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ABSTRACT

CHANGING DISTRIBUTIONS IN THE STRONG SENSE AND

THEIR COMPARATIVE STATICS: A RATIO APPROACH

By

Soojong Kim

This dissertation analyzes the comparative static effects on the choice behavior of

an economic agent who faces an uncertain situation when the given random situation

changes into another. The decision maker’s problem is to choose b to maximize

E[u(z(x, b))] where x is an exogenous random variable, and z is the payoff function

which, as the argument of utility, depends on both the choice variable and the random

variable. Given this general type of decision model, the existing comparative static

results are developed by imposing restrictions on the following three components: (i) the

set of changes in randomness; (ii) the set of decision makers; and (iii) the structure of the

concerned decision model.

The purpose of this study is to develop general comparative static statements

regarding various types of shifis in probability distribution function (pdt) or cumulative

distribution function (CDF) of the given random variable. This dissertation concerns six

special types of first-degree stochastic dominance shifis in chapters 3 and 4, four types of

Rothschild-Stiglitz sense of increases in risk in chapters 5 and 6, and two types of

second-degree stochastic dominance shifts in chapter 7. For each given type of change in

the randomness, we develop conditions on the structure of the decision model and on the



risk preferences of the decision makers that are sufficient for making a general

comparative static statement.

There are three special features in this dissertation. First, defining the subsets of

changes in the randomness, the ratio between an initial and a final pdt’ s or CDF’s is often

restricted to be monotonic increasing or decreasing. Thus, we call this analysis a ‘ratio

approach’ to comparative static problem. Second, the general comparative static

statement developed for each of these subsets contains a relatively large class of decision

makers, such as ‘all individuals with non-decreasing utility functions,’ ‘all risk averse

agents,’ or ‘all risk averse agents with non-negative third derivative of utility functions.’

In this sense, all the changes in randomness examined in this study are referred to as

‘CDF changes in the strong sense.’

Lastly, a special technique is used to generalize existing comparative static

statements. It is often shown that: a CDF change that satisfies one type of CDF change

can always be decomposed into a series of CDF changes that satisfy another type of CDF

change. Then the comparative static statement made for the latter type of CDF change

can also be applied for the former type of CDF change, without requiring any additional

assumption. Using this technique, this study improves the robustness of the existing

comparative static statements within the context of the ratio approach.
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Chapter 1

INTRODUCTION

Uncertainty is an element of our environment and accordingly it affects every

aspect of our life. Economists have recognized the pervasive influence of uncertainty on

the choice behavior of economic agents. However, only after the pioneering work of von

Neumann and Morgenstern (1947), who formalized the expected utility theory, has the

analysis of risk and uncertainty been one of the main themes in the economics literature.

During the last five decades, there has been much progress in the economic theory of

uncertainty. Today the issue of uncertainty is often included in many fields of study such

as firms’ production, stock market, insurance, futures markets, public policy,

international trade and finance.

In the study of choice under uncertainty, there are two main topics. One is to find

selection rules g6verning the choice behavior of an individual who faces an uncertain

situation. Every choice available to the individual gives a random outcome represented

by a probability density function (pdt) or a cumulative distribution function (CDF). Then

one is concerned with the question: which is the preferred probability distribution among

those that are feasible? The stochastic dominance (SD) approach and the more traditional

mean-variance analysis are two such selection rules. Each gives necessary and/or

sufficient conditions on a pair of risky1 prospects for one to be preferred to the other by

all decision makers in some appropriate set.

 

' Throughout the paper, the terms ‘uncertain,’ ‘random,’ and ‘risky’ are used interchangingly.



The second main topic is to find predictable changes in choice behavior when a

given random situation changes into another. In other words, one is often interested in

finding necessary and/or sufficient conditions for determining the effect of a particular

type of change in randomness on the optimal choice made by a decision maker. These

general comparative static statements usually contain restrictions on the changes in pdf or

CDF of the concerned random variable, the set of decision makers, and the structure of

the given decision model. General SD orders play an important role in this comparative

static analysis. Most research papers are concerned with particular types of CDF changes

which are subsets of ‘first-degree stochastic dominance’2 (FSD) shifts, ‘second-degree

stochastic dominance’3 (SSD) shifts, or ‘mean-preserving spreads’4 (MPS) which are

‘increases in risk in the Rothschild-Stiglitz (R-S) sense.’

Many researchers have provided general comparative static statements dealing

with the effects of various types of changes in the distribution of the random variable.

Recent papers by Black and Bulkley (1989) and Landsberger and Meilijson (1990) have

shown the importance of the likelihood ratio5 between a pair of pdf’ 5. Imposing

monotonicity restrictions on the likelihood ratio, they define particular types of shifts

from one pdf to another pdf. Black and Bulkley introduce the concept of a ‘relatively

strong increase in risk’ (RSIR) which defines a subset of R-S increases in risk.

Landsberger and Meilijson’s analysis concerns a ‘monotone likelihood ratio’ (MLR)

order which is widely used in the statistical literature. MLR shifts are a subset of general

FSD shifts. In another recent paper, Eeckhoudt and Gollier (1995) give a definition of a

‘monotone probability ratio’ (MPR) order, imposing a monotonicity restriction on the

probability ratio6 between a pair of CDF’s. The MPR order also specifies a subset of

 

2 The concept of FSD is introduced by Quirk and Saposnik ( 1962) and Schneeweiss (1969).

3 The concept of SSD is introduced by Hadar and Russell (1969, 1971) and Hanoch and Levy (1969).

4 In order to give a formal definition of an increase in risk, Rothschild and Stiglitz (1970) introduce the

concept of MP8.

5 Given a pair of pdt’sfix) and g(x), the likelihood ratio means the ratio of one pdf to the other.

6 Given a "pair of CDF’s F(x) and G(x), the probability ratio means the ratio of one CDF to the other.



FSD changes and is more general than the MLR order. The comparative static statements

developed in these papers contain relatively weak restrictions on the set of decision

makers. All individuals with non-decreasing utility functions are allowed in Landsberger

and Meilijson’s analysis, and all risk averse decision makers are considered in the other

two cited papers. The likelihood ratio for pdf’ 3 and the probability ratio for CDF’3 play

an important role in the analysis. In order to differentiate this particular work from the

rest, we call their analysis a ‘ratio approach’ to the comparative statics problem.

In this dissertation, the analysis of comparative statics under uncertainty is

continued. Our main purpose is to improve the robustness of the existing comparative

static results within the context of the ratio approach. The results contained in the ratio

approach literature are generalized by weakening'various assumptions and considering

more general subsets of CDF changes. Two such subsets of FSD shifts are specified by

the concepts of a ‘left-side monotone likelihood ratio’ (L-MLR) order and a ‘right-side

monotone likelihood ratio’ (R-MLR) order which are defined by imposing monotonicity

restrictions on the likelihood ratio between a pair of pdf’ 8. These are closely related to

the subsets given by the MLR and the MPR orders, and the basic relationships among

these subsets are as follows: The set of all CDF changes that satisfy the MLR order is a

subset of the set of all CDF changes that satisfy the L—MLR order, which, in turn, is a

subset of the set of all CDF changes that satisfy the MPR order. Also, the set that

satisfies the MLR order is a subset of the set satisfying the R-MLR order.

Two more subsets of FSD shifts are specified. One is defined by the concept of

an ‘FSD improvement with respect to a point’ (point-FSD). This subset is not related in a

known way to the above four subsets of FSD shifts. The other is specified by the concept

of an ‘MPR with respect to a point’ (point-MPR). Defined by weakening the conditions

required for an MPR shift, the point-MPR order specifies a more general type of CDF

change than an MPR shift. The sets of CDF changes defined by these two orders are

determined by a given point. Let’s denote, for a given point k, the orders as k-FSD and k-



MPR. Then these two orders are related to each other in such a way that a k-MPR shift

can always be understood as the sum of two FSD shifts, one MPR and the other k-FSD.

All these subsets of FSD shifts are used to improve the robustness of the existing

comparative static results regarding the subsets of FSD shifts.

Regarding the case of R-S increases in risk, three subsets are considered when

doing comparative static analysis. These sets are defined by introducing three special

concepts of R-S increases in risk. A ‘left-side relatively strong increase in risk’ (L-RSIR)

is defined by imposing a weaker condition than the one used by Black and Bulkley in

defining an RSIR. An L-RSIR requires the monotonicity of the likelihood ratio only on

the left-side of the given pair of pdf’ 5. Monotonicity restrictions on the probability ratio

between a pair of CDF’s are used for obtaining the concepts of an ‘extended strong

increase in risk’ (ESIR) and a ‘left-side extended strong increase in risk’ (L-ESIR). Each

of the three concepts specifies a more general class of R-S increases in risk than does the

RSIR order.7 Basic relations among these subsets of R-S increases in risk are: The set of

all CDF changes that satisfy the RSIR order is a subset of the set of all CDF changes that

satisfy the ESIR or the L-RSIR order, which, in turn, are subsets of the set of all CDF

changes that satisfy the L-ESIR order. For each of these subsets, we develop a general

comparative static statement, and the case of ESIR shifts improves the robustness of the

results in Black and Bulkley’s analysis.

All the comparative static results obtained in this dissertation are associated with

relatively large sets of decision makers; either the set of all individuals with non-

decreasing utility functions, the set of all risk averse agents, or the set of risk averse

agents with non-negative third derivative of their utility functions. These sets include

utility functions representing quite plausible preferences, such as the ones exhibiting

decreasing absolute risk aversion (DARA) generally accepted as a reasonable attitude

 

7 We often interchangingly use the following terms: an ‘order’ between a pair of CDF’s, a ‘type’ ofCDF

change, and a ‘concept’ of CDF change. Each means a definition of partial rankings (orderings) over

probability distributions.



toward risk. These weak restrictions on the set of decision makers require a relatively

strong restrictions on the changes in CDF for making general comparative static

statements. In this sense, the changes in distributions examined in this study are all

referred to as ‘CDF changes in the strong sense.’ Next the decision model used in the

comparative static analysis is discussed.

An economic decision model involving randomness typically includes the

following components: (i) random exogenous parameters; (ii) choice variables; (iii) an

objective function; and (iv) a set of decision makers. In some decision models, more than

one random and one choice variable are included, or utility functions depend on more8

than one argument. For many of these decision models, it is generally difficult to make

determinate comparative static statements. If the decision model includes multiple

sources of randomness, every random variable affects the choice variables, and a change

in the distribution of one random variable is generally accompanied by a simultaneous

change in the distributions of the other random variables. Thus, even in the case of one

choice variable, the presence of stochastic dependence among random variables makes it

difficult to analyze the comparative statics for changing distribution of any one random

variable. To avoid this problem, research papers often assume that the random variables

are independent of one another, allowing one to change while the others are unchanged.

This assumption allows the comparative static analysis for a change in any one random

variable, using the standard SD orders as the restrictions on the change in the random

variable. An example of this is Hadar and Seo’s (1990) analysis of the portfolio model

with more than one risky asset.

When there are several choice variables, more than one first-order condition

defines the optimal solution, and this makes the comparative static analysis more difficult

than for the case of one choice variable. Most papers studying the comparative statics

 

8 That is, the objective function maps into R" space where n > I, rather than R'.



assume that the first and the second-order conditions are satisfied to guarantee an interior

unique solution. For the models with only one choice variable, the comparative static

effect of a change in randomness is determined by the direction of the change in marginal

expected utility of the choice variable (calculated at the initial optimal choice level). This

is not true for the cases with more than one choice variable because of the interactions

among the choice variables.

Comparative static analysis for models with more than one choice variable is

usually possible by imposing additional restrictions on the concerned decision model.

Examples of two choice variable decision models include Batra and Ullah (1974) who

examine a competitive firm’s input decisions with two inputs under output price

uncertainty. Feder, Just and Schmitz (1977) deal with an international trade model, and

Katz, Paroush and Kahana (1982) examine a price discriminating firm’s optimal sales in

two markets under price uncertainty in one of the two markets. Regarding a general form

model with one random and two decision variables, Choi (1992) examines a special case

of a corner solution.

When a utility function depends on two or more outcome values, that is, the

outcome fimction is multidimensional, the standard risk aversion measures introduced by

Pratt (1964) and Arrow (1971) are not able to be used when describing the risk preference

of decision makers. In order to obtain general comparative static statements for these

models, researchers need other definitions of risk aversion measures. Sandmo (1970)

analyzes the saving behavior in the two-period income-capital model and uses his own

definition of the ‘temporal risk aversion’ measure. Dardanoni (1988) treats a somewhat

general form oftwo-outcome decision model and the obtained results depend on the

‘proportional risk aversion’ measure introduced by Menezes and Hanson (1970). There

are other examples of imposing restrictions on the multidimensional utility function, such

as Rothschild and Stiglitz (1971) and Mirrnan (1971) who analyze a two-period

consumption-saving model, using an additively separable utility function.



The decision model used in this study includes only one random and one choice

variable and utility depends only on one argument, that is, the objective function is single

dimensional. Relatively standard notation for the general form of this one-argument

decision model is:

mlax E[u(z(x, b))] (1.1)

where b is a scalar choice variable and x is an exogenous scalar random variable which

interact to yield, 2, the outcome which is the argument of utility. Many authorsg have

used this general decision model in their comparative static analysis. In this framework,

problems involving multidimensionality are avoided because utility depends only on the

value of a single dimensional outcome given by the intermediate function 2.

Though the model (1.1) is a simple form, a variety of economic decision problems

are of this type. Included are the often studied examples of a competitive firm facing

random output price analyzed in Sandmo (1971), and the portfolio choice model with one

risky and one riskless asset in Rothschild and Stiglitz (1971) and in Fishbum and Porter

(1976), and the coinsurance problem in Dionne, Eeckhoudt and Gollier (1993). Sandmo

considers a perfectly competitive firm choosing output level q to maximize expected

utility of profits when the output price p is uncertain. In this model, the intermediate

function 2 is understood as profits 7r given by II = pq — c(q) — F where c(q) is the

variable cost function and F is the fixed cost. In the portfolio model, an individual is

assumed to have initial wealth W0 which is to be allocated between one riskless asset

paying a zero rate of return and the risky asset paying a random rate of return e. In this

case, the function 2 is understood as terminal wealth W given'by W = WO[1+ be] where b

is the proportion of WO invested in the risky asset.

 

9 To name just a few, they are Feder (1977), Kraus (I979), Katz (1981), Meyer and Orrniston (I983, I985.

1989), Black and Bulkley (1989).



Coinsurance is a contract that reimburses the policy holder a certain specified

percentage for a loss occurred. In the standard coinsurance problem, the payoff function

is given by the final wealth W = W0 - x + bx — bky where W0 is the initial value of a

given asset, x the random loss with mean it , b the coinsurance rate, big the insurance

premium, and [Lu the marginal cost of insurance rate. An individual chooses b to

maximize expected utility from the final wealth. Typically the coinsurance rate b belongs

to the interval [0, l], the marginal cost of insurance rate [Lu is less than the maximum

loss and larger than the minimum loss, and the. maximum loss is usually less than initial

wealth W5. Other examples of models of this simple form include the problem of hiring

workers in Feder (1977), the cooperative firm model in Paroush and Kahana (1980). By

using the general form (1.1), each result developed in this dissertation is applicable to

these specific models as well as others.

Regarding the decision model, there are several assumptions needed for

conducting comparative static analysis. All decision makers are assumed to maximize

expected utility. In other words, a decision maker always chooses that alternative which

yields the highest mathematical expectation of a von Neumann-Morgenstem utility

function u(-) which is defined over the set of all outcomes. The utility function u and the

payoff function 2 are assumed to be continuous and thrice differentiable with respect to

their arguments. In some results, it is enough for the functions to be differentiable only

once or twice. Restrictions on these functions are often needed to guarantee an interior

unique solution as well as to generate definite comparative static statements. To simplify

the analysis, we follow the literature and focus only on the case where z,(x, b) _>. 0. With

the assumption u’(z) .>_ 0, this implies that higher values of the random variable are

preferred to lower values. The case where zx(x, b) .<_ O can be handled with an

appropriate redefinition of the random variable. '0

 

'0 The coinsurance problem cited above is of this case, and thus, if we redefine the random loss x as x '7— y

where "7" means “has the same distribution as,” the outcome function for y satisfies 21,,(y, b) 2 O.



The random variable x is assumed to have its initial and final distributionsll

characterized by CDF’s G(x) and F(x), with their corresponding pdf’ 5 g(x) andfix),

respectively. Our study includes all the cases where the random variable x is continuous.

discrete or mixed. While the results are usually proved for the continuous case (using

integrals for summation), they can be adapted for the case where x is discrete or mixed.

Let b6 and b,,. denote the optimal choice'2 of the problem (1.1), under the CDF’s G and F,

respectively. We analyze the comparative static effects on the sign of b,,. — b“. for

changes in CDF from G to F. The supports ofx under both the distributions are assumed

to be finite intervals. The notations for these finite supports are introduced as needed.

This dissertation is organized as follows. In the next chapter we will give a short

review of the literature concerning the SD approach and the previous analysis concerning

the comparative statics under uncertainty. The review of the SD selection rules is for the

univariate case and the review of the comparative static analysis is limited to the decision

models of the form (1.1). General comparative static statements are obtained by

imposing restrictions on the following components: (i) the structure of the decision

model; (ii) the set of decision makers; and (iii) the set of changes in distribution of the

random variable. In an analysis, relatively strong restrictions on one component are

usually associated with relatively weak restrictions on the other two components.

Previous work on this topic can be classified according to the restrictions placed

on these components. Structural restrictions are sometimes imposed on payoff functions.

Most papers concerning the decision model (1.1) adopt some restrictions such as 2, Z O,

z,”r 2 0 and 2,,” S 0. Since many economic problems already satisfy the restrictions, they

are not very harmful for conducting comparative static analysis. As somewhat stronger

restrictions, authors sometimes restrict the concerned payoffs to be linear in the choice

 

” To keep the notation for F to be stochastically dominant over G, the CDF’s F and G for the case of an R-

S increase in risk are regarded as an initial and a final distribution ofx, respectively.

‘2 Some parts of our study follows the usual assumption that the first and the second-order conditions are

satisfied for defining an optimal solution of the problem (1.1), but the results concerning subsets of FSD

shifts are established without requiring the second-order condition.
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variable and/or the random variable. This restriction on the structure of the decision

model limits the analysis to more specialized decision problems.

Given a decision model structure, some research imposes relatively strong

restrictions on the changes in the pdf or CDF and relatively weak restrictions on the risk

preference of decision makers, and other research treats the reverse case. The studies

using relatively strong restrictions on the changes in distributions usually consider proper

subsets of the set of FSD changes or R-S increases in risk.

According to the type of restrictions used for defining sets of changes in pdf or

CDF, there are three approaches to the comparative static analysis. The deterministic

transformation approach obtains a change in distribution by transforming an initial

random variable into another random variable through a given detenninistic function.

The CDF approach directly imposes a restriction on the relation between the initial and

the final CDF’s G and F or pdf’s g andf, often restricting G — F. Recently, interesting

sets of changes are defined by imposing restrictions on the ratio of pdf’s or the ratio of

CDF’s. In order to differentiate these changes from the others, the studies employing

them are said to use the ‘ratio approach.’ The focus in this dissertation is on the ratio

approach to comparative static analysis.

In chapters 3 and 4, we examine subsets of FSD shifts. For the ratio approach,

they include the MLR shifts used in Landsberger and Meilijson (1990) and the MPR

shifts in Eeckhoudt and Gollier (1995). We define four additional subsets of the set of

general FSD shifts. They are specified by the L-MLR, the R-MLR, the point-FSD, and

the point-MPR orders. Chapter 3 discusses the relationships among these subsets of FSD

shifts. The restrictions used in defining these subsets are discussed and graphical

examples are given to illuminate the basic relations among the subsets. For the basic

relations, it is shown that the MLR order specifies, a special case of the L-MLR or the R-

MLR order, and that the L-MLR order defines a special case of the MPR order which, in

turn, gives a special case of the point-MPR order.



The property of transitivity is also discussed with regard to these orders.

Transitivity holds for both the MLR and the MPR orders, but not for the L-MLR or the

R-MLR. Given a point k, both the k-FSD and the k-MPR orders also display transitivity.

Whether a CDF order is transitive or not has important implications in doing comparative

static analysis. If a given CDF order is sufficient for a general comparative static

statement, then any shift that can be decomposed into a series of shifts satisfying the CDF

order also has a predictable outcome. Thus, if the given order is not transitive, the

admissible set of CDF changes for the comparative static result include more shifts than

are included by the CDF order itself. The L-MLR order is generally non-transitive, but

has an important relationship with the MPR order resulting from transitivity. We show

that an MPR shift can always be decomposed into a series of L-MLR shifts. Another

important relationship exists with regard to the point-MPR order. Given a point k, a k-

MPR shift can always be decomposed into two shifts, one k-FSD and the other MPR. In

chapter 4, these properties are used to prove some generalized comparative static

statements.

Chapter 4 provides general comparative static statements for the subsets of FSD

shifts presented in chapter 3. Each developed result gives a generalization of an existing

comparative static result. The results in Landsberger and Meilijson (1990), and

Eeckhoudt and Gollier (1995) are for decision models with linear payoffs. This chapter

shows that the same results also hold for general non-linear decision models, without

imposing additional assumptions. The extension of Eeckhoudt and Gollier’s result is

demonstrated using the L-MLR order and its relationship with the MPR order presented

in chapter 3. The proposed comparative static statement for the set of MLR shifts applies

to the set of all decision makers with non-decreasing utility functions, and the one for the

set of MPR shifts applies to the set of all risk averse decision makers.

In addition, for each of the two comparative static results, we explore the trade-off

between the structural restrictions on the decision model and the restrictions on the



change in the distribution. When the concerned payoff (outcome) function is restricted to

be linear in the choice variable b (2b,, = O ), even more general classes of changes in CDF

yield determinate comparative static statements. Given a decision model satisfying the

linearity restriction, the value ofx satisfying 2,, = 0 does not depend on the choice

variable b. Let c be such the point ofx. Then two generalized comparative static results

are derived. One is that, in addition to the set of MLR shifts, L-MLR shifts satisfying the

monotonicity restriction on the left-side of the point c, and R-MLR shifts satisfying the

monotonicity restriction on the right-side of the point c are also sufficient for Landsberger

and Meilijson’s result. The other is that the set of c-FSD shifts and the set of c-MPR

shifts are also sufficient for Eeckhoudt and Gollier’s result. Each generalization implies

that, for a fixed set of decision makers, the finding is extended to a more general class of

CDF changes with the cost of adding the linearity restriction on the decision model.

Chapters 5 and 6 treat the cases of R-S increases in risk. In addition to the

existing subsets of R-S increases in risk, we define three additional subsets of R-S

increases in risk specified by the CDF orders: ESIR, L-RSIR and L-ESIR. These are

more general than the RSIR order defined by Black and Bulkley (1989). The restrictions

on the pdf ratio used in defining the RSIR and the L-RSIR orders are replaced by the

restrictions on the CDF ratio when we define the ESIR and L-ESIR orders. In chapter 5.

the relationships among these orders are examined and the basic relations are illustrated

with some graphical examples. It is shown that the monotonicity restrictions on the CDF

ratio are less severe than the ones on the pdf ratio. Thus, we have the basic relationships

among the orders as: the RSIR order specifies a special case of the L-RSIR or the ESIR

order, which, in turn, give a special case of the L-ESIR order.

In general, transitivity does not hold for these CDF orders. This implies that.

given one of these orders, a CDF change that can be decomposed into two or more

distinct shifts that are generated by the order may not satisfy the order. This guarantees

that, if a general comparative static statement is made for the CDF order, the order is only



sufficient but not necessary for the result. Though they are all non-transitive, there exist

two important relationships between the RSIR and the ESIR orders, and between the L—

RSIR and the L-ESIR orders. They are: (i) an ESIR shift can always be decomposed into

a series of RSIR shifts; and (ii) an L-ESIR shift can always be decomposed into a series

of L-RSIR shifts. Using these properties, chapter 6 provides two useful generalizations

of the comparative static results given in the same chapter.

Chapter 6 gives general comparative static statements regarding the subsets of R-

S increases in risk, presented in chapter 5. The comparative static result in Black and

Bulkley (1989) is generalized to the set of ESIR shifts which is larger than the set of

RSIR shifts. This generalization is, without any cost of additional assumption. The

proposed comparative static statement is for the set of all risk averse decision makers

(same as in Black and Bulkley) and the set of ESIR shifts.

When the concerned payoff is restricted to be linear in the random variable,

another extension of Black and Bulkley’s result is given by using a trade-off between the

restrictions on the set of decision makers and the restrictions on the set of R-S increases

in risk. With the given structural restriction, the proposed result contains, compared with

Black and Bulkley’s result, a larger set of changes in CDF and a smaller set of decision

makers. That is, the set of risk averse agents with non-negative third derivative of utility

functions and the set of L-RSIR shifts which includes all RSIR shifts are contained in the

result. A further generalized result is provided in order to include a more general class of

CDF changes. The set of L-ESIR shifts replaces the set of L-RSIR shifts in the result,

and this generalization is directly comes from the relationship between the L-RSIR and

the L-ESIR orders given in chapter 5.

Finally, chapter 7 gives a summary for the results developed in the previous

chapters. Also some remarks regarding the comparative static results for subsets of

second-degree stochastic dominance (SSD) shifts are given in section 7.2. We show that

the results obtained in previous chapters can be applied for cases of SSD shifts. In



general, the SSD order defines a more general type of changes in distribution of a random

variable than does the FSD order or the concept of an R-S increase in risk. According to

Hadar and Seo (1990), any SSD change can be decomposed into an FSD shift and an R-S

decrease in risk (mean-preserving contract (MPC)). This can be applied for defining

subsets of the set of SSD shifts which are combinations of FSD shifts and R-S decreases

in risk, which satisfy the CDF orders defined in chapters 3 and 5.

Two subsets of SSD shifts are defined: ‘extended strong SSD’ (ESSSD) shifts and

‘left-side extended strong SSD’ (L-ESSSD) shifts. An ESSSD shift can always be

decomposed into an MPR and an ESIR, and an L-ESSSD shift can always be understood

as the sum of an MPR and an L-ESIR. These properties allow one to make general

comparative static statements for these subsets, by combining the results obtained in

chapters 4 and 6.



Chapter 2

LITERATURE REVIEW

There are two main topics in the analysis of choice under uncertainty. One is to

find selection rules governing the choice behavior under uncertainty, and the other is to

analyze the comparative static effects on the choice made by an economic agent when a

given random situation changes into another. This chapter reviews a selected portion of

the literature on these two topics. Section 2.1 presents the well-known standard

stochastic dominance (SD) selection rules. Section 2.2 gives a brief review ofthe

literature concerning the comparative static analysis. Finally, section 2.3 contains some

remarks specific to this study. For expositional ease, let x be a random variable

characterized by an initial CDF G(x) and a final CDF F(x), and if not stated otherwise, the

supports of these CDF’s are assumed to be in the finite interval [0, 1].

