


i

3 1293 01714 1544

This is to certify that the
dissertation entitled

Increasing the Efficiency in Estimating
Multilevel Bernoulli Models

presented by

Meng-Li Yang

has been accepted towards fulfillment
of the requirements for

Ph. D. degreein _Measurement and
Quantitative Methods

7 Major professor

Date__May 15, 1993

MSU is an Affirmative Action/Equal Opportunity Institution 0-12m




LIBRARY

Michigan State

University

TO AVOID

PLACE IN RETURN BOX
to remove this checkout

from your record.

FINES return on or before date due.

DATE DUE

DATE DUE

DATE DUE

1/08 &/CIRC/DatwDue.p5-p.14



INCREASING THE EFFICIENCY IN ESTIMATING
MULTILEVEL BERNOULLI MODELS

By

Meng-Li Yang

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Counseling, Educational Psychology and Special Education

Spring 1998



Copyright by
Meng-Li Yang
1998



ABSTRACT

INCREASING THE EFFICIENCY IN ESTIMATING
MULTILEVEL BERNOULLI MODELS

by

Meng-Li Yang

Multi-level linear models are useful tools for educational research, where
observations are often nested within clusters. If both the response and the random effects
have normal distributions, maximum likelihood inferences for the fixed and random
effects variances can be obtained analytically. For dichotomous responses such as
dropping out and repeating a grade, logistic regression is often used to model the
relationship between the responses and the covariates. However, in such multilevel
Bernoulli models, estimation has been a problem. Since the responses have a Bernoulli
distribution, which is not conjugate to the normal distribution of the random effects,
rough approximation or numerical integration has to be used to approximate the marginal
distribution of the responses in order to obtain maximum likelihood estimates. The
strategies proposed before include the penalized quasi-likelihood approach, the
approximate maximum likelihood approach using Monte Carlo methods or the Gauss-

Hermite Quadrature technique, and the Bayes approach.



This dissertation proposes using Laplace approximation to the marginal
distribution and then using approximate Fisher scoring to find the maximum likelihood
inferences for the parameters. To achieve the goal, first, the infinite multivariate Taylor
series is deduced. Via the infinite multivariate Taylor series, Laplace approximation can
be extended to any order and any dimension. However, through preliminary experiments,
approximation up to the sixth order is found to produce sufficiently accurate estimates.
The resultant program is therefore called Laplace6.

Laplace6 is investigated using various simulated data sets by comparing its
estimates with those of PQL, PQL2 and Gauss-Hermite Quadrature. Laplace6 was found
to have, generally, the highest efficiencies among all the methods compared. The 1988
National Survey of Primary Education in Thailand was also analyzed using all of the
above programs. Laplace6 estimates were found to be close to those produced by Gauss-
Hermite Quadrature using 30 and 40 quadrature points. In addition, to check the
consistency property of the approximate maximum likelihood estimates produced by
Laplace6, 400 bivariate data sets were generated. Half of the 400 had 200 clusters in the
second level and the other half had 2000 clusters. Laplace6 estimates were found to be
normally distributed with small negative bias. Moreover, the variances of the estimates
of the data sets with 2000 clusters were 10 times smaller than those with 200 clusters.

Thus, Laplace6 estimates were approximately consistent.
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Chapter 1

INTRODUCTION

People are concerned about the quality of education. They want to know what
factors — educational policies, programs, school environments, characteristics of
teachers, or instructional approaches --- contribute to students’ best learning. Educational
research tries to find answers to these concerns. Large samples of students from different
classrooms or schools are often drawn in order to support generalizable conclusions.
However, students are nested within classrooms, classrooms are nested within schools,
and schools within districts. Thus student learning is embedded within clusters, i.e.,
classrooms or schools. Because each cluster has a special climate due to its components,
such as students and teachers, not only will individual students differ from one another,
but there will be group differences among clusters. Longitudinal data, with repeated
measurements from the same person, can also be regarded as nested data. Here each
person is considered a cluster, with observations of the same person more similar than
observations from different people.

Bennett (1976) found a significant difference between two styles (‘formal’ and
non-formal) of teaching when he used multiple regression analysis, ignoring the grouping
of the students into classes. However, when Aitkin et al. (1981) analyzed the same data

1



2
accounting for the nesting effect, the difference disappeared. In fact, with such a nested

data structure, traditional statistical tools such as ANOVA and multiple regression either
have great limitations or cannot work appropriately. Instead, as a statistical tool
developed specifically for nested designs, hierarchical or multilevel linear regression
models, also referred to as random coefficient models (Rosenberg, 1973) or covariance
components models (Dempster, Rubin, and Tsutakawa, 1981), allow each cluster to have
its own slope and regression coefficients. These slopes and regression coefficients are
often considered normally distributed with mean equal to the effects of cluster
characteristics as specified in the higher level, between-cluster model. That is, in a higher
level these coefficients along with the slopes are each predicted by a set of cluster
characteristics. The errors from the prediction are referred to as the random effects,
normally distributed with mean zero and a variance covariance matrix.

For example, in the first level of a 2-level model, observation ; in the ith cluster,
¥, » is modeled by a vector of independent variables, x;, y, = x”’ a,+e;,where a, isa
vector of the regression coefficients (including the intercept) for the ith cluster; e, is the

random term for y, , assumed to be normally distributed with mean 0 and variance o?,

e, ~ N(0, 0). Inthe second level, @, from each cluster is collected together as the

(44
dependent variable to be predicted by cluster characteristics. Assume a, = [ . ] . Then

a;,
there will be two equations for level-2: a, = w/ B, + b, and a,, = z] B, + b,,, where

w, and z, are both vectors of the ith cluster characteristics; f,and f,, are vectors of
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regression coefficients fora, and @, , respectively; b, is the random effect of cluster i for

a, and b,, the random effect of cluster i for @,. 5, and b, are assumed to be
multivariately normally distributed with mean 0 and a variance matrix D.

Such modeling gives educational researchers a clearer look at the mechanism of
the interactions among students, teachers, schools, society and policies, and resolves the
statistical difficulties encountered by ANOVA and multiple regression. The resulting
variance components from each level, additionally, give information about its respective
amount of unexplained variation. Such models for continuous outcomes have been well
developed by researchers using different estimation methods. For example, Raudenbush
(1984) used EM algorithm; Goldstein (1986) used iterative generalized least squares;
deLeeuw and Kreft (1986) and Longford (1987) used Fisher scoring. A brief review
reveals different applications of the models: school effectiveness as related to student
achievement scores (Raudenbush and Bryk, 1986; Aitkin and Longford, 1986; Young,
1996), school effects and their stability (Raudenbush and Willms, 1991), how teacher
interaction outside the classroom affects student learning (Louis, 1994), program
evaluation (Marks, 1995; Lee,1995; Mac Iver and Plank, 1996), adolescent attitude
change toward deviance (Raudenbush and Chan, 1993), and the effects of ratee and rater
race on performance evaluations (Waldman and Avolio, 1991). Goldstein (1987), Bryk
and Raudenbush (1992) and Longford (1993) gave detailed accounts of applications and
methodology of these models in social and educational contexts. Bock (1989) and

Raudenbush and Willms (1991) provided applications in education.
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Nevertheless, although it is easy to conceive a continuous and normal distribution

for human characteristics, such as intelligence, abilities and achievements, certain types
of valuable educational data cannot be normally distributed. For example, whether a
student has repeated a grade, dropped out of school, been admitted to college or persisted
in the pursuit of higher education, might all be informative about the educational
environment and policies. Since these outcomes are either yes or no (typically coded as 1
or 0), the usual linear model that assumes a normal random error fails. Instead, the
logistic regression, one of the generalized linear models (McCullagh and Nelder, 1989)
is used to model such outcomes. The logistic model uses the logit (the log of the odds
ratio) of the dependent variable as the outcome variable. For example, to model the

probability of dropping out for student j in school i using his personal information, x,,

the model will be log(———) = xa, +¢,, where 4, = E(y, = 1,) is the conditional

1-pu,
probability of dropping 6ut, y, being the observed data with dropout = 1, non-dropout =
0.

For analyzing nested non-normal data such as binary data and count data, the
multilevel generalized linear model with random effects is a natural outgrowth of both
generalized linear models and hierarchical linear models. It incorporates generalized
linear models into the framework of the hierarchical linear model. In the first level, the
linear regression model is substituted by a generalized linear model while the second
level remains a linear model. For such models, researchers face a major task of obtaining

a good estimate of the marginal distribution of the data. This marginal distribution is the
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integral of the product of the first level likelihood, f(y, Ib,) , and the assumed second level

distribution, p(b,) with respect to the random cluster effects, i.e., I Sf( y,|b, )p(b,)db, . In

most cases, the second-level model is assumed to have a normal distribution. The
difficulty in evaluating the integral arises from the fact that the normal distribution is not
the conjugate prior for non-normal distributions such as binomial and Poisson that are
assumed in generalized linear models.

Many statisticians have studied estimation in generalized linear models with
random effects, especially in the logistic model with random effects (e.g., Stratelli, Laird,
and Ware, 1984; Wong and Mason, 1985; Schall, 1991). What makes the logistic model
with random effects interesting and difficult is that there is no closed form for the
marginal distribution of the outcome for a logistic model (Zeger et al, 1988). As a result,
the estimation of the parameters, including the variance components and the fixed effects,
have to be derived through approximation, if not through intensive Monte Carlo
computation. Moreover, because the approximations are generally rough, the resulting
estimates of the variance components is often subject to underestimation (Breslow and
Clayton, 1993; Rodriguez and Goldman, 1995), thus resulting also in the underestimation
of the fixed effects coefficients, especially when the number of random effects increases
with the sample size and the binomial denominator is small (Breslow and Lin, 1995).

Breslow and Lin (1995) proposed first-order and second-order Laplace
approximations of the integral of the marginal likelihood with in the context of

asymptotic bias correction, with the second-order being the fourth order Taylor expansion
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whereas the first-order being the second order Taylor expansion. Incidentally, the first-

order approximation has terms exactly the same as those in the penalized quasi-likelihood
approximation (Breslow and Clayton, 1993). Therefore, the second order approximation
can be regarded an improvement over the penalized quasi-likelihood approach such as
Raudenbush’s posterior modal estimation method (1993). Later Lin and Breslow (1996)
extended the approximation to the case of multiple random effects, with zero correlation
among them, however. Nevertheless, the assumption of a zero correlation among random
effects limits the use of the approximation in real world research.

This dissertation will build on the work of Breslow and Lin (1995) and Lin and
Breslow (1996), using Magnus’s (1988) and Magnus and Neudecker’s ideas (1988) as the
toolbox. It will generalize the Laplace approximation to multiple random effects with a
general variance-covariance matrix. Moreover, through simple simulations it was found
that the contribution of the eighth order term in the eighth-order expansion to the
approximate log- likelihood is negligible while those of the lower orders are not.
Therefore, this dissertation will also expand up to the sixth order of the Taylor series to
get a satisfactory Laplace approximation to the log-likelihood. However, the purpose of
the extension will not be bias correction. Treating the resulting approximate marginal
likelihood as the exact likelihood, Fisher scoring will be applied to simultaneously
estimate the fixed effects and the variance-covariance matrix of the random effects.
Because the Laplace approximation is not stable in some cases, according to Breslow and
Lin (1995), to ensure convergence and more efficient estimation, the output from

Raudenbush’s posterior modal algorithm (1995) will be used as starting values for
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parameters to be estimated. The resulting estimation method will be called “Laplace6™.

It will be tested and evaluated with extensive simulation studies. Its efficiency, in terms
of mean squared errors, will also be compared with those of Raudenbush’s posterior
modal estimation (1993), which is equivalent to the PQL (PQL) (Breslow and Clayton,
1993), of Goldstein and Rasbash’s (1996) second-order penalized quasi-likelihood
(PQL2) method, and approximate maximum likelihood method using Gaussian
Quadrature technique (Gauss) by Hedeker and Gibbons’s MIXOR(1994, 1996)).

To achieve the above goals the dissertation will

e derive the multivariate Taylor series;

e derive the six moments of the multivariate normal distribution;

e prove that the fourth and sixth moments can be substituted by simpler forms for use in
the approximation;

e find the approximate log-likelihood using a Laplace sixth-order expansion of the joint
density of the data and the random effects;

o find first derivatives of the approximate log-likelihood for both the fixed effects and
random effects variance matrix in order to use approximate Fisher scoring to estimate
the fixed effects and the random effects variance matrix;

e work out a computational algorithm, based on the derivatives and the approximate
log-likelihood, for computer programming;

e analyze the data set of 1988 National Survey of Primary Education in Thailand

(Thailand data) using the above methods as an example;
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generate data sets with different models and parameters, the structure of which

generally follows that of Rodriguez and Goldman (1995); and
investigate the performance of the methods by analyzing the estimators in terms of
their biases and mean squared errors.

According to experience so far, when the variance and especially the conditional

expectation, E(y,|,), are both very small(e.g., .25, .01, respectively), all of the
above methods except for PQL have difficulty converging. On the other hand, data
sets with extremely small random effect variance and conditional expectation will not
be of much practical as well as theoretical interest, anyway. Moreover, because of the
symmetry of probability in dichotomous situations, a conditional expectation higher
than .5 is the same as itself minus .5. Therefore, I will limit the range of the
conditional expectation to (.1, .3) and the variance to (.25, 2). In addition, for a single
variance component model, the within-group sample size will be around 20 and
between group sample size around 150. For a model with variance-covariance

matrix, even larger within- and between- group sample sizes are necessary.



Chapter 2

BACKGROUND AND SIGNIFICANCE

Among the members of the generalized linear models with random effects, the
logistic model with random effects especially poses numerical difficulties. The obstacle
occurs when the marginal likelihood is needed for estimation of the parameters. The
marginal likelihood is obtained by integrating out the random effects from the joint
likelihood of the data and the random effects. In the logistic model with random effects,
the data have a Bernoulli distribution, while the random effects are usually assumed to

have a multivariate normal distribution. Besides, while the conditional expectation of the
response, y, = E(y; = 1|b,) , and the sum of the fixed and random effects are linked by a
canonical link function (McCullagh and Nelder, 1989) for each member, the marginal
expectation, E(y,), is not. Researchers cannot find an exact closed form relationship

between the logit link and the marginal expectation (Zeger et al., 1988). Hence there have
been different approaches for estimation. A brief review with reference to the various

approaches highlights the difficulty.
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Bayes Approach

Zeger and Karim (1991) used the Bayesian paradigm by applying Gibbs Sampler
technique (Geman and Geman, 1984; Gelfand et al., 1990, Gelfand and Smith, 1990) to
find the posterior distributions of the parameters and the random effects in the context of
generalized linear models with random effects. The strength of Bayes approach lies in its
flexibility in assessing the uncertainty in the random effects and functions of model
parameters (Breslow and Clayton, 1993). The greatest advantage of Gibbs sampler is its
ease of implementation. However, it is computationally intensive. Moreover, Hobert and
Casella (1996) and Natarajan and McCulloch (1995) found that for models with random
effects the posterior distribution of the parameters may not exist for diffuse priors, but
that this problem may not be detected while computing, and thus wrong estimates can
result (McCulloch, 1997).
Full Likelihood Approach

Anderson and Aitkin (1985), Hedeker and Gibbons (1994) and McCulloch (1997)
approached the problem using a full likelihood approach. Anderson and Aitkin (1985)
used Gaussian quadrature to approximate the integral in using maximum likelihood
estimation in the logistic model with a single random effect. Hedeker and Gibbons
(1994) also used Gauss-Hermite quadrature technique to find the marginal maximum
likelihood estimators in ordinal regression models with multiple random effects. The
advantage of Gaussian quadrature technique is that the precision of the estimation can be

improved by increasing the number of quadrature points. However, as the number of
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random effects increases, the number of quadrature points that have to be summed over
increases exponentially, and so will the computational time. However, Bock, Gibbons
and Muraki (1988) pointed out that the number of points for each random effect can be
reduced as the number of random effects increases, without hurting the accuracy of the
approximation.

McCulloch (1997) adapted the Monte Carlo version of the EM algorithm
(MCEM) (Tanner 1993; Ledholter and Chan, 1994) for use in generalized linear models
with random effects by incorporating a Metropolis-Hastings step. He also proposed a
Monte Carlo version of the Newton-Raphson algorithm (MCNR) and improved the
performance of simulated maximum likelihood developed by Geyer and Thompson
(1992) and Gelfand and Charlin (1993) by preceding it with MCEM or MCNR. He
compared these methods with the penalized quasi-likelihood approach using simulated
data with large variance, which is known to be where the penalized quasi-likelihood
suffers serious downward bias. The three methods were found to perform better than the
penalized quasi-likelihood. However, the Monte Carlo methods have the same problem
as the Gaussian quadrature technique in that the estimation takes time. Besides, the
convergence is stochastic. That is, when the iterations converge, the convergent value
will vary randomly within a small range of the maximum likelihood estimate. (Chan and
Ledholter, 1994). This produces problems of deciding whether the MCEM or MCNR has

really converged.
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Quasi-Likelihood / Approximate Likelihood Approach

Goldstein (1991) and Longford (1984, 1988a) arrived at the same results via
different routes (Goldstein, 1991; Rodriguez and Goldman, 1995). Goldstein (1991)
completely avoided marginal likelihood estimation. He used the linearized dependent
variable (McCullagh and Nelder, 1989) to borrow the strength of the normal theory
methodology and proposed iterative generalized least squares to do the computation.
Longford (1994, 1988) arrived at his approximation to the marginal likelihood integral by
both using a second Taylor expansion around zero of the random effects and taking
advantage of the normal theory. Breslow and Clayton (1993) considered such
approaches as a marginal quasi-likelihood approach (MQL) because the conditional
expectation in both cases is expanded around zero for the random effects. However,
Rodriguez and Goldman (1995) conducted simulations on both packages as well as
Goldstein’s second order MQL (1991) and found the estimates to suffer substantial
downward bias when the variances of the random effects are large.

Raudenbush (1993) extended Stiratelli, Laird, and Ware’s (1984) posterior modal
approach for binary responses to generalized linear models with random effects and also
improved the efficiency of the approach by adopting Schall’s framework (1991). He also
used the linearized dependent variable with the conditional expectation expanded around
the current estimates of both the random and fixed effects. As a result, although
motivated in seemingly very different ways, the estimating equations used by Breslow

and Clayton (1993) and Raudenbush (1993) are the same. Nevertheless, the fixed effects
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and variance estimates also suffer underestimation (Yang, 1994), which, though not as
severe as in the case of MQL, can still be serious when the variance of the random effects
is large.

Breslow and Clayton (1993) used Laplace’s method to derive the score function
of the penalized quasi-likelihood (PQL) derived by Stiratelli et al. (1984). For the fixed
and random effects estimation, they modified Green’s (1987) Fisher scoring for
estimating equations so as to borrow the strength of the normal theory linear model. For
estimation of the variance components, they derived estimating equations, again using the
normal theory, from the “REML version” of the profile likelihood of the approximate
marginal likelihood, ignoring the dependence between the fixed effects and the variance.
However, they showed PQL to be downward biased for estimates of both fixed effects
and the variance components (Breslow and Clayton, 1993).

In an attempt to asymptotically correct the biases in approximate estimators of
regression coefficients and the variance in generalized linear models with a single
variance, Breslow and Lin (1995) expanded the joint distribution, using Taylor series, of
the data and the random effects to the second and fourth orders around the current
estimates, and then used Laplace’s method to approximate the marginal likelihood. They
termed the approximation up to second-order Taylor expansion the “first-order Laplace
approximation” and that up to the fourth-order Taylor expansion the “second-order
Laplace approximation”. They found that the first order Laplace approximation for the

variance estimator was seriously biased while the second order Laplace approximation
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was better. Lin and Breslow (1996) extended the approximation further into models with
multiple components of dispersion, with zero correlations among them.

Given the computational burden and other problems for Bayes and full likelihood
approaches, the approximate/quasi- likelihood approach seems to be worth exploring
more. The idea of Breslow and Lin (1995) and Lin and Breslow (1996) provides a way
for the approximate/quasi -likelihood approach to better approximate the marginal
likelihood and thus the estimation. Working in the approximate likelihood paradigm and
trying to reduce the underestimation, this dissertation will extend their idea to the most
general case where multilevel logistic models will have arbitrary number of random

effects with a general variance covariance matrix.



Chapter 3

METHOD

Introduction

This chapter will find the approximate marginal log-likelihood using Laplace’s
method. Then, it will find the derivative of each term in the approximate log-likelihood
in order to apply the approximate Fisher scoring for the estimation of the fixed effects
and the variance-covariance components of the random effects.

