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ABSTRACT

SOURCES OF BUSINESS CYCLES IN AN ECONOMY
WITH MONEY, REAL SHOCKS, AND NOMINAL RIGIDITY
—A STUDY OF THE UNITED STATES: 1954 - 1991

By

Keshin Tswei

This dissertation examines the sources of postwar US economic fluctuations
in a VAR framework with cointegration constraints. A theoretical macroeconomic
model consisting of equations that describe the labor and goods market behavior
and featuring an ex ante nominal wage contract is used to guide the empirical setup
in this study. The theory prescribes five variables for the economic system, real
output, real balances, real wages, nominal interest rates and inflation and postulates
two cointegrating relationships, the velocity of money and the ex post real interest
rate. Overidentifying restriction tests for the structural restrictions derived from the
theory indicate that the steady-state structure of the system is consistent with the
postwar US data but the dynamic structure is not. As a result only the permanent
shocks specified by the theory, the nominal shock, the technology shock and the
labor-market shock, are identified whereas transitory shocks are unidentified. The
long-run effects of the permanent shocks on the five variables are constrained by their
long-run multipliers derived from the theory. Their contributions to the shorter-run
economic fluctuations are documented in this study and the results are consistent

with several prominent studies in the literature.
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Chapter 1
INTRODUCTION

In this dissertation the sources of the post-war macroeconomic fluctuations in
the United States are investigated in a vector autoregression framework with cointe-
gration constraints. The common-trends model is employed to identify permanent
innovations in the economic system before their individual contributions to business
cycles can be chronicled. Five nonstationary I(1) macroeconomic aggregates with
significant business-cycle characteristics are examined: the private-sector real out-
put (y:), real money balances (mr;), real wages (wr;), short-term nominal interest
rates (R,) and inflation rate (). They are included based on an expanded theo-
retical model adapted from Blanchard and Fischer’s (1989) business-cycle model.
The model provides equations descriptive of labor and goods market behavior and a
nominal wage contract to feature nominal rigidity in an economy. From the solutions
of the theoretical model we find two cointegrating relations, the velocity of money
(y¢ — mr;) and the ex post real interest rate (R; — m). It also provides a well defined
set of simultaneous relationships among the five variables which are later rejected
by the post-war U.S. data. The model nevertheless has long-run information that
is useful to identify the permanent shocks that constitute the common stochastic

trends.

For almost two decades vector autoregression (VAR) has been a very popular
tool for macroeconomic studies. Prior to its introduction, researchers typically had
been criticized for estimating large systems of equations with strong over-identifying

restrictions. VAR in contrast is a more explorative or descriptive approach to em-
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pirical analysis. To illustrate, for a vector of I(0) variables z;, write its VAR form
compactly as

AL)z,=¢ (1.1)

where ¢, is the error vector. Estimable parameters of the VAR contained in the
lag-operator polynomial, A (L), are not restricted except for A (0) = I, an identity
matrix. Rather, an understanding about the system is gained primarily by analyzing
the impulse-response functions and the forecast-error variance decomposition. The
analyses are done on the structural vector-moving-average (VMA) representation of
the VAR,

Az, = R(L) . (1.2)

Vector v, consists of mutually-independent structural innovations that are propa-
gated through the system to cause fluctuations. R (L) is an infinite-order polynomial
matrix that contains the structural impulse-response functions. The reduced-form

VMA for the first-difference of z; can be obtained from (1.1) as
Axt =C (L) £ (13)

where C (L) is also an infinite-order polynomial matrix. The task of identifying
structural impulses from reduced-form residuals amounts to finding an unique matrix
F such that

v = Fe,. (1.4)

Then the impulse-response functions are available as
R(L)=C (L) F™! (1.5)

which comes from equating (1.2) and (1.3) and then substituting into (1.4).

Traditionally there existed a dichotomy in studying economic growth and busi-

ness cycles (King, Plosser and Rebelo 1988a). Stochastic innovations were thought



to be responsible for business cycles whereas growth was considered driven by deter-
ministic trends. Later, the notion that many economic time-series contain stochastic
growth trends, advocated by Beveridge and Nelson (1981) and Nelson and Plosser
(1982), gained prominence. This suggests that stochastic shocks that form the trends
may in fact also cause short-run fluctuations (King, Plosser and Rebelo 1988b). The
subsequent progress in cointegration research further recognized that different non-
stationary variables may share common stochastic trends. Stock and Watson (1988)

formally outline a common-trends model of the form
zy = A1y + B (L) &,. (1.6)
where z; is n X 1 and 7; is the k£ X 1 common stochastic trends
=T+ (1.7)

A is a n X k common-trends loading matrix which brings the impact of 7; onto
z;. Thus A7, represents the permanent or nonstationary component of z;. The
n X n lag-polynomial B (L) is stable so that B(L)¢, is a stationary component
of z;. Equation (1.7) shows the common trends are driven by the k-dimensional
structural innovations, v, that exert permanent effects. In this dissertation, the
permanent innovations are specified as a technology, a permanent nominal shock and
a labor-market shock. The other 7 (= n — k) innovations in this equation system
produce only transitory effects and are denoted v} such that v} = (u,” "yT ’). It is
interesting to note that in (1.7) the innovations to the permanent trends, i.e., 7,
are not independent of the disturbances, ¢, in light of vy = Fe,; in (1.4). Clearly,

the dichotomy between growth and cycles mentioned above no longer stands.

One major contribution of the common-trends model to VAR analyses is that
it provides special identification schemes that are lacking in VAR models containing

only transitory shocks. The fact that only permanent shocks deliver impacts in the



long run means long-run restrictions are available to identify permanent shocks. To
show this, we first note that over the long run the transitory component in (1.6)

effectively drops out so that the first difference of (1.6) is
Az, = Avf. (1.8)

Thus the loading matrix A also represents the long-run impacts of permanent shocks
on the first-difference of the variables. Comparing (1.8) with the structural long-run

VMA | Az, = R(1) 1, reveals that the long-run multiplier matrix is

R(1) = [Aso] (1.9)
Then notice the long-run version of (1.5) is

R(1)F=C((1) (1.10)

where C (1) is estimable from a reduced-from VMA. Define F = [F,{, F,',_k]' and

substitute (1.9) into (1.10) to get
AF,=C(1). (1.11)

Here we see in (1.11) that knowledge about the common-trends loading matrix
A provides very useful linear restrictions to identify the permanent shocks since

utP = Fie,.

In this dissertation the conjecture about the form of A is provided by the

mentioned theoretical model. It proposes a form of the long-run equation Az, =

AvF as
[ Ay, ] [(a ¢ 0]
Amr, a c 0 ypech
Awr, |=|b e 0 yjaver | (1.12)
AR, 00 1]/ yroe
Am | |00 1




where a, b, c and e are functions of behavioral parameters in the economic model.
Equation (1.12) says that the technology shock and the labor-market shock have
zero long-run impact on the nominal variables, R and 7. On the other hand, the
nominal shock has zero long-run effect on the real variables, y, mr and wr. Thus,

as is in King et al. (1991), a long-run nominal neutrality is featured in the model.

The theoretical model adapted from Blanchard and Fischer (1989) is used to
guide most empirical setup in this study. The model has the advantage of includ-
ing both the real-business-cycle and the Keynesian assumptions about the economy.
Two permanent real shocks are treated as important sources of economic fluctua-
tions. A forward-looking wage-setting rule serves to account for the prevalent wage
rigidity phenomenon in the economy. In Chapter 3, the wage-contract model is
presented and solved by the rational expectation techniques. The solutions are con-
sistent with both the Keynesian and the RBC predictions of price and real-wage
movements over business cycles. The vector error-correction model (VECM) and
the VMA representation of the wage-contract model are also derived in Chapter 3.
In the process we obtain the simultaneous structure of F' as well as the long-run

multiplier of permanent shocks, or A.

Chapter 2 provides a review of VARs with cointegration constraints and of the
VECM representation. The common-trends representation and how it provides extra
information for identification are covered in detail. Methods to identify permanent
shocks and transitory shocks are provided. An application of the common-trends
methodology is demonstrated with an example from Rasche (1992). In Chapter 4 an
analysis is presented of the stationarity of the time series using unit-root tests and
graphs. Then various specifications of dummy variables and lag lengths are tested
to estimate an optimal VAR model. Cointegration-rank tests are also done to ensure

that two conintegrating vectors can be imposed in estimation. As a result, a VECM



with three lag terms and five dummy variables is estimated. Lastly in Chapter
4 the identification of the structural-form VMA with restrictions on A as stated
above is discussed . Chapter 5 covers the analysis of impulse-response functions and
forecast-error variance decompositions. Chapter 6 presents a summary of findings,
remarks on potential contributions and shortcomings of this study and concludes

the dissertation.



Chapter 2

VECTOR AUTOREGRESSION AND
THE COMMON-TRENDS MODEL

2.0 Introduction

This chapter provides a review of the econometric methodology required for
the empirical analysis in this dissertation. A brief discussion on VAR modeling
techniques is provided in Section 2.1 with attention focused on various identification
approaches. The theory of a multivariate system characterized by cointegration and
the vector error-correction representation is introduced in Section 2.2. The common-
trends model approach which is useful in identifying permanent economic impulses
is covered in Section 2.3. A detailed review of the methods of permanent and
transitory shock identification is covered in Section 2.4. The presentation of Section
2.4 closely follows the approach in Chapters 3 and 4 of Hoffman and Rasche (1996).
An implementation of the identification methods is illustrated in Section 2.5 by an

example from Rasche (1992).
2.1 Vector Autoregression Model
2.1.1 Structural VAR and Reduced-Form VAR

Vector autoregression (VAR), first advocated by Sims (1980), has become one
of the most widely applied time-series techniques by macroeconomists. The VAR
approach is in spirit compatible to Frisch’s (1933) view that macroeconomic time
series are the result of the interaction of stochastic economic impulses and an implicit

propagation mechanism in the economy. With VARs, economists can identify the
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role of individual disturbance in generating the business cycles and discern their

dynamic effects on the economy.

To illustrate the strategy of VARs, let y; be a n x 1 vector of I(1) variables

that has a finite p order autoregressive representation
AL)yy=p+e. (2.1)

where A(L) = I — AL — A;L* — --- — A L? is a matrix-polynomial in the lag
operator. The usual assumption about A (L) is that all roots of the polynomial
equation |A (L)| = 0 lie outside the unit circle in the complex domain. The mean
of y, is denoted u and the error term &;is assumed independently and identically

normally distributed.

e ~iid N (0, )
E(e)) =0, E(eey) =%

E(e)) =0, t#s.

Equation (2.1) is actually estimated with data and is a reduced-form model. Our
ultimate interest is to uncover the structural relationships in the economy that

determine the dynamics of the variables.

The structural-form VAR is as

B(L)y: =0+, (2.2)

or
Bo’yt =0 + B* (L) Ye—1 + Vg (23)
where 6 is the vector of means, B(L) = By— Bi\L— BaL? —--- = B[/’ isanxn

polynomial in the lag operator, and B* (L) is defined by the equation

B*(L)= B+ B;L+---+ B,LP™".



Contained in B (L) are the structural economic relations that represent the propaga-
tion mechanism mentioned above. The disturbance term v; represents the exogenous

impulses that shock the economy and has the distribution assumption,

v ~ iid N (0, D)
E(») =0, E(vw;) = D, where D is diagonal

E(ut)) =0, t#s.

The zero-covariance assumption for v, implied by a diagonal D, is essential to

isolating the individual influence of innovations on the variables.
2.1.2 Moving-Average Representation

If the stability condition of the polynomial matrix A (L) is satisfied, i.e., the
polynomial equation |A (L)| = 0 has all roots outside unit circle, then A (L) has a
inverse as

A(L)'=C(L) =Y R, Ci 7

where C (L) is an infinite-order matrix-polynomial. Then y; has a vector moving-

average (VMA) representation or Wold representation,
Yye =0+ C (L)ey, (2.4)

where § = A~' (1) u. Here C; for j from 0 to oo are the impulse-response matrix
because each of the matrix elements measures the impact on y; over different time-

horizons of a unit change in the error term e,

ayi t+s
Cijs =
1S 6€jt

s=0,1,---,00

where C;;, is the (7, j)th element of C,.

However, we are interested in the impulse responses of the structural innova-

tions. Unlike an unit change in €; that does not have intuitive meanings, the effect
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of one unit or one standard-deviation economic shock is interpretable. Similar to
the analysis above, if the stability condition of B (L) is satisfied, its inverse exists
as

B ' (L)y=R(L) =Y 2.R;L’ (2.5)
where R (L) is an infinite-order polynomial matrix. The set of matrices R; in (2.5)

is the impulse-response function and can be defined by

a'.U't+
R‘ijs= a;ljt‘, s=0,1,---,00.

The vector moving-average representation of the structural-form VAR is then
Y = d+R (L) V. (2.6)
2.1.3 Structural VAR Identification

To find out the relation between the reduced-form VAR and the structural-

form VAR, premultiply (2.3) by By to obtain its reduced form as
ye = B;'0 + By'B* (L) y—1 + By've. (2.7)

By comparing (2.1) and (2.7), we see their parameters can be related by

B(L) = ByA(L) (2.8)
v, = Bye (2.9)
D = B,SB, (2.10)

Thus, the issue of identifying the structural-form from the reduced-form VAR amounts
to locating the unique matrix By (to be referred to as the identification matrix) so

that the left-hand-side in equations (2.8) to (2.10) are obtained.

Here we experience the same identification problem as is encountered in the

simultaneous-equation model'!. To exactly identify the structural form as that in

1To show this, we pre-multiply (2.1) through by any n X n nonsingular matrix H to get

HA(L)yt =H[.I+H6t.
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equation (2.3), we have to limit the choice of the identification matrix to By. This
initially requires n? restrictions to solve for the n? elements in By. Normalizing
the diagonal elements of By to unity reduces the required restrictions to n (n — 1).
Equation (2.10) also provides ﬂ%‘—ll zero restrictions because D is diagonal. Thus
this standard VAR model will require L"{—Q additional restrictions on By based on

theory or sound economic intuition in order to achieve exact identification.

The first generation of VAR practitioners often applied Cholesky decompo-
sition of the reduced-form covariance matrix X to achieve identification. That is,
the upper off-diagonal elements of By, in (2.10), are assumed zero. This method
provides the additional 1("2—'11 restrictions required for exact identification. This
practice, however, implies a particular recursive ordering in the contemporaneous
relations of the variables. This set of identification restrictions was originally pro-
posed by Wold (1954). The choice in most cases cannot be justified on theoretical
grounds and therefore is often arbitrary. Improved identification schemes were de-
vised later based on specific structural assumptions consistent with economic anal-
ysis. Bernanke (1986) and Sims (1986) provide two examples in which the contem-

poraneous relations of variables are set up this way.

To illustrate this later approach, in equations (2.5) and (2.6) we set L to zero
to get the contemporaneous relations between the reduced-form and the structural-
form VAR as

C(0)er = R(0) v (2.11)

or

er = R(0) v, (2.12)

since C (0) = A(0)™' = I, by the form of A (L) in (2.1)2. As long as economic

Then it is easy to verify the above equation has exactly the same reduced form as that in (2.7).
2By comparing (2.12) to (2.9), we note that By = R (0)™".
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. . -1 o 4 . .
reasonings provide at least ﬂ"z_l such contemporaneous restrictions in equation

(2.12), we can achieve just- or over-identification of the structural VAR model.

With increasing emphasis on the nonstationary nature of many economic time-
series, it is natural to add long-run restrictions for identification that are unavailable
to VARs with purely stationary variables. One long-run restriction implied by nom-
inal neutrality is frequently used for identification (King et al. 1991). It requires
that a permanent inflation shock has zero long-run effect on real variables. Another
example is Blanchard and Quah (1989) in which the demand shock has no long-run
impact on output. In each case, the assumption provides one zero-restriction on the

cumulative multiplier matrix

R(1) =Y %yR;

which measures the long-run impacts of various shocks occurring in the distant
past. This technique, first credited to Blanchard and Quah (1989), is later used by
King et al. (1991) and Gali (1992). Compared to the practice of using Cholesky
decomposition or even the contemporaneous restrictions as in (2.11), this technique

is often more justified by economic theories about the long-run effects.
2.2 Cointegration and the Vector Error-Correction Model

In Section 2.1, we discussed the standard VAR methodology where y; is as-
sumed to be multivariate covariance-stationary. In this section we will deal with
the change in the formulation of VARs when y, represents a vector of nonstationary
variables. More specifically, elements of y; here are integrated of order one, or I(1).
We first provide a formal definition on the order of integration adapted from Engle

and Granger (1986).