2.1 General Stochastic Dominance Selection Rules

When a decision maker is confronted with alternative uncertain prospects, he

wants to choose to maximize expected utility. SD selection rules provide a partial

ranking of these alternatives. Each selection rule gives a necessary and/or sufficient

condition on a pair of risky prospects (a pair of distribution functions) for one to be

preferred to the other by all individuals with non-decreasing and/or concave utility
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functions. Restricting ourselves to the case of univariate distributions, we give the

definitions of the standard SD orders and then explain several SD selection rules.

2.1.1 Basic Definitions of Stochastic Dominance Orders

We review three13 types of SD orders for pairs of CDF’s. The first-degree

stochastic dominance (FSD) introduced by Quirk and Saposnik (1962) and Schneeweiss

(1969), and the second-degree stochastic dominance (SSD) introduced by Hadar and

Russell (1969) and Hanoch and Levy (1969) are defined as follows:

Definition 2.1. F(x) is said to stochastically dominate G(x) in the first-degree

(denoted by F FSD G) if and only if

G(x)— F(x) 2 O, for all x e[0, 1].

Definition 2.2. F(x) is said to stochastically dominate G(x) in the second-degree

(denoted by F SSD G) if and only if

E[G(x) — F(x)]dx _>. 0, for all s e [0, 1].

Each definition gives a partial ordering on a set of probability distributions. It is well

known and obvious from these definitions that if F FSD G then F SSD G. This implies

that the set of CDF’s that can be ordered by the concept of FSD is included in the set that

can be ordered by the concept of SSD. These stochastic dominance orderings have the

property of transitivity. That is, considering CDF’s E, F2 and P}. if F; FSD (SSD) F2

and F2 FSD (SSD) F,, then Fl FSD (SSD) F3.

 

'3 There are more stochastic dominance orderings, which are not concerned in this paper, such as the

traditional mean—variance ordering by Markowitz (1952, 1959) and Tobin (1965), the third and higher

degree stochastic dominance by Whitrnore (1970, 1989), and SSD with respect to a function by Meyer

(1977a,1977b).



Finally, Rothschild and Stiglitz (R-S) (1970) provide a general definition of an

‘increase in risk.’ According to R-S, the following three conditions are equivalent and

are used to define ‘G is riskier than F.’ The conditions are:

1. A random variable y can be obtained from another random variable x by an

addition of random noise a, where y and x are the random variables defined by

CDF’s G and F, respectively, that is,

y 7x + 6,

where E(six) = 0 and “ f ” means “has the same distribution as.”

2. All risk averse individuals prefer F to G, that is, for every concave utility

function u(-),

£u(x)dF(x) Z £u(x)dG(x).

3. G can be obtained from F by a sequence of mean-preserving spreads (MPS). '4

The condition 3 can be stated with the well-known ‘integral conditions,’ being the

restrictions imposed on the difference G — F. Because the three conditions are

equivalent, an increase in risk is formally defined by the integral conditions as:

Definition 2.3. G(x) is said to be riskier than F(x) in the Rothschild-Stiglitz sense

(denoted by G MPS F) if and only if

(a) flaw — F(x)]dx = o

(b) £[G(x) - F(x)]dx 2 o, for all s e [0. 1].

 

" Using an alternative definition of a mean-preserving spread, Machina and Pratt (1997) give a more

explicit result that, for an arbitrary pair of distributions F and G satisfying the integral conditions given in

Definition 2.3, there always exists a sequence of MPS’s by which F converge directly to G.



The condition (a) implies that CDF’s F and G have the same mean, and the

condition (b) is the one used in defining F SSD G. Thus an R-S increase in risk is a

special case of SSD, requiring in addition, equal means. It too gives a transitive partial

ordering on a set of probability distributions. That is, considering CDF’s Fl , F2 and F3 . if

F} MPS F2 and F2 MPS F3, then H MPS F3. For almost thirty years now, this

definition has replaced variance or standard deviation, as the basic concept for studying

comparative risk.

2.1.2 Stochastic Dominance Selection Rules

Three selections rules which are used in this dissertation are presented here. To

generate these rules, each of the above stochastic dominance relations is associated with a

particular set of utility functions. These sets are defined as:

Definition 2.4. Assuming that a utility function u(-) is continuous. bounded and

twice differentiable for the interval [0, 1], define the following three sets as:

(a) U. = M)! u’ 2 0}

(b) U2 = {u(-)| u' 2 0 and u" S 0}

(c) U. = {u(-)l u" s 0}.

Denote, for utility function u, EU,, and EU“. as the expected utility computed with

respect to CDF’s F and G, respectively. Then selection rules for the cases of FSD and

SSD are expressed as:

Theorem 2.1. EUF 2 EUG for every u in UI ifand only ifF FSD G.

Theorem 2.2. EU). 2 EU“. for every u in U2 if and only ifF SSD G.
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The proof of FSD rule is given by Quirk and Saposnik (1962), Schneeweiss (1969‘),

Hadar and Russell (1969) and Hanoch and Levy (1969), and the proof of SSD rule is

given by the last two papers.

The last selection rule given in this sub-section is the one provided by Rothschild

and Stiglitz (1970). From the three equivalent conditions shown in sub-section 2.2.1. the

selection rule is expressed as: f

 Theorem 2.3. EU,, 2 EUG for every u in U3 if and only ifG MPS F.

Concavity is the only restriction used in defining the set U3. This general property plays

an important role in their companion paper, Rothschild and Stiglitz (1971), studying the

comparative static effects of an R-S increase in risk.

2.2 Comparative Static Analysis

The question of interest for comparative statics under uncertainty is to find

necessary and/or sufficient conditions for determining the direction of change in the

choice variable when a change in the random variable occurs. Many economic models

are used in addressing this question. Some are of a specific form and others are of a

general form. There are models including two ormore random variables, choice

variables and/or outcome values.l5 However, since our concern is restricted to the

general one-argument decision model (1.1) introduced in chapter 1, the literature review

is restricted to studies concerning decision models of this form.

 

'5 See the dissertation by Choi (1992), for the comparative static analysis concerning decision models with

multiple outcomes.



2.2.1 An Overview

Regarding the decision models of the form (1.1), the standard monotonicity or

concavity properties of utility functions and the standard SD shifts are not sufficient for

making-general comparative static statements. That is, for an arbitrary FSD, MPS or SSD

shift in distribution, one can not say that every decision maker with a non-decreasing

and/or concave utility function changes his choice in the same direction. This is more

formally stated by Meyer and Orrniston (1983) who show that any FSD or any SSD shift

in distribution causes every risk-averse individual to adjust his choice level to the same

direction if and only if the optimal choice under certainty is independent of the value of

the random exogenous variable. Obviously, this is not an interesting case. Following

this line, all the existing comparative static results have used some restrictions on the

following three components:

(i) the structure of a given decision model

(ii) the set of decision makers concerned

(iii) the set of changes in distribution of the concerned random variable.

Imposing ‘relatively weak restrictions’ on one of the three components means that more

cases or a relatively larger class of the component are included in an analysis, and vice

versa. Generally speaking, when relatively strong restrictions are imposed on one

component, the derived comparative static results are usually associated with relatively

weak restrictions on the other components.

As the structural restrictions imposed on the general decision model (1.1), 3. 2 0.

z,” 2 0 and 2,,”r S 0 are often assumed by many authors. Because many economic

problems already satisfy the assumptions, they are not very harmful for the comparative

static analysis. Some authors add the assumptions 2,, = 0 and/or 2,, = 0. that is, the

concerned payoffs are restricted to be linear in the choice variable and/or the random

variable. Two of the most often studied examples are the standard portfolio problem in



which the final wealth is linear in both the choice and the random variable, and a

competitive firm model under price uncertainty in which the profit function is linear in

the random variable. Other examples are found in Dionne, Eeckhoudt and Gollier (1993).

and Eeckhoudt and Gollier (1995). As an extreme case, Meyer and Onniston (1983) use

such a payoff that the optimal choice under certainty does not depend on the value of the

random variable. Thus the restriction on the first component limits the analysis to special

economic problems.

Given a decision model, the comparative static question is to find a set of changes

in CDF or pdf which is sufficient for signing the effect on the choice variable selected by

an arbitrary decision maker in a specified set. In a general comparative static statement. a

relatively large (small) class of shifts in CDF is usually followed by relatively strong

(weak) restrictions on the risk preference of decision makers. The trade-offs between the

restrictions on these two components are often examined.

Examples using relatively strong restrictions on the risk preferences of agents

include Rothschild and Stiglitz (1971), Hadar and Russell (1978) and Hadar and Seo

(1990). They examine the general classes of FSD, MPS and/or SSD changes.

Concerning the standard portfolio choice problem, they found that, for an FSD shift in the

distribution of the return on a risky asset, relative risk aversion to be less than one is

sufficient to cause investors to demand more of the risky asset. For an MPS shift in the

random return on a risky asset, the conditions that absolute risk aversion is decreasing

and relative risk aversion is increasing and smaller than one are sufficient for investors to

decrease their demand for the risky asset. In these studies, large classes of changes in

distribution are considered but relatively strong restrictions are imposed on the attitude

toward risk of the concerned decision makers.

Many authors have used relatively strong restrictions on the third component, the

changes in randomness. They have found sufficient conditions on the changes in

distribution which cause every individual in a fairly large set to adjust his choice in the
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same direction. Subsets of FSD shifts are examined in Sandmo (1971), Landsberger and

Meilijson (1990), Orrniston (1992), Orrniston and Schlee (1993), and Eeckhoudt and

Gollier (1995), among others. Various subsets of MPS shifts or R-S increases in risk are

analyzed in Sandmo (1971), Ishii (1977), Kraus (1979), Eeckhoudt and Hansen (1980),

Katz (1981), Meyer and Orrniston (1985, 1989), Black and Bulkley (1989), Dionne,

Eeckhoudt and Gollier (1993), and more.l6

According to the type of restrictions used in defining various sets of changes in

CDF or pdf, these studies can be divided into three approaches. Deterministic

transformation approach defines a set of changes in distribution by mapping every

possible initial outcome value into a new value through a given deterministic function.

CDF approach uses restrictions on the initial and the final distribution functions G and F,

often imposing restrictions on the difference G — F. Other interesting sets are defined by

imposing restrictions on the likelihood ratio between the two pdf’s or the probability ratio

between the two CDF’s. These studies are referred to as the ‘ratio approach.’ The

following sub-sections present each approach in more detail.

2.2.2 Deterministic Transformation Approach

I According to Meyer and Orrniston (1989), a single-valued function t(-), what they

call a ‘deterministic transformation function,’ can be used for defining a type of change in

a random variable. That is, given an initial random variable x, a transformed random

variable y is defined by y = t(x). The transformation function is assumed to be non-

decreasing, continuous and piecewise differentiable. The non-decreasing assumption is

related to the following two properties. First, combined with the monotonicity property

of utility functions, it ensures that the transformation does not reverse the preference

ordering over the set of all possible outcomes of the original random variable. Second.

letting the random variables x and y be characterized by CDF’s G and F, respectively, the

 

'6 More examples are found in Coes (1977), Feder (1977), Paroush and Kahana (1980), Gollier (1995).

 



non-decreasing assumption implies that G(x) = F(t(x)) for all possible outcomes ofx.

This non-decreasing assumption is necessary to make general statements about the effects

of some deterministic transformations of a random variable on the expected utility.

Using the transformation method, Meyer and Ormiston provide a fourth

characterization of an R-S increase in risk as follow:

Theorem 2.4. The random variable given by a transformation t(x) represents an

R-S increase in risk from an initial random variable x described by a CDF G(x) if and

only if the function k(x) s ((x) — x satisfies

(a) £k(x)dG(x) = 0

(b) £k(x)dG(x) s 0. for all s E[O, 1].

By the condition (a), the mean of the random variable is preserved. The condition (b)

guarantees that the initial random variable dominate the transformed random variable in

the second-degree. This theorem is proved by showing that the given transformation

reduces the expected utility for all risk averse decision makers.

Similarly, FSD and SSD shifts can also be characterized in terms of

transformations. According to Meyer (1989), we have:

Theorem 2.5. The random variable given by a transformation t(x) dominates an

initial random variable x described by a CDF G(x) in the first-degree if and only if

k(x) E t(x) — x 2 O, for all x e [0, 1].

The given condition implies that the transformed CDF lies to the right side of the initial

CDF G. Thus, as we saw in section 2.1, the transformation gives a greater expected

utility for all individuals with non-decreasing utility functions.



Theorem 2.6. The random variable given by a transformation ((x) dominates an

initial random variable x described by a CDF G(x) in the second-degree if and only if the

function k(x)a t(x)—x satisfies Ek(x)dG(x)2 0, for all s E[O, 1].

Only the condition (b) in Theorem 2.4 is used and the transformation gives a higher

expected utility for all risk averse economic agents.

Imposing further restrictions on the transformation function produces interesting

sets of changes in distribution within the context of comparative static analysis. A well-

known example is a linear transformation analyzed in Sandmo (1971) and Ishii (1977).

In their papers, the transformation function used is a linear form as:

y=y(x—f)+6+5c'

where 7 is a multiplicative shift parameter, I9 is an additive shift parameter and f is the

mean of the random variable x. An increase in 6(from y = l and I9 = 0) increases the

mean of the random variable without changing its shape or dispersion of the initial

distribution. Since it gives a parallel shift of the original CDF G(x) to the right, it defines

a type of FSD shift.

Sandmo, studying the behavior of a competitive firm under price uncertainty,

provides a general comparative static statement that, facing an increase in 9 in the random

price, the firm exhibiting decreasing absolute risk aversion increases its level of output.

Sandmo also examines an increase in the parameter 7(from 7 = 1 and I9 = 0). Preserving

the mean, this change causes a ‘stretching out’ of the initial distribution about its mean.

This transformation defines a type of R-S increases of risk. Treating the same problem in

Sandmo, Ishii gives a proof for the comparative static result that, facing an increase in y

in the random price, the firm exhibiting decreasing absolute risk aversion decreases its

level of output.



The comparative static results concerning the linear transformations are

generalized by introducing ‘simple deterministic transformations.’ Meyer and Ormiston

(1989) introduce a ‘simple increase in risk’ as a type of R-S increases in risk. and

Orrniston (1992) defines a ‘simple FSD transformation’ as a class of FSD shifts. These

are given as:

Definition 2.5. The random variable given by a transformation ((x) represents a

simple R-S decrease in risk from an initial random variable x described by a CDF G(x) if

the function k(x) 2' t(x) - x satisfies

(a) (k(chm = 0

(b) £k(x)dG(x)20, for allse[0, 1]

(c) k'(x) S 0.

Definition 2.6. The random variable given by a transformation ((x) represents a

simple FSD shift from an initial random variable x described by a CDF G(x) if

k(x) :- t(x) — x 2 O and k'(x) S O, for all x e [0, 1].

These simple transformations generalize the above linear transformations by not requiring

the shifting or the stretching to be of uniform intensity. Using the general decision model

(1.1), each of the simple transformations allows one to make general comparative static

statement. Assume that u’(z) 2 0, u"(z) S 0 and z,,,, < 0. Meyer and Orrniston provide

the following theorem:

Theorem 2.7. Facing a simple R-S increase in risk in the random variable x, a

decision maker will decrease the optimal value of b. if

(a) u(z) displays decreasing absolute risk aversion



(b) 2, 2 0, 2.. S 0, z," 2 0 and 2,,“ S 0.

Similarly, Onnistonl7 gives a general comparative static statement as:

Theorem 2.8. Facing a simple FSD shift in the random variable x, a decision

maker will increase the optimal value of b, if

(a) u(z) displays decreasing absolute risk aversion

(b) zr 2 0. Z... S 0 and z,“ 2 0.

With these simple transformations, the comparative static results by Sandmo and

Ishii are generalized in two senses. First the same results are obtained for more general

classes of transformations, with no additional restrictions required. Second, the decision

model concerned is replaced by the general decision model which includes the

competitive firm model as a special case.

2.2.3 CDF Approach

CDF approach to comparative static analysis uses restrictions on the initial and

the final CDF’s G and F to define sets of changes in distribution of the random variable.

Sandmo (1971) considers a special type of R-S increases in risk, namely, an ‘introduction

of risk’ or a ‘global increase in risk’ which implies an R-S increase in risk from an initial

non-random situation. He found that the optimal output level of production of a risk-

averse competitive firm is smaller when the price is uncertain, compared to the

production level when the price is known with certainty.

Sandmo’s negative effect of an introduction of risk is generalized by Kraus (1979)

and Katz(l981). Kraus presents the same result using the general one-argument decision

 

'7 Onniston (1992) also defines a simple SSD transformation and provided its comparative static theorem.

However, since an SSD shift can be considered as combinations of an FSD and an R-S decrease in risk or

mean-preserving contract (MPC), the result is not presented here.



model (1.1), that is, he derives a sufficient condition for signing the effect ofa global

change in risk on the optimal level of b selected by an arbitrary risk averse decision

maker. The condition includes restrictions on the payoff function z(x, b) as follows:

Theorem 2.9. Assume that u' > 0, u" < 0, z, > 0 and z,,,, < 0, then all risk averse

decision makers, facing a global increase in risk in the random variable x, will decrease

the optimal value of b if z," 2 0 and 2,," S 0.

The condition in Theorem 2.9 is somewhat more generalized by Katz who provides a

shorter proof of the result.

Though the above results apply to a fairly large set of decision makers (all risk

averse agents), the restriction that risk change is a global change in risk is quite severe. A

global increase in risk is only a small subset of the set of all R-S increases in risk. This

limits significantly the situations to which the result can be applied. Eeckhoudt and

Hansen (1981) analyze the comparative static effect for a less restrictive set of R-S

increases in risk. They introduce the concept of a ‘min-max truncation’ or a ‘mean-

preserving truncation.’ Let the supports of CDF’s G and F be the finite intervals. [xI . x,]

and [x2, x3], respectively, where xl S x2 S x3 S x,. This is a slight modification of the

original notation, using the points x2 and x3 as the minimum and the maximum points

where the truncation occurs. A mean-preserving truncation is defined as:

Definition 2.7. F(x) represents a mean-preserving truncation from G(x) if their

difference G(x) - F(x) satisfies

(a) [‘ [G(x) — F(x)}dx = 0

(b) F(x): 0 for allx e[x,, x2), F(x) =1 for allx e(x3, x4], and G(x) = F(x) for all

x E[xz, x3].



Since the conditions (a) and (b) imply that f [G(x) — F(x)]dx 2 0 for all s e [.t., x , ], a

mean-preserving truncation is an R-S decrease in risk and it includes a global decrease in

risk as a special case. It specifies a transfer of probability mass such that both the

truncated left-tail and right-tail probability mass are moved into the minimum and the

maximum end points, respectively. Eeckhoudt and Hansen show that, using Sandmo’s

competitive firm model, the optimal level of production of a risk averse firm increases

when a mean-preserving truncation occurs in the random price. Thus they improve the

robustness of Sandmo’s result because the same comparative static result is obtained for a

more general class of R-S increases in risk without additional assumptions required.

Meyer and Ormiston (1985) provide a fiirther generalization of the results in

Eeckhoudt and Hansen. They introduce a ‘strong increase in risk’ (SIR) as a concept of

an R-S increase in risk. The condition (b) in Definition 2.7 is replaced by a much less

restrictive form as:

Definition 2.8. G(x) represents a strong increase in risk from F(x) (denoted by F

SIR G) if their difference G(x) - F(x) satisfies'8

(a) [‘ [G(x) — F(x)]dx = 0

(b) G(x) — F(x) is non-increasing in x E[xz, x3].

An SIR specifies a transfer of probability mass such that some probability mass from the

interval [x2, x3] is moved into both the tail intervals [x,, x2] and [x3, x4]. Thus it

defines a more general class of changes in distribution than the one by a mean-preserving

 

'3 The condition, used in the original paper, that [[G(x) - F(x)]dx .>. 0 for all s e [x,, x,] is omitted here

because it is implied by the conditions (a) and (b) in Definition 2.8.



truncation. Using the general decision model (1.1), Meyer and Ormiston’s comparative

static result improves the robustness of the previous results. Without any cost of .

additional assumptions, the results in Kraus and Katz are obtained for a more general

class of R-S increases in risk, and the result in Eeckhoudt and Hansen is extended to the

general decision model and to a more general class of changes in distribution.

All the subsets, presented in this sub-section, are defined by imposing restrictions

on the difference between the initial and the final CDF. They are all subsets of R-S

increases in risk. There are more studies giving further extensions of the above results.

In the next sub-section, we review the ratio approach which treats more sets of changes in

distribution, including subsets of FSD shifts as well as subsets of R-S increases in risk.

2.2.4 Ratio Approach

Recent papers such as Black and Bulkley (1989), Landsberger and Meilijson

(1990), Dionne, Eeckhoudt and Gollier (1993) and Eeckhoudt and Gollier (1995) have

shown the importance of the likelihood ratio between a pair of pdfs and the probability

ratio between a pair of CDF’s in defining sets of changes in pdf or CDF. As mentioned

earlier, our comparative static analysis follows this ratio approach and thus these previous

papers are crucial to our comparative static analysis. In this subsection, we give a brief

review of the ratio approach and more detailed review is given in later chapters.

Landsberger and Meilijson introduce a monotone likelihood ratio (MLR) shift

which is defined by imposing a monotonicity restriction on the likelihood ratio between a

pair of pdf 5. The set of MLR shifts is a subset of general FSD shifts. Using the standard

portfolio choice problem, Landsberger and Meilijson provide a general comparative static

statement that, when an MLR shift in the random return on a risky asset occurs, all

investors with non-decreasing utility functions increase their demand for the risky asset.

Another recent paper by Eeckhoudt and Gollier gives a definition of a monotone

probability ratio (MPR) shift by imposing a monotonicity restriction on the probability



ratio between a pair of CDF ’5. Being also a subset of general FSD shifts, the set of MPR

shifts is larger than the set of MLR shifts. Assuming that the concerned payoff is linear

in both the choice and the random variables, they show that an MPR shift in the random

variable causes all risk averse individuals to increase their optimal choice level.

Compared to Landsberger and Meilijson’s analysis, this implies a trade-off between the

restrictions used. That is, Eeckhoudt and Gollier provide a larger set of admissible

changes in distribution for the comparative static result with the cost of a smaller set of

decision makers. Since these two papers play an important role in our comparative static

analysis for the case of FSD shifts, more detailed discussions are given in chapter 4.

Black and Bulkley introduce a relatively strong increase in risk (RSIR) which is

defined by imposing a monotonicity restriction on the likelihood ratio between a pair of

pdf’ 5. As a subset of R-S increases in risk, the set of RSIR shifts is larger than the set of

SIR shifts given in Definition 2.8. Black and Bulkley show that, based on the general

decision model (1.1), an RSIR shift reduces the level of optimal choice selected by an

arbitrary risk averse decision maker. Accordingly, this is a generalization of the results in

Meyer and Orrniston (1985). Without the cost of additional assumptions, the same result

is obtained for a more general class of changes in distribution. However the comparative

static results in these two papers require a common restriction that payoffs should be

strictly concave in the choice variable, that is, z,,,, < 0. This restriction excludes the

decision models in which payoffs are linear in the choice variable (2“, = 0) such as the

standard portfolio problem.

In general, when 2,, = 0, the second-order condition for the decision problem

(1 . 1) is not guaranteed and thus the cases of an unbounded and a comer solutions should

be examined for making general comparative static statements. Dionne, Eeckhoudt and

Gollier raise this issue and show that, when the concerned payoff is linear in the choice

variable b, the results in Black and Bulkley are also obtainable for a ‘relatively weak

increase in risk’ which is a more general concept than an RSIR. They examined the cases



of an unbounded and a comer solutions in the proof of their comparative static result.

More detailed discussions about these papers are given in chapter 6 which considers the

comparative static analysis for the cases of R-S increases in risk.

2.3 Concluding Remarks

Reviewing the comparative static analysis gives a general notion that. when

relatively strong restrictions are imposed on one of the component of the decision model,

the derived comparative static results are usually associated with relatively weak

restrictions on the other components. The comparative static statements developed in the

context of the ratio approach contain relatively weak restrictions on the set of decision

makers such as all risk averse agents or all individuals with non-decreasing utility

functions. Our study follows the ratio approach in order to generate interesting

comparative static statements. That is, most sets of changes in randomness examined in

this study are defined by imposing monotonicity restrictions on the likelihood ratio

between a pair of pdf 5 or the probability ratio between a pair of CDF’s. The purpose of

this dissertation is to generalize and extend the existing comparative static results

presented in sub-section 2.2.3. The generalization includes the cases where the same

result is derived for a more general class of changes in distribution or for more general

decision problems. Some trade-offs between restrictions used in a general comparative

static statement are explored. In this study, we also examine the changes in the

admissible set of shifts in distribution when the linearity (with respect to the choice

and/or the random variable) restriction is added to the general decision model (1 . 1).



Chapter 3

RELATIONSHIPS AMONG SUBSETS OF FSD SHIFTS

This chapter gives the definitions for six special types of FSD shifts. Five

definitions result from imposing restrictions on the likelihood or the probability ratio

between an initial and a final random variables. That is, either the ratio of the pdf’s, g

andf, or the corresponding CDF’s, G and F, is restricted. The other one is given by

imposing restrictions on the pdf difference g — f and the CDF difference G — F. Each

definition characterizes a class of CDF changes for which a general comparative static

statement is made in chapter 4. Before doing the comparative static analysis, this chapter

is used to present some important relationships among those six types of FSD changes.

This and the next chapter consider only subsets of FSD shifts, that is, the final

distribution F always dominates the initial distribution G in the sense of first degree

(denoted by F FSD G). Both the CDF’s G and F are assumed to have their points of

increase in bounded intervals. For notational convenience, we assume that the support of

G(x) is a finite interval [xv x3] and the support ofF(x) is another finite interval [x2 , x4]

where x, S x2 and x3 S x,. Defining the supports in this way, we also assume that: for

the continuous case, G(x) > 0 for all x e(x,, co) and F(x) > 0 for all x 6(x2, co); and

for the discrete case, G(x)> 0 for all x E[xl, co) and F(x) > 0 for all x E[xz, oo). '9

 

'9 Defining sets of CDF changes, the ratio offto g or the ratio of F to G is often restricted to be non-

decreasing in the overlapped interval [x2, x3]. Then this assumption allows both the ratios to be strictly

positive for the interval [x2, x,] in a discrete case, and for the interval (x2,- x,] in a continuous case.

which are often used to simplify the proofs of the results developed in chapters 3 and 4.
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3.1 Important Subsets of FSD Shifts

In this section, we give the definitions for six special types of FSD changes. They

include two previously introduced ones: a monotone likelihood ratio (MLR) order from

Landsberger and Meilijson (1990) and a monotone probability ratio (MPR) order from

Eeckhoudt and Gollier (1995); and four newly defined ones: a left-sided monotone

likelihood ratio (L-MLR) order, a right-side monotone likelihood ratio (R-MLR) order, a

point-FSD shift, and a point-MPR shift. In sub-section 3.1.1, basic definitions of these

concepts are presented. Graphical examples in sub-section 3.1.2 are given to help the

reader understand the basic relations among the six orders.

