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ABSTRACT

TIME-DOMAIN IMAGING OF RADAR TARGETS USING

ULTRA-WIDEBAND OR SHORT PULSE RADARS

By

Yingcheng Dai

The development of viable short-pulse radar system has renew the interest in time

domain imaging performed directly in time-domain with temporally measured signal.

Since the short-pulse response of a target provides significant information about the

positions and strengths of scattering centers, and if observations are made over a wide

range of aspect angle, one might created an image of the target using the short-pulse

response information. In this thesis, we have developed and implemented a time-domain

radar imaging technique based on a space-time magnetic field integral equation, using a

sine modulated exponential pulse, and employing the inverse Radon transform. Images

of various aircraft models were created from measured target responses over a wide band

of frequencies and over the entire range of aspect angles.

For the limited-view problem, two techniques have been proposed to process this

practical situation. One of the approach is the method of projections onto convex sets

(POCS) which has been use in image processing for a long time. We extend this



approach to radar imaging for the first time and show some useful results. Another

approach which we have demonstrated is to process the available measured projections

in order to generate an estimate of the fill set of projections, an image which is called

a sinogram. The goal .of this approach is to recover the sinogram from the available

measured data using linear prediction. Since the scattered field of a target can be written

as a superposition of distinct specular reflection arising from scattering centers on the

target, the position and strength of the scattering centers can be predicted using linear

prediction with the change of the observation angle. Thus the missing data can be

predicted before reconstructing the image.

In the imaging of complex radar target, the PO approximation is used in the

reconstruction algorithm. However, the PO approximation is inadequate for scattering

problems of a complex shaped conducting object such as aircraft. At high frequency, edge

diffractions, multiple reflections, creeping waves, and surface travelling waves may also

be important scattering mechanisms. Additionally, the spectral and angular windows for

data are usually restricted by practical constraints. Therefore the time domain image of

a aircraft may be different from their geometrical shape. We have investigated time

domain imaging of aircraft employing SMEP responses, and interpret the reconstructed

image from a new approach, based on analysis of the scattering mechanisms and the

back-projection algorithm utilized in image retrieval. The time-domain inverse scattering

identity with the incorporation of Geometrical Theory ofDiffraction (GTD) is derived and

some interesting experimental results are provided.
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CHAPTER 1

INTRODUCTION

Microwave imaging of airborne targets has received considerable interest in recent

years. Most attention has focused on the use of inverse synthetic aperture radar (ISAR)

[50,51]. In ISAR, the target is modelled as a collection of scattering centers at sufficiently

high frequencies and the image is constructed from a 2-D inverse Fourier transform of

the Cartesian frequency spectra, or a backprojection algorithm along with a 1-D inverse

Fourier transform of the polar frequency spectra [50]. The development of viable short-

pulse radar systems has renewed the interest in time-domain imaging performed directly

in the time domain with temporally measured signals. The use oftime- domain techniques

was first discussed by Kennaugh and Cosgroff in 1957 [6]. Since then, many researchers

have developed approaches to the inverse scattering problem [7-12]. They have shown

that the target impulse, step, and ramp responses are related to the target geometry based

on physical optics principles. Under the physical optics approximation, Bojarski has

established a Fourier transform relationship between the geometry of the conducting

scatterer and a form of the scattering cross section [14]. Since this approach is based on

the physical optics approximation, it is valid only in the limit of high frequency. When

the size of the scatterer is comparable to the incident pulsewidth, the physical optics

solution is inadequate for this scattering problem. Furthermore, the impulse, step, or ramp

response of the target is hard to obtain in practice.
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The purpose of this thesis is to develop and implement an imaging technique

directly in the time domain. Since the short-pulse response of a target provides significant

information about the positions and strengths of scattering centers, and if observations are

made over a wide range of aspect angles, one might create an image of the target using

the short-pulse response information. The starting point of this thesis is the time-domain

magnetic field integral equation (MFIE). The derivation of the MFIE and its numerical

solutions are provided in chapter 2. Chapter 3 gives the time-domain inverse scattering

identity (thickness function) developed from the time-domain MFIE and the Radon

transform. It shows that the size and shape of an object can be obtained from its cross-

sectional area function, and that the problem can be reduced to the classical Radon

problem. In this process, the Sine-Modulated Exponential Pulse (SMEP) is used as the

incident field.

Since the area function can be estimated from the scattered field when the incident

field is a SMEP, the remaining problem is thus essentially that of reconstruction from

projections. The basic idea of reconstruction of an image from a series of its projections

appears to have been first discussed by Radon [16]. The techniques that exist for

reconstruction fall into two directions. The whole operation can be done in frequency

space directly, or the equivalent of these expressions can be transformed into the spatial

domain. Whether implemented in the spatial domain or in the frequency domain, the

reconstruction algorithms can be conveniently interpreted by means of a straightforward

and interesting theorem, which is the projection-slice theorem. This theorem states that

the Fourier transform of a projection is a center cross section of the Fourier transform of

the projected object. Most modern tomographic systems are based on this theorem. Thus,

by formulating the object reconstruction problem as a form of the Radon problem, the

2



many reconstruction techniques and the properties of reconstruction from projections

which are well developed in other fields for the two-dimensional case can be extended

and applied to the inverse scattering problem. Chapter 4 gives the development of the

reconstruction algorithm and provides clear images with highly-defined edges using

stepped-frequency, multi-aspect measurement data of aircraft models.

For complete reconstruction, the time-domain approach requires data for all aspect

directions. However, in practice, information usually available only for limited view-

angles; thus, it is necessary to analyze the effect of incomplete information which may

cause the inverse problem to be ill-posed in nature. The limited-view problem has

attracted considerable attention in computed tomography imaging research, and techniques

for dealing with it have been proposed. Techniques can be put into two categories:

transform techniques that incorporate no a priori information, and finite series expansion

methods that may incorporate a priori information as constraints. The transform

techniques are usually single-pass direct reconstruction [18-20] while the finite series

expansion methods are usually iterative [21-27]. Projection onto convex sets (POCS) in

particular has shown great flexibility in dealing with known geometric constraints and

with noise. We will extend POCS into radar target imaging. The details are carried out

in chapter 5. Also in chapter 5 we will demonstrate a new reconstruction algorithm for

radar imaging in the limited-angle case. The goal of this approach is to recover the

sinogram from the available measured data using linear prediction. Since the scattered

field of a target can be written as a superposition of distinct specular reflections arising

from scattering centers on the target, the trace of the scattering centers can be predicted

using linear prediction with the change of the observation angle. Thus, the missing data

may be predicted before reconstructing the image.
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In the proposed time domain imaging technique, the physical optics approximation

is used to model the scattered field of an aircraft. However, the PO approximation is

inadequate for scattering problems ofa complex shaped conducting object such as aircraft.

At high frequency, edge diffractions, multiple reflections, creeping waves, and surface

travelling waves may also be important scattering mechanisms. Additionally, the spectral

and angular windows for data are usually restricted by practical constraints. Therefore,

the time domain image of an aircraft may be different from its geometrical shape. In

chapter 6 we will investigate time domain imaging of aircraft employing SMEP responses,

and interpret the reconstructed image from a new approach based on analysis of the

scattering mechanisms and the back-projection algorithm utilized in image retrieval. The

time-domain inverse scattering identity with the incorporation of Geometrical Theory of

Diffraction (GTD) is derived and some interesting experimental results are provided.



CHAPTER 2

INTEGRAL EQUATION AND ITS SOLUTION

FOR TRANSIENT SCATTERING

2.1 Introduction

Before the advent of the high-speed digital computers, most electromagnetic

scattering problems were solved in the frequency domain. The boundary value solutions

associated with electromagnetic radiation and scattering phenomena were based upon

analytical techniques that attempted to generate closed-form solutions and were, therefore,

limited to a few classes of problems. Approximate techniques such as geometric optics

(GO), physical optics (PO), and the Rayleigh approximation were applied to other

problems to obtain estimates of the scattered response. With the advent of high-speed

computers, the frequency-domain integral equation technique has also provided many

interesting and useful results.

The integral equation and its solution could also be obtained directly in the time

domain [1,2]. Indeed, the frequency-domain integral equations have their time-domain

counterparts [3]. With the developments of high resolution radar and electromagnetic

pulse (EMP), the investigation of radiation and scattering of transient waveforms from

conducting objects has attracted increasing interest. There are two integral-equation

techniques available for solving transient electromagnetic problems [3]. One of them

involves the Fourier transform of the frequency response of the scatter to synthesize the
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time-domain response. The alternative technique is based on the time-domain integral

equation and its subsequent solution using the marching-on-in—time method. The details

of this approach and other approximate techniques will described in Section 2.3. The

derivation of the general integral equation for the scattering problem is covered in Section

2.2.

2.2 Time-Domain Integral Equations

The integral equation method has several advantages, such as geometrical

generality, compactness, and computability, which make it an attractive approach to

solving electromagnetic boundary value problems. In this section we will provide in

detail the derivations of the time-domain integral equations directly, rather than via the

inverse Fourier transform of the frequency-domain solution [2].

2.2.] Magnetic Field Integral Equation

Consider the scattering of electromagnetic waves by good conductors, as shown

in Figure 2.1. The electric and magnetic fields ofthe scatted wave satisfy the time-domain

Maxwell equations in the source-free, free space region outside the conductor.

with» - mogfi‘mt)

a,“ _ a~.-
va (a) so 6:5 (at)

(2.1)

V~E‘(F,r) = o

V-fi‘(r',r) = o

where so and [.10 are the permittivity and permeability of free space, respectively, and F



incident

wave

 

Figure 2.1 Scattering of an incident electromagnetic wave by a

perfect conducting body.



is the position vector.

These fields can be derived from a scaler potential (11‘ and a vector potentialzfs

such that

Err,» = yum-gr?‘01:), firm = iVxX‘rm (2.2)
1‘0

These potentials are related to each other by the Lorentz condition

V-A (r,t)+———¢ (r,t) = O (2.3)

c2 at

where c is the free-space light speed. Applying equations (2.1) and (2.2) yield the wave

equations satisfied by (1)5 and X5

[Va—ii]¢‘(f’,t) = o, [Va-iik‘tm = o (2.4)

c2 6:2 02 6:2

The retarded solutions of the wave equations (2.4) are

lF-F/llc)ds,/

[I

 

s —o 1 dl’t-

<1> (at) = f 9"
41teo s IF-i"

(2.5)

"3 '° -'l _ ~_ ~/

A (fit) = Eli/‘10,! Ir r llc)dS/

4n 8 IF-F’l

where .7 is the current density and Q is the charge density on the surface of the body.

They are related by the continuity equation

VJ(F,t)+-§Q(F,t) = o (2-6)

Substituting (2.5) into (2.2) gives the following integral representation of the scattered

magnetic field 173011) at a point F exterior to the scatterer and at time t



“5.. 1 “.4 [1 l " 6".4 /

H r,t = — Jr,t xV — -—R —Jr,r (2-7)() 4,,f.( ) (R1CR2 "aH )st

where

R‘ = F—F’ R = |F-F’| (2-3)

1: = r-llr-F’l (2.9)

C

The operator V’ acts on the source point F’ . Equation (2.7) expresses the magnetic

field of the scattered wave at a point in space and time as a composition of excitations

from individual points of the scatterer’s surface at specific retarded times.

The derivation of the Magnetic Field Integral Equation (MFIE) begins by applying

the appropriate boundary condition. On the surface of a perfectly conducting scatterer, the

total magnetic field is related to the surface current density at all times through the

equation

Jim = fixrfi‘rat)+fi‘(at)1 (“01

where If is the outgoing unit vector normal to S.

Applying (2.10) to the representation (2.7) yields the time-dependent MFIE [2]

_, _. . " _. T -/ "

J(F,t) = ZfixH‘(f’,t)+_§_xf [1.9.J racyflhfids’ (2.11)

2n 8 c or R R2

where the integral is taken to be a principal value (P.V.) type. As we will see later, the

special form of this integral equation plays a fimdamental role in enabling us to construct

its solution using a marching-on-in-time method.
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2.2.2 Electric Field Integral Equation

The time-domain scattering ofan electromagnetic wave by a perfect conductor can

also be formulated in terms of an Electric Field Integral Equation (EFIE). Using (2.5) and

(2.2), one can obtain the following integral representation ofthe scattered electric fieldE s(F,t)

at a point I" exterior to the scatterer and at time t, in terms of the retarded values of the

surface charge density Q and the surface current density .7 induced on the scatterer’s

surface S

_1_ 1
E(r,t-)— —{—1 VRQ(r’1:,)+—l‘iW,r)VR+uO—J(r’1:)}ds’ (2.12)

_4TI 3 R 80R 80 at

The EFIE for the scattering problem involving a perfect conductor may be derived

from the following boundary condition which holds for all points on S

If x[E"(r,r) +mm] = o (2.13)

Applying condition (2.13) one arrives at the following EFIE involving Q and .7

where the integral involved is also of the RV. type. Clearly, the EFIE is a Fredholm

integral equation of the first kind while the MFIE is a Fredholm integral equation of the

second kind.

2.3 Numerical Solution of MFIE

There are two useful integral equation techniques available for solving transient

electromagnetic problems. One of them involves using the Fourier transform of the

10



frequency response of the scatter to synthesize the time-domain response [3]. The

alternative technique is based on the time-domain integral equation and its subsequent

solution using the marching-on-in-time method. Here, we will describe the marching-on-

in-time method in detail.

2.3.1 Rigorous Solutions

A commonly used technique for solving transient scattering problems is the

marching-on-in-time method. Consider the MFIE

 
X—

- _, g

1.0“ if) R is, (2.15)

R R2

"_. . “1'... II 16"../

Jr,t =2n H r,t -— ——Jr,r +,() x (12nxf{cat ,( )

where f denotes the principal value integral, and 1: =t-R/c is the retarded time.

This equation is clearly a Fredholm integral equation of the second kind. Note that

for a given time t, the unknown .75 inside the integral has an argument ‘I.’ =t -R/c. Since

the principal value integral excludes the point R=0, r is always less than t. Thus, we can

regard (2.15) as an expression for the unknown current .750), at any given time t, in terms

of the known incident term 2rixii‘, and an integral which is also known from the past

history of the current .73. This procedure forms the basis of an iterative technique for

constructing the solution of (2.15). The solution is started at the time t=to, invoking

causality which guarantees that all past currents and their derivatives are identically zero

for t<t0. The solution is then constructed by gradually building it up for t>to, by

marching on in time using a time-stepping procedure.
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The method of moments can be applied to the solution of equation (2.15). First,

let’s express the unknown J; in an expansion of pulse basis functions

N

2,;tr,1V,.(F6U,.(r1 (“61

E
M
?
-

_,, { 1 for ‘r" on the surface segment center at f1

Vi(r ) _ 0 elsewhere

where

for t in the time interval centered at tj

Uj“) = {o elsewhere

The unknown 11".}. are the vector weight coefficients for the space-time sampled values of

the current .75 on the surface of the structure which is assumed to be subdivided into N5

patches centered at r,. The total time is also assumed to be subdivided into N, time-steps.

Since there is (175/ a: in equation (2.15), .730) and (175/ a: should be differentiable

at the observation time t, so we use a second-order Lagrange interpolation to approximate

the current

(t-tj‘)(t5.1) -. (t_tj-1)(t'tj.1)—.

(ti-1%)“)-
1-111) ijl+(tj—tj-1)(tj-

tj+l)
ij+1

  m.r1= A,(t1=
I}

(t—tj_l)(t-tj) _.