Definition 1 A series with no deterministic component which has a stationary,

invertible, ARMA representation after differencing d times, is said to be integrated
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of order d, denoted T, ~ I (d).

Among economic time-series that are of the same I (1) order, there can be
certain linear combinations of the series that are I (0). In this case, the variables
are said to be cointegrated. The following definition of cointegration is also from

Engle and Granger (1986).

Definition 2 The components of the vector z; are said to be cointegrated of order
d, b, denoted =, ~ CI (d,b), if all components of z; are I (d) and there erists a non-
zero vector 3 so that f'zy ~ I (d — b), b > 0. The vector B is called the cointegrating

vector.

For the case where d = b = 1, cointegration means if the components of y, are
all I (1), then B'y, ~ I (0) is stationary. The relation 3'y, is often interpreted as an
economic equilibrium relationship that is true only in the long run. When g'y; # 0,
it is interpreted as a deviation from the long-run equilibrium or an equilibrium error.
The equilibrium error is stationary and reverts to its mean of zero over time. In
that case the equilibrium relationship among the economic variables is restored.
When the dimension of y; is greater than two, there may be multiple independent
cointegrating vectors since it is reasonable for the joint behavior of the variables
to be governed by several equilibrium relations. Gather all the r (> 1) existing
cointegrating vectors to form a n x r matrix 5. The rank of g, i.e., r, is called the

cointegrating rank of y;.

We now note a standard VAR(p) model in the level of y;,
ALy =p+e,

as in equation (2.1) can be written as a VAR(p — 1) model in the first-difference of

e plus a lag level term. It is called the vector error-correction model (VECM)
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(L) Ay = —Tyey + u+ € (2.13)

or
Ay =T1Ay 1 + Ty o+ + T 1Ay p — My +p+ 6 (2.14)
where

M=A(l)=I—-A -Ay—--— A4,
[(L)=I-T\L—TyL*—...—T, [P~ (2.15)

Li=-Y*f.,4; (=1,--,p-1).

It is clear that in a VECM the response to the long-run equilibrium error (—Ily,_,)
is expressed separately from terms that represent the short-run movements. This
distinction is an important part of what has come to be known as the Engle-Granger
two-step procedure (Engle and Granger 1986) for VECM estimation. This represen-
tation is also used by Johansen (1988) to develop his maximum-likelihood procedure

for estimating the cointegrating rank and the cointegrating space.
We note that the rank of IT should be equal to the number of unit roots in the
polynomial equation |A ()\) | = 0 since I = A (1) 3. The following discussion about

the rank of II is broken down to three cases concerning the times-series nature of y;:

A. If y, is a vector of stationary series, because all roots of |4 ()\) | = 0 are outside

the unit circle, II is of full rank n.

B. If all elements of y, are I (1) and no cointegration exists, then y; does not have

a VECM representation but a pure VAR(p — 1) in the first-difference of y;.

3This is by Corollary 4.3 in Johansen (1995).
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This amounts to that II = 0 and the rank of I is equal to zero®. Indeed for
the original VAR in levels in (2.1), the polynomial equation |A (A)| =0 has n

unit roots and therefore A (1) =11 is a zero-rank matrix.

C. When all the n elements of y, are I (1) and r cointegrating relations exist among
the individual variables, the rank of the n-dimensional IT is reduced by r to
equal n—r = k. There are £ unit roots for the polynomial equation |A (A)| =0

and n—k roots outside the unit circle if the equilibrium relationships are stable.

For case C, let 3 be the n x r matrix consisting of the r cointegrating vectors
then there exists an n X r matrix a such that I1 = af’ is the coefficient matrix of
y¢—1 in the VECM representation in (2.14). The error-correction matrix « is often
regarded as a speed of adjustment coefficient. It determines how much change there
will be in the y; in (2.14) in proportion to the size of the equilibrium error, 8'y,, in
each period. The size of the total adjustment is equal to 8"y, every period®. These
results are formally established in the influential Granger Representation Theorem

(Engle and Granger 1986) or GRT,

Theorem (GRT) Suppose the n x 1 I (1) vector y, can be expressed as (2.1).
Then the model can be written in VECM form as (2.14). Assume the n x n matrix
I1 has reduced rank r < n and therefore can be expressed as the product of two
full-column-rank n x r matrices a and g, i.e., I = ¢'. Furthermore, let the n x k
matrices oy and 3, be the orthogonal complements of a and 3 so that o/,a =0

and ) 8 = 0. Then:

4This is because no linear combination of y; (including Ily,;_,) is stationary. Therefore, Iy,
should not appear on the right-hand-side of (2.14) because Ay; and all its lag terms on the RHS

of (2.14) are I (0) processes.
5But since VECM is a reduced-form represenatation it is more appropriate to treat a as loading

matrix than the speed of adjustment matrix from a structural point of view.
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(1) Ay, and f'y, are stationary

(2) Ay: has a moving average representation Ay, = C (L) (u + &)

(3) C(1) =By (<, TBL)"" o, has rank k®

(4) y: has the representation y, = yo + C (1) (p +3Xi 53) +C* (L) e; where C* (L)
is defined by C(L) =C (1) +C*(L)(1-L)".

There are two versions of proof for GRT. The original proof by Engle and
Granger (1986) deals mainly with a reduced-rank VMA representation of vector
y:. In contrast, Johansen (1991) works on a VAR representation and expresses the
theorem in terms of conditions on parameters for cointegration. The theorem pre-
sented above is adapted from Johansen’s version because in this dissertation a VAR
(VECM) is fitted to the data. Regardless of the approach, the theorem establishes
that a cointegrated system of variables can be represented in three equivalent forms:
a vector autoregression with cointegration constraints, a vector error-correction and

a reduced-rank vector moving-average representation.
2.3 The Common-Trends Model

A univariate time series that contains a unit root in its autoregressive rep-
resentation is said to be driven by one stochastic trend. Let z; be such a process
expressed as

(1 - L)A (L) Ty =W+ €& (216)

where p is the mean of z; and €; is a white noise disturbance term. For ease of

discussion, define z; = A (L) z; and then ( 2.16) becomes

2y = 241 + B+ €. (2.17)

ST is defined by I' = I' (1) and I' (L) is given in equation (2.15). It is also immediately evident

that #/C (1) =C(1)a=0.
"Result (4) will be discussed in greater details in Section 2.3
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Successive substitution of the above results in

t
zZz=2z0+ pt+ Y €. (2.18)

s=1
Aside from 2, 2, is characterized by cumulative trends, ut being the deterministic
trend and 3¢_, £, the stochastic trend. In fact, the disturbance term ¢, that adds
up to the stochastic trend could itself be a linear combination of several random
shocks. In that case the unit-root process z; is actually driven not by one but by

several underlying stochastic trends.

Based on this concept, we now discuss the concept of common stochastic-
trends in the context of a VAR for the n-dimensional y;. Given all elements of y;
are I(1), the n variables together contain a maximum of n distinct stochastic trends
that can derive from the n-dimensional structural innovations, ;. The disturbance
terms, €;, are linear combinations of the structural innovations. It is possible that
the n stochastic trends that affect each element of y; are not independent. If y,
is driven by a reduced number of independent trends then certain elements of y,
must share some common trends. Stock and Watson (1988) formalize the idea by
asserting that a common-trends model (CTM) exists for a cointegrated system of
nonstationary variables. Specifically, for a n-dimensional vector I (1) time series
with r distinct cointegrating relations, the first difference of the variables can be
characterized as driven by n — r common stochastic trends®. Because GRT also
guarantees the equivalence between cointegration and VECM, it follows that a CTM
can be derived for a VECM system and vice versa. Thus the VECM estimation
results computed from the maximum likelihood procedure of Johansen (1988, 1991)

are useful in solving for the common-trends representation.

In presenting the common-trends framework, Stock and Watson (1988) direct

8Conversely, if there exists k(= n — r) common trends for the n-dimensional vector, then r

independent linear combinations of the I (1) variables can be found such that they are stationary.
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their analysis on the vector moving-average representation which can be obtained
by inverting the corresponding VAR model with cointegration constraints. The
inversion method is different from the usual method for VARs without cointegration

considerations and is discussed in Warne (1990). Write the reduced-from VMA as
Ay =0+C(L)e; (2.19)
where 6 = C (1) p. Recursive substitution of (2.19) results in

w = w+t+CL)(1+L+L*+- +L')e (2.20)

= yo+ C(1)(ut + ie,) +C* (L) e, (2.21)

s=1

Noting in the last step use is made of the relation
c(Ly=Cc()+cCc*(L)y1-1r). (2.22)
where

C*(L) = CJL+C]L+CJL*+---

o0
c; = - Z Ci for j=0,1,2,---
k=j+1

Now (2.21) can be written as

Y=y +C(1)p:+C*(L)e: (2.23)

where ¢, is a random walk with drift process

Yt = Pt ptE (2.24)
t
= @o+ut+ e, (2.25)
s=1

Recall from Granger’s Representation Theorem in 2.2 that with r cointegrat-
ing vectors the rank of C (1) isn —r and #'C (1) = 0. Since C (1) has rank n —r,

there exists a n x r full-column-rank matrix B, such that C (1) B, = 0. Furthermore,
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a full-column-rank n x k matrix can also be found, denoted B, with its columns
orthogonal to the columns of B,. Define A = C (1) By which has rank k. Create
the nonsingular n X n matrix B = (BkEB,). Then

C(1)B= (AEO) = AS,
where S = (IkEO) is a kx n selection matrix. Now (2.23) can be rewritten as

v = Y+C(1)BB o, +C*(L)e:

= y+ASkB g, +C* (L) e,

I

Yo + AT + C* (L) €. (2.26)

The k-dimensional common stochastic-trends 7, follows the random walk with drift
process®

=7+ T+ (2.27)

We see that n x 1 y, is driven by a reduced number (k) of stochastic trends
which, in turn, arise from the innovations v7. Equation (2.26) is the common-trends
representation proposed by Stock and Watson (1988). They use this representation
to develop test methods regarding the number of common trends or, equivalently,
the number of cointegrating vectors in a system of nonstationary variables. Note
the common-trends representation can be regarded as a multivariate extension of
the Beveridge and Nelson (1981) decomposition of a univariate time series into a

permanent component and a transitory component. The second term on the RHS

9Define B~ = ( ﬁ': ) where By is k x n and B} is r x n. Then (2.27) is derived as

r

7@ = SkB ¢ = By

By (b + pt—1 +€t)

¥+ Te—1 + U
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of (2.26), A, is the nonstationary or permanent component of y; expressed by a
linear combination of n — r stochastic trends. The third term, C* (L) ¢, represents

the non-integrated transitory component.

The CTM specified in (2.26) can be called the structural-form CTM. The
reason is that it involves the part of the permanent-shocks v} from the vector
structural-innovations v;. The other part of v, denoted v, is called the transitory
shocks because its impacts die out with time. Identifying the structural-form CTM
from the reduced-from CTM in (2.23) is similar in spirit to the problem of the
structural VAR from the reduced-form VAR. Comparing (2.23) to (2.26) provides
the relation

Ar,=C (1) @y (2.28)

or furthermore, by (2.24) and (2.27), the three equations

Ay = C()p (2.29)
AP = Cc()e, (2.30)

and
AA'=C()zC(1). (2.31)

Note (2.31) holds because we assume E (v,v}) = I,'°.

To identify A which has n - k elements, as many restrictions are required.
First of all, there is one set of restrictions that can be derived from knowledge about
cointegration. Specifically, cointegration requires 3'A = 0 which supplies k - r zero

restrictions. The result 3'A = 0 obtains because it is required for the cointegration

10The covariance of structural innovations equal to I,, means the diagonal elements of By in the
structural-form VAR in 2.1,
Boy: =60 + B* (L) ye—1 + v,

are not normalized to 1. Therefore to identify By we now need n? restrictions instead of n (n — 1).
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of y; in (2.26). That is, for the equilibrium error,
B'ye = B'yo + B'An + B'C*(1)ee, (2.32)

to be stationary, the trend term, §'A7, cannot appear in the RHS of (2.26). Sec-
ondly, equation (2.30) provides another ﬂ%l restrictions. 1(—12& restrictions are
not supplied because the n X n symmetric matrix AA’ has rank k, the same as that
of C (1). With the two sets of restrictions, there are still 5(’;;11 restrictions lacking
to exactly identify A. These extra restrictions could be specified for A based on
knowledge about the long-run effects of the structural innovations v;,. One example
mentioned in Section 2.1.3 is the nominal neutrality condition which requires the
long-run impact of nominal shocks on real variables to be zero. How this knowledge
about the total impacts of v, (specifically v) helps identify will be clarified in the

following discussions.
2.4 Permanent and Transitory Shock Identification

In Section 2.3, we consider issues of identifying the common-trends loading
matrix A. This sections covers the issue of identifying the entire cointegrated VAR
system. We learn from Section 2.3 that the n x 1 structural innovation vector v;
is composed of k permanent shocks, »F, and n — k transitory shocks v7 so that
Vv = [ut” 74 ’]’. The task is to uncover the vector v; from the reduced-form VAR
residuals, €,. This is operationally achieved by finding a n-dimensional square matrix
F such that v, = Fe,. Partition F so that F = [F] F!]' and F} is k x n and F, is

7 x n. Then v and v are individually identified as
VtP = FkEt
l/;r = FrEt-

We will use a two-step procedure by which an initial candidate of F' is first found

before obtaining the final F. The concept of the orthogonal compliment of the
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cointegration space is essential for the identification.

The Granger Representation Theorem in Section 2.2 provides the reduced-

form total impact matrix as

C(1) =B (o TBL) " o) (2.33)

where a, and 3, are orthogonal compliments of o and 3 respectively so that 8 3 =
o,a=0and I =T — Y7 T;is from (2.15). The values of C (1), I'; a and 8 can
be obtained by estimating a VECM. It is then possible to specify the permanent

shocks v and the loading matrix A as

P = de (2.34)
A = By (o, TB)". (2.35)

The specification of (2.34) and (2.35) is based on Ay = C (1) ¢, in (2.30). Equation
(2.34) and (2.35) implicitly defines

Fe=d, =AAACQ). (2.36)

The uniquely derived a; = Fj is what defines the stochastic trends. Now, by the

structural-form long-run VMA of the first-differenced variables

Ay, = R(1) v, = AV, (2.37)
P
and by recalling v, = Er , we arrive at a special condition for the long-run
v

t
multiplier of cointegrated VARs as
R(1) = [Azo] . (2.38)

The interpretation of (2.37) and (2.38) is that in the long-run only permanent shocks
impact on the economy while effects of transitory impulses die out. A is called the
common-trends loading matrix because it transmits the long-run effect of v/ onto

variables in the system.
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From now on, for notational simplicity and without loss of generality, we will
write the loading matrix in (2.35), 8, (o/,T8.)"", as 8. so now A = 3,. Then

(2.33) is written as C (1) = B, o/, and permanent shocks are still

b = (B8 BL.C(1)e:

= de (2.39)

(given C (1) known, knowing either o; or §, automatically yields the other). The
identification problem arises here because even with C (1) known and both o and
B given, there are still infinitely many choices of a; and (3,!'. Restrictions have to
be imposed on a; and/or 3, to accomplish identification. Usually researchers have

better ideas as to the structure of cointegration relations contained in f.

Therefore, as in the case of identifying A in Section 2.3, we make use of the
orthogonal condition §'8, = 0. We have to come up first with an initial candidate
for B,, denoted f3,, such that /8% = 0. This imposes r - k zero restrictions on 3%

toward identifying 3, . The tentatively identified permanent innovations are thus
-1
oYe, = (BY6Y) BYC (1) (2.40)

Next, it is necessary to use the conventional assumption of independence
among structural innovations. Inspect the covariance matrix of the tentative per-
manent innovations,

Tp =l (2.41)

which is restricted to be a diagonal matrix. But this will rarely be the case when it

is based on the initial o} and 2. To ensure a diagonal covariance matrix we find

t .

1This can be easily shown by obtaining ay = Ha/, and 8} = 8. H™! and verify a¥ }_,_, &, is

also a common trends that satisfies

C(1) =B.ra} = Bial.
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the lower triangular Cholesky decomposition of Xp, denoted 7, such that
Ep = 7I’DP7T’. (2.42)
Then we officially identify o, and 3, by

a; = ai(x)!

Bi

pim.
Note that %o} = 8.0/, = C (1) is satisfied and thus o, and (3, are related by
/ / -1
oy = (B1B1)” ALC(1).

