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ABSTRACT

ANALYSIS OF THE LIGHT CURVES OF
TEN ECLIPSING BINARY SYSTEMS

By

Deanne Dorothy Proctor

Computer programs for the Fourier analysis, rectification, and
solution of eclipsing binary light curves have been written. Both
Kopal's method and the method of differential corrections have been
generalized to include third light. The method of differential cor-
rections has been further generalized to include orbital eccentricity
directly.

Synthetic light curves were used to validate the computer pro-
grams, as well as to determine the effect of dispersion and number of
observations on the ability to extract the desired parameters. Analy-
sis of synthetic data indicated limb-darkening coefficients may be
extracted from observations of sufficient accuracy and density. This
conclusion was found to hold for partial as well as completely eclips-
ing systems. In addition, it has been found possible to extract
values of third light. In some cases, however, correlation between
parameters, combined with observations of insufficient quality or
quantity, may prevent convergence.

The data from 10 eclipsing binary systems have been rectified and
subsequently analyzed using differential corrections. The systems are
CO Lacertae, CM Lacertae, RX Arietis, V338 Herculis, Y Leonis, RW Mono-
cerotis, BR Cygni, BV 430, BV 412, and SW Lyncis.

It was often found necessary to solve the light curves for each

combination of assumptions as to type of primary minimum (occultation
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or transit) and possible presence of third light. Calculation and com-
parison of o(est.) and o(cal.), the estimated and calculated standard
deviations, proved valuable in the determination of convergence.
Equality of the standard deviation of the Fourier analysis and the
standard deviation of the entire light curve, to within their probable
errors, indicated the adequacy of the fit for each curve. For those
light curves for which b was varied, choice of b, the exponent of the
light in the weight, did not seem to cause significant change in the
parameters obtained.

Convergence of the iterative procedure was obtained for the sys-
tems CO Lacertae, CM Lacertae, RX Arietis, and Y Leonis. Convergence
for the V curves of BV 412 and BV 430 was also satisfactory. However,
convergence of the B curves of these two systems was obtained only if
the number of variables included in the differential corrections was
limited to six. V338 Herculis and RW Monocerotis exhibited satisfactory
convergence; however, the standard deviations of the Fourier analyses
for these light curves were not in good agreement with the respective
standard deviations obtained from the differential corrections analysis.
The V light curves of BR Cygni and SW Lyncis exhibited satisfactory
convergence. The B light curves did not. Further observation of V338
Herculis, RW Monocerotis, BR Cygni, and SW Lyncis is recommended.

Of the ten systems studied, two (CO Lacertae and BR Cygni) showed
evidence of third light.

Limb-darkening coefficients resulting from the analyses are com-
pared to the theoretical values. Results for limb-darkening coef-
ficients in V show satisfactory agreement with theory, while limb-

darkening coefficients in B show more scatter.
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I. INTRODUCTION

A. Historical Aspects

The term double star is generally applied to pairs of stars that
appear single to the unaided eye, but are resolvable with the aid of
a telescope. The discovery of the first double star, around 1650,
was made by Riccioli (Aitken 1964, p. 1). Several dozen double stars
were discovered in the following century and in 1767 it was first
suggested that the phenomenon was due to something other than chance
projection. John Michell (1767) suggested actual physical association
of the members of some double stars. This was confirmed 36 years later
by William Herschel. Herschel (1803) presented results of measurements
and analyses of the relative position of the components of six double
stars. He concluded that certain double stars are true binary systems,
that is, systems of physically associated stars. At present we have
calculations for the orbits of over 500 such systems. (The catalogue
of Baize (1950) contains calculated orbits for 252 visual binaries.)

Stars exhibiting variation in brightness had been observed for
hundreds of years when, in 1783, John Goodricke suggested an eclipsing
nature for some of the variables. In that year Goodricke reported
observing periodic minima in the light of Algol and suggested that
the cause of the loss of light was the interposition of a body revolv-
ing around Algol. Proof of the binary nature of Algol came with
spectroscopic investigations of radial velocities. Doppler in 1842
presented his formula for the shift in the wavelength of light as a

function of relative velocity of the source and observer. Then,



Vogel (1889) observed the periodic shifting of the radial velocity of
Algol and noted that the times of conjunction obtained from the radial
velocity curve coincided with the minima of light.

Estimates for the percentage of double or multiple stars in the
vicinity of the solar system range from 30 to 50% of the total popula-
tion (Kuiper 1935). No preferential orientation has been found for
the inclination of the orbital planes for binary stars (Chang 1929,
Finsen 1933, Huang and Wade 1966). Based on this assumption, the prob-

ability P of a system having an inclination between il and 12 is

P = cos 11 - cos 12 (1.1)

(Binnendijk 1970). Eclipsing binaries should not be uncommon. As of
1968, over 20,000 variable stars had been catalogued. Of those stars,
4062 have been classified as eclipsing binaries (Kukarkin et. al.
1969). (The catalogue of Koch, Plavec, and Wood (1970) contains the
results of the analysis of 216 eclipsing binary systems.)

From observations of the light of an eclipsing binary as a
function of time it is possible to extract information regarding the
physical and geometrical properties of the system. This is dome by
adopting a physically reasonable model and expressing the theoretical
value of the light as a function of time in terms of the related para-
meters. The parameters of the model are then adjusted to obtain the
best fit between the theoretical light curve and the observed light

curve. The model is discussed in the next section.



B. Discussion of Model

The members of a binary system are distorted by tidal action and
rotation. As a first approximation, each component may be regarded as
a tri-axial ellipsoid (Jeans 1928, p. 225). The adopted model for the
binary system consists of a pair of similar tri-axial ellipsoids. The
errors introduced by the assumption of similarity will be discussed
later in this section.

Let ag, bg’ and c8 be the axes of the larger star and ag, b8 and
cg be the axes of the smaller star, each expressed in terms of the sep-
aration of the components as unit of length. The axes as and a  are
taken along the line joining the centers of the components, the axes
c, and c, are taken as the polar axes or axes of rotation, and the axes

g
b8 and be are the remaining axes. The axes c8 and c, are assumed par-
allel to the orbital angular momentum vector. Assuming the axes of
rotation constant in magnitude and direction, their projections, as
viewed by the observer, are constant. It has been shown by Russell
(1945) that, for a particular form of the surface brightness, the light
observed for a pair of similar tri-axial ellipsoids (axes ag, bg, c

g
and a, b‘, c') with orbital inclination i is the same as would be

observed for a pair of similar oblate spheroids (axes ag, bg, b8 and
a, ba’ ba) with inclination j, where
2 2
c c
tan?j = ;&z-tanzi = ;ﬁz-tanzi . 1.2)
8 8

The form of the apparent surface brightness assumed is



n
Iy = (=g, (1.3)

where J(y) is the apparent surface brightness, y is the angle of fore-
shortening (the angle between the normal to the surface of the star
and the line of sight), H is the perpendicular distance from the center
of the star to the tangent plane of the point under consideration, and
n 18 unrestricted. This form of apparent surface brightness is con-
sistent with the theoretical form described later. Thus there is no
loss of generality in replacing the model of similar tri-axial ellip-
soids with the model of similar oblate spheroids of axes ag, bg’ bg
and ‘a’ bs’ b8 and orbital inclination j, where j is given by equation
(1.2).

The assumption of similarity (equal oblateness) of the equatorial

forms is not an unreasonable first approximation. The dynamical

theory of equilibrium gives

a -b

m_

-3 =3 (1.4)
2 T (1+2Kg) ,

where mg is the mass of the star of larger radius, m is the mass of

the star of smaller radius, and Kg is a function of the variation of

density with radius that does not exceed 0.02 in any well-determined

case (Russell and Merrill 1952, p. 40). The quantity fg is defined by

-3
r =abec . 1.5
g 288 ( )

Corresponding expressions hold for the smaller star.

Defining the oblateness of the equatorial shape as



wn

€ = — (1.6)
we have
€ m |2 [r |3
£ . | S 8
€g mg Tg . (1.7)

For main-sequence stars the mass-radius relation (Russell and Moore

1940, p. 112) gives

rem’ (1.8)
SO
i& TE-.1
= =I5 (1.9)
s s

and the oblateness ratio is a weak function of the mass ratio.
The assumption of similarity of the polar flattening is perhaps

less justified. Russell and Merrill (1952, p. 40) give

b -c m +ms .3 2

£ £ . 8 33° (1+2k )u , (1.10)
= ng g g 8
g

where w_is the ratio of anguylar velocity of rotation to angular veloc-
ity of revolution for the larger component. A corresponding expression
holds for the smaller star. Define the oblateness for the polar flat-

tening as
_ b-c
n-——b— . (1.11)

Then, if the stars are taken to have synchronous rotation and revolu-

tion (Koch, Olson, and Yoss 1965 and Olson 1968)



n 1.1
g . |-
ng - Lms] . (1.12)

The assumption of similarity of shape is seen to be best for
components of nearly equal mass. If the masses are reasonably similar
and the radii are less than one third of the separation of centers of
the components, the departure from spherical shape will not be more
than a few percent.

Consider the errors resulting from the assumption of similarity

of shape. From equation (1.2)

j = tan”I( £ tan i), (1.13)

8o
dj = tan i
d(%) 1+ (ﬁ)ztanzi . (1.14)
Thus
. 1 c
Aj < Al .
o ) (1.15)

where Aj is the error in j resulting from an error of A(%) in (%).
Assuming the error in (%) resulting from the assumption of similarity
of shape is no greater than the difference of the values of (%) for

each star we have

(1.16)




or
A(g) < Ing=ngl - (1.17)

Thus for the error in the inclination

1
8y < = Ing-nl
(E) tan 1 . (1.18)

Next, considering the error in b we have, from equation (1.6), that
b = a(l-e) , (1.19)
8o
Ab = aAe , (1.20)

where Ab is the error in b resulting from an error Ae in the equatorial
oblateness. Again assuming that the error in the oblateness caused by
assuming similarity of shape is less than the difference between the

values of oblateness for each star, we have
Ab < aleg-esl , (1.21)

or

(1.22)

As an example consider a system with components ag = .25, a8 = ,20,
and 1 = 76°. From equation (1.4) and equation (1.10) values of the

oblateness for this system are eg =¢_ = ,017, n

s = .014, ng = .010.

8
Then from equations (1.8), (1.19), and (1.22) we have Aj < .06° and

Ab < ,0002. These errors in the inclination and radii are to be compared



with the corresponding errors resulting from observational error in

the light. For a synthetic light curve of approximately 800 points

and a standard deviation in the light values of %Z, the standard devi-
ation in the inclination is approximately 0.1° and the standard deviation
in the radii is approximately .0006 (Linnell and Proctor 1970a). Light
curves discussed in Chapter V of this work typically have 400 obser-
vations and standard deviations in the light of SZ. The errors in the
inclination and radii due to observational errors are correspondingly
greater for these curves. Typically the standard deviation in the
inclination is 0.2° and the standard deviation in the radii is .004.
Comparing these values with the values Aj < .06° and b < .0002, we see
that errors in assuming similarity of shape are less than the errors

resulting from observational scatter in the light.

C. Review of Notation and Units

Based on the discussion of the previous section, we substitute
for the similar tri-axial ellipsoids with inclination i, the mathe-
matically equivalent prolate spheroids with inclination j. The latter
form is called the Russell Model. Reflection from each star will also
be included. Providing for the possibility of excess or umeclipsed
third light, light curves based on this model may then be considered
a function of fourteen parameters and the time. These parameters are

as follows:

r8 - semi-major axis, larger star

r, - semi-major axis, smaller star

J - inclination of plane of orbit of

equivalent oblate spheroids



L - 1light of larger star
L - light of smaller star
L3 - excess uneclipsed light, third light

x - limb-darkening coefficient, larger star

g
x, - limb-darkening coefficient, smaller star
to - time of minimum projected distance of

centers during primary minimum
e - eccentricity of orbit
w - longitude of periastron
€ - oblateness of ellipsoids
S ,S, - parameters related to the light reflected

from the cooler and hotter stars.

We note that for orbits of small eccentricity (e < .02) the change
in the oblateness due to the variation in distance between the com-
ponents is at most of the same order of magnitude as the error occuring
due to the assumption of similarity of the components. We thus take
the unit of length to be constant and equal to a the semi-major axis

of the orbit.

The unit of light intensity, U, is defined initially as

U= Lg+L8+L3 (1.23)
It is customary to normalize the light such that U = 1, so
n,.n
Lg L= 1 . (1.24)
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where

L™ =L /(U-L) (1.25)
8 8 3

and

L= L/ U-Ly) . (1.26)
Third light may arise from an unresolved third companion, from gas
streams, or from gas shells in the system. Alternatively, the source
of excess light may not be physically associated with the binary system.
A field star may be of such small angular displacement from the system
that its light cannot be eliminated from the measurements. Koch (1970)
gives a discussion of sources of third light.

Diagrams of the orbital parameters are given in Figure 1 and
Figure 2. The angle Q is the position angle of the nodal point between
0° and 180°. It cannot be determined from the light curve. Note that
for the orbital parameters the convention used is that of spectroscopic
notation. The primary is moving about the secondary and w is measured
from the ascending node, the node at which the star is moving away from
the observer (Aitken 1964, p. 154). Observations do not give the sign
of the inclination and therefore do not tell the quadrant. The angle
6 is the phase angle measured in the plane of the orbit from the time
of conjunction (primary minimum). The angle v, called the true anomaly,
is measured from periastron in the plane of the orbit and in the direc-

tion of motion of the primary. Thus we have the relation
(]
8 = v+tw-90 . (1.27)

The limb-darkening coefficients are parameters in an expression

giving the distribution of brightness over the apparent projected
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Observer
A

Plane of true orbit

Periastron

Figure 1. Orbital parameters of the true ellipse in space.

t Plane through primary
| perpendicular to line
8 ! of nodes

Primary

Nodal
point Secondary

Periastron
line
of
nodes

Figure 2. Orbital parameters for the true orbit.
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stellar disks. This variation is due to both the finite optical depths
of the atmospheres and the variation of temperature with depth in the
atmosphere. Thus the apparent surface brightness depends on the angle
of foreshortening. For a given wavelength the adopted form of the

expression for apparent surface brightness J(y) is
J(y) =JO)(L - x+ xcos y) , (1.28)

where y is the angle of foreshortening, J(0) is the surface intensity
at the center of the projected disk, and x is the limb-darkening coef-

ficient. The values of x are restricted such that

-l<x<1 . (1.29)

The expression for apparent surface brightness is an approximation
linear in the limb-darkening coefficient. Comparison of the first
order theoretical values of x (Munch and Chandrasekhar 1949) with those
produced by the third order theory of Kopal (1959 p. 160) indicate
that over the wavelengths covered by the UBV system, the maximum dis-
crepancy in the values of x is about 0.03. This error is comparable
with the probable error in x resulting from observational dispersion
in a light curve of 800 points and observational scatter of éz (Linnell
and Proctor 1970a). However, for the observed light curves treated in
Chapter V of this work the probable errors in x are typically three to
four times as great. Until more accurate curves containing greater
numbers of observations are available, use of equation (1.28) is an
adequate approximation.

In general, x is expected to be a function of the wavelength of

observation, atmospheric absorption coefficients, and the effective
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temperature of the star (Kopal 1959, p. 159). (A derivation of the
limb-darkening law, equation (1.28), isgiven in Appendix A.) A com-
pletely theoretical determination of x involves knowledge of the
chemical and physical processes occuring in the atmosphere. Model
stellar atmospheres and their effective linear limb-darkening coef-
ficients are discussed by Grygar (1965), Gingerich (1966), Margrave
(1969), and Parsons (1971). These theoretical values of limb darken-

ing can be compared with observed values.

