
m
\
{
2
h

N
i
t
a
.

..
\»

n
.

.
.
§
§
§
»
-
v
0
u
(
.
.
u
.

«
I

I
:

”
9
.
.
a

.
.
.
l

;

’
4

(
a
.

S
l
u
t
)
“
.

1
1
.
7
.
”
.

.
v
u
e

THESIS

 I

 III
301714 1296

This is to certify that the

dissertation entitled

Object-Oriented Modeling and

Simulation for the Superconducting

Super Collider

presented by

Jiasheng Jason Zhou

has been accepted towards fulfillment

of the requirements for

Ph. D. (kgflfin Computer Science

@o/rW'
\lldajor prof ssor

Moon-Jung Chung

Date P/" /?00

MSU is an Affirmatiw Action/Equal Opportunity Institution 0-12771

LIBRARY

Mlchlgan State

Unlvorslty

PLACE IN RETURN BOX

to remove this checkout from your record.

TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

1m WWpGS-O.“

OBJECT-ORIENTED MODELING AND

SIMULATION FOR THE SUPERCONDUCTING

SUPER COLLIDER

By

Jiasheng Jason Zhou

A DISSERTATION

Submitted to

Michigan State University

in partial fillfillment ofthe requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1998

ABSTRACT

OBJECT-ORIENTED MODELLING AND

SIMULATION FOR THE SUPERCONDUCTING

SUPER COLLIDER

By

Jiasheng Jason Zhou

The object-oriented paradigm is being widely exploited in computer modeling and

simulation. It has the advantage of effectively capturing the semantics in real-word objects

with reusability and extensibility; thus it has great intuitive appeal in the area of simulation.

This thesis presents techniques in the area of simulation framework, simulation

object modeling, and configuration management and version control (CMVC) of

simulation data. Those techniques are based on a composite object model, which

effectively captures diverse semantics of domain objects in a simulation process. The

techniques are developed against a background of simulations in the design of the

Superconducting Super Collider (SSC). A layered framework is proposed to achieve design

reuse in modeling, simulation construction, data management, and simulation

visualization. The Actor model is introduced to model dynamic behavior of the simulation

system. The Actor model is further extended to support CMVC using the concept of

modeling object. Dependency between objects is utilized to control change notification and

propagation in a simulation system. Constraints are specified to validate configuration

bindings and to limit the scope of change propagations in simulation. The concept of

generic object is used to allow dynamic configuration binding in dynamic simulations. A

workspace model is presented to select and record simulation context in a multi-user

environment.

This research is one of the first to apply object-oriented simulation and modeling

techniques to a large scale real project. It enriches our understanding of dynamic

simulation, deepens our knowledge in the design of a simulation framework, and extends

CMVC to the area of simulation.

To my parents and family

-iv-

ACKNOWLEDGMENTS

I wish to express my gratitude to my thesis advisor Dr. Moon Jung Chung for his

consistent guidance and encouragement throughout my Ph. D. program. I appreciate our

many discussions and the invaluable suggestions he provided.

I extend my personal thanks to my committee members, Dr. Lionel M. Ni, Dr.

Richard Reid, Dr. Richard York, Dr. Jerry Nolen, and Dr. Richard Talman for their help

and guidance. My personal appreciation goes to Dr. Karen Tanino for her extensive review

of the draft of this thesis.

Finally, special thanks go to my wife Weiwen Guo and my son Andrew, for their

patience and love during many long days. Especially, I must express my heartful thanks to

my parents who give me life, strength, and confidence.

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xi

CHAPTER 1

INTRODUCTION 1

1.1 Object-Oriented Simulation and Framework ... 3

1.2 Current Research on Modeling and Simulation ...6

1.2.1 Simulation framework ..6

1.2.2 Modeling techniques for dynamic simulation .. 10

1.2.3 Simulation configuration management and version control 12

1.3 Contributions ... 14

1.4 Overview ofthe Thesis .. 17

CHAPTER 2

THE SUPERCONDUCTING SUPER COLLIDER SIMULATION 19

2.1 An Overview of the Superconducting Super Collider ... 19

2.2 An Overview of the SSC Simulation ...21

2.2.1 The component structure of the SSC ..21

2.2.2 The SSC simulation: motivation and requirements22

CHAPTER 3

SIMULATION FRAMEWORK 26

3.1 Dynamic Simulation and Framework ..27

3.2 Conceptual Framework Design ...28

3.3 DATA Layer .. 33

3.4 MODELER Layer ..38

3.4.1 Structure modeling ..39

-vi-

TABLE OF CONTENTS

3.4.2 Behavior modeling ..42

3.5 Constructing Dynamic Simulation with SIMULATOR ..47

3.6 INTERFACE Layer ... 51

3.7 Summary ..62

CHAPTER 4

OBJECT-ORIENTED MODELING FOR DYNAMIC SIMULATION

63

4.1 Introduction ..63

4.2 Object-Oriented Modeling for Dynamic Simulation ...65

4.2.1 Functional requirements ...65

4.2.2 Basic modeling concept for dynamic simulation ..67

4.2.3 Modeling technique ..71

4.3 Object-Oriented Modeling for Dynamic Simulation Applied at the SSC74

4.3.1 A composite object model for SSC simulation ... 74

4.3.2 Class inheritance hierarchy in SSC simulation ...79

4.3.3 Attribute, constraint, and relationship in SSC simulation 80

4.4 Implementation Issues in SSC Simulation Using Actor Model 84

4.4.1 Design database access ... 84

4.4.2 Dynamic simulation at the SSC .. 85

4.5 Summary ..92

CHAPTER 5

CONFIGURATION MANAGEMENT AND VERSION CONTROL

FOR SIMULATION 94

5.1 Introduction ..94

5.2 CM and VC in Object-Oriented Simulation ..96

5.2.1 An object-oriented model for CMVC ...97

5.2.2 Version control in object-oriented simulation .. 100

5.2.3 Configuration management in object-oriented simulation 101

5.3 Proposed Approach for CM and VC in the Simulation ... 103

5.3.1 Composite object model ... 103

-vii-

TABLE OF CONTENTS

5.3.2 Version history, generic object and context .. 109

5.3.3 Workspace in simulation .. 115

5.3.4 Change notification and propagation in configuration management 120

5.4 Summary .. 125

CHAPTER 6

CONCLUSION 127

BIBLIOGRAPHY 131

APPENDICES 140

Glossary ... 141

Index ... 145

- viii -

LIST OF FIGURES

Figure 2.1: The composition structure of the SSC .. 20

Figure 3.1: Relationship between layers ... 30

Figure 3.2: DataSource class hierarchy in DATA layer ... 34

Figure 3.3: Example of using database operation protocol to Load and Retrieve data ..36

Figure 3.4: Two different lattice configurations for LEB ... 41

Figure 3.5: Beam objects created from Particle Distribution Hierarchy 43

Figure 3.6: Principal Magnet class hierarchy (a) and its interface (b) 45

Figure 3.7: A beam tracking model class hierarchy in MODELER46

Figure 3.8: 3-bump simulation using BumpView simulator .. 49

Figure 3.9: Dynamic simulation ... 52

Figure 3.10: Beam survivability research using OZ ... 53

Figure 3.11: Lattice containment hierarchy browser .. 55

Figure 3.12: ControlLayout and Viewplot class hierarchy ... 57

Figure 3.13: Methods for incremental drawing .. 59

Figure 3.14: Object mapping .. 60

Figure 4.1: An example of virtual constructor in class Actor ... 72

Figure 4.2: Dynamic configuration binding ... 73

Figure 4.3: Beamline representation ... 76

Figure 4.4: Configuration Hierarchy of Lattice LEB, MEB and HEB 78

Figure 4.5: Class inheritance hierarchy in Super Collider .. 79

Figure 4.6: Attribute and Constraint ... 81

Figure 4.7: Single particle-tracking simulation .. 89

Figure 4.8: The impact of configuration change in dynamic simulation 91

Figure 5.1: Composite graph and dependency graph ... 98

Figure 5.2: Composite object model ... 104

Figure 5.3: Actor model extended for CMVC .. 106

Figure 5.4: Modeling object is a coherent version unit .. 107

Figure 5.5: Version graph ... 110

Figure 5.6: Versions in the version set is a-kind-of its generic object 112

-ix-

LIST OF FIGURES

(continued)

Figure 5.7: Generic object and its binding .. 113

Figure 5.8: Versioning in different workspaces .. 116

Figure 5.9: Sample C++ code for constraint checking ... 119

Figure 5.10: Dependent graph and change propagation in composite object. 123

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 4.1:

LIST OF TABLES

Beamline class .. 4O

Instance variables in Beam class .. 42

Magnet class definition ...44

Protocols in class ControlLayout .. 56

Protocols in class ViewPlot .. 60

Relationship: influence ... 83

-XI-

CHAPTER 1

INTRODUCTION

Simulation is a process of representing the behavior of one system by the behavior

of another system. In computer science, simulation refers to the use of computation

programs to implement a model ofsome system or phenomenon. The purpose ofsimulation

is usually to make experimental measurements or predict behavior, thus moving the

laboratory to the computer environment. The prime justification of employing simulation

is that the economics or logistics ofexperimenting with the actual system may be expensive

or prohibitive. Simulation thus provides a cost effective and time efficient prototype system

with which to answer questions of a “what if” nature for engineering design of large

complex systems [49, 50]. The problem to be solved by simulation can be considered as the

identification of the behavior of some dynamic system. “Dynamic” and “simulation” are

interrelated terms [59, 65, 70, 87]. Systems that are dynamic — those whose states or

structures change in response to progressive stimulations — are customarily defined as

simulatable.

Simulation of complex systems such as the Superconducting Super Collider (SSC)

is particularly useful. It is not only an effective way to assist and verify the design before

the machine is ever built, but also a cost-saving and time-efficient approach for a large

project. However, the simulation of such complex systems is not easily accomplished. A

complex system usually consists more smaller sub-systems. In object-oriented term, such

a complex system can be regarded as a composite object that could contain other objects

(including other composite objects). The contained objects are usually called components.

Relationships between composite object and its components as well as relationships among

components themselves can be complicated when an object’s composition is deeply nested,

one contains the others in a composite hierarchy. The configuration of a composite object

defines its components, their relationships with the composite object, and relationships

among themselves. The configuration is regarded as a specification of how a composite

object is formed and what the relationships should be. The execution of such a specification

is called a configuration binding. When those relationships change, the configuration

changes to redefine the composite object, which will derive a new version ofthis composite

object from its previous version. In this thesis, dynamic simulation focuses on action and

reaction a composite object should take when its configuration undergoes changes. Such a

configuration change may be considered as an object state change in a broad sense. The

state here is not measured by values but by the stages in which an object’s configuration

evolves in simulation, thus making configuration a key element in modeling dynamic

systems. The action and reaction demonstrated during the simulation exhibit the dynamic

behavior of the composite object. The composite object model has its advantage of being

hierarchical. It makes configuration binding possible at different levels of the hierarchy,

therefore provides an effective way to simulate dynamic behavior of a composite object

under various versions ofcomponent bindings. The difficulties in dynamic simulation arise

from four different aspects:

0 Modeling technique: analysis of experiment requirements, design and

construction of simulation models that bring the real world to the computing

environment;

- Simulation design: design and development of simulation engines to reflect the

dynamic behaviors of the system to be simulated;

- Configuration management and version control (CMVC) of simulation system:

controlling the changes in a simulation system due to corrections, extensions, and

adaptations that are applied to the system and record the history of the system

evolution over its lifetime;

- Simulation visualization: representation of the behavior of the system being

simulated through a graphical user interface (GUI).

Although great progress has been made in the past decade in computer simulation,

many problems still remain to be solved. These problems include the lack of integrated

frameworks to link all above aspects in simulation, weak semantic models to represent

dynamic behavior due to configuration change, and poor CMVC support for managing

simulation system evolution. Solving these problems becomes more and more imperative

to deal with the complexity of modern computer simulations. The research of this thesis

provides a solution to these problems with an integrated simulation framework that

emphasizes composite object modeling. By changing configuration of a composite object,

the behavior can be captured through binding between a composite object and its

components. Together with an integrated CMVC support tailored to the composite object

model, this framework presents a powerful set of tools for building simulation

environment. The framework is the first attempt in engineering simulation that modeling,

simulation, data management, and visualization are brought into a single framework with

a unified object model working seamlessly in simulation application.

1.1 Object-Oriented Simulation and Framework

Simulation has always appeared to be one of the natural uses of object-oriented

systems [56, 73, 87]. The appeal of object-oriented simulation is that it conforms to the

notion that the world is composed ofobjects. It is not difficult to view the real world around

us as a set of objects that interact with each other. In the case of a simulation, the real intent

is to represent these objects from the real world with a computational model. Therefore

nothing could be more natural than to organize the model structure around the objects being

simulated. This aspect of the object-oriented paradigm is perhaps most significant to

simulation.

An object comprises a collection of data representing a particular entity, together

with operations that provide the means for manipulating and accessing these data. An

object-oriented approach treats functions and data as invisible aspects (encapsulation) of

entities in the simulation and, consequently, the structure of this approach tends to mirror

the application domain structure. A simulation typically models an application as a

collection of real-world interrelated entities. Each entity in the application is represented as

one object in the model. The mapping of an object from the problem domain (the view of

the real-world entity in analysis) to the solution domain (the data representation in design)

is straightforward because it directly interprets its real world counterpart as an object in the

simulation model [87]. Changes to the state of the application are typically expressed as

events passed via messaging among objects. An object captures the identity, structure, and

behavior of the application that it models [26].

An object model aims to be well suited to support the representation and

manipulation of complex objects in the simulation of engineering design [19, 49, 55, 61,

67]. It ofi‘ers a natural conceptual model to the engineers and facilitates the efficient

structural clustering of information that tends to be obstructed by normalization in the

relational model [7, 33]. A fundamental property of objects is that they are abstract and

encapsulated to facilitate reuse. The object’s data and operations are packed together in a

single module, and the object’s internal data representation is de-coupled from its external

operation interface, which makes the reuse much easier. Objects can also be extended, and

the new object’s behavior can inherit from the behavior of the existing objects. Simulation

is evolutionary in nature. An object-oriented approach will be much less resistive to such

evolution because of its abstraction and encapsulation. Reusability, extensibility, and

maintainability form the central features that make object-oriented simulation different

from traditional simulation techniques.

The obj ect-oriented technique originated in the early 60’s when Ole-Johan Dahl and

Kristen Nygaard created Simula [21], a simulation language introducing the concepts of

encapsulation and class to the programming world. These concepts were further exploited

in the 70’s at Xerox PARC, and subsequently publicized in Smalltalk-80 [30]. Up to now,

object-oriented approaches have been broadly adopted by all aspects of software

deve10pment including simulation [4, 20, 34, 41, 56, 62, 65, 70, 87]. The essence ofobject-

oriented technology is the object-oriented decomposition of the user’s needs into

executable language constructs [3]. When object-oriented analysis is used, a system can be

decomposed into its logical or physical components. Such decomposition will yield three

structures: composite hierarchy, class hierarchy, and messaging protocol. Object

composite hierarchy decomposes a system to a component level where the necessary

granularity is reached in terms of the design requirements. By examining and grouping

objects at the component level by their functionality, class hierarchies can be formed, in

which common features are shared and differences are derived, in a generalization-

specialization process. The top level of a generalization is called a subsystem or a layer [8,

84, 87], which stands for a set of cohesive and self-contained services or functionalities in

a particular domain such as model, simulation engine, data management, and user interface

Messaging protocol defines a set of message abstractions between layers. Dynamic

behavior of the system is created by object interaction based on composite hierarchies and

messaging protocols. Those layers of classes with pre-defined messaging protocols among

them form a framework. Simulation applications can be instantiated from the framework

for a specific experiment. This concept will greatly simplify the simulation design process

through design reuse and component level integration.

1.2 Current Research on Modeling and Simulation

The techniques presented in this thesis are related to three fields in computer

simulation: simulation framework, modeling techniques for dynamic simulation, and

configuration management and version control in simulation process.

1.2.1 Simulation framework

Afiamework is a set of cooperating classes that make up a reusable design for a

specific class of software such as simulation [28]. For example, a framework can be geared

toward building a simulation system for a different domain like the high-energy physics

simulation, weapon simulation, and mechanical simulation. Framework can be customized

to a particular application by creating application-specific subclasses of abstract classes

from the framework. The framework dictates the architecture of the application. It will

define the overall structure, its partitioning into layers, classes, and objects, the key

responsibilities thereof, and the collaboration of classes and objects (protocols). A

simulation framework captures the design decisions that are common to the domain of

simulations such as modeling, simulation constructing, data management, and graphic

visualization; all those are important aspects of a simulation environment that will be

described in this thesis. Simulation frameworks thus emphasize design reuse over code

reuse in building simulation applications. By using simulation frameworks, not only are

applications built faster, but the applications have similar structures. They are easy to

maintain, and they seen more consistent to their users.

A simulation framework is different from a simulation application or a simulation

class library. A simulation framework is application independent and can be easily

extended to build various applications. Classes in a simulation framework are loosely

coupled via protocols to coordinate their requests and services, so reuse can be achieved at

the system design level, as well as at the class level. A simulation framework also imposes

a data model, an infrastructure for building applications. Such a model as the composite

object model described in this thesis lays a foundation for modeling behaviors in

simulation.

In early 1994, Reznik [60] developed a general-purpose framework for dynamic

behavior modeling using Scrith language from Kaleida Lab. The framework creates a

domain-independent model for character-based simulation for computer games. By

creating an abstract model de-coupled from the presentation, the model can be used in other

contexts. The framework contains the simulation-environment component that is divided

into the presentation space and the model space. The presentation space contains all visible

objects, as well as objects that manipulate the visual aspects ofthe environment. The model

space contains character component, character behavior, and playground. At each clock

tick, characters sense, process, and react to their surroundings. Their reaction depends both

on the state of the playground and their own internal state. But the framework does not

support versioning ofcharacters. The character-based simulation only represents behaviors

ofan individual character component interacting with the environment (playground) rather

than behaviors ofa composite object with versioned components and the interaction among

its components under different configurations, which is the main focus of this thesis.

Calhoun and Lewandowski’s object oriented framework [9] is implemented using

Smalltalk and C++. It emphasizes dynamic simulation that allows the user to define

hierarchical models for dynamic systems. Using inheritance hierarchy, the user can build

specific models from general ones, and using the part-whole relationship, the user can build

models consisting of submodels. However, their dynamic simulation is inheritance-based

implementation binding. That is different from the component-based configuration binding

proposed in this thesis. The framework does not handle changes inside a composite model

(contains submodels) very well, especially changes to the part-whole relationship in a

composite model at simulation run time. It does not provide a change response mechanism

to adjust the model during simulation. The framework also lacks version control capability,

therefore its part-whole relationship is much simpler than those which support versioned

component.

Huh and Rosenberg focus their work on the change management framework [34]

that manages dependency relationships between shared objects, as well as dependent user

views in a collaborative simulation system. The framework provides mechanisms to

coordinate changes and propagation activities between the shared objects and their

dependent user views. First, it provides a set of abstract object classes that constitute the

core constructs ofthe change management framework. Composite objects are aggregations

of shared objects with dependency relationships defined among them. Second, it extends

the framework in two directions: persistent shared objects and distributed simulation. At

the highest level of their framework, change manager classes are provided to encapsulate

all the complex structures and dynamic behavioral schemes of the mechanisms. The

framework is developed under a commercial ODBMS called ObjectStore using C++. The

dependency-based configuration management works well in this framework to handle

changes of relationships in simulation system. But version control is quite limited for

persistent shared objects, especially for composite objects. The relationship is very difficult

to be versioned along with shared objects.

Recently, Vaishnavi and his group developed the Smart Object paradigm [76],

which provide a new concept for the modeling, design, and simulation of the Operations

Support Systems (058). 088 is an interactive simulation system for the management of

large, complex operations environments, such as manufacturing plants, military operations,

and large power generation facilities. The framework is a combination of obj ect-oriented

model and AI knowledge representation and active inferencing model. The model assists

in representing simulation domain data and knowledge with its structure, in addition to

modeling multilevel control and inter-object coordination. But configuration changes in

088 are prohibited during a simulation process. Dynamic behaviors are generated by

OSS’s control knowledge based on simulation input. Configuration of a composite object

with versioned components does not have a dynamic effect on its behavior in simulation

since changes to configuration cannot be applied at run time. Such a weakness affects

OSS’s modeling power when system’s component structure is under frequent adjustment

during simulation.

The most recent advance in simulation framework comes from Cubert and

Fishwick’s work in late 1997. They developed a Multimodeling Object-Oriented

Simulation Environment (MOOSE) [20], a framework for modeling and developing

simulation software. MOOSE supports model refinement and abstraction, allows creation

ofheterogeneous hierarchical models including composite object models. Dynamic models

comprising multi-models include Finite State Machines, Functional Block Models,

Equation Constraint Models, and Rule Based Models. MOOSE emphasizes visualization

and effective use of object-oriented metaphors to connect the conceptual model to the

program and to capture model structure and behavior. The MOOSE human-computer

interface has two GUI's: Modeler, for model design, and Scenario, for model execution

control and visualization. The back end of MOOSE generates a model description in a

target language such as C++, then translates and adds run-time support to form an Engine.

Model execution consists of Engine running synchronously with Scenario. The MOOSE

approach facilitates model development with greater intuitive appeal. MOOSE’s

descriptive modeling approach is less-extensible when dealing with already translated

Engine. The off-line model translation also adds difficulties in directly observing dynamic

behavior caused by configuration change of composite object. Our approach proposed in

this thesis is more powerful. It adjusts configuration changes during the simulation run

without the interruption for model re-generation. Therefore it provides a dynamic feedback

to effectively steer simulation to the right direction.

1.2.2 Modeling techniques for dynamic simulation

Modeling plays a very important role in simulation. Modeling creates the way of

mapping between real world entities and their counterparts in the computer environment,

therefore controlling the effectiveness of the simulation.

In the last decade, many obj ect-oriented modeling techniques have been developed

and used to improve simulation [23, 40, 43, 63, 65, 70, 72, 75, 77, 87]. Some of them are

capable ofmodeling dynamic behaviors by using constrained relationships, configurations,

and control flow diagrams of a composite object.

Using constrained relationship or dependency to model dynamic behavior is one of

the approaches. OBJECTModeler [23] is used in the simulation of dynamic behaviors of

shopping networks. It implements an object-oriented modeling methodology supporting

the definition ofvarious types of semantic objects and their interrelationships. Its semantic

object type include simple, composite, association, and subope. Simple objects are single-

valued properties. Composite objects contains one or more multi-valued properties.

Associations represent relationship between objects. OBJECTModeler incorporates the

mechanism to extract functional and multi-valued dependencies as well as relational

constraints from the defined objects such as customer, payment, order, and validate the

dependencies for consistency when changes occur in the simulation. Other semantic

integrity constraints can be specified when objects and properties are defined using

OBJECTModeler’s dictionary functions that are implemented using a graphical user

interface. OBJECTModeler currently does not support object encapsulation. Methods and

objects have to be attached at simulation run-time, rather than treated as an integrated

entity. This greatly restricts the model’s extensibility in simulation. OBJECTModeler also

does not support object versioning as well as configuration binding for composite object.

Another approach is based on abstraction through hierarchical modeling to create

multiple views of the system to represent its dynamic behaviors in simulation. The

implementation view of the abstraction can be switched at run time based on simulation

10

context, therefore causes the system to behave differently. Kiczales [40] describes a model

of abstraction, which he calls the “two-view” approach for simulation. The first view is the

traditional one; it provides the functionality of the abstraction in simulation. The second

view allows the user to participate in some implementation decisions in terms ofmodeling.

Kiczales’ hierarchical modeling is inheritance based rather than composition based

suggested in this thesis. It works well to dynamically bind implementations based on

object’s run time type, but it causes difficulties to change configuration of a composite

object. HSL [65] is a Hierarchical Simulation Language for process-oriented simulation of

discrete systems. It supports obj ect-oriented programming by user-defined entity classes. It

allows a parent class to be specified in an entity class definition, with the child class

inheriting all data members and processes defined for its parent class. However, dynamic

binding in HSL is quite weak. The model lacks support for design evolution and version

management. PRISM from MCC [77] is a system-modeling environment developed for

Electronic Computer-Aided Design (E-CAD). In PRISM, models manage simulation units,

and because they are simulation units themselves, hierarchical models may be constructed

for composite object. The simulation paradigm supported best by PRISM is one in which

packets ofinformation called transactions are passed through a fixed network of simulation

primitives or submodels. PRISM supports dynamic connection between components by run

time type checking on a pointer assignment extracted from the NIH (National Institute of

Health) Class Library. But PRISM does not provide object versioning, therefore lacks the

capability to represent possible behavior changes caused by its dynamic connections

among versioned primitives and submodels.

MORE [75] improves the above approaches by supporting object structure changes

in simulation. MORE is an object-oriented data model defined by BNF in which the user

can specify an object with various structures. The structure of an object is changed by

passing messages. The same as the above approaches, each object in MORE can take

several different views. MORE also provides a class type, a user-defined type for classes

11

with similar structure in order to simplify the specification of class descriptions. Objects in

MORE are divided into two groups: primitive and complex. The structure of an object is

represented as a hierarchy of existing objects, named an object hierarchy. An object can

take on several object structures, one of which can be chosen by sending a structure

message according to the scenario in simulation. The change message is handled by a

daemon method Trigger in an object. The object’s structure is then evaluated as its behavior

changes. But MORE does not support object versioning, therefore it cannot effectively

capture behavior changes caused by configuration binding of versioned components in a

composite object.

DEVS model [87] is the approach using control flow diagrams to model dynamic

behavior. DEVS model provides an approach to obj ect-oriented Discrete EVent Simulation.

Its formalism provides a means of specifying a mathematical object called system.

Basically, a system has a time base, inputs, states, outputs, and functions for determining

next states and outputs given current states and inputs. Such an abstraction provides a

formal representation of event systems capable of mathematical manipulation which

includes behavioral analysis whereby properties ofthe behavior ofa system are deduced by

examining its structure. But DEVS only emphasizes the control flow ofa simulation system

and ignores the dynamic behavior caused by change ofconfiguration ofa composite object.

Therefore it is difficult to support configuration binding in a versioned environment.

1.2.3 Simulation configuration management and version control

The iterative and exploratory nature of the simulation process leads to two aspects

of the complexities. First, the configuration of a composite object (an instantiation of a

composite object from its components) could be complex. Components of a composite

object can be changed during simulation time as well as their inter-relationships.

Configuration management is needed to response promptly and adapt to these changes

without interrupting the simulation process. Second, there could be several alternative

12

versions of the composite object at the same time due to bindings of different versions of

its components. Version control is needed to systematically document these alternatives

and to easily retrieve versioned object in simulation. Configuration management and

version control (CMVC) thus become a challenging task in modern simulation. CMVC

must provide mechanisms to generate new configurations dynamically and consistently to

respond to changes and alternatives in simulation.

CMVC has received increased attention in three application areas: object-oriented

database management systems [1, S, 24, 36, 39], Computer-Aided Software Engineering

(CASE) systems [6, 27, 51, 81, 82], and CAD repositories [2, 14, 38, 46]. An object-

oriented database provides object versioning. But configuration management (CM) support

is limited because it does not provide a CM framework for any application including

simulation. The design of a configuration management mechanism totally depends on the

individual application. CASE systems provide the support necessary to allow a user to

configure the modules of a program consistently [66]. They are typically language tools

developed specifically for software repositories. CASE systems cannot handle semantic

changes efficiently since they are not based on an explicit data model for engineering

design. They do not allow complex and fine-grain simulation objects to be modeled, and as

a consequence, it is impossible to define an adequate and customized simulation target

model. The versioning problem is reduced to the evolution of a single file, regardless of its

content, and little control is possible. CAD systems support the design of engineering

objects. They focus on understanding the system-level requirements, but not on the

dynamic behavior of complex objects in simulation. It is difficult to integrate application

models into an existing CAD system.

The CMVC approaches can be grouped into four models. The check-out/check-in

model [38] offers version management of individual system components. The long

transaction model [36] emphasizes the evolution of systems as a series of configuration

versions and the coordination of concurrent team activity. The change set model [88]

13

II

promotes a view of configuration management focused on logical changes. The

composition model [2] focuses on improving the construction of system configurations

through selection of alternative versions.

