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ABSTRACT

REFERENTIAL GROUNDING TOWARDS MEDIATING SHARED
PERCEPTUAL BASIS IN SITUATED DIALOGUE

By

Changsong Liu

In situated dialogue, although an artificial agent (e.g., robot) and its human partner are

co-present in a shared environment, they have significantly mismatched perceptual capa-

bilities (e.g., recognizing objects in the surroundings). When a shared perceptual basis is

missing, it becomes difficult for the agent to identify referents in the physical world that are

referred to by the human (i.e., a problem of referential grounding). The work presented in

this dissertation focuses on computational approaches to enable robust and adaptive refer-

ential grounding in situated settings.

First, graph-based representations are employed to capture a human speaker’s linguistic

discourse and an agent’s visual perception. Referential grounding is then formulated as a

graph-matching problem, and a state-space search algorithm is applied to ground linguis-

tic references onto perceived objects. Furthermore, hypergraph representations are used to

account for group-based descriptions, and one prevalent pattern of collaborative commu-

nication observed from a human-human dialogue dataset is incorporated into the search

algorithm. This graph-matching based approach thus provides a principled way to model

and utilize spatial relations, group-based descriptions, and collaborative referring discourse

in situated dialogue. Evaluation results demonstrate that, when the agent’s visual perception

is unreliable due to computer vision errors, the graph-based approach significantly improves

referential grounding accuracy over a baseline which only relies on object-properties.

Second, an optimization based approach is proposed to mediate the perceptual differences



between an agent and a human. Through online interaction with the human, the agent can

learn a set of weights which indicate how reliably/unreliably each dimension (object type,

object color, etc.) of its perception of the environment maps to the human’s linguistic de-

scriptors. Then the agent can adapt to the situation by applying the learned weights to the

grounding process and/or adjusting its word grounding models accordingly. Empirical eval-

uation shows this weight-learning approach can successfully adjust the weights to reflect the

agent’s perceptual insufficiencies. The learned weights, together with updated word ground-

ing models, can lead to a significant improvement for referential grounding in subsequent

dialogues.

Third, a probabilistic labeling algorithm is introduced to handle uncertainties from visual

perception and language processing, and to potentially support generation of collaborative re-

sponses in the future. The probabilistic labeling algorithm is formulated under the Bayesian

reasoning framework. It provides a unified probabilistic scheme to integrate different types of

evidence from the collaborative referring discourse, and to generate ranked multiple ground-

ing hypotheses for follow-up processes. Evaluated on the same dataset, probabilistic labeling

significantly outperforms state-space search in both accuracy and efficiency.

All these approaches contribute to the ultimate goal of building collaborative dialogue

agents for situated interaction, so that the next generation of intelligent machines/devices

can better serve human users in daily work and life.
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Chapter 1

Introduction

As a new generation of intelligent machines/devices starts to emerge into our daily life,

techniques that enable efficient and effective human-machine interaction have become in-

creasingly important. Particularly, using natural language to dialogue with these intelligent

“agents” has become an important direction to pursue [1, 2]. Different from traditional

telephone-based dialogue systems (e.g., [3, 4]) and conversational interfaces (e.g., [5, 6]), hu-

mans and artificial agents (e.g., robots) are now co-present in a shared physical environment

to achieve joint tasks. The meaning of language thus depends on the physical environment

and the goals of communication partners. One cannot understand the dialogue without

knowledge of the immediate physical and intentional context [7, 8]. This kind of dialogue is

called “situated dialogue” [9].

In situated dialogue, although an artificial agent and its human partner are co-present

in a shared environment, they have different capabilities in perceiving and reasoning about

the physical world. A shared perceptual basis, which plays an important role in supporting

situated dialogue between the human and the agent [10], thus is missing. Dialogue between

them then becomes difficult, and both the agent and the human will need to make extra

efforts to mediate a joint perceptual basis and reach a mutual understanding [11]. To address

this challenging problem, our ultimate goal is to develop situated dialogue systems that

are robust and adaptive to handle inaccuracies and uncertainties of perceiving the physical

environment, and can interact with humans collaboratively to mediate a joint perceptual
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basis and facilitate the communication.

1.1 Situated Referential Communication

The work presented in this dissertation focuses on situated referential communication

between human users and artificial agents (e.g., robots). A situated dialogue often involves

objects and their identities in the shared environment. One critical task thus is referential

communication - a process to establish mutual understanding between conversation partners

about the intended referents [12]. The agent needs to identify referents in the environment

that are specified by its human partner, and the human needs to recognize that the intended

referents are correctly understood. It is critical for the agent and its human partner to

quickly and reliably reach the mutual acceptance of the referents before the dialogue can

move forward [11].

Although referential communication between human partners often can be easily done, it

becomes more difficult between a human and an artificial agent because of the “mismatched”

perceptual capabilities. For example, let’s consider the situation illustrated in Figure 1.1.

Suppose the human wants to refer to the toy panda by issuing an utterance as

“Give me the black panda to the right of the blue cup”.

If the hearer is another human, she/he would have no problem to identify the intended

object. However, it becomes problematic for the robot to correctly identify the referent due

to the robot’s mismatched perceptual capabilities. As illustrated in Figure 1.1, the robot

has limited object recognition and color perception: the blue cup is mis-recognized as a

blue can; the toy panda and the computer mouse are not recognizable; the color of the
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Figure 1.1 An illustration of the mismatched perceptions of the shared environment between
a human and an agent.

toy panda is perceived as white but not black. With such mismatched perceptions, relying

on object-specific properties (e.g., object-class and color) becomes insufficient for referential

communication, and a single exchange is often not adequate. Therefore, the agent and

the human need to make extra efforts to establish a joint perceptual basis for successful

referential communication.

To mediate a joint perceptual basis between an agent and a human in situated dialogue,

previous studies have suggested two important strategies. The first one is to rely more on

spatial language (e.g., [13, 14, 15]). This is not only because modern robotic/intelligent

agents are often equipped with advanced sensors for acquiring accurate spatial information,

but also because spatial language usually can uniquely identify the referents if properly

stated. The second strategy is to utilize extended and collaborative dialogue (e.g., [12, 16, 17,

18]). For example, the speaker can refer to the intended object iteratively: the speaker first

issues an initial installment, and then continues with further refashionment (e.g., expansion,

replacement, or repair) based on the hearer’s immediate feedback. The hearer, on the other

hand, can provide useful feedback based on which further refashionment can be made, or

3



directly refashion what the speaker just said in a relevant next turn.1

Through utilizing spatial language and collaborative dialogue, human partners can of-

ten succeed in referential communication even under mismatched perceptions (see the next

section for the experiment we conducted to investigate human partners’ behaviors under

simulated perceptual differences). Therefore, it is important that a situated dialogue system

can also capture and utilize spatial language and dialogue dynamics, and engage in commu-

nication collaboratively. It is the goal of this thesis to develop computational approaches

that enable such situated dialogue systems.

1.2 A Human-human Dialogue Experiment

Although previous studies had done some experiments on human-human (e.g., [12]) and

human-agent (e.g., [19]) referential communication in situated settings, the problem of mis-

matched perceptual capabilities between the conversation partners had not been taken into

consideration in these experiments. To address this problem, we conducted an empirical

study to investigate how two human partners collaborate and mediate a joint basis when

they have simulated perceptual differences.

Our experiment was inspired by the “ablated human capability” studies that was demon-

strated useful in investigating the problem-solving strategies humans would resort to when

they encountered the machine-like speech recognition errors [20, 21]. In the ablated capabil-

ity studies, a human subject’s capacities were incrementally restricted in the direction of a

real system, thus the system could learn better error-handling strategies from the way the

human handled the same errors. To implement this idea in our experiment, we ablated one

1See [12] and [16] for a formal account on these collaborative actions in referential communication.
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human participant’s perceptual capability by showing her/him an impoverished image. The

impoverished image simulated what a computer-vision based agent could perceive from the

environment (i.e., the original image), thus we could observe how human participants strive

to overcome the mismatched perceptions in situated referential communication.

1.2.1 Experiment Design

The setup of our experimental system is shown in Figure 1.2. Two partners (a director

and a matcher) collaborate on an object naming task. They both face the same scene that is

composed by some daily-life items (office supplies, friuts, etc.). However, what they actually

see are different: the director is shown the original image of the scene, whereas the matcher

is shown an impoverished version of the original image. An example of the two different

images is illustrated at the top of Figure 1.2.

To faithfully simulate the perceptual capability of an artificial agent, we applied standard

computer vision algorithms to process the original image and generate the impoverished

representation of the same scene. This procedure is illustrated in Figure 1.3. To create the

impoverished image, we first used the OTSU algorithm to separate foreground objects from

the background [22]. Then each segmented object was fed into a feature extraction routine

that computed a set of region-based and contour-based shape features of the object [23]. The

feature vector of the object was then compared with all the “known” objects in a knowledge

base, and the object was recognized as the class of its nearest neighbor in the knowledge

base.

After this segmentation → feature extraction → recognition pipeline, the final out-

come was then displayed as an abstract illustration in the impoverished image. For instance,

if an object was recognized as a pear, an abstract illustration of pear was displayed in the

5



Figure 1.2 Our experimental system. Two partners collaborate on an object naming task
using this system. The director on the left side is shown an original image, while the matcher
on the right side is shown an impoverished version of the original image.

impoverished image at the position of the original object. The color of the illustration was

set to the average color of the pixels of the original object, and the height and width were

set according to the segmented bounding box of the original object.

In the object naming task, the director’s goal was to communicate the “secret names” of

some randomly selected objects (i.e., target objects) in the original image to the matcher,

so that the matcher would know which object had what name. As shown in the example

image in Figure 1.2, those secret names were displayed only on the director’s side but not

the matcher’s. Once the matcher believed that the name of an target object was correctly

communicated, s/he recorded the name by clicking on the target and repeating the name.

A task was considered complete when the matcher had recorded the names of all the target
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Figure 1.3 The procedure of generating the impoverished image from the original image.

objects.

1.2.2 Observations

Using this experimental setup, we collected a set of human-human2 dialogues on the

object-naming task (namely, a referential communication task). Consistent with previous

studies (e.g., [12, 14]), our collected data have demonstrated overwhelming use of spatial

relations and collaborative referring actions to overcome the mismatched perceptions. Here

are two example excerpts from the collected data.

Example 1:

D3: what I am seeing on my screen are three apples (1)

D : and there is an apple that is directly below, slightly to the right of the battery (2)

2All the participants were undergraduate/graduate students recruited from the campus of Michigan State
University.

3D stands for the Director.
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M 4: ok (3)

D : and then there is an apple to the right of that (4)

D : and there is an apple below that last apple (5)

M : ok (6)

D : so the apple directly below the battery is called Alexis (7)

M : ok, this is Alexis (8)

D : and then to the right of Alexis is an apple (9)

D : and then below that apple is (10)

D : I am sorry, actually that is a red pear (11)

D : but it looks like an apple (12)

. . . . . .

Example 2:

D : there is basically a cluster of four objects in the upper left, do you see that (1)

M : yes (2)

D : ok, so the one in the corner is a blue cup (3)

M : I see there is a square, but fine, it is blue (4)

D : alright, I will just go with that, so and then right under that is a yellow pepper (5)

M : ok, I see apple but orangish yellow (6)

D : ok, so that yellow pepper is named Brittany (7)

M : uh, the bottom left of those four? Because I do see a yellow pepper in the upper right (8)

D : the upper right of the four of them? (9)

M : yes (10)

D : ok, so that is basically the one to the right of the blue cup (11)

4M stands for the Matcher.