D. Statement of Problem

The continual change in the size of the apparent projected area
of the spheroidal stars as a function of phase angle results in a
variation of the light received by an observer. The amount of light
reflected from each star in the direction of the observer also changes
as a function of phase angle. Schematic light curves showing the
effects of oblateness and reflection are shown in Figure 5 and Figure 6.
Estimates of the oblateness and ratio of reflected lights can be
obtained from information resulting from Fourier analysis of the non-
eclipse variation combined with knowledge of the spectral type of the
primary and the ratio of the depths of eclipse. The oblateness and
ratio of reflected lights are used to transform the curve from that
of similar spheroids to that of certain equivalent spheres, in a manner
to be described later. This transformation process is called recti-
fication. The underlying reason for rectification is that this trans-
formation eliminates the necessity to tabulate or calculate special
functions for every value of oblateness and ratio of reflected light.

Each light curve can be transformed to its equivalent Spherical Model
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light curve and functions for the Spherical Model can then be used.
We also note that the Spherical Model is the limiting case of zero
"interaction" between the components.

An initial value of to is generally available in the literature,
along with P, the period of the orbit. Observations of minima over
several years allow very accurate period determinations.

The geometric parameters, lights of each star, and limb-darkening
coefficients remain to be determined. Various methods have been devised
for the analysis of the Spherical Model light curve, the method com-
monly employed being the graphical one of Russell and Merrill (1952).
The method of Russell and Merrill was initially designed to provide
preliminary estimates of the parameters (Russell and Merrill 1952,

P. 27). Subsequent modifications of the method can be applied to pro-
duce parameters of greater weight (Russell and Merrill 1952 p. 58).
Certain specifically chosen points are taken from a free-hand curve
drawn through the observations. Thus each observation is not, in
general, given equal weight in the solution. However, for visual,
photographic, and photometric observations with probable errors of a
single observation commonly 4%, this method produces parameters that
satisfactorily fit the light curves. Values of limb-darkening coef-
ficients are assumed in this method of solution. For modern photo-
electric light curves, probable errors of a single observation of X%
are not uncommon. It is likely that an analytic method of solution
can extract more information from the data. In particular, limb-
darkening coefficients and probable errors of the parameters are
desired. Solution by computer is desirable to handle the large

amounts of data used in the more rigorous methods.
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E. Previous Work

Some of the earliest attempts at utilization of a computer includ-
ed those of Hamid, Huffer and Kopal (1951) on RZ Cassiopeiae and Huffer
and Collins (1962) on S Cancri and AR Cassiopeiae. Kopal's Second
Method (1959) was used. A maximum of six parameters were determined.
These were rg, rs, i, A (depth of eclipse), x (limb-darkening coef-
ficient of eclipsed star), and U (unit of light). In the Huffer and
Collins analysis of S Cancri and AR Cassiopeiae corrections to the
limb-darkening coefficient and its probable error were suspiciously
small.

Jurkevich (1964) and West (1965) also programmed Kopal's Second
Method. Neither included corrections to the depths of eclipse, unit
of light, or limb-darkening coefficients, although West did examine
variance as a function of successive values of limb-darkening.

Tabachnik (1969) programmed Kopal's First Method (1959, p. 319).
Tabachnik minimizes a variance which is a function of x, the appro-
priate limb-darkening coefficient, and k, the ratio of radii. 1Imn
principle the method allows for corrections to the depths of eclipse
and unit of light, but, in the published results not all of the
variables were included simultaneously.

Wilson (1969) presented an ingenious method for finding limb-
darkening coefficients by enforcing a condition between the coef-
ficients for the larger and smaller components at corresponding
phases (6,6+180°). This method though is rather restricted. It
requires completely eclipsing systems, small, well-known eccentricity
and absence of third light. One of the eclipses must be represented

plecewige by an analytic series. A computer is useful for the method.
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Kitamura (1965) developed a procedure involving the Fourier trans-
form of the light curve. It provides uniform treatment of partial,
total, and annular eclipses. The method also determines whether the
rectification process is satisfactory and whether the rectified light
curve is acceptably represented by the eclipse effect alone. Kitamura
ultimately resorts to the method of differential corrections for his

final analysis.

F. Purpose

The purpose of this study is to extend and apply the equations
involved in the differential corrections method and Kopal's Second
Method. Both approaches are generalized to allow for the possibility
of excess or uneclipsed third light. In the case of differential
corrections, the effects of orbital eccentricity are explicitly in-
cluded. Previously, light curves were analyzed for '"fictitious" circular
elements. These fictitious elements could be transformed to the true
elements if values of the eccentricity and longitude of periastron
were available. The results were good to second or third order in e,
the orbital eccentricity (Kopal 1950, p. 106ff).

The requisite equations for rectification and analysis are de-
scribed in Chapter II. Chapter III provides a brief description of
the programs and Chapter IV describes the validation of the programs
using synthetic light curves. Finally, Chapter V contains the results
of analysis of published observations for 10 eclipsing binary systems.
The systems considered are relatively well-separated systems, thus the
relations discussed in Part B of this chapter should provide good first

approximations.



II. METHOD

It is necessary to calculate the theoretical light intensity seen
by a distant observer for a spheroidal star as a function of phase angle
6. The effects of limb darkening, gravity darkening, and reflection
will first be considered individually in Section A. In Section B of
this chapter the rectification equations are discussed. Sections A and
B thus relate to the formal properties of the Russell Model. Details

of the analysis procedure begin in Section C.

A. Theoretical Light Intensities

The form of the limb-darkening law of apparent surface brightness
allows calculation of xz, the light from a limb-darkened star, as a
linear combination of EU, the light of a uniformly bright star (x=0.0),
and QD, the light of a completely limb-darkened star (x=1.0). The

apparent surface brightness J(y) at y is
J(y) =JO)( - x + x cos y) , (2.1)

where y is the angle between the normal to the surface of the star and

the line of sight and J(0) is the central surface brightness. Thus
X = f J(y) cos y do , (2.2)
where do is the surface element, facing the observer, at angle y. So

J(0)(1-x) [ cos y do + J(0) x [ cos’y do (2.3a)
D (2.3b)

»
]

(1-x) 2U + X &

where

17
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gV - J(0) [ cos y do (2.4)
and

2P = J(0) [ cos®y do . (2.5)

The derivations below follow the presentation of Binnendijk (1960,

p. 290£f), with minor changes in notation.

1. Oblate star, uniform brightness
For the uniformly bright star we may calculate 2U by multiplying
the surface brightness J(0) by the apparent projected area Ap of the

star. Thus

)
1]

J(0) [ cos y do (2.6a)

J(0) A, : (2.6b)

The orbital geometry is given in Figure 3. (In Figure 3 the plane
containing the angle (90-j) is perpendicular to the line of nodes.)
The ellipsoid has axes a, b, and b, with major axis along the line of
centers. The projected ellipse has axes d and b. Figure 4 is a view

of the components in the plane of the orbit.

Primary

¢
Secondary g Q

Observer Observer

Figure 3. Orbital geometry. Figure 4. Projection of components.
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The value of d is found by requiring that the equation for the inter-
section of the line of sight and the ellipse have a single root. This
gives

a2 sin2¢ + b2 cosz¢ (2.7a)

a2 (1 - ee2 c052¢) . (2.7b)

[« %
]

Here €, is the eccentricity of the ellipsoid. From the cosine rule

of spherical trigonometry

cos ¢ = sin j cos 8 . (2.8)
Thus we have
Ap = ndb (2.9a)
= nab(l - ee2 sinzj cosze);5 (2.9b)
2. 2, 2
= nab(l - %ee sin”j cos e) (2.9¢)

to first order in eez. For small ee we have for the oblateness €

e=(a-b)/a=1-(1- eez);i (2.10a)

e =Xe 2

. (2.10b)

Substituting equation (2.9c) in equation (2.6b) and using equation
(2.10b) we have
2U= J(O)wab(l-e sinzj cosze) (2.11a)

= £9(90) (1-¢ sin’j cos®e) . (2.11b)
where zu(go), the light at quadrature, is

2Y(90) = J(0)mab . (2.12)



s
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2. Oblate star, complete darkening

Evaluation of the integral in equation (2.5) to first order in ¢

results in

where

2D

n

n

2
3

1(90) (1 - g € sin’j cos’e)

5

(1 + £ €)mabI(0)

2P (90) = :

w|ro

(Binnendijk 1960, p. 301).

3. Oblate star, intermediate darkening

so

where

and

For intermediate limb darkening of an oblate star

P
fl

1]

(1 - x)zU + xRD

(1 - x)zU(QO)(l - € sinzj cosze)

+x2D(90)(1 - g-e sinzj cosze)

X

b . 1 - f(x) e sinzj c0529
X4 (90)
8
£x) = (1-x)2%(90) + & x2P(90)

(1-x)2Y(90) + x2P(90)

X0 (90) = (1 - x)29090) + x2P90)

_.[1 + l.e)ﬂabJ(O)(l - %-e sinzj cosze)

’

’

(2.13a)

(2.13b)

(2.14)

(2.15a)

(2.15b)

(2.16)

(2.17)

(2.18)
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With equation (2.12) and equation (2.14)

20 .2 (141 (2.19)
1] 3 5 ,
2 (90)
and to first order in €
b
x . 1 - 15+2x € sinzj c0526 (2.20)
£(90) 15-5x

This variation is shown schematically in Figure 5.

270° 0° 90° 180° 270°

Figure S.
Schematic light curve with influence of oblateness.

4. Oblate star, gravity darkening

Von Zeipel (1924) first demonstrated the proportionality of the
emergent flux and local gravity at a point on the surface of a star.
This relation has also been derived by Chandrasekhar (1933). Let H
be the intensity of the total radiation emergent normally from the

atmosphere and let g be the local surface gravity. Then
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H g g
—_— = =1 - {1 -
H g ( go) , (2.21)
where g is the mean surface gravity and HO is the corresponding inten-
sity. Proof of Equation (2.21) along with the assumptions involved is
given in Appendix B. Kopal (1959, p. 172) has shown that, assuming
stars radiate like black bodies, the surface brightness at wavelength

A will be

==

A
nel-y (-8, (2.22)

where y, the gravity darkening coefficient, is a function of wavelength
and effective temperature. Integration of equation (2.22) over the
surface of the star gives the light variation associated with local

gravity,

Yy 2, 2
Yi(90) =1- (1 +y) e sin"j cos"6 . (2.23)
Again Y2(90) is the light at quadrature.

5. Reflection

Let Lh and LC be the intrinsic luminosities of the hotter and
cooler stars respectively. Let 2 Sh be the total amount of light
reflected from the hotter star and let 2 Sc be the total amount of
light reflected from the cooler star. If stars reflected light like

mirrors the light outside of eclipse would be
L = Lh + Sh(l + cos ¢) + Lc + Sc(l - cos ¢) , (2.24)

where ¢ is the angle between the line of sight and the line of centers
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of the stars in space. The difference in sign for the cosine terms
is a result of the difference in phase of m between the components.

Thus we may write
L = Lh + 2.5 Sh f(¢) + LC + 2.5 Sc f(op+m) , (2.25)
where for '"mirror-like'" stars

(1 + cos ¢) . (2.26)

LN

£(9) =

The normalization of the phase function, equation (2.26), is chosen
so that the form for "mirror-like'" stars may be compared to the form
generally adopted.

Rigorous calculation of f(¢) for more physically realistic models

of reflection is extremely complicated. The form generally adopted is
f(¢) = 0.2 + 0.4 cos ¢ + 0.2 cosz¢ , (2.27)
where
cos ¢ = sin j cos 6 . (2.28)
(See Russell and Merrill 1952, p. 44.) Then

z=(Lc+1,h)+%(sc+sh)-(sc-sh) cos ¢

’ % (S, + S, cos?y . (2.29)

This variation is shown schematically in Figure 6.
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270° 0° 90° 180° 270°

Figure 6. Schematic light curve with influence of reflection.

6. Combined effects
The combined effects of reflection, oblateness, limb-darkening
and gravity darkening produce for the light received from both stars

outside eclipse,

N . 2. 2 1
L = 2(90)(1 - Ne sin”j cos 9) + §'(Sc + Sh)
, e . 1 . 2. 2
- (Sc - Sh) sin j cos 6 + 7(5c + Sh) sin”j cos’® ,

(2.30)
where

15 + x

N=ge—ex 1 +Y) , (2.31)

and 2(90) is the sum of two terms of the form of equation (2.18), one
for each star. It has been assumed for the purpose of rectification
that thelimb-darkening and gravity darkening are the same for both

stars.
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B. Rectification

The result desired from rectification is the elimination of the
variation in the light curve due to reflection and oblateness in such
a manner as to retain the physical meaning associated with the parameters
of the model.

If 2(obs.) is the observed light value at phase angle 6 and & is

the corresponding theoretical light value, then we may write
L(obs.) = 2 + 82 (2.32)

where 62 is the associated observational error. For points outside

eclipse 2 is given by equation (2.30), so that to first order in ¢

. 2, 2 1
2(obs.) = £(90) (1 - N € sin“j cos“e) + > (S, *+S)
- (Sc - Sh) sin j cos 6

1 .2, 2
+ -2--(SC + Sh) sin"j cos 6 + 62 . (2.33)

1. Rectification for reflection
From equation (2.29) and equation (2.33) it is seen that the light
from the cooler and hotter stars may be symmetrized by the addition of

the quantities of light Azc and Azh, where

_1 .. 1 . 2. 2
Alc = 7'Sc + SC sin j cos 6 + E-SC sin”j cos @ (2.34a)
and
AR, = l-S - S, sin j cos 6 + l-S sinzj cosze (2.34b)
h~ 2 *h h 2 °h * *

Thus if 2(obs.) is the observed light at phase angle 6, then zrp, the

observed light partially rectified for reflection may be defined as
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1 ..
zrp 2 (obs.) + 5'(Sc+sh) + (Sc-Sh) sin j cos 6

1 . 2, 2
+ §-.(Sc+sh) sin”j cos“e . (2.35)

In effect, this partial rectification adds sufficient luminosity to

the outer faces to bring them to equality with the illuminated sides.

It thus provides completely illuminated stars at all phase angles.

While the above rectification is exact for the non-eclipse portion of
the light curve, no sensible error occurs by continuing its application
right through eclipse (Russell and Merrill 1952, p. 48). Note that zrp
still varies as a function of phase angle. This is due to the '"non-
mirror like'" quality of the reflection. We can eliminate this variation

and complete the rectification for reflection by division as follows:

)
. = rp

.2, 2
(Lg+Ls)+(Sc+Sh)+(Sc+Sh) sin”j cos™@

z(obs.)+%(Sc+Sh)+(Sc-Sh)sin j cos 8 +%(Sc+8h)sin2j cosze

= —5~ > (2.36)
(Lg+Ls)+(Sc+Sh)+(Sc+Sh)s1n j cos'8 ,
where we have used the substitution
2(90) = Lg + LS . (2.37)

The denominator of the right-hand side of equation (2.36) has been

determined by the combination of equation (2.33) and equation (2.35),
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2. Rectification for oblateness

To eliminate the non-eclipse variation due to oblateness, the light
at 6 is divided by the appropriate value of (1 - N ¢ sinzj cosze). The
quantity N € sinzj is known as the photometric ellipticity. Thus if

L and 2

c.r h.p aTe the lights of the cooler and hotter stars rectified
) ’

for reflection and we define

L
c,T
L = 2 (2.38)
©IT 1 _Ne sinzj cos?o
cc
L
h,r
) = 2 (2.39)
h,rr . 2. 2
1 - Nheh sin j cos 6
the total rectified light Err is
2rr = lc,rr * Eh,rr (2.40)
L L
- c.r — - h,r - —  (2.41)
1 - Ncec sin"j cos @ 1 - Nheh sin"j cos @
L + 2
1 - Ne sinzj cos?
L
= r > > (2.43)
1 - Ne sin“j cos“e
where
I Ne +2 Ne€
Ne = c,rccC h,r h'h (2.44)
L + L
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If it is assumed that ¢ = ¢_ =€ and N = N_ = N, then
c h c h

Ne = Ne . (2.45)

3. Light rectification formulas
Combining equation (2.36) and equation (2.43), we have for the

light rectification formula

1 s s 1 . 2, 2
i 2(obs.)+§(Sc+sh)+(SC-Sh)51n j cos 6 +§(Sc+Sh)51n j cos”8
(L +L_+S_+5, ) (1-Ne sin’j cos?6) (8:*Sp)sin’j cos?e)
g s ¢ h 1+ T30 45 + ]
g s ¢ Sh '
(2.46)

L
Irr

We note that, excluding observational error, if 2(obs.) is the light of
spheroidal stars with reflection and gravity darkening, then the
rectified light is that which would be observed for spherical stars
with Russell Model parameters rg, T, xg, Xg» Lg’ Ls’ and j. The
variation of the non-eclipse portion of the light curve has been
eliminated. (See Russell 1946, 1948.)