3.1.1 Basic Definitions of Subsets of FSD Shifts .

In order to obtain a general comparative static statement in the portfolio problem,

Landsberger and Meilij son (1990) use the concept of an MLR which was previously

defined in the statistical literature. The MLR order specifies a type of FSD shift in a

distribution function. satisfying a monotonicity restriction on the ratio between a pair of

pdf3fand g.20

Definition 3.1. F(x) represents a monotone likelihood ratio FSD shift from G(x)

(denoted by F MLR G) if there exists a non-decreasing function h: [x2 , x3] —> [0. 00) such

thatf(x) = h(x)g(x) for all x E[x2 , x3].

According to the condition in Definition 3.1, g(x) 2 f(x) when h S 1 and g(x) S f(x)

when h 2 1, and the function h non-decreasing implies that the pdf’ 5fand g cross only

 

‘0 Following our notation about the supports of CDF’s F and G, Definition 3.1 is slightly modified from the

original one in Landsberger and Meilijson’s paper.
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once. Thus it is easy to confirm that an MLR order is an FSD shift.21 Let k be the point

at which the crossing occurs, and we know that k 6 [x2, x3]. Then an MLR shift specifies

a probability transformation such that some probability mass on the points to the left of

the point k is transferred to the points to right of the point k, requiring the ratio of the final

pdffto the initial pdfg to be non-decreasing.

The MLR order can be applied for cases of discrete or mixed random variables as

well. In general, the condition that the function h is non-decreasing in x 6 [x2, x3]

requires that the ratio offto g is non—increasing for the interval. As we noted in footnote

19, if the ratio h is non-decreasing then h is positive for all x 6 (x2, x3] regardless of

discrete or continuous case. Thus the MLR condition also requires that, for the interval

(x2, x3), 22 if g(x) = 0 then f(x) = 0, and if f(x) = 0 then g(x) = O. This implies a

restriction that, for the interval (x2, x,), the outcome values which were possible under

the initial distribution must be also possible under the final distribution, and the outcomes

which were previously impossible must have zero probability of occurring under the final

distribution.

According to Landsberger and Meilijson (1990), and Orrniston and Schlee (1993)

who also use the MLR order in their comparative static analysis, there are special

examples of shifts that already possess the MLR order. First, we do not exclude the case

where x3 S x2, that is, all possible outcome values under the final CDF F is larger than

those under the initial CDF G. For any shift of this type, it satisfies that F MLR G.

Second, consider a random variable which has only two outcomes. A transfer of

probability from the lower outcome to the higher one is an MLR shift, while an

increasing in the magnitude of either one or both outcomes (still the previously higher

outcome being larger than the new lower outcome) is not an MLR change. Third, if the

 

2' The MLR condition implies that G(x) 2 F(x) for all x e[x,, x4], and this is the condition for an FSD

shift (see Definition 2.1).

22 Both the end points are dropped from the interval [x2, x3 ], because it is possible that h(x2 ) = 0 or

h(x3) = so for continuous case.



random variable is continuous, then the MLR order gives complete orderings over the set

of all the uniform densities with the same left (right) endpoint. In this instance, a pdf

with a higher right (left) endpoint is MLR dominant over a pdf with a lower right (left)

endpoint.

Lastly, if an initial pdf is log-concave, adding a positive constant to the random

variable leads to an MLR change. To show this, assume that the final random variable y

is obtained from the initial random variable x as y-jx + c, where c is a positive constant.

With the given pdf ofx, g(.), the pdfofy,fl-) is given by f(t) = g(t - c) for all t e R.

Then the condition that g(t — c) / g(t) is non-decreasing in t is equivalent to

an -c> > g'm

g(t-c) - g(t)

 

and this is guaranteed by the condition that g’(x)/ g(x) = d In g(x)/ ab: is non-increasing

in x or equivalently that In g(x) is weakly concave. Examples possessing this property

include normal, uniform, and exponential distributions.23

A second specialized FSD change is defined in the analysis of Eeckhoudt and

Gollier (1995). They impose a monotonicity restriction on the ratio between the two

CDF’s F and G, and refer to the change as a monotone probability ratio (MPR) change.

Its definition follows:24

Definition 3.2. F(x) represents a monotone probability ratio FSD shift from G(x)

(denoted by F MPR G) if there exists a non-decreasing function H: [x2 , x3] —5 [0, 1] such

that F(x) = H(x)G(x) for all x E[x2 , x3].

 

23 See Karlin and Rubin (1956) for more examples.

2’ With the same reason as in footnote 20, Definition 3.2 is a slight modification of Definition 2 in

Eeckhoudt and Gollier.



36

The fact that H EU), 1] guarantees G(x)2 F(x) for all x e[x,, x4], and thus an MPR

shift is an FSD shift. Compared with an MLR shift, an MPR shift imposes less stringent

restrictions on the change in the random variable. The feature accruing to the MPR order

is that it does not restrict the number of times of crossing between the pdf’sfand g. This

comes from replacing the monotonicity restriction on the likelihood ratio h with the

monotonicity restriction on the probability ratio H. Thus, the assertion that the MLR

order implies the MPR order can be made by showing that the condition that the

likelihood ratio h is non-decreasing implies the condition that the probability ratio H is

non-decreasing. While the proof for this statement is formally given in the next section,

here we provide some cases showing that an MPR shift is not an MLR one.

One example satisfying the MPR but not the MLR condition is found in a shift in

a two-outcome random variable. Contrary to the MLR case, both the cases of a transfer

of probability from the lower outcome to the higher one and an increase in the magnitude

of lower outcome are MPR changes. Another notable thing is that, for the interval

(x3, x3), while F MLR G requires that if g(x) = 0 then f(x) = o, and if f(x) = 0 then

g(x) = 0. the condition F MPR G does not require that f(x) = 0 when g(x) = 0. Thus it

allows that f(x0) > 0 when g(x") = O, for some x° e(x2, x,). This is a useful extension

for discrete cases where the final pdffoften has some points with positive probability

which were impossible under the initial pdf g. An example of this case is given in Figure

3.9 in sub-section 3.1.2. I

As Eeckhoudt and Gollier note, there is a class of CDF’s in which adding a

positive constant to the random variable leads to an MPR shift. Similar to the MLR case.

assume that the final random variable y is obtained from the initial random variable x as

y j x + c where c is a positive constant, and that the initial CDF G is log-concave.

Then the final CDF F, given by F(t) = G(t —- c) for all t e R, is an MPR shift from G.

This is because the condition that G(t - c) / G(t) is non-decreasing in t is equivalent to



G'(l-c) > G'(t)

G(t—c) _ G(t)

 

and this is guaranteed by the condition that G'(x)/ G(x) = d In G(x)/ air is non-

increasing in x or equivalently that In G(x) is weakly concave. Bagnoli and Bergstrom

(1991) show that the log-concavity of the CDF is less demanding than the log-concavity

of the pdf. Thus, examples possessing this property include the normal, uniform, and

exponential distributions which satisfy the log-concavity of the pdf. They also show that.

if the pdf is non-increasing, adding a positive constant to the random variable is an MPR

shift but does not lead to an MLR shift.

In addition to the MLR and the MPR orders, there are other interesting types of

changes in distribution. An MLR shift from g tofrestricts the two pdf’s to cross only

once, and requires the ratio offto g to be non-decreasing for both side of the crossing

point. Relaxing some of these restrictions, we introduce two more special types of FSD

shifts. One, called a left-side monotone likelihood ratio (L-MLR) order, is obtained from

relaxing the monotonicity requirement for points to the right-side of the crossing point.

The other, called a right-side monotone likelihood ratio (R-MLR) order, drops the

monotonicity requirement to the left-side of the crossing point. Each of these relaxed

restrictions specifies a class of FSD shifts including all MLR shifts. Thus all the

examples of shifts given in the discussion of the MLR case are also examples of the L-

MLR or the R-MLR shifts. Formally, these changes are defined as:

Definition 3.3. F(x) represents a left-side monotone likelihood ratio FSD shift

from G(x) (denoted by F L-MLR G) if there exist a point k e [x2, x3] and a non-

decreasing function h: [x2, k) -) [0, 1] such that f(x) = h(x)g(x) for all x E[xz, k) and

g(x) S f(x) for all x e[k, x3] .25

 

2’ Only one crossing at a point k E[xz, x3] implies that f(x)S g(x) for all x E[xz, k) and f(x)2 g(x) for

all x e(k, x, ]. At the point It, it is usual that f(k) = g(k), but if the pdfg orf is discontinuous at k. both the

cases of f(k)< g(k) and f(k)> g(k) are possible, and thus Definition 3.3 includes the case where
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Definition 3.4. F(x) represents a right-side monotone likelihood ratio FSD shift

from G(x) (denoted by F R-MLR G) if there exist a point k 6 [x2 , x3] and a non-

decreasing function h:(k, x3] —> [1, 00) such that g(x) 2 f(x) for all x E[xz. k]

f(x) = h(x)g(x) for all x e(k, x3].

Both the L-MLR and the R-MLR conditions require that the pdf’sfand‘g cross only once

at the point k and that g(x) 2 f(x) for all points to the left-side of k and g(x) S f(x) for

all points to the right-side of k. This implies that each of the two orders defines an FSD

shift. Since an L-MLR requires the condition of monotone likelihood ratio only for the

left-side of the point k, and an R-MLR requires the monotonicity only for the right-side of

the point k, both the orders are more general than the MLR order. An L-MLR shift

specifies a probability transformation such that a decreasing proportion of probability

mass of the left-side of the point k is transferred to the right-side of the point k. An R-

MLR shift gives a transformation that some probability mass taken from the left-side of k

is transferred to the right-side of k, keeping the ratio of the final pdf to the initial pdf non-

decreasing only for the right-side of k.

In order to give special examples of an L-MLR and an R-MLR shift, consider an

initial random variable which has only two outcomes. If the lower (higher) outcome

becomes larger than before, then it is the case of an L-MLR shift where k = x2 (an R-

MLR shift where k = x3 ). Generally, given an initial pdfg(x) with its support [x,, x3],

let’s consider a conditional pdf g’ , given by g’ (t) = g(t)/G(T) with its support [x,, T]

where T S x,. Then an MLR shift in g’ gives an L-MLR shift in the initial g(x). If we

define a conditional pdf g’(t) = g(t)/ [1—G(T)] with its support [T, x,] where xl S T, an

MLR shift in g’ gives an R-MLR shift in the initial g(x).

 

f(x)S g(x) for all x E[xz, k] and f(x)2 g(x) for all x e(k, x,]. This discussion is applied for all the

other definitions given in this section.



With the restrictions used, it is obvious that an MLR shift is also an L-MLR or an

R-MLR shift, but not vice versa. Similarly, the restrictions for the MLR conditioh that,

for the interval (x2, x3), if g(x) = 0 then f(x) = 0, and if f(x) = 0 then g(x) = 0, is

somewhat relaxed. The condition F L-MLR G allows that f(x0) > 0 when g(x") = 0,

for some x0 e [k, x,), and the condition F R-MLR G allows that g(xo) > 0 when

f(x0) = 0, for some x0 6 (x2 , k]. Another basic relationship exists between the L-MLR

and the MPR orders, although there is no direct relationship26 between the R-MLR and

the MPR orders. In section 3.2, we show that the monotonicity restriction on the

likelihood ratio between a pair of pdf3 for the MLR and the L-MLR shift implies the

monotone probability ratio between the corresponding CDF’5. Thus the MLR order

implies the L-MLR order, which in turn implies the MPR order.

In what follows, two more types of FSD shifts are defined. As a special feature,

these two CDF orders are specified by a given point and thus each set of CDF changes

satisfying the orders is determined by the given point. One is called an ‘FSD

improvement with respect to a point’ (point-FSD). This is defined by imposing

restrictions on the CDF difference G - F and the pdf difference g - f, and the

restrictions depend on a given point. A point-FSD shift does not use any monotonicity

restriction on the likelihood or the probability ratio between a pair of distributions. This

is defined as:

Definition 3.5. Given a point k 6 [x2. x3], F(x) represents an FSD shift with

V respect to the point k from G(x) (denoted by F k-FSD G) if G(x) 2 F(x) for all

x e[x.. x4], and 'g(x)S f(x) for all x E[k, x3].

 

2" While F R-MLR G allows that g(xo) > 0 when f(x0) = 0, for some x° 6 (x2 , k], which is not allowed

in F MPR G, an MPR shift allows multiple crossings between the two pdfs, which is not allowed in an R-

MLR shift.



40

Since the condition includes the general FSD condition, a k-FSD shift is also an FSD

shift. In addition to the condition F FSD G, a k-FSD change requires only the restriction

that, given the point k, G(x) — F(x) is non-increasing or g(x) S f(x) for the interval

[k, x,]. For the left-side of the point k, the only restriction required is F FSD G. Thus,

as the given point k becomes large, the restriction on the point-FSD becomes less severe.

That is, for the given points kl and k2 where kI S k2, all kl -FSD shifts are also k2 -FSD

shifts, but not vice versa. For any FSD change from g tof, there exists a point

k E[xz, x3] satisfying the restriction that g(x) S f(x) for all x E[k, x,]. This implies

that any FSD change can be classified as a k-FSD shift, for an appropriately chosen k.

Compared with the above four definitions of FSD shifts, a k-FSD does not restrict

the number of times of crossing between the pdf5fand g, nor is there any monotonicity

restriction on the likelihood or the probability ratio between the two distributions. While

the set of CDF changes defined by the point-FSD depends on a given point k, it generally

includes shifts that do not satisfy any of the four types of FSD shifts defined above.

Finally, another CDF order which depends on a given point is called an ‘MPR

with respect to a point’ (point-MPR). This is obtained from weakening the conditions

required for an MPR shift, and the degree of the weakened restriction depends on a given

point. A point-MPR requires the monotonicity restriction on the CDF ratio only for the

points to the right-side of the given point, and the change is defined as:

Definition 3.6. Given a point k 6 [x2, x3]. F(x) represents a monotone

probability ratio FSD shift with respect to the point k from G(x) (denoted by F k-MPR G)

' if, with the ratio function Hgiven by H:[x2, x3] —> [0, 1] such that F(x) = H(x)G(x),

the function H is non-decreasing in x E[k, x3] and H(x) S H(k) for all x E[xz, k].

The MPR condition is relaxed for the interval [x2, k] in which a k-MPR does not

require the CDF ratio function H to be non-decreasing. Similar to the k-FSD case, as the
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given point k becomes large, the restriction on the point-FSD becomes less severe. That

is, for the given points kl and k2 where kl S k2, all kI -MPR shifts are included in the set

of k2 -MPR shifts. As a special case, the set of MPR shifts is equal to the set of k-MPR

shifts where k = x2. A point-MPR is related to a point-FSD shift in such a way that,

given a point k, a k-MPR shift can always be decomposed into two shifts, one MPR and

the other k-FSD. This is formally given in section 3.2.

3.1.2 Graphical Examples

This sub-section provides graphical examples of the six concepts of FSD shifts

defined above, and shows the basic relationships among them. In order to contrast the

differences among those concepts, we consider the following nine examples of FSD

shifts, seven continuous cases and two discrete cases. Examining each example, we can

visualize the basic relationships discussed in section 3.1.1.

(1) Example 3.1: FMLR G in Figure 3.1. As Figure 3.1 shows, the pdfs g andf

cross only once at a point k. The likelihood ratio function h given in Definition 3.1 can

be defined by h = f / g for the interval [x2, x3]. Since the function h is non-decreasing

in the interval, the shift from G to F satisfies the MLR condition. To show that the ratio

f / g is non-decreasing is equivalent to show that f' - g 2 f - g'. When g at 0, this is

equivalent to the following condition:

f’/g'2f/g,wheng’>0

f’20,wheng'=0

f’lg'Sf/g,wheng'<0.

Graphically, this implies that, when g 2 f and g' > 0 ( g’ < 0), the tangent lines

1g and I, in Figure 3.1 do not meet to the left (must meet to the right) direction in the
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Figure 3.1. Example 3.1: FMLR G.

f(x).g(X)

   
x2 k c x3 x4

Figure 3.2. Example 3.2: F L-MLR G.
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Figure 3.3. Example 3.3: F L-MLR G (a discrete case).
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Figure 3.5. Example 3.5: FR-MLR G.
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Figure 3.6. Example 3.6: F MPR G.
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Figure 3.7. CDF representation of example 3.6.
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Figure 3.8. Example 3.7: F MPR G (a discrete case).
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Figure 3.9. CDF representation of example 3.7.

 

  
Figure 3.10. Example 3.8: Fk-FSD G.
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Figure 3.11. Example 3.9: F k-MPR G.

space above x axis, and when g S f and g’ < 0 ( g' > 0), the tangent lines IX and I, do

not meet to the right (must meet to the left) direction in the space above x axis.

(2) Example 3.2: F L-MLR G in Figure 3.2. This is also an example of single

crossing between the pdf’s g andf Let’s define the likelihood ratio function h as

h = f / g for the interval [x2, k). Then the ratio is non-decreasing in the interval and

thus the shift from G to F satisfies the L-MLR condition. The figure shows that the two

tangent lines at point c (g(c) S f(c) and g'(c) < 0) meet in the right direction, which

implies that, at the point c, the ratio f / g is decreasing. Thus the shift cannot be an

MLR change.

(3) Example 3.3: F L-MLR G in Figure 3.3. Example 3.3 considers a shift in a

two-outcome random variable. The initial random variable has only two outcomes,

x1 and x3, with equal probability of occurring. Increasing the lower value xI to x2 leads

to an L-MLR shift. Let x2 = k, then the domain of the non-decreasing ratio function h is

empty and f(x) 2 g(x) for all x e [k, x3]. which satisfy the L-MLR condition. The shift
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cannot be an MLR shift because the ratio offto g is + so at x2, and one at x,, that is, the

likelihood ratio function h should be decreasing at least one point in the interval [x2, x3 ].

In this case, if the higher outcome x3 increases with the lower outcome unchanged then it

is the case of an R-iMLR shift.

(4) Example 3.4: F L-MLR G in Figure 3.4. This example shows that, given an

initial pdfg(x) with its support [x1, x3], an MLR type of shift occurred only on the left-

side subinterval such as [xl , T] where T S x3 rives an L-MLR shift in the initial pdf g.

Let’s define a conditional pdf g’ (t) = g(t)/ G(T) with its support [x,, T], then the shift

shown in the figure can be understood as an MLR shift of the conditional pdf g’ . Since

the ratiofto g is constant and less than one for the interval [x2, k), and f 2 g for all

x e [k, x3], it is obvious that F L-MLR G.

(5) Example 3.5: F R-MLR G in Figure 3.5. There is only one crossing between

the pdf's g andf Since the shift in this example satisfies that f S g for all x 6 [x2, k),

and that the ratiofto g is increasing and larger than one for the interval [k, x,], it is an

R-MLR shift. The shift cannot be an MLR. As an evidence, the figure shows that,

f = 0 and g > 0 for the interval [CI , c2], which is not allowed for an MLR shift.

(6) Example 3.6: F MPR G in Figure 3.6 and 3.7. As Figure 3.6 shows, the pdfs

g andfcross three times at the points cl , c2 and c3, and thus the example cannot be an

MLR, an L-MLR or an R-MLR shift. In Figure 3.7, we can see the CDF representation

of example 3.6. The probability ratio function H given in Definition 3.2 can be defined

by H = F / G for the interval [x2, x3]. Since the function H is non-decreasing in the

interval, the shift satisfies the MPR condition. In order to see this graphically, we can use

the same logic used in the MLR example 3.1. G is always non-decreasing and greater

than F in an FSD change. Thus, if the tangent lines [G(z G(x) in the given example) and
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1,; for any point in the interval [x2, x3] do not meet to the left direction in the space

above x axis, the CDF ratio F / G is non-decreasing.

(7) Example 3.7: F MPR G in Figure 3.8 and 3.9. This is an example of a discrete

case. To see that the shift is an MPR shift, consider the CDF representation of the shift

given in Figure 3.9. Since the CDF ratio F to G is non-decreasing for the interval

[x2, x,], it is obvious that F MPR G. Figure 3.8 shows that the difference g - f changes

sign at three points x2, c1 and c2. This implies that the pdfs g andfcross three times,

and thus the shift cannot be an MLR, an L-MLR or an R—MLR change. Note that, at

point c2 which is in the interval (x2, x3), f(c2) > O and g(cz) = O, which is not allowed

for an MLR shift. Thus, this is an example showing that the MPR order is a useful

extension for discrete cases where the final pdffoften has some points with positive

probability which were impossible under the initial pdf g.

(8) Example 3.8: F k-FSD G in Figure 3.10. Given the point k, the fact that the

difference G - F is decreasing for the interval [k, x3] guarantees the shift to be a k-FSD

shift. Since the ratio ofF to G is decreasing for the interval [c,, c2], this example cannot

be an MPR shift. We noted that, as the given point k becomes large, the restriction on the

point-FSD shift becomes less severe. This implies that, if the selected point is

sufficiently large, all the above examples are also the examples of point-FSD shifts.

(9) Example 3.9: F k—MPR G in Figure 3.11. As the last example concerned in

this sub-section, we present a point-MPR shift. Given the point k, the figure shows that

the ratio F / G is non-decreasing for the interval [k, x3], and F(x)/ G(x) S F(k)/ G(k)

for all x 6 [x2, k]. Thus example 3.9 satisfies the k-MPR conditions, but it cannot be an

MPR shift because the CDF ratio is decreasing for the interval [CI , c2 ]. Note that the set

ofMPR shifts is a subset of the set of k-MPR shifts, for any given k 6 [x2 , x3]. The shift
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also does not satisfy the k-FSD condition because the difference G — F is increasing for

some points in the interval [k, x3].

3.2 Some Properties among Subsets of FSD Shifts

This section points out several relationships among the concepts of FSD shifts,

defined in section 3.1. They include important properties which play a key role for

developing general comparative static statements in chapter 4. First, we discuss the basic

relationships among the orders generated by these concepts.

Property 3.1. FMLR G :> FL-MLR G :> FMPR G :> Fk—MPR G.

Proof. The claim that “if F MLR G then F L-MLR G” is obvious. It is because

the restriction that the pdf ratio function h(x) is non-decreasing in the interval [x2, x3] ,

which is required for an MLR shift, is relaxed for an L-MLR shift in such a way that, for

the interval ofx satisfying h(x)21, h need not be non-decreasing. The relationship that

“if F MPR G then F k-MPR G” is also easily verified by the fact that the condition that

the CDF ratio function H(x) is non-decreasing for the interval [x2, x3] implies

H(x) S H(k) for all x E[xz, k].

Consider the second relationship “ifF L-MLR G then F MPR G.” Since G > 0

for all x e (x,, 00), we can define a function H for the interval [x2, x3] as,27

H(x) = F(x)/G(x), for all x E[xz, x3].

 

27 If x, = x2 and x is continuous, then G(xz) = 0 and the proof is also true for this case with the function H

defined as, ‘

0, when x = x2 .

: {F(x)/ G(x), when x e(x2, x3].
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To prove the relationship, since H 2 0, it is sufficient to show that the condition F L-

MLR G implies that H is non-decreasing and less than or equal to one for the interval. It

is clear that H S l for all x 6 [x2, x3] because an L-MLR shift in which the pdfs g andf

have only a single crossing is an FSD shift. For the interval, the condition F / G non-

decreasing is equivalent to:

f(x)G(x)—g(x)F(x)20, for allx E[xz, x3]. (3.1)

With the condition F L-MLR G, divide the interval [x2, x3] into two sub-intervals, one

such that g 2 f and the other such that g S f. When g S f, the condition (3.1) is

satisfied because G 2 F. When g 2 f, the L-MLR condition implies that

(i) if g(x) = 0, then f(x) = 0

(ii) if g(x)¢ 0, then h(x) = f(x)/ g(x). .

Thus, for all the values ofx such that g = O, the condition (3.1) is satisfied. For case (ii),

the condition (3.1) can be written as,

h(x)G(x) — F(x) 2. 0, for all x 6 [x2, x,] such that g(x) ¢ 0. (3.2)

Since h(x2 )G(x2)— F(x2) 2 0 and the condition h non-decreasing in x implies that the LHS

of (3.2) is non-decreasing, i.e.,

é’[h(x)G(x)— F(x)]/ 6x = h'G + hg - f = h'G Z O,

the condition (3.2) is satisfied. Hence the condition (3.1) is satisfied for all x such that

g .>. f. This completes the proof. Q.E.D.

Now we have formal relationships among the subsets of FSD changes. Let’s

define the following five subsets of FSD shifts, each representing a set of pairs of CDF’s

(F, G) such as:
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0.. = {(F. G): FMLR 6}

r2,,,,, = {(F, G)| FL-MLR G}

0.-.... = {(F, G)| FR— MLR G}

{2.0. = {(F, 0)] FMPR G}

9am = {(F. G)! Fk-MPR G}.

Then Property 3.1 implies.

QM, c: {2,41, c [2,”, c Ohm,”

and, since an R-MLR shift is less demanding than an MLR shift,

9m. C 0R- M1.-

Next we show that the four CDF orders, MLR, MPR, k-FSD, and k—MPR have the

property of transitivity.

Property 3.2. If F, MLR F, and F, MLR R, then F3 MLR F].

Proof. Let the support of F; (and its corresponding pdf fl) be a finite interval

[x,’, x,’,], i=1, 2, 3, where x} S x,2 S x,3 and x}, S x}, S x2. Then the given two MLR

shifts imply that there exist non-decreasing functions h,:[x,2, x,',] —) [0, co) and

h,:[x,3, x:]-§[0, 00) such that f, =1th for x e[x,2, xi] and f3 = h,f, for x e[x,’, xi],

respectively. This implies that, for the interval {x}, x,',], f, = h,fl and f3 = h,f,, and thus

f3 = h,h,fl . Since hl - h, is also non-decreasing and non-negative for the interval

{x}, x,',], and by Definition 3.1, F, MLR F]. Q.E.D.

Property 3.3. If F, MPR F, and F, MPR F,, then F, MPR Fl.
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Proof. With the same supports defined in the proof of Property 3.2, the given two

MPR shifts imply that there exist non-decreasing functions H,:[x,2, x,',] a [0, l] and

H,:[x,3, xj]->[0, 1] such that F, =HIF, for x E[xf, x,',] and F, = H,F, for x e[x,3, xi],

respectively. This implies that, for the interval {x}, x,',], F, = H,F, and F, = H,F,, and

thus F, = H,H,F; . Since Hl . H, is also non-decreasing and between zero and one for all

x E[xf, xL], and by Definition 3.2, F, MPR Fl. Q.E.D.

Property 3.4. Given a point k, if F, k-FSD F, and F, k-FSD F] then F, k-FSD F,.

Proof. With the same supports given in the proof of Property 3.2, the given two

k-FSD shifts imply that F,(x)- F,(x) is non-negative for all x e R and non-increasing for

all x E[k, x,',], and that F,(x)— F,(x) is non-negative for all x e R and non-increasing for

all x E[k, xi]. This implies that F,’(x)— F,(x) which is the sum of F,(x)-—F,(x) and

F,(x)— F,(x) is non-negative for all x e R and non-increasing for all x E[k, x,',]. Thus.

by Definition 3.5, F, k-FSD 15;. Q.E.D.

Property 3.5. Given a point k, ifF, k-MPR F, and F, k-MPR F, then F, k-MPR F.