1.3 Contributions

Although great progress has been made in the past decade in simulation framework,

modeling, and CMVC, many issues and weaknesses still need to be addressed. Most

approaches discussed so far lack either the modeling strength to represent the dynamic

behaviors of composite object and its configuration or CMVC capabilities tailored to

simulation model. Their frameworks usually emphasize one aspect but neglect the other. To

overcome these weaknesses in simulations, this research focuses on design issues among

difl’erent aspects of the simulation framework and modeling techniques that reflect

dynamic behavior through configuration changes. The main contributions of this thesis to

simulations can be summarized as follows:

1. This thesis research developed a layered framework for building a simulation

environment. Layers for modeling, simulation, data representation and graphical

user interface are relatively independent and can be extended towards domain

specific applications in parallel. The proposed responsibility-driven approach offers

loosely coupled protocols to coordinate communications between objects in

different layers with great flexibility. At the same time, through these protocols, the

framework achieves functional integration among layers in simulation.

2. This thesis introduces a mechanism to model dynamic behavior of a composite

object through its configuration change and configuration binding in simulation.

The proposed Actor model is quite unique comparing to traditional control flow or

inheritance based approach in previous research. Its hierarchical composite model

makes configuration binding easy to manage with versioned components during

14

simulation, therefore makes the modeling of dynamic behavior more effective.

3. This research integrates CMVC into the underlying composite object model for

the first in dynamic simulation. This native CMVC support provides a well-

balanced complexity distribution into the composite hierarchy, and makes the

composite object more intelligent and effective to manage its components in

constraint checking, change propagation, and versioning.

Most frameworks in previous research did not cover all aspects of the simulation

process. Some focused on modeling change propagation [34]; some emphasized modeling

dynamic behaviors [9]; some provided a framework only for modeling or simulation [76],

but not the whole spectrum that will include CMVC for simulation data and graphic user

interface for user interaction. This research marks the first time in engineering simulation

that an integrated framework is provided to cover and coordinate all aspects of the

simulation process: from modeling techniques to simulation design, from graphical user

interface to configuration management and version control of simulation data. The

proposed protocol-based responsibility-driven design approach makes such an

coordination seamless but also flexible. Such a framework greatly facilitates the

construction of simulation applications.

The framework, InterSim, described in this thesis provides four conceptual layers

of classes in the design of a simulation environment. The INTERFACE layer is an obj ect-

oriented GUI framework. It applies the model-view-controller [28] (MVC) architecture to

the design of user interface for dynamic simulation. It decouples the view from the model

and leaves application specific logic to the controller. So the view can be reused with

different models. The MODELER layer centers on the composite object model and extends

to CMVC. A composite object is an aggregation of component objects with relationships

defined among them. The bindings between the composite and its components can be

changed when new versions of components are created, thus cause a new version of the

composite. Relationships can also change in response to component changes. These

15

changes result in a new version of the composite object that may demonstrate different

behaviors. Dynamic behavior caused by these changes is the focus of this thesis research

and is rather unique observation compared to the previous approaches. The SIMULATOR

layer provides a set of simulation engines that can be extended to meet special simulation

requirements. Different simulation engines can be attached to the same model to generate

dynamic behavior. The DATA layer provides a uniform approach for data accessing on

different platforms. The design of each layer can proceed independently, based on a set of

predefined responsibilities and protocols between each layer. These four layers in the

framework provide a rich set of functionality for building a simulation application.

The uniqueness of the CMVC model proposed in this thesis is its integration with

the underlying composite object model in simulation. In this extended model for CMVC,

configuration is represented by the composite graph through the relationship of is-a-part-

of Configuration changes are managed by the composite object using the dependency

graph through the relationship of depend-on. The concept of a modeling object is

introduced as an aggregation of modeling primitives treated as a coherent unit for

versioning. Attributes of a modeling object are classified as variant or invariant in order to

control the scope of versioning and change propagation. Version is recorded by version

graph through the relationship of is-derived-from. Workspace is used to control the

evolution of versions in a multi-user environment. Few workspace models are known that

can properly reflect on features of team design in a cooperative environment. The

workspace model proposed in this thesis organizes workspaces hierarchically to capture the

process of simulation design. It supports group check-in and check-out based on object

dependencies, an important feature of this model. Several approaches are proposed to

control change notification, and to limit the scope of change propagation by using

dependency graph. A constraint-driven approach is presented, which uses user-defined

constraints to control the change propagation.

This thesis research is originally targeted to the simulation of the SSC, the largest

16

II

high-energy physics accelerator ever designed. The complexity of the design requires

highly sophisticated simulation tools. The proposed system [89, 90, 92] has been

implemented and the modeling strength and CMVC functions in the framework have been

demonstrated. Many concepts resulting from this research can be applied or extended to

other simulation application domains.

1.4 Overview of the Thesis

The thesis is organized into several chapters:

Chapter two presents an overview ofthe Superconducting Super Collider (SSC) and

its component structure for simulation. Several issues are discussed in the context of SSC

simulation requirements.

Chapter three introduces the framework InterSim for constructing a simulation

system. The design of the framework applies object-oriented technology to data

management, visualization, behavior modeling, and dynamic simulation. The goal is to

accumulatively create complete functionality within each layer of the framework for reuse

in future software development. The design and implementation of an object-oriented

simulation environment, OZ, for the SSC by using the framework is described in this

chapter. OZ provides a graphical user interface that allows the user to visualize the design

data as objects in the database and to interactively model system components through direct

manipulation. Modeling can be exercised at different levels of the system composite

hierarchy before it is dynamically bound into the system for simulation. Inheritance is used

to derive new behavior of the system or subsystem from the existing one.

Chapter four proposes an object-oriented data model for dynamic simulation. The

Actor model supports hierarchical structured decomposition of a system. Higher level

abstraction is able to hide lower level implementations. The Actor model is used to

represent a component in a system. Attributes are treated as resources, which can be

17

created, destroyed, or shared dynamically in the simulation. Constraints are used to impose

restriction and propagate events between actors at a different level of the hierarchy.

Relationship is used to coordinate activities and measure connections between actors in the

system. The model allows the system to be configured by adding or deleting components

to its high level composition. Configuration is bound in simulation at execution time.

Inheritance is used in the model to create a different behavior while still keeping

components interchangeable. Dynamic binding is used to provide a consistent interface to

the abstraction, while still having a different implementation for different behaviors.

Chapter five extends the Actor model for configuration management and version

control in an object-oriented simulation with a background of the SSC simulation. In this

approach, version control is based on object attribute classification. Versions are grouped

into version sets associated with a generic object and version relationships are modeled

with version graphs. Workspace and context are introduced to facilitate configuration

management. Dependency graph is used to manage the scope of change propagation.

Several approaches are proposed to control change notifications.

Chapter six concludes this thesis with a list of further research issues.

18

CHAPTER 2

THE SUPERCONDUCTING SUPER

COLLIDER SIMULATION

2.1 An Overview of the Superconducting Super Collider

The Superconducting Super Collider (SSC) is an accelerator complex built to

perform high-energy physics experiments. Figure 2.1 shows the main collider rings and two

zoomed-in views for different accelerators. Proton beams are fed into the main Collider

synchrotrons from a chain of injector accelerators, which consist of a linear accelerator

(Linac pictured at the bottom right), two resistive synchrotrons, and one superconducting

synchrotron. During the normal collider filling scenario, the Linac will accelerate negative

hydrogen ions (I-I') to a kinetic energy of600 MeV (million electron volts). These ions will

be charge-exchange injected into the next accelerator, the Low Energy Booster (LEB

pictured at the right), and bunched into RF buckets. The LEB will then accelerate the proton

beam to a momentum of 12 GeV (billion electron volts). The 12 GeV protons will then be

fast extracted from the LEB in a single turn, and transferred bucket-to-bucket into the

Medium Energy Booster (MEB pictured at the bottom middle). Six cycles of the LEB will

19

20

T
o
p
a
n
d
B
o
t
t
o
m
C
o
l
l
i
d
e
r
(
O
v
e
r
l
a
p
p
e
d
)

F
i
g
u
r
e
2
.
1
:

'.
H
i
g
h
E
n
e
r
g
y
B
o
o
s
;

q

a
'

(
H
E
B
)

3
.
3
/

J
"

.
2
" M
e
d
i
u
m
E
n
a
g
y

B
o
o
s
t
e
r
(
M
E
B
)

'
"
"
"
"
”
-
"
~

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

T
h
e
c
o
m
p
o
s
i
t
i
o
n

s
t
r
u
c
t
u
r
e
o
f
t
h
e
S
S
C

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

be accumulated in the MEB before the beam is accelerated to 200 GeV momentum. The

200 GeV beam will then be fast extracted from the MEB and injected into the High Energy

Booster (HEB pictured at the middle). Three cycles will be accumulated in the HEB before

acceleration to 2000 GeV (2 Tev, trillion electron volts). The protons will then be fast

extracted from the HEB and injected into one of the Colliders (pictured at the left). There

will be a change in polarity and beam direction in the HEB on alternate cycles. The process

is repeated 16 times until both Collider rings are filled with counter-rotating proton beams.

The HEB uses 1000 superconducting magnets in a bipolar mode, providing protons

to each of the two collider rings at an energy of 2 TeV. Eventually, more than 10,000

superconducting magnets will be assembled into two rings of accelerator components

within the Collider tunnel. Once the Collider is filled, the proton beam in each ring will be

accelerated by the RF (radio frequency) system to an energy of 20 TeV. At this energy, the

beams can be brought into collision and focused to a small spot size at four interaction

regions (IR), where the physics experiments will be performed.

2.2 An Overview of the SSC Simulation

2.2.1 The component structure of the SSC

The SSC is a big composite object. The entire system consists of accelerators and

beam transfer lines that connect the accelerators, each of which is called a machine. A

machine mainly consists of different kinds of physical elements positioned one after

another along the machine’s trajectory. These elements can be magnets, beam adjusters,

beam detectors, or RF cavities. They are used to observe, control, transfer, and accelerate

the particle beam in the experiment. A machine is composed of beamlines, a logical sector

of the machine. Large beamlines can be composed of small beamlines. The smallest

beamline is the element. By decomposing a machine into logical beamlines, we can obtain

a beamline composite hierarchy with the machine at the root, beamlines in the middle, and

21

elements at the bottom as leaves.

2.2.2 The SSC simulation: motivation and requirements

The basic goal of the SSC simulation is to obtain an optimal design of the

accelerator lattice (the layout structure of magnets in an accelerator, also referred to as the

configuration of the machine) in order to deliver high luminosity particle beams at a

designated energy level at each stage of the acceleration for experiments. High-energy

physics experiments usually take a long time to prepare and have a high operating cost. In

particular, no machine yet exists to run any experiment in the initial design stage of the

SSC. Simulation is a cost-effective approach to help accelerator physicists identify design

flaws through visualization and improve productivity through directly manipulating design

objects without the real machine. To achieve that goal, a project called OZ [89] was

launched and further extended to the BumpView [90] project for dynamic simulation at the

SSC using the composite object model proposed in this thesis. OZ is a dynamic simulation

environment for SSC. OZ provides various types of simulations as well as data and

structure browsing through a set of graphical user interfaces. As an extension to OZ,

BumpView is used to adjust the beamline configuration for large particle throughput

(luminosity) using the composite object model. Finally, a structured accelerator lattice

editor called OBSERVER (Object-Based Structure EditoR for Visual EnviRonment) [89,

92] is built for direct manipulation ofmachine configuration with CMVC support using the

InterSim framework. The SSC is displayed in OBSERVER as a composite hierarchy using

the Actor model. Node in the hierarchy represents an object (Actor) such as a beamline or

a magnet. Users can directly edit an object’s attributes, constraints, and even its composite

structure to create a new configuration and version it into the database.

Simulation at the SSC uses both static and dynamic data. Static data created in the

accelerator lattice design are stored in the database. These data can be manipulated using a

particular simulation model to create simulation results. Dynamic data are the footprint of

22

such results subject to a particular configuration of the accelerator lattice. So simulation is

a process of manipulating static data based on a simulation model to create dynamic data.

The three requirements of the OZ project are:

1. A graphical browser for visualizing the accelerator lattice database. This browser

includes: (1) a geometric view of the accelerator complex in three dimensions, (2)

a symbolic representation ofthe lattice structure and configuration, (3) a beamline

locator, which locates a section of an accelerator in the selected lattice with a name

and expands it into its components, and (4) a plotter for examining various lattice

optics functions.

2. A dynamic optics function simulator. Users can change some attributes of the

accelerator (such as initial settings), strength of the magnets, and injection position

of the particles. A feedback can be obtained from the dynamic optics function

simulator that tells the user the effect of these changes.

3. A particle-tracking simulator, which simulates a bunch of particles distributed in

a predefined pattern passing through each accelerator for several tums. The

simulator can also simulate particles passing through transfer lines between

accelerators with different energy levels. The simulation aids research in beam

synchronization, timing, and transfer of a beam within a given aperture in the

accelerator.

A very important quality measurement of accelerator tuning is its beam luminosity,

that is the number of particles in the beam. To increase beam luminosity, we must keep the

beam inside the trajectory of a machine, i.e., avoid losing the beam in the process of

acceleration. In order to achieve that, an accelerator must provide an extremely well

focused and well-positioned beam to a target that could be miles away from the source. The

beam is guided by a magnetic force which focuses, de—focuses, or bends the beam along the

machine trajectory during the acceleration. When such a force is too strong or too weak,

particles in the beam will start to deviate from their trajectories and finally get lost. Beams

23

are most vulnerable to being lost from stable orbits at the injection energy when transferring

from one machine to another, before acceleration begins. This is due to the effect of

imperfections in the dipole field ofthe machine bending magnets arising from errors in wire

placement during magnet construction and other effects. The magnet imperfections, iflarge

enough, could lead to unstable orbits and unacceptable particle loss. Most magnets placed

in a machine have fixed magnetic strength and are designed to bend the beam with a certain

angle at specified location. To correct dynamic errors that may affect the beam trajectory,

hundreds ofadjusting magnets (kickers) are placed among the built-in magnets (with fixed-

strength). There are also hundreds of detectors (beam position monitors, or BPMs)

interspersed near those kickers to monitor the results of corrections and to locate the beam

positions as a result of the adjustments. For a particular BPM reading which indicates the

amount of impact needed to adjust the beam, the adjusting value will be calculated

dynamically for each kicker, especially those kickers near the BPM being monitored to

generate such a impact in simulation. The activated kickers will change the configuration

of the accelerator machine, therefore change the behavior of particle acceleration

Simulation of the SSC starts with an initial design in the design database. As the

beam luminosity is continuously increased, the accelerator will start to lose beam at a

certain point. A stronger binding or focusing force is needed to keep those lost beams inside

the accelerator tunnel. In an accelerator, two major system parameters affect the behavior

ofthe particle: dynamic aperture and deviation. Dynamic aperture depends on the magnetic

strength of the magnets the particle passes through. Deviation relates to the accelerating

pattern decided on by the structure of the machine. Therefore two approaches are used to

correct the beams. One is to fine-tune the magnetic strength setting at a particular point to

force the beams inside their trajectories using BumpView. But sometimes such an

adjustment will either be constrained by technical limitations or have an uneven effect on

particles. So another approach is to change the configuration of related beamlines using

OBSERVER. Configuration changes basically replace, insert, or delete components from a

24

composition in the Actor model, therefore changing the behavior ofthe composition. A top-

down step-by-step approach is used in order to achieve an ideal configuration. Simulation

is first run on some small beamlines to generate a good acceleration pattern by continuously

reconfiguring the beamline. These small beamlines are delivered as an abstraction to the

next level of the simulation run. They are combined to form some large beamlines for

further simulation in the next phase. Such a simulation is run, level by level, up and down

within the composite hierarchy to reach an ideal result. The composite object model

developed in this thesis research makes such an up-and-down process very effective. The

concept of configuration change and binding presents great flexibility to adjust the model

at different levels of the composite hierarchy, therefore provides a quicker path to find the

best configuration in simulation. Further information about the simulation of the SSC can

be found in [89-92].

25

CHAPTER 3

SIMULATION FRAMEWORK

This chapter describes the mechanisms used to build an integrated environment for

modeling and simulation of large complex systems using obj ect-oriented approaches. This

mechanism has been applied to the development of dynamic simulations at the

Superconducting Super Collider (SSC) Laboratory. Our goal is to build an environment that

enables visualization of design data, and aids interactive modeling and simulation to

exercise the SSC before it is actually built. To achieve our goal, we propose an object-

oriented framework called InterSim for interactive modeling and simulation. In our

framework, the system (SSC) is logically composed from its components. These

components are modeled as objects that can be manipulated through graphical user

interfaces. The dynamic behavior of the system is modeled using these objects in a

particular configuration. Simulation results are generated by applying a specified version

of a model to the simulator under certain initial conditions.

26

3.1 Dynamic Simulation and Framework

Dynamic simulation is different from regular simulations in the sense that in a

dynamic simulation the composite object to be simulated can be reconfigured with different

bindings to its components, and the user can interact with the system in the simulation

process to improve the simulation model. Dynamic simulation requires an adaptable

modeling technique, a model that can adjust itself to manage changes. It requires a set of

extensible simulation engines that can be loosely coupled with the transitional model. It

also requires a set of reusable GUI components for building different applications. The

framework InterSim described in this chapter meets those requirements for dynamic

simulations. It provides an architecture to seamlessly link simulation data, simulation

model, simulation engine, and user interface in a dynamic simulation environment.

Our framework also improves the simulation by design reuse. It helps the user to

identify key sub-systems in a simulation application and guides the user to build the

application by extending or reusing classes in our framework. For the simulation itself,

framework provides knowledge reuse in modeling techniques. For applications, framework

can provide a fast prototype as well as easy maintenance. For simulation end-users,

framework provides a more consistent operating environment in different applications.

The remainder of the chapter discusses InterSim and its implementation issues in

the context of the OZ and BumpView project. Section 3.2 presents a conceptual design of

the framework that contains a group of classes needed to build a system for a dynamic

simulation environment. The framework contains four layers: DATA layer, MODELER

layer, SIMULATOR layer, and INTERFACE layer. Each layer of the framework, its

functionality, and relationship is described. The chapter explains how this layered

architecture can be used to achieve design reuse in dynamic simulation. Section 3.3 will

describe the DATA layer with examples. Section 3 .4 will describe the MODELER layer, its

attributes, and the process for modeling dynamic behavior. Section 3.5 includes several

27

examples of constructing dynamic simulations in an interactive environment. Section 3.6

will discuss some implementation issues in the INTERFACE layer. Section 3.7 summarizes

the chapter.

3.2 Conceptual Framework Design

Before complexity reaches an unmanageable level in a software system, a new level

of abstraction must be introduced to allow fiirther increases in functionality [78]. From a

simple type data to an abstract class, we can obtain one level of abstraction. From a class

and a class inheritance hierarchy to a toolkit or a framework, we can achieve another level

of abstraction. For design reuse in software development, a general division of abstraction

beyond the class level is necessary and useful. Such a division may be termed a layered

framework.

The framework proposed in this chapter contains a group of classes needed to build

a system in an interactive simulation environment. A layer is quite similar to “firfs-Brock’s

subsystem [84, 85], except that it is domain-specific (rather than task-specific). For

example, database, model, simulator are possible layers in our framework. Classes in a

framework can collaborate to achieve their responsibilities through a set of protocols. All

classes that fiilfill a given responsibility (probably in one layer) should respond to the same

message with their own behavior. For example, in a drawing editor (such as MacDraw)

several classes perform the conceptual operation of displaying. Class Drawing displays

its elements, and class DrawingElement displays itself. The drawing editor therefore

defines a message named Display in the class Drawing, in the class

DrawingElement and its subclasses. These classes support the concept of displaying,

so their displaying messages should have the same name and even the same argument list

(signature), even though the methods that implement these displaying operations are very

different. This mechanism is called polymorphism [86]. Ifwe can design a set of protocols

28

for each layer, software development can be conducted by using constmcts much higher

than those at the code level through the use of shared protocols with homomorphism.

Furthermore, code development and class derivation in each layer can be independent and

targeted to the contract [85] advertised through the protocols.

In our design process, a system is decomposed into a group of objects (tangible or

conceptual). The same objects can be grouped into classes, and similar classes can be

combined into an inheritance hierarchy where the common features are shared through

generalization, and the individual characters are derived through specialization. The design

ends up with several class hierarchies, each ofwhich will be designed to fulfill a particular

function in the system. Classes can be further grouped into layers by their modeling and

application domain. Layers are themselves independent and cohesive in terms of their

functionality. But they may have relations, collaborations, interactions, and

communications in the process of simulation. In InterSim, each layer defines a set of

generic messaging protocols that can be used on class instances of that layer, such as the

message retrieve that is generic to both a relational database management system

(RDBMS) and an object-oriented database management system (ODBMS). Within each

layer, these protocols can be interpreted differently based on class and simulation context

through dynamic binding. Protocol is defined in the design model and is language

independent. It includes a list of requests that a client can make of a server, a list of rules

that a client has to obey when making a request, and descriptions about the service or

responsibility [85] the server offers. When a protocol is no longer adequate to a subclass,

either a high-level abstraction is needed or a new protocol should be introduced to that

layer. The protocol design process is both top-down and bottom-up. The top-down process

specifies a set of virtual protocols in the base class and defines them in individual

subclasses when needed. The bottom-up process seeks similar interfaces among classes and

extracts their abstractions to their base class. In InterSim, objects in a simulation system can

be classified into four layers, each ofwhich is implemented by a set of classes:

29

INTERFACE Layer:

Layout ofGUI controls and graphic representations

Interactive structured graphics for simulation objects

Event handling and processing

A

I i

MODELER Layer: SIMULATOR Layer:

Dynamic model constructs Simulation engines

Object model specification Simulation controller and manager

Structure and behavior modeling schema

 A

I
DATA Layer:

Data transmission and tranformation

Data definition and representation

Figure 3.1: Relationship between layers

1. DATA layer comprises classes handling data transmission and transformation. It

provides services for modeling and simulation. In simulation, data may come from

different sources with different data formats: binary data from sensors and ports,

ASCII from flat files, structural data in SDS (Self-Describing Standard) [64] files,

tables in RDBMS, and objects in ODBMS. Although various data may represent the

same real-world object, their data model is restricted by the feature ofthe repository

wherein they reside. Data provider and consumer are probably loosely coupled. The

DATA layer isolates the impact of the data management schema, whether flat file,

relational, or object-oriented. It makes the details of data transmission and

transformation transparent to its clients, and narrows the semantic gap between

restricted data models in various repositories and the object models in simulation.

30

At the SSC, data describing the structure, identities, and attributes ofthe accelerator

are stored in a relational database management system, SyBase [74]. SDS is used

as a vehicle to move data structures between the application and the database. The

DATA object encapsulates the semantic gap caused by different data models and

maps data into an object model for other parts of the system, such as a simulator or

a graphic user interface. As a result, high-level abstractions (DATA) will bring low-

level flexibility in applications.

2. MODELER layer comprises classes organizing the information to represent the

essence of real-world objects based on interrelations and interactions. MODELER

defines the structure and the inter-relationships of the system in terms of the

simulation to be conducted. An application model is defined or derived from an

existing model in MODELER. For example, in an accelerator particle-tracking

model, a non-linear model is derived from a linear model by considering the effect

of high-order magnets in the lattice. Each class in MODELER also provides a data

context in which protocols get interpreted in DATA and SIMULATOR (explained

below) layers. A model can be derived or composed by existing models.

3. SIMULATOR layer comprises objects to practice dynamic simulation.

Simulation algorithms are likely to be developed independently by domain

specialists. It is not necessary to design, test, and debug those parts with the entire

system. They can be built separately and connected to the system later.

SIMULATOR layer provides a set of simulation classes used by different models.

These classes have methods for special algorithms used in the simulation and

control mechanism to conduct the simulation. A simulator (instance from

SIMULATOR layer classes) can be built by deriving it from, or composed using

existing ones.

4. INTERFACE layer comprises classes for developing a graphical user interface.

It provides varieties of graphical representations to the process of modeling and

31

simulation. Through class derivation, INTERFACE layer can be shared among

systems with few modifications. A well-established INTERFACE framework can

make interface prototyping easier and faster. A consistent look-and-feel is also

important to help the user learn new applications. An INTERFACE layer class can

be built independently from its applications. The domain-specific editor in

InterVrews’ Unidraw [78] is an example.

The relationship between the four layers mentioned above is illustrated in Figure 3.1,

where arrows point in the direction ofthe simulation dataflow. Each node represents a layer

with one or possibly several class hierarchies to fiilfill its functionality. MODELER

constructs a model using information from DATA. The model in MODELER can be

manipulated through INTERFACE. SIMULATOR is run based on the model (in

MODELER) it uses, and the result is conveyed to the user through INTERFACE.

Application users can either direct use or derive their own domain-specific classes from

high-level abstract classes in our framework. A simulation application can be built by using

classes from four layers of the InterSim framework.

The layered architecture of our framework has three major advantages:

First, it promotes the loosely coupled design and development of classes

(hierarchies) or frameworks for different knowledge domains. An accelerator physicist

builds a magnet class hierarchy; a mathematician builds a number class hierarchy. In a large

simulation system, classes of various kinds will likely be designed, developed, and tested

in different environments by different people in their knowledge domains. Each type of

class has its own inheritance hierarchy. The relations between these hierarchies are

described by the layer protocols. So design and implementation of each layer can be

relatively independent.

Second, the layered framework increases code reuse and domain knowledge

encapsulation. A well-encapsulated class can be instantiated to build a more complex

object, while the implementation ofthe original object need not be understood or modified.

Different applications may use similar objects to save coding effort. Newly derived classes

32

I
.
”

‘
.

.
-

can still share the protocols defined at higher levels in their base class. Derived classes can

take advantage of inheritance and dynamic binding to use or extend the existing protocols

as needed.

Third, once interfaces between the layers are clearly specified by protocols,

development can proceed in parallel among class hierarchies. Independent development

also makes software testing and maintenance easier and more efficient.

3.3 DATA Layer

We differentiate data modeling from system modeling (discussed in section 3.4) in

the sense that data modeling emphasizes the syntax of the data, while system modeling

focuses on the semantics of the data in a particular model. In data modeling, for example,

a picture is just a bitmap. Each bit is identical except for its color and position. In system

modeling, a picture is a collection of objects with behaviors. A user can move objects

around and change their shape. Data modeling is concerned with how the data in the

repository will be presented to the model in the MODELER.

A data model is a set of classes that can be used to describe the structure of, and

operations on, a data source in a heterogeneous environment. At the SSC, static data for

each lattice are stored in several database tables such as GEO, OPTICS, and TWISS. Each

table consists of rows and columns. There is an index number (ID#) associated with each

row (also called an entry, or a record) in the table. Each column corresponds to a particular

attribute in that table. Table GEO records all the geometrical information of all the magnets

in the lattice. Each magnet has an entry through the table GEO. Attributes can be referred

to by pointing to other tables, such as OPTICS and TWISS, that contain detailed

information about that magnet such as length, strength, and optical functions. This

information is stored in SyBase, a RDBMS, as well as in the SDS files. Lattice structural

information is stored in Obj ectStore [3 5, 53], an ODBMS, in an object composite hierarchy.

33

A simulation model can be selected and exercised against the structural information stored

in ObjectStore. Both SyBase and ObjectStore are working in a client-server environment.

Data can be shipped between databases, beam position monitors, sensors, and applications

on different platforms of workstations throughout the network in SDS. SDS can pack a

record in a database with its attributes into a C++ structure, assemble the attributes into an

object, and load the object to an SDS file. Thus, a database table will correspond to an array

of persistent structures in the SDS file. Generally speaking, SDS provides a structured file

in a UNIX file system. Any abstract data type can be stored in an SDS file directly.

DataSource

Database File Port

SyBase ObjectStore GnuFile SDS Sensor Bpm

Figure 3.2: DataSource class hierarchy in DATA

DataSource class hierarchy in DATA layer is shown in Figure 3.2.