Following is a list of all the formulae from Magnus and Neudecker (1988) and
Magnus (1988) that are needed for the derivation. In proving theories in this section,

these formulae will be referred to only by equation numbers.

vec(ABC) = (CT ® A)vecB (F1)
vec(A)" vec(B) = tr(A" B) (F2)
(A® BC® D)= AC® BD | (F3)
tr(A® B) = tr(A)tr(B) (F4)
tr(Axx™) = xT Ax (F5)
dloglF|=rFdF, (F6)
trAdX = (vecA" )" vecdX , A being constant (F7)

15
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vecdAXB = vecA(dX)B = (B" ® A)vecdX , A and B being constants (F8)

vecdX ™ = ~(XT)" ® X~ )vecdX (F9)

[vec(ABC)Y =[(CT ® A)vecB}' = (vecB)" (CT ® A)" =(vecB)"(C® A7) (F10)
(" ®a")= (vec(ab’))r, b being a column vector. (F11)

The Logistic Model

We consider dichotomous responses from individuals nested within group i:
¥, = i, +e,, where y, is an n, x 1 response vector of either 1 or 0 for cluster i , with
elements y,, i ranging from 1to ], and j ranging from 1to n,. e, isann, x1 column
vector of error terms. , is an n, x 1 column vector, the conditional mean of the ith

cluster given b,, each element being

- = ! = l
B gy e

Thus, each term 4, in 4 is related to each term 7, in 7, through the link function

Ey ) 2)
1-uy

n, = X, B+ Z,b, is a column vector, the linear predictor of the ith cluster. Here X, is an

ny = 8(Hy) = los(

n, x p design matrix for the fixed effects, 8, of the ith cluster, § beinga px1 vector.
Z,is an n, x g design matrix for the random effects, b,, of the ith cluster, b, being a
q x 1 column vector that has a distribution N(0, D), where D isa g x ¢ variance-

covariance matrix of b .
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_Submodel

If D=6, 6 ascalar, then b, is a scalar, and Z, becomes an n, x 1 vector of 1. As

1

a result, the conditional expectation becomes u, = E(yy = llb:)= l+exp(—X;ﬁ-b,) ’

and 7, = X 0’ B+b,.
Likelihood
For each observation j in the ith cluster, the conditional density of y, given b, is

f(yy|b3) = ﬂ;’ a- /‘y)l-y' . 3)

Then for the ith cluster, the conditional density is

»n
Fou)=T]xya-u)™. @

=

The log of Equation 4 is /, = y 75, +s,, where s, = isy , with s; = log(1- 4,). Thus,
J=1

the conditional log-likelihood of all the clusters is

1 1 1
=2 yin+Xs. )

=] =] i=]
To get the marginal likelihood, we wish to integrate out b, from the conditional

density of y,:

L= [T1Albpo)b, =TT o fenpt, - 347000 . ©)

27y
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Likelihood of the Submodel
For D =@, the joint density of y, and b, is

L= II;[f(Jﬁ'bt)P(b)&: = H J'exp(l, _'21_9'1’12)&1 .

Approximation to the Log-Likelihood
Direct integration of Equation 6 is impossible and numerical integration
cumbersome. Breslow and Lin (1995) used Laplace’s method to approximate the
integral, limiting the variance of the random effect(s) to either a scalar (Breslow and Lin,
1995) or a diagonal matrix (Lin and Breslow, 1996), however. That is, they first
approximated the integrand in Equation 6 using Taylor expansion. Then by regarding
the second-order term of the Taylor series as the kernel of a normal distribution,
N(b,, <(1,® - D™)™), with ,® being the second derivative of /, evaluated at b, they
took expectation of the other terms in the series under this new normal density, and

approximated the integral as a sum of moments (up to the fourth moment). Note that
0, =—(1™® - D) is also the posterior variance of b, given y,, D,and B, if the
linearized dependent variable (McCullagh and Nelder, 1989) y; is assumed to be
independently and identically normally distributed, i.e.,
y; ~N(X,B+2Zb, Z]DZ,+W,).

In this section, we will generalize their approach to allow covariances among

random effects. In addition, we will improve the accuracy of the approximation by

including terms up to the sixth moment.
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First, we approximate /, — %b,’ Db, inside the exponent of the integrand with the

Multivariate Taylor expansion around a current estimate of b,, 3, , that maximizes the
expansion. (See Appendix A: Multivariate Taylor Series Expansion)

_lr—n _lT-I
L=5b Db =T~ BTD + ab’

L.(b,-b)-bD"(b,-b)

_l_ Yy r( 521 -1

f( )
dbob"

1 ~ ~ ~
+ 5l -BY &b b)Y | ——7— -},
&, )
5 I ve C(a b3 b7
ve ) br
1 ~ ~ ~ ~
+ 5l -8) ®(,-5) ®(b,-5)] > (5,-5)
1 ~ ~ - -
+ 5,6 =B) @5 -5 ® (b, ~b) ®(5,-5)]x
&, )
5 g m(a 3 b
vec| 55
3 vec ob (5-5)
a bT i i

l g g et -~ ~
*a[(b: ~5) ®(b,-5) ®(5,-b) ®(b,-b) ®(b,~5) |



g v“(a b b’)

ab

T
o vec ob

T ~
avec abaTb (bl-bl)

where

1. 7 is the value of /, = y7n, + 5,, evaluated at the current estimates 8, D and Z,;

2.

al ~ . . e .
S = b =0u = u) Z, = (3 - nY Wz, with [ = Z]W,(y] - 1), where ¥,
is diag{w,], with w, = ,(1- ), the derivative of u, with respectto 7, , and

=W, (y - u4,) + 1, , the ‘linearized dependent variable’ (McCullagh & Nelder, 1989).

7o
e ;;I;T) Hvecl,® -
2 = éb” =1? =~«Z] ®Z])AZ,, where, 4, =iay(EyE:®Eg),

J=l
an n xn, matrix, with a,= g,(1- 4, )1-24,;) = w,(1-24,), the second derivative

of u,; withrespectto 7, ,and E an n, x1 vector with the j th entry being 1, the others

being 0.
A,
e @ d,r)
Hec &
&)
5 éaecl =1W=-ZT®(Z'®Z27)G,zZ

@ @
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where G, =ig,(E,E:®Ey®Ey),an n, x n, matrix, with g, = w;(1-6w,), the
J=l

third derivative of 4, with respectto 7,.

ool o)

&,
He QT

T ~
6. & =10 =~/ ®Z ®Z] ®Z])Hz

where H, =3 h,(E,E] ®E, ® E, ® E,), an n! x n, matrix, with h, = a,(1~12w,),
J=l

the third derivative of u, with respectto 7, .

A"
&T

e &, )
Hec] ————— 2

T ~
7. 2. =1®=4(ZT®Z'T®Z'®Z"®Z )FZ,
where F, =2:fy(EyE;®Ey®E”®E”®Ey),an n’ x n, matrix, with
J=1
f; = 8,(1-12w;) —12a;, the fifth derivative of u, with respectto 7, .
All of the above are derived by using Equation F8, regarding the matrix to be
differentiated as X and those on the two sides as 4 and B.

Then we will prove that the approximate log-likelihood is approximately
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log(L)~ L, = Z{—loglq-—logl |+l—-b’D"b +log M,}, )

here 07 = (@ - D)= (D" +Z,’W,Z,). B, =7;0,Z,,and

"l——i & 0 482 UBS kTQI ;» With k:=($auBnZnJ'

Proof Substituting the integrand with its Taylor expansion, the marginal

likelihood becomes
L -t 7 1ap ;"(1) -1TN\T Y
Le]J@m? 1D fep{T -3 87D, + (L0 - D5)"(6 - B)
=]
1, =~ - ~ 1 ~ ~ T ~
+5, -5,)"(1,® - D'\, —b,)+§[(b, -5) ®(, -b,)’]l,"’(b, -b)
+=[(6,-5) ®(5,-5)" ® (5, - b)) [{ (5, -b)

+ 5[, -B) ® (5, -5) ® (5, -5 ® b, -b) |5, - ) 8)

+=[(b,-B) ®(5,-b) ®(b,-5) ®(b,-5) ®(5,-b) [T, —E)}db,,

where b, is the maximizing value for L, i.e., b, solves > = D™'5, = 0. Thatis,

b, =DI" = DZTW,(y; - X,-Z},). To find b,, collect b, at the left hand side,
(I+DZTW,Z,)b, = DZTW,(y; - X,B). Thus,

b =(I+DZ]W,Z,)"' DZ[W(y, - X,B)= 0, ZW,(y; - X,B). Consequently,

1O _ D™'b, vanishes. The second order term is retained as the kernel of the new Normal

density N (3,, 0,). Next we consider the approximation of the higher order terms.
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1 ~ ~ ~
For R= i[(bi - b: )T(bl = bi )TIE(J)(bI - bl)

1¢ - ~ ~ ~
+ 4516 -B) @5, -B) ® (5, -5 [ (5, - )
l . ~ ~ ~ ~ i~ ~
+ 56 =B @B -5 ®(1,-5) @, -5 Ji®,-5)
1¢ ~ ~ ~ ~ ~ 1~ ~
+ 2[5 =B) @b ~B) ® (b, -5) ® (5, -5) &5, -5 [ (5, -5)

in the exponent, we adopt the formula for approximating an exponential:

exp(R)~1+ R+ -12- R+ % R*+.... However, through experiments, the contribution of

the expansion terms to the log-likelihood of orders higher than the seventh is negligible.

2 2
We only take up to R and R? . Moreover, we find the approximation R? for

2
%[% ((b, ~B) ® (b, -5 )b - 5,)] to be non-negligible in approximating the log-

likelihood. Therefore,

l ~ ~ o~ ~
exp{R} = exp{;[vec(b, -b) ®(b,-b, )’]I, (b, -b,)

1r - - ~ A~ ~
+ 5l =B) @b -5) ® (5 - B i, -5,
1¢ ~ ~ ~ ~ 1~ ~
+ 516 =B @b -b) @5 -5) ® (b -5 Y [io®,-5)
l [ ~ ~ ~ ~ ~ o~ ~
+a _(bt - bl)r ®(b: - bl)T ®(b1 - b/ )T ®(b1 - bl)r ®(bi - bl)T]Il“)(bl - bl)}

={1+%[(b,-5.)’®(b, -5y 1O, -5)
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+ZT:(b'"S')r@(bt'5)78’(1&-5,)’]7,“’(1,,-5)

l [ ~ ~ ~ - ~ N
+§_(bl-bl)r®(b,-b')r®(bi_bl)r Q(b;-bi)T]Ii(s)(b,—bi)

l [ ~ ~ ~ - - - _
+a (b; -b:)r ® (b, "bl)r (b, —b,)' ®(, _bI)T ® (b, _bl)T]ll(c)(bi -5)

1 N N _\?
+ -2-(%[(1" -5) ®(b,- b,)’]l, )b, - b, )) } Then Equation 8 becomes
L L ~ 1~ ~ ~ .~ ~
L= I-I(2ﬂ) 2 ID'—{ exp(/, - %b,’D"b,)I{exp[%(b, -b I)T(li @ _p~ Xb, - bl)] X
=]

1 - ~ e -
<1 + 5[(1;, ~B) @b, -5 iV, -5)

+2[6 =B ® (b, -5) ® (5, - b)Y [, - 5)

1¢ ~ ~ ~ ~ ~ ~
+ 5116 - )" ® (b, - b)) ® (b, - b) @ (b, -5, -b)

1r ~ ~ ~ ~ ~ 17 ~
+ il 6 =B ® (6, =) @5, ~5) @5, ~5) (5, -5 [ b, - B)

1(1 ~ ~ 1~ ~)?
+ 5(;[(“ - bl )T ® (bl - bi)T]Ii (3)(b1 - b:' )) >}db1 &)
Using Laplace’s approximation method, multiplied by the normalizing constant,
1
(27)?|Q)|2 , Equation 9 becomes the expectation of 1 plus the third, fourth, fifth and sixth

moments of a multivariate normal distribution with mean 0 and variance O, multiplied by

1O T® TO T and(l,®)? respectively. However, the odd moment of a normal

distribution is 0. Thus the likelihood can be approximated as (See APPENDIX B: The
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Six Moments of a Multivariate Normal Distribution, APPENDIX C: Proof of the

Substitution, and APPENDIX D: The Expectation of the Third Term Squared)
= = | 11 ~ 1~ ~
L=]]@n)?|Df2(27)*|Qf exp(i, - gb,'D"b,) x
=l
E<l+—(b -5) ®((b-b ) ®(O, - b)]I“’(b -b)
+72—0(b -b5) ®(b,-b,) ®(b -b) ®(b,-b) (b, - b)’]l“’(b,-b’,)
1 ~ ~ ~\2
+ (6 -5y © 6, -5y o -5)) )
CER N DU PO 1 ~
= HIDl 2 'QI|2 exp(/, - Eber ') <] + E{Vec[Qi ® 0,1} vecl,
(]
+41—8{vec[Q, ® Q0 ® Q1) vecl,® +%k}' Ok, > The matrix pre-multiplying vecl,® is

the result of % multiplied by the fourth moment of the normal distribution. The matrix

pre-multiplying vecl,® is the result of -61—'multiplied by the sixth moment of the normal

distribution. The derivation of the last term can be found in APPENDIX D. Therefore,

the approximate log-likelihood is

log(L) = 2’: {-- log|D| - = log| M +T - b b'D™'b, + log<1 +—[vec[Q, ® Q] vecl,®

+4i8{vec[Q. ®Q, ® Q1) vecl,® +%k.’Q,k. >} (10)

Substituting 7@, 7 7 and ] into Equation 10 gives
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log(L) = Z{—log|D|--log|Q |+1-- 5'D'b, +

log<1 ~Lec(0, ® Q)Y wel(Z] @27 ©2])G,2)

1
—E{VeC[Q, ®Q0,®Q]) vecl(Z/ ®Z/ ®Z] ®Z] ® Z[)F,Z]

15 .,
+7—2k, Ok, >} ¢0))

Now we simplify the fourth order term in Equation 11. Let
e, = [vec(Q, ® O, vec[(ZT ® ZT ® Z7)G,Z,], ignoring the constant, %1 First, by
Equation F1, regarding G, as B in the formula,

J
vecl(ZT ® ZT ® Z7)G,Z,1= vec|(ZT ® 2T ® Z7)Y g,(E,El ® E, ® E,)Z, ]

J=l

J
= vec[. g,(27 ® ZT ® Z X E,E! ® E, ® E,XZ, ®1®1)]
J=l

J
=Y g,vecl(Z,Z; ®Z,® Z,)]. (12)
J=l

Here 1 isascalar 1. Z; isa ¢ x1 column vector of the random effect design
matrix for person; in group i. Since Equation 12 is the vectorization of Kronecker

products of the same vector Z, it can be re-written as

J
vec[(Z] ® Z] ®Z1)G,Z 1= g,vecl(Z,Z] ® Z,Z])] (13)

J=l
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(by F11, see also PA-12 in PRE-APPENDIX). As a result,

e, = [veclQ, ® QII' Y g,vec(2,Z] ® 2,Z7). (14)
J
Since Q, is symmetric, so is O, ® O,. By applying Equation F2, Equation 14 becomes

e, =Y g,r{[0,® Q1(Z,Z] ®Z,Z])}. Furthermore, by Equations F3 and F4, ¢, is
J

simplified even moreto ¢, = i g,{rl(Q.2,Z;1} . (15)
7

To get rid of the trace function of the above, we take advantage of Z, being a

q x 1 vector, and use Equation F5. Therefore, Equation 14 becomes, finally,
e=38,202,7 =3 ¢,B. 16)
J J

The sixth order term can be simplified in exactly the same way. That is,

vecl(Z/ ®Z[ ®Z] ®Z] ® Z)F,Z)]

J
=vec(ZT®ZT®Z7 ®27 ®Z)Y f,(E,EI ® E,® E,® E,® E,)Z, ]
=

J
=vec[). f,(Z,Z;®Z,®Z,8Z;®Z,))]
Jj=1

J

=vec). f,(2,Z; ®Z,Z; ® Z,Z])) a17)
J=l

Asaresult, g,={vec[Q,®Q ®Q]} vec[(Z ®Z ®Z] ®Z] ® Z[)F,Z,]

= (vecl0, ® 0, ® Q1) Y. f,vec(Z,Z] ® 2,2 ®Z,Z7)
J
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=Y £,#102,2T ®02,2] 02,21
J

n, 3 n, 3 n
=2 ArezZ) =Y s(Z0z) =Y 58 an
J J J
Putting ?le, and 4—;q, back to the approximate log-likelihood, it becomes

log(L) = L, z{—log|o|-—1°g| N+ -—b’D"b

1< 1 ¢ 15
+10g<l—§$gy3; -ZgﬁfilB; +7—2ka,k, >}
Hence we have finished the proof.
\ .. he Submodel

For D = 6, the log-likelihood of the data is obtained by substituting D by &, Z,

by the scalar 1. Therefore, [, = 7®, 7 = 2'1;(3’ @ = zzj“’ , and
7 7 J

n
1® = Z 1, for the univariate case. Then we have
7

Ll-1 1 o, -~ ~ 1 =
log(L)= Ly = 2{7 log6- -2-Iog(0" - X 1®y+1, - 2—01;,.2
i=l J

l ‘ T@®rp _ . T (2)y-172 l “ T®rn! _ C T(@)y-193
+log(1+2 > [ °1(6 1,2 +4sZ’” (6" -312)"
J J J

J

15[21(3)] (6" - "21;2))—1]3>}_
72 y
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Approximate Fisher Scoring

This section will find the first partial derivatives of the terms in the approximate
log-likelihood, L,, with respect to the fixed effects £ and the variance components D,
separately, and then merge the derivatives into one score function vector, S,, for each

group i, so as to form the approximate Fisher scoring (Green, 1984),

s
(Q.8,ST)'D. S, where S, =[S“]. Note that to take the derivative of a scalar s with
[ i D,

respect to a column vector v is the same as taking its derivative with respect to v, and

then take the transpose of the resultant row vector. That is, gs_ (;ST
v

T
5y ) . The latter is

used here because it is more straightforward in applying formulae by Magnus and

Neudecker (1988).
Implicit Diff ial
The posterior mode of the random effects, 3, , depends on the variance D and the

fixed effects B, i.e., b, =b,(8 ,D) = DI . In finding score functions for # and D we

need to take this relation into account by finding the differentials, Zﬂbf, and 5(:2:1’) uE
through implicit differentiation.

3b, _ DI é ~ db

& - - Dl g 0 mH)=-DZW(X,+Z, o).

Collecting %’% at the left hand side, (I + DZ’ WZ,)% =-DZ'W,X,.
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Thus, pre-multiplying each side with D™,

=D+ ZWZY ZW X, =07 WX, a9)
Y XB+Zb,
Then ésn" =%=(X,-z,g.z,’w,x,>. 20)
b DI . b,
Similarly, — L = -nYWZ ®11-DZ'TW(Z ——
y AvecD)  AvecD) (i -n) WZ o] LA ' AvecD)
57;’ -1 T -1 n-1f( +,° T
-o‘(TcDTf:(D +Z/WZ)Y D ((y,-n)WZ ®1] 21
X +ZZ' e, e
on___AXBrZ) _ 70Dy -0y Wz, @1, .

AvecD)'  AvecD)”
= [(yl. - ﬂl)rWIZl ® ZIQID-|]'

In the following derivatives for each term in L, all the terms that are functions of 1",’, ,
eg., M, 4, W,, A,G,,and F,, will have partial derivatives not only with respect to the

apparent £ and vecD but also those inside b, using the above derivatives.

Score Function of the Fixed Effects

I will prove that the score function of # for group i is

-1 .
SA = —Z—Zaaz;Q:Zy[Xy - Xirn’lzl Qizy] +X'rn,'(y‘ =)
J

1 1 Lt n, n
+ (25 B 233 6,80, (202X, - XIWZ,07]
i k LI

1 L/ nn,
-5 2 PeBs -2 D £, Biau(Z, 02 1 X - XIWZ,0.2,)
k k
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15
+ 36 S:gyklrgl ZyZ:QI Z”)(X” - X,’W,Z, ley)

;Z Zza,a,kfg,z (270, Z, )’] - XIW2,072,]

-%[ia,(kfg, Z&)2]X& -X/W.Z, QIZE]},

where p, = h,(1-12w,)-36a,8, .
Proof Making use of Equations F6 first, and then F7, and F8, the derivative of

the second term in L is:

g - ez ) 7

J vec(ZTW,Z))

-1
= vec( D'+Z'wz)'T g

-—ia”[vecQ,] (Z,®2Z,)[X, +2, dﬂ"]

—1& )
=~ 24,Z,02,1X; ~Z;QZ/W,X,] (by Equations F2 and 19), 23)
J

T
where é’ﬁgs—wﬁ_(z’@z'),«i (X,-Z0Z'WX,)

=Y a,(2,®2,) (X; -ZIQZW,X)). 24)
J

Equation 24 is obtained by regarding Z’ as 4 in Equation F8, and Z,as B. We vectorize

W, and take its derivative to get 4,(X, - Z,0,Z'W,X,). However,
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4,= ia,(E,Ey' ® E;). We make use of this special structure to decompose 4, and get
J
Equation 23. The transpose of Equation 23 is the first term in the score function.

mr I =, -4 )T(XI -ZIQier",lXI) = ()’: - r],)rW,(X, -ZIQIZIT",IXi) (25)

likelihood.