To first order in small quantities (Sc’ Sh’ €) the order of the
rectification for reflection and oblateness is immaterial.

It is necessary to obtain an expression for the rectified light in

terms of empirically determinable quantities. Define

1
D0 = 5'(Sc + Sh) , (2.47)
D1 = - (Sc - Sh) sin j , (2.48)
1 .2,
D2 = 7~(sc + Sh) sin™j . (2.49)

From the theoretical expression for the observed light outside eclipse,
equation (2.30), using equations (2.47), (2.48), and (2.49) we have

the relation
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+ D, cos 6 + D cosze . (2.50)

. 2, 2
L = 2(90)[1 - Ne sin”j cos e) + D, 1 )

A Fourier analysis of the non-eclipse variation produces

L = A0 + A1 cos g + A2 cos 2¢ (2.51a)
, ’ 2
= A0 + A1 cos 6 + A2 cos'8 , (2.51b)
where
’
A0 = AO - A2 , (2.52)
A2 = 2 A2 . (2.53)
We then have
D1 = A1 , (2.54)
S +S A
1
D. =2 (s +#8)=-+|=<nh (2.55)
0 2 h 2 ..
S -S sin j °
h
D, =D sinz‘ 2.56
2-0 J . (')

Thus we can empirically determine D and D, if we know Sc/sh'

o» D1» 2
The procedure for estimating SC/Sh is discussed in Appendix C.

We have that

1 L 1 . 2. 2
7-(Sc+Sh) +(Sc-Sh)s1n j cos 6 + E-(Sc+sh)s1n j cos”6

_ 2
= D0 - Dl cos 6 + D2 cos 6 (2.57)
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and

(Sc+Sh)sin2j c0526

(S¢*Sy*L*L) (1 - Ne sin’j cos?8)| 1 +

h

Lg+Ls+Sc+Sh

+ 20D cosze (2.58a)

= 2(90)(1 - Ng¢ sinzj cosze) + 2 DO 2

= (Ad’+ DO) + (A; + Dz) cosze , (2.58b)

where we have neglected quantities of second order in Sc’ Sh’ and e,
used equations (2.50) and (2.51b), and equation (2.37). Thus,

substituting from equations(2.%7) and (2.58b), equation (2.46) becomes

2 (obs.) + DO - D1 cos 6 + D2 cosze
= (2.59)

(Aé + DO) + (A£ + D2) cosze

rYr

We have in equation (2.59) a formula for the rectified light in terms

of empirically determinable quantities.

4. Phase rectification

It is possible to express the geometrical dependence of the
theoretical value of light as a function of two dimensionless variables
(Kopal 1946, p. 24ff). These variables are normally taken to be the

ratio of radii k, where

2]

= -3
k = o (2.60)

and the geometrical depth of eclipse p, where

P =__d_g_ . (2.61)
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In the above formula dg and ds are the apparent projected axes along
the projected line of centers and § is the projected distance of cen-

ters. From Figure 7 and Figure 8 it can be seen that
(2.62)

= R%(sin%6 sin’j + cos®j) . (2.63)

|
L6
]
)

2
U |
Observer

Figure 7. Orbital geometry for Figure 8. Projection of com-

projected distance of centers. ponents against the sky.

Here R is the separation of the centers of the components

ao(l - ez)
R = (2.64)

1 + e cos(6-w+90)

and a, is the semi-major axis of the components (a° =1).

External contact of the apparent projected ellipsoids occurs at
p = +1; internal contact occurs at p = -1. An eclipse is called total
or complete if the minimum value (pmin) of the geometrical depth during

eclipse satisfies
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Ppin -1 . (2.65)
An eclipse is called partial if
-1 < Ppin S 1 . (2.66)
For
< Ppin (2.67)

no eclipse occurs.

We may fit the rectified light with the equation

2 (8) = 2(k,p(0)) , (2.68)

where £(k,p(08)) is the theoretical light for spherical stars with Russell

Model parameters rg, re, Lg’ Ls’ xg, X and j at phase angle 6 and

geometrical depth

§ - d
p(e) = ——E& | (2.69)

d
s

The radii project in the same ratio so that

o,

= -2
= (2.70)
g

P
[}
0 [

Using equation (2.63) and equation (2.70)

. 2 . 2, 2.
sin"0 sin"j + cos'j

R 3
p(8) = 1-2cos 6 - T (2.71)
r ,
S
where
z =2 ¢ sin’j = e 2 sin%j . (2.72)
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However, with the substitutions

. 2
sinzar -=nf (2.73)
l -2z cos 6 ’
. 2,
.2, _sinj -z
sin"i = (2.74)
l1 -2 ’
2 cosz‘
cos‘i_ =221 (2.75)
r l1 -2 ’
we may write the geometrical depth as
RJ sinzer sinzir + coszir -Tr
plo,) = & (2.76)
r .
S

We note that this is the value of p that would be obtained for a pair

s* Lg» Lss Xgo Xg

Thus we observe that as an alternative to equation (2.68) we may fit

of spherical stars with paremeters rg, by and ir at er.

the rectified light with the equation
2 .(8) = 2(k,p(6)) (2.77)

where 2(k,p(er)) is the theoretical light for spherical stars with

Spherical Model parameters rg, r,L,L

s* Lg» D xg, X and i, at phase

angle er. This transformation procedure will be followed.
A summary of the transformations from the tri-axial model to the

spherical model is given in Figure 9.
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Figure 9. Summary of transformation from tri-axial ellipsoid with
reflection, gravity darkening and limb darkening to sphere with
limb darkening.

nr axis

|
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_/"
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C. Fourier Analysis

As a preliminary to rectification, Fourier analysis of the non-
eclipse variation is necessary. Data for light curves are commonly

given in magnitude differences as a function of time, such that
Am =m - m, = -2.5 log(z(obs.)/zc) R (2.78)

where m, and L. are the magnitude and light of the comparison star and

m and 2(obs.) are the magnitude and light of the eclipsing system (which

may include excess light from an uneclipsed third source). Thus

-0.4(m-m:) _ e-(m-mc)/1.08573620

2(obs.)/2, = 10 . (2.79)

The method of least squares is used to determine the Fourier coefficients

in the equation

L.+ a A A
2(obs.) _ v 73 0o 1
) = T =3 + 2 cos 6 + 2 COS 206 + oo
c c c c c
B B
+ Il sin 0 + Eg-sin 20 + oo . (2.80)
c [

Here zv is the light of the variable, £, is the excess light and 6 is

3
the phase angle from conjunction at primary minimum. The Fourier
analysis is normally carried to terms of order 26. The occurence of

the odd harmonics will be discussed in Section D of this chapter. For

non-eccentric orbits
6 =2"(t-t) (2.81)
P o ’ :

where P is the period of the orbit and t is the time of the observation.

For eccentric orbits Kepler's equation is solved. (See, for example,
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Kopal (1946, p. 94ff).)

Taking lc as unity and assuming that harmonic terms arise only from

the variable we have

lv = A+ A, Cos 6 + A2 COS 20 + c+o-

0 1
+ B1 sin 6 + Bz sin 20 + .... . (2.82)
Thus,
A0 =0ag - 23 . (2.83)

Merrill (1970) states that conventional least squares analysis, carried
through terms of 26, givesno indication as to the presence or absence
of higher order harmonics in the data. He also demonstrates that
failure to include the cos 36 term can vitiate the resulting estimates
of the reflection effect. On the other hand, inclusion of terms in 36
and higher may diminish the weights of all the coefficients (Russell
and Merrill 1952, p. 53). For these reasons, at least two least squares
Fourier analyses were carried out on the non-eclipse variation of each
light curve studied. The first analysis was the conventional series
carried to terms of order 28. The second analysis included higher
order terms (normally cos 36 and sin 36). From an examination of the
resulting residuals and standard deviations it could be determined
whether or not the inclusion of higher order terms resulted in a sig-
nificant deviation from a normal distribution.

Choice of phase ranges for the non-eclipse variation will be

discussed in Chapter V.
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D. Rectification Procedure

The rectification formula used to transform the light curve to the
equivalent spherical model light curve was adopted from Jurkevich (1964)

and Binnendijk (1960),

ns
2(6)-§;18nsin noe - gizAncos ne + DO-Alcos ] +chosze

zrr(e) = (2.84)

(Aa + Dy + (A£ +D,) cose
where ns is the number of significant sine terms and nc is the number

of significant cosine terms from equation (2.82). The resultant zrr(e)
is the observed intensity corrected for asymmetry, higher order cosine
terms, reflection, and ellipticity. The higher order cosine terms and
the sine terms as yet have no generally accepted theoretical justifi-
cation. Their presence in the rectification formula represents an
empirical correction. The various constants. in the rectification
formula are calculated from the Fourier coefficients, obtained from the
outside-eclipse variation, and an estimate of the ratio of the reflected

lights Sc/Sh’ As discussed in Section B of this chapter

/
Ay = Ay - A, , (2.85)
4
A, =2A, , (2.86)
(S. +S) A
_1 _ 1 V¢ h 1
Dp =7 (S, +8) =-7 (2.87)

(Sc - Sh) sin j ’

(2.88)

-

D1 = = -(S Sh) sin j

_1 . 2. . 2,
D2 =3 (Sc + Sh) sin"j = D0 sin”j . (2.89)

We thus require an estimate for Sc/Sh.

For bolometric observations we may make the approximation



39

Depth of Primary 1 - zr(O)

(2.90)

i
Ic Depth of Secondary 1 - zr(n) ’

= |o?

where Ih/Ic is the ratio of surface luminosities (Binnendijk 1960,
p. 313). For observations taken at an effective wavelength A it is
necessary to include the effect of luminous efficiency when calculating
Sc/Sh° Russell and Merrill (1952) provide a ﬁethod of graphically
evaluating Sc/sh‘ For computer reduction, the required equations are
given by Jurkevich (1964). The discussion presented by Jurkevich
contains errors of a typographical nature. For this reason and for
completeness the development is reproduced in Appendix C.

As discussed in Section B.4 of this chapter, it is necessary to
rectify the phase angles to complete the transformation from the ellip-
soidal model to the spherical model light curve. From Jurkevich (1964,

p. 139), correcting the typographical error

sin g = —3202 (2.91)

Jl -z cos 8

cos 6_ = J-—-l-—-—z—r- cos 6 (2.92)
r
1l -2cos 6 s

and

where

4
D, - A2
2 S—=
Ay - Dy
Z 8 —— (2.93)
15+x (1+y)

15-5x

Here the limb-darkening coefficient x and the gravity darkening coef-
ficient y have been taken as the same for both stars. For the initial

rectification, theoretical values for the brighter component may be used.
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For computational purposes equations (2.91) and (2.92) may be combined

to give

(2.94)

-1 sin er
er = 2 tan 1 + cos er .

In this process the inclination has been transformed as well, so that

cos i_ = cos J (2.95)
vl - 2z ’
sin®j - z
sin 11‘ = ——1—.?- . (2.96)

The (zrr,er) data may now be analyzed according to the Spherical Model.

E. Effect of Third Ligpt on Rectification

It is necessary to consider the effect of third light in the

rectification of the light curve. Let

ns nc 2
R(8) = -} B sin ne - Y A cos me + Dy - Aj cos 6 + D, cos”8 (2.97)
n=1 n=3
and
v 2
E(8) = (Aj - A, +Dj) + (A, + D)) cos™6 . (2.98)
Then
zv + R(6)
L =2 (8) = ———— (2.99)
rT 1T E(0)

And we have
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2
3
I?'rr+ E(8) _2' v ' kg * R(®) 2 + R(6)
23 = = ) (2.100)
— E(6) + 2 E(e) + &
0 (0) + 2, (6) + 2,
Define
L
L - =3 (2.101)
E(6)
and
2
gt — 3 (2.102)
¢ E(6) .
Then
* *
L _ et X3
rr L
ns nc 2
2-L .B sin né -EAcosne+D - A.cos 6 + D_ cos 6
n=ln n=3n 0 1 2 2.10
’ 2 (2.103)
(ao - A2 + DO) + (A2 + Dz) cos @ .

Thus we see that use of the rectification formula, equation (2.84)
produces rectified light where, if there is excess light, the rectified
excess light 2,; and the rectified scale factor lc* are slightly variable.
For light curves of the '"Algol" type this variation is in general less
than 1% during eclipse. Thus, for a first approximation, z;rmay be
analyzed as though 2; and JLC* were constant, say by the method of

iterative differential corrections. From this analysis we obtain an

*
estimate of L and we may solve for %z



42

* 23
13 = - > (2.104)
(ao - 13 - A2 + Do) + (A2 + Dz) cos 8 ,
*
9’3 , 2
13 = — [(ao - A2 + DZ) + (A2 + Dz) cos e] ) (2.105)
(1 +25)

With this estimate of 23 we may use equation (2.83) for A0 and eliminate
the excess light during rectification.

From equation (2.93) we have

Dy - A

AL - D

e =20 0 (2.106)

N sin?j
and it can be seen that failure to exclude the excess light results
in an under-estimation of the oblateness. Note, however, that for the
systems discussed in Chapter V, that unless the excess light is a major
fraction of the light of the system, failure to take it into account
results in an error in the oblateness of approximately the same order

as that caused by observational error in the Fourier coefficients.
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F. Differential Corrections

Wyse (1939), Irwin (1947), and Kopal (1959, p. 367ff) have
developed the initial equations necessary to determine the differential
corrections to the initial parameters that describe the eclipsing
binary system in the Spherical Model. The extended equations are
described below.

At this point it is customary to drop the subscripts on 2rr’ ir’
and 8. This practice will be followed, keeping in mind that the
quantities discussed are, in fact, the rectified values.

We adopt the terminology of Kopal (1959, p. 307). The deeper
minimum will be called the primary and the shallower minimum will be
called the secondary. The eclipse of the smaller star by the larger
will be referred to as an occultation eclipse and the eclipse of the

larger star by the smaller will be referred to as a transit.

