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ABSTRACT

THE EFFECTS OF CONTENT HOMOGENEITY AND EQUATING METHOD ON

THE ACCURACY OF COMMON-ITEM TEST EQUATING

By

Wen-Ling Yang

Often in educational testing and measurement, people use alternate test forms to

achieve comparable test scores for measuring growth or ensuring test security. To obtain

valid comparisons between groups and to enhance test fairness, they rely on various

equating techniques to equate forms of the same test. It is important to evaluate the

adequacy of these equating methods and the accuracy of their outcomes. In my

dissertation, I studied the effects of test characteristics on the accuracy of equating

outcomes when different methods were used to equate two test forms of a test.

Specifically, I wanted to know whether equating accuracy improves with a test made of

content-homogeneous items, whether it improves with an anchor test that is content-

representative of its total test, and whether such content effects depend on the particular

equating method used for equating. My major goal is to improve test results, which often

lead to critical educational decisions.

The data I analyzed is the test results from a professional in-training examination.

It has a negatively skewed score distribution because the test was written for a minimum-

competency examination. In equating practice, such test outcome receives less attention



than it should have. The common-item equating design was used because the two groups

of examinees taking different forms were not randomly formed or assigned. I used an

item-sampling design to create four tests that differ in the content homogeneity of their

items and the content representativeness of their anchor items. All the items in these tests

are from one overall content domain, but fall into 23 different content areas. Each of the

four tests has two forms, and a set of common anchor items is embedded in each form. I

applied linear, equipercentile, and two [RT-based equating methods to equate the two

forms of each test. By means of the item-sampling designs, I was able to establish two

innovative criteria based on true score for evaluating the accuracy of equating outcomes

from these methods. I also used two other criteria based on the outcomes of arbitrary

equatings to examine how well equating accuracy is estimated with such criteria. I also

elaborated on issues of construct validity and test dimensionality, which are relevant to

test equating.

Overall, I found that all the equating methods yielded accurate results to a

moderate degree. They all produced more accurate results when the anchor items were more

representative of the total test, or when the items in a test had homogeneous content.

Therefore, to improve equating accuracy, I recommend an inclusion of anchor items that fully

reflect the overall test content. I also found that the [RT-based equating outcomes were

more accurate than the outcomes from the other equating methods. However, the

difl‘erences are small thus may not have practical significance. If the degree of equating

accuracy is critical for decision-makings of a testing program, such as high-stake examinations,

IRT-based equating methods are recommended.
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PART I: COMMON-ITEM EQUATING ISSUES -- AN OVERVIEW



INTRODUCTION

In educational testing, to ensure test security, alternate test forms are often used so

that allexamineesdo not need to takethesame test at the same time. The need for

interchangeable test forms is especially important for licensure examinations and other

tests used to make critical decisions. Comparable test forms are also used to measure

growth or trends. In theory, alternate test forms are created by careful test construction

such that their items will have similar item difliculties. However, results of test

construction are often not satisfactory because test forms are seldom parallel in the

straight theoretical sense. A practical strategy to achieve comparable test scores is to

establish equivalency between different forms via equating.

Equating procedures are based on the idea of making statistical adjustments in

pursuit of four conditions: same construct, equity, symmetry, and population invariance

(Hambleton & Swaminathan, 1990; Lord, 1980). By satisfying these conditions, in theory,

one can obtain comparable test scores from equated test forms. Equating can be linear or

non-linear depending on how test scores are transformed across forms. Various equating

models vary substantially in their assumptions and equating functions. Selection of an

equating model should take into account purpose of equating, theoretical plausibility and

applicability of a model, and characteristics of the examinees and test forms being equated.

Conventional linear equating methods, such as Tucker linear method, are

straightforward and convenient in computation. Therefore, they have been used widely in

2
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practice for years. Nevertheless, their results do not always meet all criteria for equivalent

tests. For example, equivalent scores from linear equating can vary across examinee

groups and item samples. To overcome such drawbacks of linear equating, different

equating models based on item response theory (IRT) have been developed. The use of

the IRT-based methods has recently increased in its popularity. IRT-based equating

methods are especially useful for equating based on the common-item design, where

random assignment of examinees is not required. They are often used when the

assumptions made by linear equating are not likely to hold (Cook & Eignor, 1991;

Crocker & Algina, 1986).

Research has shown that IRT-based methods are more robust than linear equating,

and they will lead to greater stability when tests to be equated differ somewhat in content

and bngth (Petersen, Cook, & Stocking, 1983). Despite their theoretical appeal and

empirical advantages, IRT-based equating methods are often under scrutiny because of the

inconsistency in their equating outcomes. Another issue is the possible IRT—based

equating method by test interaction (Hills, Subhiyah, & Hirsch, 1988; Peterson, Cook, &

Stocking, 1983). In equating practice, there are also concerns about its cost and the

practical significance of improvement in equating accuracy due to IRT-based methods.

Dimensionality of a test is an issue relevant to equating accuracy. It is particularly

critical for IRT-based equating that assumes an unidimensional trait (Hambleton &

Swaminathan, 1990). An IRT-based equating model assuming unidimensionality is not

likely to work well on a test of multidirnensionality. Test dimensionality may also affect

the effectiveness of conventional equating methods. This is because the conventional

approach also assumes unidirnensionality but in an implicit way (Green, Yen, & Burket,
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1989). Often, a broad test domain is defined to encompass a variety of knowledge or

skills. It is bss likely that only one trait or one single dominant trait influences the

examinee performance on the test. To ensure equating accuracy, it is therefore crucial to

check the IRT assumption of unidirnensionality. It is also important to evaluate the

robustness of IRT applications when the assumption is violated.

This study addresses practical common-item equating issues concerning equating

methods and test characteristics. Four pairs of sampbd test forms, varying in their content

homogeneity, are equated by the Tucker linear method, frequency-estimation

equipercentib method, and two IRT-based equating methods. Various equating results

from these methods are evaluated using four types of criteria for evaluating equating

accuracy. Resulting equating outcomes are compared and discussed, with considerations

of restrictions on this study. Suggestions are made for equating practice and future

research.

The major goal of this study is to inform testing practice, leading to improved

measures of ability or achievement and more valid comparisons of different groups. The

study on the effect of content homogeneity and content representativeness on equating

accuracy should improve the precision of equivalent scores, test construction, and test

efliciency in the context of common-item equating. The findings and conclusions reached

in this study will provide sound groundwork for future studies. The unique part of the

research design, such as the item-sampling design and the use of multiple innovative

criteria for evaluating equating accuracy, should cast insights on improving the estimation

of equating accuracy for future studies.



Chapter 1

RESEARCH PURPOSES AND QUESTIONS

To better understand the effectiveness of various equating methods, and the

influences on equating accuracy from the characteristics of a test and its items, this study

has these specific goals:

To estimate and compare the equating accuracy of linear equating, equipercentile

equating and IRT—based equating.

To investigate the effects of content homogeneity of test items, and content

representativeness of anchor items, on the estimation of equating accuracy yielded by

various equating methods.

To assess the effectiveness of various criteria for evaluating equating accuracy.

To address dimensionality issues related to the test data, and to investigate their

influences on the IRT-based equating results, such as the robustness of a

unidirnensional IRT model

To inform testing practice and future studies about useful ways for (l) improving

anchor-item equating design, (2) selecting an equating method, and (3) evaluating

equating accuracy.
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Pursuing these goals, this study outlined a set of research questions to direct the

design, method, and analysis of its equating research. These questions not only reflect

specific research interests but also address important issues and concerns about equating

practice.

To what extent does the results of Tucker linear equating, equipercentile equating, and

the IRT-based equating agree?

Does equating result depend on content homogeneity of test items and content

representativeness of anchor items? In other words, does the accuracy of equating

improve when the items in a test are content homogeneous? Does it improve when the

content of anchor items becomes more representative of the total test?

How accurate are the results of various equating methods, based on these criteria for

evaluating equating accuracy: (3) a raw-score-based true-score estimate, (b) an IRT-

based true-score estimate, (c) the result of the equipercentile equating method on

equating the two forms of a longer and, in theory, more reliable test, and (d) the result

of the equipercentib equating method on equating the two forms of a shorter subtest,

sampbd from the longer original in-training test?

Which criterion, among various criteria for evaluating equating accuracy, is relatively

better than the other criteria, for this particular minimum competency examination?

Does the IRT assumption of unidirnensionality hold for the IRT-based equatings?

Mathematically or conceptually speaking, how can we describe the dimensionality of

the test?

Will the resulting outcomes of the IRT-based equatings suggest that the three

parameter logistic (3PL) IRT model is appropriate for a minimum competency test

that has a negatively skewed score distribution? Is the IRT model sound in theory?
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In the following chapters, literature for rebvant equating issues are first reviewed

and summarized. They include conditions of equivalency, equating guidelines,

assumptions and procedures of various equating methods, features of the common anchor-

item equating, and estimation of equating accuracy. Then, the data, item sampling

schemes, common-item non-equivabnt group design, and particular equating methods

used in this dissertation are described. After the results of various equating methods on

different tests are discussed, suggestions are made for the equating practice and future

research.



PART II: REVIEW OF LITERATURE



Chapter 2

CONDITIONS AND GENERAL GUIDELINES FOR EQUATING

Important requirements of equating, including the conditions of equivalency,

general guidelines for conducting equating studies, and the criteria for selecting equating

methods, are reviewed in this chapter. The limitations of equating are also discussed.

Conditions of Equivalency

If test Y is to be equated to test X, no matter what equating procedure is chosen,

the following conditions must be satisfied to conclude that scores on test X and test Y are

made equivalent (Angoff, 1984; Dorans, 1990; Hambleton & Swaminathan, 1990; Kolen

& Brennan, 1995; Lord, 1980; Petersen, Kobn, & Hoover, 1989):

0 Both tests measure the same construct.

0 The equating achieves equity. That is, for individuals of identical proficiency, the

conditional frequency distributions of scores on the two tests are the same.

0 The equating transformation is symmetric; that is, the equating of Y to X is the inverse

of the equating ofX to Y.

0 The equating transformation is invariant across sub—groups of the population, from

which it is derived.
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In addition to the above conditions, equating using the IRT model also requires the

assumption of unidimensionality. These conditions of equivalency are elaborated below.

We!

The requirement of the same construct is a matter of test construction and can be

achieved by carefully sebcting items that measure the same construct. Formulas relating

tests of difi'erent constructs to each other can be computed for the purpose of regression

or prediction, but it is meaningless to compare tests measuring difi'erent constructs. Since

equating is a matter of transforming scores for the sake of comparison, it makes no sense

for the forms of a test to measure different constructs.

Equity

The condition of equity implies that individuals of the same proficiency obtain the

same score, no matter which tests are taken. The proficiencies of individuals taking two

different tests are usually estimated via their performance on the common items or an

anchor test. At every ability level, the conditional frequency distributions on different

forms should be the same. The corresponding percentile ranks in any given group should

be equal for equivalent scores.

Smrnctnr

The score transformation should be invertible to achieve symmetry. Regardless of

equating from X to Y or from Y to X, the same score on one test should correspond to

one given score on another test.

The condition of symmetry requires that the function (ex) used to equate a score

(y) on Form Y to the scale of Form X be the inverse of the function (e,.) used to equate

a score (x) on Form X to the Form Y scale: ex(y) = e;‘(y) and e,(x) = e;‘(x) .
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Equating results are desired to be independent of the unique characteristics of the

examinee sampbs used in the equating process. No matter which groups of examinees are

used, the equating results should not change with the characteristics of the particular

examinee groups. The results should depend on only the underlying construct measured

by the test. Among various equating models, the procedures based on regression

inherently fail to achieve this condition, while IRT-based equating is expected to result in

population invariance by assigning the same estimated ability score to all the examinees at

the same ability bvel.

The condition of population invariance is one of the ultimate goals of test equating,

and can be assessed by examining thetequivalency of the test forms across sub-groups. If

population invariance is not achieved, one possible reason is that the tests or test forms

may not measure the same construct. In this case, the procedures of test construction and

the resulting test items should remain under scrutiny.

Il'l' . l' E IBI-B lE .

Unidimensionality is an underlying assumption for the equating based on item

response theory, although it is not explicitly recognized as a condition of equating. The

IRT-based equating is more restrictive because it requires unidimensional test items.

Equating Guidelines

When test data from different forms of a test are very similar or very different,

equating may not be desired. Other than reducing errors, inappropriate equating may

introduce more error to test scores, and unnecessary equating will increase the cost of

testing. Once it is determined that equating is preferred, factors such as feasibility, cost,

and any unique testing context should all be considered to carry out the equating.

However, there are no absolutely superior criteria for the selection of equating design or
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method (Harris & Crouse, 1993). As a result, arbitrary judgments and decisions are

necessary and should be based on equating expertise and experience.

Brennan and Kobn (1987, 1995) proposed a set of rules to guide test equating.

They argued that the test content and statistical specifications for tests being equated

ought to be defined precisely and be stable over time. In the process of test construction,

item statistics should be obtained from pre-testing or a previous use of the test. Each test

should be reasonably long, with at bast 35 items, and the scoring keys should be

consistent. The stems for common items, alternatives, and stimulus materials should be

identical for the forms to be equated. The characteristics of examinee groups should be

stabb over time, too. The groups should be relatively large, larger than roughly 400

examinees. The curriculum, training materials, and field of study should also be stable.

The test items should be administered and secured under standardized conditions.

Brennan and Kolen (1987) also have a set of ideal suggestions for test equating:

0 Embed two sets of common items in the full-length test;

0 Length of an anchor test should be at bast 1/5 of the total-test bngth, and the anchor

test should mirror the total test in content specification and statistical characteristics;

0 Administer at bast one link form no earlier than one year in the past, and administer at

bast one link form in the same month as the form to be equated; and

0 Place each common item in approximately the same position in the two forms.

Criteria for Selecting Equating Methods

Usually, an equating method is selected or tailored to accommodate a particular

testing situation. If guessing is explicitly encouraged during testing time and its effect

cannot be overlooked, a fair equating should account for this factor. Suppose accurate

equivalent scores are strongly desired by some testing programs, it is critical to select an

equating method that yields the most accurate equating for that particular test.
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. Three major aspects to be considered for the sebction of an equating method are:

(1) Are the required underlying assumptions tenabb? (2) Is the equating procedure

practical? and, (3) How good is the equating result? (Crocker & Algina, 1986) Common

equating methods are compared on each of these three aspects below.

I 1'1' [111]! .

The premise of model application is that all the underlying assumptions of the

sebcted model hold. Linear equating assumes that the score distributions of the tests

being equated have identical shapes, and is appropriate for equating use when score

distributions only differ in the means and/or standard deviations. Due to this assumption,

the derived equivalent scores will have identical percentile ranks.

Equipercentile equating requires fewer assumptions than linear equating. It does

not assume the same shapes for score distributions, but determines which scores on the

different tests will have the same percentile rank (Crocker & Algina, 1986). However, in

theory, the equipercentile method is associated with larger errors than linear equating

(Lord, 1982a). Also, it is less practical to apply equipercentile equating because it is far

more complicated.

Both linear and equipercentile equatings assume that the tests being equated

measure the same trait and have equal reliability. Given two tests that have different

average difficulty, however, the assumption of equal reliability usually does not hold. In

such case, these two equating methods are likely to yield erroneous results. The results of

the two methods also depend on the particular test items used, and fail to meet the

condition of equity for equating. Furthermore, the methods do not meet the requirement
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of population invariance (Hambleton & Swaminathan, 1990). Unlike these methods, IRT—

based equating does not have the same drawbacks and could be a better alternative.

Random group design, single group design with counter-balancing, and the

common-item nonequivalent groups design are three common designs used to collect data

before equating (Kobn & Brennan, 1995). Equating designs differ in the need for

randomly formed examinee groups, single or multiple test administrations, test length, or

the examinee sample size needed. Depending on various conditions in real testing

situations, feasible equating designs are chosen and corresponding methods are used to

equate the test results of different forms. For example, traditional equating may be

adequate if examinees are randomly assigned to form groups and each group takes a

different test form, or if different forms are assigned to examinees randomly, or if the

groups take both test forms in randomly assigned orders. Otherwise, IRT—based methods

are more appropriate.

Random group design is often desired because each examinee only has to take one

form and several forms can be equated at the same time. Nevertheless, this approach

requires the test forms to be availabb and administered at ‘the same time, which is

sometimes not practical. One solution to this problem is the use of the anchor design.

Either multiple test forms with embedded anchor items (the internal anchor) can be given

to difl‘erent examinee groups, or a third test (the external anchor) can be given to two

examinee groups that take different test forms. Without random assignment, the anchor-

score distributions for different sub-populations may be markedly difierent and the



15

assumption of equity is unlikely to hold (Crocker & Algina, 1986). In this case, the linear

and equipercentile methods are likely to yield inaccurate results, while IRT-based equating

tends to be more adequate.

W

One major justification for test equating is its efl‘ectiveness, that is, the extent to

which the equating method used yields adequately equivalent scores. Nevertheless,

because true scores can never be known in practice, perfect equivalency can never be

determined in a strict sense. As a consequence, there is no best criterion for evaluating

equating accuracy, and there is also no definite procedure for determining which equating

methods should be used in a given context (Harris & Crouse, 1993). The interest for

assessing equating accuracy thus is to find adequate equating methods that are appropriate

for a given context. Issues regarding the assessment of equating accuracy are discussed

further in Chapter 7.

Limitations of Equating

Test equating cannot solve probbms originating through crude and improper test

construction. It is meant to overcome the insufficiency of good test-construction practice

that has faibd to yield test forms of the same difficulty level

Both traditional equating and IRT-based equating are primarily designed to remedy

minor differences in difficulty between test forms. Cook and Eignor (1991) indicated that

no equating method could satisfactorily equate tests that were markedly different in

difficulty, reliability or test content. This perspective raises doubt over the practicality of
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vertical equating, which transforms scores across bvels of achievement onto a single scale.

Theoretically and operationally, vertical equating is much more difficult to accomplish

than horizontal equating. In addition, vertical equating often results in a lack of test

invariance, which can be accounted for by multidirnensionality (Skaggs & Lissitz, 1988).

Equal reliability is usually assumed by equating models, such as the linear equating

and the equipercentib equating. Due to floor and ceiling effects, however, tests that differ

in difficulty are not likely to be equally reliable for all sub-groups of examinees, and the

relationship between the tests can be nonlinear (Skaggs & Lissitz, 1986). It is implied that

observed scores on tests of different difficulty cannot be equated. Therefore, in such

cases, equating is actually carried out in a loose sense.

From a pragmatic point of view, however, equating aims to arrive at a conversion

equation that approximates an ideal equivalency. Therefore, despite its limitations by

nature, test equating is of great use in comparing scores on test forms with minor

differences.



Chapter 3

TUCKER LINEAR EQUATING

Linear equating has the appeal of simplicity in terms of score transformation and is

used most often with the common-item design (Kolen & Brennan, 1987). Among the

many linear methods, Tucker linear equating is one of the methods employed most

frequently.

Synthetic Population

For the common-item design, the Tucker method involves the use of a synthetic

population (Braun & Holland, 1982). A synthetic population is usually defined as a

combination of the proportionally weighted (proportional to sample sizes) populations of

examinees taking different test forms. Typically, an equating function is viewed as being

defined for a single population, and the two examinee populations must be combined as

one singb population for defining an equating relationship (Kobn & Brennan, 1987).

Model Assumptions

In an anchor-item equating design, suppose examinees in Population 1 take Form

X, those in Population 2 take Form Y, and V is the embedded set of anchor items in both

17



18

forms. To equate scores on Form X to the scale of Form Y, Tucker linear equating

requires strong statistical assumptions, as follows (Kobn & Brennan, 1987; Kolen &

Brennan, 1995):

l. The linear regression function (slope and intercept) for the regression of X on V

is the same for Populations 1 and 2. The function for the regression of Y on V is also the

same for the two populations.

2. The variance ofX given V is the same for the two populations, and the variance

of Y given V is also the same for the two populations.

Under the above assumptions, the linearly transformed scores on one form, yielded

by Tucker’s method, will have the same mean and standard deviation as the scores on

another form. Because of the assumptions about the variances and regression functions in

relation to the two populations, Tucker linear equating is more accurate when examinee

groups are similar.

Equating Procedures

Using the proportional weights to form a synthetic population, Tucker linear

equating basically involves the following concepts and procedures (Kobn & Brennan,

1987; Kobn & Brennan, 1995):

1. Find the weights for Populations l and 2 by using these formula: w1=n;/(nl+n2)

and w2=nz/(n1+n2), where n1 and n; are the sample sizes of examinees from populations 1

and 2, respectively.

2. Let a; and or; be the regression slopes for the populations. For Population 1,
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outx IV)=ollx.V)/a; (V) and al(Y IV)=01(Y.V)/ai (V). (3.1)

and for population 2,

a2<x IV)=0’2(X.V)/a§ (V) and (MW lV)=o.(Y.V)/ 0% (V). (3.2)

In addition, bt B, and B; be the regression intercepts for the two populations, and 111 and

u; be the population means, then

Bltx IV)=u.(X)-a.(x Mum and {MY Mailman Mum. (3.3)

and

Bax IV)=u2(X)-a2(x lV)u2(V) and MY lV)=|.lz(X)-a2(Y Mew). (3.4)

To compute the a, (X IV) and [:2 (Y IV), observed data could be plugged in to the above

equations.

3. By assumptions about the slopes and intercepts for the two populations,

aux IV)=02(X IV). alor IV)= (12(Y IV). Bax IV)=132(x IV). and MY IV)= [MY IV).

And, by assumptions about the same variances for the two populations,

0? (XML/1.z (X,V)]=a§ 0011-10: (X,V)], (3.5)

and

a? (Y)[1- P? (Y.V)l= oi (Y)[1- P: (Y.V)]- (3.6)
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4. With the above assumptions, it can be demonstrated that

ul(Y)=u2(Y)+a2(Y Mum-112w».uzm)=u1<X)-a.(x IV)[tll(V)-tl2(V)l. (3.7)

012 or)”:mm: (Y IV)[ a? (V)- at (V)l. at (X)=ar (X)- a: (x N)[ or (V)- 0% (V)]. (3.8)

and

61(Y.V)=62(Y.V)[ a? (V)/ 0% (V)]. 62(X.V)=01(X.V)[ 0% (V)/ of (V)]. (3.9)

5. The weights and the parameters of Populations 1 and 2 can express the

parameters for the synthetic p0pulation. The equations for the population means are (a)

u-(X)=Wlul(X)+quz(X). (b) Ll-(Y)=Wlul(Y)+W2tlz(Y). and (C) 11s(V)=Wllll(V)+W2u2(V).

And, the population variances are

a: (X)=wl 012(X)+W2 at (X)+w.w2[ul(X)-u2(X)lz. (3.10)

ai (Y)=wl 012 (Y)+w2 a§ (Y)+le2[ul(Y)-ll2(Y)l2. (3.1 1)

and

oi (V)=Wl 0‘12 (V)+W2 0% W)leW2[fll(V)'il2(V)]2. (3-12)

where s denotes the synthetic p0pulation.
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6. Substitute the equations in step 4 in the equations in step 5, the means and

variances for the synthetic population on Form X and Form Y can be derived as follows:

u.(X)=u.(X)-wza.(x Mum-mm). (3.13)

u.(Y)=u2(Y)+wlaz(Y Mum-um]. (3.14)

a:(X)= a? (Xmas (x |V)[a? (V)- a; (V)l+WlW2a.’ (x lV)[ul(V)-ll2(V)]2, (3.15)

and

a: (Y)= a%(Y)+wl at (Y Mia? (V)-a% (V)]+WlW2ai (Y Mum-um)? (3.16)

To obtain estimates for the means and variances for the synthetic population, plug in

observed data to the above equations.

7. After taking the square roots of 0‘30! )and a“, (Y), the equation for Tucker

linear transformation, €(x) = 6,(Y)l 6,(X)[x-A(X)]+fi,(Y), is obtained by replacing

the parameters in the above equation with the estimated values obtained previously.

Practical Concerns

Equal reliability across test forms is required for Tucker linear equating. However,

Kobn and Brennan (1987) argued that if test forms are designed to be as similar as

possibb in content and statistical characteristics, and the forms have the same length, small

differences in reliability are not likely to have negative influences on equating outcomes.
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Levine equally reliable method (Angofl', 1984; Livingston, Dorans, & Wright,

1990) is a frequently used linear equating method that assumes perfectly correlated true

scores on the two forms. Compared to the Levine method, Tucker linear method is often

considered more appropriate when examine groups are more similar and test forms bss

similar. The Levine method, however, is often said to be more appropriate when test

forms are more similar and examinee groups less similar. Nevertheless, research findings

have not yet provided clear evidence for the argument (Kobn & Brennan, 1987).



Chapter 4

EQUIPERCENTILE EQUATING

Equipercentile equating is an observed score equating that aims at finding a score

on Form Y of a test that has the same percentile rank as a score on Form X of the same

test. When used with the common-item design, like the linear equating methods,

equipercentib equating requires a synthetic population composed of two weighted

populations.

Equipercentile Function

Let x be a score on Form X, and Kx be the number of items on Form X. The

equipercentib function for the synthetic p0pulation is

ex, (x) = Q;‘[p3(x)1,-.5 5 x5 Kx+ .5 ; (4.1)

where the subscript “s ” denotes the synthetic population, and (1) 8y. (x) is the Form-Y

equipercentile equivalent of score 1: on Form X, (2) p3 (x) is the percentile rank function

for Form x, and (3) Q;‘ is the percentile function for Form Y (Kobn & Brennan, 1995).

23
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Let F(x) be the discrete cumulative distribution function for Form X and x. be the

closest integer to x such that x'- 5 s x<x*+.5, then p(x) can be expressed as follows:

p(x) = 100{F(x'-l)+[x-(x*-.5)][F(x*)-F(x*-1)] }, if -.5 sx<K,,+.5,

= 0, if x<-.5, and

= 100, if xzkx+.5 (4.2)

The percentile function for Form Y, Q'I , is the inverse of the percentile rank

function, p" . It is used to find the Form-Y score corresponding to a particular percentile

rank.

In equating practice, because of zero frequencies of some scores, the scores of a

test are often discrete. As a consequence, equated Form-X score distribution will typically

differ from the Form-Y score distribution. A variety of strategies have been developed

and proposed to cope with such undesirable situations. Typically, smoothing methods are

used to statistically adjust the ragged score distributions. Two commonly used

equipercentib equating methods, the frequency estimation method and chained

equipercentib equating, are briefly summarized below. The techniques of smoothing are

also reviewed.