~

S N L CAR AR 29)

However, since b, = DZW,(y; =1,), D™'b, - Z[W,(y; =7,)=0. In adding up
Equations 25 and 26, 57 D™'Q,ZTW,X, —(y, - n,W,Z,Q,ZTW,X, = 0, with only
(y; = n,)"W, X, left, the transpose of which is the second term in the score function.
The derivative of log M, in the approximate log-likelihood function will be

dlog M, 1 _M,
;,;1 =M W @7

We take derivative of the first term in M, .

PR AN A ARALAAD

23" 2,B,(Z10, ® ZTQ,XZT ® Z1)A(X, - ZOZW,X,)
J

=13 hB2 233 g,B,0,(Z10.2, V11X - ZIQZTW X)) (28)
k r J
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where B, =Z,0,Z,, B} =(Z;0Q,Z,)’,and h; is the derivative of g, with respect to

1, - The first item in the right hand side of (28) results from taking derivative of g, .

The second term comes from taking derivative of the B . Since Bj is a scalar,
i J B,
differentiating the second term leads to 2)_ g, B, éﬁ’ , for which we use Equations F8

vec(Z/W,Z))

B (29)

and F9. Applying Equation F9, we have 5/9’ —vecQ, =—(0,®0,)

Substituting Equation 24 inside Equation 29 and then applying F3 we have the second

term in Equation 28. Then, the transpose of Equation 28 is

PR WHLINCH ERN ER H LA EARNCD

Multiplied by %l , Equation 30 is the contribution of the fourth order term of the Taylor

series to the score function of £,.

Similarly,
37 LS8 = (B -3Y Y B2 020 XL - ZI0ZIW XY, 6D
J k LI

where p, = h;(1-12w;)-36a,g, , the derivative of f, with respectto 7.

The transpose of Equation 31 is

5 218 =X n B =33 Y S Bau(Z 0201 K - XIWZ,0Z,)- 6D
J J

Multiplied by -;—; , Equation 32 is the derivative of the second last term in M, .
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For the last term in M,,

é L]
7 Ok =2k]0 {[Zg,,zyz;g zy)(xy’ -2/0z/WX,)
J

‘[i“u (z/0 ®2,2jQ, )I"z'aa (Z. ®Z, )}X: ~ZQZ[W X, ]}
J k
e {z 04(0,2,80,7, ﬁxz ~Ziozwx)

k

( n ‘
=20 28,2,2,0, z,,)(x; -Z;0.z'W,X))
J

- 2ka o 2 Z ayauzy (Zyr 02z, )2 }X sz - Z:QiZITWiX 1]

J &k

n
-[Z Ay (leQi Z, ) ]X ; - Z: QtZJTW; X i] . (33)
k
The terms of Equation 33 that involve 2k Q, are obtained by taking derivative of the

k, vectors on both sides of O, . To take derivative of k,(k, = Za,,‘B,,Z,,, ), first use

k

Equation F8 to get 2k/Q, in front of the derivative of k,. Then take derivative of a, by
using Equation 20, and derivative of Q, inside k, by using Equations F8, F9, 24 and
F3. Finally, take derivative of Q, between k] and k,, using Equations F8, F9 29 and

F3. Thus, the transpose of Equation 33 is, since k/Q,Z, is a scalar,

a L]
7 o= 2(2 gk’ 2,2;0, z,,)(x,, -X'W.2,02,)
J
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-Z[iiauaak.-’gza zjo, Z&)I}Xa -X/%2,02,]
Jj &k

‘{iaﬁ(kjrgl Zu)zlxu ‘X:TWIZI QIZ&]’ (34)
k

Multiplied by % , Equation 34 is the last term in the score function of the fixed effects

B.



This section will find the score function of the variance-covariance matrix of the random

effects. It will prove that

S - -_l D-l l -1 -1 1 .2 -1 T . TW Z
D=7 vec(D™') + Evec(D 9,D7) - E - ayvec(D QIZyzy QlZy(J'i -n) WZ)

+%vec(D"E bTD™)

+%’{- —;—i h,B; vec(D"'Q,Z,(y; -n,) W,Z,) -%igyB”vec(D"Q,Z”Z; o,D™)
%it};a,gys,(zgg,z, Yvec(DQ.Z,(y} - 1) W,Z)

-;:Ei;p,,B: vec(D™'Q,Z,(y; - 1,) W,Z,) -%ij:ﬁBﬁ"eC(D"Q,Zgzar 0.0™)
+-1%$Za B2 0.2,V vec( D QZu(y; - 1) W,Z,)

15 ~ .
+ E i gy(leQi Zy )(Z;Q,Z” )vec(D thZy(J’: /] )T W.Z)

15 - g, 15¢ - .
+7-2"ec(D 'Ok k[ QD l)'ﬁ a, (k[ Q.Z, ) vec(D'Q,Z,(y; - 1) W,Z,)
X

15¢ _ -
+§ aa(k:r 0,Z,)vec(D 'Q,Z,,Z,;Q,D )
J

- ':13_2 i 2": aya,(k;Q.Z,XZ;Q,Z,) vec(D"Q,Z,(y; - n,)' W,Z, )}
J
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Proof

By applying Equations F6 and F7,
5 -l -1 -1 T
oy 3 oDl = 5 (ecco™)’ G5)
Then, take the transpose function off Equation 35, which is the first term in the score

function.

For —;—logIQ,I , using Equation F6, F7, F9, 22 and F10 we have

7 1 ' -1 _
AvecD)" (E loElQ'I) - AvecD)" (? logID + Z'TW’Z'D

-1 Hec(D™ +ZTW,Z))
= 2 ‘r(QI( avecD)T

1 - - 1 . . -
= 306D QDY -3 (vecQY Yy, - n) Wiz, ©2,2]0.0")

1 . T T
=300 ~3 P, ec00.2,2]02,5; -1y W2V 36)

where

vec(D™ +Z'WZ)
AvecD)”

=[«(D"®D")+(Z] ® Z))4((y; - 1) W,Z,®Z,0,D™)]. 37)

Take the transpose off Equation 36 to get the second and third terms of the score function

Sy, -
o7 o
dvecD)T = [vec(D Q:Z: n,l(yl =)y, =) W;Z,)] s (38)

using Equations 22 and F10.
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~ ~ -l ~ 3
——a—7vec( “15rpg) = -%(b’@b’)é’ﬂ—)-bw" 2,

AvecD) " T AveeD) ' T AveeD)"
= 5 vec(D™5, BT D) - et D Q.55 - nY W2, )

using Equations F8, F9, F11 and 21.
In adding up Equations 38 and 39, however, because of the fact that

b, =DZW,(y; -n,),
[vec(D'Q,ZTW,(y; = n,)¥; = n,)"W,Z,))" —[vee(D™'Q,D'b,(y; - ) W,Z)I =0,

with only %[vec(D"E b,"D™")]" left, the transpose of which is the fourth term in the
score function.

For the derivative of the first term in M,

a(vecD)’ zg'fB ZhuB’Z’ (v -n) Wz ®QD"]

“ Hec(D +Z'W,Z)
-238,8,(2] ®Z])Q, ©0) =

=Y h,B: [vec(D"'Q,Z,(y; - n) Wz, )T +2)g,B,Ivec(D"0,Z,2;0,D™ )
J J
-2)°Y a,8,B,(Z]0.Z, ) [vec(D"QZ,(y; - n Y WZ)V , 40)
Jj &
using Equations 22, F8, F9, 37 and F10. The transpose of Equation 40 multiplied by %1

is the derivative of %l Z g, B, with respect to vecD.
J
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Similarly,

AvecD) Z;f,Bi i;-PuB; vec(D"QZ,(y,-n,) WZ)
+32': fszvec( D™'Q, Z, Z,ITQ, D)
J
_3zza“f”B;(Z;le& )2 vec(D"'Q,Z,,(y,‘ = )TWIZI) . 41
J &

Bquation 41 multplied by 1 is the derivtive of =2 3" 7, BT with respect to vecD.
J
The derivative of the last term in M, is

7

AvecD)’ k[Q k= 2k]Q, {g gyZyZ;Q,Z”Z;[(y: -n) Wz ®0D"]

< vec(D™" +ZW,Z
-2.4,(Z/ ®Z,Z]X0,® Q) ( — ’)}
J

AvecD)”

ovec(D™ +Z[W,Z)
AvecD)”

(kT ®KTXQ, ®0)
- z'g 2,(K70,Z,)B,[vec(D"Q.Z,(, - 1, W.Z)I
+2$ a,(k’Q,Z,)[vec(D"Q,Z,210, D™’
- 2$$aua,,(k,,’ 02, X2} 02,V [vec(D 02y (¥, - ) WZ)T

+ ["ec(D.l Ok, kIT QID—l )]T - i ay (kITlek )2 [vec(D"Q,Z, (§Y : =7 )T Wz, )]T . 42)
k
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Again, we take derivative by using Equation F8, F9, F3, 22, 37 and F11.

The transpose of Equation 42 multiplied by % is the derivative of the last term

in M, with respect to vecD.



Chapter 4

AN ILLUSTRATIVE EXAMPLE

Introduction

This chapter presents an analysis on the data set of 1988 National Survey of
Primary Education in Thailand (Thailand data). The analysis serves mainly as an
~ example of the use of the multilevel Bernoulli model. It will also explore the differences
and similarities among the four methods, namely, the first order Taylor expansion of the
conditional expectation of the response (PQL), the second order Taylor expansion
(PQL2), the sixth-order Laplace approximation to the log-likelihood (Laplace6) and
Gauss-Hermite Quadrature approximation to the log-likelihood (Gauss). In addition, the
differences produced by Gauss in using different numbers of quadrature points will also
be of interest in this chapter.
Thailand Data

The Thailand data (USAID contract DPE-5824-A00-5076-00) were collected in
1988 by a research team from College of Education, Michigan State University, and
Royal Thai Government, Office of the National Educational System. Information
gathered includes survey and case studies. The purpose of the project was to “provide

reliable data related to outcomes and costs of education and to allow study of policy

4]
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alternatives to improve the quality of primary education.” (Taoklam et. al., 1992; See also

Raudenbush and Bhumirat, 1992 ; Raudenbush, Bhumirat and Kamali, 1992)

The survey employed a multi-stage stratified sampling design. Samples were
drawn at levels of schools and individuals. First, 405 schools were selected randomly
within provinces. Then, one sixth grade class per school that had engaged in the national
assessment project was selected at random from selected schools. At the individual level,
samples were drawn from four population groups: principals, teachers, parents, and
students. Student data are the interest of the current study. Information about schools
where the classes were drawn was also collected. Altogether, 405 schools were sampled,
within which data on 8582 pupils were collected. However, after deleting missing
information of schools, data of 376 schools with 7877 students were used for the current
analysis.

Before the survey began, Thailand had launched various programs since 1980 to
improve the quality of education. These included a pre-primary education program, a
national testing program, and various staff development programs for principals and
teachers. The purpose of pre-primary education program was to improve each student’s
readiness for schooling. At the same time the government tried to promote the quality of
administration and classroom teaching through staff development programs, and hold
educators accountable for student learning through national testing programs. By
requiring students to demonstrate basic skills before they can advance to the next grade,
the country strove to ensure the quality of the product of school education --- student

learning. It would be expected that the programs did help elevate educational efficiency.
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Therefore, the research question here is whether students receiving pre-primary

education, controlling for student and school background, had a smaller probability of
repeating a grade.

However, an important variable that needs to be taken into account before making
any claims about our focus of interest is socioeconomic status (SES). SES has always
been found positively correlated with student achievement. I suspect this would also be
true in Thailand. Whether students have adequate nutrition, especially breakfast, is an
interesting variable. Students that did not have breakfast every day either came from
poor families that could not afford breakfast every day, or had parents who did not pay
too much attention to the children. Either way, not having breakfast interferes with
students’ concentration on learning, which might increase the probability of repeating
grades. Finally, whether a student spoke central Thai dialect could also affect his or her
probability of repeating a grade, since central Thai was the language used in class. If the
student could not speak central Thai he or she would have difficulty understanding the
instruction, which would increase the probability of repeating a grade. In addition,
student gender is also an interesting covariate to put in, in order to see if girls do
differently from boys in grade repeating. Therefore, student-level variables include:

response variable — whether the student repeated grade(s) (REP1, 1 = yes,

0= no);

variable of interest — whether the student received pre-primary education

(PPEDID, 1 = yes, 0 = no); and concomitant variables, which are

the student’s gender (DSSEX, 1 = male, 0 = female);
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student’s family socio-economic background (SESC) (grand mean centered);

whether the student had breakfast every day (BRF1, 1 = yes, 0 = no); and

whether the student spoke dialects other than central Thai (DIALCT1, 0 = yes,
1 =no).

On the other hand, school environments may also affect student learning. Schools
located in urban and affluent areas would have a larger enrollment and more resources
than schools in rural and poor areas. Students from poor families who attend a big school
might then have a better chance in education than students going to a poorer school. The
average SES of students in a school is also a good indicator of the resources in a school.
The average number of textbooks per student had in one school is a direct indicator for
the instructional resources to which students have access. Without sufficient textbooks, it
would be very difficult for students to learn. Thus, school information of interest
includes:

natural log of school enrollment, grand mean centered (L_ENRC);

the average of students’ SES, grand mean centered (MSESC); and

the average of number of books per student, grand mean centered (MTXBKC).
Results

After some preliminary runs, I found that the regression coefficients for variables
in the first level either did not have significant amount of variance themselves, such as
PPEDID (pre-primary education), DSSEX (student gender), or their variation could be

explained by level-2 variables, such as SESC (student family SES), DIALCT]1 (student
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spoke dialect), and BREF1 (breakfast). Therefore, I decided to have a univariate random

effect model. The first-level model for the data set is

Ny = Qg +a,*(SESC), + a,,*(DSSEX), + a,,*(DIALCTI),
+a,,*(BREF); + as,*(PPEDID),,

while in level-2,

@ = Poo + Bu*(L_ENRC), + B, *(MSESC), + b,
a,, = Pyo + By * (MSESC),

a, =Pxn
a,, =By + By *(MIXTBKC),

@4y = Pu + Bu*(L_ENRC),
as =Py,

where b, ~ N(0, Dy)-
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Table 1 - Estimates of Thailand Data

PQL PQL2 Gauss-10 | Gauss-20 | Gauss-30 | Gauss-40 | Laplace6

Bw |-2.0137 |-22166 |-2.2353 |-2.2009 |[-2.1990 |[-2.1998 |-2.1940
(.1409) | (.1524) | (.1429) | (.1420) | (.1421) |(.1421) | (.1421)

Bu | -4031 |-4136 |-4614 |-4095 |-4159 |-4156 |-4147
(1600) | (1781) |(1933) |(1909) |(1915) |(1914) |(.1914)

B | -6794 -.7889 - | -.7884 -.7845 -.7814 -.7809 -.7753
(.2606) | (.2958) | (.3055) [(.3079) |(.3079) |(.3079) | (.3076)

B |-4971  |-5223 |-5325 |-5220 [-5220 |-5220 |-5223
(1003) | (1056) |(1027) [(1035) |(1034) |[(1034) |(1034)

B, | 4657 .5003 5321 4962 4976 4972 4978
(.1408) | (.1562) | (.1658) | (.1651) |(.1651) | (.1651) | (.1651)

Bw |.5549 | .5819  |.5840  |.5825 5825 5825 5827
(0728) |(0764) |(0710) |(0704) |.0704) |(0704) |(.0704)

By | 3005 3358 3658 3255 3336 3336 3319
(.1262) | (.1384) | (.1235) |(.1304) |(.1300) | (.1301) | (.1300)

B, |-1012 |-1112 |-1513 |-1052 |-1114 |-1109 |-.1104
(0593) |(0655) |(0671) |(0781) |(0776) |(0776) |(.0777)

Bo | -4154 -.4327 -4214 -.4354 -4335 -.4340 -.4337
(.1032) | (.1081) | (.1041) |(.1026) |(.1028) | (.1028) | (.1028)

Ba | 2739 2907 2905 2911 2910 2910 2910
(.1355) | (.1461) | (.1447) |(.1440) |.1440) (.1440) | (.1440)

By | -4146 -.4501 -4555 -.4462 -.4489 -.4482 -4478
(.0947) (.1007) | (.0993) |[(.0994) |(.0994) | (.0994) (.0994)

D,, | 1.0703 1.444 1.473 1.383 1.390 1.388 1.3771
(.1187) | (.1543) (.1830)

** numbers inside the parenthesis are standard errors

Table 1 gives the estimates of the fixed effects and the variance by Laplace6,
Gauss-10, Gauss-20, Gauss-30 (30 quadrature points) and Gauss-40 (40 quadrature
points), PQL, and PQL2. Although the methods give different estimates for the
parameters (Table 1), they agree on the .05 significance level for all estimates, except for
B, by Gauss-10. In fact, the independent variables, except g,,, are all very powerful

predictors for grade repetition. Especially the school level variables, L_ENRC (log-
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enrollment) and MSESC (school mean SES) not only have great impact on the intercept,

B> but also help predict, respectively, the impact of whether the student had breakfast
every day (BREF1) and that of the student’s personal SES background (SESC).
However, their impacts on BREF1 and SESC are smaller than, and in opposite directions
to, those on the intercept. That is, while students who did not have breakfast every day
(BREF1) and came from family with low SES (SESC) had an increased risk of repeating
grades, the effects of these adverse personal background are weakened if they attended
big schools (high school enrollment) with higher school mean SES. In other words, an
affluent school environment provides a cushion for students from poverty, helping
prevent them from failing in school.

Pre-primary education, our focus of interest, also helped prevent a student from
repeating grades. According to the preliminary runs, there is not much variation in its
effect. Therefore, the effect of pre-primary education on grade repetition was pretty
stable across different schools. On the other hand, students speaking central Thai also
tended to have advantage in their learning. Having textbooks helped reduce the
disadvantage of speaking dialects by about one third of the effects of speaking dialects
other than central Thai. This makes sense since students could learn little by little on
their own if they had textbooks at hand. However, the effect is not significant at .05
level. Its p-value is around .15. Finally, girls did seem to learn better, in primary school
level, than boys. Holding all other variables at the average, a boy had a higher logit of

around .58 of repeating grades than girls.
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The comparison among the estimates by different methods is another interesting

issue. As shown in the table, a lot of the differences between Gauss-10 and Gauss-20 are
in the second decimal place. Gauss-20 and Gauss-30 differ in the third decimal place.
Gauss-30 and Gauss-40 do not differ too much, only at the fourth decimal place. Some of
Laplace6 results differ from Gauss-40 in the third place and some in the fourth place.
Laplace6 results are generally closer to Gauss-30 and Gauss-40 than Gauss-10 and
Gauss-20. PQL2 and PQL are further away. PQL consistently gives estimates that are
smaller in absolute values. PQL2 results are actually pretty close to those of Gauss’s

with larger numbers of points, but they are not as close as those of Laplace6.



Chapter 5§

EVALUATION WITH SIMULATED DATA

Introduction

This chapter compares the 4 methods, Laplace6, Gauss-Hermite Quadrature
(Gauss) (Hedeker and Gibbons, 1994; 1996), PQL (Raudenbush, 1993) and PQL2
(Goldstein and Rasbash, 1996) by analyzing data sets simulated under 8 different models.
The comparison will be in terms of 1) the unbiasedness of the estimates ((ﬁ , vecD)=6

) across data sets under the same model; 2) the mean squared errors of the estimates; 3)

average of standard errors from outputs (8,; ); 4) standard deviation of the estimates

across data sets (SD(@) ); and 5) the relative efficiency of Laplace6 to the other methods.
Eight different models were used to simulate data sets. The first six models

(Models 1 to 6) were univariate random effect models that had a wide range (.52, .2, .1)

of the average conditional expectations of the response y, given b, =0

(u ,]‘o’ = E(E( y,j|b, = 0))) and two different values for the random effect variance,

namely, 1, .25. The data sets were generated by Yang (1994). The purpose of the use of

the six different models was to investigate whether the methods performed differently

49



50
depending on parameter values. Presumably, models with sz“" close to .5 will be the

easiest for all methods, because of the symmetry of the data sets. As 7, becomes
smaller, the estimation task will become more difficult. However, while PQL was
already known to have a large negative bias for larger variances, the performance of the
other methods for large variances was of interest.

