

1141:5518

(Ll llllIllllllllllllllllllllllllllll‘lllllilllllllllllWill
31293 01712

This is to certify that the

thesis entitled

Hardware-software Partitioning in Co--design of
Embedded System

presented by

Habeel Ahmad

has been accepted towards fulfillment

of the requirements for

Master's degree in Electrical Eng

5mm 1 [{5'14

Major professor

Date 5/10/71“

0-7639
MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

| Michigan State

Unlverslty

PLACE IN RETURN BOX

to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE
MTE DUE DATE DUE

1m W1

4

HARDWARE-SOFTWARE PARTITIONING IN

CO-DESIGN OF EMBEDDED SYSTEMS

By

Habeel Ahmad

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1998

ABSTRACT

HARDWARE-SOFTWARE PARTITIONING IN

CO-DESIGN OF EMBEDDED SYSTEMS

By

Habeel Ahmad

The rapid advancements in science and technology and especially in the field of

computers have made an impact on every aspect of our daily life. Among the latest trends

is to make devices known as embedded systems that consist of one or more

programmable components. Hardware-software co-design is a methodology that provides

rules and techniques for embedded system design.

This work has focused on one of the aspects of co—design called hardware-software

partitioning. A variety of co-design frameworks were studied with a view to explore the

partitioning algorithms. POLIS, which currently supports manual partitioning, was chosen

as a candidate for implementation of automatic partitioning. Two partitioning algorithms,

namely, Group Migration and Simulated Annealing were implemented in C++ for this

purpose. The existing design flow in POLIS was altered to generate the performance

estimates for both software and hardware implementations of system modules. The

algorithms used these estimates to find the best partition that satisfied the constraints.

The results produced by the partitioning algorithms are in agreement with the results

published in the POLIS documentation. The work can be extended to integrate the

partitioning algorithm with POLIS design flow and to include a rapid prototyping

environment for verification.

I dedicate this thesis to my parents,

Aziz Ahmad and Amna Aziz

iii

ACKNOWLEDGEMENTS

I start in the name of Allah Almighty, the most beneficent and the most merciful,

whose everlasting blessings made the completion of this thesis possible.

Next, I wish to express my sincere gratitude to my advisor Dr Diane T. Rover for her

commitment, encouragement and guidance that helped me conclude this study.

Appreciation is also extended to Dr. Micheal Shanblatt and Dr. Bruce E. Kim for their

valuable suggestions and also for serving as members of my guidance committee. My

thanks are also due to the secretarial staff of EB Department for their support at all times.

I am grateful to Mr. Bassam Tabbara at UC Berkeley for his prompt response and

guidance during my struggle with POLIS and PTOLEMY.

I would like to express my gratitude to all of my valuable friends, especially Mr.

Abdul Naeem Khan, Dr. Pervaiz Akhtar, Mr. Fida M. Khan and Dr. Dale Joachim for

their understanding, encouragement and social support during my stay at East Lansing.

My special thanks to Mr Aman-ullah Ateequi and his family for their caring.

Finally, I wish to acknowledge the support and sacrifice of my mother, wife and

sister back home during my stay at MSU that enabled me to fully concentrate on my

studies. I am especially grateful to my loving wife, Najm us Saher, who always remained

a source of inspiration and encouragement during the course of studies. I also

acknowledge her patience and courage for single handedly running all the affairs in

looking after our children, Rafiah, Sa’ad, Saleha and Sa’adiah during my long absence

from home.

iv

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER 1

INTRODUCTION .. 1

1.1 Embedded Systems ... 2

1.2 Hardware-Software Co-design ... 4

1.3 Co—design Methodology .. 5

1.4 Conventional Approach ... 6

1.4.1 Specification .. 6

1.4.2 Partitioning .. 9

1.4.3 Synthesis ... 9

1.4.3.1 Hardware Synthesis ... 9

1.4.3.2 Software Synthesis .. 10

1.4.3.3 Interface Synthesis .. 10

1.4.4 Hardware-Software Integration and Co-simulation 10

1.5 Model-Based Approach ... 11

1.5.1 Validation .. 11

1.5.2 Partitioning and Implementation ... 12

1.6 Partitioning Problem .. 12

1.7 Scope of This Work ... 13

CHAPTER 2

RELATED WORK ... 15

2.1 Vulcan ... 16

2.2 COSYMA .. 16

2.3 LYCOS: The Lyngby Co—Synthesis System ... 17

2.4 COMET ... 18

2.5 Ptolemy ... 19

2.6 SpecSyn ... 20

2.7 TOSCA ... 21

2.8 Other Frameworks ... 21

CHAPTER 3

POLIS ... 24

3.1 Introduction ... 24

3.1.1 Model of Computation (CFSM) .. 25

3.2 Design Flow .. 28

3.2.1 Overview ... 28

3.2.2 High Level Language Translation ... 32

3.2.3 Formal Verification .. 32

3.2.3 System Co-simulation ... 33

3.2.4 Partitioning and Architecture Selection ... 33

3.2.5 Hardware Synthesis .. 34

3.2.6 Software Synthesis ... 34

3.2.7 Interfacing Implementation Domains ... 35

3.2.8 Rapid Prototyping ... 35

3.3 Design Example .. 35

3.3.1 Specification ... 36

3.3.2 Estimation ... 38

3.3.3 Co-simulation .. 39

3.3.4 Hardware Synthesis ... 40

3.3.5 Software Synthesis .. 41

3.3.6 Implementation .. 41

CHAPTER 4

SYSTEM PARTITIONING .. 42

4.1 Partitioning Approaches .. 43

4.1.1 Structural Partitioning .. 43

4.1.2 Functional Partitioning ... 44

4.2 Partitioning Issues ... 45

4.2.1 Specification and Levels of Abstraction .. 45

4.2.2 Granularity ... 47

4.2.3 System-Component Allocation .. 47

4.2.4 Metrics and Estimation ... 48

4.2.5 Cost Function .. 48

4.2.6 Partitioning Algorithm .. 50

4.2.6.1 Constructive/Iterative Algorithms ... 50

4.2.6.2 Greedy/Hill-climbing Algorithms ... 51

4.2.7 Output ... 52

4.3 Basic Partitioning Algorithms ... 52

4.3.1 Vulcan Algorithms ... 53

4.3.2 Ratio Cut ... 53

4.3.3 Group Migration (Kemighan-Lin) ... 54

4.3.4 Simulated Annealing ... 56

4.3.5 Genetic Evolution ... 58

4.3.6 Binary Constraint-Search .. 59

4.3.7 Integer Linear Programming .. 59

CHAPTER 5

APPLICATION OF PARTITIONING ALGORTIHMS 1N POLIS 60

5.1 Background ... 60

5.2 Partitioning in POLIS ... 61

5.3 Generation of Estimates ... 62

5.4 Selection of Algorithms for Automatic Partitioning in POLIS 65

5.4.1 Assumptions ... 66

5.5 Features of C++ Code ... 67

5.5.1 Group Migration (GM) Algorithm ... 67

5.5.2 Simulated Annealing (SA) Algorithm ... 69

vi

5.6 Case Studies .. 71

5.6.1 Hypothetical Cases ... 71

5.6.1.1 Small Size Example .. 72

5.6.1.2 Large Size Example .. 72

5.6.2 Real World Example (Dashboard Controller) 73

5.6.2.1 Design Constraints .. 73

5.6.3 Results Obtained ... 75

5.7 Analysis of Results ... 81

5.8 Limitations of POLIS .. 82

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS ... 84

6.1 Summary .. 84

6.2 Validity of Results ... 86

6.3 Recommendations and Future Directions .. 86

6.3.1 Integrating the Partitioning Algorithm in Polis Design Flow 87

6.3.2 Rapid Prototyping Platform ... 87

APPENDICES .. 88

APPENDD(A Group Migration Algorithm implementation in CH 89

APPENDIX B Simulated Annealing Algorithm implementation in C++ 102

APPENDIX C Group Migration Algorithm Results 114

APPENDD(D Simulated Annealing Algorithm Results 122

APPENDIX E Dashboard Example Results .. 130

BIBLIOGRAPHY ... 141

vii

Table 2.1

Table 5.1

Table 5.2

Table 5.3

Table C.1

Table C.2

Table C.3

Table C.4

Table C.5

Table D.1

Table D2

Table D.3

Table D4

Table E.1

Table E.2

Table E.3

Table E.4

Table E.5

Table E.6

LIST OF TABLES

List of co-design frameworks examined in this thesis 15

Estimates for the modules of dashboard example 76

Partition found using GM and SA algorithms (1 MHz Clock) 77

Partition found using GM and SA algorithms (4 MHz Clock) 79

Input data for the small example ... 1 14

Partitioned system of the small example .. 116

Input data for the large example .. l 17

Partitioned system of the large example with equal weights 118

Partitioned system when Hw_Area is more important 120

Input data for the small example .. 122

Partitioned system of the small example .. 123

Input data for the large example .. 126

Partitioned system of the large example ... 127

Input and partition data for belt_control module 135

Input and partition data for engine_speed module 136

Input and partition data for wheel__speed module 137

Input and partition data for net dac_demo (1 MHz Clock) 138

Partition data for net dac_demo (4 MHz Clock) 139

Partition data for net dac_demo (Hw_Area constraint = 4000000) 140

viii

LIST OF FIGURES

Figure 1.1 Architecture of a typical embedded system.. 3

Figure 1.2 Conventional co-design methodology .. 7

Figure 1.3 Model-based co-design methodology ... 8

Figure 3.1 Overview of the design flow in POLIS ... 29

Figure 3.2 The POLIS design flow ... 30

Figure 3.3 Transition diagram of seat belt controller ... 36

Figure 4.1 Essential partitioning issues .. 46

Figure 4.2 Escaping local minimum in iterative partitioning 51

Figure 4.3 Classification of automatic partitioning algorithms 53

Figure 4.4 Group migration algorithm with two-way partitioning 55

Figure 4.5 Simulated annealing algorithm .. 57

Figure 5.1 Modified design flow in POLIS .. 62

Figure 5.2 Plot of cost vs. iterations for GM algorithm (1 MHz Clock) 78

Figure 5.2 Plot of cost vs. iterations for SA algorithm (1 MHz Clock) 78

Figure 5.3 Plot of cost vs. iterations for GM algorithm (4 MHz Clock) 80

Figure 5.4 Plot of cost vs. iterations for SA algorithm (4 MHz Clock) 80

Figure A.1 Flow chart of GM algorithm program .. 98

Figure A.2 Flow chart of SA algorithm program ... 1 11

Figure C.1 Plot of cost vs. iterations corresponding to partition in Table C.2 1 16

Figure C.2 Plot of cost vs. iterations corresponding to partition in Table C.4 . .. 1 19

ix

Figure C.4 Plot of cost vs.

Figure D.1 Plot of cost vs.

Figure D.2 Plot of cost vs.

Figure D.3 Plot of cost vs.

Figure D.4 Plot of cost vs.

Figure D.5 Plot of cost vs.

Figure D.6 Plot of cost vs.

Figure D.7 Plot of cost vs.

Figure D.8 Plot of cost vs.

Figure E.l Plot of cost vs.

Figure E.2 Plot of cost vs.

Figure E.3 Plot of cost vs.

Figure E.4 Plot of cost vs.

Figure E.5 Plot of cost vs.

iterations corresponding to partition in Table C.5 12]

iterations for the small example (Case 1) 123

iterations for the small example (Case 2) 124

iterations for the small example (Case 3) 124

iterations for each temperature value (Case 4) 125

iterations for the small example (Case 5) 125

iterations for the small example (Case 6) 126

iterations for the large example (Case 1) 129

iterations for the large example (Case 2) 129

iterations for belt_control module 134

iterations for engine_speed module 135

iterations for wheel_speed module 136

iterations for net dac_demo (1 MHz Clock) 138

iterations for net dac_demo (4 MHz Clock) 139

CHAPTER 1

INTRODUCTION

Electronics has made inroads in all fields of science and technology. Digital

electronics is one of the most prolific fields in the present day world. It provides the

building blocks for the wonder of the 20th century, the computer. Digital electronics is

the enabling technology for the design of high-performance systems in which reliability

and dependability are key issues, in such applications as space exploration and medical

instrumentation. The continued miniaturization of digital circuits has made it possible to

design and manufacture programmable components such as microprocessors and

microcontrollers.

With the increasing role of computers in our daily life, one may envision a world

where everything would assume an electronic dimension; i.e., either it would be

controlled by a computer or may contain one or more programmable components. This

demands reconsideration of the role of computers in our daily life. For now, a user buys

a computer as a platform to run a variety of programs that make it perform widely

different tasks. With the advances in technology and increased market competition, the

prices of computer hardware have gone so low that the highest cost a user has to pay

today is that of software. In this scenario, it is logical to think of building special-purpose

devices with optimized functionality for a dedicated application. The manufacturers of

electronics systems have already adopted this approach. Out of the millions of

microprocessors manufactured each year, only 20% are being used in the general—purpose

computers, whereas the rest of them are used in digital systems for dedicated applications

known as embedded systems.

1.1 Embedded Systems

Embedded systems are digital systems, which perform specific functions. They are

normally categorized as hardware-software systems. Embedded systems are defined as a

collection of programmable parts and dedicated hardware components that are

continuously interacting with the environment. By virtue of the requirement of

continuous interaction with the environment they are also termed as reactive systems [1].

The software runs on microcontrollers or Digital Signal Processors (DSPs) and dedicated

hardware is implemented in Application Specific Integrated Circuits (ASICs) or Field

Programmable Gate Arrays (FPGAs). Generally, software is used for features and

flexibility, while hardware is used for performance. Design of embedded systems can be

subject to many different types of constraints, including timing, size, weight, power-

consumption, reliability and cost. Rapid advancement in the field of computer aided

design (CAD) during the recent past has opened numerous vistas of research and

development in the area of embedded system design. The research efforts are now being

directed towards the development of such techniques, which not only result in meeting

the requisite performance criteria but also reduce time-to-market and cost [2]. Following

are some examples of embedded systems:

0 Consumer Electronics: medical instruments, cameras, compact disc players,

VCRs, microwave ovens and washing machines.

0 Telecommunications: networking and communication systems such as satellites

and cellular phones.

0 Automotive: engine controllers, anti-lock brakes and dashboard controllers.

0 Defense and Aviation Electronics: airborne radio and radar, fire control,

navigation and guidance, and cryptographic systems.

0 Plant and Process Control: Remote controlled toys, robots and plant monitors.

Figure 1.1 shows an example of the architecture of a typical embedded system. It

consists of programmable components such as microcontroller and DSP and dedicated

hardware such as ASIC and standard logic components. The microcontroller runs the

application program under the control of real—time operating system (RTOS). The

interface among the various components is implemented with the system bus.

Microcontroller

System Bus 3

.......Logic

Figure 1.]: Architecture of a typical embedded system.

Current practices of embedded system design tend to follow different paths for the

design of hardware and software. A specification, often incomplete and written in non-

formal language, is developed and sent to the hardware and software engineers. It

involves multiple, subsequent hardware/software development steps in which a prototype

is designed through refinement of specifications. Hardware-software partition is decided

in advance and is adhered to as much as possible, because any changes in this partition

may necessitate extensive redesign. Designers often strive to make everything fit in

software, and off-load only some parts of the design to hardware to meet timing

constraints. The problems with this design strategy are:

0 Lack of a unified hardware-software representation, which leads to difficulties in

verifying the whole system and, therefore, to incompatibilities across the

hardware-software boundary.

0 Definition of hardware-software partitions in the early design stages, which leads

to sub-optimal designs.

0 Lack of a well-defined design flow, which makes specification revision difficult,

and directly impacts time-to-market.

1.2 Hardware-Software Co-design

Hardware-Software co-design is considered to be a design methodology that can

avoid the above-mentioned disadvantages. It is trying to meet system-level objectives by

exploiting the synergism of hardware and software through their concurrent design. It can

be viewed as a management discipline, which offers the possibility to develop large

complex system products. Hardware-Software codesign is a complex process that

involves transforming a high-level system specification to an implemented hardware-

software system that meets the specification constraints.

Hardware-software co-design is predominant in the development of such systems

where hardware and software modules closely interact to solve a certain task [3]. As

discussed earlier, hardware—software systems are not new and they have continued to be

designed using conventional approaches, however, methodologies that concurrently apply

to both domains are now emerging. The growing interest in hardware-software co-design

can be attributed to following developments or compulsions:

0 Advances in enabling technologies such as system level specification and

simulation environments, prototyping techniques, formal methods for design and

verification, high-level synthesis and the emergence of CAD frameworks have

opened new venues for hardware-software co-design.

0 The increasing diversity and complexity of embedded systems demands advanced

design methods for the development of both hardware and software.

0 The market competition has made it imperative to decrease the cost of design and

test of hardware-software systems. More than ever, optimization of cost and

performance and a significant reduction in time-to-market are vital issues in the

development of embedded systems.

1.3 Co-design Methodology

Co-design as practiced today relies heavily on techniques and methods that have been

successfully applied in the past. New contributions are being made in the areas of design

automation tools, tool interface, hardware-software partitioning techniques, and enhanced

framework technologies. Currently, two approaches are followed by hardware—software

system designers [3]. The conventional approach is the traditional approach where

generic framework techniques are employed to facilitate tool encapsulation and

integration, and management support is provided for coordinated and cooperative design.

Figure 1.2 depicts a typical series of steps in this co—design methodology. This approach

has been the focus of research in the past. The model-based approach is the focus of more

recent research and favors late partitioning during the design process. Figure 1.3

illustrates the model-based approach. A brief description of both approaches follows.

1.4 Conventional Approach

1.4.1 Specification

The first step in the conventional approach is description of specification. The

objectives, requirements and constraints supplied by the user are often incomplete and

lack clarity. This step helps in removal of inconsistencies and location of missing

information, which results in formulation of system specifications. The traditional

approach of system specification as an informal natural-language description has proved

to be inadequate over the past [2][3]. It is not possible to automate the co-design process

by using natural language descriptions. The designers have therefore evolved an

executable-specification approach to overcome this limitation. In this approach the

system’s functionality is first captured with an executable language and then the

functional objects are derived and partitioned. Since the specifications are machine

readable, it is possible to develop tools to automate co-design. The specifications could

be verified using simulation, thereby eliminating errors early in the design and preventing

costly changes in the subsequent stages of the design.

System Specifications

Hardware-Software

Partitioning

Hardware Descriptio

Hardware Synthesis

Software Description

Software Synthesis

‘
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
.

Interface Synthesis

Hardware Hardware-Software

Configuration Interface

1
HW-SW Integration and Co-simulation

Y

Integrated System]

A A

System Evaluation Design Verification

Figure 1.2: Conventional co-design methodology.

System

Specification

1

a Modeling

System

Model

Validation

Refinement

Validated

System Model

Simulation and

Verification

l

[System Partitioning]

/ l \

Hardware Synthesis

Interface Synthesis

\l
Technology

Assignment

1
System Evaluation

Software Synthesis

Figure 1.3: Model-based co-design methodology.

1.4.2 Partitioning

The next step is partitioning, where the designer decides to realize various

components of the design in hardware and software. Partitioning is usually done

manually. Partitioning may be done at various levels of abstraction or at different stages

of the design. Early partitioning is preferred by the industry because of requirements of

preplanning the development cycle. This however restricts late changes in the

specifications. Late partitioning may result in better performance optimization and allows

user change requests at later stages of the design.

1.4.3 Synthesis

Synthesis is final realization of a system in hardware and software. It also provides

some feedback to the partitioning process based on the technology requirements or the

specific application of the system. Tools for software synthesis have already been

available in the past because of efforts put in by the software designers in development of

compilers. Hardware synthesis tools are also appearing which have made rapid

prototyping of hardware possible.

1.4.3.1 Hardware Synthesis

The hardware platform on which the software is to execute and the dedicated

hardware that shares the functionality are synthesized during this phase, using the results

of partitioning. Hardware synthesis involves technology binding by translation

(mapping) of hardware descriptions such as VHDL, HardwareC, BLIF, etc. into gate

level netlists.

1.4.3.2 Software Synthesis

Software synthesis involves translation of functionality into a program for a particular

processor. The software description is generated in terms of a high level language such as

C/CH. A compiler is then used to translate this description into an executable code for

the selected processor. The software synthesis may also include synthesis of the operating

system, some times called real-time operating system (RTOS) due to the real-time

reactive nature of embedded systems [1].

1.4.3.3 Interface Synthesis

In order to provide the signal/data exchange capability an interface between the

hardware and software is often required. Interface synthesis provides a means of

hardware and software synchronization. Typically signal exchange (hardware),

semaphore (software) or interrupt driven schemes are employed in this phase [1].

Implementations range from custom logic to dynamically configurable logic devices. A

central scheduler in software may also be incorporated to control the hardware processes.

1.4.4 Hardware-Software Integration and Co-simulation

The integration step involves co-simulation of hardware and software on a

heterogeneous simulator. The results of simulation provide an assessment of the

performance of design in terms of meeting the specifications and satisfaction of

constraints. The verification step ensures that the designed system performs according to

specifications.

10

1.5 Model-based Approach

Modeling is the process of conceptualizing and refining the given specifications.

There exist a wide variety of potential formalizations of a design, but often a relation

between a set of inputs and outputs characterizes the behavior of a system. This relation

could be informal, may even be expressed in natural language, but the result of such an

informal specification can easily be an expensive and unnecessary redesign. Formal

modeling of a design consists of the following components:

A functional specification, given as a set of explicit or implicit relations, which

consists of inputs, outputs and internal state information.

o A set of performance indices that evaluate the quality of the design (cost,

reliability, size, speed, power consumption, etc.) given as a set of equations,

which include at least inputs and outputs.

1» A set of constraints on these performance indices, specified as a set of

inequalities.

- A set of properties that must be satisfied, given as a set of relations over inputs,

outputs and states that can be checked against the functional specification.

1.5.1 Validation

After transforming a specification into a formal model, the whole model has to be

checked on its functional correctness. This step is known as validation. It includes

functional validation of subtasks and of the whole system, including formal verification

and functional simulation. Functional validation and simulation concerning functionality

and constraints such as hardware size, costs, timing and reusability are also performed.

11

1.5.2 Partitioning and Implementation

After validation, the designer can start to be more concrete by partitioning the model.

The decision of what to do in hardware and what in software is important. If the best

partitioning is found and validated successfully, a prototype of the hardware and the

necessary machine code is generated for testing the system in actual environment.

1.6 Partitioning Problem

One phase of the co-design process, the partitioning of specification into components

and binding them to hardware/software resources, is the focus of current research. It is

the central problem where a system designer decides which components of the system

will be implemented in hardware and which will be realized in software. Partitioning

requires an effective means of exploring the design space through evaluation of candidate

solutions, considering the interaction of multiple constraints [2]. The decision to put a

particular component in hardware or software has to be based on an evaluation of the

metrics of interest for the entire system. This evaluation can either be done in the

physical domain by actual implementation, e.g., by synthesizing the hardware to a gate

netlist on which accurate metrics for area and performance can be obtained; or it can be

done in the model domain, which is less accurate but much faster. Co-design is an

iterative process that requires repeated partitioning and evaluation for design space

exploration, and thus the speed of this process is a critical issue. In practice, it means that

the model domain is the right choice for efficient estimation and evaluation.