Now it is straightforward to show that the covariance matrix of the new per-

manent innovations, v = &, &, is diagonal as

E (l/tPI/tP') = o\ Za,
- -1
= 77 'a{Za] (n)

— 7!'_12}:(71")_1

where the last step is based on (2.42). Thus we have uniquely determined F; = o/,

and identify the permanent innovations according to
P = Fe, = (r'a¥ 2.43
v, = Fyee = (17'a]) €. (2.43)

Whether conditions for identifying «; and (3, are met can be checked by
counting the number of available restrictions. Since a; and 3, are nxk matrices, n-k
restrictions are needed to exactly identify either. By using Cholesky decomposition
for the symmetric a?Zad, we get ﬂk—;—‘l zero restrictions useful in identifying 3, and

a;. The initial candidate, 39, exhibits r - k restrictions. Thus, additionalﬂkz;ll(=
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nk — '3@21'—12 —rk) identifying restrictions are required on 3% (or 8,). This is usually
provided by the long-run neutrality condition that restricts certain stochastic trends
not to affect y, in the long run. This sets the corresponding elements of the common-

trends loading matrix, G,, equal to zero.

The discussion on how to identify F; follows the work of Warne (1990) which
is very similar to the strategy used to identify Fi. The assumption of indepen-
dence among structural innovations is still critical for the task. First, independence

between the permanent and transitory shocks requires
Cov (thu;r) =d|XF =0. (2.44)

Warne suggests specifying an initial candidate of F; as
F=o"%"! (2.45)

where o’ is any space spanned by columns of a so that o/, a® = 0 and therefore the
independence assumption holds as stated in (2.44)'2. Second, independence among

the elements of transitory shocks also requires the covariance matrix of vT,
Tr=ad¥S7IEE e = oS, (2.46)

to be diagonal. Similar to discussions on identifying Fy, this requires getting the

lower-triangular Cholesky decomposition, denoted @, such that
Yr =QDrQ’ (2.47)
Then we can improve on the initial candidate by getting
F, = Q'F
= Q' (o) =
= o'z} (2.48)

12 About the choice of a®, Englund et al. (1994) recommends an r x n selection matrix U, chosen

so that a® = a(Ua)~! with Ua a nonsingular matrix.
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where o* = o®(Q’)~!. By (2.48) we know the newly identified transitory shocks,
v =a" L7 e, (2.49)

satisfy the zero-covariance requirement of (2.44). It is also easy to verify that the
covariance of v is the diagonal Dy in (2.47). Now stacking the results derived from
above for F} and F;, we have the unique matrix F' to identify the structural shocks

as

v = FEt

AARAIONE
Q' (eyzt |

Still, we need to count the number of available restrictions to determine
whether exact identification is indeed achieved. There are n - r elements in F,. Zero
covariance between permanent and transitory shocks entails k - 7 zero restrictions on
F,. The assumption of zero covariance for transitory shocks or, more precisely, get-
ting the Cholesky decomposition of the symmetric £t in (2.47), provides additional
5(1;—11 restrictions on F;. To complete the identification, 1('2;12 (= ™m — 'J-'zﬂl - rlc)
more restrictions need to be furnished. These extra restrictions are typically cast in
a way to produce zero impact effects for certain transitory shocks on variables in the
system. Englund et al. (1994) discuss how zero contemporaneous effect restrictions
can be imposed by choosing the selection matrix U considered above. However,
I choose a different approach (Rasche 1992) that will be presented in Section 2.5

with a numeric example. This approach, without using U matrix, also imposes zero

contemporaneous effect restrictions to identify transitory innovations.
2.5 Example of a Common-Trends Model

The implementation of the identification procedure can be illustrated by a
simple example of term structure of interest rate and money demand study by

Rasche (1992). Four variables were studied with two cointegrating relations present
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among the variables, real balances (m — p), real output (y), long-term interest rate
(RL) and short-term interest rate (Rgs). Denote z} = [m — p Ry, y Rs] and the 2x4

cointegrating matrix is estimated as

10 -1 ] (2.50)

ﬂzlo 1 0 -1

where ) is estimated to be 0.124. The first row of 3 defines a typical money demand
equation with unit coefficient for real output. The second equation describes a

stationary term structure of interest rate relation.

To identify F such that Fe; = v, an initial candidate for F', denoted F?, is first
selected before eventually achieving identification according to F = H~'F° where
H~! is the Cholesky decomposition of FOE (g.c}) F”. There are 16 (= 42) elements
in F so as many restrictions have to be specified. The Cholesky decomposition

provides ten and six remain to be devised.

The 4x4 reduced-from long-run multiplier C (1) is obtained by applying result
(3) of the GRT and has the form of

-2 c1 + ¢

Cc(1)= (2.50)

where c; and c; are estimated to be

827  .026 .668 —.019

o } _ [ ~17.734 .080 5.558 —.103]

C2
It is obvious that C (1) has a reduced rank equal to 2. Notice the requirement

B'C (1) = 0 is satisfied. Next the initial candidate of Fj is set as

Fl=aY = [ “ } (2.51)

C2
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and 3} is obtained, by the conditions #a% = C (1), as
=

(2.52)

o
O = O

With the form of 3¢ chosen as above, the first permanent shock can be interpreted
as a nominal shock that permanently impacts on both the long and the short rate
(second and fourth variables)'3. The second permanent shock is interpreted as a real
shock that impacts permanently upon real output (third variable) but not nominal
interest rates. Notice the condition 3’8 = 0 is satisfied and this provides four
identifying restrictions. There are two restrictions yet to be specified, one shall be
a zero long-run impact restriction to identify Fj and the other a zero first-period-

impact restriction to identify F.

The initial candidate for F; is chosen to be

P?:[OOOI}. (2.53)
0100

This specification defines the first transitory shock to have unit first-period impact
on the fourth variable, the short rate, while the second transitory shock to have
unit first-period impact on the second variable, the long rate. The particular form
of F? chosen above, as will be shown shortly, is essential to imposing the zero
contemporaneous-effect restriction for transitory shock identification. Now stack F?

and F? to form

—17.734 .080 5.558 —.103
.82 026 . -.01
FO = 827 026 .668 019 - (2.54)
0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0

13Recall that, in the long run, Az, = 8, 7.
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Then obtain the lower-triangular Cholesky decomposition of FUE (g,e}) F” as

1.0 0.0 0.0 0.0
0.0085 1.0 0.0 0.0

H= . (2.55)
-1.9296 —-19.429 1.0 0.0

0.0782  9.4637 0.6039 1.0
Then F is identified by

F = H'F°
—17.154 0.0950  5.92 —.1138
1.0426 0.0270 0.6613 —0.0193
—12.844 0.7080 24.272 .4050
—0.7691 0.3095 -21.379 -0.0528

Now we show how the zero impact-period-effect restriction is embodied in the

form of F? in (2.53) in order to exactly identify the two transitory shocks. First

calculate the inverse of Fj as

—0.0406 0.3380 0.0022 —0.0055

Fo-1 0.0 0.0 0.0 1.0
0.0503 1.0785 0.0257 —0.0321

0.0 0.0 1.0 0.0

The arithmetic of inverting a matrix ensures that as long as each row of F? has only
one element equal to 1 and all other elements equal to 0 as in (2.54), then it will
turn out that one row in (F?)™' will have its fourth element as 1 while the other
elements all equal to 0. It will also turn out that a second row in (F°)~" will have
its third element equal to 1 while the rest are zero. To inspect the impact-period
effects we need to calculate the impact matrix R (0), using (2.12) in Section 2.1,

-1

R(0O) = F'=(F) H
—0.0425 02421 —0.00111 —0.00554
0.0782  9.4637  0.6039 1.0

0.00743 0.1763  0.00631 —0.0321
—1.9296 -—19.4294 1.0 0.0
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With the particular form of (F°)™' along with the fact that H is lower triangular,
the product of (F°)™' and H is guaranteed to have a zero element in its fourth
column. Thus our particular form of F? carries the assumption that the second
transitory shock has zero contemporaneous effect on the fourth variable, the short

rate.

As for the long-run neutrality restriction, it is assumed that the first perma-
nent shock, the nominal shock, should not have any long-run impact on the third
variable, real output. This requirement imposes a zero restriction on R (1). Specif-
ically, the restriction is imposed on the common-trends loading matrix 8, since by
(2.38), R(1) = [ BL 0 ] Recall in Section 2.4 that (3, is related to the initial
choice of 8¢ by

BL = ﬂﬂ’_ﬂ'

S
|10 1 0
oo [ml 1]

10

-—/\+7l'21 1
_ 1 0
B (O] 1

1 0

Then for the neutrality condition to hold, 7, has to be zero 4. This supplies one

overidentifying restriction toward recovery of the structural model.

147t will be shown in Chapter 4 that 7 is the same as B;, which is a partition of the 4 x 4 lower-
B 0
triangular matrix B = B“ B where every partition is a 2 x 2 matrix. More discussion
21 D22

on this is in Section 4.5 where my identification issues are addressed. Also, a zero restriction
on B, essentially requires a restricted Cholesky decomposition to be estimated. A RATS SVAR

procedure is useful for such purposes.



Chapter 3

AN ECONOMIC MODEL CHARACTERIZED
BY COINTEGRATION

3.0 Introduction

A simple economic model with a wage contract is presented in Section 3.1.
The rational expectation solution of the model is obtained in Section 3.2 and cyclical
properties of the model are provided. A real interest rate identity is added to the
economic model in Section 3.3 and a resulting econometric system of five equations
is obtained. In Section 3.4, a structural-form vector error-correction representation
of the system is derived, with two cointegration relations present, M2 velocity and
ex post real interest rate. The structural-form moving-average representation is
derived in Section 3.5 and the long-run multiplier of structural innovations is used
to guide identification in Chapter 4. The presentation of this chapter closely follows
that of Chapter 5 of Hoffman and Rasche (1996).

3.1 An Economy With Wage Contract

From Chapter 1 we know it is desirable to use identification restrictions that
can be derived from economic theory to identify a common-trend model. For this
purpose we will utilize a model of macroeconomic fluctuations adapted from Blan-
chard and Fischer (1989, p.518). This model contains a wage contract that provides

the model economy with a nominal rigidity.

31
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Ye = mu—pe+ou (3.1)
Yy = Blpr—we+uy), B>0, (3.2)
nd = y(p — we + ouyy) + ugy, 7>0,0<a<]l, (3.3)
ni = 6(we—pr), >0, (3.4)
we | Et_lnf = E,_ng, ng = ng. (3.5)

The variables y;, n¢, w¢, and p; are, respectively, the logarithms of aggregate output,
employment, the nominal wage, and the price level and u,; and v; are supply and
demand shocks. More specifically, since the aggregate supply equation (3.2) is a
variant of the Cobb-Douglas production function, u,, is considered the technology
or productivity shock. The aggregate demand equation (3.1) is in the form of a
velocity equation so the demand shock, v;, alternatively has the interpretation of

velocity shock.

Labor demand is affected by the labor demand shock u3; in addition to shocks
to labor productivity, i.e., ;. Included in u3; could be exogenous job creations and
eliminations such as that due to input price shocks, increasing market integration
and specialization, demographic changes, and shocks that affect inventory and ca-
pacity utilization. It is critical to recognize that only the portions of these forces that
do not directly affect aggregate supply in (3.2) are included in uz;. They influence
the aggregate supply but only through their effects on the labor market. In (3.4)
labor supply is assumed positively related to the real wage. The cause of nominal
rigidity is revealed in (3.5) where wage contracts are set one-period in advance and
are intended to equate the next period expected labor demand and supply. The
actual employment is assumed to be demand-determined, so n; = nd. Thus when

unforeseen shocks take place in the upcoming period only firms can adjust the level
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of employment and the pre-set wage cannot be changed. Alternatively, u3; can be
specified as a labor supply shock so u3 is put in (3.4) instead of (3.3). This is
similar to Shapiro and Watson’s (1988) specification of a random walk with drift
labor-supply process. Nothing other than a few mathematical signs will be affected
by this change in the model. For this reason, we can label us; the labor-market

shock rather than a labor demand shock.
3.2 Solution of the Rational Expectation Model

We can solve the above equation system with Rational Expectation techniques
for the solution of p, w, and y. To save space, we leave the details of the solution
process in Appendix A. Introduce the notation zZ; = E;_;z; for any variable z; so
that Z, is the rational expectation of , made at time ¢ — 1 subject to all information
available then. The solutions for w;, p; and y, are all expressed as combinations of

the expectation terms, Z;, and expectation error terms, z; — T;, as follow:

. . B
pe = M+ 0+ P(a—1)8, + Uz,

o+
+ﬁ ( - ﬁit) + ('Ut - ’17:)] - ﬁ n l(uu - ﬁu). (36)
we = T+ B+[Bla—1)+a] ant ?:iam. (3.7)
v = B(l—a)iy, - 5T 7173,
+§% (me = ) + (ve = ) + (wae = ue)].- (3.8)

This model has properties resembling those of Benassy’s (1995) model that al-
lows for both the traditional Keynesian and the Real Business Cycle interpretations
of price and real wage movements over business cycles. To see this, first calculate

the real wage according to wry = w; — p; to get

~

wry = aﬁ”+6+7uu
L (- )+ - B+ e — ). (39)
B+1 me t t ,B+1 1t 1t .
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As can be seen from (3.6), (3.8) and (3.9), unexpected technology disturbances
cause price p and output y levels to be negatively related and real wages w — p and
output y to be positively related. This results are typical of the RBC prescription
of price and real wage behaviors over the business cycle (Els 1995). On the other
hand, monetary surprises produce positive correlations between p and y and negative
relations between w — p and y. This is in line with traditional Keynesian views of
procyclical prices and counter-cyclical real wages due to nominal rigidity (Hairault
and Portier 1993). The observed cyclical patterns of p and w — p in a given time
period are likely to depend on the relative strength of monetary and technology
shocks in that period.

3.3 Complete Model Specification

Now we specify both the technology shock u;; and the labor demand shock

uz; are random walk with drift processes,
Uit = T; + U1 + € 1= 1,3,

and consequently

A. =T. ._
Uit |+uttl} i=1,3.

Uit — Uit = €t

As for the money supply process, we use the specification of Hoffman and Rasche

(1996) and have
my = My + Ugt

(3.10)
Ugt = T2 + Uge—1 + €2t

It then follows that
My =My + Uz — €
my — My = €.

The aggregate demand shock in (3.1) is also considered a stationary process with a
moving-average representation, v, = 6(L)es;, where 6 (L) = 6 + 0, L' + 0,L% + - - - +

6,LP. Innovations €y, €2, €3¢ and es5; are all assumed white noise processes.
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With all the stochastic terms fully specified, (3.8) can be expressed as

use = Y =01 —a)(n+ui1) - (73 + use—1)

o+
+

B
11 [€1¢ + €2¢ + Bp€se) (3.11)
Here we define us; = y: to be used below where us; is seen as a new composite
variable dominated by two random walk with drift processes. The solved wage-

contract model can now be summarized by four equations, (3.11), (3.1), (3.2) and

(3.10), involving four variables, y;, m;, p; and w,.

To make this theoretical model complete with more nominal variables repre-

sented, we use the real interest rate identity
TTe = Rt - ﬁt—&-l = ¢ (L) €6t (312)

where R, is the nominal interest rate and 7, is the inflation rate defined by m,,; =
Pt+1 — pt- The real interest rate, rr;, has been found to be a stationary long-run
relationship by Mishkin (1992) and Crowder and Hoffman (1996). Here I assume it
is governed by a stable moving-average process ¢ (L) = ¢o+¢; L' + ¢ L*+- - - + ¢, L9

and €g; is white noise.

The real interest rate identity provides one additional equation but two extra
variables to the model. We can get around this problem by eliminating p; in (3.1)
and (3.2) and replace m, and w, respectively by the real balance, mr; = m; —p;, and
the real wage, wr; = w; — p;. Now the first equation in (3.10) can be manipulated
to be

Ty = MTy_) — Tp + Ugg. (3.13)

by using mr; = m; — p, and m; = p; — p;—;. The last problem lies in the next-period
inflation rate in (3.12) whose ex post form, 7, is not available for estimation along

with y;, mr,, wr, and R, at time ¢ . The solution is to use (3.12) to acquire a new
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equation for the stationary process, R; —m; — mr,+mr;_,, which includes the current

inflation, m,. We show this equation in (3.14) below and leave the derivation details

in Appendix B. We note the equation can be given the economic meaning that the

ex post real interest rate, defined as R, — 7, is about equal to, in the long run, the

growth in real balances mr; — mr;_,.