Frequency Estimation Method

The frequency estimation method assumes that, for both Form X and Form Y, the

conditional distribution of total scores given each common-item score, is the same in both
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populations. The more similar the two populations are, the more likely the above

assumption will hold. Thus the frequency estimation method should be used only when

the two populations are reasonably similar (Kobn & Brennan, 1995).

W

Let Population 1 take Form X and Population 2 take Form Y from the same test,

and a set of common items (V) is embedded in both forms. The above assumption of the

frequency estimation method is expressed as follows (Kobn & Brennan, 1995):

f,(x|v) =f2(xlv) forall v, and g,(y|u)=g,(y|v) forall v, (4.3)

where fI(Jclv) is the probability that total score X=x given that V: v in population 1,

f2(xlv) is the probability that total score X: x given that V: v in population 2, g1( ylv)

is the probability that total score Y= y given that V: v in population 1, and gz( ylv) is

the probability that total score Y= y given that V: v in population 2.

Kobn and Brennan (1995) suggested that frequency-estimation equating should be

conducted only when Populations l and 2 are reasonably similar to each other. They

argued that the more similar the pOpulations were to each other, the more likely the

assumption of the method would hold. However, the decision to use the method

depended on the context of the equating, as well as the empirical evidence of the degree of

similarity.
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C I" 11' 'l'

The conditional distribution f(xlv) is the probability of earning a score of x on

Form X, given a score of v on common items V. It can be demonstrated that

f(xl")=P(x=x'V=V)=F(X=x.V=v)/P(V=V)=f(x.V)/hv(V). hv(v)>0 (4.4)

(Berry & Lindgren, 1990); where (l) f(x,v) is the joint distribution of total score and

common-item score, and it represents the probability of earning a score of x on Form X

and a score of v on common items V, (2) for all x and v, f(x,v)ZOand

&,.,)f(x,v) = 1, and (3) hv(v) represents the marginal distribution of scores on the

common items, which is the probability that V=v and equals 2,, f(x,v) (Kobn &

Brennan, 1995).

Procedures

Frequency-estimation equipercentile equating defines the distributions for the

synthetic population on Forms X and Y as follows:

f,(x) = w:f,(x)+W2f2(X) and 8,0) = wig.(y)+)v282(y). (4.5)

where W1+W2=1.
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To arrive at expressions composed of direct probability estimates of earning

various scores, for the distributions for the synthetic population, the first main task is to

express f2(x) and g,(y) in quantities for which direct estimates are available. This can

be achieved as follows (Kobn & Brennan, 1995):

(1) By definition of density, f(xlv) = f(x, v)! h (v) , therefore

f2(x.V) = f2(XIV)h2(V) and 810W) = 81(YIV)hl(V)- (4.6)

(2) By assumption of identical conditional distributions,

f,(x.v) = f,(XIV)h2(V) and g.(y.v) = 82(YIV)ht(V). (4.7)

(3) By summing over common-item scores, there follow the marginal distributions:

f2(x) = 2.f2(x.V) = 2, f1(llV)h2(V) and 810’) = 2. 310.1!) = 2. 82(yIV)ht(V). (4.8)

The distributions for the synthetic population therefore can be expressed in

quantities that can be directly estimated from the data. The equations are

f,(x) = wtmx) + W22. f,(x|v)hz(v) and g.(y) = m2. 82(YIV)ht(V)+ w: 32o). (4.9)

where w, +w2 =1.
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By summing f,(x) and g,(y) over values ofx and y respectively, the cumulative

distributions F;(x) and G, ( y) can be derived. Define P, as the percentile rank function

for Form X and Q, as the percentib rank function for Form Y, then P," and Q? are the

percentib functions. For frequency estimation method, thus, the equipercentile function

for the synthetic population is ey’ (x) = Q;‘[p,(x)].

Smoothing Techniques

Equipercentile equating is often not sufficiently precise due to sampling error. The

lack of precision is typically indicated by irregular sample score distributions and

equipercentib relationships (Kobn & Brennan, 1995). To obtain more accurate equating

results, various smoothing methods have being used on an empirical base to produce

smoothed estimates of the population score distributions that are supposed to have less

estimation error than the sample score distributions (Kobn, 1991). Typical smoothing

approaches include (1) presmoothing, such as the polynomial log-linear method (Holland

& Thayer, 1987; Holland & Thayer, 1989; Rosenbaum & Thayer, 1987; Kolen, 1991) and

the strong true score method (Lord, 1965; Hanson, 1991; Kolen & Brennan, 1995), and

(2) postsmoothing, such as the cubic splines method ( Kolen & Iarjoura, 1987; Kolen &

Brennan, 1995). Rather than providing better descriptions for the score distributions,

often the goal of smoothing is to improve the accuracy in estimating the population score

distributions. In such case, it is important to select smoothing methods that improve the

precision in estimation but do not introduce substantial bias into the smoothing process

(Kobn, 1991).
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It was found that both presmoothing and postsmoothing methods improve

estimation of equipercentile equivalents to a similar degree. More specifically, smoothing

in equipercentile equating can be expected to produce a modest decrease in mean-squared

equating error when compared to unsmoothed equipercentib equating (Hanson, 1991;

Hanson, Zeng, & Colton, 1994; Kobn and Brennan, 1995). Since postsmoothing directly

smoothes the equipercentile relationship, it is more direct than presmoothing, which

smoothes the score distributions. Because there is no statistical test for the fit of the

postsmoothing method, Kolen and Brennan (1995) suggested applying and evaluating

various degrees of smoothing to avoid adding equating error. Specifically, the graphs of

the raw-to-raw equivalents for the various degrees of smoothing should be examined to

find the relationship that is smooth but does not depart too much from the unsmoothed

equivabnts. Standard error bands could be constructed to facilitate the evaluation. In

addition, the moments of the equated raw scores should be examined to study the

similarity among the moments. Kobn and Brennan also ofi‘ered recommendations for

smoothing in scab-score equating, when raw scores are converted to scale scores for the

sake of interpretation or presentation. Overall, the smoothing process requires judgments

that are dependent on the sample sizes, distribution shapes, numbers of items, and other

rebvant characteristics of a testing program (Kobn & Brennan, 1995).

The cubic spline postsmoothing method fits a curve to the equipercentile

relationship (Kobn & Jarjoura, 1987). It is designed to increase equating precision with

frequency estimation method of equipercentile equating, for the common-item non-

equivalent group design. For integer scores, x, , the spline function is,
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3.1"):Vor‘l’Vlilx-xt)+v2.'(x"X.-)2+v3,-(x-x,-)3, x. Sx<x,-+1. (4.10)

The v05, v1,, v2,, and v3, are weights changing from one score point to the next such

that a difi‘erent cubic equation is defined for between each integer score. The spline is fit

over the range of scores x,” to ark-8,, , and 0 S x,” S x S Jib-8,, S K, . The spline function

is minimized to achieve minimum curvature over score points and to satisfy the following

constraint (Kobn & Brennan, 1995):

I- -

 

kg!- ti,(x,)-a,(x,.)

Haw 5e [3,, (x,- )]

  
 

SS, 4.11

xuxh-xW-i-l ( )

where x,” is the lower integer score in the range and xmgh is the upper integer score in

the range. The é,(x,-) is the estimate of the Form-Y equivalent of Form-X scores. The

.ie [3, (x, )] is the estimated standard error of equipercentile equating, which standardizes

the differences between the unsmoothed and smoothed relationships. The parameter S

(20) is set to control the degree of smoothing. It has been found in practice that values of

8 between 0 and I produce adequate results.

To arrive at a more symmetric equating function, postsmoothing method averages

two splines: the spline developed for converting Form X to the Form-Y scale and the
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inverse of the spline developed for converting Form Y to the Form-X scale. The average

is defined as follows (Wang & Kolen, 1994):

d“, (x) + 3:1(x)

2 9

 ri‘yot) = -5 s x s K,+5. (4.12)

Chained Equipercentile Equating

Chained equipercentile equating involves a chain or sequence of two equipercentile

equatings. To equate a Form-X score to a score on Form Y, the usual procedure is as

follows (Angoff, 1971; Dorans, 1990; Kobn & Brennan, 1995; Marco et aL, 1983):

(1) Find the equipercentile function, evl(x) , that converts scores on Form X to

the common items based on examinees from Population 1.

(2) Find the equipercentile function, eY2 (v) , that converts scores on the common

items to scores on Form Y based on examinees from Population 2.

(3) Convert the Form X score to a common-item score using evl (x) , then equate

the resulting common-item score to Form Y using e (v) .

y2

Although the chained equipercentib method does not require the two populations

to be very similar, Kobn and Brennan (1995) argued that it had the following drawbacks

in theory: (1) Given the two test forms are essentially interchangeable, it is problematic to

equate one full test form to the common items only; and (2) The population underlying the

equating is not clearly defined, since it does not use the synthetic population.



Chapter 5

IRT-BASED EQUATINGS

Classical methods of equating, developed for equating observed raw scores, are

criticized for not meeting some of the conditions of equating: equity, symmetry, and

invariance (Hambleton & Swaminathan, 1990). Equating based on item response theory,

however, does not suffer fi'om the same drawbacks, given the IRT model fits the data

(Hambbton & Swaminathan, 1990; Kobn, 1981). The result of IRT-based equating,

however, varies with the particular equating technique or procedure used. This chapter

provides an overview of various IRT-based equating methods for the anchor-item design.

Conceptual Steps of IRT-Based Equating

Typically, IRT-based equating involves the following steps (Hambleton &

Swaminathan, 1990):

0 Choose an appropriate equating design that takes into account the nature of the test

and the group of examinees.

0 Determine an appropriate item response model to estimate IRT parameters for

alternate forms, and assess model-data fit by gathering a variety of goodness-of-fit

measures; including statistical tests of significance and the checks of model

assumptions.

32
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0 Establish a common metric for ability and item parameters by determining the equating

constants (the slope and intercept of a linear equation) that relate either ability

parameters or item parameters.

0 Make decisions on the scab of the test scores to be reported; the scores can be ability

scores, estimated true scores, or observed scores.

Linear Transformation of IRT Scales

IRT parameter estimates obtained from alternate forms of a test can be converted

to the same scab via linear transformation (Kobn & Brennan, 1995). Assuming item and

person invariance, linear transformation is reasonable for the non-equivalent-group

anchor-item design because the difficulty and discrimination parameters for the common

items from the alternate forms are linearly related (Petersen, Cook, & Stocking, 1983;

Hills, Subhiyah, & Hirsch, 1988).

In theory, given that a 3PL IRT model fits the data, transformation equations

relating IRT parameters for alternate forms of a test (say, Form X and Form Y) are

defined as follows (Hambleton & Swaminathan, 1990; Kobn & Brennan, 1995):

(1) For person i , the equation for the ability parameter is 6),, = A 6x,- + B , where

A and B are constants and 6y. and text, are the values of person i ’s ability on the scales

of Forms Y and X.

(2) Let ay . , by , and Cy be the item parameters for item j on Form-Y scale,

I J' 1'

and ax-’ bx-’ and 6x. be the parameters on Form-X scale, (a) the equation for item

1 1 1

discrimination parameter is ay _ = ‘1le A , (b) the equation for item difficulty parameter is

J
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byj = Abxj + B , and (c) the equation for lower asymptote (guessing) parameter is

Cyj = CI} .

For a group of persons or items, Kobn and Brennan (1995) showed that the

transformation constants (A and B) could be expressed as follows:

A=c(by )lc(b..)=ll(az.r )Iu(a,)=0(6,)lo(6. ). (5.1)

and

B =Ll(by )-A11(bs )=il(6y )-Al-1(6s )- (5-2)

In the above equations, the means u( a, ), Ma, ), 11(b, ), and u( b, ), as well as the

standard deviations O'( b,) and O'( b, ), are defined over items. And, the means u( 6,) and

11(6, ), as well as the standard deviations c( 6,) and (3(19y ), are defined over persons.

In practice, IRT parameters are unknown and thus need to be estimated. In the

anchor-item equating design, parameter estimates for anchor items can be obtained and

used to replace the parameters in the above equations to find the scaling constants.

Basically, linear transformation of IRT scales involves two stages: (a) first, alternate test

forms are calibrated separately, (b) the information on anchor items obtained from the two

IRT calibrations is then used to derive transformation equations for person and item

parameters, which can be used to arrive at equivabnt scabd scores for examinees taking

difi‘erent test forms.

In addition to the above scale-transformation procedure, various techniques for

transforming IRT scales have been proposed. Regression techniques can be applied, but
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the established relationship is not symmetric (Hambleton & Swaminathan, 1990). The

mean/sigma method (Marco, 1977), the mean/mean method (Loyd & Hoover, 1980), and

the method involving the use of the geometric means of the a-parameters (Misbvy &

Bock, 1990) are all straightforward and similar to the procedure described above. Taking

into account individual standard error of estimate, the robust mean and sigma method

(Linn, Levine, Hastings, & WardrOp, 1981) and robust iterative weighted mean and sigma

method (Stocking & Lord, 1983) use variance-weighted means and standard deviations to

find the transformation constants. In short, poorly estimated parameters with larger

variances receive bss weights. The iterative method also weights outliers less.

The above methods suffer from one common flaw, however. They do not take

into account all of the item parameters at the same time. Using different transformation

methods, various combinations of a-, b-, and c-parameter estimates may result in very

similar item characteristic curves (Kolen & Brennan, 1995). The characteristic curve

methods have been proposed to overcome such potential probbms. They will be briefly

reviewed in this chapter, following the fixed-b method.

Fixed-b Method

The fixed-b IRT-based equating method sequentially calibrates test items following

these steps:

(1) Estimate bs and other item parameters for Form-A items;

(2) Calibrate Form-B items by fixing bs for the anchor items at the values obtained from

the previous step;

(3) Form B scab is then fixed onto the scab of Form A (Petersen, Cook, & Stocking,

1983; Hills, Subhiyah, & Hirsch, 1988).
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Although the fixed-b method is usually used with LOGIST (Hills, Subhiyah, &

Hirsch, 1988), previous research also found this method work well with BILOG (Yang &

Houang, 1996; Yang, 1997). Specifically, the equating results yielded by the fixed-b

method using BILOG were consistent with the results from IRT-based linear

transformation method.

Characteristic Curve Transformation (Formula) Methods

Unlike the above methods, characteristic curve methods developed by Haebara

(1980) and Stocking and Lord (1983) consider the parameter estimates simultaneously.

The two methods estimate the difference between the item characteristic curves on the

two scabs, for a given 6 and over items, difierently. However, both methods rely on

iterative algorithms that minimize the overall differences over examinees to find the

transformation constants (A and B).

It has been found from comparison studies (Baker & Al-Karni, 1991) that the

characteristic curve transformation methods yielded more accurate results than the other

methods. Nevertheless, Baker and Al-Karni (1991) found that the results did not differ

much sometimes. In addition to requiring computationally intensive iteration procedures,

the characteristic curve methods also have the limitation of not explicitly accounting for

the error in estimating item parameters (Kolen & Brennan, 1995).

When the characteristic curve methods are practically not applicabb, Kobn and

Brennan (1995) proposed a strategy to improve the equating results of the mean/sigma

and mean/mean methods. Basically, scatter plots (Form Y vs. Form X) of the item-

parameter estimates on the common items are used to identify potential outliers, and the

transformation results with and without the outliers are compared.
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IRT True-Score Equating

In theory, true scores on alternate test forms can be obtained and equated. To

eliminate negative scores, values on the 0 (ability) scale may be transformed to their

corresponding true-score values (Hambbton, Swaminathan, & Rogers, 1991). Then the

true scores can be equated via linear transformation.

W

Let 6 be the parameter for ability and n be the number of items in a test, then the

true score (6) can be defined as follows: if = )lip,(0) (Crocker & Algina, 1986;

Hambbton & Swaminathan, 1990; Lord, 1980). The true score of an examinee with

ability 9 on a test is the sum of the conditional probabilities of correct responses across the

item characteristic curves (ICC s). The ICC is a monotonically increasing function that

describes the relationship between examinees’ item performance and the abilities

underlying item performance. Graphically, the ICC shows that as the level of the trait

increases, the probability of a correct response to an item increases (Hambbton,

Swaminathan, & Rogers, 1991).

Alternatively, 6 can also be interpreted in terms of the test characteristic curve

(TCC ), which is the sum of item characteristic curves (ICC s) (Hambleton, Swaminathan,

& Rogers, 1991). Though monotonically related, the true score 6 and ability 0 are

expressed on different scales of measurement. The scale for 5 depends on the number of

items on the test, while the scale for 0 is independent of the number of items on the test
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(Lord, 1980). However, 6 is useful in reporting ability estimates, since it is on the same

scab as the number-right score.

When comparing tests or test forms of difl'erent lengths, true proportion correct or

domain scores (1:) can be reported instead of :. Ranging between 0 and 1, it is computed

by dividing 1: by the number of items (n) in test forms. That is, 1t =§In = l/n [5151249)]

(Hambbton & Swaminathan, 1990; Hambbton, Swaminathan, & Rogers, 1991).

Taking into account the number of alternative options, which has substantial

influence on guessing, the true score formula can be rewritten as:

t=$11<h+1)/hlxp.(e)-i/h). (5.3)

where n is the number of test items, and k,- +1 is the number of alternate answers for item

1' (Petersen, Cook, & Stocking, 1983).

W

Suppose the ability level of an examinee on test form X is 0,r and Q, is the

corresponding true score, and the ability bvel of the same examinee on alternate test form

Y is 0, and §,is the corresponding true score. Then the equating equations for true

scores are

552%.) and 5,: grate.) a glame.+B). (5.4)
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where n is the number of items on test X and m is the number of items on Y, p,(0,) is

the probability of a correct answer to item 1' by an examinee, whose ability level on test X

is 0,, 111(0 ,)is the probability of a correct answer to item j by an examinee, whose

ability bvel on test Y is 0, , and (4) 0, =ofix+fl expresses the linear relationship between

0, and 0Jr (Hambbton & Swaminathan, 1990). In theory, for a given value 0,, the pair

of true scores (é, ,éy) on test forms X and Y can be determined. In practice, however,

true scores can only be estimated.

Concurrent Calibration Method

Using LOGIST, an IRT calibration program on the mainframe computer, item and

ability parameters can be estimated simultaneously in the following manner:

(1) Treat examinees taking Book A and Book B as one sampb. Treat data as if all

the examinees have taken a test composed of all the items in both of the forms.

(2) Code the scores on Book B items as ”not reach " for the examinees taking

Book A. Code similarly for the examinees taking Book B.

(3) Calibrate, in a singb LOGIST run, the ability parameters for all the examinees

and the item parameters for all the items. The ability estimates for the examinees taking

either Book A or Book B are automatically placed on the same scale, and no further step

is needed (Hambleton & Swaminathan, 1990).

Conceptually, the concurrent calibration method is expected to yield more stable

equating results because it does not make any assumptions about the relationship between

the item parameter scales for separate calibration runs (Petersen, Cook, & Stocking, 1983;

Hills, Subhiyah, & Hirsch, 1988).
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Advantages of IRT-Based Equating

Traditional equating methods can yield good results if the test forms are

sufiiciently parallel (Lord, 1980). However, when the tests to be equated differ in

difficulties and nonrandom groups of examinees differ in ability, IRT-based methods are in

theory considered better than the other methods (Cook & Eignor, 1991). Major

advantages of IRT—based equating are summarized below.

C .1. E .

IRT-based methods are useful for modeling either a linear or curvilinear

relationship between the raw scores on the two editions of a test. The methods make no

assumption of equal reliability or identical observed score distributions (Cook & Eignor,

1983; Kobn, 1981). The result of IRT-based equating often agrees with linear equating

to a surprising degree. One possibb explanation is that the tests being equated were

constructed to be considerably similar (Berk, 1982).

- ,- -

The most distinguishing advantage of IRT-based equating is its "item-free"

estimates for persons and "person-free" item characteristics (Lord, 1977). Ideally,

examinees of the same ability will get the same ability score, no matter which items are

taken.

In addition, IRT-based methods estimate errors of measurement at each ability

bvel, while traditional equating methods only yield a single standard error of measurement

for all examinees. Green, Yen, and Burket (1989) suggested that the IRT method would

yield equivabnt ability estimates for item sets differing in difficulty and/or discrimination,
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despite the fact that the equivalent estimates might be associated with different standard

errors of measurement.

PracticaLAamal

In addition to its theoretical advantages, IRT-based equating is found to have the

following advantages in practice (Cook & Eignor, 1983, 1991):

o It provides better equating than equipercentib equating at the upper ends of score

scabs, where important decisions are often made.

0 It improves flexibility in equating a new test form to any of the previous editions of a

test, given that their item parameter estimates are placed on the same scab.

0 If re-equating is needed, which usually occurs when certain items are added or

dropped, it is easier to reequate through IRT-based methods since it is more

convenient to obtain IRT true score estimates.

0 It enables item-bvel pre-equating, where the equating conversions between a new test

edition and a previous edition or editions can be derived before the new edition is

administered operationally, if item-bvel pretest data are available and item parameter

estimates can be placed on a common scab.

0 When equating test forms that differ somewhat in content and bngth, the 3PL-IRT-

based equating may reduce equating bias or scab drift in equating chains (Petersen,

Cook, & Stocking, 1983).

0 The stability of the scabs near the extreme values may also be increased (Hills,

Subhiyah, & Hirsch, 1988).

The above arguments suggest that IRT-based equating is superior to conventional

equating methods. Neverthebss, Kobn and Brennan (1995) indicated that IRT models

gained their flexibility by making strong statistical assumptions, which were not likely to
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hold precisely in real testing situations. As a result, the robustness of IRT-based

applications to the violations of IRT model assumptions needs to be studied. In the mean

time, the relative efficacy of IRT-based equating remains uncertain. Green, Yen, and

Burket (1989) noted that it was not safe to say that IRT methods would yield equivabnt

ability estimates if the items in different forms were different in content coverage.

Therefore, despite past findings that content variation has substantially smaller effects on

ability estimates than on item parameters (Yen, 1980), test content should be accounted

for in IRT-based equating.

IRT Assumption of Test Dimensionality

For achievement testing, the IRT assumption that examinee performance on a test

is unidimensional is likely to be violated (Dorans & Kingston, 1985; Green, Yen, &

Burket, 1989). This is mainly because most sets of test items measure a compbx of

abilities rather than one singb trait (Reckase, Ackerrnan, & Carlson, 1988). To justify the

applications of the unidimensional IRT models, the robustness of the unidirnentional IRT

models to the violations of the IRT unidirnensionality assumption becomes a major point

of interest. The impact of such violations on IRT-based equating thus deserves to be

examined.

Green, Yen, and Burket (1989) indicated that the degree of test unidirnensionality

also limited the usefulness of classical equating approaches, such as equipercentile

equating, but in a bss visibb way. They argued that unidirnensionality was an implicit

assumption in classical equating. Given the fact that the concept of unidirnensionality is

important in both classical and IRT-based test equatings, literature on test dimensionality

is reviewed below.
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DE” [I D. . 1'

Test dimensionality can be defined as the number of latent variabbs (traits or

abilities) accounting for the correlations among item responses in a particular data set.

Camilli, Wang, and Fesq (1995) thus argued that dimensionality was not a property of a

test per se but was context dependent. In addition to a particular set of items and a

particular set of examinees, Camilli and his colbagues indicated that test dimensionality

was also dependent on test use. Therefore, they suggested that arguments regarding

dimensionality should take into account both test content and the evidence from statistical

analyses. Camilli, Wang, and Fesq (1995) further differentiated between two kinds of

dimensionality: whib functional dimensionality depends on the testing situation and the

use of test scores, statistical dimensionality is defined by local independence (Lord,

1982b).

DE" [11.1. . l'

Unidirnensionality requires that there is a dominant factor or trait that influences

test performance on a set of test data (Hambbton, Swaminathan, & Rogers, 1991). Test

scores are most meaningful when all the items depend on a singb (dominant) trait. If the

IRT assumption of unidirnensionality holds, local independence should be observed.

Statistically, local independence requires that, for fixed ability bvel 0, the item

characteristic functions for any pair of items 1 and j should be independent (Lord, 1982b).

If the probabilities for the given responses to the given items i and j are not independent at

fixed 0, the responses may depend on some trait other than the 9. Hence, the IRT

assumption of unidirnensionality is violated. In practice, local independence is examined
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by checking the variance-covariance or correlation matrices for examinees within different

intervals on the ability or test score scab (Hambbton, Swaminathan, & Rogers, 1991).

In addition to studying the assumption of local independence, there are several

other ways to checking the unidirnensionality assumption, including examining an

eigenvalue plot of the inter-item correlation matrix, comparison of eigenvalue plots based

on the test data and random data, fitting a nonlinear one-factor analysis model to the inter-

itcm correlation matrix to study the residuals, and examining the estimated parameter

values of items that are more likely to violate the unidirnensionality assumption

(Hambbton, Swaminathan, & Rogers, 1991).

E] [131111. 'nl' ! .

It has been shown that violations of unidimensionality might have an impact on

equating, but the effects might not be substantial (Camilli, Wang, & Fesq, 1995; Dorans &

Kingston, 1985; Reckase, Ackerrnan, & Carlson, 1988). Neverthebss, if a test is

influenced by several equally potent dimensions, IRT procedures are likely to yield

inconsistent estimates of ability (Reckase, 1979).

Many researchers have studied the impact of violations of IRT unidirnensionality

assumption on IRT-based equating outcomes. Dorans and Kingston (1985) separated a

test into two “item groups”, according to the two dimensions suggested by factor analysis.

They then assessed the comparability of IRT—based equatings based on (1) homogeneous

IRT calibrations (calibrating the two item groups separately), and (2) heterogeneous IRT

calibration (calibrating the entire test at one time). They argued that if the IRT model fit

the data, the item-grouping should not have effect on IRT-based equating. That is, the

homogeneous and the heterogeneous calibrations should result in the same item parameter
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estimates. Although it was found that the homogeneous calibrations resulted in higher

discrimination parameter estimates than the heterogeneous calibration, which caused an

asymmetry of equating, other study results of Dorans and Kingston suggested that IRT-

based equating might be sufficiently robust to the dimensionality violation. Therefore,

Dorans and Kingston argued that it was reasonabb to regard the assumed IRT singb trait

as a weighted composite of different traits underling the test.

