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ABSTRACT

INCREASING THE EFFICIENCY IN ESTIMATING

MULTILEVEL BERNOULLI MODELS

by

Meng-Li Yang

Multi-level linear models are useful tools for educational research, where

observations are often nested within clusters. If both the response and the random efl‘ects

have normal distributions, maximum likelihood inferences for the fixed and random

effects variances can be obtained analytically. For dichotomous responses such as

dropping out and repeating a grade, logistic regression is often used to model the

relationship between the responses and the covariates. However, in such multilevel

Bernoulli models, estimation has been a problem. Since the responses have a Bernoulli

distribution, which is not conjugate to the normal distribution of the random effects,

rough approximation or numerical integration has to be used to approximate the marginal

distribution ofthe responses in order to obtain maximum likelihood estimates. The

strategies proposed before include the penalized quasi-likelihood approach, the

approximate maximum likelihood approach using Monte Carlo methods or the Gauss-

Hermite Quadrature technique, and the Bayes approach.



This dissertation proposes using Laplace approximation to the marginal

disu'ibution and then using approximate Fisher scoring to find the maximum likelihood

inferences for the parameters. To achieve the goal, first, the infinite multivariate Taylor

series is deduced. Via the infinite multivariate Taylor series, Laplace approximation can

be extended to any order and any dimension. However, through preliminary experiments,

approximation up to the sixth order is found to produce sufliciently accurate estimates.

The resultant program is therefore called Laplace6.

Laplaee6 is investigated using various simulated data sets by comparing its

estimates with those ofPQL, PQL2 and Gauss-Hermite Quadrature. Laplace6 was found

to have, generally, the highest efficiencies among all the methods compared. The 1988

National Survey ofPrimary Education in Thailand was also analyzed using all ofthe

above programs. Laplaee6 estimates were found to be close to those produced by Gauss-

Hermite Quadrature using 30 and 40 quadrature points. In addition, to check the

consistency property ofthe approximate maximum likelihood estimates produced by

Laplace6, 400 bivariate data sets were generated. Halfof the 400 had 200 clusters in the

second level and the other half had 2000 clusters. Laplace6 estimates were found to be

normally distributed with small negative bias. Moreover, the variances ofthe estimates

ofthe data sets with 2000 clusters were 10 times smaller than those with 200 clusters.

Thus, Laplace6 estimates were approximately consistent.
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Chapter 1

INTRODUCTION

People are concerned about the quality of education. They want to know what

factors -- educational policies, programs, school environments, characteristics of

teachers, or instructional approaches -- contribute to students’ best learning. Educational

research tries to find answers to these concerns. Large samples of students from different

classrooms or schools are often drawn in order to support generalizable conclusions.

However, students are nested within classrooms, classrooms are nested within schools,

and schools within districts. Thus student learning is embedded within clusters, i.e.,

classrooms or schools. Because each cluster has a special climate due to its components,

such as students and teachers, not only will individual students differ fiom one another,

but there will be group differences among clusters. Longitudinal data, with repeated

measurements fiom the same person, can also be regarded as nested data. Here each

person is considered a cluster, with observations of the same person more similar than

observations from different people.

Bennett (1976) found a significant difference between two styles (‘formal’ and

non-formal) ofteaching when he used multiple regression analysis, ignoring the grouping

ofthe students into classes. However, when Aitkin et al. (1981) analyzed the same data

1
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accounting for the nesting effect, the difference disappeared. In fact, with such a nested

data structure, traditional statistical tools such as ANOVA and multiple regression either

have great limitations or cannot work appropriately. Instead, as a statistical tool

developed specifically for nested designs, hierarchical or multilevel linear regression

models, also referred to as random coemcient models (Rosenberg, 1973) or covariance

components models (Dempster, Rubin, and Tsutakawa, 1981), allow each cluster to have

its own slope and regression coeficients. These slopes and regression coemcients are

often considered normally distributed with mean equal to the efi‘ects ofcluster

characteristics as specified in the higher level, between-cluster model. That is, in a higher

level these coefficients along with the slopes are each predicted by a set of cluster

characteristics. The errors from the prediction are referred to as the random efi'ects,

normally distributed with mean zero and a variance covariance matrix.

For example, in the first level ofa 2-level model, observationj in the ith cluster,

y” , is modeled by a vector ofindependent variables, x y” = xJa, + e”. , where a, is a
i,"

vector ofthe regression coefficients (including the intercept) for the ith cluster; e” is the

random term for y” , assumed to be normally distributed with mean 0 and variance 0'2 ,

e”. ~ N(0, 02 ) . In the second level, a, fiom each cluster is collected together as the

a

dependent variable to be predicted by cluster characteristics. Assume a, = [ " ]. Then

an

there will be two equations for level-2: a" = wffi, + b" and a,2 = 2,7,62 + by , where

w, and z, are both vectors ofthe ith cluster characteristics; A and fl, , are vectors of
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regression coeficients fora, and 0:2 , respectively; b“ is the random effect of cluster 1' for

a| and b2, the random efl‘ect ofcluster r' for a,. b| and b2 are assumed to be

multivariately normally distributed with mean 0 and a variance matrix D.

Such modeling gives educational researchers a clearer look at the mechanism of

the interactions among students, teachers, schools, society and policies, and resolves the

statistical difficulties encountered by ANOVA and multiple regression. The resulting

variance components from each level, additionally, give information about its respective

amormt ofunexplained variation. Such models for continuous outcomes have been well

developed by researchers using difi'erent estimation methods. For example, Raudenbush

(1984) used EM algorithm; Goldstein (1986) used iterative generalized least squares;

deLeeuw and Krefi (1986) and Longford (1987) used Fisher scoring. A briefreview

reveals different applications ofthe models: school effectiveness as related to student

achievement scores (Raudenbush and Bryk, 1986; Aitkin and Longford, 1986; Young,

1996), school effects and their stability (Raudenbush and Willms, 1991), how teacher

interaction outside the classroom affects student learning (Louis, 1994), program

evaluation (Marks, 1995; Lee,l995; Mac Iver and Plank, 1996), adolescent attitude

change toward deviance (Raudenbush and Chan, 1993), and the effects of ratee and rater

race on performance evaluations (Waldman and Avolio, 1991). Goldstein (1987), Bryk

and Raudenbush (1992) and Longford (1993) gave detailed accounts of applications and

methodology of these models in social and educational contexts. Bock (1989) and

Raudenbush and Willms (1991) provided applications in education.
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Nevertheless, although it is easy to conceive a continuous and normal distribution

for human characteristics, such as intelligence, abilities and achievements, certain types

ofvaluable educational data cannot be normally distributed. For example, whether a

student has repeated a grade, dropped out of school, been admitted to college or persisted

in the pursuit ofhigher education, might all be informative about the educational

environment and policies. Since these outcomes are either yes or no (typically coded as l

or 0), the usual linear model that assumes a normal random error fails. Instead, the

logistic regression, one of the generalized linear models (McCullagh and Nelder, 1989)

is used to model such outcomes. The logistic model uses the logit (the log ofthe odds

ratio) ofthe dependent variable as the outcome variable. For example, to model the

probability ofdropping out for studentj in school i using his personal information, x” ,

the model will be log(fl—) = xga, + ey , where p”. = E(y,j = 1|b,) is the conditional

l— p,1

probability ofdropping out, ya being the observed data with dropout = 1, non-dropout =

0.

For analyzing nested non-normal data such as binary data and count data, the

multilevel generalized linear model with random effects is a natural outgrowth of both

generalized linear models and hierarchical linear models. It incorporates generalized

linear models into the framework ofthe hierarchical linear model. In the first level, the

linear regression model is substituted by a generalized linear model while the second

level remains a linear model. For such models, researchers face a major task ofobtaining

a good estimate ofthe marginal distribution ofthe data. This marginal distribution is the
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integral ofthe product ofthe first level likelihood, f(y, lb, ) , and the assumed second level

distribution, p(b,)with respect to the random cluster effects, i.e., jf(y,|b,)p(b,)db, . In

most cases, the second-level model is assumed to have a normal distribution. The

dificulty in evaluating the integral arises from the fact that the normal distribution is not

the conjugate prior for non-normal distributions such as binomial and Poisson that are

assumed in generalized linear models.

Many statisticians have studied estimation in generalized linear models with

random efl‘ects, especially in the logistic model with random effects (e.g., Stratelli, Laird,

and Ware, 1984; Wong and Mason, 1985; Schall, 1991). What makes the logistic model

with random efl‘ects interesting and difiicult is that there is no closed form for the

marginal distribution ofthe outcome for a logistic model (Zeger et al, 1988). As a result,

the estimation ofthe parameters, including the variance components and the fixed effects,

have to be derived through approximation, if not through intensive Monte Carlo

computation. Moreover, because the approximations are generally rough, the resulting

estimates ofthe variance components is often subject to underestimation (Breslow and

Clayton, 1993; Rodriguez and Goldman, 1995), thus resulting also in the underestimation

ofthe fixed effects coefiicients, especially when the number ofrandom effects increases

with the sample size and the binomial denominator is small (Breslow and Lin, 1995).

Breslow and Lin (1995) proposed first-order and second-order Laplace

approximations ofthe integral of the marginal likelihood with in the context of

asymptotic bias correction, with the second-order being the fourth order Taylor expansion
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whereas the first-order being the second order Taylor expansion. Incidentally, the first-

order approximation has terms exactly the same as those in the penalized quasi-likelihood

approximation (Breslow and Clayton, 1993). Therefore, the second order approximation

can be regarded an improvement over the penalized quasi-likelihood approach such as

Raudenbush’s posterior modal estimation method (1993). Later Lin and Breslow (1996)

extended the approximation to the case ofmultiple random effects, with zero correlation

among them, however. Nevertheless, the assumption ofa zero correlation among random

efi‘ects limits the use ofthe approximation in real world research.

This dissertation will build on the work ofBreslow and Lin (1995) and Lin and

Breslow (1996), using Magnus’s (1988) and Magnus and Neudecker’s ideas (1988) as the

toolbox. It will generalize the Laplace approximation to multiple random efi‘ects with a

general variance-covariance matrix. Moreover, through simple simulations it was found

that the contribution ofthe eighth order term in the eighth-order expansion to the

approximate log- likelihood is negligible while those ofthe lower orders are not.

Therefore, this dissertation will also expand up to the sixth order ofthe Taylor series to

get a satisfactory Laplace approximation to the log-likelihood. However, the purpose of

the extension will not be bias correction. Treating the resulting approximate marginal

likelihood as the exact likelihood, Fisher scoring will be applied to simultaneously

estimate the fixed efi‘ects and the variance-covariance matrix ofthe random effects.

Because the Laplace approximation is not stable in some cases, according to Breslow and

Lin (1995), to ensure convergence and more efficient estimation, the output from

Raudenbush’s posterior modal algorithm (1995) will be used as starting values for
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parameters to be estimated. The resulting estimation method will be called “Laplace6”.

It will be tested and evaluated with extensive simulation studies. Its efiiciency, in terms

of mean squared errors, will also be compared with those ofRaudenbush’s posterior

modal estimation (1993), which is equivalent to the PQL (PQL) (Breslow and Clayton,

1993), ofGoldstein and Rasbash’s (1996) second-order penalized quasi-likelihood

(PQL2) method, and approximate maximum likelihood method using Gaussian

Quadrature technique (Gauss) by Hedeker and Gibbons’s MIXOR(1994, 1996)).

To achieve the above goals the dissertation will

0 derive the multivariate Taylor series;

0 derive the six moments ofthe multivariate normal distribution;

0 prove that the fourth and sixth moments can be substituted by simpler forms for use in

the approximation;

0 find the approximate log-likelihood using a Laplace sixth—order expansion ofthe joint

density ofthe data and the random efi‘ects;

0 find first derivatives ofthe approximate log-likelihood for both the fixed effects and

random effects variance matrix in order to use approximate Fisher scoring to estimate

the fixed efl‘ects and the random effects variance matrix;

0 work out a computational algorithm, based on the derivatives and the approximate

log-likelihood, for computer programming;

- analyze the data set of 1988 National Survey of Primary Education in Thailand

(Thailand data) using the above methods as an example;
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generate data sets with different models and parameters, the structure ofwhich

generally follows that ofRodriguez and Goldman (1995); and

investigate the performance ofthe methods by analyzing the estimators in terms of

their biases and mean squared errors.

According to experience so far, when the variance and especially the conditional

expectation, E(y”|b,) , are both very small(e.g., .25, .01, respectively), all ofthe

above methods except for PQL have dificulty converging. On the other hand, data

sets with extremely small random effect variance and conditional expectation will not

be ofmuch practical as well as theoretical interest, anyway. Moreover, because ofthe

symmetry ofprobability in dichotomous situations, a conditional expectation higher

than .5 is the same as itself minus .5. Therefore, I will limit the range ofthe

conditional expectation to (.l, .3) and the variance to (.25, 2). In addition, for a single

variance component model, the within-group sample size will be around 20 and

between group sample size around 150. For a model with variance-covariance

matrix, even larger within- and between- group sample sizes are necessary.



Chapter 2

BACKGROUND AND SIGNIFICANCE

Among the members ofthe generalized linear models with random effects, the

logistic model with random effects especially poses numerical difficulties. The obstacle

occurs when the marginal likelihood is needed for estimation ofthe parameters. The

marginal likelihood is obtained by integrating out the random effects from the joint

likelihood ofthe data and the random efl‘ects. In the logistic model with random efl‘ects,

the data have a Bernoulli distribution, while the random effects are usually assumed to

have a multivariate normal distribution. Besides, while the conditional expectation ofthe

response, [1,] = E(y,j =1Ib,), and the sum ofthe fixed and random efl'ects are linked by a

canonical link function (McCullagh and Nelder, 1989) for each member, the marginal

expectation, E(y0) , is not. Researchers cannot find an exact closed form relationship

between the logit link and the marginal expectation (Zeger et al., 1988). Hence there have

been different approaches for estimation. A briefreview with reference to the various

approaches highlights the dimculty.
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Bayes Approach

Zeger and Karim (1991) used the Bayesian paradigm by applying Gibbs Sampler

technique (Geman and Geman, 1984; Gelfand et al., 1990, Gelfand and Smith, 1990) to

find the posterior distributions ofthe parameters and the random efl‘ects in the context of

generalized linear models with random effects. The strength ofBayes approach lies in its

flexibility in assessing the uncertainty in the random efl‘ects and functions ofmodel

parameters (Breslow and Clayton, 1993). The greatest advantage of Gibbs sampler is its

ease ofimplementation. However, it is computationally intensive. Moreover, Hobert and

Casella (1996) and Natarajan and McCulloch (1995) found that for models with random

efl‘ects the posterior distribution ofthe parameters may not exist for diffuse priors, but

that this problem may not be detected while computing, and thus wrong estimates can

result (McCulloch, 1997).

Full Likelihood Approach

Anderson and Aitkin (1985), Hedeker and Gibbons (1994) and McCulloch (1997)

approached the problem using a full likelihood approach. Anderson and Aitkin (1985)

used Gaussian quadrature to approximate the integral in using maximum likelihood

estimation in the logistic model with a single random effect. Hedeker and Gibbons

(1994) also used Gauss-Hermite quadrature technique to find the marginal maximum

likelihood estimators in ordinal regression models with multiple random effects. The

advantage ofGaussian quadrature technique is that the precision ofthe estimation can be

improved by increasing the number of quadrature points. However, as the number of
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random effects increases, the number ofquadrature points that have to be summed over

increases exponentially, and so will the computational time. However, Bock, Gibbons

and Muraki (1988) pointed out that the number ofpoints for each random efi‘ect can be

reduced as the number ofrandom efi'ects increases, without hurting the accruacy ofthe

approximation.

McCulloch (1997) adapted the Monte Carlo version ofthe EM algorithm

(MCEM) (Tanner 1993; Ledholter and Chan, 1994) for use in generalized linear models

with random efi‘ects by incorporating a Metropolis-Hastings step. He also proposed a

Monte Carlo version ofthe Newton-Raphson algorithm (MCNR) and improved the

performance of simulated maximum likelihood developed by Geyer and Thompson

(1992) and Gelfand and Charlin (1993) by preceding it with MCEM or MCNR. He

compared these methods with the penalized quasi-likelihood approach using simulated

data with large variance, which is known to be where the penalized quasi-likelihood

sufi‘ers serious downward bias. The three methods were found to perform better than the

penalized quasi-likelihood. However, the Monte Carlo methods have the same problem

as the Gaussian quadrature technique in that the estimation takes time. Besides, the

convergence is stochastic. That is, when the iterations converge, the convergent value

will vary randomly within a small range ofthe maximum likelihood estimate. (Chan and

Ledholter, 1994). This produces problems ofdeciding whether the MCEM or MCNR has

really converged.
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Quasi-Likelihood / Approximate Likelihood Approach

Goldstein (1991) and Longford (1984, 1988a) arrived at the same results via

difi‘erent routes (Goldstein, 1991; Rodriguez and Goldman, 1995). Goldstein (1991)

completely avoided marginal likelihood estimation. He used the linearized dependent

variable (McCullagh and Nelder, 1989) to borrow the suength ofthe normal theory

methodology and proposed iterative generalized least squares to do the computation.

Longford (1994, 1988) arrived at his approximation to the marginal likelihood integral by

both using a second Taylor expansion around zero ofthe random efi‘ects and taking

advantage of the normal theory. Breslow and Clayton (1993) considered such

approaches as a marginal quasi-likelihood approach (MQL) because the conditional

expectation in both cases is expanded around zero for the random efi‘ects. However,

Rodriguez and Goldman (1995) conducted simulations on both packages as well as

Goldstein’s second order MQL (1991) and found the estimates to sufi‘er substantial

downward bias when the variances ofthe random effects are large.

Raudenbush (1993) extended Stiratelli, Laird, and Ware’s (1984) posterior modal

approach for binary responses to generalized linear models with random effects and also

improved the emciency ofthe approach by adopting Schall’s framework (1991). He also

used the linearized dependent variable with the conditional expectation expanded around

the cmrent estimates ofboth the random and fixed efi'ects. As a result, although

motivated in seemingly very different ways, the estimating equations used By Breslow

and Clayton (1993) and Raudenbush (1993) are the same. Nevertheless, the fixed effects
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and variance estimates also suffer tmderestimation (Yang, 1994), which, though not as

severe as in the case ofMQL, can still be serious when the variance ofthe random effects

is large.

Breslow and Clayton (1993) used Laplace’s method to derive the score function

ofthe penalized quasi-likelihood (PQL) derived by Stiratelli et al. (1934). For the fixed

and random efl‘ects estimation, they modified Green’s (1987) Fisher scoring for

estimating equations so as to borrow the strength ofthe normal theory linear model. For

estimation ofthe variance components, they derived estimating equations, again using the

normal theory, fi'om the “REML version” ofthe profile likelihood ofthe approximate

marginal likelihood, ignoring the dependence between the fixed efi‘ects and the variance.

However, they showed PQL to be downward biased for estimates ofboth fixed effects

and the variance components (Breslow and Clayton, 1993).

In an attempt to asymptotically correct the biases in approximate estimators of

regression coefi'rcients and the variance in generalized linear models with a single

variance, Breslow and Lin (1995) expanded the joint distribution, using Taylor series, of

the data and the random effects to the second and fourth orders around the current

estimates, and then used Laplace’s method to approximate the marginal likelihood. They

termed the approximation up to second-order Taylor expansion the “first-order Laplace

approximation” and that up to the fourth-order Taylor expansion the “second-order

Laplace approximation”. They found that the first order Laplace approximation for the

variance estimator was seriously biased while the second order Laplace approximation
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was better. Lin and Breslow (1996) extended the approximation further into models with

multiple components ofdispersion, with zero correlations among them.

Given the computational burden and other problems for Bayes and full likelihood

approaches, the approximate/quasi- likelihood approach seems to be worth exploring

more. The idea ofBreslow and Lin (1995) and Lin and Breslow (1996) provides a way

for the approximate/quasi -likelihood approach to better approximate the marginal

likelihood and thus the estimation. Working in the approximate likelihood paradigm and

trying to reduce the underestimation, this dissertation will extend their idea to the most

general case where multilevel logistic models will have arbitrary number ofrandom

efi’ects with a general variance covariance matrix.



Chapter 3

METHOD

Introduction

This chapter will find the approximate marginal log-likelihood using Laplace’s

method. Then, it will find the derivative ofeach term in the approximate log-likelihood

in order to apply the approximate Fisher scoring for the estimation ofthe fixed efi‘ects

and the variance-covariance components ofthe random efiects.