Two bivariate random effects models (Models 7 and 8) were constructed to assess
the four methods with dependent random effects, in two ways. Model 7 explored the
performances of the methods under severe conditions with small 7,*”=.143 and extreme
values (1.625, .25) for the variances with a small covariance (.1). The interest of Model 8
lay in the wish to inspect the consistency property of the maximum likelihood estimates
produced by Laplace6. The investigation was launched by comparing estimates under the
same model but with two different cluster sizes in the second level, the first set being 10
times smaller than the second set. The property of consistency would be revealed if there
is little bias in the estimates and the variances of estimates become smaller as the sample
size increases.

The basic structure of the data sets followed Rodriguez and Goldman (1995). In

the first level, we had 7, =log[u, / (1- u,)]= a,, +(childc),*a,, . In the second

level, a,, = B, + (commuc),* B,, +b,, withb,, ~ N(0,D,,). Here a,, = B,, was fixed
for the first six univariate random effects models. For bivariate random effects (Models 7
and 8), a,, = B,, + b, was random with 5, ~ N(0,D,,), and cov(b,,,b,) = D,,. The

values of B,, and B,, were both set to 1. The values for S, were manipulated in order
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to get different values for ,Tl,j“”. The level-1 covariate, childc, was sampled from a

normal distribution with mean .0955621, and variance .0676, while the level-2 predictor,
commuc, was sampled from a normal distribution with mean -.6857591 and variance
.2304. However, in bivariate random effects models, the means of both covariates
remain unchanged while their variances were both changed to 1. There was no missing
value in any of these models.
Univariate Random Effect Data Sets (Models 1 - 6)

The six univariate random effect models used 3 different values for the averaée
conditional probabilities, 7", namely, .52, .2, and .1, and 2 different values of
variance D, 1, and .25, where 1 is usually supposed to be large and .25 pretty small. The
values of B, were .6653, -.7961, and -1.62 for " to be .52, .2 and .1, respectively.
Each data set had 16 observations for each cluster in the first level, and 161 clusters in the

second level. For each combination of the parameters, 50 data sets were generated.

Model 1 had 7{"=.52, D,,=1, while Model 2 had the same value for %", but a smaller
variance, D,,=.25. Model 3 had 7" =.2 and D,, = 1, whereas Model 4 differed from
Model 3 by a smaller variance, D, =.25. Similarly, under Model 5, " = .1, D, =1,

under Model 6, Z{" =.1, 7,,=.25.

Gauss results were computed using 10 quadrature points (Gauss-10). The results
were obtained from Yosef (1997). Ten points were specified because, according to the
MIXOR manual(1993), 8 to 10 points would produce satisfactory results for univariate

data sets, whereas fewer points could be specified for higher dimensional data sets. PQL
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was not compared here since Yosef (1997) has found it to consistently underestimate the

fixed effects and the variance components, in accordance with previous results (e.g.,

Goodman and Rodriguez, 1995; Breslow and Clayton, 1993).

Results of Model |

Table 2 - Averages and Mean Squared Errors of Model 1

Laplace6 Gauss-10 PQL2

average mse | average mse | average mse

D=1 1.0135 | 0.0294 | 1.0142 | .0300 1.0361 | 0.0336
Po=:665267 | 0.6679 | 0.0251 | 0.6677 .0251 0.6750 | 0.0258
Bo =1 09812 | 0.0430 | 0.9835 .0429 0.9913 | 0.0440
B.=1 0.9891 0.0400 | 0.9901 .0401 0.9944 | 0.0405

The clearest pattern in Table 2 is that, under Model 1, the averages and mean
squared errors of the three methods were very close to each other, although PQL2
consistently had a slightly larger mean squared errors than the other two. The biases of
the three methods were small, and the directions of biases for the parameters were the
same too. Another clear pattern is that PQL2 always gave the largest estimate for all the
parameters, whether the bias of the three methods was negative or positive for a particular
parameter. The amount of positive bias of PQL2 for the variance was 3.6% of the
parameter, which seemed to be a little too large compared to that of the other two

methods.



53

Table 3 - Averages of S. E.’s and S. D.’s of Estimates of Model 1

Laplace6 Gauss-10 PQL2
6 2 SD(8) Os SD(6) Oz SD(0)
Dy= 1759 1725 1740 | .1742 NA 1816
Bo=-665267 | .1698 1599 1683 | .1602 .1648 1621
Bo=1 2014 2085 1999 | .2087 1953 2116
Bi=1 1789 2018 1788 |.2021 1749 2032

The standard error of D,, was not available in the PQL2 program. The averages

of the standard errors (6, ) were the average amounts of uncertainty the methods

predicted for the estimates. The standard deviations of the estimates indicated the real

amounts of uncertainty in the estimation. The discrepancy between the prediction and the

reality gathered from the 50 data sets was the largest for all three methods for g,,, for

which all three methods underestimated the variability; and smallest for D,, by Laplace6

and Gauss-10. The differences between the averages of the standard errors and the

standard deviations of the estimates were the smallest for Gauss-10.




54

Table 4 - Averages and Mean Squared Errors of Model 2

Laplace6 Gauss-10 PQL2
average mse average | mse average | mse
Du=25 2656 |.0048 | 2658 |.0048 | 2662 |.0049
£, =.665267 | 6759 |.0111 6760 | .0111 6771 | .0112
B, =1 10123 | .0158 |1.0124 |.0158 |1.0141 |.0159
B, =1 1.0010 |.0380 |1.0011 |.0380 |1.0025 |.0381

Model 2 was different from Model 1 only in the value of D,,. Again, the three
methods were very similar in both biasedness and mean squared errors. The mean
squared errors of Laplace6 and Gauss-10 were identical. With a smaller value of D, the
three methods all had positive bias, although small again. The largest positive bias

appeared for D,,, at about 6% of the parameter by all three methods.

Table 5 - Averages of S. E.’s and S. D.’s of Estimates of Model 2

Laplace6 Gauss-10 PQL2
9 O SDX0) | 6s SD(6) | 6 SD(6)
D,,=.25 .0684 .0683 .0685 .0684 NA .0687
Bo=-665267 |.1074 .1060 1075 .1060 1045 .1061
B =1 1264 1265 1264 1265 1243 1267
B, =1 .1686 .1970 .1686 .1970 .1643 1973

The similar values for the standard deviations of the averages under Model 2 in

Table 5 were consistent with the close similarity of the mean squared errors. The
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prediction of the uncertainty by the three methods were generally pretty close to the

empirical results. All three methods underestimated the variability of S,, by the largest

amount, as in Model 1.

Results of Model 3

Table 6 - Averages and Mean Squared Errors of Model 3

Laplace6 Gauss-10 PQL2
average mse average | mse average mse
Dy, =1 9396 |.0472 | .9362 |.0463 9772 | .0515
Boo=-1960974 |-7794 |.0196 |-7801 |.0199 |-.7836 |.0199
B, =1 1.0254 |[.0328 | 1.0261 |.0330 |1.0361 |.0347
Bo=1 10322 |[.0364 [1.0324 |.0364 |1.0356 |.0369

For Model 3, Laplace6 results also followed closely those of Gauss-10. Contrary
to the situation in Model 1, the three methods had negative bias for D,, and very small
positive biases for the 8’s. The underestimation of PQL2 for D,, was around 2% of the
parameter, while that by Laplace6 and Gauss-10 was much larger, around 6%. The biases
for the £’s by the three methods were very close to each other. However, the mean

squared errors for PQL2 were all slightly larger than those for the other two.
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Table 7 - Averages of S. E.’s and S. D.’s of Estimates of Model 3

Laplace6 Gauss-10 PQL2

6 0E SD(6) og SD(6) Gg SD(6)
D=1 1789 | 2108 |.1766 |.2076 NA |.2276
B.=71960974 | .1633 |.1404 |.1625 |.1415 |.1613 |.1418
B, =1 2029 |.1810 |.2018 |.1817 |.1994 |.1845
B, =1 2077 |.1899 |.2076 |.1900 |.2017 |.1908

A significant pattern of Table 7 is that for Model 3, all the three methods seemed
to under-predict the variation of the estimates of D,,, and over-predict those of all the
other parameters. The largest difference between prediction and empirical results
occurred for D,,. Laplace6 had the largest discrepancy among the three for all
parameters, over-predicting the variations of the three fixed effects; while PQL2 had the
smallest discrepancy.

Results of Model 4

Table 8 - Averages and Mean Squared Errors of Model 4

Laplace6 Gauss-10 PQL2
average mse average | mse average mse
Dy =-25 2435 | .0059 2427 | .0059 2501 | .0060
B, =.1960974 |-7854 |.0077 |-.7853 |.0077 |-.7873 |.0077
B, =1 1.0057 |.0144 |1.0057 |.0144 |1.0075 |.0145
B,,=1 1.0060 |.0498 |1.006 |.0498 |1.0071 |.0499

With a small value of D,,, the mean squared errors of the three methods were

almost identical, as in Model 2. The biases of D,, by PQL2 were almost 0, while the
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negative bias by Laplace6 and Gauss-10 was around 3% of the parameter. The B,,’s

were pretty much unbiased by all three methods.

Table 9 - Averages of S. E.’s and S. D.’s of Estimates of Model 4

Laplace6 Gauss-10 PQL2
7 O SDO) | 6e SDO) | O SD(O) |
Dy=25 0816 |.0774 | .0814 |.0770 NA |.0782
B, =—.7960974 | 1123 | 0878 |.1122 |.0878 |.1099 |.0880
B, =1 1437|1212 |.1436 |.1212 |.1392 |.1215
[, =1 2014 | 2254 | 2014 |.2254 |.1957 |.2256

All three methods tended to over-predict the variation of the estimates, except
for B,,. The discrepancies between the predicted and empirical variation of the estimates
for the three methods were very close, too, although PQL2 had a slightly smaller

discrepancy than the other two methods; the discrepancies for Laplace6 and Gauss-10

were almost identical.
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Results of Model 5

Table 10 - Averages and Mean Squared Errors of Model §

Laplace6 Gauss-10 PQL2
average mse average | mse average mse
D,=1 9742 | .0601 9720 | .0580 1.0511 | .0803
Tm"—l.62 -1.6122 |.0318 -1.6138 | .0322 -1.6306 | .0335
Bo=1 9994 | .0580 1.0016 | .0593 1.0117 |.0592
b=l 9990 | .0499 9981 | .0495 1.0006 | .0502

Again, the results of Laplace6 went together closely with Gauss-10 in Model 5.
For D,,, the negative bias of the two methods were both around 2.5% of the parameter,
while PQL2 had a positive bias of 5%. This was different from experienc;es with the
above models, where PQL2 always had the same signs for biases (positive or negative) as
the other two methods. On the other hand, all the £ ’s by the three methods were almost
unbiased. Gauss-10’s mean squared error of D,, was a little smaller than that of
Laplace6, while the S ’s of Laplace6 had smaller mean squared errors. PQL2 generally

had the largest mean squared errors for all parameters, as before.
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Table 11 - Averages of S. E.’s and S. D.’s of Estimates of Model §

Laplace6 Gauss-10 PQL2
0 O SD(6) (/. SD(6) Os SD(6)
D,,=1 2221 2462 2184 | .2417 NA 2815
Bo=1.62 1811 .1800 1807 | .1811 1789 1845
B =1 2317 2432 2310 | .2460 2291 2456
B=1 .2485 2256 2483 2248 2481 2262

The standard deviation of D, of Model 5 for PQL2 in Table 11 was much larger
than those of the other two methods. This contributed to the large value of its mean
squared error in Table 9. The three methods under-predicted the variation of D,, and
over-predicted that of g,,. The discrepancies for the other two 8°’s were small. The

discrepancies by Gauss-10 were smaller than those of Laplace6 and PQL2.

Results of Model 6

Table 12 - Averages and Mean Squared Errors of Model 6

Laplace6 (49 obs.) | Gauss-10 (48 obs.) | PQL2 (50 obs.)

average | mse average | mse average | mse
Do=25 2389 |.0117 2370 | 0118 2593 | .0142
B.=162 |-16139 |.0123 |-1.6119 |.0124 |-1.6214 |.0123
Bo=1 9995 |.0259 | 1.0044 |.0252 | 1.0063 | .0266
B,,=1 9933 | .0765 9883 |.0770 | 1.0017 |.0777

For Model 6, Laplace6 gave converged results for 49 out of the 50 data sets,
Gauss-10, 48 , while PQL2 had no difficulty with any of the data sets, as was shown in

Table 12. Laplace6 results were again very close to those of Gauss-10, both in averages
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and mean squared errors. PQL2 seemed more unbiased than the other two but it gave

larger mean squared errors for the parameters. The negative bias of D,, by Gauss-10 and
Laplace6 were both around 5% of the parameters, whereas PQL2’s negative bias was a

little smaller, around 3.5%. The three methods’ estimates for the f# ’s were almost

unbiased.

Table 13 - Averages of S. E.’s and S. D.’s of Estimates of Model 6

Laplace6 Gauss-10 PQL2

O SDX6O) Os SIX6) O SIX6)

D, =25 1053 |.1089 |.1051 |.1091 NA | .1198
Bu=1.62 |.1301 |.1119 [.1299 |.1123 [.1257 |.1121
B, =1 1652 |.1625 |.1649 |.1605 |.1642 |.1648
8,,=1 2568 | .2794 | .2575 |.2802 |.2506 |.2816

The standard deviation of the estimates of PQL2 in Table 13 were again the
largest. However, it gave the smallest standard errors of the estimates, as in the models
discussed above. The underestimation of the variation was most severe for g,,. The
discrepancies between the predicted and empirical variation for the other two £ ‘s were
the smallest by PQL2. Laplace6 and Gauss-10 were very similar in the errors of

prediction for the variations of g,, and D, ; both were smaller than those by PQL2.
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Table 14 - Laplace6 Relative Efficiency Under Models with D =1

Model 1 (#’=52) | Model 3 (&’=2) | Model5 (&{’=.1)
Gauss-10 |PQL2 [ Gauss-10 [PQL2 | Gauss-10 | PQL2
D, |1.0204 [1.1429 9809 [1.0911 [1.0362 |1.3361
B 11.0000 [1.0279 [1.0153 [1.0153 [1.0354 |1.0535
Ba | 9977 [1.0233 [1.0061 1.0579 [1.0224 [1.0207
B 110025 [1.0125 [1.0000 |[1.1014 | .9920 [ 1.0060

Table 15 - Laplace6 Relative Efficiency Under Models with D =.25

U
Gauss-10 | PQL2 Gauss-10 | PQL2 Gauss-10 | PQL2

Dy | 1.0000 1.0208 | 1.0000 1.0169 | 1.0085 1.2137
Bo | 1.0000 1.0090 | 1.0000 1.0000 | 1.0081 1.0000
Ba | 1.0000 1.0063 | 1.0000 1.0069 9730 1.0270
B, |1.0000 1.0026 | 1.0000 1.0020 | 1.0065 1.0000

Model 2 (E"=.52) | Model 4 (Z"=2) |Model6 (Z{=.1)

Tables 14 and 15 give the efficiencies of Laplace6 relative to Gauss-10 and PQL2.
The relative efficiency for D,,, say, of Laplace6 to Gauss-10 is the ratio of Gauss-10’s
mean squared error for D, to that of Laplace6’s. Therefore, Laplace6 has higher
efficiency for D, if the ratio is larger than one, and vice versa. From the two tables, the
efficiencies of Laplace6 relative to Gauss-10 were mostly larger or equal to 1. The
relative efficiencies of Laplace6 were slightly higher for larger D,,; for smaller D, the
relative efficiencies were mostly 1. The only exception was that of f,, under Model 6,

where Gauss-10 had a higher efficiency. The effect of larger variance and smaller
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average conditional expectation on the loss of efficiencies relative to Laplace6 was even

more apparent in PQL2. Laplace6 was more efficient than PQL2 for ihe fixed effects and
the variance. Gauss-10 was also more efficient than PQL2.

In conclusion, the three methods performed reasonably well under the six models.
However, the values of D,, and %" did have an impact on how precisely and accurately
the three methods estimated the parameters. With a smaller D,,, the variation (standard
deviations) of the f,, estimates by all three methods were larger than what they predicted
(the average of the standard errors). On the other hand, when the value of Z{” became
smaller (.1 and .2), the three methods tended to have negative biases for D,,. Moreover,
with small values of 7{"(.1, .2) and a large D, the variation of D,, was underestimated
by all three methods.

The biases of all the three programs were generally very small in these univariate
models. The three programs almost always went together in the direction of biases.
PQL2 always gave the largest absolute value of the estimates. Because of the largest
variation in estimgtes, its mean squared errors were usually the largest among the 3
methods too, although the difference was usually small. Laplace6 estimates were very
close to those of Gauss-10 in terms of averages and mean squared errors. Even in the
discrepancies in the prediction of variation, Laplace6 results were very similar to those of
Gauss-10, although the discrepancies seemed smaller for Gauss-10 in more cases. The
largest disagreement between the Laplace6 and Gauss-10 in terms of both the averages of

the standard errors (8, ) and the standard deviations of the estimates (SD(6) ) were in the
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third decimal place, while the largest disagreement between either Laplace6 or Gauss-10

and PQL2 was in the second decimal place.
However, Laplace6 and PQL2 gave estimates up to the fourth decimal place.

Gauss gave variance and covariance estimates only to the third decimal place, computed
from the values of the Cholesky decomposition rounded up to the second decimal place.
Therefore, because of rounding errors, the mean squared errors of the variance and
covariance estimates from Gauss might look larger than they really were. The
comparison of variance and covariance estimates thus might not be exact.
Bivariate Data Sets

Mode] 7 and its Results

Model 7 contained 100 data sets with parameters S, = -12, u\’=.143,

b o) (16251
Dy, =1625, D, =1, D, =25,(°’)~N(), . Each data set contained 20
b, 0/l1 25

observations in the first level and 200 clusters in the second level.

Laplace6 was computed on an old UNIX machine, using the converged estimates
of the parameters from PQL. The 100 data sets took Laplace6 altogether 2 hours to
analyze. PQL2 was computed on the same UNIX, too, using similar amount of time for
the 100 data sets. The second order Taylor expansion of the conditional likelihood was
set to start at the second iteration while computing starting values based on PQL.
According to experiences, starting the Taylor expansion earlier would cost only some
more iterations but would not have effect on converged values. However, if the starting

values happened to converge fast and the Taylor expansion was set in after that, the
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resulting estimate would be just PQL. All the 3 programs (Laplace6, PQL, and PQL2)

were run in UNIX.

Gauss-Hermite Quadrature method (using MIXOR package) was run on Pentium
233. Out of curiosity for the use of more quadrature points in the improvement of the
accuracy of the estimation and also intrigued by the pattern in the analysis of Thailand
data, where the results of Laplace6 seemed to be more similar to Gauss with more points
than with fewer points, both Gauss-10 (Gauss-Hermite Quadrature using 10 points) and
Gauss-20 (Gauss-Hermite Quadrature using 20 quadrature points) were used in analyzing
the 100 data sets. The estimates from the 4 programs were compared in terms of their
unbiasedness and mean squared errors. Gauss-20 used about 20 hours altogether for the
100 data sets, and Gauss-10 used 5 hours.

Although it was impossible to compare the time used by the 3 different methods,
i.e., PQL, PQL2, and Laplace6, with Gauss, 6 data sets were randomly selected to use the
same Pentium 233 to do the analysis. The time for the 6 data sets used for PQL pius
Laplace6 ranged from 7 seconds to 20 seconds; for the same 6 data sets, the time used by
Gauss-20 was around 12 minutes, while the time used by Gauss-10 was about 3 to 5
minutes. Thus it was very clear that Laplace6 was significantly more efficient in terms
of computational time.

