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ABSTRACT

FABRICATION AND CHARACTERIZATION OF
DIAMOND FIELD EMITTERS FOR
FIELD EMISSION DISPLAYS

By

Dongsung Hong

New materials, with low work function and high chemical immunity, are needed to
produce low-cost and stable field emission display (FED). The unique intrinsic properties
of diamond make it an excellent material for field emitter.

In the present work, using an IC-compatible fabrication process, a field emission
testchip was designed, fabricated, and tested. The chip contains a number of test devices
including a 1x4 pixel triode FED which was demonstrated for the first time. The testing of
the chip revealed that it is important to enhance field emission current density for further
development of FED.

Using different film growth conditions and post-deposition carbon implantation, the

effect of defect on the field emission current density was systematically studied. The CH,/
H, ratio, grain size, resistivity, and implantation dose in the ranges of 0.5-2%, 0.3-1.5 pm,
1.7-189 Qcm, and 5x10°-5x10® cm2, respectively, were used to vary the defect density in

the film.

Based on the field emission data collected from a variety of samples, it was found that
emission from diamond is enhanced when (i) sp3/sp2 is low, (ii) peak at 1332 cm’! is
wider, (iii) grain size and the roughness of film are small, (iv) film is highly doped, and (v)

ion implantation dose is high while energy is low. The results seem to suggest that field






emission from polycrystalline diamond is affected by (i) defects and (ii) field

enhancement at the grain tips. As all samples were treated in hydrogen at 900 °C, the

electron affinity may be same for all samples.
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CHAPTER 1

RESEARCH MOTIVATION AND
GOALS

1.1 Introduction

The theory for field emission was first proposed by Fowler and Nordheim (F-N) in
1928 [1], but its realization in the field of vacuum microelectronics could be possible
through the development of modern integrated circuit (IC) technologies. Despite its
advantage of vacuum transport of electrons over electron transport in solid, solid state
devices have substituted major part of vacuum devices since technological development in
early fifties mainly due to compactness. Ironically vacuum microelectronics area is
revitalized thanks to the technological development of IC fabrication that helps make it
possible to produce small vacuum devices.

Fabrication of microtip made of molybdenum (Mo) by Spindt et al. [2] in the mid
seventies opened a new era for field emission devices. A variety of materials and structures
were attempted by a number of research groups thereafter to improve the performance of
devices with respect to their application needs [3, 4, 5]. Application possibilities of field
emitter devices range from ultra fast switches, microwave amplifiers and generators, flat
panel display devices, intense electron/ion sources, multiple electron sources, new

electron beam lithography tools to miniature electron excitation devices [3, 4]. Mainly due
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to its colossal market prospect, applying field emission devices to low cost and high
performance flat panel display of modern information society has been major thrust of
field emission research.

Low power consumption; wide viewing angle; and bright, fast, and high contrast
image qualities are the advantages of field emission displays (FED) over the conventional
liquid crystal displays (LCD). The first prototype FED, based on metal microtip emitters
first fabricated by Spindt er al., was reported in 1991 [6]. Si based prototypes have also
been reported. However, in a silicon (Si) or metal FED, high work function (which means
high supply voltage) and phosphor contamination of the tip are some of the problems.
High work function (typically 4 eV) makes the field enhancement necessary which is
achieved by using microtip emitters. The microtip fabrication increases the processing
cost. New materials, with low work function and high chemical immunity, are needed to
produce low-cost and stable FED.

Recent advances in diamond film technology have led to inexpensive polycrystalline
chemical-vapor deposited (CVD) diamond films on non-diamond substrates [7,8]. Due to
its negative electron affinity (NEA) [9], immunity to chemical attack, hardness and very
high thermal conductivity (highest at 300 K), diamond is an excellent material for field
emitters, especially for FED. Field emission was demonstrated from diamond or diamond-
like materials [10, 11, 12, 13, 14, 15]. Although a diode-based diamond-like FED has been
demonstrated [12], many issues, related mainly to the diamond quality and process tech-

nology, must be resolved before any reliable diamond FEDs can be realized.

1.2  Objective of This Work

Early works on diamond field emitters have successfully demonstrated the excellent
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emission properties of diamond field emitters. Being in an early stage of diamond field
emission research, these studies are mainly focused on initial measurement of field
emission from various diamonds itself leaving some unanswered questions mainly
associated with the mechanism of field emission from diamond. To be able to answer

these questions, it is necessary to study correlation between emission characteristic and

diamond properties such as sp3/sp2 ratio, doping concentration and grain size. To apply
diamond’s unique properties to real world application, it is important to develop
fabrication technology for diamond field emitters, compatible to standard IC process.