Collecting (3.1), (3.2), (3.11), (3.13) and (3.14), we have a five equation system

Yt

y: + Bwr,

mry + m

Ye — MTy

R, — my — mry + mry_,

Defining d = (1 —a), g =

B

B+1

and h = 2 for

S+

Ust
Bure
MTe—) + Ut

6 (L) ese

72— B (1 —a)Auye +

+
g+1

o+
(Gu + 62:) +Y (L) €t + @ (L) €6t (314)

AU3t

(3.11)
(3.2)
(3.13)

(3.1)

(3.14), then the five-equation

economic system above can be presented in matrix form as

1

1
0
1
0

0

c oo™

o oo wo

o O = O O - o o o

@ O © © O©

o = O O

o O O © O

o O © © O

o O O O =

o O O O O

Yt 0
mrs 0
wry | =10
R, 0
T | | 0
[0
Uyt 0
U2t + 0
U3zt 0
Ust —d
0 0 |
0 0
0 0
(L) 0
(L) ¢(L)

0
0

0
0
0
0
0

&:S O O © O

-

o © © © O

O O O O O

S O O O

S O O © O

Yi-1
mre_q
WTe—

Ry,

L Tt—1

Auy,
A’th
Au3¢
A’Ufst

(3.15)
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The coefficient matrix on the LHS of (3.15) contains the contemporaneous structure
of the five I(1) variables in the system. This information may be applied to identify
a 5 x 5 F matrix such that FXF' = D where D, a diagonal matrix, and ¥ are
respectively the covariance matrix of structural innovations and reduced-form errors.
Exact-identification for this model requires 10 parameters in F and 5 in D to be
estimated. For ease of analysis, premultiply the coefficient matrix, denoted F, by a

transformation matrix W so the resulting matrix has unit diagonals as in

100 0 O 1 0 00 O
000 -10 1 0 30 0
W-F = 1050 00 01 00 1
000 0 1 1 -1 00 O
(001 0 0][0 -101 —1|

[ 1 0 00 0]

-1 1 00 0

= | 3 100

0 -1 01 -1

0 1 00 1

This matrix appears to have extra zero and unit restrictions in a Wold causal chain
structure, with the exception that one nonzero element exists in the upper triangular.
There is only one free parameter to estimate and thus there are 9 over-identifying
restrictions. Sets of reduced number of overidentifying restrictions are available such
as that provided by the common-trends loading matrix 3,. They are discussed in

the following sections.
3.4 The Vector Error-Correction Representation

We first formulate a separate equation system below to solve for the VECM
later. This system is constructed for u; for ¢ = 1,2,3,5 based on specification

assumptions in Section 3.2 as



Q@ O O =

o O O O

0 Up
0 Ugt
0 U3¢
1 Ust
€1t T
1
€2¢
T2
€ | + , (3.16)
3
€st
dTl - hT3
| €6t |

Now the inverse of the polynomial matrix on the LHS of (3.16) is

(1-L)™

1
0
0

S = O

dL 0 —hL (1-1L)

By premultiplying through (3.16) by the square matrix in (3.17), we get

Auu
Augy
Augy,
A’U5g

€1t
€2t
€3t
€5t
€6t

10
01
00
d 0

dL+g(1—-L) g(1—L) —hL 6,9 (1—L)

0 0
0 0
3.17
1 0 (3.17)
0 0 0 0
1 0 0 0
0 1 0 0
0
0 T
0 1
1 T2 . (318)
—h 73

To derive the VECM, add one-period-lagged (3.11) (3.2) and (3.13) respectively to

the RHS of (3.15) to obtain

O = O e

O OoOo W™ o
- O O O O

©c = O O

-1

Yt
mnre
wre

e

1 0 0 00 Ye-1
1 0 00O mre_,
0 2 001 WTe_y
0 0 00O R;_,
[0 =1 0 0 0| m—
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(3.19)
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Then substitute (3.18) into (3.20) to obtain the structural VECM:
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-

00 [y d 0
001 110 0 o]|™ A0
+{0 0 [0 00 —1 1] wreo |+ 0 1
10 Ri_s 0 0
| 0 1 | T2 | | —d 1
[dL+g(1-L) g(1—L) —hL 6g(1—-L) 0 ]
Jij 0 0 0 0
+ 0 1 0 0 0
0 0 0 0 (L) 0
| g-—d g h Y(L) #(L)

& O O O

€1t
€2t
€3¢
€st

| €6t |

1
T2
T3

(3.21)

To obtain the reduced-form VECM, first take inverse of the coefficient matrix

on the LHS of (3.20) as

o w~- C O

o

- O O O

Now premultiply it through (3.20) and rearrange the error-correction term to get

the reduced-form VECM:

Ay, | [0 o0
Amr, 1 -1
Awrt = 0 0
AR 0 1
i Aﬂ't i -1 2
0 0
1
+] 0 g [1 1
0 0
0 -1
-—1 O -
[ dL+g¢(1-L) g(1-1L)
dL+g(1-1L) g(1-1L)
g—d g+1
| —dL-g(1-1L) 1-g(1-1)

0 0 0][ Ay
0 0 O Amr,_,
0 0 O Awre_
0 -1 1 AR,_,
0 0 O 1L Aﬂ't-—l
[ Y2 ]
00 0 } -2
Wre—2
01 -1
R o
- 7rt_2 -
—hL Gog(1 - L)
—hL 6yg(1-L)-6(L)
LhL  —360g(1— L)
h ¥ (L)
hL —6p9g(1—L)+6(L)

|

¢ (L)

0
0
0
(L
0



€1t | d 0 —-h
€2t d 0 —h Tl
X|ee |+| =2 0 sh|| 7|, (3.22)
€st —d 2 h T3
[ €6t |] | —-d 1 h |

In the above derivations, a structural vector error-correction representation is
obtained from a fully specified economic model characterized by two cointegration
relations. With the time-series nature of the stochastic shocks specified as in Section
2.3, the existing long-run equilibrium relations between the variables are already
revealed in (3.1) and (3.12). The first cointegration relation is the velocity of money,
ys —mr, and the second one is the ex post real interest rate, R, — m;. The knowledge
about their exact forms will be useful in terms of improving statistical efficiency when
we estimate a reduced-from VECM model in Chapter 4. In other words, the theory
superimposes ‘known’ cointegrating vectors so no parameters need to be estimated
in a VECM. We notice that even though no speed of adjustment parameters are
specified in the theoretical model, a VECM representation is derived that specifies

‘known’ adjustment parameters in o.

Now we show that the top 3x 5 partition of the structural matrix F' on the LHS
of (3.21) is a common-trends matrix ¢/,. The structural error-correction coefficient
in (3.21) can be written as Fa where a is the 5 x 2 reduced-from adjustment matrix.

F
Define F = Fk where Fi and F;, are 3 x 5 and 2 x 5 respectively. Then

T

Fka

Fa = Fo
(1. 0 00 o][o o] [oo0]
1 0 B0 O 1 0 00
=10 1 00 1 0 0 [=]00
1 =100 0 0 -1 10
(0 -1 01 -1)|-1 0] |[O01]

implies Fyo = 0. Thus Fj is an orthogonal compliment of & and may be treated as a
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common-trends matrix o, . If we only impose identification restrictions included in

F;. and allow F, to be freely estimated, the number of overidentifying restrictions is

reduced for the model. Such an approach also amounts to ignoring all the coefficient

restrictions in (3.1) and (3.14) which compose the dynamic structure of the economic

model. This is a meaningful approach only if the entire structure of F' is rejected

by an overidentifying restriction test. Only in this case would we ask the question

whether the long-run structure of the model alone can be successfully estimated by

the data.

3.5 The Vector Moving-Average Representation

To construct a VMA for the 5-dimensional vector variables, we first write the

structural VAR model in (3.19) in lag operator as

[1-L

0

0

0 0 Yt
1-L 0 g(1-L) 0 0 mre
0 (@1-L) 0 0 1-L) || wr
1 -1 0 0 0 R,
| 0 -(1-1I) 0 1 -1 | m
[0 0 0 1] Auy, [0 00 O 0 |
B 000 Aty 000 O 0
+1 0 100 Au, +{000 o0 0
0 000 A 000 6(L) O
| ~d 0 h O] L9 9 0 ¥(L) ¢(L)
Substitute (3.18) into (3.23) to get
[1-L 0 0 0 0 ([ w] [d
1-L 0 BA-L) 0 0 mre B
0 (@(1-L) 0 0 A1-L)||wr|=] 0
1 -1 0 0 0 R 0
0 -(1-L) 0 1 -1 || m ]| |-d
(dL+g(1—-L) g(1—L) —hL 6g(1-L) 0 ]
8 0 0 0 0
+ 0 1 0 0 0
0 0 0 0 (L) 0
| g-d g h Y(L) ¢(L) ]

-est-l

€st

S O O O

€2t

€5t

(3.23)

1
T2
T3

(3.24)
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Now construct the inverse of the polynomial matrix on the LHS of (3.24),

1 00 0 0
1 00 —(1-L) 0
(1-r)" -5 50 0 0 : (3.25)
0 01 0 (1-1L)
| -(1-L) 01 (1-1L)° 0 |

Premultiply through (3.24) by the matrix in (3.25), without (1 — L)™', to obtain
the VMA model Az; = § + R(L)v,. After collecting terms we derive the VMA

representation of the economic model as

[ Ay, | [  dL+g-L) ] [ g(1-L) ]
Amr, dL+g(1-1L) g(1-1IL)
Auwry | =| 1=3dL+g(1-L)) |eac+| —59(1-L) |ex
Ar, (9-d)(1-1L) l1+g(1-1I)
| Am | | -dL(1-L)-d(1-L)* | | 1-g(1-L)* |
[ —hL ] [ fog (1 — L) ] [ 0 ]
—hL (Bog— 0 (L)) (1 - L) 0
+ %L €3 + -%’Qg (1-1L) €5t + 0 €6t
h(1-L) ¥ (L)(1-1L) ¢(L)(1-L)
| hL(1-1) | | —[og —6(L)] (1 = L) | 0
[ d 0 —h]
d 0 —h T
+|1-4d 0 & T (3.26)
0 1 0 T3
0 1 0 |

To find out the long-run multiplier R (1) = [3, 0] of the structural innovations

v, set all L equal to 1 in (3.26) to get

d 0 -h 00 €1t
d 0 —h 0 O || e
RDv=|1-50 % 00|/ ex (3.27)
0 1 0 0 O] es
| 0 1 0 0 0] €e |
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and the constant-term vector

d 0 —h]
d 0 —h T
f=|1-40 4% |- (3.28)
0 1 0 T3
| 0 1 0

The 5-dimensional vector § forms the deterministic trend component in the level
of z; = [yymrswre Ry 7] and the 3-dimensional 7 can be treated as the common
deterministic trends. The particular form of R (1) in (3.27) reveals that innovations
es¢ and €5, with no long-term effects on the first-difference of z,, are transitory
shocks. In fact, they are, respectively, the underlying force that forms the stationary
demand shock in (3.1) and the stationary real interest rate shock in (3.12). On the
other hand, the technology shock ¢;; and the labor-market shock e3; have nonzero
long-term effects on real variables Ay;, Amr; and Awr;. The monetary shock e
has long-run effects on nominal variables AR; and A 7, but not on real variables.
Thus a long-run neutrality of money is a property of the economic model. The three

permanent shocks constitute three common stochastic trends in the level of z;.

As considered in Chapter 2, the particular form of 3, contained in R (1) is
valuable to identify common stochastic trends or permanent shocks. In the preceding
sections structural information included in F and its subset o/, also are shown useful
for identification. Between a; and 8, however, only one is required for identification
by the relation R (1) F = $,¢/, = C(1). As an reduced-form moving average model
or C (1) can be derived from the same theory, the knowledge of either a; or 3,
yields the other immediately. In principle identification based on o, or 3, should

also have equal statistical power for overidentifying restriction tests.



Chapter 4
SPECIFICATION, ESTIMATION AND

IDENTIFICATION OF
THE ECONOMIC MODEL

4.0 Introduction

This chapter presents an econometric analysis of the five-equation cointegrated
system and the identification of the structural model. The time-series properties of
the variables and two assumed cointegration relations are examined in Section 4.1
using unit-root tests and graphs. Specification tests are conducted in Section 4.2 to
determine an optimal vector error-correction model to estimate. Two cointegrating
vectors, an M2 velocity and an ex post real interest rate, are imposed on all VECMs
specifications considered. A three-lag VECM including a linear time trend on the
levels and five dummy variables is selected. The validity of imposing two cointe-
grating vectors on a VECM is confirmed in Section 4.3 by Johansen’s (1988, 1991)
cointegrating rank tests and Horvath and Watson’s (1995) tests for pre-specified
cointegrating vectors. The VECM estimation results are presented in Section 4.4.
The identification of structural VMAs using dynamic and steady-state restrictions

derived in Chapter 3 is shown in Section 4.5.
4.1 Data Analysis and Unit-Root Tests

Seasonally adjusted quarterly data of the United States from 1951:1 to 1994:4
are studied in this dissertation. Particularly, real output (y;), real balances (mr;),

real wages (wr), short-term nominal interest rate (R;) and inflation rate () are of

45
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major interest. Variables are in natural logarithms, except for the nominal interest
rate. The measure for real output is the private-sector GDP used by King et al.
(1991) defined as GDP minus the government purchases!®. Real balances are equal
to the M2 measure divided by the price deflator. Real wages are defined as the
nominal wage divided by the price deflator. The nominal-wage measure used is the
average hourly earnings of workers in the manufacturing sector. The interest rate on
Treasury Bills of 3-month maturity is used as the short-term nominal interest rate.
Inflation is the log first difference of the price deflator. Both the nominal interest
rate and the inflation rate are on per annum basis. Detailed variable definitions and

data sources are presented in Appendix C.

Before formally undertaking statistical tests to determine the time-series prop-
erties of the variables, it is useful to first graph the variables and make a preliminary
statement. The levels of the five variables in this study are presented in Figures 4.1,
4.3, 4.5, 4.7 and 4.9 while their first-differences are presented in Figures 4.2, 4.4,
4.6, 4.8 and 4.10. The levels of output, real money balances and real wages appear
to be trending upward so they may be generated either by random walk with drift
process or be trend stationary processes. The levels of the nominal interest rate and
inflation, despite not showing any clear trend movement, appear nonstationary be-
cause of changing mean levels and variabilities. They may be generated by random
walk processes without drift or simply be stationary series. If the first differences of
variables are judged to be I(0), that can lend support to the claim that their levels
are I(1). The first-differences of the variables appear to have constant means in the
figures. However, except for that of inflation, the first differences appear to have

changing variability. The inspection seems to suggest that the first differences are

15Professor Rasche points out that this definition of real output is not private-sector GDP but
private-sector gross purchases becuase the former should only exclude government purchases of

labor services from GDP rather than total government purchases.
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Figure 1 Real Output (Private Sector), 51:1-94:4
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Figure 7 Nominal Interest Rate, 51:1-94:4
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not stationary I(0) series.