Following is a list of all the formulae from Magnus and Neudecker (1988) and

Magnus (1988) that are needed for the derivation. In proving theories in this section,

these formulae will be referred to only by equation numbers.

vec(ABC) = (C’ a A)vecB (F1)

vec(A)Tvec(B) = ”(ATB) (F2)

crewman): AC®BD - (F3)

”(A a B) = tr(A)tr(B) (F4)

tr(AxxT) = x’Ax (F5)

d loglFI = trF"dF, (F6)

trAdX = (vecAT )7 vech , A being constant (F7)

15
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vecm= vecA(dX)B = (3’ ® A)vech , A and B being constants (F8)

tread)!"l = -((XT)" ® X")vech (F9)

[vec(ABC)]T = [(C7 8 A)vecB]T = (vecB)T(CT 8 A)’ = (vecB)T(C8 AT) (F10)

(b7 8 or) = (vec(ab’ ))T , b being a column vector. (Fl 1)

The Logistic Model

We consider dichotomous responses from individuals nested within group i:

y, = p, +e,, wherey, isan n,x1responsevectorofeitherlor0 forcluster i, with

elements y”, irangingfrom 1 tol,andj rangingfi'om 1 to n,. e, isann, x1 column

vector oferror terms. p, is an n, x 1column vector, the conditional mean ofthe ith

cluster given b, , each element being

1 l

”if=E(y0=l|b')=1+exp(-X,j’fl-Zyrb,)=l+exp(-q,j)' (I)

 

Thus,eachterm p” in ,u, isrelatedtoeachterm 17,, in q, throughthelinkfunction

 

77!} = 8(fly)=1°8[1:12 J - (2)

it

77, = X,fl+Z, b, is a column vector, the linear predictor ofthe ith cluster. HereX, is an

n, x p design matrix for the fixed effects, ,6, ofthe ith cluster, [3 being a p X] vector.

Z, is an n, x q design matrix for the random effects, b, , ofthe ith cluster, b, being a

q x1 column vectorthathas adistribution N(0,D), where D is a q x q variance-

covariance matrix of b .
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m

IfD=0, 9ascalar,then b, isascalar,and Z, becomesan n,xl vectorof1.As

1

1+e:q>(—X,’p-b,)’

 a result, the conditional expectation becomes p” = E(yg = 4b,) =

and fly = X”T,6 + b, .

Likelihood

For each observationj in the ith cluster, the conditional density of ya given b, is

ngIb.)=#§'(l-#,)“". (3)

Then for the ith cluster, the conditional density is

f(y.|b.)= fly? (1- ref (4)

1-1

The log oquuation4is l, =yfr], +s,,where s, =is3,]. ,with sy= log(l—py).Thus,

I"!

the conditional log-likelihood of all the clusters is

I l 1

El. =nym+2s.. (5)
bl In] 3-1

To get the marginal likelihood, we wish to integrate out b, from the conditional

density of 3’0:

L: [1'1 f(y,|b)p(b)db=1'[(—2’1r)A |D|V jexp(1--b"D-'b)db (6)
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W

For D = 0, the joint density of y” and b, is

L= in(y.Ib.)p(b)db.H=——iexp(1.2-b’)db
AMIGO”

Approximation to the Log-Likelihood

Direct integration ofEquation 6 is impossible and numerical integration

cumbersome. Breslow and Lin (1995) used Laplace’s method to approximate the

integral, limiting the variance ofthe random efi’ect(s) to either a scalar (Breslow and Lin,

1995) or a diagonal matrix (Lin and Breslow, 1996), however. That is, they first

approximated the integrand in Equation 6 using Taylor expansion. Then by regarding

the second-order term ofthe Taylor series as the kernel ofa normal distribution,

N(E, —('i,'<” - 1)-I )“ ), with '17") being the second derivative of I, evaluated at 3;, they

took expectation ofthe other terms in the series under this new normal density, and

approximated the integral as a sum ofmoments (up to the fourth moment). Note that

Q, = {17(2) - D" )'I is also the posterior variance of b, given y,, D, and ,5, ifthe

linearized dependent variable (McCullagh and Nelder, 1989) y: is assumed to be

independently and identically normally distributed, i.e.,

y,‘ ~ N(X,,6+ 2,12,, 2,702, + W,).

In this section, we will generalize their approach to allow covariances among

random effects. In addition, we will improve the accuracy ofthe approximation by

including terms up to the sixth moment.
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First, we approximate I, — ébeTb, inside the exponent ofthe integrand with the

Multivariate Taylor expansion around a current estimate of b, , b; , that maximizes the

expansion. (See Appendix A: Multivariate Taylor Series Expansion)

1 _ ~ 1"” _ ~ 51 ~ ~ _ ~

It TEbITD lb: T I1 TTz'bITD Ib1'1'3'b'1i'a’iTb1)-birD 1(bi Tbi)

1 ~ 5’1 _ ..

+§(b1Tbi)T[a—bé+b7T D l)(b1 T bi)

v94 5’1, )

abab’ ~)

 

 

 

 

 

 

 

 

 

1 ~ ~

+i[(b‘ -bl)r ®(bl - bI)T] 6 br (bi - b"

321, )

a a ”(5 b0" 1”

”e a b’

1 .. .c ... ...

+271“! — b,)T ®(b, - of out - b.)’] a by (b. - b1)

1 .c .. ~ .c

+ 5101-507 ®(b1 T bi), ®(b1 T b1)? ®(bl -b’)T] x

5’1, J

a a ”(a on b’

vec 3 b1

0" vec 0" br (b —b)

a b’ ' ‘

I ~ ~ ~ ~ ~

+a[(bi Tbi)r ®(b1TbI)T ®(bt Tb1)r ®(bl —bi)T ®(b' —b')T] x



20

 

 

 

 

 

5’1, )

0,, a ”‘(a be" I”
ve a" b7

T

a vec :22, ~

0" vec 0" br (b, - b,)

where

1. Zisthevalueof I, =yfn,+s,,evaluatedatthecurrentestimates fl,Dand 3,;

at, _

ab"

 

2- ZON‘ =(y1 -H)TZI = (y; T ”01”,;th : With ii“) = 217”“); T 771), Where W1

is diag[w,,], with w, = p”(1-p,,),the derivative of p, with respectto r), , and

y,’ = W," (y — 11,) + 77. t the ‘linearized dependent variable’ (McCullagh & Nelder, 1989).

 

621; _ in) = 7(2) =

 

 

3. 0M), - c‘bafl , -Z,’W,Z,.

o‘lre £27) o‘l’ecT‘z’ ~ "

a), = a); = 1,") = —(z,’ a z,’ )A,Z,, where, A, = Xa,(E,E,’ a 3,),
fill

an n,2 x n, matrix , with 0,,= p,(l-p,,)(l—2p.y.)= w,,(l-2,u,,), the second derivative

of [1,, withrespectto 77,,and Evan n,x1vectorwiththe jthentrybeing l,theothers

 

 

   

being 0.

' all, J
are dw’br

area d)’ >

@ecT‘” ~

5. ~ , = ' =I.“>=-z,’®(z,’ azf)G,z,
a7 &1' t
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where G, =ig,(E,E;®E,,®E,,),an n,3 xn, matrix,with g” =w,,(1-6w,,),the

1.1

third derivative of p, with respect to 27,, .

m 521, J

t

 

 

   
d’ec ‘ J1'

~

an?" =1") =—(Z.’®Z.’®2.’®ZI>HIZI
 

where H, =ih,(E,E;eE,®E, ®E,),an n,’ x n, matrix,with h, =a,(1-12w,,),
j-l

thethirdderivativeof/1,, withrespectto 1],.

 

 

   
d’T

MC @T ~(6) r r r r r
7. 57 = I, = -(Z, 82, 82, 82, ®Z, )EZ,

 

 

where F, =Xf,(E,E,T®E,cE,eE,®E,),an n,‘ xn, matrix,with
j-l

f, = g,,(1—12w,,)-12a2 , the fifth derivative of ,u, with respect to r),,.

All ofthe above are derived by using Equation F8, regarding the matrix to be

difi‘erentiated asXand those on the two sides as A and B.

Then we will prove that the approximate log-likelihood is approximately
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’ -l l - ~ 1 ~ - ~

log(L) at L, = Z{-i—log|D| - Elong, 'l + 1,-5be 'b, + log 114,} , (7)

1.1

where Q," = -('i,'“> — D") = (1)-l + 2,’W,2,), B, = 2,;Q, 2,, and

8 , 48 , 72 1

Proof Substituting the integrand with its Taylor expansion, the marginal

likelihood becomes

’ :1 :1 ~ 1 ~, ~ ;.. ~ ..

L ~ [110102 IDI 2 icxp{l, ~31». D“b. +(I."’ - D"b.>’(b. -b.)

1 ~ ~ _ ~ 1 ~ ~ ~ ~

'1' 5(b1 T bt)r(lt(2) T D |Xbl T bt)+ ikbt T bl)T ®(bl T bl)T]lr (3)(b1 T bl)

1 .. .. .. .. ..

+ flat - b.)’ ca». - by w. - b. )’]I. “’(b, - b.)

1 ~ ~ ~ ~ ~ ~

+ -5_![(bl " b1), ®(bl T bt)T ® (b: T b1), ® (bi T b1)T]lI(S)(bl T bi) (8)

+fiat - E)’ orb. - E)’ out - E)’ e (b, — E)’ e (b. - E)’]’i.'“’(b. - 51)}db,.

where b, is the maximizing value for L, i.e., b, solves 17‘" — D43, = 0. That is,

13; = DZ“) = DZfW, (y; - X,,6- 2,5,) . To find 3,, collect 3’, at the left hand side,

(1 + DZ,’W,2,)S, = 02W,(y; - X,p) . Thus,

3} = (I + szmzrr‘szmo: -M) = 9,21%»: - Xe). Consequently.

7,") — D"b, vanishes. The second order term is retained as the kernel of the new Normal

density N(3,, Q, ) . Next we consider the approximation ofthe higher order terms.
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1 ~ ~ ~ ~

For R = 3"[(b1 T bt)T(bl T b,)T]I,(3)(b, T b!)

I ~ ~ ~ ~ ~

+ :1ka - b,)r Q (b, - b, )1' ® (b1 T bI)T]II“)(bt T bi)

I ~ ~ ~ ~ ~ ~

+ alto. — by etb, - 1,)? 81b. - bd’ Wt -W14 "’0’: - 50

1 ~ ~ ~ ~ ~ ~ ~

+3310.-b.)’®<b,-b.>’®(b.-b.>’®<b. -b.>’®<b. -b:>’]':“’<bv 4’0

in the exponent, we adopt the formula for approximating an exponential:

exp(R) :1 1+ R + -;- R2 + % R’+.... However, through experiments, the contribution of

the expansion terms to the log-likelihood of orders higher than the seventh is negligible.

2 2

We only take up to R and -l-;— . Moreover, we find the approximation 52— for

l 1
2

§[;((bl - 3.0T @011 - 3,)T)I;‘3’(b, - 3)] to be non-negligible in approximating the log-

likelihood. Therefore,

exp{R} = cxp{§[vec(b. - E)’ a (b, - EYIIT‘Wb. — 5;)

in —13;)Te(b, —I3;>’®<b. - E)’]Z“’<b. - 82>

.fi-lu, .. by no, - if on, - E)’ on. - '5.)"]7.'"’(br - 13;)

tam, _ E)’ ®(b, -13;)’ our, -17,)’ ea», —3,)’ ma - I3'.)’]'Z“”(b. — 132)}

z {1+31—1[(b1 -50
7 ®(bt T E)T]TZ(3)(bi T31)
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+50». -I'3'.)’ so. .3)? eat -E>’]Z'“’(br 47.)

+50», 43;)? car, -3,)’ ®(b, -13})’ ®(b, -E)’]Z"’(b, 432-)

+£01-13)? car, -13',)’ cw, —3,)’ ®(b, -I'3,)’ ®(b. -3.)’]7I‘°’(b.- ~30

+%(i[(b, 47,)" ®(b, -I'§,)’]7,'<”(b, —b,))2}. Then Equation 8 becomes

.- :1 :1 ~ 1 ~ ~ 1 .. ... .c

L as gas) 2 IDI 2 eXp(I, - Scipio)j{exp[5(b. -b ,)’(I."’ - D’l )(b, - b,)] x

<l+§li[(b, 47,)" so. -51)’]'17‘”(b. - 3.)

alike 43;)? so, -3.)’ w. —I7.)’]'17“’(b. -3.->

+311”, -13)? ®(b, -13;)’ am —13,)’ @(b, -b~.)’]Z"’(b. -5.-)

+3110), 43;)? ®(b, -E)’ w. -5.)’ eat-1311’ ®(b. -I3}>’]Z“’(b. 47.)

+-;-(%[(br - 321’ so. — E)’]Z"’(b. - E))2>}db.- (9)

Using Laplace’s approximation method, multiplied by the normalizing constant,

1

3 , Equation 9 becomes the expectation of 1 plus the third, fourth, fifth and sixth
 

l

(2”)2 IQ:

moments of a multivariate normal distribution with mean 0 and variance Q, multiplied by

7,"), '17“) , 1:"), 7,“) and (7,0))2 respectively. However, the odd moment ofa normal

distribution is 0. Thus the likelihood can be approximated as (See APPENDIX B: The
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Six Moments ofa Multivariate Normal Distribution, APPENDD( C: Proofofthe

Substitution, and APPENDDI D: The Expectation ofthe Third Term Squared)

I "_‘ :1 l 1 ~ ] T'T -1~

L e 11(27!)2 |D| 2 (21:)2 |Q,|2 exp(l, - -2-b, D b,) x

Jul

1 ... ... ... .c ...

E<1 'I’ Sikh T b1), 8 (b T bi )T ® (bl T b1 )T]Il(‘)(bt T bi)

+L

720
kit-Evan.—3})’®(b.-B;)’®<b.-E)’®(b,—3.)’]Z“’(b.432)

1 .. ~ .. 2

+ 33([111 - by so. - b.>’]7.<”(b. — b,)) )

" '—‘ 1 ~ 1~r -1~ 1 r ”(4)
=H|D|2|Q,|2 exp(l,-§b, D b,) l+-8-{vec[Q,®Q,]} vecl,

i-l

+21§{vec[Q, 8Q, ®Q,]}TvecZ“’ +%k,TQ,k, >. The matrixpre-multiplying vec?" is

the result of 21—, multiplied by the fourth moment ofthe normal distribution. The matrix

pre-multiplying vec'lj“) is the result of émultiplied by the sixth moment ofthe normal

distribution. The derivation ofthe last term can be found in APPENDIX D. Therefore,

the approximate log-likelihood is

I
~ 1 ~ ~

~

log(L) z 2 : {—é log|D| - %10g|Q,"| + 1,. - 5 b,’D"b, + log<l + %[vec[Q, a Q, 11’ vecl, “1

1-1

_1__ r ~(6) E T

+48 {veclgi ® Qt ®Qi]} V9011 T 72 k1 Qlkt >} (10)

Substituting 1:"), Ii“) Z“) andzminto Equation 10 gives
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log(L) as Z{—log|D| - 3,10ngI + I,— —b,TD"b, +

log(l — ghetto. a Q. )1’ vecKZ.’ e Z.’ <8 2.’ >621

1
-4—8{vec[Q, a Q, a Q,]}’ vec[(2,’ a 2,7 o z,’ e Z,’ ® Z.’)F.Z.-1

+'7_2k1 Qlkt >}
(11)

Now we simplify the fomth order term in Equation 11. Let

e, = [vec(Q, ® Q, ]7 vec[(Z,T ® Z,’ 8 Z,’ )G,Z,] , ignoring the constant, —?1. First, by

Equation F1, regarding G, as B in the formula,

J

vec[(Z,T c 2,’ a 2,’)G,2,] = vcc[(2,’ a 2,’ a 2,’)2 g,(E,E,’ a E, a E, )2, 1

1-1

J

= v.24: g,(2,’ a 2,’ o 2,’ )(E,E,’ o E, a E, )(2, ®1®1)]

j-l

J

= 2g,vec[(z,2,’ a2, a2, )1. (12)

1.1

Here 1 is a scalar 1. Z, is a q x 1 column vector ofthe random effect design

matrix for personj in group 1'. Since Equation 12 is the vectorization ofKronecker

products ofthe same vector Z, , it can be re-written as

J

vec[(2,’ a 2,’ a 2,’ )G,Z,] = Z g,vec[(2,2,f a 2,2,? )1 (13)

I"
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(by F11, see also PA-12 in PRE-APPENDIX). As aresult,

e, = [vec[Q, 319,117: g,vcc(2,z; 312,2; ). (14)

1

Since Q, is symmetric, so is Q, Q Q, . By applying Equation F2, Equation 14 becomes

e, = Z g,tr{ [Q, 8 Q,](Z,Z; ® 2,2,7 )}. Furthermore, by Equations F3 and F4, e, is

J

simplified even more to e, = 2 g, {tr[(Q,Z,Z,T ]}2 . (15)

1

To get rid ofthe trace firnction ofthe above, we take advantage of Z, being a

q x 1 vector, and use Equation F5. Therefore, Equation 14 becomes, finally,

cl = X gyIZ;QIZy]2 = 2:8ng ° (16)

1 1

The sixth order term can be simplified in exactly the same way. That is ,

wmfladeflefl®me

J

= vec[(Z,T ® Z,’ ® Z,’ ® Z,’ ® er)2 fyiEgEyT ® E, ® Ev ® E, 8’ Er )Z, ]
j-l

J

= vec1}: f,(2,2,’ a 2, e 2, a 2, a 2, )1

jun]

J

= vec[Z f,(2,,z,? a 2,2; a 2,2,? )1 (17)

j-l

As a result, 4. = {veciQr ® Q. ® QJ)’ veci(Z.’ ® 21’ ® Z? ® Z? ® Z.’)F.-Z.-]

= {vec[Q, ® Q, 8 Q,]}7 2 f,vec(Z,Z,T ® 2,2,; ® 2,2,; )

j



28

= ”Z f,tr[Q,Z,Z,f ® Q,Z,Z,T ® Q,Z,Z,T ]

1

T :fviflgaZtZIJY T if,(ZJQ,Z,)3 T 2": faB; (l7)

1 1

Putting ?le, and 4—; q, back to the approximate log-likelihood, it becomes

log(L)eL =Z{—log|D|-——log|Q,|+I—-bTD"b,

+ log<l - i—X g,B;-4182 f,B’+gig/HQ, )}.

1

Hence we have finished the proof.

A ' 'nt th urn cl

ForD = 9 , the log-likelihood ofthe data is obtained by substituting D by 6? , Z,

by the scalar 1. Therefore, I“) = XI?” , 7,") = 2,7,“) , Z“) = 27),“) a and

.I j 1'

U

1,“) = 21,“) for the univariate case. Then we have

1

I

-l 1 "' ~ ... 1 ~

log(L) T L5 = 2 ,{—2 logB-Elogw-l
- S [#(2))+11 _ 29 biz

i=1
j

l u T“) -l n ”(2) -l 2 i "I ”(6) -1_ n’ ”(2) -1 3

+log1+8 1, [(19 - 1, ) 1 +4821, [(19 21, ) ]

J' j 1'J'

+%[22§"’] W‘- 2115”)"1>}
j J
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Approximate Fisher Scoring

This section will find the first partial derivatives ofthe terms in the approximate

log-likelihood, L, , with respect to the fixed efi‘ects ,6 and the variance componentsD ,

separately, and then merge the derivatives into one score function vector, S, , for each

group 1', so as to form the approximate Fisher scoring (Green, 1984),

S

(2S,S,T)"ZS, where S, = [SA ]. Note that to take the derivative ofa scalar s with

1 1 D,

respecttoacolumnvectorvisthe sameastaking its derivativewithrespectto vT,and

 

then take the transpose ofthe resultant row vector. That is, a = [j s,

v

r

J .Thelatteris

5v

used here because it is more straightforward in applying formulae by Magnus and

Neudecker (1988).

li it 'ff

The posterior mode ofthe random efi'ects, b, , depends on the variance D and the

fixed efi’ects ,6, i.e., b; =b;(fl ,D) = DZ"). Infinding score functions for B and D we

need to take this relation into account by finding the differentials, % and a—i—f—‘fi; ,

through implicit difi’erentiation.

a 5; — $20)

 

0" ~ 313'

a?" 613’ TDZ'TF‘yi'Wh Z:’W(X.+Z:Ei).

Collecting % at the left hand side, (I + DZ,TWZ,)§—fib7’ = —DZ,TW,X,.
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Thus, pre-multiplying each side with D" ,

  

 

 

a?" _ ..

yaw '+2.’W.2.) Viva-9.21m. (19)

a X +23

men ,3? = ”I '33? “’ =(X. -Z.Q.Z.’W.X.). (20)

ai 5127‘" . 1913'
Similarl , ’ = ’ = - ’WZ ®I -DZ’W Z———’

y 51%ch 511$ch [(y, 711) I I q] I '( IOTWCD) )

WT”) +21 W121) D [(yl T771) "’12! @1411 (21)

an. aim/9+2?» -. . r
dvecD)’ 4‘”ch IQ! “yr "1) 1 I q] (22)

T “Y: T 7711),.le ® ZinDT‘I-

In the following derivatives for each term in L, , all the terms that are functions of b, ,

e.g., 7],, 11,, W,, A,, G, , and F; , will have partial derivatives not only with respect to the

apparent ,6 and vecD but also those inside 5, using the above derivatives.

S F tio f ix ects

I will prove that the score function ofB for group 1' is

_1 n .