Gauss program produces variances and covariances from the Cholesky
decomposition and gives standard errors for the decomposed terms only. It was
impossible to find out the standard errors of the variance and covariance from what is

available.
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Laplace6 | Gauss-10 | Gauss-20 | PQL | PQL2
D,=1.625 | 16352 | 1.6532 | 1.6546 | 1.2752 | 1.7296
Dy=-1 10960 1003 | 0995 | .0538 10864
D,=25 2667 2575 | 2562 | .1614 2927
Bu=12 |-12007 |-1.1977 |-1.2045 |-1.0904 |-12179
B =1 1.0029 | 1.0081 | 1.0148 | .9004 1.0231
X 9975 | 0.9971 | 9976 | 9114 1.0050

The estimates by all programs were fairly normally distributed. PQL again
consistently had negative bias for all the parameters. The bias of the variance
components ranged from 22% ( D,, ) to 46% ( D,, ) of the parameters, while those of the
B s were around 9% of the parameters. PQL2 had the second highest bias, either
positive or negative. It had positive bias for D,,, by about 6.5%, and D,, by 17%, but
negative bias for D,, , by 14%. Even though the positive biases of its # estimates were
only around 1%, they were still larger than the two Gauss’s and Laplace6. The advantage
of Gauss-20 over Gauss-10 was not very clear from the table, since the averages of the
two were very similar. Laplace6 results were again close to those of the Gauss’s.
Laplace6 had more biases, both negative and positive, than the Gauss’s for smaller values
of the variance components, but had smaller positive bias for the large variance than the

latter. For the B’s, the three methods were pretty much unbiased.
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Table 17 - Mean Squared Errors of Estimates Under Model 7

Laplace6 | Gauss-10 | Gauss-20 | PQL | PQL2
D,=1.625 |.0563 | .0737 | .0633  |.1522 |.0838
Dy =1 0108 | 0115 |.0120 |.0080 {.0143
D,=25 0075 | .0073  |.0072 [.0113 |.0115
p.—12 | 0190 |.0231 |.019 |.0271 |.0203
By =1 0164 0193 |.0175 |.0236 |.0178
B =1 0051 |.0051 |.0053 |.0116 |.0055

The mean squared errors of Table 17 tell another different story. Laplace6
produced the smallest, or among the smallest, mean squared errors for the estimates
among the five methods. However, considering that estimates of D, and D, by
Laplace6 had relatively large amounts of bias but that their mean squared errors were
either smaller or only .0001 larger than those of Gauss-20, the variation of the variance
components by Laplace6 seemed to be much smaller than that of the Gauss’s. The
comparison of Gauss-10 with Gauss-20 was clearer in terms of mean squared errors.
Gauss-20 most of the time had much smaller mean squared errors than Gauss-10, the
values were closer to those of Laplace6 than those of Gauss-10, too. The mean squared
errors of PQL were notably larger. The mean squared error for D,, was the smallest of its
counterparts of the other three methods, although its underestimation from Table 3 was
46%. This again indicated that PQL performed well for small values of random effect
(co)variance. On the other hand, considering that D,, = 0.1, and that the mean squared
errors of D,, by the other methods were all larger than their respective mean squared

error for D,,=0.25, it seemed that all the other 3 methods had a difficult time giving a
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reasonable estimate for D,,. PQL2 produced the second largest mean squared errors for

the variances and covariance of the random effects. However, its mean squared errors of
the 3 #’s were only a little larger than those of Gauss-20. PQL2 seemed to perform better

for the fixed effects than for the variance components.

Table 18 - Laplaceé6 Relative Efficiency Under Model 7

Gauss-10 | Gauss-20 | PQL | PQL2
D.=1625 |13091 |1.1243 |2.7034 | 1.4885
D, =1 10648 | I.1111 7407 | 1.3241
D,=25 9733 9600 | 1.5066 | 1.5333
B.=12 |12158 |1.0316 |14263 |1.0684
B, =1 1.1768 | 1.0671 | 14390 |1.0854
B,,=1 1.0000 | 1.0392 |22745 |1.0784

The relative efficiencies of Laplace6 relative to all the other programs in Table 18
gave a clear picture of the comparison of the mean squared errors. Laplace6 was more
efficient than all the other methods in general, except for D,,, for which Laplace6 had a
positive bias of 6% of its value (Table 16). However, even though Laplace6 also had a
4% positive bias for D,, , it was still more efficient than Gauss-10 and Gauss-20, whose
estimates were almost unbiased. The extra ten quadrature points in Gauss were a mixed
blessing. It seemed that Gauss-20 was not as inefficient as Gauss-10 when the latter fell
quite far behind Laplace6. However, at times, it was a little less efficient than Gauss-10

when the latter was only a little less efficient than Laplace6.
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In Table 19, the standard deviations of the estimates by PQL again were the

smallest among the five methods. PQL2 had the largest standard deviations of the
estimates of D,,, D,, and B,,. Gauss-10 had the largest standard deviations of the
estimates of B, B, and D, . The variation of Laplace6 estimates was the smallest
among the four programs without considering PQL. The small amounts of variation in
the estimates, in addition to small biases, contributed to the significantly smaller mean
squared errors and higher efficiency. The variations of the estimates by Gauss-20 was not
necessarily smaller than those of Gauss-10, although its variation for D,, was mdeed

much smaller.
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Table 19 - Standard Deviation of the Estimates

Laplace6 | Gauss-10 | Gauss-20 | PQL PQL2
D,,=1.625 2383 2714 2510 1737 2713
D, =.1 .1045 .1076 1102 0768 .1194
D,=.25 .0853 .0857 0853 0593 .0988
Bo=12 1387 1529 .1403 1233 1421
Bo =1 1288 1393 1320 d171 1320
B, =1 0716 0721 .0730 0615 0744

Table 20 - Averages of Standard Errors

Laplace6 | Gauss-10 | Gauss-20 | PQL PQL2
D,,=1.625 2684 2563 2688 .1831 2420
D, =.1 1156 NA NA 0786 1046
D, =.25 .0956 NA NA .0662 .0894
Bu=12 .1290 .1198 1293 1110 1273
Bu=1 1175 1105 1170 .0999 1162
B,.=1 0755 0744 0747 .0602 .0701

In reference to Tables 19 and 20, the averages of the standard errors produced by
the methods were compared to their respective real standard deviations. f’QL seemed to
have the smallest discrepancies between the two tables for all parameters. PQL2 had the
largest discrepancies. The variation of all its estimates were under-predicted by the
standard errors it gave. Laplace6 over-predicted the variation of the variance components
and of B,,, and under-predicted the other 2 £’s. Gauss-10 and Gauss-20 had the same
pattern as Laplace6 in estimating the variation of the fixed effects, but Gauss-10

underestimated that of D, while Gauss-20 was in the opposite direction. Apart from
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PQL, Gauss-20 seemed to have the smallest discrepancy between the theoretical standard

errors for its estimates and their empirical standard deviation.

In summary, Laplace6 produced estimates that were very close to those of Gauss-
20, both in averages and in mean squared errors. Their biases were reasonably small.
Over all, Laplace6 had the smallest mean squared errors and the highest efficiency,
thanks to its least variability across data sets. The discrepancy between the theoretical
variation of the estimates and its empirical variation was the smallest in PQL. Gauss-20
has the second smallest discrepancy. The advantage of 20 quadrature points over 10
quadrature points was clear also in the parameters where Gauss-10 had substantially
larger amounts of mean squared errors than Laplace6. For these parameters, the mean
squared errors of Gauss-20 were much smaller. However, for parameters where Gauss-10
had only a little larger, or smaller, mean squared errors than Laplace6, Gauss-20 might do
slightly worse than Gauss-10. This might suggest that the advantage of using a larger
number of points for Gauss appears only where accurate estimation is difficult using a
smaller number of points. However, with real data sets, it is impossible to decide on the
accuracy of the estimates. The biases (in percentage of the parameters) of PQL2 under
the current model were larger than under the univariate models. Its efficiencies of all
estimates relative to Laplace6 decreased a lot in this bivariate model, too. As to the
prediction of the variation of estimates, consistent with univariate models, PQL2 gave

smaller estimates of the variation than the empirical results.
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Model 8 and its Results
Model 8 contained 400 data sets, which had parameters, g, = ~508403, D, =2,

b 0\ (2 2
D, =2, D, =75 ,, (b:’) ~ N((o),[ 5 75]] . Each of the data sets had 20 observations

for each cluster in the first level. In the second level, 200 of the 400 data sets had 200
clusters in each of them, while there were 2000 clusters in each of the latter 200 data sets.

The interest was to check whether Laplace6 estimates were consistent as cluster
sizes increased by 10 times. That is, if Laplace6 estimates using the latter 200 data sets
have smaller biases and 10 times smaller variance than the former 200 do, Laplace6
method is considered consistent. We would also be interested in the percentages the
estimates fell beyond the 95% confidence interval of the true parameter (i.e., true value
1196 standard deviations), using the empirical standard deviations. This would give a
sense of how well the estimation was. Besides, if the estimates were normally distributed
then the theoretical probability of observations falling beyond the 95% confidence
interval (i.e., average +1.96 standard deviations ) is .05.

Therefore, statistics produced for each set of estimates using data sets of 200
clusters would be contrasted with those using data sets of 2000 clusters in the second
level. These included averages, biases, variances, the empirical probabilities of
observations falling out of the range of the true value 1 1.96 standard deviation, and the
empirical probabilities of observations falling out of the range of the

average + 1.96 standard deviations.
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In the following tables, “emp. prob. 1” is the empirical probability of observations

falling out of the +196 standard deviations around the true value, whereas “emp. prob.

2” the empirical probability of observations falling out of the + 196 standard deviations

around the average.

Table 21 - Contrasts Between Different Cluster Sizes for Variance Components

Dy =2 D,, =2 D, =15

cluster size | 200 | 2000 200 2000 200 2000
average | 1.9187 | 1.9375 | .1733 | .1766 | .7416 | .7343
bias -0813 | -.0625 | -0267 | -0234 | -0084 | -0157
variance | .0715 | .0070 | .0165 | .0016 | .0199 | .0017
S.D. 2674 | 0839 | .1285 | 0404 | .1412 | .0413
emp. prob. 1| .08 109 07 08 055 065

emp. prob.2 | .06 06 05 045 055 06

Table 22 - Contrasts Between Different Cluster Sizes for Fixed Effects

A, =-.5084 R =1 B, =1
cluster size | 200 | 2000 200 2000 200 2000
average | -.5107 | -.5108 | 9844 | 9742 | .9861 | .9909
bias -0023 | -.0024 | -0156 | -0258 | -0139 | -.0091
variance | 0163 | .0022 | .0123 | .0012 | .0061 | .0007
S.D. 1278 | 0473 | .1107 | .0342 | .0778 | .0255
emp. prob. 1 | 045 06 075 11 06 065
emp. prob.2 | .04 065 06 045 05 05

Tables 21 and 22 showed that most of the estimates had fairly small amounts of
negative biases, but the biases did not go down for data sets with a larger number of

clusters. In terms of percentage, D,, =2 had more than 10% negative biases for both
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cluster sizes. The similar amounts of variation in D,, =2 and D,, =.75 signified that

Laplace6 had difficulty estimating D,,, a phenomenon the same with the other methods
(Gauss and PQL?2) in the previous model.

Histograms of the estimates not presented here showed that all of the estimates
were fairly normally distributed. In effect, the empirical probability 2 (emp. prob. 2) also
showed that percentages of observations falling out of the 95% interval around the
average were around 5 for all estimates.

The variances of estimates using 200 clusters were all approximately 10 times
larger than their counterparts using 2000 clusters. This indicated that as the number of
clusters increases, the variation (variance) of Laplace6 estimates would decrease in
proportion to the number of clusters. Thus, finally the estimates would peak at one point.
Nevertheless, this peak would be a little off the true parameter, due to the negative bias.
The empirical probability 1 also showed that a little more than 5% of the estimates were
cast out of the 95% confidence interval around the true value. This was coherent with the
finding of small negative biases. Since the estimates had a negative bias, the sample
mean was shifted a little to the left of the true value, assuming both the sample mean and
the true value were both normally distributed and had the same standard deviation. Thus,
more estimates at the lower end than at the upper end of the empirical distribution would

be rejected as plausible values from the distribution of the true value.



Chapter 6

DISCUSSION AND CONCLUSION

This dissertation uses Laplace’s approximation method to solve the problems
encountered in multilevel logistic models. In the process, I first deduced the multivariate
Taylor expansion for use in expanding Laplace approximation to multivariate situations.
Secondly, I derived the six moments of a multivariate normal distribution through its
moment generating function. Then, I found the analogy between univariate moments and
multivariate moments in doing Laplace’s method. Using the above findings, I obtained
the marginal likelihood of the multilevel logistic regression models as a simplified, scalar
function of matrices. In finding maximum likelihood estimates of the fixed effects and
the variance components of the random effects, I used implicit differential to take into
consideration the dependence of the current estimate of the random effects on the
parameters of interest. The result is the Laplace6 program in HLM (Bryk, Raudenbush,
and Congdon, 1996), using as starting values the converged estimates by PQL.

Both univariate and bivariate random effects simulation studies and a real data
analysis were carried out to evaluate Laplace6. The estimates were compared to those by
the approximate maximum likelihood method using Gauss-Hermite Quadrature (Gauss)

(MIXOR, 1993, 1994, 1997), the method of second-order Taylor expansion around the

74



75

conditional expectation (PQL2) (Goldstein and Rasbash, 1996), and PQL (Breslow and
Clayton, 1993; Raudenbush, 1993).

The analysis of Thailand data is an example of how the multilevel Bernoulli
model can be used to understand how student background, school background and
national programs, such as pre-primary education, interact and affect educational
outcome -— grade repetition. It was found that girls had a smaller risk of repeating a
grade, that students with better nutrition (breakfast) had a lower risk, and that a higher
family socioeconomic status and richer school resources (SES and enroliment) helped
reduce the risk. However, there were interactions between student SES, student nutrition
(breakfast) and school SES and school resources (log_enroliment), respectively. They
indicated that students with poorer family background took more advantage of richer
school resources than students with better family background in reducing the risk of
repeating a grade. Moreover, all the background factors controlled, students having had
pre-primary education still had a significantly lowered risk of repeating grades. The
effect of the pre-primary education did not vary across different schools. Therefore, pre-
primary education did have a positive effect in preparing children for primary schools.

Through using 4 different numbers of quadrature points in analyzing Thailand
data, Laplace6 results were found to be more similar to those by larger numbers of points,
i.e., 40 or 30 points, than all the other methods. Thus, Laplace6 seems to be a pretty
accurate approximation to the marginal Bernoulli likelihood with a normal prior.

The extensive univariate simulation study indicated that all the programs except

PQL performs reasonably well, with small biases at times, although PQL2 tend to have
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slightly larger mean squared errors than Gauss-10 and Laplace6. Its efficiencies for the
variance estimates especially trailed behind those of Laplace6. Laplace6 had the highest
efficiency relative to all the methods for most of the parameters in all six univariate
models, although the difference between the results of Laplace6 and those of Gauss-10
was small.

However, in the bivariate model with 100 data sets, the similarities in mean
squared errors among Gauss-10 and Laplace6 disappeared. Laplace6é performed even
better than in the univariate cases. While Gauss-10, Gauss20 and Laplace6 were all
approximately unbiased, Laplace6 had the highest efficiencies over all the methods for
most of the parameters. Its performance was even better than that of Gauss-20, which in
turn was better than that of Gauss-10. PQL and PQL?2 both had much smaller efficiencies
than Laplace6.

The eighth model shows that Laplace6 estimates were normally distributed, and
had a small amount of negative bias. However, the variance of the estimates did go down
in proportion to the second level sample size. Thus, the approximate maximum
likelihood estimates produced by Laplace6 indeed are approximately consistent estimates.

The analysis of Thailand data raises a question of how different the programs are
and how much more useful Laplace6 or Gauss-Hermite Quadrature is for practice. The
suggestion is, for univariate random effect models, PQL2 may do as well as Gauss-
Hermite Quadrature and Laplace6; for multivariate random effects models, nevertheless,
PQL?2 may not give as good results as the latter two programs. On the other hand, PQL

has serious negative bias for large variances of the random effects. Although in the
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current model for Thailand data all programs happened to have the same amount of
predictors that were significant at .05 level, it is still likely that for other models, PQL or
PQL2 will have very different, and wrong, conclusions, originating from its negative bias
in the parameters. Therefore, it is of both theoretical interest and of practical usefulness
to have programs such as Gauss-Hermite Quadrature or Laplace6.

The advantage of Gaussian Quadrature lies in its flexibility in that the estimates
can be found as accurately as the user wishes by just giving a larger number of quadrature
points. Laplace approximation can go as accurate as one wishes, too, but it can be done
only by the programmer, not the user.

The time needed for computation is a big advantage of Laplace6 over Gauss-
Hermite Quadrature. As the experience with several random samples of the 100 bivariate
data sets shows, Laplace6 was much faster than Gauss-Hermite Quadrature with 10
quadrature points specified, which was in turn much faster than Gauss-Hermite
Quadrature with 20 points. However, given the exploration with different data sets here,
10 quadrature points could barely produce estimates as accurate as Laplace6. The time
needed for Gauss-Hermite Quadrature to produce sufficiently accurate results will thus be
much longer than for Laplace6.

Therefore, for educational research that is interested in dichotomous responses,
such as grade repetition, high school dropout, or college admission, and that often is
longitudinal and/or nested designs, Laplace6 is an accurate tool that is fast to converge.
Although currently Laplace6 is available only for 2 level modeling, it should be

straightforward to extend it to 3 level models.
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On the other hand, the contribution of Laplace6 to the field of applied
statistics/mathematics lies in the foundation upon which it is built, i.e., the multivariate
Taylor series and the parallelism between moments in univariate normal distribution and
those in multivariate normal distribution in applying the extended Laplace approximation.
I expect that the method can be applied to give pretty accurate solutions to problems

concerning integrals that have to be evaluated numerically.
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Formulae and Lemmas for Appendices A to D

e dABC=(CT ® A)dvecB (PA-1)

e Lemmal Foramatrix F, suppose a is a scalar function of ¢, F does not involve ¢.

J vec(aF) Jda )
Y —vec(F)®a‘, . (PA-2)
(fofae oo Jin | of, afyy . . ... af,, |
SaSa- - S af, af, . . . .. af,,
Proof Assume F = ,and aF =
_f,,,f,,,....f_,_ baf_,af_,....af_-

According to Magnus, we vectorize the matrix first before we take derivative of it with

respect to a row vector. Therefore,
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PR
_0"7 1
2L fa
2 S
25 o
St
.a—a-
L
”;‘:f ol = [vec(F)® ::’,].
Since F is not a function of #, each element in /" becomes a scalar to the row vector o"; .
e For any two column vectors a, b, a®b” = ab” (PA-3)
For F(X,Y)=X®Y, X isan nxgq matrix,and Ya p x r matrix.
Then dF(X,Y) =vec(dX ® Y) + vec(X ®dY),
where vec(dX®Y)=(I,® K, ® 1,)(I,, ® vecY)dvecX (PA-4)
vec(X®dY)=(I,®K,, ®1,)(vecX® I, )dvecY, (PA-5)

I, being an n x n identity matrix, and

K, being an n x ncommutation matrix. (Magnus and Neudecker(1988), p. 188)
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sois 5" ®a. Thus a®b" = 4" ®a.

e Suppose s=a’b,aand b are nx1vectors. Then s=tr(b"a) =tr(ba”).

e For same-order matrices, A and B, tr(A” B) = (vecA)" (vecB).

e Two vectorsaand b, ab” =(a® b")

e For two vectors a and b, vec(ab”) = (b®a).

e A®B®C=(A®B)®@C=A4®(B®C()

Suppose aisa px1 vectorand b,a g x1 vector. Then a® b” isa p x g matrix and

(PA-6)
(PA-7)
(PA-8)
(PA-9)
(PA-10)

(PA-11)

e Lemma2 Fora pxqmatrix A, an sx 1column vector c,

Proof

vec(A® c) = vec

e If A and B are square matrices, tr(A® B)=tr(A)tr(B).
e If AB and CD exist, then (A® BXC® D)= AC® BD.

e If ABis a square matrix, then r(A4B) = tr(BA).

vec[A® c]=vec(A)®c.

G G G

. a,, ; . a,q ;
c’ cJ c.l’
G G G
i P I R
c c c

(PA-12)

=vec(A)®c .