12

The hardware-software partitioning problem involves two key metrics: performance

and hardware size. Performance is normally improved by moving objects to hardware,

while the hardware size is obviously improved by moving objects out of hardware. This

tradeoff has led to the development of specialized algorithms for hardware-software

partitioning. Depending on the underlying theoretical model, the level of abstraction, and

the integration strategy, several performance and size estimation methods are available

[5]. Among the possible partitioning schemes derived mostly from related areas, such as

VLSI design, the deterministic, statistical, benchmarking and profiling techniques are

most popular. Deterministic estimation requires a fully specified model, with all data

dependencies removed and all costs of components known. This method leads to very

good partitions but fails whenever data items are unavailable. Statistical estimation based

on the analysis of similar systems and certain design parameters is then required.

1.7 Scope of This Work

This thesis examines the hardware-software co-design framework called POLIS to

explore the possibility of performing automatic partitioning. POLIS is a software system

which takes as input the system specifications in terms of an executable code written in a

high-level language called Esterél [6] and provides the output in terms of C” code for

software and VHDL code or technology-mapped gate-level netlists for hardware. The

partitioning process in POLIS is manual. In this thesis we investigated automatic

partitioning algorithms that may be integrated within the POLIS framework and report

the results of several case studies.

13

In the next chapter the related work in the area of co—design, with an emphasis on the

partitioning issues are discussed. Various techniques and algorithms have been explored

and their strengths and weaknesses are highlighted. Chapter 3 presents an in-depth

analysis of the design flow in POLIS and the partitioning methodology based on

simulations using the Ptolemy simulation platform. In Chapter 4, partitioning issues and

algorithms for automatic partitioning are discussed. Application of automatic partitioning

algorithms in POLIS and their implementation in C” are presented in Chapter 5. The

results obtained after the application of selected algorithms to automate the partitioning

process in POLIS and their validity are also discussed in this chapter. The last chapter

draws some conclusions and sets forth the goals for future work in this direction.

14

CHAPTER 2

RELATED WORK

Hardware-software co-design with its promise of bringing order to the chaotic world

of embedded system design, has attracted a lot of attention in recent years. Several

research groups have addressed the problem of co-design and in particular that of

hardware-software partitioning. Two research projects can be called the pioneers in the

field of hardware-software partitioning: Vulcan [7][8][9] and COSYMA [10][11]. Others

have also joined in the effort, and numerous co-design frameworks employing automatic

or manual partitioning techniques are now being developed at various universities and

research institutions. A brief description of some of these frameworks and environments

is presented in this chapter. Where applicable, the partitioning strategies employed in

each environment are also identified. Chapter 4 describes the partitioning in detail. Table

2.1 lists the co-design environments examined in this thesis along with their important

attributes.

System Input Partitioning Algorithm

1 . Vulcan HardwareC Automatic Iterative

2. COSYMA C, C" Automatic Simulated Annealing

3. LYCOS C, VHDL Automatic PACE(Fine grain partitioning)

4. COMET VHDL Automatic Scoreboard (Ratio-cut)

5. PTOLEMY C, ptl-code Manual Iterative

6. SpecSyn SpecChart Automatic Clustering

7. TOSCA C, VHDL Automatic Clustering

8. POLIS Esterél Manual None

9. Chinook Verilog Manual None

Table 2.1: List of co-design frameworks examined in this thesis.

15

2.1 Vulcan

The Vulcan system was developed at Stanford University [7][8]. The target

architecture consists of single CPU and one or more ASICs, connected to the CPU via a

communication bus. It starts with an all-hardware solution specified in HardwareC. The

input to Vulcan consists of two components: system’s functionality and design

constraints. The specification is translated into an internal graph-based representation on

which the partitioning is performed. The partitioning algorithm uses an iterative approach

to move operations from hardware to software under a timing constraint. It tries to keep

the communication cost minimum by keeping the neighboring vertices together in either

software or hardware. The Vulcan system attempts to reduce the size of hardware by

moving the functionality to software using a CPU. The system can handle multiple

processes as hardware and software can run in parallel.

2.2 COSYMA

COSYMA is an acronym for COSYnthesis of eMbedded Architectures. It is a

hardware-software codesign system designed at Technical University of Braunsheweig,

Sweden [10][11]. COSYMA has a graphical user interface which runs under X-windows

environment. The target architecture for COSYMA consists of one CPU and one ASIC,

where ASIC is used as a co-processor to speed up the execution.

The input to COSYMA comprises a high level description of the algorithm in C" and

a constraint file. C" is a C dialect with some restrictions and modifications to ANSI C.

The objective of COSYMA is to partition the algorithmic description into hardware-

software parts such that the user supplied constraints are met while keeping the hardware

16

cost minimum. The system provides the user with information to fine-tune or remove the

emerging bottlenecks from the algorithmic description.

Input to COSYMA can be of three types. The input file can be in ANSI C, pure C“ or

a C" program with parallel extensions to encode concurrent interacting processes. The

user can specify rate constraints, inter/intra-process constraints and communication

between processes. The input description is translated to a syntax graph. The run-time

analysis of the program is then performed. For the parallel extensions, a scheduler orders

the processes for a single processor environment with respect to their timing and

communication constraints. COSYMA uses simulated annealing algorithm for automatic

partitioning. The algorithm starts with an all-software solution and moves the chunks of

software code to hardware until the timing constraints are met. The software part is

compiled by a C compiler and the hardware part is handed over to the high level

synthesis. Finally a co—simulation is performed using the compiled software part and the

timing information of the hardware part supplied by the high level synthesis.

2.3 LYCOS: The Lyngby Co-Synthesis System

LYCOS is an experimental co-synthesis environment being developed at Technical

University of Denmark [12]. LYCOS targets an architecture consisting of a single CPU

and a single dedicated hardware component (ASIC, FPGA etc.) communicating through

memory mapped 1/0. The areas of application include DSP, embedded systems, software

execution acceleration and hardware emulation and prototyping.

LYCOS is built as a suite of tools centered around an implementation independent

model of computation based on communicating Control Data Flow Graphs (CDFGs). The

17

design process starts with an input specification described in either C or VHDL translated

to the computational model, Quenya. The CDFGs are divided into chunks of computation

called Basic Scheduling Blocks (BSBs) [13], that may be moved between hardware and

software. An automatic partitioning algorithm called PACE [14] is used to partition the

CDFG by moving BSBs from software to hardware to achieve the best speed-up while

keeping the total hardware area less than or equal to the area available on a particular

ASIC or FPGA. PACE is based on a fine-grain partitioning [15] approach where adjacent

blocks sharing the same variables are moved to hardware so as to reduce communication

between hardware and software as well as increase hardware utilization.

2.4 COMET

The main goal of the COMET project [16] at University of Cincinnati is to transform

a high-level system specification into application-specific electronic signal processing

modules using a hardware-software co-synthesis process and to produce working

hardware within a two—week time period. The input to and output from the COMET

system are in VHDL. The design framework maintains a database of modules with a

variety of functionality.

The system specification is divided into modules, matched to component

specifications, and then allocated to either hardware or software synthesis processes. The

Co-synthesis process is iterative during which alternate bindings are used to satisfy

constraints such as performance and area requirements. The Co-synthesis tool issues

requests to the design database using qualifications on design properties, and the query

processor determines the set of design objects that match the request. In other words, a

18

query is a module description, and any modules in the database that have at least the

desired functionality (possibly additional functionality) are returned. The co-synthesis

tool analyzes candidate solutions and determines the best assignment of resources to

hardware and software using an iterative binding approach, called Scoreboard algorithm.

The hardware and software specifications are processed by hardware and software

synthesis tools, then integrated to form a system that satisfies the initial specifications.

The end result of these transformations is an application-specific hardware design that

can be fabricated along with the embedded software that will be executed on the

manufactured hardware.

2.5 PTOLEMY

The PTOLEMY [17] [19] software is a system-level design framework developed at

University of California, Berkeley. The objectives of the PTOLEMY project include

most aspects of designing signal processing and communications systems, ranging from

designing and simulating algorithms to synthesizing hardware and software, parallelizing

algorithms, and prototyping real-time systems. PTOLEMY allows the interaction of

diverse models of computation by using the object-oriented principles of polymorphism

and information hiding. For example, using PTOLEMY, a high-level data-flow model of

a signal processing system can be connected to a hardware simulator that in turn may be

connected to a discrete—event model of a communication network.

PTOLEMY is still in a state of evolution. Recent enhancements of the software have

been in the field of data-flow modeling of algorithms, synthesis of embedded software

from such data-flow models, animation and visualization, multidimensional signal

19

processing, managing complexity by means of higher-order functions, hardware-software

partitioning, and VHDL code generation.

PTOLEMY has been used for a broad range of applications including signal

processing, telecommunications, parallel processing, wireless communications, network

design, radio astronomy, real time systems, and hardware-software co-design. The main

emphasis in PTOLEMY is on co-simulation of system modules targeted for different

implementations. A hardware-software partitioning algorithm [18] has also been

implemented in the framework of PTOLEMY. The input to this algorithm is a system

level description. The partitioning goal is to minimize hardware area given a global

execution time constraint.

2.6 SpecSyn

SpecSyn [3] is another Co-design system, which incorporates automatic hardware-

software partitioning. It extends the scope of system design from the previously discussed

systems in three key ways:

0 It includes two additional component types such as memories and buses,

o It allows inclusion of functionality in terms of variables and communication

channels that together with behaviors comprise an executable specification, and

0 The numbers and types of physical system components can be changed as an

integral part of system design.

In SpecSyn the input specification is produced in the visual language SpecChart

which is based on Statecharts [21]. This is translated into an intermediate system

representation called SLIF [22], on which the system analysis and partitioning is

20

performed. SpecSyn supports several partitioning algorithms [3] & [23]. [23] Presents a

combined approach where clustering is used to reduce the number of code blocks to be

considered and a greedy algorithm is used to obtain the partition. The interesting aspect

of this approach is that it is able to reach regions in the design space, which lie between

the regions obtained by fast greedy algorithms and those obtained by the more costly

simulated annealing algorithms.

2.7 TOSCA

In TOSCA [20] the internal representation is based on concurrent hierarchical finite state

machines (FSM) which are generated from either standard languages such as C or VHDL

or from higher-level languages such as SpecChart [2]. Hardware-software partitioning is

done automatically by a clustering algorithm, which tries to cluster FSMs based on some

closeness criteria. The target architecture for TOSCA is a single standard processor and

one or more coprocessors embedded on a single chip.

2.8 Other Frameworks

A number of researchers have focused on algorithmic aspects rather than complete

systems. Janstch et a1. [24], [25] present a dynamic programming algorithm to solve the

partitioning problem of optimizing an existing C program for speed, given a hardware

area constraint. The algorithm is derived from the Knapsack Stuffing algorithm [26] and

solves (with exponential memory requirements) the partitioning problem for a

partitioning model in which blocks can include other blocks and blocks in general

therefore cannot be moved to/from hardware independently of each other. A full loop

21

block for example includes the loop body and loop test blocks but all three are considered

simultaneously in their model. Another approach using a high level language as input is

presented by Barros et a1. [4]. The partitioning algorithm is a two-stage clustering

algorithm which selects groups of code based on similarity measures obtained from

classification of assignments in the input specification, which is described in UNITY

[27].

Co-design systems in which hardware-software partitioning is obtained with user

interaction were also investigated. Among these are POLIS [1], PARTIF [28] and

CASTLE [29]. POLIS is the focus of our research and its features are discussed in detail

in Chapter 3. PARTIF is an interactive partitioning tool, which allows the designer to

explore different partitions by applying a small set of transformation and decomposition

rules. These rules are applied to a system representation consisting of hierarchical

concurrent FSMs. The CASTLE system is another co-design framework where the input

specs are given in a standard language, which can be Verilog, VHDL or C/C-H-. This

input specification is translated into a common representation based on control data flow

graphs called SIR, which provides the backbone for all tools. As for POLIS and PARTIF,

the partitioning is done manually, but in CASTLE it is based on mappings from a

hardware library which is used to specify complex components including

microprocessors.

In the Chinook [30] system the emphasis is on module interface and synchronization.

The system is used for real-time reactive controllers initially specified in Verilog.

Chinook does not provide automatic hardware-software partitioning, but leaves it to the

designer, nor does it provide code generation tools for the target processors, but uses

22

standard C compilers. However, Chinook does synthesize the hardware and software

needed for inter- process communication which is a difficult task as different components

may not initially fit very well together.

This chapter has shown that there are two main directions for hardware-software

partitioning methods:

0 Automatic partitioning, which almost always means a restricted target architecture

i.e. one processor and one or more ASICs/FPGAs. The emphasis in automatic

partitioning is on transferring the functionality from one domain to the other so as

to achieve the best performance at a minimum cost.

0 Manual partitioning, which typically allows for more advanced architectures

involves detailed analysis of design tradeoffs. The complexity of the system and

design constraints demand exploration of a variety of architectural choices to

meet the system specifications. Also, with advanced target architectures,

synchronization and communication between different components becomes

much more difficult and very important.

With this review, we may now proceed to explore the design methodology adopted by

POLIS.

23

CHAPTER 3

POLIS

3.1 Introduction

POLIS is a software system developed at the University of California Berkeley for

hardware-software co-design of control—dominated embedded systems [1]. The main

aspect of POLIS that distinguishes it from other co-design methods is the use of a formal

model of computation. This model, called Co-design Finite State Machine (CFSM) [1], is

based on the Extended Finite State Machine (EFSM) [1] model operating on a set of

finite-valued (enumerated or integer sub-range) variables by using arithmetic, relational

and Boolean operators as well as user-defined functions. EFSM model is similar to the

FSM model, but the transition relation may also depend on a set of internal variables.

POLIS offers a flexible environment for design analysis and verification.

The design can be analyzed at the behavioral level either with formal tools such as

model checking or by co-simulation in a heterogeneous simulation environment offered

by PTOLEMY, another tool for co-design. The user can select an architecture for

evaluation of design tradeoffs with respect to constraints during the simulation phase.

Hardware-software partitioning is based on the results of simulation. Software synthesis

is fully automated including generation of a custom scheduler and hardware synthesis

also involves limited user interaction. POLIS has a path towards an emulation board

including Xilinx FPGAs [1], the microprocessor of choice, and A/D and D/A interfaces.

24

3.1.1 Model of Computation (CFSM)

A Co-design Finite State Machine (CFSM), as does a classical finite state machine,

transforms a set of inputs into a set of outputs with only a finite number of internal states.

The difference between the two models is that the synchronous communication model of

classical concurrent FSMs is replaced in the CFSM model by a finite, non-zero,

unbounded reaction time. This model of computation can also be described as Globally

Asynchronous, Locally Synchronous. Each element of a network of CFSMs describes a

component of the system to be modeled.

The CFSM specification is a priori unbiased towards a hardware or software

implementation. While both perform the same computation for each CFSM transition,

hardware and software exhibit different delay characteristics. A synchronous hardware

implementation of CFSM can execute a transition in one clock cycle, while a software

implementation will require more than one clock cycle. CFSM is also a synthesizable and

verifiable model, because many existing theories and tools for the FSM model can be

easily adapted for CFSM. Each transition of a CFSM is an atomic operation. All the

analysis and synthesis steps ensure that:

0 A consistent snapshot of the system-state is taken just before the transition is

executed.

0 The transition is executed, thus updating the internal state and output of the

CFSM.

o The result of the transition is propagated to the other CFSMs and to the

environment.

25

The interaction between CFSMs is asynchronous, in order to support neutral

specification of hardware and software components by means of a single CFSM network.

This means that:

The execution time for a CFSM transition is unknown but assumed to be non-zero

in order to avoid the problem of zero-delay feedback loops. The synthesis

procedure refines this initial specification, by adding more precise timing

information, as more design choices are made (e.g. partitioning, processor

selection, compilation, etc). The designer, during the analysis steps, may on the

other hand add constraints on this timing information that synthesis process

should satisfy. The overall design philosophy of POLIS is to provide the designer

with such tools that help in meeting these constraints, rather than provide a quick-

fix solution.

Communication between CFSMs is not by means of shared variables (as in the

classical composition of finite state machines), but by means of events. An event

is a semi-synchronizing communication primitive that is both powerful enough to

represent practical design specifications and efficiently implementable in

hardware, software, and between the two domains.

CFSM’s behavior and the CFSM network topology are represented using an

intermediate language called SHIFT, for Software Hardware Interchange FormaT.

SHIFT is however, not meant to be used as a specification language. The FSM semantics

of each CFSM ensures that any of the following graphical or textual languages can be

used to specify individual behaviors:

O Reactive synchronous languages, such as StateCharts, Esterél, Lustre and Signal;

26

0 The so-called synthesizable subset of hardware description languages such as

VHDL and Verilog; and

0 System specification languages with FSM semantics such as SDL [2].

The interconnection between the CFSMS, on the other hand, can be specified (due to

the distinctive asynchronous interconnection semantics) within the POLIS environment,

using either a textual netlist auxiliary language or a graphical editor VEM [17] that is part

of the PTOLEMY co—simulation environment.

Events are emitted by CFSMs and/or by the environment over a set of carriers called

signals. One or more CFSMs can detect the emission of each event (the actual delay

depends on several implementation-related factors, such as partitioning, scheduling

policy and so on). Each detecting CFSM has its own copy of the event, and each emission

can be detected at most once by each receiving CFSM.

Signals can carry control information, data information, or both. Events occurring on

pure control signals, such as reset input, can be used only to trigger a transition of a

CFSM. Once the receiver CFSM has detected an event, it can no longer be detected again

until its sender CFSM re-emits it. Values carried by data signals, such as keyboard input

or a data sample, can be used as inputs to and output from the CFSM data path. Signals

carrying only control information are often called pure signals, while signals carrying

only data information are often called pure values. Each CFSM transition has a pre-

condition of a set of:

0 Input event presence or absence conditions (only for signals with a control part)

0 Boolean functions of some relational operations over the values of its input

signals.

27

The post-condition is the conjunction of a set of:

0 Output event presence or absence conditions (presence implies emission, absence

implies no action), and

0 Values assigned to output data signals.

Note that no buffering is provided by the POLIS communication mechanism, apart

from the event and value information. This means that events can be overwritten, if the

sending end is faster than the receiving end. This overwriting, also called “losing” may or

may not be a problem depending both on the application and the type of the event. The

designer can make sure that “critical” events are never lost either by:

0 Providing an explicit handshaking mechanism, built by using a set of signals,

between the CFSMs, or

0 Using synthesis directives, such as partitioning choices or scheduling techniques,

that ensure that no such loss can ever occur. For example, this can be achieved by:

a) implementing the receiving CFSM in hardware

b) implementing both CFSMs in software and using a round-robin scheduler that

executes both at the same rate.

3.2 Design Flow

3.2.1 Overview

An overview of the design flow in the POLIS system is depicted in Figure 3.1. The

detailed composition of POLIS is shown in Figure 3.2. The input specifications are

described in Esterél language. The Esterél code is first translated to SHIFT code. This

format is used by POLIS to generate S-Graphs similar to Control Data Flow Graph

28

(CDFG) for software synthesis and BLIF (Berkeley Logic Interchange Format) code for

hardware synthesis. In the architecture selection step, a processor is chosen. POLIS

supports Motorola 68HC11 and 68832, and MIPS R3000 processors. POLIS has

powerful software and hardware cost estimation capabilities, which can guide the user in

selection of the best architecture.

Design specification (Esterél) ‘

1

Translation to SHIFT

Architecture selection Design

Modification

DESig." v
valrdatron

Partitioning, and

architecture and scheduler

selection by high-level co-

simulation (PTOLEMY)

Hw, Sw and Interface synthesis

j

Rapid prototyping

Figure 3.1: Overview of the design flow in POLIS [courtesy POLIS group].

29

[Formal Languages I

Translators

if

I System Behavior i

 ,

SChedUIGI floning ormal EAL

$flfiéme I Verification

l nterface

Synthesis

\

Constraints

Erttioned Specification

/ i

ii 1 1i i 1r it

[S—Graph | r Unofiimized HW I | HW Interfaces I [Verif Interm. Format]

Hw Estimation

Sw Estimation

OSSy® Task Synthesis Logic Synthesis

IOptmized HW

Partitioning

O mized HW

 1?

.1

BOARD LEVELw: Standard Components

‘1

[Physical Prototype J

Figure 3.2: The POLIS design flow [courtesy POLIS group].

30

The S-Graph is further translated to C code and PTOLEMY code for use by

PTOLEMY for simulation. The cost estimates are also passed to PTOLEMY for use in

simulation. The user can interactively define the system architecture within PTOLEMY

as well by changing the implementation of each CFSM to software or hardware. The

software and hardware models are executed in the same simulation environment, and the

simulation code is the same that will run on the target processor. The simulation can be

done at two levels of abstraction: functional and timing. In functional simulation, timing

is ignored and only the functional correctness is checked. In timing-based simulation, the

timing is approximated using cycle count estimations for software and using a cycle-

based simulation for hardware.

After starting the simulation, input events are generated and then the overflow file is

checked for any missed deadlines. The processor clock speed can be adjusted to simulate

different versions of a processor. If the highest speed processor is also unable to meet the

deadlines, then the critical CFSM is transferred to hardware by changing its

implementation. Depending upon the results of co-simulation, the final partitioning is

decided. A complete SHIFT netlist describing the CFSM-network topology and

implementation choice for each CFSM is then created. This SHIFT file is passed back to

POLIS for synthesis of hardware (BLIF) and software (C code). The final software also

contains a RTOS for the target processor, and the hardware contains the interface

circuitry required for communication between hardware and software. There is a path

available in POLIS for rapid prototyping of final design for functional validation or in-

system testing. Results of this step may then be fed back for the improvement in design.

31

3.2.2 High Level Language Translation

In POLIS, designers write their specifications in a high level language (e.g., Esterél,

graphical FSMs, subsets of Verilog or VHDL) that can be directly translated into CFSMs.

Any high level language with precise semantics based on extended FSMs can be used to

model individual CFSMs. Currently, however, Esterél is supported directly. The Esterél

programs are translated to SHIFT format using the command strlZshift. The Esterél

compiler first compiles Esterél code and then another tool othShift translates the output

to SHIFT.

3.2.3 Formal Verification

The formal specification and synthesis methodology embedded within POLIS makes

it possible to interface directly with existing formal verification algorithms that are based

on FSMs. POLIS includes a translator from the CFSM to the FSM formalism which can

be fed directly to verification systems (e. g. V18 [31]). In addition to uncovering bugs in a

design, it also uses formal verification to guide the synthesis process. Since the abstract

CFSM model covers the behavior of all possible hardware-software implementations at

once, it is possible to refine the specification based on the results of formal verification.