8



M : yeah (12)

D : that is actually an apple (13)

D : that is a green apple and it is named Ashley (14)

. . . . . .

As we can see from the two examples, the participants relied on both object-specific prop-

erties and spatial relations for communicating the identities of intended objects. The most

commonly used object properties included object-class, color, and spatial location. Other

properties such as size, length, and shape were also used. For spatial relations, the most

commonly used were the projective relations [24], such as right, left, above, and below. Be-

sides, as demonstrated in Example 2 (utterance (1), (8), (9)), descriptions based on grouping

of multiple objects were also very useful [25].

Furthermore, as illustrated by these two examples, referential communication under mis-

matched perceptions was often a highly incremental and collaborative process. In example

1, after the director initiated “three apples” in utterance (1), he kept elaborating on them

till they were accepted by the matcher. Each of the director’s following utterances can be

viewed as either an expansion (e.g., utterance (4), (5), (7), (9)) or a replacement (e.g., utter-

ance (11)) to a previous utterance. In example 2, the matcher played a more active role in

the dialogue. He proactively described what he perceived (utterance (4), (6)), and asked for

clarification when he could not uniquely resolve the reference (utterance (8)). The director,

on the other hand, could either accept the matcher’s presentation and further expand it

(utterance (5)), or refashion it with a replacement (utterance (13)).

All these observed dynamics conform to the collaborative referring model in the litera-

ture [12, 16]. We thus applied this model to categorize all the prevalent patterns of these

collaborative dialogues in our data (see the next section). These categories have provided
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important guidances for developing our computational approaches to support collaborative

referential communication.

1.2.3 Patterns of Collaborative Referential Communication

In our data, referential communication between the director and the matcher generally

falls into two phases: a presentation phase and an acceptance phase. A presentation phase

can be in one of the following forms:

• A complete description: the speaker issues a complete description in a single turn. For

example, “there is a red apple on the top right”.

• An installment : a description is divided into several parts/installments, each of which

needs to be confirmed before continuing to the rest. For example,

A: under the big green cup we just talked about,

B: yes

A: there are two apples,

B: OK

A: one is red and one is yellow.

. . . . . .

• An expansion: a description that adds more information to the previous presentation,

such as speaker A’s second and third utterances in last example.

• A replacement : a description that replaces some information in the previous presenta-

tion. For example, “that is actually an apple (not a pepper)”.
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• A trial : a description with a try marker. For example, “Is there a red apple on the

top right?”

In an acceptance phase, the other interlocutor (i.e., the hearer) can either accept or

reject the current presentation, or postpone the decision. Two major forms of accepting a

presentation are observed in our data:

• An acknowledgement : the hearer explicitly shows his/her understanding, using asser-

tions (e.g., “Yes”,“Right”, “I see”) or affirmative continuers (e.g., “uh huh”, “OK”).

• A relevant next turn: the hearer proceeds to the next turn that is relevant to the

current presentation. For example: A says “I see a red apple” and directly following

that B says “there is also a green apple to the right of that red one”.

Furthermore, there are also two forms of rejecting a presentation:

• A rejection: the hearer explicitly rejects the current presentation, for example, “I don’t

see any apple”.

• An alternative description: the hearer instead presents an alternative description. For

example, A says “there is a red apple on the top left,” and immediately following that

B says “I only see a red apple on the right”.

Besides explicitly accepting or rejecting a presentation, the hearer can also postpone the

decision and wait/request for more information. For example:

• A clarification question/request : the hearer asks a question to let the speaker clarify,

such as “uh, the bottom left of those four?”, “I see a blue object there, is that what

you are talking about?”
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Actually, the acceptance to a previous presentation often represents a new presentation

itself, which then triggers further acceptance. For example, a relevant next turn as an ac-

ceptance can also be viewed as a new presentation itself. An alternative description is also

a replacement. And a clarification question often presents a trial that awaits for further re-

sponse. In general, referential communication in our data emerges as a hierarchical structure

of recursive presentation-acceptance phases. It is a highly collaborative process that cannot

be moved forward without the joint efforts from both of the two dialogue participants.

1.3 Contributions

The observations from our empirical study have indicated that, to enable effective and

efficient situated referential communication between human users and artificial agents, com-

putational approaches should take the following issues into consideration:

• It needs to model different types of referring expressions, i.e., referring expressions

based on object-specific properties and spatial relations. Especially, spatial relations

can provide very useful information for identifying intended objects, when object-

specific properties alone is not sufficient due to mismatched perceptual capabilities.

• The model of the linguistic contents also needs to capture the rich dynamics of collab-

orative dialogue. It should identify and capture various relationships between interre-

lated utterances in the discourse, for instance, those patterns of collaborative referential

communication we discussed in the previous section.

• Besides modeling the linguistic discourse, it needs to represent the perceived visual

features and spatial relations of the physical objects in the environment. Then a com-
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putational approach should use the semantic representation of the linguistic discourse

as constraints to search for feasible mappings from the model of the linguistic dis-

course to the model of the perceived environment. We call such a process as “situated

referential grounding”.

• Because of the mismatched perceptual capabilities between a human and an agent,

situated referential grounding needs some level of approximation without enforcing

complete satisfaction of the constraints. Furthermore, the dynamics of collaborative

dialogue should be utilized to overcome mismatched perceptions and facilitate referen-

tial grounding.

These issues comprise the basic requirements that a computational approach to situated

referential grounding needs to fulfill. Besides, some other features/functionalities are also

desirable to support robust and adaptive referential grounding, which include but not limited

to:

• It is desirable that the computational approach is based on a probabilistic framework,

within which the uncertainties from different sources (e.g., visual perception, speech

and language processing) can be handled under a unified probabilistic scheme. Using

such a probabilistic approach, the referential grounding component should efficiently

generate ranked grounding hypotheses to facilitate the dialogue manager’s decision

making.

• Since an agent’s perceptual and grounding abilities can be affected by many situational

factors, such as noisy environment, faulty sensors, and human speaker’s individual

differences, even previously well-performed system can become unreliable and need to
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be adjusted under a new situation. It is thus important to develop automatic learning

mechanisms to allow the system efficiently adapt to changed situations.

Towards the ultimate goal of building robust and adaptive dialogue systems for situated

referential communication, this dissertation has made the following contributions to address

all these issues.

First, graph-based representations are employed to capture a human speaker’s linguistic

discourse and an agent’s visual perception. Referential grounding is then formulated as a

graph-matching problem, and a state-space search algorithm is applied to ground linguis-

tic references onto perceived objects. Furthermore, hypergraph representations are used to

account for group-based descriptions, and one prevalent pattern of collaborative commu-

nication observed from a human-human dialogue dataset is incorporated into the search

algorithm. This graph-matching based approach thus provides a principled way to model

and utilize spatial relations, group-based descriptions, and collaborative referring discourse

in situated dialogue. Evaluation results demonstrate that, when the agent’s visual perception

is unreliable due to computer vision errors, the graph-based approach significantly improves

referential grounding accuracy over a baseline which only relies on object-properties.

Second, an optimization based approach is proposed to mediate the perceptual differences

between an agent and a human. Through online interaction with the human, the agent can

learn a set of weights which indicate how reliably/unreliably each dimension (object type,

object color, etc.) of its perception of the environment maps to the human’s linguistic de-

scriptors. Then the agent can adapt to the situation by applying the learned weights to the

grounding process and/or adjusting its word grounding models accordingly. Empirical eval-

uation shows this weight-learning approach can successfully adjust the weights to reflect the
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agent’s perceptual insufficiencies. The learned weights, together with updated word ground-

ing models, can lead to a significant improvement for referential grounding in subsequent

dialogues.

Third, a probabilistic labeling algorithm is introduced to handle uncertainties from visual

perception and language processing, and to potentially support generation of collaborative re-

sponses in the future. The probabilistic labeling algorithm is formulated under the Bayesian

reasoning framework. It provides a unified probabilistic scheme to integrate different types of

evidence from the collaborative referring discourse, and to generate ranked multiple ground-

ing hypotheses for follow-up processes. Evaluated on the same dataset, probabilistic labeling

significantly outperforms state-space search in both accuracy and efficiency.

All these approaches contribute to the ultimate goal of building collaborative dialogue

agents for situated interaction, so that the next generation of intelligent machines/devices

can better serve human users in daily work and life.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 first discusses

some related linguistic studies on referential communication and collaborative dialogue, and

then reviews related work on computational approaches to the language grounding problem.

Chapter 3 presents the graph-matching based approach to situated referential grounding.

The contents in Chapter 3 come from our papers appeared in the 13th (2012) and 14th

(2013) annual meetings of the Special Interest Group on Discourse and Dialogue (SIG-

DIAL) [26, 27]. Chapter 4 presents the weight learning approach to mediate the perceptual

differences between humans and agents. This is based on the work published in the 29th con-
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ference of the Association for the Advancement of Artificial Intelligence (AAAI 2015) [28].

Chapter 5 introduces the probabilistic labeling based framework. The material follows the

paper published in the 52nd annual meeting of the Association for Computational Linguistics

(ACL 2014) [29]. Lastly, Chapter 6 concludes the thesis and discusses some future directions

to be explored.
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Chapter 2

Related Work

SHRDLU [30], the seminal work on situated language understanding by Terry Winograd

in the 1970’s, still remains to be one of the most sophisticated systems today. With a

relatively static and symbolic representation of the “physical” situation (a virtual block

world), it used a systematic grammar to analyze the user’s language input and identify the

key units (e.g., noun, verb, or preposition phrases). The connection between the language

units and the physical world were implicitly encoded in the form of computational procedures

attached to the grammar, and a higher-level parsing procedure was used to combine the

sentence structural analysis with the semantics (i.e., the meaning interpreting procedures

attached to grammar units) to select the referent.

Many nowadays situated language understanding systems have followed the similar idea

established by SHRDLU (e.g., [31, 32, 33, 34, 35, 36]). These systems often consist of two key

components: The first component addresses formalisms and methods that connect linguistic

terms to the agent’s representations of the shared environment and task. Given these connec-

tion models, the second component analyzes the syntactic structure over the linguistic units

in a sentence, and combines their models accordingly to generate situational context based

interpretation. Comparing to those pioneer systems like SHRDLU, the possibly two most

important advancements that modern situated language understanding systems have made

are: (1) relying more on statistical models and machine-learning approaches to build more

robust and adaptive systems, whereas the earlier systems were mostly based on symbolic and
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hand-crafted models and procedures; (2) paying more attention to human behavior studies

and incorporating more linguistic models/theories into the computational approaches.

In the rest of this chapter, we will first review some linguistic studies that provide insights

on how humans behave in referential communication tasks and shed light on what a situated

dialogue system should take into account when it interacts with human. Then we will review

previous work on computational approaches to situated language grounding. Some of them

focus on the first component, some on the second, and some on both.

2.1 Linguistic Studies on Referential Communication

Referential communication is a conversation focusing on objects and their identities [11].

It arises very often in our daily life. For example, when two people build something together,

or one teaches the other how to build, the two of them need to refer to the construction

pieces again and again. Referential communication also arises in tasks in which people need

to arrange objects, transport objects, or do other things with objects in the surrounding

environment. In the linguistic community, referential communication has been studied for a

long time, tracing back to the 1960’s [37, 38].

