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ABSTRACT

ANALYSIS OF THE LIGHT CURVES OF

TEN ECLIPSING BINARY SYSTEMS

By

Deanne Dorothy Proctor

Computer programs for the Fourier analysis, rectification, and

solution of eclipsing binary light curves have been written. Both

Kopal's method and the method of differential corrections have been

generalized to include third light. The method of differential cor-

rections has been further generalized to include orbital eccentricity

directly.

Synthetic light curves were used to validate the computer pro-

grams, as well as to determine the effect of dispersion and number of

observations on the ability to extract the desired parameters. Analy-

sis of synthetic data indicated limb-darkening coefficients may be

extracted from observations of sufficient accuracy and density. This

conclusion was found to hold for partial as well as completely eclips-

ing systems. In addition, it has been found possible to extract

values of third light. In some cases, however, correlation between

parameters, combined with observations of insufficient quality or

quantity, may prevent convergence.

The data from 10 eclipsing binary systems have been rectified and

subsequently analyzed using differential corrections. The systems are

C0 Lacertae, CM Lacertae, RX Arietis, V338 Herculis, Y Leonis, RW Mono-

cerotis, BR Cygni, BV 430, BV 412, and SW Lyncis.

It was often found necessary to solve the light curves for each

combination of assumptions as to type of primary minimum (occultation
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or transit) and possible presence of third light. Calculation and com-

parison of o(est.) and o(ca1.), the estimated and calculated standard

deviations, proved valuable in the determination of convergence.

Equality of the standard deviation of the Fourier analysis and the

standard deviation of the entire light curve, to within their probable

errors, indicated the adequacy of the fit for each curve. For those

light curves for which b was varied, choice of b, the exponent of the

light in the weight, did not seem to cause significant change in the

parameters obtained.

Convergence of the iterative procedure was obtained for the sys-

tems C0 Lacertae, CM Lacertae, RX Arietis, and Y Leonis. Convergence

for the V curves of BV 412 and BV 430 was also satisfactory. However,

convergence of the B curves of these two systems was obtained only if

the number of variables included in the differential corrections was

limited to six. V338 Herculis and RW Monocerotis exhibited satisfactory

convergence; however, the standard deviations of the Fourier analyses

for these light curves were not in good agreement with the respective

standard deviations obtained from the differential corrections analysis.

The V light curves of BR Cygni and SW Lyncis exhibited satisfactory

convergence. The B light curves did not. Further observation of V338

Herculis, RW Monocerotis, BR Cygni, and SW Lyncis is recommended.

0f the ten systems studied, two (C0 Lacertae and BR Cygni) showed

evidence of third light.

Limb-darkening coefficients resulting from the analyses are com-

pared to the theoretical values. Results for limb-darkening coef-

ficients in V show satisfactory agreement with theory, while limb-

darkening coefficients in 8 show more scatter.
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I. INTRODUCTION

A. Historical Aspects
 

The term double star is generally applied to pairs of stars that

appear single to the unaided eye, but are resolvable with the aid of

a telescope. The discovery of the first double star, around 1650,

was made by Riccioli (Aitken 1964, p. 1). Several dozen double stars

were discovered in the following century and in 1767 it was first

suggested that the phenomenon was due to something other than chance

projection. John Michell (1767) suggested actual physical association

of the members of some double stars. This was confirmed 36 years later

by William Herschel. Herschel (1803) presented results of measurements

and analyses of the relative position of the components of six double

stars. He concluded that certain double stars are true binary systems,

that is, systems of physically associated stars. At present we have

calculations for the orbits of over 500 such systems. (The catalogue

of Baize (1950) contains calculated orbits for 252 visual binaries.)

Stars exhibiting variation in brightness had been observed for

hundreds of years when, in 1783, John Goodricke suggested an eclipsing

nature for some of the variables. In that year Goodricke reported

observing periodic minima in the light of Algol and suggested that

the cause of the loss of light was the interposition of a body revolv-

ing around Algol. Proof of the binary nature of Algol came with

spectroscopic investigations of radial velocities. Dappler in 1842

presented his formula for the shift in the wavelength of light as a

function of relative velocity of the source and observer. Then,



Vogel (1889) observed the periodic shifting of the radial velocity of

Algol and noted that the times of conjunction obtained from the radial

velocity curve coincided with the minima of light.

Estimates for the percentage of double or multiple stars in the

vicinity of the solar system range from 30 to 50% of the total popula-

tion (Kuiper 1935). No preferential orientation has been found for

the inclination of the orbital planes for binary stars (Chang 1929,

Finsen 1933, Huang and Wade 1966). Based on this assumption, the prob-

ability' P of a system having an inclination between 11 and 12 is

P - cos 11 - cos 12 (1.1)

(Binnendijk 1970). Eclipsing binaries should not be uncommon. As of

1968, over 20,000 variable stars had been catalogued. Of those stars,

4062 have been classified as eclipsing binaries (Kukarkin et. a1.

1969). (The catalogue of Koch, Plavec, and Wood (1970) contains the

results of the analysis of 216 eclipsing binary systems.)

From observations of the light of an eclipsing binary as a

function of time it is possible to extract information regarding the

physical and geometrical prOperties of the system. This is done by

adopting a physically reasonable model and expressing the theoretical

value of the light as a function of time in terms of the related para-

meters. The parameters of the model are then adjusted to obtain the

best fit between the theoretical light curve and the observed light

curve. The model is discussed in the next section.



B. Discussion of Model

The members of a binary system are distorted by tidal action and

rotation. As a first approximation, each component may be regarded as

a tri-axial ellipsoid (Jeans 1928, p. 225). The adopted model for the

binary system consists of a pair of similar tri-axial ellipsoids. The

errors introduced by the assumption of similarity will be discussed

later in this section.

Let a8, b8' and c8 be the axes of the larger star and as, b8 and

c8 be the axes of the smaller star, each expressed in terms of the sep-

aration of the components as unit of length. The axes a8 and as are

taken along the line joining the centers of the components, the axes

c and c are taken as the polar axes or axes of rotation, and the axes
g 3

b8 and be are the remaining axes. The axes c8 and c8 are assumed par-

allel to the orbital angular momentum vector. Assuming the axes of

rotation constant in magnitude and direction, their projections, as

viewed by the observer, are constant. It has been shown by Russell

(1945) that, for a particular form of the surface brightness, the light

observed for a pair of similar tri-axial ellipsoids (axes as, be, c8

and as, bs’ c3) with orbital inclination i is the same as would be

observed for a pair of similar oblate spheroids (axes as, b8, b8 and

as, ha, be) with inclination j, where

2 2
c c

tanzj = -37 tanzi = J: tanzi . (1'2)
b8 b8

The form of the apparent surface brightness assumed is



n

va) .. (99%1] . (1.3)

where J(y) is the apparent surface brightness, y is the angle of fore-

shortening (the angle between the normal to the surface of the star

and the line of sight), H is the perpendicular distance from the center

of the star to the tangent plane of the point under consideration, and

n is unrestricted. This form of apparent surface brightness is con-

sistent with the theoretical form described later. Thus there is no

loss of generality in replacing the model of similar tri-axial ellip-

soids with the model of similar oblate spheroids of axes a8, b8, b8

and as, bs’ b8 and orbital inclination j, where j is given by equation

(1.2).

The assumption of similarity (equal oblateness) of the equatorial

forms is not an unreasonable first approximation. The dynamical

theory of equilibrium gives

(1.4)

where m8 is the mass of the star of larger radius, m8 is the mass of

the star of smaller radius, and Kg is a function of the variation of

density with radius that does not exceed 0.02 in any well-determined

case (Russell and Merrill 1952, p. 40). The quantity is is defined by

E83 - a b c . (1.5)
8 8 8

Corresponding expressions hold for the smaller star.

Defining the oblateness of the equatorial shape as



0
1

we have

a m 2 i 3

65 mg is . (1.7)

For main-sequence stars the mass-radius relation (Russell and Moore

1940, p. 112) gives

50

e .1

g mg'6'” ii" (1.9)

5 S

and the oblateness ratio is a weak function of the mass ratio.

The assumption of similarity of the polar flattening is perhaps

less justified. Russell and Merrill (1952, p. 40) give

_£_£_ = _£__$_ {.83 (1+2Kg)wg2 , (1.10)

where mg is the ratio of angular velocity of rotation to angular veloc-

ity of revolution for the larger component. A corresponding expression

holds for the smaller star. Define the oblateness for the polar flat-

tening as

b-c

n - —b— o (1011)

Then, if the stars are taken to have synchronous rotation and revolu—

tion (Koch, Olson, and Yoss 1965 and Olson 1968)



(1.12)

The assumption of similarity of shape is seen to be best for

components of nearly equal mass. If the masses are reasonably similar

and the radii are less than one third of the separation of centers of

the components, the departure from spherical shape will not be more

than a few percent.

Consider the errors resulting from the assumption of similarity

of shape. From equation (1.2)

3 - tan'1( E-tan i), (1.13)

 

so

_£§L_- tan i

d(%) 1 + [gjztanzi ’ (1'14)

Thus

1 -A. .T HE) , (1.15)
5) tan 1

where Aj is the error in j resulting from an error of A[§) in (E).

Assuming the error in (g) resulting from the assumption of similarity

of shape is no greater than the difference of the values of (g) for

each star we have

(1.16)

 



or

A(%) < Ing-nsl . (1.17)

Thus for the error in the inclination

1

Aj < ———-—c2 . Ing'nsl

(5) tan 1 . (1.18)

Next, considering the error in b we have, from equation (1.6), that

b - a(l-s) , (1.19)

so

Ab - aAs , (1.20)

where Ab is the error in b resulting from an error As in the equatorial

oblateness. Again assuming that the error in the oblateness caused by

assuming similarity of shape is less than the difference between the

values of oblateness for each star, we have

Ab < slag-68' , (1.21)

or

0
m

m
1
.
.
.

Ab < as 1

  (1.22)

As an example consider a system with components ag - .25, a8 - .20,

and i . 76'. From equation (1.4) and equation (1.10) values of the

oblateness for this system are as - es - .017, n - .014, ns - .010.

8

Then from equations (1.8), (1.19), and (1.22) we have Aj < .06' and

Ab < .0002. These errors in the inclination and radii are to be compared



with the corresponding errors resulting from observational error in

the light. For a synthetic light curve of approximately 800 points

and a standard deviation in the light values of $2, the standard devi-

ation in the inclination is approximately 0.1° and the standard deviation

in the radii is approximately .0006 (Linnell and Proctor 1970a). Light

curves discussed in Chapter V of this work typically have 400 obser-

vations and standard deviations in the light of 22. The errors in the

inclination and radii due to observational errors are correspondingly

greater for these curves. Typically the standard deviation in the

inclination is 0.2' and the standard deviation in the radii is .004.

Comparing these values with the values Aj < .06° and b < .0002, we see

that errors in assuming similarity of shape are less than the errors

resulting from observational scatter in the light.

C. Review of Notation and Units

Based on the discussion of the previous section, we substitute

for the similar tri-axial ellipsoids with inclination i, the mathe-

matically equivalent prolate spheroids with inclination j. The latter

form is called the Russell Model. Reflection from each star will also

be included. Providing for the possibility of excess or uneclipsed

third light, light curves based on this model may then be considered

a function of fourteen parameters and the time. These parameters are

as follows:

rg - semi-major axis, larger star

r - semi-major axis, smaller star

j - inclination of plane of orbit of

equivalent oblate spheroids



L - light of larger star

L - light of smaller star

L3 - excess uneclipsed light, third light

x - limb-darkening coefficient, larger star

8

x8 - limb-darkening coefficient, smaller star

to - time of minimum projected distance of

centers during primary minimum

e - eccentricity of orbit

w - longitude of periastron

e - oblateness of ellipsoids

S S - parameters related to the light reflected

from the cooler and hotter stars.

We note that for orbits of small eccentricity (e s .02) the change

in the oblateness due to the variation in distance between the com-

ponents is at most of the same order of magnitude as the error occuring

due to the assumption of similarity of the components. We thus take

the unit of length to be constant and equal to so, the semi-major axis

of the orbit.

The unit of light intensity, U, is defined initially as

U . Lg+Ls+L3 (1.23)

It is customary to normalize the light such that U - 1, so

u n
Lg +Ls 1 . (1.24)
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where

L n - L /(U-L ) (1.25)

s s 3

and

L8“ - Ls/(U-L3) . (1.26)

Third light may arise from an unresolved third companion, from gas

streams, or from gas shells in the system. Alternatively, the source

of excess light may not be physically associated with the binary system.

A field star may be of such small angular displacement from the system

that its light cannot be eliminated from the measurements. Koch (1970)

gives a discussion of sources of third light.

Diagrams of the orbital parameters are given in Figure l and

Figure 2. The angle 0 is the position angle of the nodal point between

0' and 180°. It cannot be determined from the light curve. Note that

for the orbital parameters the convention used is that of spectroscopic

notation. The primary is moving about the secondary and w is measured

from the ascending node, the node at which the star is moving away from

the observer (Aitken 1964, p. 154). Observations do not give the sign

of the inclination and therefore do not tell the quadrant. The angle

6 is the phase angle measured in the plane of the orbit from the time

of conjunction (primary minimum). The angle 0, called the true anomaly,

is measured from periastron in the plane of the orbit and in the direc-

tion of motion of the primary. Thus we have the relation

0

e - 0+w-90 . (1.27)

The limb-darkening coefficients are parameters in an expression

giving the distribution of brightness over the apparent projected



11

Observer

Al

    

 

Plane of true orbit

Periastron
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Figure 2. Orbital parameters for the true orbit.
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stellar disks. This variation is due to both the finite optical depths

of the atmospheres and the variation of temperature with depth in the

atmosphere. Thus the apparent surface brightness depends on the angle

of foreshortening. For a given wavelength the adapted form of the

expression for apparent surface brightness J(y) is

J(y) I J(0)(l - x + x cos y) , (1.28)

where y is the angle of foreshortening, J(0) is the surface intensity

at the center of the projected disk, and x is the limb-darkening coef-

ficient. The values of x are restricted such that

- 1 s x 5 1 . (1.29)

The expression for apparent surface brightness is an approximation

linear in the limb-darkening coefficient. Comparison of the first

order theoretical values of x (Munch and Chandrasekhar 1949) with those

produced by the third order theory of Kopal (1959 p. 160) indicate

that over the wavelengths covered by the UBV system, the maximum dis-

crepancy in the values of x is about 0.03. This error is comparable

with the probable error in x resulting from observational dispersion

in a light curve of 800 points and observational scatter of £2 (Linnell

and Proctor 1970a). However, for the observed light curves treated in

Chapter V of this work the probable errors in x are typically three to

four times as great. Until more accurate curves containing greater

numbers of observations are available, use of equation (1.28) is an

adequate approximation.

In general, x is expected to be a function of the wavelength of

observation, atmospheric absorption coefficients, and the effective
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temperature of the star (Kopal 1959, p. 159). (A derivation of the

limb-darkening law, equation (1.28), is given in Appendix A.) A com-

pletely theoretical determination of x involves knowledge of the

chemical and physical processes occuring in the atmosphere. Model

stellar atmospheres and their effective linear limb-darkening coef-

ficients are discussed by Grygar (1965), Gingerich (1966), Margrave

(1969), and Parsons (1971). These theoretical values of limb darken-

ing can be compared with observed values.

D. Statement of Problem

The continual change in the size of the apparent projected area

of the spheroidal stars as a function of phase angle results in a

variation of the light received by an observer. The amount of light

reflected from each star in the direction of the observer also changes

as a function of phase angle. Schematic light curves showing the

effects of oblateness and reflection are shown in Figure 5 and Figure 6.

Estimates of the oblateness and ratio of reflected lights can be

obtained from information resulting from Fourier analysis of the non-

eclipse variation combined with knowledge of the spectral type of the

primary and the ratio of the depths of eclipse. The oblateness and

ratio of reflected lights are used to transform the curve from that

of similar spheroids to that of certain equivalent spheres, in a manner

to be described later. This transformation process is called recti-

fication. The underlying reason for rectification is that this trans-

formation eliminates the necessity to tabulate or calculate special

functions for every value of oblateness and ratio of reflected light.

Each light curve can be transformed to its equivalent Spherical Model
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light curve and functions for the Spherical Model can then be used.

We also note that the Spherical Model is the limiting case of zero

"interaction" between the components.

An initial value of to is generally available in the literature,

along with P, the period of the orbit. Observations of minima over

several years allow very accurate period determinations.

The geometric parameters, lights of each star, and limb-darkening

coefficients remain to be determined. Various methods have been devised

for the analysis of the Spherical Model light curve, the method com-

monly employed being the graphical one of Russell and Merrill (1952).