Thus, in order to achieve these two main objectives, one has to address following issues.

(1) The development of a fabrication technique for diamond field emitter compatible

with standard IC fabrication processes using testchip approach.

(2) Design and systematic execution of a series of experiments to collect emission
data from a number of different film growing conditions and post growth

treatments.

(3) Demonstration of application of the developed fabrication technology into

diamond FED in triode mode.

Figure 1.1 illustrates a number of essential tasks to be done in order to realize
diamond FED in triode configuration. Work covered in this research is limited to those

tasks with solid frame.

1.3 Dissertation Organization

Research motivation and goals are defined in Chapter 1. In Chapter 2, a complete
derivation of the F-N theory of field emission, diamond properties, the current

technologies of diamond field emitters, and suggested models are described. Brief review
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of CVD diamond infrastructure is given as well. Chapter 3 deals with the design and
construction of two diamond CVD systems and characterization system including anode
design. Chapter 4 focuses on the development of IC compatible diamond field emitter
fabrication technology. Characterization of various samples and qualitative effort to
explain the measurement results are discussed in Chapter 5. In Chapter 6, two applications
of diamond field emitter are demonstrated, namely, diamond FEDs in triode mode and

pressure sensor. Summary and conclusions are given in Chapter 7.



CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter, derivation of F-N equation will be presented in detail. Later, diamond
field emitters reported so far by others and some explanations of emission process from
diamond will be summarized. Nucleation, patterning, doping, and metallization

technologies are reviewed briefly.

2.2 Derivation of Fowler-Nordheim Equation

Let’s consider the surface potential energy barrier shown in Figure 2.1 denoted by the

solid curve. This curve includes the image potential component e2/4z and applied field
effects component eFz with respect to how they affect a step barrier when combined. The

potential energy barrier can be approximated by

2
EF+¢—:—Z—er @

V(2)

=0 for z>0

for z<0
The peak of the barrier described by Equation 2.1 occurs at z,,,,, where z,,, is defined

by
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Metal Vacuum
Image potential effect only

Applied ﬁ.bld effect only

Vacuum
level

* Vacuum

0 z; Zmax %2

Figure 2.1. Surface potential barrier of a metal-vacuum system.
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— =0 (2.2)

dv _ e

— = -eF =0 (2.3)
dz 4zmax2
which gives
1/2
At z=z,,., Equation 2.1 becomes:
o2 e \172
Vmax = V(Zmax) = EF+¢———eT§—eF(ZF,) 2.5)
4 ﬁ)
S72pV2 B32pl2
Vmax= EF +0- > - 2 (2.6)
3 172
Vmax= EF+ ¢-(e'F) 2.7

For a theory of electron emission from metal surfaces, it is necessary to consider (i) the
number of electrons with energy between W and W + dW normal to the surface
impinging on the surface barrier, N(W), and (ii) the tunneling probability of electron
through the barrier, D(W). Then P(W)=N(W)D(W) will be the number of electrons per
area per second per energy range dW, that penetrate the barrier. Hence, the emitted
current density, i.e. the number of electrons emitted per unit area per unit time, in the

energy range W and W+dW is given by:

J = eN(W)D(W)dW 2.8)
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If the electron energy range extends from —oo to <o , Equation 2.8 becomes:

J = eJ“ N(W)D(W)dW (2.9)

Let’s start to evaluate N(W) first. Assuming the electron follows Fermi-Dirac statistics,

N(W) is given by [16]
N(W) = “—I’:}ﬁﬂf(E)dE 2.10)

where W is the energy of tunneling electron and f(E) is Fermi-Dirac distribution function.

Using the Fermi-Dirac distribution function

4ntm 1
N(W) = 5 f; EES dE @211
1+ exp[——]
kT
Let
E-Ep) _ (2.12)
kpT |
then
dE
m = dx (2.13)
dE = kzTdx (2.14)

Limits of integration change according to Equation 2.12:

00 — oo 2.15)
d 2.16

Then Equation 2.11 becomes
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_ 4mm kgT
N(W) = Fm-srmdx
kT

8

which, using standard form from integration table [17]

becomes

N(W) = n
3 -x
h l+e W-E,
kyT
dtmk,T
NW) = —> ln( L )—ln -
h l+e - F
koT
l+e

W-E;

4mmkyT =]
NW) = B I:ln(l)—ln(l)+ﬂn(l+e ol ]J
h

wewye 4Tkl [1 W-Ep
AT (Y E)]

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Each of these electrons has a probability D(W) to be transmitted through the surface

potential barrier. Transmission coefficient for the potential barrier shown in Figure 2.1 is

given by [16],

32n’m
h2

DW) = exp(—J3

4

[V(2) - W]dZJ

(2.23)
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when W<V, .., z; and z, are two real roots of V(z)-W=0 as shown in Figure 2.1. Using