In situated settings, the typical way of establishing a reference is to compare the properties

of the referent with the properties of other surrounding items, and the expression used

conforms to the Gricean maxims [39] in general [40]. For example, in the study of [41], they

found that people often use object-specific properties such as object-class, color, shape, and

size, to construct their referring expressions. Spatial relations between objects is another

way for referring to objects, but they tend to be less-preferred because of the more cognitive

efforts it imposes to the speaker.
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However, the patterns in a monologue setting and in a two-person dialogue setting are

profoundly different [38, 10]. Conversation between two participants is a joint activity [10].

In conversation, participants coordinate their mental states based on their mutual under-

standing of their intention, goals, and current tasks [42]. An important notion, also a key

to the success of communication is grounding, a process to establish mutual understanding

between conversation participants. Specifically for the referential communication in conver-

sation, Clark and Wilkes-Gibbs developed the collaborative model of referring to explain the

referential behaviors of participants [43]. This work states that grounding references is a

collaborative process following the principle of least collaborative effort [43]:

. . . speakers and addressees try to minimize collaborative effort, the work
both speakers and addressees do from the initiation of the referential process to
its completion.

The collaborative model indicates that speakers tend to use different types of noun

phrases other than elementary noun phrases during communication. The addressee at-

tends to what has been said almost at the same time that the utterance is produced by

the speaker. The speaker often adapts language production in the middle of the planning

based on the feedback from the addressee. Similarly, addressees make efforts to accept or re-

ject references using alternative descriptions and indicative gestures (e.g., pointing, looking,

or touching) [44]. Different types of evidence can be used to indicate grounding of references

such as back-channel responses, relevant next turn, and continued attention [44]. When

an initial noun phrase is not acceptable, it must be refashioned. The collaborative model

also identified three types of refashioning: repair, self-expansion, and replacement. Through

these mechanisms, the speaker and the addressee strive to minimize the collaborative effort

in grounding the reference [43].
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The collaborative model and the concept of grounding have motivated previous work

on spoken dialogue systems [45], embodied conversational agents [46], and recent work on

human robot interaction [47, 48, 49]. However, the implications of the collaborative model

is not clear in situated dialogue where conversation partners have significantly mismatched

capabilities in perceiving the environment (e.g., speech recognition and object recognition).

It is not clear in this setting how participants strive to collaborate and minimize the col-

laborative effort in grounding references. Understanding these implications is important to

enable the collaborative referential process between a human and an artificial agent such as

a robot. The experiment presented in Section 1.2 is our first step towards understanding

how participants with mismatched capabilities coordinate the collaborative referring process

through dialogue.

2.2 Computational Approaches to Situated Language

Grounding

Similar to SHDRLU [30], some early situated language understanding work such as

SAM [50] and Ubiquitous Talker [51] were also based on the syntactic-analysis driven frame-

work. These systems used a phrase parser to analyze the syntactic structure of language

inputs, based on which sequences of operations (i.e., plans) were constructed. These plans

operated on a symbolic knowledge base that was constructed by a vision system to represent

the perceived environment such as the properties of perceived objects. The key limitation of

these systems is plans can only operate on symbolic representations of visual scenes, which

cannot represent subtle visual features that is always available to human speakers.

To retain the subtle visual information sensed by vision systems and achieve robust lan-
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guage grounding performance, later work often relies on sophisticated “language grounding

models” that associate rich visual representations (i.e., with low-level visual features and

complex internal structures) to linguistic terms. These models are often based on psychol-

ogy/linguistics studies or machine-learning approaches.

For example, Mojsilovic developed computational models for color categorization and

composition [52]. Through subjective experiments, a vocabulary and syntax for describing

colors was collected first. Then a perceptually based color-naming metric, which followed

neurophysiological findings on human color categorization, was designed to measure the

compatibility between a color name from the vocabulary and an arbitrary numeric color

values. Based on this metric, their algorithm could accurately identify regions of known

colors in different color spaces (RGB and HSV ), and assign names to arbitrary colors that

were compatible with human judgments.

Regier and Carlson’s work focused on building grounding models to map spatial language

onto aspects of visual perception [53]. The grounded meaning of projective spatial terms,

such as above, below, left, or right, was computationally modeled by the combination of an

attention process (i.e., finding a focused location and direction) and a vector-sum coding

of overall direction (i.e., a set of constituent directions). Their model is thus called the

Attentional Vector-Sum (AVS) model for projective spatial terms. In a series of evaluation

experiments, their computational model accurately predicted linguistic acceptability judg-

ments for spatial terms comparing to some other relatively simple models. The AVS model

thus has provided a good formalism to connect spatial language to the perceive environment,

that can be especially useful in situated referential grounding.

The work by Moratz and Tenbrink also focused on developing grounding models of projec-

tive spatial terms [24]. They developed an empirically supported model of projective spatial
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relations through iterative experiments involving uninformed users. Their grounding models

were mapping functions between spatial projective terms and geometrical configurations of

objects in the environment, which was represented by a set of characteristic points on a 2D

plane. To allow the grounding models capable of interpreting projective relations under dif-

ferent reference systems, they iteratively developed and tuned their models based on formal

linguistic analysis of a series of experiment data, which provided them a systematic catego-

rization of the variability in speakers’ spontaneous strategies. Their work demonstrated a

practical methodology to develop flexible language grounding models through an iterative

development process.

Dhande’s thesis work presented a computational model that connects gestalt visual per-

ception and language [54]. This work focused on a particular class of words or phrases

called “aggregates”, such as pair and group, which inherently refer to groups of objects. The

model grounded the meaning of these words and phrases onto the perceptual properties of

visually salient groups, and provided an explanation for how the semantics of these terms

interact with gestalt processes. The work by Funakoshi et al. also focused on understand-

ing referring expressions involving perceptual grouping [55]. Similar to the iterative and

empirical approach used in [24], their conducted experiments with spontaneous speakers to

collect group-based referring expressions, and developed a set of models based on analyzing

the collect data. Their models showed a good coverage on identifying referents by linking

group-based descriptions with perceptual grouping features extracted from the visual scenes.

Since advanced sensing technologies can provide very accurate spatial representation of

the physical environment [56], a body of research has focused on spatial language under-

standing to interpret referents, especially for situated human-robot dialogue [57, 13, 15].

Spatial information can be very helpful to overcome the limitation of object recognition in
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robotic systems, however, spatial language understanding has a challenging problem in it-

self. The use of spatial expressions presupposes underlying conceptual reference systems, or

the so-called frame-of-reference [58], and different frames-of-reference can lead to different

interpretations of the same expression [59]. As shown in studies of spatial language using in

situated interactions [60, 24, 61], automated prediction of frames-of-reference can be difficult

because “speakers vary considerably in their individual solutions to the problem at hand,

but they often do not account for potential underlying ambiguities (of frames-of-reference)

sufficiently” [61]. A potential solution to this problem perhaps should be based on the inter-

action aspect, e.g., develop more interactive agent that can resolve such ambiguities through

collaborative dialogue.

Ripley, a conversational robotic system developed by Roy’s group [62, 63], provided a

computational framework for understanding situated interaction and addressing the frame-

of-reference problem as well. To ground language to the physical world, a key component

of their system was a “grounded lexicon”, which defined the meaning of words in terms

of structured representations of the robot’s rich sensorimotor information. To resolve the

referent of natural language expressions, it applied a linguistic parsing procedure that is

compatible with the sensor-grounded lexical meanings [31]. Furthermore, to cope with the

ambiguous frames-of-reference problem, they developed a perceptually-coupled physical sim-

ulator to maintain a “mental model” of the physical environment. Using the simulator, the

system can synthesize imagined views of the environment from arbitrary perspectives and

generate different interpretations based on the synthesized views. This mental imaginary

mechanism provides a nice basis for spatial language understanding and also generation in

situated dialogue.

While it is only in a virtual world, Gorniak and Roy’s work [31] on building a visually-
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grounded language understanding system has been an influential piece of work in recent

years. To build their system, they also first conducted an experiment to collect language

data and investigate how people verbally describe objects in synthesized virtual scenes.

Based on the collected data, they built a visually-grounded language understanding system

that can handle the most commonly used descriptive strategies in their experiments. Their

system again consisted of some “standard” components that commonly exist in the later

and the earlier referential grounding systems: a set of visual feature extraction algorithms,

a lexicon that is grounded in terms of these visual features, a robust parser to analyze the

syntactic structure of spoken utterances, and a compositional engine driven by the parser that

combines visual groundings of lexical units to select the most proper referent(s). For a large

portion of the test cases, their implemented system demonstrated impressive performances

on selecting the correct referents in response to natural language expressions.

In a later work [8], Gorniak and Roy further extended their computational approach

to support a theory of situate language understanding, which depended on not only the

physical environment, but also the goals and plans of communication partners to interpret

the meaning of language. Their work was based on the concept of “perceived affordances”,

which were structured representations used to encode not only the perception of the world,

but also the past happened and future possible interactions between the perceiver and the

world. Given such representations, they used probabilistic hierarchical plan recognition

mechanism to predict possible interactions between the speaker and the environment, and

treated situated language understanding as filtering/ranking the predicted interactions based

on the parsing outcome of the utterance. This work demonstrated an important aspect in the

evaluation of their affordance-based approach, that is to take the communication partner’s

intention into consideration for situated language understanding.
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Although not in a situated setting, the probabilistic approach to reference resolution in

multimodal user interfaces by Chai et al. [6, 64] also inspired our work. In their approach,

a graph-based representation was used to capture a rich set of constraints from different

perspectives, including temporal alignments between speech and pointing gesture, coherence

of ongoing conversation, and domain information. It then applied a probabilistic graph-

matching algorithm [65] to identify the most probable referents by optimizing the satisfaction

of all the constraints captured in the graphs simultaneously. As demonstrated by their

evaluation results, this graph-matching based approach was very effective, especially for

complex user inputs that involve multiple referring expressions and multiple gestures at

the same time. Inspired by this approach, our work in situated referential grounding also

employs a similar graph representation to capture various information from the linguistic

discourse and the visual perception. Referential grounding is then formulated as a graph-

matching problem and different algorithms have been developed to allow robust and adaptive

matching.

These work we have discussed so far all aimed to build hand-crafted models and/or sys-

tems to address the language grounding problem. They completely rely on the developers’

manual efforts to analyze the patterns in data, design models and tune parameters, write

grammars, or implement grounding procedures. Another line of work tackles the problem

using machine-learning based approaches, in which various machine-learning techniques have

been used to automatically build some or all the components of a situated language under-

standing system.

For example, to learn the perceptually grounded semantics of spatial terms (such as

above, below, left, right, in and on), Regier used artificial neural networks to learn a set of

classification models from line drawing animations labeled by spatial terms [66]. Based on a
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simple set of features, such as the shapes, sizes, and relative positions of objects, the learned

model could reliably classify a variety of spatial configurations and events in accordance

with spatial terms across several languages. This work gives an excellent example about

how perceptually grounded semantics of natural language can be automatically acquired

using machine learning technique.

Another good example for learning perceptually grounded meanings of linguistic terms

is the computational model of word acquisition developed by Roy and Pentland [67]. They

proposed an information theoretic framework which could learn models for speech segmen-

tation, word discovery and visual categorization simultaneously from spontaneous infant-

directed speech data paired with video images of objects. The learning of sensor-grounded

word semantics in this work focused on only the shape of objects, but other attributes such

as color, size, and so forth could be handled in the same way. The visual inputs to their

learning algorithms were histograms of local shape features of objects, and such raw inputs

were categorized into prototypes using statistical learning mechanisms. To associate the

identified spoken words, they used mutual information to evaluate the strength of the as-

sociation between word and shape representations based on their occurrence from multiple

observations. This work demonstrated the possibility of learning grounded word-to-meaning

models from raw sensor data without the need for human transcription and labeling.