Formal verification tools of today still have problems with complexity. A methodology

has been developed that incorporates a set of rules specific to POLIS and CFSMs so that

it is now possible to verify larger designs.

32

3.2.3 System Co-simulation

System level hardware-software co-simulation provides feedback on the design

choices. These design choices include hardware-software partitioning, CPU selection,

and scheduler selection. Fast co-simulation, in the order of millions of clock cycles per

second (on a workstation) is possible due to the software synthesis and performance

estimation techniques available. The purpose of high-level co-simulation in POLIS is to

provide the designer with a flexible environment where architectural tradeoffs can be

explored. POLIS currently utilizes PTOLEMY as a simulation engine, but it is not

limited to PTOLEMY. VHDL code including all the co-simulation information such as

code size and delays etc. can also be generated by POLIS.

3.2.4 Partitioning and Architecture Selection

Making system—level design decisions such as hardware-software partitioning, target

architecture selection and scheduler selection is not a trivial task. These decisions are

based heavily on design experience and are very difficult to automate. In POLIS the

designer is provided with an environment to quickly evaluate any such decisions through

various feedback mechanisms from either formal verification or system co-simulation.

This feedback is however limited to the results of simulation in terms of signal arrival

times and missed deadlines. The key advantage of CFSM specification is that it is

implementation-independent. The designer can interactively explore the implementation

options using the same user interface as co-simulation.

33

3.2.5 Hardware Synthesis

A CFSM sub-network chosen for hardware implementation is implemented and

optimized using logic synthesis techniques from SIS [32]. Each CFSM, interpreted as a

Register-Transfer Level (RTL) specification, can be mapped into BLIF, XNF (XILINX

Netlist Format), VHDL or Verilog.

3.2.6 Software Synthesis

A CFSM sub-network chosen for software implementation is mapped into a software

structure that includes a procedure for each CFSM, together with a simple real-time

operating system (RTOS).

The reactive behavior of CFSM is synthesized in a two-step process:

0 Implement and optimize the desired behavior in a high-level, processor-

independent representation similar to a CDFG,

0 Translate the CDFG into portable C code and use any available compiler to

implement and optimize it in a specific microcontroller dependent instruction set.

A timing estimator quickly analyzes the program and reports code size and speed

characteristics. The algorithm uses a formula, with parameters obtained from benchmark

programs, to compute the delay of each node in the CDFG for various microcontroller

architectures (characterization data for MIPS R3000 and Motorola 68HC11 and 68332

are already available). The precision of the estimator, with respect to true cycle counting,

is currently on the order of i 20 %. An application-specific operating system, consisting

34

of a scheduler (e.g. Rate-Monotonic and Deadline-Monotonic) and I/O drivers, is

generated for each partitioned design.

3.2.7 Interfacing Implementation Domains

Interfaces between different implementation domains (hardware-software) are

automatically synthesized within POLIS. These interfaces come in the form of

cooperating circuits and software procedures (I/O drivers) embedded in the synthesized

implementation. Communication can be through I/O ports available on the micro-

controller, or general memory-mapped I/O.

3.2.8 Rapid Prototyping

A rapid prototyping environment is also available in POLIS based on APTIX architecture

[1] [33] system.

3.3 Design Example

In order to elaborate the various design steps in POLIS, it is convenient to work through

an example. A seat-belt alarm example given in POLIS user’s manual [33] is highlighted

in this work to explain the design methodology. Figure 3.3 shows the transition diagram

for the system. The specification of the system is stated as follows:

When the ignition key is turned on, wait for five seconds for the belt to be

fastened. If the belt is not fastened within five seconds, turn the alarm on for five

seconds. If the belt is fastened or the ignition is turned off, then don’t turn the

alarm on.

35

key_on / start__timer

key_off OR

belt_on / alarm (0)
end_10 OR end_5 / alarm (1)

belt_on OR

key_off OR

key_on / alarm (0)

Figure 3.3: Transition diagram of seat belt controller [courtesy POLIS group].

3.3.1 Specification

The initial specification of the system is written in Esterél language. The system is

divided into two modules; belt_control and timer, and functionality of each module is

then described in terms of an Esterél program. The belt_control program is shown below:

module belt_control:

input reset, key_on, key_off, belt_on, end_5, end_10;

output alarm: boolean, start_timer;

loop

abort

emit alarm(false);

every key_on do

abort

emit start_timer;

await end_5;

emit alarm(true);

await end_lO;

when [key_off or belt_on];

emit alarm(false);

end

when reset

and

36

The first line of each Esterél program gives a name to the module being described. The

next two lines declare the input and output signals of the module. All input signals here

are control signals meaning they do not have any values associated. One of the output

signals alarm has a value of type Boolean. The loop statement starts an infinite loop. The

abort statement instantaneously kills its body whenever reset signal is received. The

emit alarm (false) signal has an associated Boolean value to turn the alarm off. The

every key_on do statement executes its body every time key_on is present. The abort

statement instantaneously kills its body whenever key_ofi‘ or belt_on signals are present.

The emit start_timer signal is an output to be sent to timer module. The await end_5

halts the execution until end_5 signal is received. The emit alarm (true) signal is an

output signal with a value (true) to turn the alarm on. The await end_10 again halts the

execution until end_10 signal is received, which means that five seconds have elapsed

since the alarm was turned on. The emit alarm (false) signal then turns the alarm off and

the system goes back to its initial or OFF state.

Following is a listing of timer module:

modulo timer:

constant count_5 , count__lO : integer;

input msec, start_timer;

output end_5, end_10;

every start_timer do

await count_5 msec;

emit end_5;

await count_lO msec;

emit end_10 ;

and

The second line declares a constant, whose actual value will be defined later in the

design. The timer starts counting whenever it receives the start_timer signal. The await

37

const_5 msec statement counts const_5 transitions in which signal msec has an event, and

then yields control to the emit statement that emits the corresponding output signals.

3.3.2 Estimation

The next step is to read the design into POLIS. The POLIS environment is invoked by

giving the command polis at the command prompt. The POLIS interpreter is then used to

enter POLIS commands. The SHIFT file is read by giving the command read_shift

filename. To read the belt_control.shift file, the following command is used:

read_shift -a belt_control.shift;

where -a means that no auxiliary file is used

In the next step an implementation choice for the module is specified, using

set_impl -s/h, where -s means software and -h means hardware. Initially software

implementation is selected unless a module is specified for implementation in hardware

only. Following command sets the implementation to software:

set_impl -s

The module is assigned to the selected partition by the command partition. The

selection of target microprocessor is done by using the command set arch processor. We

will select Motorola 68HC11 as our target processor.

partition

set arch 68hc11

The estimation tools are run to get an idea of the size and speed of the resulting

software. The command is:

read_cost_param

38

The SHIFT format is now translated to S—Graph representation by build_sg

command. The graph is then optimized internally by POLIS and translated to C code

using:

sg-to-c -d ptolemy

The PTOLEMY code is also generated for use in simulation by the command:

write__pl -d ptolemy

3.3.3 Co-simulation

Now we exit from the POLIS program and use the Makefiles, available in POLIS

distribution, to create enough information to simulate the entire design in PTOLEMY.

Subsequently the modules are instantiated in PTOLEMY environment as stars and their

interconnections are described as galaxies. After setting various parameters we run the

simulation to verify that the design behaves as expected. The design can be improved by

selecting different implementation of the modules or selecting different architectures.

This is a manual process therefore the quality of design depends upon the user’s

experience rather than the design choices available. Once the design has been verified

using this mixed simulation, a real implementation is created. We again go back to

POLIS and read the final design into it. An auxiliary file is also generated to indicate the

interconnections between the modules. Each module is designated for implementation in

either hardware or software. The synthesis process performs different operations for

hardware and software.

39

3.3.4 Hardware Synthesis

The SHIFT files are translated to BLIF files. The command for this is:

net_to_blif

This representation is then optimized using SIS, which is embedded in POLIS.

Finally the netlist is written out either as an interconnection of gates and flip-flops or as

an XNF file for the Xilinx FPGAs. The complete set of commands for hardware

implementation is as follows:

read_shift filenameshift

propagate_const

set_impl -h

set arch 68hc11

partition

net_to_blif

print_stats

source script.rugged

write_blif filenameblif

print_stats

For ASIC:

read_library librarygenlib

map -W

write_blif -n filenamegate

For FPGA (XHJNX 3000 family):

read_be filenameblif

xl__merge -l -o temp.merge

write_xnf -M -m -d xilinx temp.merge filename _3000.xnf

For VHDL (Outside POLIS):

blivast librarygenlib filenamegate -ofilename.vhd

Alternatively the designer can also use following make utilities for hardware synthesis

but some commands do not perform the required operations due «to certain limitations:

make hw_opt

make an000

40

3.3.5 Software Synthesis

The steps for creating the S-Graph are repeated with the modules for software

synthesis. Finally the C code for the software modules and the operating system is

generated. The command for generation of operating system is:

gen_os -d belt_part_sg

The set of commands for software synthesis is as follows:

read_shiftfilename.shift

propagate_const

set_impl -s

set arch 68hc11

partition

read_cost_param

print_cost -c

build_sg

print_cost -s

sg_to__c -d sg_directory

gen_os -d sg_directory

Alternatively the whole sequence can be executed by the single command:

make sw

The following command generates a VHDL simulation model of the software:

sg_to_vhdl

Alternatively the following command can be used to generate a VHDL file:

make beh_vhdl

3.3.6 Implementation

The output of POLIS can now be used to implement the system. The C code is

compiled for the target processor and loaded onto a prototyping board. The hardware

netlist is downloaded onto a FPGA using the Xilinx software tools.

41

CHAPTER 4

SYSTEM PARTITIONING

Partitioning is one of the central problems in the design of embedded systems.

Hardware-software partitioning is a way of deciding that which part or task of the system

is to be implemented in hardware and which in software. Finding the best partition to

implement a system’s functionality is a critical and challenging task. To achieve this

goal a set of system components is to be selected and the system’s functionality is to be

allocated amongst them. The partition must lead to an implementation that satisfies a set

of design constraints, such as cost, performance, size and power consumption.

Partitioning of a system specification onto a target-architecture consisting of a single

CPU and a single ASIC has been investigated by a number of research groups [1, 8, 11,

12]. This architecture is of interest in situations where the performance requirements can

not be met by general-purpose microprocessor or where a complete hardware solution is

too costly. Different approaches have been adopted by different researchers for

partitioning of a hardware-software system based on the specific application areas, such

as embedded systems, DSP, software execution acceleration and hardware emulation and

prototyping. One of the important issues during partitioning is the way the

communication between hardware and software is taken into account. Gupta and De

Micheli [8] have presented a partitioning approach which starts from an all-hardware

solution. Their partitioning algorithm takes communications into account and is able to

reduce communication when neighboring vertices are placed together in either software

or hardware. The algorithm presented by Henkle, Ernst et a1. [11] is based on simulated

annealing algorithm which moves chunks of software code to hardware until timing

42

constraints are met. The algorithm accounts for communication and only variables that

need to be transferred are actually taken into account. Kalavade and Lee [18] have

presented an algorithm that also takes communications into account by attributing a fixed

communication time to each pair of blocks. The COMET [16] project employs the

scoreboard algorithm, which involves a three-step evaluation process for selecting the

best node to move based on user supplied constraints.

4.1 Partitioning Approaches

The partitioning problem is of two types: homogenous or heterogeneous. The

homogenous partitioning attempts to partition a system into a minimal number of parts

that are completely implemented in either hardware or software. In case of hardware the

goal is to reduce the size, whereas software implementations try to achieve a speed up in

overall execution time. The focus of heterogeneous partitioning problem is to partition

the system into hardware and software implementations. The problem of partitioning into

hardware and software is many times more complex as compared to partitioning for

implementation into purely hardware or software.

There are two different approaches to system partitioning: structural and functional.

In the structural approach, the system is implemented with structure first and then

partitioned. In the functional approach, the partitioning is done prior to implementation.

4.1.1 Structural Partitioning

Structural approach is very popular in hardware design because of its straightforward

methods for obtaining size and pin estimates. Another factor for its popularity is the case

43

with which it allows mapping of structural partitioning problem to a graph-partitioning

problem, for which an extensive body of formal theory, algorithms and tools exist. It has

produced good results in the past due to relatively small sizes of system components.

Structural partitioning suffers from three main drawbacks.

o It is difficult to make decisions to trade off size and performance while

implementing the structure because subsequent partitioning steps may nullify

them. It may lead to increased size of hardware or inter-chip communication.

0 With the increasing size of systems the number of objects tend to grow. This

leads to poor results from partitioning algorithms. It also makes it more difficult

to interact during the partitioning process.

0 The structural approach is limited to hardware design. It does not support

allocation of the functionality to software.

4.1.2 Functional Partitioning

In this approach, a system’s functionality is first divided into non-divisible parts

called functional objects. These objects are then partitioned among system components,

which are implemented either as hardware or software. The functional approach is more

suited to hardware-software co-design due to several advantages over structural

approach.

One of the key advantages is that it is possible to make performance/design tradeoffs

during the subsequent structural implementation stage with full knowledge of the

partition. The performance estimates obtained during the structural implementation stage

are accurate because of the complete knowledge of all data transfers between system

44

components. The second advantage is reduction in number of objects to be partitioned,

since there are fewer functional objects than Register-Transfer level (RTL) structural

objects. It is easier for the designer to interact with the partitioning algorithm while

dealing with fewer objects. Functional approach naturally provides a means of hardware-

software partitioning, since the partitioned objects are functional. Each object can either

be implemented in hardware or software depending upon the system’s requirements.

4.2 Partitioning Issues

It is easier to understand and compare various partitioning techniques if the

partitioning problem is divided into seven essential issues as depicted in Figure 4.1 and

described below.

4.2.1 Specification and Levels of Abstraction

Partitioning techniques greatly depend upon the specification language used and the

abstraction level of the conceptual model. The language alone may not efficiently

describe the functionality in terms of specifications, since the same language can be used

to represent many different conceptual models. It is, therefore, important to define the

input at an appropriate level of abstraction. At low level of abstraction, the system is

defined as a large number of low-complexity objects. At higher levels the system consists

of small number of high-complexity objects.

The highest abstraction level is the task level. Here the conceptual model does not

define the actual computations but the data transfers between the tasks and other

characteristics such as size or delay are defined. A data flow graph of tasks and

45

behavioral level description are examples of task level abstraction. At the next lower

level, the system is described by a control data flow graph (CDFG), which includes

arithmetic and control operations. It is the most-used level in DSP applications and a

variety of partitioning algorithms is based on this representation. The next level involves

FSMs for system description. They may be simple FSMs or complex ones like CFSMs in

POLIS. At RTL the input represents a set of register transfers for each operation. The

lowest level of abstraction is structural interconnection of physical components

commonly known as netlist.

Specification & Levels of

Abstraction

I

O O Granularity O O

System-component Allocation

[Metrics and Estimation]

[Cost Function J

l

[Partitioning Algorithm]

i

COutput>

Figure 4.1: Essential partitioning issues [2].

46

It is possible to define a single input specification with multiple parts at various levels

of abstraction depending upon the intermediate implementations during the design.

4.2.2 Granularity

The extent of decomposition of the input specifications decides the granularity of the

functional objects. A large number of objects indicates fine granularity with small

amount of specification allocated to each object; whereas coarse granularity implies a

small number of objects, each with a lot of functionality assigned. The granularity greatly

depends upon the level of abstraction. The task level has the most flexibility for

decomposition, where each task could further be decomposed into procedures and

statement blocks. Fine granularity is better suited for partitioning Optimization but it has

certain drawbacks, such as more computation time, difficulty in recognizing fine-grained

objects and difficulty in estimation.

4.2.3 System-Component Allocation

A partitioning algorithm needs to know the types of system components to which the

functional objects may be mapped. These include programmable devices such as

processors with associated memories, l/O devices and buses as well as dedicated

hardware such as ASICs, FPGAs and standard logic components. Selection of these

components is greatly influenced by the specifications and constraints of the design.

47

4.2.4 Metrics and Estimation

Metrics are the attributes of a partition that determine its goodness. These include

monetary cost, execution time, program size, hardware area, power consumption,

communication bandwidth, testability and reliability.

Some techniques adopt an incremental approach towards partitioning, where objects

are grouped one at a time. A new type of metric is required for this technique that could

predict the benefit of grouping any two objects. Such metrics are called closeness

metrics. These metrics help in reducing communication between hardware and software

by grouping functions sharing same variables in software or data paths in hardware.

Computation of metrics is another challenge that needs to be addressed during the co-

design process. There are two options available for computing the metrics. Either the

system is actually created, resulting in accurate metric values or a rough implementation

is created resulting in estimated values. The second option is also known as estimation.

An estimation process must posses speed and accuracy. These are two conflicting

requirements because speed requires less amount of detail in the implementation, whereas

the accuracy requires detailed implementation. The lower the level of abstraction the

better are the estimates.

4.2.5 Cost Function

A cost function defines the goodness of a partition in terms of various metrics.

Different metrics of a system have conflicting requirements and it is very important to

assess their combined effect as a single value. The cost function is a linear weighted-sum

expression of the products of metrics and their associated weights, where weight

48

indicates each metric’s relative importance to the goodness of partition. For example the

following cost function is a weighted-sum expression of four metric values; hardware-

area (A), program—size (S), program-execution-time (T) and hardware-delay (D) are

weighted by constants w1, w2, W3 and m respectively, and then summed:

Cost_Func =w,-A+w2-S+w3-T+w4-D

selecting a larger value for w than wz, W3 and W4 makes the hardware-area more

important metric.

It is more common to incorporate the constraints into the cost function to help make

constraints driven design decisions. The partitions that meet the constraints are

considered better than those that do not. A generalized cost function, incorporating the

constraints can be written as follows:

Cost_Func 2 EW; -(m,. —c‘.)

i=1

where i, is the index of metric, n is the total number of metrics, w,- is the weight

for the ith metric, m,- is the ith metric and c,- is the constraint on ith metric.

It is also important to take care of the units of various metrics included in the cost

function. It would not be a good idea to compare units of area with the units of delay. To

overcome this problem normalization of metric’s units is carried out. It is achieved by

dividing the difference of the metric and constraint by the constraint. A cost function

employing this technique is given below:

Cost_Func = 2": w, ~(ml. - c,)/c,.

i=1

49

While a cost function combines metrics to evaluate a partition, a closeness function

combines closeness metrics to indicate the desirability of grouping the objects, before a

complete partition is formed.

4.2.6 Partitioning Algorithm

For a given set of functional objects and a set of system components, it is the goal of

a partitioning algorithm to find a partition with lowest cost as computed by the cost

function. With a relatively large number of functional objects it would take a large

amount of computations to evaluate all possible partitions. The algorithm must therefore

be capable of choosing a subset of all possible partitions, evaluate each of them and find

the best partition that meets the constraints. The partitioning problem can be defined as

follows [2]:

Given a set of Objects O = {01, 02,on}, determine a partition

P = {p1,p2,pm} such that p1 Upz U pm = 0,

pi fl pj z ¢ for all i, j, i at j, and the cost determined by an objective function

Cost_Fuct (P) is minimal.

4.2.6.1 Constructive/Iterative Algorithms

Partitioning algorithms can be generally classified as constructive or iterative.

Constructive algorithms group objects into a complete partition. These algorithms use

closeness metrics to group objects to achieve a good partition. The Iterative algorithms

repeatedly modify a partition for improvements. They use an objective cost function to

50

evaluate the partition, which yields better results as compared to closeness functions used

by the constructive algorithms.

4.2.6.2 Greedy/Hill-climbing Algorithms

There are two types of partitioning algorithms being used for hardware-software co-

design: greedy and hill-climbing. Greedy algorithms start with an initial partition and

move objects to the opposite group as long as the cost is improved. They cannot escape a

local minimum. The concept of local minimums is depicted in Figure 4.2. Point A is a

local minimum, whereas point B is the global minimum. Hill-climbing algorithms have

the capability of escaping local minimum. This is achieved by accepting cost increasing

moves during the iterations as shown in Figure 4.2.

Cost

V

Number of Moves

Figure 4.2: Escaping local minimum in iterative partitioning [2].

51

4.2.7 Output

The output of a partitioning algorithm must be comprehendible by the user who has to

perform the next step of design. The output may be a list of objects indicating which

object is to be implemented in hardware and which in software. It may be a new version

of specifications that contains information about the structural implementation of system

components. The output may be machine-readable so that a synthesis too] could use it to

map the functions onto hardware and software components.

4.3 Basic Partitioning Algorithms

Most of the partitioning algorithms adopted by hardware-software co-design

researchers are commonly used in hardware partitioning. Iterative techniques such as

simulated annealing (SA), Kernighan—Lin (KL), Fiduccia—Mattheyses (FM) and genetic

algorithms (GA) are some examples. Hardware partitioning provides a means of breaking

a system into smaller, more manageable parts based primarily on the number of

communication channels between them. Many partitioning approaches have been

developed which incorporate an ancillary goal of balancing the relative sizes of the parts.

However, during hardware-software partitioning, this goal is not relevant because the

system has to be partitioned into two parts only, i.e., hardware and software. Given an

initial partition of the system into two parts, iterative techniques move one or more

objects between the partitions in an effort to minimize objective function cost. Figure 4.3

shows a classification of partitioning algorithms.

52

Partitioning Algorithms

l

t i

Constructive Algorithms Iterative Algorithms

._—T l

domMappmg] + Group Migration

+ Hierarchical Clustering Simulated Annealing

+ Multi-Stage Clustering + Genetic Evolution

L, Binary Constraint Search

I:I Hill-climbing Algorithms C] Greedy Algorithms

Figure 4.3: Classification of automatic partitioning algorithms.

4.3.1 Vulcan

The Vulcan [7] system uses two types of greedy algorithms. Vulcan 1, deals with

hardware partitioning only, while Vulcan 11 attempts to reduce hardware cost by

partitioning the functionality between hardware and software. Both algorithms adopt an

iterative approach to find the best partition.

4.3.2 Ratio-Cut

The ratio-cut algorithm is a constructive algorithm that was originally developed for

structural partitioning. This algorithm is very effective when large number of objects

have to be moved between the partitions. The algorithm groups objects till the time no

53

object is considered suitable to be merged. Scoreboard algorithm [16] is a version of

ratio-cut method that is used for hardware-software partitioning in the COMET system.

4.3.3 Group Migration (Kernighan-Lin)

This algorithm was originally proposed by Kemighan and Lin [34] in 1970 for graph

partitioning to improve two-way partitions. It has been modified over time by Fiduccia

and Mattheyses [35] and later by Krishnamurthy [36] to require less computation and

obtain better results. This algorithm yields excellent results for both structural and

functional partitioning. The control strategy of the algorithm for two-way partitioning

may be stated as follows:

For each object, determine the decrease in cost if the object is moved to the other

group and then move the object if it generates the greatest decrease or smallest

increase in cost. In order to prevent an infinite loop caused by moving the same

object back and forth between partitions, each object can be moved once only.