The eclipsing binary light curve is to be fitted to the equation

by = 2 (2.107a)

U - *f(k,p)L (2.107b)

where zo is the observed light value, lc is the calculated or theoretical
light value, U is the unit of light, X¢ is the fractional light loss
appropriate to the type of eclipse (occultation or transit), and L is

the total light of the eclipsed star. Further discussion of the function
Xf is given in Appendix D. Each observed point provides an equation of

condition of the form

X v . 2., s 4 ’ ”
zo =U - f(rg, r), cos'i, x; e, w) to’ t)L' , (2.108)
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where rg’, r; R coszi’, x’(limb-darkening coefficient of eclipsed star),
e’ (orbital eccentricity), w’(longitude of periastron), t&'(time of
primary minimum), L', and U’ are the true parameters. Assuming an initial
approximate set of parameters rg, T coszi, x, e, w, L, and U (U=1), we
have, expanding equation (2.108) to first order in the differential

corrections to the parameters

X

zo =1 - *fL + [aU-TfaL-L %;E-Ar + %;£ T+ o f coszi
& s dcos”i
X x X X
o f a°f 9 f 9 f
+ Fra Ax + e Ae + 3o Aw + 3t° Ato , (2.109)
x X £0¢ pXgtT
where ax Ax is 3;;—— x, or 5;;——-Axg as appropriate. Define lc

calculated with the current estimate of the true parameters (the initial

estimate on the first iteration) as

X 2.
zc =1 - f(rg,rs,cos 1,x,e,w,to,t)L (2.110)

and define

AL(o-c) = AU - *faL - L[—-— Ar + —;—'Ar +————~ Acos’1i

oXf aXf aXf aXf
+ W Ax+ e Ae+ o Aw+ 3ty tO . (2.111)

The equation of condition, for a given iteration, is then

zo - 2c = AR(o-c) . (2.112)

Note zo - zc is the light residual with lc calculated from current
parameters and A%(o-c) is an estimator of 20 - zc. Thus, equation (2.112)
is an attempt to account for the residuals in terms of changes in the

¢urrent system parameters.
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Writing A% (o-c) explicitly for the various types of points we have

(a) for points outside eclipse

Ag(o-c) = AU , (2.113)

(b) for points in transit eclipse

X tr X tr X tr
X tr o £ 3 £ f 2
A2 (0o-¢) = AU - “f AL - L |7 AT + ¢ Ar  + Q———7--Acos 1
axftr XgtT aXgtT axftr
+ X + e+
% g AX gt 56— b€t 35— lut ot 8% | (2.114)

and (c) for points of occultation eclipse

X _.0c¢ X c0c X .0C
_ X c0C 3 f o' f o' f 2.
AL (o-c) = AU - ALs - Ls 3T Arg+ar Ars+ 2.Acos i
g s dcos i
X .0C X .0c X .0C X .oc
) o  f o f 9 f
+ axs AXS+ e Ae+ ™ Aw+ -aTo—— Ato .(2.115)

and U are related by

We have the further condition that Lg, Ls’ L3,
Lg + LS + L3 =U . (2.116)
Thus
ALS = AU - ALg - AL, (2.117)

where L3 is the possible excess light. We may now write equation (2.115)

in the form
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AR (o-c) = (1 - *£°%)au + xf°°ALg + X691

3
X .0C X oc X .0C
- Ls %;f—— Ar + grf Ars+ o f Acoszi
g g s d9cos i
X .0c X_.0C X_0C X 0C
o f 3 f 3 f 3 f
+ 3;;——-Axs+ 56 Ae+ ™ Aw+ 3{;- Ato ) (2.118)

We have used coszi as a parameter rather than i, following the recom-

mendation of Irwin (1947).

The evaluation of the various partial derivatives of X9 and xftr

is discussed in Appendix E.

The kth equation of condition is weighted according to

W.
.

—5 (2.119)
2 ’
k
where Wil is the observational weight of the kth point and b = 0, %, or

1 according to the scale on which random errors are assumed constant.
(Linnell and Proctor 1970b). Given the apparent magnitude of the system
and the aperture of the telescope used for the observations, Young's
Table IV (Young 1967, p. 794) may be used to estimate the most appro-

priate value for b.

Let S be the weighted sum of squares of residuals of the equation

of condition, equation (2.112). Then

N
S = kzl w (2 -2, - 8(o-c))? . (2.120)

Define

(8, - 20k = Y (2.121)
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and
NP
A% (0-c), = izl Bix Ci
Then
Ll - ¥
S = w, Y, - B., C.
k=1 ki'k i=1 ik i

(2.122)

(2.123)

where N is the total number of observed points and i is summed over

the differential corrections to be included, NP in all.

The various Ci and Bik appear in Table 1. The dual use of i for

the orbital inclination in coszi and as a subscript should cause no

confusion.

Application of the least squares criterion results in the matrix

of normal equations

AC=6G .,
where
N
Anj = kzl "k Pk
and
)
G = w, B
mooo k "mk
Then
c-=aTg

(2.124)

(2.125)

(2.126)

(2.127)

produces the components of the C vector which are the differential
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Table 1. Differential Correction Terms.
. . Outside
i Ci Occu;tatlon Trgr}ﬂt Eclipse
ik ik Bik
X .0C X tr
1 AT L 07 f L ' f 0
g s 9dr or
g g
X .0C X tr
2 Ar -L 3 f -L 3 f 0
S s 9dr g ars
2 3%X£0¢ axftr
3 Acos™i -Ls > -L > 0
dcos'i g acos 1
4 AL £0¢ Xgtr 0
g
5 AU +1 - xfoc +1 +1
X 0C
9  f
6 Axs —Ls T 0 0
X.tr
7 AX 0 o 2f 0
g g axg
X .0C X .tr
8 At L &£ 4 &f 0
o s at g ot
9 ALg +Xg0€ 0 0
X .0C X tr
1 o f o f
10 be Ls de Lg Je 0
X .0C X.tr
9 f o f
1 Bw S Juw Lg ow 0
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correction terms.

The covariance matrix SC is given by

(SC). . = g—> (A‘l)ij (2.128)

(Ostle 1964, eq. 8.69 and 8.70). The simple correlation coefficient
between the ith and the jthvariables is defined by the covariance
between the two variables divided by the product of their standard
deviations. Thus the matrix of simple correlation coefficients Scorr

is defined by the elements

(SC)y
(Scorr)ij = - — (2.129)
Tl i
The partial correlation coefficients are defined by
-1
P ) - (Scorr)ij
(2.130)

corr’ij | I
?
stcorr)ii (Scorr)jj

where (S'1

corr (Smillie 1966, eq. 3.7.1).

i ix inverse of S .
) is the matrix inv corr

The values of the simple and partial correlation coefficients are
limited to values in the range [-1,+1], with values near the end points
indicating higher correlation.

We have for the standard deviation of the weighted light obser-

vations

slest.) =S, (2.131)

where S may be calculated from the individual residuals (equation

(2.123)) or, alternatively,
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¥
s=95 v?. 7% c a. (2.132)
k=1 K 4= 1+ 17

a form not requiring the calculation of the individual residuals.

We note that o(est.) is an expression for the standard deviation of
the observations from the spherical model light curve.that is first
order in the differential corrections. Let

N
- 2
S, = k§1 we (8 - 2.0 (2.133)

where zcn is calculated with the incremented parameters (rg+Arg, rs+Ars,
etc.). Then

S

o(cal.)2 = N n

N - NP (2.134)

Equality of o(est.) and o(cal.) is a test of convergence, indicating
A% (o-c) does not contain systematic errors that can be accounted for by
a significant change in the parameters. Equality of o(est.) and o(cal.)
will not occur unless higher order terms in the expansion of 2c are
negligable compared to first order terms.

The probable errors of the parameters follow from the root of the
appropriate covariance matrix element. For example, the probable error

of Ar is
g
5
P.E. Ar = 0.6745 (SC) (2.135)
g 1,1 -

We have assumed that the uncertainty of the differential correction
to a parameter is equal to the uncertainty of the respective parameter

in the final iteration (Piotrowski 1948).
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The method of differential corrections offers several advantages:
(1) Each observed point is given proper weight in the
solution. This is not true with Russell's graphi-
cal solution.
(2) The same set of equations apply to partial as well
as completely eclipsing systems.
(3). The effects of orbital eccentricity can be included

directly.
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G. KOPAL'S METHOD

Kopal (1959, p. 321ff) has developed an iterative method for
the solution of eclipsing binary light curves that is suitable for
adaption to a computer. The equation used in fitting the light curve
follows from Kopal (1959, p. 332); but, applied to all parameters the

equation becomes

X ocC

-, 2 a (1-a)
Yw(p -1)C1+2/v_v-(p+1)C2+/u_rC3+ Tb Cyt __Qb C,
(2.136)
U-A X ocC X tr - X tr
( bO) z;x_a__ Ce* —5 C7* s gt) gxu Cg = A sins
L s L L g
where the intrinsic weight of a given point is given by
3
-(U-0) (53)
/W o= _T"_L (2.137)
22 C2(1+kp)
The a in the CS term is %a®® or Xa'7 as appropriate to the data point.
Contributions to the C4 and C6 terms occur only for points in an occul-

tation eclipse and contributions tothe C, and C, terms occur only for

7 8

transit eclipse. The variables A, and A, are the light values at in-
ternal tangency of the occultation and transit eclipse respectively.
Choice of b (the weighting condition) depends on observational circum-
stances (Young 1967 and Linnell and Proctor 1970b). The regression
equation, equation (2.136), must also be multiplied by the observational
weight of the data point under consideration.

The Ci in equations (2.136) and (2.137) are related to the system

parameters as follows:
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C1 = rs2 csczi , (2.138a)
C, = 7, csedi (2.138b)
C, = sin®oy (2.138¢)
Cp = - B2 R (2.138d)
Cg = - AU , (2.138¢)
Ce = Bxg R (2.138f)
C, = - &, , (2.138g)
C8 = Axg R (2.138h)
where eint. is the phase angle at internal tangency.

A least squares fit of equation (2.136) to the data produces the
various Ci’ which in turn can be solved for the system parameters.
We note that the above equations apply only to completely eclipsing
systems. A more detailed discussion of Kopal's method as used in
computer solution of eclipsing binary light curves is given by Linnell
and Proctor (1970a). In addition to the discussion by Linnell and

Proctor, we note that

Ay = U - L , (2.139)
AL =U-%Tw,-n L, (2.140)
t g

Lg + LS + L3 =U , (2.141)

(The function XetT s discussed in Appendix D.) Thus, with the values

of Ao’ A,, and U obtained from the least squares solution we have

t
= U - .142
L = U -2 , (2.142)
L, = (U-2 ) /€T (k,-1) (2.143)
and
el -1 - 2.144
Ly = U Lg Lg . ( )
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Several problems arise with the use of Kopal's method. The
equations given above apply only to complete eclipses. Different equa-
tions must be used for partial eclipses. Also Kopal's method requires
inversion of the a functions for the corresponding geometrical depths
of eclipse at each point. This causes difficulty when the observed a
values lie outside the theoretically permissible range. Further, ec-
centric orbits can't be handled directly. Finally, the normal equations
used in Kopal's method do not rigorously satisfy the least squares
condition in that the weights are not independent of the parameters,
though they are treated as such in calculating the error sum of squares
of the residuals.

Consistency of the results obtained by Kopal's method and the
differential corrections method has been demonstrated for completely
eclipsing systems (Linnell and Proctor 1971). However, because of the
previously discussed limitations of Kopal's method, only the method of
differential corrections was applied in the solutions of the systems

discussed in Chapter V.



fit

th
e

vi;

(L
a

da

h

J2¢

I

SYj



III. DESCRIPTION OF COMPUTER PROGRAMS

A. Fourier Analysis Program

The program FOURIER calculates from one to ten Fourier coefficients
for the non-eclipse portion of the light curve. The data points are

fitted to an equation of the form

NE N§
£(obs.) = o + A cos n,6 + B sin m,6 (3.1)
°©  4a1 M4 = 1

by the method of least squares. The n1 and mi are the integers desired
in the harmonic expansion, NC is the number of cosine terms, and NS is
the number of sine terms. The various Ani and Bmi, £, and a, are
expressed in units of lc, the light of the comparison star. An abbre-
viated flow chart of the program FOURIER is given in Figure 10.

The program requires several control parameters to determine:
(1) the form and order of the input data, (2) the number of data points,
and (3) the number of Fourier analyses to be carried out for the current
data set. Data may be in the form of phase or time units and light or
magnitude units.

For each Fourier analysis to be carried out, the program requires
a set of integers to determine which harmonic terms are to be included
in the solution. A maximum of ten coefficients may be included without
program modification. Phase limits of the non-eclipse portion of the
light curve may be read in directly; alternatively, for circular orbits

system parameters may be read in and phase limits calculated.

For each point the phase angle 6 is calculated. For circular orbits

55



56

0 = 2_; (t - to) 3.2)
where P is the period and to is the time of minimum projected distance
of centers. For eccentric orbits 6 is calculated from Kepler's equa-
tion (equation (E-9)). The point is classified according to its phase
value. If the point is in the non-eclipse portion of the light curve,
its contribution to the normal equation is calculated following the
standard formulas for the method of least squares. (See for example
Ostle 1963, equation 8.59.) If the point is outside the non-eclipse
portion of the light curve, it is omitted from the calculation. After
each point has been processed a check is made to determine if there are
sufficient points for solution. (The number of points must be greater
than the number of coefficients being determined.) If there are insuf-
ficient points, solution for the present set of coefficients is termin-
ated; otherwise, solution continues with the inversion of the matrix
form of the normal equations and calculation of the Fourier coefficients.
The matrices of simple and partial correlation coefficients are calcu-
lated. Standard deviations of the light residuals and individual Fourier
coefficients are calculated. The program also calculates the Fourier
coefficients and standard deviations normalized to ao, the constant in
the Fourier expansion. Individual residuals are calculated and plotted
in a histogram. The histogram for a normal distribution with the same
standard deviation is superimposed for comparison. The Kolmogorov-
Smirnov goodness of fit test (Ostle 1963, p. 471) is applied to deter-

mine if the normal distribution satisfactorily fits the residuals.
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Calculation of different sets of Fourier coefficients for the data
is carried out as desired.

The entire process is repeated for each set of data points.
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Figure 10. Flow Chart of FOURIER
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B. Rectification Program

The program RRECK transforms observational data to the equivalent
spherical model data. An abbreviated flow chart of the program is
given in Figure 1l.

The program requires values of control parameters that determine:
(1) the form and order of input data, (2) number of rectifications for
the current data set, and (3) the number of data points in the data
set. The data may be in the form of phase or time units and light or
magnitude units. Conversion of the data to phase and light units is
carried out as necessary.

The rectification formula is determined using the input values of
Fourier coefficients, limb-darkening and gravity-darkening coefficients,
angle of inclination and color temperature of the primary. Input
control parameters allow three options for determining the ratio of
reflected lights: (1) using an input value for the ratio of reflected
lights, (2) using input depths of eclipse to calculate the ratio of
reflected lights, or (3) using luminous efficiency calculations to
find the ratio of reflected lights.

Rectified values of the light and phase may be output on cards or
magnetic tape.

After each independent rectification of the data set has been

performed, calculations continue on succeeding data sets.
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Figure 11. Flow Chart of RRECK
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C. Differential Corrections Program

The program DIFCORT produces from one to eleven differential correc-
tions to spherical model parameters. An abbreviated flow chart of the
program is given in Figure 12.

The program requires values of control parameters that determine:
(1) the form and order of the input data, (2) the number of initial
parameter sets for which differential corrections are to be found, and
(3) the number of data points in the data set. The data may be in the
form of phase or time units and light or magnitude units. Conversion
of the data to phase and light units is carried out as necessary. The
data may be on cards or magnetic tape. The program requires initial
values for the spherical model parameters rg, L Lg’ Ls’ i, e, w, to’

and RF, where P is the period, and

RF = 2.5 log U (3.3a)

1.0857362 In U . (3.3b)

RF is the reference magnitude corresponding to the unit of light. Also
required is a set of integers to indicate which differential correc-
tions are to be included in the solution. (A maximum of ten differential
corrections may be included simultaneously.) Control parameters to
determine the maximum number of iterations and the type of solution
(occulation eclipse, transit eclipse, or both) are also required.

Using the current values of the spherical model parameters, the
minimum value of the geometrical depth for each eclipse is calculated

along with 2min the corresponding value of the light. Thus
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oc X_oc oc

2min l1-7f¢f (k’Pmin) L8 (3.4)
and

tr _ . _ x.tr tr

Emin 1 f (k’Pmin) Lg s (3.5)

where p::n and p;:n are the minimum values of geometrical depth for
occulation and transit eclipse respectively. The primary (deeper)
minimum is then associated with the type of eclipse having the smallest
value of minimum light. The ranges of partial and total phase of each
eclipse are calculated. Each data point is then classified according
to its phase range as being: (1) outside eclipse, (2) in partial phase
of occulation, (3) in total phase of occulation, (4) in partial phase
of transit, or (5) in total phase of transit. Partial derivatives
required for the regression equation, (2.112), are calculated for the
point. The value of 2c is calculated using current spherical model
parameters. The point's contribution to the normal equations, equation
(2.124), 1is included.