S}: T T angTQIZyIXy T Xlrnltzl ley] +X,TIV, (yl T 771)

I

l 1 n n, n

+ Til—(TEl: haBI T 222 811311011: (ther211 VII/Ya "' Xtrwlzl Q1211]

1 k k I

1 n n n

‘4‘lep.82. -322f183ar(219.2. )2] 1X1. - XfWiZi 9.211
r I: I
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15

+ —6 23 3,1:Q. 2,219. 2,,](X, - X31112. al..)
J

:ayaaklrglzfizggt 2111):}Xa T Xtrwill lea]

-li[io,(k,’Q,2,)1X,-X,’W,2,Q,z,]},

where p, = h,(l-12w,,)-36a,,g,,,.

Proof Making use ofEquations F6 first, and then F7, and F8, the derivative of

the second term in L, is:

4:,(-1og|D" + 2,’W,2,=|) —'2'11r((n" + 2,’W,z,)'l aZ—gfl—sz))

a vec(Z,TW,Z,)

$7

 = 121-[vec(D" + 2122.)"?

= :21:“alvecQt ]T(Zti ® 2” )[Xr + Zgrddflri]

-1 "I
,

.—. 3—21.,2,’Q,2, 1X,T — 2,’Q,2,’W,X,] (by Equations F2 and 19), (23)

J

W,
where ”we“ Z) =(2,’®2,,’)A (X,—-,2,Q,2’W,X,)

5!?

 

=za,(z, oz,» (X; -z;Q,Z.’W.X.). (24)
1

Equation 24 is obtained by regarding 2,7 as A in Equation F8, and Z, as B. We vectorize

W, and take its derivative to get A,(X, - Z,Q,Z,TW,X,). However,



32

A, = ia,(E,,E; ® Eg). We make use ofthis special structure to decompose A, and get

1

Equation 23. The transpose ofEquation 23 is the first term in the score fimction.

 

£517 = o, - p, )’(X. - 2,9,2,’W,X.) = (y: - n. )’W.<X, - z,Q,Z.TW.X..> (25)

The derivation is similar to that ofthe 66b]; in the derivation ofthe approximate log-

likelihood.

§;(—%E’D"E)=-E’D"[%]=52’D"Q.Z.’W.X,- <26)

However, since 52 = Dzmy: — m), 0"13'. - Z.’W.(y: - n.) = o. In adding up

Equations 25 and 26, E’D"Q,Z,TW,X, —(y,' - r1. )W,2,Q,2,"W,X, = o, with only

(y: - 7],)TW}X, left, the transpose ofwhich is the second term in the score function.

The derivative of log M, in the approximate log-likelihood function will be

610M __1_ %
aflT - Mi wT ' (27)

 

We take derivative of the first term in M, .

a " "
55?}: g,B; = 21:1,,3; [X,’ — Z,’QZ.’WK,1

1

~22: g,B,(z;Q, ® 252sz ® z,’)A.(X. - 2221”,)
J

= (212,13: - 222g,8,al<z;9,2,>2]txi - 2:22}mm (28)
k k j
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where B, = 2,;Q, Z, , B; = (Z5Q, Z, )2, and h, is the derivative of g, with respect to

r], . The first item in the right hand side of (28) results fiom taking derivative of g”.

The second term comes from taking derivative ofthe 3,}. Since 3; is a scalar,

" 5 B

difl‘erentiating the second term leads to 22 g,,B 3,1 , for which we use Equations F8

1

 

01’3de”IIZI)
and F9. Applying Equation F9, we have ivecQ, = —(Q, ® Q,) 519'

Substituting Equation 24 inside Equation 29 and then applying F3 we have the second

term in Equation 28. Then, the transpose ofEquation 28 is

£3}: g,B; = [213 haB: " 22*:2 81134104: (Zgrlea )ZHXI: - XITWIZ: QIZH: ] ° (30)

Multiplied by :81 , Equation 30 is the contribution ofthe fourth order term ofthe Taylor

series to the score function of [3,.

Similarly,

"I

9%,: f,B,j = [$19,192, 4222324422.?) IX; — 2.19.2?22222. (31)
J l .I

where p, = h,(1-12w,,)— 36a,g,, , the derivative of f, with respect to 77,.

The transpose of Equation 31 is

732—222;. =[21»..132.-3£'2‘,f.,19.3a..(2;Q,2..>21[2,. — X.’W.2. 9,2,1. (32)
i k k I

Multiplied by i% , Equation 32 is the derivative ofthe second last term in M, .
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Forthe lastterm in M,,

a "

$1 kITQI kl = ZleQI {[Zgyzyzyrgi Zy](leT " lergizirWtXI)

1

{$04. (259. ® Z. 2.?Q. )1;0.. (Zr ® 2011!; - ZIQ.Z.’W.X. ]}

—<k.’ 2 k.’)[2a..(Q. 2.. <2 Q. 2.. >sz — 2:9.2.’W.X.].

= 2ka, (2:; g,2,, 2,,TQ, Z,](X,,’ - ZJQ,Z,’W}X,)

- 2k,’Q,[2}: 2; a,a,,2, (2,,TQ, 2,, )2 }X,I - 2;Q,Z,TW,X,]

n,

’[zall: (kiTQl Zlk )2 1X; " lquIZITWJXi] ' (33)

k

The terms of Equation 33 that involve 2k,TQ, are obtained by taking derivative ofthe

k, vectors on both sides of Q, . To take derivative of k,(k, = 20,3,2,I ), first use

k

Equation F8 to get 2k,TQ, in front ofthe derivative of k,. Then take derivative of a, by

using Equation 20, and derivative of Q, inside k, by using Equations F8, F9, 24 and

F3. Finally, take derivative of Q, between k,T and k, , using Equations F8, F9 29 and

F3. Thus, the transpose of Equation 33 is, since k,TQ,Z,, is a scalar,

a n:

'53" leQi kl = 2(2 gykiTQl Zyzg'TQt Zy](Xij " XITWIZI Qizrj)

1
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-2[iia.a.k.’g.2. (2.59. 2.. >212. - X.’W.2. 2.2.]
1 k

{fiat (ijQl Z§)2]X& - XIWJ. QIZR] - (34)

I

Multiplied by % , Equation 34 is the last term in the score firnction of the fixed effects

2,.
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un ' V ' ovari ents

This section will find the score function ofthe variance-covariance matrix ofthe random

eflects. Itwill provethat

S _-_l D-l l D-l -l __1_.X -l T '_ TWZ

D, ' 2 W“ )+ 2 vec( QID ) 2 duvedD QIZyZy QIZgO’: ’71) I I)

J
.

+%vec(D"3, 1370")

1 1 - . 1 " - ..

+7{‘“8'i hyB; vec(D lQIZyU’I -' ’71)].le ) -228yBgV80(D 1912112;le 1)

I J J

+-i$a.g.2.(2.79.2. ) vecwQ.2..<y.‘- 71.)W2.)

1 " - . 1 " _ -

'23::pr V340 1912“” " 7],)Tm2, ) ‘R'XffiBljvedD lQIZIIleng l)

I 1

1 n n
_ .

+R220gflB;(Z,TQ,Z&)2veC(D

IQIZR(yl " ”Ora/.121)
j I:

15 "
- ’+7 Zg.<k.’Q.2.x2.’Q.2.)vec(D 'Q.Z.(y. - WW?!)

I

15 _ _ 15 n - o

*Tzvecw '92. 1.39.0 ')-52a.<k.’9.2.>1vec<n 'Q.2..<y. - WW2.)
k

+_l_5"

36a...<k’Q.2.>vec<D"Q.2259.0")

- giiaaaafieaxdgzo’vec(D"Q.2..(y.‘ - '7.)TW.Z.)}
1 k
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Proof

By applying Equations F6 and F7,

@3713"W") “§(V“(D"))
(35)

Then, take the transpose ftmction offEquation 35, which is the first term in the score

function.

For éioglgl, using Equation F6, F7, F9, 22 and F10 we have

3%,?(4M81911)‘EfiDT(—long"-+Z,TW,Z,D

o‘bec(D" + 2,’W,2,)

dvecD)’

 

-1

='2_"'(Qi(

1 0 1' r -l

=-(vecD"Q.D") -—(vecQ.)2a.,(22.(y. —n.) W2.22.2.Q.D )

N
"

l
o r 1'

'-'-'[Vec(D.lQID-l )]T --:ay[vec(D-'leyz;glzy(yl '77!) ”/1201 9 (36)

I

N
"

where

5mm“ + 2,’W,2,)

o‘hvecD)T

 

= {—(D" 2 D" > + (2? 2 2.’)A.«y.' - n)’W.2. 2 2. Q.D"')1. (37)

Take the transpose offEquation 36 to get the second and third terms ofthe score function

SD.
I

W213)—" [veC(D“Q.Z’W(y.- me.’ - 17.)"W.Z. )1’. (33)

using Equations 22 and F10.



38

- ~ ~ ~ ~ -1 ~ ~

erc(-ilb,rb"b,)=-%(b,’®b,’)ée—c(l—)—)- bTD“ 5'"
dvecD)’ - ' 5(vecD)’

l _ ~ ~ __ _ _ ~ 0

= ElvedD ‘bl birD 1)]1. '[vedD lQID lbl(yl " '71)T”,lzl)]r 2 (39)

using Equations F8, F9, F11 and 21.

In adding up Equations 38 and 39, however, because ofthe fact that

$1 = DZITW’IU: " ’71):

[vec(D"Q,Z,TW, (y; " 000’: “ ”Dru/121 )]T ‘ [vec(D-lQID-‘El(yl. - '11)]. ”’12: >11. = O 2

with only %[vec(D"5, 127D")? left, the transpose ofwhich is the fourth term in the

score function.

For the derivative ofthe first term in M,

555).: 3,33 = 222.32; to: - n)’W.2. 2 Q.D"]

457“, g..B.(2.’ 2 Z.’ XQ. 2 Q.) a’e“;:e:,,z)':mz’)

= :th; [vec(D"Q,Z,,(y; - 17, )T W,Z, )]T +2: gyB, [vec(D"Q,Z,,Z,,TQ,D'l )]T

-2:2:5a.g.2.(2.’Q.2. >’[vec(D"Q.2.<y.° - n. )TW.2. >i’ . (40)

using Equations 22, F8, F9, 37 and F10. The transpose of Equation 40 multiplied by :81

is the derivative of %lX g,B; with respect to vecD.

,-
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Similarly,

dch)—_va8
;= £1,113;33W

912;:(yr- 771),. WZ,)

+33: faBzvedD"Q,Z,,Z;Q,D")

I

-32:a.f.B;(Z;Q.2.)’vec(D"Q.2..(y.‘ -— n.)’W.2.). (41)
1

Equation 41 multiplied by i; is the derivative of :7:i5,3; with respect to vecD.
I

The derivative ofthe last term in M, is

a

Q'U’ecD)T k'TQ' 1" = Zk'TQ' 1: gflvzinazaT[(y.‘ - rI.)’W.Z. 2 Q.D"]

 

azec(D" + Z,TW,Z,)

dvecD)’

"t

{Ml} 2 2.2..’>(Q. 2 Q.)
I

aveew" + 2,’W,2,)

dvecD)’

 

“(klr ® leXQI 8 Q!)

= 222.059. Z.)B.Ivec(D"Q.Z.(y: - 77.W2.)1’
1

+22a.(k.’Q.2. )[vec(D"Q.Z..Z.,’Q.D" n’
J

-2 jZauaflkaTQZaXZJQZu)zlvec(D"Q.Zu(y.' — n.)’W.2. )1’

+ [vec(D-lglkl kirQID-1 )1T '20&(leQlZlk )2 [vec(D-IQIZW (y: - ’7: )1 W121 )1T - (42)

k
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Again, we take derivative by using Equation F8, F9, F3, 22, 37 and F11.

The transpose ofEquation 42 multiplied by g- is the derivative ofthe last term

in M, with respect to vecD.



Chapter 4

AN ILLUSTRATIVE EXAMPLE

Introduction

This chapter presents an analysis on the data set of 1988 National Survey of

Primary Education in Thailand (Thailand data). The analysis serves mainly as an

1 example ofthe use ofthe multilevel Bernoulli model. It will also explore the difl'erences

and similarities among the forn' methods, namely, the first order Taylor expansion ofthe

conditional expectation ofthe response (PQL), the second order Taylor expansion

(PQL2), the sixth-order Laplace approximation to the log-likelihood (Laplace6) and

Gauss-Hermite Quadratme approximation to the log-likelihood (Gauss). In addition, the

difi‘erences produced by Gauss in using different numbers ofquadrature points will also

be of interest in this chapter.

Thailand Data

The Thailand data (USAID contract DPE-5824-A00-5076-00) were collected in

1988 by a research team from College of Education, Michigan State University, and

Royal Thai Government, Office ofthe National Educational System. Information

gathered includes survey and case studies. The purpose ofthe project was to “provide

reliable data related to outcomes and costs of education and to allow study ofpolicy

41
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alternatives to improve the quality ofprimary education.” (Taoklam et. al., 1992; See also

Raudenbush and Bhumirat, 1992 ; Raudenbush, Bhumirat and Kamali, 1992)

The survey employed a multi-stage stratified sampling design. Samples were

drawn at levels ofschools and individuals. First, 405 schools were selected randomly

within provinces. Then, one sixth grade class per school that had engaged in the national

assessment project was selected at random from selected schools. At the individual level,

samples were drawn from four population groups: principals, teachers, parents, and

students. Student data are the interest ofthe cmrent study. Information about schools

where the classes were drawn was also collected. Altogether, 405 schools were sampled,

within which data on 8582 pupils were collected. However, after deleting missing

information of schools, data of376 schools with 7877 students were used for the current

analysis.

Before the survey began, Thailand had launched various programs since 1980 to

improve the quality ofeducation. These included a pre-primary education program, a

national testing program, and various staffdevelopment programs for principals and

teachers. The purpose ofpre-primary education program was to improve each student’s

readiness for schooling. At the same time the government tried to promote the quality of

administration and classroom teaching through staff development programs, and hold

educators accountable for student learning through national testing programs. By

requiring students to demonstrate basic skills before they can advance to the next grade,

the country strove to ensure the quality ofthe product of school education -- student

learning. It would be expected that the programs did help elevate educational efficiency.
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Therefore, the research question here is whether students receiving pre-primary

education, controlling for student and school backgrormd, had a smaller probability of

repeating a grade-

However, an important variable that needs to be taken into account before making

any claims about our focus of interest is socioeconomic status (SE8). SE8 has always

been found positively correlated with student achievement. I suspect this would also be

true in Thailand. Whether students have adequate nutrition, especially breakfast, is an

interesting variable. Students that did not have breakfast every day either came from

poor families that could not afiord breakfast every day, or had parents who did not pay

too much attention to the children. Either way, not having breakfast interferes with

students’ concentration on learning, which might increase the probability ofrepeating

grades. Finally, whether a student spoke central Thai dialect could also affect his or her

probability ofrepeating a grade, since central Thai was the language used in class. Ifthe

student could not speak central Thai he or she would have dificulty understanding the

instruction, which would increase the probability ofrepeating a grade. In addition,

student gender is also an interesting covariate to put in, in order to see if girls do

differently fi'om boys in grade repeating. Therefore, student-level variables include:

response variable -- whether the student repeated grade(s) (REPl, l = yes,

0 = no);

variable of interest —- whether the student received pre-primary education

(PPEDID, 1 = yes, 0 = no); and concomitant variables, which are

the student’s gender (DSSEX, 1 = male, 0 = female);
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student’s family socio-economic background (SESC) (grand mean centered);

whether the student had breakfast every day (BRF1,1= yes, 0 = no); and

whether the student spoke dialects other than central Thai (DIALCTl, 0 = yes,

1 = no).

On the other hand, school environments may also afi'ect student learning. Schools

located in tn'ban and aflluent areas would have a larger enrollment and more resources

than schools in anal and poor areas. Students fiom poor families who attend a big school

might then have a better chance in education than students going to a poorer school. The

average SES of students in a school is also a good indicator ofthe resources in a school.

The average number oftextbooks per student had in one school is a direct indicator for

the instructional resources to which students have access. Without sufi‘icient textbooks, it

would be very diflicult for students to learn. Thus, school information of interest

includes:

natural log of school enrollment, grand mean centered (L_ENRC);

the average of students’ SES, grand mean centered (MSESC); and

the average ofnumber ofbooks per student, grand mean centered (MTXBKC).

Results

After some preliminary runs, I found that the regression coefficients for variables

in the first level either did not have significant amount ofvariance themselves, such as

PPEDID (pm-primary education), DSSEX (student gender), or their variation could be

explained by level-2 variables, such as SESC (student family SES), DIALCTl (student
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spoke dialect), and BREFl (breakfast). Therefore, I decided to have a univariate random

efi‘ect model. The first-level model for the data set is

1),, = a0, + a,,*(SES’C),, + a,,'(DSSEX),, + a,,*(DIALCT1),,

+ a,,r(BREFl),, + a,,#(PPEDID),, ,

while in level-2,

a0: = poo +flor'(L- ENRC): +1602‘(WESC)1 ‘1’ bl

an = filo +fiii*(mESC)i

a2: = pm

as: =flao +p31'(mmKC)i

a4: = 1640 +fiu"(L- ENRC):

a5! = firm

where b, ~N(0, om).



Table l - Estimat
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es of Thailand Data

 

 

 

 

 

 

 

 

 

 

 

 

  

PQL PQL2 Gauss-10 Gauss-20 Gauss-30 Gauss-4O Laplace6

,6,, -20137 -2.2166 -22353 .22009 .21990 -2.1998 2.1940

(.1409) (.1524) (.1429) (.1420) (.1421) (.1421) (.1421)

6,, -.4031 -.4136 -.4614 -.4095 -.4159 -.4156 -.4147

(.1600) (.1781) (.1933) (.1909) (.1915) (.1914) (.1914)

6,, -.6794 -.7889 - -.7884 -.7845 -.7814 -.7809 -.7753

(.2606) (.2958) (.3055) (.3079) (.3079) (.3079) (.3076)

6,, -.4971 -.5223 -.5325 -5220 -.5220 -.5220 -.5223

(.1003) (.1056) (.1027) (.1035) (.1034) (.1034) (.1034)

6,, .4657 .5003 .5321 .4962 .4976 .4972 .4978

(.1408) (.1562) (.1658) (.1651) (.1651) (.1651) (.1651)

6,, .5549 .5819 .5840 .5825 .5825 .5825 .5827

(.0728) (.0764) (.0710) (.0704) .0704) (.0704) (.0704)

6,, .3005 .3358 .3658 .3255 .3336 .3336 .3319

(.1262) (.1384) (.1235) (.1304) (.1300) (.1301) (.1300)

,6,, -.1012 -.1112 -.1513 -.1052 -.1114 -.1109 -.1104

(.0593) (.0655) (.0671) (.0781) (.0776) (.0776) (.0777)

6,, -.4154 -4327 -.4214 -4354 -4335 -4340 -4337

(.1032) (.1081) (.1041) (.1026) (.1028) (.1028) (.1028)

6,, .2739 .2907 .2905 .2911 .2910 .2910 .2910

(.1355) (.1461) (.1447) (.1440) .1440) (.1440) (.1440)

6,, -.4146 -.4501 -.4555 -.4462 -.4489 -.4482 -.4478

(.0947) (.1007) (.0993) (.0994) (.0994) (.0994) (.0994)

0,, 1.0703 1.444 1.473 1.383 1.390 1.388 1.3771

(.1187) (.1543) (.1830)        
** numbers inside the parenthesis are standard errors

Table 1 gives the estimates ofthe fixed effects and the variance by Laplace6,

Gauss-10, Gauss-20, Gauss-30 (30 quadrature points) and Gauss-40 (40 quadrature

points), PQL, and PQL2. Although the methods give different estimates for the

parameters (Table 1), they agree on the .05 significance level for all estimates, except for

,6” by Gauss-10. In fact, the independent variables, except ,6” , are all very powerful

predictors for grade repetition. Especially the school level variables, L_ENRC (log-
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enrollment) and MSESC (school mean SES) not only have great impact on the intercept,

pm , but also help predict, respectively, the impact ofwhether the student had breakfast

every day (BREFI) and that ofthe student’s personal SES background (SESC).

However, their impacts on BREF1 and SESC are smaller than, and in opposite directions

to, those on the intercept. That is, while students who did not have breakfast every day

(BREFl) and came from family with low SES (SESC) had an increased risk ofrepeating

grades, the efl'ects ofthese adverse personal background are weakened ifthey attended

big schools (high school enrollment) with higher school mean SES. In other words, an

afl'luent school environment provides a cushion for students fi'om poverty, helping

prevent them from failing in school.

Pre-primary education, om' focus of interest, also helped prevent a student from

repeating grades. According to the preliminary rims, there is not much variation in its

effect. Therefore, the effect ofpre-primary education on grade repetition was pretty

stable across different schools. On the other hand, students speaking central Thai also

tended to have advantage in their learning. Having textbooks helped reduce the

disadvantage of speaking dialects by about one third of the effects of speaking dialects

other than central Thai. This makes sense since students could learn little by little on

their own ifthey had textbooks at hand. However, the efi‘ect is not significant at .05

level. Its p-value is around .15. Finally, girls did seem to learn better, in primary school

level, than boys. Holding all other variables at the average, a boy had a higher logit of

around .58 ofrepeating grades than girls.
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The comparison among the estimates by different methods is another interesting

issue. As shown in the table, a lot ofthe difl‘erences between Gauss-10 and Gauss-20 are

in the second decimal place. Gauss-2O and Gauss-30 difi’er in the third decimal place.