After all the objects have been moved once, the lowest cost partition is selected as

the initial partition and another iteration is done.

A Group migration algorithm with two way partitioning is listed in figure 4.4. The

algorithm starts with an initial two-way partition PM = {P1, P2}, where P; may be termed

as hardware partition and P2 as software partition.

54

P=Pinjr //

Loop //

P pm, = P //

Cost prev = Cost_Func(P) //

COSI best_P = 00 //

Loop for each Obj, //

Obji.moved = false //

End Loop

Loop for i=1, n //

COSt best_move = °° //

Start with an initial partition

Iterative Loop

Previous Partition is equal to new Partition

Previous Cost is equal to the cost ofnew Partition

Best Partition Cost is equal to infinity

Initialize status ofeach Object

Movedflag ofeach object is set tofalse

Create a sequence ofn moves

Best_move Cost is equal to infinity

Loop for each Obji.moved = false

P = Move(P, Obit) // Create new partition by moving Obj,- to opposite side

Cost = Cost_Func (P) // Calculate Cost ofnew Partition

If Cost < Cost best_move then

Cost best_move = Cost // Best_move Cost is equal to new Cost

Obj best_move = Obji

End if

End Loop

P = Move(P, Obj best_move)

Obj best_movcmoved = true

// Best_move Object is now Obji

// Create new partition

// Set movedflag to true

If Cost best_move < Cost best_p then

P best_p = P // Best Partition is P

Cost be“; = Cost best_move // Best Partition Cost is Best_move Cost

End if

End Loop

If Cost best_p < Cost pm then

P = P best_p // P is the Best Partition of this iteration

Else return P pm // Otherwise return the previous Partition

End Loop

Figure 4.4: Group migration algorithm with two-way partitioning [2].

After initialization of certain variables and setting the flag, moved, of each object as

false, a sequence of 11 iterations is generated. During each iteration, for each object with a

false flag, a function Move(P,Obji) is called that moves object (Obji) to the opposite side

and returns a new partition. The cost of each new partition is calculated and the minimum

cost (Cost best_move) found during these moves is saved along with the object (Obj best_move)

that generated the minimum cost partition. Once all moveable objects have been moved,

55

all possible partitions would have been created and their costs would have been

compared. The object (Obj best_move) giving the minimum cost partition is now

permanently moved to the opposite side and its flag is set to true so that it will not be

moved during the next iteration. A new partition P is thus, created by this operation and

its cost (Cost best_move) is now compared with the best partition cost (Cost hw_p) saved

earlier. If the cost is lower than the previous cost then the current partition P is saved as

the best partition (P best_p) along with its cost (Cost best_p). During the next iteration one

less object would be moved and all possible partitions would again be compared. After n

iterations the best partition found so far, is returned by the algorithm. The algorithm is

iterated by the outer loop till no improvement in cost is generated.

The whole process may be repeated with a certain number of new initial partitions

and the results may be saved to find the best partition. During the experiments with this

algorithm it has been observed that the number of outer loops in the algorithm is indeed

less than five, which is in conformity with the earlier observation [34].

4.3.4 Simulated Annealing

This algorithm is similar to group migration in that it also accepts cost increasing

moves in order to escape local minimums. But it also allows multiple moves of an object,

while limiting the complexity by decreasing the tolerance for accepting cost increasing

moves. The algorithm is intended to model the annealing process in physics where a

material is melted and its minimal energy stage is achieved by lowering the temperature

slowly enough that equilibrium is reached at each temperature.

56

The algorithm starts with an initial partition and an initial simulated temperature. While

the temperature is being slowly decreased, for each temperature, random moves are

generated. The move that improves the cost is accepted, otherwise the move may still be

accepted but such acceptance at lower temperatures becomes less likely. Figure 4.5 lists

the simulated annealing algorithm.

Temp = Initial temperature //Assign a high value to Temp

Cost = Cost_Func(P) // Calculate cost of initial partition

Loop while not Frozen // Start ofouter loop, continues until Temp > freezing

Loop while not Equilibrium // Start of inner loop, continues till equilibrium

PM“ = Move_Random(P) // Create tentative partition

Costmm = Cost_Func(Ptem) // Calculate cost ofpartition

Costdena = Costtem — Cost // Calculate ACost

If (Accept(Costdena, Temp) > Random(0, 1) then

P = Pm. // Tentative partition is the new partition

Cost = Costtem // Cost ofnew partition

End if

End Loop

Temp = or x Temp //Lower the teperature

End Loop

Figure 4.5 Simulated annealing algorithm [2].

A variable Temp, is initialized with a high value and the cost of current partition is

calculated. Then a sequence of random moves is generated inside a two-level loop. The

moves are accepted until an equilibrium state is reached, that is when for a certain

number of moves the cost is not improved. At this point the temperature is lowered by

multiplying the old temperature with a variable or, where 0<or<1; and the inner loop is

repeated until the equilibrium is again reached. The outer loop continues until the

temperature has reached a certain smallest value specified as freezing point, which means

the termination of process. The Accept function determines whether to accept a move

57

based on the cost improvement and current temperature. This function is defined in [37]

as:

ACO."

Accept(ACost, temp) = min(1 , e W)

When ACost is negative, meaning the tentative partition is better than the current

one, the function returns ’1’. Otherwise it returns a value in the range of [0,1]. The

function Random (0,1) returns a value in the range of [0,1].

It has been theoretically shown that simulated annealing algorithm can climb out of a

local minimum and find the optimal solution if the process reaches equilibrium state at

each temperature and if the temperature is lowered infinitely slowly. This approach

requires infinite iterations at an infinite number of temperatures, which is not practicable.

Several heuristic approaches have been developed to control the process. These heuristics

define the equilibrium-state and describe how to lower the temperature.

4.3.5 Genetic Evolution

In contrast to the group migration and simulated annealing algorithms, where the best

partition is saved in each iteration, this class of algorithms saves a set of partitions

between iterations. In such algorithms the set of partitions is referred to as a generation.

Genetic algorithms create a new generation by imitating three evolutionary processes

found in nature, namely selection, crossover and mutation.

58

4.3.6 Binary Constraint-Search

This algorithm involves finding the first zero cost solution in the sequence of

constrained partitions. The first zero-cost solution is the minimal constrained solution.

The algorithm performs a binary search through the range of possible constraints,

applying partitioning and then the cost function as each constraint is visited.

4.3.7 Integer Linear Programming

Linear program formulation is another technique applied in partitioning. It consists of

a set of variables, a set of linear inequalities that constraint the values of the variables and

a single linear function of the variables which serves as an objective function. The goal

is to choose values for the variables to satisfy all inequalities and minimize the objective

function.

59

CHAPTER 5

APPLICATION OF PARTITIONING ALGORTIHMS IN POLIS

5.1 Background

Hardware-software partitioning is one of the main challenges in co-design of

embedded systems, as it has a crucial impact on the cost and performance of the resulting

product. Several approaches have been presented for system partitioning. They differ in

the initial specification, the level of abstraction, granularity of the partition, the degree of

automation of the partitioning process, cost function and the partitioning algorithm. The

system is automatically partitioned in [3, 8, 11, 12, 16, 19, 27], while the partitioning

process is manual in [1, 17, 28, 30].

For small systems with a very well understood structure and functionality, the number

of realistic alternatives in hardware—software partitioning is small. Thus, a designer, based

on his experience can easily assign functionality to hardware and software domains using

an ad-hoc approach. This design can then be refined through simulation and/or in-system

evaluation. The main problems that the designer has to deal with in this approach are

hardware/software synthesis and co—simulation.

For a large system with a large number of interacting components implementing a

complex functionality, the choice of partitions is extremely large. It is not possible to

evaluate their impact on the cost and performance of the system without the support of a

design tool. A computer—aided partitioning scheme is therefore, essential to support the

evaluation of different partitioning schemes based on adequate cost functions and

estimations.

60

5.2 Partitioning in POLIS

As discussed in Chapter 3, POLIS does not include any hardware-software

partitioning algorithms. It only offers a flexible environment that supports manual

partitioning. This environment supports evaluation of tradeoffs via simulation rather than

mathematical analysis. Instead of using separate simulation models for hardware and

software, POLIS uses the same model for both types of components.

POLIS has certain peculiarities that distinguish it from its contemporary frameworks.

The POLIS system is based on a CFSM model of computation. The input specifications

of the system are described as a network of communicating CFSMs at the behavioral

level. Each CFSM may represent a function or a group of functions depending upon the

granularity of the objects. Each CFSM can be implemented either as hardware or

software. Based on the architecture selection, the software and hardware cost estimates

are generated. The CFSM specifications after translation to C code are passed to

P’TOLEMY for simulation. The partitioning is based on the results of simulation.

In order to automate the partitioning process, the POLIS design flow of Figure 3.1

had to be altered. We decided to replace the co-simulation tool (PTOLEMY) and change

the normal design flow by generating the estimates for both hardware and software

implementations of each CFSM, using them in an automatic partitioning algorithm and

feeding the results back into POLIS for synthesis and implementation. The modified

design flow is shown in Figure 5.1. The new design flow incorporates an interactive

automatic partitioning process. The estimates generated by POLIS are tabulated in a text

file for use by the automatic partitioning algorithm. The user adds the constraint data to

this file and performs various iterations of the partitioning algorithm to analyze the

61

effects of the changes in constraints and architecture selection. As a result of this

analysis the best hardware-software partition satisfying the design constraints is selected.

An auxiliary file indicating the choice of implementation for each CFSM is created and

used in POLIS for final synthesis and implementation.

Design specification (Esterél) ‘

l

Translation to SHIFT

Architecture selection ‘ Design

Modification

A

Design

validation

Estimate generation,

architecture selection, and

automatic partitioning

Hw, Sw and Interface synthesis

+

Rapid prototyping

Figure 5.1: Modified design flow in POLIS.

5.3 Generation of Estimates

POLIS generates software estimates for 68HC11 and R3000 processors in terms of

minimum and maximum execution times in clock cycles and code size in bytes for each

62

CFSM. SIS, a system for sequential circuit synthesis, has been embedded in POLIS to get

estimates for technology dependent hardware implementation. For this purpose a

technology library has to be generated on which to map the BLIF file. The hardware

estimates include area and maximum and minimum delays of the CFSM. This

information is calculated on the basis of technology library passed to SIS along with the

BLIF file. The SIS only provides information on total area of gates and the total delays.

This information does not include any estimate of total chip area, which would require

placement and routing as well as calculation of interconnection delays.

POLIS is also capable of generating XILINX Netlist Format (XNF) files for a given

family of FPGAs. Mapping the design onto a specific FPGA family generates this

information. Presently it is possible to generate XNF files for Xilinx 3000 family only.

The XNF file has to be passed to XILINX design manager software, which performs map

and route functions for that particular FPGA chip. The results of this operation include

CLB, IOB counts as well as delays on each signal. This information is more reliable

because the hardware is actually mapped onto the FPGA during this process. But it takes

more time and involves porting of code from one platform to the other and tabulation of

results for use by the partitioning algorithm. The existing algorithm used in POLIS for

mapping the BLIF file onto a FPGA is not reliable as, it sometimes fails to generate the

XNF file when the number of variables in a Boolean expression is more than the

maximum number of inputs allowed for a CLB.

The following script-files were written to generate estimates for software and

hardware implementation of each CFSM:

63

Script file for generation of software estimates:

read_shiftfilename.shift

propagate_const

set_impl -s

set arch 68hc1 1

partition

read_cost_param

print_cost -c

build_sg

print_cost -s

Script file for generation of hardware estimates:

read_shift filenameshift

propagate_const

set_impl -h

set arch 68hcl 1

partition

net_to_blif

print_stats

source script.rugged

print_stats

write_bliffilenameblif

rlib librarynamegenlib

map -W

print_map_stats

// for mapping onto Xilinx 3000 family

read_bliffilename.blif

xl_merge -l -o temp.merge

write_xnf -M -m temp.merge path/filename _3000.xnf

These script files were used to read the individual CFSM SHIFT files into POLIS and

perform various steps for estimate generation. The estimates were tabulated in an input

file for the partitioning algorithm. The results of partitioning were then fed to POLIS for

further processing as usual.

It would be advantageous to have estimates of the cost of communication between the

CFSMs as well. That would indicate the amount of information being exchanged between

any two CFSMs. If the two CFSMs are closely associated due to sharing of data, then

implementing them in different domains may affect the overall performance of the

system. The partitioning algorithm would try to move such CFSMs together from one

domain to another based on the value of this index. The cost function would include an

additional metric, i.e., communication cost. If the two CFSMs having a large value of

communication cost with respect to each other are in the same domain, then their

communication cost estimate would be zero, indicating no communication overhead in

terms of hardware-software interface. The cost function would add only those

communication costs, for which the two CFSMs involved are not in the same domain.

5.4 Selection of Algorithms for Automatic Partitioning in POLIS

The selection of algorithms is based on various factors, including abstraction level,

granularity of objects, metric values and estimates, and design constraints. The target

architecture in POLIS consists of a single processor and one or more ASICs connected to

the processor. The objective is to transfer only the essential functionality to hardware to

improve performance. This results in lowering the overall complexity and cost of the

system.

The choice of group migration (GM) and simulated annealing (SA) algorithms was

made on the basis of their hill-climbing nature and iterative approach. Both algorithms

are well-suited to the level of abstraction in POLIS as well as the granularity of the

objects. The algorithms try to find a minimum-cost partition based on performance

estimates and constraints. The cost function developed for use in the partitioning

algorithms includes four metrics: hardware area (A), software code size (8), hardware

65

delay (D), and software execution time (T). The constraints on these metrics were also

incorporated in the cost function to find the best partition that satisfies the constraints.

The cost function is as follows:

Cost_Func = WA -f(A,CA)+ W5 -f(S,C5)+wD 'f(D,CD)+wT -f(T,CT)

where

f(x.y)=-x———y-

y

and

CA is the constraint on hardware area,

Cs is the constraint on software code size,

CD is the constraint on hardware delay, and

CT is the constraint on software execution time

The methodology of the GM and SA algorithms has already been discussed in chapter

4. Two C++ programs were developed to implement these algorithms. The source codes

of programs for GA and SA algorithm are listed at Appendix A and Appendix B

respectively.

5.4.1 Assumptions

For the purpose of completing our investigation into partitioning, we have assumed

that the estimates generated by POLIS are sufficiently accurate. Any estimation process

can not be expected to generate accurate data [2]. The estimates give a rough idea of the

size and timing characteristics of the modules, based on which a partitioning algorithm

could partition the system. This partition may not be the best for final implementation but

nevertheless it provides a starting point. Co—design is an iterative process, therefore, as

the design progresses, the metrics are refined and more accurate information becomes

available for use by the partitioning algorithm to improve the design.

66

5.5 Features of C“ Code

5.5.1 Group Migration (GM) Algorithm

The C” code implemented for the group migration algorithm is capable of reading an

input file containing estimates of various metrics for each object’s implementation in

hardware and software. The input file also contains the constraints on each metric as well

as the associated weights. The number of metrics to be used in the cost function and the

number of objects are constant for a particular project. The variables and functions used

in the program are explained in appendix A. The flowchart of the program is shown in

Figure A. 1.

After reading the input file, the program prompts the user to input the processor clock

frequency (elk). Based on the input data the program generates an initial partition P_in.

This is done by first defining an all-software partition except for those objects which are

already assigned to hardware. A loop is started with counter y=0, which continues until

yZnn, i.e., number of objects in the system. The initial partition is passed to a function

Gen_part(), which generates a random partition P. A do loop is started that continues

while bestpart_cost is less then prev_cost. A counter z keeps track of the number of

iterations of this loop. The cost of partition P is calculated using Cost_fct() and saved as

prev_cost. The variable bestpart_cost is assigned a high value infi. Flag moved of all

objects is set to false except for those, which are already locked in hardware or software

and current partition is saved as prev_P. The algorithm starts a loop with counter j=0,

which continues until jZnn. The variable bestmove_cost is assigned the high value infi.

Another loop is started with counter k=0 that continues until k_>.nn. Counter k is used as

the index for accessing a particular object from the array for nn objects and to point to its

67

corresponding position in the partition array. If the flag moved of the indexed object is

false and it is not locked then a trial partition is generated by moving this object to the

other side using Move() function. If the object was originally mapped to software then it

is moved to hardware and vice versa, and the cost of the trial partition is calculated. If the

cost is less then the bestmove_cost then the new cost is saved as the bestmove_cost and

the index of current object is also saved as bestmove_obj. At the end of this loop all

moveable objects have been moved once and the cost of best move i.e., bestmove_cost

and the index of corresponding object i.e., bestmove_obj have been saved. Now this

object is actually moved to form a new partition P, and the moved-flag of this object is

set ‘true’ to indicate that the object has been moved during the current iteration.

If the bestmove_cost is less then the bestpart_cost, then the current partition P is

saved as bestcost_P and bestmove_cost is saved as the bestpart_cost. The bestpart_

cost is written to output file for plotting and analysis. The algorithm repeats the above

process until all objects have been moved to the other side i.e., jZnn. If the resulting

bestpart_cost is less then the prev_cost, then the best partition bestcost_P is saved as

the new partition P otherwise the previous partition prev_P is saved as P. The algorithm

iterates with P as the new partition and continues the above process while bestpart_cost

is less than prev_cost. When the above condition fails the algorithm stops and the best

partition best_P found so far and the best_cost are saved. The algorithm is repeated with

randomly formed initial partitions, until yZnn condition is reached during which a global

minimum is usually found.

The results are saved in an output file for use in final implementation. The user can

change the clock frequency of the processor at the start of the execution of program to

68

select a particular speed of software execution. Higher clock speed reduces the size of

hardware and helps in assessing the effect of higher speed processor on overall system

performance. The code is portable and runs equally well on PCs and Sun workstations.

The algorithm was applied to two hypothetical cases with five and 50 objects,

respectively, and was found to converge to the lowest cost partition in both cases. The

complexity of the algorithm is O(n3).

5.5.2 Simulated Annealing (SA) Algorithm.

The C“ code implemented for SA algorithm reads an input file with metric,

constraint and the weight values. The number of metrics to be used in the cost function

and the number of objects are constant for a particular project. The variables and

functions used in the program are explained in appendix B. The flowchart of the program

is shown in Figure B].

After reading the input file the program prompts the user to input the processor clock

frequency (clk) in MHz. Based on the input data the program generates an initial partition

P_in. This is done by first defining an all-software partition except for those objects

which are already assigned to hardware. The program then generates a random partition P

using Random_gen() function. The temperature is initialized by assigning temp = init.

The initial value init and the lowest value freez are two important factors affecting the

speed of convergence or number of iterations performed by the algorithm. The cost of

initial partition is calculated using Cost_fct() and saved as best_cost for comparison with

the cost of new partitions later in the program. A loop is started with a counter y=0, that

continues while the temp is greater than the freez value. Two more counters are

69

initialized, i.e., n=1 and z=0. Another loop is started that continues while n is less than

n_eq. During this loop the current partition P is assigned to tentative partition P_ten.

An object is randomly moved in P_ten from hardware to software or vice versa using

Random_moveO function. After each move the cost cost_ten of the tentative partition

P_ten is calculated and the difference delta_cost of the tentative cost and original cost is

determined. A random number in the range [0,1] is also generated for use in Accept()

function. The values of current temperature temp and d_cost are passed to the AcceptO

function, and the returned value from the function is compared with the random number

earlier generated. If the value of Accept() function is greater than the random number,

then the tentative partition is accepted, i.e., P=P_ten. However, if the partition is not

accepted or the tentative cost cost_ten is greater then cost then the counter 11 is

incremented by one meaning that there is no improvement in cost. The equilibrium state

is reached if for a certain number of moves n_eq the tentative cost is found to be greater

than the previous cost or the value of Accept() function is less then the random number.

In either case the value of cost_ten is assigned to cost. The counter z is incremented to

keep track of the iterations carried out in reaching the equilibrium. Once the counter 11

has incremented to the value n_eq , it means that equilibrium is reached and the loop is

collapsed. The terminal value n_eq was determined after extensive experimentation and

consultation of results of earlier applications of simulated annealing algorithm [38][39].

Upon reaching equilibrium, the temperature is lowered to a new value by multiplying

the old value with the constant alpha, selection of which also affects the convergence of

algorithm. The value of alpha depends upon the number of objects comprising the

system being partitioned. If the cost of the new partition is less than the best_cost, saved

70

earlier then the new value is saved as the best_cost and the partition is saved as best_P.

The counter y is then incremented and the algorithm repeats with the new value of

temperature and the process continues until freezing point is reached, i. e., temp becomes

less then or equal to freez. At that point the algorithm should have converged to the

lowest cost partition.

The program generates two output files, one containing a list of cost saved at each

equilibrium state, for plotting and analysis. The second file contains the results of

partitioning with allocation of objects to hardware and software mentioned against each.

The program is capable of analyzing the effect of different clock speeds on the execution

speed of objects mapped to software.

5.6 Case Studies

5.6.1 Hypothetical Cases

Both algorithms were tested using two sets of hypothetical data and were found to

converge to a minimum cost partition. The results for various selections of cost estimates

and constraints in case of GM algorithm are shown in Appendix C. The results of

experimentation with various values of initial temperature init, final temperature freez,

terminal value n_eq of counter 11, and multiplier alpha for SA algorithm, are shown in

appendix D. It was observed that GM algorithm always finds the lowest cost partition,

but requires a large number of iterations. The SA algorithm is faster and takes fewer

iterations but may not always find the lowest cost partition in the first attempt.

71

5.6.1.1 Small Size Example

A system consisting of a set of five objects was taken as an example to analyze the

behavior of the algorithms. The hardware and software estimates and constraints for these

objects were selected in such a way to force various selections by the algorithms.

Appendices C and D lists this information. Both programs found the same minimum cost

partition for the system with the same values of estimates assigned to modules. The

resultant partitioning choices are also shown in appendices C and D, along with the plots

of cost vs. iterations are given in Figures Cl and C2 for group migration and Figures

D1 to D6 for SA algorithms respectively. It is quite evident that both algorithms did

escape local minimums and SA algorithm did converge to best partition within a limited

number of iterations.

5.6.1.2 Large Size Example

A set of 50 objects was taken as a large example for further analysis of the software.

Different values of the hardware and software estimates and constraints were selected to

force various selections by the algorithms. Appendix C and D list this information. Both

programs were found to successfully find the minimum cost partition of the system. The

partitioning choices corresponding to different values of weights are shown in Tables C3

to C5, and Tables D7 and D8 for GM and SA algorithms respectively. The plots of cost

vs. iterations are also shown in Figures C2 and C3 for GM algorithm and Figures D7

and D8 for SA algorithm respectively.