The method of Russell and Merrill was initially designed to provide

preliminary estimates of the parameters (Russell and Merrill 1952,

p. 27). Subsequent modifications of the method can be applied to pro-

duce parameters of greater weight (Russell and Merrill 1952 p. 58).

Certain specifically chosen points are taken from a free-hand curve

drawn through the observations. Thus each observation is not, in

general, given equal weight in the solution. However, for visual,

photographic, and photometric observations with probable errors of a

single observation commonly 42, this method produces parameters that

satisfactorily fit the light curves. Values of limb-darkening coef-

ficients are assumed in this method of solution. For modern photo~

electric light curves, probable errors of a single observation of 82

are not uncommon. It is likely that an analytic method of solution

can extract more information from the data. In particular, limb-

darkening coefficients and probable errors of the parameters are

desired. Solution by computer is desirable to handle the large

amounts of data used in the more rigorous methods.
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E. Previous Work
 

Some of the earliest attempts at utilization of a computer includ-

ed those of Hamid, Buffer and Kapal (1951) on RZ Cassiopeiae and Buffer

and Collins (1962) on S Cancri and AR Cassiopeiae. Kopal's Second

Method (1959) was used. A maximum of six parameters were determined.

These were r8, r8, 1, A (depth of eclipse), x (limb-darkening coef-

ficient of eclipsed star), and U (unit of light). In the Huffer and

Collins analysis of S Cancri and AR Cassiopeiae corrections to the

limb-darkening coefficient and its probable error were suspiciously

small.

Jurkevich (1964) and West (1965) also programmed Kopal's Second

Method. Neither included corrections to the depths of eclipse, unit

of light, or limb-darkening coefficients, although West did examine

variance as a function of successive values of limb-darkening.

Tabachnik (1969) programmed Kapal's First Method (1959, p. 319).

Tabachnik minimizes a variance which is a function of x, the appro-

priate limb-darkening coefficient, and k, the ratio of radii. In

principle the method allows for corrections to the depths of eclipse

and unit of light, but, in the published results not all of the

variables were included simultaneously.

Wilson (1969) presented an ingenious method for finding limb-

darkening coefficients by enforcing a condition between the coef-

ficients for the larger and smaller components at corresponding

phases (9,6+180‘). This method though is rather restricted. It

requires completely eclipsing systems, small, well-known eccentricity

and absence of third light. One of the eclipses must be represented

piecewise by an analytic series. A computer is useful for the method.
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Kitamura (1965) developed a procedure involving the Fourier trans-

form of the light curve. It provides uniform treatment of partial,

total, and annular eclipses. The method also determines whether the

rectification process is satisfactory and whether the rectified light

curve is acceptably represented by the eclipse effect alone. Kitamura

ultimately resorts to the method of differential corrections for his

final analysis.

F. Purpose
 

The purpose of this study is to extend and. apply the equations

involved in the differential corrections method and Kopal's Second

Method. Both approaches are generalized to allow for the possibility

of excess or uneclipsed third light. In the case of differential

corrections, the effects of orbital eccentricity are explicitly in-

cluded. Previously, light curves were analyzed for "fictitious" circular

elements. These fictitious elements could be transformed to the true

elements if values of the eccentricity and longitude of periastron

were available. The results were good to second or third order in e,

the orbital eccentricity (Kopal 1950, p. 106ff).

The requisite equations for rectification and analysis are de-

scribed in Chapter 11. Chapter III provides a brief description of

the programs and Chapter IV describes the validation of the programs

using synthetic light curves. Finally, Chapter V contains the results

of analysis of published observations for 10 eclipsing binary systems.

The systems considered are relatively well-separated systems, thus the

relations discussed in Part B of this chapter should provide good first

approxflmations.



II. METHOD

It is necessary to calculate the theoretical light intensity seen

by a distant observer for a spheroidal star as a function of phase angle

6. The effects of limb darkening, gravity darkening, and reflection

will first be considered individually in Section A. In Section B of

this chapter the rectification equations are discussed. Sections A and

B thus relate to the formal properties of the Russell Model. Details

of the analysis procedure begin in Section C.

A. Theoretical Light Intensities
 

The form of the limb-darkening law of apparent surface brightness

allows calculation of xi, the light from a limb-darkened star, as a

linear combination of 2”, the light of a uniformly bright star (x=0.0),

and in, the light of a completely limb-darkened star (x=1.0). The

apparent surface brightness J(y) at y is

ch) = J(O)(l - x +'x cos y) , (2.1)

where y is the angle between the normal to the surface of the star and

the line of sight and J(0) is the central surface brightness. Thus

x2 = I J(y) cos y do , (2.2)

where do is the surface element, facing the observer, at angle y. So

J(O)(l-x) ] cos y do + J(0) x [ coszy do (2.3a)

D (2.3b)

2
o

I
I

(1-x) in + x 2

where

17
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1
0

l
l

J(0) f cos y do (2.4)

and

2D
J(O) f coszy do . (2.5)

The derivations below follow the presentation of Binnendijk (1960,

p. 290ff), with minor changes in notation.

1. Oblate star, uniform brightness

For the uniformly bright star we may calculate t” by multiplying

the surface brightness J(0) by the apparent projected area AP of the

star. Thus

z
-
o

I
I

J(0) f cos y do (2.6a)

J(0) Ap . (2.61))

The orbital geometry is given in Figure 3. (In Figure 3 the plane

containing the angle (90-j) is perpendicular to the line of nodes.)

The ellipsoid has axes a, b, and b, with major axis along the line of

centers. The projected ellipse has axes d and b. Figure 4 is a view

of the components in the plane of the orbit.

Primary

. Primary

Orbit A ¢ d

Secondary

4

Secondary SQ

Observer Observer

    

 

 

 

   
Figure 3. Orbital geometry. Figure 4. Projection of components.
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The value of d is found by requiring that the equation for the inter-

section of the line of sight and the ellipse have a single root. This

gives

a2 sinzo + b2 coszo (2.7a)

a2 (l - ee2 coszo) . (2.7b)

Q
.

ll

Here ee is the eccentricity of the ellipsoid. From the cosine rule

of spherical trigonometry

cos ¢ = sin j cos 9 . (2.8)

Thus we have

AP = ndb (2.9a)

= nab[l - ee2 sinzj c0526)l5 (2.9b)

.2 . 2. 2
= nab(1 - gee SIn 3 cos 6) (2.9c)

to first order in e62. For small ee we have for the oblateness s

e = (a - b)/a = l - (l - eez)l5 (2.10a)

(2.10b)

Substituting equation (2.9c) in equation (2.6b) and using equation

(2.10b) we have

£U= J(0)rab(l-e sinzj c0526) (2.11s)

= £U(90)[l-e sinzj c0526) . (2.11b)

where £U(90), the light at quadrature, is

2U(9o) = J(0)nab . (2.12)



 
c-

Us

~
‘
.
'
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2. Oblate star, complete darkening

Evaluation of the integral in equation (2.5) to first order in 5

results in

D 2 1 3 . 2. 2
2 = 3-(1 + §-5)rabJ(O)(l - §-€ s1n 3 cos 8) (2-133)

2 1D(9o)(1 - g-e sinzj c0526) (2.13b)

where

D 2 l
2 (90) = 3-(1 + g-e)wabJ(O) (2.14)

(Binnendijk 1960, p. 301).

3. Oblate star, intermediate darkening

For intermediate limb darkening of an oblate star

(1 - x)tU + xiD (2.15s)1
0

II
I
2 (1 - x)gU(90)(1 - e sinzj c0526)

 

 

+x20(90)(1 - g-s sinzj c0526) , (2.15b)

50

X

x 2 = l - f(x) 6 sinzj c0526 , (2.16)

1(90)

where

(1-x)2”(90) + % x20(90)
f(x) = u D (2.17)

(l-x)£ (90) + xi (90)

and

x1(90) = (1 - x)1”(9o) + xtD(9o) . (2.18)
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With equation (2.12) and equation (2.14)

 

 

D

2 (90) = 3 (1 + .1. a) (2.19)
U 3 5 ,

2 (90)

and to first order in 6

x2 15+ 2 2
x = l - --—--’-(—s sin j cos 6 (2.20)

g(90) lS-Sx

This variation is shown schematically in Figure 5.

  

270° 0° 90° 180° 2700

Figure 5.

Schematic light curve with influence of oblateness.

4. Oblate star, gravity darkening

Von Zeipel (1924) first demonstrated the prOportionality of the

emergent flux and local gravity at a point on the surface of a star.

This relation has also been derived by Chandrasekhar (1933). Let H

be the intensity of the total radiation emergent normally from the

atmosphere and let 3 be the local surface gravity. Then
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I
l
l
:

=§—=1-(1-3—)
o 0 go , (2.21)

where go is the mean surface gravity and H0 is the correSponding inten-

sity. Proof of Equation (2.21) along with the assumptions involved is

given in Appendix B. Kopal (1959, p. 172) has shown that, assuming

stars radiate like black bodies, the surface brightness at wavelength

A will be
3
'
;

u

H

l

‘
<

”
,
3

I

I
f

(2.22)

O

0
0

O U

where y, the gravity darkening coefficient, is a function of wavelength

and effective temperature. Integration of equation (2.22) over the

surface of the star gives the light variation associated with local

gravity,

 

. 2. 2

y1(90) - l - (l + y) s 51n J cos 6 . (2.23)

Again y11.(90) is the light at quadrature.

5. Reflection

Let Lh and Lc be the intrinsic luminosities of the hotter and

cooler stars re5pectively. Let 2 Sh be the total amount of light

reflected from the hotter star and let 2 Sc be the total amount of

light reflected from the cooler star. If stars reflected light like

mirrors the light outside of eclipse would be

2 = Lh + Sh(l + cos e) + Lc + Sc(l - cos ¢) , (2.24)

Where 9 is the angle between the line of sight and the line of centers
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of the stars in space. The difference in sign for the cosine terms

is a result of the difference in phase of r between the components.

Thus we may write

1 = Lh + 2.5 Sh f(¢) + Lc + 2.5 Sc f(¢+n) , (2.25)

where for "mirror-like" stars

2

f(¢) = g-(l + cos ¢) . (2.26)

The normalization of the phase function, equation (2.26), is chosen

so that the form for "mirror-like" stars may be compared to the form

generally adOpted.

Rigorous calculation of f(¢) for more physically realistic models

of reflection is extremely complicated. The form generally adOpted is

f(¢) = 0.2 + 0.4 cos o + 0.2 coszo , (2.27)

where

cos ¢ = sin j cos 6 . (2.28)

(See Russell and Merrill 1952, p. 44.) Then

t=(Lc.Lh)+%—(sc+sh) - (Sc-sh)cos¢

+ é-(sc + sh) coszo . (2.29)

This variation is shown schematically in Figure 6.
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270 0 90 180 270

Figure 6. Schematic light curve with influence of reflection.

6. Combined effects

The combined effects of reflection, oblateness, limb-darkening

and gravity darkening produce for the light received from both stars

outside eclipse,

. 2. 2 1

L - 2(90)(1 - N e s1n 3 cos 6) + 2'(Sc + Sh)

' O O 1 O 2 O 2

- (Sc - Sh) 51n 3 cos 8 + -2--(SC + Sh) s1n J cos 8 ,

(2.30)

where

15 +_ X

N — ————15_ 5X (1 + y) , (2.31)

and 2(90) is the sum of two terms of the form of equation (2.18), one

fer each star. It has been assumed for the purpose of rectification

that thelimb-darkening and gravity darkening are the same for both

stars .
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B. Rectification
 

The result desired from rectification is the elimination of the

variation in the light curve due to reflection and oblateness in such

a manner as to retain the physical meaning associated with the parameters

of the model.

If £(obs.) is the observed light value at phase angle 6 and 2 is

the corresponding theoretical light value, then we may write

£(obs.) = i + 62 (2.32)

where 62 is the associated observational error. For points outside

eclipse 2 is given by equation (2.30), so that to first order in e

. 2. 2 1

£(obs.) = 2(90)[l - N e $1n 3 cos 8] + 2'(Sc + Sh)

- (SC - Sh) $1n 3 cos 6

1 . 2. 2
+ 2 (Sc + Sh) $1n 3 cos 8 + 62 . (2-33)

1. Rectification for reflection

From equation (2.29) and equation (2.33) it is seen that the light

from the cooler and hotter stars may be symmetrized by the addition of

the quantities of light ARC and A2 where
h,

At = 1-S + S sin j cos 8 + 1-S sinzj c0526 (2 34a)
c 2 c c 2 c '

and

A2 = 2-S - S sin j cos 8 + 1-S sinzj c0526 (2 34b)
h 2 h h 2 h ’ '

Thus if 2(obs.) is the observed light at phase angle 6,then firp’ the

observed light partially rectified for reflection,may be defined as



26

__ 1 . .
zrp - £(obs.) + 2'(Sc+sh) + (Sc-Sh) $1n 3 cos 6

1 . 2. 2
+ §.(Sc+sh) $1n 3 cos 6 . (2.35)

In effect, this partial rectification adds sufficient luminosity to

the outer faces to bring them to equality with the illuminated sides.

It thus provides completely illuminated stars at all phase angles.

While the above rectification is exact for the non-eclipse portion of

the light curve, no sensible error occurs by continuing its application

right through eclipse (Russell and Merrill 1952, p. 48). Note that zrp

still varies as a function of phase angle. This is due to the "non-

mirror like" quality of the reflection. We can eliminate this variation

and complete the rectification for reflection by division as follows:

2

2 = m
. 2. 2

(Lg+Ls)+(Sc+Sh)+(Sc+Sh) $1n 3 cos 6

1 . . 1 . 2. 2

2(obs.)+2(Sc+8h)+(Sc~Sh)51n 3 cos 8 +§(Sc+Sh)s1n 3 cos 6

 = (2.36)

O 2 O 2

(Lg+LS)+(Sc+Sh)+(Sc+Sh)51n 3 cos 6 ,

where we have used the substitution

2(90) = Lg + Ls . (2.37)

The denominator of the right-hand side of equation (2.36) has been

determined by the combination of equation (2.33) and equation (2.35),
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2. Rectification for oblateness

To eliminate the non-eclipse variation due to oblateness, the light

at 6 is divided by the appr0priate value of (l - N e sinzj c0526). The

quantity N e sinzj is known as the photometric ellipticity. Thus if

2 and Ac r h r are the lights of the cooler and hotter stars rectified

3 a

for reflection and we define

 

 

  

 

 

 

i
c r

2 = ’ (2.38)

c,rr l - N s sinzj c0526 ’
c c

L
h r

g = ’ (2.39)

h,rr . 21 2
1 - Nheh Sin 3 cos 6 a

the total rectified light grr is

2rr = 2c,rr + 2h,rr (2'40)

2 A

= C’rz 2 + h” 2 2 (2.41)

1 - Neec sin j cos 8 1 - Nheh sin j cos 6

zc r + 2h r
.. 3 9

- -—- . 2. 2 (2'42)

1 - Ne s1n 3 cos 8

2r
= 2.4

-—— . 2. 2 , ( 3)

l - Ne s1n 3 cos 6

where

___ 2 N s + i N 6

N6 = CJr C C h,r h h (2.44)

A + A
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If it is assumed that s = e = e and N = N = N, then
c h c h

TE = Na . (2.45)

3. Light rectification formulas

Combining equation (2.36) and equation (2.43), we have for the

light rectification formula

1 . . l . 2. 2

2(obs.)+§(Sc+Sh)+(Sc-Sh)s1n J cos 6 +§(SC+Sh)51n 3 cos 6

(Sc+sh)sin?j c0526)

Lg+LS+SC+Sh ]

 

rr

 

(Lg+Ls+Sc+Sh)(l-Ne sinzj cosze)[1 +

(2.46)

We note that, excluding observational error, if £(obs.) is the light of

spheroidal stars with reflection and gravity darkening, then the

rectified light is that which would be observed for spherical stars

with Russell Model parameters rg, rs, xg, x5, Lg, L5’ and j. The

variation of the non-eclipse portion of the light curve has been

eliminated. (See Russell 1946, 1948.)

To first order in small quantities (Sc’ Sh’ e) the order of the

rectification for reflection and oblateness is immaterial.

It is necessary to obtain an expression for the rectified light in

terms of empirically determinable quantities. Define

1
DO - 2'(Sc + Sh) , (2.47)

D1 = - (Sc - Sh) sin j , (2.48)

_ 1 . 2.
D2 - i-(Sc + Sh) 51n j . (2.49)

From the theoretical expression for the observed light outside eclipse,

equation (2.30), using equations (2.47), (2.48), and (2.49) we have

the relation



i = £(90)[1 - Ne sinzj cos2

29

2

6) + D0 + D1 cos 8 + D2 cos 6

A Fourier analysis of the non-eclipse variation produces

where

We then have

cos 9 + A cos 29

2

cos 6 + A, c0526 ,

 

2

= A0 ' A2 ’

= 2 A2

D1 = A1 ,

= - l_ S +Sh A1

2 S -S sin ' ’h J

= D0 Sin 3

(2.50)

(2.51s)

(2.515)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

Thus we can empirically determine 0 D and D if we know Sc/Sh'

The procedure for estimating SC/Sh is discussed in Appendix C.