Proof. With the same notations used in the proof of Property 3.3, the given two

k-MPR shifts imply that the ratio function H,:[x,2, x,',] —) [0, l] is non-decreasing for all

x E[k, x,',], and H,(x)SH,(k) for all x E[xf, k], and that the ftmction H,:[x,3, xfi]—>[O, 1] is

non-decreasing for all x E[k, xi] and H,(x) S H,(k) for all x e[x,‘, k]. With

F, = H,H,F for the interval [x,’, x,',], this implies that Hl - H, is also non-decreasing

and between zero and one for all x e [k, xi], and H,(x)H, (x) S H,(k)H,(k) for all

x e[x,3, k]. Thus, by Definition 3.6, F, k-MPR E. Q.E.D.
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From Property 3.2, 3.3, 3.4 and 3.5, we have a general statement that a series of

MLR (MPR, k-FSD, k-MPR) shifts results in an MLR (MPR, k-FSD, k-MPR) shift. That

is, a series of n +1 (n .>. 1) number ofMLR shifts such that F MLR G" MLR G,_, MLR

G, MLR G, implies that F MLR G, and the same is applied for the other three CDF

orders. This can be stated in another way that any shift that can be decomposed into a

series of MLR (MPR, k-FSD, k-MPR) shifts is also an MLR (MPR, k-FSD, k—MPR) shift.

Thus, any shift that does not satisfy the MLR (MPR, k-FSD, k-MPR) order cannot be

decomposed into a series ofMLR (MPR, k-FSD, k-MPR) shifts.

Transitivity has important implications with regard to comparative static analysis

under uncertainty. As we noted in chapter 2, one strategy to make a general comparative

static statement is to find an admissible set of changes in CDF. Consider a CDF order

which defines a particular type (set) of changes in CDF, and make assumptions so that the

comparative static effect of any CDF change generated by the order is determinable for a

given decision model considering all decision makers in a given set. Then the admissible

set of changes in CDF for the comparative static result can be extended to include every

shift that can be decomposed into a series of shifts which are all satisfying the given CDF

order. If the given order has the property of transitivity, then the extended set is just the

same as the set specified by the initial order and thus there is no gain in the comparative

static result. The above four CDF orders, MLR, MPR, k-FSD, and k-MPR are of this

type because they are transitive.

If the order is not transitive, the extended set of changes in CDF includes more

changes that do not satisfy the given order. This implies that the order is only a sufficient

but not necessary condition for the comparative static result and implies a possibility of

extension giving an efficiency gain in the result. As a special case, consider that an

arbitrary change in CDF generated by a CDF order can be decomposed into a series of

shifts which are all satisfying another CDF order. If the latter order is sufficient for a
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general comparative static result, then all the shifts satisfying the former one are also

admissible for the result.

Transitivity does not hold for the L-MLR order. It is easy to find an example that

the sum of two single crossing L-MLR changes, from f, to f, and from f, to f,, can

involve multiple crossings between 1, and f,. In general, the relationships F, L-MLR

F, and F, L-MLR F, do not necessarily mean F, L-MLR F}. In this case, since an L-

MLR shift is also an MPR shift, Property 3.3 implies F, MPR F, . In other words, a

CDF change that can be decomposed into a series of L-MLR shifts is not always an L-

MLR shift but is an MPR shift. Considering the reverse case, there exists an important

relationship between the L-MLR order and the MPR order. The next property shows that

an MPR shift can always be decomposed into a series of L-MLR shifts.

Property 3.6. Any MPR shift can be decomposed into a series of L-MLR shifts,

that is, ifF MPR G, then there exists a series of CDF’s G, , - - - , G” such that F L-MLR G,

L-MLR G L-MLR L-MLR G, L-MLR G.
"—1

Proof. Given an arbitrary pair of pdf’ 3fand g satisfying the condition F MPR G,

let’s define a function h: R —> [0, oo) as

rf(x)/ g(x), when g(x) at 0

h(x) = < the defined last value off(x)/ g(x), when g(x) = f(x) = 0

 Koo, when g(x) = 0 andf(x) at 0.

Under the MPR condition, the function h is generally not monotone and thus there are

points at which h changes from non-increasing to non-decreasing. Let’s denote all such

points as 0,, i=1, 2,~-, n where n .>.. 028 and c,,<c,,_,< ---<c,, and for each c, define a

CDF G, and its corresponding pdf g, as

 

2‘ When n = o. it just implies that the MPR shift is an MLR shift.
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xl,G(x), when x < c,

G,(x) = (3.3)

F(x), when x 2 c,

and

xi,g(x), when x < c,

g.(x) = (3-4)

f(x), when x 2 c,

where ,1, = F(c,)/ G(c,), respectively. If we set G=G0 and F =G,”I with 1,, =1, 1,”, = 0,

c0 = x, and c“, = x,, then from (3.4) we see that, for every i=1, 2,---, n +1, g, is

generally related to g,_, as

f(xl,/11,_,)g,_,(x), whenx < c,

g(x) = J (h / 1,_,)g,_,(x)(= f(x)), when c, s x < c,_, (3.5)

(gt-1(x)(= f(x)), Whenx Z cI-l' 

With the given condition F MPR G, if, / AH <1. From (3.3), the fact that G,(c,.) = F(q)

and G,(x) S F(x) for all x e[x,, 6,.) implies that, at every point c,, g, meetsffrom the

below. This implies xi, S h(c,). For the interval [c,, c,_, ), it is known that the function h

is initially non-decreasing and changes to non-increasing through the end of the interval.

Accordingly, (3.5) implies that there exist a point k, e [c,, c,_, ) 29 and a non-decreasing

function h,:[x,, k,) -—> [0, 1] such that g(x) = h,(x)g,_, (x) for all x e[x,, k,) and

g,(x)2 g,_,(x) for all x e[k,. x4], Where h,(x) is given as,

A,//i,_,, forx e[x,, 6,.)

[1,-(x =

h(x)/ AH, forx e[c,, k,).

Hence, by Definition 3.3, G, L-MLR G,_, for all i=1, 2,--, n+1. Q.E.D.

 

2" irg,(c,)2 g,_,(c,), then c, is the point k, and from (3.3),

8107) = (’I'i l’l'i-i)gi-i(x)s forx E[xl’ Ci)

gi(x) 2 gi-|(x)s forx 6[C,, x4]

which imply G, L-MLR G,_,. This case, as will be shown in Figure 3.12, leads to also GM L-MLR G,_, ,

and more generally, if g,,,.(c,,,)2 g,._,(c,.+1) for every j =0, l, m, m, then G L-MLR G,_,.
fund
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To illustrate the result in Property 3.6, consider an example of an FSD shift given

in Figure 3.12. As the figure shows, since the pdfs g andfcross seven times, the shift is

neither an MLR nor an L-MLR shift. Following the method given in the proof of

Property 3.6, four intermediate pdfs g,'s, for i=1, 2, 3, 4, are defined. The shift from

g tofis divided into five shifts, from g to g,, m, and from g, tof Applying the

conditions in Definition 3.3, it is easy to know that each shift is an L-MLR shift. Thus

the example shows that a shift from g to f, satisfying the MPR3o condition, can be

decomposed into five L-MLR shifts such that:

F L-MLR G4 L-MLR G, L-MLR G, L-MLR G, L-MLR G.

As we noted, since g,(c,) 2 g,(c,) and g,(c,) .>. g,(c4 ), the shift can be decomposed

into only three L-MLR shifts such that: F L-MLR G, L-MLR G, L-MLR G.
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Figure 3.12. F MPR G that is the sum of five L-MLR shifts.

 

3° Another implication from the example in Figure 3.1 I is that the shift from g tofis guaranteed to be an

MPR shift, without examining its CDF representation. It is because the five L-MLR shifts in the figure are

also understood as the five MPR shifts (by Property 3.1) which are transitive (by Property 3.3).
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Property 3.6 shows the case that a shift satisfying one CDF order can be

decomposed into shifts satisfying another CDF order. In the next, as the last property

examined in this section, we show another case that a shift satisfying one CDF order can

be decomposed into shifts satisfying two other CDF orders. This interesting relationship

exists among the orders, MPR, k-FSD and k-MPR. While they all have the property of

transitivity, the following property shows that a k-MPR shift can always be understood as

the sum of two shifts, one k-FSD and the other MPR.

Property 3.7. Any k-MPR shift can be decomposed into two FSD shifts one k-

FSD and the other MPR, that is, if F k-MPR G, then there exists an intermediate CDF G,

such that F k-FSD G, MPR G.

Proof. With a shift from G to F satisfying the condition F k-MPR G where

k e[x,, x,], define an intermediate CDF G, as

Ii,G(x), whenx < k

G,(x) = (3-6)

F(x), whenx 2 k

where A, = F(k)/ G(k), respectively. Then we know that G, MPR G because the ratio of

G to G, is non-decreasing for all x e[x,, x4], and that F k-FSD G, because the k-MPR

condition implies that F(x)/ G(x) S A, for all x e [x,, k] which, in turn, implies

G,(x) 2 F(x) for all x e[x,, k]. Q.E.D.

A graphical example is given to illustrate the result in Property 3.7. The shift

from G to F shown in Figure 3.13 satisfies the condition F k-MPR G, but does not satisfy

the MPR or k-FSD condition given in Definition 3.2 and 3.5, respectively. The figure

shows that the intermediate CDF G, , given by using (3.6), satisfies the relationship that

F’k-FSD G, MPR G.
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k x, x,

Figure 3.13. F k-MPR G that is the sum of a k-FSD and an MPR.

The last two properties can be considered as the examples showing that a CDF

order can be decomposed into shifts that can be generated by other one or more CDF

orders. These properties have important consequences with regard to providing general

comparative static statements. By Property 3.6, the comparative static statement for the

set ofMPR shifts can be obtained from the one made for the L-MLR order. By Property

3.7, the comparative static statement for the set of k-MPR shifts can be obtained from the

ones made for the MPR and the k-FSD orders. These are shown in chapter 4.



Chapter 4

COMPARATIVE STATIC RESULTS WITH SUBSETS OF FSD SHIFTS

This chapter provides general comparative static statements regarding the classes

of FSD shifts discussed in chapter 3. Both the concepts of an MLR shift and an MPR

shift are considered in Landsberger and Meilijson (1990) and Eeckhoudt and Gollier

(1995), respectively. However their comparative static results are restricted to the special

case of the general framework (1.1) such that the concerned payoff function is linear in

both the choice and the random variables. Their results are generalized in this chapter by

showing that the same comparative static results hold for the general decision model

without any additional assumption required. The concept of an L-MLR shift and the

discussion given in chapter 3 are useful for the generalization of Eeckhoudt and Gollier’s

result. We also discuss trade-offs between the structural restrictions on the given decision

model'and the restrictions on the set of changes in the pdf or CDF. In particular, when

the concerned payoff function is restricted to be linear in the choice variable, it is possible

to make an even more general comparative static statement. Four CDF orders, L—MLR,

R-MLR, k-FSD, and k-MPR are used in these trade-offs.

Section 4.1 presents preliminary discussion about these two key papers and some

related work, and the main results in this chapter are provided in section 4.2. In this

chapter, let b6 and bF be the optimal choices under the CDF’s G and F, respectively, then

we examine the sign of bF — b6 when a shift from an initial CDF G to a final CDF F

occurs.

60
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4.1 Literature Review and Preliminary Discussions

Meyer and Orrniston (1983) show that an arbitrary FSD improvement causes

every risk averse agent to increase his level of choice variable if and only if its optimal

level under uncertainty is independent of the value of the random exogenous variable.

However, it is not an interesting problem because the restriction used on the structure of

the concerned decision model is too severe. Using the simple case of a one-risky and

one-safe asset portfolio problem, Fishburn and Porter (1976) also show that an FSD

improvement in the return of the risky asset does not necessarily induce a risk averse

investor to increase his demand for the risky asset. These papers generally imply that,

only for subsets of the set of general FSD shifts, “interesting comparative static statements

regarding the choice made by an arbitrary risk averse decision maker can be made. Two

recent papers by Landsberger and Meilijson (1990) and Eeckhoudt and Gollier (1995)

introduce two special types of FSD shifis, an MLR shift and an MPR shift, respectively.

These were described in chapter 3. This section provides discussion concerning

comparative static results for these types of shifts, which are about to be generalized in

the next section.

4.1.1 Monotone Likelihood Ratio FSD Shifts

Landsberger and Meilijson made a general comparative static statement for the set

of MLR shifts. The decision model used in their analysis is the standard portfolio choice

problem. In that problem, an individual is assumed to have one unit (normalized) of

wealth which is to be allocated between one safe asset paying a zero rate of return and the

other risky asset paying a random rate of return e. Then the individual wants to maximize

his expected utility of final wealth W given by:

W=l+be (4.1)
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where b is the fraction of the unit wealth allocated to the risky asset. Landsberger and

Meilijson’s finding for this problem is that an MLR shift in the distribution of the random

return on the risky asset induces all investors with non-decreasing utility functions to

increase their demand for the risky asset. This result is very strong in the sense that the

comparative static statement is for a very large and general class of decision makers.

A point concerning their analysis is worthy of mention. Most other comparative

static analysis assumes that the first and the second-order conditions for the maximum

problem (1.1) are satisfied to guarantee an interior bounded solution. Along with the

continuity and the differentiability assumptions, these conditions are then used to prove

comparative static results under uncertainty. That is, to prove that b, — b6 2 0 for a

particular type of change from G to F, or correspondingly from g tofi it is sufficient to

show that,

Qw.) = l: u'izix. b..>iz.<x. be)[g(x)- f(x)]dx s 0. (4.2)

As Dionne, Eeckhoudt and Gollier (1993) note, this approach can be quite restrictive and

may exclude some interesting cases such as a comer or an unbounded solution. In

particular, when decision makers are risk-neutral and the payoff function z(x, b) is linear

in the choice variable, the sufficient second-order condition is not met and the expression

(4.2) is not as useful for the comparative static analysis. Landsberger and Meilijson’s

analysis relies on a very weak optimality condition of the decision problem. Their

analysis requires only the condition that the optimal solution b0 is determinable for an

initial CDF G, including an unbounded or a corner solution.31

The method used in the proof of their result is interesting because it includes the

cases of a corner and an unbounded solution along with the interior solution case. Let the

expected utility in the above portfolio problem be expressed as a function of b, the

 

3' Furthermore it does not require the continuity and the differentiability assumptions on the utility

functions and the payoff function W in (4.1).
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fraction invested in the risky asset as: for an initial and a final CDF’s G and F of the

random return e,

EU,,(b) = E(,[u(1 + be)]

and

EU,..(b) = E,.[u(l + be)]

respectively. To prove that b,,. S b,.. , it is sufficient to show that for any pair b, and b,,

ifb, S b, and EUG(bl ) S EUG(b,), then EUF(b,)S EU,..(b,). (4.3)

This is because (4.3) implies that EU,.(b) S EUF(bG) for every b S b,,. which in turn

implies that the maximum of EUF(b) exists at a value of b larger than b,,. and thus

b,, S bF. Landsberger and Meilijson show that an MLR shift from G to F satisfies the

condition (4.3) for the portfolio problem.

However Landsberger and Meilijson’s comparative static analysis is restricted to a

specific problem, i.e., the standard portfolio choice model. This is a special case of the

general framework (1.1) as the final wealth W in (4.1) is linear in both the choice and the

random variables. Subsequently, Onniston and Schlee (1993) provide a comparative

static result based on the general decision model of the form:

mfx E[u(x. 17)] - (44)

where a utility function, u, depends on both the choice variable b and the random

exogenous variable x. Since in this general framework the utility function may depend on

two or more outcome values, the general framework (1.1) is a special case of (4.4).

Treating the same subset of FSD changes, they examine a trade-off between assumptions

on risk preferences and ordinal preferences under certainty. They show that an MLR shift
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induces all the individuals whose choices under certainty are non-decreasing in the

exogenous variable to increase their choice level.

The restriction imposed on ordinal preferences under certainty implies, in the

problems of the form (1.1), the set of decision makers with non-decreasing utility

functions. In this sense Orrniston and Schlee’s comparative static result is more general

than Landsberger and Meilij son’s result. However, the assumptions required for defining

a unique solution of the problem (4.4) is quite restrictive. They also assume that the first

and the second-order conditions are satisfied, and thus only the case of an interior

solution is examined. When the decision models are of the form (1.1) and have linear

payoffs such as the portfolio problem, the cases where a corner or an unbounded solution

prevails and the risk neutral decision maker are excluded from the analysis.

So far, we have discussed the comparative static analysis for the MLR order. In

section 4.2, we generalize Landsberger and Meilijson’s result by showing that the same

result is obtainable for the general decision model (1.1) for interior or non-interior

solution cases — an efficiency gain compared to the analysis of Orrniston and Schlee.

Furthermore, we provide another important generalization. Since the MLR order is

sufficient (but not necessary) for Landsberger and Meilijson’s result, we show that the

same result is true for a more general class of FSD shifts than the MLR order.

4.1.2 Monotone Probability Ratio FSD Shifts

Eeckhoudt and Gollier’s paper is an extension of the Landsberger and Meilijson

contribution. They examine a trade-off between the restrictions on the set of decision

makers and the set of changes in distribution. While the MLR order concerns the ratio

between density functions, the MPR order is defined using the ratio between cumulative

distribution functions. As we have seen in section 3.2, the MLR condition is a stronger

restriction than the MPR condition. Eeckhoudt and Gollier show that an MPR shift in the

distribution of the concerned random variable increases the choice level selected by an
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arbitrary risk-averse decision maker. Thus, they consider a more general class of changes

in CDF, but their comparative static result is for a smaller set of decision makers.

The decision model used in their paper is restricted to the special case of (1.1),

requiring the payoff to be linear in both the choice and the random variables. Their

maximization is of the form:

mpx E[u(z0 + bx)] (4.5)

where 2,, is some given scalar. Examples of such linear payoffs are the standard portfolio

problem, a competitive firm with constant marginal costs facing uncertain output price,

and the coinsurance problem. Assuming the program (4.5) is concave in the choice

variable b, Eeckhoudt and Gollier prove their result by showing that the condition F MPR

G implies (4.2). Thus, the first and the second-order conditions are assumed to be

satisfied for the optimal solution of the problem (4.5). They consider only the interior

solution case. For the proof, they used an important property (Lemma 3 in their paper)

that:

ifF MPR G, then E,,.[x: x S t] 2 E(,[x: x S t] for all t e [x,, x,] (4.6)

where. EF [xl x S t] and E0 [xl x S t] denote the conditional (x S t) expectation of the

distributions F and G, respectively. Gollier (1995) shows that a modification of the latter

condition in (4.6) has an important implication in the analysis of comparative statics for

decision models with linear payoffs. He provide a necessary and sufficient condition on a

shift in distribution, for signing its effect on the optimal choice made by an arbitrary risk

averse decision maker. The condition is as follows:

There exists a scalar 7 e R such that, for all t E[x, , x, ],

. . (4.7)

y ] xf(x)dx = 7F(t)EF(x; x s t) 2 Gina. (x; x s r) = j xg<x>dx.
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It means that, regarding the decision model (4.5), b,,. - b,,. 2 0 if and only if a shift from G

to F satisfies the condition (4.7). The latter condition in (4.6) is a special case where

7 = l which is named as a linear stochastic dominance of factor 1 (LSD, ), and (4.6)

means that if F MPR G then F LSD, G.

According to Eeckhoudt and Gollier, there are advantages of using the MPR order

over the MLR order. Consider a shift from a random variable x (defined by a CDF G) to

another random variable y (defined by a CDF F) such that y = x — s where s is a positive

constant. In the portfolio problem this can beviewed as a per-tuiit tax 5 on the returns of

risky assets. With the presence of an income effect, the effect of such a shift on the

optimal investment is ambiguous. However, as Onniston and Schlee (1993) note, if the

original density function g is log-concave, then the shift satisfies that G MLR F and thus,

by Landsberger and Meilij son’s result, imposing a per-unit tax reduces investment in the

risky asset for all investors with non-decreasing utility functions. Similarly, Eeckhoudt

and Gollier show that if the original distribution function G is log-concave, then the shift

satisfies that G MPR F and thus imposing the per-unit tax reduces investment in the risky

asset for all risk averse investors. It is shown, by Bagnoli and Bergstrom (1991), that the

log-concavity restriction on a CDF is less stringent than the log-concavity of the

corresponding pdf and all non-decreasing density functions are included in the cases of

the log-concave CDF.

Another advantage of using the MPR order is related to the study by Eeckhoudt

and Hansen (1980) who analyze the effect of a minimum and a maximum price

regulations on the output level of a competitive firm. A minimum price regulation gives

a change from an initial price distribution G to another F such that

F(x) = 0 for all x < x,,,“ and G(x) = F(x) for all x 2 x,,,“ (4.8)

and a maximum price regulation gives a change such that
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F(x) =1 for all x 2 x,,,“ and G(x) = F(x) for all x < x (4.9)
max ’

where x,,,“ and xmam denote the minimum and the maximum price given each price

regulation, respectively. Eeckhoudt and Hansen found that, while the minimum price

regulation increases the output level of a risk-averse competitive firm, the effect of the

maximum price regulation on the output level of the firm is ambiguous. This lack of

symmetry between the two regulations can be explained by Eeckhoudt and Gollier’s

result. The minimum price regulation (4.8) implies F MPR G but the maximum price

regulation (4.9) does not imply G MPR F. However this explanation is restricted to the

firms with constant marginal costs because Eeckhoudt and Gollier examine only the

linear payoffs as shown in (4.5).

. Lastly Eeckhoudt and Gollier suggest a possible extension. Regarding the

decision model (4.5), the MPR order is only sufficient (but not necessary) to obtain their

comparative static result. They provide a special type of changes in distribution which is

not an MPR shift but gives the same comparative static result. Let’s rewrite the payoff

function shown in the decision model (4.5) as,

z(x, b) = 2,, + b(x - c) (4.10)

where 20 and c are exogenous parameters. This linear form is used in Dionne, Eeckhoudt

and Gollier (1993). The point c is the value ofx satisfying z,,(x, b) = 0, and it is

understood as the rate of return on a safe asset in the portfolio problem, the constant

marginal cost in the competitive firm model under price uncertainty, or the marginal cost

of insurance rate in the coinsurance problem. Eeckhoudt and Gollier gives a type of

change in CDF satisfying, '

G(x) 2 F(x) for all x e[x, , c] and G(x) = F(x) for all x E[C, x, ], (4.11)

and they informally say that the type of shift satisfies the result b,,. 2 b,,.
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x, x, c x, = x,

Figure 4.1. A special case of c-FSD shift.

Figure 4.1 gives an example of a shift satisfying the condition (4.1 1). It is easy to

see that the example is neither an MPR shift nor an MLR shift. According to Definition

3.5, given a point c, the shift in the figure is a special case of c-FSD shift. A c-FSD shift

requires the restriction that G(x) — F(x) is non-increasing in the interval [c, x, ], which

is weaker than the restriction, used in the condition (4.1 1), that G(x) = F(x) for all

x E[C, x4 }. Eeckhoudt and Gollier’s notion is formalized in the next section, using the

more general types of changes in CDF, c-FSD shifts and c-MPR shifts.

In section 4.2, the comparative static result in Eeckhoudt and Gollier’s analysis is

also generalized in two ways. One is obtained from generalizing their result to the

general one-argument decision model (1 .1). Proving this generalization, we follow the

same technique used in Landsberger and Meilijson’s analysis. Thus imposing a weak

restriction on the optimality of the problem, our result improves the efficiency of

Eeckhoudt and Gollier’s result. The other generalization is given when the payoff is

restricted to be linear in the choice variable b. This shows that the set of admissible

changes in CDF is extended from the set of MPR shifts to the set including both the

point-FSD shifts and the point-MPR shifts, given an appropriately chosen point.
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4.2 Comparative Static Analysis: Generalized Results

Using the general one-argument decision model (1.1), this section provides

general comparative static statements concerning various subsets of FSD shifts. First we

examine the MLR shifts.

Theorem 4.1. For all decision makers with non-decreasing utility functions,

b,,. .>. b,, if

(a) F MLR G

(b) 2,,, 2 0.

Proof. With the CDF’s F and G given, each expected utility can be expressed as

a function of the choice variable b,

EU,.(b) = Eu[z(x,b)]f(x)dx

and

EUU(b) = £1u[z(x,b)]g(x)dx, '

respectively. To prove the theorem it suffices32 to show that, for a pair of points b, and

b,,

ifb, s b, and EU,,(b,)S EU,,.(b,), then EU,,.(b,) s EU,,(b,). (4.12)

This is because (4.12) implies that A, = EU,,(bG ) — EU,,.(b) 2 O for every b S b,,. which

in turn implies b,, 2 b,,.33 Thus, assuming that 4,. = EU,,(b,)— EU,,.(b,) 2 0 where

b, < b,, we show that the following is non-negative,

 

32 We follow the technique used in Landsberger and Meilijson (1990).
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A, = £‘A(x)f(x)dx (4.13)

where A(x) = u[z(x, b,)]-u{z(x, b,)]. The difference z(x, b,)— z(x, b) is non-decreasing

in x, since 2,,, 2 0 by assumption. The assumption A6 = [3A(x)g(x)dx 2 0 excludes the

case where z(x, b,)—z(x, b,) S 0 for all x e [x,, x,] because it contradicts the

assumption, that is, with the assumption u’ 2 0, the case implies A S 0 for all x e [x, , x,]

and thus AG S 0. If z(x, b,)-z(x, b,)z 0 for all x e[x,, x,], then the assumption u' 2 0 '

implies that A 2 O for all x e [x,, x,,] and thus AF 2 0. Since these cases are true for any

FSD shift from G with its support [x,, x,] to F with its support [x,, x,] where x, S x,

and x, S x,, 34 they will not be considered any more in later analysis.

Now consider the case that, With b, , b, and the payoff function 2 given, there

exists a point x'(b,, b,, 2) e [x,, x,] such that the difference z(x, b,)—z(x, b,) is non-

positive for all x S x’ and non-negative for all x 2 x'. This implies that A S 0 for all

x S x’ and A 2 0 for all x 2 x’.35 According to Definition 3.1, the condition

h:[x,, x,] —> [0, oo) non-decreasing implies that there exists a point k e [x,, x,] such that

0ShSl forall xe[x,, k) and 1Sh<oo forall xe[k,x3],0r OShSl forall

 

3" If there is no such pair of points b, and b, satisfying b, S b, and EU,;(b, ) S EU,,(b, ), this is the case of

comer solution and the optimal choice is the lowest among the feasible set. In this case, b, 2 b,, for any

shift from G to F.

3’ We do not exclude the case x, S x, where all the possible outcome values ofx under F are higher than

under G. For any shift of this type, it is easy to see that A, 2 0.

35 This proof will be useful for the later comparative static result. However a shorter proof for the case

x'(b, , b,, 2) e[x,, x,] is suggested by Jack Meyer: According to Definition 3.1, if F MLR G then there

. exists a non-decreasing function Ir[x,, x,] —> [0, co) such that f(x) = h(x)g(x) for all x e[x,, x,].