(PA-13)

(PA-14)

(PA-15)
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e vec(ABC)=(C" ® A)vecB (PA-16)
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Multivariate Taylor Series Expansion

This appendix will derive the following theorem:
Theorem: The m-th order approximation in n-variable Taylor series is %(“:??l bT)f™b,
where b isan nx1 vector; f™ is the m-th derivative of the function f, fa function of
b ; the derivative is obtained by first vectorizing the (m-1)-th derivative and then

- 1 -
differentiating with respectto b7 ; ?b’ is the Kronecker product of b, repeated m-1

times.
Proof

Fulks (Fulks, 1978, p.331) has the following multivariate Taylor series theorem.
Theorem. Let fand all its partial derivatives up through order » be continuous in a neighborhood N

of Q,. ThenforPinN,

f(P)= f(Qo)+[(P-Qo)°V1f(Q)|Q.Q° +21(P=0) VF [ Q) o
(1)

b o 4T (P 0o VT f(@) o+ l(P= 001V £ (@Y o,

(where A e B denotes the inner product of 4 and B; F, is a point on the segment
connecting P to Q, ; the symbol V indicates the differentiation operation.)
Given (1) then, for Q, =(a,,a,,...,a,) and P =(x,,x,,...,x, ), Taylor expansion

of f(x,,x,,...,x,) up to the fourth order is:
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o 1
f(x5%55...,%,) = f(a,,a,,....a,) +[(x, —a,)x-i- (x, —az)-a—;-t..
1

o
+(x, —a,)x]f(a,,az,...,a,)

1 V74 174 o
+5l 'al)a_x""(xz -az)'0.,72+.--+(x.. -a,)7 . I f(a,.a,,...,a,)

1 y P y 2)
+ﬁ[(x, --¢l,)‘9—xl+(x2 —az)a—x2+...+(x, —a,)a x.]sf(a,,az,...,a,,)

1 o o o
"“ﬁ[(xl —al)-aTl+(x2 -02)‘5—x:+"‘+(xn _an)a—x']‘f(al’aZ’-"’an)"' oo

1 174 17 V7
+;§[(x| -a.)a—xl+(xz -az)a—x2+--.+(x,, -a,) 7x. I f(a,.a,,...,a,).

We look more closely starting at the second order ignoring the factorial:

(05 - ) 5+ (5, - ;)

a2y
) . +..H(x, a,.)a x”] f(a,,a,,...,a,)

_ [i(xl —a)x, -a,) & f(ay,a,,...,a,)

el 0 x,0 x,

+i(" e _a')ézf(a,,az,...,a,,)_k

e 2 2 i i P) xza X, e

2 & f(a,,a,,....a,)
+§(xn —anxxl al) a x"a x’

= & f(a,,a,,...,a,)
= - —-a. 2n ; 3

%(xl a,)Xx;—a;) 3 x.0 x, 3)
the third order, ignoring the factorial:

o o o
(%, —a,)o_,—x'+(x2 —az)a—xz+...+(x,, -a,) 7x I f(a,.a,,...,a,)
o o

= [(xl —al)-aTl+(x2 —a,)a—x2+...+(x,, -a,,) x, ]2 X

o o o
[(Xl —a,)a—xl+(x2 —az)}—g-h.ﬁ(x,, -a,,)a—xulf(a,,az,...,a,)
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&f(a,.a,,...,a,)
0 x,0 x,0 x,

= [g(xl -a)Xx,-a,)(x,-a,)

3 - - - a;f(apaz:---,a,,)
+§(x2 a:)x, = a,)(x, ~a) ="~ Y
3 -— - - asf(al 902 ,-"90,,)

+§(x" o) —a)x, =)= x,0x,0 x,

= i(xk —-a, Xx, —al)(xj —a;) a’f(a,,az L) H

! o x,0 x,0 x,

and the fourth order, also ignoring the factorial:

4 o o .
[(x, -a,)é’—x-i—(x2 —a,)a—-+...+(x, —a,)}:-] f(a,,a,,...,a,)

1 X,

P x

=[(x, -a, )Eax—ﬂu(x2 -a,)aix+...+(x,, -a)=2
1 2 n

174
[(x, —a,)a—x+(x2 —a,)gz—+...+(x,, —a,,)—é—ax:]f(a,,az,...,a,,)

1 X,

Sy _ _ _ _ &'f(a,,a,,...,a,)
—[‘JZ»*(x‘ al)(x’ ai)(xj aj)(x* ak)o" X,é’ x;a Xga X,

+2(x2 -a,)(x,—a,)(x;,-a,)(x, —a,) 3'f(a,,a;,.--,4,) ‘.

Tk 0 x,0x,0x,0 x,

+i(xﬂ -an)(x,- —aQq; )(xj —al')(xk -ak) af(a,,az ""’an)]

ijk 2 x,a xjo” x,ﬁ X,

= 2(1’, —al)(xl -a,)(xj —aj)(xk -ah) a‘f(al’ah'",a,,)

I will arrange each order of the above into scalar functions of matrices. In taking
derivatives, I will always follow what Magnus preaches, that “the only sensible

definition of a matrix derivative” is to vectorize the matrix first and then take its

@

(&)

derivative with respect to a row vector. Thus whether the original function is a row
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vector, a column vector or a matrix, to differentiate it we will always vectorize it first,

using the formula: vec(4BC) = (C” ® A)vecB, and then take the derivative.

To simplify notation, let

| b X
X —a, b | [x
b=| . =|.[,| . |=z,and 0"f(a,a,a2,...,a.) =f,
X,
bl xﬂ
| x,-a,] "~ °
#f(a,,a,,...,a,) e
2L = f.s, » €tc.. Thus, for example, the first derivative is
Ix,0x,

f(')(x,,xz,---’xu)= ng, =[fx, f;, f,]

Then the first order can be rewritten as

f"’b=[f,‘l L, - f,.: - |=Lb+ L0+ D,

=(, _al)o" f(a.;a;‘,...,a,.) +(x, -a,)a f(aga;;...,an)
+.Hx, -—a,,)a f(a,a;,....a,) .

dx
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The second derivative of fis obtained by taking derivative of vec ' with respect to z”.

3 vecfV
éz7

f(2) =

L‘/‘;-"I f:'r‘z o f:'-‘.

Then the second order term without the factorial is derived by differentiating the first
order term, £ b, and then post-multiplying it with b: since £ is 1x n, in applying
Equation PA-1, we regard " as the “B”, then “4” isa 1x 1 scalar of 1, and b as the
“C”. So that we have

ga,- f®p = b7 £ Therefore,

- -

NS
X
NS
R
N~
% 0=
I

b7 f"’b=[b, b, .. b_]

\_f;,x, f;,x, f:\',,x,,
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'y
n n n bz n n n
=[§b,f,,,' gb,f% Z':b,f, ] ) =§b,b,f,m+zl:b,b,f,,,z+...+zl:b,,b,_ﬂ,,_
b, |

z . 2 f(a,a,,...a,) ... . .
=ijb,f,',l =Z(x,-a,)(xj—aj) f(ﬁlx 0‘2’x ),whlchlsEquatlonB.
iJ i 19X

Similarly, the third derivative is obtained by vectorizing ‘¥, and then taking its

derivative with respect to a row vector z”: (the dashed lines are to make it easier for the

reader to see the original vectors from f?)



j:r.x. -ﬂ.xm fx.xm - fx.x .

f:'r': fx,x j;'x
S | | Fo T = S

j:"-’: j;r'txl f:‘r‘r‘z °* f:‘r‘

o f; ] -f;:x.x. f:‘r‘-’z - f e,
oz’ f; | fx;x.n f:‘r'f'x - f‘r‘

'fx'x' - j:"’-ﬁf:‘r‘r'z . fx.x

Then the third order term without the factorial can be obtained by differentiating the
second order term, b7 f*¥b, and then post-multiplying it with 5.

By Equation PA-1 again, (db” f®b)b= (b” ®b™)f b



=[68 b&, .. bb, b,b bib, .. bb, ... bbb, .. b,]

I B ]

-b‘ -
n n n bZ
= [Z blb!-f:r,xm Z blbjj;.x,xz * z blbjfx.x,x. ] *
iJj i ij
-b" -

=2 bbb, S, + 200+ D b, = D bBBS,,
ij i,j ij iJjk
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0(a,8y,--1,) , which is Equation 4.

Z(xk -a, )Xx, -al)(xj "a.l)

ik ox,0x,0 x,
The fourth order term can be expressed in terms of a matrix and vectors in the way

exactly as what we did for the second- and third- order terms. The lay-out is omitted here

because of its tedium, but it can be expressed as, with f* = air 72,
[d®T ®bT) Dbl = (b7 ®bT ®b) f Wb
=Y (x,—a,Xx,~a,Xx,~a,Xx,~a,) 7 f(a,a;,..,9,) , which is equal to Equation 5.

ikl Ix,0x,0 x,0 x,

Therefore, I have proved the theorem.
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The Six Moments of a Multivariate Normal Distribution

Introduction

This Appendix finds the first six moments of a multivariate normal distribution.
Since methods are routinely applied, I will prove up to the fourth moment. The last two
moments will be proved with minimal elaboration.

The moment generating function of a multivariate normal distribution with mean

(
0 and variance £, N(0, X),is expétrz t) . Suppose the dimensionisq. Then risa

(
g x1 vector, £ isa g x g matrix, and expét'z t) is a scalar. The exponential will

remain no matter how many times the derivative is taken with respect to the elements

inside it. For simplicity, define m= exp(% 'L t) = f(t).

First derivative
o o (1 )
Theorem 1 A0 é’t’m mﬁt’ 21 Ttl=mt'Z 1)
Proof
B f the exponential functio g m=m g (lﬂz t)
ccause ol the expo n’o"t’ TV )
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5at' (-;-ITZ t) , I first take derivative with respect to ¢, the last term, and then ¢, the

first term. To take derivative with respect to £,  regard t’Z as 4, and ¢ as B in Equation
PA-1. For C in Equation PA-1, I use an identity matrix of the same dimension as the

column of ¢, which is 1. Therefore, the identity matrix in this case is a scalar 1. So I have

1

1
1®1 F=3

TS, 2

To take derivative with respect to *, I regard t" as B, and X ¢ as C also in (PA-1). For

A 1 use an identity matrix of the same dimension as the row of "I, which is also 1.

Therefore, the identity matrix in this case is a scalar, 1. So I have

[ o @1]9-3?ﬂ %:Tz 3)
Adding up (2) and (3) g (lr’”z r)=-—(2r'z) mt’z 4)
g p > a T atT 2 2

The first moment is 0, obtained by setting ¢ = 0.
Second derivative

To find the second derivative, I transpose (4) and then take derivative with respect

4
T . . _
to the row vector ¢ again. That is, ﬁt’o"tm- Yy mZt.
Theorem 2 A= 7 m= g mZt=mI+mItt’z Q)
oot ar
Proof I take derivative first with respect to m using Equation PA-2, and then

with respect to ¢, and finally I sum up the two parts.
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To take derivative with respect to m, regard Z ¢ as F in Equation PA-2. Then I have

mivec(Z )®@t"Z]=m[(Z 1)®t'Z)=mZ t t'Z, 6)
by Equation PA-3, taking advantage of the fact that both T ¢tand t"Z are vectors.

To take derivative with respect to #, regard mZ as 4, and ¢ as B in Equation PA-1. Then

again | have 1 as C, since the column dimension of ¢is 1.
e ot
The derivative is [1® (mX) W:mE. @)

So Equation 5 is proved by adding up (6) and (7).

Again, setting ¢ = 0, | have the second moment, X .

Third derivative
J vec —50:2,'; ;
Theorem3  fP(f)= T (8)

= mvec(E)"T + mvec(Z t tTENTT + mE ® (E1)]+ m{(Z1) ® I

Proof

g vec(mZ+mZ tt'Y), 9

2 vecf (1) = >

With (1) = ==

I will differentiate the first item at the right hand side first and then the second term.
For the first term, according to Equation PA-2, since only m is a function of ¢, the

derivative is

50:, vec(mX) = [vec(Z)® mt"Z] = mivec(Z)® t"Z] = mvec(S)t'Z, (10)

by Equation PA-3.
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g vec(m T t t"Z), | first take derivative with respect to m, then ¢ and finally 7.

For Y

With respect to m, 1 have [vec(Z ¢ t"Z)® mt"Z]= mvec(Z t t'T)}"X. (11)

With respect to ¢, I have #”X as C in Equation PA-1, mX as 4, and ras B. So the

derivative is [(/"Z)” ® (mZ)]% = m(Z N®I], (12)
since I is a symmetric matrix.
With respect to ¢7, regard I as C in Equation PA-1, mXt as 4, and ¢ as B. Then the

T
derivative is [Z® (mﬂ)]% - mze @)

—— =mE8()]. (3)

The theorem is proved by summing up (10), (11), (12), and (13).

The third moment is 0 by setting  to 0.

Fourth derivative
Theorem 4
Fm
o vec —_0" = a”rtra" t
FO(1) = > 'f ¢ = m(Z ® vec(E)) + mvec[vec(E) E}TT
+m{vec(Z® Zt)® t"T]+ m{vec(Z)® I]
+mlvec(Zt @ L)@ t'Z]+m{(K,, ® I (I ® vec(Z))}
+ m{vec[vec(Z t t"ZN"Z]1®t'T}
+m{(Z 1)® Iq,} {(EHB®ZI]+[Z®(Z ]}
+m[Z® vec(Z t 1'L)] (14)
Proof
fO)= g vec{mvec(Z}'Z + m(Z@ Zt) + m(Zt ® T)) + mvec(T t t'Zi'T} (15)

o’
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For the first item in the right hand side of the above equation, we have:

aa:' vec(mvec(Z)"Z) = m(Z ® vec(ZT)) + m{vec[vec(Z)t'Z]® "L}

= m(Z ® vec(Z)) + mvec[vec(Z)} T}’ T (16)
The first item in the above equation results by taking derivative with respect to ¢ . That
is, T is regarded as C in Equation PA-1, mvec(Z) as 4, and ¢ as B. The second item
results by taking derivative with respect to m by applying Equation PA-3.

For the second item in (15), the derivative is

aar —vec(m(Z ® It)) = m{vec(Z ® Zr) ® 1" T]+ mvec(Z)® I (17)

The first item in (17) results by taking derivative with respect to m, the second by taking
derivative with respect to #. This second term is obtained by using Equation PA-5 for
taking derivative of a matrix at the right hand side of a Kronecker product.

According to (PA-5),1 have

3
m{(1, ® K, ® 1,)[vec(Z)® 1,1~ [vec(E )]
= m{(I, ® K,, ® I,)[vec(Z)® I,]% = m{vec(Z)® Z],

(18)

where K| isa qxq commutation matrix, and thus also an identity matrix, I, .
Therefore, (I, ® K, ®1))=({,®1,®1 )= Iq, can be ignored. Furthermore,
m{vec(Z)® I 1= = mvec(Z)® 1,](1® Z) = m{vec(Z) ® Z], which is the second term in

17).

For the third item in (15), the derivative is
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o“at' vec(m(Zt ® T)) = mivec(Zt @)@t Z]+ mK, ® I )(Z® vec(X)) (19)

where K isa ¢° x g* commutation matrix. For the kth row in the K,

(n-1)g<k<ng, n=1,..,q only the (n+ {k —[(n-1)q +1]}q) -th term is 1, the others
are 0.

The first item in the right hand side of (19) results by taking derivative with respect to m.
The second term is derived using Equation PA-4 for taking derivative of a matrix at the

left hand side of a Kronecker product. According to (PA-4), the derivative is

m{(1® K,y @ 1,1, @ vectZ)) =2 vec(® 1) 20)

=m(K,, ® I, X1, ®vec(Z)Z = m K, ® I (L ® vec()),

for (I, ® vec(Z))Z = (I, ® vec(Z)(Z®1)=(Z ® vec(Z)). Equation 20 is the second

term in Equation 19.

For the last term in (15), mvec(Z t t"Z)t"Z, I take derivative with respect to m first,
applying Equation PA-2; then  and ¢” inside the vec function, and finally #” outside the
vec function. The derivative with respect to m is m{vec[vec(Z ¢ t"Z)}t"Z]®1"Z}. (21)
To find the derivative with respect to the ¢ inside the vec, I use Equation PA-1 and the
chain rule. First I regard vec(Z ¢ t"Z)as Bin (PA-1)and ¢”Z as C, and then the 4 in
(PA-1) is an identity matrix of the same dimension of the row vector as mvec(Z ¢t t'X),

Fvec(Ttt'L)
at’

which is g*. Thatis,I have m{(t"Z)" ® Iq,} (22)
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Jvec(Z t1'Y)
o’

For , ] apply (PA-1) again, which brings

)N LD
S 2wy o)

=[(Z )@ Z]+[Z®(Z ¢1)]

ot J vec(t™)
Vi tT "'[z®(z t)] o tT (23)

So the derivative with respect to ¢ and 7 inside the vec function is, substituting (23) into
22), m("E) I} {I(Z NBZ]+[E(Z N]} (24)
Finally, to find the derivative with respect to ¢ outside the vec function, I apply (PA-1),

with vec(Z t t'Z) as 4, 1" as B,and T as C. Then!I have

m[Z ® vec(Z t :’z)]a—‘;vec(:’) =mZ ® vec(Z t t'T)]. (25)

To sum up, the derivative of the last term in (15) is, adding (21),(24), and (25),

17
o’

[mvec(Z t t"Z)t"Z]=m{vec[vec(Z t t"Z)"T]® 7L}
+m{(t"'2)” ® IHIE NI+ [Z®(Z N}
+mZ @ vec(T t t'T))]. (26)
The theorem is proved by summing up (16), (17), (19) and (26).
The fourth moment results from setting ¢ to 0 in all the items in the fourth derivative,
Equation 14:

(Z® vec(Z)) +[vec(Z)® Z] +{(K,, ® I, (I ® vec(Z))}. (27)
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Fifth Derivative

Theorem 5  The fifth derivative is

0 vec aa:”; ¢
ot

Ad = m{vec(Z ® vec(Z)) ® 1"Z]

aT

+ mvec{vec[vec(EN "I} I} ® (t'Z) + m(Z ® vec(vec(Z)t" L))+ m(Zt @ Iq, NZ ® vec(2))

+ m{vec[vec(Z® Z)® t"'Z]® T} + m(Z @ vec(T ® It)) + m(Zt ® Iq, KvecZ® X)

+ m(vec[vec(Z)® Z]®¢'X)

+ mvec[vec(Zt @ Z)® t"Z1® (1" L) + m[Z ® vec(Zt ® I)]

+m(Zt ® Iq, XK, , ® I (Z® veck) + mvec{(K,, ® I NZ®vec(L))}® (&)

+ mvec{vec[vec(Zi"I}TZ]@ t"Z} ® (t"T) + m{T ® vec[vec(Zu" T} L]}

+m(S® 1){(E@ vec(Z" )+ (X ® 1,)[(E® L)+ (X ® E)]}

+ mvec{[(Zt)® Iq, NEHBIRN®(:'T) + m(I, ®(Z)® Iq, XK, ® I NZ® vecZ)

+mt’T®I® Iq,)(Kq,” ®Iq,)(2®vec(1',))

+ muec{{(2)® I, ][E® (Z)]) @ (I"E) + m(I, ® £ ® I, )[vecE ® E]

+mI® DO LYK, &1, XE®vec(],)

+ m{vec[Z ® vec(Ztt"Z)]® t T} + m(vecT ® I HE® LN+ (2B T))

o vec
HNec

Xec

Proof
By applying Lemma 1, I get
% vec[m(Z ® vec(Z))] = m{vec(Z ® vec(Z))®1'Z].
?:—, vec{mvec[vec(Z)t"Z} T} = mvec{vec[vec(Z)}t" L} I} ® (1" L)

+m(Z ® vec[vec(ZN TN+ m(Zt ® I ) )—aéi- vec[vec(Z)t'Z],

where % vec[vec(Z)t"Z] = (T ® vec(Z)).
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The first term is by applying Lemma 1 again. The second term is obtained by taking

derivative with respect to the t” of the t"Z at the end. The third term is by taking

derivative with respect to the 7 of the ¢"T right after the vec(Z).

;, vec{m{vec(Z ® Z£)® t"Z]} = m{vec[vec(Z® L)@ t"Z]® 1"} + m(X ® vec(Z ® L))
+muU®l, ) vec(Z@ Ir)

with %vec(z‘ ®L)=(I,®K,,® I XvecZ® I )L = (vecZ® X)

The first term is obtained by taking the derivative of m; the second by taking the
derivative of the 1’ outside the vec function, and the last one inside the vec

function.

;, vec{m[vec(Z)® X]} = m(vec[vec(Z)® Z]®¢"T), by taking derivative of m.

;, vec{mlvec(Zt® Z)®1'Z]} = mvec[vec(Zt ®2)® 1 Z]® (') + mZ ® vec(Zt ® X))
+m(2t®1 ) vec(Et@Z)

with -a%vec(z::@ I)=(], ®K,, ® I, XI,® vecZ)X = (K,, ® I, (T ® vecE).

The first term is by taking derivative of m, the second of t"Z outside the inner vec

function, and the last one inside the inner vec function.