Using both simulated and real test data, Reckase, Ackerrnan, and Carlson (1988)

also proved theoretically and empirically that the IRT unidirnensionality assumption was

robust. The simulated data were generated to be two-dimensional by the multidimensional

2PL IRT model, and the real test data had two rather strong dimensions -- mathematics

achievement and reading ability. The statistic used to detect the violation of the

unidirnensionality assumption was the Q3 suggested by Yen (1984). Reckase, Ackerman,

and Carlson concluded that even though more than one ability is required for successful

performance on a test, a set of items measuring the same weighted composite of the

multipb abilities will meet the assumptions of a unidimensional IRT model.

Yen (1984) hypothesized that when test data is generated from several correlated

underlying traits, the unidimensional three-parameter IRT model assumes a unidimensional

trait that is conceptually a combination of the multiple underlying traits. This hypothesis

was supported by Yen’s derivations and simulated data. Yen further hypothesized that

when defining the unidimensional three-parameter trait, the unidimensional IRT model

ignores other independent traits that influence only a few items of a test (Yen, 1984).

Dorans (1990) further argued that although tests to be equated must measure the same

construct and contain items of the same content mix, they do not have to be composed of ‘

unidimensional items.



Chapter 6

ISSUES IN COMMON-ITEM EQUATING

The common-item equating design was used in this study to equate the two forms

of a test, because these forms were taken by two nonequivabnt examinee groups and a set

of common anchor items were embedded in each of the test forms. This chapter reviews

issues rebvant to common-item equating, including the effects on the accuracy of equating

results of ability differences and sampling, characteristics of anchor items, and the forms of

score distributions of the test forms being equated.

Effects of Ability Differences and Sampling on Equating

Sample invariance is a desirable outcome in test equating. Ideally, equating results

should be independent of the sub-populations of the same ability. Lawrence and Dorans

(1990) suggested that population independence should be investigated under

circumstances where the examinee samples differ in ability because the equating results

might rely on the examinee sampbs of approximately equal ability.

Eff [El'l' an

Ability differences between examinee sampbs may have substantial impacts on

equating results (Cook, Eignor, & Schmitt, 1988). Theoretically, the closer the groups in

46
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ability, the more accurate the equating should be. However, Marco, Petersen, and

Stewart (1983) found that if the anchor test mirrored the content and the difficulty bvel of

the total test, the sampb differences had relatively small and unsystematic effects on the

quality of the equating results.

To cope with the threat of inaccuracy from the ability discrepancy, particular

sampling strategies may be employed to draw sampbs with similar ability. The

effectiveness of different sampling strategies have been studied with various equating

methods, since sampling efi'ects are likely to vary with equating methods. Current

literature generally supports the use of representative sampling. “Matched sampling” that

matches examinee groups on the anchor test score, however, is not favored (Eignor,

Stocking, & Cook, 1990; Livingston, Dorans, & Wright, 1990). It is also suggested that

some other ability measure be used to match the sampbs when populations differ in ability

(Livingston, Dorans, & Wright, 1990).

B . I I l 1 S I

Representative sampling typically requires random sampling of examinees so that

the examinee sampb is representative of the target population being studied. “Matched

sampling”, however, is to stratify examinee sampbs on some ability measure such as the

anchor test score. As a result of “matched sampling", the two examinee groups will have

the same score distribution on the particular ability measure (Dorans, 1990; Lawrence &

Dorans, 1990; Livingston, Dorans, & Wright, 1990).

Lawrence and Dorans (1990) found it useful to match sampbs on the anchor test

score in terms of abridging the disagreement among the equating outcomes yielded by

various equating methods (Tucker linear equating, Levine equally reliabb linear equating,

frequency-estimation equipercentile equating, chained equipercentile equating, and IRT

true-score equating). Such disagreement usually occurs with representative sampling.

Schmitt, Cook, Dorans, and Eignor (1990) also had similar findings. However, Lawrence
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and Dorans (1990) also found that IRT-based equating procedures were seriously affected

by differences in group ability, despite the fact that matching improved the equating results

to at bast somewhat degree.

Livingston, Dorans, and Wright (1990) suggested that when populations differ in

ability, “matched sampling” may yield little improvement in equating accuracy. Dorans

(1990) further indicated that “matched sampling” can be probbmatic when the two

sampbs differ widely in ability. Schmitt, Cook, Dorans, and Eignor (1990) cautioned that

matching on a set of internal common items may introduce some unknown degree of bias

for certain equating methods, and the magnitude and effect of this bias is not cbar.

Recognizing that matching samples on the anchor test score would introduce more errors

than representative sampling in estimating item difiiculty, Eignor, Stocking, and Cook

(1990) did not recommend the use of such matching strategy with the 3PL IRT true-score

equating, or Levine equally reliabb equating, or chained equipercentile equating. It is

speculated that stratifying on the anchor test score might bad to violations of statistical

assumptions of sampb invariance (Lawrence & Dorans, 1990).

Characteristics of Anchor items

The characteristics of anchor items, particularly their content representativeness

and the bngth of the anchor test, influence equating results. It is thus crucial to sebct

adequate anchor items when test equating is desired. The issues of the bngth and the

content representativeness of the anchor are briefly reviewed in this section.

AnchQLIensth

For the anchor-item equating design, it has been shown that the efficiency of linear

equating depends on the correlation between the anchor test and the test forms, and this

correlation is a monotonically increasing function of the reliability of the total test and the
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bngth of the anchor test (Budescu, 1985). The anchor length thus raises a reasonabb

concern about the efficiency of equating, since from time to time equating has to be based

on short anchors.

Although there is no absolute standard for setting the length of an anchor, a rub of

thumb (Angofl‘, 1984) is as follows: Include at bast 20 items or 20% of the total number

of items in a test, whichever is larger. Several studies have shown that as few as five to

six carefully selected anchor items performed satisfactorily for the IRT-based equating. In

such cases, the item parameters of different tests were estimated by the IRT comment

method (Raju, Edwards, & Osberg, 1983; Wingersky & Lord, 1984; Raju, Bode, Larsen,

& Steinhaus, 1988; Hills, Subhiyah, & Hirsch, 1988). Neverthebss, using the IRT

concurrent method, Hills, Subhiyah, and Hirsch (1988) found that randomly sebcted

anchor items (five items from a mathematics test) were not sufficient to produce

satisfactory equating results, but an anchor of ten items was sufficient.

To determine the adequate bngth for an anchor, each testing program has to

decide an acceptabb bvel of equating efficiency to meet its particular needs, while taking

into account the time, cost, and context constraints for equating (Budescu, 1985).

W

Whether the anchor items are representative of the entire tests, in terms of its

content and statistical properties, is especially important when the examinee groups vary in

ability (Cook & Petersen, 1987). Budescu (1985) demonstrated that the magnitude of the

correlation between the anchor test and the unique component of each test form was the

single most important determinant for the efficiency of linear equating using the anchor-

item equating design. Thus, to achieve a high correlation and to enhance equating
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efliciency, Budescu recommended the use of an anchor test that represented the same

psychological task to both examinee groups and required the same psychological

operations as the two test forms did.

In a study using chained equating, Kbin and Jarjoura (1985) compared the

equating accuracy of content-representative anchors versus non-representative but

substantially longer anchors. The testing program in their study was a professional

certification examination and the 250 multipb-choice items were classified into six content

areas. Tucker linear equating was used to equate test forms and the results revealed that

the content representation of the anchors was critical for test equating.

Equating Tests with Skewed Distributions

Large scale achievement tests that have approximately symmetrical and bell-shaped

score distributions are often the focus of equating. It is necessary from time to time,

though, to equate tests that have skewed score distributions, such as minimum-

competency tests and licensure exams with high passing standards. For licensure or

certification programs, test forms are often equated with special interest in a particular

cut-off score, or a range of scores, to inform decision making. To maximize the precision

of the decision, it is reasonabb to direct more attention to equating in the cutting score

region, even at the expense of poorer equating at other scores (Brennan & Kobn, 1987).

Hills, Subhiyah, and Hirsch (1988) equated one version of the Florida Statewide

Student Assessment test, a minimum-competency test, to an early version administered

two years before. The test items were from the same content domain, item difficulties

were similar, and the examinees were essentially from the same population. They found

that five equating methods (Angoff’s Design IVA linear method, Rasch model, 3P-IRT
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concurrent method, 3P-IRT fixed-parameter method, and 3P-IRT formula method)

yielded similar results. Thus they concluded that IRT-based equating methods could be

applied to equate minimum-competency tests with extremely skewed distributions.



Chapter 7

EVALUATION OF EQUATING ACCURACY

The task of test equating does not stop after an equating method is applied and

equivalent scores are established. After the forms of a test are equated by a particular

method, it is important to know whether they are really equated. There are many ways to

study the efi‘ectiveness of test equating. In addition to computing statistical measures that

directly estimate the overall accuracy of equating, the effectiveness of equating can also be

determined by examining scale stability (Kobn, 1981) or checking the assumptions of

equating, such as population invariance (Lawrence & Dorans, 1990).

Harris and Crouse (1993) provided a thorough and recent overview of various

approaches used in equating research and practice for evaluating equating outcomes. In

this chapter, the variety of approaches identified by them are first summarized. Important

issues regarding the estimation of equating accuracy, including equating errors and

probbms due to the use of some arbitrary criterion for equating accuracy, are then

elaborated. Two common indices of equating accuracy are also reviewed.

Approaches for Evaluating Equating Accuracy

Harris and Crouse (1993) reviewed the approaches and criteria proposed in the

literature for assessing equating outcomes to explore this largely undeveloped area.

52
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According to their classifications, the evaluation approaches and the particular criteria

used in these approaches include:

Using the equivabnt-expected-scores criterion, which is based on the definition of

‘\veak equity” (Yen, 1983). “Weak equity” is developed from Lord’s definition of

equity for equating (Lord, 1980). It only requires that the means of the conditional

distributions of scores on each test form be equal after equating.

Using indices that summarize overall accuracy of equating, such as the root-mean-

squared deviation (RMSD) (Klein & Jarjoura, 1985; Livingston, Dorans, & Wright

1990).

Computing standard errors of equating associated with sampling of examinees.

Using simulated data that has known true equating relationship to enabb absolute

criterion for evaluating equating accuracy.

Equating a test to itself, directly or through a chain of intervening test forms. This

approach is mainly for the study of scale drift (Petersen, Cook, & Stocking, 1983)

attributed to equating method. The typical criterion for equating accuracy is whether

the resulting conversion is an identity of the “origin” test. Using chained equating,

Petersen, Cook, and Stocking (1983) found that IRT score conversions were often

associated with less discrepancy from the initial scale than the other equating methods.

In addition, the equating methods based on the three-parameter logistic IRT model

were found to be more stabb than the other equating methods when tests differed

somewhat ill content and bngth.

Treating an equating based on a very large sampb of examinees as an estimate of a

population equating. The results of equatings for smaller groups are then compared to
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the “population” equating to evaluate their equating accuracy. For instance,

Livingston (1993) studied the accuracy of equatings for some very small sampbs (25,

50, 100, and 200) by comparing their equating results to the equating outcome in the

full population of 93,283 examinees. Livingston, Dorans, and Wright (1990) also used

the equating result for two Scholastic Aptitude Test (SAT) forms on large equivalent

populations (more than 115,000 students for each form) as a criterion for equating

accuracy. They studied the effectiveness of five equating methods, used in

combination with two sampling strategies respectively, by comparing their equating

results to the large-sampb criterion. Such large-sampb criteria, however, is usually

difficult to obtain in practice.

Comparing the consistency or agreement of equating results yielded by various

equating methods.

Conducting replication studies, such as cross-validation that uses independent sampbs

of examinees, to examine sampb invariance. Cross-validation is often used to study

the stability of equating. Typically, one wishes to replicate results found in one sampb

in another independent sample. Harris & Crouse (1993) indicated, however, such

study of sampb invariance does not provide evidence for equating accuracy.

Practical yet sometimes subjective approaches, such as examining the frequencies of

rounded scab scores, inspecting the conversion tabbs for gaps, or inspecting

smoothing outcomes.

Other atypical approaches, such as examining correlation between anchor and unique

items (Budescu, 1985), studying the relationship between equivalent scores and

criterion scores, and inspecting test information functions.
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Mmating Equating Errors

Equating errors due to estimation can be random or systematic. Random equating

error results from sampling of examinees. By using large sampbs of examinees and

choosing appropriate equating designs, random errors can be reduced. Violations of the

assumptions and conditions of equating, however, cause systematic equating errors.

Systematic errors sometimes can be so large that the results of equating may be worse

than no equating (Kobn & Brennan, 1995). Therefore, the conditions of equating and the

assumptions of equating models should be examined carefully to control for the systematic

errors.

In equating practice, standard errors of equating are useful in indicating the

amount of random errors in equating such that the effectiveness of equating can be

determined. For many equating designs and methods, approaches for estimating standard

errors of equating have been developed and applied (Kobn & Brennan, 1995). For

instance, the delta method (Kendall & Stuart, 1977), which is based on a Taylor series

expansion, is used commonly for deriving standard error expressions. In addition, Jarjoura

and Kobn (1985) derived the standard errors of equipercentib equating to be used in the

design of common-item nonequivalent populations. Both of their simulated and real test

data suggested that the derived standard errors were useful in estimating equating errors.

From time to time, only small sampbs of examinees are availabb for equating

study. In such cases, the amount of random equating errors is a major concern. To

determine the usefulness of common-item linear equating with small samples, Parshall,

Houghton, and Kromrey (1995) used bootstrap standard errors of equating (Efron, 1982;

Efron & Tibshirani, 1993) and statistical bias in equating to study the adequacy of

equating. Their results showed that although the bvels of equating bias with small
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sampbs were trivial, bootstrap standard errors increased substantially as sampb size

decreased. Thus, Parshall and his colbagues argued that for small sampbs, bootstrap

approach may provide more accurate estimates of standard errors.

Arbitrary Nature of Equating Criteria

In equating practice, because true equivabnt relationship can never be known,

equating results are often compared to some arbitrary but sound criteria for estimating the

accuracy of equating (Dorans & Kingston, 1985). In such cases, the consistency or

agreement between the equating outcomes and the criteria is typically measured to

represent equating accuracy. The estimation of equating accuracy thus depends on the

nature and quality of the arbitrary criteria used. Moreover, consistency measures do not

address the issue of equating accuracy directly.

Usually, it is unreasonabb to compare the results of all equating methods to one

singb criterion for evaluating equating accuracy, since equating designs and models vary

with the particular context of testing. Equivabnt scores derived from conventional

equating methods that have been known to yield accurate results, or have been used in

practice for some time, are typically used as the criteria for IRT-based equating (Hills,

Subhiyah, & Hirsch, 1988). Generally, results from equipercentile equating are a good

candidate for such a criterion. For exampb, Yen (1985) suggested using the results from

equipercentib equating as a criterion because it is as accurate as the IRT-based equating

results.

Some empirical findings (Petersen, Cook, & Stocking, 1983; Hills, Subhiyah, &

Hirsch, 1988) have suggested that IRT-based equating is more accurate than conventional

equating, including various linear equatings and equipercentile equating. IRT methods
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were thought to be superior for their capacity to equate both parallel and non-paralbl tests

or test forms (Kobn, 1981). It was also found that IRT-based procedures were effective

for both inter-bvel and inter-form equating (Green, Yen, & Burket, 1989). Neverthebss,

conclusions should be made carefully to take into account the fact that the criteria used in

equating practice for evaluating equating accuracy are usually arbitrary in practice.

Root-Mean-Squared Deviation (RMSD)

The root-mean—squared deviation (RMSD), also known as the root-mean-squared

error of equating (RMSE), is a commonly used overall accuracy measure for equating

(Kbin & Jarjoura, 1985; Kobn & Harris, 1990; Livingston, Dorans, & Wright, 1990;

Schmitt, Cook, Dorans, & Eignor, 1990). Suppose Form B of a test is equated to Form A

of the same test using an equating method E, and another sound equating method EC is

used as a “criterion equating”, whose results for the same test forms are used as a criterion

for evaluating the accuracy of the equating results of the method E. Then

RMSD = {12:53, -x,)2]/2n,}”2 . (7.1)

where (a) try is the number of examinees with raw score y on Form B, (b) 52, is the

scabd score on Form A corresponding to y , determined by the equating method E, (c)

x, is the scabd score on Form A corresponding to y , determined by the criterion

equating EC, and (d) the summation is over the raw-score bvels on Form-B.

Several other summary statistics, such as the “mean equating error” (Kbin &

Jarjoura, 1985), have also been used as the indices of equating accuracy. Some of them
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are variations of the RMSD. In a study investigating the adequacy of several curvilinear

equating models on the verbal portion of the SAT, Marco, Petersen, and Stewart (1983)

used a “weighted mean square difference” to evaluate the effectiveness of the various

equating models. Representing total error, the “weighted mean square difference”

weighted those values occurring more often more heavily. Marco, Petersen, and Stewart

further standardized this summary index of accuracy to enabb comparisons of the total

errors across equating situations or equating methods.

Using the same notations as defined in Formula 7.1, the overall bias of the

equating method E can be estimated by computing the following statistic:

Ellyfiy-xy) IXny . (7.2)

This bias statistic measures the tendency for the equating method E to yield equated

scores that are systematically too high or too low (Livingston, Dorans, & Wright, 1990).

Such bias statistic, however, is not a good index of equating accuracy. It has the

drawback of underestimating the overall bias when some of the resulting equated scores

are estimated too high and some are estimated too low. This is because the negative bias

at individual raw-score bvels will cancel out the positive bias at individual raw-score

bvels.



PART III: METHODOLOGIES AND RESULTS



Chapter 8

DATA, DESIGN AND METHOD

Nature of the data analyzed in this study, including characteristics of the test and

test takers (examinees) from the professional examination, are described in this chapter.

This chapter also presents research designs deve10ped for this study and the methods used

to analyze the data.

Description of Data

The test data analyzed were the scores on the two forms, Book A and Book B, of

an ill-training examination taken by the candidates for doctors of a medical specialty. The

candidates took the test while participating in various ill-training programs located at

difi'erent sites (usually in hospitals), to prepare for the formal board certification

examination. The cutoff for a passing score was a minimum of 75% of the test items

being correctly answered.

The test takers of the in-training examination were strongly motivated to become

board-certified and to participate in the in-training programs in preparation for the

certification exams. Since the in-training test provided candidates a valuable opportunity

to get familiar with the formal certification exams, it was assumed that the candidates had

taken the test seriously. After receiving the instructions and training from the in-training

60
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programs, most of the test takers were expected to master the knowbdge or skills being

tested and pass the examination.

Wallet

The test forms included multipb-choice items, and each test item had five

alternatives. The overall content of all the items was related to a medical specialty. The

core content for the specialty, representing the scope of the medicine practice or the

universe of the specialty, was developed in part to outline the material for testing on the

formal certification examination. Twenty-three core content areas (categories) were

identified, and the proportional distribution of the test items across these core content

areas was determined for the in-training, formal certification, and recertification

examinations. Originally, Book A and Book B each had 225 items. For each test form,

the proportional distribution of the test items across the 23 core content areas is as

follows:

Tabb 1 - Proportional Distribution of Test Items Across the 23 Core Content Areas

  

  

 

 

Core Number Core Number

Content of % Content of %

Area Items Area Items

1 13 5.8 l3 13 5.8

2 23 10.2 14 7 3.1

3 3 1.3 15 5 2.2

4 14 6.2 16 15 6.7

5 5 2.2 17 13 5.8

6 19 8.4 18 25 1 1.1

7 5 2.2 19 8 3.6

8 3 1.3 20 5 2.2

9 6 2.7 21 4 1.8

10 9 4.0 22 9 4.0

1 1 8 3.6 23 9 4.0

12 4 1.8

Total 225 100.0
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An analysis on item discrimination indicated that a few items in the original item

pool were unsatisfactory, because they misbd the examinees to give irrebvant answers.

After these poorly-written items were excluded, a pool of 255 items was availabb for this

study. The item responses of all the items were all scored as right or wrong (coded as 1

or 0). Book A had 203 items, of which 58 items were unique to Book A. The total

number of items in Book B was 197, among them 52 were unique items. A total of 145

anchor items were identically worded and embedded in both test forms in the same

location (same item numbers in both test forms). Characteristics of these anchor items,

such as their difficulties and content representativeness, will be discussed in next chapter.

Outcomes of item analyses for four subtests, sampbd from the professional in-training

test, will also be presented in next chapter. The negatively skewed distributions of test

scores on various test forms will be examined.

Was

A total of 2,242 candidates took the in-training test. One examinee who had an

extremely low total score, compared to the total scores of the others, was determined to

be an outlier. It is very likely that this outlying case did not take the test seriously or

guessed throughout the entire test. To avoid possible contamination introduced by the

outlier to the entire data set, the outlier was excluded from this study.

The two examinee groups taking different forms of the in-training test were not

randomly formed, neither were the two test forms randomly assigned to the 2,241

subjects. A total of 1,092 subjects took Book A, while 1,149 others took Book B. A

preliminary inspection on the test data showed that the examinee group taking Book B

scored slightly higher on the 145 anchor items (mean=107.721, sd=13.1 13) than the group
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taking Book A (mean=105.457, sd=13.767). Therefore, it was possibb that the group

taking Book B had higher ability. Nonethebss, as Lord (1981) noted, difference in ability

bvel would not influence equating results, given that an anchor-test design was employed.

The differences between the two examine groups will be further discussed in next chapter.

E . E E .

The test data analyzed in this study generally met the requirements for equating,

described earlier in the section for equating guidelines in Chapter 2. Specifically, the test

forms had sufficient number of items, and the sampbd test forms created from them for

the equating study (described in next section) were reasonably long. Most of the test

items were common anchor items, and all the items were from one singb content domain.

The test items were administered and secured under standardized conditions. Some items

had been administered in previous years under the same standardized testing situations and

found to be satisfactory.

In addition, the stems, alternatives, and stimulus materials for the common anchor

items were identical for the two test forms. The scoring keys were cbar and consistent for

the two forms. The overall examinee group, exceeding 2,200 subjects, was reasonably

large. Under the guidance of the core content specification, the curriculum and training

materials received by different examinees were expected to be consistent. The curriculum

and training also should be stabb over time.

Research Design

Items included in Books A and B of the in-training test were from 23 core content

areas. These items formed an item pool for one overall content domain, representing the
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medical specialty. Four tests, shorter than the in-training test, were assembbd with items

sampbd fi'om the overall item pool for this study. Each of the four sampbd tests had two

test forms -- one subtest of Book A and one subtest of Book B. Whib various item-

sampling schemes sampbd items from the overall item pool, it also manipulated the

content homogeneity of the test items and the content representativeness of the anchor

items. The resulting four sampbd tests, therefore, difiered in content homogeneity. They

also had anchor items differing in their content representativeness. However, all the

sampbd items in different sampbd test forms were from the same overall content domain.

Item sampling results are presented in Tabb 2. All of the sampled test forms were

much shorter in bngth than the original test forms. In testing practice, short tests are

often used for practical reasons such as limited time for testing and concerns about the

effect of fatigue. It is also of great interest to study the outcomes of equating when test

forms to be equated are shorter in bngth. Therefore, equating results based on the shorter

sampbd test forms in this study were expected to provide useful insights for the common

practice of testing and equating. All sampbd test forms were also expected to have

negatively skewed score distributions, as the original test forms did. In equating research,

data with such distributions received bss attention than they should have.

Each pair of the sampbd test forms in this study were equated using internal

anchor-item equating design with non-equivalent examinee groups. Four equating

methods -- the Tucker linear method, the non-linear equipercentile method, and two IRT-

based methods -- were used to equate each pair of test forms. Equating results of these

methods were compared using four criteria for evaluating equating accuracy. Overall, the

variabbs delineating the entire study included content homogeneity of test items, content

representativeness of anchor items in relation to total test, equating method, and criterion
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for evaluating equating accuracy. The manipulation of the content representation of test

items via item sampling enabled this study to investigate the effect of content homogeneity

and content representativeness on the accuracy of common-item test equating. The use of

multipb equating methods and the availability of multipb criteria for evaluating equating

accuracy allowed this study to better estimate the effect of equating method on equating

accuracy.

Two fundamental aspects of the study design -- the common-item equating design

and manipulation of content representation (item-sampling schemes and their outcomes)

are elaborated below. The equating methods and criteria for evaluating equating accuracy

used are described in subsequent sections.

[2 -I D . E E .

The two examinee groups taking the two alternate test forms were not formed by

random sebction or assignment. Therefore, equating was made possibb by the common

items embedded in the two test forms. The anchor item design for equating was also

appropriate for this study because: (1) for the original test forms, the content of anchor

items was made representative of the entire test, and (2) anchor items with the same

wording were embedded in the alternate test forms at the same positions.

r n i

All items in the two original test forms were fiom one overall content domain for

the medical specialty. The overall content domain, however, was mapped by 23 sub-

content domains (represented by the 23 core content areas). Drawing on a hypothesis that

items fiom these 23 sub-content domains differed somewhat in their content, despite the
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fact that they were all from one overall content domain, this study employed various item-

sampling schemes to manipulate the content representation of the sampbd tests. Pooling

together the items from the 23 sub-content domains, four subsets of items were drawn

from the overall item pool. Each of the resulting four sampled tests had two alternate

forms, and each pair of test forms shared a common set of anchor items. Although the

sampbd tests were made to have similar numbers of anchor items, the content

representativeness of the anchor items varied across sampbd test. Also, the tests were

made to have items differed in their content homogeneity.

The four item-sampling schemes used in this study were sirnpb random sampling

(SR), equal-weight domain random sampling (EW), proportional-weight domain random

sampling (PW), and purposeful sampling (PS). The various assumptions, the sampling

procedures, and the sampling outcomes of these schemes are briefly described below. The

measures taken to control the effects of test bngth and anchor bngth on equating

outcome are also explained.

Willing. The SR scheme was based on the assumption that items

fi'om difi'erent core content areas did not differ substantially, since all of the items were

fi'om one singb content domain relating to the medical specialty. This sampling scheme

thus disregarded the existence of the 23 core content areas and randomly drew items from

the overall item pool using a random number tabb. The overall item pool had three

compartments: an anchor-item pool filbd with the 145 anchor items that were embedded

in both Book A and Book B, a unique-item pool with all the unique items that were

included in Book A, and a unique~item pool with all the unique items from Book B.