We have that

l . .
5-(Sc+8h) +(Sc-Sh)51n J cos 8

0’ 1’ 2

1 . 2. 2
+ E-(SC+Sh)51n 3 cos 6

2

D0 - 01 cos 8 + D2 cos 9 (2.57)



04.5. r.

.61!

E
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and

(Sc+Sh)sin2j c0528

 

(SC+Sh+Lg+Ls)(l - Ne sinzj c0526) 1 +

L +L +8 +8

g s c h

+ 2 D c0529 (2.588)= 2(90)(1 - Ne sinzj cosze) + 2 D0 2

= (Ad’+ D0) + (A;'+ D2) c0526 , (2.58b)

where we have neglected quantities of second order in Sc’ Sh’ and e,

used equations (2.50) and (2.51b), and equation (2.37). Thus,

substituting from equations(2.57) and (2.58b), equation (2.46) becomes

£(obs.) + DO - D1 cos 9 + D2 c0526

= (2.59)

(A6 + D0) + (A; + D2) c0526

 

rr

We have in equation (2.59) a formula for the rectified light in terms

of empirically determinable quantities.

4. Phase rectification

It is possible to express the geometrical dependence of the

theoretical value of light as a function of two dimensionless variables

(Kopal 1946, p. 24ff). These variables are normally taken to be the

ratio of radii k, where

rs
k = '1':— , (2.60)

8

and the geometrical depth of eclipse p, where

6 - d

9 =74 (2.61)
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In the above formula <18 and d5 are the apparent projected axes along

the projected line of centers and 6 is the projected distance of cen-

ters. From Figure 7 and Figure 8 it can be seen that

62 = 6 2 + 6 2 (2.62)

R2(sin26 sinzj + coszj) . (2.63)

    

I

I6
I

l

 

 

2

_-..,--_.-1

Observer

Figure 7. Orbital geometry for Figure 8. Projection of com-

projected distance of centers. ponents against the sky.

Here R is the separation of the centers of the components

ao(l - e2)

R - (2.64)

1 + e cos(6-w+90)

and so is the semi-major axis of the components (a0 = 1).

External contact of the apparent projected ellipsoids occurs at

p - +1; internal contact occurs at p I -1. An eclipse is called total

or complete if the minimum value (pmin) of the geometrical depth during

eclipse satisfies
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pmin s -1 - (2.65)

An eclipse is called partial if

1 _ pmin s l . (2.66)

For

1 < pmin (2.67)

no eclipse occurs.

We may fit the rectified light with the equation

arr(e) = 2(k.p(e)) . (2.68)

where 2(k,p(e)) is the theoretical light for spherical stars with Russell

Model parameters rg, rs, L8, L , xg, x5, and j at phase angle 6 and

5

geometrical depth

8 - d .

9(6) = —-—-—ii . (2.69)
d
s

The radii project in the same ratio so that

 

 

 

.rs ds

k =T=arr (2.70)

8 8

Using equation (2.63) and equation (2.70)

sinze sinzi + coszj

R 1.-zcos 6 1

9(9) = - E’ (2.71)

1‘ a

s

where

z = 2 e sinzj = e 2 sinzj . (2.72)
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However, with the substitutions

 

 

 

 

. 2

sinzer = 51“ 9 2 (2.73)

1 - z cos 9 ’

2 sinz' - z

sin ir = l- (2.74)

1 - z ’

2 c052'

cos ir = -———4L (2.75)

1 - z ’

we may write the geometrical depth as

RJ sinzer sinzir + coszir -r

pcer) = EL- (2.76)
r .

s

We note that this is the value of p that would be obtained for a pair

of Spherical stars with paremeters rg, r , L , L , x , x , and ir at Dr.

8 5 8 5

Thus we observe that as an alternative to equation (2.68) we may fit

S

the rectified light with the equation

zrrcer) = 2(k.p(er)) (2.77)

where i(k,p(6r)) is the theoretical light for spherical stars with

Spherical Model parameters rg, r , L , L
x .

s g s’ g’ xs, and 1r at phase

angle or. This transformation procedure will be followed.

A summary of the transformations from the tri-axial model to the

spherical model is given in Figure 9.
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Figure 9. Summary of transformation from tri-axial ellipsoid with

reflection, gravity darkening and limb darkening to sphere with

limb darkening.
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C. Fourier Analysis

As a preliminary to rectification, Fourier analysis of the non-

eclipse variation is necessary. Data for light curves are commonly

given in magnitude differences as a fUnction of time, such that

Am = m - mc = -2.5 1og(£(obs.)/£c) , (2.78)

where 111C and 2c are the magnitude and light of the comparison star and

m and £(obs.) are the magnitude and light of the eclipsing system (which

may include excess light from an uneclipsed third source). Thus

-O.4(m-mc) = e-(m-mc)/1.08S73620
9.(obs.)/iC = 10 (2.79)

The method of least squares is used to determine the Fourier coefficients

in the equation

 

1 +2 0 A A
2(Obs.) _ v 3 _ 0 _l_

i - z - 2 + 1 cos 6 + 2 cos 26 + ....

c c c c c

B B

+ Eg-sin 6 + EZ-sin 26 + ---° . (2°80)

c c

3

the phase angle from conjunction at primary minimum. The Fourier

Here AV is the light of the variable, 2 is the excess light and 6 is

analysis is normally carried to terms of order 26. The occurence of

the odd harmonics will be discussed in Section D of this chapter. For

non-eccentric orbits

9=£1(t-t) (281)
P o ’ '

where P is the period of the orbit and t is the time of the observation.

For eccentric orbits Kepler's equation is solved. (See, for example,
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Kopal (1946, p. 94ff).)

Taking 1c as unity and assuming that harmonic terms arise only from

the variable we have

t = A + A cos 6 + A cos 26 + ----

v 0 l 2

+ B1 sin 6 + B2 sin 26 + .... . (2.82)

Thus,

A0 = so - 23 . (2.83)

Merrill (1970) states that conventional least squares analysis, carried

through terms of 26, gives no indication as to the presence or absence

of higher order harmonics in the data. He also demonstrates that

failure to include the cos 36 term can vitiate the resulting estimates

of the reflection effect. On the other hand, inclusion of terms in 36

and higher may diminish the weights of all the coefficients (Russell

and Merrill 1952, p. 53). For these reasons, at least two least squares

Fourier analyses were carried out on the non-eclipse variation of each

light curve studied. The first analysis was the conventional series

carried to terms of order 26. The second analysis included higher

order terms (normally cos 36 and sin 36). From an examination of the

resulting residuals and standard deviations it could be determined

whether or not the inclusion of higher order terms resulted in a sig-

nificant deviation from a normal distribution.

Choice of phase ranges for the non-eclipse variation will be

discussed in Chapter V.
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D. Rectification Procedure

The rectification formula used to transform the light curve to the

equivalent spherical model light curve was adopted from Jurkevich (1964)

and Binnendijk (1960),

ns

£(6)-;;18nsin n6 - 2:3Ancos n6 + DO-Alcos 6 +D2c0526

 2rr(6) = (2.84)

(A6 + D0) + (A; + D2) c0526

where n5 is the number of significant sine terms and nc is the number

of significant cosine terms from equation (2.82). The resultant £rr(6)

is the observed intensity corrected for asymmetry, higher order cosine

terms,.ref1ection, and ellipticity. The higher order cosine terms and

the sine terms as yet have no generally accepted theoretical justifi-

cation. Their presence in the rectification formula represents an

empirical correction. The various constants.in the rectification

formula are calculated from the Fourier coefficients, obtained from the

outside-eclipse variation, and an estimate of the ratio of the reflected

lights Sc/Sh° As discussed in Section B of this chapter

 

I

AO - A0 - A2 , (2.85)

A2 = 2 A2 , (2.86)

(S + S ) A
_ l _ 1 c h 1

D0 - §.(s + Sh) - - 5- (2.87)

(Sc - Sh) sin j ’

D = A1 = -(Sc - sh) sin j , (2.88)

_ l . 2. _ . 2.
D2 - -2--(Sc + Sh) s1n j - D0 s1n j . (2.89)

we thus require an estimate for Sc/Sh'

For bolometric observations we may make the approximation
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S
_c_

Sh

where Ih/Ic is the ratio of surface luminosities (Binnendijk 1960,

Ih Depth of Primary 1 - 2r(0)

a __.= = ————————- (2.90)

I

c

 

Depth of Secondary l - 2r(n) ’

p. 313). For observations taken at an effective wavelength A it is

necessary to include the effect of luminous efficiency when calculating

Sc/Sh° Russell and Merrill (1952) provide a method of graphically

evaluating Sc/Sh' For computer reduction, the required equations are

given by Jurkevich (1964). The discussion presented by Jurkevich

contains errors of a typographical nature. For this reason and for

completeness the deve10pment is reproduced in Appendix C.

As discussed in Section 8.4 of this chapter, it is necessary to

rectify the phase angles to complete the transformation from the ellip-

soidal model to the spherical model light curve. From Jurkevich (1964,

p. 139), correcting the typographical error

 

 

 

 

 

sin 6r = Sln 6 (2.91)

J1 - z c0526

and

cos 6 =J 1 - z cos 6 (2.92)
r 2

l - z cos 6 ,

where

D AI
2 ' 2

2 —7w———-

A0 ' 0
z I (2.93)

15+x

ISZSR (1*Y)

Here the limb-darkening coefficient x and the gravity darkening coef-

ficient y have been taken as the same for both stars. For the initial

rectification, theoretical values for the brighter component may be used.
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For computational purposes equations (2.91) and (2.92) may be combined

to give

_1 sin 6r

9r = 2 ta“ more: ”-943

In this process the inclination has been transformed as well, so that

cos i = 33-1-3- (2.95)

71 - z ’

sinzj - z
Sln 11‘ = r—l—:'T . (2.96)

The (irr’er) data may now be analyzed according to the Spherical Model.

E. Effect of Third Light on Rectification

It is necessary to consider the effect of third light in the

rectification of the light curve. Let

ns nc

. 2

R(6) - -) Bn51n n6 - E An cos n6 + D0 - Al cos 6 + D2 cos 6 (2.97)

n=l n=3

and

I 2

E(6) — (Ao - A2 + D0) + (A2 + D2) cos 6 . (2.98)

Then

2v + R(6)

2. =9. (6) =-——-—-— (2°99)

And we have
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2.
3

z + .2 + 1 + R(6)
3rr E(6) ___= v a l + R(6) (2.100)

3 O

———-— E6 +9. E6 +2,E(6) () 3 c) 3

Define

a: 2'3

£3 = -———— (2.101)

E(6)

and

2.

z * = 1 + —--31—-—— (2.102)
C E(6)

Then

* *

2 = 2rr+ £3

rr 2c

ns nc 2

2-23 B»Sin n6 —I: A cos n6 + D - A cos 6 + D cos 6

n=1 n n=3 n O l 2 2 10

. 2 (° 3)
(so - A2 + D0) + (A2 + D2) cos 6

Thus we see that use of the rectification formula, equation (2.84)

produces rectified light where, if there is excess light, the rectified

* *

excess light 23 and the rectified scale factor 2c are slightly variable.

For light curves of the "Algol" type this variation is in general less

*

may bethan 1% during eclipse. Thus, for a first approximation, Arr

*

analyzed as though 23 and 2,: were constant, say by the method of

iterative differential corrections. From this analysis we obtain an

'k

estimate of 23 and we may solve for £3
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i 2'3

t = , 2 (2.104)

(80 - £3 - A2 + 00) + (A2 + D2) cos 6 ,

 

2' I

t = -———£L——-— (a - A + D ) + (A + D ) c0526 (2.105)

* O 2 2 2 2 .
(l + £3 )

With this estimate of 13 we may use equation (2.83) for A0 and eliminate

the excess light during rectification.

From equation (2.93) we have

D2 - A2

A: - D

s = ——£L——-11— (2.106)

N sinzj

and it can be seen that failure to exclude the excess light results

in an under-estimation of the oblateness. Note, however, that for the

systems discussed in Chapter V, that unless the excess light is a major

fraction of the light of the system, failure to take it into account

results in an error in the oblateness of approximately the same order

as that caused by observational error in the Fourier coefficients.
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F. Differential Corrections

Wyse (1939), Irwin (1947), and K0pal (1959, p. 367ff) have

deve10ped the initial equations necessary to determine the differential

corrections to the initial parameters that describe the eclipsing

binary system in the Spherical Model. The extended equations are

described below.

At this point it is customary to dr0p the subscripts on trr’ ir’

and er. This practice will be followed, keeping in mind that the

quantities discussed are, in fact, the rectified values.

We ad0pt the terminology of KOpal (1959, p. 307). The deeper

minimum will be called the primary and the shallower minimum will be

called the secondary. The eclipse of the smaller star by the larger

will be referred to as an occultation eclipse and the eclipse of the

larger star by the smaller will be referred to as a transit.

The eclipsing binary light curve is to be fitted to the equation

to = 2c (2.107s)

u - xf(k,p)L (2.107b)

where to is the observed light value, 1c is the calculated or theoretical

light value, 0 is the unit of light, xf is the fractional light loss

appr0priate to the type of eclipse (occultation or transit), and L is

the total light of the eclipsed star. Further discussion of the function

f is given in Appendix D. Each observed point provides an equation of

condition of the form

X I p 2.’ I I , I I

to = U - f(rg, rs, cos 1, x, e, w, to, t)L , (2.108)
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where'rg', rg', coszi’, x’(limb-darkening coefficient of eclipsed star),

e'(orbital eccentricity), w’(longitude of periastron), t6’(time of

primary minimum), L’, and U"are the true parameters. Assuming an initial

approximate set of parameters rg, rs, coszi, x, e, m, L, and U (U=l), we

have, expanding equation (2.108) to first order in the differential

corrections to the parameters

   

x x x

l = l - fo + AU-foLaL fl—g-Ar + 34i- r + -3—£—- coszi

5 cos 1

x x x x

3 f a f 3 f 8 f
+ 3x Ax + Do As + 58—-Aw + 3‘0 AtO , (2.109)

x axfoc axftr

where 5;—-Ax 1s 5;———- x5 or 5§;_-'Axg as appropriate. Deflne 2c

calculated with the current estimate of the true parameters (the initial

estimate on the first iteration) as

x 2.

Ac - 1 - f(rg,rs,cos 1,x,e,w,to,t)L (2.110)

and define

x x x

A2(o-c) = AU - foL - L 2—£-Ar + a—£-Ar +§-£;—-Acoszi
6r g 8r 5 .

g 5 aces 1

ext axf axf axf
+ '5;— AX+ 5-6- Ae+ 5-w— AID-l- 5?; to . (2.111)

The equation of condition, for a given iteration, is then

to - 2c = A£(o-c) . (2.112)

Note 20 - 2c is the light residual with AC calculated from current

parameters and A£(o-c) is an estimator of 20 - 2c. Thus, equation (2.112)

is an attempt to account for the residuals in terms of changes in the

current system parameters.
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Writing A£(o-c) explicitly for the various types of points we have

(a) for*points outside eclipse

A£(o-c) I AU , (2.113)

(b) for points in transit eclipse

 

X tr X tr X tr

A2.(o-c) = AU - xftrAL - L 3;:— Ar + 5—5— Ar + f Acoszl
g 8 g g ars secs 1

X tr X tr X tr X tr

Bxg 8 36 3m 3to o (2.114)

and (c) for points of occultation eclipse

  

   

x oc x oc x oc

A2(o-c) = AU - xf0c AL — L a f Ar +§—£——-Ar + a f Acoszi
s 5 ar g 6r 5 2.

g s Boos 1

x oc x oc x oc x oc

a g 8 f a f 3 f
I 3x5 Axs+ 8e Ae+ 3w Aw+ 3‘0 Ato (2.115)

We have the fhrther condition that Lg, LS, L3, and U are related by

Lg + LS + L3 = u . (2.116)

Thus

8Ls = AU - ALg - 813 , (2.117)

where L3 is the possible excess light. We may now write equation (2.115)

in the form
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A£(o-c) = (l - xfoc)AU + xfocALg + xfocAL

 

 

3

x oc x oc x oc

- L a-£——-Ar + §—£I—-Ar + 3 f Acoszi

5 3r g 6r 5 .

g s 3cos 1

x oc x oc x oc x 0c

3 f 6 f 3 f 8 f
+ —_6xs Axs+ 3e Ae+ _—8w Aw-I- -——-—ato Ato . (2.118)

We have used coszi as a parameter rather than i, following the recom-

mendation of Irwin (1947).