72

5.6.2 Real World Example: Dashboard Controller

A real world example has been included in the POLIS distribution for

experimentation by the new users. The dashboard controller consists of five subsystems,

namely, tachometer, speedometer and odometer, fuel gauge, temperature gauge and seat-

belt alarm system. The dashboard controller interacts with various parts of the automobile

and controls display of information on various dials and indicators. For the purpose of

design implementation, the functionality is divided amongst three sub-systems each

consisting of certain number of modules. This example also makes use of some pre—built

modules representing processor peripherals and on-board hardware support such as

counter/timer. A list of modules in each subsystem, identified as net and the complete

dac_demo.aux file are given at appendix E. The modules’ interaction is defined in terms

of various galaxies in PTOLEMY for simulation. The complete system is simulated in

PTOLEMY by generating various inputs at different rates to simulate the varying engine

rpm. and vehicle speed. The output of the controller is also required to be at a certain

rate to update various indicators. Based on the results of co-simulation the system is

partitioned between hardware and software.

5.6.2.1 Design Constraints

The input to odometer and speedometer is wheel-pulses. The wheel-pulses are

received from the wheel at a rate of 4 pulses per revolution. Assuming a standard tire

circumference of 0.66 m, the maximum vehicle speed of 260 [<th would generate an

input frequency of 438 Hz for the speedometer and odometer. The engine speed is in the

range of 0 to 8000 rpm. One pulse is generated for each engine revolution, therefore it

73

corresponds to a maximum frequency of 134 Hz. The outputs for odometer and

tachometer must be produced at a rate of at least 100 Hz and with a maximum jitter of

100 microseconds to drive the gauge coils.

The system should be capable of receiving the above inputs and generation of outputs

at a rate equal to or more than the frequency required. This can be translated as hardware

delay and software execution time constraints. We selected the hardware delay constraint

to be 10 microseconds to force mapping of maximum modules in software. The software

execution time constraint was set at 10 milliseconds corresponding to requirement of

updating the meters at lOOHz. Initial hardware area constraint was selected as 106 units

and the software size was restricted to 8 K Bytes.

In order to perform automatic partitioning of this system the software and hardware

estimates of all CFSMs were required. POLIS successfully generated the software

estimates for all modules of the dashboard, but while generating hardware estimates

numerous problems were encountered. POLIS is still in development phase, and it does

not support hardware synthesis of all arithmetic or scientific functions. Some of the

modules used in the example perform division and some require sinusoidal functions. For

each function used in the design a software and hardware library file is required in

POLIS. Unfortunately the hwlib.blif file does not have these functions included. At

present, these functions are implementable in software only. It was beyond the scope of

this work to write the libraries for these functions as the codesign group at UC Berkeley

is already in the phase of enhancing the capabilities of POLIS and version 0.4 is due to be

placed on the Internet later this year. However in order to prove the validity of

partitioning algorithm those modules were permanently mapped to software during the

74

partitioning process and the results were then compared with the recommended partition

in [1].

5.6.3 Results Obtained

Table 5.1 shows the estimates, constraints and weights data for the dashboard

example that was used as input to the partitioning algorithms. These estimates are based

on the selected architecture consisting of a 68HC11 microcontroller and a sample ASIC

technology library included in SIS software distribution. The units of hardware area are

assumed to be in micro-meters sq., the software code size in bytes, software execution

delay in clock cycles and hardware delay in nanoseconds. A detailed analysis of

dashboard example with different values of constraints and clock speeds to explore the

partitioning choices is presented at appendix E.

The results of the automatic partitioning using GM and SA are shown in Table 5.2

and Table 5.3 for processor clocks of 1 MHz and 4 MHz, respectively. The choices

mentioned in [1] are similar to the partitions obtained by our algorithms. Figures 5.2 and

5.4 show the plots of cost vs. iterations to indicate the hill-climbing nature of the group

migration algorithm. Figures 5.3 and 5.5 show the same plots for SA algorithm. Note that

the algorithm indeed converges to minimum cost partition within a limited number of

iterations.

75

Modules HW Area SW Size HW SW Delay Locked

(u meters) (Bytes) Delay (clock cycles)

in sec)

DEBOUNCE 1286208 267 101 218 -

ODO_COUNT_PULSES 2148320 405 1 52 301 -

ALARM_COMPARE 33872 228 7 216 -

Hw_LATCH 20416 - 4 - H

BELT - 720 - 501 S

MEASURE_PER|OD 839376 441 60 238 -

ENGINE_CROSS_DISPLAY - 3139 - 4034 S

SPEED_COUNT_PULSES 450080 21 1 37 176 -

SPEED_CROSS_DISPLAY - 4807 - 7392 S

oc_prog_rel 21 8544 532 23 691 -

Pwm 461216 458 47 853 -

Pwm 461 21 6 458 47 853 -

Frc 586960 260 62 486 -

oc_se1f 170288 235 17 482 -

10 152656 91 15 161 -

Pwmfrc 575360 260 51 486 -

Constraints 1 000000 8000 1 000 1 0000

Weights 0.25 0.25 0.25 0.25

Table 5.]: Estimates for the modules of dashboard example.

76

The best cost found, after 1742 iterations of GM algorithm is 0.146883, whereas SA

algorithm took 688 iterations to find the best cost.

Partitioned System Processor clock = 1 MHz

Modules HW Area SW HW SW Implement

Size Delay Delay

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

ODO_COUNT_PULSES - 405 - 301 SW

ALARM_COMPARE 33872 - 7 - HW

ALARM_COMPARE 33872 - 7 - HW

Hw_LATCH 2041 6 - 4 - HW

Hw_LATCH 2041 6 - 4 - HW

Hw_LATCH 2041 6 - 4 - HW

BELT - 720 - 501 SW

oc_prog_rel 21 8544 - 23 - HW

MEASURE_PERIOD 839376 - 60 - HW

ENGINE_CROSS_DISPLAY - 3139 - 4034 SW

pwm 461216 - 47 - HW

pwm 461216 - 47 - HW

ic 1 52656 - 15 - HW

oc_prog_rel 21 8544 - 23 - HW

SPEED_COUNT_PULSES - 21 1 - 176 SW

SPEED_CROSS_DISPLAY - 4807 - 7392 SW

oc_prog_rel 21 8544 - 23 - HW

pwm 461216 - 47 - HW

pwm 461216 - 47 - HW

frc 586960 - 62 - HW

oc_self 170288 - 17 - HW

ic 1 52656 - 1 5 - HW

pwmfrc 575360 - 51 - HW

Totals 51 06784 1 0083 503 1 3058

Constraints 5000000 8000 1000 1 0000

Difference 1 06784 2083 -497 3058

Table 5.2: Best-cost partition using GM and SA algorithms (1 MHz Clock).

77

C
o
s
t

GM Algorithm

stars“: asmsmssmsa—em
Pv-v-v-v-v-v-v-

Iterations

Figure 5.2: Plot of cost vs. iterations for GM algorithm.

C
o
s
t

SA Algorithm

Iterations

Figure 5.3: Plot of costs vs. iterations for SA algorithm.

78

The best cost found, after 2028 iterations of GM a11grrithm is 0.066625, whereas S_A

algorithm took 688 iterations to find the best cost.

Partitioned System Processor clock = 4 MHz

Modules HW Area SW HW SW Implement

Size Dely Delgy

DEBOUNCE - 267 - 54.50 SW

DEBOUNCE - 267 - 54.50 SW

DEBOUNCE - 267 - 54.50 SW

ODO_COUNT_PULSES - 405 - 75.25 SW

ALARM_COMPARE 33872 - 7 - HW

ALARM_COMPARE 33872 - 7 - HW

Hw_LATCH 2041 6 - 4 - HW

HW_LATCH 2041 6 - 4 - HW

Hw_LATCH 2041 6 - 4 - HW

BELT - 720 - 125.25 SW

oc_prog_rel 218544 - 23 - HW

MEASURE_PERIOD 839376 - 60 - HW

ENGINE_CROSS_DISPLAY - 3139 - 1008.50 SW

pwm 461216 - 47 - HW

pwm 461216 - 47 - HW

ic 1 52656 - 1 5 - HW

oc_prog_rel 21 8544 - 23 - HW

SPEED_COUNT_PULSES 450080 - 37 - HW

SPEED_CROSS_DISPLAY - 4807 - 1 848.00 SW

oc_prog_rel 218544 - 23 - HW

pwm 461216 - 47 - HW

pwm 461216 - 47 - HW

fro 586960 - 62 - HW

oc_self 170288 - 17 - HW

lo 1 52656 - 1 5 - HW

pwmfrc - 260 - 121 .50 SW

Totals 4981 504 10132 489 3342

Constraints 5000000 8000 1 000 1 0000

Difference -1 8496 21 32 -51 1 -6658

Table 5.3: Partitioning found using GM and SA algorithms (4 MHz Clock).

79

GM Algorithm

Sééfiéséifiéééééggéé
F'— 1

5
2
1

1
6
0
1

1
6
8
1

1
7
6
1

1
8
4
1

1
9
2
1

2
0
0
1

Iterations

Figure 5.4: Plot of cost vs. iterations for GM algorithm.

SA Algorithm

C
o
s
t

'ggag'gm n88 “m"anag’g
wramwgmvv838$o§hn3

Iterations

Figure 5.5: Plot of costs vs. iterations for SA algorithm.

80

5.7 Analysis of Results

Following is a summary of simulation results presented in [1] for possible hardware-

software partition implementation:

0 A Motorola 68HC11 with clock speed ranging between 1 and 4 MHz may be used

for the mixed hardware-software partition. There are two choices of mixed

hardware-software partition:

(a) Partition 1 implements the timing generator (frc and pwmfrc), pulse counters

(speed_count_pulses and ic) and PWM (pwm) generators in hardware. System

performance becomes degraded at high engine r.p.m. and vehicle speed with 1

MHz clock. However, the system performed well at all speeds and engine

r.p.m. values with the 4 MHz clock .

(b) Partition 2 implements timing generator and pulse counter in hardware.

System performance was degraded at low engine r.p.m. and vehicle speed.

0 A Motorola 68332 with clock speed ranging between 20 and 40 MHz may be

used for all software partition. System performance was not acceptable with 20

MHz clock and at higher speeds even the 40 MHz clock did not produce the

desired results.

0 The acceptable solutions from a performance standpoint are a 4 MHz 68HC11

with hardware support and a 40 MHz 68332 without hardware. The solution with

68HC11 would most likely be the best choice due to cost reasons.

The results of automatic partitioning shown in Tables 5.2 and 5.3 indicate that the

frc, pwmfrc, speed_count_pulses, pwm oc_prog_rel and oc_self are allocated to hardware

partition as discussed above.

81

5.8 Limitations of POLIS

POLIS is still in its development phase. Though it has an elaborate set of tools to

perform all steps of co-design in a smooth and straightforward manner, it falls short of

many requirements at the same time. Following are some of the problem areas identified

during the learning and experimentation phases:

Presently POLIS supports specifications in Esterél language, which is well suited

for specification of control-dominated embedded systems. It is however,

cumbersome and at times tedious to describe mathematical relationships and data

dependent loops in Esterél. POLIS and Esterél have different semantics for

concurrent composition of modules. The concurrent modules execute

synchronously in Esterél, implying that computation takes no time and the results

of composition are independent of the physical implementation. The execution of

concurrent modules is asynchronous in POLIS, depending on the choice of

scheduling mechanism.

POLIS offers some support for user defined data types, limited to software

implementation and to pure assignment i.e. copying through interfaces in case of

hardware implementation.

Support for cost estimation and synthesis of arithmetic functions for hardware

implementation is limited. During the course of experimentation, it was learnt that

POLIS does not support implementation of division or trigonometric functions in

hardware. These functions are only implementable in software at present. It was

not possible to determine the hardware-cost estimates for those objects that used

either of these functions. The developers at UC Berkeley were consulted and we

82

learned that presently it is not possible to generate the cost estimates for these

functions due to non-availability of requisite libraries. The best way to deal with

this problem would be to either use PTOLEMY to perform co-simulation to

decide the partitioning or write VHDL code for these functions to perform

hardware synthesis to determine the estimates. But still hardware synthesis of

CFSMs containing these functions would not be possible in POLIS.

83

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary

With the increasing role of computers in our daily life and availability of enabling

technology, a paradigm shift, from general-purpose computer design to embedded system

design is occurring. Co-design of an embedded system involves many challenging tasks.

This work has focused on one of them known as hardware-software partitioning. The

partitioning problem in hardware-software co—design involves various issues. The choice

of a hardware-software partition greatly influences the cost and performance of the final

product. It is therefore imperative that a co-design framework must be capable of

exploring the design space with a view to finding the best system partitioning.

POLIS provides an elaborate set of design tools integrated in its design flow to assist

a user from specification to implementation of an embedded system. The partitioning

process is however, manual and requires detailed analysis of the simulation results for

partitioning. An attempt was made to explore the possibility of automating this process

by application of automatic partitioning algorithms.

The current-state-of-the—art in hardware-software co-design has two distinct flavors:

one favoring early or manual partitioning, and the other involving late or automatic

partitioning. POLIS does not fit exactly in either of the above; the partitioning process is

manual but it takes place later in the design process. Based on the granularity of CFSMs

and the level of abstraction, Group Migration and Simulated Annealing algorithms were

selected for automatic partitioning in POLIS. The estimates generated by POLIS were

84

assumed to provide a fair idea of the metrics. The algorithms were successfully applied

for automatic partitioning and found to correspond to the published results. However, due

to the following problems or limitations of POLIS, the automatic partitioning algorithms

could not be fully integrated in its existing design flow:

Lack of support for implementation of certain mathematical functions in

hardware. All functions distributed amongst various CFSMs have to be converted

to C code/BLIF description for software/hardware implementation. A set of

library files is provided in POLIS to translate the SHIFT code to C or BLIF code

for this purpose. The set of hardware-libraries is, however, incomplete and does

not allow implementation of division and trigonometric functions in hardware.

Due to this limitation hardware estimates for such mathematical functions can not

be generated in the present POLIS version.

Generation of hardware estimates involves mapping the BLIF files onto a target

technology using either a technology library for ASICs or generating the XNF

files and porting them to Xilinx software for mapping onto FPGAs. The BLIF to

XNF conversion is also under development and does not provide full capability

to map any design onto any FPGA. The present POLIS version supports mapping

of design onto X3000 family.

The auxiliary file describes the interconnections and implementation choices of

CFSMs. This file is normally created with the help of schematics described in

PTOLEMY. There is no provision of automatic incorporation of partitioning data

into this file. The results of partitioning have to be manually entered as

implementation choices for CFSMs.

85

6.2 Validity of Results

The results obtained were compared with the published data on POLIS. They were found

to generally agree with the recommended partition based on manual partitioning as

mentioned at section 5.7 above. It may however be pointed out that the generation of

estimates should not be a lengthy and costly process because the idea of automatic

partitioning can only be fruitful if all steps prior to partitioning are also automatic. The

present arrangement of generating the estimates in POLIS or Xilinx software involving

porting them from one to another software tool on a different platform defeats the

purpose of speeding up the partitioning process. It is also desirable to have a database of

certain standard modules/CFSMs with their software and hardware estimates already

calculated for use in the partitioning process.

6.3 Recommendations and Future Directions

Based on the study carried out during this work following recommendations are made:

0 Improvements in estimate generation may be made either by employing better

cost-estimation algorithms or generation of a database for various standardized

modules.

0 An attempt may be made to explore the possibility of using Binary Decision

Diagram (BDD)/CDFG for partitioning. The s-graph nodes may be treated as the

nodes of a CDFG and as in LYCOS and COSYMA these nodes may be moved

across hardware and software boundaries. The CFSM model of POLIS may

require some modifications for this purpose.

86

6.3.1 Integrating the Partitioning Algorithm in Polis Design Flow

In order to fully integrate the automatic partitioning algorithms in POLIS the

following are recommended:

0 The estimates generated by POLIS and constraints supplied by the user should be

automatically appended to a file readable by the partitioning programs.

0 The design flow in POLIS should be modified such that the synthesis tools could

read the results of partitioning. The hardware and software synthesis could then

become automated.

6.3.2 Rapid Prototyping Platform

The validity of partitioning results can not be confirmed until the hardware and

software modules are implemented as a prototype. The POLIS design group at Berkeley

uses a rapid prototyping platform based on AP'TD(architecture. At MSU it would be

advantageous to establish a facility based on Xilinx Foundation Express software that

supports loading of BIT files onto the Xilinx chips mounted on an emulator board. The

synthesized C code can also be compiled to generate the binary code that can be

downloaded onto the PROM of the emulator. This would provide a means of testing the

functionality of system hardware and software and feedback to the partitioning algorithm

in terms of improved metric and constraints.

87

APPENDICES

88

APPENDIX A

GROUP MIGRATION (KERNIGHAN-LIN) ALGORITHM

IMPLEMENTED IN C++

// Group Migration Algorithm

//

// Global variables

// infi is a high value used for initializing some of the variables

// up is the number of metrics to be considered for partitioning

// nn is the number of Modules or Objects in the system

// kk[] is an array of weights used in the cost function.

// float, area, hdelay and sdelay are the constraints on four metrics

// proc_clk is the processor clock frequency in MHz (Default value = 1 MHz)

// Objects are the modules/CFSMs in the system. The objects are defined as data

structure containing name, metric values (hw_area, sw_size, hw_delay, sw_delay),

moved and locked flags, and partition assignment information (pp)

//

// Functions

// Cost_fct() is the implementation of cost function discussed at paragraph 5 .4. It

accepts a partition and calculates its cost using individual object’s metrics and constraints

corresponding to partition assignment and returns the cost as a floating-point value. It

calls Func() to calculate the normalized difference depicted at paragraph 5.4

// Move() accepts the index of object to be moved and the current partition information.

The object is moved from one domain to other depending on its present assignment

// Gen_part() is used to generate random partitions. A partition is sent as an argument

that is randomly changed by this function, the random() function uses present time as the

seed for random number generation.

// Pr_part() prints the contents of partition array passed as an argument.

// Part_file() writes the contents of partition array to the fstream passed as an argument

// Final_part writes the final partition information to the fstream passed as an argument

//

// Local variables in main()

// ii, 11, y and z are counters used in variuos loops

// bestmove_obj is the index number of object that when moved creates the lowest cost

partition

// Partitions (P[nn], bestcost_P[nn], PP[nn], prev_P[nn], best_P[nn], P_in[nn]) are arrays

containing strings of ‘H’, ‘S’ and ‘X’ indicating allocation of objects to HW, SW and

HW-SW in case of a mixed implementation respectively.

// inputfile stores the name of input file to be read by the program

// clk is the processor clock frequency entered by the user.

// cost is the value of Cost_fct calculated for each trial partition

// prev_cost is the cost found in the previous iteration of the algorithm

// bestpart_cost is the cost of best partition

// bestmove_cost is the lowest cost after each trial partition

89

// best_cost is the best cost, determined after all of the iterations

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define infi 999.

#define np 4

#define nn 26

float kk[np], area, size, hdelay, sdelay, proc_clk=1.0;

struct Object

{

public:

char name[20];

float hw_area, sw_size, hw_delay, sw_delay;

bool moved, locked;;

char pp;

};

Object objt[nn];

float Cost_fct(char [1):

float Func(float, float);

void Move(int, char [1);

void Gen_part(char [1);

void Pr_part(char 11);

void Part_file(char [], fstream);

void Final_part(char Pt[], fstream):

void main()

{

int ii, 11, bestmove_obj, y, 2;

char P[nn], bestcost_P[nn], PP[nn], prev_P[nn], best_P[nn]. P_in[nn];

char inputfile[15];

float clk, cost, prev_cost, bestpart_cost, bestmove_cost, best_costzinfi;

cout << "Enter the name of input file to use: ";

cin >> inputfile;

fstream infilefinputfile, ioszzin);

fstream outfile("outputdat", ios::out):

fstream outfile 1 ("outl .dat", ioszzout);

if(outfile.fail()|l outfilel.fail()) {

cout << "Could not open output file" <<endl;

}

// Read file code

if(!infile.fail()) {

for(int counter=0; counter<nn; counter++) {

infile >> objt[counter].name

>> objt[counter].hw_area

>> objt[counter].sw_size

>> objt[counter].hw_delay

>> objt[counter].sw_delay

>> objt[counter].pp;

if ((objt[counter].pp==’H’)ll(objt[counter].pp==’S’)) {

objt[counter].locked=true;

}

else if (objt[counter].pp==’X’) {

objt[counter].locked=true;

}

else {objt[counter].locked=false; }

}

infile >> area >> size >> hdelay >> sdelay;

for (counter=0; counter<np; counter++) { infile >> kk[counter]; }

}else

cout << "Could not open input file" <<endl;

// Write input data to output file

outfile << "The following data is read" << endl;

outfile << " " << endl;

outfile << " Module HW Area SW Size HW Delay SW Delay

Locked" << endl;

outfile << " " << endl;

for (ii=0; ii<nn; ii++) {

outfile << setiosflags(ios::left) << setw(20) << objt[ii].name <<

resetiosflags(ios::left);

outfile << setw(lO) << objt[ii].hw_area;

outfile << setw(lO) << objt[ii].sw_size;

outfile << setw(lO) << objt[ii].hw_delay;

outfile << setw(10) << objt[ii].sw_delay;

outfile << setw(10) << objt[ii].pp << end];

1

outfile << " " << endl;

outfile << endl << "Constraints " << setw(lO) << area << setw(10) << size

<< setw(lO)

<< setw(10) << hdelay << setw(10) << sdelay << endl;

91

//

//

//

outfile << endl << "Weights ";

for (11:0; ii<np; ii++) { outfile << kk[ii] << "; }

outfile << endl;

cout << "Enter Processor Clock in MHz, Press ’0’ for default: ";

cin >> clk;

if(clk>0) {

proc_clk=clk;

}

Seed the random number

srand(time(0));

outfilel << "Constraints " << area << " " << size

<< " " << hdelay << " " << sdelay << endl;

outfile] << "Weights ";

for (ii=0; ii<np; ii++) { outfilel << kk[ii] << " "; }

outfile] << endl;

Create initial partition

for (ii=0; ii<nn; ii++) {

if (objt[ii].pp==’H’) {

P_in[ii]=’l-I’;

}

else if (objt[ii].pp=’X’) {

P_in[ii]=’X’;

}

else P_in[ii]=’S’;

}

y=0, n=0;

while (y < nn)

{

Gen_part(P_in);

Initial Partiton

for (ii=0; ii<nn; ii++) {

P[ii]=P_in[ii];

}

2:0;

do

{

prev_cost=Cost_fct(P);

bestpart_cost=infi;

92

for (ii=0; ii<nn; ii++) {

if (lobjt[ii].locked) {

objt[ii].moved=false;

}

prev_P[ii]=P[ii];

}

for (int j=0; j<nn; j-H-) {

bestmove_cost=infi;

for (int k=0; k<nn; k++) {

if (lobjt[k].moved && lobjt[k].locked) {

for (ii=0; ii<nn; ii++) {

PP[ii]=P[ii];

}

Move(k, PP);

cost=Cost_fct(PP);

if (cost < bestmove_cost) {

bestmove_cost=cost;

bestmove_obj=k;

}

}

l

// Move the bestmove_object to make new partiton

Move(bestmove_obj, P);

objt[bestmove_obj].moved=true;