DataSource is an abstract class in DATA. It represents any kind of data information used

in simulation. Database, File, and Port are three subclasses derived from

DataSource. A set of protocols is declared as virtual functions (when implemented in

C++) in DataSource and can be shared or re-defined in subclasses derived from it. For

example, all DataSource objects have operation Open that Opens that data source with

a name and a mode. Opening different databases, files, or physical ports could be done in

very different ways. But the Open operation is generic, standing for a request from a client

34

to make that data source accessible from the server. So Open is a protocol defined at the

highest level in DATA. All subclasses should support the Open operation. But how to

support it depends on that particular derived class. There are three subclasses derived from

DataSource.

a) Class Database is a base class for database operations. Class Database has

two derived classes: SyBase and Obj ectStore. Database supports a set ofprotocols

such as Open, Load, Close, Transaction, Update, and Retrieve, which is

generic to all of its derived classes. These protocols provide common interfaces and

contracts to clients, regardless of what kind of database is used. Figure 3.3 gives a code

example ofhow protocol such as load can be used with different databases. The operation

ofloading a database to memory (virtual or cache memory) is generic to all databases. The

operation needs a source (indicating how to find the database) and a mode (read/write or

read only). Source and mode are designed as classes to encapsulate various

representations of f i l e, database, and port and their accessing approaches. The two

databases, obj ectstore and sybase, are constructed as an instance of class

ObjectStore and SyBase with different sources. They are loaded into memory by

calling the appropriate Load method with different modes, and the transaction is opened

for accessing. The Load and TransactionOpen operations for Obj ectStore and

SyBas e can be quite different. Even the representation of source, mode, and parameters

needed for the operation can be different. The problem is how an object knows which

method should be called to respond to a generic protocol such as Load. There are three

ways to bind a protocol to a method: First is the run-time type ofan object, which is the key

for dynamic binding. Second is the signature of the parameter list of protocols; different

signatures will result in different methods to be invoked to fulfill the contract toward a

particular protocol. Third is the run-time type of argument passed to the protocol, such as

source or mode. Although the identity of database, file, or port will all be represented by

class Source, the difference among them can be encapsulated in the protocol and

35

36

 S
o
u
r
c
o
*

a
c
u
t
e
-
1

-
n
e
w

S
o
u
r
c
o
t
)
,

s
o
u
r
c
a
z

-
n
e
w

S
o
u
r
c
e
(
“
f
r
o
m
e
n
t
z
/
s
u
r
v
o
y
/
h
a
b
"
)
;

M
o
d
n
*
m
o
d
.

3
n
e
w
M
o
d
-
(
“
n
a
d
/
w
r
i
t
a
”
)
;

a
o
u
r
c
.
1
-
>
S
o
r
v
n
r
(
“
B
a
n
y
a
n
"
)
;

s
o
u
r
c
0
1
-
>
D
i
r
o
c
t
o
r
y
(
“
/
s
s
c
/
l
a
t
t
i
c
o
”
)
;

s
o
u
r
c
0
1
-
>
N
a
m
o
(
“
l
d
b
"
)
;

/
/
C
r
o
a
t
a

a
n
O
b
j
e
c
t
S
t
o
r
e

o
b
j
e
c
t
.

O
b
j
e
c
t
8
t
0
r
0
*

o
b
j
e
c
t
a
t
o
r
a

-
n
e
w

O
b
j
e
c
t
S
t
o
r
o
t
s
o
u
r
c
o
l
)
;

/
/
C
r
o
a
t
o

a
s
y
B
a
s
e

o
b
j
e
c
t
.

S
y
B
a
s
a
*

s
y
b
a
s
e

I
n
e
w

S
y
B
a
s
a
(
s
o
u
r
c
.
2
)
;

d
b
j
o
c
t
a
t
o
r
o
-
>
L
o
a
d
t
m
o
d
o
)
;

l
/
L
o
a
d

a
d
a
t
a
b
a
s
e

o
f

O
b
j
e
c
t
S
t
o
r
e
.

m
o
d
e
-
>
A
c
c
o
s
s
(
“
r
o
a
d
-
o
n
l
y
"
)
;

s
Y
b
a
s
a
-
>
L
o
a
d
t
m
o
d
n
)
;

/
/
L
o
a
d

a
d
a
t
a
b
a
s
e

o
f

S
y
B
a
s
e
.

o
b
j
e
c
t
s
t
o
r
e
-
>
T
r
a
n
s
a
c
t
i
o
n
0
p
c
n
(
)
;

D
i
p
o
l
o
*

d
i
p
o
l
e
Z
3

=
o
b
j
e
c
t
s
t
o
r
o
-
>
L
o
c
a
t
o
(
“
d
i
p
o
l
e
"
,

2
3
)
;

s
y
b
a
s
o
-
>
T
r
a
n
s
a
c
t
i
o
n
Q
p
e
n
(
)
;

T
a
b
l
e
*

t
a

s
y
b
a
s
e
-
>
L
o
c
a
t
o
(
“
E
l
a
m
n
n
t
_
¢
a
b
l
o
"
)
;

S
t
r
e
n
g
t
h
*

3
=
t
-
>
R
o
t
r
i
a
v
n
(
2
3
)
;

F
i
g
u
r
e
3
.
3
:
E
x
a
m
p
l
e
o
f
u
s
i
n
g
d
a
t
a
b
a
s
e
o
p
e
r
a
t
i
o
n
p
r
o
t
o
c
o
l
t
o
L
o
a
d
a
n
d
R
e
t
r
i
e
v
e
d
a
t
a

recovered later through the process of method resolution. In C++, the preceding three

approaches can be implemented using virtual function dynamic binding and skin-body

class structure [18]. ObjectStore’s Meta Object Protocol (MOP) [42, 52] also provides a

mn-time type-checking capability.

b) Class File is a base class for file operations. Class GnuFile and SDS are

derived from F1 1 e. They are object-oriented wrappers of GNU SFile class and SDS C++

class library. GnuFi l e supports simple-type-based sequential files. An integer, or floating

point number, can be directly written to a file. SDS supports structured files. A C-language

structure can be directly dumped to an SDS file. Structure in SDS is self-describing with its

meta data. Data structure definition can be retrieved together with data itself.

c) Class Port is a base class to model physical devices. Port has two subclasses:

Sensor and BPM. Sensor is a class for real-time data acquisition. Data from Sensor is

time-stamped. BPM is a data pool located at certain positions of the accelerator. Data from

BPM is read-only.

Other classes are designed to be embedded in subclasses of DataSource to

provide data abstraction and implementation encapsulation, such as Table , Column in

SyBase, and TimeStamp in Port. These classes are not subclasses of DataSource

but are utility classes used as data members (instance variables) of it.

class SyBase : public DataSource (. . .

char databasaNarnsl32] ;

Table“ To;

Colman“ an;

8tatus* Load(ruodo*);

Class Table is used as a data member in SyBase and SDS. If necessary, a

particular table can be loaded as a Table object To. This object is dynamically created

when a table is loaded and pointed to by a member variable in class SyBase. In SDS, the

Table is an array of C++ structures.

Class Column models an attribute A0 (corresponding to a column in SyBase). A0

37

is able to extract a particular field from an array of structures. Usually only some of the

attributes are involved in a particular simulation at any given time. Loading the entire

database table into memory usually takes lots of time and space. So making an attribute an

object and loading it individually as needed is more efficient for such simulations that only

use few attributes in a large table.

TimeStamp is used for real-time data acquisition. It can be embedded into any

DATA object to support real-time operation.

The DataSource itself will not provide any application-oriented data

manipulation support. The main purpose for creating an obj ect-oriented data model is to

facilitate data manipulations through different data sources: files, RDBMS, ODBMS, or

physical devices. DATA layer provides a set of classes and protocols that can keep its

clients from the details of particular data models and repositories. A standard well-

encapsulated interface between DATA layer and other parts ofthe system will keep the data

implementation details transparent to the user, no matter what kind of data repository or

source is used.

3.4 MODELER Layer

A model is an abstraction (possibly a mathematical abstraction) of a real-world

entity for the purpose of understanding it before building it [74]. It is natural to represent

real world entities in an application domain as objects that respond to a set ofwell-defined

messages. For example, in an accelerator system model, domain objects might be magnets,

particles, and accelerators (a composite object). In our approach, a model is represented as

a set of methods for generating dynamic data for the observables in the real system. New

types of models may be created by specializing existing ones. Complex systems can be

modeled with composite objects (also called submodels) and can be used in other models

like a built-in type in programming language. A model as a whole is itself a composite

38

object that responds to a set ofmessages. The tolerant threshold toward certain attributes is

called constraint, which is defined as a function fc of a set of some attributes A0 for a

particular object, Co = [C(Ao). Behavior of the object is modeled as a set of methods Mb,

which is a function of attributes A0 and constraints Co based on algorithms developed with

domain knowledge. Dynamic behavior describes those aspects ofthe object concerned with

time, sequencing ofoperation, and its configuration. These aspects include events that mark

changes, sequences of events, states that define the context ofevents, and the configuration

of the system where the object is placed. Modeling dynamic behavior can be divided into

a two-step process:

1. Structure modeling (only for composite object). This step models the

configuration structure of the object, the coupling pattern of its components.

2. Behavior modeling. This step requires the user to design a set of methods to

create dynamic behaviors based on an object’s attributes, constraints, and

configuration structure.

The MODELER layer in our framework contains a set of model classes, each of

which emphasizes different aspects or represents different levels of the real-world entities.

Different models of the same real-world entity provide different abstractions interested in

simulations for different purposes. It is the responsibility of MODELER to provide a

structured frame or representation schema that interprets the data from the DATA layer

object in terms of the simulation to be conducted. It is also the responsibility of the

MODELER to provide all necessary methods to demonstrate behaviors to meet particular

simulation requirements. The DATA layer objects drive the MODELER layer objects. The

MODELER layer objects generate behaviors based on DATA layer objects via its

understanding and interpretation.

3.4.1 Structure modeling

Structure modeling models the configuration structure ofa composite object and the

39

coupling scheme of its components. In structure modeling, an accelerator can be

decomposed into beamline, which is a set of magnets placed in a specific order. The

structure of an accelerator can be modeled by using configuration binding techniques. A

configuration is an instantiation of all components in a structured system. And the same

structured system, usually described in a composite hierarchy, can be configured using

different components or coupling schemes, which cause different configurations of the

same system (in terms of its external functionality). Accelerator is the root of this

Member Variables and

Member Function Illustration

Functions

Beamline“ menElmnt; menElmnt point to the current component (smaller beamline or magnet)

Insert(WhichSide); InsertO inserts a beamline before/after (depends on the value of

WhichSide) the current beamline. ReplaceO and Delete() replaces and

deletes the current beamline. Get() moves the brnLnElmnt to another

Delete(Position); beamline.

Get(Position);

virtual Tracking(Particle*); Beamline’s own method, which accepts a particle (or beam that is derived

from a particle) object as its argument, does straightforward, magnet-by-

magnet tracking at the bottom of the configuration hierarchy through the

beamline. The keyword “virtual” means that each beamline or magnet

object must implement such a method. One of the extraordinarily useful

features of the virtual method is that it allows us to realize polymorphism

on all kinds of beamlines and magnets.

Replace(Position, Beamline");

Table 3.1: Beamline class

composite hierarchy. It is decomposed into major beamlines; these major beamlines are

further decomposed into smaller beamlines, which are in turn decomposed all the way to

the magnet level. An instance ofsuch a composite hierarchy is called a lattice configuration

for an accelerator. The class Beamline is derived from Magnet. Beamline holds a

collection of its components, which may be smaller beamlines or magnets. Beamline

class inherits certain behaviors from Magnet class, such as transferring particles. It is also

easy to insert or replace beamline’s component with another beamline or magnet.

Beamline has its own methods to specify its structure. Members and methods of

Beamline are listed in Table 3.1.

40

A new lattice configuration can be created by replacing an existing beamline with

a new beamline or by changing its attributes (such as magnetic strength). In Figure 3.4, a

LEBE

‘-

[arcwm] [ssewm] [arcwm] [ssewminj] [arcwmljssewmextj sewmext'l

Figure 3.4: Two different lattice configurations for LEB

new design for the beamline triwm' creates a new configuration for the Low Energy Booster

(LEB). Configuration binding is deferred at the simulation stage, and the binding actually

occurs at the bottom level of the hierarchy, i. e., at the magnet level. The major advantage

of this hierarchical model is its flexibility for reuse. A beamline’s implementation (triwm')

can vary as long as its functionality in its containing beamline (LEB) remains the same.

Therefore, the structure of a beamline (triwm') is encapsulated from its containing

beamline. A user can pick up the right beamline at some level ofthe hierarchy with the right

granularity ofencapsulations. In terms ofmodeling itself, any system (especially a complex

system) can be decomposed hierarchically. Hierarchical decomposition distributes

complexity into different layers of abstractions. It provides the flexibility to adjust

modeling focus between abstraction and specification. In terms of simulation, the same

model can be used differently by attaching different attributes for various types of

simulations. A submodel can also be derived from an existing model to change the behavior

of the object being modeled. We will elaborate on this composite model later in Chapters

4 and 5.

41

3.4.2 Behavior modeling

Behavior modeling seeks a set of methods governing the object’s control logic and

state transitions based on domain knowledge. At the SSC, three kinds of objects are

modeled: the particle beam, the magnet in the accelerator, and the accelerator itself. The

behavior of a particle (proton at the SSC) depends on its momentum, position, and the

distribution of magnet-field strength around it. Particle momentum and magnet strength

distribution are decided by the accelerator through which a particle is passing.

Particle distribution hierarchy (PDH) is used to record a beam model. The root

class Beam has only one particle, and it is placed at the origin. Particles with some standard

statistical distributions are subclasses of Beam. Beam has five instance variables listed in

Table 3.2. Vector D = [d, d’, 6] is called the principal vector (PV), where d is the

displacement, d’ is the angular deflection, and 6 is the momentum deviation ofthe particle.

A new beam class can be derived by using a beam class library with a graphical user

interface. A beam object can be created in three ways: instantiating from a beam class;

Instance Variable Name Illustration

num number of particles in the beam

Position *pos[num] position of those particles, displacement

Deflection I"dp[num] angular deflection of the particle

Deviation *delta[num] momentum deviation of the particle

distribution form statistical distribution of those particles

 void Generate(seed) generates a particle distribution

Table 3.2: Instance variables in Beam class

copying an existing beam from the beam object library and changing the particle

distribution or amount of the particles (Figure 3.5); or as a result generated by the beam-

tracking simulation.

After a beam is created, it is sent to an acceleration pattern (which is the logical path

from its launch position to its end observing position through accelerators) for simulation.

42

43

\0

oil

1|

b)

)l

F
i
g
u
r
e

3
.
5
:
B
e
a
m

o
b
j
e
c
t
s
c
r
e
a
t
e
d
f
r
o
m
P
a
r
t
i
c
l
e
D
i
s
t
r
i
b
u
t
i
o
n
H
i
e
r
a
r
c
h
y

The momentum will be dynamically bound to the particle when passing though the

corresponding accelerator. The behavior of the magnet depends on its magnet type(t),

magnet strength(s), length(l), tilt(o), linearity(m), optics functions (such as [3 function),

phase advance ((1)), and other attributes.

The principal magnet hierarchy (PMH) is shown in Figure 3.6. A prototype of the

magnet attributes modeling system is shown to the right of Figure 3.6. Magnet instances

are graphically represented by a collection of icons (See Figures 3.8 and 3.14.) A magnet

class is represented by a list of its attributes. Magnets are constructed from their own class

using this interface. After a derived magnet type is created from the hierarchy, it is added

back to the list as a part of the new hierarchy.

The behavior ofthe magnet can be modeled by a 3 by 3 transformation matrix M(t,

s, l, o, m) based on Steffen’s theory [69]. Mis defined as a function of t, s, l, 0, and m for a

particular magnet. D,- and DH are the principal vectors of a particle at position i and i+1,

respectively. And we have DH] =M-Di, i.e.:

di+1 CSD d1

d1+1 = C'SD” d1:

0 01

5i-l-l 8i

A set of methods is defined in class Magnet to support operations on the

transformation matrix. The Magnet class definition is partially given in Table 3.3.

Member Variables and . .
Member Functions Function Illustration

Class category There are four categories: drift, bending magnet, RF cavities andfocus/

defocusing magnets. category is used for dynamic type checking, which is

not supported by C++.

Attributes *myAttributes Attributes is a C++ class with all attributes: basic and composite

virtual Matrix" CreateTMO Create transformation matrix for that magnet

virtual PV“ BehaviorMapO Create a result principal vector (PV) from the previous one

Table 3.3: Magnet class definition

44

45

l
i
k
e
m
e
n
t
A
t
t
r
i
b
u
t
e
s
:

N
a
m
e
:

T
y
p
e
:

s
t
u
n
:

m
a
g
n
e
t
s
t
o
t
r
a
n
f
e
r

m
a
g
n
e
t
s
t
o
b
e
n
d

W
h
fl
n
m
fl
w
h
m
fi
l
c
c
m

n
n
h
t
o
a
e
c
e
l
e
r
a
t
e

a
n
d
d
e
f
o
c
u
s
t
h
e

”
W

t
0
-
0
0
0
0

I
A

”
“
5
0
“

”
I
!
"
i
n
c
e
r
t
a
i
n

t
h
e
b
e
a
m

b
e
a
m
e
n
v
e
l
o
p
e

1

d
i
m

i
n
t
f

d
r
i
f
t

0
.
0
0
0
0

(
s
)

q
f
c

q
u
a
d
r
t
p
o
l
e

0
.
(
I
J
0
0
H

V

)

s
f

s
e
x
t
u
p
o
l
e

0
.
0
3
0
8

S
t
e
p
:

3
2
0
0
0
-
0
2

(
-
8

w
r
i
t
e
t
o
f
i
l
e
»

n
a
m
e
z
v
e
r
i
m
2
.
0

(
b
)

F
i
g
u
r
e
3
.
6
:
P
r
i
n
c
i
p
a
l
M
a
g
n
e
t

c
l
a
s
s
h
i
e
r
a
r
c
h
y

(
a
)
a
n
d

i
t
s
i
n
t
e
r
f
a
c
e
(
b
)

All principal magnet classes are predefined. Each Magnet instance has a pointer

to a Magnet class in the PMH. When a new Magnet class has to be created, a particular

Magnet instance will be selected. By changing the proper attributes, a new class will be

created with that instance as its first instance. The new class inherits all methods from its

parent, such as CreateTM and BehaviorMap.

Behavior modeling through Magnet’s methods is supported by two approaches:

1. A text window is provided for examining and overriding the previous behavior

model (such as method BehaviorMap) by using C++ code. Behavior binding is

implemented by taking advantage of dynamic binding of the C++ virtual function.

New C++ code has to be recompiled and linked into the system; then the whole

process needs to be restarted.

2. Several models (such as linear and nonlinear method) can be predefined based on

knowledge and domain specific rules. A virtual function dynamically binds the rule

number (set by the user through interface) with a pointer to a member function to

construct behavior. Interactive modeling basically becomes rule-picking and

function-binding. Rules can also be added off-line using C++.

Linear Sequential

Transformation Model

/\

Non-linear Sequential Linear Direct

Transformation Model Transformation Model

Figure 3.7: A beam tracking model class hierarchy in MODELER

A beam tracking model class hierarchy is shown in Figure 3 .7. A Linear Sequential

Transformation (LST) Model uses a composite hierarchy of the SSC. All nodes in the

46

hierarchy are modeled as objects ofa class called Actor ([90]. The Actor model is discussed

in detail in chapter 4) with internal data representation and a set of methods for creating

behaviors. The result of interactions between objects is created using mathematical

transformation on an object’s internal data representations. To simplify the problem, such

a transformation could be considered as linear (one step) and sequential (no concurrency).

For example, an accelerator can be decomposed as several beamlines. Beamline can finally

be decomposed as elements such as magnets and RF cavities. A particle launched at a

certain place passing through the accelerator can be considered as an LST. Whenever the

particle passes through an element, its position, deviation, and momentum may change; it

therefore changes its behavior, such as wiping out from its trajectory. A car on the assembly

line is also an LST. After each assembly stage (element), more parts will be assembled into

the car, therefore changing the car’s internal structure and state. The structure of the LST

could be a tree, list, queue, or any type ofgeneric class (also called a class template in C++).

A Non-linear Sequential Transformation (NST) Model and a Linear Direct Transformation

(LDT) Model can be derived from the LST Model by overriding the transfer behavior of

the model. In NST, transformation contains several steps based on the type of the element.

Such a transformation is no longer context-free. It may rely on the previous tracking result

and has impact on the next step. In LDT, several transformations can be linearly combined

into one. Transformation is independent of the object to be transferred.

3.5 Constructing Dynamic Simulation with

SIMULATOR

Dynamic simulation provides an interactive environment between the user and the

simulator. It allows the user to select an appropriate model for the MODELER, to pinpoint

objects (component in SSC lattice) to modify their attributes and structure, and to re-run the

simulation to see the impact upon the result system. Most configuration adjustments caused

47

by individual modification will be propagated automatically by the simulator (by calling

the proper method ofthe model).

SIMULATOR is a layer that exercises models to actually generate dynamic

behaviors to meet simulation requirements. Simulator (an instance of SIMULATOR) is the

manager of the entire simulation. It decides when and which method should be invoked in

terms of the model used during the simulation process. Objects are controlled under

SIMULATOR to interact with each other and create dynamic behavior. The relationship

between SIMULATOR and MODELER is quite similar to the relationship between

algorithm and data structure. But MODELER and SIMULATOR are loosely coupled.

Certain models in the MODELER will create certain behaviors for a specific simulation

required by SIMULATOR. MODELER provides a base for creating behaviors.

The SSC simulation environment OZ [74, 89] deals with three types of models:

beam model, magnet model, and lattice configuration model. The behavior of each object

observed in the interactive simulation process is used to adjust the model for a better design.

BumpView [90] simulates the beam bending effect caused by adjusters at certain positions.

It provides a simulated beamline aperture for adjusting particle trajectory. A bigger

trajectory will have a larger particle throughput, therefore increase the chance of collision

in the experiment. A display panel always prompts attributes ofthe magnet engaged with a

pointing device. A particle object can be constructed at run time using a graphical user

interface object in INTERFACE layer and track through the beamline with the requested

bending force set by the adjusters.

Figure 3.8 gives an example of the BumpView simulation interface. The trajectory

ofthe LEB is displayed. The bottom part ofthe window is an icon representation ofmagnet

objects in the LEB lattice. Above it are the positions of the detectors and adjusters along

the LEB. All objects in the icon representation are active (sensible and associated with

actions). The middle of the window (shaded part) displays the dynamic aperture of the

LEB, which basically depends on the attributes ofthe magnet at each point. The middle part

48

49

s
u
m
p
V
i
e
w

O
p
e
r
a
t
i
o
n
W
h
a
m
:
l
u
E
l
e
m

B
o
o
s
t
e
r

a
b
l
o
w
u
p

3
s
i
m
u
l
a
t
e
d
k
i
c
k
e
r
s
e
t
t
i
n
g
s

[3
,,
f
u
n
c
t
i
o
n

t
h
r
e
e
b
u
m
p
s
i
m
u
l
a
t
i
o
n

M
j
m
t
u
'
s
-
>

F
i
g
u
r
e

3
.
8
:
3
-
b
u
m
p
s
i
m
u
l
a
t
i
o
n
u
s
i
n
g
B
u
m
p
V
i
e
w

s
i
m
u
l
a
t
o
r

m

U
N
D
O
m

La
tt

ic
e
S
e
l
e
c
t
o
r

m M
M

l
a
m
-
m

m
m

is expanded at the upper right comer. The dashed vertical bar is the BPM reading set by the

user as the expected bending effect. BumpView simulation uses only magnet model

because particle tracking deals solely with leaf-level components. But when a user wants

to modify attributes of a magnet or the structure ofthe beamline, the beamline model kicks

in and controls the propagation of the modification. When a BPM is engaged for value

setting, the Detector model (for BPM) is bound to provide special behavior. Actually

Detector model is derived from the magnet model for the BPM setting. So a model in

MODELER can be directly used or inherited by a model derived for a specific simulation.

Such extensibility is essential for model reuse.

BumpView simulation will provide the following:

1. The setting value of the three nearest adjusters, which will generate the BPM

reading set by the user. Three white points (actually three green bars) stand for the

settings of three kickers around that BPM. The actual values are given as deltaX_',

deltaX', deltaX+' in the “Adjuster settings” box at the bottom of the control panel.

2. To make things simpler, we assume that the adjusting will affect only the three

BPM readings nearest to the BPM selected. All other BPMs should have zero

readings. The simulation verifies the model is correct. In the figure, there are only

three solid bars in the middle. The upper part ofthe window is the B-tron oscillation

along the LEB.

Figures 3.9 and 3.10 present more examples of dynamic simulations using OZ.

Figure 3.9a is the or function of LEB generated by simulator Twiss, which is capable of

calculating various types of optics functions of an accelerator. These optics functions are

important measurements for the design. Figures 3 .9b and 3 .9c are dynamic particle tracking

by turns through the acceleration orbit or by every magnet along the longitudinal trajectory

using Track, a simulator that provides a single-particle tracking profile in different

accelerators. Figure 3% is dynamic tracking of a beam created from beam class hierarchy

by using simulator Emit, a multi-particle tracking profiler. Emit can also be used to aid

50

the research of relations between beam particle distribution and its particle survivability

during the tracking process. All those simulators are objects from the SIMULATOR layer.

A particle could be lost during the acceleration. It is important to know where it is

lost in order to make the correction by using the BumpView simulator. Figure 3.10 provides

such an example. Users can change the dynamic aperture and particle emit position in the

process of running the tracking simulation to see under which circumstances the particle

will be wiped out. Figure 3.10a shows a particle passing through LEB and wiping out. By

zooming in to the picture, the user can find the exact wiping out position. Figure 3.10b

gives another example of simulating a beam passing through the LEB.

3.6 INTERFACE Layer

This section describes the functionality of data visualization in OZ and related

implementation issues in details. Data visualization allows a user to directly manipulate an

object and to access information through a graphical user interface for modeling and

simulation. Data visualization makes modeling and simulation efficient, informative, and

much easier to handle [47]. In OZ, the whole SSC complex can be visualized through a

graphical window with zooming and scrolling capability. Various physics functions can be

dynamically plotted through different windows, and configuration of the beamline can be

edited using a graphical user interface that supports direct object manipulation.

After a particular lattice has been loaded for simulation, the position and size of

each object can be extracted from a DataSource object. The plotting window (an object

ofclass ViewPlot) scales these data based on current plotting size and displays the object

on the screen. Class Vi sualData is derived from DataSource to interface with

ViewPlot by redefining (not re-declaring) the protocols dealing with domain-specific

operations such as scaling and color-coding. When resize occurs, ViewPlot will rescale

the position and size of all objects and replot them. The whole plot can be zoomed in. When

51

52

r
.
)

\ J

a
.
d
y
n
a
m
i
c
o
p
t
i
c
s
f
u
n
c
t
i
o
n

b
.
d
y
n
a
m
i
c

p
a
r
t
i
c
e
t
r
a
c
k
i
n
g

c
.
d
y
n
a
m
i
c

p
a
r
t
i
c
l
e
t
r
a
c
k
i
n
g

c
r
e
a
t
i
o
n
o
f
t
h
e
M
E
B

H
e
r
e

i
n
L
E
B

f
o
r
1
0
0
t
u
r
n
s
a
n
d

f
o
r
o
n
e
t
u
r
n
a
n
d
r
e
c
o
r
d
i
n
g

i
s
a

f
u
n
c
t
i
o
n

r
e
c
o
r
d
i
n
g

i
t
s
d
a
n
d

a
'
a
fi
e
r

i
t
s
d
a
n
d
d
'
a
f
t
e
r
6
3
0
1
!
m
a
g
n
e
t
.

e
a
c
h

t
u
r
n
.

F
i
g
u
r
e

3
.
9
:
D
y
n
a
m
i
c
s
i
m
u
l
a
t
i
o
n

of
.
d
y
n
a
m
i
c
l
a
u
n
c
h
a
b
e
a
m

f
o
r

1
0
t
u
m
s
t
o
s
e
e
h
o
w
m
a
n
y

p
a
r
t
i
c
l
e
s
a
r
e

s
t
i
l
l
i
n
t
h
e

s
u
r
v
i
v
a
l
a
p
e
r
t
u
r
e
.
B
e
a
m

i
s
i
n

s
o
l
i
d
d
o
t
.
S
u
r
v
i
v
a
l

p
a
r
t
i
c
l
e

i
s

i
s
s
m
a
l
l

c
i
r
c
l
e
.

53

"
W
m
m
m

4
h

-
m
.

I
—
"
—
_
-
.
'
_

/
'

‘
"

-
-

.
I

"
,
,
H

i
o

-
d
—
‘
m
-
I
-

'
%

v
e

.
'
.
.
r
d

K
.
‘
_

'
g

1

/
K
.

e
'

s
-

f
.

‘~
‘

s
h
o
w
n
n
g

\
.

I'
V
i

O
Z
C
o
n
t
r
o
l
W
l
n
d
o
w

-
‘

.
.

/
7

fl.

p
a
r
t
i
c
l
e
w
i
p
e
s

o
u
t
.

3...-.de

w
h
e
r
e
t
h
e

‘
I .i

l

(a

n'l

e - '-

U

\

T

M...‘

e

a

a'

I '- .

t _ '

I

s

O ‘I 0‘]

h

J'

I

l

‘2

if

I

‘s

\\

If

/

t

5......

. 'au
.'

2.

gift-H. :

A.

‘I

'_I t

N: 0

AC.

3

a.
(0

t-

o :-

3

I"

s

n

2

1
c

i

I

o

as..-

-..'O. I

.