_ _ ij+1

 

where A” is the sample value of J at the center point of patch As at timer.,Then

substituting equation (2.16) into (2.15), and point matching at the center point of each

patch Asi gives
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N! NI

Js(r t,) =2fixH (r. ,t)--§— [2251—quale—(t)+qu(r)—El-3xR’Vp(F’)Uq(t)ds’

2" P=lq=1 (2.18)

Note that p=i gives the contribution of the principal value integral due to the induced

currents in the self-patch itself. However, it can be shown that this contribution is zero

if Asi is a flat surface

jsxR = riJsR - fix(jst) = fixfiJsR = o (2.19)

We can consider .75 and R to be constant within patch Asp, and thus the integral

over each patch can be approximated by multiplying the current value at point Fp with

the area Asp. Then

xkipuqm i=1,2,...Ns

 

NS NI

~ . ~ m. -1Js(ri,t) 2an (rnt) an 2 ZASr[atqu(r)c—l—ZCRW +Am(r)R1;

 

 

ptlpai q=1

(2.20)

. . . . R.
where Rip= If} —Fp]. Pornt matching at time t, and letting q =j-im{—A'!i— +0.5 , where

C t

int[---] denotes taking the integer part of the data, equation (2.20) becomes

- . ~. .. 11 GA__(_a.,t) 1 - ~ .
Js(r,,r,) = A” = 2n xH (w!) - z—xzj + —3qu(1:) xRip 1 =1,...,1v,

It P=1priAspchp r-rj Rip ""1

(2.21)

The sample points in time are not independent of the space sample points used.

In order to let the two adjacent current sample in space not fall in the same time interval,

13



the time sample spacing At must be related to the space sample spacing AR by

cAt 5 AR (2.22)

Finally, we can use a method of marching-on-in-time to solve the problem. First,

assuming the start time is to, and all the surface currents on S are zero for all time less

than to to view the integral equation as an initial value problem. For instance, let us

assume that at time tl the incident field has just reached the scatterer. By virtue of the

retardation and the principal value nature of the integral, a current is induced on part of

the scatterer which is equal to 2rixHi(f'l,tl). As the time progresses further to 12. the

current at each point is then given by the known incident field 2fixHi(F,t2) plus a

contribution from current at other points on the scatterer at earlier times which is also

known. Using this idea gives

for j=1, A"). = A}, = 2rixH'(r;.,rl)

l (2.23)

+71W(t)} XROIPASP
 

 

N

. -' - .. ~r_. it s 1 6 ~
for 1:2, Aij = A12 = 2an (ri’t2)+2rr x 2 .{ngmhg

p=1 rm CR,-p
”‘2

Thus, marching on in time will allow us to build up the current solution from

previously known values. This method has many advantages, such as case of

programming and speed. Also, the solution is usually explicit and does not involve the

inversion of large matrices. However, a major disadvantage of the method is that the

computed solution often becomes unstable as time progresses, usually taking the form of

a very regular exponentially increasing oscillation which alternates in sign at each time—

14



step [4,5]. The cause of this instability will be seen to be related to the existence of

resonant frequencies at which the corresponding frequency domain integral equation has

more than one solution.

2.3.2 Instabilities In Marching-on-in-Time Methods

The occurrence of exponentially increasing instabilities is a common feature of

time marching method for solving transient scattering problems. In this section we will

examine how the instability arises and describe a simple method to eliminate the

instability. More details can be found in Rynne [4] and Smith [5].

The system equation (2.21) can be written as

N, 1v,I

Eu : firxgx‘f’iix Z “MN-q (2-24)
p=1 q=1

N
I
:
—

 where i = l,2---NS, j = 1,2---N,, a]; are some constants and Nq=im{ AP +0.5]

C I

Now, recast this system of coupled linear equations as follows. Introduce the auxiliary

variables

“(4) _ " _ _

AN _ ApJ-q p ‘1’m’Ns q—l,---,Nq (2-25)

These are vectors in R3. Fix 1' and j. Then equation (2.24) shows that each component of

the 3-vector AS) is a linear combination of the components of the N,N,,-length vector/Ix.)

and the component of the forcing term fiixHiJ, and, moreover,
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“(11 _ ~10) ~(21 _ ~(11 4M) _ 4M4) 2.26

Au“ “Au-1’ Au ' iJ-l "'3 Aw 'AiJ-I ( )

In short, each component of any such vector A3) is a linear combination of the

(P)

J
components of the NJVq-length vector A; and the component riixHiJ.

Now, let YJ- denote the following column vector in R3N‘N' assembled from the

auxiliary variables Ag.) (q=1.....M and q=1,...,Nq)

-0(N‘)(0) “’(1)

U, Au,...,AU
”(Nf)

“ "(01

1;. = [A .,ANJ,...,AN.1 17 (2.27)

Also, let hj denote the following column vector in R3N’N‘ assembled from the forcing

ICI'II'IS

h. = [ii xi? 0, 0, ri xH , 0, 0,..., ii x ” ., 0, 0]T (2.28)
l 2 2.1 N Nif

y], = 3134.11. (2.29)

Here B is a suitable matrix in terms of the constants apiq.

The initial quiescence of the system before the transient arrives requires that Y0=O.

If Hinc represents a transient of finite duration then H0=O, and Hj=0, for all j exceeding

some fixed M. Hence hj=0 forj>M. The solution is therefore (when j>M)

Y1. = BV'm(hM+BhM-1+...+BM‘1h1) (230)

Thus, if B has an eigenvalue of modulus exceeding 1, the vector Yj will grow

16



exponentially in modulus. To demonstrate this, suppose that B has diagonal Jordan form

A = diag(1,, 1,, 1%) (2.31)

where B=U’AU for some non-singular matrix U. Denoting UYJ- by Zj, the system (2.29)

is equivalent to

Z. = AZ. +Uh. (2.32)
1 1-1 J

The homogeneous solution to (2.32) are of the form

2]. = [a11{,a,A’,...,aNqurNflq]T (2.33)

where a,,a2,... are constants, and any nonzero component is unstable if its corresponding

eigenvalue 7», is of modulus exceeding 1.

There is a simple remedy to the problem of the onset of instability. Consider the

following weighted average across 3 times steps:

1
yj = 2i(32+2B+1)Yj_l + (21443)},j (2.35)

which represents the effect of doing two time marching steps followed by an averaging

process (2.34). The eigenvalues of (BZ+ZB+l)/4 are (2+1)2, where A is any eigenvalue of

B. This has the virtue of shifting the troublesome eigenvalue near -1 to around zero, and

more generally of shifting any eigenvalue which may be slightly outside the unit circle

to inside. So this process will almost shift all the eigenvalues of the unstable marching

process inside the unit circle. Sample numerical results will be provided in Chapter 4.
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2.3.3 Approximations

For scatterers that are large compared to the wavelength, the physical optics

approximation is a well-known method in the frequency domain. Similar approximations

can also be obtained in the time domain. In this section, we will extend the idea of the

physical-optics approximation in the frequency domain into the time domain.

For a perfectly conducting body, the surface—current-density distribution derived

in the frequency domain under the physical optics approximation is

2rixfi‘(?,e) i5 ~r‘i<0 (2.36)
.7 F,tr1 = _,.

po( ) {O k'°ii>0

Where If is the unit vector normal to the surface at point F, H i(F411) is the incident

magnetic field with angular frequency to , and It.i is the incident wave vector. For a time-

function excitation, the incident fields may be decomposed into their frequency-domain

components by superposition as follows

I?‘01:) = zAmfitEwp = 21mm...) (2.371

and

7
*
‘
1

a
}
.

A OX 2fixfi‘~(r;um) = 21ixfi“(r,r) (2 38)

7
r
:

:
1
.

v O0

Under the far-zone approximations, equation (2.7) can be simplified as
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Ii" (r,t)

p0 cR

.. _. g, -

. _1_f j(;/,,)x£. am ’11,. R 1 (2.391

47! R3 61’ CR2

1 "°_./ / l _ 1 "‘ a -.-o/ /

EfJJo ,t)xV(—R) -—2RXEJ(r @er

 

A ”-‘l

r: -Lkamdsl

47tRC 5 6‘1."

Thus I?“ can be explicitly written in terms of the incident field as

 

—o" _./

Esau) = -2 IRCRxfri’xfi—gflds’ (2.40)

1t 3

where f denotes an integral over the illuminated portion of the target.

I

The physical optics approximation allows the direct evaluation of .7 from a

knowledge of the scatterer’s geometry and orientation with respect to the incident wave.

One of the short-comings of the PO approximations is its inability to accurately to

represent the current near the shadow boundary.
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CHAPTER 3

TIME-DOMAIN INVERSE SCATTERING IDENTITY

3.1 Introduction

Target imaging and identification using electromagnetic responses in the time and

frequency domains has attracted increasing interest, with most methods carried out in the

frequency domain. The use of time domain techniques was first discussed by Kennaugh

and Cosgroff in 1957 [6]. Since then many researchers have developed approaches to the

inverse scattering problem [7-12]. They have shown that the target impulse, step, and

ramp responses are related to the target geometry based on physical optics principles.

Under the physical optics approximation Bojarski has established a Fourier transform

relationship between the geometry of the conducting scatterer and a form of the scattering

cross section [14]. Since this approach is based on the physical optics approximation, it

is valid only in the limit of high frequency. When the size of the scatterer is comparable

to the incident pulsewidth, the physical optics solution is inadequate for this scattering

problem. Furthermore, the impulse, step, or ramp response of the target is hard to obtain

in practice.

In this chapter we start from the space-time magnetic field integral equation, and

by using a Sine-Modulated Exponential Pulse (SMEP) waveform as the incident field, an

exact two-dimensional time-domain bistatic inverse scattering identity can be obtained

based on the inverse Radon transform. The formal definition of the Radon transform is
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given in Section 3.2. In Section 3.3, the time-domain bistatic inverse scattering identity

is derived in details. Special cases such as the monostatic case, rotationally symmetric

target, flying object and three dimensional case are treated in Section 3.3.2, 3.3.3, 3.3.4,

and 3.3.5, respectively.

3.2 The Radon Transform

Radon transform theory has become a very important mathematical operation and

its applications are well known. They include computerized tomography (CT) applications

in, for example, diagnostic medicine, radio astronomy, electron microscopy, optical

interferometry, and geophysical exploration. These well-established concepts can be

extended and applied to the radar inverse scattering problem.

3.2.1 Radon Transform in Several Dimensions

The Radon transform of a function at a given hyperplane is defined as the integral

of the function over that hyperplane [1 1-13]. For a hyperplane in n-dimensional Euclidean

space defined by

(3.1)

m
)

>1
1

II

"
a

where f is the spatial position vector, E is a unit vector orthogonal to the hyperplane,

andp is the Euclidean distance from the origin, the Radon transform F(8 ,p) ofa functionf(5r‘)

over the hyperplane is given by
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F(E,p) = [EM/(soars (3.2)

The above equation may be expressed more conveniently in the following form

by using the Dirac delta function 8

F(€.p) = [11121 6(p—E-F)ds (3.3)

The inversion of the Radon transform consists of expressing f0?) in terms of its

integrals F(E,p) over the hyperplanes. The inversion formula for odd dimension in n is

_ 1 (n-l) - ~, ~
fli) - mm!" (5.5 ad: (3.41

where Fpm'l) is the (n-I)th derivative of F with respect to p. For even 11, the inversion

formula is

 

‘ a F(n-1) ,“

it) = 1 f dEf dp_£__:(_’LE_) (3.5)

(2a))" '5'“ p-E-fc’

Since the two-dimensional Radon transform has been used in this work, we will

mainly discuss this case as an example which will also help understanding the Radon

transform for higher dimensional cases.

3.2.2 Two Dimensions

We will use the coordinate system defined in Fig. 3.1 to describe line integrals.

Let (x,y) designate coordinates of points in the plane, and consider some arbitrary function

fdefined on some domain D of 2-dimensional Euclidean space. If L is any line in the
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f(X,Y) D

 
Figure 3.1 Geometry of 2-D Radon transform.
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plane, then the line integral offalong all possible lines L is the two-dimensional Radon

transform offprovided the integral exists. It can be written as

F = fLflx.y)ds (3'6)

where ds is an increment of length along L.

The equation of line L in Fig. 3.1 is

xcosrb +ysin¢ = p (3-7)

Then the transform can be written as an integral over two dimensional Euclidean space

by using the delta function to select the line L fi'om the space

F(p,d>) = f_:f_:fix,y)6(xc08¢ +ysind>-p)dxdy = ffiflbw-E-fldf (33)

where F = (x,y) and E = (c0541, sin41).

If F(p,¢) is known for all p and 1]), then F(p,<[)) is the two-dimensional Radon

transform of f(x,y). A projection is formed by combining a set of line integrals. The

simplest projection is a collection of parallel integrals as is given by F(p.¢) for a fixed

angle ([1.

Since E'F = xcosd) + ysincb, the inverse Radon transform for the two-dimensional

case (12:2) can be written from (3.5) as

a A

= - 1 II N w (309)

fix,» 7,21. d¢f__———p_£.f dp

If the replacements x = recs 6, y = rsinB are made, thenfin polar coordinates becomes

24



a .

—F(p’5) (3.10)1 r «- 3p
,0 = -— d

fir ) 4n2f° d¢f-~r?-rcos(¢-6) p

 

These formulas for n=2 constitute a solution to the problem of reconstruction from

projections.

3.3 Derivation of Space-Time Integral Equations and Inverse Scattering Identity

When an electromagnetic field is incident upon an object, currents and charges are

induced on and in the object. The induced currents and charges will then maintain a

scattered electromagnetic field. Once the induced currents flowing on the conducting

scatterer surface and the scatterer geometry are given, the scattered field can be calculated

directly. The expression for the surface currents (MFIE) has been derived in chapter 2.

In this Section, we will apply this expression to derive the inverse scattering identities for

the monostatic and bistatic cases, respectively. Finally, we will also discuss the cases of

the rotationally symmetric object, flying radar targets, and the 3-D case.

3.3.1 The Bistatic Case

From chapter 2 we know that the expression for the induced surface current .7 at

the point F on the scatterer surface and at the time t can be written as

. -i .. ~ - - .
7(f‘,t) = 211x}: (r,t) +J,(r,t) If°q>0 (3.11)

Jctfit) nfi<0

where
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_1_+1_<‘9_ ~01“)de d, (3.12)

R2 Rat

 

where Wat) is the incident magnetic field, ti is the unit vector normal to the scatterer

surface, F is the position vector to the observation point, F’ is the position vector to the

integration point, R = lF-F’ l, 0“, = (F -F’)/R, (j is the unit vector to the transmitting

antenna, t=t-R, and t denotes normalized time in meters (ct).

From equation (3.11), we can see that the first term of the right—hand side

represents the direct influence of the incident field on the current at the observation point.

When applied to the illuminated side of the scatterer, it yields the familiar physical Optics

approximation for the surface current. The second term on the right-hand side of (3.11)

represents the influence of currents at other surface points on the current at the

observation point.