At this point in the calculation a check is made to determine if
there are sufficient points to obtain a solution. If there are suf-
ficient points, calculation continues with the matrix inversion of
the normal equations. Otherwise, solution of the present set of param-
eters is terminated.

The Gauss-Jordan method (Smillie 1966, p. 134) is used for solving
the normal equations. As a check the program calculates the values of
éﬁ-l—g, where I is the unit matrix. Each matrix element should equal

zero, within rounding errors.
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Individual residuals of the regression equation are computed and
used to calculate the standard deviation, o(est.), of the observed
points from the calculated values. The standard deviation is also cal-
culated using equation (2.132), a form not requiring calculation of
individual residuals. A histogram of the residuals is plotted. The
Kolmogorov-Smirnov test of goodness of fit is applied to check the
residuals for conformity with a normal distribution with standard devi-
ation o(est.).

The simple and partial correlation coefficients are calculated
along with probable errors of the parameters. The current values of
the spherical model parameters are then incremented by the differential
corrections. The values of limb-darkening coefficients, luminosities,

radii, and eccentricity are restricted as follows:

-1 $x<1 (3.6)
osLs1 | 3.7)
osrs1 , (3.8)

T, sr, (3.9)
0 e 0.999 . (3.10)

Values of x less than zero are included to allow for the possibility
of limb brightening. The theoretical values of light calculated with
the incremented parameters are then used to calculate the standard
deviation of the observed values. It is customary to normalize the
light curve such that the non-eclipse portion is unity. Thus, the
light values are normalized by the replacement

X,
1+AU . (3.11)
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Calculation of differential corrections for the incremented param-
eters is repeated for the maximum allowed number of iteratioms. Itera-
tion on succeeding sets of initial parameter values is then carried out.

The entire procedure is repeated for each data set.
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Figure 12. Flow chart of DIFCORT
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D. Kopal's Method Program

The Kopal's Method program, called CFIT, is restricted to completely
eclipsing systems and spherical orbits. The data are assumed rectified.
The program produces the values of the parameters Cl’ CZ’ and C3, which
are functions that may be solved for rg, L and coszi. The program
also allows for inclusion of differential corrections to U, Ao, At, xg,
and b where Ao and At are the values of light at internal tangency

(p = -1) of the occulation and transit eclipse respectively. From the

equations

Ao =y - Ls s (3.13)
Ap = U= XEFR,2-) L (3.14)
g
Lg + Ls + L3 =U , (3.15)

where xftr(k,p) is defined in Appendix D, we see that we may solve for

L ,L, and L, as follows
s’ g 3
L,=U-2 , (3.16)
Lg = (U - At)/xftr(k,-l) , (3.17)
Ly=U- Lg -L, . (3.18)

Further description of the program is given by Linnell and Proctor

(1970a, p. 1043).
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E. Program Accuracy

The programs FOURIER, RRECK, DIFCORT, and CFIT are written in the
CDC 3600 FORTRAN language. The precision of the CDC 3600 in single
precision is approximately 10 decimal digits.

The programing of the direct eclipse functions (xaoc(k,p) and
X, T (k,p)) used 1is described by Linnell (1965a,b; 1966a,b,c). The
stated programming objective for these functions was to obtain a frac-
tional error of 10_6. This was obtained for most values of k and p.
The maximum fractional error was given as 10™°. In most regions of the
k-p plane for which eclipsing systems have meaning the absolute errors
are less than 10°°,

The matrix inversion in the programs FOURIER, DIFCORT, and CFIT
was carried out in double precision with corresponding word length
accuracy of approximately 25 decimal digits. The Gauss-Jordan method
(Smillie 1966) is used for carrying out the matrix inversion. Further,
to insure minimum rounding and truncation error, the matrix inversion
routine chooses as pivot element, at each stage of the matrix inversion,
the element largest in absolute value in the rows and columns not con-
taining previous pivot elements. As a check the program calculates the

1

matrix‘éé' -1, where I is the unit matrix. 1In no case has an element

0719, Typically the

of this matrix been found to be larger than 1l

elements of this matrix are several orders of magnitude smaller.

Further discussion of accuracy is given in Linnell and Proctor (1970a).
Final validation of the programs rests in the solution of synthetic

light curves with known parameters. Discussion of such solutions is

given in the following chapter.
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Complete program listings are on file in the Astronomy Department,

Michigan State University.



IV. SOLUTION OF SYNTHETIC LIGHT CURVES

This chapter contains the results of the application of the method
of differential corrections to synthetic light curves. The synthetic
light curves are constructed on the Spherical Model and include random
errors with normal distribution and assignable dispersion.

Synthetic light curves are useful in the validation of the programs.
Convergence on known parameters provides the most convincing test of
program reliability. Synthetic light curves may also be used to eval-
uate the effect of the dispersion and number of observations on ability
to extract the desired parameters. Synthetic light curves may be based
on parameters obtained from the results of actual light curve analysis.
Subsequent solution of these curves may provide further confidence in
the results; alternatively, the solution may indicate the need for more
observations of greater accuracy.

Synthetic light curves with zero dispersion were used to validate
DIFCORT. Resulting light residuals were on the order of 10-6.

Table 2 gives the results of analysis of a synthetic light curve
similar to the light curve of the system S Cancri. The dispersion is
comparable to that obtainable under optimum observational conditions.
Primary minimum is a deep occulation eclipse, while secondary minimum is
very shallow. Thus x, can be reliably determined, but the uncertainty
in x8 is rather large. Satisfactory convergence on the parameters is
demonstrated.

Table 3 shows the results of a test for separability of rs and
X_. Irwin (1947) has shown that for certain values of parameters the

ratio of the coefficients of Xy and L is nearly constant. There is
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the possibility that the correlation is so great as to prevent separation.

To test for this possibility, a synthetic light curve was constructed

with 800 total points of intrinsic dispersion o = ,005. The parameters

closely accord with the parameters adopted by Irwin for his example.
Convergence was not as good as for the previous example; however, result-

ing parameter values were at most 2)5 standard deviations from the true

values.
As an example of a system with third light, a synthetic light curve

corresponding to BR Cygni was constructed. The curve had a total of 430

points, 130 in occulation and 100 in tramsit. Convergence occured as

shown in Table 4. Solution of actual data for BR Cygni is discussed in

Chapter V.
An illustration of the complications that occur due to correlation

of the system parameters is given using synthetic BV 412 data. For

the 0=0.0 data with initial estimates of the parameters given in Table 5,

convergence to the true parameters occurs in three iterations. The

light curve with o = ,0074 was solved twice, once allowing L3 to vary

to its true value (Table 7). Convergence

(Table 6) and once holding L3

was obtained only by holding L3 constant. It was noted that when L3

was allowed to vary, the absolute magnitude of the correlation coeffi-
Also

ients between L3 and r , L , and coszi were greater than 0.99.

ote that this is a partially eclipsing system. It has often been
ssumed that it is not possible to determine limb-darkening coefficients

>r such systems (Wilson 1968). We conclude from these results that

e determinability is based more on the accuracy of the light curve and

e density of observations, and less on the geometrical depth of

lipse.

-
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Extensive tests on eccentric systems have not yet been carried out.

However, the results of iterative solutions of a synthetic curve with
Initial parameters

zero dispersion are given in Tables 8, 9, and 10.
In the first solution only the

were the same in all three cases.
Satis-

differential corrections for i, e, w, and to were calculated.
When all parameters

factory convergence occured in three iterations.
except L3 were included, there was no indication of convergence after
This is probably due to correlation of the variables

three iteratioms.
combined with sufficiently large error in the initial estimates of the

Higher order differential corrections then become signif-

parameters.
(Compare o(est.) and o(cal.) for the first iteration in Tables 8

icant.
and 9.) The absolute values of the simple correlation coefficients of

r, and cos i are large (greater thanm 0.97). Since for total

L with
8
eclipse an estimate of L can be obtained from the light during total

phase of occultation, a third solution, omitting differential corrections
to L was carried out. Satisfactory convergence occurs. The results

are given in Table 10.
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V. ANALYSIS OF PUBLISHED DATA

An attempt was made to look at each set of data listed in the
catalog of Koch, Plavec and Wood (1970). From the more than two hundred
systems listed, ten were chosen for further study. Selection, although
somewhat subjective, was based on the following criteria:

(1) Well-separated systems

(2) Coverage of entire phase range

(3) Number and quality of observations
(4) Individual observations published
(5) Lack of obvious complications.

Before the analyses of the individual systems are discussed, it is
necessary to consider the type of eclipse to be associated with the
consecutive minima. If spectroscopic radial velocity curves are avail-
able, it is possible, in principle, to determine whether the primary
minimum is an occultation or a transit.

Let L1 be the luminosity and J1 the mean surface brightness of the
star of greater surface brightness (the star being eclipsed during
primary minimum). Let L2 and J2 be the corresponding quantities for
the star of lesser surface brightness. The star approaching the observer
immediately before primary minimum is thus the star of luminosity L2 and

mean surface brightness J For bolometric light we have

2.

, 2
1=r1"J1 (5.1)

where r is the radius of the star of greater surface brightness and r,

is the radius of the star of lesser surface brightness. Thus
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2

e U
2

r2 Jl/JZ

(5.2)

where an estimate of Ll/L2 is obtained from the spectroscopic observations
and an estimate of J1/J2 is obtained from the depths of eclipse. 1In

this way it can be determined if the star of greater surface brightness
is the larger or smaller star and hence whether the primary minimum is

an occultation or a tramsit.

Unfortunately, spectroscopic information is not always available;
or if it is, the errors associated with the estimates of L1/L2 and J1/J2
may prevent positive determination of the type of eclipse. Thus it is
not always possible to make an "a priori" judgement as to the type of
eclipse. Both possibilities must then be considered.

The results of analysis of the light curves of 10 eclipsing binary
systems are presented in the following sections. For each system a
general discussion is presented and tabular data follow, In each table
the source of the original photoelectric data is given, along with the
spectral type of the primary. The spectral type of the secondary is
given if available. The spectral type or range of spectral types of
the secondary, as found by subsequent luminous efficiency calculations,
is given in parentheses. The value of the period is followed by the
adopted designation for the type of primary minimum.

The data in each table are divided into three sections.

Section A contains the results of the Fourier analysis. The phase
ranges of the points included in the Fourier analysis are given in
parentheses. For each light curve the results of two Fourier analyses

are presented. Normally the first analysis for each color is the
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analysis carried to terms of order 20, while the second analysis is to
terms of order 36. The standard deviation (normalized to ao) of the
resulting residuals is presented in the second column of Section A.

This is followed by @y the constant of the Fourier expansion, and the
remaining Fourier coefficients (normalized to ao). (Note 00 = Ao if it
is assumed that there is no third light.) The Fourier coefficients are
followed by NDF, the number of data points used in the Fourier analysis.
The adopted values of the Fourier coefficients are followed by initial
estimates of the ratio of surface brightnesses and the color temperatures
of the primary components. The color temperature of the primary compo-
nent is taken from Figure 15, using the known spectral type of the star.
This procedure for estimation of the temperature follows the recommen-
dation of Jurkevich (1964, p. 185). The temperature of the secondary
and the ratio of reflected lights resulting from the luminous efficiency
calculations is given next, followed by the subsequent value of €, the
oblateness of the equatorial cross section and N (given by the equation
(2.31)).

Section B of each table gives the coefficients used in the recti-
fication formula, equation (2.84). RFO, if given, is the value of the
reference magnitude initially subtracted from observed magnitude dif-
ferences in order to normalize the non-eclipse portion of the light
curve to unity.

Section C of each table contains the equivalent spherical model
parameters. The value of b, the exponent of the light in the weights
of the conditional equations, is given in parentheses. The parameters
designated as "Initial" are those determined by the author publishing

the original data. Often it was not clear whether the value of
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inclination given by the author was ir’ j, or i. The values of inclina-
tion are simply included in the tables as they were given in the original
paper. In addition to the geometric parameters and luminosities obtained
with the differential corrections method, the reference magnitude RF is

given, where
RF = 2.5 log U (5.3)

The geometric depth of eclipse Py is also given. For eccentric orbits
the value of P, from the primary minimum is used. The last three columns
present the various standard deviations of the rectified data. The
standard deviation o(b = 0) of the light values is given, followed by
the standard deviation of the weighted light values c(cal.) and its
estimator og(est.). (See equations (2.131) and (2.134).)

The number of observations used in the solution of the light curve
is given beneath the tabular data. This information is followed by
values of Ao and kt. For partially eclipsing systems Ao and At are the
calculated values of light for the occultation eclipse and the transit
eclipse, respectively, at minimum geometrical depth. For completely
eclipsing systems Ao and At are the calculated values of light for
internal contact (p = -1) of the occultation and transit eclipse respec-
tively. Also included are the ratio of the mean surface intensities

Jg/J8 and the ratio of the central surface intensities (Jg/Js)c’ where

2
i& = Ts Lg (5.4)
Js r 2 L
g s

and
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J 3 -
g|l.2 "%
[ ]C Js (5.5)

(Kopal 1950, p. 53).
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A. CO Lacertae

CO Lacertae is a tenth magnitude system exhibiting a small value of
orbital eccentricity. The system is also notable for the short period
of its apsidal motion. Semeniuk (1967), from an analysis of 27 times of
minima, obtained e = 0.027 and w = 65.4° for the epoch of her observa-
tions. Smak (1967), from his spectroscopic analysis of the system,
classified the primary component as B8.5IV and the secondary component
as B9.5V.

The recent photoelectric observations of Semeniuk (1967), have been
chosen for analysis.

Semeniuk, in her analysis of the data, reflected the descending
branches of minima onto the respective ascending branches and grouped
the observations into normal points. These normal points were rectified
for ellipticity only. She assumed values for the limb-darkening coeffi-
cients and made a preliminary analysis using the iterative method of
Piotrowski (1948) and Kopal (1959). She reported lack of convergence for
the primary minimum. Using the values obtained for the analysis of the
secondary minimum, she made a single differential corrections solution
for the geometric parameters and luminosities. The results of the indi-
vidual B and V Semeniuk solutions are listed as the initial values of
the parameters in Table 11C.

Results of analysis of individual observations, using the programs
FOURIER, RRECK, and DIFCORT, are given in Table 11. The values of e
and w given by Semeniuk were used.

Inclusion of terms of order 36 decreased the standard deviation of

regiduals in both the B and V light curves. Thus the corresponding
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coefficients were used in the subsequent rectification.

Five errors were found in the published phase values. The Julian
dates of these observations, along with the corrected phase values, are
listed in Appendix F.

Following rectification, a solution of the B curve was attempted
assuming that the primary minimum was a transit and that there was no
excess light. Convergence did not occur. The results of the sixth
iteration are given in Table 11C under the designation ''B1". Extreme
divergence was exhibited in the seventh iteration. The B2 solution is
discussed below.

Iterative analysis including excess light did converge. The param-
eters and their respective probable errors are given in Table 11C under
the designation ''Adopted". The V light curve also converged under the
assumption of primary minimum a transit allowing excess light. Results
are listed in the table. The geometric parameters from the B and V
light curves are in good agreement. The difference in the standard
deviation obtained from the Fourier analysis and the differential correc-
tions analysis is comparable to the probable error of the standard devia-
tion and can be accounted for by the error in the choice of b, the
exponent of the light in the weights. To determine if the choice of b
significantly affects resulting parameters, the V light curve was ana-
lyzed again with b = 1. All resulting parameters were less than X
standard deviation from the values obtained with b = k.