While the just mentioned two examples only focused on learning the grounded seman-

tics of one particular category of natural language descriptors (i.e., spatial terms and shape

terms, respectively), Roy’s another work developed a unified scheme for learning perceptu-

ally grounded word semantics on different object-attributes including shape, color, size, and

spatial terms as well [68]. The grounded meanings of the concepts of different categories

were all modeled as multivariate Gaussian distributions in relevant feature spaces. A set of
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learning algorithms were developed to extract the syntactic structures, cluster words into

word classes, select relevant visual features, and establish the grounding models of individual

words. This approach successfully acquired the visual semantics of individual words, word

classes, and phrase structures in terms of probabilistic models over the visual feature spaces.

All the models were learned from a dataset of visual scenes paired with transcribed natu-

ral language descriptions (collected in a “show-and-tell” experiment), without any manual

annotation.

Yu and Ballard developed a multimodal learning interface to learn to associate spoken

language with perceptual features in an unsupervised mode [69]. To facilitate learning, their

interface collected a rich set of multimodal sensory information simultaneously with users’

speech inputs, while they were performing everyday tasks and providing natural language

descriptions of their behaviors at the same time. The collected multimodal sensory informa-

tion included users’ perspective videos, hand movements, gaze positions, and head directions.

These multisensory information were used to extract visual feature representations of objects

and actions, and estimate users’ attentions. Expectation-Maximization (EM) algorithm was

then applied to find the reliable associations of spoken words and temporally co-occurring

attentional objects and actions. As demonstrated by their work, utilizing the user-centric

multisensory information can have a key advantage of reducing large amount of irrelevant

computation that a solely co-occurrence based statistical learning can hardly avoid.

Tellex et al. proposed a probabilistic graphical model based approach for learning and

understanding natural language commands in terms of a robot’s sensorimotor representa-

tions [70]. Given a natural language command, they first built a hierarchical representation

of its semantic structure based on linguistic parsing. Then a Conditional Random Fields

(CRF) [71] model was constructed from the semantic structure, which captured the interde-
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pendencies between the language phrases in the command and their groundings. With such

graphical models, they further developed efficient inference and learning algorithms to find

proper mappings from natural language to the robot’s internal representations of its action

and the perceived environment. Their model was very successful in learning and inferring

the grounded meaning of navigation and manipulation verbs and spatial phrases. One limi-

tation of this approach is it requires the annotated grounding of each individual phrase in a

command in order to train the model. To address this limitation, their later work proposed

a weakly supervised learning algorithm to train the model with unaligned parallel data [72].

This new learning algorithm only needs to observe the top-level action corresponding to each

command, but no detailed annotations are required at training time.

These work we have just reviewed demonstrate how meaning of language that is mapped

to perceptual features of the external world can be acquired using machine learning tech-

niques. Besides, work on situated language understanding often leverages linguistic parsing

to map from natural language to the perceptual context. The parsing component can also

be constructed automatically through machine learning.

For example, Kate and Mooney developed a weakly-supervised method for learning a

semantic parser from ambiguous training data [73]. In their method, semantic parsers were

automatically learned using Support-Vector Machines (SVMs). To handle ambiguous train-

ing data, in which each natural language sentence was paired with a set of potential meaning

representations but only one was correct, their method employed an EM-like procedure to

iteratively score the potential sentence-meaning pairs and retrain the parser. This method

was used in a later work by Chen and Mooney [33] to build a system that could learn to

transform natural language instructions into executable navigation plans in complex virtual

environments. The system was able to automatically learn a grounded lexicon and a seman-
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tic parser by simply observing how humans follow navigation instructions, without any prior

knowledge or manual annotation.

Matuszek et al. presented an approach to jointly learn language grounding and parsing

models [34] from weakly-supervised data. In their work, the grounded meaning of a word

was associated with a set of learned visual attribute classifiers, and semantic parsing was

based on a learned Combinatory Categorial Grammar (CCG) lexicon [74]. Their training

data was collected using Amazon Mechanical Turk, and contained spontaneous referring

expressions paired with raw visual perceptions of scenes of multiple objects. To jointly train

the parameters of different models, they developed an online and EM-like learning algorithm

to optimize the log-likelihood of training data. Their approach was able to learn accurate

language and perception models, given only the annotations of target objects but no explicit

labelings of linguistic parsing or visual attribute classifier outputs. Based on a very close

idea, Krishnamurthy and Kollar also developed a grounded language acquisition model for

jointly learning to parse and perceive [35]. The advancements of their work were being able to

learn models for not only one-argument categories (object attributes) but also two-argument

relations, and allowing for entirely weakly supervised training without a bootstrapping phase.

All these related works we have discussed in this section provide valuable insights on how

to manually or automatically build the key components (e.g., linguistic parsing, grounding

models to connect words to visual perceptions, and computational procedures to combine

visual groundings of lexical units) for a situated referential grounding system. However, most

of them have only dealt with the interpretation of single referring expressions/utterances,

but not interrelated utterances as in a dialogue context.

Some earlier works [17, 18, 75] developed symbolic reasoning (e.g., planning) based ap-

proach to incorporate dialogue dynamics into interpreting referring expressions. These works
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provided good examples for computationally modeling the collaborative referring theory [12].

However, they have not addressed situated referential grounding, for which pure symbolic

reasoning based approach may not be sufficient and new approaches that are more robust

against uncertainties need to be pursued. Some recent works have tackled this problem

using “hybrid” models. For example, DeVault and Stone proposed an approach that com-

bined symbolic reasoning and machine learning for interpreting situated referential grounding

dialogue [19]. Kennington and Schlangen used Markov Logic Networks (MLN) [76] to in-

corporate the discourse and situational context for situated language understanding in an

incremental manner [77]. But their “environments” were just simplistic block worlds and

the issue of mismatched perceptions between humans and agents was not addressed.
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Chapter 3

A Graph-matching Approach

In this chapter, we present a graph-matching based approach for situated referential

grounding.1 This approach uses a graph-based representation to model the referential com-

munication dialogue. The graph representation models different types of referring expres-

sions, including object-specific properties, spatial relations, and group-based descriptions. It

also captures the discourse relations between different referring expressions. The environment

perceived via computer vision is also represented using the same graph model. Referential

grounding is then formulated as a graph-matching problem to find feasible matchings be-

tween the graph representation of the linguistic discourse and the graph representation of

the visual perception.

This chapter begins with an overview of our situated referential communication system.

Then it presents the graph representation and the graph-matching algorithm in detail, fol-

lowed by the evaluation of this approach using the data collected from the experiment as

described in Section 1.2. Lastly, we conclude this chapter with some discussions.

1This chapter is based on the following publications:
C. Liu, R. Fang, and J. Chai, “Towards mediating shared perceptual basis in situated dialogue,” in Proceed-
ings of the 13th SIGDIAL Conference, pp. 140–149, July 2012.
C. Liu, R. Fang, L. She, and J. Chai, “Modeling collaborative referring for situated referential grounding,”
in Proceedings of the 14th SIGDIAL Conference, pp. 78–86, August 2013.
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Figure 3.1 An overview of our graph-matching based referential grounding system.

3.1 System Overview

Figure 3.1 illustrates the key elements and the process of our graph-based method. The

key elements of our method are two graph representations, one of which is called the discourse

graph and the other called the vision graph.

The discourse graph captures the information extracted from the linguistic discourse. To

create the discourse graph, the linguistic discourse first needs to be processed by Natural

Language Processing (NLP) components, such as the semantic parsing and coreference res-

olution components. The output of the NLP components are usually in the form of some

formal semantic representations, e.g., in the form of First-Order Logic (FOL) representa-

tions. The discourse graph is then created based on the formal semantics and discourse

relations between different utterances. The vision graph, on the other hand, is a represen-

tation of the visual features extracted from the perceived environment. It is built based

on the information output by the Computer Vision (CV) component. Given the discourse

graph and the vision graph, then we can formulate referential grounding as constructing a
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node-to-node mapping from the discourse graph to the vision graph, or in other words, a

matching between the two graphs.

Note that, the matching between the discourse graph and the vision graph we encounter

here is different from the original graph matching problem that is often used in the CV

field [78, 79]. The original problem only considers matching between two graphs that have

the same type of values for each attribute. But in the case of situated referential grounding,

all the attributes in the discourse graph possess symbolic values since they come from for-

mal semantic representations, whereas the attributes in the vision graph are often numeric

values produced by CV algorithms. Our solution is to introduce a set of semantic grounding

functions, which bridges the heterogeneous attributes of the two graphs and makes general

graph matching algorithms applicable to referential grounding. The details will be presented

later in this chapter.

3.2 Graph-matching for Situated Referential Ground-

ing

In the field of Computer Vision and Pattern Recognition, Attributed Relational Graph

(ARG) is a very useful data structure to represent an image [80, 81]. In an ARG, the

underlying unlabeled graph represents the topological structure of the scene. Then each

node and edge are labeled with a set of attributes that represents local features of a single

node or the topological features between two nodes. Based on the ARG representations, an

inexact graph matching is to find a graph or a subgraph whose error-transformation cost

with the already given graph is minimum [82, 83].

Motivated by the representation power of ARG and the error-correcting capability of
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inexact graph matching, we developed a graph-based approach to address the referential

grounding problem. In the following we first demonstrate how the ARG representations are

created, and then present the formal formulation of our graph-based method for referential

grounding.

3.2.1 Graph Representation

Figure 3.2 illustrates the graph representations in our method. The discourse graph is

created based on the formal semantic representation (e.g., FOL representations) from parsing

and the coreference resolution results. For instance, each linguistic entity is represented by a

node in the graph, and one-arity predicates are translated to the node attributes. Two-arity

predicates that correspond to the mentioned relations between entities are represented by

the edges and their attributes in the graph. Furthermore, multiple nodes can be merged

together based on coreference, since coreferential discourse entities should refer to the same

object in the environment (i.e., correspond to the same node in the vision graph).

The vision graph, on the other hand, is a representation of the visual features extracted

from the scene. It is built based on the information output by the CV component. For

instance, each object detected by CV is represented as a node in the vision graph, and the

attributes of the node correspond to visual features, such as the color, size and position of

the object. The edges between nodes represent their relations in the physical space.

Based on the graph representations of the linguistic discourse and the visual perception,

we formulate referential grounding as a graph matching problem, which has extended the

original graph matching approach used in the CV and PR filed.

Formally, an attributed relational graph (ARG) is a labeled graph
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Figure 3.2 An illustration of the graph representations in our method. The discourse graph
is created from formal semantic representations of the linguistic discourse; The vision graph
is created by applying CV algorithms on the visual scene. Given the two graphs, referential
grounding is to find a proper node-to-node mapping from the discourse graph to the vision
graph.

G = (X,E)

X = {xm | m = 1, . . . ,M}

E = {ei = (ei1, ei2) | i = 1, . . . , I; ei1 ∈ X, ei2 ∈ X}

(3.1)

So it is a directed graph with M nodes and I (directed) edges. Furthermore, each node

xm is assigned a set of A attributes Um and each edge ei is assigned a set of B attributes

Vi, i.e.,
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Um = {uma | a = 1, . . . , A}

Vi = {vib | b = 1, . . . , B}
(3.2)

For example, a node can be assigned a set of attributes as

{v1 = Apple, v2 = Red, v3 = Small, v4 = Front}

which specify the type, color, size and location of an object represented by the node.