Equation 2.1 which expresses the potential energy in terms of the applied field and image

force effect, the above equation can be written as:

2
321t m e
D(W) = exp( j W—4—Z-er:|d2j

2 R, J

Let’s find two real roots of the V(z)-W=0

2
V(z)—W:EF+¢-W—Z—Z—er =0

2

(EF+¢~W)2—%—erz =0

2 (Ep+0-W) e
¢ eF ‘T a4F

(E,r+<p-W)+\/(1€F+¢—W>2 4e
eF - 2 2 AF
e F

2

(E,,-+¢—W)+J(Ep+¢-W)2_(EF+¢—W)2 £F

o eF ez F2 ez Fz (EF+¢‘W)2
- 2
(Ep+0-W) (Ep+0-W) e’F
+ 1- ;
o eF eF (EF+¢—W)
T 2

(Ep+¢-W) e’F
=———"1t [I-———
2eF (EF+¢—W)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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E -W 3
2\ w 1+ N ___eF (2.32)
2 2eF (EF+¢—W)2

The above defines the limits of integration for the transmission coefficient expression.

These limits correspond to the distance the electron must travel in tunneling through the

potential barrier. The shorter the distance, the higher the probability of tunneling.

Let

Je3F

= 3
Y OHE,-W @33
and the integration variable:
T O+E-W '
Then
O+E-W
O+E-W
dz = —ﬁ—dld (2.36)
Using Equation 2.32 and 2.33
(Ep+6-W) [ 2
3, = %___[l + A/ —y2] (2.37)

E w
7 = (———F+¢ =i (2.38)

Substituting Equation 2.37 and 2.38 into Equation 2.34

u, = (1+A/l—y2) (2.39)
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= (l—«/l—-yz) (2.40)

Then R, in Equation 2.24 becomes:

2 2
32n°m e ¢+E-W
= - W - — PR A )
R, e Eg+0¢ ) STE.—W e ( >oF u) (2.41)
( 2eF “)
2
32n°m e3F O+Ep-W
R, = -W- - :
! A/hz [EF+¢ v 20+ E; - W)u 2 “] (2:42)
+E.-W)e3F
2(¢+EF—W)u—(¢ £ )2 ~(0+Ep-W)u
167°m (0+Ep—W)

R, = 5 (2.43)

| “

2 2
16m°m[2(0+ Eg—W)u - (0 +Ep— W)y = (¢ + Ep - W)u

Rl = 3 (2.44)

h u

2 2
R, = 47“ m(®+Ep— W)[z“‘%] (2.45)
Then I; becomes:
: (O+Ep-W)
1] = J:IRIT u (2.46)
1 Jl—
2“«/m(¢+EF‘W)3( IR —u2+2u y?

I, = ¥a ———————du (2.47)

(l—Jl—\)

I
Using the substitution n2 = u in Equation 2.47 brings the integral I, to standard form

which can be evaluated by an elliptical integral:



T
-




N+ JT=y2) 5 5
— <+ J—
I, = _[ Jﬂ ? X 2ndn
—— n
1-4 —yz
N+ =y?)
I, =2 j -n4+2n -y
|
di-di-y R,

Add and substract /1 — y2, n4/1 - y2, and 1 to R, to get:

Ry = n*+nl+n’+ 12 1oy andi— 21—y - 1+ 1-y2

which after factorization becomes:

Ry = (1+41-y2-n)H(n2-(1-1-y?)

Equation 2.54 now becomes:

b=dNl-J1-y?
a=«/1+A/1—y2

R, = (@’ -n2)(n2-b%)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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I, = zj‘l’)A/(az—nZ)(n2—b2)dn (2.59)

Equation 2.47 now becomes:

4n +E.-W
I = Jm(q’ — )Ma n2)(n2-b2dn (2.60)

Using elliptic integral table [17]

n/2

am,Jm(¢+Ef - W)3za[<az w2y }
I, = = N1 —k?%5in20d0 — b2
] heF 3 2 '[ '[ N k251n29
8nJm(¢+EF—W)3 (a2 + b2) )
I,= —r a[ ~2E(k) - b K(k)] 2.61)

L J
\7

where ‘K(k)’ and ‘E(k)’ are elliptic integrals of the first and second kind respectively:

n/2 48
Kk) = [ —2_—— (2.62)
‘([ A1 —k2sin20
n/2
E(k) = j 1 — k2sin20d0 (2.63)
0
And,
2_H2
k2 =2 2b (2.64)
a