Once the surface current density has been obtained, the far scattered field of the

scatterer shown in Figure 3.2 can be calculated by the expression

vxf 3:25—st ’J (3.13)

 

where R5 = IFS-F’l, and r’ = r-R

Assuming that the observation point F3 is not on S, the curl operator may be carried

inside the integral. Using the far-field approximations and standard vector identities, we

have
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Figure 3.2 Geometry of the scatterer and graphic view of space parameters.
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(3.14)11

g
—
a

h

h
D

X

g. ‘
i

I
i
t

Q

a
:

5‘01,»

where RS = (FS—FfillFs-F’l

In the far zone, we can use the approximations Rs = rs - fs-F’ for the retarded time

r’ and RS .~. rs and Rs z is for the amplitude term. Then (3.14) becomes

_ * _./

h‘(F,,t1 = -—1 r,x——a’(""’as' (3.15)
4713's 3 61',

Now, we define the aperture function

1 fi'fi(F/)>0 (3.16)

A =
0' n) o fi'r‘i(F’)<0

which is unity on the illuminated region of scatterer surface, and zero in the shadow

region. Substituting (3.11) into (3.15), we have

6.7 F’,r’c( )d5

61/

_. ”i _./

1250;,» = -—1— rxri’xiég—“flAagriytsh—Lf f x I (3.17)
T s

S 3

2113's 8 41trs

I
I

_ _ A A O—o/ I = - z _ A .-¢/ ~

I ri rs+(r‘.+rs) r , and t t RS t rs+rs r . Usrng the vectorwhere 1: = t-Ri-Rs

identity fsx(fi’x}i ‘) ri’(fs°li ‘1—13‘0315’), (3.17) can be written as

_, i~/ 6.7 «x, .-

h ‘(F,.t) = J—fsri'-K§”_g:il.4(r,r)¢il- lef f FALL,112' (3.13)
8

2m; 1117's 5 61/

where I? = is — (fs'li i)li i, and h ‘(Fs,t) = If i711073;). Now, letting the same incident pulse
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illuminate the shadow region of the scatterer, we have

   

-° ‘ "’ 6.7 F’,t ..

h23(f°s,t) = Lffil'KmA2(fi,fi)dY/-——
l-—ffsx___c_z_(___/)d

sl .h‘ (3.19)

21173 S at 41trs s 61/

Combining (3.18) and (3.19) yields

_, 1' _.,

TITffi/xah ((12,?)‘13/ = H ‘(F.,t) (3.20)
rt 5 s

where

6.7 F’,'(: ..

11502,!) = Lff‘s)(._c€___2dg’
14,'

41trs s 31/

6.7 F’,r .- (3-21)

err.» = —‘fax—4“1.1
41v: s 31/

 

H ’(FSJ) = h 3(FSJ) +h25(f°,,t) +h:1(7_,,t) +hcsz(F_,,t)

Applying Gauss’ law to the left hand side of (3.20), we have

f Wary = TIE—H855,” (3.22)

V ar" (K-flcosw/Z)

where fl. +r‘s = 2cos—g-r‘, and B is the bistatic angle as shown in Fig. 3.2. Assuming the

incident magnetic field is a SMEP defined by

h "(o = sin((bct)e mum (3.23)

where U(t) = [(1, :3, we have
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1g?) = [wccos(wct) - asin(w€t)]e'°“U(t) (3.241

and

dzdh:———(——t)= (tr2 -(r12)sin((ot)--2a(ocos(welem/(0111.190) (3-25)

I

Using the relation 1' = t-R‘n—Rs, the left hand side of (3.22) can be written as

62h‘(F’,r) 6111:"t) _ 1
fdevl= aathT—_dv/ - 5Lh(F[,1)dV/ (3°26)

Then, using (3.22) and (3.26) together with (3.23) and (3.24), we can obtain the two

equations

 sin(wct)e'“U(r)dv’ = otsH‘(F,t)dt2 (3-27)

V
(Kr)0091(l3/2)°

and

 [Vwccos(wct)e “"U(r)dv’= [fo'H’(FS,t)dr+af0‘fotH‘(Fs,t)dt2] (3.28)

(Kf)COS(B/2)

Substituting (3.25) into (3.22) and using (3.27) and (3.28), we have

 5 dv’- ”3 H‘” 2 '11“ d:fV (r) - [ (r,.t1+ afo (r,t)
(Kuwait/ZN. (3.29)

+ (1.13 1. a2)fo‘fo'HS(FS,r)d12]

Now, defining the characteristic function
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“ - 1 FIEV (3.30)
709 {0 ”V

we have

on " “ -' / 2firs
t ..

fffY(r/)6(ts-r.r/
)dv = " [HSO-gat) +2afoHS(r

srt)dt

'°° “”6
(3.31)

2 2 t t s _. 2

1. (w. + 01 )f0 [0 H 03,011: 1

where we use the relation 1: = t-Ri-RS and the properties of the Delta function

5(1) = 5(-t)

D 1
(3.32)

6(2cos—r) = —_ (r)0
2 2eos(0/2)

r.+r —t

and t = -—'——s——.

‘ 2cosw/2)

It can be see from equation (3.31) and Fig. 3.3 that the right hand side of (3.31)

is the Radon transform of y(F’) (see Section 3.2). It denotes the projected area function

_ ~.-/
at the plane ts - r r

140.1,) = fjfy(F’)o(ts—f'F’)dv’ (3.33)

A

Here A(f,ts) is the projected area onto ts for the particular aspect direction r along ts.

Note that the cross sectional area A(f',ts) is formed with a time scale such that the

cutting plane rs = r‘-F’ used to determine A(f,t) moves with 1/(2cos(B/2)) (one half for

the monostatic case) of the velocity of the incident SMEP.
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If the view angles are available only in the x- y plane (0’ = rt/2, 05(11‘ 321:),

then the body geometry can be related to the cross-sectional areas A(r‘,ts) through

AW.) = ff[101 ’.y ’,z%(r,—(x’cos¢‘+ y’sin¢‘))dx’dy ’dz’ (3.341

Integrating with respect to z’, (3.34) becomes

110,13) = ffI‘(x’,y’)6(ts—(x’cos¢‘+y’sin¢‘))dx’dy’ (3.35)

where I‘(x,y) = f "y(x,y,z)dz is the "thickness function" of the target in the z direction.

Taking the two-dimensional inverse Radon transform of equation (3.35) (see

Section 3.2.2 equation (3.10)), we can get the thickness function [1 1-13].

 

u .. aA(‘,t,) drsd

1‘03) = ——1—- 2 f r 4’
4n2 ° '°° 5‘. t,-p’008(¢’-<I>)

110.1,)1 n «-
= __ d: (3.36)

219]" fr (1, — Noose/4112 ‘

 

 

1 r .. COS(BIZ)A(f,t,)

- —?fo dtdd)
'°" (t-13,-,+20’COS(13/2)<:OS(¢l>’-<l>))2

where 5’ = x’f+y’)‘1 p’cosd>’£+p’sind1’y, and pis = 91"93- Substituting (3.31) into

(3.36), we have

 

2 ,. .H‘(61.0+2a ‘H‘(i1"0dr+(wi+a21 ’ 11151111112 (337)
p(§’)=-MB_/Zfof f0 :9 fofo dtdtl)

(ii-r111: w, ‘°' [t-11,-,+20’cos(11/2)<=os(ct>’-<Ii)]2

From equation (3.37), we know ([1 depends on (11‘, (11‘ and [3. Here we only
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Figure 3.3 Geometry of 3-D body reconstruction problem
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consider the special case when both transmitting and receiving antennas are fixed and the

target rotating or the scatterer is static and the transmitting and receiving antennas are

moving around the scatterer with bistatic angle (if-(l1s = constant [3. Then (i) = ¢1‘-B/2 (see

Figure 3.2 and Figure 3.3), we have

H’(p‘_:,t) +21:[0'11 vague!) + (1113+1112)f0'f0‘1v‘(aim:2

 

 

P(6,)=_2__P___s:COS(B/2)fpn’2+w2f: dtd¢i

(Kp)1t(11 [I'P,-_,+ZPICOS(l3/2)COS(¢I’¢‘+9/2)]2 (3,38)

= _ 2,50,15,27?” H5055)+2afo'H‘(6;.0dt+(wi+a21fo‘fo‘Hiwét1dfiMbi

(if-(5)1: we "' [t-01:2r>’cos(13/2)cos(<ti’-<I>‘+13/2)]2

This is the complete solution to the two-dimensional bistatic problem of recovering

a body from its scattered field; it needs the reflected fields and the correction term from

all possible directions in the x-y plane. The next step is to solve equation (3.38). We can

use an iterative method to get the 2-dimensional target geometry [9]. First, neglect the

correction terms hes,(p",t) and hcg(§’,t) in equation (3.38). This is the time domain

physical optics inverse problem. We can thus obtain an initial estimate of I‘l(p') , and the

correction terms, hcs,(p°’,t) and hc52(p°’,t), in (3.38) can be obtained by solving

76(F,t), .7c2(F,t) in (11) using the marching on in time method, and then used in (3.21).

Then the correction terms can be used in (3.38) to obtain a new estimate of P2(p‘). Then I‘l(p‘)

and 13(5) can be compared to see if the change is less than some small number, and the

procedure continued until this convergence criterion is satisfied. The numerical results for

a sphere of 14 inch radius using those procedures will be shown in Chapter 4.

Note that from (3.22) we can see that when the incident magnetic field is a ramp,
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using the physical optics approximation by dropping the correction terms, and using

B=0,I?°f=l for the monostatic case, then the backseattered ramp response is proportional

to the cross-sectional area of the target as a function of the distance along the line of the

incident direction [15]. This is the same result which Kennaugh, Cosgriff, and Moffatt had

obtained [6], [7]. Das and Boemer [12] have shown that the size and shape of an object

can be obtained from its area functions, and the problem can be reduced to the classical

Radon problem.

3.3.2 The Monostatic Case

For the monostatic case, the same procedure could be used to derived the inverse

scattering identity as described in Section 3.3.1. We could also use our formulas (3.37)

just obtained for the monostatic identity if we let the bistatic angle B =0, then

908(13/2) = 0

r“), = r“)

(3.39)

9., = 29

1313 = [ii-(r1415? (1 =1

Applying (3.39), (3.37) becomes

H‘(5;,r) +21:fo'H‘(5;,r)dr+(w§+a2)[0'fo'H’(5:,t)dt2 (3.40)

dtd¢‘ 
_. 2p 1! -

1‘ = __

(p6 wef° f" [t-2r>+20’cos(¢1’-(I>‘)]2

Comparing Figure 3.3 and 3.4 will help understanding this identity.
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3.3.3 Rotational Symmetric Targets

If the scatterer as shown in fig. 3.4 is a rotationally symmetric target about the z-

axis, then it is the simplest case to reconstruct the body shape of the scatterer, because

the contour of a rotationally symmetric object can be completely described by the radius

p which varies as a function of z, and its projected area function can be expressed as

A = 7.':pZ(z) (3.41)

where p(z) is the radius of the scatterer along 2 axis. Substituting the projected area

function into (3.31) yields the inversion equation for the rotationally symmetric case

1

p(z) = { 2" [H‘(Fs,r)+2afo‘HS(r;,r)dr+(u§+a2)fo'fo'HS(§,r)d12]}2 (3.42)
 

—.

91,00?)

This expression needs the reflected field for only two incident directions to

reconstruct the rotational body, and we can use the iterative approach or the direct

"marching on in time" approach to solve (3.42). If the upper part and the lower part of

the scatterer is also symmetric, we can simplify (3.42) as

l

2 i s .. t r s _

9(2) = { rs . [Hls(Fs,t)+2aj; H1 (rs,t)dt+(w: +012)[0 foH1('sJ)d‘2]}2 (3.43) 

—o

wc(K-r)

where H,‘(Fs,t) = h‘(Fs,t) +hcs,(Fs,t). If we use PO approximations and neglect the

correction terms, then (3.43) becomes

1
27' z 2 t t

= _—S h“, +2 h“, dt+ .+ 2 h“, dt2 2 3-449(2) {mc(E-f)[ (rs t) afo (rs t) ((0 a )fo [0 rs t) J} ( )
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3.3.4 Flying Radar Targets

In this special case, we assume that the upper part of the flying object is

symmetric to the lower part of the object such that only the reflected fields from the

lower part of the object are needed to recover the shape of the scatterer [52]. Also note

that the bistatic angle [3 and the distance between the scatterer and the transmitting and

receiving antennas change with the movement of the flying object. In order to simplify

the problem, we assume that the flying object has constant altitude h, and the distance

between the two antennas is a constant (1. When the target flies forward, it is equivalent

to letting the antennas move backwards at the same velocity of the target while keeping

the target static. The geometry of the scatterer is shown in figure 3.6. The following

relations can be found from the figure

 

r‘. = \Jh2+(hcot¢ +;)2

 

rs = J]? +(hcotd) - (51f

 

r = (,[112+(hcot(|>)2

l
 sind)‘ = Lsind) =

r
 

\J 1+(cot41-2—(2)2
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(3.46)

(3.47)

(3.48)
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Figure 3.6 Geometry of the flying object
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E = arc sin 1 -d1
2 (3.49)

\J 1+(cot<l> -—)2

. 1
are srn - (I)

l +(cottb —if

2h

arcsin 1 osrb + sind)

+ -—d- 2 + —£ 2I (catch 2h) \J 1 (cotd) 2h)

. (3.50)

cos(1) + 81nd)
  

 

d

l+(°°t¢'§;)2 \J l+(cot¢ - 2%)2

d
1-—sin2

4h 4)
 

 

sindkj 1+(cotd1 - 56%)2

Since the bistatic angle is changes with the movement of the flying object, the

related terms should be inside the integral in the expression of the thickness fimction. The

thickness function can be written as

—11

fifofi

rscos(B/2)[H 3(a’,r)+2afo‘HS(F,’,t)dt+((.)20.62)f‘o‘fH‘(Ffind:
2

.. Jdtdd)

K7‘ [t-ri -rs+2r ’cos( [3/2)cos((l)’-(1))]2

H ”/t

rCOS(B/2) (r dtdd)
 

Kr [—tr. -r+2r ’cos(B/2)cos(<l)’--(]))]2

(3.51)

41



where

‘-./ : s-J ‘s-o/ 2+2 "s-o/ 2 3.52
H(r,t) H (r,,r)+2afoH (rs,t)dt+((11c a )f0f0H(rs,t)dt ( )

Then, substituting (3.45), (3.46) and (3.50) into (3.51) yields

 

_‘_I ' _ «I + _i 2
(h 4sm2(11)l'l(r,t) l (cotd) 2h) dtdd)

\ (3.53)

2

_ - + _12+ 1 _1 - 1_
(t ris)srn¢\Jl (cotd) 2h) 2r (1 4hsm2(t1)cos((l1 (l1)

 
 34:17:
 

K-r‘

 

where

  

(3.54)

  

d 2 d 2

. = h 1 t —— h 1 t ——r +(CO¢+2h) + +6204) 211)

V

The time-domain identity (3.54) can also be used to construct an image from short

pulse radar measurements.

3.3.5 Three Dimensional Case

Assuming the incident magnetic field is a Half Gaussian Modulated Sine (HGMS)

(1(1) : Sin(wct)€ MHZ) (1(1) = Sin(wct)e ”fill/(t)
(3°55)

where a is the shape factor, a =7t/az. the second time differential of h(t) is

d2h(r)
dtz = (4a212_(,):-2a)siant-4awcrcoswctJe-atzum+wc5(t) (3.56)

substituting (3.56) into (3.22) gives
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[111 [(40:21:2—(03-2
1!) Sinwcr ~411th coswCTJe -ar2U(r)

(3.57)

 +(ncb(t)}dv’ = _. firs H ‘(Fs,t)

(K°f)COS(l3/2)

Using the characteristic function and the properties of the Delta function equation (3,57)

can be written as

 

fffY(F’)6(ts-r‘-F)dv’= g 2an ”30.107
.. (K‘f)cos(l3/2) 9). (3.58)

_2_‘[V[(4122r2 — (a): —2a)sin(ocr -4awctcoswct]e '“T2U(t)dv/

wC

where rs = r-t/2.