:“""

e

DIV

. .6"

I.

". .

.p n

O

O

'...s. .- . .

1' -
x,

J

i'
-:
-.
:.
'.
:.

-.'
I'

.
.'

5'-
15

53
2.
".

.
‘
s

.
:
'

r
'
”
4

I
.
.
.
3
'
:

"
'
o
'
"
.

.

L
1
5
"
:

I
.
.
.
‘
l
.
-
’
.
.
-
'
.
U
d

'
‘
s
'
o
-
‘
A
’
:
5
”
“
.

.‘t‘

a
.
T
r
a
c
k
i
n
g
a
p
a
r
t
i
c
l
e
f
o
r
c
e
r
t
a
i
n
t
u
r
n
s

t
o
c
h
e
c
k

i
t
s
s
u
r
v
i
v
a
b
i
l
i
t
y
u
n
d
e
r
t
h
e

g

c
u
r
r
e
n
t

l
a
t
t
i
c
e
c
o
n
fi
g
u
r
a
t
i
o
n
.

b
.
L
a
u
n
c
h
a
b
e
a
m
w
i
t
h
c
e
r
t
a
i
n
d
i
s
t
r
i
b
u
t
i
o
n
.
C
h
e
c
k

i
t
s
d
i
s
t
r
i
b
u
t
i
o
n
a
f
t
e
r
s
e
v
e
r
a
l
t
u
r
n
s
t
o
r
e
s
e
a
r
c
h
t
h
e

r
e
l
a
t
i
o
n
s
h
i
p
b
e
t
w
e
e
n

l
a
t
t
i
c
e
c
o
n
fi
g
u
r
a
t
i
o
n
a
n
d
m
a
g
n
e
t

a
t
t
r
i
b
u
t
e
s
.

F
i
g
u
r
e
3
.
1
0
:
B
e
a
m

s
u
r
v
i
v
a
b
i
l
i
t
y
r
e
s
e
a
r
c
h
u
s
i
n
g
O
Z

0)

a plot is zoomed in, the plot boundaries are pushed onto the stack. Zooming boundaries

become new boundaries for the new plot. Vi ewPlot re-scales the new plot based on the

new boundaries. The undo operation is equivalent to a zoom out. The previous boundaries

will be popped out from the stack and become the current boundary. Incremental drawing

is also supported by ViewPlot for accumulatively displaying simulation results without

refreshing the whole picture.

Memory is dynamically allocated for all plotting data. In order to keep all

information available for redraw, memory is deleted only when new data are loaded in from

a DataSource object. By taking advantage of the dynamic binding of C++ virtual

firnctions, all methods for graphic manipulation are virtual. A zooming operation on an

optics function plotting will cause a one-dimensional zoom-in. The same operation on a

geometrical representation of an accelerator will cause a two-dimensional zoom-in. If

several plots have to be zoomed in simultaneously with the same scaling factor, a virtual

function call of zoom operation on all these plots will work polymorphically.

Lattice configuration editing is supported by direct graphical object manipulation.

Class Node represents a beamline graphically and expands its components into a tree

structure. Figure 3.11 is a graphical user interface for the lattice configuration browser

(Observer) that provides an interactive modeling environment to the MODELER. The

composite hierarchy shown in the figure can be cut and pasted using an existing component

in the tree. A new component (graphically represented by Node object) can also be created

on the fly by the user. Configuration change in a subtree will be informed to its parent

component. And the parent component will update the corresponding structural model in

the database.

INTERFACE layer provides classes needed to construct GUI for simulation in OZ.

INTERFACE classes are developed using the Graphical Library for the Integrated

Scientific Tool Kit (GLISTK) [37] and InterVrews [44, 45] class libraries. Two important .

issues should be addressed in building a graphic interface:

54

55

.
a

s
i
x
-
:
-
$
2
.

t
o
o
l
s
.
.

S
e
l
e
c
t
:

E
x
p
a
n
d
0

l
k
i
x
p
a
n
d
u

H
o
v
e
.

H
a
s
n
t
t
‘
g
z

B
a
r
n
e
t
t
/
1
D
r
0
0

1
1
:
E
d
i
t -

\
d
i
s
p
l
a
y
a
r
e
a

t
o
o
l
e
n
g
a
g
e
d

r
o
o
t
c
o
r
r
e
s
p
o
n
d
e
n
t
t
o

t
h
e
d
a
t
a
b
a
s
e
r
o
o
t
i
n

O
b
j
e
c
t
S
t
o
r
e

.
.
.
.
.
.
.
.
-
.

m

W
W
W

 L
c
d
m

b
e
a
m
l
i
n
e
o
b
j
e
c
t
e
n
g
a
g
g
d

b
y
c
u
r
r
e
n
t
t
o
o
l

F
i
g
u
r
e
3
.
1
1
:
L
a
t
t
i
c
e
c
o
n
t
a
i
n
m
e
n
t
h
i
e
r
a
r
c
h
y
b
r
o
w
s
e
r

I
d
e
n
t
i
t
i
e
s
’

:
b
p
-

I
D
I
:

0

s
:

5
8
9
.
4
1
8
5
2
0
\

3§
3§
§E

1
:
:
0
.
0
1
0
0
0
0

3
:

0
.
0
0
0
0
0
0

7
'

n
t
i
l
l
“
!

s
t
a
t
u
t
e
s
:

renorcs

\.

C
a
s
h
-
a
t
o
m
:

-’
'

N
o

c
o
n
s
t
r
a
i
n
t
s
!

R
e
l
e
t
i
o
n
s
h
i

:
"

N
o

r
e
l
a
t
t
o
r
e
h
t
p
l

1

p
a
n
n
e
r

v
i
s
i
b
l
e
a
r
e
a
"
—
3
;

‘
'

s
h
o
w
n

i
n

l
e
f
t

*1

w
r
n
d
o
w

e
n
t
i
r
e
d
r
a
w
a
r
e
a

u
n
d
e
r
n
e
a
t
h

resmorg mag

mu“
louver 3190

1. The layout of the interface and the connection among control elements, such as

buttons and menus;

2. The interactive graphics (view).

ControlLayout is a base class to lay out control elements (such as button and menu)

and define their behaviors. It has two subclasses: Layout and ControlElement.

Layout is an invisible object primarily used for arranging ControlElements on the

screen. ControlElement is a base class for all control elements, such as button, menu,

and scroll bar etc.

Layout is derived from class Gorgan in GLISTK, which is, in turn, derived from

InterVrews’ Scene (Figure 3.12). ControlElement is derived from class

LabelGlistk, and class Glistk in GLISTK, which is, in turn, derived from

InterVrews’ Interactor. Control element has a label, size, position, state, and

associated control action. A label can be text or can be attached to a bitmap. A callback

function defined in SIMULATOR object can be attached as a control action of a

ControlElement (such as a button or menu item) to respond to a button clicking or

menu selecting. In OZ, three subclasses are derived from ControlLayout. They are

OzControl for the layout of the control panel to switch among different lattices,

OzPlotWin for the layout of various ViewPlots and the connection of their controls,

and OzModeler for the layout of the magnet attributes editor.

Member Functions Function Description

CreateAndInsertO Create control elements and insert them in a proper form using alignment variables.

ControlLayout records these alignments in a table and possible reposition and resize.

RaiseAndLowerO Element popup control, such as popup menu and popup message, dialogue, etc.

LockAndUnlockO Provides availability control to control elements.

CommuHitO Provides communication among objects, including between ControlLayouts and

between its elements.

StopInputO Some actions need a start event to enter its mode and wait for an end event to exit its

mode. Such action should be registered with ControlLayout. Then the end event can

be directed to its target by StopInputO.
Table 3.4: Protocols in class ControlLayout

56

57

m m

M

I
O
Z
C
o
n
t
m
l
l
M
l
o
t
w
m
j

[
O
z
M
o
d
e
l
e
r

j

O
z
F
u
n
c

O
z
'
l
‘
w
i
s
s

I
—
O
—
Z
Q
‘
E
I

O
z
'
n
v
i
s
s
x
y

[
0
2
1
»
m
e

L
O
z
r
w
i
s
s
y
p
]

[
O
z
'
l
‘
w
i
s
s
x
p
y
p

F
i
g
u
r
e
3
.
1
2
:
C
o
n
t
r
o
l
L
a
y
o
u
t
a
n
d
V
i
e
w
p
l
o
t
c
l
a
s
s
h
i
e
r
a
r
c
h
y

Usually an instance of ControlLayout only instantiates its control elements

(instances ofControlElement) through delegation. It only keeps a pointer to its control

element. Control elements are created not inside the constructor but by another virtual

method called CreateAndInsertO. Different applications may override

CreateAndInsertO to create and insert their own control elements. Delegation often

creates a “cheap” object, which only keeps what it needs and is more dynamic and efficient

for code reuse. Table 3.4 summarizes a few protocols provided by ControlLayout.

ViewPlot is a class to plot dynamic structured graphics [79] controlled by

ControlLayout. ViewPlot is a GLISTK which is derived from InterVrews’

Interactor (Figure 3.12). It provides a dynamic graphic view of objects from

MODELER and SIMULATOR. Subclasses can be derived from ViewPlot such as bar

chart, two-dimensional multi-function plotter, object browser, and accelerator view.

In OZ, OzRef is a subclass of Vi ewPlot. OzRef keeps a list of objects drawn

inside the window and encapsulates the functionality of zooming, scrolling, resizing, and

refreshing. It has three subclasses: OzView, OzFunc, and Osziss. They provide the

graphical representation of objects to be drawn. OzView is used to display a geometrical

view of the SSC complex with magnets. 02 Func is used to plot various optical functions

with sample points. Oszi s s is used for dynamic particle tracking with magnet trajectory

and particle as the drawing objects.

Most dynamic graphics require incremental drawing. The result of several

simulations can be superimposed or plotted in different areas of the screen one-by-one at

different times. But what will happen ifthe window is closed and opened later? The current

image on the screen should be “cached” so that when the window is opened later, the

previous image can be restored as before. It is not realistic to repeat the entire simulation to

recreate these images. A feasible solution is to create an incremental drawing queue (I DO)

inside the ViewPlot to record incremental drawing data dynamically. Two methods are

used for drawing (Figure 3.13). Refresh handles initial drawing such as legend,

58

measurement, symbolic representation, and marks. We call these static graphics, and they

should be always on the screen. To draw something dynamic on the screen, call Draw and

push data into the I DO. Draw will pick up the data from the top of the I DO and draw them

on the screen. If the window is closed and then opened again, Refresh will be called.

Re fresh will in turn call Draw to cumulatively draw whatever is in the I DO. Figure 3.11

illustrates how the incremental drawing queue works.

ViewPlot: :Rofrcsh () { ViewPlot: :CroataDynamicData () {

MapRavData'l‘oDz-awablobata () ; CmatoSimlationR-sults () ;

DrawStaticData () ; 812.0!IDQ++;

if (SisoOfIDQW) Rogistcr'roIDQU ;

Draw () ; Push (IDQ , Curr-awrawingbata) ;

1 Draw (I t

I

Figure 3.13: Methods for incremental drawing

Because thousands ofmagnets need to be drawn on the screen, making each magnet

a structured graphic object in InterVrews is not realistic. On the other hand, if we make the

whole accelerator an object, then it is difficult to pinpoint an individual magnet object. A

feasible solution is to make the whole accelerator a composite object. At the same time, a

set ofmethods must be designed to do the mapping among objects on the screen, their ID#

in ViewPlot, and their data in a DataSource object. Figure 3.14 shows such a

mapping.

In ViewPlot, the screen position of each object gets registered when it is drawn.

A mouse-down event catches an object if it occurs within the sensitive boundary of that

object on the screen. ViewPlot keeps a list of all types of mouse-sensitive objects, such

as magnet, adjuster, and detector. Sensitivity can also be filtered out. An object caught by

the mouse is called a focusing object Of. ViewPlot will do a binary search within the

current plotting boundaries to find ID#(Of). Then all information of that Of can be found

59

A part of screen

attributes of the selected object

104.

0

Index

NW

object ID# in ViewPlot

Figure 3.14: Object mapping

through MODELER. Some protocols ofViewPlot are listed in Table 3.5.

Name Function

myModel Pointer to MODELER object

realBoundary The real dimension of visual target. For example, optics function of HEB

visualBoundary Current dimension of the visual target. This is used by zooming and scrolling

StretchAndFitO Stretch the view and fit it to the size of the window.

CatchAndZoomO Handle zooming base on size of the rubber box created by a mouse down.

Scroll(currentPosition) Handle scrolling from current position to a new position.

RedoO, Undo() Handle unzooming

EventHandler(event) For event, there is an event handler.

Refresh() Refresh() handles initial drawings. It keeps a pointer to an object called

IncrernentalDrawingQueue. Refresh will call Draw if there is anything in the

queue. Dynamic drawing is handled by Draw().

me0 Handle add on (or called incremental) drawing.

ID# Find(position) Return object ID# based on its current registered position.

ShowValue(ID#) Show attributes of the object with ID# (focusing object Of).

Table 3.5: Protocols in class ViewPlot

As a good example, let’s consider drawing a beamline on the screen. A list of

graphic objects is created for a pictorial representation of the magnet. The corresponding

magnet object is either referenced by, or embedded in, the graphic object. These graphic

60

objects are inserted into the IDQ in the drawing process. Each graphic object knows how

to draw itself by calling its member function Draw(). Drawing is recursive in a composite

ViewPlot. IDQ is a parameterized collection that provides general behaviors at the

collection level and different behaviors at the component level. So difl‘erent magnets can

be composed into a collection using a set of protocols such as insert, delete, and iterate,

while their individual behavior can be much different, such as the implementation of

DrawO.

The communication between ControlElement and ControlLayout is via a

class called Communistk. State is a variable with a valid C++ type in

ControlElement. State can be attached to an object called Communistk.

Communistk focuses on the value of the state and has a list of ControlLayout to

notify when this value, or the focus, changes. Communistk is an abstraction of a state

variable. It encapsulates the notification and update mechanism of a state variable. Every

Communistk has a CommuList, a list of ControlLayout, which is informed any

time the value of state on which Communistk is focused is changed by

Conununistk::SetValue. Every object that attaches to a Communistk is

automatically added to that Communistk’s CommuList. When the value on which a

Communi stk is focused is changed by Communistk: :SetValue, the Communistk

calls its HitCommuList method, which informs every ControlLayout in its

CommuList by calling their CommuHit method. Such notification can also be put on

hold by calling Communi st k: : SetValueNoHit. A message cannot only be sent back

and forth between ControlEl ement and ControlLayout, but also can be sent out to

another application using the GLISH event sequencer [57]. For the Communi s t k to notify

the outside world, a message must have a name, which will become a GLISH event name.

An event name must be registered though GorganMaster, which is a GLISTK class

derived from InterVrews’ World [44, 45]. Any change to the Communistk’s focus will

trigger the GorganMaster to build an event frame and message body and give it to a

61

GLISH executive. An incoming event will be checked against registered Communistk and

the indicated change, if any, will be presented to the Communi s t k to accept or reject and

to notify its attached control element.

There are two ways to issue an action: one is to derive a specific GLISTK, for

example, Qui tButton, with its own Per formAction method; the other is to associate

its Communistk with a particular ID and add its ControlLayout to its CommuList.

ControlLayout’s CommuHitO method will be called when the Communistk value

is changed automatically. CommuHi t() can control the action based on CommuID.

3.7 Summary

In this chapter, we have described the design and implementation of object-oriented

simulation environments OZ and BumpView. The issues of building a reusable simulation

framework InterSim have been discussed. Our framework decomposes a simulation system

into four types of classes (layers). Each layer handles data management, user interface,

modeling, and simulation, respectively. Protocols are pre-defined among layers. These

protocols are abstract and generic to achieve maximum reusability. Each layer in InterSim

is relatively independent and focused on its own problem domain. Services can be

requested by classes in one layer to classes of another layer based on protocols. Such a

loosely coupled, responsibility-driven design approach not only promotes productivity but

also simplifies the development and maintenance process.

62

CHAPTER 4

OBJECT-ORIENTED MODELING FOR

DYNAMIC SIMULATION

4.1 Introduction

This chapter will focus on the object-oriented modeling techniques for dynamic

simulation. Object-oriented means that the decomposition of a system is based on the

classes of objects which the simulation manipulate, rather than on the firnctions which the

simulation performs. The target of object-oriented modeling is the object-oriented

decomposition ofuser’s needs into executable language constructs [3]. The object-oriented

decomposition process can be sub-divided into analysis, design, and implementation

phases. The important characteristic of obj ect-oriented development is that these three

phases adopt similar models, an object model. The analysis phase consists of mapping

between the real world entities and the entities in the analysis model: object. The mapping

is also called domain analysis. It concentrates on two specific types of relations:

aggregation and classification. Dynamic behavior of the system is realized by object

interaction after the relations between objects have been determined. The design phase

63

consists of mapping the analysis model to a design environment. Aggregation defines the

configuration of the system. Classification structures manifest themselves as class

inheritance hierarchies. The implementation phase consists ofmapping between the design

model and the language model.

In dynamic simulation, a system is viewed as a collection of interacting objects

bound with certain relationships and constraints. Each object models an entity or event in

an application domain. Objects and classes allow the modeling ofapplication concepts and

their relationships in a natural way. They support not only structural definition, but also the

modeling of dynamic behavior. Applying object-oriented concepts to the modeling

technique has advantages over the traditional approach. It promises an improvement in

modeling capabilities, since the modeling concepts of classes and class hierarchies bridge

the semantic gap between the problem domain in the real world and the solution domain in

applications.

Our model is based on the concept of class inheritance and relationship. In our

model, class Actor is used as a base class to model any object in a system. An actor (an

instance of Actor) has identities to identify itself, attributes to represent itself, and

constraints to adjust itself. An Actor can be structurally decomposed into its children. An

instance of such a decomposition is called a configuration. In Actor, identity, attribute, and

configuration are bound with constraints. In dynamic simulation, the configuration of an

Actor can be modified not only between each simulation run but also at run time. It is

similar to an interactive programming debugger. The user can set break point, initiate the

run, stop in the middle ofthe run, check or change some variables and resume the run. But

a debugger does not have any knowledge of the logic inside the program being debugged.

It just passively takes over the new value and continues to run even if this value is not

logical to its semantics. Our model provides more dynamic capability. A new configuration

introduced by the simulation at run time will be judged by our dynamic model based on

constraints and relationships.

64

In our model, relation (also called association in [63]) between two objects is

modeled by the class Relationship. Relationship contains information that is not

subordinate to a single object, but depends on two or more objects. For example, the

connectivity between two Actors is a sort of relationship. Relationship defines participants

and the nature of the connection. Relationship also has the knowledge about how to build

and manage the connection. Relationship is important for dynamic simulation. It provides

a way to record interconnectivities between objects and a platform to adjust them based on

constraints.

The organization of the chapter is as follows:

- Section 4.2 describes the basic modeling concept based on the Actor mode]. Some

modeling techniques are introduced including virtual constructor and skin-body

design pattern for dynamic simulation.

- Section 4.3 presents an example from the SSC simulation using our dynamic

modeling techniques.

- Section 4.4 discuses implementation issues including how data are stored in and

accessed from the database (navigational, query, transaction management), and

how dynamic simulation is run using the Actor model with detailed examples.

0 This chapter is summarized in section 4.5.

4.2 Object-Oriented Modeling for Dynamic Simulation

4.2.1 Functional requirements

Simulation is the process of designing a mathematical-logical model of a real

system and experimenting with this model on a computer [58]. Simulation modeling

assumes that a system can be described in those terms acceptable to a computing system.

In obj ect-oriented simulation, a system can be characterized by a set of interacting objects

with states. A simulation involves observing the dynamic behavior of a model by moving

65

from state to state in accordance with well-defined operating rules designed into the model.

Dynamic simulation is a type of simulation characterized by continuous change, activity,

or progress of object interaction and system configuration. It not only allows the user to

obtain continuous feedback from the system through automated analysis and adjustment

procedures during the simulation, but also provides direct configuration manipulation to

objects composing the system. It supports both dynamic behavior binding and

configuration binding. In dynamic simulation, the type (class) of an object can be

dynamically changed; therefore, its run time behavior can be dynamically bound based on

its run time type. The definition and semantics of a class also can be evolved during the

process of simulation without any reinterpretation of the data. The configuration of an

object (in terms of its object-oriented decomposition) can be altered without losing its

logical consistency in the dynamic model. A model for dynamic simulation should be able

to:

I. guarantee that the configuration evolution is logically consistent to the rest ofthe

system, compatible with the previous version;

2. adjust and manage the new configuration to fit in the system it belongs;

Our modeling technique supports the concepts ofdecomposition (i.e., how a system

is hierarchically broken down into components) and coupling (i.e., how these components

may be interconnected to reconstitute the original system). A configuration change

includes: modifying the object's composition structure, changing the obj ect's representation

(identity, attribute), and semantics (method definition). Operations that could change an

object’s configuration include inserting or deleting components from the configuration,

setting values to the identity or attribute ofan object, changing definitions ofa method, and

adding or removing members from class definition (schema). By attaching constraints to

those operations, we are able to build a change propagation hierarchy that is a reverse-

ordered composite hierarchy. Such propagation can be either bottom-up triggered by a

particular dynamic reconfiguration, or top-down explicitly called by the simulation

66

program when the semantics or schema are affected.

4.2.2 Basic modeling concept for dynamic simulation

A model is a mathematical and logical abstraction that is used by a computer to

simulate the real world. Simulation vs. modeling is parallel to analysis vs. design.

Simulation is done in a problem domain, and it deals with real objects such as a magnet,

particle, and engine. Modeling is done in the solution domain. It deals with a class, object,

relationship, message, etc. Behavior is driven by attributes and identities. By assigning

attributes and identities to each object, the user can do dynamic simulation, but that is not

all. Configuration manipulation can also create dynamic behaviors. A good example is the

simulation ofa power supply. The failure ofa power supply to a particular set ofbeamlines

in SSC will actually reconfigure the structure of it and therefore change the behavior ofthe

beam and the accelerator.

This section provides definitions ofthe modeling concepts in a dynamic simulation

environment. These definitions are presented to establish a basis for further discussion.

Actor and relationship are described as tuples to model different aspects of the object. On

the one hand, Actor is a base class for further derivation in the application domain (SSC is

an example). On the other hand, Actor supports hierarchical structural decomposition that

is a backbone for dynamic configuration manipulation. The following concepts are used as

basic constructs in our model to support those functional requirements stated in section

4.2.1.

- Object is a structured persistent data with methods that have the knowledge to

operate on the data.

An object may have a transient extension to a particular application. Such an

extension depends on the interpretation of the data by different applications. For example,

a digital switch is an object. It uses structured data for representation and methods for

behavior description. Such an abstraction is persistent and can be retrieved from a design

67

database for different applications. A graphical switch is its transient extension to a

particular application. It defines its look-and-feel that is not essential to its abstraction, and

may vary from different applications.

- Actor is a base class in our model that is defined as a 6-tuple:

Actor ::= (Identity, Attribute, Constraint, Parent, Children, Method}

Actor represents the basic component in our model. We use it to differentiate the

general concept of object (above). Actor is also used as a skin (envelope) class [18, 22] to

support dynamic typing; run time type checking; and encapsulate type casting and message

dispatching. The skin/body pattern is a technique using a pair of classes that act as one: an

outer (“skin” class) that is the visible part, and the inner (“body” class) where

implementation details are encapsulated. The skin is said to forward requests made of it to

the body inside it through a technique called delegation. The skin/body class idiom is used

when the skin class and the body class share the same behaviors but when the body class

behaviors specialize or augment the behaviors ofthe skin class. The two classes are related

in much the same way that a base class relates to a derived class in our Actor model, but

with more run-time flexibility than found from inheritance alone. The important design

guideline of our object—oriented dynamic model is that each class should know how to take

care of its own business. “Much of the power of object-oriented programming is in the

polymorphism that comes from combining inheritance and virtual functions” [18].

Inheritance and virtual functions used together enable a user to communicate with an object

exclusively through the interface defined by its base class. Messages are dispatched to the

appropriate derived class member function at run time. Now the question is: where is the

object made, and what information was at the disposal of the creator to indicate which

derived class to use? How are data instantiated as objects and in which class do they

belong? Our model provides Actor as a skin class, a third party abstraction as an agent to

do business with a derived body class (elements in the simulation) on behalf of the client

creating the object. The Actor class now appears to be able to build different kinds of

68

objects at mn time based on identities determined by context provided to the constructor in

the dynamic simulation. This mechanism gives classes the run time flexibility that virtual

functions give objects, a capability that has come to be known as virtual constructors.

Identity is used as a property for an instance of the Actor to distinguish it from all

other instances. For example, a social security number is an identity of a particular person

(an instance of class People). Identity must be unique among all instances of the class and

meaningful to serve assigned purposes. Attribute is a metric for, a characteristic of, or a

piece of information about an instance of the Actor. Different from identity, attributes do

not belong to a particular instance of the Actor. It is treated as a resource shared among

Actors. Different instances can share the same attributes. Attributes are dynamically

created as needed and can be changed or deleted at run time. Attribute uses an internal

reference counter to track its subscriber, manages its own memory and destroys itselfwhen

no longer needed. For example, the magnetic field strength is an attribute of a magnet

object. It can be shared because magnets of the same type will have the same strength.

However a particular magnet can change its strength during the simulation process, thereby

changing its original attribute. The previous attribute strength can no longer be shared. A

new attribute strength has to be dynamically created in the simulation process and bound

with that particular magnet object. Such an attribute model directly supports dynamic

simulation by allowing attaching, detaching, and picking attributes for an object at run time.

Constraint of an Actor specifies a restriction or criteria to adjust inconsistency and

exception on an Actor to a given course of action or inaction. A constraint can be

considered as a sort of attribute except that it is used to impose restriction, and adjust the

relationship between objects. For example, the aperture of a magnet is a constraint that

decides whether a particle can pass through it. Constraint either raises exceptions in terms

of restriction (particle will wipe out) or adjusts the magnet aperture by using some

predefined criteria. The concept of constraint is critical to dynamic simulation that allows

configuration change. Such a change will not only alter the structure ofthe system, but also

69

affect the relationship among objects that compose the system. The adjustment of

relationships and the resolution of inconsistency in a dynamic simulation is driven by

constraints. Another good example is from [80] about the symmetric house. The house in

our model is the Actor. A house can be decomposed into windows, doors, walls, and so on.

in certain layouts that form a configuration. Suppose we want to enlarge the right-hand side

window. Under the space constraint, we have to also change the configuration of the wall

to make extra room for the enlarged window. The symmetric constraint may also want us

to enlarge the left-hand side window for consistency.

Parent and Children are used to establish a l-n relationship among Actors to

support their composite hierarchies. The parent-child relationship directly supports

hierarchical abstraction in dynamic simulation. A reconfiguration at a certain level will

only affect all the levels below, but not those levels above. High-level components

encapsulate their low-level implementations that will greatly simplify the system

configuration at the firnctional level. Parent-child relationship also ensures data consistency

and proper communication between the parent and the children using constraints, when

events happen on either of them. For example, when a child is deleted from its parent, the

child object may be informed to disconnect its relation with the parent, and vice versa. By

creating objects at run time using virtual constructor, a new aggregation of objects can be

instantiated and inserted as a child at run time. Therefore, the configuration of a system is

no longer a static concept. Method of an Actor stores the knowledge about the Actor and

generates its behaviors. These methods are virtual and are always bound dynamically based

on run time type. Such a mechanism is called polymorphism, which is useful in dynamic

simulation to apply the same message to different configurations. Method can be external

or internal. The external (public) method, also called operation, exists in the interface to an

Actor and advertises a capability. The internal (protected or private) method defines the

actual mechanism (algorithm) by which an operation is accomplished.

- Relationship is an object defined as a 4-tuple:

7O

Relationship ::= {Participants, Relation, Constraint, Method}

Relationship is a physical or conceptual connection between Actors. The

relationship concept was first inspired by the concept of association in [63]. We further

developed the idea based on constraint-driven approach.

Participants are Actors involved in the relationship. Such a relationship can be 1-1,

Ln, m-l, n-m. For example, the distance between two objects can be defined as a 1-1

relationship. It is neither a property of either object, nor a simple pointer to each other. It

has value and the knowledge to interpret the value. When an object changes its position, it

informs the distance relationship, which recalculates the distance as its new value. Relation

provides a quantitative measurement to represent the relationship. Relationship is

implemented as a template (generic class), so relation could be represented as a floating

number, a structure, or even a class. For example, a float number may be used as a

representation for the distance relationship. Constraint of a relationship provides criteria to

create an event or trigger when relationships change. For example, the distance between

two particles will decide the dominating force acting on them; different implementations of

a beamline should have the same length. Method of a relationship stores the knowledge

about the relationship. How to calculate the distance between two actors is an example. The

major difference between our relationship model and traditional relationship models is that

our relationship is defined for each object rather than on its type (class). Relationships can

be dynamically changed through each particular object participating in the simulation.