To create the pair of sampbd test forms, SR-A and SR-B (see Tabb 2), a set of 30

anchor items were first randomly sampbd from the anchor-item pool. The sampbd 30
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anchor items were built into both SR-A and SR-B. Then, 30 unique items were randomly

sampbd from the Book A unique-item pool and built into SR-A, and another 30 unique

items were randomly sampbd from the Book B unique-item pool and built into SR-B.

Consequently, the resulting sampled test forms had 60 items in each. Tabb 3 summarizes

the sampling results of the SR scheme. As shown in Tabb 3, the sampbd items in SR—A

were from 19 core content areas, and the sampbd items in SR—B were from 20 core

content areas.

W.The EW scheme assumed that the 23

core content areas represented equally significant parts of the overall medical content

domain. Disregarding the number of items within an area, this sampling scheme randomly

sampbd three items from each of the 23 areas to form a sampbd test form. For each area,

ideally, two of the three sampbd items should be anchor items. It was to account for the

fact that there were more anchor items than unique items in the overall item pool, and to

make sure that the anchor items in the sampled test forms were evenly drawn from the 23

core content areas. Such ideal sampling was achieved for most of the areas, except for the

few areas where (1) there were bss than three items, or (2) there was not any unique item,

or (3) there was only one anchor item.

Technically, the EW scheme was random sampling stratified on core content areas.

After the first sampbd test form was created in accordance to the above sampling

condition, its anchor items were used as the anchor set for the second sampbd test form.

Unique items were then randomly sampbd from various areas to make up the second

sampbd test form. The resulting sampbd test forms, EW-A and EW-B (see Tabb 2),

had 69 items in each, and shared a total of 49 common anchor items.
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Table 3 - Number of Items Sampled from the Original Test by

 

 

  

 

Simple Random Sampling

Core Sampled Test Form

Content

Area SR-A SR-B

1 3 3

2 5 3

3 2 2

4 3 4

5 2 2

6 8 7

7 2 3

8 0 0

9 1 2

10 4 3

1 1 2 2

12 0 0

13 2 2

14 4 3

15 0 0

16 1 1

17 6 4

18 8 8

19 2 4

20 1 2

21 2 2

22 2 2

23 0 1

Total = 60 60
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nonemouaaueishtdomaiurmdommmpling The PW scheme assumed that the

size of a core content area in the original item pool reflected its significance. Therefore, it

randomly drew from each of the 23 areas a number of items proportional to the total

number of items in that area. Using the proportional distribution presented in Tabb l, the

number of items to be sampbd from an area for a 60-item test form was calculated. Tabb

4 summarizes the calculation results. Each of the resulting test forms, PW-A and PW-B

(see Tabb 2), of the PW scheme had 60 items. In addition, PW-A and PW-B shared a

total of 40 common anchor items.

WW3. The PS scheme included only the items from the largest

three core content areas, assuming that the number of items in a core content area

reflected the importance of the particular content, but simplifying to focus only on the 3

most important areas. Fewer core content areas in a test bnds more confidence to the

homogeneity of its test items or the IRT assumption of unidirnensionality of the test.

The PS scheme resulted in two sampbd test forms that shared 45 common anchor

items. The two forms, PS-A and PS-B (see Tabb 2), had 15 and 12 unique items

respectively.

Contmflingjesflength. As mentioned earlier, most of the eight sampled test forms

were composed of 60 items such that the effect of test bngth on equating outcome was

hold constant over various sampbd tests. However, the PS scheme deliberately included

all the items from the largest three core content areas only, which inevitably resulted in a

slightly shorter test with 57 items for PS-B. In addition, because the EW scheme called

for equal number of items from all the 23 areas, both EW-A and EW-B ended up with 69

items, a few more than 60. These small differences in test bngth, neverthebss, should not

be serious.
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Table 4 - Number of Items Sampled Using Proportional-Weight

Domain Random Sampling

 

 

Core Proportion of Number of

Content Test Items Items

Area (%) Sampled

1 5.8 5.8 * 60: 3.48 E 4

2 10.2 10.2 * 60: 6.12 s 6

3 1.3 1.3 *60= 0.78 s l

4 6.2 6.2 * 60: 3.72 s 4

5 2.2 2.2 *60= 1.32 a 1

6 8.4 8.4* 60: 5.04 5 5

7 2.2 2.2 *60= 1.32 s. 1

8 1.3 1.3 *60= 0.78 E 1

9 2.7 2.7 * 60: 1.62 a 2

10 4.0 4.0 * 60: 2.40 a 2

11 3.6 3.6*60= 2.16 s 2

12 1.8 1.8*60= 1.08 E 1

13 5.8 5.8 * 60: 3.48 s. 4

14 3.1 3.1*60= 1.86 5 2

15 2.2 2.2*60= 1.32 a 1

16 6.7 6.7 * 60: 4.02 a 4

17 5.8 5.8 * 60: 3.48 s 4

18 11.1 11.1*60= 6.66 s 7

19 3.6 3.6*60= 2.16 E. 2

20 2.2 2.2 * 60: 1.32 5 1

21 1.8 1.8*60= 1.08 s 1

22 4.0 4.0 * 60: 2.40 5 2

23 4.0 4.0 * 60: 2.40 5 2

 

Total 100.0 60



72

WWAprevious study using the same set of data found that

equating accuracy depended on the number of anchor items in the test forms being

equated. Specifically, equating results from test forms that had more anchor items tended

to be more accurate (Yang & Houang, 1996). To hold the efi'ect of anchor bngth on

equating accuracy constant over the various sampbd tests, the anchor tests in various

sampbd tests therefore were fixed to be sufficiently bngthy. For any of the eight sampbd

test forms, at bast half of the items included were anchor items (see Tabb 2).

Although the anchor bngths of all the sampbd test forms were made sufficiently

long, it was difficult for this study to sample test forms that all had the same number of

anchor items. Mainly, this was because the number of items availabb for item sampling in

some core content areas was limited. The types of these items (anchor or unique) further

set limits for the results of item sampling. For instance, several core content areas faibd

to ad(“luately support the EW scheme, because there were not enough items or items of

certain type to yield ideal item-sampling outcomes. The outcome of the PS scheme is

8.1101th good exampb to illustrate such difficulty in controlling anchor bngth. The PS

Scheme required an inclusion of all the items from the largest three core content areas, and

it turned out that 75% of these items were anchor items.

However, by incorporating sufficiently large number of anchor items in all the

sampbd test forms, the effect of differential anchor bngths in this study became bss likely

to confound with the effect of content homogeneity (or content representativeness of

anchor items). Though it might be intriguing to study the interaction of the anchor-bngth

fifi'ect on equating accuracy in conjunction with the content-representativeness effect, such

Sidetrack was avoid in this research to keep the current study focused on the intended

issues. The study design and interpretations of this study also remained straight forward.
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Equating Methods

To investigate to what extent the results of various equating approaches agree, this

study estimated and compared the effects of linear, equipercentile, and IRT-based

equating approaches on the accuracy of equating. As reviewed in previous chapters,

linear equating methods are straightforward and convenient in computation (Kobn &

Brennan, 1987), but their results do not always meet all criteria for equivabnt tests.

Equipercentib equating is a frequently used non-linear equating approach, which is still

based on observed score and has been known to have accurate results (Hills, Subhiyah, &

Hirsch, 1988; Yen, 1985). Gaining their popularity in recent years, equating models based

on item response theory have been found useful for equating based on the common-item

design (Cook & Eignor, 1991; Crocker & Algina, 1986).

I l I . E . I I l I

This study chose Tucker Linear equating method to represent the linear equating

approach. The Tucker method is one of the conventional (non-IRT) equating methods

used most frequently. Under the assumptions of the Tucker method, the linearly

transformed scores on one form will have the same mean and standard deviation as the

scores on another form (Kolen & Brennan, 1987; Kobn & Brennan, 1995). Although the

l'xlethod requires equal reliability across test forms being equated, the impact of unequal

reliability in this study was not very critical because each pair of the sampbd test forms

hing equated were very similar in their content and had the same number of items (Kobn

<8: Brennan, 1987).
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E -E°'E'r'lllll

Based on observed score, equipercentib equating aims at finding a score on Form

YofatestthathasthesamepercentibrankasascoreonFormXofthesametest (Kobn

& Brennan, 1995). The method used in this study to conduct equipercentile equating was

the commonly used frequency estimation method (Kobn & Brennan, 1995), incorporated

with the cubic spline postsmoothing method (Kobn & Jarjoura, 1987; Kobn & Brennan,

1995). The frequency estimation method was used because the two examinee groups

were not too different. The cubic spline smoothing method was used to increase equating

precision with frequency estimation method, for the common-item non-equivabnt group

design (Kobn & Jarjoura, 1987).

W

The literature review in Chapter 5 has made cbar that IRT-based equating

tnethods have both theoretical appeal (Green, Yen, & Burket, 1989) and practical

advantages (Cook & Eignor, 1983, 1991). For instance, IRT-based equating methods

Were found to be more useful than linear equating methods when tests to be equated

difl'ered somewhat in content and bngth (Petersen, Cook, & Stocking, 1983). However,

mT-based equating results are often inconsistent, and the practical significance of their

improvement in estimating equating accuracy remains uncbar. Therefore, this study

sebcted two IRT-based equating methods that differed in their assumptions and

procedures to do the comparisons. The results of these two methods were not only

Compared to the results of linear equating and equipercentile equating methods, but also

compared to each other to study the relationship between IRT-based equatings.
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Namely, the two IRT-based equating methods used in this study were the linear

transformation method (Hambbton & Swaminathan, 1990; Kolen & Brennan, 1995) and

the IRT fixed-b method (Petersen, Cook, & Stocking, 1983; Hills, Subhiyah, & Hirsch,

1988). As reviewed earlier, both methods were based on a three parameter logistic IRT

model, which accounts for guessing (Hambbton & Swaminathan, 1990; Harnbleton,

Swaminathan, & Rogers, 1991). Guessing is likely to occur with multipb-choice items.

Since all the test items in this study had multipb-choice item format, it was likely that

examinees guessed on some difficult items.

Under the IRT assumptions of item and person invariance, linear transformation is

reasonabb for the non-equivalent-group anchor-item design of this study. This is because

the difficulty and discrimination parameters for the common anchor items from alternate

test forms are linearly related (Petersen, Cook, & Stocking, 1983; Hills, Subhiyah, &

Hirsch, 1988). The fixed-b method is often used with LOGIST program (Hills, Subhiyah,

& Hirsch, 1988). However, one previous study found that the fixed-b method also

Worked nicely with BILOG program (Yang & Houang, 1996; Yang, 1997). It was found

that equating results yielded by the fixed-b method using BILOG were consistent with the

mults fi'om IRT-based linear transformation method.

Criteria for Evaluating Equating Accuracy

By applying a variety of plausibb criteria for evaluating equating accuracy,

applicability of accuracy criteria could be explored in compensation for the lack of an

absolute evaluation criterion. In this study, four criteria were developed for evaluating the

accuracy of various equating results. Two of the criteria for evaluating equating accuracy

\were based on estimated true scores and the other two were arbitrary criteria based on
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different equipercentib equating outcomes. The natures and uses of these criteria are

described below.

I _ S E l C . .

In this study, items were sampbd from one overall item pool to form four pairs of

sampled test forms. As a result, examinee performances on the compbte set of the 145

common anchor items in the item pool could be regarded as the “anchor universe”,

relative to the anchor items embedded in the sampbd test forms. “Pseudo true scores”,

the estimated true scores based on this “anchor universe”, could thus be computed and

used as criteria for evaluating equating accuracy.

The “pseudo true score” was estimated in two ways: (a) using the total raw score

on the 145 anchor items, and (b) using the IRT estimated true score on the 145 anchor

it(fills. Although the raw-score based criterion had the drawbacks of being person and

item dependent, it was conceptually superior to the IRT-based criterion because it was not

biased in favor of the IRT-based equating. Nonethebss, the IRT-based criterion had

advarltages of being item-free and person-free.

The accuracy of equating result was expressed by Pearson’s product-moment

col‘l‘elation coefficient (r) between true score estimates and the “pseudo true scores”. A

large, positive 1' would indicate a more accurate equating result. To evaluate the accuracy

0f the IRT-based equating outcomes, first, total true scores were estimated based on the

IRT‘based equating outcomes. Then, the true score estimates were correlated to the

‘Pseudo true scores”. To evaluate the accuracy of the non-IRT equating outcomes, the

reslilting equivabnt scores were correlated to the “pseudo true scores”.
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31‘ C. .

In addition to the two true-score criteria based on the 145 anchor items, the result

of equipercentib equating on the sampbd test forms was used as an arbitrary criterion to

evaluate relative accuracy of the results produced by the other three equating methods (the

Tucker method and the two IRT-based methods). Both the Pearson’s r and the RMSD

(Klein & Jarjoura, 1985; Livingston, Dorans, & Wright 1990) were computed to measure

tile agreement between this criterion and the results of the other three equating methods.

’n‘le reason that the result of equipercentile equating method was chosen to represent the

I)‘i‘vt‘fect equating outcome is because this method usually produced satisfactory results in

tl‘e literature (Yen, 1985). In equating practice, because true equivalent relationship can

t“-ewer be known, it is common to compare equating results to such arbitrary but sound

Qfiteria for estimating equating accuracy (Dorans & Kingston, 1985). However, by using

§“-ilch an arbitrary criterion, the estimation of equating accuracy was subjected to the nature

Nd quality of this arbitrary criterion. The strong assumption that the outcome of the

§quipercentib equating method is the true equating outcome may not be real. Moreover,

‘ll'le agreement between such a criterion and the results of the other three equating methods

did not directly address the issue of equating accuracy. Therefore, other than being used

to evaluate equating accuracy, this criterion was used to investigate the potential bias due

to the use of an arbitrary criterion for evaluating equating accuracy.

The two original test forms, Book A and Book B, were also equated by the

equipercentib method in this study. This equating result for the original test forms was

used as the fourth criterion to evaluate the relative accuracy of the equating results

produced for the sampled test forms by all of the four methods (Tucker linear,

equipercentile, and the two IRT-based methods). The Pearson’s r was computed to
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measure the agreement between this criterion and the results produced by all the four

equating methods. This criterion for evaluating equating accuracy had the same arbitrary

nature as the previous criterion. It did not directly address the issue of equating accuracy,

either. However, this criterion was considered more reliabb because it was based on the

eqnating results for the longer original test, which was similar to the sampled tests in

content but had pr0portionally more anchor items.

T031: Dimensionality

Issues of test dimensionality are rebvant to the IRT-based equating in this study,

Wethe IRT model used for the IRT-based equating assumed unidimensionality. These

ks‘lw are also rebvant to classical equating, which assumes unidirnensionality in an

icthplicit way. In return, such unidirnensionality assumption of classic equating limits its

W(Green, Yen, & Burket, 1989).

From the perspective of the single overall content domain, the test analyzed in this

§‘tlldy was likely to be unidimensional. One could argue that the test performance was

Q()minated by an underlying trait relating to the medical specialty. However, the variations

it) the content of items from the 23 core content areas also rendered chances for

‘hulfidirnensionality and raised reasonabb doubts about the claim of unidimensionality. It

also seemed likely that items from different areas measured different underlying traits.

Thus, it was intriguing to know whether the assumption of unidirnensionality was realistic

for this equating study, and how robust this assumption was, given it was violated.

Statistically, the IRT unidirnensionality assumption could only be tested indirectly

by assessing the local independence (Lord, 1982b). As a condition for IRT-based

equating, however, local independence remains a matter of assumption itself. It requires



79

that for fixed ability 0, the item characteristic functions for any pair of items 1 and j should

be independent. Therefore, focusing on content homogeneity, this study assessed the

dimensionality of the test by conducting confirmatory and exploratory factor analyses.

Four confirmatory-factor models were developed by assuming various plausibb content

structures for the test. In addition to the empirical evidence from statistical analyses,

argumnts made about dimensionality should also take into account test content (Camilli,

Wang, & Fesq, 1995). Therefore, this study also elaborated on theoretical literature to

investigate the relationship between the content of the items from the different core

cotltent areas and the overall content of the test.

Although this study intended to investigate the diinensionality for the original test

mid all the sampbd tests created in this study, such comprehensive plan, however, were

thither realistic nor efficient. For an equating study that had already been compbx in its

qQ-sign and labor-consuming, it was more practical to limit this part of study to a more

Mgeabb scope such that the analysis tasks and outcomes would not be overwhelming.

Therefore, this study chose to focus on only a set of sampbd items to study test

qimensionality. Neverthebss, the narrowly focused investigation would still reasonably

a(ldress the issue of dimensionality by casting useful insights on the dimensionality of the

Overall and sampbd tests.

Group Disparity

The study outcome of test dimensionality was likely to be affected by the disparity

between the non-equivalent groups. If the two examinee groups indeed possessed

difierent types or amounts of knowbdge and skills, one singb underlying trait was not

likely to account for the test performance for the examinees from these two groups. To
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facilitate the study of dimensionality, it became important to study the group disparity. In

fact, group disparity might occur because it was possibb that examinees from difi‘erent in-

training programs at different sites received somewhat difi‘erential instructions and

practices. Despite the fact that the overall core content was logically the basis of the in-

trainjng curricula, the directors of individual in-training programs had the authority to

decide which part of the core content their programs were to emphasize. As a

<=<>tasequence, the instructions or practices of difi‘erent programs might vary slightly and

tIII-ls cause the disparity among the examinee performances.

To determine the adequacy of equating methods, which usually required groups

with same or similar ability, it was also important to examine the degree of disparity

between the non-equivabnt groups. The need was especially true in this study because the

Q’3§arninee groups taking the two test forms were not randomly sampbd or assigned.

“reform availabb demographic data, such as program participation and years of

prerience, were analyzed in this study to help determine the degree of disparity.

Qonstruct Validity Issues

In this study, an examinee’s professional ability was in part dependent on the

fixaminee’s professional experience. Logically, the more years of professional experience,

the more likely an examinee would score higher on the test. If the test forms of the test

Were truly equated, the resulting equivabnt scores of both examinee groups taking

difi'erent test forms should demonstrate such effect of professional experience. Therefore,

this study compared the average equivabnt scores of the examinee groups after equating

to study the construct validity of the test.
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For the sake of compbteness and convenience, this study used the equivabnt

scores produced by frequency-estimation equipercentib method for the original test to do

the group comparisons after equating. This set of equivalent scores was compbte because

it involved all the items in the original test, and it was convenient because it already had

been made availabb earlier in the study for equating accuracy. Specifically, the construct

validity of the test was studied by investigating the effects of test form, years of

experience, and their interaction on the exarninees’ performance.

Rmarch Tools

The IRT calibration program chosen for the analyses of this study was the

aq‘ranced version of PC BILOG, BILOG-MG. One advantage of using BILOG is that

‘3ILOG yields marginal maximum likelihood (ML) estimates and the number of

barameters estimated does not increase with the increasing number of examinees.

Qcmpared to BILOG, LOGIST simultaneously maximizes the joint likelihood function for

“he estimates of item and examinee parameters. However, the joint maximum likelihood

(JML) estimates are likely to become inconsistent when the numbers of examinees or

items increase (Baker, 1990; Misbvy & Stocking, 1989). Consequently, BILOG should

yield more consistent results than LOGIST in such a situation.

PC-BILOG uses the estimated posterior 0 distribution to establish the location and

Inetric for the 0 scab (Baker, 1990). In an earlier simulation study, Yen (1987) found that

BILOG largely yielded more precise estimates of individual item parameters than

LOGIST. She also expected the improvement in accuracy of BILOG to increase if sample

size decreased substantially. In terms of estimating item and test characteristic functions,

Yen (1987) found that the relative effectiveness of the two programs depended on test
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length. Specifically, BILOG yielded more precise estimates than LOGIST on equating

shorter test forms with ten items; However, the two programs yielded very similar

estimates when longer tests with 20 and 40 items respectively were equated. Mislevy and

Stocking (1989) also found that BILOG would yield more reasonable results when tests

are shorter or the samples are smaller. Based on a Bayesian framework, BILOG imposes

prior distributions on all item parameters of the 3PL model. If the prior information is not

appropriate for the data, item parameter estimates are biased (Baker, 1990).

In addition to BILOG, SAS for Unix and Excel spreadsheets were also used in this

st‘l-lciy to assist with various equatings, as well as data management and other statistical

a-‘~'I--':llyses. The equipercentile equatings were facilitated by an extended version of the

Qommon Item Program for Equating (CIPE) (Hanson, Zeng, & Kolen, 1995), which uses

the frequency estimation method described by Kolen and Brennan (1995). The extended

QElma prograrn--CIPE300 Plus is written in FORTRAN and has the capacity to handle

l'ang test forms with more than 200 items. It uses the cubic spline method (Kolen &

J~€irjonra, 1987; Kolen & Brennan, 1995) to post-smooth the resulting equipercentile

j“Qlationship. Up to eight user-specified smoothing parameters are allowed to manipulate

‘he degree of smoothing (Hanson, Zeng, & Kolen, 1995). Essentially, the smoothing

parameter controls the average squared standardized difference between the smoothed and

the unsmoothed equating outcomes. After the frequency-estimation equipercentile

equatings were applied, the CIPE output of the unsmoothed equivalents and their

corresponding standard errors were graphed using Excel, along with the other sets of

smoothed equivalents yielded by the various smoothing parameters. The various graphs

for the smoothed equivalents were inspected for their smoothness and compared to the

unsmoothed equivalents. In addition, to evaluate the smoothing requirement of “moment
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preservation” (Kolen & Brennan, 1995), the four moments -- mean, standard deviation,

skewness, and kurtosis -- for the entire examinee population of the unsmoothed and

smoothed equivalents were also computed using SAS. The moments of the smoothed

equivalents were compared to the unsmoothed equivalents to identify the best smoothing

parameter that yielded a smooth function not departing too much from the unsmoothed

equivalents.

Research Restrictions and Limitations

The rich context of the test data analyzed in this study rendered opportunities for

item sampling and data manipulation. With such advantages, this study was able to

address a variety of research questions in depth. In addition, the complexity of data

enriched the study design and helped expand the scope of research. However, the

secondary nature of the data also restricted the study design in some ways and limited the

generalizability of the study results. Restrictions on this study and limitations of the study

results, caused by the data and the design used to accommodate the data, are briefly

described below.

DE I I I . l .

The secondary data used in this study was limited in a sense that it was collected

[*3me the study design was conceived. As a consequence, any manipulations before or

during the data-collection process were not possible. The design of this study was

merefore restricted by the nature of this secondary data. Typical consequences of such

muictions, and the consequent study limitations due to these restrictions, are discussed

below;
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WThe test forms of the in-training test were linked

by a set of common anchor items, embedded in the forms and given to non-equivalent

examinee groups. Therefore, the anchor-item design for equating was the only option for

equating the test forms in this study.

M11915. Most of the items in the test were anchor items. As a result, the

item sampling in this study naturally resulted in sampled test forms (PS-A, PS-B, PW-A,

PW-B, EW-A, and EW-B) containing more anchor items than unique items. Given such

long anchor tests, it was difficult for this study to evaluate the accuracy of equating under

a situation where there were only few anchor items. Such restriction of long anchors

might have caused the study result that -- all the equating methods yielded similarly

satisfactory equating outcomes. Given the long anchors, all of the equating methods were

likely to yield accurate outcomes. As a consequence, true differences among the equating

accuracy of the various methods could not be detected or differentiated.

WThe number of items available for item

sampling in each of the 23 core content areas was limited. In addition, the various item-

sampling schemes had different demands in the types and amounts of test items. As a

result, it was difficult for this study to obtain sampled test forms that all had the same

number of items or anchor items. Although this study intentionally created sampled test

forms that had similar test lengths and ensured that each sampled test form had a sufficient

number of anchor items, there was still a slight chance that the equating results were under

influence of the difi'erential anchor lengths.

If the effect of anchor length existed indeed, such effect was likely to confound

with the effect of content homogeneity and the effect of content representativeness of

anchor items. Therefore, the study findings about the effects of content homogeneity and
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content representativeness should be interpreted with special cautions for the confounding

efl'ect due to differential anchor lengths.

I . [E . E

The criteria used for evaluating equating accuracy and the index incorporated in

this study to measure the accuracy of equating had inherent limitations. These limitations

are summarized below.

W.The arbitrary nature of the two criteria

for evaluating equating accuracy based on the results of equipercentile equating method

was self-evident. The major drawback of using these criteria was that they did not address

equating accuracy directly. Only the consistency between the criteria and the results of the

other equating methods were measured. Therefore, the evaluation outcomes based on

these two criteria should be interpreted with cautions.

The other two criteria used in this study were based on the “pseudo true scores”.

They were only appropriate when the examinee population and the testing occasion were

considered fixed. It was because the “pseudo true scores” estimated the true scores, at a

particular point of time and for the particular examinee population of this study, on the

complete set of the 145 common anchor items in the overall item pool. As a result of

assuming such “pseudo true score” was the true score, the two criteria were only valid in

an equating context where the examinees were from a population same as or similar to the

one in this study and tested under a circumstance same as or similar to the one in this

Study.

Waxing. The Pearson’s r used to estimate the accuracy of

equating was inflated by the artifact of auto-correlation. The auto-correlation was caused
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by the overlapping of items from the sampled test and the items from the criterion used for

evaluating equating accuracy. By excluding the overlapped items from the sampled test

and then correlating the remaining items with the criterion, this study attempted to control

the influence of the auto-correlation. The magnitude of the resulting Pearson’s r, after

controlling the auto-correlation, was used to measure the impact of the auto-correlation

and to determine whether the probkam of over-estimating equating accuracy was

substantial. This strategy for controlling auto—correlation, however, did not compketely

eliminate the influence of the auto-correlation. Despite the difficulty, nevertheless, the

strategy was still a useful way for improving the study on the effectiveness of various

equating methods and the effect of content representativeness on equating accuracy.

G l' . ER 1

Various sources of limitations on generalizing the study results are discussed

below. They include the characteristics of the test items, the test, the groups of

examinees, and the particular equating models used.

1W. In this study, all the test items had multiple-

choice format and were dichotomously (right or wrong) scored. Logically, the research

findings based on these items should not be generalized to an equating context where test

forms have non-multiple-choice items (e.g., short-answer items or extended-response

items) or a non-dichotomous scoring scheme (e.g., a partial credit system) is used.