Gauss-30 and Gauss-4O do not differ too much, only at the fourth decimal place. Some of

Laplace6 results differ from Gauss-40 in the third place and some in the fourth place.

Laplace6 results are generally closer to Gauss-30 and Gauss-4O than Gauss-10 and

Gauss-20. PQL2 and PQL are fin-ther away. PQL consistently gives estimates that are

smaller in absolute values. PQL2 results are actually pretty close to those of Gauss’s

with larger numbers ofpoints, but they are not as close as those of Laplace6.



Chapter 5

EVALUATION WITH SIMULATED DATA

Introduction

This chapter compares the 4 methods, Laplace6, Gauss—Hermite Quadrature

(Gauss) (Hedeker and Gibbons, 1994; 1996), PQL (Raudenbush, 1993) and PQL2

(Goldstein and Rasbash, 1996) by analyzing data sets simulated under 8 different models.

The comparison will be in terms of l) the unbiasedness ofthe estimates ((fi , vecD) = 9

) across data sets under the same model; 2) the mean squared errors ofthe estimates; 3)

average ofstandard errors fiom outputs (93,, ); 4) standard deviation ofthe estimates

across data sets (SD09) ); and 5) the relative efficiency ofLaplace6 to the other methods.

Eight different models were used to simulate data sets. The first six models

(Models 1 to 6) were univariate random effect models that had a wide range (.52, .2, .1)

ofthe average conditional expectations ofthe response y, given b, = 0

(71,10) = E(E(y,,|b, = 0)) ) and two different values for the random effect variance,

namely, 1, .25. The data sets were generated by Yang (1994). The purpose ofthe use of

the six different models was to investigate whether the methods performed differently
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depending on parameter values. Presumably, models with 71,“) close to .5 will be the

easiest for all methods, because ofthe symmetry ofthe data sets. As It,“ becomes

smaller, the estimation task will become more dimcult. However, while PQL was

already known to have a large negative bias for larger variances, the performance ofthe

other methods for large variances was of interest.

Two bivariate random efl‘ects models (Models 7 and 8) were constructed to assess

the four methods with dependent random efl‘ects, in two ways. Model 7 explored the

performances ofthe methods under severe conditions with small 710“”; 143 and extreme

values (1.625, .25) for the variances with a small covariance (.1). The interest ofModel 8

lay in the wish to inspect the consistency property ofthe maximum likelihood estimates

produced by Laplace6. The investigation was launched by comparing estimates under the

same model but with two different cluster sizes in the second level, the first set being 10

times smaller than the second set. The property of consistency would be revealed ifthere

is little bias in the estimates and the variances of estimates become smaller as the sample

size increases.

The basic structure ofthe data sets followed Rodriguez and Goldman (1995). In

the first level, we had 77,, = log[p,, /(l — ,u, )] = a0, + (childc),*a,,. In the second

level, 0,, = £00 + (commuc),*,6,,, + b0, withbo, ~ N(0,Doo). Here a,, = [3,, was fixed

for the first six univariate random effects models. For bivariate random effects (Models 7

and 8), a,, = ,6", + b,, was random with b,, ~ N(0,D,,), and cov(b,,,,b,,) = D0,. The

values of flu, and A, were both set to 1. The values for flu, were manipulated in order
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to get difl‘erent values for 71,”). The level-1 covariate, childc, was sampled flour a

normal distribution with mean .0955621, and variance .0676, while the level-2 predictor,

commuc, was sampled fiorn a normal distribution with mean -.6857591 and variance

.2304. However, in bivariate random effects models, the means ofboth covariates

remain unchanged while their variances were both changed to 1. There was no missing

value in any ofthese models.

Univariatc Random Efiect Data Sets (Models 1 - 6)

The six univariate random efl‘ect models used 3 difl‘erent values for the average

conditional probabilities, 71“”, namely, .52, .2, and .1, and 2 difl‘erent values of

varianceDm, 1, and .25, where 1 is usually supposed to be large and .25 pretty small. The

values of£00 were 6.653.,7961 and -1.62 for 71“” to be .52, .2 and .1, respectively.

Each data set had 16 observations for each cluster in the first level, and 161 clusters in the

second level. For each combination ofthe parameters, 50 data sets were generated.

Model 1 had 215,”?52, D0,, = 1, while Model 2 had the same value for p“), but a smaller

variance, D00 =.25. Model 3 had 711,0)=-2 and D0,, = 1, whereas Model 4 differed from

Model 3 by a smaller variance, D0,, =..25 Similarly, under Model 5, 11‘,” = .1, D0,, =;1

under Model 6, 21“” =.1, rm=.25.

Gauss results were computed using 10 quadrature points (Gauss-10). The results

were obtained from Yosef (1997). Ten points were specified because, according to the

MIXOR manual(l993), 8 to 10 points would produce satisfactory results for univariate

data sets, whereas fewer points could be specified for higher dimensional data sets. PQL
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was not compared here since Yosef (1997) has found it to consistently underestimate the

fixed efi‘ects and the variance components, in accordance with previous results (e.g.,

Goodman and Rodriguez, 1995; Breslow and Clayton, 1993).

W

Table 2 - Averages and Mean Squared Errors of Model 1

 

 

 

 

 

 

       

Laplace6 Gauss-10 PQL2

average mse average mse average mse

Dw= 1.0135 0.0294 1.0142 .0300 1.0361 0.0336

fim=.665267 0.6679 0.0251 0.6677 .0251 0.6750 0.0258

pm =1 0.9812 0.0430 0.9835 .0429 0.9913 0.0440

fim=l 0.9891 0.0400 0.9901 .0401 0.9944 0.0405
 

The clearest pattern in Table 2 is that, under Model 1, the averages and mean

squared errors ofthe three methods were very close to each other, although PQL2

consistently had a slightly larger mean squared errors than the other two. The biases of

the three methods were small, and the directions of biases for the parameters were the

same too. Another clear pattern is that PQL2 always gave the largest estimate for all the

parameters, whether the bias ofthe three methods was negative or positive for a particular

parameter. The amount ofpositive bias ofPQL2 for the variance was 3.6% ofthe

parameter, which seemed to be a little too large compared to that ofthe other two

methods.
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Table 3 - Averages of S. E.’s and S. D.’s of Estimates ofModel 1

 

 

 

 

 

 

       

Laplace6 Gauss-10 PQL2

6 6,, SD(0) 6,, SD(0) 6,, SD(0)

o,,= .1759 .1725 .1740 .1742 NA .1816

p,,=.665267 .1698 .1599 .1683 .1602 .1648 .1621

p,,=1 .2014 .2085 .1999 .2087 .1953 .2116

6,,=1 .1789 .2018 .1788 .2021 .1749 .2032
 

The standard error of Do, was not available in the PQL2 program. The averages

ofthe standard errors (035) were the average amotmts ofuncertainty the methods

predicted for the estimates. The standard deviations ofthe estimates indicated the real

amounts ofuncertainty in the estimation. The discrepancy between the prediction and the

reality gathered from the 50 data sets was the largest for all three methods for [3,0 , for

which all three methods underestimated the variability; and smallest for Do, by Laplace6

and Gauss-10. The differences between the averages ofthe standard errors and the

standard deviations ofthe estimates were the smallest for Gauss-10.
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Table 4 - Averages and Mean Squared Errors ofModel 2

 

 

 

 

 

 

    

Laplace6 Gauss-10 PQL2

average mse average mse average mse

D0,,=.25 .2656 .0048 .2658 .0048 .2662 .0049

,6,”=.665267 .6759 .01 11 .6760 .01 l 1 .6771 .01 12

pm=l 1.0123 .0158 1.0124 .0158 1.0141 .0159

flm=1 1.0010 .0380 1.0011 .0380 1.0025 .0381   
 

 

Model 2 was different fi'om Model 1 only in the value of D0,, . Again, the three

methods were very similar in both biasedness and mean squared errors. The mean

squared errors ofLaplace6 and Gauss-10 were identical. With a smaller value of D0,, , the

three methods all had positive bias, although small again. The largest positive bias

appeared for D0,, , at about 6% ofthe parameter by all three methods.

Table 5 - Averages of S. E.’s and S. D.’s of Estimates ofModel 2

 

 

 

 

 

 

 

Laplace6 Gauss-10 PQL2

6 6,, SD(0) 6,, SD(9) 6,, SD(0)

0,,=.25 .0684 .0683 .0685 .0684 NA .0687

6,,=.665267 .1074 .1060 .1075 .1060 .1045 .1061

6,,=1 .1264 .1265 .1264 .1265 .1243 .1267

,6,=1 .1686 .1970 .1686 .1970 .1643 .1973      
 

The similar values for the standard deviations ofthe averages under Model 2 in

Table 5 were consistent with the close similarity ofthe mean squared errors. The
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prediction ofthe uncertainty by the three methods were generally pretty close to the

empirical results. All three methods underestimated the variability of A, by the largest

amount, as in Model 1.

W}.

Table 6 - Averages and Mean Squared Errors ofModel 3

 

 

 

 

 

 

       

Laplace6 Gauss-10 PQL2

average mse average mse average mse

Do, =1 .9396 .0472 .9362 .0463 .9772 .0515

[3,,=-.7960974 -.7794 .0196 -.7801 .0199 -.7836 .0199

7,, =1 1.0254 .0328 1.0261 .0330 1.0361 .0347

,6,,, =1 1.0322 .0364 1.0324 .0364 1.0356 .0369

 

 

For Model 3, Laplace6 results also followed closely those ofGauss-10. Contrary

to the situation in Model 1, the three methods had negative bias for D0,, and very small

positive biases for the [3 ’s. The underestimation ofPQL2 for D0,, was around 2% ofthe

parameter, while that by Laplace6 and Gauss-10 was much larger, around 6%. The biases

for the ,8 ’s by the three methods were very close to each other. However, the mean

squared errors for PQL2 were all slightly larger than those for the other two.
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Table 7 - Averages of S. E.’s and S. D.’s of Estimates of Model 3

 

 

 

 

 

 

Laplace6 Gauss-10 PQL2

9 9E SD(9) 9;: SD(0) 0:! SD(0)

Doo=1 .1789 .2108 .1766 .2076 NA .2276

pas-7960974 .1633 .1404 .1625 .1415 .1613 .1418

pm=l .2029 .1810 .2018 .1817 .1994 .1845

pm =1 .2077 .1899 .2076 .1900 .2017 .1908        
 

A significant pattern ofTable 7 is that for Model 3, all the three methods seemed

to under-predict the variation ofthe estimates of D0,, , and over-predict those of all the

other parameters. The largest difl‘erence between prediction and empirical results

occurred for Do, . Laplace6 had the largest discrepancy among the three for all

parameters, over-predicting the variations ofthe three fixed effects; while PQL2 had the

smallest discrepancy.

Results of Model 4

Table 8 - Averages and Mean Squared Errors ofModel 4

 

 

 

 

 

 

     

Laplace6 Gauss-10 PQL2

average mse average mse average mse

D0,, =.25 .2435 .0059 .2427 .0059 .2501 .0060

19m =-.7960974 -.7854 .0077 -.7853 .0077 -.7873 .0077

pm =1 1.0057 .0144 1.0057 .0144 1.0075 .0145

,6", =1 1.0060 .0498 1.006 .0498 1.0071 .0499   
 

With a small value of D0,, , the mean squared errors ofthe three methods were

almost identical, as in Model 2. The biases of D0,) by PQL2 were almost 0, while the
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negative bias by Laplace6 and Gauss-10 was around 3% ofthe parameter. The ,60,, ’s

were pretty much unbiased by all three methods.

Table 9 - Averages of S. E.’s and S. D.’s of Estimates ofModel 4

 

 

 

 

 

 

     

Laplace6 Gauss-10 PQL2

9 09L SRO) 0!? SRO) 03.5 SRO) ,

0,,=25 .0816 .0774 .0814 .0770 NA .0782

E=~n7960974 .1123 .0878 .1122 .0878 .1099 .0880

6,, =1 .1437 .1212 .1436 .1212 .1392 .1215

£131 .2014 .2254 .2014 .2254 .1957 .2256   
 

All three methods tended to over-predict the variation of the estimates, except

for,6“, . The discrepancies between the predicted and empirical variation ofthe estimates

for the three methods were very close, too, although PQL2 had a slightly smaller

discrepancy than the other two methods; the discrepancies for Laplace6 and Gauss-10

were almost identical.
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Table 10 - Averages and Mean Squared Errors of Model 5

 

 

 

 

 

 

       

Laplace6 Gauss-10 PQL2

average mse average mse average mse

0,,=1 .9742 .0601 .9720 .0580 1.0511 .0803

6,, 1.62 -1.6122 .0318 -1.6138 .0322 -l.6306 .0335

6,, 1 .9994 .0580 1.0016 .0593 1.0117 .0592

6,,-1 .9990 .0499 .9981 .0495 1.0006 .0502
 

Again, the results ofLaplace6 went together closely with Gauss-10 in Model 5.

For Do, , the negative bias of the two methods were both around 2.5% ofthe parameter,

while PQL2 had a positive bias of 5%. This was different from experiences with the

above models, where PQL2 always had the same signs for biases (positive or negative) as

the other two methods. On the other hand, all the [3 ’s by the three methods were almost

unbiased. Gauss-10’s mean squared error of D0,, was a little smaller than that of

Laplace6, while the ,6 ’s ofLaplace6 had smaller mean squared errors. PQL2 generally

had the largest mean squared errors for all parameters, as before.
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Table 11 - Averages of S. E.’s and S. D.’s of Estimates ofModel 5

 

 

 

 

 

 

 

Laplace6 Gauss-10 PQL2

9 Og SRO) 9&5 SRO) O_,._,E SRO)

Doo=1 .2221 .2462 .2184 .2417 NA .2815

fim=-1.62 .1811 .1800 .1807 .1811 .1789 .1845

5,, =1 .2317 .2432 .2310 .2460 .2291 .2456

,6", =1 .2485 .2256 .2483 .2248 .2481 .2262      
 

 

The standard deviation of D0,, ofModel 5 for PQL2 in Table 11 was much larger

than those ofthe other two methods. This contributed to the large value of its mean

squared error in Table 9. The three methods under-predicted the variation of Do, and

over-predicted that of 6,, . The discrepancies for the other two ,8 ’s were small. The

discrepancies by Gauss-10 were smaller than those of Laplace6 and PQL2.

W

Table 12 - Averages and Mean Squared Errors ofModel 6

 

 

 

 

 

 

 

Laplace6 (49 obs.) Gauss-10 (48 obs.) PQL2 (50 obs.)

average mse average mse average mse

0,,=.25 .2389 .0117 .2370 .0118 .2593 .0142

6,,=-1.62 -1.6139 .0123 -1.6119 .0124 -1.6214 .0123

6,,-1 .9995 .0259 1.0044 .0252 1.0063 .0266

.6... =1 .9933 .0765 .9883 .0770 1.0017 .0777      
 

 

For Model 6, Laplace6 gave converged results for 49 out ofthe 50 data sets,

Gauss-10, 48 , while PQL2 had no difliculty with any ofthe data sets, as was shown in

Table 12. Laplace6 results were again very close to those of Gauss-10, both in averages
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and mean squared errors. PQL2 seemed more unbiased than the other two but it gave

larger mean squared errors for the parameters. The negative bias of Do, by Gauss-10 and

Laplace6 were both around 5% ofthe parameters, whereas PQL2’s negative bias was a

little smaller, around 3.5%. The three methods’ estimates for the,O ’s were almost

unbiased.

Table 13 - Averages of S. E.’s and S. D.’s of Estimates ofModel 6

 

 

 

 

 

 

       

Laplace6 Gauss-10 PQL2

6,, 50(6) 6,, 50(6) 6,, 50(6)

0,,=.25 ME .1089 .1051 .1091 N74: .1198

6,,=-1.62 .1301 .1119 .1299 .1123 .1257 .1121

6,,=1 .1652 .1625 .1649 .1605 .1642 .1648

p,,=1 .2568 .2794 .2575 .2802 .2506 .2816
 

 

The standard deviation ofthe estimates ofPQL2 in Table 13 were again the

largest. However, it gave the smallest standard errors ofthe estimates, as in the models

discussed above. The underestimation ofthe variation was most severe for ,6”. The

discrepancies between the predicted and empirical variation for the other two ,6 ‘s were

the smallest by PQL2. Laplace6 and Gauss-10 were very similar in the errors of

prediction for the variations of 6,, and Don; both were smaller than those by PQL2.
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Table 14 - Laplace6 Relative Emciency Under Models with Dm‘l

 

 

 

 

 

        

Model 1 (712” =.52) Model 3 (fi$,°)=.2) Model 5 (71:75.1)

Gauss-10 PQL2 Gauss-10 PQL2 Gauss-10 PQL2

Do, 1.0204 1.1429 .9809 1.091 1 1.0362 1.3361

,8“, 1.0000 1.0279 1.0153 1.0153 1.0354 1.0535

,8," .9977 1.0233 1.0061 1.0579 1.0224 1.0207

,6“, 1.0025 1.0125 1.0000 1.1014 .9920 1.0060

 

Table 15 - Laplace6 Relative Efficiency Under Models with Do,=.25

 

 

 

 

 

 

 

 

Mode12 (fi§,°)=.52) Model4 (fi(,°’=.2) Model 6 (7195.1)

Gauss-10 PQL2 Gauss-10 PQL2 Gauss-10 PQL2

0,, 1.0000 1.0208 1.0000 1.0169 1.0085 1.2137

[3,, 1.0000 1.0090 1.0000 1.0000 1.0081 1.0000

,6," 1 .0000 1 .0063 l .0000 1.0069 .9730 1.0270

13,, 1.0000 1.0026 1 .0000 1.0020 1.0065 1.0000       
 

Tables 14 and 15 give the efficiencies ofLaplace6 relative to Gauss-10 and PQL2.

The relative efficiency for D,0 , say, ofLaplace6 to Gauss-10 is the ratio of Gauss-10’s

mean squared error for D0,, to that of Laplace6’s. Therefore, Laplace6 has higher

efiiciency for Do, if the ratio is larger than one, and vice versa. From the two tables, the

efficiencies ofLaplace6 relative to Gauss-10 were mostly larger or equal to 1. The

relative efficiencies ofLaplace6 were slightly higher for larger D00; for smaller D0,, , the

relative efficiencies were mostly l. The only exception was that of [30, under Model 6,

where Gauss-10 had a higher efficiency. The effect of larger variance and smaller
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average conditional expectation on the loss ofeficiencies relative to Laplace6 was even

more apparent in PQL2. Laplace6 was more efficient than PQL2 for the fixed efl’ects and

the variance. Gauss-10 was also more eficient than PQL2.

In conclusion, the three methods performed reasonably well under the six models.

However, the values of Do, and 71),” did have an impact on how precisely and accurately

the three methods estimated the parameters. With a smaller D0,, , the variation (standard

deviations) ofthe ,O,,, estimates by all three methods were larger than what they predicted

(the average ofthe standard errors). On the other hand, when the value of fig” became

smaller (.1 and .2), the three methods tended to have negative biases for D0,. Moreover,

with small values of fig,” (.1, .2) and a large D0,, , the variation of D0,) was underestimated

by all three methods.

The biases of all the three programs were generally very small in these univariate

models. The three programs almost always went together in the direction ofbiases.

PQL2 always gave the largest absolute value ofthe estimates. Because ofthe largest

variation in estimates, its mean squared errors were usually the largest among the 3

methods too, although the difi‘erence was usually small. Laplace6 estimates were very

close to those ofGauss-1 0 in terms ofaverages and mean squared errors. Even in the

discrepancies in the prediction ofvariation, Laplace6 results were very similar to those of

Gauss-10, although the discrepancies seemed smaller for Gauss-10 in more cases. The

largest disagreement between the Laplace6 and Gauss-10 in terms ofboth the averages of

the standard errors (O50) and the standard deviations ofthe estimates (SRO)) were in the
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third decimal place, while the largest disagreement between either Laplace6 or Gauss-10

and PQL2 was in the second decimal place.

However, Laplace6 and PQL2 gave estimates up to the fourth decimal place.

Gauss gave variance and covariance estimates only to the third decimal place, computed

from the values ofthe Cholesky decomposition rounded up to the second decimal place.

Therefore, because ofrounding errors, the mean squared errors ofthe variance and

covariance estimates from Gauss might look larger than they really were. The

comparison ofvariance and covariance estimates thus might not be exact.

Bivariate Data Sets

W

Model 7 contained 100 data sets with parameters [30,, = —1.2 , 14,95 .143,

b 0 1.625 r

0,, =1.625, 0,, =1, 0,, =25, ( W] ~ N ( J, . Each datasetcontained 20

bu 0 .1 25

observations in the first level and 200 clusters in the second level.