It can be seen from equation (3.33) and Fig. 3.3 that the right hand side of (3.58)

is the Radon transform of y(F’). It denotes the projected area function at the plane

rs = f-F’ . In polar coordinate system, (3.33) can be written as

110,23) =f0°°f02“f_n;’2y(r’,e’,¢') 6(ts-r’[sin0’sin0‘cos(¢’-¢‘) + cos0’cosfl‘])r ’Zsine’dfl’dd1’dr

(3.59)

If the cross-section areas A(r",t3) are given for all directions (0',(|>‘) and for all ts, then

taking the 3-D inverse Radon transform of (3.59), we can obtain the body shape function
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1112 02A(r‘,r)

sin0‘d0‘d41" (3.60)

“/2 air

 

7(r’,6’.¢9 = 0f2”_

[3:77

where rs = f-F’ r’[sin0’sin0‘cos((|>’-¢‘) +cos0’c050‘]. From (3.58) we have

27tr

A(f9 ts) _ _. s HS(F,I)

(K'f)c08(B/2)w,

 

(3.61)

”(f—[V—-—H[(4a7: ~01i-Za) sinw1: -4a(o1: coswree’“2U(r)dv’

(0C

Since r = t-2r+2f-F’ = —2ts+2f-F’, and dr = dt = -2dts, the second differential of

A(f,ts) with respect to t, is

M .1" 8"“ 32mm
621.2 1(K'f)°°s“”2)“’c 82’

 

_f _8-[( )sinwcr +1;( )cosmc‘r]e MRI/(1)0.“

V (dc

 

 

 

 

 

(3.62)

+8063 +6a)ff fy(F’)6(ts-f-F,)dv’}

_[ 81v: 52 }

—H‘(F,t) + 8(0): +6a)A(r,t)

1(Kcomm/2141 621 , 3.1

Substituting (3.62) into (3.60) gives

/ 21: -rs 62,13 . . . .

y’(r,0 ,(11’)= [0 fi[ H(F,t)——((o: +6a)A(r,t) sm0‘d0‘dd)‘

3.11:6(K’noose/21 612 ,

(3.63)



From (3.61),‘we have

2

A(r, r)| _ _, “'5 HS(F,:)|,=2,_2,.,,., (3.64)

" =(K'f)COS(l3/2)wc

 

Substituting (3.64) into (3.63) gives

 

/// -rs Znn/Z{:2 )HI‘SS -rrr
70.6.41) — f f —+2(u§+6a) (F ,t)sm0d0d(l1

(Kr)cos(B/2)nw 0 -1112 (3.65)

 [if/2{__2 +2((.12+6(11)}(h ‘(Fs,t)+hCS,(Fs,t))sin0‘d0‘dd1‘

Kf)cos(B/2)1r(.1 “/2 at

where t = 2r-2r’[sin0’sin0‘cos(¢’-(b‘) +cos0/c080‘].

This is the complete solution to the three dimensional problem of recovering a

body from its scattered field; it needs the reflected fields and the correction term from all

possible directions. If the correction term is dropped, we can get the three dimensional

time-domain PO inverse scattering identity

2n up

110’0’d>’)= Tiff f

wCO-n/Z

sin0‘dB‘drl)i (3-66)

r=2r—2f-F’

 

62
2( 2+5 )+— 3(7)01 a aZ—rih r

 

 
45



CHAPTER 4

TIME-DOMAIN IMAGING OF RADAR TARGETS USING

ALGORITHMS FOR RECONSTRUCTION FROM PROJECTIONS

4.1 Introduction

The basic idea of reconstruction of an image from a series of its projections

appears to have been first discussed by Radon [16]. The techniques that exist for

reconstruction fall into two directions. The whole operation can be done in frequency

space directly, or the equivalent of these expressions can be transformed in the spatial

domain. Whether implemented in the spatial domain or in the frequency domain, the

reconstruction algorithms can be conveniently interpreted by means of a straightforward

and interesting theorem, which is the projection—slice theorem. This theorem states that

the Fourier transform of a projection is a center-cross-section of the Fourier transform of

the projected object. Most of the modern tomographic systems are based on this theorem.

The algorithm that is currently being used in almost all applications of straight ray

tomography is the filtered backprojection algorithm. It has been shown to be extremely

accurate and amenable to fast implementation. We will extend this approach to our radar

inversion problems. In this chapter we will show how to estimate the shape of a radar

target using a short pulse radars. We start with the definition of backprojection and then

develop the reconstruction algorithm based on the inverse scattering identities derived in
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chapter 3.

4.2 Backprojection

Let (x,y) designate the coordinates of points in the x-y plane and let 1? = (x, y),

E = (cosd), sin(|1). Consideranarbitrary function g(p,E) where p = 52’ = xcos¢ +ysin(b.

The backprojection is defined by [13]

001.1) fo"g(xcos¢ +ysin41, 81441 (4-1)

If the replacements x = recs 0, y = rsin0 are made, then G in polar coordinates becomes

60. 01 = [grime-<11, 411441 (4.2)

Observe that if we consider g(p,(])) is the projection function Fm(11) from f(x,y) by

the Radon transform, then for fixed (11, the incremental contribution d(G) to G at the point

(161’). or (r, 0), is given by F(p,(]))d(]1. The full contribution to G at (x,y) is found by

integrating over (i) as indicated in (4.1). The operation for fixed (11 is illustrated in fig. 4.1.

4.3 Reconstruction Algorithm

In chapter 3 we have described a method to extract the cross-sectional area

function of a radar target from SMEP responses and obtained the thickness function. Here

we will illustrate the image reconstruction algorithm.
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Figure 4.1 Geometry for obtaining the backprojection
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Let’s start with the thickness fimction ms). It can be written as

7: no ”I i

Nb") = -——1—2-f0 .. _ , “7M“ ,_ .- 2 (4.3)
21: [t p.-_.+2r> cos(B/2)cos(¢ ¢+B/2)]

where

= 4p,c08(ltl2)

fifi’J) _. .

(K1091,

[H‘(p‘;,t) + 2afo'H‘(6;,r)dr + (1.13 + 62)fo‘fo‘H 5(6;,r)d12] (4.4)

From equation (4.3), we know that the inner integral is the convolution of

f(p,-_,-29’cos(13/2)COS(¢’-<I>‘+Bl2)) and l/[pg-ZP’COS(B/2)cos(¢’-¢‘+BIZ)?- Equation

(4.3) thus can be written as

P071) = [07:71-14lam)eprw(p..—2p’cos(—‘2’-1cos(¢’—¢‘+%111dw44>" (45)

since the Fourier transform of 1/[pis-2p’cos([i/2)cos((|1’-(l1‘°+Bl2)]2 is —1t|(11|, and the

Fourier transform of f(pis-p’cos(|3/2)cos(¢’-¢‘+B/2)) is F(0)), and the convolution is the

Fourier transform of a product. We can see from equation (4.5) that the inner integral

represents a filtering operation, where the frequency response of the filter is given by

—7t |(11|. Therefore the inner integral part is called a "filtered projection". The resulting

projections for different angles are then added to form the estimate of I‘(p").

When the projections are bandlimited by the highest frequency B, the projection

data are collected at the Nyquist frequency, with a sampling interval of a = I/(ZB).

Equation (4.5) may be expressed as
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17(0) = [0"f_:o(w1 Fm) exptiww,-2p’cos(0/21cos(¢’-¢‘+0/2111411140" (491

where

0(a)) = —l—|(r1|rect(w) (4-7)

27c

and

1 |w|<27rB (4.8)

rect((r1)

0 otherwise

Q(01), shown in Figure 4.2, represents the transfer function of a filter with which the

projections must be processed. The impulse response, q(t), of this filter is given by the

inverse Fourier transform of Q(00) and is

1~_1_ Ito |rect((.1)exp(i(r1t)d(r1

q(t) 2n 7°27: (4,9)

Zstinc(21tBt) — str'nc 2(rtBt)

This function is shown in Figure 4.3. Since the projection data are measured with a

sampling interval of 1/(2B), for digital processing the impulse response need only be

known with the same sampling interval. The samples, q(n), of q(r) are given by

 

—1—2 n=0

4a

(101) = t 0 n=even (4-10)

- “2:202 n=odd

 

This filter was first discussed by Ramachandran and Lakshminarayanan [17]. We can

replace integrals in (4.3) by sums and obtain the approximate reconstruction formula
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given by

N-l on

P011) = 572: Zf(<1‘.t,.)q(t,—p..+2p’cos(0/21cos(¢’-¢‘+0/2» (4°11)
i=0 k=-~

where there are N angles (11i for which the scattered fields are known.

There are two different reconstruction algorithms that can be used depending on

how the filtering is done. If convolution in projection space is used to perform the

filtering, the above reconstruction algorithm is referred to as the convolution

backprojection technique. If the filtering is performed in Fourier space, however, the

algorithm is designated the filtered backprojection technique. Both techniques produce

comparable results.

For the convolution backprojection technique, the reconstruction algorithm

consists of the following steps:

Step 1. Create the cross-sectional area functionf(¢1‘, tj) (also called projection) from

measured data, i=1, 2, ..., N, j=-oo, ..., -1, 0, l, +00.

Step 2. Convolve the projection with the discrete impulse response of the filter to

obtain the filtered projections.

Step 3. Take the backprojection for the data obtained in step 3.

For the filtered backprojection technique, the reconstruction algorithm consists of

the following steps:

Step 1. The same as step 1 in the convolution backprojection method.

Step 2. Take l-D Fourier transforms of the projections obtained in step 1.

Step 3. Multiply the transformed projections by the frequency response of the

filter.
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Step 4. Take the inverse Fourier transform to obtain the filtered projections.

Step 5. Take the backprojection for the data obtained in step 4.

Since the filtered backprojection and convolution backprojection techniques

produce reconstructions of similar quality, we only use the convolution backprojection

algorithm in this work.

4.4 Numerical Results and Images for a Metal Sphere

A metal sphere is the simplest target which can be used to validate the formulas

developed in the previous sections. We use the SMEP as the incident magnetic field

pulse. Figure 4.4 shows the theoretical SMEP generated by taking or=8><109 and

fi.=10GHz in equation (3.23), and the synthesized SMEP using the frequency band 4-

16GHz. The spectrum of the synthesized SMEP is shown in Figure 4.5. Figure 4.6 shows

the SMEP response of the sphere obtained using the marching-on-in-time method

described in chapter 2. We can see that the solution is unstable. Figure 4.7 shows the

results of using the stabilized formula (2.35). The results in Figure 4.7 is obviously much

more stable than that in Figure 4.6. Figure 4.8 shows far-zone scattered field of a 14 inch

sphere computed by using the Mie series and the marching on in time method,

respectively. The cross-sectional areas obtained using equation (3.31) is shown in Figure

4.9. Note in Figure 4.9 that the cross-sectional area A(f,ts) is plotted with a time scale

such that the cutting plane rs = F" used to determine A(F,ts) moves with l/(2cos(B/2))

(one half for the monostatic case) the velocity of the incident SMEP. Figure 4.10 shows

the images of the sphere using the time domain identity (4.11) with the PO

approximation. Figure 4.11 shows the image of the same sphere when the correction
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terms are considered. We can see that the correction term provides only a small

contribution to the reconstruction.

4.5. Experimental Results and Images for Aircraft

The time-domain identity (4.11) can be used in real time to construct an image

from short pulse radar measurements. A simulation of time-domain imaging is carried out

using data measured in the Michigan State University free-field scattering range. The field

scattered from several aircraft models was measured in the plane of the aircraft wings in

the frequency band 4-16GHz at 200 aspect angles from 0° (nose-on) to 180°, using an

HP8720B network analyzer. All measured data are bistatic with bistatic angle B=10°. The

data from the non-illuminated side was provided through symmetry. Each scattered field

response was first calibrated using a 14 inch diameter sphere as a reference target [see

appendix), multiplied by the SMEP window, and then inverse transformed into the time-

domain using the FFT to provide a SMEP response. The data we used are the derivative

of the measured SMEP response data, and thus a sharpening of the target edges is

provided.

Two different frequency truncated SMEPs haven been used in our radar target

imaging. Figures 4.12, 4.13 and 4.14 show the images of a 1:48 scale model TR-l

aircraft, a 1:32 scale model F-l4 aircraft and a 1:72 scale model B-52 aircraft,

respectively, using the monostatic inverse scattering identity (3.40) under PO

approximation and the synthesized SMEP shown in Figure 4.4. Figure 4.15, 4.16 and 4.17

shows the images of the same target models TR-l, F-14 and B-52, but using the bistatic

identity (3.38) under PO approximation. We can see there are improvements in the images

because the measured data are bistatic data. The edges of the aircraft are clearly visible,
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with the fuselage and vertical stabilizers producing the largest thickness values, as

expected. There is some distortion in the aircraft shapes due to the use of the PO

approximation and an inaccurate estimate of target range. The image obtained using data

from the restricted range of aspect angles 0-90° is shown in figure 4.18. It can be seen

that the shadowed edges of the target are invisible due to the limited view-angles and use

of the physical optics approximation. Figure 4.19 shows another theoretical SMEP

generated by taking or=4><109 andfi=lOGHz in (3.23) and the synthesized SMEP for the

frequency band 7-13GHz. Figure 4.20 shows the spectrum of the synthesized SMEP.

Figure 4.21 shows the image of the same 1:72 scale model B-52 aircraft obtained by

using the second SMEP. We can see that the edges of the aircraft are not as clear as in

Figure 4.17 because the pulsewidth is bigger than that of the first SMEP. We can improve

the quality of the picture by adding a proper window to the SMEP response data in the

time domain. This window is formed by two steps. First, the biggest points in each

SMEP response data are found by comparing the values of the data; these biggest points

actually are the responses from the scattering centers of the target. Then the values in a

small range around the biggest point are set to unity and to 0.5 within the two next

biggest point ranges. Note that different data sets have different windows. Figure 4.22 is

a SMEP response data set before windowing, and the window produced based on Figure

4.22 is shown in figure 23. Figure 24 is the SMEP response after windowing. The image

of the same BSZ aircraft model found by using the windowed data is shown in figure

4.25. By using windowing, we have increased the resolution of the SMEP and obtained

clear images with highly defined edges.
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Figure 4.2

 

The filter response for the filtered backprojection algorithm. It has been

bandlimited to 1/2a.
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Figure 4.3 The impulse response of the filter shown in Figure 4.2.
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Figure 4.4 Comparison of theoretical (or=8x109, fi=10GHz in (3.23)) and synthesized

(4-I6GHz) SMEP.
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Figure 4.5 Synthesized SMEP spectrum.

58



1.50

 
 

       

     
  

1.00-j

A j

7o -
Q) ..

.5 I

o J
E 0.50 :

L ..

o . 11
c :
v .1

(11 -

_O 0.00 z

.3 i i]
'61 :

0 :

2-050:

—1.00 ‘ IIIIIllIIIIIIITFTTI[TTTTIIIITIIIIIIIIIIIIIIIIIITI]

1 1.00 1 1.50 12.00 12.50 13.00 13.50

Time (as)
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Figure 4.12 Image of TR-l from 0°-180° data in band 4-16 GHz using

monostatic identity.
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Figure 4.13 Image of F-l4 from 0°-l80° data in band 4-16 GHz using

monostatic identity.
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identity.
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identity.

69



1‘10 -

  
       

 

 

 

 

.so .

.20 .

.xo - -:

1:“ 3 .1 ~. 4“
.o. ' ' :1} .~ -., {a 1"

_ 1 r .wmt . - A

. :3 ,. *r‘ -1

'110 a _ .‘

1;
l ' \

:1 - * :1
-.2o . ‘5

-.3o .

-.~10 .