Table 1 shows test results of the Augmented Dickey-Fuller unit-root ¢ and 2
tests (Dickey and Fuller 1979). The tests involve running regressions of the form
k
Ty =a+ 0t + pry_, + Z b;Az:_; + €. (4.1)
j=1
A linear-trend term 4t is included in (4.1) if graph-inspection suggests there is a
trend component in the series. Conversely, a regression is run without a trend term
as is the case for interest rates, inflation and all the first differences of the variables.
The tests are conducted using the RATS uradf.src procedure written by Norman

Morin. The ¢ and z test statistics are calculated according to

1
t;, = P i=u,T
Oi

Zi = T(ﬁ,—l) 'i=[J«,T

where p; and 6; are respectively the estimates of p; and its standard error. The
subscript 1 and 7 indicates whether a test statistic is computed from regressions
run with (7) or without (1) a trend term included. Both type of statistics (with
subscript 7 or u) have non-standard distributions so tabulated critical values have to
be consulted. The joint F' tests, in cases where no trend term is included, have the
null hypothesis p, = 1 and a, = 0. That is, a random-walk process is hypothesized.
In cases where a trend term is included, the null hypothesis is p, =1 and § = 0, i.e.,
a random walk with drift process. The F statistic is calculated in the usual Wald
form but its asymptotic distribution is again nonstandard and appropriate tables
are to be consulted (Dickey et al 1994). The number of lag differenced variables,
indexed by j in equation (4.1), is determined by the Ljung-Box autocorrelation tests
done on the regression residuals €. Lags are sequentially added until the Ljung-Box
test fails to reject the null of no serial correlation. This procedure is followed because

¢;: has to be white noise for the unit-root test to be valid.
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Table 1

Augmented Dickey-Fuller Tests
for a Unit Root

Lag tr (tu) z: (z,) Joint F test
Y 1 -2.6023 -16.2625 3.5046
m 2 -2.3811 -5.8579 3.2850
P 2 -1.4618 -2.6930 3.1096
s 1 (—4.2423°) (—36.3589°) (9.0005°)
w 7 -1.9781 -5.8950 2.2940
mr 1 -1.1983 -4.8765 1.2658
wr 0 -0.2084 -0.2708 22.4305°
R 11 (-1.5204)  (—4.4261) (1.4797)
Ay 0 (—8.8725¢) (—110.2450°) (39.3661°)
Am 1 (=5.1760°) (—52.7664°) (13.3991°)
Am 4 (—8.0422°)  (821.0265) (32.3383¢)
Aw 5 (—3.6260°) (—30.9860°) (6.7682°)
Amr 0 (—8.0914°) (—93.2722°) (32.7395°)
Awr 2 (=5.1677°) (—66.7216°) (13.3692°)
AR 6 (—6.1916°  (365.5331) (19.1821°)

Notes: 1. Statistics in parenthesis are ¢, and z, and are ¢,

and z, otherwise. 2. a, b and c indicate statistical significance at
the 10%, 5% and 1% level respectively. 3. Critical values are shown
in Table 2

As shown in Table 1, the ADF test fails to reject the null of a unit-root
at 10 percent level for y;, mr;, wr, and R, and therefore supports our claim that
they are I(1) variables. On the other hand, the unit-root hypothesis is strongly
rejected at 1 percent level for Ay, m, Am, Amry, Awr, and AR, suggesting they
are I(0) stationary. These are almost exactly what we postulated in the theoretical
model presented in Chapter 3, except that the inflation rate, m, is assumed an I(1)

variable there. Recall inflation is cointegrated with the I(1) nominal interest rate,
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R;, to form the stationary real interest rate relation, R; — #¢y,. In the literature
there is a debate about whether the order of integration for inflation is I(1) or I(0).
Discussions on this can be found in Baillie, Chung and Tieslau (1996). Likewise,
there are also conflicting findings regarding whether the order of p; is 1(2) or I(1)
in the literature. Despite the unit-root test results, we will still treat m; as an I(1)
variable in the following analysis for two reasons. First of all, there could be a
power of test problem for the unit-root test procedure. Diebold and Rudebusch
(1991) found the Dickey-Fuller test has low power when the true value of p is near
but not equal to one. Furthermore, we have just learned that the nominal interest
rate is I(1) and we will also learn shortly that the ex post real interest rate, R, —m, is
indeed an I(0) cointegration relation. Then m; being the difference of R; and R; —

cannot be I(0) since I(1) +I(0) cannot be I(0).

Figures 4.11 and 4.12 graph the two cointegration relations, the M2 velocity
(y. — mr,) and the ex post real interest rate (R; — ;). They appear to be station-
ary despite slightly irregular mean levels relative to the univariate time-series plots
shown in Figures 4.2, 4.4, 4.6 and 4.8. Under this circumstances, we have to rely
on formal tests to make inferences about their true properties. Table 2 shows the
Augmented Dickey-Fuller test results for these two relations. In the top panel, re-
gressions are run without a trend term included while one is included in the bottom
panel. We will rely only on results in the top panel because neither R; — m; nor
y: — mr, show any discernible trend movement in Figures 4.11 and 4.12. The bot-
tom panel is included to provide extra reference!®. Notice that in both panels the

tests are conducted over two sample periods of different length. The shorter sample

16We briefly mention that the test results for regressions with a trend included. The tests still
strongly reject the unit root hypothesis for the real interest rate. But all ¢, 2 and F tests fail to
reject the null of a unit root for the velocity relation at 10 percent level no matter whether the

long or short sample is used.
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Table 2

Augmented Unit Root Tests for
ye —mry and R, — 7,

Without linear trend in regression

Lag 1 2y F test
The short sample:1953:1-1991:4
Ye — My 1 -3.0404%  -17.9109° 4.6290°
Ry —m 1 -3.8976¢  -30.7874¢ 7.6065¢
The long sample:1951:1-1994:4
Yg — MTy 1 -1.5416 -8.6028 1.2536
R, —m 1 -5.1136°  -48.8346° 13.1504¢
Sig. level
10 % -2.57 -11.2 3.81
Critical value 5% -2.88 -14.0 4.63
1% -3.46 -20.3 6.52

With linear trend in regression

Lag t, Zr F test
The short sample:1953:1-1991:4
Y¢ — My 1 -.3015 -17.7332 4.7997
R, —m 1 —4.3712¢ -39.2619° 9.5549¢
The long sample:1951:1-1994:4
Y¢ — MTe 1 —1.7825 —9.4958 3.7957
Ry —m 1 —5.5728° —59.7335°¢ 15.5626°
Sig. level
10 % -3.13 -18.0 5.39
Critical values 5 % -3.43 -21.3 6.34
1% -3.99 -28.4 8.43

Notes: 1. a, b and c indicate statistical significance at the 10%, 5% and 1%
level respectively. 2. Lag indicates the lag lenth of the ADF regression.
3. Critical values are from Hamilton (1994).
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covers the period from 1953:1 to 1991:4 and the longer sample covers from 1951:1
to 1994:4. Both sample periods are tested because they yield different results, sug-
gesting there could be fundamental shifts in the long-run relationship between the

two samples.

In the top panel of Table 2, and over the shorter sample, all £, z and F tests
strongly reject the null of a unit root at 5 percent level for the velocity and at 1
percent level for the real interest rate. Therefore, both cointegration relations are
valid for the shorter sample. The story is somewhat different when the tests are
done over the longer period. While the real interest rate continues to be shown
stationary at a 1 percent significance level, tests on the velocity fail to reject the
unit-root hypothesis at 10 percent level for the longer sample. Thus there appears
to be a regime change in the data generating process for the velocity of M2. This
change causes the cointegrating velocity relationship to break down in the ADF
tests. To confirm, we observe in Figure 4.11 that the velocity, before 1953:1 and
after 1991:4, moves in a more drastic fashion and its mean is also higher than the
mean of observations in the shorter sample. For this reason we will estimate an
empirical wage-contract model using only the short-sample data that upholds both

cointegrating relations.
4.2 Specification for a VAR with Cointegration

The first question to be answered in specifying a vector-autoregression model
is how many lags to include. It is also customary to add seasonal or regime dummy
variables to capture systematic shiftings in time-series processes. The most widely
applied specification test for such decisions is the likelihood-ratio tests. Write a
standard n-dimensional VAR with p lag-terms and a vector of dummy-variables D,
as

P
I = Z Az i + u+ YD + € (4.2)

i=1



o8

where p, A; and ¥ are parameters to be estimated and the error vector ¢, is as-
sumed distributed as i.i.d. N (0,X). The likelihood-ratio test statistic Sims (1980)

suggested is

~

(T -¢) (ln s, Y

) (4.3)

where £, and £, are respectively the maximum-likelihood estimates of the error

—1In

covariance of the restricted VAR (with a shorter lag and fewer dummy variables)
and the unrestricted VAR. T is the number of observations used and c=1+5p is
the number of parameters in each equation in the unrestricted VAR. The statistic in
(4.3) has an asymptotic x? distribution with degree of freedom equal to the number

of restrictions imposed on the system.

If cointegration is an important characteristic of the equation system, then a
cointegrating-rank restriction or even explict cointegrating-vectors need to be im-
posed in estimating a VAR. In such cases, the VAR is usually modeled by its vector

error-correction representation,

p—1
Azt =u+ Z F,'AIE t—i + aﬂ' Ty +¥D, + Ety (44)

=1

where u and D, are constant and dummy variables respectively and the I';s, o and
B can solve for the A;s in (4.2). Under the assumption of r cointegrating rela-
tions, o and B are both n x r matrix and the rank of I = af' is r. Typically,
Johansen’s (1988, 1991) maximum-likelihood procedure is used to model (4.4). In
cases where specific cointegration vectors are imposed, §'z;_, become known vari-
ables and the maximum-likelihood estimates of the parameters can be obtained by
running ordinary-least-squares for each of the n equations in (4.4). The OLS is a
valid method because typically no cross-equation restriction is imposed on VARs or

VECMs. The models in this dissertation are estimated using the CATS package.

There are three sets of dummy variables under consideration for D, in (4.2).

The first set is labelled Dummy0 which in fact contains no dummy variables at all
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so that D; = 0. The second specification is labelled Dummyl which includes three
time dummies, Dg7¢, D79+ and Dsgy:, so that D, is a 3 x 1 vector. This specification
has been used by Hoffman and Rasche (1996) in their studies of money-demand
functions. The third set of dummy variables is Dummy2 which includes two time
dummies, D73; and D7s5¢, in addition to the three defined in Dummyl. The three
dummy-variable sets and the five dummy variables are defined below:

Dummy0 = {No dummy variables}

Dummyl = {Degre, Drge, Dgat}

Dummy2 = {Dgr¢, D7se, D15ty Drge, Dsas}

where

0 t<t;
D, = 7§ =67,173,75,79, 82
1 t>t

and

t67 = 1967: 4, t73 =1973: 4, t7s = 1975 : 3,

t79 1979 : 4, tg, =1982:1.

The dummy variable D73 is zero through 1973:3 and one thereafter while D75, is
zero through 1975:2 and one thereafter. They are included to account for the 1973-
74 oil price shocks and the sharp increase in the price level that it caused. Degy;
is defined as zero from the initial time period through 1967:3 and one thereafter.
It is included to capture the acceleration of inflation with the Vietnam conflict.
Dy, is zero through 1979:3 and one thereafter and Dg,, is zero through 1981:4 and
one thereafter. They are included to reflect the New Operating Procedures of the
Federal Reserve in place between 1979:4 and 1981:4 since means of the cointegrating

vectors could shift with this policy change.

Table 3 shows values of the likelihood functions for VARs of different lag-length

and dummy-variable specifications. Since the velocity and the ex post real rate coin-
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Table 3
Maximum Likelihood Function of VARs

VAR lags Dummy0 Dummyl Dummy2
-28.7692 -29.1157 -29.4820
-30.0543 -30.2567 -30.5817
-30.5506 -30.7167 -30.9095
-30.8103 -30.9872 -31.2050
-31.0312 -31.1817 -31.4047
-31.3632 -31.5443 -31.8064
-31.5596 -31.7440 -31.9914
-31.8002 -31.9795 -32.2156

00 3 O O B W N

tegration relations are imposed in estimation, we in fact estimate the VECMs. The
likelihood functions are then used to conduct likelihood-ratio tests to first determine
the optimal dummy-variable setting as shown in Table 4. Then they are used to
test for the optimal lag-length specification as shown in Table 5. Judging by the
test results in Table 4, regardless of the lag-length of VARs, Dummy2 consistently
fares better than Dummy0 and Dummyl!’. We therefore accept the Dummy?2

specification and include all five dummy variables in the VAR model.

The likelihood-ratio test results shown in Table 5 consistently suggest VARs
with either four or six lags is the optimal specification to use. However when a

likelihood-ratio test for a constrained five-lag VECM (six-lag VAR), against a non-

7In the case of testing for Dummy0 versus Dummyl, the degree of freedom is 15 = 3 x 5,
the number of the reduced dummy variables (3) times the number of equations (5). Similary, the
degree of freedom in the test of Dummyl versus Dummy2 is 10 = 2 x 5 and in Dummy0 versus
Dummy?2 equal to 25 = 5 x 5. In the case of testing for models with sequentially shorter lags, e.g.,
p — 1 versus p, the degree of freedom is equal to the number of elements in the parameter matrix

Ap,or25=5x5.
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Table 4
Likelihood Ratio Tests for Dummy Specification

VAR Lags DOvs. DI Dlvs. D2 DO vs. D2

1 49.5595*  51.6384*  100.5048*
2 27.9271%*  44.2014*  71.7237*
3 22.1020 25.2489*  47.0185*
4 22.6458%  27.4428%  49.7347*
5 18.5164 26.9842*  45.1996*
6 21.3781 30.4048*  51.4205*
7 20.8429 27.4559%  47.9208*
8 19.3687 25.0255*  44.0356*
d.f. 15(=3x5) 10(=2x5) 25(=5x 5)
X (a=10%)  22.31 15.99 34.38

* indicates significant at 10%

Table 5
Likelihood Ratio Tests of Lag Length

VAR lags Dummy0 Dummyl Dummy?2
2  181.2076* 157.4525* 149.5646*
3 67.4886* 61.1867* 42.9392*
4 34.0299  34.6253* 37.2418*
4vs. 5 27.8284 23.9210 24.1625
6
7
8

1 vs.
2 vs.
3 vs.
o vs. 40.1684*  42.7868* 46.5972*
22.7871 22.5684 20.5306

7 vs. 26.7044 25.4308 23.7663
Critical value:x? = 34.38 (o = 10%, d.f. = 5 x 5)
for all cells. * indicates significant at 10%

6 vs.
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Table 6
Residual Analysis for VECMs with 4 and 6 Lags

Lags €1t Eat E3t E4t Est
Standard dev. 4 0.009 0.007 0.004 0.623 1.451

6 0.008 0.007 0.004 0.569 1.401

R? 4 0.445 0517 0.411  0.465 0.521

6 0.510 0.561 0.483 0.553 0.554

Normality 4  9.133* 28.669° 0.567 70.843%° 4.870

6 13.299° 18.691°®  0.223 53.182° 7.790°

ARCH(4) 4 5496  7.518 15.260° 31.292% 2.843

ARCH(6) 6 7279 12.210  4.817 26.604® 3.912
Multivariate- 4  LM(4)=28.617 p-value = 0.28
autocorr. 6 LM(4)=23.021 p-value = 0.58

Note: The limiting distribution of the normality, ARCH(4), ARCH(6),
and LM(4) test are x? with d.f. equal to 2, 4, 6 and 25 respectively.
a and b indicates rejection of the null at 5% and 1% significance level

respectively.

restricted alternative, is performed, the null is rejected at a significance level less
than 1 percent. There appears to be an internal inconsistency in that VAR(6) with
cointegration is selected in Table 5 to be possibly the optimal lag-length but at the
same time it is rejected in favor of a VAR(6) without cointegration. On the other
hand, when the VAR lag is reduced to four (three-lag VECM), the VAR with two
cointegration restrictions cannot be rejected at a 10 percent significance level. It
is possible the five-lag VECM is over-parameterized so as to reduce the power of
the likelihood test for cointegration. We therefore will include only four lag terms,

instead of six, in the cointegrated VAR model.

We also note that replacing VAR(6) with VAR(4) does not effectively change
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Table 7

Cointegrating Rank Test
on Unrestricted VAR with 4 and 6 Lags

Max- statistic Criticl value

Hp k=p-r Il=4 1I=6 a=10% a=5%
r=0 k=5 36.54>  37.58° 30.77 33.18
r=1 k=4 25.02¢  33.89° 24.71 17.17
r=2 k=3 18.11 18.66 18.70 20.78
r=3 k=2 13.09¢ 13.44° 12.10 14.04
=4 k=1 2.36 1.28 2.82 3.96
Trace statistic Critical value

H, k=p—-r I=4 I1I=6 a=10% a=5%
r=0 k=5 95.11° 104.84 65.06 68.91
r=1 k=4 58.27  67.26 43.96  47.18
r=2 k=3 33.56* 33.38° 26.79 29.51
r=3 k=2 15.45° 14.72° 13.34  15.20

r=4 k=1 2.36 1.28 2.82 3.96
Notes: a and b indicates statistical significance at 10 %

and 5 % respectively.

the properties of the residuals as shown in Table 6. Listed in the table are the
univariate standard deviations, unadjusted R2, normality tests, ARCH tests and
the system-wide autocorrelation LM tests. In terms of R? and standard deviations,
VAR(6) outperforms VAR(4) simply because it includes more lagged explanatory
variables. This, however, does not result in more favorable properties for VAR(6)

in terms of the ARCH, the normality and the serial-correlation test statistics.
4.3 Testing for Two Cointegration Relations

An useful way of confirming the validity of the two derived cointegrating vec-

tors is to conduct formal cointegration tests. Johansen’s cointegrating rank tests
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(Johansen 1988; Johansen and Juselius 1990) will first be performed. If the conjec-
ture of the rank r = 2 is confirmed, even though it does not provide inference on the
coefficients of cointegrating vectors, we can be more confident about the empirical
results of VECM(3) with two cointegration relations imposed. A direct support
for imposing the two specific cointegration relations can be gained by undertaking
Horvath and Watson’s (1995) tests for pre-specified cointegrating vectors. As shown
below, both types of test support the use of cointegrating velocity and real interest

rate relations in estimating the economic model.
4.3.1 Johansen’s Cointegration Rank Tests

There are two types of cointegration-rank tests. The first one is the trace test

which tests the pair of hypotheses about the rank of I = o/’ in (4.4),

Hy : rank(Il) <r

H, : rank(Il) =n.