The evaluation of the various partial derivatives of xf0c and xftr

is discussed in Appendix E.

The kth equation of condition is weighted according to

wk1
7;;'= -;71;— , (2.119)

k

1
is the observational weight of the kth point and b = 0, 2where w a or

kI

1 according to the scale on which random errors are assumed constant.

(Linnell and Proctor 1970b). Given the apparent magnitude of the system

and the aperture of the telescope used for the observations, Young's

Table IV (Young 1967, p. 794) may be used to estimate the most appro-

priate value for b.

Let S be the weighted sum of squares of residuals of the equation

of condition, equation (2.112). Then

N

S s kzl wk((£o-2c)k - A£(o-c)k)2 . (2.120)

Define

(£0 - £c)k = Yk (2.121)
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and

NP

A£(o-c)k = 121 81k ci (2.122)

Then

g [ %F 2

S = w Y — B. C. (2.123)

_ k=1 k k i=1 1k 1 ,

where N is the total number of observed points and i is summed over

the differential corrections to be included, NP in all.

The various C1 and Bik appear in Table l. The dual use of i for

the orbital inclination in coszi and as a subscript should cause no

confusion.

Application of the least squares criterion results in the matrix

of normal equations

AS = 9. . (2.124)

where

N

Amj = kél wk emk ejk (2.125)

and

iG = w 8 Y . (2.126)
m k=1 k mk k

Then

-1

£3. = A 9. (2.127)

produces the components of the 2 vector which are the differential
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Table 1. Differential Correction Terms.
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correction terms.

The covariance matrix SC is given by

S -1
(SC)ij =W (A )1]. (2.128)

(Ostle 1964, eq. 8.69 and 8.70). The simple correlation coefficient

between the ith and the jthvariables is defined by the covariance

between the two variables divided by the product of their standard

deviations. Thus the matrix of simple correlation coefficients Sc
OI‘I'

is defined by the elements

 

 

 

(SC)jj

(scorr)ij = 9C SC (2.129)

‘ ii 11

The partial correlation coefficients are defined by

-1

C ) = (Scorr)ij

corr ij _1 _1 (2.130)

JEcorr)ii (Scorr)jj

where (Sgirr) is the matrix inverse of S (Smillie 1966, eq. 3.7.1).
corr'

The values of the simple and partial correlation coefficients are

limited to values in the range [-l,+l], with values near the end points

indicating higher correlation.

We have for the standard deviation of the weighted light obser-

vations

o(est.) ="N—:§-fil3- , (2.131)

where S may be calculated from the individual residuals (equation

(2.123)) or, alternatively,
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N 2 NP

S = 2 YR - .2 ci Gi , (2.132)

=1 i=1

a form not requiring the calculation of the individual residuals.

We note that o(est.) is an expression for the standard deviation of

the observations from the spherical model light curve.that is first

order in the differential corrections. Let

2
- t ) , (2.133)

S = 1 wk (2k cn

" k 11
M
2

where 2c“ is calculated with the incremented parameters (rg+Arg, rs+Ars,

etc.). Then

Sn2

o(cal.) =W (2.134)

Equality of o(est.) and o(cal.) is a test of convergence, indicating

A£(o-c) does not contain systematic errors that can be accounted for by

a significant change in the parameters. Equality of o(est.) and o(cal.)

will not occur unless higher order terms in the expansion of ac are

negligable compared to first order terms.

The probable errors of the parameters follow from the root of the

appropriate covariance matrix element. For example, the probable error

of Ar is

8

%
P.E. Ar = 0.6745 (SC) (2.135)

g 1,1 °

We have assumed that the uncertainty of the differential correction

to a parameter is equal to the uncertainty of the respective parameter

in the final iteration (Piotrowski 1948).
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The method of differential corrections offers several advantages:

(1) Each observed point is given proper weight in the

solution. This is not true with Russell's graphi-

cal solution.

(2) The same set of equations apply to partial as well

as completely eclipsing systems.

(3). The effects of orbital eccentricity can be included

directly.
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G. KOPAL'S METHOD
 

Kopal (1959, p. 321ff) has deve10ped an iterative method for

the solution of eclipsing binary light curves that is suitable for

adaption to a computer. The equation used in fitting the light curve

follows from KOpal (1959, p. 332); but, applied to all parameters the

equation becomes

XOC

   

 

- 2 a (l-o)
/w(p -l)c1+2/G(p+1)c2+/503+ ”ZE'C4* Tag—cS

(2.136)

(U-Ao) axaoc xatr (U-lt) axatr . 2

b ax C6+ b C7+ b ax C8 ‘ JG 51“ 9 ’
2 s 2 2 g

where the intrinsic weight of a given point is given by

6

-(u-l)(59)

w = b P. (2.137)

22 C2(l+kp)

The a in the C5 term is xaoc or xatr as apprOpriate to the data point.

Contributionstxlthe C4 and C6 terms occur only for points in an occul-

tation eclipse and contributionstxlthe C7 and C8 terms occur only for

transit eclipse. The variables 10 and At are the light values at in-

ternal tangency of the occultation and transit eclipse respectively.

Choice of b (the weighting condition) depends on observational circum-

stances (Young 1967 and Linnell and Proctor 1970b). The regression

equation, equation (2.136), must also be multiplied by the observational

weight of the data point under consideration.

The C1 in equations (2.136) and (2.137) are related to the system

parameters as follows:
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2 2.

C1 - rS csc 1 ,

C - r r csczi

2 - g s ’

c - ‘ 26
3 ‘ 51“ int. ’

C4 = - AA ,

C5 = - AU ,

C6 = AxS ,

C7 = - AAt ,

C8 = Axg ,

where 6.

1nt.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

is the phase angle at internal tangency.

l38a)

138b)

138C)

l38d)

138e)

l38f)

138g)

l38h)

A least squares fit of equation (2.136) to the data produces the

various Ci’ which in turn can be solved for the system parameters.

We note that the above equations apply only to completely eclipsing

systems. A more detailed discussion of Kopal's method as used in

computer solution of eclipsing binary light curves is given by Linnell

and Proctor (1970a). In addition to the discussion by Linnell and

Proctor, we note that

A = U - L

o s

x tr

At - U - f (k,-l) Lg

Lg + LS + L3 = U

, (2.139)

, (2.140)

, (2.141)

(The function xftr is discussed in Appendix D.) Thus, with the values

of Ag, At, and U obtained from the least squares solution we have

L = U - A

s o

x tr

Lg - (U-At)/ f (k,-l)

and

L = U - L - L
5

(2.142)

(2.143)

9

(2.144)
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Several problems arise with the use of K0pa1's method. The

equations given above apply only to complete eclipses. Different equa-

tions must be used for partial eclipses. Also Kopal's method requires

inversion of the a fUnctions for the corresponding geometrical depths

of eclipse at each point. This causes difficulty when the observed a

values lie outside the theoretically permissible range. Further, ec-

centric orbits can't be handled directly. Finally, the normal equations

used in KOpal's method do not rigorously satisfy the least squares

condition in that the weights are not independent of the parameters,

though they are treated as such in calculating the error sum of squares

of the residuals.

Consistency of the results obtained by Kopal's method and the

differential corrections method has been demonstrated for completely

eclipsing systems (Linnell and Proctor 1971). However, because of the

previously discussed limitations of Kopal's method, only the method of

differential corrections was applied in the solutions of the systems

discussed in Chapter V.
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III. DESCRIPTION OF COMPUTER PROGRAMS

A. Fourier Analysis Program

The program FOURIER calculates from one to ten Fourier coefficients

for the non-eclipse portion of the light curve. The data points are

fitted to an equation of the form

N§ Ni

2(obs.) I a + A cos n 6 + B sin m 6 (3.1)

° iIl “i i i-l mi 1

by the method of least squares. The ni and 1111 are the integers desired

in the harmonic expansion, NC is the number of cosine terms, and N8 is

the number of sine terms. The various An1 and Bmi, t, and ab are

expressed in units of Ag, the light of the comparison star. An abbre-

viated flow chart of the program FOURIER is given in Figure 10.

The program requires several control parameters to determine:

(1) the form and order of the input data, (2) the number of data points,

and (3) the number of Fourier analyses to be carried out for the current

data set. Data may be in the form of phase or time units and light or

magnitude units.

For each Fourier analysis to be carried out, the program requires

a set of integers to determine which harmonic terms are to be included

in the solution. A maximum of ten coefficients may be included without

program modification. Phase limits of the non-eclipse portion of the

light curve may be read in directly; alternatively, for circular orbits

system parameters may be read in and phase limits calculated.

For each point the phase angle 6 is calculated. For circular orbits

55
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6-211 (t-t) (3.2)
-§- 0

where P is the period and to is the time of minimum projected distance

of centers. For eccentric orbits 6 is calculated from Kepler's equa-

tion (equation (E-9)). The point is classified according to its phase

value. If the point is in the non-eclipse portion of the light curve,

its contribution to the normal equation is calculated following the

standard formulas for the method of least squares. (See for example

Ostle 1963, equation 8.59.) If the point is outside the non-eclipse

portion of the light curve, it is omitted from the calculation. After

each point has been processed a check is made to determine if there are

sufficient points for solution. (The number of points must be greater

than the number of coefficients being determined.) If there are insuf-

ficient points, solution for the present set of coefficients is termin-

ated; otherwise, solution continues with the inversion of the matrix

form of the normal equations and calculation of the Fourier coefficients.

The matrices of simple and partial correlation coefficients are calcu-

lated. Standard deviations of the light residuals and individual Fourier

coefficients are calculated. The program also calculates the Fourier

coefficients and standard deviations normalized to do, the constant in

the Fourier expansion. Individual residuals are calculated and plotted

in a histogram. The histogram for a normal distribution with the same

standard deviation is superimposed for comparison. The Kolmogorov-

Smirnov goodness of fit test (Ostle 1963, p. 471) is applied to deter-

mine if the normal distribution satisfactorily fits the residuals.
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Calculation of different sets of Fourier coefficients for the data

is carried out as desired.

The entire process is repeated for each set of data points.
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Figure 10. Flow Chart of FOURIER
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B. Rectification Program
 

The program RRECK transforms observational data to the equivalent

spherical model data. An abbreviated flow chart of the program is

given in Figure 11.

The program requires values of control parameters that determine:

(1) the form and order of input data, (2) number of rectifications for

the current data set, and (3) the number of data points in the data

set. The data may be in the form of phase or time units and light or

magnitude units. Conversion of the data to phase and light units is

carried out as necessary.

The rectification formula is determined using the input values of

Fourier coefficients, limb-darkening and gravity-darkening coefficients,

angle of inclination and color temperature of the primary. Input

control parameters allow three options for determining the ratio of

reflected lights: (1) using an input value for the ratio of reflected

lights, (2) using input depths of eclipse to calculate the ratio of

reflected lights, or (3) using luminous efficiency calculations to

find the ratio of reflected lights.

Rectified values of the light and phase may be output on cards or

magnetic tape.

After each independent rectification of the data set has been

performed, calculations continue on succeeding data sets.
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Figure 11. Flow Chart of RRECK
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C. Differential Corrections Program

The program DIFCORT produces from one to eleven differential correc-

tions to spherical model parameters. An abbreviated flow chart of the

program is given in Figure 12.

The program requires values of control parameters that determine:

(1) the form and order of the input data, (2) the number of initial

parameter sets for which differential corrections are to be found, and

(3) the number of data points in the data set. The data may be in the

form of phase or time units and light or magnitude units. Conversion

of the data to phase and light units is carried out as necessary. The

data may be on cards or magnetic tape. The program requires initial

values for the spherical model parameters rg, rg, Lg, L , i, e, w, tg,

and RF, where P is the period, and

RF 2.5 log U (3.3a)

1.0857362 ln 0 . (3.3b)

RF is the reference magnitude corresponding to the unit of light. Also

required is a set of integers to indicate which differential correc-

tions are to be included in the solution. (A maximum of ten differential

corrections may be included simultaneously.) Control parameters to

determine the maximum number of iterations and the type of solution

(occulation eclipse, transit eclipse, or both) are also required.

Using the current values of the spherical model parameters, the

minimum value of the geometrical depth for each eclipse is calculated

along with 2min the corresponding value of the light. Thus
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oc x oc oc

2min I l - f (k,pm1g) L8 (3.4)

and

tr _ _ x tr tr
2min 1 f (k’pmin) Lg , (3.5)

where p::n and p;:g are the minimum values of geometrical depth for

occulation and transit eclipse respectively. The primary (deeper)

minimum is then associated with the type of eclipse having the smallest

value of minimum light. The ranges of partial and total phase of each

eclipse are calculated. Each data point is then classified according

to its phase range as being: (1) outside eclipse, (2) in partial phase

of occulation, (3) in total phase of occulation, (4) in partial phase

of transit, or (5) in total phase of transit. Partial derivatives

required for the regression equation, (2.112), are calculated for the

point. The value of mg is calculated using current spherical model

parameters. The point's contribution to the normal equations, equation

(2.124), is included.

At this point in the calculation a check is made to determine if

there are sufficient points to obtain a solution. If there are suf-

ficient points, calculation continues with the matrix inversion of

the normal equations. Otherwise, solution of the present set of param-

eters is terminated.

The Gauss-Jordan method (Smillie 1966, p. 134) is used for solving

the normal equations. As a check the program calculates the values of

AAIl-g, where I‘is the unit matrix. Each matrix element should equal
“H

zero, within rounding errors.
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Individual residuals of the regression equation are computed and

used to calculate the standard deviation, o(est.), of the observed

points from the calculated values. The standard deviation is also cal-

culated using equation (2.132), a form not requiring calculation of

individual residuals. A histogram of the residuals is plotted. The

Kolmogorov-Smirnov test of goodness of fit is applied to check the

residuals for conformity with a normal distribution with standard devi-

ation o(est.).

The simple and partial correlation coefficients are calculated

along with probable errors of the parameters. The current values of

the spherical model parameters are then incremented by the differential

corrections. The values of limb-darkening coefficients, luminosities,

radii, and eccentricity are restricted as follows:

-1 S x S 1 , (3.5)

051.51 , (3.7)

051-51 , (3.8)

rg 5 rs , (3.9)

0 S e f 0.999 . (3.10)

Values of x less than zero are included to allow for the possibility

of limb brightening. The theoretical values of light calculated with

the incremented parameters are then used to calculate the standard

deviation of the observed values. It is customary to normalize the

light curve such that the non-eclipse portion is unity. Thus, the

light values are normalized by the replacement

_3__,,
1+AU . (3.11)
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Calculation of differential corrections for the incremented param-

eters is repeated for the maximum allowed number of iterations. Itera-

tion on succeeding sets of initial parameter values is then carried out.

The entire procedure is repeated for each data set.
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Figure 12. Flow chart of DIFCORT

J,
:1 Read control parameters for data input
 

, Read phase-mggnitude-empirical weight data

 

. Read initial values of parameters

Read control parameters for maximum number of

iterations and type of solution

 

———9- With current parameters:

Calculate minimum values of p and 2 for

each eclipse

Determine type of primary minimum

Calculate ranges of partial and total

phase for each eclipse
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For each point:

Classify point according to phase range

Calculate partial derivatives required

for regression equation

1 Determine 2 with current parameters

Calculate contribution to normal equations   
 

N24 Number of points sufficient for solution?

LYes
 

Invert matrix of normal equations

Obtain differential corrections

Calculate‘Ae'lfi;

Calculate individual residuals from regression

equation

Calculate standard deviation of light residuals

Calculate simple and partial correlation

coefficients

Calculate probable errors of parameters

Increment parameters (within allowable limits)

Calculate residuals using incremented parameters

Plot histogram of Eggression equation residuals  
   
 

ILJffiMaximum number of iterations reached?

{Yes
 

‘ Another set of initial parameter values for 
 
  
  4 yes thig dggg get?

:INO

1%other data set available?
  

No
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D. Kopal's Method Program

The Kopal's Method program, called CFIT, is restricted to completely

eclipsing systems and spherical orbits. The data are assumed rectified.