Without loss of generality, let h(x) = 0 for the interval x e[x,, x, ). Since f(x) = 0 for all x e [x,, x,)

and A 2 0 for all x 2 x,, (4.13) can be rewritten as,

A. = [k(x)/mm [h(x)/(xxx = [homemade

Since A(x) changes its sign from negative to positive at x = x’ and h(x) is non-decreasing,

[h(xvttxigtxwx 2 h(x‘ ) [h(x)g(xxtx = h(x‘m. 2 0.

Thus, with the assumption AG .>. O , we have A, 2 0. Q.E.D.
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x e[x,, k] and 1S h < 00 for all x e(k, x,].36 At the point k, both cases h(k)2l and

h(k) S1 are possible. Since the proof for each case follows the same procedure, only the

case h(k) 21 is considered in the below. Without loss of generality, the non-decreasing

function h can be written as,

{1—6(x), forx e[x,, k)

h(x) =

1+ 77(x), forx e[k, x,]

where 6:1 forx e[x,, x,), 0S§Sl forx e[x,, k) and 7720.

Case (i): when x' s k. Since f(x) = 0 forx e [x,, x, ), (4.13) can be rewritten as,

A. = J:‘ A(x)f(x)dx

= J:A(x)i1 - 6(x)ig(x)dx + J: A(x)[1 + nix)ig(x)dx + J: A(x)/(mix. (4.14)

Rearranging (4.14),

4,. = 4. + f4tx)i—6(x)ig(x)dx + f‘ A(x)n(x)g(x>dx + J:1‘ A(x)f(x)dx.

Since A(x) change its sign from negative to positive at x = x' and g(x) is non-increasing,

a. 2 A. — 5(x‘) J:A(x)g(x)cbc + J: A(x)n(x>g(x)dx + J: A(x)/ma.

Since 4, 2 0 by assumption, 0 _<_ 6(x')Sl and 4,. 2 [A(x)g(x)dx, we have 21,, 2 0.

Case (ii): when k S x'. For the first term in the RHS of (4. 14), since A(x) S 0

and l—6(x)S1 for all x e[x,, k),

 

’6 Note that, as two special cases, if k = x, or k = x,, then the interval ofx such that 0 S h S l or I S h < so

is null, respectively, and we can follow the same procedure for the proof of the cases.
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[4(le - 5(x)]g(x)dx 2 [1+ r7(x')]J:f1(x)g(x)dr

and for the second term, since A(x) change its sign from negative to positive at x = x’

and r7(x) is non-decreasing,

J" A(x)[1 + 77(x)]g(x)dx 20+ 406)] J: A(x)g(x)dx.

Thus from (4.14), we have

A. 2 [1+ ntx'n J: A<x>g(x)dx + J: A(x)f(x)dx = [1+ ntx')i4. + J: A(x)/cow:

and hence the assumption AG 2 0 implies that A, 2 0. Q.E.D.

Theorem 4.1 is a direct extension of Landsberger and Meilijson’s study, showing

that the same comparative static result holds for decision models with non-linear payoff

functions. Proving our result, we follow the same technique used in their study. Thus it

improves the robustness of their result without any additional cost of assumptions.

In addition if we closely examine the proof of Theorem 4.1, we see some notable

things. For the result in Theorem 4.1, if x’ S k then only the condition L-MLR which is

weaker than an MLR is sufficient, and if x’ 2 k then only the condition R-MLR which is

also weaker than an MLR is sufficient. These findings allow us to make another

comparative static statement. In particular, if the concerned payoff is restricted to be

linear in the choice variable, a ftu'ther generalized result is possible.

Theorem 4.2. For all decision makers with non-decreasing utility functions,

b,,. 2 b,,. if

(a) z(x, b) is linear in b



(b) F L-MLR G with k E[C, x,] or F R-MLR G with k e[x,, c], where c is the value ofx

satisfying z,,(x) = 0 and k is the point of crossing between the pdf’ 3 g andf

(c) 3,, 2 0.

Proof. Since the payoff function 2 is restricted to be linear in the choice variable

b, the point x’(b,, b,, 2) defined in the proof of Theorem 4.1 is independent of the choice

values b, and b,. This implies that x' is the value ofx satisfying z,,(x) = 0 and thus

x' = c. From the proof of Theorem 4.1, it is known that: (i) if k 2 x' (the point of single

crossing between the pdfsfand g is larger than the value of c), then only the condition F

L-MLR G is sufficient for the result b,,. 2 b,,. , and (ii) if k S x' (the point of single

crossing is smaller than the value of c), then only the condition F R-MLR G is sufficient

for the result b,.. 2 b,,. Q.E.D.

The trade-off used between Theorem 4.1 and 4.2 is that a larger class of changes

in CDF is allowable at the cost of the linearity assumption on the payoff function. If the

payoff function is linear in the choice variable, then, according as the point of crossing

between the pair of pdf’ 5 is smaller or larger than the point c, the restriction of monotone

likelihood ratio on either one of the left- or the right-side (of the point of crossing) is not

necessary for the result. Consider the linear payoff function given in (4.10), in which

x' = c. The point c can be, as we noted in sub-section 4.1.2, understood as the rate of

return on a safe asset in a portfolio problem, the constant marginal cost in a firm theory.

or‘the marginal cost of insurance rate in an insurance model. Two examples of FSD

shifts are shown in Figure 4.2 and 4.3, and both are satisfying the condition (b) in

Theorem 4.2. The result in Theorem 4.2 implies that, for both the shifts in the figures,

b,,. 2 b,,. for all the individuals with non-decreasing utility functions. Therefore the MLR

condition for the comparative static result in Landsberger and Meilijson's study is unduly
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Figure 4.2. F L-MLR G with k E[C, x,].

fir). g(x)

f(x)

g(x)

x, x, k c x, x4

  
Figure 4.3. FR-MLR G with k e[x,, c].
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restrictive for the case of linear payoff and Theorem 4.2 improves the robustness of their

result without additional cost of assumptions.

From this point forward, we replace the set of non-decreasing utility functions

with the set of non-decreasing and concave utility functions; that is, the concerned

decision makers are assumed to be risk-averse. In what follows, we show that adding this

restriction on the risk preferences of decision maker allows the expansion of the

addmissible changes in CDF for desirable comparative static statements. The next

theorem concerns the set of L-MLR shifts which is larger than the set of MLR shifts and

smaller than the set of MPR shifts.

Theorem 4.3. For all risk averse decision makers, b,,. 2 b,,. if

(a) F L-MLR G

(b) 2, 2 0 and 2,,, 2 0.

Proof. We follow the technique and notation used in the proof of Theorem 4.1,

and as we noted, we consider only the case where x, S x' S x,. According to Definition

3.3, the condition F L-MLR G implies that there exists a point k e [x, , x,] such that

f(x) S g(x) for all x e[x,, k) and f(x) 2 g(x) for all x E[k, x,]. Since the proof for

the case that f(k) S g(k) and f(x) S g(x) for all x E[x, , k] and f(x) 2 g(x) for all

x e (k, x,] follows the same procedure, we omit the case. Hence, with the condition F

L-MLR G, f(x) can be expressed as,

{[1 —6(x)]g(x), forx e[x,', k)

f(X)= t [1+ ”(31806). forx Elk» x3)

f(x), forx e[x,, x,] 



76

where 6 is non-increasing in x, 5 =1 for x e[x,, x,) and O S 5 S1 for x e[x,, k), and

27 is a non-negative function. Then, for the case where x’ S k, the proof is exactly same

as in the proof of Theorem 4.1. Consider the case where k S x'. Let’s rewrite (4.13) as.

A, = J"A(x)f(x)dx + J:A(x)f(x)dx + J" ‘ A(x)f(x)dx. (4.15)

Integrating the first term in RHS of (4. l 5) by parts, and by adding and subtracting,

21,, = A(x)F(x)
 

:, _ [F(X)F(X)dx+ [3A(x)f(x)dx+ J: A(x)f(x)dx

= A(x)[F(x)-G(X)ll:; + A(x)G(x)
 
'_ [lacuna—Gone — {EMGUW

+ JjjA(x)if<x> — g(x)]dx + [.‘A(x)g(x>dx + J:1‘ A<x>f<x>dx

where B = LL4/ dx = u’(z(x, b, ))z,(x, b, ) -u'(z(x, b, ))2, (x, b, ). By rearranging the above,

a, = 4, + A(x)[F(x)- G(x)]: — [gimme - G(x)14x

+ ['.‘A(x)if<x)—g(x)idx+ J: A(x)f(x)dx. (4.16)

Note that z(x, b,) S z(x, b,) when x S x' and z,r (x, b,) 2 z,(x, b,) when x 2 x, by the

assumption 2,,, 2 O. The assumptions u' 2 0, u" S 0 and z, 2 0 imply that B(x) 2 0 for

x e[x,, x’]. Since A S 0 for all x S x' and A 2 0 for all x 2 x', and the L-MLR

condition implies that F(x) S G(x) for all x e[x,, x,] and f(x) 2 g(x) for all x E[k, x,],

the assumption AG 2 0 implies that A,,. 2 0. Q.E.D.

Compared with Theorem 4.1, the comparative static result in Theorem 4.3

includes a larger set of FSD changes and a smaller class of decision makers. Since we

follow the same technique used in the proof of Theorem 4.1, the result in Theorem 4.3 is

also established on the weak restriction on the optimality of the decision problem (1.1).
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While the result itself is meaningful as a general comparative static statement, a further

generalization is given in the next theorem. From Property 3.6 developed in chapter 3. it

is known that an MPR shift can be decomposed into a series of L-MLR shifts. This

allows a direct generalization of the comparative static result in Theorem 4.3, without any

additional cost of assumptions.

Theorem 4.4. For all risk averse decision makers, b,,. 2 b,,. if

(a) F MPR G

(b) 2, 2 0 and 2,,, 2 0.

Proof. From Property 3.6 we know that an MPR shift can always be decomposed

into a series of L-MLR shifts. That is, if F MPR G then there exists a series of CDF’s

G,,---,G,, such that F L-MLR G, L-MLR G L-MLR L-MLR G, L-MLR G.
"-1

With the result in Theorem 4.3, it completes the proof. Q.E.D.

Theorem 4.4 is an easy and important generalization of Theorem 4.3, and it is also

an important generalization of the result in Eeckhoudt and Gollier's analysis. That is, the

MPR condition is sufficient for the general decision model (1.1). Another efficiency gain

is that our result is established on the weak restriction on the optimal solution of the

decision problem. That is, the cases of a corner or an unbounded solution and the risk

neutral decision makers are not excluded from our result. This completes the Eeckhoudt

and Gollier's discussion about the lack of symmetry in the effects of the minimum and the

maximum price regulations in Eeckhoudt and Hansen (1980).

Finally, we formalize the intuition given by Eeckhoudt and Gollier. As we

discussed in sub-section 4.1.2, given a linear (in the choice variable b) payoff function,

they informally say that it is possible to determine the effect of the type of changes in

CDF defined in (4.11) on the optimal choice made by an arbitrary risk averse decision
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maker. It is also discussed that the shift is neither an MPR Shift nor an MLR shift, but a

special case of c-FSD shift. Hence it is meaningful to make a comparative static

statement for the set of c-FSD shifts.

Adding a structural restriction that the concerned payoff is linear in the choice

variable b, the extension of the admissible changes in CDF for the result in Theorem 4.4

is obtained from the point-MPR as well as the point-FSD shifts. Next theorem shows

that, given a point c, the set of c-FSD shifts is first shown to be sufficient for a desirable

comparative static statement and then the extension to the set of c-MPR shifts comes

directly from Property 3.7.

Theorem 4.5. For all risk averse decision makers, b,, 2 b,,. if

(a) z(x, b) is linear in b and z,,(c, b): 0

(b) F c-FSD G or Fc-MPR G

(c) z, 2 0 and 2,,, 2 0.

Proof. First consider the set of c-FSD shifts. We know that the linearity

assumption implies that the point x'( b, , b,, 2), defined in the proof of Theorem 4.1, is

constant for all the pair of choice values b, and b,. Now x’ is the value ofx satisfying

2,,(x) = 0 and thus x' = c. The condition Fc-FSD G implies that G(x) - F(x) 2 0 for

the interval x e[x,, x'] and g(x) - f(x) S 0 for the interval x E[x', x,]. This is the

case that k S x' in the proof of Theorem 4.3, and from (4.16) we know that the condition

is sufficient for AF 2 0.

Now, given the proof for the set of c-FSD shifts, the proof for the set of c-MPR

shift can be completed by Property 3.7 and Theorem 3.4. By Property 3.7, it is known

that a c-MPR shift can always be decomposed into two FSD shifts, one c-FSD and the

other MPR. Q.E.D.
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Figure 4.4. A c-FSD Shift.

 

  
Figure 4.5. A c-MPR shift.
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Adding the linearity restriction, the comparative static result given in Theorem 4.5

includes a more general set of changes in CDF than the set of MPR shifts contained in the

result in Theorem 4.4. This is an example of a trade-off between the restrictions on the

set of changes in CDF and the structure of the concerned decision model. This result is

also a generalization of the comparative static result in Eeckhoudt and Gollier’s analysis.

Consider the two examples of FSD shifts shown in Figure 4.4 and 4.5. It is easy to see

that each of the examples is neither an MLR shift nor an MPR shift. Given the point c.

the shifts satisfy the conditions, F c-FSD G and F c-MPR G, respectively.

Now, regarding the decision models of the form (4.10), we know the result that. for both

the shifts, b, 2 b0 for all risk-averseldecision makers.

In this chapter, comparative static theorems are developed with regard to subsets

of the set of general FSD shifts. All the results developed in this chapter are associated

with relatively weak restrictions on the risk preference of decision makers, i.e., the set all

risk averse agents or the set of all individuals with non-decreasing utility functions. In

this sense, we refer all the subsets ofCDF changes concerned in this chapter to “FSD

shifts in the strong sense.”



Chapter 5

RELATIONSHIPS AMONG SUBSETS OF R-S INCREASES IN RISK

This chapter gives the definitions for four special classes of R-S increases in risk.

Each class is specified by adding additional restrictions to the ‘integral conditions’ which

define the general concept of an R—S increase in risk (Definition 2.3). As in the case of

defining subsets of FSD changes, monotonicity restrictions on the likelihood ratio

(between a pair of pdf’ 5) or on the probability ratio (between a fair of CDF’s) are also

important in defining subsets of R-S increases in risk. For each subset, a general

comparative static statement is developed in chapter 6. Before doing this, this chapter

examines several important relationships among these four types of R-S increases in risk.

In chapters 5 and 6, Since only subsets of R-S increases in risk are considered, a

final37 distribution G is assumed to be always riskier than an initial distribution F in the

R—S sense, that is, G is a mean-preserving spread from F (denoted by G MPS F). Assume

that both the CDF’s F and G have their points of increase in bounded intervals. For

notational convenience, let the support ofF(x) be a finite interval [x, , x,] and the

support of G(x) be another finite interval [x, , x,] where x, S x, S x, S x,,. Defining the

supports in this way, we also assume that: for continuous case, G(x) > 0 for all

x e(x,, oo), 1-G(x)> 0 for all x e(-oo, x,), F(x)> 0 for all x e(x,, co), and

1— F(x) > 0 for all x e(—oo, x,); and for discrete case, G(x) > 0 for all x e [x,, do),

 

37 In order to keep the notation for F to be stochastically dominant over G, as in chapters 3 and 4, the

CDF’s F and G are regarded as an initial and a final distribution of the random variable x, respectively.
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l—G(x)>0 for all x e(—oo, x4]. F(x)>0 for all x e[x,, co), and 1— F(x)>0 for all

x e(—oo, x,].38

5.1 Important Subsets of R-S Increases in Risk

This section gives the definitions for several subsets of R-S increases in risk.

Including the concept of a ‘relatively strong increase in risk’ (RSIR) introduced by Black

and Bulkley (1989), we add three concepts of R-S increases in risk. Being more general

than an RSIR, they are a ‘left-side relatively strong increase in risk’ (L-RSIR), an

‘extended strong increase in risk’ (ESIR), and a ‘left-side extended strong increase in

risk’ (L-ESIR). In sub-section 5.1.1, basic definitions of these four concepts are given.

Graphical examples in sub-section 5.1.2 are presented to help the reader understand the

basic relations among the concepts.

5.1.1 Basic Definitions of Subsets of R-S Increases in Risk

In order to make a desirable comparative static statement, Meyer and Orrniston

(1985) introduce the concept of a ‘strong increase in risk’ (SIR). Defining a shift from

F(x) to G(x), an SIR specifies a transfer of probability mass from points in the interval

[x,, x,] to points in the intervals [x,, x,) and (x,, x,]. It is the case where the initially

possible outcomes are less likely to occur, and the previously impossible outcomes which

were outside the support of the initial CDF F(x) now have a non-zero probability mass.

As we saw in chapter 2, the set of SIR shifts includes, as special cases, ‘mean-preserving

 

38 Similar to FSD cases, sets of R-S increases in risk used in this chapter are defined by imposing

monotonicity restrictions on the ratio offto g or the ratio of F to G in the overlapped interval [x,, x, ].

Then this assumption allows both the ratios to be strictly positive in the interval [x,, x,] for discrete case.

and in the interval (x,, x,) for continuous case, which are often used to simplify the proofs of the results

developed in chapters 5 and 6.



truncations’ defined by Eeckhoudt and Hansen (1980) and ‘global increases in risk’

analyzed in Kraus (1979), Katz (1981). Recently, as a more general concept than an SIR.

Black and Bulkley (1989) use an RSIR in their comparative static analysis. This is

defined as:

Definition 5.1. G(x) represents a relatively strong increase in risk from F(x)

(denoted by G RSIR F) if39

(a) J: [G(x) - F(x)]dx = 0

(b) there exists a pair of points k,, k, e[x,, x,] where k, S k, , such that f(x)2 g(x) for

all x e[k,, k,] and f(x)Sg(x) for allx in [x,, k,) and (k,, x,]

(c) for all x e [x,, k, ), there exists a non-decreasing function h,:[x,, k,) a [0, 1] such

that f(x)= h(x)g(x)

(d) for all x e(k,, x,], there exists a non-decreasing function h,:(k,, x,] —> [0, I] such

that f(x) = (h(x)g(x)-4°

Condition (a) implies the same mean between the two distributions. Condition (b)

imposes the restriction that the two pdf’s cross only twice and specifies a probability

transformation from points within a centric interval [k,, k,] to points lying outside the

interval. These two conditions are sufficient for G(x) to represent an R-S increase in risk

from F(x), satisfying the integral conditions in Definition 2.3. It is obvious that an SIR,

given in Definition 2.8, is a special case of an RSIR where k, = x, and k, = x,.

 

39 We defined an RSIR in somewhat different way from the original one. This is to include not only the

continuous case but the discrete case where g(x) and/orflx) is not always positive in the given supports.

‘0 The two crossings at points k,,k, e[x,, x,] imply that f(x)S g(x) for all x in [x,, k,) and (k,, x,] and

f(x)2g(x) for all x e(k,, k, ). At the points k,, 1': l, 2, it is usual that f(k,)= g(k), but ifthe pdfg orf

is discontinuous at the points, it is possible that f(k,)< g(k,) and f(k,)> g(k,). Definition 5.1, thus,

includes the cases where f(x)Sg(x) for allx in [x,, k,] and/or [k,, x,], and f(x)2 g(x) for allx in

[k,, k,) or (k, , k,]. This discussion is applied for all the other definitions given in this section.
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Conditions (c) and (d) restrict the transformation fromf(x) to g(x) to be such that.

for both the intervals [x,, k,) and (k,, x,], the ratio offto g is non-decreasing as x goes

farther from the end points x, and x,. In other words, considering an R—S decrease in risk

from G to F, the condition G RSIR F implies that a non-increasing proportion of left-tail

probability mass and a non-decreasing proportion of right-tail probability mass are

transferred to the centric interval.

The RSIR order is closely related to the L-MLR and the R-MLR orders defined in

section 3.1. Conditions (a) and (b) in Definition 5.1 imply that the CDF’s F and G cross

only once, and there exists a point k e [k,, k,] such that F(x) S G(x) when x S k and

F(x) 2 G(x) when x 2 k. Given an RSIR, it can be divided into two shifts: one for the

left and the other for the right-side of the point k. In each side of k, there is only one

crossing between the two pdf5, and for each end interval such that f(x) S g(x), the ratio

between the pdfs should be monotone. Applying Definition 3.3 and 3.4, it is obvious

that the shift for the left-side is understood as ‘F dominant over G in the L-MLR sense.’

and the shift for the right-side is understood, in the opposite direction, as ‘G dominant

over F in the R-MLR sense.’ Thus an RSIR shift can be viewed as the sum of two shifts.

keeping the mean same, an L-MLR dominated shift and an R-MLR dominant Shift.

In the next definition of an R-S increase in risk, the restriction on the right-side of

the point k is relaxed, and we name it a ‘left-side relatively strong increase in risk’ (L-

RSIR).

Definition 5.2. G(x) represents a left-side relatively strong increase in risk from

F(x) (denoted by G L-RSIR F) if

(a) J [G(x) - F(x)]dx = 0

(b) there exists a point k e [x,, x,] such that

F(x)S G(x) for all x e[x,, k) and F(x)2G(x) for all x E[k, x,]
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(c) there exist a point k’ e[x,, k] and a non-decreasing function h: [x,, kI ) -—>[O, I] such

that f(x) = h(x)g(x) for all x e[x,, k’) and g(x)Sf(x) for all x G(k’, k].

Condition (b) imposes the restriction that the two CDF’S cross only once at a point k, and

combined with condition (a), this obviously implies that an L-RSIR is an R-S increase in

risk. Condition (c) implies that, for the left-side of the point k, an L-RSIR requires the

same restriction used to define an RSIR. Now for the right-side of the point k, there is no

restriction on the number of times of crossing between the pdf 5fand g, nor is there any

monotonicity restriction on the ratio between the pdf 5. Only the required restriction on

the right-side of k is that F(x) 2 G(x). Therefore the set of RSIR shifts are a subset of the

set of L-RSIR shifts.

Similar to the case of an RSIR shift, an L-RSIR shift can be divided into two

shifts: one for the left and the other for the right-side of the point k. The shift for the left-

side is understood as ‘F dominant over G in the L-MLR sense’ and the shift for the right-

side is understood, in the opposite direction, as ‘G dominant over F in the FSD sense.’

Thus an L-RSIR shift can be viewed as the sum of two shifts, an L-MLR dominated shift

and an FSD dominant shift.

" To see a special case of L-RSIR shifts, consider a random variable which has only

two outcome values. If the smaller outcome becomes riskier (mean-preserving) than

before, then it is the case of an L-RSIR, while an increase in risk in the higher outcome

does not lead to an L-RSIR. Generally, given an initial pdfflx) with its support [x,. x, ],

let’s consider a conditional pdf f' (t) = f(t)/ F(T) with its support [x,, T] where

T S x,. Then an RSIR shift in f’ leads to an L-RSIR shift in the initial f(x).

Compared with an RSIR, while an L-RSIR is defined by relaxing the restrictions

imposed on the right-side of the point k, another less stringent type of R-S increase in risk

is introduced and it is named as an ‘extended strong increase in risk’ (ESIR). Instead of

using the monotonicity restrictions on the pdf ratio offto g, an ESIR is defined by
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imposing monotonicity restrictions on the ratio of an initial CDF F to a final CDF G and

on the ratio of (l-F) to (l—G) as:

Definition 5.3. G(x) represents an extended strong increase in risk from F(x)

(denoted by G ESIR F) if

(a) J: [G(x) — F(x)]dx = 0

(b) there exists a point k e [x,, x,] such that .

F(x)S G(x) for all x e[x,, k) and F(x)2 G(x) for all x E[k, x,]

(c) for all x e [x,, k), there exists a non-decreasing function H,:[x,, k)—>[0, I] such that

F(x) = H,(x)G(x)

(d) for all x e[k, x,], there exists a non-increasing function H,:[k, x,] —> [0. 1] such

that 1— F(x) = H,(x)[l — G(x)].

The same conditions (a) and (b) in Definition 5.2 are used and they guarantee that G

represents an R-S increase in risk from F. An ESIR requires the restriction that the two

CDF’s cross only once at a point k, but does not restrict the number of times of crossing

between the pdf” 3. There is no direct relationship between an ESIR and an L-RSIR. For

the left-side of the point k, while an ESIR has no restriction on the number of times of

crossing between the pdf’ 8, an L-RSIR requires only one crossing between them. For the

right-side of k, while an ESIR requires that the ratio of (l — F) to (1— G) should be

monotone, an L-RSIR requires only the condition that F(x) 2 G(x). Thus, for the interval

[x,, k), an ESIR is less demanding than an L-RSIR, and vice versa for the interval

[k, x,].

However an RSIR implies an ESIR. In section 5.2, we provide a formal proof for

this assertion, showing that the monotonicity restrictions imposed on the ratio offto g

imply that the ratio ofF to G in the interval [x,, k) and the ratio of (1 - F) to (l — G) in
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the interval [k, x,] are monotone. The steps used in the proof is similar to the ones used

in the proof of the assertion that an L-MLR implies an MPR (Property 3.1). This implies

that, compared with an RSIR, an ESIR uses less stringent restrictions on the changes in

CDF. It does not use the restrictions on both the number of times of crossing between the

pair of pdf’ 5fand g and the monotonicity of the likelihood ratio between the pdf’ 5.

The ESIR order is closely related to the MPR order defined in section 3.1. Given

a shift from F to G satisfying G ESIR F, it can be divided into two shifts: one for the left

and the other for the right-side of the point k. Then, applying Definition 3.2, the shift for

the left-side can be understood as ‘F dominant over G in the MPR sense.’ The shift for

the right-side is a special FSD shift. If we define a new random variable y as y = —x and

the initial and the final pdf’s ofy, f"(y) and g(y), are given as f(x) = f(—y) = f’(y)

and g(x) = g(—y) = g(y) , then the shift for the right-side is understood as F MPR G.

Thus an ESIR shift can be viewed as the sum of two shifts, one MPR dominated shift and

the other specialized FSD dominant shift.

As the last specialized concept of an R-S increase in risk presented in this section,

the next one is obtained from further relaxing the restrictions imposed on either an ESIR

or an L-RSIR. Now the condition ((1) used in Definition 5.3 is dropped. Thus in the

following definition, the right-side monotonicity restriction on the CDF ratio is relaxed

and we name it a ‘left-side extended strong increase in risk’ (L-ESIR).

Definition 5.4. G(x) represents a left-side extended strong increase in risk from

F(x) (denoted by G L-ESIR F) if

(a) J: [G(x) - F(x)]dx = o

(b) there exist a point k e[x,, x,] and a non-decreasing function H:[x,, k)—>[0, 1] such

that F(x)= H(x)G(x) for all x e[x,, k) and G(x)SF(x) for all x E[k, x,].
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An L-ESIR still has the restriction that the two CDF’s cross only once at a point k, which

is implied by condition (b). Combined with condition (a), this guarantees that an L-ESIR

is an R-S increase in risk. Since an L-ESIR requires only the left-side monotonicity of

the CDF ratio, it is" more general concept than an ESIR. The L-ESIR order is also more

general than the L-RSIR order because, with the same restrictions on the points to the

right-side of the point k, an L-ESIR is less demanding than an L-RSIR for the points to

the left-side of k. This can be proved by showing that the monotonicity of the pdf ratio

implies the monotonicity of the CDF ratio, which is given in the next section. Similar to

the above three cases of R-S increases in risk, an L-ESIR shift from F to G can also be

understood as the sum of two shifts: one for the left-side of the point k is F MPR G, and

the other for the right-side of the point k is, in the opposite direction, G FSD F.