Test items of different format are likely to induce differential examinee responses,

therefore, they usually require different scoring keys or rubrics to provide adequate

interpretation for the examinee responses. Equating involving non-dichotomously scored

items entails different equating models with different assumptions, other than the ones
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used in this study. However, the featured design of this study, such as the manipulation of

content representativeness and the use of the true-score based criteria for evaluating

equating accuracy, are useful in improving the design of other research involving items of

different format or scoring system. The results and findings of this study also cast useful

insights for equating context with slight variations.

Wm. One important feature of the test data analyzed in this

study is that the test was written for a minimum competency examination. The test

therefore had a negatively skewed score distribution, since the examinees were expected

to answer most of the items right. The four sampled tests also had negatively skewed

score distributions. The study results based on such skewed score distributions should be

carefully generalized to other testing situations that have similar score distributions.

W.The particular examinee population

studied in this research also limited the generalization of the study results. As this study

focused on a group of professionals in a medical field from a number of in-training

programs, the results of this study should not be generalized to the other subject

populations that difl‘er from the one in this study.

W.The IRT-based equatings in this study assumed

unidirnensionality for the test forms being equating. Therefore, the equating results should

not be generalized to other testing contexts where multi-dimensionality prevail. In

addition, because the equatings were based on a 3-PL IRT model, which accounted for the

chance of guessing, generalization of the study findings should be limited to the contexts

where the 3-PL model applies. Similarly, generalization of the result from any other

equating method should also take into account the particular assumptions made by that

method.



Chapter 9

RESULTS AND DISCUSSIONS

To facilitate an inspection on characteristics of the four sampled tests, this chapter

first summarizes the outcomes of reliability studies, item analyses, and correlation studies

among the total scores on anchor items, unique items, and total test. Then, an

examination of the examinee group differences is presented. Before presenting the main

equating outcomes, the score distributions of various test forms are discussed. Adequacy

of the 3PL IRT model, on which the IRT-based equatings are based, is also discussed.

Intermediate and final equating outcomes are presented and discussed in the

following order: (1) results fi'om various equating methods, using a raw-score-based true-

score criterion, (2) equating results yielded by an IRT-based true-score criterion, (3)

equating results produced by a criterion based on the outcome of the equipercentile

method on equating the two original test forms, and (4) results yielded by an arbitrary

criterion that was based on the outcomes of the equipercentile method on equating

sampled test forms. These results are compared to explore the effectiveness of various

criteria for evaluating equating accuracy.

At the end, this chapter addresses important issues relevant to the adequacy of test

equating and the assumption of IRT-based equating. These issues relate to the construct

88
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validity and dimensionality of a test. Investigation outcomes for the construct validity of

the original test, and the adequacy of the method used to equate the two original test

forms, are summarized. Empirical results and theoretical elaboration on issues of test

dimensionality are also presented and discussed.

Characteristics of Tests and Examinee Groups

Upon inspecting the characteristics of the original and sampled tests: (a) reliability of

these tests were studied by measuring their internal consistency, (b) item difficulties and item-

total correlations were computed and examined, and (c) content homogeneity of the items in

the same test, and content representativeness of anchor items in a test, were addressed. Also

evahrated was the possible ability difference between the two examinee groups and its influence

on the test equating results.

lntemalfionsistenmflests

The reliability of internal consistency, measured by Cronbach’s a is .894 for both

original test forms. This indicates adequacy of the in-training test. All of the sampled test

forms created by item sampling also show internal consistency. As shown in Table 5, the

values of Cronbach’s or ranges from .658 to .774 across sampled test forms. Although the

numbers seem small, these indices suggest moderate reliability for these achievement tests.

Typically, an achievement test has less emphasis on item homogeneity than an attitude or

personality questionnaire does. In addition, an ability test usually has items that fall within

wider ranges of item difiiculty and item discrimination than an attitude questionnaire does.



Table 5 - Reliability of Sampled Test Forms:

Indices of Internal Consistency

 

 

 

 

 

 

 

 

 
 

Sampled Test Form Cronbach's or

SR—A 0.658

Simple Random

Sampling

SR-B 0.713

Equal-Weight EW-A 0.684

Domain Random

Sampling EW-B 0.690

Proportional- PW-A 0.662

Weight Domain

Random Sampling PW-B 0.691

PS-A 0.774

Purposeful

Sampling

PS-B 0.768  
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Internal consistency of an achievement test is therefore often lower than that of an

attitude questionnaire, because of the lower correlations among individual items.

The measures of internal consistency for the sampled test forms are smaller than

those measures for the original test forms. This is partly because there are fewer items in

the sampled test forms. Comparing across the eight sampled test forms (see Table 5), as

expected, the two forms based on the purposefirl sampling have the highest internal

consistency. The Cronbach’s or is .774 for PS-A and .768 for PS-B. It is because all the

items in PS-A or PS-B are from only three core content areas. The other six sampled test

forms have similar internal consistency. Moreover, the two test forms fi'om the same test

are similar in their internal consistency. This provides some justification for using the

Tucker linear method. As discussed in the section for equating methods in Chapter 8, the

Tucker method requires equal reliability of test forms being equated.

Aimsesnmemnimsuln

The results of item analyses, including analyses of item difficulty and item-total

correlation, provide useful information on the sampled tests and their test items. The

classical item difficulty (p) of item j, in a test taken by a group of N examinees, can be

Number of exa min ees with a correct response on item j

technically defined as pj = N
 

In words, difficulty of an item is the proportion of examinees that answer an item correctly

(Crocker & Algina, 1986). Analyses of item difficulty revealed that the items in all four

sampled tests had moderate difficulties on average. Across various test forms, the average

item difficulty range from 0.688 to 0.759.
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In Figure la, individual items in various sampled test forms are sorted by their item

difliculties in ascending order. The patterns of the graphed item difficulties for the two

forms of each sampled test are similar, and the patterns across various sampled tests are

also alike. Different from reporting average item difliculty, the graphs in Figure 1a give a

closer look at the variations in item difficulty within and across test forms. They better

describe how these sampled test forms resembled or difl'ered from one another. Overall,

they suggest that the sampled test forms had similar difficulties. For each of the test

forms, the difficulties of the items spread rather evenly between 0.4 to 1. Such range of

item difficulty (from medium to high) is expected, because it is typical for a test written for

a minimum competency examination.

Figure lb presents the cumulative fi'equency distributions of item difficulties.

Items within a test form were sorted into ten intervals by their difficulties for a summary of

the item-difficulty distribution of that test. The resulting distributions in Figure 1b show

that all the sampled test forms had easy, moderate, and difficult items. Across test forms,

the distributions look similar. It suggests that the sampled tests were similar in their

difficulties, as suggested by Figure 1a.

Figure lb also presents the mean and standard deviation of item difficulties for

each sampled test form. It also includes significance test results for the differences

between average item difficulties of each pair of sampled test forms. The equal-variance

two-tailed Student’s t-test was used to examine such mean differences. For all of the four

sampled tests, none of the mean differences was statistically significant at the .05 level.

These small and statistically non-significant differences attest to the adequacy of the

sampled test forms for equating study. Typically, equating is only used to adjust for minor
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Figure la - Item Difficulty (p) for Items in Sampled Test Forms

(in Ascending Order)
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difl‘erences in item difficulty between different forms of a sampled test (Cook & Eignor,

1991).

Specifically, the stande deviations of the item difficulties range from 0.145 to

0.153 over various test forms, indicating similar item dimculties. Combined with the

patterns found in the distribution plots, these standard deviations suggest that the item

difliculties for various sampled test forms spread in a similar way. The small standard

deviations also suggest that the dimculties of the items within a form were not far apart.

- l l i

For each sampled test form, the items generally correlated positively and

moderately to their total test. This provides evidence of homogeneity (in examinees’

responses) for items from the same test form. Figure 2 presents graphs for item-total

correlations in ascending order for various sampled test forms. For each form, most of the

item-total correlation coefficients spread between .10 and .50. The average item-total

correlations range between .199 to .293 across various forms. The standard deviations of

the item-total correlations are between 0.103 and 0.126. These figures suggest that the

overall patterns of item-total correlations were not too different across test forms.

The average item-total correlations for sampled test forms (SR-B, EW-B, PW-B,

and PS-B) created from the original Book B were higher than those for their counterparts

sampled fi'om the original Book A. The equal-variance two-tailed Student’s t-test was

used to examine the mean differences for each pair of the sampled test forms. The

significance test results show that none of the mean differences was statistically significant

at the level of .05. For each sampled test, its two forms had similar item-total correlations.
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MW.Among the eight sampled test forms, PS-A and

PS-B had the highest average item-total correlations (see Figure 2). This is because the

two forms were created by purposeful sampling, which sampled items fi'om only three out

of the 23 core content areas. As a result of the sampling scheme, items in PS-A or PS-B

were expected to correlate with one another to a higher degree than those items in the

other six test forms. The largest average item-total correlations of PS-A and PS-B

provide evidence for the effect of item sampling.

Test forms EW-A, EW-B, PW-A and PW-B all have items fi'om each of the 23

core content areas. This fact could have contributed to the smaller average item-total

correlation coefficients for these forms (than those coefficients for PS-A and PS-B). Also,

it explains the similarities between the average item-total correlations of sampled tests EW

and PW. It is plausible that the variations in average item-total correlation across various

test forms are in part due to the four item sampling schemes, incorporated to the study

design. These item-sampling schemes successfully manipulated the content homogeneity

(or heterogeneity) of items in the sampled tests.

WW. As shown in Figure 2, some sampled test forms had few

items that correlate negatively to their corresponding total tests. These anomaly cases

were identified and their item-total correlations (for the original and sampled test forms)

were examined. Overall, the examination results show that, across various sampled test

forms, the anomaly cases were not always the same items. Anomaly items in the original

and sampled test forms are listed in Table 6.
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Table 6 - Items with Negative Item-Total Correlations

 

Book A: (#27), (#52), #95, #206

 

SR—A: (#27), (#52), #78

EW-A: (#116)

PW-A: (#27), (#52), #70

PS-A: #78

 

Book B: #66, #139

 

SR-B: None

EW-B: #189

PW-B: #66, #139, #143

PS-B: None

 

Note. Items in “0” are anchor items.

As shown in Table 6, while some anchor items correlated negatively to one form of

a test, they did not correlate negatively to the other form of the same test. For instance,

anchor items #27 and #52 had negative correlation coefficients in SR-A, but they did not

correlate negatively to SR-B. None of the items in SR-B had negative item-total

correlations. Similarly, #27 and #52 had negative correlation coefficients in PW-A but not

in PW-B. Item #116 had negative correlation coefficient in EW-Abut not in EW-B.

Therefore, to keep the set of 145 anchor items from the original test intact, these anomaly

anchor items were kept for the subsequent equating studies. Fortunately, the magnitudes

of these negative correlation coefficients were mostly less than .05.

Table 6 also shows that some of the anomaly items in sampled test forms were

indeed anomaly items in the original test forms. Specifically, items #27 and #52 had

negative item-total correlation coefficients in the original Book A, and they also had
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negative coefficients in two of the sampled test forms (SR-A and PW-A). In addition,

items #139 and #66 correlated to Book B negatively, and they also correlated to one

sampled test form (PW-B) negatively. Based on the above findings, it may seem

reasonable to exclude these anomaly items fi'om the study. However, these anomaly items

were not always anomalies across test forms. In addition, not all the anomaly items in

sampled test forms correlated negatively to the original test forms. Items #70, #78 and

#116 are examples for such case for sampled test forms PW-A, SR-A and EW-A

respectively. Similarly, item #143 is an example for PW-B, and item #189 is an example

for EW-B.

In part, the inconsistency in the anomaly cases across different test forms can be

explained by the item sampling schemes used in this study. Such inconsistency can be part

of the item-sampling outcomes, since the item sampling schemes manipulated content

homogeneity of the sampled items in various test forms. Therefore, the second reason that

the anomaly items were kept for further analyses is to maintain such effect of item

sampling. It is determined that the impacts of the negative item-total correlations were

not serious, since the negative correlations all had small magnitudes.

ClumteristicscfAncthltems

The characteristics of anchor items in the original and sampled test forms were

analyzed with different types of correlation coefficients. These analyses examined the

relationship between the total score on anchor items and the total score on non-anchor

(unique) items, and the relationship between the total score on anchor items and total test

score. Their results are summarized in Table 7.
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Table 7 - Coefficients of Correlations Between Total Scores on Anchor

Items, Non-Anchor (Unique) Items, and Total Test

 

 

 

 

 

T Correlation Coefficients

est

Form

1' (anchor,unique) T (anchor,total) f (unique,total)

*1! it *1!
Original Book A .754 .981 .866

Test

Book B .736" .979“ .859”

SR-A .503“ .861“ .873**

SR—B .537“ .863“ .889"

EW-A .439M .939** .721**

Sampled EW-B .488“ .939“ .758“

Test

PW-A .443“ .924" .752"

PW-B .482M .925M .778**

PS-A .486“ .968“ .690"

PS-B .451** .968“ .660“

 

 

 

     
Note. **-Significance level less than 0.01 (two-tailed)
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W-Correlation between the total score on

the anchor items and the total score on the unique items of a test (rmchamiquc) provides a

further check for test composition. In addition to providing empirical evidence of item

homogeneity, this type of correlation can also be used to indicate efficiency for test

equating. Budescu (1985) argued that the larger the rmmmiquc is, the more precisely the

parameters will be estimated for the combined group in equating. Table 7 shows that all

of the indices of equating efficiency for various test forms (see the first column of

correlation coeflicient) are statistically significant. Their values range from .44 to .54.

This suggests that the anchor items and non-anchor items fiom the same test form were

similar, and the common-item equating in this study would be efficient.

Moreover, the total scores on the unique items also correlate strongly and

significantly with the scores on total test forms (see the third column of correlation

coefficient in Table 7). This provides more evidence of adequate test composition.

. Test scores on

 

the anchor tests also correlate significantly with the total test scores to a considerable

degree (see the second column of correlation coefficient in Table 7). The values of such

correlations (rm,m) range from .861 to .968 for various sampled tests. They show

that the anchor items in the sampled tests were content representative of their total tests.

However, these coefficients of rmmm were inflated by auto-correlation. The anchor

test was correlated to itself when the rmcba,m was computed, since the anchor test was

embedded in the total test. Despite the auto-correlation effect, from the perspective that

these anchor items were an integral (inseparable) part of the total test, the coefficients of
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ram,“ still provides a sensible measure of equating efficiency (Budescu, 1985).

Therefore, rm,“ was used in this study, as an index of content representativeness for

anchor test. Concerns about the influence of auto-correlation will be further addressed

later in this section.

W.The various item sampling schemes used in this

study intended to manipulate the content representativeness of the anchor items in the

sampled tests. The differences in the rm,w across various sampled tests provide

evidence of item-sampling effect for these schemes. Table 7 clearly shows that the various

anchor tests were more or less representative of their corresponding total tests, despite the

fact that all of the values of rancha,w are large. This item-sampling effect improves the

chance for the subsequent studies of the content-representativeness effect on equating

accuracy to be valid.

As shown in Table 7, the anchor...“ decreases as the content specificity of the

sampled test changes. The pattern of the changes for test form A is: from .968 (PS) to .939

(EW) to .924 (PW) to .861 (SR). The pattern for form B is: fi’om .968 (PS) to .939 (EW) to

.925 (PW) to .863 (SR). These two patterns show that test forms A and B had identical trends

of decreases in rmmm. Forms PS-A and PS-B had the most content-representative anchor

items, because the purposeful item sampling scheme merely drew items from three core content

areas. As a result, items in PS-A and PS-B were more homogeneous in their content, which

logically led to the larger runway“.

Forms SR—A and SR-B had the least representative anchor items. This is because their

randomly sampled items were from 19 and 20 core content areas respectively (see Table 3).
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Not only the items in SR-A and SR—B were less content homogeneous, the content variations

across items in SR—A and SR-B were also less predictable, due to the random sampling of

items. The magnitudes of the rmM‘W for EW-A and PW-A were similar. For EW-B

and PW-B, the magnitudes were also alike. They suggest that there were no substantial

difl'erences between the tests created by the equal-weight domain random sampling and the

proportional-weight domain random samplings, in terms of the anchor-item content

representativeness.

WNW. As mentioned earlier.

rmclmm was inflated by auto-correlation. Given same test length, a long anchor test

would inflate the magnitude of rmcba,m more than a short anchor test.

As explained in the section of research limitations in Chapter 8, due to the limited

availability of original test items in each of the 23 core content areas, and the different

demands on test characteristics of the four item sampling schemes, the item-sampling

design resulted in varying anchor lengths for different sampled tests. The percentage of

anchor items was 50% for SR, 61% for EW, and 66% for PW. The two forms of PS had

slightly different percentages: 75% for PS-A and 79% for PS-B. As a consequence of the

differential anchor lengths, the impact of auto-correlation might be different on various

sampled tests. Part of the stronger anchor-total correlations for PS-A and PS-B are

attributed to their longer anchor lengths. Similarly, shorter anchor length partly accounts

for the weaker correlations for SR-A and SR-B. Such anchor-length effect could affect

the findings about the content representativeness of anchor items. Therefore, rmchamal

may not be sufficient in estimating how anchor items were representative of the total test.
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Despite the limited empirical findings described above, the differential content

representativeness for various anchor tests is in theory plausible. It is backed up by the

particular content structure of the original test and the item-sampling design. In addition,

although the anchor lengths were different across test forms, all of the anchor tests were

controlled to be sufficiently long for test equating. The fact that all of the anchor tests are

long in length is expected to lessen the impacts due to the difi'erential lengths on equating

accuracy. In each sampled test form, at least 50% of the items were anchor items (see

Table 2). Such high percentage far exceeded the commonly recommended anchor lengths

for adequate test equating (Angoff, 1984).

The differences between the two examinee groups are studied with considerations

of the ability, years of experience, and program participation of the examinees.

W. The examinee groups performed slightly differently on the

anchor items. The group taking Book B (mean=107.721) scored slightly higher than the

group taking Book A (mean=105.457) on the 145 anchor items. The difference between

the group means was statistically significant at the .05 level (t=3.987, df=2,239, p=.0001).

There were similar group differences across the four pairs of sampled test forms. Table 8

summarizes the statistical test results for the group mean differences on anchor items.

Average item difficulties were computed for the anchor items and unique items separately

to further examine the group differences. Table 9 summarizes these results. Across

various sampled tests, there were slightly larger values of item difficulty on the anchor
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Table 9 - Average Item Difficulty of Anchor Items and Unique Items

106

 

 

 

 

 

    

Sampled Test Form Anchor Items Unique Items

SR-A 0.722 0.654

SR—B 0.736 0.670

EW-A 0.767 0.650

EW-B 0.781 0.705

PW-A 0.720 0.683

PW-B 0.734 0.690

PS-A 0.703 0.664

PS-B 0.728 0.691

Egg. 1. The item difficulty, Pi, is defined to be the % of examinees getting item

1 correct, and the average item difficulty is:

11

2 Pi
i=1
 fi:

, where n is the total number of items

2. In this study, 1,092 examinees took Book A, and 1,149 took Book B.
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tests for the examinee group taking test form B than the values for the group taking test

form A. It suggests small between-group differences in ability, as the t-tests in Table 8

have suggested.

However, the small differences between the two groups in ability across various

tests might not have practical significance. As presented in Table 8, all the effect sizes for

the group differences (ranging fi'om 0.131 to 0.209) are relatively small, compared to their

means and standard deviations. These group differences are attributed to the non-random

selection or assignment of examinees in the examination.

Although the literature suggests that examinee-group disparity can be a threat to

the accuracy of Tucker linear equating. In such case, Levine equally reliable method is

often recommended (Kolen & Brennan, 1987). The Tucker equating method was used in

this study because, in an earlier study of these data, Tucker method and Levine method

yielded almost identical results.

W. The average years of experience for the group taking Book

A was 1.981 (n=1091, s.d.=0.823), and the group taking Book B had 1.958 years of

experience on average (n=1 137, s.d.=0.822). Assuming equal variances (F=.093, p=0.76),

a two-tailed t-test suggests that these two groups were not different in their experiences

(t=.659, df=2,226, p=.510). The fiequency distributions of years of experience by group,

included in Table 10, further illustrate similarities between the two groups. At each level

of Wears of experience”, the numbers of examinees from the two groups are similar. Also

included in Table 10 is a 2 x 3 table (group by level of experience) containing sample

counts and expected counts of examinees (N=2,228, after deleting cases with missing

information on “years of experience”). The Chi-square test for this expectancy table
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Table 10 - Group Comparisons on "Years of Experience"

 

 

  

 

 

 

  
 

 

   
  
 

 

 

 

 

 

     

Examinee Group Years of Experience 11 %

I: 1 380 34.8%

I 2 352 32.2%

(taking Book A) 3 359 32.9%

Unknown ' l 0.1%

Total 1092

1 E 409 35.6%

11 2 367 31.9%

(taking Book B) 3 361 31.4%

Unknown 12 1.0%

Total 1149

1 789 35.2%

2 719 32.1%

I and II 3 720 32.1%

Unknown 13 0.6%

Grand Total 2241

Years of Experience

1 2 3 Total

Group I Count 380 352 359 1091

Expected Count 386.4 352.1 352.6 1091.0

11 Count 409 367 361 1137

Expected Count 402.6 366.9 367.4 1137.0

Total Count 789 719 720 2228

Expected Count 789.0 719.0 720.0 2228.0
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shows that the group membership of the examinees was independent of “years of

experience” (12 (2) =0.435, p=.805). It suggests that the two examinee groups were

similar in their experiences.

W. The examinees participated in different in-training

programs. Using information on examinee’s program membership, Table 11 summarizes

the program participation of the two examinee groups. Table 11 shows that the

examinees taking Book A were from 64 in-training programs, and those taking Book B

were from 62 programs. There were 109 programs in total. Most of the time, the

examinees from the same program took the same test form. However, in 15 programs, all

but one examinees took the same test form. In addition, in one program, all but 2 took the

same test form, and in another program, all but 3 took the same test form. This is because

when an examinee missed the scheduled testing time, that examinee was given a different

test form at a different time.

There is a lack of Information on inter-program differences, such as different

curricular designs and instructional methods. As a result, group differences originated in

program variations can not be examined further. Nevertheless, the cumulative frequency

distributions for the two groups, presented in Figure 3, provide some evidence of

similarity between the two groups in program participation. The distribution plot shows

that the examinees in both groups were from a variety of in-training programs, and the

numbers of examinees varied across the many programs. Overall, the distributions for the

two groups were similar.

W. The above analyses on the demographic

attributes of the two examinee groups indicate between-group similarities. However, if
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more demographic information is available, in-depth group differences and their potential

influences on dimensionality (defined empirically) and equating accuracy could be more

thoroughly examined. The data analyzed in this study is secondary data, fi'om which only

two demographic variables (years of experience and program participation) were available.

It restricted the investigation of this study on group differences.

Summary

In short, the sampled test forms were reliable in terms of their internal consistency. The

items within the forms had moderate difficulties and the anchor items were representative of

the total tests. The studies on the demographic attributes of the two examinee groups

indicate between-group similarities. Although- there was slight difference between the two

examinee groups in their ability, the difference was not serious.

Score Distributions of Various Test Forrm

The score distributions of the two original test forms, presented in APPENDIX A,

were both negatively skewed. This is because the original test was written for a minimum

competency examination. After the sampled test forms were created for this study, the score

distributions of these test forms were also examined (included in APPENDIX A). Like the

original Book A and Book B, all of the sampled test forms had more or less negatively skewed

distributions.

Such properties of skewed score distributions for the four sampled tests are taken into

account in the subsequent equating studies, for the discussions and interpretations of study

results
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Adequacy of 3PL IRT Model for IRT-Based Equatings

The outcomes of the two IRT-based equating methods were based on a three

parameter logistic IRT model. The IRT model incorporated a guessing parameter to

account for the likely guessing factor in the minimum competency examination. Grounded

in the 3 PL IRT model, the IRT-based equating outcomes therefore gained a logical and

theoretical advantage of taking into account the chance of guessing.

In addition, the satisfactory equating outcomes of the two IRT-based equating

methods (presented later in this chapter) provide empirical evidence of adequacy for the

underlying 3PL IRT model. Combining the theoretical appeal with the empirical evidence

of adequacy, this study concludes that the 3PL IRT model was apprOpriate for the IRT-

based equatings conducted in this study, where test forms with negatively skewed score

distributions were equated.

Equating Outcomes of IRT-Based Methods

The outcomes of IRT parameter estimation and the equating outcomes of the two

IRT—based methods are summarized below. The equating results of the two IRT-based

methods are found to be very similar.

E . . [1131 E r

The results of fitting a 3-PL IRT model are summarized in Table 12. Over various

test forms, for both IRT-based linear transformation method and fixed-b method, the

intermediate outcomes of parameter estimation showed small variation in item
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discrimination. Overall, the estimated values of the average item discrimination

parameters were close and the standard deviations, relative to the means, were also small.

In addition, the estimation for the guessing parameter yielded pretty similar results.

However, the variation across sampled test forms in item difficulty seemed large.

When alternate forms of each sampled test were calibrated separately, as required

by the IRT-based linear transformation method, the resulting average anchor-item

difficulties differed across various sampled tests. Particularly, the anchor items of PS-A

and PS-B had greater values in their average item difficulties than those of the other three

pairs of test forms. These differences are attributed to the item sampling in this study,

which sampled different numbers of items from different numbers of core content areas.

For each of the sampled test, however, the average anchor-item difficulties for its two

forms were not too far apart. This lends some evidence of similar ability for the two

examime groups.

E 1 m1 5] .1. E .

The equivalent ability estimates yielded by the IRT-based linear transformation

method and fixed-b equating method correlated strongly. It indicates similarities between

the outcomes of the two methods. Across various sampled tests, all of the Pearson’s rs

were statistically significant and had values close to 1. Therefore, the two IRT-based

methods did not differ much in determining individual examinee’s standing in the entire

examinee group.

To further study how similar the results of the two IRT—based equating methods

were, for each sampled test, the means and standard deviations of the two sets of resulting
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ability estimates were compared. The mean difference between the ability estimates of the

two IRT-based methods was also tested for its significance. As shown in Table 13, the

average ability estimates of the two methods seem to differ only slightly and the standard

deviations are very similar. However, the dependent-samples t-tests show that the

outcomes of the two methods were significantly difl'erent (p<.001), no matter which pair

of sampled test forms were equated. To control for the total error rate, which is likely to

increase with the number of hypothesis tests, a more conservative significance level

(a=0.01) was chosen for the t-tests instead of the conventional (1 =0.05. Overall, the test

results suggest that the outcomes of the two IRT-based methods were not as close as

represented by the Pearson’s rs.