In the process of analysis, a solution of the B curve was carried
out on the assumption that primary minimum was an occultation. Surpri-
singly, convergence was obtained in this case also. The resulting

parameters are given in Table 11C under the designation "B2". It
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has commonly been assumed that iterations will converge only if the type
of eclipse has been correctly identified (Kopal 1959, p. 334). Note the
close correspondence of the geometrical parameters and luminosities of
this solution with those of the solution assuming the primary minimum

a transit. However, the resulting values of limb-darkening coefficients
assuming primary minimum an occultation are not in good agreement with
the theoretical values discussed later.

Unfortunately, the spectroscopic data of Smak were not sufficiently
accurate to determine the type of eclipse; however, it is felt that the
assumption of primary minimum a transit and presence of third light
provides the best solution. The standard deviation is a few percent
smaller for this case. In addition, limb-darkening coefficients result-
ing from this assumption are in good agreement with the theoretical values
discussed later. The presence of apsidal motion lends weight to the

existence of third light.
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B. CM Lacertae

CM Lacertae, an eighth magnitude double-line spectroscopic binary,
wvas observed by Alexander (1958) and later by Barnes, Hall, and Hardie
(1968). The former investigator did not report individual observations.
Thus, only the more recent photoelectric observations of Barnes, Hall,
and Hardie were chosen for study. Spectroscopic observations were
obtained by Sanford (1934) and re-examined by Popper (1967).

Alexander, in the analysis of his data, concluded that the primary
minimum was an occultation. Barnes, Hall, and Hardie felt the alterna-
tive assumption was better for fitting their data. Consequently, the
Barnes data werestudied under both assumptions. The results are pre-
sented in Table 12C. For the U light curve convergence was obtained for
both assumptions. However, the residuals assuming primary minimum an
occultation have a significantly smaller standard deviation. It is
interesting to note the correspondence of the values of the limb-darken-
ing coefficients. For the two assumptions x = .33 and .24 for the brighter
star and x = .87 and .78 for the cooler star. While the B and V light
curves did not converge assuming primary minimum a transit, observe that
there is agreement between the values of the radii of the hotter and
cooler stars for each assumption. The V light curve was analyzed allow-
ing inclusion of excess light. The resulting value of excess light was
approximately two standard deviations from zero. Since the geometrical
parameters of the V solution agreed well with the B and U solutioms, it
was not felt worthwhile to re-analyze the V data excluding the excess light.

During the analysis four observations in the U light curve, four
obgservations in the B light curve and one observation in the V light curve

were found to have residuals greater than three standard deviations from
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the calculated light curve. These points were omitted from subsequent
4 terations. They are listed in Appendix F.

The distinction between occultation and transit eclipse diminishes

&as the ratio of radii approaches unity. However, it is seen from this

amalysis that the assumption of primary minimum an occultation provides

the more consistent results for CM Lacertae. Parameters based on this

s ssumption have been adopted.
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C. RX Arietis

RX Arietis is a ninth magnitude eclipsing binary system. The
solution obtained by McCluskey (1966) for his data indicated primary
minimum was a transit. The light curves were analyzed using this
assumption. Both the U and V light curves were solved permitting and
then excluding excess light.

Two errors were found in the published phase values for RX Arietis.
There were four observations with residuals greater than six standard
deviations from the calculated light curve. It is felt that these are
the result of typographical errors. These four points were omitted for
the final iterations. Each of these points is listed in Appendix F.

The results of the iterative solutions are given in Table 13C. The
solutions excluding excess light have been adopted. Agreement between
B and V solutions for this assumption is good. Also, the V solution
converged to a value of L3 within its probable error of zero. It is
felt that the L3 convergence to a non-zero value in the B solution
allowing third light is due to correlation (as in the case of the
synthetic BV 412 light curve). As seen in the table, limb-darkening
coefficients for the primary component can be determined with reason-
able accuracy; but, since the secondary eclipse is very shallow, the
probable error in the limb-darkening coefficient for the smaller star

is quite large.
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D. V338 Herculis

V338 Herculis, an eclipsing binary of approximately the tenth

magnitude, has been observed independently by Vetesnik (1968) and

Walter (1969). Both investigators classified the primary minimum as a

transit. The more numerous observations of Vetesnik were chosen for

study.
The analysis presented here is based on the assumption that pri-

mary minimum is a transit and that there is no third light. There is

good agreement between the resulting geometrical parameters of the B

and V solutions for this assumption. Iterative solution of the B curve

allowing excess light converged to parameters that were within one

standard deviation of those obtained for the B analysis excluding third

light.
It is seen in Table 14C that while the limb-darkening coefficient

‘'of the larger star can be reasonably well determined, the secondary

minimum is too shallow to permit reliable evaluation of the limb-darken-

ing coefficient of the smaller star.

One error was found in the published phase values for the V light

curve. The Julian date of this observation is J.D.Hel 2439648.4767 and

the corrected phase value is 0.9683. There is also evidence of systematic

error in the data. There are runs of constant sign in the residuals.

Agreement between standard deviations of the Fourier analysis and the

differential corrections analysis is poor. The B light curve residuals

do not fit a normal distribution satisfactorily. A possible short

Period (about 0.01 day) small amplitude oscillation (0.015 magnitude)

An the luminosity of one of the stars is suspected. This is most clearly
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indicated by the residuals of the V observations between J.D.Hel.
2439639.3975 and 2439639.4558. (There are no B observations covering
this time period.)

Even though there is this evidence of systematic error, it is felt
that the error is small enough that the set of geometrical parameters

given in Table 14C provides good representation of the system.
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E. Y Leonis

Y Leonis is a single-line spectroscopic binary of approximately
the tenth magnitude. Struve (1945) derived spectroscopic elements.
The system is notable for its deep primary minimum. The photometric
observations studied here are the broad band (3000A wide) infared

(8000A) observations of Johnson (1960). The UBV observations of
Johnson covered essentially only one primary minimum. It was felt that
they were not sufficiently numerous to warrent analysis.

There was one error found in the published phase values. The
Julian date of this observation along with the corrected phase value
is given in Appendix F.

Preliminary elements obtained by Johnson are given as the initial
parameter values in Table 15C.

The Johnson IR data were analyzed assuming primary minimum an
occultation, both allowing and then excluding excess light. The results
are given in Table 15C. The difference between the resulting parame-
ters are negligible. Notice, however, exclusion of third light signif-
icantly reduces the probable errors of the parameters. The values of
the standard deviation of the residuals from the Fourier analysis and
from the differential corrections analysis are in very good agreement.
However, there are relatively few observations contributing to the
determination of the limb-darkening coefficients (48 observations in
the occultation eclipse and 51 observations in the transit.). It is
felt that re-observation of Y Leonis in UBV covering the entire phase

range would be worthwhile.
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F. RW Monocerotis

RW Monocerotis, a ninth magnitude system, has been classified as
a single-spectrum binary by Heard and Newton (1969). The system has
been studied photometrically in two series of infrared observations by
Brukalska, Rucinski, Smak, and Stepien (1969). From their preliminary
analysis Brukalska, et. al., reported a negative limb-darkening coef-
ficient for the secondary component.

As the Brukalska Series I observations did not cover the non-
eclipse portion of the light curve, only the Series II observations
are discussed here.

The Fourier analysis carried to terms of order 36 has a signif-
icantly smaller standard deviation than the analysis carried to terms
of order 26. The large sine terms are a preliminary indication of
complications in the system. Although there are a large number of
observations, a significant range of the non-eclipse portion of the
light curve is not covered.

Analysis has been carried out on the assumption that primary
minimum is an occultation. Initial analysis indicated asymmetry in
the residuals and absence of third light. Thus differential correc-
tions to to were calculated and differential corrections L3 wvere
excluded in succeeding iterations. Inclusion of to was accompanied
by a significant reduction of the standard deviation. (It should be
observed, however, that inclusion of sine terms in the rectification
introduces systematic variation which may partially simulate a change

in the reference time to.)

Contrary to the analysis of Brukalska, et. al., the resulting
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limb-darkening coefficients are in reasonable agreement with the theore-
tical values. However, the standard deviation of the residuals from the
entire light curve is not in good agreement with the standard deviation
from the Fourier analysis. As shown in Table 16C this cannot be accounted
for by change in the choice of b. The results of iterations with three
different values of b show little variation.

The observation on J.D 2439454.8463, apparently containing a

"Hel.
typographical error, was omitted from the solution. Fourteen observa-
tions between phases 0.067 and 0.087 have systematically positive resid-
uals between 2% and 6's standard deviations from the calculated curve.
This phase range was covered on only one night during the photometric

study. Thus the solution presented in Table 16C should be viewed with

some reserve. Further observation of the system would be useful.
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G. BR Cygni

BR Cygni, a ninth magnitude system, has been observed by Wehinger
(1968). Wehinger presented a solution for the primary minimum of the V
curve only. The V curve exhibits uniform light for phase values within
approximately 0.011 days of t.- On the strength of this feature Wehinger
assumed primary minimum was a complete occultation eclipse, even though
the B curve did not indicate a similar characteristic. The B light curve
shows night-to-night variation of about 0.03 magnitudes. This variation
was particularly apparent in the phase ranges 0.1 to 0.2 and 0.4 to 0.5.

Solution of the B and V curves were attempted assuming primary
minimum a transit and excluding third light. Apparent convergence on
the parameters was obtained. Resulting parameters are given with the
designation "B1'" and 'V1'" in Table 17C. Note, however, the values of
o(est.) and o(cal.) are significantly different in both B and V solutions.
Solution of the V light curve assuming primary minimum a transit and
allowing excess light resulted in large negative values of excess light
and hence was not considered further.

Using Wehinger's results as initial parameter values, an iterative
solution assuming primary minimum an occultation eclipse and excluding
third light was attempted. The results of three iterations are given in
Table 17C with the designation "V2'"., Note the negative values of the
limb-darkening coefficients. In an attempt to fird a more satisfactory
fit, the solution was repeated using the same initial parameters, but in
this case allowing third light. Convergence occured in three iterations.
The resulting limb-darkening coefficient for the primary component is

not unreasonable. Iterative solution of the B curve assuming primary
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minimum an occultation, both allowing and excluding third light, were
divergent. A solution of the B curve assuming geometric parameters of
the V3 solution, but excluding differential corrections to r was then
attempted. Convergence occured. The results of this solution are given
in Table 17C with the designation '"B2'. Further iteration excluding
differential corrections to Lg were divergent.

Designation of the primary eclipse as an occultation eclipse seems
to provide the most satisfactory results. It is felt that further obser-
vation, especially in B, will be needed to determine the system parameters

with greater reliability.
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H. BV 430

BV 430 (RS Cha), a sixth magnitude system, has been observed in-
dependently by Chambliss (1967) and Schoffel and Mauder (1967). Since
the latter's observations were not published, the Chambliss data were
chosen for further study.

Chambliss based his solution on the assumption that the primary
minimum was a transit. Using this assumption, the B and V light curves
were analyzed both allowing and then excluding third light. When third
light was included, convergence to large negative values of excess light
occured in both the B and V light curves. Results of the third itera-
tions of B and V excluding third light are presented in Table 18C, under
the designation ''Bl" and "V1'". Note the attempted 'interchange' of the
larger and smaller star, as indicated by values of k>1.0.

Solutions assuming primary minimum at occultation and excluding
third light were then attempted. The results are given in Table 18C
under the designations ''B2' and ''V2'. Observe the close correspondence
between the V2 and the Bl and V1 geometrical parameters and also between
the limb-darkening coefficients for the brighter and less bright compo-
nents for the V1 and V2 solutions. With the ratio of radii close to
unity it is extremely difficult to distinguish between occultation and
transit eclipse. The results of the B2 solution were somewhat puzzling
considering the correspondence of the other three solutions. Examina-
tion revealed correlation coefficient between tB and L8 was -0.98. A
solution assuming the V2 results for rs and cos?i and excluding differ-
ential corrections to r, and coszi was attempted. The luminosities of

this solution were used and differential corrections to the remaining
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parameters were calculated. The resulting values of the geometrical
parameters were within ) probable error of the input values. For the
final three iterations only the differential corrections to r  were
excluded. The resulting parameters were virtually unchanged from the
input values. These parameters are designated ''B3" in Table 18C. Even
though the procedure followed for the B3 solution is somewhat subjective,
the resulting parameters and reduced standard deviation seem to justify
the procedure. The B3 geometrical parameters are in good agreement

with the V2 values.
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I. BV 412

BV 412, an eighth magnitude system, was observed spectroscopically
by Mammano, Margoni, and Stagni and photoelectrically by Harris (1968).
Harris states that the spectroscopic observations indicate primary
eclipse is a transit. The Harris observations were analyzed under this
assumption.

Two errors were found in the published phase values. The Julian
dates of these observations are listed in Appendix F.

The V observations were first analyzed allowing third light. The
iterations converged to a large negative value of excess light. It was
assumed this was due to correlation between the parameters. The V data
were subsequently re-analyzed excluding third light. Satisfactory
convergence occured. The results of this analysis appear with the
designation '"'Adopted" in Table 19C.

While the B curve iterative solution excluding third light was
divergent, analysis allowing third light converged. The results of the
convergent solution are given in Table 19C under the designation '"Bl".
The geometrical parameters of the Bl and the adopted V solutions are
not in good agreement. Examination of the correlation coefficients of
the Bl solution showed a correlation coefficient between T and coszi
of 0.99. A procedure similar to that used for BV 430 was used in an
attempt to find accordant results for the B and V light curves. Geomet-
rical parameters of the V solution were used as initial values of an
iterative solution of the B light curve. Differential corrections to
rg were excluded and it was assumed that there was no third light.

Convergence was obtained in four iterations. The resulting parameters
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were used in an iterative solution excluding differential corrections to
Lg. The parameters changed by less than one standard deviation. There

is a discrepency between the standard deviation of the Fourier analysis
and the differential corrections analysis for the B light curve. Resid-
uals between 2% and 6 standard deviations from the calculated curve were
found for eighteen B observations. Fifteen of these observations are in
the non-eclipse portion of the light curve. This accounts for the
standard deviation of the Fourier analysis being 10% greater than that
obtained by the differential corrections analysis. Resultant B parameters,

designated ''Adopted" in Table 19C, show good agreement with the V

solution.
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J. SW Lyncis

SW Lyncis, a ninth magnitude system, has been observed by Gleim
(1967) and Vetesnik (1968). Fourier analysis indicated the standard
deviation of the Gleim data is approximately twice as large as the
standard deviation of the Vetesnik data. Since the Gleim data are also
less numerous, only the analysis of the Vetesnik data is discussed here.

Both Gleim and Vetesnik concluded that primary minimum of SW Lyncis
is a transit eclipse. Analysis was based on this assumption. Vetesnik
indicated that some of his data apparently contained systematic errors.
He omitted certain observations from his analysis. Accordingly, four-
teen V observations and thirteen B observations designated by Vetesnik
were thus excluded from the differential corrections analysis. One V
observation felt to contain a typographical error was also excluded.
Julian dates of these observations are given in Appendix F.

The V light curve was first analyzed allowing third light. Conver-
gence occured. The resulting parameters are designated as 'V1" in
Table 20C. Iterative solution of the V light curve excluding third
light was not completely convergent. The parameters of the iteration
having the smallest value of o(cal.) are given in Table 20C with the
designation 'V2'". An attempt was made to improve convergence by omit-
ting differential corrections to Lg. Although the resulting standard
deviation is a few percent larger than the V1 solution, convergence
was satisfactory. The results of this solution are designated 'V3" in
Table 20C.