Laplace6 was computed on an old UNIX machine, using the converged estimates

ofthe parameters from PQL. The 100 data sets took Laplace6 altogether 2 hours to

analyze. PQL2 was computed on the same UND(, too, using similar amount oftime for

the 100 data sets. The second order Taylor expansion ofthe conditional likelihood was

set to start at the second iteration while computing starting values based on PQL.

According to experiences, starting the Taylor expansion earlier would cost only some

more iterations but would not have efi‘ect on converged values. However, if the starting

values happened to converge fast and the Taylor expansion was set in after that, the
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resulting estimate would be just PQL. All the 3 programs (Laplace6, PQL, and PQL2)

were run in UNIX.

Gauss-Hermite Quadrature method (using MD(OR package) was run on Pentium

233. Out ofcuriosity for the use ofmore quadratrn'e points in the improvement ofthe

accruacy ofthe estimation and also intrigued by the pattern in the analysis ofThailand

data,wheretheresults ofLaplace6 seemedtobemore similarto Gausswithmorepoints

than with fewer points, both Gauss-10 (Gauss-Hermite Quadrature using 10 points) and

Gauss-20 (Gauss-Hermite Quadrature using 20 quadrature points) were used in analyzing

the 100datasets. Theestimatesfmmthe4programswerecomparedintermsoftheir

unbiasedness and mean squared errors. Gauss-20 used about 20 hours altogether for the

100 data sets, and Gauss-10 used 5 hours.

Although it was impossible to compare the time used by the 3 different methods,

i.e., PQL, PQL2, and Laplace6, with Gauss, 6 data sets were randomly selected to use the

same Pentium 233 to do the analysis. The time for the 6 data sets used for PQL plus

Laplace6 ranged flour 7 seconds to 20 seconds; for the same 6 data sets, the time used by

Gauss-20 was around 12 minutes, while the time used by Gauss-10 was about 3 to 5

minutes. Thus it was very clear that Laplace6 was significantly more efficient in terms

of computational time.

Gauss program produces variances and covariances fi'orn the Cholesky

decomposition and gives standard errors for the decomposed terms only. It was

impossible to find out the standard errors ofthe variance and covariance fi-orn what is

available.
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Table 16 - Averages of Estimates Under Model 7

 

 

 

 

 

 

 

  

Laplace6 Gauss-10 Gauss-20 PQL PQL2

0,,=1.625 1.6352 1.6532 1.6546 1.2752 1.7296

0,,=.1 .0960 .1003 .0995 .0538 .0864

0,,=.25 .2667 .2575 .2562 .1614 .2927

6,542 4.2007 4.1977 ' 4.2045 4.0904 4.2179

73,21 1.0029 1.0081 1.0148 .9004 1.0231

6,,=1 .9975 0.9971 .9976 .9114 1.0050      

The estimates by all programs were fairly normally distributed. PQL again

consistently had negative bias for all the parameters. The bias ofthe variance

components ranged from 22% (D0,) to 46% (Do, ) ofthe parameters, while those ofthe

O ’s were around 9% ofthe parameters. PQL2 had the second highest bias, either

positive or negative. It had positive bias for D0,) , by about 6.5%, andD" by 17%, but

negative bias for D," , by 14%. Even though the positive biases of its ,6 estimates were

only around 1%, they were still larger than the two Gauss’s and Laplace6. The advantage

ofGauss-20 over Gauss-10 was not very clear fiom the table, since the averages ofthe

two were very similar. Laplace6 results were again close to those ofthe Gauss’s.

Laplace6 had more biases, both negative and positive, than the Gauss’s for smaller values

ofthe variance components, but had smaller positive bias for the large variance than the

latter. For the [3 ’s, the three methods were pretty much unbiased.
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Table 17 - Mean Squared Errors of Estimates Under Model 7

 

 

 

 

 

 

 

      

Laplace6 Gauss-10 Gauss-20 PQL PQL2

0,,=1.625 .0563 .0737 .0633 .1522 .0838

”E41 .0108 .0115 .0120 .0080 .0143

0,,=25 .0075 .0073 .0072 .0113 .0115

p,,=—1.2 .0190 .0231 .0196 .0271 .0203

6,, 1 .0164 .0193 .0175 .0236 .0178

fi..=1 .0051 .0051 .0053 .0116 .0055
 

 

The mean squared errors ofTable 17 tell another difi‘erent story. Laplace6

produced the smallest, or among the smallest, mean squared errors for the estimates

among the five methods. However, considering that estimates of D0, and D" by

Laplace6 had relatively large amounts ofbias but that their mean squared errors were

either smaller or only .0001 larger than those of Gauss-20, the variation ofthe variance

components by Laplace6 seemed to be much smaller than that ofthe Gauss’s. The

comparison of Gauss-10 with Gauss-20 was clearer in terms ofmean squared errors.

Gauss-20 most ofthe time had much smaller mean squared errors than Gauss-10, the

values were closer to those ofLaplace6 than those of Gauss-10, too. The mean squared

errors ofPQL were notably larger. The mean squared error for D0, was the smallest of its

counterparts ofthe other three methods, although its underestimation from Table 3 was

46%. This again indicated that PQL performed well for small values ofrandom efl‘ect

(co)variance. On the other hand, considering that D0, = 0.1, and that the mean squared

errors of Dm by the other methods were all larger than their respective mean squared

error for D,,=0.25, it seemed that all the other 3 methods had a difficult time giving a
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reasonable estimate for Do, . PQL2 produced the second largest mean squared errors for

the variances and covariance ofthe random effects. However, its mean squared errors of

the 3 p ’s were only a little larger than those ofGauss-20. PQL2 seemed to perform better

for the fixed effects than for the variance components.

Table 18 - Laplace6 Relative Efl'iciency Under Model 7

 

 

 

 

 

 

      

Gauss-10 Gauss-20 PQL PQL2

0,,=1.625 1.3091 1.1243 2.7034 1.4885

0,, =.1 1.0648 1.1111 .7407 1.3241

0,,=.25 .9733 .9600 1.5066 1.5333

6,,=4.2 1.2158 1.0316 1.4263 1.0684

6,,=1 1.1768 1.0671 1.4390 1.0854

p,,=1 1.0000 1.0392 2.2745 1.0784
 

 

The relative efficiencies of Laplace6 relative to all the other programs in Table 18

gave a clear picture ofthe comparison of the mean squared errors. Laplace6 was more

efficient than all the other methods in general, except for D" , for which Laplace6 had a

positive bias of6% of its value (Table 16). However, even though Laplace6 also had a

4% positive bias for D0| , it was still more efiicient than Gauss-10 and Gauss-20, whose

estimates were almost unbiased. The extra ten quadrature points in Gauss were a mixed

blessing. It seemed that Gauss-20 was not as inefficient as Gauss-10 when the latter fell

quite far behind Laplace6. However, at times, it was a little less efficient than Gauss-10

when the latter was only a little less efficient than Laplace6.
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In Table 19, the standard deviations ofthe estimates by PQL again were the

smallest among the five methods. PQL2 had the largest standard deviations ofthe

estimates of Do, , DH and,ON. Gauss-10 had the largest standard deviations ofthe

estimates of ,3,” , ,Oo, and D0,, . The variation of Laplace6 estimates was the smallest

among the four programs without considering PQL. The small amormts ofvariation in

the estimates, in addition to small biases, contributed to the significantly smaller mean

squared errors and higher efficiency. The variations ofthe estimates by Gauss-20 was not

necessarily smaller than those of Gauss-10, although its variation for D0,, was indeed

much smaller.
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Table 19 - Standard Deviation of the Estimates

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

Laplace6 Gauss-10 Gauss-20 PQL PQL2

Dm=1.625 .2383 .2714 .2510 .1737 .2713

D,,=.1 .1045 .1076 .1102 .0768 .1194

D,, =.25 .0853 .0857 .0853 .0593 .0988

pm=-1.2 .1387 .1529 .1403 .1233 .1421

fim=1 .1288 .1393 .1320 .1171 .1320

,6“, =1 .0716 .0721 .0730 .0615 .0744

Table 20 - Averages of Standard Errors

Laplace6 Gauss-10 Gauss-20 PQL PQL2

Doo=1.625 .2684 .2563 .2688 .1831 .2420

DOI =. .1 156 NA NA .0786 .1046

D,l =.25 .0956 NA NA .0662 .0894

fim=-l.2 .1290 .1198 .1293 .1110 .1273

pm=1 .1175 .1105 .1170 .0999 .1162

.3... =1 .0755 .0744 .0747 .0602 .0701        

In reference to Tables 19 and 20, the averages ofthe standard errors produced by

the methods were compared to their respective real standard deviations. PQL seemed to

have the smallest discrepancies between the two tables for all parameters. PQL2 had the

largest discrepancies. The variation of all its estimates were under-predicted by the

standard errors it gave. Laplace6 over-predicted the variation ofthe variance components

and of ,6“, , and under-predicted the other 2 [3 ’s. Gauss-10 and Gauss-20 had the same

pattern as Laplace6 in estimating the variation ofthe fixed effects, but Gauss-10

underestimated that of D0,, while Gauss-20 was in the opposite direction. Apart fionr
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PQL, Gauss-20 seemed to have the smallest discrepancy between the theoretical standard

errors for its estimates and their empirical standard deviation.

In summary, Laplace6 produced estimates that were very close to those of Gauss-

20, both in averages and in mean squared errors. Their biases were reasonably small.

Over all, Laplace6 had the smallest mean squared errors and the highest efiiciency,

thanks to its least variability across data sets. The discrepancy between the theoretical

variation ofthe estimates and its empirical variation was the smallest in PQL. Gauss-20

has the second smallest discrepancy. The advantage of20 quadrature points over 10

quadrature points was clear also in the parameters where Gauss-10 had substantially

larger amounts ofmean squared errors than Laplace6. For these parameters, the mean

squared errors of Gauss-20 were much smaller. However, for parameters where Gauss-10

had only a little larger, or smaller, mean squared errors than Laplace6, Gauss-20 might do

slightly worse than Gauss-10. This might suggest that the advantage of using a larger

number ofpoints for Gauss appears only where accurate estimation is difficult using a

smaller number ofpoints. However, with real data sets, it is impossible to decide on the

accuracy ofthe estimates. The biases (in percentage of the parameters) ofPQL2 under

the current model were larger than under the univariate models. Its efficiencies of all

estimates relative to Laplace6 decreased a lot in this bivariate model, too. As to the

prediction ofthe variation of estimates, consistent with univariate models, PQL2 gave

smaller estimates ofthe variation than the empirical results.
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Model 8 contained 400 data sets, which had parameters, [30,, = -508403, D0,, = 2 ,

b 0 2 .2

D0, :2, Dn =.7S ,, (0:) ~ N[(0)’[.2 75]]. EachofthedatasetshadZO observations

for each cluster in the first level. In the second level, 200 ofthe 400 data sets had 200

clusters in each ofthem, while there were 2000 clusters in each ofthe latter 200 data sets.

The interest was to check whether Laplace6 estimates were consistent as cluster

sizes increased by 10 times. That is, ifLaplace6 estimates using the latter 200 data sets

have smaller biases and 10 times smaller variance than the former 200 do, Laplace6

method is considered consistent. We would also be interested in the percentages the

estimates fell beyond the 95% confidence interval ofthe true parameter (i.e., true value

21:1.96 standard deviations), using the empirical standard deviations. This would give a

sense ofhow well the estimation was. Besides, if the estimates were normally distributed

then the theoretical probability ofobservations falling beyond the 95% confidence

interval (i.e., average :1: 1.96 standard deviations) is .05.

Therefore, statistics produced for each set of estimates using data sets of200

clusters would be contrasted with those using data sets of2000 clusters in the second

level. These included averages, biases, variances, the empirical probabilities of

observations falling out ofthe range ofthe true value :1: 1.96 standard deviation, and the

empirical probabilities of observations falling out ofthe range ofthe

average :1: 1.96 standard deviations.
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In the following tables, “emp. prob. 1” is the empirical probability ofobservations

falling out ofthe i 1.96 standard deviations around the true value, whereas “emp. prob.

2” the empirical probability ofobservations falling out ofthe :1: 196 standard deviations

around the average.

Table 21 - Contrasts Between Difl'erent Cluster Sizes for Variance Components

 

 

 

 

 

 

 

 

D0,, = 2 D0, :2 D,I =.75

cluster size 200 2000 200 2000 200 2000

average 1.9187 1.9375 .1733 .1766 .7416 .7343

bias -.0813 -.0625 -.0267 -.0234 -.0084 -.0157

variance .0715 .0070 .0165 .0016 .0199 .0017

S. D. .2674 .0839 .1285 .0404 .1412 .0413

emp. prob. 1 .08 .09 .07 .08 .055 .065

emp. prob. 2 .06 .06 .05 .045 .055 .06         
 

Table 22 - Contrasts Between Different Cluster Sizes for Fixed Efl'ects

 

 

 

 

 

 

 

 

A” =-.5084 [3,, =1 A, =1

cluster size 200 2000 200 2000 200 2000

average -.5107 -.5108 .9844 .9742 .9861 .9909

bias -.0023 -.0024 -.0156 -.0258 -.0139 -.0091

variance .0163 .0022 .0123 .0012 .0061 .0007

S. D. .1278 .0473 .1107 .0342 .0778 .0255

emp. prob. 1 .045 .06 .075 .11 .06 .065

emp. prob. 2 .04 .065 .06 .045 .05 .05         
 

Tables 21 and 22 showed that most ofthe estimates had fairly small amounts of

negative biases, but the biases did not go down for data sets with a larger number of

clusters. In terms ofpercentage, Do, =.2 had more than 10% negative biases for both
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cluster sizes. The similar amounts ofvariation inDm =2 and DI, =.75 signified that

Laplace6 had dificulty estimating Dm , a phenomenon the same with the other methods

(Gauss and PQL2) in the previous model.

Histograms ofthe estimates not presented here showed that all ofthe estimates

were fairly normally distributed. In efl‘ect, the empirical probability 2 (emp. prob. 2) also

showed that percentages ofobservations falling out ofthe 95% interval around the

average were around 5 for all estimates.

The variances ofestimates using 200 clusters were all approximately 10 times

larger than their counterparts using 2000 clusters. This indicated that as the number of

clusters increases, the variation (variance) of Laplace6 estimates would decrease in

proportion to the number of clusters. Thus, finally the estimates would peak at one point.

Nevertheless, this peak would be a little ofi‘the true parameter, due to the negative bias.

The empirical probability 1 also showed that a little more than 5% ofthe estimates were

cast out ofthe 95% confidence interval around the true value. This was coherent with the

finding of small negative biases. Since the estimates had a negative bias, the sample

mean was shifted a little to the left ofthe true value, assuming both the sample mean and

the true value were both normally distributed and had the same standard deviation. Thus,

more estimates at the lower end than at the upper end ofthe empirical distribution would

be rejected as plausible values fiorn the distribution ofthe true value.



Chapter 6

DISCUSSION AND CONCLUSION

This dissertation uses Laplace’s approximation method to solve the problems

encountered in multilevel logistic models. In the process, I first deduced the multivariate

Taylor expansion for use in expanding Laplace approximation to multivariate situations.

Secondly, 1 derived the six moments ofa multivariate normal distribution through its

moment generating function. Then, I found the analogy between univariate moments and

multivariate moments in doing Laplace’s method. Using the above findings, I obtained

the marginal likelihood ofthe multilevel logistic regression models as a simplified, scalar

function ofmatrices. In finding maximum likelihood estimates ofthe fixed effects and

the variance components ofthe random effects, I used implicit difl'erential to take into

consideration the dependence ofthe current estimate ofthe random effects on the

parameters of interest. The result is the Laplace6 program in HLM (Bryk, Raudenbush,

and Congdon, 1996), using as starting values the converged estimates by PQL.

Both univariate and bivariate random effects simulation studies and a real data

analysis were carried out to evaluate Laplace6. The estimates were compared to those by

the approximate maximum likelihood method using Gauss-Hermite Quadrature (Gauss)

(MIXOR, 1993, 1994, 1997), the method of second-order Taylor expansion around the
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conditional expectation (PQL2) (Goldstein and Rasbash, 1996), and PQL (Breslow and

Clayton, 1993; Raudenbush, 1993).

The analysis ofThailand data is an example ofhow the multilevel Bernoulli

model can be used to understand how student background, school background and

national programs, such as pre-primary education, interact and affect educational

outcome—graderepetition. Itwasfoundthfigirlshadasmallerriskofrepeatinga

grade,thatstudentswithbetternutrition(breakfast)hadalowerrisk,andthatahigher

family socioeconomic status and richer school resources (SES and enrollment) helped

reduce the risk. However, there were interactions between student SES, student nutrition

(breakfast) and school SES and school resources (log_enrollment), respectively. They

indicated that students with poorer family background took more advantage ofricher

school resources than students with better family background in reducing the risk of

repeating a grade. Moreover, all the background factors controlled, students having had

pre-primary education still had a significantly lowered risk ofrepeating grades. The

efi‘ect ofthe pre-primary education did not vary across different schools. Therefore, pre-

primary education did have a positive efi‘ect in preparing children for primary schools.

Through using 4 difl'erent numbers ofquadratme points in analyzing Thailand

data, Laplace6 results were found to be more similar to those by larger numbers ofpoints,

i.e., 40 or 30 points, than all the other methods. Thus, Laplace6 seems to be a pretty

accurate approximation to the marginal Bernoulli likelihood with a normal prior.

The extensive univariate simulation study indicated that all the programs except

PQL performs reasonably well, with small biases at times, although PQL2 tend to haVe
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slightly larger mean squared errors than Gauss-10 and Laplace6. Its efficiencies for the

variance estimates especially trailed behind those ofLaplace6. Laplace6 had the highest

eficiency relative to all the methods for most ofthe parameters in all six univariate

models, although the difference between the results ofLaplace6 and those ofGauss-10

was small.

However, in the bivariate model with 100 data sets, the similarities in mean

squared errors among Gauss-10 and Laplace6 disappeared. Laplace6 performed even

betterthan in the univariate cases. While Gauss-10, GaussZO and Laplace6 were all

approximately unbiased, Laplace6 had the highest efliciencies over all the methods for

most ofthe parameters. Its performance was even better than that of Gauss-20, which in

turn was better than that of Gauss-10. PQL and PQL2 both had much smaller efficiencies

than Laplace6.

The eighth model shows that Laplace6 estimates were normally distributed, and

had a small amount ofnegative bias. However, the variance ofthe estimates did go down

in proportion to the second level sample size. Thus, the approximate maximum

likelihood estimates produced by Laplace6 indeed are approximately consistent estimates.

The analysis of Thailand data raises a question ofhow different the programs are

and how much more useful Laplace6 or Gauss-Hermite Quadrature is for practice. The

suggestion is, for univariate random efi‘ect models, PQL2 may do as well as Gauss-

Hermite Quadrature and Laplace6; for multivariate random effects models, nevertheless,

PQL2 may not give as good results as the latter two programs. On the other hand, PQL

has serious negative bias for large variances of the random effects. Although in the
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current model for Thailand data all programs happened to have the same amount of

predictors that were significant at .05 level, it is still likely that for other models, PQL or

PQL2 will have very difi’erent, and wrong, conclusions, originating from its negative bias

in the parameters. Therefore, it is ofboth theoretical interest and ofpractical usefulness

to have programs such as Gauss-Hermite Quadrature or Laplace6.

The advantage ofGaussian Quadrature lies in its flexibility in that the estimates

can be found as accurately as the user wishes by just giving a larger number ofquadratme

points. Laplace approximation can go as accurate as one wishes, too, but it can be done

only by the programmer, not the user.

The time needed for computation is a big advantage ofLaplace6 over Gauss-

Hermite Quadrature. As the experience with several random samples ofthe 100 bivariate

data sets shows, Laplace6 was much faster than Gauss-Hermite Quadrature with 10

quadrature points specified, which was in turn much faster than Gauss-Hermite

Quadrature with 20 points. However, given the exploration with different data sets here,

10 quadrature points could barely produce estimates as accurate as Laplace6. The time

needed for Gauss-Hermite Quadrature to produce sufficiently accurate results will thus be

much longer than for Laplace6.

Therefore, for educational research that is interested in dichotomous responses,

such as grade repetition, high school dropout, or college admission, and that often is

longitudinal and/or nested designs, Laplace6 is an accurate tool that is fast to converge.

Although currently Laplace6 is available only for 2 level modeling, it should be

straightforward to extend it to 3 level models.
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On the other hand, the contribution ofLale to the field ofapplied

statistics/mathematics lies in the foundation upon which it is built, i.e., the multivariate

Taylor series and the parallelism between moments in univariate normal distribution and

those in multivariate normal distribution in applying the extended Laplace approximation.

lexpectthatthemetbodcanbe appliedto giveprettyacctuate solutionstoproblems

concerning integrals that have to be evaluated numerically.
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Formulae and Lemmas for Appendices A to D

. dABC = (CT 2 A)dvecB (PA-1)

Lemma 1 For a matrix F, suppose a is a scalar function oft, F does not involve t.

 

 

O vec(aF) _ Oa _

__Ot7 — vec(F)® at, . (pA 2)

Pfu fu ----- fo- 'afu aft: ----- 0f...-

fnfn-----fz.. afnafh-----0fz.