V, = A/l+./1—y2|:l+~/; yzzl_ﬁ_yz(E(k)—(l—,\/l—yz)K(k)):l (2.65)

V, = 1+ 1= y2E(k) - (1 - 1= y2)K(K)] (2.66)
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where:
v(y) = 27V2J1 4+ JIZY2(E(R) = (1 - STy D)K(K)] (267)

Then I; becomes:

B 87, 2m(¢ + Ep— W)3

1 3heF v(y) (2.68)

The transmission coefficient can then be expressed as:

(2.69)

8x 2 E._W)
D(W) = exp[— T2m© Bp - W) (y)]

3heF

Equation 2.9 can be written as

3heF v(y) |dW (2.70)

oo W-Ep
;- ej41tkaT ( -Tjexp[_snjzm(¢+EF_w)3
G(W) |

1
|
N(W) I D(W)

Let’s evaluate the above expression at (or near) absolute zero temperature.

First consider the exponent, G(W) in the transmission coefficient portion of Equation 2.70:

87, [2m(¢ + Ep— W)3 |

GW) = - 3hoF v(y) 2.71)
with
[3
y e’F 2.72)

Since electrons have energies in the neighborhood of the Fermi level Eg, using Taylor’s

expansion theorem:
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"( F)

G(W) = G(Ep) + G (Ep)(W —Ep) + ———(W - Ep)? +

Only first two terms will be considered here.

G(W) = G(Eg)+G'(Ep)(W - Ep)

Using Equation 2.71, G(W) at W=Eg is given by

_ 8n2me? (Je3F
GER = ~—34F "( o )

G’(W) in the second term is given by:

Using

G'(W) =

u’v is given by

-8n
3heF|2

and uv’ is given by

d|'8nJ2m(¢+EF—W)3v( Je3F )}

dW'_ 3heF

O+Ep-

(uv) = u'v+uv’

[(2 m(+Ep—W)3)~122m3(¢ + Ep - W)Zv(y)]

o [sz(¢+EF Wyt v(y):i

Equation 2.76 becomes:

G (W) =

Using

-8n

3(0+Ep-W)m

3heF

[_

J2m(0+Ep-W)3

v(y) + 2m(¢ + Ep - W)3-—v(\)}

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)
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dv_ _ dvdy
dwW ~ dydW
dv__dv Je3F
daw dy(q) +EF_ ‘/V)2
_ “3(0+Ep-W)?2 [03 ,
G' (W)= 3h81;‘[ (O+Er yom (v)+A/2m(¢+EF W)3————F—-§Z‘
eFl 2mo+Ep-W)3 (O+Ep— W)Y

3heF

_ -8m,2m(¢ + Ep - W)[_ )+ [3F dv]

(O+Ep-W)dy

4nJ2m(¢+EF-W)[ 2vdy
- v - 2]
3dy

heF

2 d
Lett(y) = V(y)—gyg;‘f(y) then

AR J2m(O + Ep~ W)

G'(W) = o )
G'(Ex)= “—",fT’"“’rm

Equation 2.74 becomes

G(W) = - 87t,,/2m¢3v(.,/ e3F

3heF ¢

As the temperature approaches absolute zero,

) 41t.\/2m¢t( (W -E,)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)
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W_E,
kBTln[l+e KT J =0 when W > E .

Ep-W when W < E,

Thus, from Equation 2.70, it follows that:

J=0 when W > E
Eg

= [ (Ep=W)exp[G(W)] dW  when W < E;;

—00

J = e41tm

(2.89)

(2.90)

As at T=0 K the highest energy is Eg, the limit of integral in Equaion 2.90 changed to —oo

to EF.
Using Equation 2.74:
E;
4tm
7= ICXP[G(EF)‘“G (Ep)(W = ER)J(Ep-W)dW
J = e41tm

h exp[G(Ep) -G (EF)EF]JE exp[G’ (Ep)WN(ERp-W)dW
1 | L I
C, I3

I = f;Echp[G'(EF)W]dW—f:Wexp[G’(EF)W]dW
| | 1 |
I I

First integral I, becomes

Er

I,= = —exp[G'(Ep)W]

Ep
G'(Ef)

—o00

For second integral Is, let’s use integration by part

(291

(2.92)

(2.93)

(2.94)
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[u'v = uv—Iuv’ (2.95)
exp[G’'(Ep)W]
Let «’ = exp[G(Ep)W] , = . ,v=W, v'=1
PG (Ep)W] G'(Ep)