;, vecm{(K,, ® I, (Z ® vec(Z))} = mvec{(K,, ® I, (T ® vec(Z))} ®(t'z) by

taking derivative of m.
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Ea,— vec{m{vec[vec(Z t t"2)t"T]® t"Z}} = mvec{vec[vec(Z t t"IN"L]® '} @ (t'T)

+{Z®vec[vec(Z t t"INTZ)}+(2t® 1 g )a;i, vec[vec(Z t t"Z)"Z)

%vec[vec(z tt"IN"Z]=(E®vec(Z t t'T))+ (2t ® Iq,)—a—a-,-vec(z tt'T)

=(Z®vec(Z t 'E)+(U® L) (E® L) +(U )]

Therefore,

ai’ vec{m{vec[vec(Z t t"I}TZ]®+'T}}

= mvec{vec[vec(Z t tTENTT]® 'S} ® (1) + m{Z ® vec[vec(Z t t"I)}TL]}
+m(Z® I, J{(Z@vec(Z 1 17E))+ (2 ® [,)(Z® Z)+ (X S L)]}.

%vec{m{(z N®I,1(E @ I]} = mvec{((Z N® L, ][(E NS I} @ ('E)

+m(1, ® () ® If)%vec[(z N®Z]+mt'TO®I® Iq,)-a—a;-vec[(ﬂ)® I"z )

where ?ifvec[(z N®E]=(I,®K,, ® I I, ®vecZ)E = (K,, ® I, (= ® vecE),

3
and 7 vecl(ZN® I,]=(, @ K ; ®I,X1, ® vec(I;))E

=(Kq,4®lq,)(2®vec(1q,)).

So, ai, vec{m{(Z)® I, J[(Z)® Z]} = mvec{[(Z)® I ,][(Z)® ]} ® (1'Z)
+m(1, ® (2)® I ,)(K,,, ® I, X(E ® vecT)
+m(I"E@T® I,)K, ® 1, E®vec(l,)).

The next term,
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%vec{m[(ztm INZ®(Z N} = mvec{[(Z)® 1,][Z@(Z N} (:'Z)

+m(1, ®Zt®lq,);a,-vec[2®(2 N+mMZIZ®('Z)® Iq,]é%vec[()lt)@ Iq,],

where -;—,-vec[z ®@()]=(/,®K,,®I ) vecz® I )L =(vecZ®L).

Therefore,
% vec{m{(Z1)® 1, ][Z ® (21)]} = mvec{[(2)® . ][Z®(Z N]} ® (b))
+m(l, @ Lt ® 1',2 )NvecZ®@Z]+mZ® (t'Z)® If](Kh ® I"2 EZ® vec(lq2 ).

The last term,

a;i, vec{m[Z ® vec(Ztt"Z)]} = m{vec[Z ® vec(Z#'Z)]® 1"}
+m(1, @K, ®I,)vecZ® 1, )%vec(mrz)
= m{vec[Z ® vec(Ztt"Z)]® t" T} + m(vecz ® I 2 H(ZE®Z)(Zt® Z)}
The first term of the above equation is obtained by taking the derivative of m; the
second by the derivative of the vec function.

By setting t of the fifth derivative to 0, the fifth moment of a multivariate

normal distribution is 0.
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Sixth Derivative

Theorem 6  The sixth derivative is

ovec A = mvec{[vec(Z ® vec(Z))® "E]} ® (1" T)

+ m(Z ® vec(Z ® vec(T))) + mvec{vec{vec[vec(Z}'ZY Z}®(t"Z)}®(t'X)
+m(Z ® vec{vec[vec(Z}"Z}'T})

+m(Zt® Iq, ){(Z ® vec[vec(Z)t"Z]) + ((Zt) ® Iq, XZ ® vec(X))}

+ mvec(Z ® vec(vec(Z)t"Z))® (t"E) + m(vecE ® I , X T ® vec(Z))

+mvec[(Zt ® Iq, X ® vec(Z))]®(t'T)

+m[(Z ® (vecZ)” ® Iq. ](Kq,‘ ® Iq, ZE® vec(Iq, )

+ mvec{{vec[vec(Z® L)@ t'Z]1®@t"Z}} ® (t"Z) + m{Z ® vec[vec(ZT ® Zr) @ t"Z]}
+m(Zt ® Iq. HE®vec(Z® Xt)]+ [t ® Iq, J(vecZ ® X)}

+mvec{(Z® vec(Z® Zt))} ® (t"Z) + m(vecZ ® IqJ NvecZ® X)

+mvec[(Zt ® Iq, )(vecZ®I)]®(t"Z)+ m((vecZ) ®T® Iq. )(Kv’.q ® Iq, ZE® vec(Iq, )
+ mvec(vec[vec(Z)® Z]® 1)@ (t'T)

+m(Z ® vec[vec(Z)® I]) + mvec{vec[vec(Zt® Z)®t'Z1® (t'2)} @ (t'T)

+ m{Z ® vec[vec(Zt ® £)® (']}

+m{(Zt)® Iq. HIZE® vec(Zt®X)]+((Z1)® Iq, NK,, ® I X(Z® vecZ)}

+ mvec{[Z ® vec(Zt ® Z)]} ® (t'Z) + m(vecZ ® Iq, XK, , ® I, (X ® veck)

+ mvec[(Zt ® If XK, , ® I XZ® vecZ)]® ')

+m(Z® (vecZ)r)(K" ®I1)® Iq. ](Kq,ﬂ ® Iq, WZE® vec(Iq, )

+ mveclvec{(K,, ® I, XZ ® vec(Z))} ® (1" Z)]® (t'Z)

+m{Z ® vec{(K,, ® I, (X ® vec(L))}]

+ mvec{vec{vec[vec(Zn"IN"Z]1®t'T}® (')} ®(t'Z)

+ m(Z ® vec{vec[vec(Ztt"Z) 1@ T} + m(Zt @ I, X(E ® vec[vec(Ztt"E)" L]}
+HENSI,){[Z® vec(Zt D)+ (2@ I)(Z® (Z))H+ (2 ® )
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+mvec{Z ® vec[vec(Ztt"IN"Z]} @ (1'T)

+HvecE® I, ){[Z® vec(Zn"2)]+((Z0)® L,)(Z® (X)) + (X ® L))}
+mvec[(2t® I, X ® vec(Z1t'T)))® (1)

+m(, @ L@ I, )vecZ® I,)(E® 1) +(X®T)]

+m{Z ® (vec(Z#"Z)) ® [ J(K,, ® I, XE® vec(l,)

+mvecl(2® I, X2 ® [, XZB® L@ (I"E)+ m(I, ®[(Zt ® I, XX ® I,)]((vecE® L)
+m{(Z@1TZ)®(H® I ,)(K,, ® I, (@ vec(],))

+m{(E@1TEY"I® [,)® I XK, ® I, NE® vec(I,))

+mvec{(2t® I, X2 ® I, (2B L)®(1'%)

+m(1, ® (2 ® I, X% ®I,)IXK,, ®I,XE® vecE)

+m(IT2)@ )@ (U ® 1)K, ® 1, X @ vec(],))
+mi(("E@ENITE®1,)® I XK, ® I, XZ®vec(],))

+mvec{vec{[(Z0)® I, J(EZN® I} ® (I"£)} @ ("E)

+m(Z @ vec{[(Z)® I, ][(Z)® I]})

+mi(2)® I}, ®(ZN® I, )K,, ® I, (E® vecE)

HETD)®Z® I, XK, ® 1, XE® vee(],))

+mvec[(I, ® (E)® I, X(K,, ® I, XX ® vecZ)]® (3%

+m(Z® (vecZ) XK, ®1)® 1 . XI,®K, ®I,Xvec(I)®I XK, ®1,)x
(Z® vec(I,))+ mvec[(I"Z)®Z® I XK, ® I, XZ® vec(I,)]® (")
+mi(Z® (vec(1,)) XK, . ®1,)® 1 J[Z@vec(2®1,)]

+mvec{vec{[(Z)® [, ][Z®(ZN]}® (t"Z)} ® (1'T)

+m(Z ® vec{[(Z)® I ,][Z® (Z1)]})

+m((Z)® 1 {1, ®(ZN® I ,])(vecZ® L)

HZ®()® L, )K,, @I, NE® vec(],))}

+mvec[(I, ® 2t ® I ,)(vecZ® £)]® (1'Z)

+m((vecZ) ®L®I X1, ® K, ®1,)vec(I)® I, XK, ®I,XZ®vec(I,)
+mvec{[Z®("Z)® I, XK, ® 1, ® vec(I,))}®(1"%)

+m{[(Z® (vec(I, ) XK, . ®IN® LY, ®K, ®I.XI, ®vec(I,))(vecZ®E)
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+mvec{vec[Z ® vec(Z#t"2)]|® (t"Z)} ® (1'T)
+m{Z ® vec[Z ® vec(Ztt'T)]} + m(Tt @ I NvecZ®1I,)[(Z ®IL)+(2®))
+mvec{(vecz® I, NE®ILN+(XO )}V (H'E)
+m(1, ® (vecL® Iq, N(vecZ®Z)+(K,, ® I, (T ® veck)]

Proof

% vec{m[vec(Z ® vec(Z))® t"Z]} = mvec{[vec(Z ® vec(Z))®1'Z]} ® (+'X)
+m(Z ® vec(E ® vec(Z)))

-;—,— vec{mvec{vec[vec(Z} 'L} Z} ® (+'T)}

= mvec{vec{vec[vec(E¥ I} Z}® (t'T)} ® (+'T)
+m(Z ® vec{vec[vec(Z)t"ZYT}) + m(Zt ® Iq. )a—é; vec{vec[vec(Z)}t"Z}" T}

where %vec{vec[vec(Z)tTZ]trz}
= (Z® veclvec(E)N I+ (2N ® 1, )% vec[vec(Z)t"E]
with ai’ vec[vec(Z)t"T] = (T ® vec(X)).
Therefore,
% vec{vec[vec(E)" Z} "I} = (T ® vec[vec(Z)"E]) +((Z)® I ,)[E ® vec(Z)].

%— vec{mvec{vec[vec(Z)}t"Z}" I} ® (1" L)}
= mvec{vec{vec[vec(ZX I} I} ® (t"Z)} ® (t"T) + m(Z ® vec{vec[vec(Z)t" k" I})

+m(Zt @ Iq. ){(Z ® vec[vec(Z}Z]) +((Z1)® Iq3 NZ ® vec(2))}
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% vec{m(Z ® vec(vec(Z)}'Z))} = mvec(Z ® vec(vec(Z)tL))® (1" )

+m(I, ® K,, ® I, (vecZ® I, )30;- vec(vec(Z)' L))
while 557- vec[vec(Z)t"Z] = (X @ vec(Z)), whereas K, 4 = 1, and can be ignored.

Therefore, di; vec{m(Z ® vec(vec(Z)t" L))} = mvec(T ® vec(vec(ZN"L))® (t'Z)
+ m(vecZ ® Iq, NZ® vec(L)).

a;ir vec[m(Lt@ I, XZ® vec(Z))] = mvec[(Zt® 1 2 B vec(2))]® (b))

+ M(E® (vecEY © I, ] 2rvec(2 B 1,)

. O
with -a—,vec(ﬂ®lf)=(1,®Kq,4®1¢,)(1q®vec(lq,))2.

=(Kq,”®lq,)(z®vec(lq,)).
So, -a-a;-vec[m(2t® 1 2 NZ® vec(2))]

= mvec[(Zt ® I ,)(Z ® vec(Z))]® (t'3)
+mi(E@(vecZ) ® I JK, ®1,XE®vee(l,)).

ai,vec{m{vec[vec(z ®IN®IT]®1'L})
= mvec{vec[vec(Z® L)@+ Z]®¢'Z}®(1'T)
+m{Z ® veclvee(E® Z)@1TE]} + m(S1® 1, )ai' vec[vec(E® £ ®1TE],

where %vec[vec(!!@ IN®t'T]=[Z® vec(Z® )]+ [ ® Iq,]% vec(Z® Xt),
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with %vec(!@ T)=(I,®K,, ®I,)(vecE® I,) = (vecE® L).

Therefore, ai’ vec{m{vec[vec(Z ® £)® I"Z]®17%}}

= mvec{ {vec[vec(Z® Z)®1'Z]®t'T}} ®(t'T)

+m{Z ® vec[vec(Z ® Xt)® "X}
+m(Zt ® Iq. HE® vec(E® Xf)]+ [t ® Iq, J(vecZ ® X)}.
a;i, vec{m(Z ® vec(Z ® Xt))} = mvec(Z ® vec(Z® X))@ (t'T)
+m(I,®K,,® Iq,)(vecZ@ Iq,)%vec(l".@ 1)
= mvec{(Z ® vec(Z® Zt))} ® (t'T) + m(vecz ® Iq, XvecZ®X)

d;i’ vec[m(Zt ® If, NvecZ ® X)) = mvec[(Zt ® Iq, XvecZ® 2)]®(t'X)
+m((vecZ) ® T ® I )a;i,vec(Zt ®1.)

= mvec[(Zt ® 1', )(vecZ ® 2)]® (1" Z)

+m((vecZ) @ ® LXK, ®1,XE® vec(I,))

55; vec{m(vec[vec(Z)® Z]® t"Z)} = mvec(vec[vec(Z)® Z]®t'Z)® (t'T)

+ m(Z ® vec[vec(Z)® Z])

- vec{mveclvec(2+ ® ) @ 1'Z1® (1'T))
= mvec{vec[vec(Zt ® Z)® " Z]® (1"Z)} ® (1" L) + m{Z ® vec[vec(Zt ® Z)®1"Z]}
+m[(Z6)® Iq. ]Ea; vec[vec(Zt @ Z)® 17,

with % vec[vec(Zt® Z)®17X]
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=[Z® vec(Zt @ Z)]+((21)® I”)di; vec(Zt® X)
=[Z® vec(Zt ® Z)]+((2)® Iq, XK,, ® I XZ® veck)

Therefore,

35" vec{mvec[vec(Zt ® )@ 1"Z]® (+"L)}

= mvec{vec[vec(Zt ® Z)®t"Z]1® (")} ® (t"Z) + m{Z ® vec[vec(Zt ® Z)®t"Z]}
+m{(Z1)® Iq‘ KIZE® vec(Zt @ Z)]+((Z)® If XK,, ® I (Z® vec)}.

-‘—:7 vec{m[Z ® vec(Zt ® )]} = mvec{[Z ® vec(Zt ® )]} ®(:'T)

+m(I,® K,,® I, Y(vecE® I q,)%vec(&@ T)
= mvec{[Z® vec(Zt @ Z)]} ® (t'Z) + m(vecZ ® Iq, XK, , ® I (Z® veck)

a_é; vec[m(Z ® I, XK,, ® I, (E ® vecE)]

= mvec[(Zt ® Iq, XK, ® I (Z® veck)]® 1’z

+ m[(E@(vecZ)T)(KM ®I)® Iq.]%(ﬂ@ Iq,)

= mvec[(Zt ® Iq, XK, , ® I XZ® veck)]® (3%

+m((Z® (vecZ)T)(KM ®1)® Iq. ](Kq,‘ ® 11, E® vec(Iq, )

-:—,. vec[mvec{(K,, ® I XZ® vec(Z))}® (1" Z)]

= mvec[vec{(K,, ® I, )(E ® vec(X))} ® (1"Z)]® (1"%)
+m{Z ® vec{(K,, ® I, (T ® vec(Z))}]

557 vec{mvec{vec[vec(Ztt"IN"Z]® "L} ® (+'T)}

= mvec{vec{vec[vec(ZTENE]® TI}® (1"T)} ® (1"E)
+m(Z ® vec{vec[vec(Ztn" I} )@ "L}

(@I, )anvec{vec[vec(m’z):’zwzfz},
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with-%vec{vec[vec(Zﬁ'E)t'Z]@t’2}

= {Z® vec[vec(Zn I} L]} +(EN® I, ):%vec[vec(zn’z):’z]

= {Z® vec[vec(Zu"INTZ]} +((T)® I NE® vec(Ztt'T)]
+[((ZN)®1)(Z®(Z)+ (U@ X))}

Therefore, -% vec{mvec{vec[vec(Zt'Z)}'Z]® "I} ® (:"T)}

= mvec{vec{vec[vec(Ztt"ZX"Z]® 'L} ® (:"Z)} ® (:'T)
+m(Z @ vec{vec[vec(Ztt"I)}"Z)®@ 1"} + m(Tt @ I, )({z ® vec[vec(Ztt"Z)" L]}
H(ZN®1,){Z® vec(Zn"Z))+((2)® IIE®(E))HZ® )

567 vec(m{Z ® vec[vec(Ztt"Z)t"T]}) = mvec{Z ® vec[vec(ZnTZNTZ]} ® (')

o
I, ®K,,® I"J X vecZ ® Iq, )7 vec[vec(Ztt"Z)"T]

= mvec{Z ® vec[vec(Ztt"I}"Z]} ® (1" L)
+(vec ® ]', ){[Z ® vec(Zrt"T)]+ ((Z1)® 1"2 N(ES (X)) + (=@ )]},

since % vec[vec(ZHTENTZ]

= {[Z ® vec(Zt"T)] +[((Z1)® I‘I2 )a;a,vec(ZttTE)}

= {[Z®@ vec(Zn L)+ [(ZN® I ,)(Z® (21) + (2 B I)]]}.
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a;irvec[m(& ®IXNZ® vec(Zrt'L))] = mvec[(Zt ® 1,2 ® vec(Zt'Z))® (1'T)

+m(I, ® (U ® I, ))%vec(z ® vec(Zt' L))
+m[Z ® (vec(Ztt'T))’ ® I, ]ai’ vec(2®1,)

= mvec[(2t® I, (Z® vec(Zt'T))® (t'T)
+m(I, @t ® I, vecZ®I,)[(Z® L) +( ® I)]
+m{Z® (vec(Zn'E))" ® I WK, ®1,XZ® vec(],))

-:—,.vec[m(2t®lq,)(2!® I,XZ® )] = mvecl(2® [, (X ® I, (@ I)]® (1"T)
+m([, ®[(2® I, (B, )])%vec@@ 1)
+m(Z®1'T)® (B, )]ai,vec(z:@ I,)

o
+m[(Z®1"IX1"E® qu)® I'.]? vec(Zt ® Iq,)

= mvec[(H® 1, XU® q,)(zie NI®(1'L)

+m(1, ®[(Z® I , X ®1,)])(vecE ® £)

+m(Z@ 1)@ (MBI ))K,,, ® 1, XE@vec(],))

+m[(Z®TTYtTZ® 1 DI XK, @I )NZ®vec(],))

-;—Tvec[m(zt® LYX2® I, XX ® )] = mvec[(Zt® I, (Xt ® I, (Xt ®L)® (' Z)
+m(I, @[(Z® I, X2t ® I)IXK,, ® I, (I ® vecT)

+m{((("Z)® )@ (X ® I,)[(K,,, ® I, (E® vec(I,))

+m{("E@EN1TE® [,)® I K, ®I,NZ®vec(l,))
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ai,vec{mvec{[(zx) ® I,][(Z) @I} ® (1" L)}

= mvec{vec{[(Z0)® 1 ,][(Z) ® Z]} (')} ®(t'L)

+m(Z @ vec{[(ZN® [ ,][(ZN @ Z]}) + m{(2)® 1 , ]Ea?"e‘?{[(r‘f)® 1,)[(z)® ]}
= mvec{vec{[(Zt)® 1,’ NEHBIP®U'T)}I®(t'T)

+m(Z ® vec{[(Zt)® I,,’ (S Z]})

+mi(2)® 1J((1, ®(E)® [,) 57 vecl(2) @ I}

HUTD)®D)® I q,)%vec[(it)@ 1]}

= mvec{vec{[(Z)® I, [(ZN® I} ® ("2)} ® ("%)
+m(Z ® vec{[(Z)® I, ][(2)® Z]})

+m{(20)® I }(1, ® (2 ® I, XK,, ® [, )(Z ® vecX)
HITD)®L® LXK, ®1,XZ®vec(I,))

-é—f;—vec[m(lq ®(Z)® I, XK,, ® [ (Z® vecE)]
= mvec((I, ® (2)® I, XK,, ® I, (T ® vecE)]®("T)

+m(Z ® (vecZ)" X(K,,®1,)® I, )a;irvec(lq ®(ZN®1,)

= mvec[(I, ® (Z)® I , XK,, ® [, (Z® vecZ)]® (:"%)

+m(Z ® (vecE) XK,, ® I)® I XI,®K, ®1,)vec(I)®I, )%vec((?.‘t)@ 1,)

= mvec[(I, ® (2)® I , XK, ® [, (Z® vecT)]® (:"%)

+m(Z ®(vec£)r)(KM ®1)® Iq‘ 1, ® K,z, ® I‘I'J Nvec(1,)® Iqs )(K’,‘ ® I’,) x

z® vec(I"2 )]
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E‘;vec[m((:’z)e» I®I XK, ®1,(E®vec(I,))]