The vision graph is defined in the same way and denoted as G′, i.e.,

G′ =
(
X′,E′

)
X′ =

{
x′n | n = 1, . . . , N

}
E′ =

{
e′j =

(
e′j1, e

′
j2

)
| j = 1, . . . , J ; e′j1 ∈ X′, e′j2 ∈ X′

} (3.3)

In an ARG, the value of a node/edge attribute can be symbolic, numeric, or as a vector

of numeric values. The attributes in a discourse graph always contain symbolic values since

they are from linguistic inputs. On the other hand, the attribute values in a vision graph are

mostly numeric because they are from computer vision algorithms’ outputs. For example, if

in the vision graph the attribute v1 is used to represent the color feature of an object, then a

possible assignment could be v1 = (255, 0, 0), which is the rgb color vector. Some commonly

used attributes and their typical values from our data are shown in Table 3.1.

An edge in the graph represents a 2-tuple of nodes, i.e., ei = (ei1, ei2) in which ei1 ∈ X

and ei2 ∈ X. So we use a labeled edge to represent a binary relation between one object and

another, such as “the apple to the right of the cup”. Besides binary relations, group-based

relations can also be used to distinguish an object or set of objects from others [25, 55]. A
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Discourse graph Vision graph

type “apple” “ball”
color “red” (r : 210, g : 12, b : 90)
size “large” (w : 45, h : 45)

spatial relation “right of” (x1 : 700, y1 : 450),
(x2 : 300, y2 : 600)

... ... ...

Table 3.1 Commonly used attributes and relations and their typical values in our collected
data.

group-based relation involves more than two objects, for example, an intra-group relation

(such as “the middle one of the three balls”), an inter-group relation (such as “the two

objects in front of those three balls”), and a geometric formation relation (such as “a row of

three balls”)2.

To account for the group-based relations, we can further extend the regular graph rep-

resentation to hypergraph [84]. Hypergraph is a more general representation than regular

graph. It can represent not only binary relations between two nodes, but also group-based

relations among multiple nodes. Formally, a hypergraph is defined as

G = (X,E)

X = {xm | m = 1, . . . ,M}

E = {ei = (ei1, ei2) | i = 1, . . . , I; ei1 ⊆ X, ei2 ⊆ X}

(3.4)

The difference between a hypergraph and a regular graph is that E now is a set of

“hyperedges”. Just the same as an edge in a regular graph, each hyperedge ei in a hypergraph

also consists of two “ends”, i.e., a tail (ei1) and a head (ei2). However, the tail and head of

a hyperedge are both subsets of X, thus they can contain any number of nodes in X (i.e., a

“group”).

2See [55] for definitions of these different types of group-based relations.

37



Figure 3.3 An illustration of the hypergraph representation for modeling group-based de-
scriptions.

For example, suppose the discourse includes the following utterances:

(1) There is a cluster of four objects in the upper left.

(2) The one in the corner is a blue cup.

(3) Under the blue cup is a yellow pepper.

(4) To the right of the blue cup, which is also in the upper right of the four objects, is a

green apple.

The corresponding dialogue graph G = (X,E) is shown in Figure 3.3, where X =

{x1, x2, x3, x4} and E = {e1, e2, e3}. In E, for example, e1 = ({x1}, {x3}) represents the

relation “right of” between the tail {x3} and the head {x1}, and e3 = ({x3}, {x1, x2, x3, x4})

represents the group-based relation “upper right” between one node and a group of nodes.
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3.2.2 State-space Search Based Graph-matching

Given a discourse graph G and a vision graph G′, a matching between G and G′ is a set

of node-to-node mappings between the nodes in G and the nodes in G′. Or in other words,

a matching (denoted as Θ) between G and G′ is to assign each node xm in X a “label” θm

to indicate which node in X′ that xm maps to. Formally defined as:

Θ =
{
θm = x′n | m = 1, . . . ,M ;x′n ∈ X′

}
(3.5)

We then define the compatibility function of a matching Θ as

f (Θ) =
∑

xm∈X
g
(
xm, x

′
n

)
+

∑
ei∈E

h
(
ei, e

′
j

)
(3.6)

where x′n and e′j are the corresponding node and edge of xm and ei according to Θ, respec-

tively3.

To compute f (Θ), we need to further define g
(
xm, x

′
n

)
and h

(
ei, e

′
j

)
, i.e., the compat-

ibility function for a matched pair of nodes and edges, respectively. This is based on the

attributes assigned to the nodes/edges (note that subscripts m, n, i and j are dropped since

the definition is general for any pair of nodes/edges):

g
(
x, x′

)
= 1

A

A∑
a=1

ga
(
ua, u

′
a

)
h
(
e, e′

)
= 1

B

B∑
b=1

hb
(
vb, v

′
b

) (3.7)

We call ga
(
ua, u

′
a

)
and hb

(
vb, v

′
b

)
the semantic grounding function for the a-th node

attribute and b-th edge attribute, respectively. Namely, a semantic grounding function for

3Note that, we treat the vision graph G′ as a complete graph, in which there exists an edge between each
pair of nodes. In the case of a hypergraph, it means there exists a hyperedge between any two subsets of
nodes.
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the a-th attribute takes two input arguments ua and u′a, which are the values of the a-th

attribute from node x and x′ respectively. The output of the function is a real number p in

the range of [0, 1], which can be interpreted as a measurement of the compatibility between

a symbolic value (or word) ua and a visual feature value u′a. p can also be interpreted as the

likelihood of observing the value u′a given the symbol ua provided by the linguistic input.

In essence, what we have defined as symbol grounding functions here are very similar to the

“visual word semantics” in previous work [68, 85, 32].

Let Y =
{
y1 , y2 , · · · , yK

}
be the set of all possible symbolic values of ua (i.e., Y is the

lexicon of the a-th node attribute in the dialogue graph), then ga
(
ua, u

′
a

)
can be further

decomposed as:

ga
(
ua, u

′
a

)
=



ga1
(
u′a
)

if ua = y1 ;

ga2
(
u′a
)

if ua = y2 ;

...
...

gaK
(
u′a
)

if ua = y
K

(3.8)

So for each value (e.g., y
k
) of ua, there is a stand-alone grounding function/model

gak
(
u′a
)
. Its output measures how well u′a (e.g., a numeric value from the vision graph)

matches with ua (e.g., the word that human speaker used to describe this attribute of the

object). In fact, it can also be interpreted as the (conditional) probability distribution of

observing u′a given ua = y
k
, i.e., gak

(
u′a
)

= p
(
u′a|ua = y

k

)
.

Similarly, the grounding function for edge attributes is in the same form as for the node

attributes. Let Z =
{
z1 , z2 , · · · , zL

}
be the lexicon of the b-th edge attribute, then we have:
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hb
(
vb, v

′
b

)
=



hb1
(
v′b
)

if vb = z1 ;

hb2
(
v′b
)

if vb = z2 ;

...
...

hbL
(
v′b
)

if vb = z
L

(3.9)

where each hbl
(
v′b
)

is a stand-alone grounding function for the value zl of vb.

These semantic grounding functions can be either manually defined (e.g., [54, 31]) or

automatically learned (e.g., [68, 32]). In our current work, we use a set of manually defined

grounding functions similar to those used in [31].

Based on our definition of the compatibility function of a matching, the optimal matching

between G and G′ is the one with the highest compatibility score:

Θ∗ = arg max
Θ

f (Θ) (3.10)

which gives us the most feasible result of grounding the entities in the discourse graph to

the objects in the vision graph.

Given our formulation of referential grounding as a graph matching problem, the next

question is how to find the optimal matching between two graphs. Unfortunately, such a

problem belongs to the class of NP-complete [78]. In practice, techniques such as A∗ search

are commonly used to improve the efficiency (e.g. in [80, 86]). But the memory requirement

can still be considerably large if the heuristic does not provide a close estimate of the future

matching cost [78]. As one practical solution, we use a state-space search method [87] and

apply a simple beam search algorithm [88, 89] to retain the computation tractability.

In this state-space search algorithm, a state s in the search space represents the recon-
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Algorithm 1 State-space Search Algorithm for Graph Matching

1: INPUT:
• Two graphs G and G′

2: OUTPUT:
• A sub-optimal matching Θ between G and G′

3: METHOD:

(1) root← {},
level0 ← {root},
M ← number of nodes in G,
N ← number of nodes in G′

δ ← max (M,N)

(2) for m← 1 to M do

(3) for every state s in levelm−1 do

(4) for every unmatched node index n in G′ do

(5) snew ← add θm = x′n to s

(6) add snew to levelm

(7) end for

(8) end for

(9) sort all the states in levelm by their compatibility scores

(10) keep only the first mδ2 states

(11) end for

(12) return the first state in levelM

struction of a subgraph from G and a subgraph from G′, as well as the matching between

the two subgraphs. A state s can be expanded to a successive state by adding one more

matched pair of nodes, namely letting θm = x′n where m is the index of an unprocessed node

in G and n is the index of an unmatched node in G′. A state-space search tree is constructed

from the root Θ = ∅ in a breadth-first search manner. At each level of the search tree,
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Figure 3.4 An example of the state-space search tree.

all the states are ranked based on their compatibility scores and those who fall out of a

predetermined beam width are pruned. Following the assumption in [82], we set the beam

size as dδ2, where d is the depth of the current level of the search tree and δ = max (M,N)

(i.e., the size of the bigger graph). Figure 3.4 illustrates the procedure of constructing the

state-space search tree.

3.2.3 Modeling Collaborative Referring

As we have already discussed in Chapter 1, one of our goals is to explicitly incorporate

collaborative referring into the graph-matching algorithm for referential grounding. As the

conversation unfolds, our approach intends to incrementally build a discourse graph by keep-

ing track of the contributions (i.e., presentation and acceptance) from both the human and

the agent. This discourse graph is then matched against the perceived environment (i.e., the
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vision graph) in order to resolve referring expressions from the human. Here we focus on

a particularly prevalent type of collaborative referring pattern observed from our collected

data4, i.e., what we call the agent-present-human-accept collaboration pattern.

More specifically, our data showed that when mediating their joint perceptual basis, the

director often took into consideration what the matcher saw and used that to gradually lead

to the intended referents. This is demonstrated in the following example5, where the director

accepted (Turn 3) the matcher’s presentation (Turn 2) through a relevant next turn:

(Turn 1) D : There is a kiwi fruit.

(Turn 2) M : I don’t see any kiwi fruit. I see an apple.

(Turn 3) D : Do you see a mug to the right of that apple?

(Turn 4) M : Yes.

(Turn 5) D : OK, then the kiwi fruit is to the left of that apple.

We use this example to show how the agent-present-human-accept pattern can be incor-

porated to potentially improve reference resolution. Figure 3.5 gives a graphical illustration

on this idea. In this example, the human and the agent (i.e., the robot) face a shared physical

environment. The robot perceives the environment through computer vision algorithms and

generates a graph representation (i.e., a vision graph), which captures the perceived objects

and their spatial relations6. As shown in Figure 3.5(a), the kiwi is represented as an unknown

object in the vision graph due to insufficient object recognition. Besides the vision graph,

the robot also maintains a discourse graph that captures the linguistic discourse between the

human and the robot.

4See Section 1.2 for the details of our data collection experiment.
5This is a clean-up version of the original example to demonstrate the key ideas.
6The spatial relations between objects are represented as their relative coordinates in the vision graph.
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Figure 3.5 An example of incorporating collaborative efforts in an unfolding dialogue into
graph representations.