Then second integral becomes

exp[G'(Ep)W]W Er

F 1
= . +JE ; exp[G'(Ep)W1dW (2.96)
5 G (EF) i —ooG (EF) p[ ( F) ]
exp[G'(Ep)WIW[ " | Ey
= - s ———exp[G'(Ep)W] 2.97)
G'(Ep) G'“(Eg)
Let’s combine the first integral and second integral
e Er W) “explGEQWIW|T (G Ewillass
———€X - v ‘ —¢€X (2.98)
CGEp TN Ty Ep
E b br
= G,g exp[G'(Ep)W]| ——5——exp[G'(Ep)W][WG'(Ep) - 1] (2.99)
(EF) . G"(Ep)
’ ] ’ ’
= ——exp[G'(Ep)Eg] - ———explG'(Ep)EF)EpG (Ep) - 1) (2.100)
G'(Ep) G (Ep)
l ’ 4 ’
= ——explG (EF)EM (EF))BfG (Ep) +1] (2.101)
G"(Ep)
exp[G'(Ep)E
I, = Pl 2( pEF] 2.102)
G (Ep)
Then J becomes:
G'(Er)Ef )
J = ed4nme (eG(EF)—G (E;)EF) (2.103)

R G Ep)
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= S plG(ER)] (2.104)
h"G”"(Ep)
Substituting G(Eg) from Equation 2.75 and G’(Eg) from Equation 2.87

e3F2 [._87“/27,@3/2

where

2
') = v(y)—g.vdivvm (2.106)

and

v(y) = 271201+ J1 = y2[E(k) - (1 - J1 - y2)K (k)] (2.107)

Substituting all numerical parameter of
m=9.11x103! kg

kg=1.38x10"23 J/K

h=6.63x10* Js

e=1.6x19"1°C

_ 1.54x10 °F2

6.83x10 L v(y)
exp[— 83X —v(y ] (2.108)
or2(y) F

2.3 Fowler-Nordheim plot

tz(y) vs. y and v(y) vs. y curves are shown in Figure 2.2. At (or very near) absolute

zero temperature, y value is close to 0 since electron enegry is close to Eg In this case,

we can approximte tz(y)=v(y)=1 for ease of discussion. Let d = the emitter-to-gate
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Figure 2.2. t(y) and v(y) as a fuction of y.
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distance such that F=V/d. Now let A= the emitting area in cm?. These two assignments

allow us to put the F-N equation in Equation 2.113 in terms of the physically tractable

quantities of current, [ and voltage V. So

2 372

J = 1.54x 10’6V—2exp[-6.83 x 1072 d]
¢d v
or
3/2
L= 1sax 10“’12exp[-6.83 x 1072 d]
% od 4
Now take the log of both sides
372
logiz- = log(l.54 x 10’612) ~683x 107 %joge
% od 4
or
372
log—- = log(1.54 x 10‘612) —297x 10784
% od v

(2.109)
(2.110)
(2.111)
(2.112)

_ Clearly, a plot of the logi2 vs.‘l/ will have straight line. This plot is called F-N plot and
%

often used to confirm field emission.

2.4 Diamond Field Emitters

The chemical, thermal, and electrical properties of the emitter material play an

important role in the design of on-chip vacuum tubes. To achieve high current density at

low applied voltages, two approaches are feasible. One approach is to sharpen the

emitters to enhance the electric field, resulting in a greater field effect. Another approach



Ny
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is to use emitter materials with low work function. Thus less energy is required to emit
electrons into vacuum. In other words, the emitters (if semiconductors are used) should
have a low (or even negative) electron affinity so that lower electric fields are required
for emission.

Low electron affinity is just one of many desired emitter properties. In addition to a
low electron affinity, the ideal emitter would have a high carrier concentration and high
mobility, and thus a high electrical conductivity (from G=nqy). It would also have a high
electric field breakdown strength so as to withstand the locally high fields. The thermal
conductivity should be high so the heat generated by the high current densities could be
quickly dissipated. Finally, the emitter should be chemically inert since impurities in the
emission surface can increase the material work function. Early metal emitters suffered
from impurity contamination [18] and structural fragility, although their high electrical

conductivity made them promising emitter candidates. Si microtips have been shown to

withstand high current densities (J > 1000 A/cm™2), but work function raising impurities
continue to be a problem, along with current instability and the need for an ultra high
vacuum environment [19]. Diamond, however, has the possibility of overcoming many
of these obstacles and greatly improving device performance, particularly in harsh

environments.

