itself.

The routine that processes a reach_core message is shown in Figure 3.6. The
receipt of such a request from switch y by switch z suggests that the switch z is the
first intermediate node on the path from y to ¢,. The switch z grants the request if 1)
it agrees with y upon the choice of core node, and 2) it has itself reached the core (this
can be determined by whether the ReachCore module at z is suspended). When the
request is granted, the switch z establishes the (z,y) MC link and returns a positive
reply to y, which includes the y-to-c, path used by the SMC. (The establishment
of an MC link involves the setup/modification of hardware switching table entries

to implement the type of cell forwarding depicted in Figure 3.1(b).) Otherwise, a
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Algorithm: ReachCore.
Input: switch ID .

LOQP forever
IF (C; # 1)
LOOP
/* note: C; may have been changed by Process_Event_LSA */
Let y be the next stop to reach C;.
Send a reach_core(c,) message to y.
Wait for a reply.
UNTIL (a reply reached_via(P) is received).
P, =P.
ENDIF
Sleep.
ENDLOOP

Figure 3.5: The ReachCore module

negative reply is returned.

Algorithm: Process_Reach_Core.
Input: switch ID z and a reach_core(c) request from switch y.

if (c = ¢;) and (I've reached the core node c,)

Setup the (z,y) MC link.

Return a positive reply, reached_via(P; + (z,y)), to y.
ELSE

Return a negative reply to y.
ENDIF

Figure 3.6: The processing of the reach_core request message.

Cell Demulplexing. Because a spanning MC is effectively a broadcast medium
that allows interleaving of messages, every switch in the network can broadcast mes-
sages to, and receive messages from, all other switches. However, cells belonging to
simultaneous broadcast messages can be interleaved with one another at intermediate
switches. Receiving switches must be able to demultiplex these messages according to
their sources. Various methods can be used to solve this problem. For example, part
of the cell payload can be used to label the sources of cells. Alternatively, spanning

MCs can be switched by the virtual path identifier (VPI). In ATM networks, every
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cell is tagged with a pair of identifiers, VPI and VCI. When the VPI of a VC is used
in switching, the VCI of the cells belonging to the VC is ignored (but remains intact
during transmission). In this approach, the SMC used by the SAF protocol must
be constructed in such a way that the VPI is in effect throughout the MC, and as
such, the VCI field can be used to identify the source switch of cells. We emphasize
that the SMC protocol, and the SAF protocols as well, work with any demultiplexing

scheme.

3.3 The SAF Protocols

An SAF protocol is an extension of the conventional flooding protocol. In addition
to a set of point-to-point links in a network, SAF protocols presume the existence
of an SMC to which all the switches in the network have access. In this section, we
present two protocols designed in this manner; they differ in the implementations of

reliability.

3.3.1 Basic SAF Protocol

This protocol works as follows. The source of an LSA first broadcasts the LSA on the
SMC and subsequently sends the LSA via all its incident links. If a switch receives
the LSA for the first time via the SMC, then it forwards the LSA on all its incident
links. On the other hand, if the switch receives the LSA via a point-to-point link, then
it forwards the LSA on all incident links except the one on which the LSA arrived.
As in the case of conventional flooding, switches silently drop LSAs that have been
seen previously. To illustrate, the flooding example of Figure 2.11 is repeated in
Figure 3.7, but this time using the Basic SAF protocol. As we can see in the figure,
the operation now requires only two communication steps. In the first step, the
source switch broadcasts the LSA, which is switched and duplicated in hardware on
the SMC. In this manner, the constituent cells are pipelined throughout the network.
Provided that other switches receive the LSA in the first step, they exchange this

LSA via point-to-point links in the second step; since every node has already seen
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the LSA via SMC broadcast, all the point-to-point copies are dropped.

O Node that received the LSA ——g-  LSA transmission

(a) step 1: hardware switched broadcast (b) step 2: point-to-point forwarding

Figure 3.7: An example of the Basic SAF protocol.

The Basic SAF protocol uses the SMC as a shortcut for LSA dissemination, but
does not rely on this shortcut. In normal cases, such as the one in Figure 3.7, switches
receive LSAs immediately via the SMC. However, in situations where one or more
links used in the SMC is malfunctioning, or the SMC itself is under construction, or
cell losses occur on the SMC, then the link-by-link forwarding will guarantee that
the LSA reaches all nodes. Shown in Figure 3.8 is an example of how the Basic SAF
protocol operates when the SMC is faulty. In this example, a link that is used in the
SMC fails during a flooding operation and the broadcast of the LSA cannot reach
all switches (Figures 3.8(b) and 3.8(b)). As shown in Figures 3.8(c) and 3.8(d), the
remaining switches are reached via link-by-link forwarding. In extreme cases where
the SMC does not exist at all (for example, when the network is re-initialized), the

Basic SAF protocol degenerates to the conventional flooding protocol.

The Basic SAF achieves its efficiency at the price of additional bandwidth con-
sumption. Here we compare the bandwidth used by the conventional flooding protocol
against that of the Basic SAF protocol. In the conventional flooding protocol, the
source of an LSA sends the LSA on all its incident links, and other nodes forward
the LSA on all but one of the incident links. Consider a network G = (V, E), where

V is the set of switches and E the set of point-to-point links. The number of links
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O Node that received the LSA =g LSA transmission

(a) the broken SMC (b) step 1: (partially failed) broad-
cast

(c) step 2: link-by-link forwarding (d) step 3: link-by-link forwarding

Figure 3.8: The Basic SAF protocol with a broken SMC.

traversed by conventional flooding is

B. =1+ Y (Deg(v) —1) =1+ Deg(G) — N,

vevV

where N = |V| and Deg(G) is the sum of node degrees in G. On the other hand, the

Basic SAF protocol would require

Bbasic = (N - 1) + Z Deg(v)

veV
links, where the first term (/N — 1) is the number of links used by the broadcast on

the SMC, and the second represents forwarding of the LSA on point-to-point links.

To further clarify the relationship between B, and By, let AvgD denote the

average node degree of G. The bandwidth consumptions of the two flooding protocols
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can be rewritten as
B, = AvgD x N — N + 1= (AvgD x N) — N,

and
Bpasic = AvgD x N+ N — 1=~ (AvgD x N) + N.

Therefore, the Byp,sic to B, ratio can be approximated by

Bbasic - A’UgD +1
B,  AvgD-1

If the network has a small average node degree, then the Basic SAF protocol may
consume significantly more bandwidth than does the conventional flooding protocol.
However, due to the simplicity of this protocol and its advantage in flooding time, the

Basic SAF protocol may be attractive under a variety of conditions (see Section 3.4).

3.3.2 Bandwidth-Efficient SAF Protocol

The Basic SAF protocol can be modified to reduce bandwidth consumption by in-
troducing the concept of dummy forwarding. In this approach, switches receiving an
LSA via the SMC forward a “dummy” of the LSA, containing only the source address
and sequence number, to neighboring switches. Switches that have finished the task
of dummy forwarding also expect to see responses (either the real LSA or its dummy)
from all neighboring switches. After waiting for a predetermined period of time, such
switches forward the real <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>