Proof Assume F: ,and aF=

Lf-r f-Z ' ° ' ' fm_ b#lnl #32 ° ' ° ' “j": .1   

According to Magnus, we vectorize the matrix first before we take derivative of it with

respect to a row vector. Therefore,
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50F: ‘ =[vec(F)®:ta,].  

   Oa

at’f'“

 

. . . . a
Smce F 15 not a function oft, each element in Fbecomes a scalar to the row vector 0" t, .

o For any two column vectorsa, b, a®bT =ab’

For F(X,Y)=X®Y, X isannxq matrix,and Ya pxrmatrix.

Then dF(X,Y) =vec(dX®Y)+vec(X®dY),

where vec(dX® Y) = (1,, O K", 8 IP)(I,,,, ® vecY)dvecX

vec(X® dY) = (1,, O K", O Ip)(vecX® 1,)dvecl’,

1,, being an n x 11 identity matrix, and

(PA-3)

(PA-4)

(PA-5)

K, being an n x n commutation matrix. (Magnus and Neudecker(l988), p. 188)
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0 Supposeaisapxl vectorandb,aqx1 vector. Then a®bT isa pxq matrixand

sois bTOa. Thus a®br=br®a. (PA-6)

0 Suppose 5= arb,aand bare nxlvectors. Then 5: ”(b'a) = tr(ba’). (PA-7)

o For same-order matrices, A and B, ”(ATB) = (vecA)’(vecB). (PA-8)

0 Two vectorsaandb, abT =(a®b’)

o For two vectors a and b, vec(abT) = (bO a) .

0 A®B®C=(A®B)®C=A®(B®C)

(PA-9)

(PA-10)

(PA-11)

o Lemma2 Fora pxqmatrix A,an sxlcolumnvector c,

Proof

vec(A O c) = vec

 
0 HA and B are square matrices, ”(A O B) = tr(A)tr(B) .

o If AB and CD exist,then (AOBXCOD)=AC®BD.

- If AB is a square matrix, then tr(AB) = tr(BA).

 

6|.

 

vec[A O c] = vec(A)® c.

 

 

 

P2.

 LC:

 

 

q .

  

 

(PA-12)

= vec(A)®c .

  

(PA-l3)

(PA-14)

(PA-15)
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. vec(ABC) = (CT 2 A)vecB (PA-16)



APPENDIX A



APPENDIX A

Multivariate Taylor Series Expansion

This appendix will derive the following theorem:

ao—l .. ..

Theorem: The m-th order approximation in n-variable Taylor series is i“? b T )f""b ,

m.

where 5 is an n x 1 vector; f('0 is the m-th derivative ofthe functionfl fa function of

5 ; the derivative is obtained by first vectorizing the (m-1)-th derivative and then

.. n-l .. ..

difl‘erentiating with respect to b 7; § b7 is the Kronecker product of b7 , repeated 02-]

times.

Proof

Fulks (Fulks, 1978, p.331) has the following multivariate Taylor series theorem.

Theorem Letfand all its partial derivatives up through order n be continuous in a neighborhood N

of Q0. Then forPinN,

f(P)= 1(Q.>+[<P-Qo)-V1I(Q)|Q.Q, +%[(P-Qo)-V]’f(Q)IQ.go

1

(n-l)!

(1)

 

+...+ [(P— Q.»V1“ Halo... + -;-![(P- Q. >~ V1"f(Q>|Q.,.,

(where A o B denotes the inner product ofA and B; P0 is a point on the segment

connecting P to Q0 ; the symbolV indicates the differentiation operation.)

Given (1) then, for Q0 = (a,,a2,...,a,,) and P = (x,,x2,...,xn) , Taylor expansion

of f(x,,x2,...,x,,) up to the fourth order is:
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a 0'"

f(x,,x,,...,x,,) = f(a,,a,,...,a,,)+ [(xI —a,);; + (x2 - aga—t"

l 2

0"

+(x. -a,)a—£—1f(al,az,...,an)

 

 

1 a a a ,
+fi[(x. -ar)'a—x'+(x2 —a’)a"—x2+"'+(x” “0.)6 1.] f(al’02’°"’an) (2)

l a" 5 a

+3!'[(x! —al)3:l+(x2 -02)a_x2+"°+(xn -aa)a xnrf(altazt'"9an)

 

l a a" a"

+'4—![(x1‘al)}:+(x2 -02)0., x2 +m+(x, —au)a_xn-]‘f(al9a29"'9an)+

 

1 a" a a"

+‘n-!'[(Jr1 -a,)a+(x2 -a’)-672+'"+(x" —a..)a.. xnl'f(apap--n0..)-

We look more closely starting at the second order ignoring the factorial:

  

a" a

[(x, -a,)a—x7+(x2 -02' x2 +...+(x,, --a") a x" 12f(0u02a---a0.)

 

- a’ (.2,, ,)

=[;(xl—al)(xi-at) faxlafizx, a

+:(x2 - 02 )(xi - 0,.) 62f(a, ’02 ,...,a,,) +...

 

III
a x25 x!

" 32f(a,,az,...,a )
+ _ _ n

g0. 0..an 0.) a xno" x!

82f(a,,az,...,an).

= (x -a,.)(x.—a.) , (3)

g ' ’ ’ axjxj

the third order, ignoring the factorial:

a" 0'" a 3
[(x, -a,)§—x1+(x2 —02)-a—x:+...+(xn —a,,)-a—x"-] f(a,,a2,...,an)

  =[(x, —a,)a—:—+(x2 -a,)

 

0" 5

[(x1 4103+“: ’02) +°“+(xn —an wivazvuaan)
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63f(a,,az,...,a,,)
 

=[g051-01X1F01Xx1 ‘01)

 

 

 

 

  

 

 

 

 

aaaaaa

+%(x2 -a,)(x, -a,)(x, —a,)aaaf:'a‘:ja':)+...

+ 2o. —a.)<x. -a,)(x, -..» €133,530]

=1;“, -..,xx, _a,xx, —a,) asaf$32122") ; (4)

and the fourth order, also ignoring the factorial:

[(x, -—a,)-0fl—é;:-i~(x2 -a2) x2 +...+(x,, -a,,)-5§x—n-]‘f(a,,a2,...,an)

=[(x, -a,)§a-;l—+(x2 -a,) x2 +...+(x,, quad”? x

[(JcI 410-622;sz —a2)—0:—r2—+...+(x,, -a,)£:]f(a,,a2,...,an)

= [$9, -a,)(x, —a,)(x, —aj)(x, -a,) 5:2“;ngx:;x)l

«24:10:, -a,)(x, -a,)(xj -a,)(x, -a,) :zéag‘g’x‘aai +...

+§(x. -a,.)(x.- —a.-)(x,. -a,-)(x. -a.) j:20;"; 1:32]

= :(x,-a,)(x, -a,)(xj -aj)(x, —o,) yflaflzw’“) (5)
w; fixpflxjaxkax,‘

I will arrange each order ofthe above into scalar functions of matrices. In taking

derivatives, I will always follow what Magnus preaches, that “the only sensible

definition ofa matrix derivative” is to vectorize the matrix first and then take its

derivative with respect to a row vector. Thus whether the original function is a row
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vector, a column vector or a matrix, to differentiate it we will always vectorize it first,

using the formula: vec(ABC) = (C7 8 A)vecB , and then take the derivative.

To simplify notation, let

 

    

xl -a, bi x,

x2 ’02 b2 x,

b: , = . , . =z,and §f(a,,az,...,a,) =f, .

a x, '

bl x"

_x,, —a,,‘ b ‘ ' ‘  
é‘zf(a,,az,...,au)

am x,

 

= f”, , etc.. Thus, for example, the first derivative is

=3? =[A a A]-
 

f(')(x,,x2,...,x,,)

Thenthefirstordercanberewrittenas

- q

.
9
-
3
-

f"’b=[fa. fa, .. fa: , =f.,bn +f,1b,+..+f,.b,,
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The second derivative of fis obtained by taking derivative ofvecfm with respect to 2’.

p c:

a vecf")
 

fo) =

  Lf‘r'l L}: "' flax.
d

Then the second order term without the factorial is derived by differentiating the first

order term, f"’b, and then post-multiplying it with b: since fm is 1x n , in applying

Equation PA-l, we regard f") as the “B”, then “A” is a 1x1 scalar of l, and b as the

“C”. So that we have

35,-1% = b’f‘”. Therefore,

- q

2:... f.,., L... 2:

b’f"’b=[b, b, 12,]

Lb“  

Lax: Lax! Lax
L— .-  
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..b1.

u u a b2 u n l

=[gbl 3m gbfflh g1), Wu] - =Zlblb'ftfir +Zlb2blfuz+°'-+Z‘bnblfr,x,

bn_

 

' " a"2 a ,a ,...,a,, , , .

=ijbrfra, =Z(xr -ai)(xj ’01) f(§lx 62x ),wh1chrsEquatlon 3.

U U 1 1

Similarly, the third derivative is obtained by vectorizing f‘2’ , and then taking its

derivative with respect to a row vector 2’: (the dashed lines are to make it easier for the

reader to see the original vectors fi'om f(2’)



1.1.3: 'f’rr'r'l £3132 " f’r' a

f”: f’r'r‘r L923: " f; .

L211 f’r'r‘l fh’z’z " fw.

Liv-‘1 fin’i‘l L323: " flux):-

0" Li’- fut}: Liza: " f’»’

527 f; " Law. Lav: " fxz’

 vecf‘z) = 
(3) =

f a ZT

  
' ' ' L-f’r‘u’rf‘r‘r'z " fir; .

Then the third order term without the factorial can be obtained by differentiating the

  
second order term, b7f(”b , and then post-multiplying it with b.

By Equation PA—l again, (dbrfmb)b = (b7 ® b7)f(”b



four Liza: ' ' f'r' .

=[b'br bibz -- blbn bel bzbz °° bzbn b"b' b"b2 " b”b"] f f " f

  Lamfvm ° ° fx.x.x. J

= [Z] bibjflrxl’l Z b’bjfxr’r'z " g b’bffir’fln] '
r, 'J '

  

= Zblbibjfnx/xr +z b2bibjfirrxm +"+Z bnbibjLF/h = Z b*b’bjf'I’/’t
iJ 1,} i,j [J1
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3:01: ”0005, -a,)(xj -aj) 53f(a,,az,..,,
an)

, which is uation 4.

w, 6190316 x, Eq

Thefourthordertermcanbeexpressedintermsofamauixandvectorsintheway

exactly as what we did for the second- and third- order terms. The lay-out is omitted here

 

 

becauseofitstedium, butitcanbeexpressedas, with f“) = 6f." f0),

[d(br @br)f(3)b]b ___ (b7 @bT ®bT)f(4)b

= 20!: -a,)(x, -a,)(xj -aj)(x,, -a,) a‘f(a,,al,...,a,,) , which is equal to Equation 5.

Therefore, I have proved the theorem.
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APPENDIX B

The Six Moments of a Multivariate Normal Distribution

Introduction

This Appendix finds the first six moments ofa multivariate normal distribution.

Since methods are routinely applied, 1 will prove up to the fourth moment. The last two

moments will be proved with minimal elaboration.

The moment generating function of a multivariate normal distribution with mean

 

f

0 and variance 2 , N(O, 2) , is exp‘étrz‘. t) . Suppose the dimension is q. Then t is a

 

f

q x1 vector, 2 is a q x q matrix, and exp‘é-ITZ t) is a scalar. The exponential will

remain no matter how many times the derivative is taken with respect to the elements

 

f

inside it. For simplicity, define or = explé tTZ t) = f(t) .

  

First derivative

5* a" (I )
(I) = = — T = TTheorem] f (t) 0”,»: mat, 2:2: mt}: (1)

Proof

  

. . a _ (9(1, )
Becauseoftheexponentralfunctron,aITm—mat, 2t 22! .
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For 56:7 ($172“. t) , I first take derivative with respect to t, the last term, and then :7 , the

firstterm. To take derivative withrespectto t, I regard 1‘72 asA, andtasBinEquation

PA-l. For C in Equation PA-l , I use an identity matrix ofthe same dimension as the

column of t, which is 1. Therefore, the identity matrix in this case is a scalar l. Sol have

1, at 1

(l®2'2)ar' 2

 

:72 . (2)

To take derivative withrespectto tT,Iregard tTas B, and 2 t asCalsoin(PA-l). For

A I useanidentitymatrixofthe same dimensionasthe row of tTE, which is also 1.

Therefore, the identity matrix in this case is a scalar, 1. So I have

  

l r avedtr)_l r
[2020 car] at, '2’2' (3)

Addin u (2) and (3) m-m a (1:72 r)—-"1(2r’2)-mr72 (4)

g " ’ar’ ’ 5:7 2 ’2 '

The first moment is 0, obtained by setting I = 0.

Second derivative

To find the second derivative, I transpose (4) and then take derivative with respect

  

t0 the row vector tragain. That is, mm=Wm: 1.

Theorem 2 f‘2’(t) = m = 3 m2 r= m2 + m2 r :72: (5)
a" Ha I a" :7

Proof I take derivative first with respect to m using Equation PA-Z, and then

with respect to t, and finally I sum up the two parts.
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To take derivative with respect to m, regard )3 t as F in Equation PA-2. Then I have

m[vec(z r)®r’2]= m[(2 t)®t’£] = m2 r :72, (6)

by Equation PA—3, taking advantage ofthe fact that both 2 t and (’2 are vectors.

To take derivative with respect to I, regard m2 asA, and t as B in Equation PA-l. Then

again I have 1 as C, since the column dimension of t is l.

a:

at7=m2.
(7)

So Equation 5 is proved by adding up (6) and (7).

The derivative is [1 ® (m2)]
 

Again, setting I = 0, I have the second moment, 2 .

 

Third derivative

0" vecrigt

Theorem 3 f(”U) = a t7 (8)

= mec(z)r’2 + mvec(2 2 Raw: + m[2 e (20] + m[(2t)® 2]

Proof

  

Withf(”(t) = a" vecfm(t) = 0'37 vec(m2+ m2 t ITE) , (9)

a t’

I will differentiate the first item at the right hand side first and then the second term.

For the first term, according to Equation PA-2, since only or is a function of t, the

derivative is

66,1 vec(m2) = [VEC(2)® MITZ] = M[V€C(2) ® 1T2] = mvec(2)t72 , (10)
 

by Equation PA-3.
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 For a" vec(m 2 t :72) , I first take derivative with respect to m, then t and finally tT .

a t’

With respect to m, I have [vec(z: r 2’2) a rat’s] = mvec(2 r r’zy’z. (11)

With respectto t, I have IT as Cin Equation PA-l, m2 asA, and tas B. So the

t

derivative is [(ITE)T 8032)] :tr
 

= m[(2 032], (12)

since 2 is a symmetric matrix.

Withrespectto tT,regard EasCinEquation PA-l, m2t asA, and tras B. Thenthe

T

derivative is [2 a (m2!)]é%e%t—2 = m[2e (23)] a ' 6,, =m[2®(2t>1. (13)

The theorem is proved by summing up (10), (1 l), (12), and (13).

ThethirdmomentisOby setting tto 0.

 

 

Fourth derivative

Theorem 4

o‘°m

0.. vec a vec firtro" t

f“’(t)= a I?” = "(so vee(2))+mvee[vee(2)r’2]r’z

+ m[vec(2 ® 20% (72] + m[vec(2) ® 2]

+ m[vec(2! e 2)® r’z]+ max“ e 1,)(2 e vec(2))}

+ m(vec[vee(2 r r’:)r"2]® r72}

+ m{(2 t)® 1‘1} {[(X ()3 2]+[X®(Z t)]}

+ m[2 ® vec(2 t (72)] (14)

Proof

 

f“’(t) = 50:, vec{mvec(2)t72 + m(2 ® 2t) + m(2t ® 2)) + mvec(2 t tTZ)tTZ} (15)
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For the first item in the right hand side ofthe above equation, we have:

 

Barr veC(mvec(2)t’2) = "(2 ® ve0(2)) + Irt{Ve€[VeC(53)‘Tz]® ’53}

= "(2 e vec(2)) + mec[vec(2)r’zy’2 (16)

The first item in the above equation results by taking derivative with respect to IT . That

is, 2 is regarded as C in Equation PA-l, mvec(2) as A, and tTas B. The second item

results by taking derivative with respect to m by applying Equation PA-3.

For the second item in (15), the derivative is

 0f; vee(m(2:®2r))= m[vec(2®2t)®t72]+m[vec(2)®2] (17)

The first item in (17) results by taking derivative with respect to m, the second by taking

derivative with respect to t. This second term is obtained by using Equation PA-S for

taking derivative ofa matrix at the right hand side of a Kronecker product.

According to (PA-5), I have

6
mm, a K“, e 1,)[vee(2)e 1,] a t, [vec(z 0] (13)

= mm, e K” e 1,)[vee(z)e 1,12 = m[vec(2)® z],

 

where K", is a q x q commutation matrix, and thus also an identity matrix, 1,].

Therefore, (I, 8 K” ® 1,) = (1,, ® 1q 8 14): 14, can be ignored. Furthermore,

m[vec(2)® Iq]2 = m[vec(2‘.)® Iq](l ® 2) = m[vec(£)® 2] , which is the second term in

(17).

For the third item in (15), the derivative is



97

 

air vec(M(2t ® 2)) = mlvec(£t a metTZ]+ "(Kn e 1,)(2 e vee(z)) (19)

where K" isa q2 xq’commutation matrix. Forthekthrowinthe K",

(n—l)q < k an, n = 1,..., q, only the (71+ {k -[(n-l)q+l]}q) -thterm is 1, the others

are 0.

The first item in the right hand side of (19) results by taking derivative with respect to m.

The second term is derived using Equation PA-4 for taking derivative ofa matrix at the

left hand side ofa Kronecker product. According to (PA-4), the derivative is

 m{(l ® K” ® 1,1)(1q ® vec(2))}aat1 veC(2 t)
(20)

= MK" e 1,)(1, e vec(2))2 = "(Kw e 1,)(2 e vec(}:)),

for (I, e vec(z:))2 =(1, e vee(2:))(}: e 1) = (2 e vec(‘£)). Equation 20 is the second

term in Equation 19.

For the last term in (15), mvec(2 t t’2)t72, I take derivative with respect to or first,

applying Equation PA-2; then I and IT inside the vec fimction, and finally 17 outside the

vec function. The derivative with respect to m is m{vec[vec(2 t (72)t72]® ITZ} . (21)

To find the derivative with respect to the t inside the vec, I use Equation PA-l and the

chain rule. First I regard vec(2 t tTZ)aS B in (PA-1) and :72 as C, and then the A in

(PA-1) is an identity matrix ofthe same dimension ofthe row vector as mvec(2 t £72) ,

6 vec(£ t tTZ)

61’

 

which is qz. That is,I have m{(tT22)T ® Iq,} (22)
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o" vec(2 t (72)

a t’

 

For , I apply (PA-1) again, which brings

a vec(2 t 172) _ r r a r a vec(tT)
at’ —[(t 2) e2]-a—t,—+[2e(2 0177— (23)

=[(2 r)®2]+[2®(2 2)]

 

So the derivative with respect to t and IT inside the vec function is, substituting (23) into

(22), m{(tTZ)T ® 1,1} {[(2 t)® 2] + [2 ® (2 t)]} (24)

Finally, to find the derivative with respect to tT outside the vec fimction, I apply (PA-l ),

with vec(2 t ('2) asA, r’asB, and 2‘. as C. Then I have

a"

at’

 

m[2 ® vec(2 t t’Z)] vec(t’) = m[2 ® vec(2 t #2)]. (25)

To sum up, the derivative of the last term in (15) is, adding (21),(24), and (25),

6

3 (7 [mvec(2 t t72)tr'£]=m{vec[vec(2 t t72)t72]®t72}

+m((r’2)’ e 10,} {[(2 r)® 2]+[2 ®(2 r)]}

+m[2 e vec(2 r 172)]. (26)

 

The theorem is proved by summing up (16), (1 7), (19) and (26).