- An object-orientedmodel is defined as a set of Actors and a set of Relationships.

4.2.3 Modeling technique

Our model provides a virtual constructor for all derived classes from Actor (the skin

class). Actor in our model is both a base class and a skin class. External methods (public)

are defined as virtual in class Actor to provide run time dynamic binding. Figure 4.1 is a

simple example. A department has four types of persons: Engineer (E), Scientist (Sc),

71

body skinzActor

Secretary

Engineer

[Engineer[[Scientist] [Secretary] [Dept Head]

 [Dept. Head

Figure 4.1: An example of virtual constructor in class Actor

Secretary (8) and Dept. Head (H). They are all derived from class Actor. They all have their

own member functions called Work() that is defined also in Actor as a virtual function. By

applying our modeling technique, everyone in the department is an instance of an Actor.

Actor provides a virtual constructor that takes any person in the department and turns it into

a particular type (H,E, Sc, S) based on some tag value such as employee identification

number (an identity). But such a representation is internal to class Actor. From the user’s

point ofview, everyone is just an Actor. When a message Work is sent to an Actor, it passes

the message to its internal representation, the body class, which could be an Engineer.

Because method Work() is defined in Actor as virtual, it will be dynamically bound to

Engineer: :Work() at run time. Actor is not only able to construct an object at run time, but

also provides encapsulated run time behavior. The skin/body pattern also provides

exception handling for the dynamic simulation. An encapsulated representation will allow

run time type checking. By making a derived class called Default from Actor, Actor will

turn someone like Technician to a Default type and raise exceptions. An exception handler

in the constraint may pick this exception and do something like turning a Technician to an

Engineer with less experience.

A configuration change in our model includes: modifying the object’s composition

72

structure, changing the object’s representation (identity, attribute), and semantics (method

definition). Figure 4.2. shows an example of an engine configuration. Engine’ changes

[Pistontfl [Piston1] [Piston2] Piston3] PistonO] [Piston1] [Piston2] [Piston3] [Piston4[Pistonq

Figure 4.2: Dynamic configuration binding

Engine’s configuration by adding two Pistons to the Engine. Engine::Insert(Piston4) will

first check its bound constraint to see if such an insertion is acceptable. If accepted,

relationship Ignition Sequence will changed to include Piston 4. Finally, this adjustment is

propagated to the up level, Engine, to adjust engine size (due to extra pistons), acceleration

power and fuel consumption. Then a new engine, Engine', is created and can be used by the

same Car. Usually, such a change will evolve the system to a new design. The engine will

always be bound to the newest configuration. The user can keep old configurations by

versioning them. But the application has to point out what version is currently engaged with

the simulation to provide information for run time configuration binding. Another good

example is to tune up an engine. The machinist will first start the engine and then tune each

part of the engine one by one. He can change parts or adjust settings. The engine is always

bound to its newest version. From the logical point ofview, different versions are difl’erent

objects; they may have different behaviors. But physically they are instances from the same

class; they are interchangeable.

Different versions of Engines are stored in a design library built on an object-

73

oriented database management system, ObjectStore [3 5]. In order to take advantage of

ObjectStore’s version facilities, the user can derive his Engine class from both Actor and

ObjectStore’s Configuration class to gain versioning support. Our experience shows that

there is too much overhead at run time by making everything versionable through

ObjectStore’s Configuration. We leave the decision to the application developers to control

the version granularity. Chapter 5 discusses this further by introducing the concept of

modeling object as a coherent versioning unit in version control.

4.3 Object-Oriented Modeling for Dynamic Simulation

Applied at the SSC

4.3.1 A composite object model for SSC simulation

SSC is a complex system comprised of several particle accelerators (a partly

zoomed picture is shown in Figure 2.1). The entire system consists of 12 accelerators and

beam transfer lines, each ofwhich can be called a lattice. A lattice can be decomposed into

a beamline hierarchy. At the bottom of the hierarchy, magnets, adjusters, detectors, and

beam pipes are used to control, transfer, or accelerate the particle beam. These are called

elements, and they are physically installed in the machine. Elements arranged in a pattern

form a beamline. Small beamlines can be used to form a larger beamline. The whole lattice

is composed of beamlines in the hierarchy. To some extent, element and lattice is a

specialization of beamline. The behavior of the particle such as its aperture and deviation

depends on the magnetic strength of the magnet it is passing through and the accelerating

pattern —— the structure ofthe lattice. Dynamic simulations at the SSC are both discrete and

continuous type simulations. For example, beam bump simulation is a continuous

simulation. It takes a BPM reading from somewhere of the lattice and predicts its

surrounding adjuster (kicker) settings by solving 3 differential equations [71]. Events are

74

initiated from that BPM and handled by methods locally in the BPM or globally in the

lattice the BPM belongs to. Events are treated as messages passing from one element to

another through the lattice. The state transition of each element and lattice is continuous.

But in terms ofparticle tracking, some attributes can only be changed to certain values. The

internal state of the attribute is discrete. Lattice simulation starts with an initial lattice

design from the physicist in the design database. The design database records the design

based on our Actor mode]. When the beam luminosity is continuously increased, the

accelerator will start to lose beam at a certain point. A stronger binding or focusing force

may be needed to keep those lost beams inside the accelerator tunnel. Two approaches are

used to correct these lost beams. One is to fine-tune the magnetic strength setting at a

particular point to force the beams inside their trajectories. But sometimes such a strength

adjustment will be either limited by technical availability or have an uneven effect on

particles. So another approach is to change the configuration of related beamlines.

Configuration changes basically replace, insert or delete components from a composition,

and therefore change the behavior of the composition. Top-down step-by-step approach is

used in the lattice structure design. Simulation is first run on some small beamlines to

generate a good acceleration pattern by dynamically reconfiguring the beamline. These

small beamlines are delivered as an abstraction to the next upper level (their parent). They

are combined to form some large beamlines for further simulation in the next phase. Such

a dynamic simulation is run, level by level, up and down within the lattice hierarchy to

accomplish a better design. The next stage is to fine-tune the attribute setting of individual

magnets (i.e., beam adjusters). Attributes can be assigned to a magnet for a particular

simulation run. Since changing attributes of a particular magnet may affect local or global

attributes of the beamline, constraint should be imposed, and relationships between

beamlines should be updated. Change of configuration will change the sequence of

iteration in particle tracking and semantics of message passing between magnets. Change

of attributes will affect the parameter of these differential equations governing the

75

behaviors of particles and accelerators. These changes are propagated by relationships

defined between magnets and constraints defined on magnets. Relationships will be

updated to change the sequence (timing) of the messaging (event). Constraints will adjust

the relationship to make change consistent through the system.

Generally speaking, a beamline can be mathematically defined as a linear

composition function of other beamlines: beamline = F,mea,(beamline ,, beamline}...,

beamline"), n e integer:

For example, consider a beamline or, which is composed ofbeamline B followed by

three instances of beamline 8; thus we can have or = B+3"‘a. Note that B+3*e is not equal

to 3*e+B. Such a function F”new defines a configuration of or and can be represented as a

hierarchical graph as shown in Figure 4.3.

.................................

Figure 4.3: Beamline representation

We have three instances of e in or. They are exactly the same object except for their

different positions. We extract their differences out and call them identities, a', e ", e'" in our

Actor model. The remaining sharable parts are called attributes, 5. Such a model provides

the flexibility to replace or modify the attributes of objects. or is an abstraction of B+3*e,

and B+3"‘e is an implementation of or. The dynamic behavior of or depends on the

implementation of its configuration and the behaviors of its components. In lattice

beamline hierarchy, each node represents an object or entity with identities, attributes and

behaviors. Each node has relationships with other nodes. Our model supports this

76

hierarchical abstraction, maintains relationships, and facilitates dynamic simulation for the

SSC.

As an example, let’s look at the hierarchical composition structure ofthe LEB in the

SSC shown in a graphical browser (Figure 4.4). LEB consists of one beamline (child):

machwm (LEB = machwm). machwm consists of four children: ml], trit'nj, triext, triwm

(machwm = m]! + triinj + triext + triwm). And triwm consists ofarcwm and ssewm (triwm

= arcwm + ssewm). arcwm consists of three instances of as] and one instance of asZm

(arcwm = 3*asI + asZm). Such a decomposition procedure can be continued until we reach

the leaf level of the hierarchy (level 0), where every object is decomposed into an element.

This decomposition process creates a hierarchy where every node is implemented as an

instance of Actor in our model.

An Actor has children, a parameterized array (collection) of Actors. An Actor also

has a parent (that is also an Actor). In Figure 4.4, celeh is a child ofas], and arcwm is the

parent ofas] . The parent-child relationship is one type of relationships (1 -to-m) supported

in our model. The participants can be the parent plus all of its children. The constraints are

defined as a set of rules to keep parent and its children logically consistent. For example, if

celw2h changes its length, as] will also adjust its length accordingly. On the right side of

the browser in Figure 4.4, identities, attributes, constraints and relationships are presented

with selected Actor (bpm). Because oflimited space, the entire expanded hierarchy ofLEB

cannot be shown above. But if each as] is expanded with Display Tool engaged, three

instances of as] will be displayed that have different identities such as ID#, longitudinal

coordinate s, and position x, y, 2, etc., and the same attributes such as length and strength,

etc Ifthe hierarchy is expanded under these three instances ofas] as was partially done to

the first one, three identical subtrees will appear. These subtrees under as] internally refer

to the same configuration. So in terms of identity, the composite hierarchy is a tree. But in

terms of attribute and configuration, it is a directed acyclic graph.

By using our hierarchical model in SSC lattice simulation, an object (such as as!)

77

78

\
'
0

5
‘
.

\
N
‘
.

\

w
s
t
i
fi
s
s
x
i
‘
i
’
k
fi
g
h

\
\

F
i
l
e
E
d
i
t

\
d
i
s
p
l
a
y
a
m

“
"
9
8
“

r
o
o
t
e
o
r
m
p
o
o
d
a
r
t
t
n

t
h
e
d
a
t
n
b
u
e
n
o
t
l
n

O
b
j
e
c
t
S
t
o
r
e
_
_
.

I
d
e
n
t
t
t
l
e
c
'

N
a
m
e
:

b
p
-

I
D
I
I
:

0

s
:
5
8
9
.
4
1
%
2
0

x
:

0
.
0
0
0
0
0
0

:4
:
0
.
0
0
0
0
0
0

7
°
0
m
m

a
t
t
r
i
b
u
t
e
s
:

L
d
n
l
:

h
p

5
m
m
:

I
s
p
o
:

s
l
o
t

L
e
m
u
r
:

0
.
1
9
0
0
0
0

S
t
r
e
n

t
h
:

0
.
0
0
0
0
0
0

m
'

M
T
i
1
+
a
n
n
m
n
m

c
h
a
e
J
q
u
m
]

F
i
g
u
r
e
4
.
4
:
C
o
n
fi
g
u
r
a
t
i
o
n
H
i
e
r
a
r
c
h
y
o
f
L
a
t
t
i
c
e
L
E
B
,
M
E
B

a
n
d
H
E
B

 C
o
m
t
r
a
l
n
t
s
;

N
o
c
o
n
s
t
r
a
i
n
t
s
!

l
a
t
l
o
n
s
h
i

'

N
o
r
e
l
a
t
i
o
n
s
h
i
p
!

a
.
.
.
»

Se
le
ct
:
e
w
e
W
u

Ho
ve
.
H
a
g
a
n
:

Co
nn
ec
tc

/
l
1
:
]
0
0

mm

in the composite hierarchy can be practically redefined in terms of its configuration without

modifying the simulation program.

4.3.2 Class inheritance hierarchy in SSC simulation

In this section, we will examine all classes in the SSC simulation. Figure 4.5 is a

Actor Configuration

1 T 1 §

inhalant Beam lattice

l

/\
I 1 C I l

Mamet murmur-mm

Muir Kicker

888'! am mm Defoeushg

Figure 4.5: Class inheritance hierarchy in Super Collider

class inheritance hierarchy of simulation components of the SSC represented in OMT1

notation. Root Actor is a base class that provides all the concepts we discussed in the

previous sections. These concepts deliver the support to the dynamic simulation which can

be reached through inheritance. Non-leaf level classes are used for further derivation and

functional sharing. Leaf level classes are used for object instantiation. Lattice and

Beamline are composite objects built from all types of Instruments, which are the

l. The notations we used here and the rest ofthis paper for modeling object classes and their relationships are defined in James

Rumbaugh's OBJECT-ORJENTEDMODELING AND DESIGN, 1991 by Prentice-Hall, Inc. ISBN 0-13-629841-9

79

elements in the accelerator lattice. Lattice, Beamline, and all types of

Instruments are derived from Actor . Class Lattice is also derived from class

Configuration, which implements the concept of versioning in ObjectStore.

Instrument can be firrther classified into Monitor (horizontal or vertical) which

detects the particle’s position, or Kicker which adjusts the particle’s position, or into

different kinds of Magnet which affects the particle’s behavior. Multiple inheritance is

used to functionally combine horizontal and vertical monitors into a monitor. The same

case applies to kickers. Magnet can be fiirther subclassed to different types based on their

functionality. A Dipole basically bends the particle in the horizontal or vertical direction.

So the path of a particle passing through a dipole looks like a curve. But the Dipo le itself

may be manufactured in the shape of a curve (SBend) or rectangle (RBend). SBend

usually is put in the circular portion of the accelerator, while RBend is put in the linear

portion. Quardrupo l e is used to focus or de-focus a bunch of particles (beam) along the

trajectory of the accelerator lattice. Sextupole and Octupole are high-order magnets

used to obtain fine-grade control over the particle movement in multiple directions. Unlike

other magnets, a Correction magnet is not installed permanently. It is used on an as

needed basis when a small correction is required in certain locations of the accelerator. It

can be plugged in and pulled out at any time.

4.3.3 Attribute, constraint, and relationship in SSC simulation

The classes Attribute and Constraints are derived from Resource class

(Figure 4.6), which provides reference counting and change-event dispatching mechanism

using the observer pattem [28]. Resource also provides type identification for its

derived classes. Resource holds a reference counter for resource management. As an

example, an accelerator uses multiple copies ofbending magnets. Instead of duplicating its

attributes BendAt t r i (a resource) in each copy, each instance ofthe bending magnet only

holds a reference to the attributes. Only one copy is made the first time, and subsequent

80

ROSOII‘CO

refCounter

referenceList

referenceo

dereferenceo

virtual notify(ChangeType)

virtual updateo

A

l 1

Attribute Constrdnts —<>J Constraint

ConstraintList virtual checko

checko

insert(const Constraint&)

remove(const Constraint&)

r 1 T 1

W[[ReferenceAttr CollectionAttr naivemir

BendAttn chkfittrl MW

Figure 4.6: Attribute and Constraint

requests of creation will get the same copy and the requesting magnet will be added to the

resource’s reference list. A resource will be deleted automatically when its reference

counter decreases to zero. Constraints is a collection of Constraint.

Constraints has a member function Check () which basically goes through each

Constraint object in the collection and calls their member function Check () one by

one. Class Constraints is a slot for user defined Constraint. Constraint is an

abstract class that encapsulates the representation of a constraint. It requires a virtual

function Check () to be defined in the user derived classes.

81

Constraint serves two functions in our simulation:

1. Guard function: informs abnormal situation, raises exceptions to a constrained

object. In such a case, Cons tra int has no responsibility to serve the constrained

object.

2. Recover or rectify function: make things correct for the constrained object. In

such a case, Constraint usually has to be afriend of the constrained object in

order to operate on its internal representation.

Constraint is pluggable. A Constraint is enabled when a user plugs it into

the Constraints. Constraint can be deactivated if user removes it from

Constraints.

Virtual function Check () of a Constraint provides a run time binding

between Constraint and its Check fiinction. Constraints does not know each

Constraint. But by using polymorphism, it is able to invoke its Constraint at run

time without type checking.

The advantage of this constraint model is that the users can create their own

constraint, design their own algorithm and insert it to the Constraints. The working

protocol between Constraints and Constraint is independent from the definition

that may vary from different users.

Currently, Constraint is implemented by a structure that contains a threshold

value and a pointer to the callback function. Exceptions are handled by its handler which is

defined in Constraint.

Relationship is an object that describes the physical and conceptual

connection between objects and passes messages among them when an event happens. For

example, in order to get the T-vector of a Detector, we need to calculate the so-called

influence function [71] between each pair of adjusters and detectors in the lattice. The

influence fimction is defined as follows:

82

COS (ll/2 " ¢da)

InferenceFunction (a, d) = 25in 01/2) BaBd

Where, a and d stand for the position of adjuster and detector, respectively; it stands for the

tune for the entire lattice, a function of the phase advance of every Actor in the lattice,

defined as a member variable in class Lattice; (bad is the summation of phase advance from

a to d; and Ba and [3d are the B-tron oscillations at a and d. We define a relationship called

influence in Table 4.1.

Participants: adjuster: a, detector at.

Relation: floating number.

Constraints: 1. B—oscillation at a or d changes its 1. identity and attribute.

value. 2. B-oscillation in front of them

2. Phase advance between a and d l. B-oscillation at a or d

changes. 2. Transformation matrix at a or d

3. u changes. 1. Phase advance at end point

. cos /2 —
Method. 2:]; (ii/ii“)m

Table 4.1: Relationship: influence

Constraints in relationship define a set of rules invoked when events happen on

related data (called dependents). The granularity ofthese dependents is critical. The object

that actually updates the relationship, called executor, should be carefully chosen. In the

SSC lattice model, we just choose class Lattice to fulfill such a task for simplicity.

A modification to a basic attribute can affect many things such as composite

attributes and relationships to other objects. Who should coordinate such an updating

propagation? Let 3(a) be a set of objects whose model (including its identity, attributes,

constraints, and relationships) could be affected by changing a, the model of one particular

object. Then the propagating executor e is the Actor with a minimum number of

83

descendants that cover 3(a). We called e a minimum cover of the propagation. So the

callback function should point to the minimum cover of current modification.

In some circumstances, the timing of update is also important. If a relationship is

not finalized (in the process of changing), propagation should be held until it reaches a

stable stage. In our model, propagation can be queued and fired at the end of the data

transaction between simulation and design database. This improves the efficiency of

managing data consistencies in the database. Users have more control over when and where

the propagation should start and the transaction should be committed to the design

database.

4.4 Implementation Issues in SSC Simulation Using

Actor Model

4.4.1 Design database access

Design database is used to store different configurations of the system for dynamic

simulation. Database is abstracted in our framework (described in Chapter 3) as a database

object. In this particular case we use ObjectStore, an object-oriented database management

system as the design database, but generally speaking, our model encapsulates the

underlying implementation ofa particular database by providing a set ofgeneric operations

for database access.

In an object—oriented database, object access is achieved in two ways: (1) the

database provides a set of global objects that are always accessible to the applications.

These global objects are called database roots, through which all objects in the database can

be reached; (2) the public interfaces of these global objects provide access to objects that

are referred to by the global objects. Such an access is “navigational” [26]. In our model,

only the top level Actor in the composite hierarchy (such as the SSC that stands for the

84

entire SSC complex) is made global (root). The rest ofthe SSC complex can be reached by

navigation through the root. When a design database is opened by an application and a

transaction is in progress, the root is automatically mapped into the database. This is quite

similar to the situation when a procedure is entered. The variables in the parameter list are

mapped to its calling value from the caller of the procedure. The variable in our case is

defined not in the application but in the model.

The transaction concept in database management allows:

1. global objects to be realized in the database;

2. an application session to proceed with making data changes, i.e., altering objects

that it had reached, but without immediately affecting the data stored in the

database.

Dynamic simulation usually creates a new configuration, with new data, as results.

In a transaction, such a new configuration and result data are only stored at local disk. The

user has the control of whether or when to commit these changes to the database. A

database transaction can be viewed as a sequence ofalterations to objects and configuration

manipulation. All changes to database objects are made permanently; i.e., the changes are

reflected by the new state of the database (if simulation results in a good design), or none

of the changes are made (if bad changes are made to the design). In the first case, a

transaction completes successfully by “committing” all changes to the database. In the

second case, the transaction “aborts,” and none of the changes take effect. The database is

still in the same state as if the transactions were never started.

4.4.2 Dynamic simulation at the SSC

One ofthe most important issues in dynamic simulation is how to deal with system

reconfiguration and integrate system behavior from its components to help synthesize the

model. The composite hierarchy we built is subject to change in the process of dynamic

simulation. Such changes include: modifying the composition structure of the system by

85

adding, deleting, or replacing its components (Actors); changing attributes and behaviors

ofthe components; breaking the old relationship and establishing a new relationship among

Actors in the system while its configuration changes. Objects (Actors) in the model may be

related by relationships so that when one object is changed others must be amended to

retain consistency.

Our model provides the simplicity to reconfigure a complex system. There are only

a few database roots available to the simulation application. The entire system is well

encapsulated as a functional abstraction. Information accessing is navigational, which not

only is a structured way to unveil the abstraction but also provides a conceptual boundary

for the design. Recursive query can be issued at any level to locate a particular Actor. So

any Actors in the hierarchy can be reached from the root without digging down to the

hierarchy.

Any configuration change to a composite object can be localized to its descendants

down to the hierarchy. The change is not visible from above. Figure 4.4 shows machwm =

ml] + triinj + triext + triwm, and triwm has a child arcwm and ssewm. Consider the case

that arcwm is reconfigured as arcwm' by adding another as] to the beginning ofthe arcwm.

A particle object is passed to the new Ieb to be transferred. From the level of leb, the new

configuration of arcwm' will not be visible until it binds to its configuration in the

simulation. The Actor Ieb will take over the particle and invoke virtual member fiinction

transfer (). Member function transfer () will in turn invoke member function

trans fer () of its children one by one. Such a process is propagated until it reaches a

level where trans fer () is bound to a particular operation (arcwm’ may have different

implementation ofmethod trans fer ()). There are two important observations from the

above:

1. In a dynamic simulation, the component is treated as an abstraction and the

configuration is bound at run time. The advantage of abstraction is that its

implementations are interchangeable. As long as it is an Actor, it can transfer a

86

particle no matter what kind of Actor (in terms of its composition) it is. Run time

configuration binding provides a strong support for dynamic simulation. It supports

simulation that runs on an abstraction, such as Ieb at a higher level, without knowing

its configuration at the low-level.

2. Member function trans fer () can be defined at a higher level as well as at a

lower level while a configuration is bound later. For example, when the

trans fer () function ofarcwm is called, the transfer operation can be realized at

the composite object (arcwm) level without an implementation at a lower

component level. This allows a functional implementation at a higher level while a

low level configuration is still undecided.

Using our model, a lattice can be dynamically configured without stopping the

simulation process. An Actor can be created at run time by using operator new (db) , and

can be assembled interactively through a graphical user interface called Observer (Figure

4.4). Then it can be inserted into the proper place through navigation or local database

query. The local and global adjustment will be automatically taken over by the higher-level

Actors (for example, the Latt i ce object). It will conduct an up/down adjustment through

the hierarchy and notify actors that may be affected by the reconfiguration.

Our model provides both static and dynamic behavior binding. Behavior depends

on the algorithm in the methods and data (attributes) ofthe object (Actor). Static binding is

data-driven that binds only the data at run time with a generic algorithm. Dynamic binding

is type-driven that binds both data and algorithm at run time.

In our model, static binding is implemented by a transformation matrix as the state

of an object. The transformation matrix is a composite attribute tied to our attribute model

and monitored by the constraints. When a certain attribute changes, its corresponding

constraint is checked, and the transformation matrix is recomputed. Such adjustments occur

before the simulation. The actual particle-tracking simulation is implemented by

transformation matrix multiplication [69]. Static binding provides greater run time

87

efficiency. The data-driven approach is also feasible to change the behavior of the Actor

without modifying the operation code (method).

Dynamic binding uses polymorphism (a virtual function call), and the method is

bound at execution time based on run time type. Transfer () is defined as a virtual

function (shown below) that describes the transfer behavior ofthe magnet. New classes are

derived from class Actor to represent the difference between magnets. Each derived class

class Actor

l

Particles virtual Transfer (ParticleS) { } ;//a virtual function doing nothing

I

class Detector : public Actor

I

Particles virtual TransfertParticlefi)

I

flinclude “detector_pehavior_cescription"

)
overrides the virtual function Trans fer () . The algorithm can be either physically

contained in the method or included from a description file elsewhere. The former has to

be in C++ programming language; the latter, which is more flexible, can be a higher-level

behavior description language or even a lattice file created by some simulation package.

But the latter needs a translator to read the file and turn it into a C++ program.

The trade-offofdynamic binding is the run-time efficiency. It is usually slower than

static binding. But it gives more flexibility to model dynamic behaviors.

Finally, we give two examples to demonstrate a single particle tracking simulation

using our Actor model. We assume that the lattice database is already stored in ObjectStore

with name “ssc_lattice” and root ssc. The program (shown in Figure 4.7) illustrates the

tracking procedure. It opens the database, enters a transaction, and locates the root 3 sc in

the database. It first locates a lattice l eb in the 5 SC using a query. Then it creates a particle

88

89

d
a
t
a
b
a
s
e

*
s
s
c
L
a
t
t
i
c
e
D
B
I

d
a
t
a
b
a
s
e
:
:
o
p
e
n
(
“
s
s
c
_
l
a
t
t
i
c
e
”
)
;

d
o
_
t
r
a
n
s
a
c
t
i
o
n
(
)

I

p
e
r
s
i
s
t
e
n
t
<
s
s
c
L
a
t
t
i
c
e
D
B
>
A
c
t
o
r
*

s
s
c
;

/
/
l
o
c
a
t
e
d
a
t
a
b
a
s
e
r
o
o
t
s
s
c

L
a
t
t
i
c
e
*
l
e
b
-
s
s
c
-
>
c
h
i
l
d
r
e
n
[
s
t
r
c
n
p
(
N
a
r
n
e
(
)

,
“
l
e
b
”
)
—

0
]
;

/
/
q
u
e
r
y
p
i
c
k
l
e
b

/
/
c
r
e
a
t
e

a
p
a
r
t
i
c
l
e
:

P
a
r
t
i
c
l
e

*
m
y
P
a
r
t
i
c
l
e

I
-
n
e
w

P
a
r
t
i
c
l
e
(
P
O
S
I
T
I
O
N
,

D
I
V
I
A
'
I
'
I
O
N
,

O
F
F
S
E
T
)

;

f
o
r
e
a
c
h

(
A
c
t
o
r

*
a
c
t
o
r
,

a
e
r
o
L
e
v
e
l
A
c
t
o
r
)

”
i
t
e
r
a
t
i
n
g
o
v
e
r
c
o
l
l
e
c
t
i
o
n
a
r
r
a
y

a
c
t
o
r
-
>
T
r
a
n
s
f
e
r
(
n
y
P
a
r
t
i
c
l
e
)

;
/
/
p
o
l
y
m
o
r
p
h
i
s
m
t
h
r
o
u
g
h
d
y
n
a
m
i
c
b
i
n
d
i
n
g

m
y
P
a
r
t
i
c
l
e
-
>
P
r
i
n
t
!
o
u
r
s
e
l
f

(
)

;
/
/
p
r
i
n
t
t
h
e
t
r
a
c
k
i
n
g
r
e
s
u
l
t

}
/
/
e
n
d

o
f

t
r
a
n
s
a
c
t
i
o
n

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

W

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

m
'

p
a
r
t
i
c
l
e
o
b
j
e
c
t

F
i
g
u
r
e
4
.
7

:
S
i
n
g
l
e
p
a
r
t
i
c
l
e
-
t
r
a
c
k
i
n
g
s
i
m
u
l
a
t
i
o
n

object (myParticle) with initial position, deviation, and offset. The foreach loop

iterates sequentially through all elements (zero level Actors) in the leb and sends the

message “Transfer” one after another with the particle object just created. The last

statement prints the new position, deviation, and offset of the particle after one-tum of

tracking.

Figure 4.7 also shows a picture of a particle object passing through elements in the

lattice with different attributes (shown with different filling pattern) as a tracking

simulation. The simulation results will identify where the largest particle deviation occurs,

and where the particle exits the magnet if it is lost in the middle ofthe tracking simulation.

These results are useful as a feedback to adjust the design. The above program is so simple

that we only need to deal with the lattice leb. In the program, an Actor can be an element

(in this case) or a beamline, but the internal structure is irrelevant or transparent to the

simulation. Simulation sends a “Transfer” message to each Actor in the lattice one by one

to track the particle through the lattice. The tracking simulation process will not change

when some beamlines or magnets in the leb are reconfigured, since such a change is

encapsulated and bound dynamically at run time. This is the strength of the dynamic

simulation.