-.so -.~10 -.so -.2o -.10 .oo .10 .20 .so .wo .50

Figure 4.17. Image of B-52 from 0°-180° data in band 4-16 GHz using bistatic identity

70

 



1‘10 -

 

  
 

13° -

12° -

11° -

1° 4

'110 ‘

'320 e

'130 - ~

, . -, ‘2‘“ \

11'.‘1."'53?"”’}¢ ' ‘ ‘ - 1 . ‘~\“:;11\‘*‘1..‘g '. .4. 1,1 1:" , 1 ' . 1 1 ,1 ‘ . ‘1' ."I r .

awoj “g?"”rz’5fi1"}--~vz.. , 1 1 1 - .13 NV.

'15° '1‘10 '130 '120 '110 10° 11° :20 .30 1‘0 15'

Figure 4.18. Image of B-52 from 0°-90° data in band 4-16 GHz using bistatic identity.

71



  
    

 

  

1.00 :

Z —— theoretical SMEP

Z ------ synthesized SMSF

0.50 —

81 3 1
g 0.00 ‘ 1 1.911431"; ...............

0 fl ' g,

> 2‘ ::

2 i

-0.50 -

—1000-IUIIIIUUTIIU'UIITIIllierI'IIITITIIIYrI]

0.00 1.00 2.00 3.00 4.00

Time (ns)

Figure 4.19 Comparison of theoretical (a=4x109, fi=10GHz in (3.23) and synthesized

(7-13GHz) SMEP.

72



1.20

1.00

.
0
a
n
o

.
0
4
;

0

V
o
l
t
a
g
e

M
a
g
n
i
t
u
d
e

(
r
e
l
a
t
i
v
e
)

.
0
5
0

O

O O
)

O

i
i
i
i
i
i
i
i
i
l
i
i
i
i
i
i
i
l
i
l
i
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
]

  0.00 WIIIjTTWIIIIIIrITIIIITITIIITIIIIIIIIIII]

6.00 8.00 10.00 12.00 14.00

Frequency (GHz)

Figure 4.20 The spectrum of the synthesized SMEP.

73



1‘10 -

03° 1

120 -

I101

‘110-

-020 II

‘130 J '1‘10 4

  

  

 

  

   

 

'u I“ L“ . 'le.' n 1'

' ' ' I1” 1111,' "

"M .‘ '“'°""'W"'I-

mntlll; .¥"'l 19

f} , ' 'W'

' .0! n'~.‘

 

5:. fii‘-'".. .:.i

"(hag-““7“" I 1 ‘

  
    

 

'150 '1‘10 '130 '120 '110 100 110 120 .30 1‘10 150

Figure 4.21. Image of B-52 from 0°-l80° data in band 7-13 GHz using bistatic identity

(before windowing).

74



1.00

.
0

9
O

0
1

O
O

V
o
l
t
a
g
e

(
r
e
l
a
t
i
v
e
)

s'
:

8

-1.00

L
L
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
I
l
l
l
I
l
l
I
L
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

 —1.50

5. 7.00 9.00 11.00 13.00 15.00

Time (ns)

0

Figure 4.22. 8-52 SMEP response (nose-on) before windowing.
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Figure 4.24. B-52 SMEP response (nose-on) afier windowing.
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CHAPTER 5

IMAGING OF RADAR TARGETS USING LIMITED-VIEW DATA

5.] Introduction

In Chapter 3 and Chapter 4 we have shown that good images of radar targets may

be obtained given enough high quality data over a 180° angular range. When some data

are missing, the reconstructed image suffers and may be unsatisfactory. In practical cases,

however, it is impossible to obtain enough data over a full 1800 angular range. The

limited-view problem occurs when the data are available over an angular range less than

180°, and the sparse-angle problem occurs when only a small number of angles evenly

space over 180° are available.

The limited-view problems has attracted considerable attention in computed

tomography imaging research, and techniques for dealing with it have been proposed.

These techniques can be put into two categories: transform techniques that incorporate no

a priori information, and finite series expansion methods that may incorporate a priori

information as constraints. The transform techniques are usually single-pass, direct

reconstructions [18-20], while the finite series expansion methods are usually iterative

[21-27]. Projection onto convex sets (POCS) in particular has shown great flexibility in

dealing with known geometric constrains and with noise. In Section 5.2, we will extend

POCS into radar target imaging.
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In addition to the POCS method, we will demonstrate a new reconstruction

algorithm for radar imaging in the limited-angle case. The goal of this approach is to

recover the sinogram from available measured data using linear prediction. Since the

scattered field of a target can be written as a superposition of distinct specular reflections

arising from scattering centers on the target, the trace of the scattering centers can be

predicted using linear prediction with the change of the observation angle. Thus, the

missing data may be predicted before reconstructing the image. This reconstruction

algorithm will be described in Section 5.3.

5.2 The Method of Projections Onto Convex Sets (POCS)

The theory of convex projections developed by Bregman [22] and Gubin [23] was

first applied to image processing by Youla and Webb [24]. Since then, various researchers

has used POCS to restore computed tomography imagery based an incomplete data. To

the author’s knowledge, this method has not been used in radar imaging. Here we will

give a brief review of POCS and apply it to radar imaging.

5.2.1 Basic Ideas

Assume a Hilbert space H consisting of the set L2(Q) of square-integrable

complex-valued functions over QER2 (R2 being the real plane). The inner product and

norm in {H are

(11.22) = ff11011)}: ‘(xmxdy
a (5.1)

“all = [09150]"2

The image to be restored f(x,y) is assumed to be an element of CH; Every a priori
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known property of the unknownfeil-C is formulated as a constraint that restrictsfto lie in

a closed convex set C,. If m properties are known, there exist m constraint sets Ci

(i=1,2,...,m) and f= ECO =ri,.”:,c,.. Then our problem is to find a point in CO given the sets

Ci and the projection operators Pi (i=1,2,...,m) projecting onto the various C‘. A recursion

relation given by

fk.l = Pum_1...Plfk k=0,1,2,... (5.2)

with f() being arbitrary, weakly converges to a point of Co. More generally, various Pi may

be relaxed by

11,, = Tmrm_,...Tlf, k=0,1,2,... (5.3)

where T. = I +Ai(Pl.-l), O<Ai<2 and I is the identity operator. The )0 (i=1,2,...,m) are
l

relaxation parameters and can be used to accelerate the rate of convergence. The

projection operator Pi projecting onto Ci is defined by the minimality criterion

ILf-Pfll = minlLf-S ll (5,4)

geCi

Equation (5.4) means that the projection Pf is geCi that minimized lLf—g II. A symbolic

representative of a projection is shown in Fig. 5.1.

5.2.2 Convex Projections in Short-Pulse Radar Imaging

In chapter 3 we have shown that the cross sectional area function and the thickness

function of a target form a two dimensional Radon transform pair and can be written as
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Figure 5.1 A symbolic representation of the projection off onto C.
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AP(ts’¢) = f f1‘(x,y)5(ts-(xcoscb +ysin¢))dxdy
(5.5)

In a discrete case where the thickness function is defined over a cartesian grid of N,‘><Ny

pixels, (5.5) becomes

N N
X

AI‘(ts’¢) = Z

7

=1 j=l

I‘(xpyj)Lk(xpyj)
(5'6)

where Lk(xi,yj) is the length of the kth line (ray) through pixel (xi,yj) as shown in Fig. 5.2.

For N views and K lines per view, the total number of discrete cross sectional area

fimctions (call it raysum) is M=NK. With a single subscript k (k=1,2,...,M), each raysum

can be written as

Al‘(tsk’¢k) = Arm,“
(5.7)

Let Ci be the set of all functions hefl-f such that for a given (tsk,¢k) they have given

raysum values equal to that of the true thickness value F(x,y). Denote this value by

Ar(tsk,¢k). Then

C.- = { h: A,,(t An) = Ap(tsk,¢k) } k=1,2,...,M (5.8)

It has been shown that these constraint sets are closed and convex [26]. The

projection operators that project onto Ci are given by

, g(x,y) for 86C.-

+ Al‘(tsk’¢k) "A303 Ah)

1vx Ny

z 2 Li2(xmayn)

m=l MI

(5.9)
 P3000 : J 8(X,y) [q(st) fOr gECi
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Other important constraints that can be used in radar image reconstruction are

listed below.

1) Let CA be the set of all real thickness function F’s in CH whose amplitudes must

lie in a prescribed closed interval [a,b]; aZO, b>0, a<b. So, the amplitude limit

constraint set is given by

 

l a g(x.y)<a

PAg = t g(x.y) asg(x.y)sb (5‘10)

, b g(x.y)>b

2) The bounded support constraint set is defined by

Cb = { h: 1100’) = 0) (x,y)“ } (5°11)

This means that Cb is the set of all functions in {H that vanish outside a region A. The

projection g onto CI) is given by

8(x.y) if (x,y) 6A

P,g(x,y) = (5'12)
0 if (x,y)EA

3) The reference image constraint set

CR = l h: IIh-lelseR 1 (5-13)

In words, The reference image constraint set is used to restrict the reconstructed image

to lying within a distance 8R from f}. The projection operator onto CR is given by

f

8 "8 -fR|l 56,,

PR8 = g'fk

8+5];

“g’fkll

(5.14)

 

Ilg-fR">€R
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Figure 5.2 Discrete object, F(x,y), and its projection are shown for an angle 41.
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See reference [26] for the derivation of equation (5.14). The effectiveness of this

constraint strongly depends on ER andfR. It can be used to reduce the size of the feasible

solution set C0.

5.2.3 Experimental Results

The performance ofthe proposed POCS method was investigated with a 1:32 scale

model F-l4 aircraft shown in Figure 5.3. The aircraft image F(x,y) was calculated on a

320x320 grid of rectangularly sampled points in the x-y plane by the cross sectional area

function A(t5,¢). The cross sectional area function was computed from measured data by

equation (3.31) for various angles.

Equation (5.2) defines the general pure projection algorithm used in POCS. The

specific POCS algorithm used in this experiment can be written as

fk.l = PRPBPAPM...P1fk (5.15)

with an initial point

f0 = o (5.16)

where PM, PI is the series of N projections onto N closed convex sets Ci (i=1,2,....M)

defined as in (5.9). The other projections in (5.15) have been defined in section 5.2.2.

Figure 5.4 shows the reconstruction image of aircraft model F-l4 after 1 POCS

iteration without use of reference image constraints in the angular range 0-180° with step

angle A¢=O.9°. Figure 5.5 shows the reconstruction image of the same model after 5

POCS iterations using the same constraints as in Fig. 5.4. As seen in Figure 5.5, the

iteration does little to improve the reconstructions.

To demonstrate the power of using a priori constraints in the POCS approach. we
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need to consider reconstruction in the limited-view case. Figure 5.6 shows reconstruction

images after 5 POCS iterations using Figure 5.5 as the reference image in the angular

range ¢=45°~135° with step angle A¢=O.9°. For convenience, an image obtained with the

convolution backprojection directly on the incomplete data is shown in Figure 5.7. We

can see that a significant improvement of reconstruction was achieved by the POCS

algorithm.

5.3 Radar Image Reconstruction Using Sinogram Restoration and Linear

Prediction

Image reconstruction from incomplete projections can be formulated as a

sinogram-recovery problem. The sinogram recovery problem is to find a complete

sinogram A(ts, 11>) based on the measured incomplete sinogram A’(ts, (b) and a priori

knowledge about the sinogram. Once an estimation of the complete sinogram is obtained,

image reconstruction by the ordinary convolution backprojection is possible.

In this section, we will describe a sinogram-recovery method using linear

prediction. In Section 5.3.1 we define the sinogram. In Section 5.3.2 the method of linear

prediction is briefly reviewed and a solution to the sinogram-recovery problem is

provided. In Section 5.3.3 we present experimental results that demonstrate the

performance of the proposed method.

5.3.1 Sinograms

Projection data (cross-sectional area firnctions) used for image reconstruction can

be arranged in a two-dimensional map in which one of the coordinates is the distance of
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Figure 5.3 Geometry of discrete test image to be reconstructed.
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Figure 5.6
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Image of F-l4 from 45°-135° data in band 4—16 GHz using POCS after 5

iterations.
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Figure 5.7 Image of F-14 from 45°-l35° data in band 4-16 61-12 using convolution

backprojection algorithm.
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the wave along which the line integral is taken from the center of the rotation of the

projection system, and the other coordinate is the angle of the wave. In this map, waves

through a fixed point in the object correspond to a sinusoidal curve, which is why a

display of this map is called a sinogram [28].

Referring to the geometry of Figure 5.8, we have defined the 2-D Radon transform

by equation (3.35) in chapter 3. In this section, we assume F(x,y) to be a real function

defined on the disk of radius T centered at the origin. A sinogram is an image of the 2-D

Radon transform, where ts and 4) form the horizontal and vertical axes, respectively, of

a cartesian coordinate system. Because of the periodicity of the 2-D Radon transform and

because of the assumed domain of l"(x,y), the sinogram can be defined over the complete

domain

11 = {(t,.<l>)lt,e[-T,TJ, ¢e[0,n] } (517)

For the limited-view problem, the sinogram is measurable over a domain C, where

Q is assumed to be a subset of 11, i.e., @611. C can be written as

C = { (t3’¢)lt56[ -727], ¢El¢L9n -¢L] } (5°18)

where ¢L is a constant that represents the data’s missing angular range. In Fig. 5.9 we

illustrate the measurement domains C given by (5.18).

Figure 5.10 and Figure 5.11 show a 1:48 scale model TR-l aircraft and its

sinogram. Note that the sinogram is formed not from the cross sectional function but from

the SMEP responses of the target. We can see from the sinogram that most of the ’lines’

looks sinusoidal. Those lines actually are the traces of the scattering centers on the target.

This motivates the idea of predicting the traces of the scattering centers using linear

prediction. The following sections give a more detailed presentation of the approach.
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Figure 5.8 The geometry of the 2-D Radon transform.
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Figure 5.10 A 1:48 scale model TR-l aircraft.
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5.3.2 Linear Prediction

Linear prediction is a particularly important topic in digital signal processing with

applications in a variety of areas, such as speech signal processing, image processing, and

noise suppression in communication systems [29, 30]. In digital signal processing, the

signal 32,, is modeled as a linear combination of its past values and some input x"

N

y" = {j bjyn_j+xn (5.19)
j=l

Equation (5.19) shows that the signal y,, is predictable from linear combinations of past

outputs. We can consider x, as the discrepancy of the prediction at time step n, i.e. the

amount which must be added to the predicted value (the sum) to give the true value y".

Equation (5.19) can also be specified in the frequency domain by taking the z

transform on both sides of (5.19). If H(z) is the transfer fimction of the system, then we

have from (5.19)

H(z) = fl = ——1
X(z) N . (5.20)

1+2 biz”

i=1

where

ya) = z: ynZ-n (5.21)

is the z transform of y", X(z) is the z transform of x", and H(z) in (5.20) is the all-pole

model (autoregressive model). This model is shown in Fig. 5.12 in the time and frequency

domains. Given a particular signal y", the problem is to determine the predictor

coefficients bj in some manner. The derivations will be given using the least squares
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Figure 5.12 (a) Discrete all-pole model in the frequency domain. (b) Discrete all-pole

model in the time domain.
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approach.

The prediction error x, can be written as

N

xn = )1" +2 bjyn-j (5.22)

j=l

In the method of least squares, the parameters bj are obtained as a result of the

minimization of the mean with respect to each of the parameters. The total squared error

E is

N 2

E = 2 e: = 2 [ya +2 bjymj) (5-23)

n j=1

The minimization of E given by setting

6E

_ = 0 o=l,2,...,N
5.24

ab. 1
( )

1

leads to the set of linear equations

N

Z]: biz: yn-jyn-k = “Z by“ k=l,2,1,...,N
(5.25)

J= n ,.