The fourth moment results fiom setting t to O in all the items in the fourth derivative,

Equation 14:

(2 e vec(2)) + [vee(2)® 2] + {(K” e 1,)(2 e vee(2))}. (27)





99

Fifth Derivative

Theorem 5 The fifth derivative is

 

aveca 7’;

avec t t

area f ’7

d'ec a? ’ = m]vec(2evec(2))er’2]

+ mvec{vec[vec(2)t72]tr2} 8 0’2) + m(2 ® vec(vec(2)t72)) + "(2! ® 1', )(2 ® vec(2))

+ m{vec[vec(2 ® 2!)G t72]® tT2} + m(2® vec(2 ® 21)) + m(2t® 1', )(vecZ ® 2)

+ m(vec[vec(2)® 2]® tT2)

+ mvec[vec(2ta me#212 (:72) + m[2 e vec(2t e 2)]

+ m(2t e 1,, XX“ 2 1,)(2 e vec2) + mvec{(K“ e 1,)(2 e vec(2))} e (:72)

+ mvec{vec[vec(2ttr2)tr2]® t72} ® (tr2) + m{28 vec[vec(2tt’2)tr2]}

+ "(23% lg, ){(2® vec(2ttr2))+(2t® Iq, )[(Z® 2t)+(2t® 2)]}

+ mvec{[(2t)® Iq, ][(2t)® 2]} ® (ITZ)+ maq @(2!)® 1",)(K,M 9 14X: ® vecZ)

+m(t72®2®lq,)(Kq,a@1q,)(2®vec(lq,))

+ mvec{[(2t) e 14, ][2 12(2)” e(t’2)+ ma, e 2! 2 lg, )[vec2 e 2]

+m[2®(tr2)®lq,](Kq,fl®Iv,)(2®vec(lq,))

+ m{vec[2 ® vec(2ttr2)]® (72} + m(vec2 ® I41 ){(2 8 2!) + (2! ® 2)}

 

 

Proof

By applying Lemma 1,1 get

a
r

-a—, vec[m(2 ® vec(2))] = "086(2) ® V342»3 t 2] °

34'; vec{mvec[vec(2)t72]tr2} = mvec{vec[vec(2)tr2]t72} 8 0’2)

+m(2 ® vec[vec(2)tr2]) + m(2t ® 1"1 )2?” vec[vec(2)tr2] ,

where -;—T vec[vec(2)rT2] = (2 e vec(2)).
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Thefirsttermis by applyingLemma 1 again. The secondtermisobtainedbytaking

derivative with respect to the t7 ofthe tr2 at the end. The third term is by taking

derivative with respect to the tT ofthe t'2 right after the vec(2).

j—r vec(m[vec(2 ® 2t)8 t72]}= m{vec[vec(2 8 2!)® tT2]® (72} + m(2® vec(2 ® 2t))

”(2:21)—aria-(282!)

with Ear-vec(2® 2!) = (I, 8 K14 ® Iq)(vec2 ® I, )2 = (vec2 ® 2)

The first term is obtained by taking the derivative ofm; the second by taking the

derivative ofthe (72 outside the vec fimction, and the last one inside the vec

function.

:7vec{m[vec(2)® 2]}= m(vec[vec(2)® 2]® tr2), by taking derivative ofm.

:7vec{m[vec(2t ® 2)® tr2]}= mvec[vec(2t ® 2)® t72]® (tT2) + m[2 ® vec(2t ® 2)]

+m(2t®Iq,)—ivec(2t®2)

with %vec(:e 2) = (II 12 KM e 1.x], 2 vec2)2 = (KM e 1,)(2 e vec2).

The first term is by taking derivative ofm, the second of tT2 outside the inner vec

function, and the last one inside the inner vec function.

613—7 vecm{(K® Iq)(2 ® vec(2))} = mvec{(KM ® Iq)(2 ® vec(2))} @(172) by

taking derivative ofm.
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§FWc{m{ve6[veC(2 t t’2)t’2]®t’2}} = mvec{vec[vec(2 t 1’2)t’2]®t’2}®(t’2)

+{2®vec[vec(2 t r’2)t’2])+(2te 100%vec[vec(2 t t’2)t’2]

Ear-vec[vecfl t tr2)t72] = (2 ® vec(2 t 172)) + (2’ Q 1,: hair-vec(2 t ‘72)

= (2% vec(2 t (T2))+(2t® Iq, )[(2 ® 2t)+(2t® 2)]

Therefore,

36’— vec{m{vec[vec(2 t t’Z)t’2]® t’2}}

= mvec{vec[vec(2 t t’2)r’2]er’2}e(t’2) + m{2® vec[vec(2 t r’2)r’2]}

+m(2t e 1., )((2 e vec(2 t t’2))+ (2: 2 lg, )[(2 <2 2t)+ (2:2 2)]).

fivecbnflZ t)® Iq,][(2 0% 2]} = mvec{[(2 t)® Iq,][(2 t)® 2]}®(t72)

~1-m(Iq ®(2t)® 1‘2)Ea7vec[(2 t)®2]+m(t72®2® If)%vec[(2t)®lq, ],

a
where 37 vec[(2 r)® 2] = (1, e K" e 1,)(1, a vec2)2 = (Km (2 1,)(2 e vec2),

and-éivec[(2t)® 1,2]=(11® Kg” ® 11,)(14 ® vec(Iq2 ))2

=(Kq14 ®Iq,)(2®vec(1q,)).

So, %V86{m{(3)® 1,: 11(21)® 73]} = mec{[(2t)® 1421103019 21}®(1T2)

-+-m(Iq ® (20% 14, )(KM ® Iq)(2 ® vec2)

+m(t72®2®Iq,)(Kq,a®Iq,)(2®vec(Iq,)).

The next term,
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:7 vec{m[('£t)®Iqr][2®(2 t)1} = mec{[(21)® {THEME t)]}®(fr$)

+m(l ®2t®lq2 )-—-aTvec[2®(2 t)]-1-m[2®(t72)®lqJ]—Tvec[(2t)®I42],

where (f, vec[2 e (2)]: (1,, ®Ke Iq)(vec2 e 1, )2 = (vec2 e 2).

Therefore,

fivectmimm 1,.112 e (201} = mvec{[(2t)® 1,1112 so. :11} a 0’2)

+m(Iq ® 2! ® 1,1 )[vec2® 2]+ m[2®(tTE)® 181081,, ® 14, )(2 ® vec(Iq, )).

The last term,

2?? vec{m[2 ® vec(2ttr2)]} = m{vec[2 ® vec(2ttr2)]® tT2}

+ ma, exe1)(vec2 e 1)—4vec(2t‘t72)

= m(vec[2 ® vec(2ttr2)]® N2} + m(vec2® I,1 ){(2 ® 2t)(2t ® 2)}

The first term of the above equation is obtained by taking the derivative ofm; the

second by the derivative ofthe vec function.

By setting t ofthe fifth derivative to 0, the fifth moment ofa multivariate

normal distribution is 0.
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Sixth Derivative

Theorem 6 The sixth derivative is

 

 

 ever: a ‘T = mvec{[vec(2® vec(2))® #21} @072)

+ m(2® vec(2 ® vec(2)» + mvec{vec{vec[vec(2)t72]tT2} ® 072)}® (tr2)

+ m(2 ® vec(vec[vec(2)tr2]tr2})

+ m(2t ® Iq, ){(2 ® vec[vec(2)tr2]) + ((2!) ® Iq, )(2 ® vec(2))}

+ mvec(2 ® vec(vec(2)t72))® ((72) + m(vec2 ® Iq, )(2 ® vec(2»

+mvec[(2t8 I43 )(2 ® vec(2))]® (1T2)

+m[(2 ® (vec2)T ® 14, ](Kq,q 8 lg, )(2 ® vec(Iq, ))

+ mvec{{vec[vec(2 e 202 t’2]® :72} } a (2’2) + m{2 e vec[vec(2 2 2t)8 t’2]}

+ m(2t ® Iq. ){[2 ® vec(2 ® 2t)] + [2! 8 lg, ](vec2 ® 2)}

+ mvec{(2 e vec(2 e 20)} e (:72) + m(vec2 e 1,, )(vec2 e 2)

+ mvec[(2t® I"J )(vec2® 2)]®(tr2)+ m((vec2)T ® 2% 14. XX!” ® 14, )(2® vec(Iq, ))

+ mvec(vec[vec(2)® 2]® t’2)e(t’2)

+ m(2 ® vec[vec(2)® 2]) + mvec{vec[vec(2t ® 2) ® tT2]® 072)} ® ((72)

+ m{2® vec[vec(2t ® 2)® tT2]}

+ m[(2t)® 14. ]{[2 ® vec(2! ® 2)]-1» ((2t)® Iq, )(qu ® Iq)(2 ® vec2)}

+ mvec{[2 ® vec(2! ® 2)]} ® (tT2) + m(vec2 ® 14, )(Km ® 14 )(2 ® vec2)

+ mvec[(2t ® Iq, )(Km ® 1‘ )(2 ® vec2)]® ((72)

+ m[(2 ® (vec2)T )(KM ® Iq)® 14.](Kh ® 14, )(2 ® vec(Iq, ))

+ mvec[vec{(KM e 1,)(2 e vec(2))} e (t’2)]® (:72)

+ m[2 ® vec((K,M ® 1,, )(2 ® vec(2))}]

+ mvec{vec{vec[vec(2ttr2)tr2]® (72} ® (tr2)} ® (tT2)

+ m(2 e vec(vec[vec(2rr’2)rr2]e :72} + m(2t e 14, )((2 e vec[vec(2rt72)r’2]}

+ ((20% 1,, ){[2 ® vec(ztr’z)1+«2t)® 1,010. ® (21)» (it e 2)] 1)
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+mvec{2® vec[vec(2tt72)tr2]} ® (1’2)

+(vee2e 14,){[2 e vec(2rt’2)]+((2t)e 14, )[(2®(2t))+(2t® 2)]}

+mvec[(2t e 14, )(2 e vec(2rt’2))]e (1’2)

mu, e2e I4,)(vec2®14,)[(2® 2t)+(2t® 2)]

+m[2® (vec(2ttr2))T 8 14.](K4,.4 8 l4, )(2 ® vec(I4,)

+mvec[(2t® 14, )(2t® 14, x2e 2)]e(r’2)+ mu, 2 [(21% 14,)(2re 14, )])(vec2® 2)

+m[(2®tr2)®(2t® 14, )](K4,4 ® 14, )(2®vec(14, ))

+m[(2® r’2)(r’2® 14, )e 14,](K4,4 e 14,)(212 vec(I4,))

+mvec[(2t ® 14, )(2: ® 14, )(2! ® 2)]® (1’2)

mu, 2 [(2:12 14, X218 14, )])(1<,m e 1,)(2 e vec2)

+m[((tT2)® 2)® (2t ® 14, )](K4,44 ® 14, )(2 ® vec(14, ))

+m[(t’2 ® 2)(t’2 ® 14, )® 14,](K4,'4 ® 14, )(2 ® vec(14, ))

+mvec{vec{[(21)® 14, ][(2r)e 2]) e (#2)} 12(1’2)

+M(2 ® vec{[(21)® 142 11(3) ® 21))

+m[(2t)® 14, ]((1, e (2r)® 14, )(KM 12 1,)(2 e vec2)

+((t’2)® 2 e 14, )(K4,4 e 14, )(2 e vec(14, ))

+ mvec[(1q ® (2!) ® 14,)(KM ® 14)(2 ® vec2)]® (172)

+ m(2®(vec2)’)(1<,M e 1,)e 14, )(1, e K4,4 e 14, )(vec(1,)e 14,)(K4,4 e 14,) x

(2 ® vec(I4, )) + mvec[((tr2)® 2 ® 14, )(K4,4 ® 14, )(2 ® vec(I4, ))]® (172)

+m[(2 e(vec(14,))’)(1<44, <2 14,)e 14,][2e vec(2 e 14,)]

+mvec{vec{[(2t) e 14, ][2 8» (2t)]} 81 (1’2)} 2 (1’2)

“"03 ® vec{[(2t)® 1,2112 ® (201»

+m((2t)® 14, ){(1, e [(20% 14, ])(vec2 e 2)

+([2 e (t’2)® 14, ](K4,4 e 14, )(2 e vec(14, ))}

+ mvec[(14 ® 2! ® 14,)(vec2 ® 2)]® (172)

+ m((vec2)7 e 2 e 14. )(1, e K4,4 e 14, )(vec(1,)® 14, )(K4,4 e 14, )(2 e vec(14,)

+ mvec{[2 e (1’2)® 14, ](K4,4 e 14, )(2 e vec(14, ))} e (1’2)

+ m{[(2 e (vec(14, ))’)(K44, e 14, )]e 14. )(14, e K4,4 2 14, )(14, <2 vec(14, ))(vec2 e 2)
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+mvec{vec[2 ® vec(2ttr2)]® (172)} ® (1’2)

+m{2 ® vec[2 ® vec(2ttr2)]} + m(2t ® 14. )(vec2 ® 14, )[(2 ® 21) + (21 ® 2)]

+mvec{(vec2 ® 14, )[(2 ® 2!) + (21 ® 2)]}8 (tr2)

+m(14 e (vec2 e 14, ))[(vec2 e 2) + (Km 42 1,)(2 e vec2)]

Proof

3i. vec(rn[ve€(2 a vec(2))e r’zn = mvec{[ve6(>3 co vec(2»® r’211®(r’2)

+m(2 ® vec(2 ® vec(2»)

20;- vec{mvec{vec[vec(2)172]172} ® (172)}

= mvec{vec(vec[vec(2)tr2]tr2} ® (172)} ® (1’2)

+m(2 ® vec(vec[vec(2)172]tr2})+ m(2t ® 14. )jiT vec(vec[vec(2)tr2]tr2}

where jivee{vee[vec(2)r’2]r’2}

= (2 e vec[vec(2)r’2]) + ((2r)® 14, )§ vec[vee(2)r’2]

with :45? vec[vee(2)t’2] = (2 e vec(2».

Therefore,

2?,- vec(vec[vee(2)r’2]t’2) = (2 e vec[vee(2)r’2]) + ((2) <2 14, )[2 e vec(2)].

501T- vec(mvec{vec[vec(2)tr2]tr2} ® (172)}

= mvec{vec{vec[vec(2)172]tr2} ® (172)} ® (172) + m(2 ® vec(vec[vec(2)tr2]tr2})

+m(2t e 14, )((2 e vec[vec(2)r’2]) +((2t)® I4, )(2 ® vec(2))}
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30:- vec{m(2 8 vec(vec(2)1’2))} = mvec(2 8 vec(vec(2)1r2))8 (172)

+m(1, e KM e 14, )(vec2 e 14, )3”; vec(vec(2)r’2))

while 50;- vec[vec(2)1’2] = (2 8 vec(2», whereas Km = 1, and can be ignored.

Therefore, %vec{m(2 8 vec(vec(2)1r2))} = mvec(2 8 vec(vec(2)1r2))8 (1’2)

+ "(vec2 8 14, )(2 8 vec(2» .

gems:e 1,. )(2 e vec(2))1= "wee-[12: a 1,, )(2 e vec(2))1®(t’2)

+ m[(2 8 (vec2)T 8 14.]§vec(21 8 14,)

. a
With 7vec(2te14,)=(1,2K4,4®14,)(1,evec(14,))2.

=(K4,4814,)(28vec(14,)).

So, g—T-vec[m(2t8 14, )(28 vec(2))}

= mvec[(21 8 14, )(2 8 vec(2))]8 (172)

+m[(2 8(vec2)’ ® 14, ](Kq’a ® 144, )(2 ® vec(14, )).

041, vec{m{vec[vec(2 ame1’2]® r’2}}

= mvec{vec[vec(2 8 21)8 172]8 1’2} 8 (1T2)

+m{2 8 vec[vec(2 8 21)8 172]} + 111(21 8 14, )%vec[vec(2 8 21)8 172],

where 0%- vec[vec(2 8 208 172] = [2 8 vec(2 8 21)] + [21 8 14,]? vec(2 8 21),
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. 3

With 7ve0(28 21) = (1,, 8 KM 8 Iq)(vec28 1,)2 = (vec28 2) .

Therefore, #17 vec{m{vec[vec(2 8 21)8 172]8 172} }

= mvec{ (vec[vec(2 8 21)8 172]8 172}} 8 (1’2)

+m(2 8 vec[vec(2 8 21)8 172]}

+m(21 e 14, ){[2 e vec(2 e 21)]+ [21o 14,](vee2 e 2)).

3%vec{m(2 8 vec(28 21))} = W6429 vec(2 Q 2’»3 (’72)

a

+m(14 8 K14 8 14,)(vec28 14,)?vec(28 21)

= mvec{(2 8 vec(2 8 21))} 8 (172) + m(vec2 8 14,)(vec2 8 2)

3:7. vec[m(218 14, )(vec2 8 2)] = mvec[(218 14, )(vec2 8 2)]8(1T2)

+m((vec2)r 8 2 8 14. )—;—T vec(21 8 14,)

= mvec[(21 8 14, )(vec2 8 2)]8 (172)

+m((vee2)’ e 2e 14. )(K4,4 as 14, )(2 e vec(14, ))

Ea?Vec{"l(vec[VeC(2)® 2181’2» = mvec<vec1vec<21® 21% t’m(FE)

+ m(2 8 vec[vec(2) 8 2])

567 vec(mvec[vec(21 8 2)8 1’2]8 (172)}

= mvec{vec[vec(21 8 2)8 172]8 (172)} 8 (1’2) + m(2 8 vec[vec(21 8 2)8 172]}

+m[(21) 8 14, ]% vec[vec(21 8 2)8 1’2],

with gvec[vec(21 e 2) e 1’2]
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= [2 e vec(21 e 2)]+ ((2012 14, )3? vec(21 e 2)

= [2 e vec(2! e 2)] + ((2012 14, )(K,M e 1,)(2 e vec2)

Therefore,

36—1 vec(mvec[vec(21 ® 2)3 t721% (t12)}

= mvec{vec[vec(21 8 2)8 172]8 (172)} 8 (1’2) + m(28 vec[vec(21 8 2)8 172]}

+m[(21)8 14, ]{[2 <2 vec(21 e 2)]+((21)® 14, )(an e 1,)(2 e vec2)}.

367 vec{m[2 8 vec(21 8 2)]} = mvec{[2 8 vec(2! 8 2)]} 8 (1’2)

5

+m(14 8 Km 8 14, )(vec28 14,)?vec(218 2)

= mvec{[2 8 vec(2! 8 2)]} 8 (172) + m(vec2 8 14, )(an 8 14)(2 8 vec2)

24?,- vec[m(21 e 14, )(KM 12 1,)(2 e vec2)]

= mvec[(21 8 14, XX“ 8 14)(2 8 vec2)]8 172

+ m[(2 ®(vecz)’)(1<44 e 1,)e 14,155,512 14,)

= mvec[(21 8 14, )(an 8 14)(2 8 vec2)]8 (172)

+ m[(2 e (ve62)r)(KM e 1,)8 14. ](K4,4 81 14, )(2 a vec(14, ))

Ea? vec[mvec{(KM 3 14X2 3 vec(2))}8(172)]

= mvec[vec{(KM 8 14 )(2 8 vec(2))} 8 (172)]8 (172)

+ m[2 e vec((KM a 1,)(2 e vec(2))}]

Ea"? vec{mvec{vec[vec(21172)172]8 172} ® (172)}

= mvec{vec{vec[vec(21172)1r2]8 172} 8 (172)} 8 (1’2)

+m(2 8 vec{vec[vec(211r2)1r2]81’2}

+m(21 8 14, )5; vec{vec[vec(21172)1r2]8172},
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wins-445'—T vec(vec[vec(211’2)1’2]e1’2}

= {2 8 vec[vec(211’2)172]} + ((21) 8 14, )5; vec[vec(211’2)172]

= {2 e vec[vec(211’2)1’2]} + ((21) e 14, ){[2 e vec(211’2)]

+ [(0108 1,0103 131011))4'01t ‘9 2)]}

Therefore, Ea-T- vec(mvec{vec[vec(211’2)1r2]8 1’2} 8 (172)}

= mvec{vec{vec[vec(21172)1r2]8 172} 8 (1T2)} 8 (172)

+m(2 e vec(vec[vee(211’2)1’2]e 1’2} + m(21 e 14, )((2 e vec[vee(211’2)1’2]}

+((Et)® 14,){12 ‘8 vedm'2)]+ ((20% 1,: )[(2 ®(2t)HZI® 2)]}>

23‘teams ® vec[vec(211’2>1’21})= mvec{2 a vec[vedzn’zy’zn 8 (1’2)

0"
+(1, 8 KM 69 14, )(vec2 e 14, )7vec[vee(211’2)1’2]

= mvec{2 e vec[vee(211’2)1’2]} a (1’2)

+(vec2 <2 14, ){[2 e vec(211’2)] + ((21) e 14, )[(2 e (21)) + (21 e 2)]),

since 557vw[vec(21172)1r2]

= {[2 e vec(211’2)] + [((21)® 14,)6%vec(211r2)}

={12 ® veC(2ttTX)]+ [(30% 1,: )[(23 (3’)) + (2! ‘8’ 2m}.
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gmmae 14, )(2 e vec(211’2))] = mvec[(21 e 14, )(2 e vec(211’2))]® (1’2)

+m(1, e (21 e 14, ))Ea7vec(2 e vec(211’2))

+m[2 8(ve1:(21172))T 8 14. 1321' vec(21 8 14,)

= mvec[(21 8 14, )(2 8 vec(211’2))]8 (172)

+m(14 QZIQIvaeCEQ I4,)[(2®21)+(Zt®2)]

+1112 30194211123», 8 14. ](Kffl ® 14, )(2 ® vec(14, ))

gvec[m(218 14, )(21e 14,)(2e 21)]: mvec[(218 14,)(21® 14, x2e 21)]®(1’2)

+1111, e[(21e 14,)(2112 14,)])%vec(28 21)

+m[(2®1’2)®(21<2 14, )]ai,vec(21® 14,)

a"
T T

+m[(281 2X12814,)814,]7vec(21814,)

= mvec[(218 14, )(218 14, )(212 21)]®(1’2)

mu, ®[(21e 14,)(2te 14,)])(vec2® 2)