Diamond’s high electric field breakdown coefficient of 107 Vem'! is 30 times that of
Si and 1.5 times that of GaAs [20], meaning locally high electric fields could be

produced and the device would continue to function properly. The electron saturation

velocity in diamond is nearly twice that of silicon at 2.7x107 cms"[20], which would

facilitate high speed device applications. Diamond is nearly impervious to chemical
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attack and therefore work function raising contamination encountered in metals and Si
would be of a lesser concern. The resistance of diamond to chemical attack means that
the device may be operated in a lower vacuum environment, thus relaxing fabrication
demands. The thermal conductivity of diamond is unmatched at 20W/cm-K (for type IIb)
[19] and is nearly 5 times that of copper, so it should be able to quickly dissipate the
power induced by the high current densities. In the (111) direction, the electron affinity
of diamond is very small and perhaps even negative [9], so emission could be realized at
lower applied fields. For type IIb diamond the electrical resistivity is on the order of 10-
1000 ohm-cm [21], so conductivity of type IIb diamond is resonably high.

Recently, the research activity in field emission from diamond has seen an
exponential growth [10, 11, 12, 13, 14, 15] which is due mainly to its NEA [9] and
immunity to chemical attack. Low anode voltages, simplified fabrication process, less
stringent vacuum requirements, and high stability are some of the consequences of
diamond’s unique properties. The simplified fabrication process is expected to result in
lower cost.

The field emission has been demonstrated from a diamond junction device [10],
homoepitaxial diamond [11], amorphous diamond [12], polycrystalline diamond [13,15]
and diamond coated Si tip [14]. The emission was observed for electric fields in the

range of 0.03 - 0.5 MV/cm which is two orders of magnitude lower than that for typical

Si or metal emitters. Current densities of up to 10 Acm™® have been reported. Prototype
FED based on diamond and carbon have been reported [12, 22] as well. Carbon based

field emitters reported are summarized in Table 2.1.
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2.4.1 Models

Presently, the physics of electron emission from diamond is not well understood. First
theoritical study by Huang et al. [53] found that emission from surface states is shown to
be capable of producing the current density with field magnitudes comparable to
experiments. The question of how these electrons are transported to the surface states
needs to be answered. One possible mechanism they propose is that the elecron transport
can take place through the defect states.

If defect concentration is significant, the electron states in these defects could form a
band or bands. In their model, two subbands in the intrinsic band gap are postulated,
which may be generated, for example, by defects or impurities. Band structure they
postulated is shown in Figure 2.3. It is suggested that the defect bands can transport
electrons to the unoccupied surface band located 1 eV below the conduction band, which,
if occupied under applied field, can emit electrons to vacuum.

Givargizov et al. [37] proposed a model for electron emission from Si tip coated with
thin diamond. They assumed that diamond is perfect crystal with low doping
concentration. The proposed emission process is illustrated in Figure 2.4 for a Si/diamond

interface, assuming that properties of a heavily doped Si/diamond heterojection are similar

to metal/diamond Schottky junction. At n<10' cm3, the bend bending effect at the Si/
diamond interface is small and may be neglected. Electrons tunnel through the bent band
gap of the diamond, and drift to the surface and escape for vacuum. NEA of diamond
surface was assumed in a model.

Choi et al. [40] proposed a model similar to Givargizov’s model for electron emission
from diamond coated Mo emitter. They consider an undoped or slightly doped diamond
layer on Mo. The band bending effect at the metal/diamond interface is so small that it can
be neglected. The energy barrier height at the metal/diamond (intrinsic) interface is very

nearly E;/2. They assume that diamond has a NEA surface, as a result, the emission would
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Figure 2.3. Band diagram including the hypothetical bands in the

energy gap [53].

..

Ev——
Ysi

Diamond

N

Vacuum

Figure 2.4. Emission models for a Si/diamond system: tunneling of
electrons through the bent band gap and escaping into a
vacuum from the surface under NEA conditions [37].
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depend only on tunneling of electrons through the Mo/diamond Schottky barrier into the
conduction band of diamond. The resultant energy band diagram for metal/diamond/
vacuum is shown in Figure 2.5.

Geis et al. [42] and Lerner et al. [54] explained the emission performance of their
device by the stable NEA of diamond, which allows for injection of electrons from
diamond into vacuum. They argue that emitter operation is limited by the injection of
electrons into the diamond at the back metal-diamond interface, which depends upon the
doping of the diamond and the roughness of that interface. They consider the case in
which the diamond is doped with an electron donor. Substitutional nitrogen, for example,
forms a deep trap 1.7 eV below the conduction band. Figure 2.6. shows the energy levels
for synthetic-type Ib diamond containing substitutional nitrogen, which forms a
comparatively shallow trap. Since the donor energy is well above the Fermi energy of
most metlas, a depletion region will from in equibrium. When diamond is positively
biased, electrons can tunnel into the conduction band as illustrated in Figure 2.7. Once

electrons are populated in the conduction band of the diamond, due to NEA of diamond

electrons can escape into the vacuum with little to no electric filed, 0-1 Vum™!. This

concept is shown in Figure 2.8.