Iterative solution of the B light curve allowing third light was

divergent. Iterative solution excluding third light did not exhibit
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satisfactory convergence. The parameters of the iteration having the
smallest value of o(cal.) are given in Table 20C with the designation
"Bl'". The partial correlation coefficient between T, and coszi for this
iteration is 0.98. The geometrical parameters of the V2 solution were
used as initial parameter values in an iterative solution excluding
differential corrections to coszi. A small decrease in the standard
deviation of the residuals was obtained. The results are designated
"B2" in Table 20C. Further iterations using the B2 solution and ex-
cluding differential corrections to r  were divergent.

The B2 and V3 solutions seem to provide the most consistent results.
However, these parameters should be regarded with considerable reserve
until they can be supplemented with the results of more numerous obser-

vations of greater accuracy.
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VI. SUMMARY AND CONCLUSIONS

To summarize, we have discussed the transformation from the model
of similar tri-axial ellipsoids to the spherical model for an eclipsing
binary system. Kopal's method and the method of differential corrections
were discussed. Both methods were generalized to include third light.
The method of differential corrections was further generalized to include
orbital eccentricity directly. Synthetic light curves were used to
validate the computer programs, as well as to determine the effect of
dispersion and number of observations on the ability to extract the
desired parameters. Analysis of synthetic data indicated limb-darkening
coefficients may be extracted from observations of sufficient accuracy
and density. This conclusion was found to hold for partial as well as
completely eclipsing systems. In addition, it has been found possible
to extract values of third light. In some cases, however, correlation
between parameters, combined with observations of insufficient quality
or quantity, may prevent convergence.

The data from 10 eclipsing binary systems have been rectified and
subsequently analyzed using differential corrections. The systems are
CO Lacertae, CM Lacertae, RX Arietis, V338 Herculis, Y Leonis, RW Mono-
cerotis, BR Cygni, BV 430, BV 412, and SW Lyncis.

It was often necessary to solve the light curves for each combina-
tion of assumptions as to type of primary minimum and possible presence
of third light. Calculation and comparison of o(est.) and o(cal.), the
estimated and calculated standard deviations, proved valuable in the
determination of convergence. Equality of the standard deviations of

the Fourier analysis and the standard deviation of the entire light
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curve indicated the adequacy of the fit. For those systems in which b
was varied, choice of b, the exponent of the light in the weight, did
not seem to cause significant change in the parameters obtained.
Excellent results were obtained for the systems CO Lacertae, CM
Lacertae, RX Arietis, and Y Leonis. For these light curves convergence
was obtained for the standard set of parameters (rg, T, coszi, Lg, L,

S

xg, X and, if necessary, L3). For each of these light curves the
standard deviation for the entire light curve was in good agreement
with the standard deviation obtained from the Fourier analysis of the
non-eclipse variation. In addition, for the systems with multi-color
observations the resulting geometric parameters from the separate
curves showed good agreement.

For the B light curves of BV 412 and BV 430 convergence was
obtained only if the number of variables in the parameter set for a
given iteration was limited to six. The V curves converged with a
complete set of seven variables. Resulting geometric parameters and
standard deviations showed satisfactory agreement.

The iterative analysis of V338 Herculis and RW Monocerotis
exhibited satisfactory convergence for the entire set of seven para-

meters (again excluding e, w, t and possibly L The agreement of

3)'
the geometric parameters from the individual color curves is good for
V338 Herculis. However, for each of the light curves of these two
systems the standard deviations of the Fourier analysis is not in good
agreement with the standard deviation obtained for the entire light
curve. Further observation and analysis is indicated.

The V light curve solution of BR Cygni was satisfactory; however

complete convergence was not obtained for the B light curve. Similar
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results were obtained for SW Lyncis. It is felt that the parameters
for BR Cygni and SW Lyncis should be viewed with reserve until further
observations are made.

With the exception of V338 Herculis, the dispersion of the obser-
vations was larger for the B light curve than for the V light curve
of each system. It is interesting to note that for the systems where
difficulty in the convergence of one curve occured, lack of convergence
was in the B light curve.

Of the ten systems studied, two (CO Lacertae and BR Cygni) showed
evidence of third light.

Values obtained for V and B limb-darkening coefficients and their
probable errors are given in Figures 13 and 14. The theoretical results
are given in the figures for comparison. The theoretical values for
spectral types BO through A0 are from Grygar (1965). The remainder of
the theoretical values result from least squares fits of the model
stellar-atmospheres limb darkening given by Gingerich (1966) and
Margrave (1969) to the linear limb-darkening law, equation (1.28).
Results for the limb-darkening coefficients in V show reasonable agree-
ment with theory, while limb-darkening coefficients in B show somewhat
more scatter.

In conclusion, it is suggested that greater numbers of high
quality observations are needed to reduce the uncertainty of the limb-
darkening coefficients. Of the 20 limb-darkening coefficients given
in Figures 13 and 14, only four had more than 150 observations in the
corresponding minimum. Light curves containing 300 observations per
minimum should provide satisfactory determination of the corresponding

limb-darkening coefficient.
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APPENDICES



APPENDIX A. DISTRIBUTION OF APPARENT BRIGHTNESS ON THE STELLAR DISK

The discussion of 1limb darkening presented here follows closely the
discussion given by Kopal (1959, p. 150ff). However we have used x for
the limb-darkening coefficient rather than u.

Temperature variation in the semi-transparent stellar atmosphere
results in an apparent surface brightness that is dependent on the
angle of foreshortening. Radiation viewed normally originates, on the
average, at greater stellar depth than that viewed tangentially.

Assuming the semi-transparent atmosphere represents such a small
fraction of the total stellar radius that it can be regarded as plane-

parallel layers, the equation of transfer of the radiation is
cos ¥y g%-= xkp(B - 1) , (A-1)

where I(r) is the intensity of the radiation at a distance r from the
center of the star, B is the source function (emissivity), y is the
angle of foreshortening (angle between the radius vector and the line
of sight), and k is the coefficient of opacity and p is the density of
the stellar material. (More complete discussion of the equation of
transfer is given by Mihalis (1970, Ch. 1).)

Define the optical depth t such that
dt = -xp dr ; (A-2)
then

ws—=1-B , (A-3)

where

129
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B =cosy . (A-4)

Assuming that the energy sources in the atmosphere are neglibible, so
that the atmospheric layers merely transmit radiation without gain or

loss, the net flux of radiation is
L 1
F=2/ Isinycosydso=2] Iudy . (A-5)
0 -1

F is thus constant and independent of t. Also under the assumption of
negligible atmospheric energy generation, the source function (giving
the radiation emitted at a point) will be
L 1 !
B(T)=—2—f0151nydy=?flldu . (A-6)

The source function consists of incident light from all directions.

Combining equations (A-3) and (A-6), we have

1

=1 - jl Idu . (A-7)
-1

=
Q-IQ-
Al
N

Equation (A-7) is an integro-differential equation for the intensity
I(t,u) of radiation at any optical depth T in an arbitrary direction y.
It describes the radiative transfer of energy which is absorbed and re-
emitted (or isotropically scattered with unit albedo) in the plane-
parallel atmosphere.

The two boundary conditions are that the net flux is constant and

independent of T and that no radiation is incident on the star, thus

I(0,u) =0 (A-8)

for

02p2-1 . (A-9)
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Equation (A-7) has no known closed form solution. But, for the

case of interest (1 = 0) Wiener and Hopf (1931) have shown the solution

to be
3 2 an)
10,0 = 5 £ exp 1| 2tan ran®) 44| (a-10)
vYl+p 0 l1 -6 cot 8 ’

where F is given by equation (A-5). Equation (A-10) may be expanded in
a Taylor series around p = 1. For the linear approximation Milne (1921)

has given the result

] = + > A 1

where x = 0.6.
The above result is valid for bolometric observations. Assuming

local thermodynamic equilibrium, Kopal (1959, p. 155ff) has shown

2 3
I,(0,u) = B,(T,) (AO AR+ AT+ AT ), (A-12)

where BA is the Planck function and the Ai are functions of re(the
optical depth at which the temperature equals the effective temperature),
the Planck function and its derivatives evaluated at T and the ratio
of the mean absorption coefficient to the frequency dependent absorption
coefficient. (The Ai discussed here are not to be confused with the
Ay used in the Fourier expansion of the non-eclipse variation of the
light curve.)

In addition, Kopal (1959, p. 158) has shown that third-order theory

may be approximated by the linear theory, so that in adopting the linear

limb-darkening law
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J(¥)/J(0) = (1 - x + x cos y) (A-13)
the coefficient x is given by

32(A, + A) + 30 A
X = 1 2 3 (A-14)
32(AO + Al) + 28 A2 + 25 A3

Explicit expressions for the Ai in terms of the parameters discussed
above are given by Kopal (1959, equations (1-24)). Thus, in general,
we expect the limb-darkening coefficients to be a function of effective

wavelength and spectral type (effective temperature), as well as the

absorption coefficient of the stellar atmosphere.



APPENDIX B. VON ZEIPEL'S THEOREM

H. von Zeipel (1924) proved the emergent radiation flux at the
surface of a rotationally or tidally distorted star in radiative equili-
brium is proportional to the local gravity. The version of the
derivation of von Zeipel's theorum given here follows the derivations
of Kopal (1959, p. 170ff) and Chandrasekhar (1933, p. 539ff).

If P, is the radiation pressure, Ky the frequency dependent ab-
sorption coefficient and Fv the energy flux, then, as has been shown
by Mihalas (1970, p. 13ff), the variation of the radiation pressure with

depth in the stellar atmosphere is
—_— = - g k F dv (B'l)
c v oV R

where c is the velocity of light, p is the density of stellar material
and z, measured normal to the surface, increases outward in the atmos-
phere. Scattering has been excluded. Defining the mean absorption

coefficient k as

1
K =5 J K, Fv dv , (B-2)
0
equation (B-1) becomes
dp
I . _ kg (B-3)
dz c ’
or more generally
Vo = - X0 F -
Vpr = c F (B-4)

->
(Motz 1970, p. 101), where F is the total energy flux.
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Assuming all energy is transported by radiation (the condition of

radiative equilibrium), conservation of energy requires
> >
VeF= € , (B-5)

where € is the rate of energy liberation per unit mass. Substituting

->
for F from equation (B-4), equation (B-5) becomes
> 1 >
ve(=vp )=-50— (B-6)

Expressing p.as a function of P, the total pressure (gas plus radia-

tion), the left-hand side of equation (B-6) may be written as

3 ¢
v.e(Ly - 9| _123Pr -
v ( Kp vpr ) - izl axi\ Kp axi ] (B-7)
= g a_'l__dpr 129P (B-8)
C 42y X3 < dP o 3xj
d 2
.4 | 1S | 1dP
~dP | k dP p | dn
i (1)

where we have used
2 3 2
dP] z[ap]
5 = ryed (B-10)
[ dn ic1 ax;
and measured n normal to the surfaces of constant potential.
If the force on a particle arises from a potential V, then we may

write the equivalent potential for motion with respect to axes that

are rotating with constant angular velocity w about a polar axis X5 as

1 2, 2 2
¥=Vezu(x" e x,0) . (B-11)
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(See for example Danby (1962, p. 47).) Thus for the rotating star

with gravitational potential V
-> - 2
VeV =-41Gp + 2w . (B-12)

If hydrostatic equilibrium is assumed then

-> ->
VP = p VY (B-13)
and equation (B-12) becomes
> 12 2
Vo E—VP = -41Gp + 2w . (B-14)

Combining equations (B-6), (B-9), and (B-14) we have

o,
o

2 d
r) %-( QB.) = é- gr ( 21Gp - wz) -0 _ (B-15)

1
( K dn c

8
(oW

P

Along an equipotential surface the right-hand side of equation (B-15)

is constant (Kopal 1959, p. 170ff), thus

dp

1
] B.[ o = constant . (B-16)
surface

1 dpy
k dP

Q-IQ-
o

]2
surface

If it is assumed the constant is non-zero, the equipotential surfaces
must be equidistant. But, in a rotationally or tidally distorted star,
this is not possible. Thus the constant is zero and for each equi-

potential surface

1 dp
(s ) =0, (B-17)

Q-IQ-
©

since the pressure gradient is non-zero. Then

(=9
o

r _

é— = constant . (B-18)

[a¥

p
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<>
Thus for the normal component of F we have

d dp
- c 9Py __ ¢ “Pr dP _
Fh® "% dn ~ "% dp dn s (B-19)
and
1 dpP dy
Fn < S' E « Eﬂ (B-ZO)

Thus we expect that at the boundary of the star the intensity H of
total radiation emerging normally from the atmosphere should vary

as

= (B-21)

where g and g, are the local and mean surface gravities and H and Ho
are the corresponding intensities. Further, Kopal has shown that
assuming black body radiation the surface brightness HA at a particular

wavelength A may be expressed as

=1-y[1-§J (B-22)
where

1 (T dB
y = 3'[§'ETJ\T (B-23)

T is the actual temperature of the atmosphere and Te is the effective
temperature. B is the Planck function.

The theory of stellar atmospheres thus indicates that the limb-
darkening coefficient and the gravity-darkening coefficient are not

independent. (See Kopal (1959, p. 159 and p. 172).) The adopted
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values of the gravity-darkening coefficient as a function of the limb-
darkening coefficient are those suggested by Russell and Merrill (1952)
and tabulated by Jurkevich (1964, p. 186). A tabulation of y as a
function of x is given in Table 21. The values of N as calculated by

equation (2.31) are also given in Table 21.

Table 21. Gravity Darkening as
a Function of Limb Darkening.

X y N

0.4 0.08571 2.2
0.6 1.00000 2.6
0.8 1.2278 3.2

1.0 1.2500 3.6




APPENDIX C. LUMINOUS EFFICIENCY CALCULATIONS

Portions of the following treatment have been adopted from Jurkevich
(1964, p. 140ff) and Linnell (1971).
Let Lh band Lc be the intrinsic bolometric luminosities of the
t ] ’

b
hotter and cooler stars. Then

Lo 9 Thp 47T (C-1)

and

oT 4 47r 2 , (C-2)

Lc,b c,b c

where Ty and r. are the radii of the hotter and cooler stars expressed
in physical units and Th b and TC p are the corresponding effective

> 1]
temperatures.

The total energy from the hotter star intercepted by the cooler

star is

2
h Te

oL = by 77,

(C-3)

where a is the separation of the stars expressed in physical units and
Lh/41rrh2 is the surface luminosity of the inner hemisphere and includes

heating by the radiation of the cooler star. Similarly

=L — (C-4)

In deriving equations (C-3) and (C-4) it has been assumed that all of
the incident external radiation is absorbed and that the "heating'" is
uniform over the inner faces.

Thus for the inner hemisphere of the hotter star we have
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4
%Lh = % Lo * By =0 T, z“rhz ’ (C-5)

where Th is the effective temperature of the hotter face of the hotter

component. Similarly, for the cooler component

1 1
7 L = '2— L + ALC =0T 2nr . (C-G)

(C-7)

where JT(A) is the wavelength distribution of the emitted energy. Then

By (3l * 0Ly ) = By o, 2y (c-®)

(C-9)

2
JTh(A) 21rrh

Define the increase in radiation at effective wavelength A caused by

the incident external radiation as 2S,. Then

h
25, =E (T) (2L . +al) - 3E (1 )L (C-10)
h = BT Uz by * 20 ) - 2 B (T pdln b
=k (1)ALs « L (E (1) - E (T, ))L (C-11)
p(Tp)aky + 7 B (M) - B (T Ly -

If, as is customary, it is assumed that the change in effective tempera-

ture is small, then

_ c
zsh = Eh(Th)ALh . (C-12)
Similarly for Sc
2S =E (T )ALh (C-13)
c ¢t
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Thus we have for the ratio of reflected lights

h 2
Sc ECALc EcLhrc
—_= c = > (C-14)
Sh EhALh Ethrh
With equations (C-5) and (C-6), equation (C-14) becomes
s, E° Th4
—_ = — (C-15)
Sh Eh TC .
Substituting for T4 (see equation (C-7)), we have
s. B Iz, ()
— = — (C-16)

If it is assumed that the stars radiate like black bodies, Planck's
law gives the emergent surface flux distribution as a function of wave-
length,

c, ">
JT(A) = =T (C-17)

e 27 -1

Here c, and c, are Planck's first and second radiation constants, A is
the effective wavelength, and T is the absolute temperature. The total

emergent surface flux is given by the Stefan-Boltzmann relation

J, = o (C-18)

Let

x = 2 (C-19)



141

and define J;(A) as

The luminous efficiency is

<, <4
E(x) = JT(A)/Jb = ) "
ocyp A | e

Define E’(x) as
P E(x) 4

E (x) = =
Cl/(GC24A) ex-l

The maximum value of this function is

m
n

4.7798404
max

which occurs at x , where
max

n

X 3.9206904

max

(Jurkevich 1964, p. 143). The values of Tmax and J

as

)

T = c2/(Axma

max X

and

)
S S
max “max

T)max B (exmax - 1)

, O

(C-20)

(C-21)

(C-22)

(C-23)

(C-24)

x then follow

(C-25)

(C-26)

Note that A is fixed for a given set of observations and this discussion

relates the maximum value of E to an effective temperature.