The test procedure is first set » = 0 and sequentially increase the value for r if
the null is rejected. When the data ceases to reject a null, the particular r is then
treated as the cointegrating rank. The second rank test is the maximum eigenvalue

test, or Max-\ test, which has the pair of hypotheses,

Hy : rank(Il) =7

H, : rank(IT)=r+1.

The procedure begins with zero for r and sequentially increases its value if the null
is rejected. Again when a null is not rejected, the particular r value is inferred as
the number of existing cointegrating vectors. The distribution of both test statistics

are non-standard and simulated distributions are available (Hamilton 1994)'8.

18We note that the simulated distribution depends on the specification of deterministic terms
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The tests are conducted on the VECM counterparts of both VAR(4) and
VAR(6). As the test results in Table 7 indicate, the two types of rank test have
conclusions in conflict with each other. For the Max- test, the r = 2 hypothesis is
confirmed. The maximum-eigenvalue test rejects both the null of r =0 and r = 1
but fails to reject the null of r = 2 against the alternative of r = 3 for both lag
specifications. In contrast, the trace test rejects the hypothesis of r = 2. Specifically,
the nulls of a cointegrating rank r < 0, 1, 2, and 3 are strongly rejected. What is
then suggested by the trace test is a rank of 4 or 5. Since the subsequent null of

7 < 4 against r = 5 is not rejected, the trace test infers the cointegrating rank is 4.

We will rely on the 7 = 2 conclusion of the maximum-eigenvalue tests. The
r = 4 conclusion of the trace test lacks both theoretical and intuitive justifications
because it implies only one stochastic trend exists in a fairly complete economic
system including five nonstationary series. It is quite common to find at least two
stochastic trends in a model of more than four I(1) variables such as in Shapiro and
Watson (1988) and Karras (1993). There is indeed no statistical evidence to rule out
the trace test 7 = 4 result in favor of the max-A test 7 = 2 result that is consistent
with our theoretical model in Chapter 3. Nevertheless we are more interested in
the question whether an empirical business-cycle model can be estimated from that

theory and be consistent with the postwar U.S. macroeconomic data.
4.3.2 Horvath and Watson’s Cointegrating Vector Test

Economic theories often imply parameters of 0’s, 1’s and -1’s for cointegrating
relations. In response to this phenomenon, Horvath and Watson (1995) developed
the testing procedures for such explicitly specified cointegrating vectors in the con-

text of a finite-order Gaussian VECM as in (4.4). Interests are focused on the size

in the VECM. We use the critical values as reference instead of correct values for our model that

includes five dummy variables.
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Table 8. Horvath/Watson Tests
of Pre-specified Cointegrating Vectors

Tou = Tay =0 Critical values Computed
Tok Tak Dok Bak 10% 1%  Wald statistic
0 1 0 MV 12.49 19.00 20.5312°
0 1 0 RR 12.49 19.00 31.5164°
0 2 0 MV,RR 2351 31.26 56.8986°
1 1 MV RR 12.49 19.00 36.2707°
1 1 RR MV 12.49 19.00 25.0009°

Note: b indicates significance at a 1% level. MV is the cointegrating
M2 velocity and RR stands for the ex post real rate.

of the cointegrating rank r = rank(IT) and the pair of hypotheses

Hy : rank(Il) =17,

H, : rank(Il) =ry +r, with 7o > 0.

Under the null, rq is further defined by ry = 7o, + rox Where 7y, is the number
of known cointegrating vectors while ro, represents the unknown or unrestricted
cointegrating vectors under the null. The number of additional cointegrating vectors
present under the alternative is r,. Similarly, the extra rank is further divided
according to r, = T4y + Tox Where the subscripts u and k denote unknown and
known, respectively. The Horvath and Watson tests generalize the procedures of
Johansen’s rank tests where no known cointegrating vectors are present. That is,
his rank tests consider only cases with 7o = r, = 0 and the hypotheses of interest

for rqy = 1is

Hy : rank(II) = 7q,

Hy, : rank(IT) =7p, +1

which is shown above as the maximum-eigenvalue test.
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Table 8 presents the test results on the validity of M2 velocity (MV) and ex
post real rates (RR) cointegration relations. The first test specifies a null of no
cointegration and the alternative of a cointegrating M2 velocity. The computed
Wald statistic, 20.53, is greater than the simulated 1 percent critical value and thus
strongly rejects the no-cointegration hypothesis in favor of a cointegrating velocity
relation. The second test also strongly rejects a null of no cointegration in favor of a
cointegrating ex post real interest rate relation. A comparison of the Wald statistic,
31.52, to that in the first test, 20.53, indicates statistical evidence is stronger for
the cointegrating ex post real rate than that for the M2 velocity. This is consistent
with the nonstationary test results for the two cointegration relations presented in
Table 2. The third test specifies a null of no cointegration and an alternative of two
cointegrating vectors. The test again strongly rejects no-cointegration at less than 1
percent significance level in favor of the two pre-specified cointegration vectors. In
the last two tests shown in Table 8, one of the two cointegrating vectors is specified
under the null while the other one is added under the alternative. Again both
test strongly rejects the nulls of a single cointegration in favor of both cointegration
relations being admitted in a VECM. Thus, the evidence obtained from the Horvath-
Watson tests highly supports the practice of imposing cointegrating velocity and real

interest rate relations as done in the next section.
4.4 Estimation of VECM and VMA

From the analysis in Sections 4.2 and 4.3, we have determined a specific VAR
model to estimate. It has five time dummies and four lag terms. The lag is shortened

to three in the VECM representation of z} = [y; mry; wr; Ry m,] as

A:::, = FlAIEt_l + FgAlBg_z + F3AIE¢_3 - Q,BIIIIt_l + M + ‘I’Dt + €¢. (45)
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The cointegrating vectors derived in Chapter 3,

, [t -100 o
ﬂ_[o 0 01—1]’ 4%)

is imposed while « is not restricted. The CATS procedures, based on Johansen’s
(1988, 1991 and 1995) MLE principle, estimates the other parameters in (4.5). Also
see Johansen and Juselius (1990, 1992) for empirical applications of the methodology.
The imposed 3 and the estimated o together provide a summary about the long-run
dynamics of the system whereas the other parameter estimates represent the short-
run dynamics of the system. The likelihood-ratio test statistic of this specification is
x? distributed with 6 degree of freedom. The p-value of the test statistic is 0.13 and

therefore the restricted model is not rejected at the 10 percent significance level.

The estimated speed of adjustment matrix, in transpose, is

—0.128 0.003 0.031 —4.189 —-9.326

.| (-3.637) (0.104) (1.903) (—1.695) (—1.618) )

o = .

—0.003 0.000 -0.001 —0.266 0.249
(—3.632) (0.647) (-—1.668) (—4.620) (1.850)

where numbers in parenthesis are ¢ ratios. We notice that values in the second

column of o/ are very small. Their ¢ ratios also suggest that the two elements are

not statistically different from zero. Thus weak exogeneity exists for real balances

which is the second element of the z, vector. The estimated o' is very different from

the one obtained in the theoretical model,

o = 010 0 -1 (48)
000 -1 0 | '

This may indicate that both o and 3 derived in the theory are not concurrently
consistent with the data. By imposing the theoretical 3 and taking the estimated
o/ as the correct adjustment matrix we are stating that portions of the theoretical
model are misspecified so as to yield the incorrect form of o in (4.8). We can

reestimate the VECM model by, in addition to the above 3, further restricting the
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second row of « to zero. The parameter estimates are presented in Table 8 and
their ¢ ratios in parenthesis. The likelihood-ratio test statistic for this specification
against the alternative of a nonrestricted VAR has a x? distribution with 8 degree
of freedom. Its p-value = 0.25 is a substantial improvement over the p-value of
0.13 above without weak exogeneity imposed. For this reason we will take this new

restricted version to be the correct specification for subsequent analysis.

Next, we convert the VECM estimation results to obtain its vector moving-

average (VMA) representation as'®
Al‘t =6+C (L) Et. (49)

More importantly, for the purpose of identifying the common trend space, a, and
the factor loading matrix, 3,, we want to calculate the long-run multiplier matrix
of the reduced-form errors &, as®

[o o]

2. G

=0

= ﬂla’l.

c(1)

With C (1) calculated, the long-run covariance matrix of Az, can be calculated
as C (1) XC (1)’ where X is the covariance of the error &;. The estimated long-run

multiplier matrix has reduced rank and has the form

19This involves first converting the VECM to its VAR representation and then invert A (L), the
lag-polynomial matrix of VAR, to get C (L). The inversion techniques for a reduced-rank A (L)

requires special consideration and is treated in Warne (1990).
20The original formula for C (1) as in (2.33) is Ay (a’,[B.) ' o', before we simplify

By (!, TB.)"" as A1 on page 23.
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Table 9
Parameter Estimates for VECM

-

[ _0.128 00 0031 —4.189 —9.326
(—3.637) (0.0) (1.903) (—1.695) (—1.618)

—0.003 0.0 —0.001 —0.266  0.249
(-3.632) (0.0) (—1.668) (—4.620) (1.850)

, | 0043 0.005 —0.005 1.246 1.908
(4.036) (0.640) (—0.957) (1.660) (1.091)

—-0.007  0.006  0.010  0.003 —0.008 ]
(—2.562)  (1.659) (1.608)  (0.645) (—2.019)

-0.001 —0.002  0.001 —0.001 —0.003
(-0.602) (—0.651) (0.301) (—0.271) (—1.001)

—0.001 —0.002 —0.001 —0.001 —0.002
(—0.899) (—0.990) (—0.513) (—0.319) (-1.147)

~0539 0534 1120 —0.415 —0.231
(-2.818)  (1.987)  (2.588) (—1.429) (—0.828)

0420 048 —1204 0330  0.596
(0.942)  (0.774) (—1.193) (0.488)  (0.916) |

[ 0.08 0.01 001 1.35 1.76
0.01 0.05 001 047 —4.27
Y=10"2%x|001 001 0.02 034 —2.02
1.35 —0.47 0.34 387.40  42.50
| 176 —4.27 -2.02 42.50 2107.00 |
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Table 9 (cont’d)
Parameter Estimates for VECM

0.082 0230 —0.084 0003  —0.002 ]
(0.924) (1.895) (—0.420) (2.701) (—1.755)

0.173 0123 -0.224 —0006 —0.001
(2.432) (1.270) (—1.409) (—6.218) (—1.374)

-0.062 0.040 -0.182 —-0.001 —0.000

T =
"7 | (-1512) (0.712) (-1.987) (-1.907) (—0.459)
8439 8056 —5.187 0327  —0.l11
(1.356) (0.949) (—0.372) (3.851) (—1.755)
~1.963 4334 96.101 0583  —0.422
| (-0.135) (0.219) (2.951) (2.945) (—2.865) |
0.067 0165 -0.280 —0.001 —0.001 |
(0.742)  (1.373) (-1.419) (-1.184) (1.737)
0076  0.105 —0.012 —0.002 —0.000
(1.049)  (1.095) (—0.078) (—2.146) (—0.629)
r._| 0052 001 0231 0000  —0.001
2 (1.269)  (1.836) (—2.545) (0.014) (—1.409)
5963  —2.565 —13.681 —0.307  0.011
(0.944) (—0.345) (—0.988) (—3.604) (0.191)
—22.491 11.816 48.183 —0.004 —0.100
| (-1.526) (0.602) (1.493) (-0.019) (—0.725)
[ —0.116 0116 0250  0.002  —0.001 |
(-1.374) (1.083) (1.281)  (1.900) (—1.212)
-0.002 0082 0135  -002 —0.000
(-0.026) (0.962)  (0.863) (—2.337) (—0.894)
p._ | —00%8 0139  -0079 —-0.000  0.000
37| (~0.969) (2.824) (—0.885) (—0.710) (0.685)
0.177 6576 14007 0245  0.031
(0.030)  (0.877)  (1.024) (2.813)  (0.757)
-11.005 —3.485 45774  0.465  —0.006
| (-0.797) (—0.199) (1.435)  (2.288) (—0.061) |
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0.536  1.008 —0.819 —0.010 —0.006 |
(1.514) (3.587) (—1.189) (—2.445) (—1.443)

0.536  1.008 —0.819 —0.010 —0.006
(1.514) (3.587) (—1.189) (—2.445) (—1.443)

0.194 0.001 0.844 —0.003 0.001
1) = .
CI=1 (1815 (0.011) (4601) (-2.439) (1.155) (4.10)

—21.026 45.150 22.625  0.368  0.199
(-2.343) (6.340) (1.296)  (3.736)  (1.947)

—21.026 45.150 22.625  0.368  0.199
| (—2.343) (6.340) (1.296)  (3.736)  (1.947) |

where numbers in parenthesis are ¢ ratios. The linear trends in the level of variables

z; are calculated as

C(1)p =[ 0.0096 0.0096 0.0035 0.0695 0.0695]'.

We notice the first row and the second row of C (1) have the same values. This
indicates the total impact of the errors on the first difference of output is the same
as that of real balances, a condition for the stationary velocity relation. Similarly,
a stationary ex post real interest rate relation requires the total effects of the errors
and the same for both the nominal interest rate and the inflation rate. This is
indicated by the identical fourth and fifth rows in (4.10). In contrast, the third
row of C (1) is not linearly dependent on any other row because real wages are not

cointegrated with other variables.
4.5 Estimation of the Overidentifying Theoretical Model
4.5.1 The Complete Model Structure

Identification of a structural-from VMA
Aze =6+ R (L) (4.11)

from its reduced-form counterpart in (4.9) involves finding a F' matrix such that
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vV = FEt (412)

R(L) = C(L)F™. (4.13)

The n-dimensional structural innovations v; is composed of k-dimensional perma-
nent shocks v} and 7-dimensional transitory shocks v . The covariance of the errors
is E (e,6}) = ¥ and the innovation covariance E (1;v;) = D is a diagonal matrix.
Form the partition F' = [F] F]] where Fy is k x n and F; is r x n. As discussed in

Chapter 2, the long-run multiplier of (4.8) and (4.11) are
Al‘t = C (1) Er = ﬁ_LC!I_LEt

= RQ1)v =B, (4.14)

Therefore permanent shocks are identified according to vf = Fje; = o' e, and
oy = (BLAL)7 BLC (1).
We begin identification with structural information available in F' in Chapter

3. The explicit form of F' is

(4.15)

o = O O

-1
-1 -1

- -

!

il
S O =
- o O O O

o O o w ©

The top 3 x 5 partition of F' is Fj which describes the contemporaneous relations
among the variables in the long-run structure of the model. The bottom 2 x 5 par-
tition is F; and represents the contemporaneous relations in the dynamic structure
of the model. Estimation is done by solving an optimization problem for F' and D
such that

FYF' =D
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subject to the pattern of F' in (4.15). First normalize F' to make its diagonals equal

tolasin

F* = W-.F

o O

o O ™~

_ O O O ©
o O ©

[
o O = O O
- O O O

0

o = O O O

1
1
0
1
JLo
0
0
0
-1
1..

0 0
0 g
1 0

-1 0

-1 0

- o O O O
S = O O

(4.16)

In this form we notice the three rows that form o/, are now respectively rows 1, 3

and 5. F' is subject to nine overidentifying restrictions and there is only a single free

parameter to estimate in a (Fg).

Calculations are done by a RATS SVAR procedure written by Lansarotti and

Seghelini. The result is

F* =

5
I

1 0
~1 1
—0.1487 0
0o -1
0 1
[ 0.0089 0
0 0.0105
0 0
0 0
0 0

o O = O O

o =~ O O O
[}

0

0
0.0039

0

0

0

0

0
1.5497

0

0
0
0

0

1.4484

(4.17)

(4.18)

Note that if the estimated model is not rejected by an overidentifying restriction

test, we then need to premultiply the estimated F* by W~! so it returns to its theo-

retical form. However, the model is rejected by the overidentifying restriction test at
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effectively zero significance level. The test statistic is 477.99 for x? distribution with
9 degrees of freedom. Thus the theoretical structure of F' or the complete model in

Chapter 3 as a whole is rejected by the data.