At Turn 1 in Figure 3.5(b), the human says “there is a kiwi fruit”. Upon receiving this

utterance, through semantic processing, a node representing “a kiwi” is generated (i.e., x1).

The discourse graph at this point only contains this single node. Identifying the referent

of the expression “a kiwi fruit” is essentially a process that matches the discourse graph to
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the vision graph. Because the vision graph does not have a node representing a kiwi object,

no high confidence match is returned at this point. Therefore, the robot responds with a

rejection as in Turn 2 (Figure 3.5(c)) “I don’t see any kiwi fruit” 7. In addition, the robot

takes an extra effort to proactively describe what is being confidently perceived (i.e., “I see

an apple”). Now an additional node y1 is added to the discourse graph to represent the term

“an apple” 8. Note that when the robot generates the term “an apple”, it knows precisely

which object in the vision graph this term refers to. Therefore, as shown in Figure 3.5(c),

y1 is mapped to v2 in the vision graph.

In Turn 3 (Figure 3.5(d)), through semantic processing on the human’s utterance “a mug

to the right of that apple”, two new nodes (x2 and x3) and their relation (RightOf) are added

to the discourse graph. In addition, since “that apple”(i.e., x2) corefers with “an apple” (i.e.,

y1) presented by the robot in the previous turn, a coreference link is created from x2 to y1.

Importantly, in this turn human displays his acceptance of the robot’s previous presentation

(“an apple”) by coreferring to it and building further reference based on it. This is exactly

the agent-present-human-accept strategy described earlier. Since y1 maps to object v2 and x2

now links to y1, it becomes equivalent to consider x2 also maps to v2. We name a node such

as x2 a grounded node, since from the robot’s point of view this node has been “grounded”

to a perceived object (i.e., a vision graph node) via the agent-present-human-accept pattern.

At this point, the robot matches the updated discourse graph with the vision graph again

and can successfully match x3 to v3. Note that, the matching occurs here is considered

constrained graph-matching in the sense that some nodes in the discourse graph (i.e., x2) are

7Note that, since in this chapter we are using a dataset of human-human (i.e., the director and the
matcher) dialogues, decisions from the matcher are assumed known. We leave the agent’s decision making
(i.e., response generation) into the future work.

8We use xi to denote nodes that represent expressions from the human’s utterances and yi to represent
nodes from the robot’s utterances.
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Figure 3.6 An illustration of the constrained state-space search through utilizing the grounded
nodes.

already grounded, and the only node needs to be matched against the vision graph is x3.

The constrained matching utilizes additional constraints from the collaboration patterns in

a dialogue and thus can improve both the efficiency and accuracy of the matching algorithm.

Based on such matching result, the robot responds with a confirmation as in Turn 4

Figure 3.5(e)). The human further elaborates in Turn 5 “the kiwi is to the left of the

apple”. Again semantic processing and linguistic coreference resolution will allow the robot

to update the discourse graph as shown in Figure 3.5(f). Given this discourse graph, based

on the context of the larger discourse graph and through constrained matching, it will be

possible to match x1 to v1 although the object class of v1 is unknown.
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This example demonstrates how the discourse graph can be created to incorporate the

collaborative referring behaviors as the conversation unfolds and how such accumulated

discourse graph can help referential resolution through constrained matching. When the

“agent-present-human-accept” pattern is identified, the associated nodes (e.g., x2 in the

example) will be marked as grounded nodes and the mappings to their grounded visual

entities (i.e., vision graph nodes) will be added into the discourse graph. Such information

can be then incorporated into the state-space search algorithm straightforwardly: the search

procedure can now start from the state that already represents the known matching of

grounded nodes, instead of starting from the root. Thus it is constrained in a smaller and

more promising subspace to improve both efficiency and accuracy. See Figure 3.6 for an

illustration of the constrained state-space search through utilizing the grounded nodes.

3.3 Evaluation

3.3.1 Data

A total of 32 dialogues collected from our experiments (as described in Section 1.2) are

used in the evaluation. For each of these dialogues, we have manually annotated (turn-by-

turn) the formal semantics, discourse coreferences and grounded nodes as described earlier in

this chapter. Since the focus here is on graph building and matching for referential grounding,

we use these annotations to build the discourse graphs in our evaluation (Evaluation results

based on completely automatic language processing will be the discussed in Chapter 4).

Vision graphs are automatically generated by CV algorithms from the original images used

in the experiments. In our settings, the CV algorithm’s object recognition performance is

rather low: only 5% of the objects in those images are correctly recognized, thus reference
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resolution will need to rely on relations and collaborative strategies9.

The 32 dialogue graphs have a total of 384 nodes10 that are generated from directors’

utterances (12 per dialogue on average), and a total of 307 nodes generated from matchers’

utterances (10 per dialogue on average). Among the 307 matcher generated nodes, 187 (61%)

are initially presented by the matcher and then coreferred by directors’ following utterances

(i.e., relevant next turns). This indicates that the agent-present-human-accept strategy

is a prevalent way to collaborate in our experiment. As mentioned earlier, those director

generated nodes which corefer to nodes initiated by matchers are marked as grounded nodes.

In total, 187 out of the 384 director generated nodes are in fact grounded nodes.

3.3.2 Results

To evaluate our approach, we apply the graph-matching algorithm on each pair of dis-

course graph and vision graph. The matching results are compared with the annotated

ground-truth to calculate the accuracy of our approach in grounding directors’ referring de-

scriptions to visual objects. For each dialogue, we have produced matching results under

four different settings: with/without modeling collaborative referring (i.e., the agent-present-

human-accept collaboration) and with/without using hypergraphs. When collaborative re-

ferring is modeled, the graph-matching algorithm uses the grounded nodes to constrain its

search space to match the remaining ungrounded nodes11. When collaborative referring is

not modeled, all the director generated nodes are treated as ungrounded and need to be

9Although CV’s object recognition can be improved by employing more sophisticate algorithms and doing
more trainings, it can still become unreliable given noisy or unfamiliar environment. Thus our focus is how
to enable robust referential grounding when the agent’s visual perception suffers such limitations

10As mentioned earlier in Section 3.2.1, multiple expressions that are coreferential with each other and
describing the same entity are merged into a single node.

11Our referential grounding algorithm actually plays the role of the “matcher” in the experiment. From
the matcher’s/algorithm’s point of view, those grounded nodes have already been grounded onto known
objects via the agent-present-and-human-accept collaboration pattern
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Object-properties only Regular graph Hypergraph

Not modeling
31.4% 44.1% 47.9%

collaborative referring
Modeling

N/A 55.7% 66.2%
collaborative referring

Improvement N/A
11.6% 18.3%

(p < 0.05) (p < 0.02)

Table 3.2 Averaged referential grounding accuracies under different settings.

grounded by the algorithm. Besides, in order to investigate the advantages of the graph-

based approach, we have also applied a baseline approach which only takes object-specific

properties into consideration and ignores all the spatial and discourse relations between lin-

guistic entities [90, 91]. In this case, the discourse representations contain only “isolated

nodes” but not connected graphs.

The results of these different settings (averaged accuracies on the 32 dialogues) are shown

in Table 3.2. As we can see from the first row of Table 3.2, using our graph-based approach

significantly improves the referential grounding accuracy by 12.7% (p < 0.05 based on the

Wilcoxon signed-rank test [92] on the 32 dialogues). The results thus demonstrate the im-

portance of representing and reasoning on relations between entities in referential grounding,

and the graph-based approach provides an ideal solution to capture and utilize relations.

Modeling collaborative referring improves the matching accuracies for both regular graphs

and hypergraphs. When regular graphs are used, it improves overall matching accuracy by

11.6% (p = 0.05). The improvement is even higher as 18.3% when hypergraphs are used

(p < 0.02). The results indicate that proactively describing what the agent sees to the human

to facilitate communication is an important collaborative strategy in referential grounding

dialogues. Human can often ground the agent presented object via the agent-present-human-

accept strategy and use the grounded object as a reference point to further describe other
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Group 1 Group 2 Group 3

Number of dialogues 9 11 12
% of grounded nodes <30% 30%˜60% >60%

Average number of
20 21 12

object properties a

Average number of
11 13 8

relations b

Not modeling
49.7% 49.4% 45.3%

collaborative referring
Modeling

57.0% 76.6% 63.6%
collaborative referring

Improvement 7.3% 27.2% 18.3%

aSpecified by directors.
bSpecified by directors. The number includes both binary and group-based relations.

Table 3.3 Matching accuracies of three groups of dialogues (all the matching results here are
produced using hypergraphs).

intended object(s), and our graph-matching approach is able to capture and utilize such

collaboration pattern to improve the referential grounding accuracy.

The improvement is more significant when hypergraphs are used. A potential explanation

is that those group-based relations captured by hypergraphs always involve multiple (more

than 2) objects (nodes). If one node in a group-based relation is grounded, all other involved

nodes can have a better chance to be correctly matched. Whereas in regular graphs one

grounded node can only improve the chance of one other node, since only one-to-one (binary)

relations are captured by regular graphs.

To further investigate the effect of modeling collaborative referring, we divide the 32

dialogues into three groups according to how often the agent-present-human-accept collab-

oration pattern happens (measured by the percentage of the grounded nodes among all the

director generated nodes in a dialogue). Table 3.3 shows the statistics and the matching

accuracies for each of the three groups. As shown at the top part of Table 3.3, the agent-
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present-human-accept pattern happened less often in the dialogues in group 1 (i.e., less than

30% of director generated nodes are grounded nodes). In the dialogues in group 2, matchers

more frequently provided proactive descriptions which led to more grounded nodes. Match-

ers were the most proactive in the dialogues in group 3, thus this group contains the highest

percentage of grounded nodes. Note that, although the dialogues in group 3 contain more

proactive contributions from matchers, directors tend to specify less number of properties

and relations describing intended objects (as shown in the middle part of Table 3.3).

The matching accuracies for each of the three groups are shown at the bottom part of

Table 3.3. Since the agent-present-human-accept pattern appears less often in group 1, mod-

eling collaborative referring only improves matching accuracy by 7.3%. The improvements

for group 2 and group 3 are more significant compared to group 1. However, group 3’s

improvement is less than group 2, although the dialogues in group 3 contain more proactive

contributions from matchers. This indicates that in some cases even with modeling collabo-

rative referring, underspecified information from human speakers (directors in our case) may

still be insufficient to identify the intended referents. Therefore, incorporating a broader

range of dialogue strategies to elicit adequate information from humans is also important for

successful human-agent communication.

3.4 Conclusion and Discussion

In situated dialogue, conversation partners make extra collaborative efforts to mediate

a joint perceptual basis for referential grounding. It is important to model and interpret

such collaborative dialogue in order to build situated conversational agents. As a first step,

we have developed a graph-based representation to capture the linguistic discourse and the
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visual perception. Referential grounding is then formulated as a graph-matching problem

and a state-space search algorithm is applied to ground linguistic references onto perceived

objects. In addition, hypergraph representations have been used to account for group-based

descriptions, and one prevalent pattern of collaborative referring (i.e., agent-present-human-

accept) has been incorporated into the search algorithm. Our empirical results have shown

that, even when the perception of the environment by computer vision algorithms has a high

error rate (95% of the objects are mis-recognized), our approach can still correctly ground

those mis-recognized referents with 66% accuracy. As demonstrated by the results, our

graph-matching approach has provided a potential solution for reliable referential ground-

ing through modeling and utilizing spatial relations, group descriptions and collaborative

referring behaviors.