Letting yy(k) = Z )3.an (5.25) can be simplified as

N

M") = ‘2 ijy(k‘J) k=l,2,...,N (5.26)

i=1

These are called the normal equations for the coefficients of the linear predictor. The

minimum mean-square prediction error is simply

N

EN = y,(0) +2 (2,7,1 7) (5.27)
j=l

by expanding (5.23) and substituting (5.26), the normal equations may be expressed in
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the compact form

N

2 ijy("'D = 0 J'=1.2,...,N with b0=1 (5.2s)

j=0

The resulting minimum mean-square prediction error is given by (5.27). If we

augment (5.27) by the normal equations given by (5.28), we obtain the set of augmented

normal equations, which may be expressed as

N .

E ]=
_ _ = n (5.29)

12; 1’17?“ J) {o j=l,2,...,N

01'

”v,(0) v,(1) Y,(N-1)"1' [5

7,0) yy(0) yy(N-2) b1 0 (5.30)

      
_me-” NIH) y,(0) [bit .0.

The matrix in (5.30) is a symmetric Toeplitz matrix, i.e. one whose elements are constant

along diagonals. There are several computationally efficient algorithms for solving the

normal equations [30]. In this work we use the Levinson-Durbin algorithm.

Afier solving for the linear prediction coefficients bj, the next issue which needs

to be considered is stability. The condition that (5.19) be stable as a linear predictor is

that “'16 characteristic polynomial in equation (5.20), INC

5 3N- 2 : b N" = 0 . 1
Z i=1 jZ " ( )

has all N of its roots inside the unit circle, [2 IS]. There is no guarantee that the

coefficients produced by the Levinson-Durbin algorithm will satisfy this condition. When

instability is a problem, we have to modify the linear prediction coefficients. We do this
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by the following three steps:

1) Solving (numerically) equation (5.31) for its N complex roots.

2) Moving the roots which lie outside unit circle to an appropriate position inside or

on the unit circle.

3) Reconstituting the modified linear prediction coefficient.

Another consideration is the choice of N, the number of poles. One should choose

N to be as small as practicable for you. We choose N between 5 and 15, depending on

the number of data used.

5.3.3 Experiment Results

Consider the sinogram of the TR-l aircraft model shown in Fig. 5.11. When only

part of the sinogram (domain C) as shown in Fig. 5.13 (for example 45°S¢<l35°) is

measurable, then the reconstructed image may be seriously distorted if we simply let the

missing data be zero. Our goal is to restore the complete sinogram (domain 11) using

linear prediction techniques before reconstructing the image by the convolution

backprojection algorithm. The techniques which we proposed can be summarized as the

following steps:

Step 1. Given a set of measured data P¢‘(tj) (¢L3¢i<n-¢L), i=1, 2, N¢, j=l, 2,

N‘, where N¢ is the number of views and N, is the number of samples in

each view, find the biggest point (the darkest points in Fig. 5.11) in each

SMEP responds by comparing the values of the data in each view. These

biggest points are actually the positions of the scattering centers of the

target. Those points with large amplitude form a new sinogram. Fig. 5.14
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Step 2.

Step 3.

Step 4.

Step 5.

shows the measurable sinogram of the TR-l formed by these points, and

Fig. 5.15 gives the complete sinogram of the TR-l formed by these points.

From the new sinogram, find the traces of the scattering centers. Then one

obtains a set of functions, each function designating the movement of a

scattering center with the change of view. In Fig 5.15, for example,

number 3 and number 4 denote the movements of the tail and the head of

the aircraft model, respectively, number 1 and number 2 denote the

movements of two wings, and number 5 denotes the movement of the

engines.

Predict the movement of the scattering centers over the whole sinogram

region 7] using linear prediction techniques. Fig. 5.16 shows the predicted

traces of the scattering centers. Fig. 5.17 gives the trace of the tail with

measured and predicted data, and Fig. 5.18 shows the traces of the engines

with measured data and predicted data.

Predict the amplitude of the scattered field at the positions of the scattering

centers. We use linear prediction twice, once for the traces of the

scattering centers, and once for the amplitude of the scattered filed at the

scattering centers. Fig. 5.19 and Fig. 5.20 gives the measured and predicted

amplitudes of the scattered field at the positions of the tail and the engines.

Reconstruct the sinogram of the target over the domain 1]. For each view

over the missing region, find those predicted scattering centers. Then make

a small window (rectangular, Gaussian, or cosine taper window, we use

rectangular window in this work) around each scattering point and multiply

the window by a SMEP defined in (3.23). Then the predicted SMEP
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responses are found for this view. Fig 5.21 shows the measured data and

the predicted data for observation angle ¢=40.5°.

Step 6. After predicting all the SMEP responses over the missing data region in

domain 11, we can restore the complete sinogram over domain 11. The

restored sinogram is shown in Fig 5.22.

Step 7. Reconstruct the image by convolution backprojection using the restored

sinogram. Fig 5.23 gives the image of TR-l aircrafi model using the

restored sinogram, and Fig 5.24 gives the image of TR-l using the original

incomplete sinogram shown in Fig. 5.13. We can see that there is a big

improvement in the quality of the reconstructed images by using the

sinogram restoration techniques.

5.4 Conclusions

For the limited-view problem, we have proposed two techniques to handle this

practical situation. One of the approaches is the method of projections onto convex sets

(POCS). The basic principle of POCS is that each piece of a priori knowledge must be

represented by a convex set onto which the current image estimate can be projected. It

has been shown that if the intersection of these convex sets is nonempty then the

sequence of cyclic projections will converge weakly to a point in this intersection. We

extend this approach to radar imaging for the first time and show some usefiil results.

Another approach which we have demonstrated is to process the available measured

projections in order to generate an estimate of the full set of projections, an image which

is called a sinogram. The goal of this approach is to recover the sinogram from the

_ available measured data using linear prediction. Since the scattered field of a target can
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be written as a superposition of distinct specular reflections arising from scattering centers

on the target, the position and strength of the scattering centers can be predicted using

linear prediction with the change of the observation angle. Thus, the missing data can be

predicted before reconstructing the image. A big improvement in image reconstruction has

been achieved using this technique, and some useful results have been provided.

105



 

 

 

Figure 5.13 Measurable part of the sinogram of TR-l aircraft.
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Figure 5.14 Measurable part of the sinogram of TR-l formed by the positions of the

scattering centers.
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Figure 5.15 Sinogram of TR—l formed by the positions of the scattering centers.
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Figure 5.16 Sinogram of TR-l formed by the predicted positions of the scattering

centers.
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Figure 5.17 Measured and predicted positions of the tail of the TR-l aircraft.
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Figure 5.18 Measured and predicted positions of the engines of the TR-l.
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Figure 5.19 Measured and predicted amplitude of the scattered field in the positions of

the tail of the TR-l.
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Figure 5.20 Measured and predicted amplitude of the scattered filed in the positions of
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Figure 5.21 Measured and predicted data of the TR-l for ¢=40.5°.
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Figure 5.22 Restored sinogram of the TR-l by linear prediction method.
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Figure 5.23 Image of the TR-l using restored sinogram.
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CHAPTER 6

IMAGING UNDERSTANDING AND MODIFICATION USING

HIGH FREQUENCY APPROXIMATION METHODS

6.1 Introduction

Time-domain imaging is an imaging technique that uses the impulse response or

SMEP responses of the object to get the shapes or constitutive characteristics of the object

[31,10]. In the laboratory implementation of this imaging system. an object is seated on

a rotating pedestal and is illuminated by a plane wave. For each aspect angle a set of

pulses at different frequencies is transmitted and its echoes received. The object is then

rotated and the measurement is repeated to obtain the multiaspect stepped frequency

response of the scattering object. Each scattered field response is deconvolved using a 14

inch diameter sphere as a reference target, and inverse transformed into the time domain

using the FFT to provide a band-limited impulse response [10], or multiplied by the

SMEP window first and then inverse transformed into the time domain to get a SMEP

response [31].

In this time domain imaging technique, the physical optics approximation may be

used to model the scattering field of an aircraft [10, 31]. However, the PO approximation

is inadequate for scattering problems of a complex shaped conducting object such as an

aircraft. At high frequency, edge diffiactions, multiple reflections, creeping waves, and

surface travelling waves may also be important scattering mechanisms [32], [53].
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Additionally, the spectral and angular windows for data are usually restricted by practical

constraints. Therefore, the time domain image of an aircraft may be different from its

geometrical shape.

In this chapter, we will investigate time domain imaging of aircraft employing

SMEP responses, and interpret the reconstructed image from a new approach, based on

analysis of the scattering mechanisms and the back-projection algorithm utilized in image

retrieval. In section 6.2 we will interpret the scattering mechanisms of aircraft using the

ray method. The Explicit expression for equivalent currents, and the scattered fields from

those currents are derived in section 6.3. The time-domain inverse scattering identity with

the incorporation of Geometrical Theory of Diffraction (GTD) is derived in section 6.4.

In section 6.5, we will compare the images of an object consisting of two plates using the

PO approximation and GTD. Images of an aircraft model will be shown in Section 6.6.

6.2. Scattering Field Understanding Using Ray Method

Consider an aircraft illuminated by a source field from an initial reference surface

A. The field from a source point p’ at an observation point p can be tracked along a ray

that passes through p and originates at point p’. It is possible that several rays pass

through p as shown in Figure 6.1. In that event, the total field at p is synthesized by the

sum of the fields reaching p along the various rays.

The field along a pencil of rays can be calculated from a knowledge of the initial

field value and the ray geometry by [33]

 

. p‘l p; . e _jksi (6.1)

(p'. +s ‘)(p'2+s ‘)

 u(F) = uA
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Figure 6.1 Scattering by an aircraft model (composite obstacle).
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where p"l and p; are the radii of curvature of the initial wavefront, si is the distance

between the initial and the observation wavefront, and u, is the initial field.

For the incident field in fig. 6.1 the initial values on A can be calculated from a

known source distribution. The reflected field is caused by the incident rays (ray R2 in

Fig. 6.1) reflected at the object surface. The reflected laws for the fields on a curved

surface are the same as for plane waves on an infinite plane surface tangent to the curved

surface at the point of impact of the incident ray (the canonical problem). Thus, the

incident and reflection angles 0i are equal. The initial value of the reflection field at p,

is given by the incident field at p, multiplied by the plane wave reflection coefficient

R(0,-) descriptive of the reflecting properties of the boundary surface. The amplitude

variation along ray R2' involves the surface curvature at p,, the curvature parameters for

the incident wavefront, and the angle coordinates specifying the directions of the reflected

and incident rays. Therefore, the reflected contribution to the field at p is given by

 

 

u, = “2R(er)\J , 9,192, lei”;

(p1+R2)(p2 +R2) (6.2)

an.

“2 = “.42 kR2
 

where u,” is the initial field for ray 2 on surface A.

The incident field along ray R3 striking the conical tip of the aircraft in Fig. 6.1

excites a spherical wave front and therefore a family of rays centered at the tip. The

canonical problem for the tip diffracted field is that of a plane wave incident on an

infinite conical obstacle. That solution provides the diffraction coefficient D", by which

the incident ray field is modified upon emerging from the conical tip. Thus, the
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contribution at p due to the field along ray R3' is

’1'" ’3 e '15”:

m,

e

[CR]
3

(6.3)  u3, = D" u3, u3 = a“

where u.43 is the initial field for ray R3 on surface A.

When an incident wave along ray R4 hits an edge of an aircraft wing, a family of

diffracted rays is excited. Those rays must obey the law ofedge diffraction. A diffracted

ray and the corresponding incident ray make equal angles with the edge at the point of

diffraction, provided that they are both in the same medium. They lie on opposite sides

of the plane normal to the edge at the point of diffraction. When the two rays lie in

different media, the ratio of the sines of the angles between the incident and diffracted

rays and the normal plane is the reciprocal of the ratio of the indices of refraction of the

two media. An edge-diffracted ray from a point P' to a point P is a curve which has

stationary optical length among all curves from P’ to P with one point on the edge

(Fermat’s principal for edge diffraction). The contribution at P due to the edge-diffracted

wave along ray R4' is [34]

 

am.
“4, = DdJ—L—u u — e— (6.4)

where D" is the diffraction coefficient, a,“ is the initial field for ray R4 on surface A, and

pI is the distance from the edge to the caustic of the diffracted rays.

Tip diffraction due to incident my R3 also excites a diffracted surface ray (also

called a creeping ray) that travels along a geodesic on the shadowed surface and sheds

energy continuously. The launching amplitude L, of a surface ray field and its amplitude
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variation M(R5) along its geodesic path R5 are determined from the canonical problem.

Therefore, the surface wave contribution to the field at p along ray R5’ is

’jk-Rs/

us. = u3DsM(R5)e"""5 L‘s—E (6.5)

where u, is given in (6.3), and R5 denotes the geodesic length along ray R5 from the tip

to the shedding point p,,.

The total ray-optical field at point p in fig. 6.] is now given by

u = u, +u2/+u3/+u4i +u5/ (6'6)

where

e ’M'
“I = “Alfi— (6’7)

1

denotes the field along the direct ray from the source. The remaining contributions, given

by (6.2)-(6.5), are due to the presence of the scatterer.

The result in (6.6) contains only the dominant contribution from each of the ray

fields. Generally, each ray field has, in addition to this leading term, a series of higher-

order terms that decay inversely with k. Validity of the leading term alone implies that

the higher-order terms, in particular the second term, are small in comparison with the

first.

By the very construction of the field in (6.6), it is evident that the ray method

decomposes a complicated composite scattering problem into a sequence of simpler

canonical problem via the following steps:

(1) Determination of the incident field over an initial surface A.
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(2) Determination of the reflected and diffracted ray fields that contribute at an

observation point p.

(3) Identification of canonical problems that treat separately each of the ray reflection

and diffraction problems. The solutions of these problems furnish the initial

amplitudes along various species of reflected and diffracted rays.

(4) Synthesis of a composite scattering problem by interaction (along rays) between

canonical constituents.

6.3. High Frequency Approximation Methods

Diffraction problems of the type schematized in fig. 6.1 can be formulated in

various ways. The second field generated by the induced surface currents can be

represented in terms of the direct radiation from the elementary currents distributed over

the aircraft surface A’.

In the illuminated region A ’ on a perfectly conducting object away from surface

singularities (such as edges, tips, or comers) and from strongly curved regions (where the

radius of curvature is not large compared to wavelength), one may approximate the

induced surface currents by their "physical optics" values. The physical optics currentsjp

are based on the local behavior of high-frequency fields described in the previous section

and are taken at any point p on A’ to have the same value as on an infinite perfectly

conducting plane tangent to A’ at p. Thus

—~ 0 FGA/ (6 8)
J = _. - °

pm {ZfixH '(f) FEA’

where fl" is the incident vector magnetic field. The secondary field generated by the
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physical optics current gives the correct geometric-optical reflected field and the diffracted

field near the shadow boundaries. It does not provide, however, good results for the

diffracted field away from the shadow boundaries.

Even on a smoothly curved convex object with large radius of curvature, the

physical optics currents becomes invalid near the shadow boundaries. One may therefore

attempt to add to .7p a correction if, named the "fringe current" by Ufimtsev [35], so that

the sum equals the exact current value. The correction term is due to all other effects not

included in P0, such as edges. Because of the validity of the physical optics currents well

inside the illuminated region, and away from edges or comers, the fringe currents are

confined to the vicinity of those portions on A ’that lie near shadow boundaries or surface

singularities.