The program produces the values of the parameters C CZ, and C3, which
1’

are functions that may be solved for rg, rg, and coszi. The program

also allows for inclusion of differential corrections to U, Ag, At, xg,

and xg, where Ag and At are the values of light at internal tangency

(p I -l) of the occulation and transit eclipse respectively. From the

equations

At - U - x£“(k,-l) L , (3.14)
s

Lg + Lg + L3 - U , (3.15)

where xftr(k,p) is defined in Appendix D, we see that we may solve for

Lg, Lg, and L3 as follows

Lg - u - Ag , (3.16)

Lg - (u - At)/xftr(k,-l) , (3.17)

L - U - L - L , (3.18)
3 g 3

Further description of the program is given by Linnell and Proctor

(1970a, p. 1043).
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E. Proggam Accuracy

The programs FOURIER, RRECK, DIFCORT, and CFIT are written in the

CDC 3600 FORTRAN language. The precision of the CDC 3600 in single

precision is approximately 10 decimal digits.

The programing of the direct eclipse functions (xa°c(k,p) and

xaFr(k,p))used is described by Linnell (l965a,b; l966a,b,c). The

stated programming objective for these functions was to obtain a frac-

tional error of 10-6. This was obtained for most values of k and p.

The maximum fractional error was given as 10’s. In most regions of the

k-p plane for which eclipsing systems have meaning the absolute errors

are less than 10-6.

The matrix inversion in the programs FOURIER, DIFCORT, and CFIT

was carried out in double precision with corresponding word length

accuracy of approximately 25 decimal digits. The Gauss-Jordan method

(Smillie 1966) is used for carrying out the matrix inversion. Further,

to insure minimum rounding and truncation error, the matrix inversion

routine chooses as pivot element, at each stage of the matrix inversion,

the element largest in absolute value in the rows and columns not con-

taining previous pivot elements. As a check the program calculates the

1
matrix‘AAI -5, where I is the unit matrix. In no case has an element

of this matrix been found to be larger than 10-19. Typically the

elements of this matrix are several orders of magnitude smaller.

Further discussion of accuracy is given in Linnell and Proctor (1970a).

Final validation of the programs rests in the solution of synthetic

light curves with known parameters. Discussion of such solutions is

given in the following chapter.
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Complete program listings are on file in the Astronomy Department,

Michigan State University.



IV. SOLUTION OF SYNTHETIC LIGHT CURVES

This chapter contains the results of the application of the method

of differential corrections to synthetic light curves. The synthetic

light curves are constructed on the Spherical Model and include random

errors with normal distribution and assignable dispersion.

Synthetic light curves are useful in the validation of the programs.

Convergence on known parameters provides the most convincing test of

program reliability. Synthetic light curves may also be used to eval-

uate the effect of the dispersion and number of observations on ability

to extract the desired parameters. Synthetic light curves may be based

on parameters obtained from the results of actual light curve analysis.

Subsequent solution of these curves may provide further confidence in

the results; alternatively, the solution may indicate the need for more

observations of greater accuracy.

Synthetic light curves with zero dispersion were used to validate

DIFCORT. Resulting light residuals were on the order of 10-6.

Table 2 gives the results of analysis of a synthetic light curve

similar to the light curve of the system S Cancri. The dispersion is

comparable to that obtainable under optimum observational conditions.

Primary minimum is a deep occulation eclipse, while secondary minimum is

very shallow. Thus xg can be reliably determined, but the uncertainty

in xg is rather large. Satisfactory convergence on the parameters is

demonstrated.

Table 3 shows the results of a test for separability of rg and

xg. Irwin (1947) has shown that for certain values of parameters the

ratio of the coefficients of xg and rg is nearly constant. There is

69
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the possibility that the correlation is so great as to prevent separation.

To test for this possibility, a synthetic light curve was constructed

with 800 total points of intrinsic dispersion o I .005. The parameters

closely accord with the parameters adopted by Irwin for his example.

Convergence was not as good as for the previous example; however, result-

ing parameter values were at most 235 standard deviations from the true

values.

As an example of a system with third light, a synthetic light curve

corresponding to BR Cygni was constructed. The curve had a total of 430

points, 130 in occulation and 100 in transit. Convergence occured as

shown in Table 4. Solution of actual data for BR Cygni is discussed in

Chapter V.

An illustration of the complications that occur due to correlation

of the system parameters is given using synthetic BV 412 data. For

the o=0.0 data with initial estimates of the parameters given in Table 5,

convergence to the true parameters occurs in three iterations. The

light curve with o I .0074 was solved twice, once allowing L3 to vary

to its true value (Table 7). Convergence(Table 6) and once holding L3

was obtained only by holding L3 constant. It was noted that when L3

was allowed to vary, the absolute magnitude of the correlation coeffi-

and r , L , and coszi were greater than 0.99. Also:ients between L3

10:3 that this is a partially eclipsing system. It has often been

ssumed that it is not possible to determine limb-darkening coefficients

at such systems (Wilson 1968). We conclude from these results that

12 determinability is based more on the accuracy of the light curve and

e density of observations, and less on the geometrical depth of

lipse.
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Extensive tests on eccentric systems have not yet been carried out.

However, the results of iterative solutions of a synthetic curve with

Initial parameterszero dispersion are given in Tables 8, 9, and 10.

In the first solution only thewere the same in all three cases.

Satis-differential corrections for i, e, w, and tg were calculated.

When all parametersfactory convergence occured in three iterations.

except L3 were included, there was no indication of convergence after

This is probably due to correlation of the variablesthree iterations.

combined with sufficiently large error in the initial estimates of the

Higher order differential corrections then become signif-parameters.

(Compare o(est.) and o(cal.) for the first iteration in Tables 8icant.

and 9.) The absolute values of the simple correlation coefficients of

L with r and coszi are large (greater than 0.97). Since for total
8 8

eclipse an estimate of L can be obtained from the light during total

phase of occultation, a third solution, omitting differential corrections

The resultsto L was carried out. Satisfactory convergence occurs.

are given in Table 10.
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V. ANALYSIS OF PUBLISHED DATA

An attempt was made to look at each set of data listed in the

catalog of Koch, Plavec and wood (1970). From the more than two hundred

systems listed, ten were chosen for further study. Selection, although

somewhat subjective, was based on the following criteria:

(1) Well-separated systems

(2) Coverage of entire phase range

(3) Number and quality of observations

(4) Individual observations published

(5) Lack of obvious complications.

Before the analyses of the individual systems are discussed, it is

necessary to consider the type of eclipse to be associated with the

consecutive minima. If spectroscopic radial velocity curves are avail-

able, it is possible, in principle, to determine whether the primary

minimum is an occultation or a transit.

Let L1 be the luminosity and J1 the mean surface brightness of the

star of greater surface brightness (the star being eclipsed during

primary minimum). Let L2 and J2 be the corresponding quantities for

the star of lesser surface brightness. The star approaching the observer

immediately before primary minimum is thus the star of luminosity L2 and

mean surface brightness J For bolometric light we have2.

, 2
I1 - r1 J1 (5.1)

where r1 is the radius of the star of greater surface brightness and r2

is the radius of the star of lesser surface brightness. Thus
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2

r1 - L1/1'2 (5.2)
 

r22 J1/J2

‘where an estimate of L1/L2 is obtained from the spectroscopic observations

and an estimate of J1/J2 is obtained from the depths of eclipse. In

this way it can be determined if the star of greater surface brightness

is the larger or smaller star and hence whether the primary minimum is

an occultation or a transit.

Unfortunately, spectroscopic information is not always available;

or if it is, the errors associated with the estimates of L1/L2 and JllJ2

may prevent positive determination of the type of eclipse. Thus it is

not always possible to make an "a priori" judgement as to the type of

eclipse. Both possibilities must then be considered.

The results of analysis of the light curves of 10 eclipsing binary

systems are presented in the following sections. For each system a

general discussion is presented and tabular data follow. In each table

the source of the original photoelectric data is given, along with the

spectral type of the primary. The spectral type of the secondary is

given if available. The spectral type or range of spectral types of

the secondary, as found by subsequent luminous efficiency calculations,

is given in parentheses. The value of the period is followed by the

adopted designation for the type of primary minimum.

The data in each table are divided into three sections.

Section A contains the results of the Fourier analysis. The phase

ranges of the points included in the Fourier analysis are given in

parentheses. For each light curve the results of two Fourier analyses

are presented. Normally the first analysis for each color is the
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analysis carried to terms of order 20, while the second analysis is to

terms of order 36. The standard deviation (normalized to no) of the

resulting residuals is presented in the second column of Section A.

This is followed by do, the constant of the Fourier expansion, and the

remaining Fourier coefficients (normalized to a (Note do - A0 if it

0)'

is assumed that there is no third light.) The Fourier coefficients are

followed by NDF, the number of data points used in the Fourier analysis.

The adopted values of the Fourier coefficients are followed by initial

estimates of the ratio of surface brightnesses and the color temperatures

of the primary components. The color temperature of the primary compo-

nent is taken from Figure 15, using the known spectral type of the star.

This procedure for estimation of the temperature follows the recommen-

dation of Jurkevich (1964, p. 185). The temperature of the secondary

and the ratio of reflected lights resulting from.the luminous efficiency

calculations is given next, followed by the subsequent value of e, the

oblateness of the equatorial cross section and N (given by the equation

(2.31)).

Section B of each table gives the coefficients used in the recti-

.fication formula, equation (2.84). RFO, if given, is the value of the

reference magnitude initially subtracted from observed magnitude dif-

ferences in order to normalize the non-eclipse portion of the light

curve to unity.

Section C of each table contains the equivalent spherical model

Parameters. The value of b, the exponent of the light in the weights

of ‘the conditional equations, is given in parentheses. The parameters

designated as "Initial" are those determined by the author publishing

the original data. Often it was not clear whether the value of
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inclination given by the author was if, 1, or i. The values of inclina-

tion are simply included in the tables as they were given in the original

paper. In addition to the geometric parameters and luminosities obtained

with the differential corrections method, the reference magnitude RF is

given, where

RF - 2.5 log U (5.3)

The geometric depth of eclipse po is also given. For eccentric orbits

the value of po from the primary minimum is used. The last three columns

present the various standard deviations of the rectified data. The

standard deviation o(b - 0) of the light values is given, followed by

the standard deviation of the weighted light values o(cal.) and its

estimator o(est.). (See equations (2.131) and (2.134).)

The number of observations used in the solution of the light curve

is given beneath the tabular data. This information is followed by

values of 30 and At. For partially eclipsing systems 10 and At are the

calculated values of light for the occultation eclipse and the transit

eclipse, respectively, at minimum geometrical depth. For completely

eclipsing systems 30 and At are the calculated values of light for

internal contact (p - -1) of the occultation and transit eclipse respec-

tively. Also included are the ratio of the mean surface intensities

Jg/Js and the ratio of the central surface intensities (Jg/J8)c, where

2

fig - rs L3 (5.4)

J3 r 2 L

8 s

and
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J 3 - J
{1% a x8._a (5.5)

c Js

(Kopal 1950, p. 53).
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A. CO Lacertae
 

C0 Lacertae is a tenth magnitude system exhibiting a small value of

orbital eccentricity. The system is also notable for the short period

of its apsidal motion. Semeniuk (1967), from an analysis of 27 times of

minima, obtained e - 0.027 and w - 65.4° for the epoch of her observa-

tions. Smak (1967), from his spectroscopic analysis of the system,

classified the primary component as 38.5IV and the secondary component

as B9.5V.

The recent photoelectric observations of Semeniuk (1967), have been

chosen for analysis.

Semeniuk, in her analysis of the data, reflected the descending

branches of minima onto the respective ascending branches and grouped

the observations into normal points. These normal points were rectified

for ellipticity only. She assumed values for the limb-darkening coeffi-

cients and made a preliminary analysis using the iterative method of

Piotrowski (1948) and Kopal (1959). She reported lack of convergence for

the primary minimum. Using the values obtained for the analysis of the

secondary minimum, she made a single differential corrections solution

for the geometric parameters and luminosities. The results of the indi-

vidual B and V Semeniuk solutions are listed as the initial values of

the parameters in Table 11C.

Results of analysis of individual observations, using the programs

FOURIER, RRECK, and DIFCORT, are given in Table 11. The values of e

and u3given by Semeniuk were used.

Inclusion of terms of order 36 decreased the standard deviation of

residuals in both the B and V light curves. Thus the corresponding
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coefficients were used in the subsequent rectification.

Five errors were found in the published phase values. The Julian

dates of these observations, along with the corrected phase values, are

listed in Appendix F.

Following rectification, a solution of the B curve was attempted

assuming that the primary minimum was a transit and that there was no

 

P“

excess light. Convergence did not occur. The results of the sixth j

iteration are given in Table 11C under the designation ”Bl". Extreme

divergence was exhibited in the seventh iteration. The 32 solution is F

discussed below.
b

Iterative analysis including excess light did converge. The param-

eters and their respective probable errors are given in Table 110 under

the designation "Adopted". The V light curve also converged under the

assumption of primary minimum a transit allowing excess light. Results

are listed in the table. The geometric parameters from the B and V

light curves are in good agreement. The difference in the standard

deviation obtained from the Fourier analysis and the differential correc-

tions analysis is comparable to the probable error of the standard devia-

tion and can be accounted for by the error in the choice of b, the

exponent of the light in the weights. To determine if the choice of b

significantly affects resulting parameters, the V light curve was ana-

lyzed again with b - 1. All resulting parameters were less than 8

standard deviation from the values obtained with b - k.

In the process of analysis, a solution of the B curve was carried

out on the assumption that primary minimum was an occultation. Surpri-

singly, convergence was obtained in this case also. The resulting

parameters are given in Table llC under the designation "32". It
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has commonly been assumed that iterations will converge only if the type

of eclipse has been correctly identified (Kopal 1959, p. 334). Note the

close correspondence of the geometrical parameters and luminosities of

this solution with those of the solution assuming the primary minimum

a transit. However, the resulting values of limb-darkening coefficients

assuming primary minimum an occultation are not in good agreement with

the theoretical values discussed later.

Unfortunately, the spectroscopic data of Smak were not sufficiently

accurate to determine the type of eclipse; however, it is felt that the

assumption of primary minimum a transit and presence of third light

provides the best solution. The standard deviation is a few percent

smaller for this case. In addition, limb-darkening coefficients result-

ing from this assumption are in good agreement with the theoretical values

discussed later. The presence of apsidal motion lends weight to the

existence of third light.
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B. CM Lacertae

CM Lacertae, an eighth magnitude double-line spectroscOpic binary,

was observed by Alexander (1958) and later by Barnes, Ball, and Bardie

(1968). The former investigator did not report individual observations.

Thus, only the more recent photoelectric observations of Barnes, Hall,

and Hardie were chosen for study. Spectroscopic observations were

obtained by Sanford (1934) and re-examined by Popper (1967).

Alexander, in the analysis of his data, concluded that the primary

minimum was an occultation. Barnes, Ball, and Bardie felt the alterna-

tive assumption was better for fitting their data. Consequently, the

Barnes datanwerestudied under both assumptions. The results are pre-

sented in Table 12C. For the U light curve convergence was obtained for

both assumptions. However, the residuals assuming primary minimum an

occultation have a significantly smaller standard deviation. It is

interesting to note the correspondence of the values of the limb-darken-

ing coefficients. For the two assumptions x - .33 and .24 for the brighter

star and x - .87 and .78 for the cooler star. While the B and V light

curves did not converge assuming primary minimum a transit, observe that

there is agreement between the values of the radii of the hotter and

cooler stars for each assumption. The V light curve was analyzed allow-

ing inclusion of excess light. The resulting value of excess light was

approximately two standard deviations from zero. Since the geometrical

parameters of the V solution agreed well with the B and U solutions, it

was not felt worthwhile to re-analyze the V data excluding the excess light.

During the analysis four observations in the U light curve, four

observations in the B light curve and one observation in the V light curve

were found to have residuals greater than three standard deviations from
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the calculated light curve. These points were omitted from subsequent

iterations. They are listed in Appendix F.

The distinction between occultation and transit eclipse diminishes

as the ratio of radii approaches unity. However, it is seen from this

analysis that the assmnption of primary minimum an occultation provides

the more consistent results for CM Lacertae. Parameters based on this

assumption have been adopted.
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C. RX Arietis
 

RX Arietis is a ninth magnitude eclipsing binary system. The

:solution obtained by McCluskey (1966) for his data indicated primary

ruinimum was a transit. The light curves were analyzed using this

zassumption. Both the U and V light curves were solved permitting and

‘then excluding excess light.

Two errors were found in the published phase values for RX Arietis.

'There were four observations with residuals greater than six standard

deviations from the calculated light curve. It is felt that these are

the result of typographical errors. These four points were omitted for

the final iterations. Each of these points is listed in Appendix F.