As in the case of an L-RSIR, a special L-ESIR is as follows. Given an initial pdf

f(x) with its support [x,, x,], let’s consider a conditional pdf f1(t) = f(t)/ F(T) with its

support [x,, T] where T S x,. Then any ESIR shift in f’ results in an L-ESIR shift in

the initial f(x).

5.1.2 Graphical Examples

Each of the above four concepts of R-S increases in risk specifies a particular

subset of the set of all R-S increases in risk. They all have a common restriction that the

CDF’s F and G cross only once, but each type of shifts is defined by imposing additional

restrictions on the changes in distribution functions. In this sub-section, using graphical

examples including seven continuous cases and two discrete cases, we show the basic

relationships among those four types of R-S increases in risk discussed in sub-section

5.1.1. In what follows, we examine each example to see the differences among the

restrictions used to define each type of R-S increase in risk. Thus every example is

assumed to preserve the mean same before and after the given shift in pdf or CDF. First

two examples are special cases of RSIR shifts: example 5.1 shows a mean-preserving
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Figure 5.1. Example 5.1: Mean—preserving truncation from G to F.
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Figure 5.2. Example 5.2: G SIR F.
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Figure 5.3. Example 5.3: G RSIR F.
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Figure 5.4. Example 5.4: G L-RSIR F.
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Figure 5.6. Example 5.6: G L-RSIR F.

 

Figure 5.5. Example 5.5: G L-RSIR F (a discrete case).
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truncation, and example 5.2 gives a case of a strong increase in risk (SIR).

(1) Example 5.1: Mean-preserving truncation from G to F in Figure 5.1. This

type of R-S increase in risk is defined by imposing somewhat severe restrictions on the

changes in CDF. It specifies a probability transformation such that truncated both tail

probability mass is transferred to each end point. As Figure 5.1 shows, all the probability

of occurring for points less than x, (larger than x,) is moved to the point x, (x,). This

transformation is a special case of an RSIR. Since x, = k, and x, = k,, the intervals

[x,, k,) and (k,, x,] shown in Definition 5.1 are empty, thus the mean-preserving

truncation satisfies the RSIR condition.

(2) Example 5.2: G SIR F in Figure 5.2. The restriction that F(x) = G(x) for the

interval [x, , x, ], which is required for a mean-preserving truncation, is relaxed. Instead,

an SIR restricts the CDF difference G — F to be non-increasing for the interval [x,, x,].

Equivalently, the restriction means that f 2 g for all x e [x,, x,], as shown in Figure 5.2.

It specifies a probability transformation from points in the interval [x,, x,] to points

outside the interval. An SIR is also an RSIR, specifying a special case that x, = k, and

x, = k,. Note that both shifts given in examples 3.1 and 3.2 satisfy the condition that the

pdfsfand g cross only twice (at points k, and k, ), which is required for an RSIR.

(3) Example 5.3: G RSIR F in Figure 5.3. This example shows that the pdf’ 3f

and g cross only at points k, and k,. Let’s define the likelihood ratios h, and h, as

h, = f / g for the interval [x,, k,), and h, = f / g for the interval (k,, x,]. Then, for

each given interval, the ratio function h, is non-decreasing and h, is non-increasing,

respectively. Thus example 5.3 satisfies the RSIR conditions given in Definition 5.1. To

see this monotonicity in the graphic example, we can follow the logic used in the

discussion of the MLR example given in Figure 3.1. Since g 2 f for all x e [x,, k, ), the
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ratio f / g is non-decreasing in the interval when g' > 0 (g' < 0) and the tangent lines

I, and I, in Figure 5.3 do not meet to the left (meet to the right) direction in the space

above x axis. Similarly, since g 2 f for all x G(k,, x,], the ratio f / g is non-

increasing in the interval if g' < 0 (g' > 0) and the tangent lines 1,2 and I, do not meet to

the right (meet to the left) direction in the space above x axis.

(4) Example 5.4: G L-RSIR F in Figure 5.4. In this example, the point k is

selected such that G(k) = F(k), and it is assumed that G 2 F for all x e [x,, k), and

G S F for all x e [k, x,]. For the left-side of the point k, the pdf5fand g cross only

once at the point k’ . Define the likelihood ratio h as h = f / g for the interval [x,, k’ ).

Since the ratio is non-decreasing in the interval andfis larger than g for all x e (k’ , k],

the shift in the example satisfies the L-RSIR condition in Definition 5.2. The pdf8fand

g cross four times, and thus the shift cannot be an RSIR change.

(5) Example 5.5: G L-RSIR F in Figure 5.5. This is a special case of an L-RSIR

in which the initial random variable has only two outcomes, x, and x,, with equal

probability of occurring. In this example, an R-S increase in risk occurs only in the

smaller outcome x,. Since it is such a case that x, = k’ = k, the non-decreasing ratio

function h shown in Definition 5.2 has, as its domain, an empty interval and F(x) 2 G(x)

for all x e [k, x,]. Thus the shift satisfies the L-RSIR condition. However the example

does not satisfy the RSIR condition. Since, for the interval including the points c and x,

satisfying f S g, the ratio offto g is zero at c and one at x,, the ratio likelihood function

h, should be increasing at least one point in the interval [c, x, ]. The shift cannot be an

ESIR either. For the interval [k, x,], the CDF ratio (1 — F) / (l — G) should be increasing

at least one point in the interval, which contradicts the ESIR condition in Definition 5.3.

In this instance, if an increase in risk occurs in the higher outcome x, with the

lower outcome unchanged, then it is the case where k’ = k = x,. This does not satisfy the
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L-RSIR condition because the pdf ratio function h should be decreasing at least one point

in the interval [x,, k’ ). The shift is not an L-ESIR either because the CDF ratio H

defined by H = F / G should be decreasing at least one point in the interval [x,, k).

Consider the case where R-S increases in risk occur in both the outcome values. Then it

is the case where the CDF’s F and G cross three times, and thus it does not satisfy any of

the four types of R-S increases in risk defined in this section.

(6) Example 5.6: G L-RSIR F in Figure 5.6. As another special case of L-RSIR,

example 5.6 shows that, given an initial pdff(x) with its support [x,, x,], an RSIR type

of change occurred only on a left-side sub-interval [x,, T] where T S x, results in an L-

RSIR shift in the initial pdff. In Figure 5.6, let’s define a conditional pdf

f’(t) = f(t)/ F(T) with its support [x,, T], then the shift shown in the figure can be

understood as an RSIR change from the pdf f’. The shift satisfies that F S G for all

x e [x,, k) and F 2 G for all x e [k, x,]. Since the ratiofto g is constant and less than

one for the interval [x,, k’ ), and f 2 g for all x E[k’, k], it is obvious that F L-RSIR G.

(7) Example 5.7: G ESIR F in Figure 5.7. While the shift is represented by CDF

change, it is easy to see that the pdf’sfand g cross more than two times in the interval

[x,, k]. This implies that the shift is neither an RSIR nor an L-RSIR. The CDF’s F and

G cross only once at the point k. The probability ratio functions H, and H, in Definition

5.3 can be defined by H, = F/G for the interval [x,, k), and by H, =(1— F)/ (1- G)

for the interval [k, x,], and the figure shows that H, is non-decreasing and H, is non-

increasing for each corresponding interval, respectively. This guarantees that G ESIR F.

The way to see the monotonicity follows the discussion about the example of an MPR

shift given in Figure 3.7. If, for any point in the interval [x,, k) ([k, x,]), the tangent

lines I, and IG(= G(x) in example 5.7) do not meet to the left (right) direction in the

space between zero and one, the CDF ratio H, (H,) is non-decreasing (non-increasing).
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(8) Example 5.8: G ESIR F in Figure 5.8 and 5.9. This is an example ofan ESIR,

for a discrete random variable case. To see that G ESIR F, consider the CDF

representation of the shift given in Figure 5.9. Since there is only one crossing between

the CDF’s and the monotonicity restrictions on the two CDF ratios are satisfied, it is

obvious that G ESIR F. Figure 5.8 shows that the difference g — f changes sign more

than two times for the left-side of the point k. This implies that the shift cannot be an

RSIR or an L-RSIR change.

(9) Example 5.9: G L-ESIR F in Figure 5.10. As the last example of single-

crossing between the CDF’s F and G, example 5.9 gives an L-ESIR change. The shift

satisfies that F S G for all x e[x,, k) and F 2 G for all x e[k, x,]. For the left-side of

the point k, the CDF ratio F / G is non-decreasing, which guarantees that G L-ESIR F.

The example is also a special case of an L-ESIR change. Figure 5.10 shows that G = F

for all x e [T, x,]. Similar to the example 5.6, let’s define a conditional pdf

f’(t) = f(t)/ F(T) with its support [x,, T], then the shift shown in Figure 5.10 can be

understood as an ESIR change from the pdf f’. Thus an ESIR type of change occurred

only on a left-side sub-interval [x, , T] where T S x, results in an L-ESIR change in the

original pdf.

5.2 Some Properties among Subsets of R-S Increases in Risk

This section examines several relationships among the four concepts of R-S

increases in risk, defined in section 5.1. First, two properties clarify the basic

relationships among the orders generated by these concepts. One relationship is that the

RSIR order implies the ESIR order which, in turn, implies the L-ESIR order, and the
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other is that the RSIR order implies the L-RSIR order which, in turn, implies the L-ESIR

order. We provide formal proofs for these relationships. .

In addition, there are important relationships between an RSIR and an ESIR, and

between an L-RSIR and an L-ESIR. In chapter 4, we have shown that the property that

an MPR shift can be decomposed into a series of L-MLR shifts gives an important

generalization of a comparative static result, extending admissible set of CDF changes

from the L-MLR shifts to the MPR shifts. Similarly, this section presents two assertions

that: (i) “an ESIR shift can be decomposed into a series of RSIR shifts,” and (ii) “an L-

ESIR shift can be decomposed into a series of L-RSIR shifts.” They are the key

relationships that allow us to make general comparative static statements in chapter 6.

Let’s begin with the statement that the ESIR order lies between the RSIR and the L-ESIR

orders.

Property 5.1. G RSIR F :> G ESIR F => G L-ESIR F.

Proof. It is obvious that “if G ESIR F then G L-ESIR F” because only the

conditions (a), (b) and (c) in Definition 5.3 are sufficient for the L-ESIR order. The proof

for the claim that “if G RSIR F then G ESIR F” follows the same steps used in the proof

of Property 3.1. The condition (a) in Definition 5.1 and 5.3 is just the same mean

condition. The condition (b) in Definition 5.1 implies that there exists a point k e [k,, k,]

such that F(x) S G(x) for all x e[x,, k), and F(x) 2 G(x) for all x E[k, x,], which is the

condition (b) in Definition 5.3. Since G(x) > 0 for all x e(x,, co) and l—G(x) >0 for all

x e(—oo, x,), we can define a pair of functions H, for the interval [x,, k) and H, for the

interval [k, x,] as,41

 

4' Ifx is continuous and x, = x, or x, = x, , then G(x,) = 0 or G(x,) = 0, and the proof is also true for this

case with the function defined as,

H,(x) ={
F(x)/G(x). forx E[k, x,)

0, when x = x,.

0, when x = x,

F(x)/G(x), forx e(x,, k) °' ”2“) =I
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H105): F(x)/G(x), forx e[x,, k)

and

H200: [1’ F(JC)l/I1-G(x)], forx E[k, x,]

respectively. Given G RSIR F, since H, EU), 1] and H, e[0, 1], it is sufficient to show

that H, is non-decreasing in x e[x,, k) and H, is non-increasing in x E[k, x,]. These

monotonicity conditions are equivalent to,

f(x)G(x) — g(x)F(x) 2 0, for all x e[x,, k) (5.1)

and

f(x)[1— G(x)] — g(x)[l — F(x)] 2 o, for all x e [k, x,], (5.2)

respectively. For the interval [k,, k), the condition (5.1) is satisfied because G RSIR F

implies g(x) S f(x) and G(x) 2 F(x), and for the interval [k, [(2], the condition (5.2) is

satisfied because G RSIR F implies g(x) S f(x) and l— G(x)21- F(x). For the

intervals [x,, k,) and (k,, x,], the RSIR condition implies that

(i) if g(x) = 0, then f(x) = O

Itix)=f(x>/ g(x). forx elxz. k.)
(ii) if g(x) at 0, then {

112(x)=f(x)/ g(x), forx 6(k2, x3l°

Thus, for all values ofx such that g(x) = 0, the conditions (5.1) and (5.2) are satisfied.

For ease (ii), the condition (5.1) and (5.2) can be written as,

h,(x)G(x) - F(x) 2 0, for all x e [x,, k,) such that g(x) at 0 (5.3)

and
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h,(x)[l - G(x)]- [l — F(x)] 2 O, for all x e(k,, x,] such that g(x) = 0, (5.4)

respectively. Since h,(x,)G(x,)— F(x,) 2 0 and the condition h, non-decreasing implies

that the LHS of (5.3) is non-decreasing, i.e.,

€1h,(x)G(x) - F(x)]/ 0‘): = h,’G + h,g - f = h,'G 2 O,

the condition (5.3) is satisfied. Since h,(x,)[l - G(x,)] — [1 — F(x,)] 2 0 and the condition

h, non-increasing implies that the LHS of (5.4) is non-increasing, i.e.,

&{h,(x)[l — G(x)]-[1— F(x)]} / dc = h,'[l — G]- h,g+ f = h§[l - G] 2 0,

the condition (5.4) is satisfied. Hence the conditions (5.1) and (5.2) are satisfied for all

x e[x,, k,) and x e(k,, x,], respectively. This completes the proof. Q.E.D.

Next property gives the relationship that the RSIR order implies the L-RSIR order

and the L-‘RSIR order implies the L-ESIR order.

Property 5.2. G RSIR F :> G L-RSIR F 2:» G L-ESIR F.

Proof. According to Definition 5.1, 5.2 and 5.4, three types of shifts G RSIR F,

G L-RSIR F and G L-ESIR Frequire a common restriction that the CDF’s G and F cross

only once. Given such a single-crossing R-S increase in risk from F to G, let k be the

point at which the crossing occurs. Then the first relationship that “if G RSIR F then G

L-RSIR F” is assured by comparing the restriction used in Definition 5.1 and 5.2. For the

interval [x,, k], both G RSIR F and G L-RSIR F require the same condition, but for the

interval (k, x,], the L-RSIR order requires only that G(x) S F(x) which is less stringent

than the conditions required for the RSIR order.
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Consider the second relationship that “if G L-RSIR F then G L-ESIR F.” For the

interval (k, x,], both the orders L-RSIR and L-ESIR require a common restriction that

G(x) S F(x). For the interval [x,, k], the proof follows the same method used in the

proof of Property 5.1. Q.E.D.

Let’s define four subsets of R-S increases in risk, each being composed of pairs of

CDF’S (F, G), such as:

[2,, = {(F, G)| G RSIR F}

0,4,, = {(F, G)| G L- RSIR F}

{2,, = {(F, G)| G ESIR F}

(2,,, = {(F, G)| G L- ESIR F}.

Now we have, from Property 5.1 and 5.2, the following two formal relationships among

the subsets of R-S increases in risk:

(1) 0R5 C 011s C 01,-1.3

(2) 0R8 C QL—RS C QL-l-JS'

‘ There is a notable thing before going into the next property. While both the MLR

and the MPR orders, discussed in section 3.2, have the property of transitivity, the RSIR

and the ESIR orders do not have this property. That is, the relationships G, ESIR G,

and G, ESIR G, do not necessarily imply that G, ESIR G, , and the same is applied for

the RSIR order. This implies that an R-S increase in risk that can be decomposed into a

series of RSIR or ESIR shifts is not always an RSIR or an ESIR shift. In Figure 5.11, we

give an example of this case. It shows that G ESIR (RSIR) G, and G, ESIR F, but it is

not true that G ESIR F because the CDF’s F and G cross three times.

In general, a series of RSIR (ESIR) shifts does not necessarily imply an RSIR

(ESIR) Shift. However, as a special case, if a series of ESIR shifts have a single common
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x, x, k x, x4

Figure 5.11. G ESIR G, ESIR Fbut not G ESIR F.

crossing between every pair of CDF’s, the summation of all the shifts results in an ESIR.

That is, if a series of shifts G ESIR G, ESIR G"_, ESIR G" ESIR F, where all

CDF’s G, F, and G,'s for all i =1, m, n have a single common crossing, the shift from

F to G is an ESIR. The reason is as follows. Let k be the single point of crossing, then

the series of ESIR shifts implies that G 2 G, 2 2 G" 2 F for all points to the left-

side of k, and G S G, S S G" S F for all points to the right-side of k. Define a new

random variable y = -x and let f(x) = f(—y) = f(y), g(x) = g(—y) = g(y) and

g, (x) = g,(—y) = g, (y) for all i = 1, ---, n. Then, as we saw in section 5.1, every ESIR

shift can be understood as the sum of two specialized FSD shifts. The series of shifts are

expressed as: for the left-side of the point k, F MPR G" MPR G, MPR G, and for the

right-side of k, F MPR G" MPR G, MPR G. Since the MPR order is transitive

(Property 3.3), the shift from F to G can beunderstood as the sum of two FSD shifts such

that F MPR G for the left-side of k, and F MPR G for the right-side of k. These two

shifts sum up to imply a shift satisfying G ESIR F.
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A special family of CDF’5 holds the transitivity of the ESIR order. If the initial

and final CDF’s F and G are restricted to be symmetric42 from the mean, every ESIR shift

from F to G has a common crossing at the point of mean and thus the ESIR order is

transitive. The family of symmetric distributions include normal, triangular and uniform

distributions.

While the RSIR and the ESIR orders, in general, do not display transitivity, the

non-transitivity gives important implications with regard to comparative static analysis

under uncertainty. As we have discussed in section 3.2, if a given CDF order is sufficient

for making a general comparative static statement and the order is non-transitive, the

admissible set of changes in CDF includes every shift that can be decomposed into a

series of shifts generated by the given order. The CDF change given in Figure 5.11 is an

example of this case. That is, the comparative static result made for the set of ESIR

changes is also obtained for the shift given in the figure.

The above discussion leads to another implication of the non—transitivity with

regard to the comparative static analysis. Assume that, given two CDF orders, an

arbitrary change in CDF generated by one CDF order can always be decomposed into a

series of shifts that satisfy the other CDF order. Then, if the latter order gives a sufficient

condition for a general comparative static result, then all the shifts that satisfy the former

order are also admissible for the result. Therefore, examining the presence of this kind of

relationship between CDF orders is meaningful for making a general comparative static

statement. In what follows, two such relationships are presented: one between the RSIR

and the ESIR orders, and the other between the L-RSIR and the L-ESIR orders which are

also non-transitive. They are: (i) “an ESIR shift can always be decomposed into a series

of RSIR shifts,” and (ii) “an L-ESIR shift can always be decomposed into a series of L-

RSIR shifts.”

 

42 A CDF F or a corresponding pdff, with its mean f, is said to be ‘symmetric from the mean’ if, for any

numberc, F(f-c)= I — F(f+c) or f(f—c)=f(f+c).
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Property 5.3. Any ESIR shift can be decomposed into a series of RSIR shifts,

that is, if G ESIR F, then there exists a series of CDF’s G, ,---, G" such that G RSIR G,

RSIR G RSIR G" RSIR F.
n-l

Proof. Given an arbitrary pair of pdf’ 5fand g satisfying G ESIR F, let’s define a

function h:R —> [0, 00) as

"f(x) / g(x), when g(x) 2 0

h(x) = J the defined last value off(x) / g(x), when g(x) = f(x) = 0

 \00, when g(x) = 0 andf(x) #3 0.

Note that, according to Definition 5.3, there is a point k e [x,, x,] such that F(x) S G(x)

for all x e[x,, k) and F(x) 2 G(x) for all x E[k, x,], and there is no restriction on the

number of times of crossing between the pdf5fand g. This implies that the function h is

generally not monotone and thus there are points at which h changes from non-increasing

to non-decreasing. Assume that there are n(= n, + n,) number of such points and denote

them as: for the left-side of the point k, c: for i, =1, 2,-~, n, where n, 20 and

I. I.

C», (CH, -l
< ~--<c,"; and for the right-side of k, c: for i, =1, 2,-~-, n, where n, 2043 and

c” <c,R< w<c". For every 0" and c", define CDF’s G‘(x) and G."(x) as,
I - n, I, I, I, I,

,
I. I.

xi,lG(x), when x < c,l

G,f(x) = < F(x), when cf; 3 x 3 df (5.5)

 l— Afll — G(x)], when x > d:

and

 

43 When n, = n, = 0, it is the case where the ESIR shift is also an RSIR shift.
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"if; G(x), when x < .1,:

G,:‘(x) = < F(x), when d: S x S c: (5.6)

 Ll — A: [l — G(x)], when x > cf,

where if; = F(c,f )/ G(cf ). if = [1 - F(df )]/ [1 — G(df )1, if; = F(d: )/ G(dg) and

if: =[1— F(cf: )J/ [1— G(c: )J, and d:(2 k) and d,.’;(S k) are the selected points such that

G,f‘(x) and G:(x) have the same mean as F or G, respectively. Since G ESIR F implies

that the order of n values of II: and A: is same as the order of the corresponding n values

of A: and if: , the order of n points c: and d: (left-side of k) is same as the reversed

order of the corresponding n points cf and d: (right-side of k). Let (sf, 3,”) for

i = 1, 2,- - -, n, be n pairs of points where sf<s,f’_,< m<s," are the ordered n values of

c: and d,.’2‘, and .9," < sf < ---< sf are the ordered n values of c: and d,:, respectively.

Then the defined n CDF’S can be rewritten, for each i-th pair of points (5,". s," ), as

,

lif'G(x), when x < sf

G,(x) =J F(x), when s,‘ S x S s,” (5.7)

 k1_ ’l'rRIl — G(x)], When x > sf

where if. = F(sf)/ G(sf‘) and if = [1—F(sf)]/[1—G(sf )1, and it, conesponding pdf ,5

(

xifg(x), when x < sf

g(x) = i f(x), when sf S x S s," (5.8)

 kxi,"g(x), when x > 5,".

Now all CDF’s F, G and G, ,- - C, have the same mean and have a common crossing at

the point k. This implies that, if we let G = Go and F = G
n+l’

i=1, 2,---, n+1, G,(x)SG,_,(x) for all x e[x,, k) and G,(x)2G,_,(x) for all

then for all

x E[k, x,], and we have an order that G0 MPS G, MPS G” MPS GM. In addition,
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=AR
n+1

set 11,; = x15" =1, xi"
,1. _ R _ I. _ R

m, = 0, 5,, — sO — k, Sm, — x, and Sm, =x,, then from (5.8) we

see that, for every i=1, 2,---, n+1, g, is generally related to g,_, as

I(A: //if‘_, )g,_,(x), when x < s,"

(h / xif_,)g,_,(x)(= f(x)), when s," S x < s,’;,

g(x) = < g,_,(x)(= f(x)), when s,’;, S x S sf, (5.9)

(h / if..)g.-.(x><= f(x)). when sli. < x s s"I

 K(lt’f //t',‘_,)g,_,(x), when x > 5,”.

By the condition G ESIR F, if /Af‘_, <1 and It,” / xii, <1, for every i=1, 2,---, n +1.

From (5.7), the fact that G(sf) = F(3,") and G,(x) S F(x) for all x e[x,, 3,") implies that

at every point s,”, g, meetsffrom the below, and the fact that G’(sf ) = F(5,” ) and

G,(x) S F(x) for all x e(s,", x,,] implies that at every point sf‘, g, meetsffrom the above.

Thus if? S h(sf‘) and [if S h(sf). Now for each of the intervals [sfg sf;,) and (3,5,, sf],

there is no point at which the function h changes from non-increasing to non-decreasing.

and (5.7) and (5.9) imply that g,(x) S g,_,(x) for all x e[x,, sf) and (sf, x,], and

G,(s,’;,) = G,_,(s’;,) and G(s’f, ) = G._,(s,’:, ). Accordingly, there exists a pair of points

k,." E[sf‘, s,"_,) and k," e(s,’:,, sf‘]44 such that g,(x)2 g,_,(x) for all x e[k,", k,"], and there

exist a non-decreasing function h,‘ :[x, , k,‘ ) —> [0, l] and a non-increasing function

h,":(k,", x,] —> [0, 1] such that g(x) = h,"(x)g,_,(x) for all x e[x,, k,") and

g(x) = h,R(x)g,_,(x) for all x G(k,R, x,] where

 

4" If s," is one ofcf's and g,(s,.")2 g,,,(sf' ), or s," is one ofcf's and g,(s,") 2 g,_,(s," ), then s," = k," or

s,” = k,” and from (5.7),

g(x) = (if //I,l'_[ )g,_,(x), forx e[x,, sf)

g,(x) 2 g,_,(x), forx E[sf, sf]

g(x) = (11.” / if. )g.-.(x). forx em". x.]

which imply G,_, RSIR G,. This is also the case where G,_, RSIR GM , and more generally for every

." ), or s"
I+j 1+}

j=0. 1, m. if s.‘ . is one ofcf's and g,,,(SfiflZgr—KSIf}

g,,/(3,1132 g,_.(s,.’:, ), then G,._I RSIR G

is one ofof 's and

“n+1 '
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{if //if_,, forx e[x,, 5,")

MIX) =

h(x)/11.1,, forx e[s,", k,.")
l

and

h(x)/1,5,, forx 6(kik, sf‘]

h:R(x) =

17R / 1,6,, forx e(s,.", x4],

Hence, by Definition 5.1, G,,, RSIR G, for all i=1, 2,”: n+1. Q.E.D.

Property 5.4. Any L-ESIR shift can be decomposed into a series of L-RSIR

shifts, that is, ifF L-ESIR G, then there exists a series of CDF’s G, , - - . , G,, such that G L-

RSIR G, L-RSIR G L-RSIR G,, L-RSIR F."—1

Proof. For a given CDF change from F to G, if it satisfies the condition G L-

ESIR F, then there is only one crossing between the two CDF’S. As we noted, an L-ESIR

shift can be understood as the sum of two FSD shifts: an MPR dominated shift for the

left-side of the crossing point, and an FSD dominant shift for the right-side of the point.

This implies that the proof of the assertion that “any MPR shift can be decomposed into a

series of L-MLR shifts” (Property 3.6) can be used for the proof of Property of 5.4.

To illustrate the result in Property 5.3, consider an example of an R-S increase in

risk given in Figure 5.12. Since the pdf representation (while it does not provided) for

the shift shows more than two crossing between the pdf’ 3fand g, it cannot be an RSIR

shift. Following the method given in the proof of Property 5.3, three intermediate CDF’s

G,'s, for i =1, 2, 3, are defined. The shift from F to G is divided into four shifts, from F

to G,, ---, and from G, to G. By closely examining the shifts, we know that each shift

satisfies the RSIR condition in Definition 5.1. Thus the example shows that a shift from



108

 

 mi: ------------ ; - T L 1 i

x,c" cl" d,L CIR deR

. I. . R

(53 ) (32) (51 ) (3| 52 33 )

 

x3:x4

Figure 5.12. G ESIR F that is the sum of four RSIR shifts.