6.3.1 Equivalent Edge Currents for Arbitrary Aspect of Observation

The method of equivalent currents is a powerful technique in the analysis of the

scattering of electromagnetic fields. In addition to predicting the scattered fields in the

direction of a caustic, the method allows us to calculate the diffracted fields from an edge

of finite length and for observation angles away from the cone of diffracted rays. In the

following section, we will introduce Michaeli’s equivalent edge currents for arbitrary

aspects of observation since his formula is more general and rigorous than those of other

researchers [3 6].

According to the method of equivalent currents, the diffracted field E d due to an

edge discontinuity C is given for the Fresnel and far zones by the radiation integral [4]
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I?" ~ jkf [21(765x(s*x£) +M(F’)s*x£]G(F’,n dl (6.9)

where k is the wavenumber of the incident wave, Z=‘/p/e is the impedance of the

medium, a and n are the permittivity and permeability ofthe medium, respectively, F and F’

are the position vectors of the point of observation and a point on C, respectively,

d1 = [Jr/l is the increment of arc length I along C; i = d7’/dl is the tangent unit vector,

.6 = $75 = (F—f”)/ IF—f” | is the direction of observation of the radiating edge element at

F’ G(F’,f) = exp(-jks)/41ts is the 3-D Green’s function, and Hr") = I(F’)f and
9

MG”) = M(f")i are the electric and ma etic e uivalent currents res ectivel .811 Cl P y

Consider a plane electromagnetic wave propagating in the .§’ direction and incident

on a perfectly conducting infinite wedge with an exterior angle Nrt, 0<N<2. Our aim is

to obtain explicit expressions for I and M at a point 0 on the edge for an arbitrary

direction of observation at. The geometry of the problem is depicted in Fig. 6.2. The point

0 in question is chosen as the origin. The x axis is directed along the normal to the edge,

and the y axis coincides with the external normal to the face. The 2 axis is directed along

the edge, so as to form a right-hand system. The angles between the s and 3’ directions

and the edge are

(6.10)
B = cos"(s‘-z‘), 0’ = cos’1(§’i)

The angle between the "upper" face and the edge-fixed plane of incidence

containing the vectors 5" and z“ is (V. The corresponding angle for the edge-fixed plane
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Figure 6.2 Wedge scattering geometry.
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of observation is d).

The expressions for I and M are given by [36]

M = H:- 21'Z(1/N) sin¢ sinKn-w/Nl sin(N1r-<I>) sinus-«mm

zoksinlisfinli’ 581““. 0061(1r-a,)/N1-006(¢’/N) Sinaz cos{(n-a2)/N] +COS(¢"/N)

, _ E‘021'Y(1/N)sin(d>’/N)i 1 + 1

ksin’fi’ 160810! -a.)/N] -COS(¢’/N) cos{(1r -°I2)/N] +COS(¢’/N) (6.11)

  

_H. 2j(1/N). ulcotB’-cotl3cos¢ sin[(1r ~a 1W]

.0 ksinB’ sin“. costar -a,)/NJ —cos(¢’/N)

 

_ uzcotB’-cothos(N1t -¢) sin[(1t -a2)/N]

sinaz 008K?! -a2)/Ni +COS(¢//N)

where a:l = cos-lit], pl = sinBcos¢lsinB’, Y=1/Z, p2 = sinBcos(N1t -d>)/sin0’, and

a2 = cos‘lpz. In another paper [37], Michaeli shows that I and M can be split into PO

components and fringe components

I = 1P0+lf, M = Mm+Mf (6.12)

where the PO components are the contribution from the surfaces, while the fringe

components are the contribution from the edge. The fringe components for an edge in a

half plane are [37]

lf=Ezi0 2jY [Shah/I2) /1_ /2 +Hz‘0 2] 1

oksinzfl’ cos¢’+p [I p../2cos(4>/ )] zaksinB’costb’w.

  

-l

°cotB’cosd>’+cot0cos¢+./2003(¢’/2)(ucot[3’-cothosd>)(1-p) 2 (6°13)

M, = ”.2 2stin¢ 1 il_ ficosw/z)

ksinBsinB’cosd>’+pi 1-t.
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where

ii = [SinB’sinBcos¢+cosl3’cosB —cos"[3’]/sin2[3’ (6-14)

6.3.2 Scattered Field from Equivalent Fringe Currents of a Finite Edge

The far-zone radiation field maintained by the equivalent sources of an edge with

finite length L in the edge-fixed coordinate system is given by [38]

I

-o

E = 76.11%]?fo H = (r‘xiyn (6.15)
E

where 11 = (nu/k and

4.07 = iii-Wage»), Fir) iflffigem (6.16)

41tr 41tr

where

ae/(B’,¢’) = f [cosB’cos¢’Ix/(F’)+cosO’sin¢’Iy.(F’)-sin6’Iz/(f°’)]ej""F'Ids

= —f:228in6’IZI(F’)ej""'F/dr’

a¢/(0’,¢5 = f [-sin¢’1x,(r’)+cos6’1y,(r’)]ei**"“’ds’ = o

(6.17)

YGAB’JD’) = f[case/cos¢’Mx/(F’)+cos0’sintb’My/(F’)-sin6’Mz/(F’)]ejk"f/ds’

= —f_"2 sine/Mz,(r’)e1'”""dr’

7,46%) = fsi-sinibe/(F’)+cos¢’My/(F’)]ej”'F/ds’ = 0

Choosing the local phase reference to be at the center of the wedge and assuming
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the equivalent currents are constants over the length of the wedge, (6.17) reduces to

//:_m-/-ojkr'-F’/=_ -/U2j2k5cose’d
060341)) [_msme lz(r’)e dr I(0)s1n0 fm e g

= -I(0)Lsin6’sinc(kLcosO’) (6.18)

Q’s/(6’40) = -fu‘fsine’Mz,(F)ei*""”’dr’ = -M(O)Lsin0’sinc(kLcos0’)

where sinc(x) = sin(x)/x. From (6.15)-(6.18), the backscattered field can be express as

EX?)——j(.)A+j—erF=1wuoLsmc(kLcosfl’)sm0’ebI(O)0/-M—(O)<]>J

e '1

 

4m

(6.19)

:
2
)

I
'
m

Hm: = jkLsmc(kLcose’)s1n0’e-n—:[I(O)Ii>l+ M—L—O)0]

1'I=
i

At a specific aspect, the contribution to the total backseattered field from the

wedge diffraction in time-domain is obtained by Fourier Transforming the frequency

response.

6.4 Time-Domain Inverse Scattering Identity with The Incorporation of Edge

Diffractions

The time-domain inverse scattering identity based on the Radon transform and the

space-time magnetic field integral equation has been derived for real-time use in short

pulse radar systems in chapter 3. In that formula, even though the correction term has

been added to the PO term, the contributions from the correction term is hard to evaluate

for a complex scatterer. Here we will investigate a new approach. Since the physical

optics currents work well inside the illuminated region, and away from edges or comers,

the fringe currents are confined to the vicinity of those surface singularities and shadow

130

 



boundaries. Because there are big diffractions from the edges of an aircraft, we only add

the edge fringe currents to the PO currents in the inverse scattering identity.

For an aircraft, there may be several edges which contribute to the diffraction

field. To a first order approximation, the difi‘raction field can be considered as a

summation of the contributions from each "visible" edge. Thus, For N "visible" edges, the

total diffracted field is given by

M{_(_0)e,
:Iif(0)¢:+ 6i (6.20)

‘1

Hd(f)= EjkL.sinc(kL.cosOI)sin6,I:

i=1

  

The SMEP diffraction response is obtain by multiplying the frequency response

(6.20) by the SMEP window 0(a)), and then inverse transforming into the time-domain

using the FFT as

h d(F,,t) = 7'(Q(m)17d(FS)-li i) (6.21)

where Ii I denotes the polarization direction of the incident magnetic field. The far-zone

backseattered field can be written as

h‘(r,t)= —fn*’rah (’——T—)A(r‘,fi)ds’+hd(r,t) (6.22)
21v at

The first term of the right hand side in (6.22) represents the contribution from the PO

currents, while the second term of the right hand side denotes the contribution from the

diffraction fiinge currents. Assuming the incident magnetic field is a SMEP, the same

procedure can be applied as in chapter 3 and the "thickness function" of the target in the

z-direction can be written as
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2a2+2a—E: [h‘(i>".t) -h"(5’.t)]

 

.. 2 2n a

m» = -—-f f...{

+ (mf+a2)fo‘ [125(5’,» —h d(p’,z)]dt}

 

(6.23)

dtdd)‘

t-ZP +29’cos(<b’-¢‘)

 

This is the complete solution to the two-dimensional problem of recovering a body

from its scattered field; it requires the scattered fields and the diffraction terms from all

possible directions in the x-y plane. The next step is to solve equation (6.23). We can first

neglect the diffraction terms in (6.23). This is the time domain physical optics inverse

problem. We can thus obtain an initial estimate of FIGS), then find all the edges of the

image and use (6.20) to evaluate the total edge diffracted field h"(F,t). Finally, h"(f',t) is

added to (6.23) to obtain the modified I‘(p°).

6.5 Images of an Object Consisting of Conducting Plates

Consider an object consisting of two conducting plates placed on a rotating

pedestal as illustrated in Figure 6.3. Points P, and P, are two vertices of one plate and

the line P,P, forms an edge of the plate. In the laboratory coordinate system, define the

z-axis as the direction of the rotational axis, and the x-axis to be in the observation

direction. At the starting angle, the polar coordinates of the end points P, and P, are (r,,

6,, (1),) and (r3, 9,, 4),), respectively. As the plate is rotated with an angle 4), the

coordinates of P, and P, become (r,, 9,, ¢,+¢) and (r2, 0,, ¢2+¢), respectively.

Next we define an edge-fixed coordinate for edge P,P, of the object. Let the z ’-

axis be in the direction of the edge P,P2, and the x ’-axis be normal to the edge and lying
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Figure 6.3 Geometry of a conducting plate in the laboratory coordinate system and

edge-fixed coordinate system.
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on the plate surface. The corresponding inclination angle of the transmitter/receiver to the

edge-fixed coordinate system is 6’ (¢=O°). As the plane is rotated through an angle (1), the

corresponding inclination angle for the edge-fixed coordinate system becomes 9’(¢). It is

noted that 6’ is not only a function of 4), but also a function of the orientation of the plate

and the edge.

Assuming that the transmitting and the receiving antennas are inside the x’-z’

plane such that 9=n-9’ (B=1t-B’ in (6.13)), for the backseattered case. In our laboratory

system, let the polarization direction of the electrical field be along the y-axis, and the

polarization direction of the magnetic field be along the z-axis. In the following part, we

calculate the edge diffracted field and the PO field of the object and compare the images

of the object with and without the incorporation of edge diffractions.

6.5.1 Edge Diffracted Field

There are a total of eight vertices of the object which form eight edges of the

object. The equivalent edge electric and magnetic currents for each edge have different

forms depending on orientation and wedge angle. For edges P,P,, P2P” P,P5 and P5P,,

the equivalent currents will have similar formulas in their own edge-fixed coordinate

systems. Since 4) = ¢’ = 180° and 11;, = o, from (6.13) we have

 I{(0) = -E;,, ”2‘5 M{(0) = o i=1,2,3,4 (6.24)

ksinzen/l-p,

where u, = —1 —2cot26,. The incident field at the center 0 of the edge is

5(0) = soc-1‘06, = Edflcosflfiosd),+iicosfl,sind>,-z“,sin6,] (625)

Then (6.24) becomes
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. - 25

I,’(0)—— E‘, jrzf = Eosir16. ”2‘5 = J——" (6.26)

oksinzfl,/1-u 'Icsinze,,/2+2cotze, W

Substituting (6.26) into (6.19) yields the total diffraction fields from these four edges

               

             

56““0) = 452::

"' (6.27)

H.140) = -3°22;
"l i=1,-i

For edges P,P, and P3P,,, since 6 = 6’ = 90", u = cosd), and the equivalent current can

be written as

[f(0) = O Mf(0)" on Lint-1 (6.28)

k cosd)

Thus, the total diffraction fields from edges P6P, and P3P, are (in edge-fixed coordinates)

e-flv: sin -1 (kn- sin .-1

¢ Wfio=—£LK Q
cosd), ,-5 4m c054),

(6.29)  

36W éLIZE

For edge P,P3, ¢=¢’=0 or 90". From (6.11) we have I(O)=O, M(0)=O, so there is no

 

2

contribution from edge P6P, For edge P,P,, ¢=90°, p=-2 cffizg . From (6.13) we have

sm

I«0) on_Y \/1+cos6-sin6 M«0) = O

The diffracted field from edge P7P, is

  
 

ribs ‘/1+C0826 -sin6 E8 6.31

E:(r‘) = 5011; e sinc(kL,,cosBs)sin68 8 8 ”43(7) = 30"“ )

r8 cos268 '1
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The total diffraction fields from this object can be considered as a summation of the

contributions from each "visible" edge. Thus, the total diffracted field is given by

e,-jkr e'l’”sin¢.——1

E6d(r‘)—- —2E°§i—n;L,sin6,sinc(kL,,cos6)+ 025: LI41t—T cosd: 

(6.32)

e "7‘" . , l+cosz6 -sin68
+ 501': smc(kL8c056,,)s1n68

41: r8

  

c06268

Equation (6.32) can be used to obtain the frequency responses over the finite

bandwidth 4-16GHz, multiplied by a SMEP window, and then inverse transformed into

the time-domain using the FFT to provided a SMEP response. Figure 6.4 shows the

diffracted SMEP response of the object at ¢=45° using the SMEP shown in Fig 4.4. The

response shows that there are two peaks located at range about :(L/Z) c056, for each edge,

which are at the differential ranges of the end points of the edge. At the rotation angle

(1) such that 6i = 90°, as shown in Fig. 6.5, the SMEP response gives a single peak with

strong amplitude for each visible edge because the two end points of the edge have the

same differential ranges and all the points on the edges are equidistant to the observation

point.

6.5.2 Scattering Field Under Physical Optics Approximations

Consider the same object illuminating by a plane wave defined by

E‘m -.- éEoe 1'5"? film = k ere'jiI'F (6.33)
 

The far-zone scattered field can be written as
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—jkr

 53(7) = jI—k" f'x(fx&) (6-34)
11:

where d(f) = fj(f°’)e‘jk"FId.s’ is the directional weighting function. Using the PO

approximation, the induced current can be written as (in the illuminating region)

f0) = 2fi(F’)xfiI(F’) (6-35)

Rewrite the scattered field as

a E -jkr _.. -,_,

E ‘(f) = éj—°—"f fx(fx[fix(k'xé)])e‘fl* my (6.36)

p 21: r s

For the backseatter case, f = -IEI, and

fx(r‘x[fix(li°‘xé)]) = —I€‘x[(IE"xé)(fi-IE°‘)] = “(a-”5 (6-37)

so

_. E 7*, "i ~,' _./ . E 'jb . .

E-‘(n = éj—°"— ri’-k e72" "ds’ = -6j—3e—fkcos6e’2’“s‘“°ds
p 21: r s 21: r s

(6.38)

 

— éj kE0L5L8 e 7*,

cosBsinc(kLssin6)

2n r

where L5 and L, are the lengths of edge P6P, and edge P,P,.

Fig. 6.6 and Fig. 6.7 show the numerical SMEP responses of the object at two

different angles. The response shows that there are two peaks located at range about

:(Lj2)cose, for each horizontal edge which are at the differential ranges of the end points

of the edge. At the rotation angle (1) = 0°, as shown in Fig. 6.6, the SMEP response gives

a single peak with strong amplitude for the vertical plate because all the points on the
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plate have the same differential ranges and are equidistant to the observation point.