The results of the iterative solutions are given in Table 13C. The

solutions excluding excess light have been adOpted. Agreement between

B and V solutions for this assumption is good. Also, the V solution

converged to a value of L3 within its probable error of zero. It is

felt that the L3 convergence to a non-zero value in the B solution

allowing third light is due to correlation (as in the case of the

synthetic BV 412 light curve). As seen in the table, limb-darkening

coefficients for the primary component can be determined with reason-

able accuracy; but, since the secondary eclipse is very shallow, the

probable error in the limb-darkening coefficient for the smaller star

is quite large.
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D. V338 Herculis

V338 Herculis, an eclipsing binary of approximately the tenth

mmagnitude, has been observed independently by Vetesnik (1968) and

Iialter (1969). Both investigators classified the primary minimum as a

transit. The more numerous observations of Vetesnik were chosen for

atudy .

The analysis presented here is based on the assumption that pri-

mary minimum is a transit and that there is no third light. There is

good agreement between the resulting geometrical parameters of the B

and V solutions for this assumption. Iterative solution of the B curve

allowing excess light converged to parameters that were within one

standard deviation of those obtained for the B analysis excluding third

light.

It is seen in Table 140 that while the limb-darkening coefficient

‘of the larger star can be reasonably well determined, the secondary

'minimum is too shallow to permit reliable evaluation of the limb-darken-

ing coefficient of the smaller star.

One error was found in the published phase values for the V light

curve. The Julian date of this observation is J.D.Hel 2439648.4767 and

the corrected phase value is 0.9683. There is also evidence of systematic

error in the data. There are runs of constant sign in the residuals.

.Agreement between standard deviations of the Fourier analysis and the

<iifferential corrections analysis is poor. The B light curve residuals

do not fit a normal distribution satisfactorily. A possible short

Period (about 0.01 day) small amplitude oscillation (0.015 magnitude)

in the luminosity of one of the stars is suspected. This is most clearly
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indicated by the residuals of the V observations between J.D.Bel.

2439639.3975 and 2439639.4558. (There are no B observations covering

this time period.)

Even though there is this evidence of systematic error, it is felt

that the error is small enough that the set of geometrical parameters

given in Table 140 provides good representation of the system.
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E. Y Leonis
 

Y Leonis is a single-line spectroscopic binary of approximately

tame tenth magnitude. Struve (1945) derived spectroscopic elements.

The system is notable for its deep primary minimum. The photometric

(Sbservations studied here are the broad band (3000A wide) infared

(8000A) observations of Johnson (1960). The UBV observations of

.Johnson covered essentially only one primary minimum. It was felt that

they were not sufficiently numerous to warrant analysis.

There was one error found in the published phase values. The

Julian date of this observation along with the corrected phase value

is given in Appendix F.

Preliminary elements obtained by Johnson are given as the initial

parameter values in Table 15C.

The Johnson IR data were analyzed assuming primary minimum an

occultation, both allowing and then excluding excess light. The results

are given in Table 15C. The difference between the resulting parame-

ters are negligible. Notice, however, exclusion of third light signif-

icantly reduces the probable errors of the parameters. The values of

the standard deviation of the residuals from the Fourier analysis and

from the differential corrections analysis are in very good agreement.

However, there are relatively few observations contributing to the

determination of the limb-darkening coefficients (48 observations in

the occultation eclipse and 51 observations in the transit.). It is

felt that re-observation of Y Leonis in UBV covering the entire phase

range would be worthwhile.



T
a
b
l
e

1
5
.

P
a
r
a
m
e
t
e
r
s

o
f

Y
L
e
o
n
i
s

O
r
i
g
i
n
a
l

d
a
t
a

H
.

L
.

J
o
h
n
s
o
n
,

A
p
.
J
.

1
3
1
,

1
2
7

(
1
9
6
0
)

S
p
e
c
t
r
a
l

t
y
p
e

A
3
,

(
>
6
0
)

-
_
_
'

P
e
r
i
o
d

:
1
.
6
8
6

d
.

P
r
i
m
a
r
y

m
i
n
i
m
u
m
:

o
c
c
u
l
t
a
t
i
o
n

A
.

F
o
u
r
i
e
r

A
n
a
l
y
s
i
s

(
§
%
-
=

0
.
1

-
0
.
4

a
n
d

0
.
6

-
0
.
9

)

 

o
/
A
o

(
1
0
-
2
)

A
0

A
1
/
A
0

A
2
/
A
0

A
3
M
0

B
1
M
0

B
2
M
0

I
R

.
7
2
4

.
1
3
6
3
2

-
.
0
2
1
6

-
.
0
1
5
9

+
.
0
0
5
7

+
.
0
0
2
9

p
.
e
.

1
.
0
0
0
1
5

1
.
0
0
1
6

1
.
0
0
2
5

1
.
0
0
2
0

1
.
0
0
1
3

I
R

.
7
3
5

.
1
3
6
2
9

-
.
0
2
1
8

-
.
0
1
5
1

-
.
0
0
0
3

+
.
0
0
6
3

+
.
0
0
2
7

p
.
e
.

1
.
0
0
0
2
3

1
.
0
0
2
6

1
.
0
0
5
4

1
.
0
0
3
0

1
.
0
0
4
3

1
.
0
0
1
7

8
/
A

3
0

-
.
0
0
0
5

1
.
0
0
2
8

0
O

N
D
F

J
h
/
J
C

T
h
(

K
)

T
c
(

K
)

S
c
/
S
h

7
6

1
0
.
1

7
6

9
5
0
0

4
4
0
0

4
4
.
4

e
N

.
0
1
9
6

2
.
2

 

B
.

R
e
c
t
i
f
i
c
a
t
i
o
n

F
o
r
m
u
l
a

C
o
e
f
f
i
c
i
e
n
t
s

 

D
0

D
1

D
2

A
O
+
D
0

A
2
+
D
2

I
R

+
.
0
0
1
5
5

-
.
0
0
2
9
5

+
.
0
0
1
5
4

.
1
4
0
0
4

-
.
0
0
2
8
0

 

102



T
a
b
l
e

1
5

(
c
o
n
t
'
d
.
)

C
.

E
q
u
i
v
a
l
e
n
t

S
p
h
e
r
i
c
a
l

M
o
d
e
l

E
l
e
m
e
n
t
s

(
b

=
0
)

 

k
i

r
r

x
x

L
L

L

g
s

g
s

g
:

s
3

I
n
i
t
i
a
l

.
8
3
0
0

8
5
.
1
7

.
2
8
0
0

.
2
3
0
0

.
4
0
0

.
4
0
0

W
i
t
h

L
.
7
9
5
7

8
5
.
2
0

.
2
8
4
8

.
2
2
6
6

-
.
1
6
6

.
3
6
8

.
1
5
0
3

.
8
4
7
8

.
0
0
2
0

p
.
e
.

3
.
0
1
9
3

1
.
3
0

.
0
0
2
9

.
0
0
7
8

.
3
0
5

.
1
6
4

.
0
0
8
0

.
0
5
3
2

N
o

L
3

.
7
9
5
2

8
5
.
1
7

.
2
8
4
8

.
2
2
6
5

-
.
1
6
6

.
3
6
3

.
1
5
0
8

.
8
4
9
2

p
.
e
.

.
0
1
4
9

0
.
1
7

.
0
0
1
6

.
0
0
5
5

.
3
0
0

.
1
5
6

.
0
0
8
0

R
F

p
o

(
1
0
-

(
1
0
-
3
)

.
0
0
0
9

-
.
8
8
7

.
7
2
1
6

.
7
2
1
6

.
0
0
0
6

.
0
0
1
9

-
.
8
8
6

.
7
2
0
0

.
7
2
0
0

.
0
0
0
6

o
(
b
=
0
g

o
(
c
a
l
.
)

o
(
e
s
t
.
)

(
1
0
‘
2
)

.
7
2
1
6

.
7
1
9
6

 T
h
e

s
o
l
u
t
i
o
n
s

a
r
e

b
a
s
e
d

o
n

t
h
e

a
s
s
u
m
p
t
i
o
n

t
h
a
t

p
r
i
m
a
r
y

m
i
n
i
m
u
m

i
s

a
n

o
c
c
u
l
t
a
t
i
o
n
.

T
h
e

l
i
g
h
t

c
u
r
v
e

c
o
n
t
a
i
n
s

1
8
4

o
b
s
e
r
v
a
t
i
o
n
s
,

4
8

i
n

p
r
i
m
a
r
y
m
i
n
i
m
u
m

a
n
d

5
1

i
n

s
e
c
o
n
d
a
r
y

m
i
n
i
m
u
m
.

F
o
r

t
h
e

a
d
o
p
t
e
d

s
o
l
u
t
i
o
n

1
0

=
.
1
8
3
0
,

A
t

=
.
9
1
0
3
,

J
g
/
J
S

=
.
1
1
2
,

a
n
d

(
J
g
/
J
s
)
c

=
.
0
9
8
5
.

103



104

F. RW Monocerotis
 

RH Monocerotis, a ninth magnitude system, has been classified as

a single-spectrum binary by Heard and Newton (1969). The system has

been studied photometrically in two series of infrared observations by

Brukalska, Rucinski, Smak, and Stepien (1969). From their preliminary

analysis Brukslska, et. al., reported a negative limb-darkening coef-

ficient for the secondary component.

As the Brukalska Series I observations did not cover the non-

eclipse portion of the light curve, only the Series II observations

are discussed here.

The Fourier analysis carried to terms of order 36 has a signif-

icantly smaller standard deviation than the analysis carried to terms

of order 20. The large sine terms are a preliminary indication of

complications in the system. Although there are a large number of

observations, a significant range of the non-eclipse portion of the

light curve is not covered.

Analysis has been carried out on the assumption that primary

minimum is an occultation. Initial analysis indicated asymmetry in

the residuals and absence of third light. Thus differential correc-

tions to to were calculated and differential corrections L3 were

excluded in succeeding iterations. Inclusion of to was accompanied

by a significant reduction of the standard deviation. (It should be

observed, however, that inclusion of sine terms 1J1 the rectification

introduces systematic variation which may partially simulate a change

in the reference time to.)

Contrary to the analysis of Brukalska, et. al., the resulting
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limb-darkening coefficients are in reasonable agreement with the theore-

tical values. However, the standard deviation of the residuals from the

entire light curve is not in good agreement with the standard deviation

from the Fourier analysis. As shown in Table 160 this cannot be accounted

for by change in the choice of b. The results of iterations with three

different values of b show little variation.

The observation on J°D'Hel. 2439454.8463, apparently containing a

typographical error, was omitted from the solution. Fourteen observa-

tions between phases 0.067 and 0.087 have systematically positive resid-

uals between 28 and 6% standard deviations from the calculated curve.

This phase range was covered on only one night during the photometric

study. Thus the solution presented in Table 16C should be viewed with

some reserve. Further observation of the system would be useful.
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6. BR Cygni

BR Cygni, a ninth magnitude system,has been observed by Wehinger

(1968). Wehinger presented a solution for the primary minimum of the V

curve only. The V curve exhibits uniform light for phase values within

approximately 0.011 days of to. On the strength of this feature Wehinger

assumed primary minimum was a complete occultation eclipse, even though

the B curve did not indicate a similar characteristic. The B light curve

shows night-to-night variation of about 0.03 magnitudes. This variation

was particularly apparent in the phase ranges 0.1 to 0.2 and 0.4 to 0.5.

Solution of the B and V curves were attempted assuming primary

minimum a transit and excluding third light. Apparent convergence on

the parameters was obtained. Resulting parameters are given with the

designation "B1” and "V1" in Table 176. Note, however, the values of

o(est.) and o(cal.) are significantly different in both B and V solutions.

Solution of the V light curve assuming primary minimum a transit and

allowing excess light resulted in large negative values of excess light

and hence was not considered further.

Using Wehinger's results as initial parameter values, an iterative

solution assuming primary minimum an occultation eclipse and excluding

third light was attempted. The results of three iterations are given in

Table 176 with the designation "V2". Note the negative values of the

limb-darkening coefficients. In an attempt to find a more satisfactory

fit, the solution was repeated using the same initial parameters, but in

this case allowing third light. Convergence occured in three iterations.

The resulting limb-darkening coefficient for the primary component is

not unreasonable. Iterative solution of the B curve assuming primary
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minimum an occultation, both allowing and excluding third light, were

divergent. A solution of the B curve assuming geometric parameters of

the V3 solution, but excluding differential corrections to rs was then

attempted. Convergence occured. The results of this solution are given

in Table 176 with the designation "82". Further iteration excluding

differential corrections to L8 were divergent.

Designation of the primary eclipse as an occultation eclipse seems

to provide the most satisfactory results. It is felt that further obser-

vation, especially in B, will be needed to determine the system parameters

with greater reliability.
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H. BV 430
 

BV 430 (RS Cha), a sixth magnitude system, has been observed in-

dependently by Chambliss (1967) and Schoffel and Mauder (1967). Since

the latter's observations were not published, the Chambliss data were

chosen for further study.

Chambliss based his solution on the assumption that the primary

minimum was a transit. Using this assumption, the B and V light curves

were analyzed both allowing and then excluding third light. When third

light was included, convergence to large negative values of excess light

occured in both the B and V light curves. Results of the third itera-

tions of B and V excluding third light are presented in Table 180, under

the designation ”Bl" and ”V1". Note the attempted "interchange" of the

larger and smaller star, as indicated by values of k=>l.0.

Solutions assuming primary minimum at occultation and excluding

third light were then attempted. The results are given in Table 186

under the designations ”B2” and "V2". Observe the close correspondence

between the V2 and the B1 and V1 geometrical parameters and also between

the limb-darkening coefficients for the brighter and less bright compo-

nents for the V1 and V2 solutions. With the ratio of radii close to

unity it is extremely difficult to distinguish between occultation and

transit eclipse. The results of the 82 solution were somewhat puzzling

considering the correspondence of the other three solutions. Examina-

tion revealed correlation coefficient between rs and L8 was -0.98. A

solution assuming the V2 results for rs and coszi and excluding differ-

ential corrections to re and coszi was attempted. The luminosities of

this solution were used and differential corrections to the remaining
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parameters were calculated. The resulting values of the geometrical

parameters were within 8 probable error of the input values. For the

final three iterations only the differential corrections to r8 were

excluded. The resulting parameters were virtually unchanged from the

input values. These parameters are designated "B3" in Table 18C. Even

though the procedure followed for the B3 solution is somewhat subjective,

the resulting parameters and reduced standard deviation seem to justify

the procedure. The B3 geometrical parameters are in good agreement

with the V2 values.
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1. EV 412
 

BV 412, an eighth magnitude system, was observed spectrosc0pically

by Mammano, Margoni, and Stagni and photoelectrically by Harris (1968).

Harris states that the spectroscopic observations indicate primary

eclipse is a transit. The Harris observations were analyzed under this

assumption.

Two errors were found in the published phase values. The Julian

dates of these observations are listed in Appendix F.

The V observations were first analyzed allowing third light. The

iterations converged to a large negative value of excess light. It was

assumed this was due to correlation between the parameters. The V data

were subsequently re-analyzed excluding third light. Satisfactory

convergence occured. The results of this analysis appear with the

designation "AdOpted" in Table 19C.

While the B curve iterative solution excluding third light was

divergent, analysis allowing third light converged. The results of the

convergent solution are given in Table 19C under the designation "Bl".

The geometrical parameters of the Bl and the adOpted V solutions are

not in good agreement. Examination of the correlation coefficients of

the Bl solution showed a correlation coefficient between rs and coszi

of 0.99. A procedure similar to that used for BV 430 was used in an

attempt to find accordant results for the B and V light curves. Geomet-

rical parameters of the V solution were used as initial values of an

iterative solution of the B light curve. Differential corrections to

rs were excluded and it was assumed that there was no third light.

Convergence was obtained in four iterations. The resulting parameters
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were used in an iterative solution excluding differential corrections to

Lg. The parameters changed by less than one standard deviation. There

is a discrepency between the standard deviation of the Fourier analysis

and the differential corrections analysis for the B light curve. Resid-

uals between 2% and 6 standard deviations from the calculated curve were

found for eighteen B observations. Fifteen of these observations are in

the non-eclipse portion of the light curve. This accounts for the

standard deviation of the Fourier analysis being 10% greater than that

obtained by the differential corrections analysis. Resultant B parameters,

designated "AdOpted" in Table 19C, show good agreement with the V

solution.
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J. 58 Lyncis
 

SW Lyncis, a ninth magnitude system, has been observed by Gleim

(1967) and Vetesnik (1968). Fourier analysis indicated the standard

deviation of the Gleim data is approximately twice as large as the

standard deviation of the Vetesnik data. Since the Gleim data are also

less numerous, only the analysis of the Vetesnik data is discussed here.

Both Gleim and Vetesnik concluded that primary minimum of SW Lyncis

is a transit eclipse. Analysis was based on this assumption. Vetesnik

indicated that some of his data apparently contained systematic errors.