// Save the best partition during the sequence

if (bestmove_cost < bestpart_cost) {

for (ii=0; ii<nn; ii++) {

bestcost_P[ii]=P[ii];

}

bestpart_cost=bestmove_cost;

}

n++;

outfile] << bestpart_cost << endl; // Output the best cost in each outer

iteration

l

// Update P if a better cost was found, else exit

if (bestpart_cost < prev_cost) {

for (ii=0; ii<nn; ii++) {

P[ii]=bestcost_P[ii];

}

}

else {

for (11:0; ii<nn; ii-H-) {

P[ii]=prev_P[ii];

}

93

}

Z++;

} while (bestpart_cost < prev_cost);

if (Cost_fct(P) < best_cost) {

best_cost = Cost_fct(P);

for (ii=0; ii<nn; ii++) {

best_P[ii]=P[ii];

}

}

y ++;

}

outfile << "\n\nThe best cost found after " << 11 << " iterations is "

<< (Cost_fct(best_P)) << endl << "The best cost partition is : {";

Part_file(best_P, outfile);

Final_part(best_P, outfile);

float Cost_fct(char PX[])

{

float sz=0, ha=0, sd=0, hd=0;

float est_cost, x;

for (int jj=0; ii<nn; ii++) {

switch (PX[jj]) {

case ’S’: {

sz += objt[jj].sw_size;

sd += objt[jj].sw_delay;

break;

}

case 11’: {

ha += objt[jj].hw_area;

hd += objt[jj].hw_delay;

break;

}

case ’X’: {

sz += objt[jj].sw_size;

sd += objt[jj].sw_delay;

ha += objt[jj].hw_area;

hd += objt[jj].hw_delay;

break;

}

cout << "No valid case, Press anykey to continue" << endl;

cin >> x;

break;

94

}

}

sd=sdlproc_clk;

est_cost = kk[0]*Func(sz, size) + kk[l]*Func(sd, sdelay) + kk[2]*Func(ha, area) +

kk[3]*Func(hd, hdelay);

return est_cost;

}

float Func(float val, float constr) // Estimate the normalized cost of a parameter for an

Object

{

float temp;

temp=(val-constr)/constr;

if (temp <= 0) {temp=0;}

return temp;

}

void Move(int ob, char Pt[])

{

switch (Pt[ob]) {

case ’S’: {

Pt[ob]=’H’;

objt[ob].pp=H’;

cout << "Object moved to HW" << endl;

break;

}

case ’H’: {

Pt[ob]=’S’;

objt[ob].pp=’S’;

cout << "Object moved to SW" << endl;

break;

}

case ’X’: {

cout << "Object cannot be moved" << endl;

break;

}

cout << "Un-identified partition code " << Pt[ob] << endl;

break;

}

void Pr_part(char Pt[])

{

for (int pj=0; pj<nn§ PI‘H') I

cout << Pt[pj];

}

95

cout << " } " << endl;

}

void Part_file(char Pt[], fstream outf)

{

for (int pj=0; pj<nn; pj++) {

outf << Pt[pj];

}

outf << " } " << endl;

}

void Gen_part(char Pr[])

{

int k, m;

for (m=0; m<nn; m ++) {

if (lobjt[m].locked) {

k=rand() % 1000;

if (k < 500) { Pr[m]=’S’;}

else { Pr[m]=’H’;}

}

}

cout << "Generated Partition : {";

Pr_part(Pr);

}

void Final_part(char Pt[], fstream outf2)

{

float ha, hd, sz, sd;

outf2 << endl << "\nPartitioned System, Processor clock = " << proc_clk << " MHz"

<< endl;

outf2 << " " << endl;

outf2 << " Module HW Area SW Size HW Delay SW Delay

Implement" << endl;

outf2 << " (micro 111 sq) (Bytes) (ns) (micro sec) in" << endl;

outf2 << " " << endl;

for (int ii=0; ii<nn; ii++) {

outf2 << setiosflags(ios::left) << setw(20) << objt[ii].name <<

resetiosflags(ios::left);

switch (Pt[ii]) {

case ’H’: {

outf2 << setw(lO) << objt[ii].hw_area << setw(lO)

<< " - " << setw(lO) << objt[ii].hw_delay

<< setw(10)<< " - " << setw(lO) << ""HW << endl;

ha += objt[ii].hw_area;

96

hd += objt[ii].hw_delay;

break;

1

case ’S’: {

outf2 << setw(lO) << " - " << setw(lO) << objt[ii].sw_size << setw(lO)

<< " - " << setw(lO) << (objt[ii].sw_delay/proc_clk) << setw(10) <<

"SW" << endl;

sz += objt[ii].sw_size;

sd += objt[ii].sw_delay;

break;

}

cout << "Un-identified partiton code " << Pt[ii] << endl;

break;

}

}

outf2 << " " << endl;

outf2 << "Totals " << setw(lO) << ha << setw(lO) << 32 << setw(lO) <<

hd << setw(l 1)

<< (sd/proc_clk) << endl;

outf2 << "Constraints " << setw(lO) << area << setw(10) << size << setw(]O)

<< hdelay << setw(lO) << sdelay << endl;

outf2 << " " << endl;

outf2 << "Difference

setw(lO)

<< hd-hdelay << setw(10) << (sd/proc_clk)-sdelay << endl;

<< setw(10) << ha-area << setw(lO) << sz-size <<

97

/ Read inputs /

i

/write input data to output file/

i

Create initial partition

@

I
V

Generate random

partition ‘P’

6

z=0

@ 1 I

prev_cost = Cost_fct(P)

i

bestpart_cost = infi

i

Moved-flag = false

l
V

Figure A. 1: Flow chart of GM algorithm program.

98

bestmove cost = infi

k++

 Object not moved

and not locked

Move(k, PP)

i

cost = Cost_fct(PP)

 cost :

bestmove_cost

bestmove_cost = cost

6

bestmove_obj = k

Figure A. 1: (Continued).

99

Move(bestmove_obj, P)

i

moved-flag = true

bestmove_cost :

bestpart_cost

bestcost_P = P

i

bestpart_cost = bestmove_cost

t 7

/wri
tebestpart_cost

to output file/

J,
j++

Write cost of best_P and final

partitioning data to output file

Figure A. 1: (Continued).

bestpart_cost :

prev_cost

P = prev_P

P = bestcost_P

fl

Z++

bestpart_cost :

prev_cost

Cost_fct(P) :

best_cost

best_cost = Cost_fct(P)

l

bestcost_P = P

le

y++

Figure A. 1: (Continued).

101

APPENDIX B

SIMULATED ANNEALING ALGORITHM IMPLEMENTED IN C++

// Simulated Annealing Algorithm

// Objt are the modules/CFSMs in the system

// Partition is an array of objects allocated to SW/HW

//

// Global variables

// init is a value used for initializing the temperature variable: temp

// 11p is the number of metrics to be considered for partitioning

// nn is the number of modules or objects in the system

// alpha is the multiplier used for lowering the temperature

// freez is the lowest value of temperature at which to stop the algorithm

// n_eq is the maximum value of counter 11 that indicates the state of equilibrium

// kk[] is an array of weights used in the cost function

// temp stores the value of current temperature

// area, size, hdelay and sdelay are the constraints on four metrics

// proc_clk is the processor clock frequency in MHz (Default value = 1 MHz)

// Objects are the modules/CFSMs in the system. The objects are defined as data

structure containing name, metric values (hw_area, sw_size, hw_delay, sw_delay),

moved and locked flags, and partition assignment information (pp)

//

// Functions

// Cost_fct() is the implementation of cost function discussed at paragraph 5.4. It

accepts a partition and calculates its cost using individual object’s metrics and constraints

corresponding to partition assignment and returns the cost as a floating-point value. It

calls Func() to calculate the normalized difference depicted at paragraph 5.4

// Random_move() accepts a partition array as an argument and moves an object

randomly from one domain to other only if that object is not locked

// Gen_part() is used to generate random partitions. A partition is received as an

argument that is randomly changed by this function, It makes use of the random()

function that uses present time as the seed for random number generation.

// Pr_part() prints the contents of partition array passed as an argument.

// Part_file() writes the contents of partition array to the fstream passed as an argument

I/ Accept() receives d_cost and temp] values as arguments. It calculates the exponent of

the ratio of -d_cost and temp values and compares it with 1. If the exponent is less then 1

then it returns the exponent otherwise it returns 1

// Final_part writes the final partition information to the fstream passed as an argument

//

// Local variables in main()

// ii, 11, y and z are counters used in various loops

// Partitions (P[nn], P_ten[nn], best_P[nn], P_in[nn]) are arrays containing strings of ‘H’,

‘S’ and ‘X’ indicating allocation of objects to HW, SW and HW-SW in case of a mixed

implementation respectively.

102

// clk is the processor clock frequency (in MHz) entered by the user.

// cost is the value of Cost_fct calculated for initial partition

// cost_ten is the cost of tentative partition

// best_cost is the best cost found after reaching equilibrium

// delta_cost is the difference of costs between initial partition and tentative partition

// random is a random number in the range [0,1] generated using rand() function

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define init_temp 1.0

#define tip 4

#define nn 26

#define alpha 0.99

#define freez 0.001

#define n_eq 3

float kk[np], temp, area, size, hdelay, sdelay, proc_clk=1.0;

struct Object

{

pubhc:

char name[20];

float hw_area, sw_size, hw_delay, sw_delay;

bool locked;

char pp;

};

Object objt[nn];

float Cost_fct(char []);

float Func(float, float);

void Random_move(char []);

void Gen_part(char Pt[]);

void Pr_part(char []);

void Part_file(char [], fstream);

float Accept(float, float);

void Final_part(char Pt[], fstream);

void main()

{

int ii, 2, y, 11;

char P[nn], P_ten[nn], best_P[nn], P_in[nn];

103

float clk, cost, cost_ten, best_cost, delta_cost, random;

fstream infile("input00.dat", ios::in); // input file

fstream outfile("output.dat", ios::out); // output file

fstream outfile1("outl .dat", ios::out); // output file for graphs

if(outfile.fail()|| outfile1.fail()) {

cout << "Could not open output file" <<endl;

}

// Read input file

//

if(!infile.fail()) {

for(int counter=0; counter<nn; counter++) {

infile >> objt[counter].name

>> objt[counter].hw_area

>> objt[counter].sw_size

>> objt[counter].hw_delay

>> objt[counter].sw_delay

>> objt[counter].pp;

if ((objt[counter].pp==’I-I’)|l(objt[counter].pp==’S’)) {

objt[counter].locked=true;

1

else if (objt[counter].pp==’X’) {

objt[counter].locked=true;

}

else {objt[counter] .locked=false; }

}

infile >> area >> size >> hdelay >> sdelay;

for (counter=0; counter<np; counter++) { infile >> kk[counter]; }

}else

cout << "Could not open input file" <<endl;

Write input data to output file

outfile << "The following data is read" << endl;

outfile << " " << endl;

outfile << " Module HW Area SW Size HW Delay SW Delay

Locked" << endl;

outfile << " (mm sq) (Bytes) (ns) (Clk Cycles) in" <<

endl;

outfile << " " << endl;

for (ii=0; ii<nn; ii++) {

outfile << setiosflags(ios::left) << setw(20) << objt[ii].name <<

resetiosflags(ios::left);

outfile << setw(lO) << objt[ii].hw_area;

outfile << setw(lO) << objt[ii].sw_size;

outfile << setw(10) << objt[ii].hw_delay;

104

outfile << setw(lO) << objt[ii].sw_delay;

outfile << setw(8) << objt[ii].pp << endl;

}

outfile << " " << endl;

outfile << endl << "Constraints " << setw(10) << area << setw(10) << size <<

setw(10)

<< setw(10) << hdelay << setw(10) << sdelay << endl;

outfile << endl << "Weights ";

for (ii=0; ii<np; ii++) { outfile << kk[ii] << ", "; }

outfile << endl;

cout << "Enter Processor Clock in MHz, Press ’0’ for default: ";

cin >> clk;

if(clk>0) {

proc_clk=clk;

}

// Seed the random number

srand(time(0));

// write input data to output file for graphs

outfile] << "Modules = " << nn

<< ", Constraints " << area << ", " << size

<< ", " << hdelay << ", " << sdelay << ", Weights ";

for (ii=0; ii<np; ii++) { outfilel << kk[ii] << ", "; }

outfilel << endl << "Initial Temp = " << init_temp << ", n equilibrium = "

<< n_eq << ", freez = " << freez << ", alpha = " << alpha << endl;

// Generate Initial Partition

for (ii=0; ii<nn; ii++) {

if (objt[ii].pp==’H’) {

P_in[ii]=’I-I’;

}

else if (objt[ii].pp=’X’) {

P_in[ii]=’X’;

}

else P_in[ii]=’S’;

}

Gen_part(P_in);

outfile << endl << "Partition generated : {";

Part_file(P_in, outfile);

// Initial Partiton

for (ii=0; ii<nn; ii++) {

P[ii]=P_in[ii];

best_P[ii]=P[ii];

105

}

temp=init_temp; // Initialize Temp

cost=Cost_fct(P);

best_cost=cost;

y=0;

while (temp > freez) // Loop while temperature is not frozen

{

n=1;

z=0;

while(n < n_eq) // loop while equilibrium is not reached

{

for (ii=0; ii<nn; ii++) {

P_ten[ii]=P[ii]; // Tentative Partition

}

Random_move(P_ten); // Randomly move an object in P_ten

cost_ten=Cost_fct(P_ten);

delta_cost=cost_ten-cost;

random=float(rand () % 100000)/(100000);

if (Accept(delta_cost, temp) > random) {

for (ii=0; ii<nn; ii++) {

P[ii]=P_ten[ii];

}

if (cost_ten > cost) { n++; }

cost=cost_ten;

1

else {

n++;

}

z++;

}

temp=alpha*temp;

outfile] << cost << endl; // Output cost after reaching equilibrium

if(cost < best_cost) {

}

y++;

}

best_cost=cost;

for (ii=0; ii<nn; ii++) {

best_P[ii]=P[ii];

}

outfile << "\nTook " << y << " iterations." << endl

<< "Best cost: " << best_cost << " for Partition :{";

Part_file(best_P, outfile);

106

Final_part(best_P, outfile);

float Cost_fct(char PX[])

{

float sz=0, ha=0, sd=0, hd=0;

float est_cost, x;

for (int jj=0; jj<rm; ii++) {

switch (PX[jj]) {

case ’S’: {

sz += objt[jj].sw_size;

sd += objt[jj].sw_delay;

break;

}

case ’H’: {

ha += objt[jj].hw_area;

hd += objt[jj].hw_delay;

break;

}

case ’X’: {

sz += objt[jj].sw_size;

sd += objt[jj].sw_delay;

ha += objt[jj].hw_area;

hd += objt[jj].hw_delay;

break;

}

cout << "No valid case, Press any key to continue" << endl;

cin >> x;

break;

}

}

sd=sdlproc_clk;

est_cost = kk[0]*Func(sz, size) + kk[l]*Func(sd, sdelay) + kk[2]*Func(ha, area) +

kk[3]*Func(hd, hdelay);

return est_cost;

}

float Func(float val, float constr) // Estimate the normalized cost of a parameter for an

Object

{

float t_val;

t_val=(val-constr)/constr;

if (t_val <= 0) {t__val=0;}

107

return t_val;

}

void Pr_part(char Pt[])

{

for (int pj=0; pj<nn; pj++) {

cout << Pt[Pl];

}

cout << " } " << endl;

}

void Part_file(char Pt[], fstream outf)

{

for (int pj=0; pj<nn; pj++) {

outf << Pt[pj];

}

outf << " } " << endl;

}

float Accept(float d_cost, float templ)

{

float expl;

exp 1=exp(-d_cost/temp l);

if(expl <1) { return expl; }

else { return 1; }

}

void Gen_part(char Pt[])

{

int k, m;

for (m=0; m<nn; m ++) {

if (lobjt[m].locked) {

k=rand() % 1000;

if (k < 500) { Pr[m]=’S’;}

else { Pr[m]=’H’;}

}

}

cout << "Generated Partition : {";

Pr_part(Pr);

}

void Random_move(char Pt[])

{

int k, j=0;

108

while (j<l) {

=rand() % nn;

if(!objt[k].locked) {

switch (Pr[k]) {

case ’S’: {

Pr[k]=‘H’;

cout << "Object moved to HW" << endl;

break;

}

case 11’: {

Pr[k]=’S’;

cout << "Object moved to SW" << endl;

break;

}

case ’X’: {

break;

}

cout << "Um-identified partiton code " << Pr[k] << endl;

break;

j++;

else {j=0; }

}

void Final_part(char Pt[], fstream outf2)

{

float ha=0, hd=0, sz=0, sd=0;

outf2 << endl << "Partitioned System, Processor clock: " << Proc_clk << " MHz" <<

endl;

outf2 << "
.. < <

endh

outf2 << " Module HW Area SW Size HW Delay SW Delay

Implement" << endl;

outf2 << " (micro m sq) (Bytes) (ns) (micro sec) in" <<

endl;

outf2 << "
.. < <

endl;

for (int ii=0; ii<nn; ii++) {

outf2 << setiosflagsfiosxleft) << setw(20) << objt[ii].name <<

resetiosflagslioszzleft);

switch (Pt[ii]) {

case 11’: {

outf2 << setw(10) << objt[ii].hw_area << setw(10)

<< " - " << setw(lO) <<objt[ii].hw_de1ay

109

endh

}

outf2 << "

endh

<< setw(10) << " - " << setw(10) << "HW" << endl;

ha += objt[ii].hw_area;

hd += objt[ii].hw_delay;

break;

}

case ’S’: {

outf2 << setw(10) << " - " << setw(10) << objt[ii].sw_size << setw(10)

<< " - " << setw(10);

}

outf2 << (objt[ii].sw__delay/Proc_clk) << setw(10) << "SW" << endl;

sz += objt[ii].sw_size;

sd += objt[ii].sw_delay;

break;

case ’X’: {

}

outf2 << setw(10) << objt[ii].hw_area << setw(10)

<< objt[ii].sw_size << setw(10) << objt[ii].hw_delay

<< setw(10) << (objt[ii].sw_delay/Proc_clk) << setw(10) << "H-S" <<

ha += objt[ii].hw_area;

hd += objt[ii].hw_delay;

sz += objt[ii].sw_size;

sd += objt[ii].sw_delay;

break;

cout << "Un-identified partiton code " << Pt[ii] << endl;

break;

}

<<

outf2 << "Totals " << setw(10) << ha << setw(10) << 52 << setw(10) << hd;

outf2 << setw(10) << (sd/Proc_clk) << endl;

outf2 << "Constraints " << setw(10) << area << setw(10) << size;

outf2 << setw(10) << hdelay << setw(10) << sdelay << endl;

outf2 << "

endl;

<<

outf2 << "Difference " << setw(10) << ha-area << setw(10) << sz-size <<

setw(10)

<< hd-hdelay << setw(10);

outf2 << (sd/Proc_clk)-sdelay << endl;

110

/ Read inputs /

i

/Write input data to outputfile/

1

Generate initial partition ‘P_in’

Generate random partition ‘P’

i

Initialize temperature

cost = Cost_fct(P)

best_cost = cost

iv

y=0

Random_move(P_ten)

Figure 5.2: Flow chart of SA algorithm program.

111

cost_ten = Cost_fct(P_ten)

delta_cost = cost — cost_ten

random = rand() %1

Accept(delta_cost,

temp) : random

P = P_ten

COSI_ICT1 I COSI

n++

l6

COSI = COSI_ICTI

1‘

Z

Figure 5.2: (Continued).

112

temp 2 alpha* temp

/Write cost to output file/

cost : best_cost

best_cost = cost

best_P = P

it

Write y, best_cost and final

partition to output file

Figure 5.2: (Continued).

113

APPENDIX C

GROUP MIGRATION ALGORITHM RESULTS

Results of the application of Group Migration Algorithm to two hypothetical systems

consisting of five and 50 modules respectively are discussed in this appendix. Table C]

shows the input file for the system of five modules. Table C.2 shows the partitioned

system based on the given inputs. Figures CI to C3 show the hill-climbing nature of the

algorithm.

Figure Cl is a plot of best cost found after each iteration of the algorithm for the small

example. Table C.3 lists the input data for the large example consisting of 50 modules.

Tables C4 and C5 list the partitions found for different values of weights. Figures C2

and C3 show the plot of cost vs. iterations in each case.

Module Hw_Area Sw_Size Hw_Delay Sw_Delay

A 234 482 28 100

B 374 500 48 240

C 198 273 40 190

D 328 430 38 245

E 283 38 1 59 120

Constraints 500 1000 100 500

Weights 0.25, 0.25, 0.25, 0.25

Table C. 1: Input data for the small example.

114

ALGORITHM STEPS

P_in= {A,B,C,D,E} All software partition. Generate a random partition.

P={A,B,C,D,E}; A,B, D and E (bold) are in hardware and C is in software.

Do Loop {

prev_cost = 0.542, bestpart_cost = infi

Reset moved flag of all objects as false.

j=0, Move objects to opposite side

bestmove_cost = infi

k=0, P={A,B,C,D,E} Cost = 0.355 // A is moved to Sw

k=1, P={A,B,C,D,E} Cost = 0.235 // B is moved to Sw

k=2, P={A,B,C,D,E} Cost = 0.741 // C is moved to Hw

k=3, P={A,B,C,D,E} Cost = 0.283 // D is moved to Sw

k=4, P={A,B,C,D,E} Cost = 0.253 // E is moved to Sw

bestmove_cost = 0.235, bestpart_cost = 0.235, B is moved and locked in software

bestcost_P: { A,B,C,D,E } , P: { A,B,C,D,E}

j=1, Move objects to opposite side

k=0, P={A,B,C,D,E} Cost = 0.134

k=2, P={A,B,C,D,E} Cost = 0.434

k=3, P={A,B,C,D,E} Cost = 0.1467

k=4, P={A,B,C,D,E} Cost: 0.0945

bestmove_cost = 0.0945, bestpart_cost = 0.0945, E is moved and locked in software

bestcost_P ={ A,B,C,D,E } , P={A,B,C,D,E}

j=2, Move objects to opposite side

k=1, P={A,B,C,D,E} Cost = 0.234

k=3, P={A,B,C,D,E} Cost = 0.145

k=4, P={A,B,C,D,E} Cost = 0.2935

bestmove_cost = 0.145, bestpart_cost = 0.0945, C is moved and locked in hardware

bestcost_P: { A,B,C,D,E} , P= { A,B,C,D,E}

j=3, Move objects to opposite side

k=1, P={A,B,C,D,E} Cost = 0.10375

k=4, P={A,B,C,D,E} Cost = 0.13025

bestmove_cost = 0.10375, bestpart_cost = 0.0945, A is moved and locked in software

bestcost_P: { A,B,C,D,E } , P= {A,B,C,D,E}

j=4, Move objects to opposite side

k=4, P={A,B,C,D,E} Cost = 0.30075

bestmove_cost = 0.30075, bestpart_cost = 0.0945, D is moved and locked in software

bestcost_P={A,B,C,D,E}, End of 1st Iteration

bestpart_cost is less then prev_cost therefore

P= bestcost_P

while (bestpart_cost is less then prev_cost) }

if cost of P is less then best_cost then

best_cost = Cost_Fct(P), best_P = P

Repeat the algorithm nn times with new randomly generated partitions.