6.5.3 Images of The Plates

The total scattered fields of the plates can be considered as the combination of the

edge diffracted field and the PO scattered field. They can be written as

Eta = E;(n+i,(n (6.39)

where 5pm denotes the PO scattered field and 5.40) denotes the total edge diffracted

field. Substituting (6.39) into (6.23) without subtracting the edge diffracted field we may

create the image of the plates. This is usually the practical case since the measured field

is usually the total field, and the edge diffracted field is very difficult to obtain for a

complicated target. Figure 6.8 gives the image of the plates shown in fig. 6.3. We can see

they match very well. Because equation (6.23) is derived under the PO approximation,

we may use the PO scattered field in (6.23). This gives the true image of the plates under

the PO approximation. The image is given in Fig 6.9. Comparing with Fig 6.8, we can

see that the PO approximation is inadequate for an object consisting of conducting plates

where the edge diffractions may be the dominant contributors to the scatted field. Thus,

the image of a metallic object might be different from its geometrical shape using the PO

approximation.

6.6 Images of an Aircraft Model

A simulation of time-domain imaging is carried out using data measured in the

Michigan State University free-field scattering range. We use the same measured data as

used in chapter 4. Figure 6.10 show the images of a 1:72 scale model B-52 aircraft. Since

138

 
 



we use the PO approximation in (6.23), and did not subtract the diffraction contribution,

the edges of the aircraft are clearly visible, and the surface contribution nearly neglectable

compared to the edge diffraction. This shows that edge diffractions are dominant

contributors to the scattered field when the scatterers consist of conducting plates. Next,

we can obtain the edges from Fig. 6.10 and use (6.20) to evaluated the total edge

diffracted field from all the "visible edges". Fig 6.11 shows the image of the main edges

of the aircraft model. Subtracting the edge diffraction field from the total measured

scattered field yields the PO component and the corresponding image is shown in Fig.

6.12. We can see that the wing edges are not as visible as in Fig. 6.10. Theoretically, the

wings should vanish after subtracting the edge diffracted fields, but since the scattered

field oscillates at high frequency, and the diffraction field from surface singularities such

as tips, corners, and multiple reflections, creeping waves and surface travelling waves are

not taken into account and they may also be big contributors to the scattered fields. Since

they may also distort the reconstructed image, the results are not as good as expected.

6.7 Conclusions

In this chapter, we have shown that in the high-frequency region, the scattered

field can be attributed to a combination of different canonical problems. This idea has

been used in developing a new time-domain inverse scattering identity and interpreting

the reconstructed image from a new approach, based on analysis of the scattering

mechanisms and the backprojection algorithm utilized in image retrieval. In this approach,

we added the edge diffracted field to the physical optics field so that the total is equal to

the exact scattered field value. We also showed that for those objects consisting of

conducting plates, edge diffractions are dominant contributors to the scattered field. The
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total edge diffracted field is the summation of the diffracted field from each "visible"

edge. Several numerical and experimental examples have been included to validate the

formulas developed in this chapter.
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Figure 6.4 Diffracted SMEP response of the object with rotational angle 0:45“.
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Figure 6.5 Diffracted SMEP response of the object with rotational angle ¢=0°.
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Figure 6.6 SMEP response of the object with rotational angle ¢=0°

under PO approximation.
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Figure 6.7 SMEP response of the object with rotational angle ¢=45°

under PO approximations.
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Figure 6.8 Image of the object from 0°-180° data in band 4-16GHz

using the total scattered field. ‘
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Figure 6.9. Image of the object from 0°-180° data in band 4-16 GHz under PO

approximation.
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Figure 6.10. Image of B-52 from 0°-180o data in band 4-16 GHz using measured data.
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theoretical edge diffraction field
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CHAPTER 7

CONCLUSIONS

This chapter summarizes what is achieved in this thesis and points out what

remains to be studied further.

7.1 Summary of The Thesis

The most significant contribution of this thesis, fiom the view of the writer, is the

development and the implementation of a time-domain radar imaging technique. In this

technique, starting with the exact space-time magnetic field integral equation, and by

using Radon’s theory and a SMEP as the incident pulse, we obtain the complete inverse

scattering identity which considers both illuminated and shadowed range contributions.

We have developed the inverse scattering identities for both monostatic and bistatic cases,

for special cases such as rotationally symmetric targets, for flying object, and for the 3-D

case. The entire derivation is carried out directly in the time domain, and the incident

magnetic field waveform is general. We can see from equation (3.22) that when the

incident magnetic field is an impulse, step, or ramp, previous inverse scattering identities

can be obtained. The reason why we chose the SMEP is its band-limited property and its

ease of synthesis in the frequency domain.

In chapter 3 we have shown that the size and shape of an object (thickness
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function) can be obtained from its cross sectional area functions, and the problem can be

reduced to the classical Radon problem. Since the cross sectional area function can be

estimated from the scattered field when the incident field is a SMEP, we can reconstruct

the thickness function of the object using backprojection techniques which have been

widely used in computed tomography, radio-astronomy, and geophysics. Chapter 4 gives

two reconstruction algorithms. One is a time-domain approach called convolution

backprojection. Another is the frequency-domain approach called filtered backprojection.

Both approaches provide similar quality reconstructions. By using synthesized SMEP

response data and the reconstruction algorithm, we have obtained very good images of

several aircraft models. A simulation based on stepped-frequency, multi-aspect

measurements of aircraft models produces clear images with highly-defined edges.

Chapter 5 deals with the limited-view problem. We have proposed two techniques

to handle this practical situation. One approach is the method of projections onto convex

sets (POCS). The basic principle of POCS is that each piece of a priori knowledge must

be represented by a convex set onto which the current image estimate can be projected.

It has been shown that if the intersection of these convex sets is nonempty then the

sequence of cyclic projections will converge weakly to a point in this intersection. We

extend this approach to radar imaging for the first time and show some useful results.

Another approach which we have demonstrated is to process the available measured

projections in order to generate an estimate of the full set of projections, an image which

is called a sinogram. The goal of this approach is to recover the sinogram from the

available measured data using linear prediction. Since the scattered field of a target can

be written as a superposition of distinct specular reflections arising from scattering centers

on the target, the position and strength of the scattering centers can be predicted using
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linear prediction with the change of the observation angle. Thus, the missing data can be

predicted before reconstructing the image. Big improvements in image reconstruction have

been achieved using this technique, and some useful results have been shown in chapter

5.

In chapter 6 we point out that the PO approximation is inadequate for scattering

problems of a complex shaped conducting object such as an aircraft. At high frequency,

edge diffractions, multiple reflections, creeping waves, and surface travelling waves may

also be important scattering mechanisms. Additionally, the spectral and angular windows

for data are usually restricted by practical constraints. Therefore, the time domain image

of an aircraft may be different from its geometrical shape. In chapter 6 we have

investigated time domain imaging of aircraft employing SMEP responses, and interpret

the reconstructed image from a new approach, based on analysis of the scattering

mechanisms and the back-projection algorithm utilized in image retrieval. The time-

domain inverse scattering identity with the incorporation of Geometrical Theory of

Diffraction (GTD) is derived and some interesting experimental results are provided.

7.2 Suggestions for Further Studies

From the view of the writer, the following points are the suggestions for future

research:

1). At present the reconstruction has been limited to the 2-D case, so the next logical

step is to extend the reconstruction algorithms to a 3-D object. The time-domain

inverse scattering identity for 3-D cases has been derived in chapter 3 using a half

Gaussian pulse modulated sine as an incident field. The well-developed

reconstruction algorithms in other fields for the 3-D case can be extended and
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2).

3).

applied to the 3-D inverse scattering problem.

In addition to the SMEP, impulse, step, and ramp, other types of incident field

waveforms may be used to obtain the cross-sectional area function.

In sinogram restoration for the limited-view problem, l-D linear prediction has

been used to fill in the missing data. It is more efficient and may be more

accurate if we use 2-D linear prediction, since the sinogram is a 2-D map.
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APPENDIX A

ANECHOIC CHAMBER MEASUREMENTS

A.1 Introduction

There are two different schemes for performing transient measurements. The first

method uses traditional time domain reflectometry methods [39], [40], [41], [42] while

the second one utilizes a Fourier synthesis approach [43], [44], [45]. The time domain

reflectometry method has the important advantages of time-gating and rapid speed of

measurement, but suffers the disadvantage of limited dynamic range and equipment

instability which leads to timing jitter. In this dissertation, we do not exploit this method.

A vector network analyzer is capable of measuring both the magnitude and phase

of the S-parameters of two port network over a very wide frequency band. This capability

gives the vector network analyzer the ability to synthesize the transient response of a

target via the inverse discrete Fourier transform. Measurements using this configuration

take longer than with time domain systems. Note that the sampling interval constraint

limits the use of the network analyzer system when the antennas are used on a ground

plane since the reflections from the edges of the ground screen and the laboratory ceiling

cause alaising.

A typical free-field dual antenna frequency-domain measurement system is shown

in Figure A. l. A measurement of 52, produces a measure of scattering from port 1 to port

2 from both the scatterer and the environment. Amplifiers are added to the transmit
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channel to help boost the dynamic range of the measurements. With the addition of wide-

band hom antennas, the frequency range of the system has been extended from the band

1-7 GHz to the band 2-18 GHz. Also, a computer-controlled rotator allows measurements

to be made automatically at a 0.150 aspect angle increment.

This Appendix reviews the calibration and deconvolution method of the

measurement system developed by Ross [45]. Examples of measured spectral responses

of calibration targets (i.e. sphere) are presented and compared with theory. Various

methods which improve the measurements of aircraft models are described briefly and

summarized.

A.2 Calibration Procedure

Ross made a significant contribution to automatic measurements in the anechoic

chamber at the MSU EM lab. The size of chamber is 24 ft in length, 12 ft in width, and

12 ft in height. Here we will review the calibration procedure. To take full advantage of

the wide frequency sweep available with a network analyzer, the clutter and system

transfer function must be removed from the measurement. That is, all repeatable

systematic errors associated with anechoic chamber clutter, antennas, and transmission

lines should be removed from the raw measurement.

First, the background response measured when the chamber is empty is subtracted

from the raw target measurement. Figure A.2 shows the spectral response of a 14 inch

metal calibration sphere measured at 2-18 GHz. Other possible calibration targets include

a thin wire. One of the difficulties with the wire is that the wire response is strongly

aspect-dependent. It is very hard to determine the incident angle exactly. Afier the

spectral response is zero-padded and transformed to the time domain, any interaction
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terms and noise that are sufficiently delayed beyond the end of the calibration target

response can be eliminated. The spectral response obtained by transforming the time-

domain response using the FFT becomes much smoother than before as shown in Figure

A.3. Next the system function can be found by dividing this response by the theoretical

value.

The theoretical scattered field response of a sphere was first solved by Mie in

1908 [46]. It has also appeared in many books [47], [48]. The notation used in the course

notes by Chen [49] is used here.

Consider a plane wave incident on a perfectly conducting sphere as illustrated in

Figure A4. The incident electric field is given by

5"”(7) = JEEoexp(-jkz) (A.1)

The far zone scattered electric field is obtained by approximating the spherical vector

wave functions in Mie series [48]

Eg=-E

Pl

q)e___xp(—jkmz 2n+___1_{,,n”n_(°°se’ .b,[%pnl(eme)]}em¢ (A.2)
,,_ , n(n +1) sin6

_e____xp(-ij) 2n+1P1(c056)+ 3 1 - (A.3)
ES, =jE0 "Z; n—(—n+l){b sin6 a"[66p" (cos6)] srncb

where a, and b, are found using the boundary conditions and are given by

a .
. —(Rjn(kR))|R=a

- Mk“) b = 5R (A.4)_ 2 .

hi ’(ka) a—imhfizkkk» lR=a

 

For the back-scatter case, the following relations are used to the evaluation of the Mie

series in equation (A.2) and (A3)
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 Pn‘(c056) I... = -(‘21)" n(n+1) (A.5)

£Pnl(c056) |,,:,, = - “21)" n(n+ 1) (A6) 

The expressions shown in (A.2) and (A3) are programmed with the use of widely

available generalized Bessel function subroutines. These subroutines are very accurate and

efficient.

Figure A.5 shows the theoretical waveform obtained using the above Mie series.

The system transfer function obtained using this theoretical response is shown in Figure

A.6. To provide verification of the calibration process, a second sphere 3 inches in

diameter is used. Figure A.7 shows a comparison of the measured and theoretical spectral

responses of the smaller sphere. The agreement is very good except in the high frequency

region. This is probably due to the hole in the sphere and effects of windowing of

extraneous system noise from the measured response.
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Figure A.4 Geometry for sphere scattering problem.
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APPENDIX B

EXPERIMENTAL EQUIPMENT

This appendix summarizes the apparatus used for the experimental portion of the

research. The equipment used in the frequency domain scattering measurements is listed

in Table B.1. There have been three different configurations used at EM lab in MSU so

far. The "low-band" configuration uses a the PPL-5812 amplifier to amplify the signal

from port 1 of the network analyzer. The parameters used in this configuration are shown

in Table B2. The "high-band" configuration uses the HP-8349B amplifier to amplify the

signal from port 1 of the network analyzer. The parameters used in this configuration are

described in Table B3. The enhanced "high-band" configuration uses the HP-8349B

amplifier too. The parameters used in this configuration are given in Table B.4.

To accurately characterize the measurement system, the network analyzer was used

to measure the gain of the amplifiers and attenuations of the cables over a wide range of

frequencies. The results of these measurements are given in the thesis by Ross [45] and

are reproduced here to indicate the limitation of measurement system, the improvements,

and baseline measurements to assess future equipment changes. The signal gain of the

HP-8349B amplifier is shown in Figure 8.1. Note that the gain is about 20 dB over 2

GHz. The gain of the PPL-5812 amplifier is shown in Figure 3.2. The gain decreases a

lot over 4 GHz. This attenuation
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Table 8.1 Equipment used for frequency domain scattering measurements.

Hewlett-Packard HP-8720B vector network analyzer

Hewlett-packard HP-8349B microwave amplifier

Picosecond pulse labs PPL-5812 10 dB broadband amplifier

American electronics laboratory AEL H-1734 wideband TEM horn antennas

23.5 foot RG-9B cable with N-type connector

22.5 foot RG-9B cable with N-type connector

B&K precision DC. power supply 1610 (for PPL amplifier)

Insulated wire inc. AEL H-1498 wideband TEM horn antennas

12 foot low loss cable with SMA connector

Table 8.2 Low band measurement parameters.

Measurement parameter: S21

Frequency sweep: 0.4 - 4.4 GHz

number of points: 401

IF bandwidth: 100 Hz

number of averages: 10

Sweep time: 30 seconds

 

limits usage of amplifier in higher frequency range. Cable losses for the system are shown

in Figure B.3. Note that this cable is very lossy at high frequencies. Now a pair of low
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loss flexible cables 12 foot in length are available to help improve range performance.

Tests of new cables show a 3.5 dB loss at 20 GHz.

Table 8.3 High band measurement parameters.

Measurement parameter: 821

Frequency sweep: 1.0 - 7.0 GHz

number of points: 601

IF bandwidth: 100 Hz

number of averages: 10

Sweep time: 60 seconds

Table 8.4 Enhanced high band measurement parameters.

Measurement parameter: S21

Frequency sweep: 2.0 - 18.0 GHz

number of points: 1601

IF bandwidth: 100 Hz

number of averages: 2

Sweep time: 60 seconds
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