G to F, satisfying G ESIR F, can be decomposed into four RSIR shifts such that:

G RSIR G, RSIR G, RSIR G, RSIR F.

These last two properties have important implications with regard to providing

general comparative static statements. By Property 5.3, the comparative static statement

made for the set of RSIR changes can be generalized to the set of ESIR changes. By

Property 5.4, the comparative static statement made for the set of L-RSIR shifts can be

generalized to the set of L-ESIR shifts. These are shown in chapter 6.



Chapter 6

COMPARATIVE STATIC RESULTS

WITH SUBSETS OF R-S INCREASES IN RISK

This chapter provides general comparative static statements regarding the subsets

of R-S increases in risk presented in chapter 5. The admissible set of R-S increases in

risk for the comparative static result in Black and Bulkley (1995) is extended to the set of

ESIR shifts which is larger than the set of RSIR shifts. This generalization is directly

obtained from the relationship that an ESIR shift can always be decomposed into a series

of RSIR shifts (Property 5.3), without any additional cost of assumptions. Another

determinate comparative static statement is made for the set of L-RSIR shifts. Restricting

the concerned payoff function to be linear in the random variable, we show that the effect

of an L-RSIR shift is determinable for all risk averse decision makers with non-negative

third derivative of utility functions. Another relationship established in chapter 5 gives a

further generalization of this result. Using the relationship that an L-ESIR shift can

always be decomposed into a series of L-RSIR shifts, the admissible set of R-S increases

in risk is extended to the set of L-ESIR shifts without imposing additional assumptions.

Section 6.1 gives some preliminary discussions about the results in Black and

Bulkley (1989), and Dionne, Eeckhoudt and Gollier (1993). Given the general decision

model (1.1), section 6.2 examines the properties regarding the marginal utility with

respect to the choice variable, measured at the Optimal level. These properties are

required for developing the comparative static results in section 6.3.
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6.1 Literature Review and Preliminary Discussions

Rothschild and Stiglitz (1971) have developed a sufficient condition for signing

the effect of an arbitrary R-S increase in risk on the optimal choice made by an economic

agent. Given the general one-argument decision problem (1.1), assume that the solution

of the problem satisfies the first and the second-order conditions. Then the R-S condition

implies that the optimal value of the choice variable b does not increase (decrease) for

any R-S increase in risk if u’(z)z,, is concave (convex) in x, or the following expression is

signed as non-positive (non-negative):

I

u a,“ + 2n" - 2, oz,“ + z,,(u" ~zu + 11'" ~23). (6.1)

However, as Kraus (1979) noted, the RS sufficient condition cannot generally be

satisfied for the general decision problem (1.1). This is because the first-order condition

that E[u’(z)z,,(x, b)] = 0 at the optimal level of b implies that 2,, must change its sign as

x varies and thus the sign of the last term in (6.1) is generally ambiguous. In addition,

since (6.1) includes the third derivative of the utility function, it is also obvious that the

effect of an arbitrary R-S increase in risk in the random variable on the choice variable

made by a risk averse agent is generally not determinable.

Instead, many authors have examined subsets of R-S increases in risk when

analyzing the choice behavior of an arbitrary risk averse decision maker. Examples

include the cases of a global increase in risk analyzed in Kraus (1979) and Katz (1981), a

mean-preserving truncation in Eeckhoudt and Hansen (1981), and a strong increase in

risk (SIR) in Meyer and Orrniston (1985). Being a subset of R-S increases in risk, SIR

shifts include all reverse cases of mean-preserving truncations which in turn include all

global increases in risk. As we saw in chapter 2, Meyer and Onniston generalize the

comparative static results developed in the other cited papers. Using the general decision
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model (1.1), they show that an SIR in the random variable x decreases the choice variable

b made by an arbitrary risk averse decision maker.

A further generalization is given by Black and Bulkley (1989) who introduce the

concept of a relatively strong increase in risk (RSIR). As shown in Definition 5.1, RSIR

shifts include, as a special case, the set of SIR shifts. They prove that the same desirable

comparative static result holds for the set of RSIR shifts.

Theorem 6.1. For all risk averse decision makers, bF 2 b,, if

(a) G RSIR45 F

(b) 2, 2 0, 2,,, 2 0, 2,,, < 0 and 2,,, S 0.

Accordingly, the admissible set of changes in risk for the comparative static result is

improved as: global changes in risk —> mean-preserving truncations -> strong increases in

risk —> relatively strong increases in risk.

All these results contain the same set of decision makers (all risk averse

individuals) and the same restrictions on the structure of the concerned decision model. as

the ones in condition (b) in Theorem 6.1. The structural restrictions on the payoff

function such as, 2, 2 0, 2,,,r 2 0 and 2,,, S 0, are often assumed by many authors and

they are not very harmful for the comparative static analysis because many economic

problems already satisfy these restrictions. However, another common restriction that the

concerned payoff should be strictly concave in the choice variable (2,,, < O) is quite

restrictive. This excludes the decision models in which payoffs are linear in the choice

variable (2,,, = 0) such as the standard portfolio problem, the model of a competitive firm

 

‘5 An RSIR defined in Definition 5.1 is slightly modified from the original one. Similarly, the proof of

Theorem 6.1 needs a modification of the original proof, substituting the pdf ratio function h for the ratio

g/f.
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under price uncertainty with a constant marginal costs, and the coinsurance demand

model.

Many authors have assumed that, doing their comparative static analysis, the first

and the second-order conditions are satisfied to guarantee an interior unique solution. Let

f(x) be a given pdf of the random variable x, then the first-order condition which

determines the optimal value of b is,

J::ll’[z(x, b)lzh(x’ b)f(x)dx = 0
(62)

The solution satisfying (6.2) is guaranteed to be a global optimum by the second-order

condition that,

I:‘{u"12(x. b)]z: + u'lztx.biiz..}f<x)dx < o. (6.3)

The condition (6.3) is saitisfied46 with the restriction 2,,, < 0 when risk aversion (u" S O),

or with the restriction 2,,, S 0 when strict risk aversion (u" < 0). Assume that an initial

optimal solution satisfies both the first and second-order conditions. Then, to prove the

result that br 2 b,, for a specified change in pdf fromfto g, it is sufficient to show that

db.) = J: u'iztx. b,.. )1z.(x. b,.-)[f(x) — now 2 0. (6.4)

This is an often used technique to prove comparative static theorems. However, if the

initial solution does not satisfy the first or the second-order condition, the method using

(6.4) is generally not enough for proving a comparative static result.

When 2,,, = 0, since 2,, does not depend on the choice variable b, there are cases

where an interior solution does not exist. If a decision maker is risk neutral, his choice

depends only on the expectation of 2,, and there is no interior unique solution. In this

case, both the first and the second-order conditions are not satisfied. Given the

assumption 2,,, 2 0, if E(z,,) > (<)0 then b,, = +00 (—oo), and if E(z,,) = 0 then the,

 

4" The non-decreasing utility function is implicitly assumed to be increasing at least some .1: e [x,, x, J.
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solution is indeterminate. For a strictly risk averse individual, E( 2,,) S 0 implies

b,, = —oo, in which the solution satisfying (6.2) does not exist. Another problem caused

by the restriction 2,,, = 0 is that one cannot examine the effect of a change from no risk to

risky situation because there is no interior unique solution under certainty. Thus,

considering the decision models with payoffs being linear in the choice variable, the case

of an unbounded or a corner solution should be examined for making a general

comparative static statement.

Dionne, Eeckhoudt and Gollier (1993) raise this issue and show that, when the

concerned payoff is linear in the choice variable b, Black and Bulkley’s comparative

static result can be extended to include more shifts47 that cannot be generated by the

RSIR order. They consider a linear decision model of the form,48

z(x, b) = 2,, + b(x — c) " (6.5)

where 2,, and c are exogenous parameters. This is the case where the payoff function is

linear in both the choice and the random variable. The constant 2,, can be interpreted as

an initial endowment in the portfolio problem and the coinsurance problem, or a fixed

cost or an initial wealth in the competitive firm model, and c represents either a sure

interest rate, a marginal cost of insurance, or a marginal cost of production. Restricting

the choice variable to be non-negative, this linear model satisfies the above structural

restrictions as, 2, = b 2 0, 2,,, =1 and 2,,,“ = z = 2,,, = 0.

In order to make a general comparative static statement, Dionne et. a1. examine

the cases of an unbounded and a comer solution for the decision problem (6.5). Given an

initial pdff(x), every possible optimal choice of a risk averse decision maker is

summarized in Table 6.1. When E(x) > c, b, is strictly positive because the marginal

expected utility, E[u'(z)(x — 0)], is strictly positive at b = 0, and when E(x) < c, b, = 0

 

‘7 They introduce the concept of a ‘relatively weak increase in risk’ which is not related to our definitions

of R-S increases in risk. Thus this dissertation do not reproduce the definition of the concept.

‘8 This linear model is already shown in (4.10).
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Table 6.1. Different solutions when b 2 0.

 

 

Cases u"(z) < 0 u"(z) = 0

i) c S x, < E(x) < x, unbounded solution unbounded solution

bl; = +00 b,, = +w

.. in ' ' '11) x, < c < E(x) < x, tenor or unbounded solutlon unbounded solution

- - 0<bFS+oo b,,-=44”

comer solution undetermined
111) x, < c = E(x) < x,

bF = 0 b}; = 0

iv) x, < E(x) < c S x, comer solution comer solutlon

bF = 0 b,,. = 0

v) x < E(x) < x < c comer solution comer solution

2 3

b, = 0 b,,. = 0

. * unbounded solution unbounded solution
v1) c < x, = x,

' ‘ b, = +00 b,,. = +00

vii) x _ c _ x corner solution undetermined

2 — _ 3

b, = 0 b, = 0

viii) x _ x < c comer solution comer solution

2 - 3

b, = 0 b,,. = 0

 

* In Dionne et. al., only the first five cases are considered, but in order to examine the no risk to risk case,

as Meyer and Orrniston (1985) note, we add the case of initially certain.
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because E[u'(z)(x — c)] S u'[z(c, b)][E(x) — c] < 0 for all positive b. Consider the case.

E(x) = c. If u" < 0, then b,. = 0 because E[u’(z)(x — c)] < u’[z(c, b)][E(x) — c] = 0 for

all positive b, and if u" = 0, then the solution is indeterminate because, for all possible b.

E[u’(z)(x — c)] = u'(z)[E(x) - c)] = 0. It is easy to see that when a corner or an

unbounded solution prevails, any R-S increase in risk will not increase the optimal level

of choice variable. First consider the risk neutral case. The solution depends only on the

expectation of the random variable x. If E(x) > (<) c then b,. = +00 (0), and if E(x) = c

then the solution is indeterminate. Since an R-S increase in risk does not affect the mean,

E(x), it does not change the solution.49 Consider the case of strict risk aversion. When

b, = +00, the solution cannot increase any more, and when b,.. = 0 due to E(x) S c, the

solution will not change because E(x) remains unchanged after an R-S increase in risk.

Thus, for both the cases of a comer or an unbounded solution, we obtain the

desired comparative static results that any R-S increase in risk does not increase the initial

optimal solution. Now, in order to make a general comparative static statement for a

particular type of R-S increase in risk, only the ease of an interior solution is left to be

considered. Since an interior solution is possible only when u"(z) < 0, the solution

satisfies the second-order condition and the solution satisfying the first-order condition is

unique. This allows Dionne et. al. to use the sufficient condition (6.4) to prove their

comparative static result. With the above discussion, the result in Black and Bulkley’s

analysis can be applied for decision models with linear payoffs. That is, if the concerned

decision model with the structural restriction 2,,, = 0 follows the form (6.5) in which the

payoff is also linear in the random variable, Theorem (6.1) can be generalized as follows.

Theorem 6.1'. For all risk averse decision makers, b,.. 2 b,, if

(a) G RSIR F

 

‘9 This assertion is not valid for the case where the solution is indeterminate, but even in this case a risk

neutral individual has no reason to change his original choice after the change in risk.
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(b) 2, 2 0, 2,,, 2 0, 2,,, S O, 2,,,u S 0, and z,“ = 0 when 2,,, = 0.

The types of changes in CDF such as, a global increase in risk, a mean-preserving

truncation, an SIR, or an RSIR, have a common restriction that the pdf 5fand g cross

only twice50 and the comparative static results developed for these shifts contain the same

set of decision makers (all risk averse individuals). In this chapter, we extend the set of

admissible R-S increases in risk allowing the desirable comparative static properties.

First, the results in Theorem 6.1' is generalized for the set of ESIR shifts in which the

pdf’ 5fand g are not restricted to cross only twice. Another extension is given by using a

trade-off between the restrictions on the set of decision makers and the set of changes in

CDF. If a risk averse individual is restricted to have a utility function with its non-

negative third derivative, a desirable comparative static statement is obtained for the set

of L-RSIR and this result is further generalized to the set of L-ESIR shifts.

Before going into the main body of this chapter, the next section examines several

properties regarding the marginal utility with respect to the choice variable b, u'(z)z,,.

They are used to develop a comparative static result in section 6.3.

6.2 Properties of the Function u'(z)z,,

Given a CDF F(x), this section investigates several properties regarding the

function u'[z(x, bF )]z,(x, b,.) which is the marginal utility of b, measured at the optimal

level b,,. The properties are derived from the structural restrictions on the payoff

function such as, 2, 2 0, 2,,, 2 O and/or 2,,,“ S 0, and the assumptions on utility function

such as u’ 2 0, u" S 0, and/or u’" 2 0. Some of the properties have already been used to

prove the comparative static results obtained in the literature. Others are required for the

 

50 For the case of a global change in risk, the two crossings occur at the point of mean.
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results in section 6.3. In this section, assume that the support of the CDF F and its

corresponding pdfflie in a bounded interval [0, 1], and let b,. be the interior bounded

solution satisfying the first and the second-order conditions for the maximum problem

(1.1). The condition 2,,, 2 0 implies that 2,,(x, b,.) has a single crossing of the x axis,

changing its sign from negative to positive, and if we let x' be the value ofx satisfying

z,,(x, b,,.) = 0 then x’ e [0, l]. The first two properties are easily derived and often

encountered in the previous comparative static analysis.

Property 6.1. Assume that u’ 2 0 and 2,,, 2 0, then for all y e [0, 1],

(i) Ju'lztx. b.)lz.<x. br)f(x)dx s 0 and (ii) J u'[z(x. br)]z,.(x. b,.-)f(X)dx 2 0.

Proof. For a given CDF F(x), the first-order condition for the problem (1.1)

implies that

Ju'(z>z.(x. br)f(x)dx = 0.

and thus the assumptions u’ 2 0 and 2,,, 2 0 complete the proof. Q.E.D.

" Property 6.2. Assume that u' 2 O and 2,,, 2 0, then (i) u'(z)z,, S 0 for all

x E[O, x'], and (ii) u'(z)z,, 2 O for all x E[x', 1].

Proof. Since the assumption 2,,,r 2 0 implies that 2,, S 0 when x S x', and 2,, 2 0

when x 2 x', the assumption u’ 2 0 completes the proof. Q.E.D.

Property 6.3. Assume that u’ 2 0, u” S 0, z, 2 0, 2,,,r 2 0 and 2,,,“ S 0, then (i) for

the interval [0, x'], u'(z)z,, is non-positive, non-decreasing in x and its derivative with

respect to x is minimized at x = x' ; and (ii) for the interval [x', l], u'(z)z, is non--

negative and its derivative with respect to x is maximized at x = x’.
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Proof. By Property 6.2, u'(z)z,, S 0 when x S x', and u'(z)z,, 2 0 when x 2 x'.

The derivative of u'(z)z,, with respect to x is

u"(z)z,z,, + u'(z)z,,,. (6.6)

(1) When x S x': The given assumptions imply that both terms in (6.6) are non-

negative and thus u'(z)z,, is non-decreasing in x. Also we know that the first term is zero

at x = x’ and the second term is non-increasing in x. This implies that (6.6) has its

minimum value at x = x' within the interval [0, x'].

(ii) When x 2 x’: The given assumptions imply that the first term in (6.6) is

always non-positive and the second term is non-increasing in x. Thus (6.6) has its

maximum at x = x' within the interval [x', l]. _Q.E.D.

A portion of the assertion in Property 6.3 can be restated as,

a[(2)211

&

2 o'tt'(z)z,,

dc

2 étt'(z)z,,

dc   xSx' x=x° .t2.t'

Property 6.4. Assume that u' 2 0, u" S 0, z, 2 0, 2,,, 2 O and 2,, = 0, then

G'lt'(z)z,, > u’(z)z,,
 

 

' _ , f all 0, '(1) 03: x—x' or xe[ x)

(ii) at: (")2” S u (2)2.” , for allx E(x’, 1].

dc x—x

Proof. Since we assume that z is linear in the random variable x, that is 2,, = 0,

the payoff function can be expressed as

z(x, b) = r,(b)x + r,(b)

where r, and r, are arbitrary functions of b, satisfying z,r = r,(b) 2 0 and 2,, = r,'(b) 2 0.
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With the linearity, we have x’ = —r,'(b,.- ) / r,(b, ). 5' This implies that, for all x a x',

z, =,r,’(b. )x+r,’,(b )_ r,’,(b. )x+r,'(b,. )

x—x' x- x _',x+[r,(b )/r,'(b,,. )]

  

=l(bl-' ):’ Zhr’ (67)

and thus.

cit'(z)z,,

03c

     = u"(z)z,z,, + u'(z)z,, = u"(z)zxz,, (6.8)

The fact that u”(z)z,z,, is non-negative for the interval [0, x') and non-positive for the

interval (x’, 1] completes the proof. Q.E.D.

The term
 

u’(z)z,, (= u'[z(x, b,,.)]z,,(x, b,)-u’[z(x', b,..)]z,,(x°, b,)] is the

x — x x — x'

average change rate of the marginal utility u'(z)z,, from any x to the point x'. Property

6.4 is same as the assertion that the average change rate is non-increasing in x, because

the restriction 2,, = 0 implies that (6.7) and thus,

 (Jug?)/ar= 0'14(z)z,,,/éc<0, forallxe[0, l]andx=x.

Property 6.5. Assume that u' 2 0, u" S 0, z, 2 0, 2,,, 2 0 and z,“ = 0, then (i) if

u'" 2 0, u’(z)z,, is non-positive, non-decreasing and concave in x e [0, x’]; and (ii) if

u'" S 0, u’(z)z,, is non-negative and concave in x e [x’, 1].

Proof. Form Property 6.2 and 6.3, we know that u’(z)z,, is non-positive and non-

decreasing in x e [0, x’], and non-negative for x e [x‘, I]. Since 2 is assumed to be

linear in x, differentiating (6.6) with respect to x gives

u"'(z)z_fz,, + 2u"(z)z,z,,x. (6.9)

 

5' Since 2,,(x, b,,) = r,'(bF )x + r,'(b,.) is assumed to have a single crossing at x' e [0, 1], r,'(b,,) at 0.
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Hence with the given assumptions, (1) for the interval [0, x'], if u'" 2 0 then (6.9) is non-

positive and thus u’(z)z,, is concave; and for the interval [x’, 1], if u'" S 0 then (6.9) is

non-positive and thus u'(z)z,, is concave. Q.E.D.

6.3 Comparative Static Analysis

Using the general one-argument decision model (1.1), this section provides

general comparative static statements concerning the three types of R-S increases in risk,

an ESIR, an L-RSIR, and an L-ESIR, presented in chapter 5. Again, let the supports of

CDF’s G and F (assuming that G is riskier than F in the R-S sense) be the finite intervals

[x,, x,,] and [x,, x,], where x, S x, S x, S x,, respectively. First, consider the set of

ESIR shifts defined in Definition 5.3. This class of R-S increases in risk includes, as a

special case, the set of RSIR shifts (Property 5.1). Since every ESIR change can be

decomposed into a sequence of RSIR shifts (Property 5.3), the result in Theorem 6.1’ is

generalized as:

Theorem 6.2. For all risk averse decision makers, b,,. 2 b,,. if

(a) G ESIR F

(b) zI 2 O, 2,,, 2 O, 2,,, S O, 2,,,“ S 0, and z,“ = 0 when 2,,, = 0.

Proof. By Property 5.3, if G ESIR F then there exists a series of CDF’s

G,,---,G,, such that G RSIR G, RSIR G,, RSIR F. Combined with the result in

Theorem 6.1', it completes the proof. Q.E.D.

Theorem 6.2 improves the robustness of Black and Bulkley’s results without any

cost of additional assumptions. Defining an ESIR, the restriction that the pdf’sfand g



cross only twice is dropped. Instead, it requires that the pair of CDF’s F and G cross only

once and that, for the left side of the crossing point, the ratio of F to G should be non-

decreasing and, for the right side of the point, the ratio of (l — F) to (l — G) should be

non-increasing.

One notable thing is that, as we saw in section 5.2, the ESIR order does not have

the property of transitivity. Consider the example of an R-S increase in risk given in

Figure 5.11, which shows that G ESIR G, and G, ESIR F, but not G ESIR F because the

CDF’s F and G cross three times. However, by Theorem 6.2, we know that

b,,. S b,,.l S b,. In general, it is obvious that an R-S increase in risk that can be

decomposed into a series of ESIR shifts allows one to make the desired comparative

static statement provided in Theorem 6.2. This implies that the ESIR order is only a

sufficient (but not necessary) condition for obtaining the result in Theorem 6.2. Allowing

multiple crossing between the initial and the final CDF’s F and G, it is an open question

to find the set of admissible R-S increases in risk yielding the comparative static result.

In. order to make another general comparative static statement, we investigate a

trade-off between the restrictions on the set of decision makers and the set of changes in

the random variable. In what follows, the concerned payoff is restricted to be linear in

the random variable. We show that, when 2,, = 0, one can further extend the class of

admissible R-S increases in risk with the cost of an additional restriction on the set of

decision makers. In the next comparative static result, the set of L-RSIR shifts which

includes all RSIR shifts is admissible by adding the restriction that risk averse decision

makers have positive third derivative of utility functions. When 2,,, = 0, we have shown

in section 6.1 that, for the cases of a comer or an unbounded solution, an arbitrary R-S

increase in risk will not increase the choice variable b. In the following theorem, we

consider only the case of an interior solution, and thus, to prove that b,,. 2 b,, for a

specified change in pdf fromfto g, it is sufficient to show that



W.) = J: u'iztx. b.)12.<x. b,.)iftx) — g(x)ldx 2 o. (6.4)

Theorem 6.3. For all decision makers with utility functions u’s such that u’ 2 0,

u" S O and u'" 20, b,, 2 b,,. if

(a) G L-RSIR F

(b) 2:,r 2 0. 2,,r 2 0, 2,,, S 0 and z." = 0.

Proof. Let x’ be the value ofx satisfying z,,(x, b,.) = 0, then x’ exists in the

interval [x,, x,]. With the points k' and k used in Definition 5.2, where x, S kI S k S x,,

we consider the following three cases:

Case (1): when k S x’ S x,. Integrating by parts, Q(b,,) in (6.4) can be written as

Q(b,.) = J‘ [u"(z)z,z,, + u'(z)z,,,](G - F)dx

With the given assumptions, we know that for the interval [x,, x'], u"(z)z,z,, + u'(z)z,, is

non-increasing in x by Property 6.5, and for the interval [x’, x,J, it has its maximum at

x = x’ by Property 6.3. Since k S x', this implies

  
[u"(z)z,z,, + u'(z)z,,,]

 It 2- 15/12);er ‘1' “'(Z)Zhrl k 2 [u"(z)zrzh + u'(Z)Z,,,].rS .t= .rzk’

and by the condition G L-RSIR F which implies G — F 2 0 for all x e [x, , k], and

G — F S 0 for all x e [k, x,], we have the following inequality,

 Qib.) 2 iu"(z)z.z. + u'tz)z..1,=, J"‘ (G — F>dx = 0.

Case (ii): when kI S x' S k. Let’s rewrite Q(b,,.) in (6.4) as

9(1),): J"u’(2)zt(f - g)dx + J. u'(z)zt(f — g)dx + J: u'(z)zt(f - g)dx.

With the given assumptions and by the condition G L-RSIR F,



Q(b,.~) 2 u’[Z(k’.b,.-)1J'l.zt(f - g)dx +u’12(k.b,. )1 J: Z.(f -g)dx + J u'(:):,,(f - g)dx.

Adding and subtracting u’[z(k, b,)] J.2,,(f - g)dx in the RHS gives.

db.) 2 {u'[z(k', b,. )1 - u'[z(k, b,.- )1} J'zxf - g)dx

+ u'[z(k, b,. )1 J z,(f — g)dx + J‘ u'(z)z,,(f — g)dx. (6.10)

Integrating by parts,

Jz,(f—g)rtr = Jz,,(G— F)dt :2, [(G— F)dt 20

because 2,,, does not depend on x and non-negative, and J: (G — F)dt 2 0 for all

x e [x, , x,,]. Thus, by the assumptions u" S 0 and z, 2 0, the first term in (6.10) is non-

negative. Integrating the second term in (6.10) by parts and using the assumption

z,I = 0, we have

u’[z(k,b,. )] J 2,,,(G - F)dx = u’[z(k,b,. )]sz J (G - F)dx. (6.11)

Also using integrating by parts, the third term in (6.10) is equal to

J‘ lu"(z)z.z. + u'tz)z..1(G — F)dx.

From Property 6.4, it is known that

Gtt’(z)z,, < u'(z)z,,

03: x - x'

, for allx E(x', co)

and since u'(z)z,, / (x — x') is non-increasing for all x E(x', 00), we have

u'[z(k, b, )]za(k, b,,.)

_x.

 

I, [“"(Z)Z..Zt + u’(Z)zt.l(G - FW 2 J (G - F)dx. (6.12)

From (6.7), it is shown that the linearity assumption 2,,, = 0 implies, for all x ¢ x’,

Zr)
 

, =z,,,. (6.13)

x—x



Hence, from (6.11), (6.12) and (6. 13),

u’[z(k,bF)] J 2,,(f— g)dx + J 1/(z)z,,(f— g)dx 2 t/[z(lr,b,.)]z,,r J‘ (G— note = 0.. (6.14)

Therefore we have the desired result that

db.) 2 {u'iztx,.b,.)1— u'[z(hb. )1} J2.(f - gm 2 0.

Case (iii): when x, S x' S kI . Consider the sign of the expression J z,,(f — g)dx.

First, assume that JIz,(f — g)dx 2 o. Rewriting Q(b,,.) in (6.4) as

th.) = J’u'(2)z,.(f — g)dx + J u’(z)z.(f — g)dx + J" u'(2)z.(f - g)dx.

Using the given assumptions and the L-RSIR condition, we have

9G.) 2 u'[z(x‘.b,.)]Jz,,(f-g)dX+#12(k.br)][, 2,.(f-g)abc + J‘ u’(z)z,,(f-g)cbc.