We now want to answer the question whether the data is consistent with parts
of the model. The first three equations in (3.15) represent the steady-state structure
of the model. They apply in equilibrium and hence are considerably less restricting
than the dynamic parts of the model or the last two equations in (3.15). Therefore,
we now inquire whether permanent shocks can be identified out of the long-run

structure of the model, in particular, by using the long-run multiplier.
4.5.2 The Long-Run Model Structure

The common-trends loading matrix 3, derived in Chapter 3, in the form of

the long-run multiplier of permanent shocks Az, = 8,vF, is

Ay, a ¢c 0

Amr, a ¢ 0 ppech

Awry |=|b e 0 paeor | (4.19)
AR, 0 0 1 || ppomisa
| Am | |00 1]

where a, b, c, and e are constants?!. This equation indicates that the technology
shock and the labor-market shock have zero long-run impact on the nominal vari-
ables, R and 7. In contrast, the nominal shock has zero long-run effect on the real
variables, y, mr and wr. Estimation of the long-run model based on 3, is accom-
plished by specifying an initial 8% and then find a k X k lower-triangular matrix T

with unit principal diagonal such that 3, = 89T is of the form in (4.19). Select the

0 -1 0
0 -1 0
initial choiceas 82 = | 1 1 0 |. To find out what restrictions are necessary for
0 1
(0 0 1]

21 According to (3.28),a=d,b=1— %, c=-hande= %
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1 0 0
T= |t 1 O0/],obtain
ta1 t32 1
B = BT
(0 —1 0]
0 -1 0 1 0 0
= 1 1 0 ta 1 0
0 0 1 ta1 t3p 1
(0 0 1]
[ty -1 0]
-ty -1 0
= [ 1+ty 1 0 (4.20)
ts1 t32 1
|t t32 1]

From (4.20) it is obvious that to derive a 3, of the form as in (4.19), we have to
impose two zero restrictions on 7T, i.e., t3; = t3; = 0.

Note that C (1) in (4.10) can be expressed as C (1)’ = [ g & & & o ]
where ¢; for : = 1,2,3 are all 1 x 5 row vectors. The initial common-trends matrix

o/ is obtained as

of = (8282) BYC(1)

(05 05 1 0 0 a1+ ¢
= |-05 050 0 0 |C()=]| -q
| 0 0 005 05 cs
0.7313  1.0090 0.0244 —0.0125 —0.0043
= | —0.5370 —1.0080 0.8190 0.0097 0.0057 |. (4.21)
| —21.0261 45.1500 22.6276 0.3734  0.1933

The eventually identified permanent shocks are subject to the same restrictions in
T according to

vl =d ey =T "'aVe, (4.22)

in order for C (1) = 8%e% = 8./, to hold.
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We will demonstrate the technique of identification in the setting of a trans-
formed VECM. Premultiply the VECM in (4.5), omitting constant and dummy

variable terms to save space, by a full rank n X n permutation matrix

W= [ e ) ] (4.23)
W

where W, is k x n and Wy is r x n. Then we have

[ WiC (1) ] Az, = [ Wl[ff(l) ] [Xs: Az, +of'ze ) + 5tl

W, 2 i=1
[ W C 1 3 0 *
- | et > Tz i + , +| e (4.24)
| W i=1 Woaf'z, -, 3
T WiC (1) ]
where €} = fie | — (1) .. Notice the k x k covariance E (e}, €}}) =
€3t | W, ]
-
B 0 D, 0
Define €; = By, where B = B“ B ] and E [ny] = D = 0” b ]
21 D22 T

By, and B, are lower-triangular matrices with unit principal diagonals. Also both
Dp and Dr are diagonal matrices. Then we have the relation By,vf = €}, and the
first k equations in (4.24),
3
W\C (1) Az, = W,C (1) ¥_TiAz,_; + Buvf,
i=1

can be expressed as

3
Bi'W\C (1) Az, = B'W,C (1) Y_TiAz,; + v (4.25)

i=1
Working on only the k transformed long-run equations we can identify permanent

shocks by
vl = B'wiC (1) e, (4.26)
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and have E (V,P vf ') = B{!T{B[}" = Dp that is diagonal.

To begin estimation first specify

1 01
Wi=|-10000 (4.27)
0 0001
and so
o
(1 0100]]| ¢
WiC(1) = |[-10000]||c
| 0 000 1]
L cs p
Fcl+cz
= —; | =aY. (4.28)
L C3
With W,C (1) = oY established in (4.28), then (4.26) can be written as
vl = B'aYe,. (4.29)

Comparing (4.29) to the permanent shocks equation vy = T !'a%,; in (4.22), we

find that T = B;. Thus the loading matrix §, in (4.20) is also identified as

1 0 O
B, = BYB,,. In estimating B;; = | b,y 1 0 | we also need to impose the
b1 b3z 1

restrictions b3, = b3, = 0 as is done to T in (4.20) in order for 3, to match its

theoretical form.

We now demonstrate how the permanent technology, the labor-market and
the nominal shocks are identified by the long-run multipliers which are implicitly
defined in the moving-average representation of WAz, (Rasche 1997) or

WIAIEt = ch(L) €
= WIC (l) €t + W1 (1 - L) c (L) Et

= Buv +W,(1-L)C*(L)e.. (4.30)
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In the long run (4.30) becomes W Az, = By vf or

r -

) Ay,
1 00 Amr,
-1 0000 Awr,
| 0 0001 AR,
L Aﬂ-t i
[ 11 Ay, 1 00| v
= | -100 Awry [=|by 1 0 yvor |, (4.31)
| 0 01 Am, 0 0 1] [ ypomina
-1
1
Premultiply through the second equation in (4.31) by | =1 0 0 to get
0 0
Ay, by -10 veh
Awr, |[=|14+by 1 0 pabor
Am, 0 0 1 ppominal

Thus the permanent technology shock is identified as having a long-run multiplier on
real output equal to —by; (it turns out —b,; = 0.906), the labor-market shock having
a unitary long-run multiplier for real wages and the permanent nominal shock also

a unitary long-run multiplier for inflation.

The covariance matrix of the first k£ equation in (4.24) is calculated as

X} = BuDpBj =WiC(1)ZC (1)’ wi
2.258 —2.046 —8.825

= 107" x | —2.046 2.019 8.810 |. (4.32)
—-8.825 8.810 1313

The decomposition of £} into B;; and Dp is computed with SVAR. The results are

10 0 0
By =|-0906 1.0 0 (4.33)
0 0 1.0
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258 0 0
Dp =107* x 0 01654 0
0 0 1313

The overidentifying restriction test for the estimation is x? distributed with two
degrees of freedom. The test statistic is 4.523 with a p-value of 0.1042 and thus the
overidentifying restrictions of the common-trends model is not rejected by the data

at a 10 percent significance level.

The permanent shocks are then identified as

1.0 0 0
vP = B'wiC(1)e; = Bla%e,=| 0906 1.0 0
0 0 1.0

0.7313 1.0090 0.0244 -—0.0125 -0.0043
x| —0.5370 -—1.0080 0.8190 0.0097 0.0057 |e¢
—-21.0261 45.1500 22.6276 0.3734 0.1933

73.13 100.9 2.44 -1.25 -043
= 107%x 1257 -9.3644 84.111 —0.1628 0.1803 |, (4.34)
—2102.6 4515 2262.8 37.34 19.33

The common-trends loading or the long-run multiplier of permanent shocks is cal-

culated as

,BJ_ ZIB_LBH
[0 -1 0]
0 -1 0 1.0 0 0
= |1 1 0]|]| -0906 1.0 0
0 0 1 0 0 1.0
0 0 1]
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The steady state equilibrium of the long-run economic model is expressed as

Ay
Amr,
Awr,
AR,

A,

[ 0.906 —1
0.906 -1
0.094 1

0 0
0 0

0
0
0
1
1-

tech
W

ylavor | (4.35)

nominal
W

We find that the numeric values of the elements in 3, are all within the range for

parameters stated in the theoretical model in (3.28) and (3.2)-(3.4).



Chapter 5
MACROECONOMIC IMPULSE ANALYSIS

5.0 Introduction

This chapter presents the impulse response function and forecast-error vari-
ance decomposition analysis with respect to the identified permanent shocks or
common stochastic trends (Ahmed and Park 1994). Innovation accounting is also
extended to nominal balances and nominal wages which are not explicitly modeled in
the previous Vector Error-Correction Models but are nonetheless integral elements

of the economic analysis to be conducted.

The long-run responses of variables to the permanent shocks are restricted by
the common-trends loading matrix stated in (4.35). As a result, real variable move-
ments are strongly influenced by real permanent shocks in the long run in the sense
that a high percentage of the forecast-error variance is explained by the technology
and the labor-market shock. Specifically, the technology shock has long-run posi-
tive effects on both output, real balances and real wages. The labor-market shock
also impacts positively on real wages but negatively on output and real balances.
On the other hand, nominal variables in the long run are exclusively dominated by
the permanent nominal shock also in a variance-decomposition sense. The nominal
interest rate, inflation, nominal balances and nominal wages all respond positively
to the permanent nominal shock. Such distinct dichotomy between the real and the
nominal shock effects is only reasonable while the economy is in its steady state
equilibrium.

The permanent shocks, as also found in other studies, are important sources of

82
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fluctuations in the short term. Specifically, the technology shock accounts for about
40 to 60 percent of the output variance on one- to two-year horizons. King et al.
(1991) and Mellander et al. (1992) arrived at similar percentages. More significantly,
the technology shock accounts for about 80 percent of the real balance forecast
variance in the very short run, comparable to about 70 percent found by King et al.
(1991). The labor-market shock explains about 20 percent of the output variance
within the first year. This compares to the finding of Shapiro and Watson (1988)
that at least 40 percent of the output variance is accounted for by a labor-supply
shock. Labor-market shocks explain 40 percent of the real wage variance in the
impact quarter and its influence increases thereafter. As for the permanent nominal
shock, it accounts for a high proportion of the nominal interest rate variability. This
is similar to the finding of Englund et al. (1994) but different from the extremely
low percentages found by King et al. (1991). The nominal trend accounts for at
most 30 percent of the inflation variance within the first two years. It is at least 30

percent in King et al. (1991) on the same horizon.

One seemingly unsatisfactory aspect of the impulse analysis in this chapter is
that the parameter estimates are measured very imprecisely. The standard errors of
the impulse response parameters and variance decompositions are calculated with
the asymptotic distribution approach used by Giannini (1992) and Warne (1990).
Their large size renders most of the parameter estimates insignificant. This is, how-
ever, not a phenomenon new to studies employing the VAR methodology and has
been discussed in Runkle (1987). We can still gain valuable knowledge from the gen-
eral patterns revealed regarding the dynamic effects of stochastic impulses on the
economy. More importantly the impulse-response patterns and the variance decom-
positions are amenable to economic interpretations consistent with the theoretical

model in Chapter 3, as is presented in the following sections.



84

5.1 Effects of the Permanent Technology Shock

The impacts of the technology shock on five variables in the VECM model,
nominal balances, nominal wages and two cointegration relations, are illustrated
by their impulse response functions (IRFs) plotted in Figures 13.1 to 13.9. As is
discussed in the identification setup of Chapter 4, in equation (4.29), the technology
shock is normalized to produce equal long-run effects, 0.9, on real output and real
balances. We observe that the responses of output, real and nominal balances are all
positive across the horizon. Output and real balances respond to technology shocks
in a very timely fashion, reaching major fractions of their long-run responses only in
six quarters. The short-run impacts on the velocity are negative, indicating output

increases at a rate slower than real balances whose increase is aided by falling prices.

The long-run effect of the technology shock on real wages is normalized to 0.09
as shown in (4.29). In the first three years, the response of real wages overshoots
its long-run steady-state level as shown in Figure 13.5. This is most likely due to
the mechanism of delayed wage adjustment to price changes even though nominal
wages steadily decrease. This in turn indicates prices fall at a much faster rate than
nominal wages decrease in the beginning. This conjecture about the response of
prices is borne out by the IRF of inflation with respect to technology shocks shown
in Figure 13.8 which shows a steep drop of the inflation rate in the first year. It is
reasonable that rising productivity tends to produce a disinflationary effect. It in
turn could lower the inflation premium charged by the nominal rate. The temporary
effect on the nominal interest rate is indeed negative, as shown in Figure 13.7, but
smaller than the negative effect on inflation. As a result, there is a positive response

of the ex post real interest rate as shown in Figure 13.9.

Percentages of the forecast-error variance of variables attributable to the tech-

nology shock are shown in Table 10. In the long run, output and real balance error-
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Table 10

Percentage of Forecast-Error Variance Attributed to
the Permanent Technology Shock

Forecast Real Nominal Real Nominal Interest
Horizon Output Balances Balances Wages Wages Rate  Inflation

0 10.25 63.70 35.50 12.10 1.80 17.98 31.76
1 14.54 77.43 48.69 10.31 7.30 20.20 29.17
2 23.53 82.42 49.92 19.53 6.75 21.36 28.65
3 36.46 85.94 52.98 25.31 6.97 20.00 28.10
4
8

44.23 87.55 53.89 29.90 7.19 18.20 26.40
68.31 89.20 49.35 35.02 7.65 12.79 21.59

12 78.48 89.16 37.23 31.84 7.67 10.44 19.01
16 83.32 89.32 26.71 27.24 737 9.02 17.20
24 87.62 89.40 15.51 20.14 6.14 7.06 14.50
36 89.28 89.33 8.24 14.07 4.43 5.35 11.81
48 89.53 89.26 5.03 10.91 3.22 4.32 9.98

variances are predominantly accounted for by the technology shock. The variability
of output over the near term is already strongly affected by technology shocks.
About 40 to 60 percent of the error variance is explained during the second year.
Kinget al. (1991) and Mellander et al. (1992) arrived at similar percentages for their
technology shocks. The technology shock accounts for as high as over 60 percent of
the forecast variance of real balances even in the impact quarter. The percentage
increases on longer horizons. This is a more dramatic result compared to that of
King et al. (1991) where about 70 percent of real balance variance is explained by a
permanent technology shock. In comparison, its role in affecting nominal balances
is not nearly as huge although still very critical for up to four years. We observe
that even though in the long run the technology shock plays no role in affecting the
nominal interest rate and inflation, it accounts for 20 to 30 percent of the forecast

variance in both during the first year. Real wage variability is explained at most
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about 30 percent by the technology shock on any horizon. A bulk of the source of
the real wage variance comes from the labor-market shock. On the whole nominal

wages are only slightly affected by the technology shock.
5.2 Effects of the Permanent Labor-Market Shock

Figures 14.1 to 14.9 plot the impulse response patterns of variables to the
labor-market shock. The shock is normalized to yield in the long-run an unit impact
on real wages and a negative unit impact on both output and real balances. The
effects on the growth of nominal balances, in Figure 14.4, are smaller than that of
nominal wages, in Figure 14.6, although both are steadily increasing before reaching
an almost constant rate. Due to a labor-market shock, real balances, in Figure 14.2,
decrease while real wages, in Figure 14.5, increase. This implies that the growth
rate of prices (the inflation level) increases at a pace faster than that of nominal

balances and slower than the growth of rate nominal wages.

According to the theoretical wage-contract model, an upward adjustment of
nominal wages is made slower by a wage contract mechanism. When a positive
labor-market shock strikes, real wages are rising gradually. During the adjustment
process, the wage contract allows firms to hire extra workers at their discretion when
real wages are still sufficiently low relative to a new expected equilibrium real wage
rates. For this reason there is a short-run boost in output growth as is apparent in
Figure 14.1. As the nominal wage level catches up and as the short-run aggregate
supply curve, whose position depends negatively on nominal wages, shifts up the
positive output effect diminishes. Eventually the growth rate of output becomes
negative to reflect a new tighter labor market condition caused by the labor-market
shock. It is interesting to observe that yvhile the long-run negative unitary response
of real balances comes into place in about two years, it takes more than seven years

for real wages and output to reach their respective equilibrium response of 1 and -1.
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Table 11

Percentage of Forecast-Error Variance Attributed to
the Permanent Labor-Market Shock

Forecast Real Irl.ominal Real Nominal Interest

Horizon Output Balances Balances Wages Wages Rate Inflation
0 29.95 3.23 0.04 40.75 90.46 0.31 18.58
1 26.69 2.96 0.39 52.27 80.14 0.43 20.04
2 22.32 2.60 1.02 46.44 75.84 2.83 19.73
3 18.80 2.68 1.40 44.19 66.96 5.95 20.89
4 16.45 3.42 1.39 43.79 62.57 7.67 20.63
8 8.44 6.43 1.86 47.11 51.71 9.39 20.73
12 5.77 7.78 3.45 55.38 45.09 8.64 19.65
16 4.87 8.29 4.86 63.28 40.19 7.87 18.43
24 4.89 8.91 4.62 73.70 31.68 6.58 16.11
36 6.05 9.42 3.16 81.56 22.19 5.19 13.37
48 7.07 9.71 2.16 85.34 15.95 4.27 11.39

The long-run impacts on the nominal interest rate and inflation are restricted
to zero. In the short term they respond positively to the labor-market shock as
shown in Figures 14.7 and 14.8. Upon impact, the inflation effect is the highest
and it then gradually diminishes as the output level adjusts. The peak response of
the nominal rate occurs one year after an impact and then the response tapers off.
There is a huge negative initial effect in the ex post real rate. It rapidly disappears

as an inflation premium is factored into the nominal rate.