For the known spectral type a value of 'I’h is obtained from a plot

of color temperature versus spectral type, as in Figure 15. The data for
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this plot is from Harris (1963).

We then have

X, = c2/(ATh) (C-27)
and
S
/ (Th*n)
JTh(l) = — (C-28)
(e h-1) .
The values of J% (A) and E” normalized to the values at x are
h h max
I = e /30O Cc-29
Th( ) = Th( )/ max( ) (C-29)
and
E' = E JE~ (C-30)
h ™~ ~h /' “max ° -
where
x 4
. h
Eh=-—-—x—h-— (C-Sl)
(e "-1)
With this normalization the range of EM is [0,1].

h

The spectral type of the cooler star cannot always be determined.
An alternate method of determining Tc is thus necessary. The ratio of
the mean surface brightnesses of the smaller and larger component is

given by

(3

1—9’(p=po)occultation

- = Y(k,p_) (C-32a)
J o

" 1-2(p=p,)

transit

where P, is the geometrical depth of maximum eclipse and is defined as
as -1 for total eclipses (Kopal 1959, p. 338 and p. 348). Approximating

Y(k,po) as unity (Kopal 1959, p. 343)
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J 1-2(p,)

occultation

s
I 1- ()

g transit

(C-32b)

Associating the deeper eclipse with the eclipse of the hotter star and

defining a as the ratio of surface luminosities of the hotter and

cooler components

= JTh(A) - 1-m(po)primary minimum

a =

JTC(A) 1"L(Po)secondary minimum

Thus

. 5
, Jp. ) 1 (T, x.)
Jr (A) = h - th
¢ a a (e -1

’

5 5
(Tcxc) ) 1 (Thxh)

— = —
(€°-1) a (eh-1)
Solving equation (C-35) for X., we have

x. = ln( gjexh-l) + 1 )

and thus
TC = cz/(xxc)
Continuing with the calculation for SC/Sh, we have
5
(Tcxc)

RN

with its normalized value

IO = IT /I, 00,

and

(C-33) -

(C-34)

(C-35)

(C-36)

(C-37)

(C-38)

(C-39)
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4
rd xc
EC = —X—c— (C-40)
(e '1) )
with its normalized value
E" = E'/E (C-41)
¢ ¢’ “max -

Finally, combining equation (C-29) and (C-39) with equation (C-16) we

have
n 2
S. I1, ()7 (Bp)
<. (C-42)
S n,2

In summary, we have assumed:
(1) Stars radiate like black bodies.
(2) All incident radiation is absorbed and re-emitted at
the effective temperature of the absorbing star.
(3) The luminous efficiency is not significantly changed
by the external incident radiation.

(4) The heating is uniform over the inner face of the star.
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Effective temperatures and
color temperatures from
Harris (1963).
40 L 4250n
T
(103 k)
5000A
30 |
Tefs
3500A
20 |
10 |-
1 L 1 l
B A F G

Spectral Type

Figure 15. Effective Temperature and Color Temperature.



APPENDIX D. THE FUNCTIONS *£°C anp *gtf

As was mentioned in Section A3 of Chapter II, it is convenient to
express the geometrical dependence of the theoretical value of the light
of an eclipsing binary as a function of the ratio of radii k and the

geometrical depth of eclipse p. Thus
X
£ =U- "f(k,p)L , (D-1)

where 2 is the theoretical value of the light of the eclipsing binary,
U is the unit of light, L is the total light of the eclipsed star (with
limb-darkening coefficient x), and xf(k,p) is the fraction of the light
L lost by eclipse at geometrical depth p.

The fractional loss of light for occultation is expressed as

X% k,p) = %a®k,p) (D-2)

while the fractional loss of light for transit is

T w,p) = Frk) *aT,p) (0-3)

where
) = 202X 2, 2 10 (D-4)

with
Orag =2 (sin™'k+ 3 @k - )@k + DAT =B ) . (0-5)

The o function is the fractional amount of light lost at geometrical
depth p normalized to the fractional amount of light lost at internal

tangency (p = -1) for the respective eclipse. In turn, the a functions
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may be expressed in terms of the a functions for uniform and completely

limb-darkened stars, Oa and loa, respectively. Thus

xoc _3(1-x)0 2x 10 oc _
e FIx o *tIox ¢ (0-6)
xatr - Q- utr)ao . utr atr , (D-7)
where
tr _ __ x¢ -
U =TT v %o (D-8)
and
2 10
¢ = — tk) . (D-9)
3k

These relations are discussed by Irwin (1947) and Kopal (1950, p. 34ff).
Merrill (1950) gives the generating equations for the various a functions.
The special forms used in the computer routines are given by Linnell

(1965a,b; 1966a,b,c).



APPENDIX E. PARTIAL DERIVATIVES OF X£°¢ anp *¢t*

3¢ 3%f ¢ 2" € .
The generating expressions for arg, Brs, 36 , and ox , where “f is

X£9C or X7, have been given by Kopal (1946, p. 78£f) and Irwin (1947,

p.- 386). The function *f is a homogeneous function of 6/rg and G/rs of
order zero (Kopal 1950, p. 88). The dependence of X£ on coszi, e, w,

and t is through §. Previous methods for including the effects of

orbital eccentricity on eclipsing binary light curves employed '"fictitious"
elements and were correct to second or third order in the orbital eccen-

tricity (Kopal 1950, p. 106). A more direct approach is possible.

We have
3¢ 3%f a8
acoszi 28 acoszi , (E-1)
X X
2%f  3f 36 ]
de 38 3e , (E-2)
2%f _ 3%f 35
3w 38 dw , (E-3)
2¥f _ 3f 38
3t~ 38 ot (E-4)
where
L
§ = R(sinze sin%i + coszi)2 . (E-5)
Here
2
R -_a(l - e’) (E-6)

l + e cos v

where a is the semi-major axis of the orbit (taken as unity), v is the
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true anomaly measured from periastron, and 6 is the phase angle measured

from minimum § (primary minimum). The phase angle 6 is defined by
6 =v+uw- 90°, (E-7)

with the true anomaly v given by

v ’1+e E
tani = Ji-e tani (E-8)

(Binnendijk (1960, p. 101)). The eccentric anomaly E needed for equation

(E-8) results from the solution of Kepler's equation
M=E-esin E , (E-9)
where M is the mean anomaly with respect to periastron

22T e L -
M= -t ) . (E-10)

(Binnendijk (1960, p. 102) discusses Kepler's equation in greater
detail.) Here t__ is the time of periastron passage. We wish to
express M is terms of tys the time of minimum § at primary eclipse,
since to is more easily estimated from the light curve. Let the sub-
script "o'" refer to a quantity evaluated at minimum §, 60. Then the

mean anomaly at minimum § is
M = (t. -t ) . (E-11)

Substituting tpp from equation (E-11) into equation (E-10) we have

_ 2m -
M= —ﬁ'(t - to) + Mo . (E-12)

We can obtain the value of Mo from the geometrical and orbital parameters



150

by integration of Kepler's second law. From Kopal (1946, p. 94) for

the time interval (t2 - tl), we have

2n _ 1 V2. 2
7 (tz - tl) = '2—_? S R™ dv (E-13a)
avl - e vy
3 V)
-a-en2| 2 1 > dv (E-13b)
v, (1 + e cos v) ’

where the indefinite integral is evaluated as

S‘ dv o1 [ 2 tan-l[ l-etan BJ_ e sin v ]
(1 + e cos u)2 l-e2 Jl-e2 1+e 2 l+ecoswvu
(E-14)
and v, and v, are the true anomalies at t. and t_ respectively. Thus

1 2 1 2
applying (E-13) and (E-14), we have for Mo

M =<2 (t -t ) (E-15)

-e Yo J_ evl-e? sin Vo

1 + e cos v, (E-16)

[}
N
(ad
']
=

]
—
—

where

vo=8_ -uw+ 90°. (E-17)
(o) o

The required value of eo is derived from the evaluation of the minimum

geometrical depth of eclipse 60. The expression for § is

ly
- a(l - ez)(sinze sinzi + coszi) 2

1 + e cos(6-w+900) (E-18)

The requirement for minimum § is given by g%-= 0. From Kopal (1950,

p. 106) this expression is
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(l—e sin(6 —w))sinzi sin 26  + 2e cos(6 _-w) (l-cosze sinzi] =0
o o] o o

(E-19)
This can be solved numerically for 60. Thus we have

2.
60 = eo(cos i,e,w) . (E-20)

With the evaluation of 60 the equations necessary for the evaluation
of Mo are complete.
The evaluation of the derivatives of § with respect to coszi, e, w,

and t, is required. This proceeds as follows:

We have
1/
§ = R (sin26 sinzi + coszi) 2 (E-21)
and
2
_ _a(l-e7)
R = 1 +ecosuv . (E-22)
Thus
) oR & R2 2 26
S =3 R § Sin’i sin 6 cos 6 z— ’ (E-23)
) 0 )
1) aR § R2 2 36 cosze
5 = ==+ — [sin i sin 8 cos 8 >+ (E-24)
9cos“i  9cos“i R J acos i 2 *
98 _ 3RS, Bi sin’i sin 6 cos 8 22 (E-25)
de oe R s e,
38 _ 3RS, —i sin%i sin 6 cos 6 22 (E-26)
9w dw R 8 1 ow

where from (E-7)
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96 _ du
ot~ 3t , (E-27)
) o
36 — = v : (E-28)
acos”i scos"i ,
a6 v
3¢ - de (E-29)
a6 v
w- 1t (E-30)
and
R _ R e sin v 3u
ot~ 1 + e cos v ot , (E-31)
0 )
aR _ _Resin v v (E-32)

2. 2.
acos i l1 + ecos vicos'i ,

3R
e

ou

E-Rcosu-2ae)/(1+ecosu] »  (E-33)

= ( R e sin v

OR _ R e sin v 29
3w 1 + e cos v Jw . (E-34)

Solving equation (E-8) for u we have

-1 '1+e E
v = 2 tan [ 1-e tan ?] ) (E-35)

The partial derivatives of u with respect to ts coszi, e, and w are

thus
v lig-cosz(%) (1 + 1€ tanz(yﬂ] 3E_ (E-36
ot l-e l+e 2J}) 3t s -36)
0 0
- 2
W '1+e cosz(%) [1 + 12€ ¢ap [%]] 2B (E-37)
2. l-e l+e 2.
acos 1 dcos i



3 1 2 1- 2 oE
§£.= ’I;E-cos (g)[l + 1+§ tan (%]] e

From equation (E-9) and equation (E-12) we have

27
P

(t-t)+M =E - e sin E
) o

Implicit differentiation of this equation gives

where we have used

and

R

R de ’l-ez ,
a My
R dw ,
Mo
Craale 0
(o)

a(l - e cos E)

(E-38)

(E-39)

(E-40)

(E-41)

(E-42)

(E-43)

(E-44)

(E-45)

(E-46)

(See Bennendijk (1960, p. 101) for a proof of the latter equation.)
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Repeating equation (E-16) we write the expression for Mo in terms of

e and v
o
- - v el gj
M =2 tan"} }l—g-tan Yof _ &Jl-e< sin Yo (E-47)
o l+e 2 1 + e cos Vo .
Thus the derivatives of Mo are
My My dug (E-48)
Z. T 5% 2.
9cos 1 o 9COs 1
My Mg du, ;an 3o i Jhe 2 i
oe -e v -
du, de 1 + TTe tan (io) 1-e  (1+e)

sin Vg [ J1-e2 e?

- . - ==|  (E-49)
1 + e cos vy 1+ e cos Yy 1-e ] ,

oM . BMO 390

Q -
E-50
dw dVp Jw R ( )
where
My 2 '1-e 1
- 1-e 2 (Y 1 + e cos v
auo 1 + I tan (30) 1+e o
’_ 2 . 2
o edlmet s, . &38RV (E-51)
1 + ecosuvu o l +ecoswvu .
o o
With
v, = 8, - w+ 90 (E-52)
we have
v 96
0 -2 (E-53)

acoszi acoszi ,



(o] (o]
—_—— E-54
Je de . C )
v a6
—2-.1+—2 (E-55)
ow ow .

Since eo is the root of equation (E-19), we may differentiate equation
(E-19) implicitly to obtain the derivatives of 60 with respect to coszi,

e, and w. With

D=2(1-c¢ sin(eo-w))sinzi cos 260

+ e cos(eo-w)(sinzi sin 260)

- 2e sin(eo-w)(l - c0526o sinzi) , (E-56)
we have
%% = ((1 - e sin(6 _-w)) sin 26 - 2e cos(6 _-w) cosze ) / D
. o o o (o} ’
dcos 1 (E-57)
38 2 2 2
o _ _ _ _ . . . _ . . .
3o ( 2 cos(eo w) (1 cos 60 sin“i) + 51n(60 w) sin”i sin 290) / D,
(E-58)
229-= (- e cos(0 _-w) sinzi sin26 - 2e sin(6 _-w)(1 - cosze sin‘zi)/ D
dw o o o ‘

(E-59)

The equations necessary for the evaluation of the partial derivatives
c

of *£°¢ and *£'T are now complete.
If it is desired to calculate the corrections to e and w in the

form A(e sin w) and A(e cos w) the following transformations may be

applied

of . of cos w of
de sinw) - MY 3t Te G (E-60)

of of sin w of

5(e cos w) _ SOS Y 3¢ Te FY (E-61)



APPENDIX F. ERRORS IN THE PUBLISHED DATA

This appendix contains a list of points that were found to contain
errors in their published phase values. These points are listed with
corrected phase values. Also included in the table are points that were
omitted from subsequent iterative solutions because their residuals were
greater than 3 standard deviations from the calculated light curve.
These points are listed without corresponding phase values. It is felt

that most of these errors are typographical in nature.

Table 22. Errors in published data.

Corrected
System Color J'D'Hel. Phase Values
CO Lac B 2439033.5594 .5141
2439034.3798 .0461
2439060.4350 .9409
' 2438990.4732 .5760
2439029.6320 .9675
CM Lac U 2434595.694
2434643.821
2437201.7242
2437201.7465
B 2434595.694
2434606.872
2434643.753
2434643.813
vV 2434595.694
RX Ari B 2437984.6910 .0301
\" 2437637.7173 . 0400
2437639.6936
2438315.7749
2438398.6477
2438398.6513
V338 Her Vv 2439648.4767 .9683
Y Leo IR 2436631.7214 .0104

RW Mon IR 2439454.8463
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Table 22 (cont'd)

Corrected
System Color J'D°He1. Phase Values
BV 412 B 2439036.86266 . 86950
v 2439094 .72037 .87819
SW Lyn v 2439598.3325

14 observations
begining with 2439615.3140
B
13 observations
begining with 2439598.3201
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