Now we try to change the configuration of lattice Ieb and redo the tracking

simulation on a part (beamline triinj) ofthe leb (Figure 4.8). First, a query is issued to leb’s

zero-level descendants to find those whose name are “hb” and attribute type are “sbend.”

The colons on both sides of the boolean equation mean to find all the Actors that meet the

query condition. The query result is a collection of Actors. Then their magnetic strength is

increased by 0.0011. Another query is issued to find leb’s zero-level descendants whose

name is “fpm” and attribute type is “drift”. This time only the first one that meets the

condition (without colons) is chosen. The drift is then removed from lattice leb to create a

new Ieb configuration. When those sbend’s strength are changed, their constraint on

attribute strength is checked. A strength change will affect other attributes such as B

90

91

 o
s
_
L
i
s
t
<
A
c
t
o
r
*
>

*
h
b

-
l
e
b
-
>
D
e
s
c
e
n
d
e
n
t
s
(
0
)

[
:
s
t
r
c
n
p
(
N
u
l
l
fl
)

,
“
1
1
1
3
"
)

E
8

s
t
r
c
l
n
p
(
a
t
t
r
i
b
u
t
e
s
-
>
2
1
3
“
)
.
(
)

,
“
s
b
e
n

"
)

:
]

;
/
/
q
u
e
r
y
o
n
a
s
u
b
c
o
l
l
e
c
t
i
o
n
o
f
O
—
l
e
v
e
l
a
c
t
o
r
s

f
o
r
e
a
c
h

(
A
c
t
o
r

*
a
c
t
o
r
,

h
b
)

/
/
c
h
a
n
g
e
s
t
r
e
n
g
t
h
o
f
a
g
r
o
u
p
o
f
a
c
t
o
r
s

a
c
t
o
r
-
>
a
t
t
r
i
b
u
t
e
s
-
>
s
t
r
e
n
g
t
h
(
a
c
t
o
r
-
>
a
t
t
r
i
b
u
t
e
s
-
>
s
t
r
e
n
g
t
h

(
)

+
0

.
0
0
1
1
)

;

A
c
t
o
r

*
f
p
n
I

l
e
b
-
>
D
e
s
c
e
n
d
e
n
t
s
(
0
)
[
s
t
r
a
n
p
m
m
n

,
“
f
p
m
”
)

G
S

s
t
r
c
r
n
p
(
a
t
t
r
i
b
u
t
e
s
-
>
T
y
p
e
(
)

.
“
d
r
i
f
t
”
)

]
;

/
/
c
h
a
n
g
e

c
o
n
f
i
g
u
r
a
t
i
o
n
,

w
h
i
c
h

w
i
l
l

i
n
v
o
k
e

c
o
n
s
t
r
a
i
n
t

c
h
e
c
k
i
n
g
,

r
e
p
l
a
c
e
-

m
e
n
t

s
h
o
u
l
d
h
a
v
e

t
h
e

s
a
m
e

l
e
n
g
t
h
.

f
p
m
-
>
p
a
r
e
n
t
-
>
c
h
i
l
d
r
e
n

.
r
e
m
o
v
e
(
r
p
m
)

;
”
c
h
a
n
g
e
c
o
n
fi
g
u
r
a
t
i
o
n

t
w
o
a
c
t
o
r
s
a
r
e
a
fl
’
e
c
t
e
d

w
h
e
n
“
s
b
e
n
d
”
c
h
a
n
g
e
s

i
t
s
a
t
t
r
i
b
u
t
e

F
W

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

a
c
t
o
r

F
i
g
u
r
e
4
.
8
:
T
h
e
i
m
p
a
c
t
o
f
c
o
n
fi
g
u
r
a
t
i
o
n
c
h
a
n
g
e

i
n
d
y
n
a
m
i
c
s
i
m
u
l
a
t
i
o
n

function, phase advance, and transformation matrices. Local propagation starts by invoking

callback functions registered by the constraints. When driftjpm is removed from lattice Ieb,

it will also be removed from its up-level beamline (parent). Its neighbors on both sides will

become neighbors by adjusting their relationship. These adjustments are automatically

accomplished by implicitly invoking appropriate methods of the relationship. Some

changes may have global effects. When sbend changes it strength, it also affects the B

function of all magnets lined after it in the lattice. So the B function propagation cannot be

handled locally by the next up-level beamline. It has to be coordinated by the object leb.

We call computeAl l on leb to start a global adjustment.

leb->ComputeAll () ; // global adjustment

Now the new configuration of Ieb is obtained. This new configuration is not yet

committed to the database. A new particle is created and tracked through beamline triinj to

// redo the particle tracking

myParticle - new Particle(POSI'1‘ION, DEVIATION, OFFSET);

//tracking particle through triinj, a beamline of leb

Actor *triinj - leb—>childrenlstraup(Name() , “triinj"H;

foreach (Actor *actor , triinj) ”iterating over collection array

(actor->‘l‘ransfer (myParticle) ; // polymorphism through dynamic binding

Draw (actor->Beta ()) ; } //draw [3 function

my?article->Print!ourself () ; //print the tracking result

see the change effect on the beam (as shown with code above). The B functions drawn at

each magnet the particle is passing through show the change occured after the first sbend

magnet on the beam trajectory. The simulation result can then be committed to the database

at the end of transaction.

4.5 Summary

This chapter described an obj ect-oriented model for dynamic simulation. The Actor

model presented here provides an obj ect-oriented approach for dynamic simulation. By

92

using this model, the user is able to directly modify the system configuration during the

simulation process, assigning attributes to objects, binding constraints, and altering

relationships. Become attribute is made a separate object, attribute binding becomes more

flexible. The constraint implemented by using exception handling gives more control to the

user in the dynamic simulation. The concept of relationship allows more complex

connection between objects. Two ways of behavior binding in dynamic simulation are

discussed: data-driven is quick but less flexible; type-driven is more dynamic and

expandable. An Object-oriented database, Obj ectStore, is used in our implementation. This

model is currently used to model SSC lattice structure and to dynamically simulate

behavior of the accelerator. The next chapter integrates configuration management and

version control into our model to provide more capabilities to the simulation.

93

CHAPTER 5

CONFIGURATION MANAGEMENT

AND VERSION CONTROL FOR

SIMULATION

5.1 Introduction

This chapter describes issues and approaches for configuration management and

version control in simulation. In simulation processes, the model of the target system

usually changes in order to exploit optimal configurations or reflect real world alternatives.

For example, in high-energy physics, simulation of a particle accelerator usually requires

fine-tuning of the magnetic trajectory to provide an extremely well focused and well-

positioned beam. The direct effect of such a tuning process causes complicated changes in

one or more ofthe component objects (the magnet) comprising a system (the accelerator, a

composite object) in simulation. The tuning process results in versioning of component

objects and a different system configuration. These changes affect all aspects ofthe system,

and must respect many constraints and dependencies between the components to avoid

damaging the integrity of the system. Versions are different implementations of the same

94

interface. Configuration is a generic description of components from which the system is

composed and the actual instantiation (implementation) of the system generated from the

description. The problem of managing a simulation model is compounded by the fact that

composite objects can have multiple alternative configurations, if versions of components

are taken into consideration. The complexity of the modern simulation models and the

scope and frequency of the changes they typically undergo in simulation makes effective

control of configuration and version imperative.

During most simulation life-cycles, a growing number of versions of a single

component have to be dealt with, and a complete system has to be reassembled for

simulation in different ways using these components. The basic goals ofversion control in

the simulation are: (l) to effectively record, retrieve, and keep track of different versions or

revisions of the same component and their relationships; and (2) to enforce restrictions on

the evolution of a component so that such an evolution is observable and controllable. The

basic goals of configuration management in the simulation are to facilitate the description

and instantiation of a system from versioned components (configuration binding) and to

ensure consistency and integrity of the resulting system.

The complexities ofCM and VC in the simulation environment can be summarized

as follows:

1. Multiple abstraction levels due to object hierarchical decomposition and de-

coupling of interface and multiple implementations of a simulation object.

2. Multiple representation, since the simulation iteration and step-wise refinement

cause versioning of object, its input parameter, and the simulation result.

3. Dynamic binding between object and its versioned components, interface and its

particular implementation.

This chapter is organized as follows. Section 5.2 introduces the concept ofmodeling

object and object relationship in CMVC. It identifies the issues ofCMVC and emphasizes

the importance ofCMVC in obj ect-oriented simulation. Section 5.3 proposes a composite

95

object model of CMVC for simulation. It shows how CMVC is done using modeling

objects, generic reference, and workspace. It discusses several issues in change notification

and propagation. Section 5.4 summarizes this chapter.

5.2 CM and VC in Object-Oriented Simulation

The iterative and exploratory nature of the simulation process leads to two aspects

of simulation objects that must be dealt with. First, they are usually complex; that is, they

are assemblies of components that themselves may be constructed hierarchically from

component objects. Second, there can be several alternative descriptions, called versions,

of a simulation object, its input and output parameters, as well as simulation results. Most

ofthe current simulation systems suffer from the fact that they normally hold only one valid

view of the model. In reality, however, a user or a group of users might be interested in

pursuing a particular simulation design along several possible paths or directions

simultaneously, and may decide later on one ofthe alternatives, or a merger of alternatives,

as the final design. Therefore at any given time, several valid representations of the model

may exist simultaneously. Management of simulation data in the presence of versioning

and configuration changes thus becomes a challenging task.

In SSC, lattice simulation usually involves a large amount of data. The simulation

will also generate new configurations and result measurement data. These new

configurations and data need to be matched and recorded as a group for later analysis. The

traditional file system management tools are usually error-prone with a large number of

versions, and are less organized and space-inefficient. They need to be monitored manually

sometimes to ensure system consistency. CMVC provides a systematic way to group

configuration with related data as versions and to record or retrieve them automatically,

therefore greatly enhancing the productivity of simulation. CMVC is also critical for

filtering out invalid configurations and for guaranteeing system consistencies in new

96

configurations.

5.2.1 An object-oriented model for CMVC

The object model aims to be well-suited to support the representation and

manipulation of complex objects in simulation, offering a natural conceptual model to the

designer and facilitating the efficient structural clustering of information which tends to be

obstructed by normalization in the relational model [5]. An object is defined as an instance

of a given class. A class defines a set of attributes for each of its instances, and a set of

operations on these instances. The set of attributes and operations is called the scheme of

the class. Each attribute of an object may contain either a value or a reference to another

object. The set ofclasses is organized into a class inheritance hierarchy. A sub-class inherits

the scheme of its super-class.

Modeling objects in the simulation are aggregates of design primitives treated as a

coherent unit in simulation version control. Modeling objects feature a set ofversions with

a single distinguished current version. A modeling object can reference other modeling

objects to form a hierarchical aggregation and it is called composite modeling object.

Composite aggregation of a modeling object identifies its immediate component objects.

The relationship between a component object and the composite object that “contains” or

“uses” it has been called is-a-part-of The composite object mechanism has the advantage

of being hierarchical, that is, the internal binding of its components (which in-turn can be

composites) can be defined within an environment associated with that particular

composite object. Therefore it enables a layer of data abstraction and information hiding,

one of the most useful aspects of an object-oriented model. Primitive objects reside at the

leaves of a component hierarchy, whereas a composite modeling object is the root of a

subgraph. We can define a composite object as a directed acyclic graph (DAG) where the

nodes with an in-degree of zero are the types of the highest level composite objects; the

nodes with an out-degree of zero are the types of primitive objects. The directed edges in

97

the graph represent the is-a-part-of relationship. We call this graph the composite graph

(Figure 5.1). Multiple component objects may use a given component simultaneously,

yielding a DAG structure.

—> is-a-part-of

—> depend-on

$1—le—"Jé—Wz—J

at: all: 152’: iii:
d|P°l¢235 drift] 00 octupole23 exclusive dependency exclusive independency shared dependency shared independency

Composite graph WMgraph

Figure 5.1: Composite graph and dependency

For example, let us consider an accelerator in the SSC. An accelerator complex

usually contains several types of accelerators (called machines) with different energy

levels. These machines can be either a circular accelerator or a linear accelerator. Machines

are connected with transfer lines that transfer beams from a low energy machine to a high

energy machine. A machine contains different types of magnets. These magnets bend,

focus, de-focus, or accelerate the particle beam along its trajectory. A single magnet is a

primitive object and is a-part-of an accelerator, while an accelerator is a composite object

at the root of the composition graph. An accelerator is also a modeling object since it is

treated as a single unit when versioned. Composition by itself is not completely adequate

for simulation modeling.

Dependencies among a composite object and its components must also be explicitly

represented [3 9].. “A depends on B” means that component A is hierarchically subordinated

in some way (physical or logical) with respect to component B. The relationship depend-

98

on implicates that when B changes, A should get notified and change accordingly. This

relation can also be represented by a DAG, called dependency graph (Figure 5.1), in which

one node depends on another node if there is a directed path joining them. Dependencies

can be classified into four categories [54]:

1. Exclusive dependency: ifY is a component of X, then the existence ofY depends

on X.

2. Exclusive independency: Y can still exist even if Y is a component of X and X

no longer exists.

3. Shared dependency: Y is a component ofX and Y could be a component ofZ at

the same time. But the existence ofY depends on both X and Z.

4. Shared independency: Y is a shared component of X and Z but the existence of

Y does not depend on either X or Z.

Here X, Y and Z are all objects. Dependencies are relationships between objects,

not versions. Let us consider the previous example. An accelerator complex depends on a

couple of accelerator machines, and accelerator machines depend on their magnet

components. The bending magnet is exclusively used in certain types of circular

accelerators to force the particle turning its direction, so it causes exclusive dependency.

The focusing magnet is widely used in all accelerators and causes exclusive independency.

The control and power supply units are usually shared among magnets, and they form a

shared dependency.

Dependencies are used extensively in change notification and propagation. While

changing a single bending magnet is simple, changing a widely used focusing magnet may

cause unforeseen problems throughout the accelerator that uses it. By taking advantage

from the underlying structure of a composite hierarchy, dependency constraints can be used

along with the dependency graph to help make change notification and propagation

conceivable and controllable. We will show later the important role that dependency graph

plays in the configuration management for simulation.

99

5.2.2 Version control in object-oriented simulation

Versions are distinct snapshots of a modeling object in different states. Version

control is used to manage configuration changes in object-oriented simulation. These

changes are usually caused by iterative simulation processes in a cooperative multi-user

environment. Changes usually involve simulation-input data, system parameters, the

simulation data model, and simulation results.

Simulation is itself a substitute for real experimentation, and usually is conducted

in the absence of the complete set of real data. To state the validity of a result, one must

establish an accuracy measurement related to an understood criterion. This is important

because simulation itself is an approximate process, frequently employing hypothetical or

statistically varying data and system parameters. Establishing the final accuracy (hence,

validity of the model) involves an iterative process whereby successive runs and

adjustments converge and satisfy some accepted criterion. As a simulation iterates, the

version control system preserves the simulation data as they change at particular points of

time so the date can be retrieved later. Each simulation run will generate a version. Previous

versions are retained as new versions are created. This is referred to as linear versioning

and represents a series of sequential successive changes caused by iterative simulation runs.

Versioning systems are also used to support cooperative multi-phase multi-user

simulations. First, a simulation process can usually be divided into several phases. For

example, a circular accelerator can logically break into several sections called beamlines.

Simultaneous simulations can be run first on individual beamlines to obtain local

optimization, and then be run at the whole scale level. On the whole scale level, simulations

can also be conducted in several phases. Each phase has a specific target energy or beam

luminosity that the accelerator should achieve. Version control should be able to track and

retrieve versions of simulation runs in each phase (input scenario, parameter settings,

model used, and result generated) so that the results can be used to advance the simulation

for the next run. Second, it is very common for people to work on the same simulation in

100

parallel. Simulation models can also be multifaceted, so the base model can be exploited

with different interesting behaviors to meet new simulation objectives. The extended

simulation model can be run simultaneously by people with different requirement targets.

In this scenario, multiple states of simulation data and their associated operations can exist

in any point of time. The versioning process branches from the single preceding version

into multiple versions to keep the footprint of individual simulation activities. At some

point in time, these multiple versions are merged to unite the work of all contributing

parn'es into a new and final version of the original. Version control should support such

cooperative work.

Version control in the simulation should offer mechanisms to effectively record,

retrieve, and keep track of different versions ofthe same simulation data, as well as enforce

restrictions on the evolution ofthe simulation system so that such an evolution is consistent

and controllable.

5.2.3 Configuration management in object-oriented simulation

Configuration is a binding between a specific version of a composite object and a

version of each of its components; it is version control extended to a composite object, not

something intrinsically different. Configuration management in the simulation comprises

three distinct tasks: defining acceptable configurations, monitoring configurations for

departures from the defined limits (constraints) during the simulation, and correcting

configurations for which such a departure has occurred.

First, configuration management in the simulation should support constraints to

define acceptable configurations. On the one hand, when a simulation model (a modeling

object) is assembled from a library of more primitive component objects, certain criteria

have to be met before the selected version of a component can be “plugged” into the

composite object. Such criteria select a component’s external features required by the

composite object, as well as impose restrictions that the components have to meet to avoid

101

breaking the integrity of the composite object. On the other hand, when an existing model

undergoes changes between simulation runs, interconnection among component objects

needs to be constrained so that such changes will not break the validity ofthe model. Most

importantly, the criteria for selecting and the mechanism for managing input data for the

next simulation run based on the previous one is critical to the effectiveness of the

simulations.

Second, configuration management in the simulation should provide a means to

monitor and effectively propagate configuration changes so that such changes are

observable and controllable. Configuration of a composite object can be changed in many

ways. Adding, deleting, or replacing components causes configuration changes. Changing

attributes of a component, including user-input data and system parameters, also causes

configuration changes. The component initiating the changes should be updated, and

notifications should be sent to objects along the dependency hierarchy. The configuration

management system must identify the dynamic scope of the changes, decide the scale of

the change propagation, and propagate the changes in a systematic way.

Third, configuration management in a simulation should provide mechanisms to

correct configuration changes when a violation has been identified. Usually certain

restrictions are needed to limit changes to some degree due to available resources or design

specifications. When changes happen, especially when changes proceed during the

propagation, the integrity of the model can be broken in the chain-effect of propagation.

Afier the violation has been identified in one branch of the propagation, the configuration

management system has to decide whether to abort the entire propagation, repair the branch

or component causing the violation, or correct the problem by adjusting another part of the

system to accommodate the changes.

102

5.3 Proposed Approach for CM and VC in the

Simulation

This section presents a composite object model especially suited for CMVC in the

simulation. The types of versions in the model are shown and their creations are explained.

Based on the object model, the CMVC schemes are developed using version graphs and

generic objects. The concepts of workspace and context are introduced to facilitate the

CMVC. Finally, approaches of managing change notification and propagation in CM are

proposed.

5.3.1 Composite object model

Our approach is centered at the composite object model that provides a seamless

integration of configuration management into the underlying versioned system. A

configuration of a composite object is specified by binding each of its versioned

components with a particular version. Figure 5.2 describes the model using a two-level

component binding example. The composite object at the top is defined when each of its

versioned components has a binding. Dotted lines are used for binding since each binding

represents just one possible choice. A version of a composite object is generated when it

adopts a new configuration. Version] and version2 are different versions since they have

different component configurations. But the binding of versionX at a component level (we

call it internal binding) is encapsulated from the binding of version] as a composite object.

Therefore, a configuration of a composite object only needs to know which versions of its

components need to be bound, not how the versions of its components are generated. This

implies the uniqueness of our composite object model.

First, intemal bindings of versioned components can be encapsulated within the

composite object to provide an extra layer of abstraction. Such an encapsulation will limit

the change propagation to the minimum in a simulation because versions are usually

103

canposmon

. eon oration

Versrcned management

object agent

I \

I \

binding birding

I
\

.

version I

I

I

I

7/////////////////I////////////////////////////////I////////////////////M///////////fl///////////////////////////W///M////////////////////////////////////// WWII/WW

layer of arcapulaflon

canpoertron eorrposrtr

Versimed Versimed Versioned Versimed Versioned Versioned Versioned

object object object object object object object

internal bir’tding

eanposin'on

6mé—

object object

Figure 5.2: Composite object model

104

specified without exposing the configuration of its components. A simulation commonly

uses many components designed by some one else, and such an encapsulation will promote

component-level reuse. Second, a composite object is used as a special purpose

configuration management agent whose task is to monitor and repair a given set of

components when its configuration changes. Each composite object implements a set of

operations specifically tailored to the task required for managing the components which are

part of the composite, allowing them to be reasonably intelligent and effective in managing

changes. Such a built-in CM functionality is especially important when it comes with

dynamic simulation, since at run time the immediate parent composite object has the most

knowledge ofhow to choose and reject a binding of its child component object, rather than

the simulation environment. Third, the composite object model distributes the complexity

of CM into individual components in composite hierarchy; therefore, changes become

more modular and easier to manage in a simulation.

In our composite object model using OMT notation (Figure 5.3), class Actor [90]

represents a composite object. It contains a collection of components called Children.

Each component has its composing object called Parent. A set of methods is provided

for configuration management and version control, for example, check in, check out,

change notification and update, dependency handling, etc. These methods can be

overridden in derived classes for particular needs. A good example is the calculation of

particle transformation. The coordinates of a particle entering and leaving an accelerating

magnet are determined by a 3 by 3 transformation matrix [68]. But different types of

magnets have different ways to calculate each element of its transformation matrix.

Therefore a virtual function getTransformationMatrix () is defined in the base

class Actor and overridden in derived magnet classes. An important class derived from

Actor is the Model ingObj ect, a composite object treated as a coherent unit in terms

ofCM and VC. Although an individual Actor instance can be versioned in our model, it

is usually versioned in the context of a logically more self-contained unit in the simulation,

105

Parent

0..1

,___<>
Actor

9

Childm" Particle transfer(particle)‘, (y $0
0"" // virtual function 4;,

Matrix getTransformationMatrixO; 0'

check_in();

check_out0',

notify(Message, Actor);

update(Message, Actor);

addDependent(Actor);

deleteDependent(Actor);

checkConstraint(Constraint, void");

derivation ? A

Beamline 7 é

:3

Matrix getTransformationMatrixO § §

5 ,3 §E

.8. a s
g0 g Magnet

_o

g 3 Matrix getTransformationMatrixO

<> ,

Accelerator derivation I ModelingObject I

Matrix getTransformationMatrixO [Matrix getTransformationMatrix(fl

Figure 5.3: Actor model extended for CMVC

that is the Model ingObj ect. Applying version control on an individual Actor object

is not particularly useful without a composition context. An Actor object is usually

versioned in the context of a ModelingObj ect in which it resides. All magnet classes

are derived from class Actor, and accelerator from class ModelingObj ect. As an

example, consider Figure 5.4. An accelerator is composed of beamline], which in turn is

composed of beamline2, etc. (Figure 5.4a). When the design parameters of a magnet are

changed in an accelerator, one common approach is creating a new version of the

106

107

a
c
c
e
l
e
r
a
t
o
r

b
e
a
m
l
i
n
e
1

b
e
a
m
l
i
n
e
2

b
e
a
m
l
i
n
e
3
—
—
—
—
—
—

m
a
g
n
e
t

a
.
C
o
m
p
o
s
i
t
e
h
i
e
r
a
r
c
h
y

o
f
a
n

a
c
c
e
l
e
r
a
t
o
r
.

_
_

_
V
9
1
5
i
2
"
i
fl
9
_

_
_
_
_

_
_
_
_
_

b
e
a
m
l
i
n
e
3
'

_
—
_
"

m
a
g
n
e
t
'

a
c
c
e
l
e
r
a
t
o
r
'

b
e
a
m
l
i
n
e
2

b
e
a
m
l
i
n
e
1
'

b
e
a
m
l
i
n
e
1
'

b
e
a
m
l
i
n
e
2
'

m
a
g
n
e
t

b
e
a
m
l
i
n
e
3
'

m
a
g
n
e
t
'

m
a
g
n
e
t
'

b
.
N
e
w

v
e
r
s
i
o
n
o
f
t
h
e
a
c
c
e
l
e
r
a
t
o
r

c
.
N
e
w

v
e
r
s
i
o
n
s
o
f
c
o
m
p
o
s
i
t
e
o
b
j
e
c
t
s

c
a
u
s
e
d
b
y
c
h
a
n
g
e
s

i
n
m
a
g
n
e
t
,

w
h
i
c
h
c
o
n
t
a
i
n
t
h
e
c
h
a
n
g
e
d
m
a
g
n
e
t

F
i
g
u
r
e

5
.
4
:
M
o
d
e
l
i
n
g
o
b
j
e
c
t

i
s
a
c
o
h
e
r
e
n
t
v
e
r
s
i
o
n
u
n
i
t

accelerator (Figure 5.4b) as well as a new version of each composite object (such as

bearnlinel, 2, 3) along the composite hierarchy (Figure 5.4c). In our approach, only one

new version of the accelerator is created (Figure 5.4b). The new version of the magnet,

magnet', is created in the context of a new accelerator, a ModelingObj ect. The new

version is recorded and retrieved as a unit ofan accelerator rather than an individual magnet

or beamline. Identifying a modeling object is important since it will greatly reduce the

number of objects needed to be tracked by the version control system, therefore improving

efficiency and performance in the simulation.

During the versioning process, some attributes of objects can be changed while

others cannot. Attributes that will not be changed are called version invariant. Invariant

attributes act as constraints that define the scope or pattern of the model evolution in

version control. It is important to classify attributes in order to identify which attributes are

version variants and which are version invariant. This classification serves as a base to

control the versioning scope. It also provides a mechanism to restrict the change

propagation in configuration management.

Our classification of attributes is similar to [2], which is based on the abstract view

of composite object. There are two types of attributes: External and Internal. External

attributes are non-structural attributes that are visible to the external world. They include

interfaces through which an object interacts with the external world, as well as the

specification (including constraints) of modeling objects. In our model, external attributes

are version invariant. They are used as constraints to dictate the equivalence of different

versions ofthe same modeling object. Different versions ofthe same modeling object must

have the same external attributes. The versioning process of modeling objects should

always respect the integrity of its external attributes during the entire process of evolution.

Objects with different external attributes are different modeling objects. Internal attributes

of a composite modeling object include description attributes (such as weight, height), and

structural attributes that describe the bindings with its components as well as their

108

interrelationships. Internal attributes are version variant attributes, which spawn versions

for the same modeling object.

Again, let us consider the accelerator example. For each type of magnet used as a

primitive object, its public programming interfaces, i.e., the signature of all public member

functions if implemented in C++, are external attributes. We do not want to change those

interfaces that could cause ripple effects through the program. The descriptions of

behaviors generated by calling these interfaces under specified circumstances are also

external attributes. A focusing magnet should focus the beam no matter what kind ofwiring

pattern it uses. A de-focusing magnet should not be a result of versioning a focusing

magnet. External attributes are version invariant across the entire versioning process. By

restricting the versioning scope, we can understand and define the versioning process more

clearly and make the version control more manageable. For an accelerator, on the one hand,

the distribution of magnetic field in each of its component magnets is usually controllable.

The magnet structure is also changeable to obtain optimal acceleration patterns. These are

internal attributes and different alternatives can be exploited as simulation proceeds in

iterations. On the other hand, injecting and transferring energy ofan accelerator are external

attributes which are version invariant.

5.3.2 Version history, generic object and context

Versions of a modeling object are created intwo ways, either explicitly through

version derivation, called mutation, or implicitly as a result of changes to the object or the

propagation of changes made to other objects, called propagation. Changes to a pre-

specified “significant” property trigger a mutation. The current version is frozen, and a new

version is created before the change is made. In the second case, the creation of a new

version of a component triggers the creation of a new version of its containing object. For

example, when changing the wiring of a magnet to enhance its magnetic field strength, a

new version of the magnet design is created through mutation. But when this new version

109

of the magnet is used to replace its original in a beamline which uses it, a new version of

the beamline is generated because it triggers a broader change in magnetic field distribution

in the entire beamline, which may force changes to settings of other parameters. Version

history explicitly records the ancestor/descendent relationship among versions through

distinguished is-derived-from relationships in version graph (Figure 6).

In our model, each object belongs to one of three pre-defined version types:

Generic, versioned, and unversionable. The common characteristics that are used to relate P

all versions of a modeling object are its invariant attributes. A generic object is an object

where the external attributes are defined, but the internal attributes are not bound. Since all

versions ofthe same object have the same invariant attributes, they can be characterized by

 its invariant external attributes through the generic object. Each versioned object has a I

single associated generic object and zero or more associated versioned objects.