Although the statistical tests suggest significant differences, it should be noted that

the large t—values in Table 13 are partly due to the small standard errors of mean difference

and the large sample size, and hence more degrees of fieedom. The effect sizes across the

four tests are all very small (less than 0.5), implying practical irrsignificance. Graphing the

resulting equivalent ability estimates of one IRT-based method against those of another

method, the scatter plots in Figure 4 illustrate the positive relationships between the

outcomes of the two methods across tests (differing in their item homogeneity). While the

fairly solid straight lines in the plots suggest strong linear relationships, the slight thickness

and coarseness of these lines indicate that the relationships were not as nearly perfect as

indicated by the Pearson’s rs. Overall, at the two ends of the ability scale, the outcomes

of the two methods were more similar than the outcomes at the middle range of the ability

scale.
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Proportional-weight Domain
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Note. (1) 9 is the examinee ability; (2) **- Significance level less than .01.

Figure 4 - Relationship Between the Resulting Ability Estimates of the

Two IRT-Based Equating Methods
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Wm

Applying the following formula (Lord, 1980) to the outcomes of the 3PL IRT-

based equatings, true score estimates were obtained:

i = if, p,(e) = file” (1- c,)/ [1+ Exp'l‘7°‘(°'b‘)]}, (9.1)
i=1

where T is the estimated true score, pi(9) is the probability of getting item i correct

given examinee ability 6 , n is the number of items, a,- is the item discrimination for item

1' , b; is the item difficulty for items 1' , and c,- is the pseudo-chance level (guessing) for

item 1' (Hambleton & Swaminathan, 1990). As expected, for each sampled test,

correlation between the resulting true-score estimates from the two IRT-based equating

methods was fairly strong and statistically significant. The Pearson’s r ranged fi'om .976

to .999 across the four sampled tests, indicating nearly perfect relationships between the

outcomes of the two methods. These findings are similar to those based on the

correlations for the ability estimates. Therefore, the two IRT-based methods used in this

study were similar in determining individual examinee’s standing in the entire examinee

group.

Table 14 shows that the average true score estimates of the two IRT-based

equating methods were very similar. So were their standard deviations. However,

regardless of the pair of sampled test forms being equated, the dependent-samples t-test

reveals significant difference between the outcomes of the two methods (or=0.01 and

p<.001). According to these results of significance tests, across various sampled tests, the
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relationships between the two IRT-based methods were not as nearly perfect as suggested

by the Pearson’s rs. Nevertheless, the large r-values and significant test results in Table 14

can be attributed to the small standard errors of mean differences and the large sample

size. In addition, the effect sizes for the difi'erences across the four tests are all very small

(less than 0.25). Thus, the differences between the two methods in estimating the true

scores might not have practical significance.

The scatter plots in Figure 5 illustrate the delicate relationship between the two

IRT-based equating methods, by graphing the resulting true score estimates of the fixed—b

method against the resulting estimates of the linear transformation method. These plots

are more revealing than those plots in Figure 4 (which are based on the resulting ability

estimates) are, in showing the differences between the two equating methods. While the

scattered data points form a pretty solid straight line for sampled tests EW and SR

respectively, the data points for PW and PS clearly show more than one line. The two

separate lines in the plots for PW and PS suggest that the resulting true score levels of one

method did not correspond to the levels of another method on a one-to-one basis. On

either one of the two sampled tests (PW or PS), when one IRT-based equating method

was used, a group of examinees might receive the same scores, but the same group of

examinees might receive different scores when another IRT-based method was used for

equating. An inspection on the resulting estimates of equivalent true scores yielded by the

two equating methods confirmed such speculation.

In addition, the formations of the data points for tests PW and PS in Figure 5 seem

to be linear yet slightly elliptical. For each test, the two separate lines shown in the scatter

plot not only look slightly curvilinear but also cave to the opposite directions. They
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suggest that outcomes of the two IRT-based methods were more similar for cases

receiving scores near or at the two ends of the true-score scale (than for the cases in the

middle range of the scale). The slightly non-linear relationships between the two IRT-

based equatings on PW and PS suggest that using Pearson’s r for summarizing or

comparing the outcomes of different equating methods could be misleading. Graphical

displays contrasting the equivalent scores from different equating methods are

recommended to improve the comparisons.

Smoothing Equipercentile Equating Outcomes

This study used the frequency estimation method (Kolen & Brennan, 1995) to

conduct equipercentile equating. To increase equating precision, after obtaining the

frequency-estimation equipercentile equivalent scores, this study applied the cubic spline

postsmoothing method (Kolen & Jarjoura, 1987; Kolen & Brennan, 1995) to smooth the

equivalent scores. A total of eight smoothing parameters were specified (s=.01, .05, .10,

.20, .30, .50, .75, and 1) for postsmoothing. These parameters yielded smoothed

equivalent scores differing in their degree of smoothing (Hanson, Zeng, & Kolen, 1995).

That is, they controlled the amount of the average squared standardized difference

between the smoothed and the unsmoothed equating outcomes.

El'll . S 1.3]

The resulting eight sets of smoothed equivalent scores were inspected graphically

and statistically to determine which of the eight smoothing parameters resulted in the least

amount of smoothing required for a smooth equipercentile equating function. For
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graphical inspection, each of the eight sets of smoothed equivalent scores was graphed

with the set of unsmoothed equivalent scores, and a standard error band was constructed

around the unsmoothed equating outcomes to facilitate visual inspection. The adequacy

of the various smoothed equating outcomes were in part judged by their smoothness and

deviations from the unsmoothed equating outcomes, shown in such graphs. When there

were more than one adequate smoothing parameters, judgment was made with

considerations for the large sample size of this study and the numbers of items in the

sampled test forms. Figure 6 presents a set of eight graphs for one sampled test (EW) to

illustrate such graphical inspection techniques. Those graphs depict the changes (before

and after a smoothing parameter is applied) in the relationship between the equivalent

scores on sampled test forms EW-A and EW-B, when the degree of smoothing varies.

The same type of graphs for the other sampled tests (PS, PW, and SR) are included in

APPENDIX B.

In the case of smoothing the frequency estimation outcomes for sampled test EW,

any values of smoothing parameter equal to or greater than .10 would result in smoothed

equating outcomes that are too far from the unsmoothed equating outcomes (more than

one standard error of the unsmoothed equivalent scores). This is illustrated in the graphs

for smoothing parameters s=.10, s=.20, s=.30, s=.50, s=.75, and s=1.0 in Figure 6. These

graphs show that using any one of these six parameters, some smoothed outcomes

(between the scores 37 and 40 on the EW-B scale) would fall outside the standard error

band around the unsmoothed outcomes. Figure 6 also shows that, using these parameters,

there would be larger overall differences between the smoothed and unsmoothed

outcomes (than when the parameters s=.01 and s=.05 were used). Therefore, both s=.01
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and s=.05 were more appropriate for postsmoothing. Compared to the graph for s=.01,

the graph for s=.05 suggests slightly smoother outcomes. Although s=.05 would result in

slightly higher degree of smoothing, given the large sample size and number of items for

EW, the amount of smoothing required by s=.05 should be scarcely more than the amount

required by s=.01.

E l . [,1 l | E I' ..

In addition to the graphical inspection, the four moments -- mean, standard

deviation, skewness, and kurtosis -- of the resulting smoothed equivalent scores were

estimated to evaluate the smoothing requirement of “moment preservation” (Kolen &

Brennan, 1995). The estimation outcomes for the moments of the eight sets of equivalent

scores are summarized in Table 15. The moments of the smoothed equivalent scores were

compared to the moments of the unsmoothed equivalent scores such that the most

appropriate smoothing parameter could be identified. An appropriate smoothing

parameter will result in a smooth equipercentile equating function that does not depart too

much from the unsmoothed equating outcomes.

Using the evaluation outcome for sampled test EW as an example, the assessment

procedure of “moment preservation” is briefly illustrated. As shown in Table 15, for

sampled test EW, the four moments of the smoothed equivalent scores resulted from

s=.05 are more similar to the moments of the unsmoothed equivalent scores than those

from s=.01. Combining this finding with the information from Figure 6, where

smoothness and deviations from the unsmoothed outcomes of the smoothed outcomes

were examined, s=.05 was therefore chosen to produce final smoothed equipercentile-
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Table 15 - Moments for Postsmoothing Outcomes

 

 

 

 

 

   

Smoothing A A A A

Sampled Test Parameter u o Skewness Kurtosis

Unsmoothed 42.2699 6.7032 -0.5084 0.0696

S=.01 42.2745 6.7038 -0.4997 0.0529

s=.05 42.2739 6.7060 -0.5006 0.0583

PS S=.10 42.2739 6.7078 -0.5017 0.0628

S=.20* 42.2731 6.7096 -0.5030 0.0690

S=.30 42.2728 6.7108 -0.5040 0.0733

S=.50 42.2730 6.7140 -0.5049 0.0674

S=.75 42.2769 6.7197 -0.5 121 0.0489

S=1.00 42.2796 6.7237 -0.5223 0.0518

Unsmoothed 51.0025 5.7939 -0.5517 0.6772

S=.01 51.0043 5.7973 -0.5465 0.6675

s=.05 * 51.0031 5.7973 -0.5474 0.6724

EW Sz. 10 51.0031 5.7974 -0.5478 0.6733

S=.20 51.0029 5.7972 -0.5467 0.6678

S=.30 51.0029 5.7972 -0.5467 0.6678

S=.50 51 .0027 5.7956 -0.5499 0.6679

S=.75 51.0035 5.7963 -0.5550 0.6784

S=1.00 51.0035 5.7963 -0.5550 0.6784

Unsmoothed 42.8099 5.5660 -0.3986 . 0.3033

S=.01 42.81 17 5.5657 -0.3940 0.2846

PW S=.05* 42.81 16 5.5663 -0.3951 0.2932

S=.10 42.8120 5.5649 -0.3934 0.2881

S=.20 42.8130 5.5620 -0.3898 0.2739

S=.30 42.8127 5.5601 -0.3864 0.2612

, S=.50 42.8148 5.5577 -0.3833 0.2467

S=.75 42.8155 5.5613 -0.3917 0.2544

S=1.00 42.8168 5.5686 -0.4183 0.2837

Unsmoothed 41.5984 5.7093 -0.371 1 0.0754

S=.01* 41.6009 5.7101 -0.3687 0.0756

S=.05 41.6020 5.7140 -0.3661 0.0824

SR 8:. 10 41.6037 5.7166 -0.3621 0.0803

S=.20 41.6052 5.7162 -0.3564 0.0584

S=.30 41.6055 5.7128 -0.3513 0.0322

S=.50 41.6111 5.7081 -0.3365 -0.0351

S=.75 41.6091 5.7103 -0.3251 -0.0616

S=1.00 41.6089 5.7106 -0.3227 -0.0651
 

Note. * Indicates the smoothing parameter selected for postsmoothing the frequency-

estimation outcomes of equipercentile equating, after taking into account the information from

this table and Figure 6.
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equivalent scores for test form EW. Although some other smoothing parameters such as

s=.10 and s=.50 seemed to yield moments more similar to those moments of the

unsmoothed outcomes, they were not appmpriate for smoothing the equated scores on

EW because some of their smoothed outcomes would fall outside the standard error band.

It should be noted that the smoothing requirement of ”moment preservation" also

requires that the moments of the equated scores on one form of a test to be close to those

on the other form of the same test (Kolen & Brennan, 1995). This property is desired for

both random group equating design and common-item non-equivalent group design.

However, for the non-equivalent group design used in this study, it is a lot more difficult

to examine this property and the interpretation will not be as clear as for the random group

design (M. J. Kolen, personal communication, May 6,1997). This study therefore did not

directly assess the “moment preservation” on one form for the particular population taking

the other form because of missing data. In addition, the moments in this study depended

on the particular assumption made by the fiequency-estimation method, used for the

equipercentile equating. The frequency-estimation method assumes that, for both forms of

a test, the conditional distribution of total score given each common-item score is the

same in both populations.

1 ' m hin r

Despite the difficulty in assessing “moment preservation” across test forms, the

graphical inspection on the smoothing results and the evaluation of “moment preservation”

within test forms provide useful information for assessing the effectiveness of various

smoothing parameters. Judgments were made about the relative estimation errors caused
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by the eight smoothing parameters. Taking into account all the information, the following

smoothing parameters were selected and used respectively for the four sampled tests, to

improve the equated scores resulted from equipercentile equating: (a) S=.05 for sampled

tests EW and PW, (b) S=.20 for sampled test PS, and (c) S=.01 for sampled test SR.

The final equipercentile equivalent scores yielded by the above smoothing

parameters appeared to be smooth and were not too far apart from the unsmoothed results

(see Figure 6 and APPENDIX B). Their four moments (see Table 15) were also close to

those of the unsmoothed equivalent scores. Without introducing substantial bias into the

smoothing process, the use of these smoothing parameters improved the precision of the

equipercentile equating in estimating the equivalent scores (Kolen, 1991).

Results of Tucker Linear Method

For each of the four sampled tests, Tucker linear method found an equating

equation that transformed scores on one form to a set of new scores comparable to the

scores on the other form. Important intermediate outcomes of the Tucker method and the

resulting equating equations are summarized in Table 16.

As reviewed in Chapter 3, the four Tucker equating equations presented in Table

16 were derived by defining a synthetic population, assuming equal conditional variances

and same linear regression functions for the two populations, and estimating the means

and variances for the synthetic population (Kolen & Brennan, 1987; Kolen & Brennan,

1995). Using these resulting Tucker equations, equivalent scores were established for the

two forms of each sampled test.



 

T
a
b
l
e
1
6

-
S
u
m
m
a
r
y
o
f
t
h
e
R
e
s
u
l
t
s
o
f
T
u
c
k
e
r
L
i
n
e
a
r
E
q
u
a
t
i
n
g
M
e
t
h
o
d

 

P
a
r
a
m
e
t
e
r
E
s
t
i
m
a
t
e

 

S
a
m
p
l
e
d
T
e
s
t

F
o
r
m
A

F
o
r
m
B

T
u
c
k
e
r
E
q
u
a
t
i
n
g
E
q
u
a
t
i
o
n

(
X
M
A
I
V
)

n
.
(
A
)

0
3
(
4
)

o
m
B
I
V
)
M
B
)

6
1
(
3
)

 

 

S
R

1
.
5
2
4

4
1
.
6
1
5

3
2
.
7
4
2

1
.
5
9
3

4
1
.
8
5
5

3
6
.
0
4
7

€
(
b
)
.
9
5
3
(
b
-
4
1
.
8
5
5
)
+
4
1
.
6
1
5

 

E
W

1
.
2
1
8

5
1
.
0
0
3

3
3
.
8
3
0

1
.
2
5
7

5
1
.
9
4
1

3
5
.
5
5
9

5
(
b
)
.
9
7
5
(
b
-
5
1
.
9
4
1
)
+
5
1
.
0
0
3

 

P
W

1
.
2
5
7

4
2
.
8
1
0

3
0
.
9
3
5

1
.
2
9
1

4
2
.
8
0
6

3
2
.
3
4
9

€
(
b
)
.
9
7
8
(
b
-
4
2
.
8
0
7
)
+
4
2
.
8
1
0

 
 

P
S

1
.
1
6
9

4
2
.
2
7
1

4
4
.
8
8
2

1
.
1
5
0

4
0
.
4
0
8

4
3
.
0
3
6

5
(
b
)
1
.
0
2
1
(
b
-
4
0
.
4
0
8
)
+
4
2
.
2
7
1

 
 

 
 

 
 

 
 

N
o
t
e
.

1
.
"
A

"
r
e
p
r
e
s
e
n
t
s
t
h
e
s
c
o
r
e
o
n

t
e
s
t
f
o
r
m
A
,
"
B

"
r
e
p
r
e
s
e
n
t
s
t
h
e
s
c
o
r
e
o
n

t
e
s
t
f
o
r
m
B
,
a
n
d
"
V

"
r
e
p
r
e
s
e
n
t
s
t
h
e
s
c
o
r
e
o
n
c
o
m
m
o
n
a
n
c
h
o
r

i
t
e
m
s
.

2
.

a
t
)
,

i
s
t
h
e
r
e
g
r
e
s
s
i
o
n
c
o
e
f
fi
c
i
e
n
t
f
o
r
t
h
e
p
o
p
u
l
a
t
i
o
n
t
a
k
i
n
g

t
e
s
t
f
r
o
m
A
,
a
n
d
a
3

i
s
t
h
e
r
e
g
r
e
s
s
i
o
n
c
o
e
f
fi
c
i
e
n
t
f
o
r
t
h
e
p
o
p
u
l
a
t
i
o
n
t
a
k
i
n
g

f
o
r
m
B
.

3
.
"
s

"
d
e
n
o
t
e
s
t
h
e
s
y
n
t
h
e
t
i
c
p
o
p
u
l
a
t
i
o
n
,
a
n
d
"
b

"
i
s
t
h
e
o
b
s
e
r
v
e
d
s
c
o
r
e
o
n
f
o
r
m
B
.

4
.
T
h
e
w
e
i
g
h
t
f
o
r
t
h
e
p
o
p
u
l
a
t
i
o
n
t
a
k
i
n
g
f
o
r
m
A

i
s
.
4
8
7
,
a
n
d
t
h
e
w
e
i
g
h
t
f
o
r
t
h
e
p
o
p
u
l
a
t
i
o
n
t
a
k
i
n
g
f
o
r
m
B

i
s
.
5
1
3
.

130



131

Similarities Among Outcomes of Various Equating Methods

The equating results of the Tucker method and the other equating methods are

compared in this section. The positive and significant strong relationships among these

results (see the underlined correlation coefficients in Table 17) indicate similarities among

these various equating outcomes. Individual examinees were ordered in a similar way,

regardless of the equating method used.

Comparisons between the outcomes of the two IRT-based methods have been

discussed previously and considerable similarities are found. Using the same strategies --

Pearson’s r, dependent-samples Most, and scatter plot, results of the Tucker method and

the fi'equency-estimation equipercentile method are compared. The large Pearson’s rs

between the outcomes of these two methods in Table 17 suggest that these methods

yielded almost identical rank order for individual examinees. For each of the four sampled

tests, the correlation is nearly perfect (r > .999). The scatter plots in Figure 7 further

confirm the similarities.

Except for the plot for sampled test SR, each of the scatter plots in Figure 7 clearly

shows one single narrow straight line. This indicates great resemblance of Tucker

equating outcomes to the outcomes of the equipercentile method. The plot for sampled

test SR shows that the outcomes of the Tucker and equipercentile methods were similar

when their resulting equivalent scores were in the middle range or at the high end of the

score scale. However, they differed slightly when their resulting scores were at the low

end (between scores 20 and 30) of the score scale. This suggests that the equating

outcomes of the two methods were very similar when examinees had medium or higher

scores. The outcomes only differed slightly for the examinees with pretty low scores.



T
a
b
l
e

1
7

-
R
e
l
a
t
i
o
n
s
h
i
p
s
A
m
o
n
g
V
a
r
i
o
u
s
E
q
u
a
t
i
n
g
O
u
t
c
o
m
e
s

f
o
r
D
i
f
f
e
r
e
n
t
S
a
m
p
l
e
d
T
e
s
t
s

 

P
e
a
r
s
o
n
'
s
C
o
r
r
e
l
a
t
i
o
n

C
o
e
f
fi
c
i
e
n
t
(
r
)

E
q
u
a
t
i
n
g
M
e
t
h
o
d

 

T
u
c
k
e
r
L
i
n
e
a
r
m
e
t
h
o
d

E
q
u
i
p
e
r
c
e
n
t
i
l
e
M
e
t
h
o
d

I
R
T
-
B
a
s
e
d
L
i
n
e
a
r

T
r
a
n
s
f
o
r
m
a
t
i
o
n
M
e
t
h
o
d

I
R
T
-
B
a
s
e
d
F
i
x
e
d
-
b
M
e
t
h
o
d

 

S
R

E
W

P
W

P
S

S
R

E
W

P
W

P
S

S
R

E
W

P
W

P
S

S
R

E
W

P
W

P
S

 

S
R

T
u
c
k
e
r
L
i
n
e
a
r

E
W

M
e
t
h
o
d

P
W

P
S

1
.
0
0
0

0
.
7
8
2

0
.
7
9
5

0
.
8
1
0

1
.
0
0
0

0
.
7
8
2

0
.
7
5
5

1
.
0
0
0

0
.
7
9
5

1
.
0
0
0

 

S
R

0
.
7
9
5

0
.
8
1
0

E
q
u
i
p
e
r
c
e
n
t
i
l
e

M
e
t
h
o
d

E
W

P
W

P
S

1
.
0
0
0

I
0
.
7
8
3
 

0
.
7
5
4

 

0
.
7
8
2

I
1
.
0
0
0

I
0
.
7
8
2

1
.
0
0
0

0
.
7
8
3

1
.
0
0
0

0
.
7
9
5

0
.
8
1
0

0
.
7
8
1

I
w
e
;

I
0
.
7
9
4
 

0
.
7
5
5

0
.
7
9
5
L
1
.
0
0
0

0
.
7
9
5

0
.
8
1

1

0
.
7
8
1

0
.
7
5
4

1
.
0
0
0

0
.
7
9
4

1
.
0
0
0

 

S
R

 I
R
T
-
B
a
s
e
d

L
i
n
e
a
r

T
r
a
n
s
f
o
r
m
a
t
i
o
n

M
e
t
h
o
d

E
W

P
W

P
S

1
%

0
.
7
8
6

0
.
7
6
8

0
.
7
9
5

0
.
7
8
0

9
9
—
6
4
;

0
.
7
5
0

0
.
7
3
9

0
.
7
9
1

1

0
.
7
8
7

0
&
4

0
.
7
7
1

0
.
8
3
4

0
.
7
7
6

0
.
7
7
3

m

0
.
7
9
0

0
.
8
3
4

0
.
9
6
4

I
0
.
7
8
0
 

0
.
7
8
6

I
0
.
9
6
4

I
0
.
7
8
6

0
.
7
7
6

 

0
.
7
6
7

0
.
7
5
0

I
0
.
9
4
4

I
0
.
7
7
4

 

0
.
7
9
4

0
.
7
3
9

0
.
7
7
0
I
O
.
9
7
3

1
.
0
0
0

0
.
8
1

1

0
.
7
8
5

0
.
8
4
2

1
.
0
0
0

0
.
7
7
6

0
.
7
7
1

1
.
0
0
0

0
.
7
4
8

1
.
0
0
0

 

S
R

[
R
T
-
B
a
s
e
d

F
i
x
e
d
-
b

M
e
t
h
o
d

E
W

P
W

P
S   m 0

.
7
8
3

0
.
7
8
5

0
.
7
9
9

0
.
7
7
9

M
1

0
.
7
7
1

0
.
7
4
0

0
.
7
9
0

0
.
7
8
5

0
.
2
6
;

0
.
7
7
4

0
.
8
3
1

0
.
7
7
0

0
.
8
0
1

0
.
9
7
2

0
.
9
6
2
I
O
.
7
7
9

0
.
7
8
9

0
.
8
3
1

  0
.
7
8
4

I
0
.
9
6
0

I
0
.
7
8
4

0
.
7
7
0

 

0
.
7
8
4

0
.
7
7
1

I
0
.
9
6
3

I
0
.
8
0
1
 

0
.
7
9
9

0
.
7
3
9

0
.
7
7
3

I
0
.
9
7
2

 0
&
9

0
.
8
0
8

0
.
8
0
4

0
.
8
4
6

0
.
8
1
0

0
_
9
fl

0
.
7
9
8

0
.
7
7
2

0
.
7
9
1

0
.
7
8
9

m 0
.
7
8
2

0
.
8
3
7

0
.
7
5
9

0
.
7
9
3

Q_
.9
_8
2
 1

.
0
0
0

0
.
8
1
0

0
.
8
0
2

0
.
8
4
6

1
.
0
0
0

0
.
7
9
5

0
.
7
7
1

1
.
0
0
0

0
.
7
9
5

1
.
0
0
0

 
 

N
o
t
e
.
A
l
l
o
f
t
h
e
P
e
a
r
s
o
n
'
s
r
s
a
r
e
s
i
g
n
i
fi
c
a
n
t

a
t
(
1
:
0
1
.

132



 

133

 

 

 

   

 

 

 

  
 

 

 
 

 

  

   

 

 

 

   

 

EW PW

7 0 —-——— 60

50 e ’ an e 4".-

'5 5° ‘* : E 50 4r -'..

a ‘5’ __.-

:3 :1 __.

LS- so .. L3 40 <- ....-

2 2 ,-
ca

'
J-

8 40 4} g 30 ‘L _-

a a . "’
8. r>.999** 8' .1" r>.999**

.. 3° 1* 4r .... 2., .. -

=3 " = .

[S 20 . . - . LS- .

20 3o 40 so 60 7o '0 ' ' r f
10 20 so 40 so so

Tucker Method Tucker Method

PS SR

60 - 60

'8
e I, .8

e ..--

so <1- ._I ...,-

§ ..- g 50 4 ...

2 -.-' 2 if!

2 ‘0 T- I... ” ...

a ,x' g 4° ‘*
30 ,-

§ f ** e - . *1:

.g‘ .r’ 0'999 8. 30 5r '1' p.999

5- 20 T _..l' 5 =1.

l0 r . fl . 20 ' - 4 :

IO 20 30 40 so 60 20 3o 40 so so

Tucker Method Tucker Method

 
 

Note. (1) e is the resulting equivalent score; (2) **- Significance level less than .01.

Figure 7 - Relationship Between Equating Outcomes of the Tucker Method and the

Frequency-Estimation Equipercentile Method
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The relationships between the IRT-based equating outcomes and the non-IRT

equating outcomes were not as strong as the relationship between the outcomes of the

two IRT-based methods. They were also less strong than the relationship between the

outcomes of the Tucker and equipercentile methods. The Pearson’s rs between the IRT-

based and the non-IRT equating outcomes ranged from .944 to .973 (see the underlined

correlation coefficients in Table 17). This finding refbcts the logical differences between

the IRT-based equating approach and the conventional equating approach.

Evaluation of Equating Accuracy

The accuracy of equating outcomes was evaluated using four different criteria. An

index of equating accuracy was computed by correlating resulting equivalent scores from

different methods to each of these criterion scores: (a) total raw scores on the 145 anchor

items (Raw-145), (b) IRT-estimated true scores on the 145 anchor items (IRT-145), (0)

resulting equivalent scores of the frequency-estimation equipercentile method on equating

the two original test forms (FE-long), and ((1) resulting equivalent scores of the

equipercentile method on equating the sampled test forms (FE-short). The last two

criteria, FE-long and FE-short, were arbitrary criteria for evaluating equating accuracy.