The results reported in this chapter are all based on manually annotated semantics and

coreference of the linguistic discourse. When the discourses are automatically processed, se-

mantics and coreference of these discourses often will not be obtained correctly or completely

as in their manual annotations. Therefore, an important next step should explore how to

efficiently match hypothesized discourse graphs (from automated language processing) with

vision graphs. This issue will be addressed in the later chapters.

Our current symbol grounding functions are manually defined and limited to the specific

environment used in the data collection experiment. In a real world scenario, grounding a

linguistic term to a visual feature will be influenced by many contextual factors such as the

surrounding of the environment, the discourse history, the speaker’s individual preference.

Thus, it is important to explore context-based semantic grounding functions and automatic

acquisition of these functions (e.g. [68, 32, 34, 35]) in future work.

The discourse graph presented in this chapter represents all the mentioned entities and
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their relations that are currently available at any given dialogue status. Due to its flatten

structure, however, it is difficult to model dialogue dynamics at the illocutionary level (for

example, in [93, 94]). Using richer representations such as hierarchical (hyper)graphs [95, 96]

will allow us to better represent and utilize the dialogue context for referential grounding

and for response generation.

Nevertheless, our graph-based approach provides a well-formed basis for modeling various

types of referring expressions, capturing the collaborative dynamics, and utilizing the dia-

logue context to constrain referential grounding. All these aspects are important for enabling

collaborative dialogue agents towards situated interaction in the physical world.
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Chapter 4

Learning to Mediate Perceptual

Differences

In Chapter 3, we have introduced our graph-based approach for referential grounding,

which uses ARG (Attributed Relational Graph) to capture the collaborative referring dia-

logue and solves referential grounding as a graph-matching problem. We have shown that

the graph-based approach provides a principled way to model different types of referring

expressions and incorporate the “agent-present-human-accept” collaboration pattern to im-

prove grounding accuracy. This chapter presents our work to further extend the graph-based

approach to address some other important issues in situated referential grounding:1

• The graph-matching we discussed so far has always been exact-matching, i.e., every

node in the discourse graph is forced to match with a node in the vision graph. However,

due to various errors that can happen in constructing both the discourse graph and

the vision graph, it may not always be suitable to enforce exact matching. Inexact-

matching criterion [78], i.e., obtaining proper matchings even if they are only partial, is

more desirable to accommodate errors and allow the system to deal with problematic

situations more flexibly.

1This chapter is based on the following publication:
C. Liu and J. Chai, “Learning to mediate perceptual differences in situated human-robot dialogue”, in
Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.
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• To enable more adaptive dialogue system, we should not only focus on the interpre-

tation of the referring expressions, but also try to acquire useful information from the

interaction with human to mediate the perceptual differences. The weight-learning

approach presented in this chapter demonstrates our effort towards this promising and

challenging goal. Through online interaction with the human, this approach can learn

a set of weights indicating how reliable/unreliable each dimension of the system’s per-

ception of the environment maps to the human’s linguistic descriptors. The system

can then adapt to the situation by applying the learned weights to ground follow-up

dialogues and/or adjusting its language grounding models accordingly.

This chapter is organized as follows: we first discuss the motivation of our weight-learning

approach to mediate the perceptual differences between agents and humans. We then present

the extension to the graph-matching formulation and the optimization based weight-learning

method. The empirical evaluation based on a human-robot dialogue dataset is presented

next, followed by discussions on the strengths and limitations of the work. Last, we conclude

the current work and discuss some future directions.

4.1 Motivation

As we have discussed in Chapter 3, computational approaches to referential grounding

often consist of two key components [?, 32, 26]. The first component addresses formalisms

and methods that connect linguistic terms (e.g., red, left) to the lower level numerical fea-

tures (e.g., rgb vectors) captured in the agent’s representation of the perceived environment.

Namely, this is what we called the semantic grounding functions in Section 3.2.2. The second

component extracts all the linguistic terms from a referring expression and combines their
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grounding models together to identify referents. For example, given a referring expression

“the big blue bottle to the left of the red box”, it will recognize that the intended referent

has several attributes (e.g., color is blue, size is big, type is bottle) and it is to the left of

another object. Then it will combine all relevant sensors’ inputs and apply the correspond-

ing semantic grounding models to identify the referent that most likely satisfies the referring

expression.

Many previous works on referential grounding have focused on the first component, i.e.,

exploring how to learn and ground individual linguistic terms to low level physical attributes

(e.g., [68, 97, 98]). Although different algorithms have been applied for the second compo-

nent [99, 100], little attention has been paid to the question how to intelligently combine

different attributes to ground references. However, this is an important question for situated

dialogue since the human and the agent have mismatched representations of the shared en-

vironment. For example, the agent may not recognize any bottle, or may see something blue

but not a bottle. Furthermore, the agent’s perception of blue may be very different from the

human’s perception of blue. How should the agent utilize these different attributes? What

part of its own perception should the agent trust the most when there is potential mismatch

with the human’s perception?

To address these questions, in this chapter we propose a computational approach that

will allow the agent to learn and mediate perceptual differences during situated dialogue.

The idea is that, by interacting with its human partner (e.g., through dialogue), the agent

should be able to assess its perceptual differences from its human partner. In particular,

the agent should be able to learn what dimension(s) of its own perception (e.g., recognition

of objects or colors) are more reliable, namely more aligned with the human’s perception

reflected by the linguistic descriptions. To mediate the perceptual differences, the agent
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should use this self-assessment to update its internal models and further improve referential

grounding in follow-up communication.

Specifically, we have developed an optimization-based approach to efficiently learn a set

of weights, which indicate how reliably/unreliably each dimension of the agent’s perception

of the environment maps to the human’s linguistic descriptions. By simulating different

types of mismatched perception, our empirical results have shown the weight-learning ap-

proach can successfully adjust the weights to reflect the agent’s perceptual capabilities. In

addition, the learned weights for specific linguistic terms (e.g., “red”, “left”) can further

trigger automatic model updating for these words, which in turn leads to an improvement

of referential grounding performance for future dialogues.

4.2 Weight Learning for Situated Referential Ground-

ing

In this section, we first present a general formulation of inexact graph-matching with

weighted attributes. The state-space search approach in Chapter 3 can be viewed as a

special case of this general formalism. Then we propose an optimization method which

utilize this formulation to learn, through the interaction with the human partner, a set of

weights that indicates how reliable/unreliable each of the agent’s dimensions of perception

maps to the human’s linguistic descriptions.
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4.2.1 Inexact Matching with Weighted Attributes

The same as in Section 3.2.2, we first construct two ARG representations based on the

language and vision processing outcomes, which are the discourse graph G and the vision

graph G′.

G = (X,E)

X = {xm | m = 1, . . . ,M}

E = {ei = (ei1, ei2) | i = 1, . . . , I; ei1 ∈ X, ei2 ∈ X}

(4.1)

G′ =
(
X′,E′

)
X′ =

{
x′n | n = 1, . . . , N

}
E′ =

{
e′j =

(
e′j1, e

′
j2

)
| j = 1, . . . , J ; e′j1 ∈ X′, e′j2 ∈ X′

} (4.2)

In an ARG, each node (e.g., xm) is assigned a set of A attributes Um and each edge (e.g.,

ei) is assigned a set of B attributes Vi (A and B are two predetermined numbers), i.e.,

Um = {uma | a = 1, . . . , A}

Vi = {vib | b = 1, . . . , B}
(4.3)

Note that, we can also assign a special UNK value to an attribute, meaning this attribute is

currently “unknown” for this node/edge. For example, when an attribute is not mentioned

or the word used to describe it is “out-of-vocabulary”, the value of that attribute should be

assigned the value UNK.

As defined earlier in Section 3.2.2, a matching Θ between G and G′ is to assign each

node xm in X a “label” θm to indicate which node in X′ that xm maps to. However, the

difference here is that, we now allow Θ to be an inexact-matching. Namely, we first define a
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set of node indices as M̆ = {1, . . . ,M}, and two subsets of M̆ (i.e., M̆1 and M̆2) such that

M̆1 ⊆ M̆ and M̆2 = M̆− M̆1. And an inexact-matching matching Θ is then formally defined

as:

Θ = Θ1 ∪Θ2

=
{
θm1 = x′n | m1 ∈ M̆1;x′n ∈ X′

}
∪
{
θm2 = Λ | m2 ∈ M̆2

} (4.4)

where Θ1 specifies the label/mapping of each of the nodes in X for which a proper mapping

can be found in X′, and Θ2 contains the nodes in X for which no proper mapping can be

found (i.e., Λ denotes a special “NULL” node, thus θm = Λ means node xm is not matched

with any node in X′).

Let XΘ1
denote the subset of nodes that are labeled in Θ1 (i.e., XΘ1

=
{
xm | m ∈ M̆1

}
,

and EΘ1
denotes the set of edges induced by XΘ1

(i.e., EΘ1
= {ei = (ei1, ei2) | ei ∈ E, ei1 ∈

XΘ1
, ei2 ∈ XΘ1

}). The compatibility function of an inexact-matching Θ can then be defined

as2

f (Θ1) =
∑

xm∈XΘ1

g
(
xm, x

′
n

)
+

∑
ei∈EΘ1

h
(
ei, e

′
j

)
f (Θ2) = η1

(
M −

∣∣∣XΘ1

∣∣∣)+ η2

[
M (M − 1)−

∣∣∣EΘ1

∣∣∣]
= η1

(
M −

∣∣∣XΘ1

∣∣∣)+ η2

[
M (M − 1)−

∣∣∣XΘ1

∣∣∣ (∣∣∣XΘ1

∣∣∣− 1
)] (4.5)

where x′n and e′j are the corresponding node and edge of xm and ei according to Θ1, respec-

tively. η1 and η2 are the parameters for determining whether a node should be mapped to

the “NULL” node (i.e., treated as unmatched) or not.

2Note that, both G and G′ are now treated as complete graphs, in which each ordered pair of nodes are
connected by an edge, thus G contains M (M − 1) edges. In the discourse graph G, if the relation between
two nodes are not mentioned, we just set the attributes of the corresponding edge to UNK (i.e., “unknown”).
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Similar to exact-matching, the optimal matching between G and G′ is the one with the

highest compatibility score:

Θ∗ = arg max
Θ

f (Θ) (4.6)

and the compatibility function for a matched pair of nodes and edges are based on the

attributes assigned to them:

g
(
x, x′

)
= 1

A

A∑
a=1

ga
(
ua, u

′
a

)
h
(
e, e′

)
= 1

B

B∑
b=1

hb
(
vb, v

′
b

) (4.7)

As we have already discussed in Section 3.2.2, g
(
x, x′

)
and h

(
e, e′

)
are further decom-

posed to a set of stand-alone semantic grounding functions. Now we also assign each of

these grounding functions a weight αak, representing the importance or reliability of each

grounding function for finding the correct matching. For example, suppose we have a set of

grounding functions for colors such as “red”, “green” and “yellow”. If the agent’s perception

and model of red color is more accurate than other colors, then the grounding function of

“red” should be assigned a higher weight. Also note that, when the value of ua is “unknown”

(i.e., not-mentioned or out-of-vocabulary), ga
(
ua, u

′
a

)
just returns the predetermined value

η1. Thus the decomposition of g
(
x, x′

)
and h

(
e, e′

)
now become:

ga
(
ua, u

′
a

)
=



αa1ga1

(
u′a
)

if ua = y1 ;

αa2ga2

(
u′a
)

if ua = y2 ;

...
...