Dipole initial version

(a type of Magnet) v1.0

is—derived-from is-derived-fiom(branch out)

/ \

John’s version of Steve’s version of

E Dipole vi]. 0 Dipole vs]. 0

i: l

is-derived-fiom is-derived-fi'om(branch out) is-derived-fi'om

/ \ l

Steve trashed his

Dipole vs]. 0 and

redesigned the Dipole

as v.32. 0

John’s new version of

Dipole vj2.0 after he

made a couple of

correntions to his va. 0

Mike’s version of

Dipole vml.0 after he

made some changes to

John’s vj1.0

Figure 5.5: Version graph

Let us again use Figure 5.5 as an example. Dipole is a type ofmagnet used to focus

or de-focus the beam. The initial design of the dipole has to meet certain minimum

requirements; for example, the length of the dipole has to be exactly 2 meters to fit the

110

installation slot. Those minimum requirements will form the invariant attributes of our

generic object: dipole 2 meters long. John comes in, and he tries to increase the beam

luminosity by enlarging the dipole’s aperture. A new version vj1.0 is derived from the

initial version. After John puts his new dipole into simulation, he finds out that his new

dipole may run the risk of losing beam after he changed the aperture. So he corrects the

wiring which will generate a stronger magnetic field to keep the beam inside the trajectory.

The new version is called \7'2. 0. At the same time that John is working, Steve is working on

the power supply of the dipole. He notices that the dipole just consumes too much

electricity, so he starts to use superconducting material and designs a new version called

vs1.0. Tom is designing a beamline that uses a couple pieces of dipole each 2 meters in

length. But it is just too early to put it in simulation. So he uses generic objects (2-meter

long dipoles) wherever the dipole is required in his beamline. At this moment, Tom thinks

that any versions of dipole (va. 0, vj2.0, vsl.0) are equivalent as long as it meets his

requirements. With this purpose, a generic object is appropriate to use here. When he

finishes the beamline design later, he has to specify a particular version from those

equivalent sets of versions (called version set) before the simulation starts. Versions of a

generic object all have the same scheme, so they differ only in the values for their variant

attributes. These different attributes reflect the different choices that caused the version to

be created. Version instances are organized into version sets associated with a single

generic instance. Each version in the version set is a-kind-ofits generic object sharing the

same external attributes but differs in some different internal attributes. Values for

versioned attributes are stored with their versioned object. Changes to any of these

attributes cause a new version to be created (Figure 5.6).

Any references to a versioned object can be either a specific reference to a particular

version of the referenced object, or a generic reference to the generic object, but not to any

particular version of it. The usefulness ofgeneric references is clear. Suppose a simulation

uses a particular modeling object. As long as the external attributes ofthe object remain the

111

Generic object: Dipole magnet

generic reference External attributes (version

invariants)

I double length = 2.0]

Internal attributes (version

variants)

[double ficld_strength = ?,

[int num_of_coil = ?.

l

J

[wiring pattern = ?, J

J [burldrng_material = 7‘,

versionset Z S

/"_‘—'—'—‘ '—"—'—‘y’—‘—’_‘—"‘\

[Dipole magnet version r710 / \ Dipole magnet version 62.0]

External attributes (version ,

. invariants) invariant Ii

[[double length = 2.0 l I double length = 2.0 I l

. Internal attributes (version Versioning: “ derived "’0'“ '

] variants) [

[Trouble field_strcngth = 24.56 [. __________ 4.] double field‘strength = INA [.

i [int nurngof_coil =m [— —————————— —l>[int num_of_coil =m J]

. Lwiring pattern = 1m]- —————————— fiDquing pattern =m [.

building_material = building_rnaterial = [

l . __________ .4

\ /

Figure 5.6: Versions in the version set is a-kind-ofits generic object

same, the simulation can take advantage ofimprovements made to the object by keeping a

generic reference to the object rather than a specific reference to a particular version (static

binding). The resolution (binding) ofa generic reference can be delayed to the latest version

of the object when the simulation is actually run . Generic references also make dynamic

configuration possible: coerced to refer to specific versions of objects according to the

specified criteria at run time. A generic reference binds a generic component in

composition space with a specific version in the version space (Figure 5.7). Such a binding

is through version graph using pre—defined selection criteria called context. The most

commonly used context is the default context. The default context will simply select the

latest version in the version graph based on a time-stamp to bind to the generic reference.

112

113

u

d
e
r
i
v
e
d
fi
f
r
o
n
i

V
G

2’
(
V
:
D
)

salads uormA

u
l

u
2

'
w

]
V
e
r
s
i
o
n
g
r
a
p
h

b
e
a
m
l
i
n
e

m
a
g
n
e
t
B

V
e
r
s
i
o
n
:
u
2

F
i
g
u
r
e

5
.
7
:
G
e
n
e
r
i
c
o
b
j
e
c
t
a
n
d

i
t
s
b
i
n
d
i
n
g

a
c
c
e
l
e
r
a
t
o
r

The user-defined contexts usually select the version based on the values ofcertain attributes

of the modeling object.

Our model defines a version graph of a modeling object as a directed acyclic graph

(VG = (V, D) in Figure 5.7). The nodes V in the graph are the versions that belong to a

generic object. The edge D of this graph represents the successor/predecessor version

relationship called derived-fiom. If (v, w) e D and w, v e V, then we say w is derived from

v. If (v, u) e D and u e V, we say that u is a branch of v, and w, u are alternatives. All

versions in a version graph constitute a version set. Versions in a version set are considered

equivalent in terms of their external features, as they have identical invariant attributes

specified in their corresponding generic object.

A version of a composite object is composed of specific versions from its

component objects. And the binding between composites and components leads to the

important concept of static and aynamic configurations which allow the binding between

a component generic object and one of its specific versions to be deferred until the is-a-

part-of relationship is actually traversed. Dynamic configuration is more time—efficient

since the binding only occurs when it is used in a simulation, therefore eliminating all the

unnecessary updates when changes occur in one of its components. It also has the

advantage of taking the latest improvements of its components. Let us look at the particle

tracking simulation which tracks a particle through the accelerator to see how many tums

it can survive within the designed trajectory. As shown in Figure 5.7, magnetA and

magnetB are components of the beamline object, which is a part of the

accelerator object. They are all versioned objects under design, so there will be

multiple versions in each object’s version set. The a-part-ofrelationship is referred through

generic references, so no static bindings exist before the actual simulation begins. When a

new simulation starts, the particle to be simulated passes through each component of the

accelerator while the simulation actually traverses the composite hierarchy in pre-

order. When the particle hits a beaml ine referred by a generic reference, the simulation

114

will ask the beamline’s version graphic to return a version with the latest time stamp

according to its context (we assume default context is used here). The beaml ine could

experience a couple of versions after the last simulation run. Each version may cause

change propagation in the accelerator. Because of delayed binding, the

accelerator will be only updated once when it is really passed by a particle in the

simulation. Static binding will cause multiple changes in between, which in this case, is

totally unnecessary. We find the latest beaml ine consists oftwo magnets: magnetA and

magnetB, both referred to by generic references. When we calculate the transformation

matrix of magnetA, magnetB has a new version just checked in with a much better

design by a different engineer. We do not know how much improvement has been done

since the last simulation run. Thanks to dynamic configuration, the latest version of

magnetB will be used in the current simulation to reflect the most recent improvements.

5.3.3 Workspace in simulation

Workspaces are named repositories where applications can access simulation

objects, change models, select input data, set system parameters and collect simulation

results.

A workspace in our model is different from those in an object-oriented database

system (OODB). Workspaces in OODB are repositories of versioned objects for the

purpose of version control and configuration management. A workspace in our model

actually defines the entire simulation environment. It specifies the model to be simulated

and a set of pre-selected stimuli. It has to record the new configuration taking shape during

the simulation life cycle since it has not yet been checked into the version control system.

It also keeps transient data such as simulation inputs (stimuli), system parameters, and

simulation results while workspaces in OODB usually only deal with persistent objects. In

a simulation, users can check out modeling objects from the version control system and

modify them independently in their own workspace, without disturbing or being disturbed

115

by other developers. Figure 5.8 shows a beamline object in two independent workspaces,

A and B. Adjustments are made to different magnets (octupole8 57 and dipole2 38)

and cause the configuration ofthe beamline to evolve in different directions independently

in A and B. Two workspaces actually share all components (default version from the

Workspace A

Model] Simulation inputsISimulation results] System ameters

Model in version

control system

muse-mums

newversion.

oc leBSD Qex E699 octu 10857 sextu le699 di le238 uardru 1043'!

CW, “I“: van? 2.1 (defa tversion) efaiiliv i thefaultpoersioo

1 1 l. _ _ __l— :ki—Z—C-C—z—z —:—:?-———————*— - —

] l Adjusted magnet/ check-out\ \

l

l l ..
l g [WorkspaeeB

I -§ l ModeILSirnulation inputs [Simulation results] System paramete's;

l l g ' h

E I . arbgbe‘srrrlinex'

I] § l .. .
< co le857 sex le699 > , ' Vie238 uardrupole437

l I I defau tyersion Marmsion drpo [2.7 (hefault version

I

L——l_—-_—_—_—_—_—_—::=L_—.:=-.’:__J '

____________ _ _ .1

Figure 5.8: Versioning in different workspaces

version control system) except those versioned due to individual adjustments. Workspace

 is not a separate piece of storage; it is an extension of the repository for a user to work on

versioned objects within simulation applications. In our model, the child workspace is used

as the current workspace that contains an individual’s private “work in progress,” and the

parent workspace contains public, shared data. To work on a versioned object, it must be

locked by checking out to a current workspace. This creates a new version of the object in

116

the current workspace. The new version is not visible from other workspaces until it is

checked into the parent workspace. Check-in freezes the version in the parent workspace

so that no more changes can be made to it. Further work on it either involves just read

access or requires a check out for new version. The flexibility to create alternative versions

of a modeling object allows a user to carry on his work on a versioned object even if it is

already checked out by someone else. This is achieved by checking out an object on an

alternative branch of design. Thus, different workspaces can be used to work on different

components (octupol e 8 57 and dipo 1 e2 3 8 in Figure 5.8) or alternatives ofthe design

simultaneously.

Consider a simulation using our workspace. Engineers at the SSC write a simulation

application to find out the initial acceleration pattern using different magnets in a beamline.

The application creates a workspace and associates it with the specified beamline model to

be simulated. It also sets the initial energy level, beam launch position, starting trajectory

and stores them in the workspace. The objective is to tune the beamline to its optimal

condition, i.e., achieving the highest beam luminosity (the density of the particles in the

beam). The simulation accesses the existing simulation model in the version control

system, starts the simulation as specified, collects the output data if any, and finally adjusts

the input and system parameters based on the output using the analysis algorithm provided

by the simulation analyzer. The workspace records the version of components (here

magnets) used in this first round of the simulation. Although nothing has been changed in

the simulation data model, the workspace is needed to access the model, as well as

bookkeeping the simulation inputs (initial energy level, beam launch position, starting

trajectory), system parameters (how many turns the beam should be accelerated through the

accelerator), and simulation results (beam luminosity). Usually these simulation data are

not part of the model. With the help of workspace, these initial settings and results can be

stored in the workspace with a reference to the corresponding model used in the simulation.

So next time when the simulation program runs, the workspace brings in the previous

117

“image” after the last run, which includes the right version of the model, as well as all the

settings. Before the second round ofsimulation is begun, usually not only the input data and

system parameters need to be changed based on the result analysis, but the simulation

model also needs to be adjusted when certain magnet strengths need to be changed to

enhance the performance. When changes involve objects in the model, those objects, such

as the magnet, need to be checked out from the version control system into the workspace

(like dipole2 3 8 in workspace B, Figure 5.8). While changes happen to the object in the

workspace, other simulation applications using the same model will not be affected because

the experimental model is only recorded in the private workspace (dipole2 3 8 does not

change in workspace A in Figure 5.8). Now the simulation runs with a new set of input data

and system parameters plus an adjusted model only visible in this workspace. The

workspace only maintains the delta between the original version of the model and the

adjusted one. The new model in the workspace can be checked in to the version control

system to become a part of the version history.

Using dependencies for checking out objects in workspaces is a unique feature of

our approach. Ifno dependency exists between two modeling objects, they can be checked

out at the same time into different workspaces for parallel development. If dependencies

exist between two modeling objects, the object is automatically locked when its

dependency is checked out. A branching approach will be used if a locked object needs to

be checked out into another workspace. In Figure 5.8, there is a dependency between

sub_beamline8 and octupole587. When octupole587 is checked out to

workspace A and evolved to a new version octupole58 7 :version2. 1,

sub_beaml ine8 is also locked and checked out to evolve to a new version. The same

happens to the beaml ine. When workspace B requires checking out the beamline while

it is locked by A, B has to check it out on a branch. The evolution of the model actually

happened in the workspace while a new configuration binding causes a new version of the

composite object (beaml ine) as a result ofchange propagation through its dependencies.

118

119

 i
n
t
D
i
p
o
l
e
2
3
8
:
:
c
h
e
c
k
C
o
n
s
t
r
a
i
n
t
(
C
o
n
s
t
r
a
i
n
t
s

a
C
o
n
s
t
r
a
i
n
t
,

v
o
i
d

*
r
e
s
u
l
t
)

I /
/

c
h
e
c
k

t
h
e

t
y
p
e

o
f

c
o
n
s
t
r
a
i
n
t

s
e
n
t

t
o

t
h
i
s
m
a
g
n
e
t

o
b
j
e
c
t

/
/

i
f

t
h
i
s

i
s

a
r
e
q
u
e
s
t

t
o

c
h
e
c
k

i
t
s

B
f
u
n
c
t
i
o
n

i
m
p
a
c
t

i
f

(
a
C
o
n
s
t
r
a
i
n
t
.
i
n
s
t
a
n
c
e
O
f
(
B
e
t
a
r
u
n
c
t
i
o
n
C
o
n
s
t
r
a
i
n
t
)
)

(

/
/

c
a
l
c
u
l
a
t
e

t
h
e

c
u
r
r
e
n
t

B
f
u
n
c
t
i
o
n

w
h
i
c
h

h
a
s

x
a
n
d
y
v
a
l
u
e
s

v
a
l
u
e
b
e
t
a
V
a
l
u
e

I
c
o
m
p
u
t
e
B
e
t
a
V
a
l
u
e
(
)
;

/
/
p
a
s
s

t
h
e

B
v
a
l
u
e

t
o

t
h
e

c
o
n
s
t
r
a
i
n
t

f
o
r

c
h
e
c
k
i
n
g

a
n
d
.
g
e
t

t
h
e

r
e
s
u
l
t
b
a
c
k

r
e
s
u
l
t

-
(
(
B
e
t
a
r
u
n
c
t
i
o
n
C
o
n
s
t
r
a
i
n
t
)
a
C
o
n
s
t
r
a
i
n
t
)
.
c
h
e
c
k
(
b
e
t
a
V
a
l
u
e
)
;

r
e
t
u
r
n

1
;

/
/

i
n
d
i
c
a
t
e

s
u
c
c
e
s
s

t
o

t
h
e

c
a
l
l
e
r

l /
/

s
i
m
i
l
a
r

c
o
d
e

t
o

o
t
h
e
r

c
o
n
s
t
r
a
i
n
t

t
y
p
e
s

s
u
c
h

a
s
D
i
m
e
n
s
i
o
n
C
o
n
s
t
r
a
i
n
t

/
/

i
f

a
C
o
n
s
t
r
a
i
n
t

d
o
e
s

n
o
t

a
p
p
l
y

t
o

t
h
i
s

t
y
p
e

o
f

o
b
j
e
c
t
,

p
a
s
s

t
o
b
a
s
e

c
l
a
s
s

r
e
t
u
r
n
M
a
g
n
e
t
:
:
c
h
e
c
k
C
o
n
s
t
r
a
i
n
t
(
a
C
o
n
s
t
r
a
i
n
t
,

r
e
s
u
l
t
)

;

l
;

F
i
g
u
r
e

5
.
9
:
S
a
m
p
l
e
C
+
+
c
o
d
e
f
o
r
c
o
n
s
t
r
a
i
n
t
c
h
e
c
k
i
n
g

Another important feature of our approach is the introduction of constraints that can be

attached to a composite object. These constraints are user-defined policies that enforce

mutual consistency between components in a binding. For example, the magnetic strength

ofa bound magnet should not cause a sharp rise of the value of B-tron oscillation function,

etc, as illustrated in Figure 5.9. Without such constraints, a binding could result in an

inconsistent system in the workspace.

5.3.4 Change notification and propagation in configuration management

The relationship of dependency implicates that when one object changes, all its

dependents should get notified and changed accordingly. One ofthe most important aspects

ofconfiguration management is managing change notifications and propagation. Chou and

Kim proposed two approaches in [14] for change notification: message-based and flag-

based. The message-based approach is further divided into immediate or deferred,

depending on whether the affected objects are notified immediately after the changes to a

version are committed or at some later time specified by the user.

We define change propagation as the process that automatically instantiates new

configurations to incorporate a newly created version of one of its components. The basic

premise of our approach is that different versions of a modeling object share the same

external attributes but may have different internal attributes. There are three key issues to

be addressed in the change propagation mechanism:

- Controlling the scope of change propagation using constraints.

- Postponing the time of propagation until it is absolutely necessary.

- Disambiguating the path for change propagation.

Controlling the scope of propagation using constraints

A number of different mechanisms can be used to limit the scope of propagation

[39]. The most effective way is to place constraints on the configuration so that change

120

propagation will halt if creating a new version of the configuration would cause the

constraint to be violated. For example, in order to increase beam luminosity, we often try

to maximize the strength of the magnetic field that will cause a larger aperture oftrajectory

to the beam throughput. But this also runs into the risk oflosing beams due to the non-linear

effect around the edge ofthe trajectory. Here constraints are used to halt the propagation of

B function re-calculation when the accelerator starts to lose the particles. Change is rejected

since the new configuration violates the constraint. In our model, constraints are usually

attached with the composite object functioned as a special purpose configuration

management agent. So constraints can be used on an individual basis tailored to particular

requirements, and get enabled during change propagation, which is rather unique compared

to other approaches mentioned in [3 9].

Postponing the time of propagation

Control ofthe timing of change notification and path ofchange propagation is very

important for effective configuration management. Flag-based deferred change notification

is used in our model whenever it is possible. When a set of changes is planned to go to one

version of an object, notification should be deferred until all changes in the set have been

applied. An effective way to do that is using dynamic configuration binding described in

section 4.2, which only responds to the propagation when the affected object is loaded into

the simulation environment. However, in certain circumstances, changes are accumulative

rather than preemptive. The current change has to be applied to the previous change rather

than nullify it. In such a case, message-based change notification is adopted. The

propagation path is defined in a composite object used as configuration control node. An

optimal path should be defined on each individual composite object based on its dependent

graph and type ofdependency. Circular propagation should be avoided. Reconsider the four

types of dependencies introduced previously:

For exclusive dependency, notification should be immediate since the dependency

121

is a one-to-one correspondence, and the propagation path is well understood. Exclusive

independency is different. We select flag-based notification because dependency may no

longer exist when a change occurs. For shared dependency, flag-based notification is

recommended since the dependency is a one-to-many relationship; immediate notification

may not be efficient here. For shared independency, we also recommend flag-based

notification. It is more efficient to trigger the propagation when dependency is explicitly

accessed through one of its references.

The dependency graph is established when an attribute is added to the reference list.

The propagation using dependency graph is implemented using the Observer pattern [28].

A composite attribute can be regarded as a function ofidentities, attributes, and constraints.

Such a function is implemented as a method invoked when an attribute is created or when

events (changes) happen to its “dependent,” which may cause an update. For example,

when an Actor’s attribute strength is modified, its corresponding constraint will be

checked. Ifthat constraint is broken, the dedicated method will be called to propagate such

a change, i.e., to recalculate the transformation matrices (composite attributes).

Transformation matrix object may further check its bound constraint and determine

whether a further propagation is needed. In this case, it will recalculate the B-tron

oscillation function and phase advance function. Change propagation is depicted in Figure

5.10 through a dependency graph.

One of the dependencies reflected in composition is through reference Parent and

Children in class Actor. When a magnet (child) is inserted into a beamline (parent),

the dependency is established. Any change to a dependency has its propagation scope. The

scope includes not only the version variant attributes of the object to be changed but also

those objects that depend on it. The dependency graph specifies this scope and the order to

propagate changes within the scope, i.e. the propagation path.

We use a guard statement to create a trigger for change propagation. For example, a

guard statement:

122

123

C
o
m
p
o
s
i
t
e

i
d
e
n
t
i
t
y

b
a
s
i
c
i
d
e
n
t
i
t
y

[
a
t
t
r
i
b
u
t
e
]

c
e
n
s
t
m
i
n
t

V

d
e
p
e
n
d
e
n
t

C
o
m
p
o
s
i
t
e

a
t
t
r
i
b
u
t
e

T
r
a
n
s
f
o
r
m
a
t
i
o
n
M
a
t
r
i
x

(
c
o
m
p
o
s
i
t
e
/
d
e
p
e
n
d
e
n
t
)

I
‘

m
e
s
s
a
g
e
-
b
a
s
e
d

,
\

i
m
m
e
d
i
a
t
e
n
o
t
i
fi
c
a
t
i
o
n

/
\

c
h
e
c
k
w
i
t
h
c
o
r
r
e
s
p
o
n
d
i
n
g

/
\

c
o
n
s
t
r
a
i
n
t
:
a
f
f
e
c
t
B
f
u
n
c
t
i
o
n
?

\

/
I

‘

/
I

\

,
c
o
n
s
t
r
a
i
n
t
2
"
—
"
’
3
b
0
"

c
o
n
s
t
r
a
i
n
t
]
‘
—
—
"
"
'
a
b
o
r
t

\

n
o
t
p
r
o
p
a
g
a
t
e

\

@
s
i
c

a
t
t
r
i
b
u
t
a
l

id
en
ti
ty

[
ce
ns
tr
ai
nt

\
¥

/
I

i

V

d
e
p
e
n
d
e
n
t

‘
\
i
r
n
r
n
e
d
i
a
t
e
n
o
t
i
fi
c
a
t
i
o
n

\
n
o
t
p
r
o
p
a
g
a
t
e

\
m
e
s
s
a
g
e
-
b
a
s
e
d

p
r
o
p
a
g
a
t
e

\

c
h
e
c
k
w
i
t
h
c
o
r
r
e
s
p
o
n
d
i
n
g

\

“
m
m
:
“
”
3
“

‘°
°

B-
tr
on

os
ci
ll
at
io
n
fu

nc
ti

on

s
t
r
o
n
g
o
r
t
o
o
w
e
a
k

t
o

a
n
d
p
h
a
s
e
a
d
v
a
n
c
e
f
u
n
c
t
i
o
n

c
a
u
s
e
b
e
a
m

l
o
s
s
?

(
c
o
m
p
o
s
i
t
e
)

F
i
g
u
r
e
5
.
1
0
:
D
e
p
e
n
d
e
n
t
g
r
a
p
h
a
n
d
c
h
a
n
g
e
p
r
o
p
a
g
a
t
i
o
n
i
n
c
o
m
p
o
s
i
t
e

guard constraint

target description

handler function_pointer(ChangeType)

is added before the operation of changing the magnetic strength of a magnet. Because

such a change will cause propagation to those magnets in the same accelerator (its

dependent graph). When a guard statement is added, a trigger for propagation is created. In

object-oriented programming, instance variables are kept private and can only be accessed

through public member functions, where a trigger can be added and invoked implicitly.

A guard statement specifies the constraints used to test changes. A handler is used

if propagation is required. The handler contains a pointer to an object that will handle and

relay the propagation. A ChangeType is provided with the handler to identify the nature

of the change. The propagation is controlled in the virtual function ChangeHandler in

the derived class of Actor based on ChangeType. This model provides both the

dynamic and static binding for change-oriented propagation. The dependent graph under

this model can be dynamically updated when a component is inserted or deleted from the

object’s composition. By default, the handler usually points to the object’s current parent.

But since handler is just a pointer to the base class Actor, it can be redirected. As a matter

offact, a dependent graph is woven while the composition is formed. The task (what should

be done) of the propagation is also dynamically bound to the virtual function

ChangeHandler. In Super Collider, for example, different types of beamline (an

aggregation of magnets) may act differently to propagation due to the magnetic strength

change ofthe same type ofmagnet component. The implementation ofChangeHandler

is statically bound with the type of derived class from Actor. Each composite object has

a predictable response to changes of its components.

Disambiguating the path for change propagation to curtail the proliferation ofchange

notification

There are several choices of handling ambiguities, which are inherent in attempting

124

to propagate changes in configuration using a dependent graph. The first is simply to

disallow any change propagation, but this is clearly too restrictive. The second is to create

the cross product of all resulting configurations but to represent these as alternative

versions of the root of the configuration. But the number of alternative versions could be

enormous, few of which are meaningful and of interest to users. The third is to propagate

whenever the choices are unambiguous but to abort propagation as soon as an ambiguous

situation is encountered. We propose group check-in and group check-out using our

modeling object. Propagation is handled through a logically clustered group of objects. It

is desirable that the group is a self-contained composite modeling object. The result of

group check-in is to guarantee the unambiguous creation of a single new configuration. In

group check-ins, a configuration node spawns a new version at most once, no matter how

many times a change occurs. If multiple objects are checked back individually, a new

configuration will be created for each, and cause ambiguities and proliferation of change

notifications. On the other hand, when objects are checked back as a group, a single new

configuration is created. The general rule is: in propagating changes through the lattice of

relationships, no change should cause an object to evolve through more than one new

version [39]. The modeling object concept provides the vehicle to achieve that.

5.4 Summary

This chapter presented an object-oriented configuration management and version

control model for simulation. The composite object model makes simulation modeling

more straightforward in terms of engineering design at the SSC. With version history, SSC

simulation data can be well tracked and easily compared for engineering analysis. The

concept of workspace and context makes the cooperative working environment more

manageable. By using generic objects, configuration can be dynamically bound and change

propagation can be effectively accomplished using a well—defined dependency graph.

125

Three simulation applications are built using the Actor model. OZ [74, 89] is an object-

oriented simulation environment. BumpView [90] is exclusively used for tuning the

accelerator to achieve high beam luminosity. OBSERVER [89, 92] (Object-Based Structure

EditoR in a Version EnviRonment) is a model driven accelerator designer that extensively

uses our CMVC model to obtain optimal design. The model is implemented on top of

ObjectStore, an object-oriented database management system, using C++ programming

language.

We make no claim that the model proposed here is either optimal or exhaustive. The

model will be improved as we obtain more experience and feedback from the field. In

particular, the issue of how to handle version merge effectively is far from solved. Future

directions will emphasize version merge management and a more efficient change

propagation model.

126

CHAPTER 6

CONCLUSION

With the SSC simulation as the background, the issues of building a reusable

simulation framework InterSim have been discussed in this thesis. Our framework

decomposes a simulation system into four types of classes (layers). Each layer handles data

management, user interface, modeling, and simulation, respectively. Protocols are pre-

defined among layers. These protocols are abstract and generic so that they can achieve

maximum reusability. Each layer in InterSim is relatively independent and focuses on its

own problem domain. Services can be requested by classes in one layer to classes of

another layer based on protocols. Such a loosely coupled, responsibility-driven design

approach not only promotes productivity but also simplifies the development and

maintenance process.

The Actor model we presented in this thesis provides an obj ect-oriented approach

for dynamic simulation. By using this model, the user is able to directly modify the system

configuration during the simulation process, assigning attributes to objects, binding

constraints, and altering relationships. By making attribute a separate object, attribute

binding becomes more flexible. Constraint implemented by using exception handling gives

127

more control to the user in dynamic simulation. The concept of relationship allows more

complex connection between objects. Two ways ofbehavior binding in dynamic simulation

are discussed: data-driven is quick but less flexible; type-driven is more dynamic and

expandable. An Object-oriented database, ObjectStore, is used in our implementation. This

model was used to model SSC lattice structure and to dynamically simulate behavior ofthe

accelerator.