2.5 CVD Diamond Infrastructure

2.5.1 Nucleation

To grow diamond films effectively on non-diamond substrates, the substrate is usually
treated to enhance nucleation density. Abrasive polishing of the substrate with various
grain sizes of diamond ([55, 56], c-BN, or SiC [57] powder is one of the commonly
utilized methods. Ultrasonic agitation of the substrate with diamond powder suspension

[58, 59, 60, 61] is another most commonly used pre-treatment technique. Bias enhanced
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Figure 2.5. Simplified model of electron emission through
dielectric layer, where electrons tunnel through
metal/dielectric interface [40].

----- 0-.®--0---0---0--0--- E

DIAMOND

Ev

Figure 2.6. For substitutional nitrogen. Donors are ~1.7eV
below E_. In equilibrium a depletion region forms
at the metal-diamond interface. The circles repre-
sent the energy position of the donors [42].
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DIAMOND

Figure 2.7. Energy levels for a metal-diamond interface with the

metal biased
[42].

to -6V with respect to the diamond

©

[Ong
METAL-  DIAMOND- VACUUM-
DIAMOND VACUUM METAL
INTERFACE INTERFACE INTERFACE
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Figure 2.8. Schematic diagram of a diamond cathode in a diode

structure [42].
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nucleation (BEN) has also been reported for effectively creating nucleation sites on silicon

substrates [62] and preparing highly oriented diamond films [63, 64]. Although these

methods successfully enhanced the nucleation density up to 10cm? [55, 59, 65] most of
these techniques cause surface damage and have a poor uniformaity [57].

Nucleation method used in this experiment is an IC-compatible nucleation technique
which does not cause surface damage [66]. Diamond Powder Loaded Fluids (DPLF) with
different carrier fluids, mean powder sizes and densities are applieded on substrates by
various means to enhance the nucleation density. The idea of this method is to spread
diamond crystals, suspended in carrier fluids, on the substrate surface. During the diamond
deposition process, the carrier fluids are evaporated at initial stages leaving behind the
diamond particles which act as seeds for diamond growth. DPLFs are applied to substrates
through direct writing, spinning, spraying or brush-painting. The technical details of two
different DPLFs are summarized in Table 2.2. Further detail can be found in Ref. [67].

The DPLF1 are commercially available diamond powder suspensions, 1/40 SQG,
from Du Pont Chemicals-Repauno Plant, NJ. The DPLF2 is prepared by suspending
diamond powders into photoresist [68, 66]. In contrast to other nucleation procedures,
DPLF method does not cause any damage to the substrate surface. This method is highly
compatible with standard integrated circuit (IC) processes and amenable to patterning,

doping, and coating of 3-D samples.

2.5.2 Patterning

In order to fulfil a variety of applications and desirable structures, growth of patterned
diamond thin films is desired. Patterning techniques are, in general, distinguished into two
categories, selective deposition and selective etching.

The selective deposition is achieved by pre-deposition nucleation on the desired area,

or by masking the undesirable area during the diamond deposition. Hirabayashi et al. used
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Table 2.2. Comparison of two types of diamond powder loaded fluids.

DPLF1 DPLF2
Carrier Fluid Water Photoresist
Mean powder size 0.038 um 0.101 pm
Density 40 Carats/liter 12 Carats/liter
Nucleation density ~10" e¢m2 108 cm2

Application methods

Patterning

Spary, brushing, or direct
writing

Photolithography, spray
with shadow mask, or
direct writing

Spray, spin, or direct
writing

Photolithography, spray
with shadow mask, or
direct writing
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Ar sputtering in undesired growth regions to suppress nucleation after substrates were

pretreated by ultrasonic method [61]. Ma et al. reported selective deposition onto SiO,

stripes patterned on a Si substrate [58]. The Ar" ion beam was used to suppress the

nucleation on both Si and SiO; except in the shadows cast by the downwind edge of the
SiO, stripes. The selective nucleation was successfully achieved by masking substrates

during the ultrasonic treatment by Masood et al. [66]. Leksono and coworkers reported
successfully the patterning of diamond films by lift off process on Si wafer. Thin ZnO film

and amorphous silicon were used as sacrificial layers for lift off processes [69]. SiO, or
Si3N4 as a masking layer during the diamond deposition was successfully reported by
Masood et al. [66] and Roppel and coworkers [70].

The patterning of continuous diamond films by selective etching method was reported

by Masood et al. [71,66]. Using a rapid thermal processor (RTP), diamond films were
successfully etched in oxygen environment at 700 °C. The SiO, or Si;N,4 were used as

masks to block the undesirable area during etching process. ECR etch of diamond using

O, plasma was performed as well [72].