He omitted certain observations from his analysis. Accordingly, four-

teen V observations and thirteen B observations designated by Vetesnik

were thus excluded from the differential corrections analysis. One V

observation felt to contain a typographical error was also excluded.

Julian dates of these observations are given in Appendix F.

The V light curve was first analyzed allowing third light. Conver-

gence occured. The resulting parameters are designated as "V1" in

Table 20C. Iterative solution of the V light curve excluding third

light was not completely convergent. The parameters of the iteration

having the smallest value of o(cal.) are given in Table 20C with the

designation "V2". An attempt was made to improve convergence by omit-

ting differential corrections to Lg' Although the resulting standard

deviation is a few percent larger than the V1 solution, convergence

was satisfactory. The results of this solution are designated "V3" in

Table 20C.

Iterative solution of the B light curve allowing third light was

divergent. Iterative solution excluding third light did not exhibit
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satisfactory convergence. The parameters of the iteration having the

smallest value of o(cal.) are given in Table 20C with the designation

"Bl". The partial correlation coefficient between rs and coszi for this

iteration is 0.98. The geometrical parameters of the V2 solution were

used as initial parameter values in an iterative solution excluding

differential corrections to coszi. A small decrease in the standard

deviation of the residuals was obtained. The results are designated

"B2" in Table 20C. Further iterations using the 82 solution and ex-

cluding differential corrections to rS were divergent.

The 82 and V3 solutions seem to provide the most consistent results.

However, these parameters should be regarded with considerable reserve

until they can be supplemented with the results of more numerous obser-

vations of greater accuracy.
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VI. SUMMARY AND CONCLUSIONS

To summarize, we have discussed the transformation from the model

of similar tri-axial ellipsoids to the spherical model for an eclipsing

binary system. KOpal's method and the method of differential corrections

were discussed. Both methods were generalized to include third light.

The method of differential corrections was further generalized to include

orbital eccentricity directly. Synthetic light curves were used to

validate the computer programs, as well as to determine the effect of

dispersion and number of observations on the ability to extract the

desired parameters. Analysis of synthetic data indicated limb-darkening

coefficients may be extracted from observations of sufficient accuracy

and density. This conclusion was found to hold for partial as well as

completely eclipsing systems. In addition, it has been found possible

to extract values of third light. In some cases, however, correlation

between parameters, combined with observations of insufficient quality

or quantity, may prevent convergence.

The data from 10 eclipsing binary systems have been rectified and

subsequently analyzed using differential corrections. The systems are

CO Lacertae, CM Lacertae, RX Arietis, V338 Herculis, Y Leonis, RW Mono-

cerotis, BR Cygni, BV 430, BV 412, and SW Lyncis.

It was often necessary to solve the light curves for each combina-

tion of assumptions as to type of primary minimum and possible presence

of third light. Calculation and comparison of o(est.) and o(cal.), the

estimated and calculated standard deviations, proved valuable in the

determination of convergence. Equality of the standard deviations of

the Fourier analysis and the standard deviation of the entire light
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curve indicated the adequacy of the fit. For those systems in which b

was varied, choice of b, the exponent of the light in the weight, did

not seem to cause significant change in the parameters obtained.

Excellent results were obtained for the systems CO Lacertae, CM

Lacertae, RX Arietis, and Y Leonis. For these light curves convergence

was obtained for the standard set of parameters (rg, rs, coszi, L , Ls,

xg, xs, and, if necessary, L3). For each of these light curves the

standard deviation for the entire light curve was in good agreement

with the standard deviation obtained from the Fourier analysis of the

non-eclipse variation. In addition, for the systems with multi-color

observations the resulting geometric parameters from the separate

curves showed good agreement.

For the B light curves of BV 412 and BV 430 convergence was

obtained only if the number of variables in the parameter set for a

given iteration was limited to six. The V curves converged with a

complete set of seven variables. Resulting geometric parameters and

standard deviations showed satisfactory agreement.

The iterative analysis of V338 Herculis and RW Monocerotis

exhibited satisfactory convergence for the entire set of seven para-

meters (again excluding e, w, to, and possibly L The agreement of
3)°

the geometric parameters from the individual color curves is good for

V338 Herculis. However, for each of the light curves of these two

systems the standard deviations of the Fourier analysis is not in good

agreement with the standard deviation obtained for the entire light

curve. Further observation and analysis is indicated.

The V light curve solution of BR Cygni was satisfactory; however

complete convergence was not obtained for the B light curve. Similar
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results were obtained for SW Lyncis. It is felt that the parameters

for BR Cygni and SW Lyncis should be viewed with reserve until further

observations are made.

With the exception of V338 Herculis, the dispersion of the obser-

vations was larger for the B light curve than for the V light curve

of each system. It is interesting to note that for the systems where

difficulty in the convergence of one curve occured, lack of convergence

was in the B light curve.

Of the ten systems studied, two (CO Lacertae and BR Cygni) showed

evidence of third light.

Values obtained for V and B limb-darkening coefficients and their

probable errors are given in Figures 13 and 14. The theoretical results

are given in the figures for comparison. The theoretical values for

spectral types B0 through A0 are from Grygar (1965). The remainder of

the theoretical values result from least squares fits of the model

stellar~atmospheres limb darkening given by Gingerich (1966) and

Margrave (1969) to the linear limb-darkening law, equation (1.28).

Results for the limb-darkening coefficients in V show reasonable agree—

ment with theory, while limb-darkening coefficients in B show somewhat

more scatter.

In conclusion, it is suggested that greater numbers of high

quality observations are needed to reduce the uncertainty of the limb-

darkening coefficients. Of the 20 limb-darkening coefficients given

in Figures 13 and 14, only four had more than 150 observations in the

corresponding minimum. Light curves containing 300 observations per

minimum should provide satisfactory determination of the corresponding

limb-darkening coefficient.
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APPENDICES



APPENDIX A. DISTRIBUTION OF APPARENT BRIGHTNESS ON THE STELLAR DISK

The discussion of limb darkening presented here follows closely the

discussion given by Kepal (1959, p. 150ff). However we have used x for

the limb-darkening coefficient rather than u.

Temperature variation in the semi-transparent stellar atmosphere

results in an apparent surface brightness that is dependent on the

angle of foreshortening. Radiation viewed normally originates, on the

average, at greater stellar depth than that viewed tangentially.

Assuming the semi-transparent atmosphere represents such a small

fraction of the total stellar radius that it can be regarded as plane-

parallel layers, the equation of transfer of the radiation is

cos y g%-= Kp(B - I) , (A-l)

where I(r) is the intensity of the radiation at a distance r from the

center of the star, B is the source function (emissivity), y is the

angle of foreshortening (angle between the radius vector and the line

of sight),and K is the coefficient of Opacity and p is the density of

the stellar material. (More complete discussion of the equation of

transfer is given by Mihalis (1970, Ch. 1).)

Define the Optical depth T such that

d1 = -Kp dr ; (A-Z)

then

U—=I'B 9 (A’s)

where
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u = cos Y . (A-4)

Assuming that the energy sources in the atmOSphere are neglibible, so

that the atmospheric layers merely transmit radiation without gain or

loss, the net flux of radiation is

n 1

F = 2 f I sin y cos y do = 2 f In du . (A—S)

0 -1

F is thus constant and independent of T. Also under the assumption of

negligible atmospheric energy generation, the source function (giving

the radiation emitted at a point) will be

1 " 11
8(1) =7IOI51nydv=§fl Idu . (A-6)

The source function consists of incident light from all directions.

Combining equations (A-3) and (A-6), we have

T
.
‘

(
L
I
O
-

H
H

l

=1-%f168. (A-7)

-1

Equation (A-7) is an integro—differential equation for the intensity

I(T,u) of radiation at any optical depth T in an arbitrary direction y.

It describes the radiative transfer of energy which is absorbed and re-

emitted (or isotropically scattered with unit albedo) in the plane-

parallel atmosphere.

The two boundary conditions are that the net flux is constant and

independent of T and that no radiation is incident on the star, thus

1(0.u) = 0 (A-8)

for

O 2 u 2 -l . (A-9)
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Equation (A-7) has no known closed form solution. But, for the

case of interest (T = 0) Wiener and Hepf (1931) have shown the solution

 
 

to be

TI/2 _1

I(0,u) = 1%: F exp %_ 6 tan (0 tan 6) d6 (A-lO)

V1+p 0 1 - O cot O ’

where F is given by equation (A-S). Equation (A-lO) may be expanded in

a Taylor series around u = 1. For the linear approximation Milne (1921)

has given the result

1(0’”) = l - x + x cos y , (A-ll)

where x = 0.6.

The above result is valid for bolometric observations. Assuming

local thermodynamic equilibrium, KOpal (1959, p. lSSff) has shown

2 3
IA(0,u) — BA(Te) (A0 + A10 + A20 + A30 + ) , (A-12)

where B). is the Planck function and the Ai are functions of Te(the

Optical depth at which the temperature equals the effective temperature),

the Planck function and its derivatives evaluated at re, and the ratio

of the mean absorption coefficient to the frequency dependent absorption

coefficient. (The A1 discussed here are not to be confused with the

A1 used in the Fourier expansion of the non-eclipse variation of the

light curve.)

In addition, KOpal (1959, p. 158) has shown that third-order theory

may be approximated by the linear theory, so that in adopting the linear

limb-darkening law
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J(v)/J(0) = (1 - x + x cos Y) (A-l3)

the coefficient x is given by

32(A + A ) + 30 A

x = 1 2 3 (A-l4)

32(AO + A1) + 28 A2 + 25 A3

 

Explicit expressions for the A1 in terms of the parameters discussed

above are given by Kopal (1959, equations (l-24)). Thus, in general,

we expect the limb-darkening coefficients to be a function of effective

wavelength and spectral type (effective temperature), as well as the

absorption coefficient of the stellar atmosphere.



APPENDIX B. VON ZEIPEL'S THEOREM

H. von Zeipel (1924) proved the emergent radiation flux at the

surface of a rotationally or tidally distorted star in radiative equili-

brium is preportional to the local gravity. The version of the

derivation of von Zeipel's theorum given here follows the derivations

of KOpal (1959, p. 170ff) and Chandrasekhar (1933, p. 539ff).

If pr is the radiation pressure, Kv the frequency dependent ab-

sorption coefficient and Fv the energy flux, then, as has been shown

by Mihalas (1970, p. 13ff), the variation of the radiation pressure with

depth in the stellar atmosphere is

——=.3 K F dv (B-l)
c v v ,

where c is the velocity of light, 0 is the density of stellar material

and 2, measured normal to the surface, increases outward in the atmos-

phere. Scattering has been excluded. Defining the mean absorption

coefficient K as

1
K - E. J KV Fv dv , (B-2)

0

equation (B-l) becomes

dp
__r.=_E_F (8-3)

d2 C s

or more generally

‘* “59+ _Vpr - c F (B 4)

+

(Motz 1970, p. 101), where F is the total energy flux.
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Assuming all energy is transported by radiation (the condition of

radiative equilibrium), conservation of energy requires

-> +

V ° F = so , (B-S)

where e is the rate Of energy liberation per unit mass. Substituting

.+

for F from equation (B-4), equation (B-S) becomes

‘*. _ ...-1e__ _
V ( VPr ) . (8 6)

Expressing pr as a function of P, the total pressure (gas plus radia-

tion), the left-hand side of equation (B-6) may be written as

3

‘* 1" - L _1._13.r _
v.($vpr)—W§3X[K3X:] (B7)

3

_ a 1__P_1._P.
—§.—i.f[..§ .31] 93-9

d 2

.1 1.13:. .1. 11’.

- dP K d? p dn

.l—LPI‘ 2;.[1‘515] (8-9)
KC") 0 9

where we have used

2 3 2

dP _ .32

[-1.] 220.] 94°)
1-1 1

and measured n normal to the surfaces of constant potential.

If the force on a particle arises from a potential V, then we may

write the equivalent potential for motion with respect to axes that

are rotating with constant angular velocity m about a polar axis x3 as

V = V +-l-w2(x 2 + x22) . (B-ll)
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(See for example Danby (1962, p. 47).) Thus for the rotating star

with gravitational potential V

+ + 2

V ° V? = - 40Gb + 2w . (B-lZ)

If hydrostatic equilibrium is assumed then

+ ->

VP = p VW (B-13)

and equation (B-lZ) becomes

+ l 1 2

V - S—VP = -4nGp + 2w . (B-14)

Combining equations (B-6), (B-9), and (B-l4) we have

60

C

2 d

[ dp ) = g 51‘ ( 21er — 02) — (B-lS) 

Along an equipotential surface the right-hand side of equation (B-lS)

is constant (KOpal 1959, p. 170ff), thus

dP
] 1.[ dn = constant . (3-16)

surface 0
 

]2

surface
 

If it is assumed the constant is non-zero, the equipotential surfaces

must be equidistant. But, in a rotationally or tidally distorted star,

this is not possible. Thus the constant is zero and for each equi-

potential surface

d 1 dPr _

315(de )‘0 ’ (8‘17)

since the pressure gradient is non-zero. Then

ldpr_
E'HP' - constant . (B-18)
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+

Thus for the normal component of F we have

Fn=-EB-Efi'=“:p—a$ a?!- , (3-19)

and

l dP dV
FD '3 ; 'd—n- a]; (B-20)

Thus we expect that at the boundary of the star the intensity H of

total radiation emerging normally from the atmosphere should vary

as

—— = —-———- (B-21)

where g and go are the local and mean surface gravities and H and Ho

are the corresponding intensities. Further, KOpal has shown that

assuming black body radiation the surface brightness “A at a particular

wavelength A may be expressed as

“A
_:1_y[1-§] (8-22)

H gO 9

0

where

1 T dB

y - -4— [§ d—T] .1" (B-23)

e .

T is the actual temperature of the atmosphere and T6 is the effective

temperature. B is the Planck function.

The theory of stellar atmOSpheres thus indicates that the limb-

darkening coefficient and the gravity~darkening coefficient are not

independent. (See KOpal (1959, p. 159 and p. 172).) The adepted
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values of the gravity-darkening coefficient as a function of the limb-

darkening coefficient are those suggested by Russell and Merrill (1952)

and tabulated by Jurkevich (1964, p. 186). A tabulation of y as a

function of x is given in Table 21. The values of N as calculated by

equation (2.31) are also given in Table 21.

Table 21. Gravity Darkening as

a Function of Limb Darkening.

 

x y N

 

0.4 0.08571 2.2

0.6 1.00000 2.6

0.8 1.2278 3.2

1.0 1.2500 3.6

 



APPENDIX C. LUMINOUS EFFICIENCY CALCULATIONS

Portions of the following treatment have been adopted from Jurkevich

(1964, p. l40ff) and Linnell (1971).

Let Lh.band Lc be the intrinsic bolometric luminosities of the

b

hotter and cooler stars. Then

L

I

Q -
-
1

h,b — h,b 411rh (C-1)

and

4 2

c,b o Tc,b 4111‘c ,L (0.2)

where rh and rc are the radii of the hotter and cooler stars expressed

in physical units and T and TC are the corresponding effective

h,b ,b

temperatures.

The total energy from the hotter star intercepted by the cooler

star is

2
r

ALh = L —C— (c-3)
C h 432 ,

where a is the separation of the stars expressed in physical units and

Lh/41rrh2 is the surface luminosity of the inner hemisphere and includes

heating by the radiation of the cooler star. Similarly

= L — . (0.4)

In deriving equations (C—3) and (C-4) it has been assumed that all of

the incident external radiation is absorbed and that the "heating" is

uniform over the inner faces.

Thus for the inner hemisphere Of the hotter star we have
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1 _ 1 c _ 4 2
E-Lh - 51h,b + ALh - 6 Th anh , (C—S)

where Th is the effective temperature of the hotter face of the hotter

component. Similarly, for the cooler component

l-L = l-L + AL = o T an (C-6)
2 2 c -

Define the luminous efficiency, with o the Stefan-Boltzmann constant, as

JT(A)

0T4 ’

E(T) = (C-7)

where JT(A) is the wavelength distribution of the emitted energy. Then

1 4 2
Eh( -2--Lh,b + AL; ) = Eh 6Th 2m-h (C-8)

(C-9)
2

JTh(X) anh

Define the increase in radiation at effective wavelength 1 caused by

the incident external radiation as 28 . Then

h

25 = E (T )( l-L + ALc ) — 1-8 (T )L (c-10)
h h h 2 h,b h 2 h h,b h,b

= E (T )ALC + l-[E (T ) - E (T ))L (c-11)
h h h 2 h h h h,b h,b °

If, as is customary, it is assumed that the change in effective tempera-

ture is small, then

c
zsh — Eh(Th)ALh (c-12)

Similarly for Sc

25 = E (T )ALh (c-13)
c c c c '
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Thus we have for the ratio of reflected lights

_ = _S___. = —-———— ((3-14)

= —E_.———— (0-15)

h

Substituting for T4 (see equation (C-7)), we have

 = (C-l6)

If it is assumed that the stars radiate like black bodies, Planck's

law gives the emergent surface flux distribution as a function of wave-

length,

c1 A"5

JT(A) = ‘E;7XT“" (0-17)

e — 1

Here c1 and c2 are Planck's first and second radiation constants, A is

the effective wavelength, and T is the absolute temperature. The total

emergent surface flux is given by the Stefan-Boltzmann relation

Jb = OT4 , (C-18)

where O is the Stephen-Boltzmann constant.