However, FE-long was expected to be more reliable. FE-short was used to facilitate an

examination on evaluation bias caused by using an arbitrary criterion for evaluating

equating accuracy. By correlating the outcomes of the other three equating methods to

the outcomes of the equipercentile method on the sampled tests, this study examined

estimation bias due to the arbitrary nature of FE-short.
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W

Before presenting the massive information, in details, regarding findings from

studies of equating accuracy, this section first previews selected important results to

highlight major findings.

In brief, using Raw-145 and IRT—145, this study found that the IRT-based

equating outcomes were more accurate than those outcomes of the linear and

equipercentile methods were. Although the difi'erences between the estimated equating

accuracy of the IRT-based methods and the non-IRT-based methods were small, statistical

significance tests for the differences concluded that they were statistically significant at

(12.05. However, the statistically significant but little improvement of the IRT-based

methods in equating accuracy might not have practical significance. Among various

sampled tests, equating results for sampled test PS were often the most accurate,

regardless of the equating method used. The twofold implications of this finding, in

improving equating accuracy for common-item equating practice, are:

0 It is important to include anchor items that are representative of the total test in

content.

0 It is also useful to construct test forms with items that are more homogeneous in their

content, or to limit the content coverage of test forms to a small number of topics.

In addition, the findings from EF-long and EF-short confirmed that the use of an

arbitrary criterion would lead to erroneous assessment outcomes of equating accuracy, as

concluded in the literature (Dorans & Kingston, 1985; Harris & Crouse, 1993).

Table 18 summarizes the estimation results of equating accuracy for outcomes

from various equating methods on different sampled tests, using three different evaluation
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Table 18 - Accuracy of Equating Outcomes from Various Equating

Methods on Different Sampled Tests

 

 

 

 

 

 

 

 

Criterion for Evaluating Equating Accuracy

Index of Equating

Accuracy "Pseudo True Score"

(Pearson's r) FE-long

Raw-145 IRT-145

SR 0.832 0.819 0.884

Tucker Linear EW 0.859 0.829 0.880

Method PW 0.860 0.839 0.883

PS 0.892 0.898 0.903

SR 0.832 0.819 0.884

Equipercentile EW 0.858 0.829 0.880

Equating

Method PW 0.859 0.838 0.882

PS 0.892 0.898 0.903

SR 0.856 0.860 0.897

IRT-Based

Linear EW 0.877 0.870 0.893

Transformation

Method PW 0.845 0.839 0.864

PS 0.894 0.917 0.897

SR 0.854 0.858 0.896

IRT-Based EW 0.873 0.865 0.889

Fixed-b

Method PW 0.870 0.867 0.888

PS 0.895 0.916 0.898    
 

Note. All of the indices of equating accuracy (the Pearson's r s between the

criterion scores and the resulting equivalent scores of an equating method) are

significant at 0t=.01.

 



137

criteria -- Raw-145, IRT-145, and FE-long. The evaluation results of equating accuracy

using FE-short are included in Table 17 (see the bordered Pearson’s correlation

coemcients). Details of analysis outcomes on equating accuracy are presented below.

First, the estimation of equating accuracy using Raw-145 is discussed. The results based

on IRT-145 follows. Then, results from FE-long are examined, followed by an inspection

on the results from FE-short.

El'II'B-IIS L!"

The total raw scores on all of the 145 common anchor items (Raw-145) in the

original item pool were treated as "pseudo true scores" of individual examinees.

Therefore, it could be used as one type of criterion for evaluating equating accuracy.

Specifically, to study equating accuracy of the IRT-based methods, the equivalent true

scores estimated by the two IRT-based equating methods were correlated to Raw-145.

Raw-145 was also correlated to the equivalent scores resulted from the Tucker method

and the equipercentile method to estimate the accuracy of these equating outcomes. The

resulting Pearson’s rs indicated the degrees of accuracy for the equating outcomes of

these four methods. These evaluation outcomes of equating accuracy are summarized in

the first numeric column of Table 18.

WW.Using Raw-145 as a criterion,

the indices of equating accuracy ranged from .832 to .895 for various sampled tests and

equating methods. Overall, all four equating methods yielded accurate results to a

moderate degree for the four sampled tests. For each sampled test, the accuracy of

equating outcomes from the four equating methods differed slightly. The outcomes of the



138

IRT-based methods were consistently more accurate than those of the non-IRT methods,

regardless of the sampled test forms being equated. The only exception occurred on

sampled test PW, where the Pearson’s rs of the Tucker method (r=.860) and the

equipercentile method (1:859) were slightly larger than the IRT-based linear

transformation method (H.845). Therefore, these diflerences were tested for their

statistical significance.

Suppose equating accuracy of two equating methods, Y and Z, are compared. Let

X be the criterion Raw-145. The significance test statistic appropriate for the dependent

samples in this study is

 

(rer - rle )‘[(n - 3)(1+ r”)

t = 2 2 2 , (9.2)

J2(1- rxy -rxz —ryz +2rxyrzryz)

where x is the Raw-145 criterion-score (the total raw scores on all of the 145 common

anchor items), y is the resulting equivalent score of method Y, z is the resulting

equivalent score of method Z, and n is the sample size (Hinkle, Wiersma, & Jurs, 1979).

In essence, the statistic r,0 represents the estimated equating accuracy of method Y, and

represents the estimated equating accuracy of method Z. The statistic ryz estimates
r12

the relationship between the equating outcomes of methods Y and Z. The underlying

distribution of this test statistic is the Student’s t—distribution with n — 3 degrees of

fieedom. The critical values of the test statistic for this study are 11.962, because all the

tests will be non-directional, the level of significance is set at 0t=.05, and there will be



139

1,146 degrees of freedom.

For sampled tests SR and EW, where the IRT-based methods had slightly larger

indices of equating accuracy than the non-IRT methods, the significance tests found all

those difierences significant (ltl >l.962). For sampled test PS, although the IRT-based

methods also lmd slightly larger indices of equating accuracy than the non-IRT methods,

the significance tests found no significant difi'erences because the difl'erences were so

small. For sampled test PW, no matter the IRT-based methods had larger or smaller

indices of equating accuracy than the non-IRT methods, none of the differences were

significant.

Across sampled tests, the Tucker method and the equipercentile method had

almost identical indices of equating accuracy. Statistically, none of the differences

between the two methods was significant. It suggests that these two methods produced

equally accurate outcomes, when Raw-145 was used as a criterion for evaluating equating

accuracy. This finding coincides with the similarities previously found between the two

methods (as shown in Figure 7).

In summary, there is a clear pattern across sampled tests in Table 18 showing that

the IRT-based equating outcomes were more accurate than those outcomes of the Tucker

linear and the equipercentile methods. Despite the fact that the improvements of the IRT-

based equating methods were not much, they were statistically significant. While such

small improvements may not have practical significance for equating in some occasions,

they can be very valuable in some other occasions, especially when there is a strong

demand for precise equated scores such as high-stake certification examination.

Information on the degree of equating accuracy will help to make decisions about which
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equating method to use for a particular testing program in a particular equating context.

MW.Using the criterion Raw-

145, this study also found that both conventional and IRT-based methods worked best on

equating PS-A and PS-B. The average index of equating accuracy was .893. All methods but

the IRT-based linear transformation method yielded the least satisfactory results on equating

SR-A and SR-B, and the average accuracy was .839. The results of statistical significance tests

concluded that, regardless of the equating method used, the equating outcomes for sampled

test PS were significantly more accurate than the outcomes for SR. In addition, although

the IRT-based linear transformation method had the least accurate result on equating PW-A

and PW-B (n.845), this outcome was not significantly different from the outcome of the

same method on equating SR—A and SR-B. Overall, all of the four equating methods

produced the least accurate outcomes for SR.

For sampled test PW, the average equating accuracy of the four methods was .858, and

it was .867 for EW. The accuracy of equating outcome from any of the equating methods,

except for the IRT-based linear transformation method, on equating PW-A and PW-B was not

significantly difl'erent fi'om the outcome of the same method on equating EW-A and EW-B.

The linear transformation method yielded slightly more accurate outcome for EW than it did

for PW.

In summary, regardless of the equating method used, the overall equating outcomes for

EW and PW were equally accurate. These outcomes were less accurate than those outcomes

for PS but more accurate than those outcomes for SR.

WWGiven the above findings and conclusions about the

equating accuracy for various sampled tests and of various equating methods, it is plausible that
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overall there was no method-test interaction on estimating the accuracy of equating. That is,

the relative equating accuracy of difi‘erent equating methods did not depend on the particular

test forms being equated, and the equating accuracy for difi'erent sampled tests were

independent of the particular equating method used.

As mentioned earlier,

 

regardless of the equating method used, the equating results for sampled test PS were always

the most accurate and the results for SR were always the least accurate. The twofold

interpretations for these findings are:

0 By the means of item-sampling designs, both PS-A and PS-B had items that were the most

homogeneous in content, and both SR-A and SR—B had items that were the least

homogeneous in content. The above findings therefore suggest that equating outcome

based on a set of more content homogeneous items is likely to be more accurate than

equating outcome based on a set of less content homogeneous items.

0 Also, because of item sampling, PS-A and PS-B had anchor items that were the most

representative to their total tests in content, and SR—A and SR-B had anchor items that

were the least representative to their total tests. The above findings suggest that equating

outcomes on a test containing content-representative anchor items is likely to be more

accurate than the equating outcomes on a test containing less content-representative

anchor items.

In short, equating accuracy depends on content homogeneity of test items in the test

forms being equated. Equating accuracy also varies with the content representativeness of

anchor items embedded in the test forms being equated. To improve equating accuracy, a

testing program can use test forms composed with content-homogeneous items, given it is
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realistic. For common-item equating, it is also important to include anchor items that

adequately mirror a total test in content.

WThe Pearson’s rs used to represent the

degrees of equating accuracy were contaminated by an artifact of auto-correlation. The

auto-correlation was caused by the fact that the sampled tests overlapped with the criteria

for evaluating equating accuracy on some items. In the cases where Raw-145 or IRT-145

was used as a criterion, all of the anchor items embedded in various sampled tests

overlapped with part of the criterion, because these sampled anchor items were subsets of

the “anchor universe” containing all the 145 anchor items. Due to such overlap of items,

the resulting Pearson’s rs were inflated. The resulting indices of equating accuracy were

overestimated.

To study the impact of auto-correlation on the estimation of equating accuracy, the

degrees of equating accuracy were estimated by excluding the anchor items from the

sampled tests and then correlating the resulting IRT-estimated true scores on these

reduced sampled tests to the scores of Raw-145. The correlation outcomes are

summarized in APPENDIX C. This strategy for controlling artifact of auto-correlation,

however, was not applicable in the cases where the Tucker linear method or the

frequency—estimation equipercentile method was used for equating.

In the cases of the IRT-based equating outcomes, it is feasible and convenient to

drop the anchor items and obtain a set of new total scores. This is because the IRT item

parameters were estimated on an individual basis. Such advantage of IRT item calibration

renders ease and convenience for test revision (to add or drop items). Based on observed

test scores, the two non-IRT equating methods do not have the same flexibility. Their
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resulting equivalent test scores can only be interpreted as a whole, that is, when the test

forms being equated are kept intact. In addition, the necessary re-equating after dropping

the anchor items is time-consuming and laborious. Although it is technically possible to

obtain the difference scores between the resulting equivalent total scores and the subtotal

scores based on only the common anchor items, such difl'erence scores are not practical or

logically sound. Therefore, the strategy for controlling artifact of auto-correlation was not

used with the Tucker linear method and the frequency-estimation equipercentile method.

The magnitudes of the previously inflated indices of equating accuracy only

attenuated slightly (less than .01), after controlling the auto-correlation (see the bordered

and bolded Pearson’s rs, before and after the adjustment for auto-correlation, in

APPENDIX C). Also, the slight attenuation was not statistically significant. In addition,

for various equating methods and sampled tests, the rank-order patterns of these indices

remained the same as before the adjustment for auto-correlation. These similarities

between the indices computed before and after the adjustment for auto correlation suggest

that the impact of the auto-correlation was not serious or substantial on the estimation of

equating accuracy. The unadjusted indices of equating accuracy remained valid. The

findings, discussions, and conclusions based on these unadjusted indices were retained.

It is noted that the strategy used for controlling the artifact of auto-correlation did

not completely eliminate the influence of the auto-correlation. Part of the artifact

originated in the IRT—parameter estimation process and was therefore not easy to be

controlled. Nevertheless, despite such difliculty, the strategy provides a useful alternative

for improving the studies on the efl'ectiveness of various equating methods and the eflect

of content representativeness.
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Rehabihtxanflaliditxefldenmunchottem Validity and reliability evidence

for anchor tests, embedded in the sampled tests, provide sound basis for validating

findings from equating studies and reaching for plausible conclusions. By excluding the

non-anchor items fiom the sampled tests, and then correlating the resulting IRT-estimated

true scores on these reduced sampled tests (containing sampled anchor items only) to the

scores of Raw-145, this study examined reliability and validity of anchor items, embedded

in the various sampled tests. The investigation outcomes are summarized in APPENDIX

D.

Raw-145, a type of the “pseudo true score”, was regarded as a similar but more

reliable measure to the score on the anchor test. This is because the anchor items included

in the four sampled tests were all subsets of the “anchor universe”, based on which the

“pseudo true score” was computed. The “anchor universe” contained all the 145 anchor

items available for this study, which was substantially more than the number of items in the

sampled anchor tests. Therefore, the correlation coeflicient between Raw-145 and the

score on the anchor test could provide concurrent validity evidence for the anchor test.

Moreover, fi‘om the perspective that a correlation coefficient was computed between an

observed score (the score on the anchor test) and its true score (the “pseudo true score”),

the Pearson’s r also represented reliability of the anchor test.

The statistically significant Pearson’s rs in APPENDIX D provide strong evidence

of validity and reliability for the anchor tests in the four sampled tests. The average

validity (reliability) was .895 for the anchor test embedded in PS. It was .875, .859 and

.856 for the anchor tests of EW, PW, and SR respectively.
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El . 11' 181-145 C' .

The second criterion for evaluating equating accuracy, IRT-145, was also based on

the 145 common anchor items as the first criterion. It was the IRT-estimated true score

on the 145 anchor items. Different from Raw-145, IRT-145 was not susceptible to the

drawback of being person-dependent and item-dependent. Using IRT-145 as a criterion,

Pearson’s rs were computed to measure the degree of accuracy as before.

A summary of the evaluation outcomes of equating accuracy using IRT-145, for

various equating methods and sampled tests, is included in Table 18 (see the second

numeric column). As shown in the table, these outcomes were very similar to the

evaluation outcomes resulted from Raw-145. More details of the evaluation outcomes

from IRT-145 are presented below. Similarities and differences between the outcomes

from IRT-145 and Raw-145 are discussed.

WWWUsing the IRT-based

criterion, the estimated equating accuracy ranged from .819 to .917 for various equating

methods and sampled tests. As Raw-145, IRT-145 also found that all of the four methods

yielded accurate results to a moderate degree, and the two IRT-based equating methods

yielded significantly more accurate results than the Tucker linear method and the

equipercentile method. The only exception is that the accuracy of the outcomes of the

IRT-based linear transformation method on equating PW-A and PW-B was no different

from those of the Tucker and the equipercentile methods. This exception, however, did

not affect the overall conclusion that the IRT-based methods had more accurate outcomes

than the non-IRT methods had.
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WWW. As mentioned earlier. one of the

concerns about using an IRT-based criterion is that such criterion may overestimate the

equating accuracy of the IRT-based equating methods. In this study, however, IRT-145

did not seem to favor the IRT-based equating methods. Overall, IRT-145 did not

systematically produce larger indices of equating accuracy for the IRT-based methods than

for the non-IRT methods.

Contrasting the indices of equating accuracy yielded by Raw-145 and IRT-145 in

Table 18, this study found that for only half of the time, IRT-145 yielded slightly larger

indices than Raw-145 did for the IRT-based equating outcomes. For the other half of the

time, Raw-145 yielded slightly larger indices than IRT-145 did for the outcomes from the

IRT-based methods. In addition, most of these small differences between IRT-145 and

Raw-145 were not statistically significant. Thus, IRT-145 was not biased in

overestimating the equating accuracy of the IRT-based methods.

 

Using IRT-145, this

study found that all of the equating methods worked best on equating sampled test forms PS-A

and PS-B. For sampled test PS, the average index of equating accuracy across various

equating methods was .907 (see Table 18). On equating SR-A and SR-B, however, all but

the IRT-based linear transformation method produced the least accurate results. The average

index ofequating accuracy over various methods was .839 for SR.

Combining the results of statistical significance tests for the difl‘erences between the

equating accuracy for sampled tests PS and SR, it is found that regardless of the equating

method used, the equating outcomes for PS were significantly more accurate than the

outcomes for SR. Although the IRT-based linear transformation method yielded the least
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accurate result when equating PW-A and PW-B, the index of equating accuracy obtained for

SR (.860) was not significantly larger than the index for PW (r=.839).

For sampled test PW, the average equating accuracy of the four methods was .846, and

it was .848 for EW. The accuracy of equating outcome fi'om any of the equating methods,

except for the IRT-based linear transformation method, on equating PW-A and PW-B was not

significantly difierem from the outcome of the same method on equating EW-A and EW-B.

The linear transformation method yielded slightly more accurate outcome for EW than it did

for PW.

In summary, regardless of the equating method used, the equating outcomes for EW

and PW were equally accurate most of the time. These outcomes were less accurate than

those outcomes for PS but more accurate than those outcomes for SR. Combined with all the

other findings, this finding led to the same conclusion of Raw-145 -- there was no method-test

interaction on estimating the accuracy of equating. Overall, using IRT-145 as a criterion for

evaluating equating accuracy led to findings that are very similar to those yielded by Raw-145,

and the conclusions reached by these two true-score-based criteria are exactly consistent.

 

- . Given the above findings and

conclusions about the equating accuracy of various methods and for different sampled tests,

IRT-145 also found that equating accuracy depended on content homogeneity of a set of test

items and the content representativeness of anchor items. The finding suggests that when an

anchor test was more content representative of its total test, regardless of the equating method

used, the equating result for this test would be more accurate.

WWW As Raw-145, the estimates of equating

accuracy yielded by IRT-145 are also susceptible to the artifact of auto-correlation, due to
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overlap of items fi'om the sampled tests and criterion tests. Therefore, the same strategy

used to control the impact of the auto-correlation for the equating results based on Raw-

145 was applied to improve the auto-correlation problem.

The resulting Pearson’s rs, adjusted for the artifact of auto-correlation, are

included in APPENDIX C. Compared to their corresponding unadjusted Pearson’s rs,

they show only a trivial amount of attenuation in their magnitudes (less than .01). In

addition, the rank-order patterns of these indices of equating accuracy, before and after

the adjustment, are pretty much the same. These findings suggest that the impact of the

auto-correlation was not serious for the estimation of equating accuracy. The conclusions

based on the unadjusted indices of equating accuracy should remain valid.

WW. Regarding IRT-145 as a

“pseudo true score”, the concurrent validity and reliability of the anchor tests of various

sampled tests were estimated. The estimation was conducted in a way similar to the

validity and reliability studies described earlier, where Raw-145 was regarded as the

‘pseudo true score”. Using IRT-145, the evidences of validity and reliability for the

anchor tests were found to be satisfactory. These assessment outcomes are recorded in

APPENDIX D, with the outcomes from Raw-145.

The large positive Pearson’s rs between the “pseudo true scores” and the scores

on the anchor tests, shown in APPENDIX D, provide evidences of reliability and validity

for each of the four sampled tests. These measures of validity (reliability) range fiom .839

to .917 and are all statistically significant at (1 =01. On average, the validity (reliability)

of the anchor test embedded in sampled test PS is .917. The average validity (reliability)

measures are .868, .854, and .860 respectively for the anchor tests of EW, PW, and SR.
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These evidences of reliability and validity improve the chance for the research outcomes in

this study to be valid.

E l . ll . EE-l C . .

The two original test forms -- Book A and Book B -- had many more items than

the sampled test forms. These two forms were equated by the frequency-estimation

equipercentile method, and the equating outcome was regarded as a more reliable criterion

(FE-long) for evaluating equating accuracy because it was based on a test similar to but

longer than the sampled tests. Using FE-long, the accuracy of various equating methods

on equating the two forms of a sampled test was evaluated. As before, Pearson’s r

between the criterion score of FE-long and the resulting equivalent score on the sampled

test was computed to represent the degree of equating accuracy of a particular equating

method on a particular sampled test. The evaluation outcomes of equating accuracy are

summarized in Table 18 (see the third numeric column).

WW.Using FE—long, all

the outcomes of the four equating methods were estimated to be moderately accurate as

before. The equating accuracy of various methods for different sampled tests ranged from

.864 to .903. Across various sampled tests, the average index of equating accuracy for the

IRT fixed-b method was .893 (see Table 18), very close to the index for the IRT-based

linear transformation method (r=.888). The Tucker linear method and the equipercentile

equating method had the same degree of accuracy on average (r=.887). However,

compared to Raw-145 and IRT-145, FE-long often resulted in larger indices of equating

accuracy. The larger Pearson’s rs are in part attributed to the worsening artifact of auto-
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correlation. In such cases, the impacts of the auto-correlation were more serious (than

they were when the other criteria were used), because there was much more overlap

between FE-long and the sampled tests. The sampled tests were all subsets of FE-long.

Moreover, using FE-long, the outcomes of the IRT-based equating methods were

not always estimated to be more accurate than those outcomes from the non-IRT

methods. This is somewhat different from the findings based on Raw-145 and IRT-145.

Even when the outcomes of the IRT-based equating methods appeared to be more

accurate, their improvements over the other methods were often not significant, or not as

large as when the other criteria were used to estimate equating accuracy. The artifact of

auto-correlation may explain such differences between the results fiom FE-long and the

results fi'om the previous two criteria. The worsening auto-correlation, associated with

FE-long, could result in similar indices of equating accuracy. In such case, the dependent

samples t-test could not detect the real differences. This explanation is supported by the

facts that the indices of equating accuracy resulted fi'om FE-long (shown in Table 18) had

the narrowest range (.039) and the smallest standard deviation (.01). For Raw-145, the

range was .063 and the standard deviation was .021. Evaluation outcomes of IRT-145

had the widest range (.098) and the largest standard deviation (.033).

Ideally, FE-long should be a more reliable criterion and thus provide an alternate

way to study equating accuracy. However, such advantage of FE-long was smeared by its

inherent problem of auto-correlation and its nature of being an arbitrarily selected

criterion.

W.The evaluation results from FE-long

show that, regardless of the equating method used, the equating results for sampled test
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PS were the most accurate among the results for all of the four sampled tests. On

equating PS-A and PS-B, there were no statistical significant differences among the

equating accuracy of the four methods. The average equating accuracy across the

methods was r—-.900. Across the methods, the average accuracy for SR was r=.890.

However, on equating SR—A and SR—B, the outcomes of the IRT-based methods were

slightly but significantly more accurate than the outcomes of the non-IRT methods.

Across the four sampled tests, the two IRT-based methods had the least accurate

outcomes on equating PW-A and PW-B. For PW, while the outcome of the IRT-based

linear transformation method was slightly (but significantly) less accurate than the

outcomes of the non-IRT methods, significance test results also show that the outcome of

the IRT-based fixed-b method was no different fi'om the outcomes of the Tucker and the

equipercentile methods.

Across the sampled tests, the non-IRT methods had the least accurate outcomes

on equating EW-A and EW-B. For EW, the outcomes of the non-IRT methods were

slightly (but significantly) less accurate than the IRT-based linear transformation method.

However, significance test results also show that the outcomes of the Tucker and the

equipercentile methods were no different from the outcome of the IRT-based fixed-b

method.

In summary, many of the findings based on the criterion FE-long are not consistent

with the findings based on the first two true-score based criteria. The improvement of the

IRT-based equating methods over the non-IRT methods in equating accuracy is not

clearly confirmed. In addition, the efiect of content homogeneity of test items and the

efi‘ect of content representativeness of anchor test, on estimating equating accuracy, are not
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clear. Although the equating outcomes for PS seemed always more accurate than the

outcomes for the other three sampled tests, regardless of the method used for equating its two

forms, such advantage of PS was not always significant statistically. The patterns of the

accuracyindicesacrossthesampledtestswerenotclear,becausetheresultingirrdicesof

equatingaccuracyfi’omFE-long hadsirnilarvahres. Theinconsistencies between these findings

and the previous findings are in part attributed to the problem of more serious auto-conelation

underlying the criterion FE-long. They can also be partly accounted for by the vulnerability of

FE-long, due to the fact that it was an arbitrarily selected criterion for evaluating equating

accuracy. An implication fiom these conclusions is that accuracy of an arbitrary criterion itself

is important, and should receive special attention, in evaluating efi'ectiveness of the other

equating outcomes.

It is common practice to use some arbitrary criterion for evaluating equating

accuracy. However, the estimation of equating accuracy based on an arbitrary criterion is

often biased because of the subjectivity of the particular criterion used. Therefore, it is

one of the particular interests of this study to investigate the potential bias due to the

arbitrary nature of a criterion for evaluating equating accuracy.

W.The arbitrary criterion being studied

was the outcome of the equipercentile method on equating the two forms of a sampled

test (BF-short). Such an arbitrary criterion was established for each of the four sampled

tests so that the relative equating accuracy of the other three equating methods (the

Tucker method and the two IRT-based methods) could be estimated. In addition to the
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index of equating accuracy (Pearson’s r), the root-mean-squared deviation (RMSD)

statistic was also used as a second measure for equating accuracy. RMSD was

appropriate for the estimation of equating accuracy in this study, because the outcomes of

the equating methods being evaluated and the criterion FE-short were all based on the

same sampled test. As a result, the resulting equivalent scores fi'om the three methods and

the criterion score were on the same scale.

WWWUsing FE-short, the indices of equating

accuracy were computed for the Tucker method and the two IRT-based methods. The

resulting indices are presented in Table 17 (see the bordered Pearson’s rs). In summary,

these indices differed somewhat from the indices resulted from the previous three criteria.