However, most of these techniques, which involve selective etching or selective
deposition, either cause damages on substrate surfaces or have poor reproducibility.
Recently, a novel patterning process, photolithographic patterning techniques, has been
developed at Michigan State University to selectively deposit high quality polycrystalline
diamond films through standard photolithographic processes [66]. This technique not only
achieves excellent selectivity without surface damages, but is also compatible with the
existing integrated circuit fabrication technology. This technique is adopted in the present

research to pattern CVD diamond films.
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2.5.2.1 Photolithographic Methods

The mostly used patterning technique in this research was to prepare samples coated
with DPLF2. In this technique, DPLF2 is spin-coated on substrates, Si or oxidized Si
wafer in most cases, and is patterned by standard photolithography. The spin rate was in
the range of 2000 - 4000 rpm. An enhanced diamond nucleation density was observed at
lower spin rate, however, the seeding uniformity seems inferior. When higher nucleation

density is required, DPLF2 was coated multiple times. An optimal spin speed of 3000 rpm

was found to possess a nucleation density on the order of 108 cm™2 with good uniformity.

The ratio of nucleation density in the undesired area and that in the desired area is in the

range of 7.57 x 1073 - 3.38 x 104[67].

2.5.2.2 Direct-write Patterning Method

In direct-write patterning technique, DPLF1 are used as seeding materials and are
applied to substrate surfaces via a fine spray nozzle. The minimum pattern size can be
varied by selecting the opening sizes of nozzles. In initial experiments, a capillary of wire
bonder, with an opening of ~40 pm (1.5 mils) was fixed in front of syringe needle and was

used as a spray nozzle. The width of lines manually created on Si or oxidized Si wafers are

in the range of 125 - 600 wm. A substrate temperature of 65 - 75 °C is found optimal to dry
the seeding fluid, DPLF1, before it spreads out. In case of DPLF2, spary gun with
compressed air was also used with shadow mask. G. Yang has designed and built

computerized direct writing system [67].

2.5.3 Doping

As a wide band gap semiconductor material, Eg=5.5 eV, CVD diamond films

deposited without intentional doping are usually good insulators. As a result use of
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diamond as an electronic material requires a control over the ability to dope it p- and n-
type. In general, doping of semiconductors is achieved by diffusion, ion implantation, or
in situ doping. Because of the low diffusibility of most elements in diamond, diffusion is
impractical. Although ion implantation can achieve active doping, the damages of crystal
structure were introduced [73]. Therefore, in situ doping was commonly utilized in
preparing semiconducting diamond films. Boron (B), aluminum (Al), phosphor (P),

lithium (L1), and nitrogen (N) are potential dopants of diamond. Although the NH H,PO,
and (CH;0);P were reported to produce n-type semiconductive CVD diamond films, the

conductivity is too low for electronics application [74, 75]. Other attempts to obtain n-tupe
doping were unsuccessful until now [76, 77]. P-type diamond films were successfully
prepared by using born as an in-situ dopant.

A number of in situ doping techniques involving gaseous, liquid and solid sources to
incorporate boron into CVD diamond films have been successfully used to produce the p-
type semiconducting diamond films. Solid sources (B,03 [78, 79], boron powder [68])
have the advantages of chemical stability and simplicity. However, non-uniformity of
doping are observed and it easily contaminates deposition chamber. Gaseous source
(B,Hg [80]) has a better controllability, but is poisonous and explosive. Liquid source
(B(CH30); [78, 81]) is also used to prepare p-type diamond and is reported to be
nonpoisonous, stable, and controllable. Due to the safety concern, only solid sources are
used in this research.

High purity (SN8) amorphous boron powders and B,O3 boron wafers purchased from
Techneglas Co., Perrysburg, OH are used to fabricate semiconductive diamond films via in
situ doping technique in this work. Specially designed holders, as shown in Figure 3.4
later, made of 1 mm thick Mo plate were used to introduce boron powder into process
chamber. The doping sources were placed on substrate holder during the deposition.

Although relatively uniform doping profile was confirmed by secondary ion mass
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spectroscopy (SIMS) measurement [71], depending on the relative position of born

powder holder, non-uniformity is found. A layer of undoped diamond under the p-type
layer was found to enhance the quality of p-type diamond films, measured in terms of sp3/

sp2 ratio by Raman spectroscopy, even for very high doping levels [71, 82].

2.5.4 Metallization

Metallic contacts are essential for achieving electronic devices. It is desirable that the
resistance of devices be determined mainly by the resistivity of the bulk material and that
the influence of contact <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>