Adding and subtracting u'[z(k, b,.. )] JIz,,(f — g)dx in the RHS gives.

db.) 2 {u'lztx'. bar-u'[z(k, b,.. )1} J[2,,(f- g)dx

+ u’(z(k, b,)) J 2,,(f — g)dx + J‘ u’(z)z,,(f — g)dx. (6.15)

Thus (6.14) and the assumption J: z,,(f - g)dx 2 0 imply Q(b,,.) 2 0. Now assuming

that JIz,(f — g)dx s 0, let’s rewrite Q(b,) in (6.4) as

Q(br)—>— JIM(Z)Z.(f-g)cfi+1112(k,b,.)]£zt(f-g)dr+ J‘u'tz)z.(f—g)dx.

Adding and subtracting u’[z(k, b,,. )1 JIz,(f - g)dx in the RHS gives,

th.) 2 J[u’(z)z.(f - g)dx — u'[2(k.br )1Jz.<f — g)dx

+ u'tztk. b.» J z.(f — g)dx + J‘ u'(2)zt(f - g)dx.
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I

From (6.14) and the assumption J z,,(f — g)th S O,

Q(b/-‘) 2- Eu'(3)zh(f — g)dx = ‘E2 “(3)236ng + j: u'(3)zh(f " g)dx- (6-16)

The first term in the RHS of (6.16) is non-negative, and since, according to Definition

5.2, the function h is non-decreasing and strictly positive for all x e [x,. kI ]. the second

term can be written as

I ,
I I w 1

1 I ' w l.

J: u (z)zt(f-g)dx = f,“ (a)zt(1—-h-)fdx 2 [l —m]£ u (2)2,fdx.

Since h(x') S1 and Ju’(z)z,,gdx S 0 by Property 6.1, Q(b,,) 2 0. Q.E.D.

Adding the structural restriction 2n = 0 is not very harmful for comparative static

analysis because all the economic decision problems introduced in chapter I follow the

restriction. Compared with the comparative static result in Black and Bulkley’s analysis,

the result in Theorem 6.3 is an example of a trade-off between the restrictions on the set

of decision makers and the set of admissible set of changes in distribution. Our result

extends the class of admissible R-S increases in risk with the cost of adding additional

restriction on the risk preferences of decision makers, such as u'" 2 0. Following the

economic literature about the analysis under uncertainty, this set of decision makers

includes utility functions representing quite plausible preferences, such as those

exhibiting decreasing absolute risk aversion (DARA) which is a widely accepted property

of a risk averse decision maker. -

As the last result developed in this section, the admissible R-S increases in risk for

the comparative static result in Theorem 6.3 is extended to the set of L-ESIR shifts which

is larger than the set of L-RSIR shifts (Property 5.2). PrOperty 5.4 gives an easy and

direct generalization of the result in Theorem 6.3.
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Theorem 6.4. For all decision makers with utility functions u’s such that u’ 2 0.

u" S O and u’" 2 O, b,,. 2 G if

(a) G L-ESIR F

(b) 2, 2 0, 2,,, 2 0, 2,,, S O and z,r = 0.

Proof. It is clear by Theorem 6.3 and Property 5.4.

Accordingly, Theorem 6.4 improves the robustness of the result in Theorem 6.3,

and the efficiency gain is obtained from extending the set of admissible R-S increases in

risk yielding the result, without any cost of additional assumptions. With the restriction

of linearity in the payoff function, the result also shows a trade-off between the

restrictions on the set of decision makers and the set of admissible set of changes in

distribution. Compared with the result in Theorem 6.2, it is known that the result in

Theorem 6.4 contains a larger set of changes in distribution and a smaller set of decision

makers. This is another example that supports the general statement made in chapter 1

that, when relatively strong restrictions are imposed on one of the components composing

a decision model, the derived comparative static results are usually associated with

relatively weak restrictions on the other components.

In this chapter, comparative static theorems for subsets of the set of R-S increases

in risk are developed. Following the ratio approach, all the subsets are defined by

imposing restrictions on the ratio between a pair of pdf 5 or between a pair of CDF’S.

Those developed comparative static results are associated with relatively weak

restrictions on the risk preferences of decision makers, i.e., the set of all risk averse agents

or the set of risk averse agents with non-negative third derivative of utility function. In

this sense, we refer all the subsets CDF changes concerned in this chapter to “R-S

increases in risk in the strong sense.”



Chapter 7

SUMMARY AND SOME REMARKS FOR

COMPARATIVE STATICS WITH SUBSETS OF SSD SHIFTS

In this dissertation, the analysis of comparative statics under uncertainty is

continued. Using the general one-argument decision model of the form (1.1), general

comparative static statements are made for the subsets of FSD changes presented in

chapter 3, and for the subsets of R-S increases in risk given in chapter 5. As a special

feature in defining these subsets of changes in distribution, the ratio between an initial

and a final pdfs or CDF’S is often restricted to be monotonic increasing or decreasing.

This chapter shows that the results obtained in previous chapters can be applied for cases

of second-degree stochastic dominance (SSD) shifts. Following the ratio approach,

special subsets of general SSD changes are defined and general comparative static

statements are made for these subsets. We start this chapter by giving a summary for the

results developed in the previous chapters.

7.1 Summary

Within the context of ratio approach, most subsets of CDF changes concerned in

this dissertation are defined by imposing restrictions on the ratio between an initial and a

final pdf’s or CDF’s. They include six subsets of FSD shifts and four subsets of R—S

increases in risk. The general comparative static statement derived for each of these
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subsets contains a relatively large class of decision makers, such as ‘all individuals with

non-decreasing utility functions,’ ‘all risk averse agents,’ or ‘all risk averse agents with

non-negative third derivative of utility functions.’ In sub-section 7.1.1, the results

provided in chapters 3 and 5 are summarized and the comparative static results developed

in chapters 4 and 6 are summarized in sub-section 7.1.2.

7.1.1 Relationships among Subsets ofCDF Changes

First, consider the six types of FSD changes defined in section 3.1. Each

definition specifies a particular type of shift from a CDF G(x) to another F(x) or,

correspondingly, from a pdfg(x) to anotherf(x) such as:

- F MLR G (Definition 3.1): the ratio offto g is monotonic increasing.

- F L-MLR G (Definition 3.3): decreasing proportion of the probability

mass on points to the left of a given point is transferred to points to the

right of that point.

- F R-MLR G (Definition 3.4): probability mass on points to the left of a

given point is transferred to points to the right of that point, requiring the

ratio offto g to be monotonic increasing for the right-side of the point.

- F MPR G (Definition 3.2): the ratio ofF to G is monotonic increasing.

- F k-FSD G (Definition 3.5): given a point k, f(x) 2 g(x) for all x 2 k.

~ F k-MPR G (Definition 3.6): given a point k, the ratio ofF to G is

monotonic increasing for x 2 k, and the ratio ofF to G is maximized at k

for x S k.

Section 3.2 examines several relationships and properties among these subsets.

As shown in Figure 7.1, basic relationships among the subsets are:

- MLR :> L-MLR 2 MPR :> c-MPR => FSD (Property 3.1).



 

1 Monotone Likelihood Ratio (MLR) Shifts l

l Landsberger and Meilijson (1990) 1

\lRight-Side Monotone Likelihood

J Ratio (R-MLR) Shifts

 

 

 

 

l
1

, Left-Side Monotone Likelihood Ratio (L-MLR) Shifts J

 

An MPR shift can be decomposed pdf’s cross only once J

into a series of L-MLR shifts.

 

 it
 

J Monotone Probability Ratio (MPR) Shifts

J Eeckhoudt and Gollier (1995)

  

 , 1

J MPR with respect to a point k (k—MPR) J

 

 

A k-MPR shift can be decomposed J , . 3

into two shifts: one k-FSD and the . FSD Wlth re3513CCt to a 130mt k

other k-MPR. / J (It-FSD)

l . . . .

; Flrst-Degree Stochastic Dominance (FSD) Shifts

Quirk and Saposnik (1962), Schneiweiss (1969),

Hadar and Russell (1969), and Hanoch and Levy (1969)

 

 
 

 
 

Figure 7.1. Relationships among subsets of FSD shifts.



- MLR => R-MLR => FSD.

. k—FSD :> FSD.

Regarding the property of transitivity, it is shown that each of the four CDF

orders. MLR. MPR, k-FSD, and k-MPR are transitive:

- The MLR order is transitive (Property 3.2).

- The MPR order is transitive (Property 3.3).

- The k-FSD order is transitive (Property 3.4).

- The k—MPR order is transitive (Property 3.5).

Transitivity does not hold for the L-MLR order. Instead, since an L-MLR shift is

also an MPR shift, a series of L-MLR shifts leads to an MPR shift. In addition to this, an

important relationship exists between these two CDF orders.

- An MPR shift can always be decomposed into a series of L-MLR shifts

(Property 3.6).

This allows the comparative statics for the set of L-MLR shifts to be also admissible for

the set of MPR shifts.

As the last pr0perty concerned in section 3.2, a relationship exists between the k-

MPR and k—FSD orders.

- A k-MPR shifi can always be decomposed into an MPR and a k-FSD

shifts (Property 3.7).

Given the general comparative static theorems for the set of MPR and for the set of k-

FSD shifts, the last two properties extend the allowable set of changes in CDF without

any additional assumption.
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Next. consider the four types of R-S increases in risk defined in section 5.1. Each

definition specifies a particular type of shift from a CDF F(x) to another G(x) or,

correspondingly, from a pdfflx) to another g(x) such as:

- G RSIR F (Definition 5.1): a probability mass from a centric interval is

moved to both tails, requiring the ratio offto g to be monotonic

increasing for the left-tail interval and monotonic decreasing for the

right-tail interval.

- G L-RSIR F (Definition 5.2): requires only the left-side monotonicity

restriction on the pdf ratio in an RSIR.

- G ESIR F (Definition 5.3): when G 2 F, the ratio ofF to G is monotonic

increasing, and when GS F, the ratio of 1— F to l— G is monotonic

decreasing.

- G L-ESIR F (Definition 5.4): requires only the left-side monotonicity

restriction on the CDF ratio in an ESIR.

Section 5.2 gives formal proofs for the basic relationships among these subsets,

and they are given as:

- RSIR => ESIR :> L-ESIR 2 MPS (Property 5.1).

- RSIR :> L—RSIR :> L-ESIR :> MPS (Property 5.2).

Figure 7.2 shows these relationships including the concepts of a ‘global increase in risk,”

a ‘mean-preserving truncation,’ and a ‘strong increase in risk.’

In general, the above four CDF orders do not have the property of transitivity.

However there are important relationships among the orders and section 5.2 also provides

the following two properties which play the key role for developing general comparative

static statements in chapter 6.
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 I

Global Increases in Risk J

LSandmo (1971), Ishii (1977), Kraus (1979) and Katz (l98l ) J

J
Mean-Preserving Truncations J

(Defining R-S decreases in risk): Eeckhoudt and Hansen (1980) J

J
J Strong Increases in Risk (SIR)
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1 Mean Preserving Spreads (MPS )

Rothschild and Stiglitz (1970)

 

 

Figure 7.2. Relationships among subsets of R-S increases in risk.
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- An ESIR can always be decomposed into a series of RSIR (Property 5.6).

- An L-ESIR can always be decomposed into a series of L-RSIR

(Property 5.7).

With these properties, the general comparative static statement made for the set of RSIR

(L-RSIR) shifts is generalized into the set of all ESIR (L-ESIR) shifts, without further

assumptions required.

7.1.2 Comparative Static Analysis

Regarding the subsets of FSD shifts, the comparative static results developed in

chapter 4 are summarized in Table 7.1. Each of the results contains restrictions on the

following three components: (1) the set of changes in randomness, (2) the set of decision

makers, and (3) the structure of the concerned decision model. It is obvious from the

table that, as the restrictions on the type of CDF change become less demanding, the

required restrictions on the risk preferences of decision makers and the structure of the

concerned decision model are more demanding.

- Result (i) in Theorem 4.1 contains all MLR shifts, all the individuals with

non-decreasing utility functions, and can be applied for decision models

with linear or non-linear payoff functions — a generalization of the

comparative static result in Landsberger and Meilijson (1990).

- Result (ii) in Theorem 4.2 contains, compared with the result (i), the

same set of decision makers and a larger set of changes in CDF, and adds

a structural restriction that the payoff is linear in the choice variable b - a

trade-off between the restrictions on the components (1) and (3).

- Result (iii) in Theorem 4.3 contains, compared with the result (i), a larger

set of changes in CDF and a smaller set of decision makers, and can be



Table 7.1. Comparative static results regarding subsets of FSD shifts. .

 

 

Types of shifts between CDF’.» F and G Sufficient conditions for b“. _<. b,,.

i) FMLRG u'_>.0,z,,,20

.. FL-MLR G with k E[C, x,] u’ 2 O, z,u 2 O

11) FR-MLR G with k E[xz, c] z is linear in b and 2,,(c, b) = 0

u'ZO, u"SO

111) FL-MLRG 2 >0 2 >0
_ , h, _

2 O,u"s 0,

iv) F MPR G : > 02 > o

v) Fc-FSD G u' 2 O, u" _<. O, z, 2 O, 2,,, 2 O,

F C'MPR G 2 is linear in b and 2,,(c, b) = O

 

applied for decision models with linear or non-linear payoff functions — a

trade-off between the restrictions on the components (1) and (2).

- Result (iv) in Theorem 4.4 contains, compared with the result (iii), a

larger set of changes in CDF and the same restrictions on the other

components — a generalization of the result (iii), which is directly

obtained from Property 3.6.

- Result (v) in Theorem 4.5 contains, compared with the result (iv), the

same set of decision makers and a larger set of changes in CDF, and adds

a structural restriction that the concerned payoff is linear in the choice

variable - a trade-off between the restrictions on the components ( l) and

(3), which is obtained from Property 3.7.
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The comparative static results developed in chapter 6 are summarized in Table

7.2. These results concern the subsets of R-S increases in risk, and as in the cases of

subsets of FSD shifts, each of the results contains restrictions on the three components

(I), (2). and (3). The first four52 comparative static results are from the literature and the

last three are provided in chapter 6. As the table shows. all the results (i) - (v) contain the

same restrictions on the components (2) and (3). Only the set of admissible changes in

CDF is generalized in the order: global increases in risk —) mean-preserving truncations

—-) strong increases in risk -> relatively strong increases in risk -> extended strong

increases in risk. The restrictions contained in the comparative static results (iv) - (vii)

are compared as:

- Result (iv) in Theorem 61' contains all RSIR changes, all risk-averse

agents, and can be applied for decision models with linear or non-linear

payoff functions — a generalization of the results (i) - (iii).

- Result (v) in Theorem 6.2 contains, compared with the result (iv), a

larger set of changes in CDF and the same restrictions on the other

components — a generalization of the result (iv), which is directly

obtained from Property 5.3.

- Result (vi) in Theorem 6.3 contains, compared with the result (iv), a

larger set of changes in CDF and a smaller set of decision makers, and

adds a structural restriction that the concerned payoff is linear in the

random variable — a trade-off between the restrictions on the component

(1), and the components (2) and (3).

 

52 The previous papers producing the results (i) - (iv) are: Sandmo (1971), Ishii (I977), Kraus (1979), and

Katz (I981) for the result (i); Eeckhoudt and Hansen (I980) for the result (ii); Meyer and Onniston (1985)

for the result (iii); and Black and Bulkley (1989).
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Table 7.2. Comparative static results regarding subsets of R-S increases in risk.

 

 

Types of shifts between CDF’s F and G Sufficient conditions for b“. S b,,.

. Global changes in risk from u' 2 0, u" g 0,

') a certainty (F) to a risky G zx 2 0, z,” 2 0, 2M 3 0, * gm 3 0

.. Mean-Preserving Truncations u' _>_ 0, u" g 0,

11) from G to F 2.: 2 0, z,“ 2 0, 2,,, S O, 2,,” S 0

u'ZO, u"SO,

111) G SIR F
z, 20, 2,,, 20, 2,,, 50. 2m 50

. GRIR u'20,u"SO,

1V) . S F 2, 2 0, 2,,, 2 0, 2,,, s o, 2,,” s 0

G ESIR F u, 2 0’ u" S 0’
V) 2, 2 0, 2,,, 2 0, 2,,, s 0, 2,,“ s. 0

. u’ZO, u"SO, u"'20

V1) G L'RSIR F 2, 2 0, Zn = 0, 2,,,r 2 O, 2,,, _<_ O

.. u'ZO, u"SO, u"'20

v11) G L-ESIR F
2, 20,2M =0, 2,,, 20,z,,,, SO

 

* In Table 7.2, when the concerned payoff is linear in the choice variable, the decision model is assumed to

follow the form (6.5), that is, 2:: = 0 when z", = 0. Decision models of the linear form can be included in

the first four comparative static results with the analysis given by Dionne, Eeckhoudt and Gollier (I993) —

see section 6.1.
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- Result (vii) in Theorem 6.4 contains, compared with the result (vi), a

larger set of changes in CDF and the same restrictions on the other

components — a generalization of the result (vi), which is directly

obtained from Property 5.4.

7.2 Remarks for Comparative Statics Regarding Subsets of SSD Shifts

The second-degree stochastic dominance (SSD) order specifies a more general

type of changes in distribution of a random variable than the FSD order or the concept of

an R-S increase in risk defines. In section 2.1, we indicated that an FSD shift is also an

SSD shift, and that an R-S increase in risk is a special case of an SSD. It is generally

known that an SSD shift can be decomposed into a combination of an FSD shift and an

R-S decrease in risk (mean-preserving contract (MPC)). This is formally stated by Hadar

and Seo (1990) who prove the statement that “a pair of CDF’s F and G satisfies F SSD G

if and only if there exists an intermediate CDF F” such that F MPC F0 and F0 FSD G.

In other words, any SSD change can be decomposed into an FSD shift and an MPC shift.

Using the results just summarized for subsets of general FSD and MPC changes, this can

be used for defining subsets of the set of SSD shifts which are admissible for making

general comparative static statements. Two examples follow.

Considering SSD shifts, this section assumes that the final distribution F

dominates the initial distribution G in the sense of second-degree (denoted by F SSD G).

Both the CDF’s G and F are assumed to have their points of increase in bounded

intervals. Let the support of G(x) be a finite interval [xl , x,] and the support of F(x) be

another finite interval [x2, x3] where x1 3 x2. We drop the restriction that x3 3 x4 which

is required in section 5.1. Similar to the case of an R-S increase in risk, we assume that:

for continuous case, G(x) > 0 for all x E(xl, oo), 1- G(x) > O for all x 6 (—oo, x,),



F(x) > 0 for all x E(xz, co), and 1— F(x) > O for allx e(—oo, x3) ; and for discrete case,

G(x)> O for all x E[xl, co), l—G(x)> 0 for all x e(—oo, x,], F(x) > O for all

x E[xz, co), and 1- F(x)>0 for all x e(—oo, x3].

' In what follows, first we define subsets of SSD shifts which can be understood as

the combinations of FSD shifts and R-S increases in risk, that are generated by the CDF

orders defined in sections 3.1 and 5.1, respectively. Then the comparative static

statements for these subsets are derived in sub-section 7.2.2.

7.2.1 Subsets of SSD Shifts

In this sub-section two concepts of SSD shifts are introduced. Relaxing the equal

means condition, the conditions used in Definition 5.3 (for an ESIR) and Definition 5.4

(for an L-ESIR) are modified to give the following two types of SSD shifts.

Definition 7.1. F(x) represents an extended strong SSD shift from G(x) (denoted

by F ESSSD G) if

(a) f[G(x) — F(x)]dx 2 o for all y e [x,, 00)

(b) there exists a point k E[xz, x3] such that

F(x)S G(x) for all x E[xz, k) and F(x)2G(x) for all x E[k, x,]

(c) for all x E[xz, k), there exists a non-decreasing function H,:[x2, k) —-> [0, 1] such that

Hn=mowo)

(d) for all x e [k, x,], there exists a non-increasing function H,:[k, x3] -> [0, 1] such that

1- F(x) = H.(x>[1— G(x)].

Definition 7.2. F(x) represents a left-side extended strong SSD shift from G(x)

(denoted by F L-ESSSD G) if

(a) f [G(x) — F(x)]dx 2 0 for all y e[x,, oo)
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(b) there exist a point k E[xz, x3] and a non-decreasing function H:[x,, k)—->[O, I] such

that F(x) = H(x)G(x) for all x e [x,, k) and G(x)SF(x) for all x E[k, x, 1:

Condition (a) in both definitions is just the SSD condition shown in Definition 2.2. The

other conditions in Definition 7.1 and 7.2 are same as the ones in Definition 5.3 and 5.4,

respectively.

As a special case, if the CDF’s F and G have a same mean, then the relationship F

ESSSD G just implies G ESIR F, and F L-ESSSD G means G L-ESIR F. In addition,

both the concepts include, as a special case, an MPR shift. Consider the case where

x4 < x3. Condition (b) in both definitions implies that the point k must be equal to x3 , to

satisfy the condition that G(x) S F(x) for all x e [k, x,]. In this case, both an ESSSD and

an L—ESSSD are reduced to MPR shifts.

The properties associated with the ESIR and the L-ESIR orders can be adopted for

these two SSD orders. When x3 S x,, the CDF’s F and G cross only once at the point

k 6 [x2 , x3], and an ESSSD (L-ESSSD) shift can be understood as the combination of an

MPR dominant shift for the left-side of the point k and another dominated FSD shift for

the right-side of the point. More importantly, there are properties which allow us to

provide general comparative static statements for the two subsets of SSD shifts, which are

given in the next sub-section. The properties are: (i) an ESSSD shift can always be

decomposed into an MPR shift and an ESIR; and (ii) an L-ESSSD shift can always be

decomposed into an MPR shift and an L-ESIR.

Property 7.1. If F ESSSD G, there always exists a CDF GI such that F MPR

G,, and G ESIR GJ.

Proof. IfF ESSSD G and x4 < x,, then F and G meets at the point x3 and this

implies that an ESSSD shift is just an MPR shift. In this case, the claim in Property 7.1 is
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satisfied by letting G, = G. For the case where x3 S x,, , let’s define an intermediate

CDF G, (x) such that,

AG(x), when x < s

G,(x) = (7.1)

F(x), when x 2 s

where ll = F(s)/ G(s) and s is a selected point in the interval [x2 , k] such that G, has a

same mean as G. Then, with the conditions in Definition 7.1, it is easy to see that F MPR

G,, and G ESIR G,. Q.E.D.

Property 7.2. IfF L-ESSSD G, there always exists a CDF G, such that F MPR

G,, and G L-ESIR G,,

Proof. Similar to the case of ESSSD in Property 7.1, if F L-ESSSD G and

x4 < x,, then this is just an MPR shift and the claim in Property 7.2 is satisfied by letting

G, = G. When x3 S x,, define an intermediate CDF G, (x) as in (7.1). Then, with the

conditions in Definition 7.2, it is easy to see that F MPR G,, and G L-ESIR G,. Q.E.D.

Two graphical examples are given to illustrate the results in these two properties.

The shift from a CDF G to F shown in Figure 7.3 satisfies F ESSSD G, and the one

shown in Figure 7.4 satisfies F L-ESSSD G. The figures also show that there exists an

intermediate G, such that F MPR G, in both examples and G ESIR G, in Figure 7.3 and

G L-ESIR G, in Figure 7.4. ’

7.2.2 Comparative Statics for Subsets of SSD Shifts

For each of the subsets of ESSSD shifts and L-ESSSD shifts, the general

comparative static statements are obtained from the properties given in sub-section 7.2.1.

Since a shift from G to F satisfying F ESSSD G can always be decomposed into two
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F(x)

G'(X)

G(x

 

x, x2 3 x3 x,

Figure 7.3. An ESSSD shift that is the sum ofan MPR and an ESIR.

 

  
x, x2 3 x3 =x4

Figure 7.4. An L-ESSSD shift that is the sum of an MPR and an L-ESIR.
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dominant shifts, one MPR and the other ESIR,53 a general comparative static statement

regarding an ESSSD shift can be derived from combining the two results in Theorem 4.4

and 6.2.

Theorem 7.1. For all risk averse decision makers, b,,. 2 b,,. if

(a) FESSSD G

(b) z,r 2 O, 2,,, Z O, 2,,, S O, 2,," S O, and z” = 0 when 2,,, = 0.

Proof. Given Property 7.1, the comparative static results in Theorem 4.4 and 6.2

complete the proof. Q.E.D.

Similarly, for the subset of L-ESSSD shifts, we combine the results in Theorem

4.4 and 6.4. That is, adding the restriction that the concerned payoff is linear in the

random variable, a general comparative static statement regarding an L-ESSSD shift can

be derived from Property 7.2.

Theorem 7.2. For all decision makers with utility functions u’s such that u’ .>. 0,

u" S O and u’" 2 O, b,. 2 b,, if

(a) F L-ESSSD G

(b) 2, 20, 2,,,r 20, 2,,, SO and 2,,,r = 0.

Proof. Given Property 7.2, the comparative static results in Theorem 4.4 and 6.4

complete the proof. , Q.E.D.

We finish this section by adding Some remarks on the comparative static analysis

regarding the subsets of SSD shifts. Transitivity does not hold for both the ESSSD and

the L-ESSSD order. That is, the relationship F; ESSSD (L-ESSSD) F2 ESSSD (L‘-

 

5’ Here an ESIR dominant shift means an R-S decrease in risk.
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ESSSD) F, does not necessarily implies F; ESSSD (L-ESSSD) F, . This implies that the

admissible set of changes in CDF can be extended to other shifts that are not generated by

the given two CDF orders. Figure 7.5 gives an example of this case, showing that the

shift from G to F, while it does not satisfy F ESSSD G, allow the desirable comparative

static result in Theorem 7.1 because the shift can be decomposed into two shifts such that

FESSSD G, ESSSD G.

 

 
 

x, x2 x3 x4

Figure 7.5. A shift showing that F ESSSD G, ESSSD G but not F ESSSD G.

Another extension for the set of admissible SSD shifts is possible when we restrict

the concerned payoff to be linear in the choice variable. In section 4.2, we showed that,

regarding a decision model of the form (4.10) in which a point c satisfying 2,, (c, b) = 0

exists, the desirable comparative static property holds for the combined set of all c-FSD

shifts and c-MPR shifts (Theorem 4.5). This can be shown by the fact that, given a point

c, a c-MPR shift can always be decomposed into an MPR shift and a c-FSD shift

(Property 3.7). In the same way, if the concerned decision model follows the form (4.10),

the result in Theorem 7.1 (7.2) also holds for any shift that can be decomposed into two

shifts, one ESSSD (L-ESSSD) and the other c-FSD. Graphical examples showing these
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x, x2 c x3 x4

Figure 7.6. A shift that is the sum of an ESSSD and a c-FSD.

 

 
 

x, x2 c x,=x,

Figure 7.7. A shift that is the sum of an L-ESSSD and a c-FSD.
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cases are given in Figure 7.6 and 7.7. While both the examples do not satisfy any CDF

order concerned in this dissertation, each shift can be admissible for the comparative

static results in Theorem 7.1 and 7.2, respectively. The former gives an example of a

shift that can be decomposed into two shifts, one c-FSD and the other ESSSD, and the

latter shows an example that can be decomposed into two shifts, one c-FSD and the other

L-ESSSD.
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