Let

x = __. (0-19)
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and define J;(A) as

 

The luminous efficiency is

 

E(X) = JTCA)/Jb = 3;;—;' e -1

Define E’(x) as

E(x) 4
E’(x) _ _ x

cl/(Oc24A) ex-l

 

The maximum value of this function is

U
1 ll 4.7798404 ,

max

which occurs at x , where

max

x 3.9206904
max

/

(Jurkevich 1964, p. 143). The values of T and J
max T,max

as

)T = c2/(Axma

max X

and

5

/ = (Tmax xmax)

T,max (exmax _ 1)

 

(C-ZO)

(C-Zl)

(C-22)

(C-23)

(0-24)

then follow

(c-zs)

(C-26)

Note that A is fixed for a given set of observations and this discussion

relates the maximum value of E to an effective temperature.

For the known spectral type a value of Th is obtained from a plot

of color temperature versus spectral type, as in Figure 15. The data for
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this plot is from Harris (1963).

We then have

xh = c2/(ATh) (C-27)

and

5

JTh(A) = -3q;-- (C-28)

(e -1)

The values of J; (A) and E’ normalized to the values at x are

h h max

J “1 -J’ A J’ A (:29Th( 1 - Th( 1/ max( 1 ( - 1

and

8“ - 8’ /8’ (0-30)
h - h max ’

where

x 4

I h

Eh = T— (CI-31)

(6 -1)

With this normalization the range of En is [0,1].

h

The spectral type of the cooler star cannot always be determined.

An alternate method of determining TC is thus necessary. The ratio of

the mean surface brightnesses of the smaller and larger component is

given by

L
.

1-£(p=p ) .
= Y(k,po) o occultation (C-32a)

_§.

Jg 1—l(p=po)

 

transit

where pO is the geometrical depth Of maximum eclipse and is defined as

as -l for total eclipses (KOpal 1959, p. 338 and p. 348). Approximating

Y(k,po) as unity (Kopal 1959, p. 343)
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J 1-£(po)
occultation
 __5_

J 1- £(po)
g transit

(C-32b)

Associating the deeper eclipse with the eclipse of the hotter star and

defining a_as the ratio of surface luminosities Of the hotter and

cooler components

: JThCA) 2 1-IL(pO)primary minimum___
 

 

a

JTc(A) 1-'9'(po)secondary minimum

Thus

.1’ (1) 1 (T x )S
’ T h h

J (A) =._JL.__= _.

T° a a (exh-l) D

S 5

(Tcxc) = :_(Thxh)

(eXC-n 3 (e‘h-n

Solving equation (C-35) for xc, we have

xC = ln[ E(eXh-l) + 1 )

and thus

TC = cz/(Axc)

Continuing with the calculation for Sc/Sh’ we have

5

I (T x )

C (8 C_1) 9

with its normalized value

1T:(1) = J{c(1)/Jéax(1) ,

and

(0-33) 5“

 (c-34) ’-

(0-35)

(C-36)

(c—37)

(C-38)

(C-39)
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4

l x

E = ——°—— (0-40)
C xc

(e '1) 9

with its normalized value

8" - EI/E' ((1-41)
c - c max '

Finally, combining equation (C-29) and (C-39) with equation (C-l6) we

have

n n 2

S JThcx1/(Bh1
C

sh JTgcx1/(E21z

 

In summary, we have assumed:

(1) Stars radiate like black bodies.

(2) All incident radiation is absorbed and re-emitted at

the effective temperature Of the absorbing star.

(3) The luminous efficiency is not significantly changed

by the external incident radiation.

(4) The heating is uniform over the inner face of the star.
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Effective temperatures and

color temperatures from

Harris (1963).

40 - 4250A

T

(103 0K)

5000A

30 _

Teff

3500A

20 _

10 A.

  F — h
-

_

 

  
B A F G

Spectral Type

Figure 15. Effective Temperature and Color Temperature.



APPENDIX D. THE FUNCTIONS xf°c AND xftr

As was mentioned in Section A3 of Chapter II, it is convenient to

express the geometrical dependence of the theoretical value Of the light

of an eclipsing binary as a function of the ratio of radii k and the

geometrical depth of eclipse p. Thus

x

2 = u - £(k.p1L . (0-11

where 2 is the theoretical value of the light of the eclipsing binary,

U is the unit Of light, L is the total light of the eclipsed star (with

limb-darkening coefficient x), and x£(k,p) is the fraction of the light

L lost by eclipse at geometrical depth p.

The fractional loss of light for occultation is expressed as

x oc x oc

f (k.p) = or 091)) . (D-Z)

while the fractional loss of light for transit is

 

xf”(k.p1 = chk1 Xa”(k.p1 . (0-31

where

xT(k) - 3(; i) k2 + 3 {Xx 10T(k) (0-4)

with

10t(k) = %-( sin‘l/E'+ %-(4k — 3)(2k + 1)¢E(I":‘E)‘) . (0-5)

The a function is the fractional amount Of light lost at geometrical

depth p normalized to the fractional amount of light lost at internal

tangency (p = -l) for the respective eclipse. In turn, the a functions
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may be expressed in terms of the 0 functions for uniform and completely

limb-darkened stars, 00 and 100, respectively.

xaoc = 3(1 - x) 00 + 2x loaoc

3 - x 3 - x

xatr = (1 _ utr)a0 +

where

tr _ x ¢

- l - x + x0

 

and

2

1 = ——7 10100
3k

tr tr

u 0

Thus

3

’

(D-6)

(D-7)

(0-8)

(D-9)

These relations are discussed by Irwin (1947) and KOpal (1950, p. 34ff).

Merrill (1950) gives the generating equations for the various 0 functions.

The special forms used in the computer routines are given by Linnell

(1965a,b; 1966a,b,c).



APPENDIX E. PARTIAL DERIVATIVES OF xfoc AND xftr

Bxf axf axf Bxf x

The generating expressions for arg, ars, 86 , and 3x , where f is

 

xf0c or xftr, have been given by Kopal (1946, p. 78ff) and Irwin (1947,

p. 386). The function xf is a homogeneous function of 6/rg and 6/rS Of

order zero (Kopal 1950, p. 88). The dependence of xf on coszi, e, w,

and to is through 6. Previous methods for including the effects of

orbital eccentricity on eclipsing binary light curves employed "fictitious"

elements and were correct to second or third order in the orbital eccen-

tricity (Kopal 1950, p. 106). A more direct approach is possible.

 

We have

axf = 8X£ 88

aceszi 36 aceszi , (E-l)

21‘: = 8311: (5-2)
3e 36 3e ,

Bxf _ 8X£ ii

3w ' 36 3w , (E-3)

8Xf _ 8x£ 88

8t ‘ 86 8t , (E-4)
O 0

where

1’

6 = R(sinze sinzi + coszi)2 . (E-S)

Here

2

R = 3(1 ' e )
(5'6)

1 + e cos 0

where a is the semi-major axis of the orbit (taken as unity), u is the
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true anomaly measured from periastron, and 6 is the phase angle measured

from minimum 6 (primary minimum). The phase angle 8 is defined by

e = u + 6 - 90° , (E-7)

with the true anomaly 0 given by

0 [1+6 E
tani- = 1:;- tan??- (5.8)

(Binnendijk (1960, p. 101)). The eccentric anomaly E needed for equation

(E-8) results from the solution of Kepler's equation

M = E - e sin E , (E-9)

where M is the mean anomaly with respect to periastron

_ 2“ _ -
M — T (t tpp) . (E 10)

(Binnendijk (1960, p. 102) discusses Kepler's equation in greater

detail.) Here t is the time Of periastron passage. We wish to

express M is terms of to, the time of minimum 6 at primary eclipse,

since to is more easily estimated from the light curve. Let the sub-

script "0" refer to a quantity evaluated at minimum 6, 60. Then the

mean anomaly at minimum 6 is

M = -—— (t - t ) . (E-ll)

Substituting tpp from equation (E-ll) into equation (E—lO) we have

Zn

M - -F-(t - to) + MO . (E-12)

We can obtain the value of MD from the geometrical and orbital parameters
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by integration of Kepler's second law. From Kepal (1946, p. 94) for

the time interval (t2 - t1), we have

 

U

Zn 1 2 2

—§-(t2 — t1) — —§-———-—E- 8 R do (E-l3a)

a 1 - e U1

3 U

= (1 - e2)"2 2 1 do (E-l3b)

U1 (1 + e cos 0) ’

where the indefinite integral is evaluated as

  

S d0 = l [ 2 tan-l[ l-e tan a} e sin U_]

(l + e cos u)2 l-e2 Jl-e2 1+6 2 l + e cos 0

(E-l4)

and u and u are the true anomalies at t and t respectively. Thus
1 2 1 2

applying (E-13) and (E-l4), we have for MD

M = -—-(t - t ) (E-lS)

-e UO ]_ eJl-e2 sin U0

1 + e cos uo (E—16)

 II

N H 9
3

:
3

I

r
—
—
-
\

9

where

0 = 8 - w + 900 . (E-l7)
O O

The required value of 00 is derived from the evaluation of the minimum

geometrical depth of eclipse 60. The expression for 6 is

2 . 2 . 2. 2. 1/2
= a(l - e )(51n 0 51n 1 + cos 1) (E-lB)

1 + e cos(6-w+90°)

The requirement for minimum 6 is given by-%% = 0. From Kopal (1950,

p. 106) this expression is
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(l-e sin(e -w))sin21 sin 26 + 2e cos(6 -w) (l-cosze sinzi) = 0

o O o O

(E-19)

This can be solved numerically for 60. Thus we have

2.

60 - 60(cos 1,e,w) . (E-ZO)

With the evaluation of 00 the equations necessary for the evaluation

of MD are complete.

The evaluation of the derivatives of 6 with respect to coszi, e, w,

and t0 is required. This proceeds as follows:

 

 

We have

1/

6 = R (sinze sinzi + coszi) 2 (E-Zl)

and

2

_ a(1-8)

R - l + e cos 0 (E-ZZ)

Thus

35 OR 0 R2 2 BO
37c....= _E—.§-+ -E-51n 1 Sin 6 cos 0 52—- ’ (5‘23)

0 o o

36 BR 6 R2 2 36 c0526
____§_.= __——7f—'_'+'_- [sin 1 sin 0 cos 6 ————§—-+ (E-24)

Bees 1 aces i R 5 aces i 2 ’

85 BR 6 R2 2 30

33': SE'R'+ —E-51n 1 Sin 0 cos 0 53- , (5‘25)

88 BR 6 2 2 88
56-: 55-§-+ -E-51n 1 Sin 0 cos 0 3;- , (E-26)

where from (E-7)



66 _ 30

8t ' 8t ,
o O

66 = 60

aceszi aceszi ,

66 BO

 

 

92.- 1 92.

80 ‘ 3w ,

and

6R = R e sin 0 60

6t 1 + e cos 0 6t ,

O 0

6R = R e sin 0 60

aceszi 1 + e cos 0 aceszi ,

6R _ . 60

53-- ( R e Sin 0 53-- R cos 0 - 2 a e ) / (l + e cos 0] ,

8R _ R e sin 0 60
 

55" l + e cos 0 6w

Solving equation (E-8) for u we have

l-e tan f

 

0 = 2 tan-1[ l+e E ]

The partial derivatives Of u with respect to to, coszi, e, and

 
 

  

thus

9)“ “6 c0526) [1 +1'e raw-11L“:8t l-e l+e 2 8t .
o o

-§2——-= 1+8 cosz(%) [I + 1;: tan2[%]] .21L7?_

aces i '6 aces i :

(E-27)

(E-28)

(E-29)

(E-30)

(E-3l)

(E-32)

(E-33)

(E-34)

(E-35)

are

(E—36)

(E-37)



 

From equation (E—9

Implicit different

where we have used

and

  

 

) and equation (E-12) we have

28 _ .

—§-(t - to) + Mo — E - e s1n E

iation of this equation gives

a

. —' 2.

6cos21 R aces 1 ,

 

25-9.3149.
Btu-Raw 9

8MO

8t ’0

O

R = a(l - e cos E)

(E-38)

(E-39)

(E-40)

(E-4l)

(E-42)

(E-43)

(E-44)

(E-45)

(E-46)

(See Bennendijk (1960, p. 101) for a proof of the latter equation.)
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Repeating equation (E-l6) we write the expression for M0 in terms Of

 

 

 

 

  
 

 

 
 

e and u

o

- - u 1 - 2 '

M = 2 tan 1 ’l—E—tan -9- - e 1 e $1n U0 (E-47)
O l+e 2 1 + e cos ”0 .

Thus the derivatives of MD are

aces i 300 aces i ,

EN = END 300 - :an 30 2 j1+e 2 2

36 -e u _
OUO 38 1 + 1+3 tan (20) 1 e (1+8)

_ sin U0 l—e2 _ e2 (E-49)

l + e cos 0 1 + e cos 0 l-e
o O '

6 6

Gm 660 3w ,

where

3Mo = 2 'l-e 1

3 l-e 2 go 1+e 1 + e cos 0

U0 1 + m tan (2 ) O

eJl-e2 e sianO
- cos 6 + (E-Sl)

l + e cos 0 O l + e cos 0 .

o O

With

0

”O = 60 - w + 90 , (E-SZ)

we have

3U0 660

= ——-———— (E-53)
2. 2.

aces 1 Bees 1 ,
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3U 30

 

o o

-— = -— E-54

6e 8e , ( )

BO 66

——O = -1 + O
(E-SS)

8m 8w ,

Since 60 is the root of equation (E-19), we may differentiate equation

(E-19) implicitly to obtain the derivatives of 60 with respect to coszi,

e, and w. With

D = 2(1 - e sin(OO-w))sinzi cos 260

+ e cos(eo-w)(sinzi sin 260)

- 2e sin(6o-w)(l - c05260 sinzi) , (E-56)

we have

360 = ((1 - e sin(6 -w)) sin 26 - 2e cos(6 -w) cos26 ) / D

. O O o O ’

aces 1
(5-57)

66 2 2 20 _ _ _ _ . . . _ . . .
SE___ ( 2 cos(eo w)(l cos 6o Sin 1) + $1n(60 w) Sin 1 Sin 260) / D,

(E-58)

392.: (- e cos(6 -8) sinzi sin26 - 2e sin(6 -w)(1 - C0520 sinizi)/ 0
3w 0 O 0 .

(E-59)

The equations necessary for the evaluation of the partial derivatives

x cc

of f and xftr are now complete.

If it is desired to calculate the corrections to e and w in the

form A(e sin w) and A(e cos w) the following transformations may be

 

 

applied

6f . 6f cos w 6f

6(e sin w) 3 Sin w 63D+ e 65' , (E'6O)

6f _ 6f sin w 6f

6(e cos w) — COS w 6e - e 65' . (5'61)



APPENDIX F. ERRORS IN THE PUBLISHED DATA

This appendix contains a list Of points that were found to contain

errors in their published phase values. These points are listed with

corrected phase values. Also included in the table are points that were

omitted from subsequent iterative solutions because their residuals were

greater than 3 standard deviations from the calculated light curve.

These points are listed without corresponding phase values. It is felt

that most of these errors are typographical in nature.

 

 

Table 22. Errors in published data.

Corrected

System Color J'D'Hel. Phase Values

CO Lac B 2439033.5594 .5141

2439034.3798 .0461

2439060.4350 .9409

V 2438990.4732 .5760

2439029.6320 .9675

CM Lac U 2434595.694

2434643.821

2437201.7242

2437201.7465

B 2434595.694

2434606.872

2434643.753

2434643.813

V 2434595.694

RX Ari B 2437984.69lO .0301

V 2437637.7l73 .0400

2437639.6936

2438315.7749

2438398.6477

2438398.6513

V338 Her V 2439648.4767 .9683

Y Leo IR 243663l.7214 .0104

RW Mon IR 2439454.8463
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Table 22 (cont'd)

 

 

Corrected

System Color J'D'Hel. Phase Values

BV 412 B 2439036.86266 .86950

V 2439094.72037 .87819

SW Lyn V 2439598.3325

14 observations

begining with 2439615.314O

B

13 observations

begining with 2439598.3201
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