115

The best cost found after 52 iterations is 0.0945

Partitioned System (Processor Clock = 1 MHz)

Module Hw_Area Sw_Size Hw_Delay Sw_Delay Implement

A 234 - 28 - HW

B — 500 - 240 SW

C — 273 - 190 SW

D 328 — 38 - HW

E - 381 - 120 SW

Totals 562 l 154 66 550

Constraints 500 1000 100 500

Difference 62 154 -34 50

Table C.2: Partitioned system of the small example.

Best cost after each Iteration

C
o
s
t

3
7

4
0

4
3

4
6

4
9

Iterations

Figure C. 1: Plot of cost vs. iterations corresponding to partition in Table C2.

116

Module HW Area SW Size HW Delay SW Delay Locked

Mod1 12499 712 87 944 -

Mod2 8838 720 56 501 -

Mod3 901 17 4807 306 7392 -

Mod4 91065 31 39 255 4034 -

Mod5 9501 21 1 37 176 -

Mod6 24036 405 85 301 -

Mod7 1 6879 441 93 238 -

Mod8 23339 267 85 21 8 -

Mod9 741 228 11 216 -

Mod10 461 91 8 1 1 5 -

Mod1 1 1 234 482 88 200 -

Mod12 374 350 48 240 -

Mod13 1 98 273 40 1 90 -

Mod14 328 430 38 245 -

Mod15 283 381 59 120 -

Mod1 6 1 339 1 67 85 1 18 -

Mod17 6879 461 1 03 338 -

Mod18 167 43 51 200 -

Mod1 9 901 7 207 36 392 -

Mod20 29840 870 209 873 -

Mod21 4561 1 89 48 285 -

Mod22 40985 4509 307 2874 -

Mod23 3289 732 98 569 -

Mod24 12499 712 87 944 -

Mod25 901 17 4807 306 7392 -

Mod26 9501 211 37 176 -

Mod27 24036 405 85 301 -

Mod28 1234 482 88 200 -

Mod29 91065 3139 255 4034 -

Mod30 461 91 8 1 15 -

Mod31 328 430 38 245 -

Mod32 283 381 59 120 -

Mod33 374 350 48 240 -

Mod34 24036 405 85 301 -

Mod35 8838 720 56 501 -

Mod36 91065 3139 255 4034 -

Mod37 16879 441 93 238 -

Mod38 167 43 51 200 -

Mod39 901 17 4807 306 7392 -

Mod40 6879 461 1 03 338 -

Mod41 1 6879 441 93 238 -

Mod42 374 350 48 240 -

Mod43 1 6879 441 93 238 -

Mod44 6879 461 103 338 -

Mod45 23339 267 85 218 -

Mod46 1 67 43 51 200 -

Mod4? 1 98 273 40 1 90 -
Table C.3: Input data for the large example.

117

Mod48 283 381 59 1 20 -

Mod49 901 17 4807 306 7392 -

Mod50 23339 267 85 21 8 -

Constraints 1000000 16000 1000 10000

Weights 025, 0.25, 0.25, 0.25

Table C.3: Input data for the large example (Continued).

The best cost found after 1002 iterations is 0.37585

Module HW Area SW Size HW Delay SW Delay Implement

Mod1 12499 - 87 - HW

Mod2 - 720 - 501 SW

Mod3 901 17 - 306 - HW

Mod4 91065 - 255 - HW

Mod5 - 21 1 - 176 SW

Mod6 - 405 - 301 SW

Mod7 - 441 - 238 SW

Mod8 - 267 - 21 8 SW

Mod9 741 - 1 1 - HW

Mod10 461 - 8 - HW

Mod11 - 482 - 200 SW

Mod1 2 - 350 - 240 SW

Mod1 3 - 273 - 1 90 SW

Mod14 - 430 - 245 SW

Mod15 - 381 - 120 SW

Mod1 6 - 1 67 - 1 1 8 SW

Mod1? - 461 - 338 SW

Mod18 - 43 - 200 SW

Mod1 9 - 207 - 392 SW

Mod20 - 870 - 873 SW

Mod21 - 189 - 285 SW

Mod22 40985 - 307 - HW

Mod23 - 732 - 569 SW

Mod24 12499 - 87 - HW

Mod25 901 17 - 306 - HW

Mod26 - 21 1 - 176 SW

Mod27 - 405 - 301 SW

Mod28 - 482 - 200 SW

Mod29 91065 - 255 - HW

Mod30 461 - 8 - HW

Mod31 - 430 - 245 SW

Mod32 - 381 - 120 SW

Mod33 - 350 - 240 SW

Mod34 - 405 - 301 SW

Mod35 - 720 - 501 SW

Table C.4: Partitioned system of the large example with equal weights.

118

91065 - 2531 - HW

- 441 - 238 sw

- 43 - 200 sw

90117 - 306 - HW

- 461 - 338 sw

- 441 - 238 sw

- 350 - 240 sw

- 441 - 238 sw

- 461 - 339 sw

- 267 - 218 sw

- 43 - 200 sw

- 273 - 190 sw

- 381 - 120 sw

901 17 - 306 - HW

- 267 - 213 sw

701309 13882 2497 10064

1000000 16000 1000 10000

-298691 -21 18I 1497 64

Table C.4: Partitioned system of the large example with equal weights (Continued).

Best cost after each Iteration

Iterations

Figure C.2: Plot of cost vs. iterations corresponding to partition in Table C4.

119

Weights 0.35, 0.15, 0.25, 0.25

The best cost found after 2402 iterations is 0.35948

Partitioned S stem Processor clock = 1 MHz

Module

Mod1

Mod2

Mod3

Mod4

Mod5

Mod6

Mod7

Mod8

Mod9

Mod1 0

Mod1 1

Mod1 2

Mod1 3

Mod1 4

Mod1 5

Mod1 6

Mod1 7

Mod1 8

Mod1 9

Mod20

Mod21

Mod22

Mod23

Mod24

Mod25

Mod26

Mod27

Mod28

Mod29

Mod30

Mod31

Mod32

Mod33

Mod34

Mod35

Mod36

Mod37

Mod38

Mod39

Mod40

Mod41

Mod42

HW Area

90117

91065

SW Size

71 2

720

21 1

405

441

267

91

482

350

273

430

381

1 67

461

43

207

870

1 89

732

712

21 1

405

482

91

4301

381

350

405

720

441

43

461

441

350

HW Delay

306

255

11

307

306

255

255

306

SW Delay

944

501

176

301

238

218

1 15

200

240

1 90

245

1 20

1 18

338

200

392

873

285

569

944

1 76

301

200

1 15

245

1 20

240

301

501

238

200

338

238

240

Implement

SW

SW

HW

HW

SW

SW

SW

SW

HW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

SW

HW

SW

SW

HW

SW

SW

SW

HW

SW

SW

SW

SW

SW

SW

HW

SW

SW

HW

SW

SW

SW

Table C.5: Partitioned system when Hw_Area is more important.

120

- 441 - 238 SW

- 461 - 338 SW

- 267 - 218 SW

- 43 - 200 SW

- 273 - 1 90 SW

- 381 - 120 SW

901 17 - 306 - HW

- 267 - 218 SW

675389 1 5488 2307 1 2182

1 000000 1 6000 1 000 10000

Difference -32461 1 -51 2 1 307 21 82

Table C.5: Partitioned system when Hw_Area is more important (Continued).

Best cost after each iteration

researresm—eeemsssgsarg
v-v-v-v-v-v-v-v-v-NN N

Iterations

Figure C.3: Plot of cost vs. iterations corresponding to partition in Table C5.

121

APPENDIX D

SIMULATED ANNEALING ALGORITHM RESULTS

Results of the application of simulated annealing algorithm to two hypothetical systems

consisting of five and 50 modules respectively are discussed in this appendix. Table D.1

shows the input file for the system of five modules. Table D2 shows the partitioned

system based on the given inputs. Figure D] is a plot of costs recorded after reaching

equilibrium at each temperature. Figures D2 to D6 show the plots of cost vs. iterations

with various values of n_eq, init and freez temperatures and alpha. Table D.3 shows the

input file for the system of 50 modules. Table D.4 shows the partitioned system. Figures

D7 and D8 show the plots of cost vs. iterations for different values of n_eq, init, freez

and alpha. Each plot shows the hill-climbing nature and convergence of the algorithm.

Estimates

Module Hw_Area Sw_Size Hw_Delay Sw_Delay

A 234 482 28 100

B 374 500 48 240

C 198 273 40 190

D 328 430 38 245

E 283 381 59 220

Table D. 1: Input data for the small example.

122

Took 459 iterations. Best cost = 0.0945

Partitioned System Processor clock = 1 MHz

Module Hw_Area Sw_Size Hw_Delay Sw_Delay Implement

A 234 — 28 - HW

B - 500 - 240 SW

C - 273 - 190 SW

D 328 - 38 — HW

E - 381 - 120 SW

Totals 562 1 154 66 550

Constraints 500 1000 100 500

Difference 62 154 —34 50

Table D2: Partitioned system of the small example.

Case 1: With init = 1.0, n_eq = 3, alpha = 0.99, freez = 0.01:

Best cost at each temperature

C
o
s
t

TSSBBBSSSSCBBEB‘EgBR’SE
'- v-v-FNNNNNC') (DOV?

Iteration

4
4
2

Figure D. 1: Plot of costs vs. iterations for the small example (Casel).

123

Case 2: With init = 1.0, n_eq = 5, alpha = 0.99, freez = 0.01

The algorithm took 459 iterations. Best cost = 0.0945 for Partition: {HSSHS}

Best cost at each teperature

Figure D.2: Plot of costs vs. iterations for the small example (Case 2).

Case 3: With init = 1.0, n_eq = 3, alpha = 0.95, freez = 0.01

The algorithm took 90 iterations. Best cost = 0.0945

Bast cost

8338353383688312683

Ito ration
Figure D.3: Plot of costs vs. iterations for the small example (Case 3).

124

Case 4: With init = 1.0, n_eq = 5, alpha = 0.95, freez = 0.01

Took 90 iterations. Best cost = 0.0945

Best cost

Figure D.4: Plot of costs vs. iterations for each temperature value (Case 4).

Case 5: init = 10.0, n_eq = 3, alpha = 0.95, freez = 0.01

Took 135 iterations. Best cost = 0.0945

Best cost

Ito ratlon
Figure D.5: Plot of costs vs. iterations for the small example (Case 5).

125

Case 6: init = 10.0, n_eq = 3, alpha = 0.99, freez = 0.01

Took 688 iterations. Best cost = 0.0945 for Partition: {HSSHS}

Best cost

Iteration

Figure D.6: Plot of costs vs. iterations for the small example (Case 6).

Module HW Delay

Mod1 87

Mod2 56

Mod3 306

Mod4 255

Mod5 9501 21 1 37

Mod6 24036 405 85

Mod7 16879 441 93

Mod8 23339 267 85

Mod9 741 228 1 1

Mod10 461 91 8

Mod1 1 1234 482 88

Mod12 374 350 48

Mod1 3 1 98 273 40

Mod14 328 430 38

Mod15 283 381 59

Mod1 6 1 339 1 67 85

Mod17 6879 461 103

mm8 1 67 43 51

Table D.3: Input data for the large example.

126

 Weights 025, 0.25, 0.25, 0.25

Mod1 9 901 7 207 36 392 -

Mod20 29840 870 209 873 -

Mod21 4561 1 89 48 285 -

Mod22 40985 4509 307 2874 -

Mod23 3289 732 98 569 -

Mod24 1 2499 71 2 87 944 -

Mod25 901 17 4807 306 7392 -

Mod26 9501 21 1 37 1 76 -

Mod27 24036 405 85 301 -

Mod28 1 234 482 88 200 -

Mod29 91065 3139 255 4034 -

Mod30 461 91 8 115 -

Mod31 328 430 38 245 -

Mod32 283 381 59 1 20 -

Mod33 374 350 48 240 -

Mod34 24036 405 85 301 -

Mod35 8838 720 56 501 -

Mod36 91065 31 39 255 4034 -

Mod37 1 6879 441 93 238 -

Mod38 167 43 51 200 -

Mod39 901 17 4807 306 7392 -

Mod40 6879 461 103 338 -

Mod41 1 6879 441 93 238 -

Mod42 374 350 48 240 -

Mod43 1 6879 441 93 238 -

Mod44 6879 461 103 338 -

Mod45 23339 267 85 21 8 -

Mod46 167 43 51 200 -

Mod47 1 98 273 40 1 90 -

Mod48 283 381 59 120 -

Mod49 901 17 4807 306 7392 -

Mod50 23339 267 85 218 -

Constraints 1 000000 1 6000 1 000 1 0000

Table D.3: Input data for the large example (Continued).

Took 6905 iterations. Best cost: 0.37585

Partitioned System, Processor clock: 1 MHz

Mod1

Mod2

Mod3

Mod4

Mod5

Mod6

Module

HW Area

1 2499

90117

91065

SW Size

720

211

405

HW Delay SW Delay

87

306

255

501

176

301

Implement

HW

SW

HW

HW

SW

SW

Table D.4: Partitioned system of the large example.

127

Mod7 - 441 - 238 SW

Mod8 - 267 - 218 SW

Mod9 741 - 11 - HW

Mod10 461 - 8 - HW

Mod11 - 482 - 200 SW

Mod12 - 350 - 240 SW

Mod13 - 273 - 1 90 SW

Mod14 - 430 - 245 SW

Mod15 - 381 - 120 SW

Mod1 6 - 1 67 - 1 18 SW

Mod17 - 461 - 338 SW

Mod18 - 43 - 200 SW

Mod19 - 207 - 392 SW

Mod20 - 870 - 873 SW

Mod21 - 189 - 285 SW

Mod22 40985 - 307 - HW

Mod23 - 732 - 569 SW

Mod24 12499 - 87 - HW

Mod25 90117 - 306 - HW

Mod26 - 211 - 176 SW

Mod27 - 405 - 301 SW

Mod28 - 482 - 200 SW

Mod29 91065 - 255 - HW

Mod30 461 - 8 - HW

Mod31 - 430 - 245 SW

Mod32 - 381 - 120 SW

Mod33 - 350 - 240 SW

Mod34 - 405 - 301 SW

Mod35 - 720 - 501 SW

Mod36 91065 - 255 - HW

Mod37 - 441 - 238 SW

Mod38 - 43 - 200 SW

Mod39 90117 - 306 - HW

Mod40 - 461 - 338 SW

Mod41 - 441 - 238 SW

Mod42 - 350 - 240 SW

Mod43 - 441 - 238 SW

Mod44 - 461 - 338 SW

Mod45 - 267 - 218 SW

Mod46 - 43 - 200 SW

Mod47 - 273 - 1 90 SW

Mod48 - 381 - 120 SW

Mod49 90117 - 306 - HW

Mod50 - 267 - 218 SW

Totals 701309 13882 2497 10064

Constraints 1000000 16000 1000 10000

Difference -298691 -21 1 8 1497 64
Table D.4: Partitioned system of the large example (Continued).

128

Case 1: init = 1.0, n_eq = 3, alpha = 0.999, freez = 0.001

Best cost for each temperature

C
o
s
t

v- v- v- N N N ('3 V V In “'1 CD

Itrations

Figure D.7: Plot of costs vs. iterations for the large example (Case 1).

Case 2: init = 0.5, n_eq = 3, alpha = 0.999, freez = 0.001

Best cost at each temperature

C
o
s
t

v-vh igmigtflmw

§a§§§s§s§§§

Iterations

1

2
8
4

5
6
7

8
5
0

1
1
3
3

1
4
1
6

1
6
9
9

1
9
8
2

2
2
6
5

2
5
4
8

Figure D.8: Plot of costs vs. iterations for the large example (Case 2).

129

APPENDIX E

DASHBOARD CONTROLLER

List of Modules

user_lib modules: frc pwmfrc oc1_self icl oc2_prog_rel ic2 oc4__prog__rel

pme pwml pwm2 pwm3 oc3_prog_rel

net dac_demo

module DEBOUNCE DEBOUNCEI;

module DEBOUNCE DEBOUNCEZ;

module DEBOUNCE DEBOUNCE3;

module ODO_COUNT_PULSES ODO_COUNT_PULSES 1;

module ALARM_COMPARE ALARM_COMPARE];

module ALARM_COMPARE ALARM_COMPAREZ;

module LATCH_HW LATCH_HWl %impl=HW ;

module LATCH_HW LATCH_HW2 %impl=HW ;

module LATCH_HW LATCH_HW3 %impl=HW ;

module belt_control belt_controll ;

module engine_speed engine_speed];

module wheel_speed wheel_speed];

module frc frcl;

module oc_self oc_selfl;

module ic ic 1;

module pwmfrc pwmfrc 1;

net belt_control:

module BELT BELT];

module oc_prog_rel oc_prog_rel 1;

net engine_speed:

module MEASURE_PERIOD MEASURE_PERIOD1;

module ENGINE_CROSS_DISPLAY ENGINE_CROSS_DISPLAY1 ;

module pwm pwml;

module pwm pwm2;

module ic icl ;

module oc_prog_rel oc_pr0g_rel 1;

net wheel_speed:

module SPEED_COUNT_PULSES SPEED_COUNT_PULSES l;

module SPEED_CROSS_DISPLAY SPEED_CROSS_DISPLAY];

module oc_prog_rel oc_prog_re11;

module pwm pwm];

module pwm pwm2;

130

Auxiliary File containing information on interconnection of modules:

dac_demo.aux

#

user_lib modules: frc pwmfrc ocl_self icl oc2_prog_rel ic2 oc4_prog_rel

pme pwml pwm2 pwm3 oc3_prog_rel

user lib module constants (500 KHz timer clock, 500 KHz pwm clock)

MAXCOUNT: 65536

PRESCALER: 1 in simulation (prescaling in Absclock) 4 in reality

OClPERIOD: 500 (10 msec)

PWMMAXCOUNT 1024

PWMPRESCALER: 2 in simulation (prescaling in Absclock) 8 in reality

mv BELT1_e_OC2_START 32768

mv MEASURE_PERIOD1_e_OC4_START 32768

mv SPEED_COUNT_PULSES1_e_OC3_START 32768

mv CONST_MAX_FRC_NUMBER 131072

mv CONST_TIME_UP_ENGINE_OFF 131072

mv CONST_ENGINE_CROSS_DISPLAY 262144

mv K_ACC 262144

mv CONST_TIME_UP_WHEEL_PULSE 131072

mv MAXCOUNT 131072

mv OClPERIOD 131072

mv X 1024

mv Y 1024

mv ENGINE_COIL_O 1

mv ENGINE_COIL_1 1

mv SPEED_COIL_2 1

mv SPEED_COIL_3 1

mv PARTIAL_RESET l

mv KEY 1

mv BELT 1

net dac_demo:

input KEY , BELT , RESET , ECLK , ENGINE_PULSE , WHEEL_PULSE ,

PARTIAL_RESET , FUEL_LEVEL , WATER_LEVEL ;

output BELT_ALARM_HW , ENGINE_COIL_O , ENGINE_COIL_1 , SPEED_COIL_2

, SPEED_COIL_3 , PARTIAL_TENTH_KM_RUN , TOTAL_TENTH_KM_RUN ,

FUEL_ALARM_HW , WATER_ALARM_HW ;

module DEBOUNCE DEBOUNCE] [RESET/RESET, SENS_IN/KEY,

0C1_END/0c_se1f1_e_OC_END, EVENT_ON/DEBOUNCE1_e_EVENT_ON,

EVENT_OFF/DEBOUNCE1_e_EVENT_OFF, CONST_N_SAMPLES/10] ;

module DEBOUNCE DEBOUNCE2 [RESET/RESET, SENS_IN/BELT,

OC1_END/oc_self1_e_OC_END, EVENT_ON/DEBOUNCE2_e_EVENT_ON.

EVENT_OFF/DEBOUNCE2_e_EVENT_OFF, CONST_N_SAMPLES/10] ;

131

module DEBOUNCE DEBOUNCE3 [RESET/RESET, SENS_IN/PARTIAL_RESET,

OC1_END/oc_self1_e_OC_END, EVENT_ON/DEBOUNCE3_e_EVENT_ON,

EVENT_OFF/DEBOUNCE3_e_EVENT_OFF, CONST_N_SAMPLES/10] ;

module ODO_COUNT_PULSES ODO_COUNT_PULSESI [

PARTIAL_RESET/DEBOUNCE3_e_EVENT_ON, WHEEL_PULSE/ic1_e_IC_END,

PARTIAL_TENTH_KM_RUN/PARTIAL_TENTH_KM_RUN,

TOTAL_TENTH_KM_RUN/TOTAL_TENTH_KM_RUN,

CONST_ODOMETER_MAX_VALUE/1000, CONST_ODOMETER_TENTH_KM/200

l ;

module ALARM_COMPARE ALARM_COMPAREI [RESET/RESET,

LEVEIJFUEL_LEVEL, ALARWALARM_COMPARE1_e_ALARM,

CONST_THRESHOLD_LEVEL/20, CONST_INTT_ALARM/1] ;

module ALARM_COMPARE ALARM_COMPARE2 [RESET/RESET,

LEVEL/WATER_LEVEL, ALARM/ALARM_COMPARE2_e_ALARM,

CONST_INTLALARM/O, CONST_THRESHOLD_LEVEU120] ;

module LATCH_HW LATCH_HW] [IN/LATCH_HW1_e_lN,

OUT/BELT_ALARM_HW] %impl=HW ;

module LATCH_HW LATCH_HW2 [IN/ALARM_COMPARE1_e_ALARM,

OUT/FUEL_ALARM_HW] %impl=HW ;

module LATCH_HW LATCH_HW3 [IN/ALARM_COMPARE2_e_ALARM,

OUT/WATER_ALARM_HW] %impl=HW ;

module belt_control belt_controll [KEY_ON/DEBOUNCE1_e_EVENT_ON,

RESET/RESET, KEY_OFF/DEBOUNCE1_e_EVENT_OFF,

BELT_ON/DEBOUNCE2_e_EVENT_ON, TCLK/frc1_e_TCLK,

ALARM/LATCH_HW1_e_lN, MAXCOUNT/65536, SIMSCALE/O] ;

module engine_speed engine_speedl [PWMCLK/pwmfrcl_e_PWMCLK,

RESET/RESET, IC2_START/ENG1NE_PULSE, TCLK/frc1_e_TCLK,

ENGINE_COIL_O/ENGINE_COIL_O, ENGINE_COIL_1/ENGINE_COIL_1,

MAXCOUNT/65536, PWMMAXCOUNT/1024, TIME_UP_ENGINE_OFF/60000.