We integrate configuration management and version control into our model by

introducing the concept of modeling object, a coherent design unit for versioning. Vlfrth

version history, simulation data can be well tracked and easily compared for engineering

analysis. The concept of workspace and context makes cooperative working environment

more manageable. By using generic objects, configuration can be dynamically bound, and

change propagation can be effectively accomplished using a well-defined dependency

graph-

Three simulation applications are built using the Actor model. OZ [74, 89] is an

object-oriented simulation environment. BumpView [90] is exclusively used for tuning the

accelerator to achieve high beam luminosity. OBSERVER [89, 92] (Object-Based Structure

EditoR in a Version EnviRonment) is a model driven accelerator designer that extensively

uses our CMVC model to obtain optimal configuration. Those applications were used by

the Lattice Database Group, Lattice Simulation Group, and Instrumentation and

Diagnostics Group at the SSC lab. Physicists can visualize the entire SSC accelerator

complex and zoom in to different levels of details using OZ. OZ provides a vivid feedback

to their designs without operating on a real machine. BumpView is the first tool in SSC to

support visual simulation and modeling. With BumpView, physicists can see the

accelerator and its correction effect on a beam passing through it. BumpView brings the

accelerator lab to their desktop computers. OBSERVER is the first modeling tool that

allows direct object manipulation in accelerator design. Physicists can see their beamline

decomposed level-by-level into a hierarchy through a GUI. The composite can be directly

128

edited and then versioned through our CMVC facility, thus bring the accelerator design

from piles of paper and hours of calculation to their fingertips. The general comments are

very positive, especially to the obj ect-oriented GUI front end, the modeling capability, the

model extensibility to other simulation applications at the SSC, and the integrated CMVC

facility. Performance is an issue because most of our simulation engines run at the client

side on a UNIX workstation. But most ofthe simulations require hours of time running on

super computers or parallel machines. How to enable our simulation engines to run on those

machines and communicate with the rest of the system is a challenging job. Version merge

also still needs improvement.

OZ and BumpView are completely finished and deployed in the field. OBSERVER

as a browser is completed. Some work remains to fully support latticeediting capability

with CMVC support.

All simulation applications, as well as our framework, are written in CH- on a

UNIX platform. We use Motif and InterVrews library [44, 45] as a base for GUI

implementation. ObjectStore [42] is used as a database for object persistency. The entire

project consists ofmore then one hundred classes and thousands of lines of code. The code

archives can be obtained from the Fermi National Accelerator Laboratory in Chicago.

To further this research, it is recommended that following topics be investigated in

the future:

- Extension to support version merge capability in the CMVC model that provides

a mechanism to evaluate two versions in terms of their differences and strategies

to combine them into one version.

- A constraint framework that provides a set of reusable constraint checking

algorithms for common configurations in simulation applications.

- Design methodology support such as the Unified Modeling Language (UML) in

the design process.

- Parallel-processing support in the SIMULATOR layer that provides simulation

129

engines run on parallel machines. Since most ofthe accelerator simulation engine

deals with a tremendous amount of data and often uses parallel processing, such

support is important.

0 Web support in the INTERFACE layer to provide a web-enabled graphical user

interface for simulation.

130

BIBLIOGRAPHY

[1] Agrawal, R.; Buroff, S.; Gehani, N.; Shasha, D.; “Object Versioning in Ode,”

Proceedings of Seventh International Conference on Data Engineering, 1991.

[2] Ahmed, Rafi and Navathe, Shamkant B.: “ Version management ofcomposite objects in

CAD databases,” Proceedings of the 1991 ACM SIGMOD International Conference on

Management of Data, pp. 218-227, Denver, Colorado, May 1991.

[3] Aksit, Mehmet; Bergrnans, Lodewijk: “Obstacles in Object-Oriented Soflware

Development,” OOPSLA ‘92 Conference Proceedings, Oct. 18-22, 1992, Vancouver,

Canada.

[4] Baba, Marietta L.; Mejabi, Olugabenga: “Advances in sociotechnical systems

integration: object-orientedsimulation modelforjoint optimization ofsocialand technical

subsystems,” International Journal of Human Factors in Manufacturing, Vol. 7, No. 1,

winter of 1997, pp. 37-61.

[5] Beech, David and Mahbod, Brom: “Generalized version control in an object-oriented

database,” Proceedings of the 1988 IEEE Fourth International Conference on Data

Engineering, pp. 14-22, Los Angeles, Califomia, February 1988.

[6] Bersoff, Edward H.: “Elements of sofiware configuration management,” IEEE

Transactions on Software Engineering, SE-lO(1): pp. 79-87, January 1984.

[7] Blakey, Adrian; “Beyond the RDBMS: object database management systems: Data

models, data definition language, anddata access,” Object Magazine, March/April 1992.

[8] Booch, Grady; Object-Oriented Design with Application, The Benjamin/Cummings

Publishing Company, Inc., 1991

[9] Calhoun, D.; Lewandowski, A.: “Object orientedframeworkfor dynamical systems

modeling: implementation in C plus plus,” Proceedings of the IEEE Annual Simulation

Symposium 1994, pp. 70-77.

131

[10] Cattell, R. G. G.: Object Data Management: object-oriented and extended relational

database system, Addision-Wesley Publishing Company, Inc. 1991.

[11] Chakravarty, Amiya K.; Jain, Hemant H.; Liu, John J .; Nazareth, Derek L.: “Object-

orienteddomain analysisforflexible manufacturing systems,” Integrated Computer-Aided

Engineering, Vol. 4, No. 4, 1997, pp. 290-309.

[12] Champeaux, D. de; “Object-Oriented Analysis and Top-Down Software

Development,” European Conference on Object-Oriented Programming, pp. 360-375, July

1991.

[13] Choi, Byoung K.; Han, Kwan H.; Park, Tea Y.: “Object-orientedgraphical modeling

ofFMSs,” International Journal of Flexible Manufacturing Systems, Vol. 8, No. 2, Apr.

1996. pp. 159-182.

[14] Chou, Hong-Tai and Kim., Won: “A unifyingfiameworkfor version control in a CAD

environment,” Proceedings of the Twelfth International Conference on Very Large Data

Bases, pp. 336-344, Kyoto, Japan, August 1986.

[15] Coad, P.; Yourdon, E.: Object-Oriented Analysis, 2nd edition, Yourdon Press

Computing Series, Prentice Hall, 1991.

[16] Coad, P.; Yourdon, E.: Object-Oriented Design, Yourdon Press Computing Series,

Prentice-Hall, 1991.

[17] Coatta, Terry; Neufeld, Gerald: “Distributed configuration management using

composite objects and constraints,” Distributed System Engineering (UK): Vol. 1, No. 5

Sept. of 1994, pp. 294-303.

[18] Coplien, James 0.; Advanced C++ Programming Style and Idioms, pp. 133f, AT&T

Bell Laboratories. Addison-Wesley Publishing Company, 1992.

[19] Cornelio, A. ; Navathe, Shamkant B. ; Doty, Keith L.; “Extending Object-Oriented

Concepts to Support Engineering Applications,” Proceedings of Sixth International

Conference on Data Engineering, 1990.

[20] Cubert, Robert M.; Fishwick, Paul A.: “Frameworkfor distributed object-oriented

multimodeling and simulation,” 1997 IEEE Winter Simulation Conference Proceedings,

pp. 1315-1322.

132

[21] Dahl, O.J.; Nygaard, K.: “Simula - an algol-based simulation language,”

Communication of the ACM, 9(9), pp. 671-678, September, 1966.

[22] Davis, Stephen R.; “C+ + objects that change their type,” Journal of Object-Oriented

Programming,” July/August 1992, Vol.5, No. 4.

[23] Decorte, G.; Eiger, A.; Kroenke, D.; Kyte, T.: “An Object-Oriented Model for

Capturing Data Semantics,” Eighth International Conference on Data Engineering, pp.

126-135, Feb. 1992, Tempe, Arizona.

[24] Dittrich, Klaus R. and Lorie, Raymond A.: “ Version supportfor engineeringdatabase

systems,” IEEE Transactions on Software Engineering, 14(4): pp. 429-437, April 1988.

[25] Doherty, Michael; Hull, Richard; Rupawalla, Mohammed: “Structures for

Manipulating Proposed Updates In Object-OrientedDatabases,” Proceedings of the 1996

ACM SIGMOD International Conference on Management of Data, June 4-6, 1996, pp.

306-317.

[26] Ege, Raimund K.; Programming in an Object-OrientedEnvironment, Academic Press,

Inc., 1992

[27] Faltenbacher, W.: “Computer aided software configuration management,”

Proceedings ofthe 12th International Computer Software and Applications Conference, pp.

18-25, Chicago, Illinois, October 1988.

[28] Gamma, Helm, Johnson, Vlissides: Design Patterns, Elements ofReusable Object-

Oriented Sofiware, Addison-Wesley 1995.

[29] Gengler, Barbara: “CACI Leverages Simobject. (Comnet III) (Distributed

Applications),” LAN Computing, n6, v5, June, 1994 p50(1).

[30] Goldberg, Adele; Smalltalk-80: The Interactive Programming Environment, Xerox

PARC, Addison-Wesley Publishing Company, 1894.

[31] Hatter, Richard; “Object-OrientedSofiware Configuration Management,” Dr. Dobb’s

Journal, #181 Oct., 1991.

[32] Hong, Shuguang; Maryanski, Fred; “Using a Meta Model to Represent Object-

Oriented Data Models,” Proceedings of Sixth International Conference on Data

Engineering, 1990.

133

[33] Hughes, John G.; Object-OrientedDatabases, Prentice Hall, 1991.

[34] Huh, Soon-Young; Rosenberg, David A.: “Change management framework:

dependency maintenance and change notification,” Journal of Systems and Software, Vol.

34, No. 3, Sep. 1996. pp. 231-246.

[3 5] Introduction To ObjectStore, 1992 Object Design, Inc.

[36] Jordan, Mick; Vanter, M. L.; Van De: “Software Configuration Management in an

Object OrientedDatabase,” USENIX, COOTS, June 26-29, 1995.

[3 7] Kan, Matthew: “GLISTK: Graphic Library for the Integrated Scientific Tool Kit,”

Laurence-Berkeley Laboratory, March, 1991.

[38] Katz, Randy H.; Chang, Ellis; and Bhateja, Rajiv: “Version modeling concepts for

computer-aided design databases,” Proceedings of ACM SIGMOD 86, pp. 379-386,

Washington, DC, May 1986.

[39] Katz, Randy H.: “Toward a unifiedframeworkfor version modeling in engineering

databases,” ACM Computing Surveys, 22(4): pp. 375-408, December 1990.

[40] Kiczales, Gregor: “Towards a New Model ofAbstraction in Software engineering,”

Proceedings of 1991 International Workshop on Object Orientation in Operating System,

pp.127-128, Palo Alto, California.

[41] Kiviat, Philip J.; “Simulation, Technology, and the Decision Process,” ACM

Transaction on Modeling and Computer Simulation, Vol. 1 Num. 2, April, 1991

[42] Lamb, Charles; Landis, Gordon; Orenstein, Jack; Weinreb, Dan; “The ObjectStore

Database System,” Communications of the ACM, Vol 34, No. 10, Oct. 1991.

[43] Lieberherr, K.; Holland, 1.; “Assuring Good Style for Object-Oriented Program,”

IEEE Software, pp. 38-48, Sept. 1989.

[44] Linton, Mark: “InterJ/iews Reference Manual,” Version 2.6, Computer Systems

Laboratory, Stanford University, Feb., 1990

[45] Linton, Mark; “Interl/iews Reference Manual 3.1 Beta,” June 1992, Silicon Graphics.

[46] Mahler, Axel; Lampen, Andreas: “Integrating configuration management into a

134

generic environment,” Proceedings of ACM SIG-SOFT '90: Fourth Symposium on

Software Development Environments (SDE4), pp. 229-23 7, Irvine, California, December

1990. Published as ACM SIG-SOFT Software Engineering Notes, vol. 15, no. 6, December

1990.

[47] Mamou, Jcan-Claude; Medeiros, Claudia Bauzer; “Interactive Manipulation of

Object-oriented Views,” Proceedings of Seventh International Conference on Data

Engineering, 1991.

[48] Monarchi, David E.; Puhr, Gretchen I.; “A Research Topologyfor Object-oriented

Analysis andDesign,” Communications of the ACM, Sept. 1992, p. 35.

[49] Mujtaba, M. Shahid: “Enterprise Modeling And Simulation: Complex Dynamic

Behavior Simple Model OfManufacturing,” Hewlett-Packard Journal, n6, v45, Dec, 1994

pp. 80-113.

[50] Nielsen, Norman R.: “Application ofArtificial Intelligence Techniques to Simulation,

Knowledge-Based Simulation, Methodology and Application,” pp. 1-19, Advances in

Simulation, Vol. 4, Springer-Verlag, 1991.

[51] Noro, Masami; Harada, Kenichi: “Version control ofsofiware systems in the STEP

environment,” In Proceedings ofCOMPSAC 87, pp. 110-116, 1987.

[52] Object Design, Inc.: ObjectStore User Guide, Release 2.0, Oct, 1992

[53] ObjectStore Reference, ObjectStore User Guide, 1991 ObjectDesign, Inc.

[54] Odell, James J.: “Specifying structural constraints,” OBJECT Magazine, 6(6), pp. 12-

16, Oct. 1993.

[55] Parashar, Manish; Wheeler, John A.; Pope, Gary; Wang, Kefei; Wang, Peng: “New

generation EOS compositional reservoir simulator: Part II - fiamework and

multiprocessing,” Proceedings of the SPE Symposium on Reservoir Simulation 1997,

Society of Petroleum Engineers, Richardson, TX. pp. 31-38.

[56] Pavicic, Mark; “Making the Transition to an Object-OrientedSimulator,” Proceedings

of the SCS Multiconference on Object-Oriented Simulation, pp. 65-71, Jan. of 1991.

[57] Paxson, Vern: Reference Manual for the Glish Sequencing Language, Laurence-

Berkeley Laboratory, April. 16, 1991.

135

[58] Pritsker, A. Alan B.: Introduction to Simulation and SLAM11, Third Edition, Halsted

Press Book, 1986.

[59] Ralston, Anthony; Reilly, Edwin D.: Encyclopedia of Computer Science, Third

Edition, Vain Nostrand Reinhold, 1993.

[60] Reznik, Assaf: “Character Simulation With Scrith; A General-Purpose Framework

for Dynamic Behavior,” Dr. Dobb's Journal, n13, v19, Nov, 1994, pp. 76-82.

[61] Robinson, J. T.; Kisner, R. A.: “An Intelligent Dynamic Simulation Environment: An

Object-Oriented Approach,” Proceedings of the IEEE International Symposium on

Intelligent Control, 1988, pp. 688-692.

[62] Round, Alfred: “Knowledge-based Simulation,” The Handbook of Artificial

Intelligence, Volume IV, Chapter XXII, Addison-Wesley Publishing Company, 1989.

[63] Rumbaugh, James; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W. General Electric

Co.: Object-OrientedModeling andDesign, Prentice Hall, 1991

[64] Saltrnarsh, Chris: “ The SDS Document: A Conceptual Basic Towards Understanding

the Self-Describing Data Standard,” Laurence-Berkeley Laboratory, Dec. 1, 1991.

[65] Sanderson, D.P.; Sharma, R; Rozin, R.; Treu, S.; “The Hierarchical Simulation

Language HSL: A Versatile Toolfor Process-Oriented Simulation,” ACM Transaction on

Modeling and Computer Simulation, Vol. 1 Num. 2, April, 1991

[66] Sciore, Edward: “ Versioning and Configuration Management in an Object-Oriented

Data Model,” VLDB Journal, 3, pp. 77-106, 1994.

[67] Sengupta, Soumitra; Dupuy, A.; Schwartz J.; Yemini, Y.; “An Object-OrientedModel

for Network Management,” Object-Oriented Databases with Applications to CASE,

Networks, and VLSI CAD, pp.283-295, Prentice-Hall, 1991.

[68] Servranckx, Roger; Brown, Karl; Schachinger, Lindsay; Douglas, David: “User Guide

to the Program DDl/IAD,” Stanford Linear Accelerator Center, Report 285 UC-28(A) May,

1985

[69] Steffen, K.: “Basic Course on Accelerator Optics,” DESY HERA 85/10, Deutsches

Elektronen-Synchrotron DESY, Hamburg, March, 1985.

136

[70] Stephanie, J. C., Burdorf, Christopher: “PSE: an object-oriented simulation

environment support persistence,” Journal of Object-Oriented Programming, Oct, 1991,

pp. 30-40.

[71] Talman, Richard; “A Universal Algorithmfor Accelerator Correction,” Laboratory of

Nuclear Studies, Cornell University, Ithaca, NY 14853, Sept. 26, 1991.

[72] Tan, P. L.; Dillon, T. S.: “The Conceptual Design of OSEA: An Object-Oriented

Semantic Data Model,” Proceedings of the Fourteenth Annual International Computer

Software and Application Conference, pp. 221-230, Oct. 1990, Chicago, Illinois.

[73] Tello, Ernest R.: “Object-OrientedProgrammingfor Artificial Intelligence,” 1989 by

Addison-Wesley Publishing Company, Inc.

[74] Trahem, Garry; Zhou, Jiasheng: “SSC Lattice Database and Graphical Interface,”

1991 International Conference on Accelerator and Large Experimental Physics Control

Systems, KEK, Japan, Nov, 1991.

[75] Tsuda, Kazuyuki; Yamamoto, Kensaku; Hirakawa, Masahito; Tanaka, Minoru;

Ichikawa, Tadao: “MORE: An Object-Oriented Data Model with a Facilityfor Changing

Object Structures,” IEEE Transaction on Knowledge and Data Engineering, Vol. 3, No. 4

December 1991 .

[76] Vaishnavi, V.K.; Buchanan, G.C.: “Data/Knowledge paradigmfor the modeling and

design of operations support systems,” IEEE Transaction on Knowledge and Data

Engineering, Vol. 9, NO. 2, Mar-Apr 1997, pp. 275-291.

[77] Vaughal, Paul. W.; Newton, David. E.; Johns, Rich P.; “PRISM: An Object-Oriented

System Modeling Environment in C++,” Proceedings of the SCS Multiconference on

Object-Oriented Simulation, pp. 65-71, Jan. of 1991.

[78] Vlissides, John M.: “Generalized Graphical Object Editing,” Technical Report: CSL-

TR-90-427, Stanford University, June 1990.

[79] Vlissides, John M.; Linton, Mark: “Applying Object-Oriented Design to Structured

Graphics,” Proceedings of the USEND(C++ Conference, Denver, Colorado, Oct. 1988.

[80] “Elk, Micheal R.; “An Object-Oriented Constraint Solver,” OOPSLA ‘91 Conference

Proceedings, SIGPLAN Notice, Vol.26, No. 11, Nov. 1991.

137

[81] Mlliams, Torn: “New CASE Tools AimedAt Coordinating Complex Projects. (Special

Report: CASE Tools For EmbeddedAndReal-time Applications),” Computer Design, n5,

v33, April, 1994, pp. 65-72.

[82] \Vrlliamson, Ronald; Stucky, Jack; “An Object-Oriented Geographical Information

System,” Object-Oriented Databases with Applications to CASE, Networks, and VLSI

CAD, pp. 296-323, Prentice-Hall, 1991.

[83] \Vrnston, Howard; Tulpule, Sharayu: “Fault model analysis based on compositional

modeling,” Proceedings ofthe 1997 International Gas Turbine & Aeroengine Congress and

Exhibition

[84] Wirfs-Brock, R.:Responsibi1ity-Driven Design, Prentice Hall, 1991.

[85] Wirfs-Brock, R.; Wilkerson, B.: “Object-Oriented Design: A Responsibility-Driven

Approach,” Proceedings of OOPSLA ‘89, pp. 71-76, Oct. 1989.

[86] \Vrrfs-Brock, R.; “filkerson, B.; Vtrrener, L.: Designing Object-Oriented Sofiware, pp.

33-36, pp. 161-176, Prentice Hall, 1991.

[87] Zeigler, Bernard P.: Object-Oriented Simulation with Hierarchical, Modular Model,

Academic Press, 1990.

[88] Zeller, Andreas: “A unified version model for configuration management,”

Proceedings of the 3rd ACM SIGSOFT Symposium on the Foundations of Software

Engineering, volume 20 (4) of ACM Software Engineering Notes, pp. 151-160. ACM

Press, October 1995.

[89] Zhou, Jiasheng; Chung, M.J.: “Object-Oriented Simulationfor the Superconducting

Super Collider,” Transaction of Society for Computer Simulation, Vol. 12, No. 1, pp. 1-26,

March 1995.

[90] Zhou, Jiasheng; Chung, M.J.: “Object-Oriented Modelingfor Dynamic simulation,”

1993 International Simulation Technology Multiconference, San Francisco, Nov. 7-10,

1993.

[91] Zhou, Jiasheng; Chung, M.J.: “Object—Oriented Simulationfor the Superconducting

Super Collider,” Object-Oriented Simulation Conference (008 ‘93), San Diego, CA. Jan.

17-20, 1993.

138

[92] Zhou, Jiasheng; Bhogavalli, Rao: “A GraphicalHierarchy Browserfor the SSCLattice

Configuration Database,” SSC Internal Report: SSCL-N-804, December of 1992.

[93] Zhou, Jiasheng; Chung, M.J.: “Configuration Management and Version Control in

Object-Oriented Simulationfor the Superconducting Super CoIlider,” being submitted to

the ACM SIGMOD.

139

APPENDICES

140

Glossary

A

Actor - A composite object model for dynamic simulation described in this thesis (64, 68)

aggregation - A collection of objects that can be treated as a whole (63)

attribute - A qualitative or quantitative measurement of characters of an object (64, 69)

B

behavior modeling - Modeling the action and reaction of a system in response to changes

(42)

BumpView - BumpView is a simulation application built with the framework developed in

this thesis research to adjust the beamline configuration for large particle

throughput in an accelerator (22)

C

change notification - A mechanism to notify dependents when change occurs to an object

(120)

classification - The systematic grouping of objects based on their common characteristics

in obj ect-oriented design (63)

CMVC - Configuration management and version control (3)

component - An object that can be a part of the other object (2, 26)

composite graph - A directed acyclic graph to represent the object composite hierarchy (98)

configuration - A specification ofhow a composite object is constructed from other objects

and their inter-relationships (64, 95, 101)

configuration change - A change of the way a particular composite object is formed,

including changes to its components and relationships among them (2, 72)

constraint - An object used to monitor another object against certain thresholds of

limitations (64, 69)

context - The circumstances in which a configuration binding happens (112)

contract - An agreement between two objects (29)

coupling - The degree to which objects depend on each other (66)

D

DAG - Directed Acyclic Graph (97)

DATA layer - A layer in the framework developed in this thesis research to provide a

uniform object-oriented data representation for heterogenous data sources (30)

data modeling - The modeling of data representation to the application (33)

decomposition - Breaking a large system (object) into smaller sub-systems (objects) (5, 66)

delegation - An implementation mechanism in which an object forwards a request to

another object. The delegate carries out the request on behalf of the original object

(58, 68)

dependency - One object is hierarchically subordinated in some way (physical or logical)

with respect to another object (98)

dependency graph - A graph used to model dependencies among objects in configuration

management. An edge between two nodes represents the dependency relationship

141

(98)

domain analysis - A requirement analysis in a particular knowledge domain (63)

dynamic behavior - The action and reaction demonstrated during the simulation exhibit the

dynamic behavior of the composite object (2)

dynamic binding - A min-time association between a composite object and particular

versions of its components (29)

dynamic configuration - Change the configuration of a composite object during the

simulation process (114)

dynamic data - Data generated as the footprints of simulation process as it goes (22)

dynamic simulation - In this thesis, dynamic simulation focuses on action and reaction of a

composite object when its configuration undergoes changes in a particular scenario.

(2,27,66,142)

E

element - An object that cannot contain any other object (21)

encapsulation - A technique to hide some of the internal implementation details from the

object’s external interface (4)

external method - A method to response message defined in object’s external interface or

protocol (70)

F

framework - Afi'amework is a set of cooperating classes that make up a reusable design for

a specific class of software such as simulation (5, 6, 142)

G

generic object - A generic object is an object where the external attributes are defined, but

the internal attributes are not bound (1 10)

generic reference - A reference to a generic object (11 1)

H

I

identity - An attribute used to distinguish one object from the others (64, 69)

INTERFACE - A layer in the framework developed in this thesis research to provide GUI

support for simulation (31)

internal method - A method only used by internal implementation of an object (70)

L

layer - Layer stands for a set of cohesive and self-contained services or functionalities in a

particular domain such as model, simulation engine, data management, and user

interface (5, 28)

M

minimum cover - Let 5(a) be a set of objects whose model (including its identity, attributes,

constraints, and relationships) could be affected by changing a, the model of one

particular object. Then the propagating executor e is the Actor with a minimum

142

number of descendants that cover 3(a). We called e a minimum cover of the

propagation (84)

model - A computational or mathematical representation of a real system (67)

MODELER - A layer of the framework developed by this thesis research to provide a

model infrastructure for simulation (31)

modeling object - Modeling objects in simulation are aggregates of objects treated as a

coherent unit in version control (97)

mutation - A change initiated from within an object itself (109)

N

0

OZ - an object-oriented simulation environment for the Superconducting Super Collider

(21, 22)

P

polymorphism - A situation in which multiple methods can response to the same message

based on run time attribute such as the type of an object (69)

primitive object - An object that cannot be decomposed further (96)

propagation - A change notification path or process (108)

protocol - An agreement between two objects (28, 29)

R

relationship - A logical association between two objects (71)

S

simulation - Simulation is a process ofrepresenting the dynamic behavior of one system by

the behavior of another system (1, 65)

SIMULATOR - A framework for building simulation engines proposed in this thesis (31)

specific reference - A reference pointing to a specific version of an object (111)

subsystem - A layer in the framework developed in this thesis research or a system that is

contained in another system (5)

system modeling - System modeling focuses on the semantics of the data rather than its

representation in a particular model (33)

U

unversionable - An object that cannot be versioned (110)

V

version - Versions are different implementations of the same object interface (94)

version control - Version control in the simulation offers mechanisms to effectively record,

retrieve, and keep track of different versions ofthe same simulation data, as well as

enforce restrictions on the evolution of the simulation system so that such an

143

evolution is consistent and controllable (101)

version graph - Version graph defines version derivation structure. Each node represents a

version and the edge represents the derivation relationship from one version to its

derived version (114)

version set - All versions in a version graph constitute a version set (114)

W

workspace- Workspaces are named repositories where applications can access simulation

objects, change models, select input data, set system parameters and collect

simulation results (115)

144

A

acceleration pattern 42

Actor 64, 68

adjuster 21

aggregation 63

alternative 114

attribute 64, 69

B

beamline 21

behavior modeling 42

BPM 24

BumpView 22

C

change notification 120

change propagation 120

classification 63

client 29

CMVC 3

component 2, 26

composite graph 98

composite object 2

configuration 64, 95, 101

configuration binding 2

configuration change 72

constraint 64, 69

containment structure 5

context 112

contract 29

control element 56

coupling 66

D

DAG 97

DATA layer 30

data modeling 33

decomposition 5, 66

default context 112

delegation 58, 68

dependency 98

dependency graph 99

derived-from 114

INDEX

detector 21

directed acyclic graph 97

domain analysis 63

dynamic behavior 2

dynamic binding 29

dynamic configuration 114

dynamic data 22

dynamic simulation 2, 27, 66, 142

E

element 21

encapsulation 4

exclusive dependency 99

exclusive independency 99

external method 70

F

framework 5, 6, 142

friend 82

G

generalization 29

generic 110

generic object 110, 142

generic reference 111

GEO 33

goal of configuration management 95

goals of version control 95

group check-in 125

group check-out 125

GUI 3

H

HEB 21

I

identity 64, 69

IDQ 58

incremental drawing 58

influence function 82

INTERFACE 31

internal method 70

InterSim 26

145

INDEX

InterViews 32

IR 21

is-a-part-of 97

is-derived-from 110

L

lattice 22

layer 5, 28

LDT 47

LEB 19

Linac 19

linear direct transformation 47

linear sequential transformation 46

LST 46

luminosity 23

M

machine 21

MEB 19

minimum cover 84, 143

model 67

MODELER 31

modeling object 97

mutation 109

N

non-linear sequential transformation 47

NST 47

0

object-oriented decomposition 63

Observer 54

ODBMS 8, 29

Operations Support Systems 8

OPTICS 33

OSS 8

OZ 22, 23

P

particle distribution hierarchy 42

PDH 42

PMH 44

polymorphism 28, 70

primitive object 97

principal magnet hierarchy 44

principal vector 42

propagation 109

protocol 28, 29

PV 42

R

RDBMS 29

record 33

relationship 71

RF 21

RF cavity 21

S

Scrith 7

SDS 30

Self-Describing Standard 30

server 29

shared dependency 99

shared independency 99

signature 28

simulation 1, 65, 143

SIMULATOR 31

simulator 48

Smart Object 8

specialization 29

specific reference 111

static data 22

subsystem 5

system modeling 33, 143

T

trajectory 21

TWISS 33

U

UML 129

Unidraw 32

Unified Modeling Language 129

unversionable 110

146

V

version 94

version control 101

version graph 114

version history 110

version set 114, 144

versioned 110

view 56

W

Workspace 115

INDEX

147

"‘lillllllllllllill“