While the previous indices suggest moderate equating accuracy of various methods on

difl'erent sampled tests, the indices produced by FE-short suggest much higher degree of

equating accuracy. The indices based on FE-short ranged fi'om .944 to 1, while the

indices based on FE-long ranged from .864 to .903, those based on Raw-145 ranged fi'om

.832 to .895, and those based on IRT-145 ranged from .819 to .917. These findings

suggest potential bias due to the use of an arbitrary criterion.

Averaged across various sampled tests, the mean accuracy of the outcomes from

the IRT-based linear transformation method and the fixed-b method were .961 and .964

respectively. The similarity between the two IRT-based methods is consistent with

previous findings produced by the other criteria. Based on FE-short, a finding

dramatically different from the previous findings is that the outcome of the Tucker linear

method was significantly more accurate than the outcomes of the IRT-based methods.

The indices of equating accuracy for the Tucker method over various sampled tests were
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all close to 1, suggesting nearly perfect accuracy. This finding also suggests that FE-short

was biased in evaluating equating accuracy. Arbitrarily selected to be a criterion, FE-short

overestimated the accuracy of the outcome fiom the Tucker method. Relatively speaking,

this non-IRT-based criterion might have underestimated the outcomes from the IRT-based

equating methods. This conclusion is compatible to those reached in the literature about

the bias against the IRT-based equating outcomes.

Despite its drawbacks discussed above, FE-short still found the equating results on

PS the most accurate among the equating results on all four sampled tests, regardless of

the equating method used. This finding provides some evidence for the effect of content

representativeness of anchor test.

W.The evaluation outcomes of equating

accuracy measured by the RMSD statistic are summarized in Table 19. Overall, these

outcomes agreed with the previous findings about equating accuracy measured by the

Pearson’s r. However, there were still small discrepancies between the outcomes yielded

by the RMSD and the Pearson’s r.

The RMSDs for various equating methods on different sampled tests in Table 19

suggest that the equating outcomes of the Tucker method were more accurate than the

outcomes of the two IRT-based methods all the time. This is consistent with the

conclusion reached by the Pearson’s rs about the differences between the equating

methods. Across the four sampled tests, the RMSD for the Tucker method ranged fiom

.102 to .177, while the RMSDs for the IRT-based methods ranged fiom 1.871 to 2.314.

They indicate that the IRT-based equating outcomes deviated more from the criterion

equating (FE-short) than the outcome of the Tucker Method.
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Table 19 - Root—Mean-Squared-Differences for

Evaluating Equating Accuracy

 

Equating Method

Sampled Test

 

PS EW PW SR

L—'_W——_l—_T

 

 

     

Tucker Linear Method 0.109 0.102 0.177 0.170

IRT-Based Linear

Transformation Method 1.871 1.955 2.314 2.019

IRT-Based Fixed—b Method 1.875 1.994 1.972 2.018

 

 



156

Different fi'om the finding based on the Pearson’s rs, the RMSDs suggest that only

when IRT-based equating methods were used, the equating results for sampled test PS

were more accurate than those for EW, PW, and SR. The Tucker method yielded more

accurate result for EW than for PW, SR, and P8. In addition, when the IRT-based linear

transformation method and the Tucker method were used, the equating results for PW

were the least accurate among the results for all sampled tests. The IRT-based fixed-b

method yielded the least accurate result for SR.

Comparing the estimation outcomes resulted from the Pearson’s r and the RMSD,

clearly, using different statistics to represent equating accuracy may lead to somewhat

difl'erent estimations. Therefore, when assessing accuracy of equating outcomes, it is

important to know how well a particular index of equating accuracy serves its purpose.

The natures of the statistics used to represent the degree of equating accuracy should be

taken into account when interpreting the estimation results of equating accuracy.

This study did not compute the RMSD statistic for all the equating outcomes and

mainly relied on using Pearson’s r to represent equating accuracy. The reason is that the

resulting equivalent scores from different methods and the various criterion scores were

not on the same scale most of the time. In such cases, Pearson’s r provides an efficient

and direct way to study the accuracy of equating outcomes. Although it is possible to

transform the resulting equivalent scores and put these scores and the criterion scores onto

the same scale, this study decided not to apply such transformation because: (a) score

transformation may introduce more errors, and (b) score transformation may complicate

the interpretations and implications of the analysis outcomes. In addition, from a practical

perspective, transformed scores usually require additional explanations and justifications.
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Therefore, this study chose to use Pearson’s r to keep the resulting equivalent scores

precise and the estimation outcomes straight, and to make the interpretations of analysis

results direct. Taking into account the limitations of the Pearson’s r, such as the issue of

auto-correlation, this study presents and discusses the outcomes of equating accuracy with

cautions.

The use of multiple criteria for evaluating equating accuracy in this study proves to

be very informative. The comparisons among the resulting evaluation outcomes of

various criteria render an opportunity to thoroughly study the effectiveness of various

equating methods and the effect of content homogeneity on equating accuracy.

W. The criteria Raw-145 and IRT-145 were both

computed using the 145 common anchor items. These anchor items show adequate

internal consistency. The Cronbach’s or was .866 for the raw scores on the 145 items, and

the Cronbach’s or was .869 when the item scores were standardized to have unit variances

(n=2,24l). The evidence of internal consistency suggests that the criteria Raw-145 and

IRT-145 were reliable. Raw-145 and IRT-145 also correlated positively and strongly to

each other (r=.982 at or=.01). They were appropriate for evaluating the equating accuracy

of the four methods in this study, because they were conceptually the “pseudo true

scores”.

Raw-145 and IRT-145 also complemented each other in improving the estimation

of equating accuracy. On one hand, Raw-145 did not over-estimate the equating accuracy

of the outcomes from the IRT-based methods. Instead, it provided conservative estimates
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of equating accuracy. On the other hand, IRT-145 was not susceptible to the problem of

person-dependent and item-dependent. By incorporating both Raw-145 and IRT-145, the

assessment of equating accuracy in this study was less prone to biases. Overall, these two

criteria yielded very similar estimates of equating accuracy.

WW. Both the other two criteria -- FE-long and FE-

short -- produced evaluation outcomes that were short of interpretable patterns and

largely inconsistent with the outcomes fi'om Raw-145 and IRT-145. This finding reflects

the drawback of FE-long and FE-short for being subjective and arbitrary. FE-long was

expected to be a more reliable criterion for evaluating the equating accuracy of the four

methods on the sampled tests, but its assessment outcomes were influenced by serious

auto-correlation and thus deviated considerably from those of Raw-145 and IRT-145. No

better than FE-long, FE-short led to conclusions that were dramatically different from

those of Raw-145 and IRT-145.

Despite the inability of FE-long and FE-short in producing precise estimates of

equating accuracy, one implication from the findings about the flawed criteria is that it is

critical to take into account the estimation errors accompanying an arbitrary criterion.

In summary, the use of multiple criteria and comparing their resulting assessment

outcomes guarded the estimation of equating accuracy from being biased by a single

arbitrary criterion. The results from using the strategy also cast valuable insights for

equating practice and future research, on selecting appropriate criteria for evaluating

equating accuracy.
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Construct Validity Issues

The test of the professional examination analyzed in this study was written to

measure an examinee’s professional ability (knowledge or skills). The professional ability

of an examinee partly depends on the examinee’s professional experience. In theory, the

more years of professional experience an examinee had accumulated, the more likely that

the examinee would score higher on the test. Such efi‘ect of professional experience

should exist for the two examinee groups taking different forms of a test, after the test

scores from the different forms are equated. Therefore, after the test forms were equated,

the construct validity of the test could be investigated by comparing the resulting average

equivalent scores of the two examinee groups. Based on this scenario, this study

conducted an investigation on the construct validity of the professional in-training test.

Specifically, using a set of equivalent scores on the original test, the effect of test

form, the effect of years of experience, and the interaction between these effects on the

examinee’s performance were studied. Since the equivalent scores for the original test had

been obtained by the equipercentile equating method in previous analyses for equating

accuracy, for the sake of completeness and convenience, this set of equivalent scores were

used for the group comparisons. The group means of the equivalent scores by test form

and by years of experience are summarized in Table 20. These group means were graphed

in Figure 8 to facilitate the inspection on the interaction effect of test form and years of

experience. In summary, there are evidences of construct validity for the equated original

test forms, and the equating outcomes were determined to be adequate.

If there were test form by experience interaction, the test would be lacking

construct validity, or the statistical adjustment made via the equipercentile equating was
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Table 20 - Average Equivalent Scores of Examinee Groups on the

Original Test by Test Form and Years of Experience

 

 

 

 
 

   
 

 

TCSt Form EISSZE; Mean Std. Dev. 11

1 133.374 17.682 380

Book A 2 147.116 15.087 352

3 155.816 13.185 359

1 137.826 16.366 409

Book B 2 150.435 15.262 367

3 157.761 13.148 361

Total 146.740 17.682 2228

2x3 ANOVA Result --

For "formxyears" interaction: F=1.27, p=.281, dffomxyeaF2, dfcm,=2,222, 0t=.05

 

 

 

 

 

     
 

 

 

 

    

Years Of Mean Std. Dev. 11

Expertence

1 135.682 17.147 789

2 148.810 15.256 , 719

3 156.792 13.193 720

Test Form Mean Std. Dev. 11

Book A 145.192 18.060 1091

Book B 148.226 17.188 1137  
 

method.

Note. (1) The equivalent scores were obtained by the equipercentile equating

(2) The few cases missing information about years of experiences were

excluded from the analysis.
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(2) The few cases missing information about years of
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Figure 8 - "Test Form" by "Years of Experience"

Interaction Effect
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inadequate. As shown in Figure 8, there is no crossed interaction between test form and

years of experience. The result of a significance test for the interaction effect further

indicates that there was no statistically significant interaction at 0t=.05 (F=1.27, p=.281).

Moreover, the means plot in Figure 8 and the group means presented in Table 20 show

that the more experienced group always had higher average scores than the other

group(s), no matter which test form was taken. The multiple comparisons using Tukey

and Scheffe’s tests further indicated significant differences among the groups differing in

years of experience (p=.000 for all of the possible comparisons). All of these findings

suggest that the equated test forms had construct validity.

As shown in Table 20, regardless of their professional experiences, the group

taking Book B always scored higher on average than the group taking Book A. The

significance test for the group difference further concludes that the two groups taking

different test forms differed significantly (p=.000) in their test performances at a

significance level of or=.05. This finding is not surprising, since it has been found in

previous chapters that the two examinee groups were slightly different in their abilities.

Issues of Test Dimensionality

Assuming unidirnensionality, the equating outcomes based on the 3PL IRT model

were conducted and their outcomes were found satisfactory. However, because there

were 23 core content areas nested within the single overall content domain underlying the

sampled tests, whether the IRT assumption of unidirnensionality held for the equatings in

this study is not clear. If there were indeed more than one traits underlying the test being

studied, regardless of the violation of the unidirnensionality assumption, the satisfactory
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IRT-based equating outcomes of this study would indicate robustness of the 3PL IRT

model. Nevertheless, in such case, equatings based on multidimensional IRT models may

be good alternatives. Therefore, to better understand the nature of the test being studied

and to probe its impact on the equating practice, this study explored the dimensionality

issues with a subset of manageable data.

Specifically, confirmatory and exploratory factor analyses were used to investigate

the dimensionality of a 45-item sub-test (all the items were common anchor items). To

avoid complicating the investigation with too many items or too many underlying factors

(there were potentially 23 factors corresponding to the 23 core content areas), this study

focused on the small sub—test. To include as many examinees as possible, the sub-test only

contained anchor items. Responses of the entire examinee population (n=2,241) on these

45 anchor items were analyzed. In theory, there were three distinct factors underlying the

45-item sub-test, because all the items were drawn from the sampled test PS and PS only

covered three of the 23 core content areas. The outcomes of the factor analyses are

summarized and discussed below.

Women

Considering the content structure of the sub-test, these models were appropriate

for confirmatory factor analyses: (a) a model with three underlying factors, (b) a model

with three first-order factors and one second-order factor, (c) a model with one overall

factor only, and (d) a model with three single-factor sub-models, each dealt with items

fi'om the same core content area (14 of the 45 items were from the same area, another 12

were from a second area, and the remaining items were from the third area).
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For dichotomously scored items, the Pearson’s product-moment correlation based

on normal scores is biased (inconsistent). The standard errors of the parameter estimates

yielded by the generalized least square (GLS) method are not correct because of the

wrong formula used (Jereskog & Scrbom, 1993). Joreskog & Sorbom (1993)

recommended that tetrachoric correlation be estimated for each pair of the dichotomous

items and the resulting correlation matrix be analyzed by the generally weighted least

squares (WLS) method, using LISREL. Therefore, following these recommendations and

using LISREL, tetrachoric correlations were estimated and used for the factor analyses.

The inverse of the estimated asymptotic covariance matrix of these tetrachoric correlation

coefiicients was used as the weight matrix for the WLS method.

Results from the chi-square tests for overall model-data fit suggest that none of the

theory-driven confirmatory factor analysis models fit the data. That is, the content

structures specified in the various factor models for the sub-test were significantly

difl'erent fi'om the content structure of the sub—test implied by the actual data. However, it

should be noted that the chi-square test was very sensitive to large sample size. Given the

large sample size in this study, the test statistic was very likely to have large value. As a

result, the test was more likely to show that there was significant difference between the

theoretical model and the observed model.

EmlnratnnLEactnLAnalxses

Exploratory factor analyses were conducted to further explore the dimensionality of

the sub-test. The tetrachoric correlation matrix estimated previously by PRELIS was used

as input data for various exploratory factor analysis models. Using statistical package
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SAS on Unix, these factor analyses were conducted: principal component analysis,

principal factor analysis, maximum likelihood factor analysis, and or factor analysis. In

summary, these factor analyses suggest that there was more than one factor underlying the

sub-test and the dimensionality issues were complex.

W.The results of the principal component analysis suggest

one dominant component underlying the 45 items, although sixteen components were

retained using the eigenvalues-greater-than-one criterion. The first component had an

eigenvalue of 6.902, which accounted for 15.3% of the standardized variance of the

correlation matrix. Each of the other components, however, had eigenvalue less than 1.55

and explained for less than 3% of the variance.

The first principal component appeared to be much more important than any other

components, despite the fact that multiple components were required to provide an

adequate summary of the data. In addition, all of the 45 items had positive loadings

(ranging fiom .174 to .681) on the first principal component. The scree plot of

eigenvalues in Figure 9 provides visual evidence of the single dominant factor.

W. The principal factor analysis used the squared multiple

correlations for the prior communality estimates. As a result, the total eigenvalue of the

correlation matrix reduced to 9.714 and the average eigenvalue was 0.216. By the

default “proportion” criterion (SAS Institute Inc., 1989), eight factors were retained. The

first factor (eigenvalue equals 6.173) explained 63.6% of the variance, while each of the

other factors accounted for no more than 8%. The resulting pattern of principle factors

was similar to the pattern of principal components, and factor loadings of various items on

the first factor were all positive. The resulting scree plot is presented in Figure 10.
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Similar to the conclusion reached by the principal component analysis, the results

of the principal factor analysis suggest one dominant factor underlying the 45 items,

despite the fact that a total of eight factors were needed (according to the default

“proportion” criterion) for an adequate summary of the data.

Maximumlrkelflmndanmtamranalxses Maximum likelihood method was used

to study the factor analysis models with one, two, and three factors respectively. The

factor analysis results indicated that more than three factors were needed to adequately

summarize the data. This finding is consistent with the results of the principal component

analysis and the principal factor analysis, which yielded 16 components and eight factors

respectively.

Different from the outcomes of the three factor analyses described above, an or

factor analysis extracted three factors out of the 45 items using rotation technique that

results in maximum variance. However, there were no clear patterns to link these three

factors to the three core content areas, to which the 45 items belonged. The result of the

or factor analysis therefore reflects complexity of the dimensionality issues.

11 .1. . 1' 5 i E 1 I

Overall, all the outcomes of the various factor analyses implied multidimensionality

for the 45-item sub-test, despite the fact that these empirical outcomes were somewhat

inconsistent. However, based on these outcomes, it is also likely that there was one

dominant underlying factor. Given the single dominant factor underlying the test data,

regardless of the other less influential factors, the unidimensional IRT model would be

robust in fitting the test data.
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It is believed and broadly accepted that, other than the strict requirement of one

underlying trait for the IRT unidirnensionality assumption, unidirnensionality only requires

a dominant factor or trait that influences test performance (Hambleton, Swaminathan, &

Rogers, 1991). This is in part because most of the achievement tests, such as the one

analyzed in this study, are not designed to be unidimensional and are unlikely to be

unidimensional. Therefore, in our case, the empirical findings from various factor analyses

suggest that the IRT assumption of unidirnensionality was likely to hold, because there

was a single dominant factor underlying the sub-test data.

The unidirnensionality issue should also be addressed from a theoretical point of

view. Given the theory that there were three correlated traits (each corresponds to one of

the three core content areas relating to the single overall content domain) underlying the

sub-test data. It can be hypothesized that there was a unidimensional trait that was

conceptually a combination of these three underlying traits (Yen, 1984; Reckase,

Ackerrnan, & Carlson, 1988). As a result, the unidimensional three-parameter IRT model

was appropriate for the data, and the equatings based on the IRT model should be

theoretically sound. The satisfactory outcomes of the IRT-based equating methods,

discussed earlier in this chapter, provide substantial empirical evidence in supporting of

this hypothesis. From the same theoretical perspective, the ability measured by the

original professional test could also be considered as a composite unidimensional trait that

had 23 component traits (corresponding to the 23 core content areas). However, more

studies are needed to further research into the issues of test dimensionality.



Chapter 10

SUGGESTIONS

Grounded in the findings and conclusions reached in previous chapters,

suggestions can be made to improve the equating practice and future research in common-

item equating. With considerations of study limitations, my suggestions address these

issues: (a) selection of equating method, (b) construction of test forms with embedded

common anchor items, (c) controlling effect of anchor length, (d) use of multiple criteria

for evaluating equating accuracy, (e) selection of index representing equating accuracy, (f)

investigation of construct validity, (g) issues of test dimensionality, and (h) alternative

approaches for common-item equating.

Selection of Equating Method

When equating test forms that have negatively skewed score distributions, using

the common-item equating design, IRT-based equating methods are recommended to

achieve highly precise estimation of equivalent scores if the degree of equating accuracy is

a top priority. Otherwise, either the IRT-based methods, or the Tucker method, or the

equipercentile method, will be adequate. This is because all these methods are likely to

have moderately accurate results and these results will not be too different.

170
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If it is allowed in time and cost, various equating methods should be applied to

equate scores from different test forms of high-stake examinations. The resulting

outcomes can be compared to one another to identify the set of equivalent scores that are

the most precise. The choice of a particular equating method should take into account

factors such as the theoretical appeal and empirical advantages of the method, the policy

of an equating program regarding the acceptable level of accuracy, the cost and the

amount of work required, and the possibility of finishing the equating work within a

restricted timeline.

Construction of Test with Anchor Items

A testing program can limit the content coverage of a test to a small number of

topics to increase the possibility of getting precise equating outcomes. This is because,

according to the findings of this study, equating outcomes for a test with items that are

more content homogeneous is likely to be more accurate than the equating outcomes of a

set of less content homogeneous items.

In addition to manipulating content homogeneity of the items in a sampled tests,

the item sampling design of this study also created various sets of anchor items that were

more or less representative of their corresponding total tests in content. As a result, the

same research findings leading to the effect of content homogeneity also suggest effect of

content representativeness of anchor items on equating accuracy. This study found that

the equating outcomes of a test with more content representative anchor items were likely

to be more accurate than those outcomes of a test containing less content representative

anchor items, regardless of the equating method used. Therefore, when alternate forms of
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a test are constructed and a set of common anchor items are embedded in each of the

form, it is important to select anchor items that are representative of the total test in

content.

Controlling Effect of Anchor Length

If this study is to be replicated with more flexibility in data collection and

manipulation, I would like to create various sampled tests with equal numbers of anchor

items. By doing so, the interpretations of the effects of content homogeneity and content

representativeness will be more definite and direct.

Will

The sampled tests created in this study varied slightly in their lengths and had

different numbers of anchor items. Such variations in test length and anchor length are

due to the nature of the in-training test being analyzed. Because the original test did not

have equal and sufficient numbers of items from all of the 23 core content areas, it was not

easy to create ideal sampled tests with equal length and equal numbers of anchor items.

For the control over a better condition to study the effects of content homogeneity and

content representativeness, this study traded in its controls over test length and anchor

length. As a result, there is a slight chance that the effect of content representativeness of

anchor items was confounded with the effect of anchor length. From time to time,

educational researchers have to choose between working with ideal but somewhat

unrealistic research conditions and dealing with practical issues that lack perfect solutions.

This study restriction on test length and anchor length represents one of such dilemmas.
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The strategy used in this study to accommodate the imperfect situation caused by

unequal anchor lengths was to include a sufficiently large number of common anchor items

in each of the sampled test forms. It is hoped that the impact of the differential anchor

lengths could be minimized. However, if the sampled tests had the same lengths and the

same number of anchor items, the results and conclusions of this study about equating

accuracy would be more convincing. Therefore, given better research conditions in the

future, I would like to exercise better controls over test length and anchor length.

W

In this study, all of the four equating methods produced adequate equating

outcomes and these outcomes were similar to a great degree. For example, the Tucker

method and the equipercentile equating method yielded almost identical equivalent scores.

However, this result is somewhat bothersome, because one method is based on a linear

approach and another method is based on a non-linear approach. There are three possible

reasons for this interesting finding: (a) prior to various equating procedures, the two forms

of the same sampled test were already very similar to each other due to careful test

construction, (b) all of the four equating methods were indeed effective to a similar

degree, and (c) because there were so many anchor items embedded in each test form

(more than half of the items in a sampled test fonu were anchor items), the two forms of

the same test were so similar such that any equating method (in our case, the Tucker or

the equipercentile method) would produce good equating result.

In this study, due to the nature of the test data, each of the sampled test forms had

many anchor items. Partly due to this reason, all of the equating outcomes tend to be
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accurate. Therefore, all the indices of equating accuracy from different equating methods

over difi'erent sampled tests looked quite similar to each other with large values.

If this study is to be replicated, I will only allow a small number of anchor items to

be embedded in each of the sampled test forms. By allowing a small number of anchor

items in a replication study, I should be able to detect the indeed difierences among the

equating outcomes fi'om various methods, and the variations in the accuracy of these

equating outcomes. I expect that these difl'erences and variations will be larger than the

cases when a longer anchor is used. Given a small number of anchor items, the effects of

content homogeneity and content representativeness can also be better studied. I also

expect these content-related effects to be more obvious.

Multiple Criteria for Evaluating Equating Accuracy

Equating accuracy can be better estimated, if the criterion used for evaluating

equating accuracy is less prone to errors such as overestimation and underestimation. In

equating practice, however, arbitrary equating outcomes are often used as convenient

criteria. This is because no one single equating outcome can be determined as the best

equating of all. The major drawback of an arbitrarily selected criterion is that it does not

address equating accuracy directly. Thus, it can lead to erroneous estimation.

C0ping with the disadvantageous situation due to the lack of an absolutely better

criterion, this study employed multiple criteria for evaluating equating accuracy to gain

extra information on the accuracy of various equating outcomes. By carefully comparing

information from different criteria, with considerations of the strengths and limitations of

various criteria in estimating equating accuracy, equating accuracy can be better evaluated.
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In short, using multiple criteria, plausible estimation of equating accuracy is achievable and

the risk of introducing bias by using one single criterion can be avoid or reduced.

Therefore, I recommend this strategy for future studies of estimating equating accuracy.

Two of the four criteria used in this study were theoretically sound and yielded

consistent estimation results for equating accuracy. The way that these two criteria were

established and used to evaluate equating accuracy can be followed, or tailored and used,

in future studies.

Selection of Index Representing Equating Accuracy

The use of Pearson’s r and RMSD as alternate indices of equating accuracy in this

study revealed that difierent indices representing the degree of accuracy did not always

yield the same estimation outcomes. Small discrepancies were found between the

estimations produced by the Pearson’s r and RMSD. Although, the overall outcomes of

these two statistics agreed most of the time. Future studies can be designed to explore the

efi'ectiveness of various statistics serving as indices of equating accuracy.

Construct Validity Issues

Due to limited availability of demographic information, only the effect of years of

experience on examinee’s test performance was investigated to provide evidence of

construct validity for the in-training test. In the future, if more information regarding the

characteristics of examinee groups is available, validity studies should be more thoroughly

studied using this information.
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Test Dimensionality Issues

In addition to gathering empirical evidence of test dimensionality, content

specifications of test items and the overall content domain(s) underlying a test should also

be considered to make realistic judgment about the dimensionality of the test. The

characteristics of examinees and situational factors that are likely to influence examinees’

test performances should also be considered. For instance, suppose the examinees in this

study, who participated in different in-training programs, received differential amount of

drills on previous-year tests and different type of coaching on test-taking skills. Then, the

examinees’ test performances would not only be influenced by their ability but also would

be influenced by the variations in the in-training programs. Such program variations

would affect the result of an empirical study on test dimensionality, and the result would

be less likely to show unidimensionality.

Applications of Study Design and Techniques

The equating designs and techniques used in this study can be applied to the other

contexts for equating research dealing with different types of scores, score distributions,

or item formats. For instance, the item-sampling schemes and the strategy of multiple-

criteria for evaluating equating accuracy may provide useful insights for designing an

adequate equating program for testing programs such as performance assessment.

The applications may also be tailored to fit the needs of new equating contexts.

For example, if a cut-off score in a particular score range is desired, because the criteria

developed in this study did not care about any particular score range, a different criterion

for accuracy can be developed to accommodate the need of higher precision at the cut-off.
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Reliability and Validity Evidence for the Anchor Tests of Four

 

 

 

 

 

Sampled Tests

, . , , , "Pseudo True Score"

Valldlty/Rellblllty

(Pearson S r ) Raw-145 IRT-145

, EW 0.877 0.870

IRT-Based

Linear PS 0.894 0.917

TranSfOI’mation PW 0.846 0.839

Method

SR 0.857 0.861

EW 0.873 0.865

IRT-Based PS 0.895 0.916

Fixed-b

Method PW 0.871 0.868

SR 0.855 0.859    
Note. (1) The validity/reliability measure is the Pearson's r between the "pseudo true score"

and the resulting IRT true score estimates on a sampled test containing anchor items

only.

(2) All of the Pearson correlation coefficients were significant at (1:01.
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