SIMSCALE/O] ;

module wheel_speed wheel_speedl [PWMCLK/pwmfrc1_e_PWMCLK,

RESET/RESET, WHEEL_PULSE/ic1_e_IC_END, TCLK/frc1_e_TCLK,

SPEED_COIL_2/SPEED_COIL_2, SPEED_COIL_3/SPEED_COIL_3,

MAXCOUNT/65536, PWMMAXCOUNT/1024, SIMSCALE/O] ;

module frc frcl [ECLK/ECLK, TCLK/frc1_e_TCLK, SIMSCALE/O,

MAXCOUNT/65536, PRESCALER/l] ;

module oc_self oc_selfl [RESET/RESET, TCLK/frc1_e_TCLK,

OC_END/oc_self1_e_OC_END, SIMSCALE/O, MAXCOUNT/65536, OCPERIOD/256,

N/ 1] ;

module ic icl [IC_START/WHEEL_PULSE, TCLK/frcl_e_TCLK,

IC_END/ic1_e_IC_END, MAXCOUNT/65536, N/l] ;

module pwmfrc pwmfrc] [ECLK/ECLK, PWMCLK/pwmfrcl_e_PWMCLK,

PWMPRESCALER/l, SIMSCALE/O, PWMMAXCOUNT/1024] ;

132

net belt_control:

input KEY_ON , RESET , KEY_OFF , BELT_ON , TCLK , MAXCOUNT,

SIMSCALE;

output ALARM ;

module BELT BELTl [RESET/RESET, KEY_ON/KEY_ON, KEY_OFF/KEY_OFF,

BELT_ON/BELT_ON, OC2_END/BELT1_e_OC2_END,

OC2_START/BELTl_e_OC2_START, ALARM/ALARM, CONST_ALARM_OFF/0,

CONST_MAX_FRC_NUMBER/16384, CONST_PRE_SCAL_5/76,

CONST_PRE_SCAL_10/152] ;

module oc_prog_rel oc_prog_re11 [RESET/RESET,

OC_START/BELT1_e_OC2_START, TCLK/TCLK, OC_END/BELT1_e_OC2_END,

SIMSCALE/SIMSCALE, MAXCOUNT/MAXCOUNT, N/2] ;

net engine_speed:

input PWMCLK , RESET , IC2_START , TCLK , TIME_UP_ENGINE_OFF,

MAXCOUNT, PWMMAXCOUNT, SIMSCALE;

output ENGINE_COIL_O , ENGINE_COIL_1 ;

module MEASURE_PERIOD MEASURE_PERIODI [RESET/RESET,

ENGINE_PULSE/MEASURE_PERIOD1_e_ENGINE_PULSE,

OC4_END/MEASURE_PERIOD1_e_OC4_END,

PERIOD/MEASURE_PERIOD1_e_PERIOD,

OC4_START/MEASURE_PERIOD1_e_OC4_START,

CONST_TIME_UP_ENGINE_OFF/TIME_UP_ENGINE_OFF,

CONST_MAX_FRC_NUMBER/MAXCOUNT] ;

module ENGINE_CROSS_DISPLAY ENGINE_CROSS_DISPLAYI [RESET/RESET,

PERIOD/MEASURE_PERIOD1_e_PERIOD, X/ENGINE_CROSS_DISPLAY1_e_X,

Y/ENGINE_CROSS_DISPLAY1_e_Y, CONST_ENGINE_CROSS_DISPLAY/125000,

PWMMAXCOUNT/PWMMAXCOUNT,

CONST_TIME_UP_ENGINE_OFF/TIME_UP_ENGINE__OFF] ;

module pwm pwml [PWMCLK/PWMCLK,

PWM_DC/ENG1NE_CROSS_DISPLAY1_e_X, PWM_OUT/ENGINE_COIL_0,

PWM_POLARITY/1, SIMSCALE/SIMSCALE,

PWMMAXCOUNT/PWMMAXCOUNT, N/O] ;

module pwm pwm2 [PWMCLK/PWMCLK,

PWM_DC/ENGINE_CROSS_DISPLAY1_e_Y, PWM_OUT/ENGINE_COIL_1 ,

PWM_POLARITY/1 , SIMSCALE/SIMSCALE,

PWMMAXCOUNT/PWMMAXCOUNT, N/l] ;

module ic icl [IC_START/IC2_START, TCLK/TCLK,

IC_END/MEASURE_PERIOD1_e_ENGINE_PULSE, MAXCOUNT/MAXCOUNT,

N/2] ;

module oc_prog_rel oc_prog_rell [RESET/RESET,

OC_START/MEASURE_PERIOD1_e_OC4_START, TCLK/TCLK,

OC_END/MEASURE_PERIOD1_e_OC4_END, SIMSCALE/SIMSCALE,

MAXCOUNT/MAXCOUNT, N/4] ;

133

net wheel_speed:

input PWMCLK , RESET , WHEEL_PULSE , TCLK , MAXCOUNT.

PWMMAXCOUNT, SIMSCALE;

output SPEED_COIL_2 , SPEED_COIL_3 ;

module SPEED_COUNT_PULSES SPEED_COUNT_PULSES] [RESET/RESET,

WHEEL_PULSE/WHEEL_PULSE,

OC3_END/SPEED_COUNT_PULSES 1_e_OC3_END,

OC3_START/SPEED_COUNT_PULSES 1_e_OC3_START,

WHEEL_PULSES/SPEED_COUNT_PULSES 1_e_WHEEL_PULSES,

CONST_TIME_UP_WHEEL_PULSE/62500] ;

module SPEED_CROSS_DISPLAY SPEED_CROSS_DISPLAY] [RESET/RESET,

WHEEL_PULSES/SPEED_COUNT_PULSES 1_e_WHEEL_PULSES,

X/SPEED_CROSS_DISPLAY1_e_X, Y/SPEED_CROSS_DISPLAY1_e_Y,

CONST_NUM_FRAME/4, CONST_ALPHA_MAX/270,

CONST_NUM_PULSE_MAX/ISOO, PWMMAXCOUNT/PWMMAXCOUNT] ;

module oc_prog_rel oc_prog_rell [RESET/RESET,

OC_START/SPEED_COUNT_PULSES1_e_OC3_START, TCLK/TCLK,

OC_END/SPEED_COUNT_PULSES1_e_OC3_END, SIMSCALE/SIMSCALE,

MAXCOUNT/MAXCOUNT, N/3] ;

module pwm pwml [PWMCLK/PWMCLK,

PWM_DC/SPEED_CROSS_DISPLAY1_e_X, PWM_OUT/SPEED_COIL_2,

PWM_POLARITY/l , SIMSCALE/SIMSCALE,

PWMMAXCOUNT/PWMMAXCOUNT, N/3] ;

module pwm pwm2 [PWMCLK/PWMCLK,

PWM_DC/SPEED_CROSS_DISPLAY1_e_Y, PWM_OUT/SPEED_COIL_3,

PWM_POLARTTY/1 , SIMSCALE/SIMSCALE,

PWMMAXCOUNT/PWMMAXCOUNT, N/2] ;

134

Module belt_control:

Module HW Area SW Size HW Delay SW Delay Locked

BELT - 720 - 501 S

oc_prog_rel 218544 532 23 691 -

Constraints 200000 1000 1000 10000

Multipliers 0.25, 0.25, 0.25, 0.25

Took 459 iterations, Best cost: 0.02318

Partitioned System, Processor clock: 1 MHz

Module HW Area SW Size HW Delay SW Delay Implement

BELT — 720 - 501 SW

oc_prog_rel 218544 - 23 - HW

Totals 218544 720 23 501

Constraints 200000 1000 1000 10000

Difference 18544 -280 -977 -9499

Table E. 1: Input and partition data for belt_control module.

Modules = 16, Constraints ”+006. 8000, 1000, 10000. Multipliers 0.25. 0.25. 0.25.

0.25, lnltlal Temp =1.n equilibrium = 3,1reez = 0.0001. alpha = 0.99

0

1 43 85 127169 211253 295 337 379 421463 505 547 589 631673 715 757 799 841 883
Figure B. 1: Plot of cost vs. iterations for belt_control module.

135

Module engine_speed

Module HW Area SW Size HW Delay SW Delay Locked

MEASURE_PERIOD 839376 441 60 238

ENGINE_CROSS_DISPLAY - 3 139 - 4034

pwm 461216 458 47 853

pwm 461216 458 47 853

ic 152656 91 15 161

oc__prog_rel 218544 532 23 691

Took 459 iterations. Best cost: 0.244119

Partitioned System Processor clock = 1 MHz

MEASURE_PERIOD - 441 - 238 SW

ENGINE_CROSS__DISPLAY - 3 139 - 4034 SW

pwm 461216 - 47 - HW

pwm 461216 - 47 - HW

ic - 91 - 161 SW

oc_prog_rel 218544 - 23 - HW

Totals 1 140976 3671 1 17 4433

Constraints 1000000 2000 1000 10000

Difference 140976 1671 -883 -5567

Table E.2: Input and partition data for engine_speed module.

0.25 .

0.15

Modules = 6. Constralnts ”+006. 2000, 1000. 10000. Multipliers 0.25. 0.25. 0.25,

0.25. Initial Temp = 1. n equilibrium = 3.1reez = 0.01, alpha = 0.99

1 23 45 67 89 111133155177199 221243 265 287 309 331353 375 397 419 441

Figure E.2: Plot of cost vs. iterations for engine_speed module.

136

Module wheel_speed

Module HW Area SW Size HW Delay SW Delay Locked

SPEED_COUNT_PULSES 450080 21 l 37 176 -

SPEED_CROSS_DISPLAY 0 4807 0 7392 S

oc_prog_rel 218544 532 23 691 -

pwm 461216 458 47 853 -

pwm 461216 458 47 853 -

Took 917 iterations. Best cost: 0.412494

Partitioned System Processor clock: 1 MHz

SPEED_COUNT_PULSES - 21 1 - 176 SW

SPEED_CROSS_DISPLAY - 4807 - 7392 SW

oc_prog_rel 218544 - 23 - I-TW

pwm 4612 l 6 - 47 - HW

pwm 461216 - 47 - HW

Totals 1 140976 5018 117 7568

Constraints 1000000 2000 1000 10000

Difference 140976 3018 -883 -2432

Table E.3: Input and partition data for wheel_speed module.

Modules = 5, Constraints 19+006. 2000, 1000, 10000. Multipliers 0.25, 0.25, 0.25.

0.25. initial Temp = 1, n equilibrium = 3. freez = 0.0001, alpha = 0.99

0.8

0.5

0.4

0.3

0.2

0.1

0

1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 073 715 757 799 841 883

Figure E.3: Plot of cost vs. iterations for wheel_speed module.

137

net dac_demo

Module HW Area SW Size HW Delay SW Delay Locked

DEBOUNCE 1286208 267 101 218 -

DEBOUNCE 1286208 267 101 218 -

DEBOUNCE 1286208 267 101 218 -

ODO_COUNT_PULSES 2148320 405 152 301 -

ALARM_COMPARE 33872 228 7 216 -

ALARM_COMPARE 33872 228 7 216 -

HW_LATCH 20416 - 4 - H

HW_LATCH 20416 - 4 - H

HW_LATCH 20416 - 4 - H

belt_control 21 8544 720 23 501 X

engine_speed 1 140976 3671 1 17 4433 X

wheel_speed 1 140976 5018 1 17 7568 X

frc 586960 260 62 486 -

oc_self 170288 235 17 482 -

ic 152656 91 15 161 -

pwmfrc 575360 260 5 1 486 -

Took 917 iterations. Best cost: 0.64233

Partitioned System Processor clock = 1 MHz

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

ODO_COUNT_PULSES - 405 - 301 SW

ALARM_COMPARE 33872 - 7 - HW

ALARM_COMPARE 33872 - 7 - HW

HW_LATCH 20416 - 4 - HW

HW_LATCH 20416 - 4 - HW

HW_LATCH 20416 - 4 - HW

belt_control 218544 720 23 501 H-S

engine_speed 1 140976 3671 1 17 4433 H-S

wheel_speed 1 140976 5018 1 17 7568 H—S

frc - 260 - 486 SW

oc_self - 235 - 482 SW

ic - 91 - 161 SW

pwmfrc - 260 - 486 SW

Totals 2629488 1 1461 283 15072

Constraints 1000000 8000 1000 10000

Difference 1629488 3461 -717 5072

Table E.4: Input and partition data for net dac_demo (1 MHz clock).

138

Modules = 16. Constraints 10+006, 8000, 1000, 10000. Multipliers 0.25. 0.25. 0.25,

0.25, Initial Temp = 1,n equilibrium = 3, freez = 0.0001, alpha = 0.99

1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 673 715 757 799 841 883

Figure E.4: Plot of cost vs. iterations for net dac_demo (1 MHz clock).

Took 917 iterations. Best cost: 0.512844

Partitioned System Processor clock = 4 MHz

Module HW Area SW Size HW Delay SW Delay Implement

DEBOUNCE - 267 - 54.5 SW

DEBOUNCE - 267 - 54.5 SW

DEBOUNCE - 267 - 54.5 SW

ODO_COUNT_PULSES - 405 - 75.25 SW

ALARM_COMPARE - 228 — 54 SW

ALARM_COMPARE - 228 - 54 SW

HW_LATCH 20416 - 4 - HW

HW_LATCH 20416 - 4 - HW

HW_LATCH 20416 - 4 - HW

belt_control 218544 720 23 125.25 H-S

engine_speed 1140976 3671 117 1108.25 H-S

wheel_speed 1 140976 5018 l 17 1892 H-S

frc - 260 - 121.5 SW

oc_self - 235 — 120.5 SW

ic - 91 - 40.25 SW

pwmfrc - 260 - 121.5 SW

Totals 2561744 11917 269 3876

Constraints 1000000 8000 1000 10000

Difference 1561744 3917 -731 -6124

Table E5: Partition data for net dac_demo (4 MHz clock).

139

Modules = 16. Constraints 1e+006. 8000. 1000. 10000. Multipliers 0.25, 0.25. 0.25.

0.25, initial Temp = 1. n equilibrium = 3, freez = 0.0001, alpha = 0.99

1 43 85 127169 211 253 295 337 379 421 463 505 547 589 631 673 715 757 799 841 883

Figure E.5: Plot of cost vs. iterations for net dac_demo (4 MHz clock)

Took 459 iterations. Best cost: 0.203781

Partitioned System Processor clock = 1 MHz

Module HW Area SW Size HW Delay SW Delay Implement

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

DEBOUNCE - 267 - 218 SW

ODO_COUNT_PULSES - 405 - 301 SW

ALARM_COMPARE 33872 - 7 - HW

ALARM_COMPARE 33872 - 7 — HW

HW_LATCH 20416 — 4 - HW

HW_LATCH 20416 — 4 - HW

HW_LATCH 20416 - 4 - HW

belt_control 218544 720 23 501 H-S

engine_speed 1 140976 3671 117 4433 H-S

wheel_speed 679760 5476 70 8421 H-S

frc 586960 - 62 - HW

oc__self 170288 - l7 - HW

ic 152656 - 15 - HW

pwmfrc 575360 - 51 - HW

Totals 3653536 11073 381 14310

Constraints 4000000 8000 10000 10000

Difference -346460 3073 -9619 4310

Table E.6: Partition data for net dac_demo (Hw_Area constraint = 4000000).

BIBLIOGRAPHY

1. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,

A. Sangiovanni—Vincentelli, E. Sentovich, K. Suzuki and B. Tabbara, Hardware-

Sofiware Co-Design of Embedded Systems: The POLIS Approach, Kluwer Academic

Publishers, 1997.

2. D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and Design of Embedded

Systems, Prentice-Hall, 1994.

3 D. Gajski, F. Vahid and S. Narayan, A system design methodology: Executable

specification refinement, European Conference on Design Automation, February 1994.

4. J. Rozenblit, K. Buchenrieder, Codesign: Computer Aided Software/Hardware

Engineering, IEEE Press @ 1995.

5. CU. Smith, F.A. Geoffrey and IL Cuadrado, “An Architecture design and

Assessment system for Software/Hardware Co-design,” Proceedings of the 22"d Design

Automation Conference, pp. 417-424 June 1985.

6. G. Berry, A quick Guide to Esterél Version 5.10, release 1.1, [Online] Available

berry@cm§.inria._fr 14 Februaryl998

7. R.K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems,

Kluwer Academic Publishers, 1995.

8. R.K. Gupta and G. De Micheli, Hardware-Software Co-synthesis for Digital Systems,

IEEE Design & Test of Computers, pp. 29-41, September 1993.

9. R.K. Gupta, C. Coelho and G. De Micheli, Synthesis and simulation of digital

systems containing interacting hardware and software components, Proceedings of the

29th Design Automation Conference, pp. 225-230, June 1992.

10. R. Ernst, J. Henkel and T. Benner, Hardware/Software Co—synthesis of

microcontrollers, Design and Test of Computers, pp. 64-75, December, 1992.

11.D. Herrmann, J. Henkel and R. Ernst, W. YE, N. Serafimov and G. Glawe,

COSYMA: A Software-Oriented Approach to Hardware-Software Co-design, The

Journal of Computer and Software Engineering, Vol. 2, No.3 pp. 293-314, 1994.

12. J. Madsen, J. Grode, P.V. Knudsen, M.E. Petersen and A. Haxthausen, “LYCOS: The

Lyngby Co-Synthesis System,” Design Automation of Embedded Systems, vol. 2, no.2,

March 1997 [Online] Available http://www.it.dtu.dk/~lycos/publications.html 24

February 1998.

141

13. RV. Knudsen and J. Madsen, Aspects of System Modeling in HW/SW Partitioning,

Proceeding: 7‘h IEEE International Workshop on Rapid Prototyping RSP’96 [Online]

Available http://www.it.dtu.dk/~lycos/publications.html 3 March 1998.

14. RV. Knudsen and J. Madsen, PACE: A Dynamic Programming Algorithm for

Hardware/Software Partitioning, Proceedings of 4‘h International Workshop on

Hardware/Software Codesign, Codes/CASHE’96 [Online] Available http://www.

it.dtu.dk/~1ycos/publicationshtml 3 March 1998.

15.P.V. Knudsen, Fine Grain Partitioning in Co—design, [Online] Available

http://www.itdtu.dk/~lycos/publicationshtml 3 March 1998.

16. R. Miller H. Carter K. Davis, Hardware/Software CoSynthesis: Multiple

Constraint Satisfaction and Component Retrieval, [Online] Available email:

ahmadhab@pilot.msu.edu from rmiller@quest.ece.uc.edu, April 27, 1998.

17. J. Buck, S. Ha E.A. Lee and D.G. Messerschmitt, Ptolemy: A framework for

simulating and prototyping heterogeneous systems, Int. Journal of Computer Simulation,

special issue on Simulation Software Development," vol. 4, pp. 155-182, April 1994.

[Online] Available ftp://ptolemy.eecs.berkeley.edu/pub/ptolemy/www/Ptolemy.html 4

May 1998

18. A. Kalavade and E. Lee, A global critically/local phase driven algorithms for the

constrained hardware/software partitioning problem, The 3rd Int’l Workshop on

Hardware/Software Codesign, pp. 42-48, September 1994.

19. A. Kalavade and E. Lee, A Hardware-Software Co-design Methodology for DSP

Applications, IEEE Design & Test of Computers, pp. 16-28, September, 1993.

20. S. Antoniazzi, A. Balboni, W. Fomaciari and D. Sciuto, The Role of VHDL with in

the TOSCA hardware/software codesign framework, Proceedings of the European Design

Automation Conference, pp. 612-617, 1994.

21.D. Herel, Statecharts: A visual Formalism for Complex Systems, Science of

Computer Programming. 8. North-Holland, 1987.

22. F. Vahid, A specification-level intermediate format for system design, Technical

Report CS-94-06, Dept of Computer Science, University of California, Riverside,

September 1994.

23. F. Vahid and D. Gajski, Clustering for Improved system-level functional partitioning,

8th International Symposium on System Synthesis, September 1995.

24. A. Jantsch, P. Ellervee, J. Oberg, A. Hermani and H. Tenhunen, A case study on

hardware/software partitioning, Proceedings of the IEEE Workshop on FPGAs for

custom computing machines, April, 1994.

142

25. A. Jantsch, P. Ellervee, J. Oberg, A. Hermani and H. Tenhunen, Hardware/Software

partitioning and minimizing memory interface traffic, Proceedings of the European

Design Automation Conference, pp. 226-231, 1994.

26. T. H. Corma, C.E. Leiserson and R. L. Rivest, Introduction to Algorithms, MTT Press,

1992

27. E. Barros and W. Rosentiel, A clustering approach to support hardware/software

partitioning, in J. Rozenblit, K. Buchenrieder, editors, Codesign pp. 230-262, IEEE Press

@ 1995.

28. T. Ismail., K, O’brien, and A. Jerraya, Interactive system-level partitioning with

PARTIF, in European Conference on Design Automation, February, 1994

29. R. Camposano and J. Willberg, Embedded system design, Design Automation for

Embedded Systems, 1(1-2): 5-50, January 1996.

30. P. Chou, R. Ortega, and G. Bordello, The Chinook Hardware-Software Co-Synthesis

System, Technical Report 95-03-04 Dept. of CS&E University of Washington Seattle,

WA, March 1994.

31. The VIS Group, VIS : A system for Verification and Synthesis, Proceedings of the

8th International Conference on Computer Aided Verification, pp 428-432, Springer

Lecture Notes in Computer Science, #1102, Edited by R. Alur and T. Henzinger, New

Brunswick, NJ, July 1996

32. EM. Sentovicn K.J. Singh, L. Lavagno, SIS: A system for Sequential Circuit

Synthesis,” Memorandum No. UCB/ERL M92/4 May 1992, [Online] Available

http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html 4 May 1998.

33. F. Balarin, M. Chiodo, POLIS version 0.3 User's Manual, [Online] Available

http://www-cad.eecs.berkeley.edu:80/Software/software.html December, 1997.

34. B.W. Kemighan and S.Lin, An efficient heuristic procedure for partitioning graphs,

Bell System Journal, Vol. 49, pp. 291-307, February 1970.

35. CM. Fiduccia and RM. Mattheyses, A linear-time heuristic for improving network

partitions,” Proceedings of the Design Automation Conference, 1982.

36. B. Krishnamurthy, An improved min-cut algorithm for partitioning VLSI networks,

IEEE Transactions on Computers May 1984.

37. S. Kirkpatrick, C.D. Gelatt, and MP. Vecchi, Optimization by simulated annealing,

Science, 220 pp. 671-680, 1983.

143

38. P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, Performance Guided System Level

HW SW Partitioning with Iterative Improvement Heuristics, Technical Report,

Linktiping University, Dept. of Computer and Information Science, No. 26, 1995

[Online] Available http://www.idaliuse 3 April, 1998.

39. P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, System Level HW/SW Partitioning

Based on Simulated Annealing and Tabu Search, Kluwer Journal on Design Automation

for Embedded Systems, vol. 2, no. 1, pp. 5-32, January, 1997,

144

"‘11111111111111111“