+m((2e1’2)e(21e 14,)](K4,4 e 14, )(2evec(14,))

+m{(2®1’2)(1’2e 14, )e 14,](K4,4 e 14,)(212 vec(14, ))

fivedmflt8 I4, )(21 8 14, )(21 8 2)] = mvec[(21 8 14, )(21 8 14, )(21 8 2)]8(1T2)

+1111, 12 [(21 e 14, )(21 e 14, )])(1<M e 1,)(2 e vec2)

+m[((1’2) e 2)® (21 e 14, )](1<4,4 e 14, )(2 e vec(14, ))

+m[(1’2e 2)(1’2® 14,)e 14,](K4,4 e 14, x2e vee(14,))
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3?; vec(mvec{[(21) 8 I4; ][(21) ® 2]} 3 arm}

= mvec{vec{[(21)8 14, ][(21) 8 2]} 8 (172)} 8 (172)

4""(2 3 V96{[(Zt)® 141][(2‘)® 2]}) ‘1' "fly-()3 1,11%V94K203 1311(3) 8 2]}

= mvec{vec{[(21)8 14,][(21) e 2]} 9 (1’2)} 12 (1’2)

+m(2 8 vec( [(21) 8 I44, ][(21) 8 2]})

+mi<21>® 1,1111, ® [(21% 1,, Dairveckflw 2]

+((1’2)® 2)® 14,)???- vec[(21)8 14,]}

= mvec{vec{[(21)8 14,][(21) e 2]} a (1’2)} e (1’2)

+1110? 8 vec{[(21) 8 1,2 11(208 2]})

+m[(21)8 14, ]((1, e (21)e 14, )(KM e 1,)(2 e vec2)

+((1’2)e 2e 14, )(K4,4 12 14,)(2 e vec(14, ))

24‘; vec[ma, e (202 14, )(K,m e 1,)(2 e vec2)]

= mec[(1, e (21)® 14, )(KM e 1,)(2 e vec2)]8 (1’2)

+m(2 e (vec2)’)(1<,M e 1,)e 14031—111141, e (21)® 14,)

= mvec[(1, e (21)® 14, )(K,M e 1,)(2e vec2)]8 (1’2)

+m(2 69(vec2)’)(1<,M e 14m 14, )(1, e K4,4 81 14, )(vec(14)8 14, )EaTvec((21)® 14,)

= mvec[(14 8 (21)8 14, )(an 8 Iq)(2 8 vec2)]8 (172)

+m(2 e (ver.~2)’)(1(M e 1,)e 14, )(1, e K4,4 12 14, )(vee(1,)® 14, )(K4,4 e 14,) x

(22 vec-(14,»
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gyvec[m((1r2)8 2 8 14, )(K4,44 8 14, )(2 8 vec(14, ))]

= mvee[((1’2)® 2 e 14, )(K4,4 2 14, )(2 e vec(14, ))]12 (1’2)

+m[(2 8(vec(14, ))’)(K44, e 14, )e 14,]§Tvee(1’2e 2 e 14,)

= mvec[((1r2)8 2 8 14, )(K4,4 8 I4, )(2 8 vec(14, ))]8(172)

+m[(2 e (vec(14, ))’)(K44, e 14, )e 14. ][22 vec(2 e 14,)]

£7 vec(mvec( [(21) 8 14,][2 8 (201} 3 (112)}

= mvec{vec{[(21)8 14, ][2 e (21)]} 12 (1’2)} <2 (1’2)

+m(2 8 vec{[(21) 8 14,][2 8 (2t)]})

+m<<211® 1,. 153—,vec11121m 1,.112 ® (2111}

= mvectvec11<2t1® 1,.112 2(21111211’211211’2)

+m(2 8 vec{[(21)8 1,1 ][2 8 (2t)]})

+m((2t) 8 I44, ){(14 8 [(208 14,])(vec2 8 2) + ([2 8 (172)8 14, ]-§ vec[(21) 8 1441]}

= mvec{vec{[(21)8 14,][2 2(21)1}®(1’2)} a (1’2)

+m(2 e vec{[(21)8 14,][2 2(2)”)

+m((21) e 14, ){(1, e [(2012 14, ])(vec2 e 2)

+([2 e (1’2)® 14,](K4,4 e 14, )(2 e vec(14, ))]

£7... vec[mu, e 21 e 14, )(vec2 e 2)] = mvec[(1, e 21 e 14, )(vec2 e 2)]12 (1’2)

5
T

+((vec2) 8 28 14. )y vec(14 8 21 8 14,)

= mvec[(14 8 21 8 14,)(vec2 8 2)]8 (172)

+((vec2)’ e 2e 14,)(1, e K4,4 2 I4, )(vec(14)8 14,)(K4,4 e 14,)(28vec(14, ))
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fivec{m[28(1r2)8 I4,](K4,4 8 14, )(28vec(14, D}

= mvec{[28(1r2)8 IfKKf, 8 14,)(28vec(14,))}8(172)

+m{[(28(vec(14, ))TXKM, 8141)]8 I4.}§;vec[28(172)8 144,]

= mvec{[2 e (1’2)® 14, ](K4,4 2 14, )(2 e vec(14, ))] 2 (1’2)

+ m{[(28(vec(14, ))’)(1<44, e 14,)]e 14,)(14, e K4,4 2 14, )(14, e vec(14,))(vec28 2)

iivec(mvec[2 8 vec(21172)]8 1’2} = mvec{vec[2 8 vec(211’2)]8 (172)} 8 (1’2)

+m{2 8 vec[2 8 vec(21172)]} + m(21 8 14. )EZT- vec[2 8 vec(21172)]

= mvec{vec[2 8 vec(211’2)]8 (172)} 8 (1’2)

+m{2 8 vec[2 8 vec(21172)]} + m(21 8 14. )(vec2 8 I4, )[(2 8 21) + (21 8 2)]

35,— vec{m(vec2 e 14, )[(2 e 21) + (21 12 2)]}

= mvec{(vec2 e 14, )[(2 e 21) + (21 e 2)]} a (1’2)

+1111, 63 (vec2 e 14, ))%vec(2 e 21)+ mu, (2 (vec2 e 14, ))Ea-T-vec(21 e 2)

= mvec{(vec2 8 14, )[(2 8 21) + (21 8 2)]} 8 (1’2)

+m(14 8 (vec2 8 142 ))[(vec2 8 2) + (K1111 8 14 )(2 8 vec2)]

The sixth moment ofa multivariate normal distribution is, by setting 1 ofthe sixth

derivative to 0,

E(1°) = (2 8 vec(2 8 vec(2))} + (vec2 8 14, )(2 8 vec(2»

+ [(2 8 (vec2)T 8 I4.](K4,44 8 I4, )(2 8 vec(14, )) + (vec2 8 14, )(vec2 8 2)

+ ((vec2)’ <2 2 e 14. )(K4,4 e 14, )(2 e vec(14, )) + (2 e vec[vec(2)8 2])

+ (vec2 8 I4, )(ch 8 14 )(2 8 vec2)

+[(28(vec2)T)(K“ 8 1,)8 14.](K4,44 8 14,)(28 vec(14, ))

+ [2 8 vec{(K“ 8 1,)(2 8 vec(2))}]

+(2 8 (vec2)7)(K“ 8 Iq)8 14, )(14 8 K 44 8 14, )(vec(14)8 14, )(qug 8 142 ) x
‘2

(2e vec(14, )) +[(2®(vee(14, ))’)(K44, e 14,)12 14,][212 vec(28 14,)]
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+((vec2)7 8 28 14. )(1, 8 K4,.4 8 14,)(vec(14)8 14, )(K4,44 8 14, )(28 vec(14, ))

+m{[(2 8 (vec(14, ))T)(K44, 8 14, )]8 14.}(14, 8 [(4,444 8 14,)(14, 8 vec(14, ))(vec2 8 2)

+ (14 8 (vec2 8 14, ))[(vec2 8 2) + (KM 8 14 )(2 8 vec2)].
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APPENDIX C

Proof of the Substitutions

This Appendix will prove the substitutions ofthe expectations ofthe fourth and

sixth moments with simpler forms.

The Fourth Moment Substitution

We have [(121 -3;)’ e (b. 43; 1’ a (b, 42”. 1’12“"(11. ~51)

in the approximate marginal likelihood, where the q x1 vector (b, - 13;)has a multivariate

normal distribution, N(O, 2), 2 =(13-l - 170’)". For simplicity, I will use 2 for the

derivation, use b for (b, — b,) and ignore the subscript in 1:“) here:

1' =[b’ eb’eb’]T<‘)b. (1)

Theorem 1

E(r) = 3[vec(2 e 2)]’vec(7'“>) . (2)

Proof The dimension of the first part in r, [6’ e b’ e blT‘”, is 1 x q. The second

part,b , is q x 1. Since r is a scalar, by using PA-7 and regarding the firstpartas or and

the second partas b, it becomes r =1r{b[b’ 8b’8b’]7“’}. (3)

Separate the inside ofthe trace function into two parts, 1, = b[b’ eb’ 26’], a q x 1,3

matrix, and r2 = 1:“) , a q3 x q matrix. Using Equation PA-8, (3) becomes

r = (vec((b 8 b 8 b)b T ))T vec(T‘”) = (vec(r,T )) T vec(r2 ) . (4)

115
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Because 7'“) is a constant, and b has a multivariate normal distribution, MO, 2) , the

expectation of (4) becomes

2m = E((vec[(b a b s b)b’11’)vec(f“’) = Ettvectrr’11’1vectr21. (5)

where E(r,T) is the fourth moment ofa normal distribution, 111,. Therefore, the

expectation of(1) is E(r) = [vec(m, )]’vec('i'<‘>), (6)

m, = (2 e vec(2» + [vec(2) e 2] + {(K” 12 14,)(2 e vec(2))}

=E+Q+Q (D

where K” is a commutation matrix that permutes rows ofa matrix, and I is an identity

matrix. (See APPENDD( B: The Six Moments ofMultivariate Normal Distribution)

Each matrix E,, E2, and E3, in m, isaKronecker product of vec2 and 2 . By

q

ranB anB ...al B
P

anB 022B ...a2 B
P

the definition ofthe Kronecker product that A 8 B = , the sum of

aqlB 042B ...awB  
the elements inside E1 is equal to that inside 15'2 as well as that inside E3 , which, in turn,

are all the same as that inside 2 8 2. Therefore, 11:, has exactly the same sum of

elements as 3(2 8 2) . Moreover, according to Anderson (1958), the expectation ofthe

fourth moment of a multivariate normal is

E(b11b1 barbr) = and.» + chair + Okra-.1: (8)
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where a", isthecovarianceof b, and b,; k, I, m, rcanbeequal. Notethatthe

power of bkb, b.b, corresponds to that ofany of the and aha,” and aha”, even

though they are three difi‘erent products ofcovariance terms.

On the other hand, since (1) is the fourth order term (without the factorial) ofthe

fourth order Taylor expansion, with T“) the fourth derivative ofthe likelihood, when

multiplied out, it becomes:

E(r)= E(ib‘ZgTz; +428:b,Zgjzfizfl «Nib:b}2gjzfiz},

k-I j-l j-l j-l

4

+12 ibkzb, buigjzizflzj. + zbkbl b-brigjzflzflzhzl']

kalvarJor j-l kale-er j-l

= BZangjo, +1220u032g12fizfl+6:(aua’,, +20”)Zgjzfizfl

k-l j-l he! j-l j-l

+12 Z(o,,o,, +2o,o,,)2g,zj,z,z,, (9)

kale-al,“. j-l

q "1

+ 2(auam + aha” + abah)ZgTzfizflzT,zj,

talcum-r j-l

Note that the power of z11: also corresponds to the power of b, , and the power of z1!

‘3 ’4

JmZJr ’
corresponds to the power of b, , and so on. That15, Zgjzj'kzjfl

kale-nor

s,,s,,s,,s4 = O,..,4, 13-”2 +5, + s, = 4, is multiplied by bfbf’bflbf‘. Thus the power of

z: z,” 222? ’5 corresponds to that of b: bf‘bjbf‘ ’s, which in turn corresponds to that ofthe

products ofthe variances and/or covariances as we see above. We have known that the

sum of the terms in 3(2 8 2) is equal to that of m, . Therefore, to prove the substitution,
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we will have to prove that the power ofthe product ofcovariances and/or variances in

each position of 3[vec(2 8 2)]T corresponds to that of 2:271222? in 1;“) , so that

3[vec(2 e 2)]’vecT<" will also result in (9).

Because (vec m, )’ is the expectation of (vec((b e 6e b)b’))T, the power ofthe

sum ofthe three products ofvariances and/or covariances in each position ofthe former

((vec 111,)T ) correspond to the power in each position of the b,b,b,b,'s in the latter

((vec((b e be 6)6’))T). On the other hand, because 2 = 13(66’) , the power ofthe

products ofvariances and/or covariances in each position of 3(2 8 2) will correspond to

that in each position of (bbT 8 bbT) . Combining these two facts, the proofreduces to

proving that [vec(r,’)]’ = [vec((b e b 12 6)6’)]’ = [vec(bbT e 66’ )]’ .

Since to transpose a vector will not change the order ofthe elements in the vector,

I will ignore the transpose on both sides ofthe above equation and prove:

vec((b8b8b)br)= vec(r,’) = vec(bb’ ebb’). (10)

By Equation PA-3, r,T =[b8b8b]8bT. (11)

Putting back (11) to the left hand side of (10) and by Equations PA—ll and PA—6,

vec(r,T ) = vec[b 8 b 8 b8 b7] = vec[b 8 c 8 b7] = vec[b8 (c 8 br)] = vec[b 8 (b7 8 c)]

=vec[b8bT8c]=vec[(b8bT)8c]=vec(b8bT)8c. (12)

where c = (b8 b), c being a q2 x lvector. The last equation ofthe third line in (12) is

obtained by PA-12 by regarding (b 8 b7) as a matrix.
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Similarly, the right hand side of (10) is

vec[bb’ 8 bbT] = vec[(b 8 bT)8 (b8 b7 )] = vec[(bT 8 b)8 (b7 8 b)]

= vec[b’ 2(62 6’)2 b] = vec[b’ 2 (6’ 2 b)8 6] = vec[b’ 2 6’ 2 62 6] (13)

= vec[(bT 8 bT)8 c] = vec(b’ 8 b’)8 c = vec(b8 bT)8 c,

which is equal to the left hand side.

Therefore I have proved Equation 10, and thus the substitution.

The Sixth Moment Substitution

Theorem 2 E1r{(6’ 26’ 2 6’ 26’ 26’)i,'<"6}

= 15[vec(2 8 2 8 2)]TveEI,“’

The theorem can be proved by following exactly the same reasoning as above.

Theorem 3 1511{(6 2 6)[[va:(66’)]T 2 [vec(66’ )]’] (7413» ® 74131)}

= 151r{vec2([vec2]r 8 [vec2],X17") 8 17(3)» (15)

Proof The argument for the substitution is similar to the above, too. That is, each ofthe

fifteen different matrices in the sixth moment (See APPENDIX B: The Six Moments ofa

Multivariate Normal Distribution) is the Kronecker product of the variance matrix

arranged in a special way by using identity matrices and commutation matrices.

Therefore, the total of the elements inside each of the matrices will be the same as that of.
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vec2([vec2]T 8 [vec2]r) . Since Equation 15 is a scalar, the usefulness ofthe identity

matrices and commutation matrices in the sixth moment disappears. I only need to show

that vec((b2 6)[[vec(66’)]T 2 [vec(66’ )]’]) = vec(b2 62 62 62 62 6’) . (16)

The lefi hand side ofEquation 16 can be simplified to

vec((b2 6)[[vee(66’)]’ 2 [vec(66’ )]’])

= vec((626)[6’ 26’26’ 26’])=62626262626,

which is also the simplified version ofthe right hand side. Hence we can substitute the

fifteen matrices ofthe sixth moment with 15vec2([vec2]T 8 [vec2]T).
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The Expectation of the Third Order Term Squared

This appendix will find the expectation ofthe third order term squared in the

approximation to the Taylor series inside the exponential. To simplify equations, I will

usethe same notationasinAPPENDIX c. That is, b= 6, —13',,and 6~ N(O,2),with

2 = (D" - '17”):I . Thus, this appendix will show that the expectation of 1; is

15 " "t 1 1 2
E(L§) = E[:4111,,2,’2z,,z,’]2(24: a,z,z,’22,,] , where I}, = 5(3-4[6’ 2 b’E‘3’b) ,

with '17” = -(z,’ 2 z,’ )4; .

Proof

Since 13, is a scalar, a trace function ofthe scalar will not change the value.

L§ = 712-[1r(b[(b7 2 6’]Z<3’)]2, then by PA-13,

= -71—2-11-[((b[b 2 6’]7,"3>) 2 (6[6’ 2 6’12"” )]

= 71—21r[<(b[bT 2 6’]) 2 (6[6’ 2 6’])> (7,") 2 Z‘”)] (by PA-14)

= 713 ”[((6 2 6)[[6’ 2 6’]2 [6’ 2 6’]]) (7,“) 2 Z"))].

Take expectation ofthe above function and substitute the sixth moment with

15vec2([vec2]’ 2 [vec2]’). (See APPENDICES B and C).

1.111121221111221cheer» (inst-'01)]
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- —1r<vec2([vec2]rz(” 8 [vec2]r1:(”» (by PA-14)

= %(<[vec2]r 17(3)) 8 <[vec2]r17")» vec2 (by PA—lS and PA-8)

15 T~(3) ~(3)T

= 7i[vec2] I, 21, vec2. (by PA-16)

Furthermore, Z") = -(2,’ 2 2,’)A,2, and A, = 211,05,E,’ 2 15,), where E]. is

1

an n, x 1 vector with thejth element being 1 and the others being 0. Thus,

'17“) = —(2,’ 2 2,’ )[Zay(ETETT 2 E,)]2, = 211,22} 2 2,.)(2, 21)

I J'

=Za,(2,2’22).

Therefore, E(Li) becomes, by applying PA—16 and its transpose to

T

[211,225 2 2,)] vec2 and [vec2]’[fi a,(2,,2,’ 2 4)] respectively,

1 1

T

E(L,)= —[vec2]T[Zag(ZTZTT 8ZT)]2 [2a,](ZTZr 82,. )] vec2

15 " "t
= 51:a,2,’22,2,’]2(211,22,524.) .

.l I
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Computational Algorithm

To adapt to the PQL computer program (Bryk, Raudenbush and Congdon, 1996),

the notations for equations in Chapter 2 are changed as follows:

Chapter2 D X, Z, [9 b,

APPENDD<E T A” A2] 4 B,

The approximate log-likelihood is

’ —1 1 ~ 1 _

Z{—2—log|T|—§logicj|+ 11'59211' ‘9” +long} (1)

j-l

where C1 = T" + ALWTAU;

1:. =yf174. +Zlog(1-p,j), yjisan 114. X] columnvectoroftheresponse ofthejth

cluster;

1]] is an n} x 1 column vector for clusterj with the ith component being 1),]. ,

1

1+ aim-’71)) ,

 

’71; = A1161 +A27T ”and ”11 =

6] is from previous iteration;

W4. is an 124. x 114. diagonal matrix with the ith diagonal term being WT = 1100-11,);

Z4. = W,"(y4. — 11,-) + 17]. is the linearized dependent variable of groupj;

p, is an 124. X] column vector for clusterj with the ith component being 11,};

A2j is an n, X q random efi‘ect design matrix for thejth group;
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Q” = T"C}‘AM(A2PR)17

Fa = T“C}'A2”A27,1C;'T".

The Fisher Scoring for the parameters is

J[9“ - 9‘

vec¢“' — vec¢’ ,4 j...

Fromm Flow:

1. Startwith HLM2 estimates of T andq.

:l=H"S S =[S‘U] S=iS H=ZSST
’ 1 S6 ’ J J J' '

(4)

2.1teratively solve C;'(A,TJWJZJ - ALE/1,10,): 921 for 921 with W] and z, computed

holding constant T andfl from the last iteration. 'I'hus,Zj, 11,-, pi, wj, (A2PA2)J.,

(A2PY), , Cf , and(A2PA19,)j along with 02} will result fi'om this iterative process.

3. Compute (AlPA1)j, 0411542)}, and (AIPY), fi‘om wj.

4. Compute aij, gij, hij, rij and pij from wj and “r

5. Compute Bij from C;'.

6. Compute f“ and kj fi'om aij and Bij.

7. Compute mj from Bij and C;'.

8. Compute sij fi'om 1cj and C}'.

9. Compute bj fiom rij, Bij and C}'.

10. Compute e1 from C;' , Si), and aij.

11. Compute oil. from B mj, bj, a ej, hipand pij.ij’ ij’
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12. Compute (A2PR), from (A2PY)j, (A2PA19,)j, and (A2PA2)J..

13. Compute Xj and I”. from (AlPA2)j and C;'.

14. Compute '1' from 62 and C;'.

15. Compute Q” from C? and (AZPR)j.

16. Compute Fij from CIT‘.

17. Complete the 2 S’s and hence the new T,6,.

18. Monitor convergence as in current HLM. At convergence compute standard errors

from square roots of diagonal elements of H" .
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