The role of the labor-market shock in accounting for the forecast-error vari-
ances is shown in Table 11. Three major points are worth noting. First, as expected
by its design, the labor market shock is a dominant source of variability in real wages,
accounting from an initial 40 percent to 85 percent in the 48th quarter. Moreover,
the proportions of the nominal wage variance explained within two years are even

higher than that of the real wage, with a high of 90 percent in the impact quarter.
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Second, the proportion of the output forecast variance is 30 percent initially and
goes down as the horizon lengthens. Third, the labor market shock consistently
explains a non-trivial portion of the inflation forecast variance, between 10 and 20
percent. There are no significant explanatory power from the labor-market shock

for the variances of real balances, nominal balances and the nominal interest rate.
5.3 Effects of the Permanent Nominal Shock

The impulse responses to the permanent nominal shock are plotted in Figures
15.1 to 15.9. The nominal shock is designed to produce an unitary effect in the
long run on both the nominal interest rate and the inflation rate. Since nominal
neutrality is dictated by the wage-contract model, the total impacts on output, real
balances and real wages are zero in the long run. Even temporary impacts on the
three real quantities are very short-lived and disappear completely in less than three
years. The nominal shock temporarily increases both production in the economy
and the buying power of money as shown in Figures 15.1 and 15.2. There is an
obvious delay in real output growth relative to the real balance increase because
the peak response of output is about one year later than that of the real balance.
Consequently there is an initial negative impact on the velocity from the permanent

nominal shock as in Figure 15.3.

The IRF's of nominal balances and nominal wages, shown in Figures 15.4 and
15.6 respectively, are monotonically increasing at a constant rate. The reason for
this originates from the identities by which the responses of nominal balances and

nominal wages are obtained,

Amy = Amri+m (56.1)

Aw, = Awry + 7. (5.2)

The long-run effects of the nominal shock on both Amr, and Awr, are restricted
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Table 12

Percentage of Forecast-Error Variance Attributed to
the Permanent Nominal Shock

Forecast Real Nominal Real Nominal Interest
Horizon Output Balances Balances Wages Wages Rate  Inflation

0 0.02 33.06 52.34 1.73 6.95 19.46 2.95

1 1.67 17.50 36.80 1.23 8.86 25.53 9.36

2 2.26 10.96 29.71 0.87 13.48 27.10 13.45
3 3.25 7.85 28.54 1.52 19.66 32.78 16.47
4 3.54 5.75 28.29 1.22 22.72 39.86 21.33
8 2.23 2.56 34.52 0.70 31.06 52.32 30.67
12 1.48 1.69 46.04 0.52 37.24 59.45 37.08
16 1.12 1.28 55.78 0.38 42.58 64.70 42.35
24 0.75 0.86 69.42 0.23 54.10 71.95 50.69
36 0.49 0.59 81.73 0.14 67.77 78.50 59.47
48 0.37 0.45 88.19 0.09 76.85 82.53 65.59

to be zero by the requirement of nominal neutrality. On the other hand, the long-
run shock effect on the first-difference of inflation, A, is restricted to 1.0, making
the nominal shock effects on the level of inflation, 7, infinitely cumulating. The
responses of nominal balances and nominal wages are thus dominated by this cumu-
lative impact on the inflation level. In the long run the cumulative trend in nominal
balances and nominal wages cancels out that in inflation. This allows nominal neu-

trality to hold with respect to real balances and real wages in the model.

The short-term effects on real wages, in Figure 15.5, are initially positive and
then are erased in about three years. At first glance, the nominal interest rate and
inflation have very similar response patterns. The effects are fairly moderate in
the first year, overshoot the long-run unitary levels in the second year and reach
the long-run near the beginning of the third year. However the fact is that their

exact short-run response paths are very different. This is evidenced by the volatile
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response pattern of the ex post real rate during the first three years shown in Figure

15.9.

The forecast-error variance decompositions for the permanent nominal shock
are shown in Table 12. Four observations are particularly worth noting. First, the
nominal shock is a very important source of variability for the nominal interest rate
and inflation on horizons longer than twelve quarters. This is not surprising since
the nominal shock is identified by having long-run impacts only on nominal rates
and inflation. Second, nominal balances and nominal wages are also dominated by
the nominal shock over the longer term. This is consistent with the above discussion
that shows the IRF's of both variables with respect to the nominal shock are domi-
nated by the cumulative inflation level responses to the nominal shock. Third, over
the very short run the nominal shock is less important for explaining the inflation
error variance. Lastly, the nominal shock accounts for essentially none of the error
variance for output and real wages. It also explains very little of the real-balance
variance beyond an one-year horizon. These results seem to suggest the permanent
shock which is identified by a long-run neutrality condition is also quite neutral in

the short run.
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Figure 13.1 The Response of Output to Technology Shocks
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Figure 13.3 The Response of Velocities to Technology Shocks



92

IRF of M2 to Tech shocks
250

225 | \
200 / A

175 —

100 I B B B B S S B S (O S B S B S S S S [ B S S S S S S SO0 S S S B B SN0 S BN S SN B SR B SN S G S ¢

o 6 12 18 24 30 36 42 48

Figure 13.4 The Response of Nominal Balances to Technology Shocks
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Figure 13.5 The Response of Real Wages to Technology Shocks
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Figure 13.6 The Response of Nominal Wages to Technology Shocks
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Figure 13.7 The Response of Interest Rates to Technology Shocks
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Figure 13.8 The Response of Inflation to Technology Shocks
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IRF of M2 to Labor shocks
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Figure 14.7 The Response of Interest Rates to Labor-Market Shocks
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Chapter 6
SUMMARY AND CONCLUSION

This study of postwar U.S. economic fluctuations using the common-trends
methodology is guided by a simple theoretical model that has properties suitable
for business cycle studies. It includes a wage-contract equation to partly account
for the wage rigidity characteristics in the economy. In addition, the model allows
for cyclical real wage and price behaviors that are consistent with predictions from
both the Keynesian and the real business cycle theories. In this model we are able
to identify the roles of the permanent shocks as sources of economic fluctuations.
Particularly, the permanent labor-market shock is featured to capture a separate
effect on the aggregate supply that is independent of that from the technology shock.
All variables used have stochastic-trend components and are widely considered to
have significant cyclical properties. Among them, real wages, to my knowledge, has

not been modeled previously in the common-trends model framework.

Two cointegration relations implied by the wage contract model are confirmed
by the unit-root tests, cointegration rank tests and Horvath and Watson’s (1995)
cointegrating-vector tests. They are then imposed in estimating a VAR model that
includes five time dummies. The acquired empirical model cannot be rejected by
a likelihood-ratio test at a 10 percent significance level. A first attempt to identify
both permanent and transitory structural shocks based on the contemporaneous
relations from the theoretical model is not successful. In the next attempt we are
able to identify the permanent shocks using the long-run structure available in the

theoretical model though transitory shocks are not identified. Identification of the
100
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permanent shocks depends critically on their long-run multipliers predicted by the
theoretical model. Findings on the significance of the permanent shocks as sources
of fluctuations for output, real balances, inflation and the nominal interest rate
are generally consistent with earlier studies employing the same cointegrated VAR

methodology.

The common drawback suffered by VAR studies is also present in this study.
Possibly due to over-parametrization (as discussed by Runkle 1987), I have found
the standard errors of the structural impulse-response functions and the forecast
error variance decompositions to be relatively large. The dynamic patterns revealed
in such analyses can nevertheless improve our knowledge about the dynamic impacts

of the permanent shocks on the economy.

In the long run, variations in output and real balances, which form the velocity
relation, are dominated by the technology shock. Also for the long run, the labor-
market shock dominates the variability in real wages. Given that long-run nominal
neutrality is prescribed by the theory, long-run variations in the nominal interest

rate and inflation are explained almost exclusively by the permanent nominal shock.

Similar to findings by others, I find permanent shocks to be important sources
of fluctuations even in the short run. Specifically, the nominal trend accounts for
a high proportion of the nominal interest rate variability in the short run. This
is similar to the finding of Englund et al. (1994) but different from the extremely
low percentages found by King et al. (1991). The impact of the nominal shock on
inflation is at least 30 percent within the first two years in King et al. (1991). I find
the nominal trend accounts for at most 30 percent of the inflation variance within
the same horizons. The technology shock accounts for about 40 to 60 percent of the
output variance on one- to two-year horizons. King et al. (1991) and Mellander et

al. (1992) arrived at similar percentages. More significantly, the technology shock
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accounts for about 80 percent of the real balance forecast variance in the very short
run, comparable to about 70 percent found by King et al. (1991). The labor-
market shock already explains 40 percent of the variance in the impact quarter and
only increases its influence on real wages thereafter. I found the labor-market shocks
explain about 20 percent of the output variance within the first year. This compares

to at least 40 percent of the output variance found by Shapiro and Watson (1988).
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APPENDIX A

RATIONAL EXPECTATION SOLUTIONS FOR
A MODEL ECONOMY

First define Z; = E,_,z, for any variable z, i.e., Z, is the rational expectation
of z; made at time ¢ subject to all information available at time ¢t — 1. First apply
rational expectation on the labor demand and labor supply equation and set them

equal to obtain the contract wage.

Et—l{fS (we —Pt)} = Et—l{’)’ (pe — we + ouye) + u3t}

(0 +7)(we —Pe) = ayly+ Us

~ . 1
wy = prtauy,+ 7“3: (a.1)

o+

Note in the above a = ﬁ% and E,_,w; = W, = w; since current wages are set in the

last period. Then set aggregate supply and aggregate demand equal,

my — Py + U B (pe — we) + Pure

p = ﬁ—_l‘_—I(mt+ﬂwt—ﬂuu+vt) (a.2)

Now substitute equation (a.1) into equation (a.2) and apply E:—, on both side to

get
D - my+ B Dt +atye + ! & By + v
= ——<Mm au U -
Dt B+1 t Dt 1t 6+'y 3t 1t t
Pe = Me+0+P(a—1)Uy+ b Usy (a.3)

o+
Substitute (a.3) back into (a.1) to solve for w, in terms of predetermined terms as

—_ o~ ~ +1_
w¢=mt+vg+[ﬂ(a—1)+a] U|t+?+7U3t. (8,4)

The solution for p, is obtained by substituting equation (a.4) into equation (a.2) as

~

pr = M+ 0+ Pa—1)a,+ 3 +7U3t
1 — ~ .
+‘m [(mt - mt) + (’Ut - ’Ut)] - ,Bf- 1 (’U.]t - u“). (36)
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The solution for real wages, wr, = wy — py, is then

. 1

wry = wt—pt—au|¢+6+’yu3t
L ((me = ) + (ve = 8] + =P (u1e — ) (3.9)
,B+1 t t t t ﬁ‘l‘l 1t 1t/ .

Finally substitute (3.6) into the aggregate supply equation (3.2) to solve for the

output level as

ve = B(l—a)dy, - 3

0+
+% (me — M) + (ve — Be) + (wre — Ure)]. (3.8)



APPENDIX B
THE EX POST REAL INTEREST RATE EQUATION
The real interest rate identity includes the next period ex ante inflation rate
which is to be solved in terms of currently available variables. Before doing that we
first define real balances by mr; = m; — p, and inflation by m; = p; — p;_,, then the
real balance process can be written as
MTy = MTe_y — T + Uge. (3.13)
Move forward one period on (3.13) and take expectation to get
Teq) = Uggy) — MTey + MTy. (b.1)
Substitute (b.1) into (3.12) to get
Ty = Tep1 + ¢ (L) et
= Ugpyy — My + M + @ (L) €61 (b.2)
We also need to solve for m7,,,. Before doing that we subtract =, in (3.13), from

both sides of (b.2) because we then can obtain an operational contemporaneous or

ex post real-interest-rate equation as
Ty — Ty = a2t+1 - T’fﬁ't.{,l + mre + ¢ (L) €6t + MTey — MT_1 — U
or
Te — My — MTy + MT_y = Upey) — Uge + [Ty — MTey1] + @ (L) €6t (b.3)

The last equation will be used as one of the solution equations to form the equation

system of Chapter 3.

Now we want to further solve for mr; — m7,,, in equation (b.3). First obtain

mr, from the aggregate demand equation, (3.1), and (3.11) as

mry = B(1—a)(n +up-1)— (73 + u3e—1)

0+
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+ [flt + €9t + 0065;] - 0(L)€5¢.

B
B+1

and then move one-period forward to get

mrey, = B(1—a)(n +uy) — 3 f o (73 + uae)
+ﬁ_?-_i [€1641 + €041 + Oo€sey1] — O(L)e€serr-

Take expectation conditional on information available at time ¢ to get

mryr = B (1 —a) (1 +uye) —

657 (73 +use) — C (L) €se

where ¢ (L) = [ (L) — 6p) L~". Subtracting (b.5) from (b.4) we have

Au:;g +

mrt-—ﬁ'ﬁ‘t.,.l = —ﬂ(l—a)AU1¢+6+7 ,B+1

(€1t + €2t)

+9 (L) €s¢

where ¢ (L) = ( (L) — 0 (L) + 3276o. Now (b.3) follows immediately as

re—m—mry+mre, = 72— [ (1—a)lu,+ Ausy,

o+
+

g+1

(elt + 62:) + ’l//' (L) €5t + ¢ (L) €6t

(3.14)



APPENDIX C
DATA SOURCES AND DEFINITIONS

All data are obtained from Citibase database except for M2 nominal balances
data between 1951:1 and 1958:4 and nominal wages data. Certain data may be
monthly from the data source and are averaged to form their quarterly counterparts.

Data spans from 1951:1 to 1994:4 and are seasonally adjusted.

The three real measures examined in this study, real output, real balances and
real wages can be derived from subtracting the price deflator form their respective
nominal measures. The price deflator is in turn derived by subtracting the real

output from the nominal output measure, as described in detail below.
Real output (y) is defined as the real domestic product minus the real gov-
ernment purchase. Using the Citibase symbols, it is
y = In(GDPQ — GGEQ).
Both GDPQ and GGEQ are measured in 1987 dollar value.

To calculate the price deflator we need the measure of the nominal output
which is defined as the logarithm of nominal GDP minus the nominal government
purchase, or In(GDP-GGE) in symbols. The price deflator (p) is calculated accord-

ing to

_ 1, (_GDP—GGE
P="1\ GDPQ - GGEQ

and note p = 0 in 1987.
All series have been converted to their natural logarithm except for the nom-

inal interest rate data.

The source of the nominal money supply data is the monthly Citibase M2
series which is available for 1959:1-1994:12. The M2 series for the period 1951:1-

1958:12 is provided by Professor Robert Rasche. He estimated the series based
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on data reported in Banking and Monetary Statistics: 1941-1970 published by the
Board of Governors of the Federal Reserve System in 1976. The complete monthly
series are then averaged to obtain the quarterly observations. The real money bal-
ances (mr) is defined as

mr = In (M2) — p.

The source of the nominal wage data is the monthly average hourly earnings
of production workers in the manufacturing sector (Series ID EES0000006) available
from the Bureau of Labor Statistics. The reason of this particular series being chosen
is because it has complete observations of the sample period studied. The monthly
data is then averaged to derive the quarterly nominal wages (W). The quarterly
real wages is defined as

wr =In (W) —p.

The source of the nominal interest rate is the monthly observations of the
3-month Treasury Bill rate (FYGMS3) in the secondary market measured in annual
percentage. It is not seasonally adjusted. The quarterly nominal interest rate (R)

is just the quarterly average of the monthly series.

Finally, following King et al. (1991), price inflation (7) is measured in annual

percentage rate according to

m =400 X (p; — pe-1) -
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