= mvec[({"2)®Z® I, XK, ® I, XE® vec(I,))]®(+'E)
+m{(Z® (vec(,)) XK, ®1,)® 14.]0,%\:“(:’2@ ®1,)
= mvec[(t"Z)®EZ® I, XK, ® I, XZ® vec(I,)]®(:"E)
+m{(E® (vec(1,)) XK, . ®1,)® 1 E@vec(2® I,)]

< vectmec{[(Z)® I, IZ@ E}@ (" D)

= mvec{vec{[(Zt)® 1,3 IE@ENI®¢'Z)®('T)

+m(Z ® vec{[(Zt)® qu JIZ®(ZN]1})

()@ 1) vec([(2)® 1, 1E@ (2]}

= mvec{vec{[(20)® I, ][Z® (2]} ® ("E)} ® (1"E)

+m(Z ® vec{[(Zt) ® I‘,z JIZ®(ZN]})

+m((Zt) ® I.,‘ N, ®[(Z)® 1‘,2 D(vecZ® )+ ([Z® (1) ® Iq, ]';ir vec[(Zt)® Iq2 1}

= mvectvec{[(ZN® I, [[Z® ()]} ® ('£)} ® ("T)
+m(Z ® vec{[(Z)® I ,[[Z® (Z)]})

+m((Z0)® I Y1, ®[(Z)® I ,])(vecZ @ T)
HE®UTD)® I, XK, ®1,XZ®vec(l,))}

Ef—,— vec[m(I, @ ®1 7 NvecZ @ )] = mvec[(I,®Zt® ] 7 NvecZ®I)®(t'T)

+H(vecZ) ®® Iq. )%vec(lq QLD ]q,)
= mvec[(I, ® £t ® I ,)(vecZ ® 2)]® ()
H(vecE) ®Z® I X1, 8K, ®1,)vec(I)® XK, ®I,XE@vec(l,))
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Ea,- vec{m[Z® (1"Z)® 1, ](Kq,‘ ® 1, XZ® vec(l,))}
=mvec{[Z®("'Z)® I, XK, ® I'3 XZ @ vec(l,))}® (r'T)
+m{[(Z ® (vec(], ))T)(KM, ® I', )® 11.}5‘?,-‘»“[}:@(:’2)@ Iq,]

= mvec{[Z@(I"L)® I (K., ® I, XE ® vec(I,))} @ ("%)
+ m{[(Z® (vec(I,)" XK, . ® I,N® L}, ®K, ®I,XI,® vec(,))(vecE®E)

a;i, vec{mvec[Z ® vec(Ztt"L)|® 1" T} = mvec{vec[Z ® vec(Ztt"Z)]® (t"Z)}® (t'T)

+m{Z ® vec[Z® vec(Z"L)]} + m(E® I, )50; vec[Z ® vec(Zit"T)]

= mvec{vec[Z ® vec(Z1t"Z)|® (')} ® (:"Z)
+m{Z ® vec[Z® vec(ZHTE)]} + (21 ® I, (vecE® I,)[(E® L)+ (H ® T)]

30‘;- vec{m(vecz ® I 2 N(E® )+ (2@ )]}
= mvec{(vecz ® qu NE® N+ ('T)

+m(1, ® (vecZ ® I"2 ))%vec(z ®@XZt)+m(l, ®(vecZ® I‘,2 ))%vec()lt@ Z)

= mvec{(vec ® Iq, NERZH+(XU®I)IB('T)
+m(1, @ (vecz® I 2 N(vecZ® Z)+(K,, ® I (I ® vecL)]

The sixth moment of a multivariate normal distribution is, by setting ¢ of the sixth

derivative to 0,

E(t%) = (Z ® vec(Z ® vec(T))) +(vecz ® Iq, NZ ® vec(X))

+[(Z®(vecZ) ® Iq. ](K,s,., ® Iq, E® vec(Iq, )) +(vecZ ® Iq, ¥vecT®X)
+((vecZ) ®I® 1)K, @I, XZ®vec(l},)) +(Z® vec[vec(Z)® Z)
+(vecZ®@ I, XK, , ® I, (Z® veck)

+[(2®(vec2)r)(KM ®1)® 1. ](K,!_., ® 1, NZ®@vec(1,))

+[Z® vec{(K,, ® I, (I ® vec(Z))}]

+(Z® (vecT)” XK,,®1)® Iq. 1, ® Kq,” ® I‘l3 Yvec(1,)® Iqs )(Kq,” ® Iq2 ) x
z® vec(lq2 ) H(E® (vec(lq, ))T)(KM, ® Iq, )® Iq‘][Z O vec(Z® Iq, )]
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+((vecZ) ®Z® Iq.)(Iq ® K.,z,, ® Iq,)(vec(],,)@ Iq,)(Kq,‘ ® I,, E® vec(Iq, )
+m{[(Z ®(vec(lq, D )(K”, ® Iq, )I® Iq.}(lq, ® Kq,ﬂ ® Iq,)(Iq, ® vec(Iq, )N(vecZ® X)
+(1, ®(vect® Iq, D(vecZ® Z)+(K,, ® I, (I ® vecZ)].
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Proof of the Substitutions

This Appendix will prove the substitutions of the expectations of the fourth and
sixth moments with simpler forms.

The Fourth Moment Substitution
We have [(b, - b)) ® (b, - b, )" ® (b, =5, ) T, b, - b))

in the approximate marginal likelihood, where the ¢ x 1 vector (b, — b, ) has a multivariate
normal distribution, N(0,X), £ = (D™ -1®)™. For simplicity, I will use I for the
derivation, use b for (b, — b,) and ignore the subscript in I, here:

r=[s"®b"®b7JT“. (1)
Theorem 1

E(r) = Jvec(Z® )| vec(T ). Q)

Proof The dimension of the first partinr, [b' ®b7 ®b]7“’, is 1x g. The second
part,b,is g x 1. Since r is a scalar, by using PA-7 and regarding the first part as a” and
the second part as b, it becomes r =:r{b[b’ ®b’®b’]i‘“’}. 3)
Separate the inside of the trace function into two parts, r, = b{b” ®b7 ®b"],a g x ¢’
matrix, and 7, =, a ¢* x g matrix. Using Equation PA-8, (3) becomes

r= (vec((b @b b ))Tvec(T(") = (vec(r")) " vec(r,). 4
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Because / ) is a constant, and b has a multivariate normal distribution, N(0, Z), the

expectation of (4) becomes
E(r)=E ((vec[(b ®b®b)")) T)VeC(T“’ ) = E((vec(r," )" )vec(r,), )
where E(r,) is the fourth moment of a normal distribution, m, . Therefore, the

expectation of (1) is E(r) = [vec(m, )] vec(T ), (6)
m, = (2 ® vec(Z)) +[vec(2) ® =] +{(K,, ® I, X ® vec(Z))}

=E +E, +E, @)
where K is a commutation matrix that permutes rows of a matrix, and / is an identity

matrix. (See APPENDIX B: The Six Moments of Multivariate Normal Distribution)

Each matrix E,, E,, and E,, in m, is a Kronecker product of vecZ and . By

-

(a,B a,B ..a,B

a,B a,B ..a,,B

P

the definition of the Kronecker product that A® B = , the sum of

ooooooooo

a,B a,B ..a,B

the elements inside E, is equal to that inside E, as well as that inside E;, which, in turn,
are all the same as that inside £ ® Z. Therefore, m, has exactly the same sum of
elements as 3(Z ® X). Moreover, according to Anderson (1958), the expectation of the

fourth moment of a multivariate normal is

E(bb b,b,)=0yCp + O im0, +0,0,, ®
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where o,, is the covariance of b, and b,; k, I, m, r can be equal . Note that the

power of b,b, b_b, corresponds to that of any of the 0,0, 0,,0,,and o,0,,,even

though they are three different products of covariance terms.

On the other hand, since (1) is the fourth order term (without the factorial) of the
fourth order Taylor expansion, with 7 the fourth derivative of the likelihood, when

multiplied out, it becomes:

E(r)= E(ib‘Zngﬁ +4ib b Zgjzﬁzj, +6ib’bzzgjzﬁzj,

k=1 J=1 J=l Jj=1

q9
+12 ibfb,b_ig,z},zﬂzh+ Zb,b,b_b,igjz,zﬂzpzj,)
Jel

kelomj<m Jj=1 knlamnr

= 320'ng!2}, + 1220,,0',,2&2,2!, +6ﬁ(aua,, +2a,,)2gjzj,,z},

k=1 J=1 kwnl Jjul Jj=1
+12 Z(a,,a,,, +2a,,a,_)§: 8,252 m 9)
kenlom jom Jj=1

q L]
+ D (OyOn +0m0, +0,00)D 8,2aZ,ZmZ,

kelomer J=1

Note that the power of z , also corresponds to the power of b, , and the power of z,

corresponds to the power of b,, and so on. That is, Z 8,ZaZiZmZ

Jr?
kwlnmar

851585,83,8, =0,..,4, 5, +5,+5,+5, =4, is multiplied by 5;'5;2b2b*. Thus the power of

2z z2z* ’s corresponds to that of b;'b;b2 b °s, which in turn corresponds to that of the
products of the variances and/or covariances as we see above. We have known that the

sum of the terms in 3(X ® X) is equal to that of m,. Therefore, to prove the substitution,
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we will have to prove that the power of the product of covariances and/or variances in

each position of 3{vec(X® X)]” corresponds to that of zJz#z>z% in [“, so that

3[vec(E ® )]  vecl ® will also result in (9).

Because (vec m,)" is the expectation of (vec((b ®b® b)b’))r , the power of the
sum of the three products of variances and/or covariances in each position of the former

((vec m,)") correspond to the power in each position of theb,b,b,b,'s in the latter
((vec((b ®b® b)b’))'). On the other hand, because £ = E(bb"), the power of the

products of variances and/or covariances in each position of 3(Z ® X) will correspond to

that in each position of (bb” ® bb”). Combining these two facts, the proof reduces to

proving that [vec(r")]" =[vec{(6®5® b)b’)]’=[vec(bb’ ®b57)J .

Since to transpose a vector will not change the order of the elements in the vector,
I will ignore the transpose on both sides of the above equation and prove:

vec((b@b@b)b’) = vec(r]) = vec(bb” ® bb"). (10)
By EquationPA-3, r/ =[b®@b®b]®b’. ¢8))
Putting back (11) to the left hand side of (10) and by Equations PA-11 and PA-6,
vec(r] ) =vec[hb @ b®b® b ] = vec[p® c® b ] = vec[b® (c ® b")] = vec[b® (b7 ® )]
= vec[b® b” @ c]=vec[(b® b )®c] = vec(b®b")®c. (12)
where ¢ = (b® b), ¢ being a g2 x 1 vector. The last equation of the third line in (12) is

obtained by PA-12 by regarding (b®b") as a matrix.
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Similarly, the right hand side of (10) is

vec[bb” ® bb" ] = vec[(b® b )® (b® b )] = vec[(b” ® b) ® (b" ® b))
= vec[b” ® (b® b")® b] = vec[b” ® (b' ® b)® b]=vec[b” ®b" ®b®b]  (13)
= vec[(b” ®bT)® c]=vec(b” ®b")® c = vec(b®b")®c,

which is equal to the left hand side.

Therefore I have proved Equation 10, and thus the substitution.

The Sixth Moment Substitution
Theorem 2 E:r{(b' ®b™ ®b" ®b" ®b")], b}
=15vec(T® Z ® X)]" vecl®

The theorem can be proved by following exactly the same reasoning as above.

Theorem 3 Ezr{(b ® b)[[vec(bb’ )| ® [vec(bb’)]’] (foe79)]

= lStr{vecZ([vecE]r ® [vecz])” XZ‘” @™ )} (15)
Proof The argument for the substitution is similar to the above, too. That is, each of the
fifteen different matrices in the sixth moment (See APPENDIX B: The Six Moments of a
Multivariate Normal Distribution) is the Kronecker product of the variance matrix
arranged in a special way by using identity matrices and commutation matrices.

Therefore, the total of the elements inside each of the matrices will be the same as that of.
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vecZ([vecZ‘]r ® [vecZ]r) . Since Equation 15 is a scalar, the usefulness of the identity

matrices and commutation matrices in the sixth moment disappears. I only need to show
that vee{(5® 8)[[vec(ss™)]| @ [vecss™)] ) = vec(p@ 5@ BB b@ L@ 7).  (16)

The left hand side of Equation 16 can be simplified to

vec((b ® b)[[vec(bb' )]r ® [vec(bbT )]T])
= vec{(b @ BYb” ® T ® 1" ® b)) = b®b®bOb®b®b,

which is also the simplified version of the right hand side. Hence we can substitute the

fifteen matrices of the sixth moment with lSvecE([vec}:]T ® [vecE]T) .
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The Expectation of the Third Order Term Squared

This appendix will find the expectation of the third order term squared in the
approximation to the Taylor series inside the exponential. To simplify equations, I will

use the same notation as in APPENDIX C. Thatis, b=, -I';,,and b~ N(0,Z), with

T =(D" -1®)". Thus, this appendix will show that the expectation of L is
15 c c l l 2
E(Lg) = 7—2‘(2 a”Z;ZZ”Z;) 2(; a”Z”Z;.ZZy) , where L§ = 5(ﬁ[br ® bT]Z(”b) ,

with 7, = (2T ® Z7)4,Z,.

Proof

Since L§ is a scalar, a trace function of the scalar will not change the value.

2 712-[tr(b[(b’ ® b’]Z"’)]z, then by PA-13,

- s{(dee s T)o (s o4 )

:«b[br ®v’)) e (s’ ®+7])) (17 ® )] by PA-14)

=L tr:<(b eb)s" ®s|0[" @+ ) ([ ® 7o)

Take expectation of the above function and substitute the sixth moment with

15vecE([vecZ] ®[vecz]'). (Sec APPENDICES B and C).

E()= %tr[(vecZ([vecZ]r ® [vecE]T» (Z‘” ® 7;‘”)]
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= —tr(vecE([vecE]T'i;‘s’ ® [vecZ]TZ(”)) (by PA-14)

- %(([vecz]’i,"”) ® ([vecz] ) vecT (by PA-15 and PA-8)
15 TTAy] T
= 7—2-[vec2] [ PZ] O vecE. (by PA-16)
Furthermore, Z‘” =—(Z'®Z7)AZ and 4, =Zaﬁ(EjEf ®E,), where E, is
J
an n, x 1 vector with the jth element being 1 and the others being 0. Thus,

I9=~z'®Z )[zay(E;Ef ®E, )]Z, = Z"u(ZIJE/T ®Z,)Z ®1)
7 7

-Za”(Z ZI®2).

Therefore, E(L2) becomes, by applying PA-16 and its transpose to

n, T
[Z a,(2,Z] ®2, )] vecZ and [vecE]TI:i a,(2,2] ®Z, )] respectively,
J J

r
15 <

E(})= E[WCZ]T[i a,(Z,Z; ® z,,)]z [Z a,(Z,Z;®Z, )J vecZ
J J

S|

(zayz,,’ 32,77 ) z(zj:a,,z,,z,,’ zzy) .

J
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Computational Algorithm

To adapt to the PQL computer program (Bryk, Raudenbush and Congdon, 1996),
the notations for equations in Chapter 2 are changed as follows:

Chapter 2 D X, Z B b,
APPENDIXE T 4, 4,, § 6

The approximate log-likelihood is

L (-1 1 o e
Z{Tlog|r|-alog|cj|+ [ ~26}T",; +logD,} 1)

=1
where C, = T~ + 4] W, 4, ;

7} =yfr]j +Zlog(l—py), y,isan n; x1 column vector of the response of the jth
cluster;

7, isan n; x1 column vector for cluster j with the ith component being 7, ,

1
My = 448 + 46, Y = T+ exp(-n,)

6 is from previous iteration;

W, isan n; x n; diagonal matrix with the ith diagonal term being w, = 4,(1- 4;);
Z, = Wj"( ¥, — K4;) + 1, is the linearized dependent variable of group j;

4; isan n; x1 column vector for cluster j with the ith component being 4; ;

4,; isan n; x ¢ random effect design matrix for the jth group;
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Ay, isa g x1 column vector for observation i in group j, the transpose of the ith row of
4,
gy =w;(1-6w,).
a; = wg(l—2;zy), i=12,.., n ;
B, = 4,,C;' A4y
4,,isa px1 column vector for observation i in group j, the transpose of the ith row of
A,

h; =a,(1-12w;);

=g,(1-12w;) - 120,1,

k= iaaAmBu;

1¢ 1 15 -
_1-52&13,3-5 r,By + 2k’C 'k, .
The score function for £ in the log-likelihood is

Se, = Za,,B,,A,,, +— ZayB AW, 4,,C;' 4,,

T
+AW,Z, - AW, 4,0, - AW, 4,6,
1 l 1 ! 15 &
+—D—< h,Bj A, - 2 B4y + g,Bys, 4, —EZa”s;A,,j

1 . -
"’ZZZ“ B,g,(4;,C}' 211)2‘41»1*’ Xzah/’yB;(AwC' Ayy) Ay,
i h
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15 n n
30 20Dy, (A5 C7 ey Y )

1
2 Z ; a,,B”gy(A{,yC]’Aw )2(AITJW/'421C;|A2M)

a5 P BA 4,G

B %i,.: i,:%r,,B,f (45 C)' Ay Y (47, 4,,C;' 4ryy)

2 3By, AL 7 o) + 3 SR B Ay
+ % ‘;’L: i:: a,a,s,(43,C;' 4,)) AW, 4, ,C;' 4,,)

15 < _
+ gzaysliAﬂ”’;Aqu’Aw>

i
"j 1 lj
= (41PY), - (A1PAI6), - (A1PA2), 6, + D fily + - Docly @
i o

where (41PY), = A'W,Z,,

(A1PAY), = ATW 4,

(A1PA2), = ATW, 4,

j’

f. =-—1a B

ij 2 iy

I, = A4, - X, A4y,

y

X, =AW 4,C;

2j>~j
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1 1 1 1 15 15
¢, = _-s-h”B; + '4-04/‘42141'"!‘4211 --4—8-p”B; +anA;jbjAw +§gyB”sy —ans;
15
‘3_6“0A27ue1A20’

)
where m, = zBugaCJ—lAzyAzzfcfl ’
i
p; =h,(1-12w;)-36a,g,,
i~

s; =A3Ck;

2ij

n
e —iasC"A AT c!
1= &Sy Ay

For variance components:
The score function for ¢ in the log-likelihood is

S, == ETvec[T™(T, -T)T™] —%iauByErvec[Q,j]
i

1

2
1 |& r

+— Zc,j E vec[Q,j]
Dj -

o 1 1 15 15 A e e
+E’[zl:(—zg,]B,j —Rr,jB,} +§a”s,j)vec(F;j)+Evec{T 'C'k k] C'T '}]} 3)

where T, = 8,6 +C7}, T is from previous iteration.

_ dvecT

E= a5’ ¢ being the unique elements in vecT ;

(A2PR), = A W,Z, - A, W, A 6 — A] W A, 6,
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Q, =T"'C;' 4,,(A2PR),
Fy=T7C}' 4y 4,C;'T".

The Fisher Scoring for the parameters is

1 _ S J
[9“ o ]=H"S, s,=[s‘"],s=Zs, H=f:s,s,’. )
[

vecg™ —vecg' = 1
Program Flow:
1. Start with HLM2 estimates of T and §.
2. Iteratively solve C;'(4;W,Z, - A W A ,6)=6, for 6, with W, and z, computed
holding constant T and§ from the lastit&ation. Thus,Z,, n;, u;, w;, (A2PA2),,
(42PY),, C;', and(A2PA1S,), along with 6, will result from this iterative process.
3. Compute (AIPAl);, (41PA2),, and (A1PY), from w;.

4. Compute a;, g;» h;, r; and p; from Ww; and p;.

5. Compute B; from C;'.

6. Compute f; and k; from a; and B;.
7. Compute m; from B; and C;'.

8. Compute s; from k; and C;'.

9. Compute b, from r;, B, and C;'.

10. Compute ¢, from C;',s;,and a;.

ij?

11. Compute ¢; from B;, m;, b;, a;, e,, h;,and p;.
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12. Compute (42PR), from (42PY),;, (A2PAl6,);,and (A2PA2),.
13. Compute X, and ; from (41PA2), and C;'.

14. Compute T from 0, and C;'.

15. Compute O, from C;'and (42PR),.

16. Compute F; from C;'.

17. Complete the 2 S’s and hence the new T,6,.

18. Monitor convergence as in current HLM. At convergence compute standard errors

from square roots of diagonal elements of H~'.
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