αaK gaK
(
u′a
)

if ua = y
K

;

η1 else

(4.8)
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hb
(
vb, v

′
b

)
=



βb1hb1

(
v′b
)

if vb = z1 ;

βb2hb2

(
v′b
)

if vb = z2 ;

...
...

βbL
hbL

(
v′b
)

if vb = z
L

;

η2 else

(4.9)

Given this general form of weighted inexact-matching, we can get the special case as what

we have used in Section 3.2.2 by (1) let η1 = η2 = 0, thus it becomes exact-matching; (2) let

all the weights equal to 1, thus each attribute value is treated equally when the compatibility

score of a matching is calculated.

We close this section by a discussion on how inexact-matching is controlled by the two

parameters η1 and η2. Basically, inexact-matching means not every node in G has to be

matched with a node in G′, but some nodes can be unmatched (i.e., Θ2) if no proper

matchings are found for them. Suppose there is only one node in G, and it has only one

attribute mentioned (e.g., color is red). For this node to be matched with a node in G′, there

must be at least one node in G′ such that α
red

g
red

(
u′
)
> η1, otherwise this node will be

matched with Λ (i.e., the NULL node). Suppose we further add an edge with one mentioned

attribute (e.g., something is to the left of the red object) to G, then in G′ there must be

at least one node and one relation, such that α
red

g
red

(
u′
)

+ β
leftof

h
leftof

(
v′
)
> η1 + η2 ,

to find a non-NULL matching. In general, for a node xm to be matched with a non-NULL

node x′n, we should have g
(
xm, x

′
n

)
+

∑
ei∈Exm

h
(
ei, e

′
j

)
> η1 + |Exm | η2 , where Exm is the

set of edges that are associated with xm.
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4.2.2 Optimization for Weight Learning

The graph-matching algorithm relies on all these attributes to find out proper matchings

and filter improper ones. Importantly, because the agent can have different capacities of per-

ceiving these different attributes and linguistic referring expressions associated with different

attributes can also have different levels of ambiguities, different attributes then should not be

always treated equally. Thus we develop an optimization based approach to automatically

acquire a set of weights based on the matching hypotheses and the ground-truth matching.

The weights (i.e., αa and βb) are the “variables” that we aim to adjust, and our general

objective is to maximize the reference grounding performance. We represent all the weights

using a vector w:

w = [ α11, α12, . . . , α21, α22, . . . , αA1, αA2, . . . ,

β11, β12, . . . , β21, β22, . . . , βB1, βB2, . . . ,

η1 , η2 ]T

(4.10)

For a given matching Θ, its compatibility score f (Θ) then becomes a linear function of

w:

f (Θ) = f
Θ

(w) = c
Θ

w (4.11)

where c
Θ

is a vector of “coefficients” that are computed from the given Θ and the grounding

functions, based on our previous definitions.

Given two graphs G and G′, suppose Θ̂ is the ground-truth matching, and Θ1,Θ2, . . . ,ΘD

are the top-D matching hypotheses (i.e., Θ1 is the top-1 hypothesis and so forth) generated

using an initial weights vector w0. If Θ1 6= Θ̂, we can try to find a new w that may lead to
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a better matching outcome. This can be formulated into an optimization problem as:

max
w,ε

c
Θ̂

w − γ
D∑
d=1

εd

s. t.

cΘ1
w − c

Θ̂
w ≤ ε1, ε1 ≥ 0

...

cΘD
w − c

Θ̂
w ≤ εD, εD ≥ 0

(4.12)

where {εd} is a set of “slack” variables to accommodate infeasible constraints, and γ is a

penalizing factor to push the values of all εd to be small (i.e., the closer to 0 the better).

The essence of this optimization scheme is to find a proper w, based on which the ground-

truth matching can be ranked as top as possible among the matching hypotheses generated

by the state-space search algorithm. If such optimal values of w can be found, we expect it

can facilitate the search algorithm to select out better matching hypotheses next time when

a similar instance is encountered.

For example, if the referring expression is “the red apple” but in the vision graph recog-

nition of apple is not reliable (e.g., pear is always recognized as apple), then it is likely that

“red apple” will be wrongly matched with a pear. Through our learning scheme, it can be

learned that the weight for “apple” need to be low and the weight for “red” need to be

high for the whole expression to be correctly matched. Thus, the learning outcome (i.e.,

the learned weights) can tell us which attribute-values are more/less reliable for finding the

correct matching results.

Actually, the optimization problem we have here is exactly a linear programming problem,

which can be efficiently solved using algorithms such as the Interior Point methods [101].
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4.3 Evaluation

4.3.1 Data

(a) Situated setup

H1: The green cup is called Bill.

R1: Ok, the green cup is Bill. (point to the inferred object)

H2: Do you see a car? 

R2: Yes, I see a car. 

H3: Do you see a blue can behind it? 

R3: I don’t see a blue can. But I see a blue unknown object 

there. Is that the can you are talking about? (point to 

the inferred object)

H4: Yes, it’s called Mary. 

R4: Got it, the blue can is Mary. 

(b) Sample Dialogue

Figure 4.1 An example of situated setup and human-robot dialogue

We use the data collected from earlier experiments on human-robot dialogue to evaluate

our approach. Here we first give a brief description of these experiments to help better

understand the data3. The goal of these experiments was to investigate collaborative ef-

fort in human-robot dialogue. In these experiments, a NAO robot (with fully automated

3See [102] for the details of this human-robot dialogue experiment.
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components for language processing, referential grounding, and dialogue management) was

positioned with a human subject to play a set of naming game as shown in Figure 4.1(a).

Human subjects were given some secret names for several objects in the shared environment.

The task was for the human to communicate these secret names to the robot through dia-

logue so that the robot would know which object had what name. Because of the nature of

this naming game, these experiments led to dialogues focusing on referential communication

as shown in an example in Figure 4.1(b).

One controlled condition in the experiments was to simulate different perceptual capa-

bilities of the robot, which resulted in two levels of variations:

• High-Mismatch simulated the situation where the human and the robot had a

high mismatch in their perceptions of the shared environment. The robot’s object-

recognition error rate was manipulated to be very high, namely, a large portion (60%

or 90%) of the objects were mis-recognized.4

• Low-Mismatch simulated the situation where the human and the robot had a low mis-

match in their perceptions of the shared environment. The robot correctly recognized

most of the objects, with only a small portion (10% or 30%) being mis-recognized.

Although the experiment was originally designed for a different purpose, it actually pro-

vides an ideal data set for evaluating our weight-learning approach. Since we currently do

not address dialogue management, evaluating our algorithm only needs language inputs from

the dialogue discourse and the corresponding visual environment. Furthermore, the system-

atic simulation of mismatched perceptions allows us to evaluate whether the weight-learning

4These mis-recognized objects were randomly selected, and their object-recognition results were randomly
assigned.
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Object-specific attribute
Spatial relation

Type Color Location

Number of 686 747 281 162
expressions

Table 4.1 Attributes and relations used in the referring expressions in the human-robot data

outcome is consistent with our expectation given the simulated situation. For example, we

would expect the learned weight for the attribute type (i.e., the object-recognition result)

to be smaller under the high-mismatch condition than under the low-mismatch condition.

Therefore, we apply the weight-learning approach on the two subsets of data to see whether

the expected weights can be learned. Before we present the results, we first briefly summarize

the data.

There were a total of 147 dialogues collected from 24 human subjects. Among these

dialogues, 73 were collected under the low-mismatch condition and 74 were under the high-

mismatch condition. For each dialogue, the robot’s perception of the environment, such as

the object-recognition results, the color of each object (represented as a rgb vector) and

the position of each object (represented as x and y coordinates), were also logged. It thus

provided a dataset with both discourses of human’s spontaneous referring expressions and

robotic perceptions of the shared environment, which is desired for the evaluation of our

approach here.

Table 4.1 summarizes the most frequently used attributes/relations in human subjects’

referring expressions5. As shown in the table, the type (e.g., “the bottle”) and color (e.g.,

“the red object”) attributes are the most commonly used to describe the referents. This

conforms with psycholinguistic findings on people’s preference of referring [41]. Human

subjects in our experiments always intend to mention these two attributes when they refer

5Some other less-frequently used (appeared less than 20 times) descriptors such as size are excluded here.
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to an object, thus the robot’s ability of correctly perceiving the type and color attributes

can be crucial for successful referential grounding. Furthermore, spatial location of an object

(e.g., “the object in the front”) is another commonly used descriptor, which can be utilized

by robots equipped with advanced spatial sensors6.

Besides these object-specific attributes, referring based on spatial relations between two

objects is also observed. When one object has already been grounded, it can then serve as a

reference point for referring to another object based on their relation. We mainly observed

two kinds of relations, which are the projective relations (e.g., “the bottle is to the right

of the box”) and the relations based on object’s proximity (e.g., “it is close to the box”).

Although spatial relations can be very useful under certain situations, in general they are less

often used than object-based attributes. In the following section, we will evaluate our weight-

learning approach based on these three most frequently used object-specific attributes, i.e.,

type, color, and location.

4.3.2 Weight-learning Results on Object-specific Attributes

To evaluate our weight-learning method, we apply it to the dataset of 147 (i.e., low-

mismatch and high-mismatch) dialogues to see what weights can be learned and how refer-

ential grounding can be potentially improved. Each dialogue in the data is represented by

a discourse graph based on automatic language processing, and each discourse graph is also

paired with a vision graph that represents the perceived environment in which the dialogue

happened7. Thus a “training” instance from the data is a pair of a discourse graph and a

6What we call the “spatial location” here is actually one type of spatial relation within the egocentric
frame-of-reference [59], i.e., using the viewer’s own field-of-view as the reference frame. Here we treat it as
an object-specific property other than a relation because it does not involve another object.

7The vision graphs are generated from the logged robotic vision information during the experiment.
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vision graph. We then apply our weight learning method as describe in Section 4.2 to each

training instance to learn a set of weights for the type, color, and location attributes. We

evaluate the weight-learning at two levels, i.e., the attribute-level and the word-level (dis-

cussed later in Section 4.3.3). When learning weight at the attribute-level, we simplify the

weight learning by letting αa1 = αa2 = · · · = αaK and βb1 = βb2 = · · · = βbL
, thus we only

learn one weight for each attribute. Note that, in the current evaluation, we let η1 = η2 = 0,

thus only exact-matching is performed here.

Although not exactly the same, our weight learning procedure follows the online learning

paradigm [103] in real interaction scenario. Given an instance (i.e., dialogue), the “learner”

first generates predicted outcome (i.e., grounding results); and then it receives the true

outcome for this instance8, based on which its internal model (i.e., the weights) is updated

for making better future predictions. Therefore, we conduct the learning and evaluation

in a simulated online fashion to investigate how effectively and efficiently it can adapt to

the situation of mismatch perceptions. In each simulation run, the weight-learner receives a

sequence of 20 training dialogues that are randomly picked from the dataset. Upon receiving

each training instance, it first generates a list of grounding hypotheses using the same state-

space search algorithm as discussed in Section 3.2.2 based on the current weights. After the

grounding hypotheses have been generated, the ground-truth is then considered given, and a

new set of weights is learned using our optimization method. With the learned new weights,

8When learning the weights of attributes, we assume that the ground-truth mapping between the linguistic
entities (i.e., discourse graph nodes) and the physical objects (i.e., vision graph nodes) is already known.
Although in the original experiment, due to various kinds of errors and the time constraint, some entities
could be incorrectly grounded or not grounded at all by the end of a dialogue. Here we just assume that the
ground-truth mappings can always be correctly established, e.g., through endless interactions.
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Type Color Location

Low-mismatch 0.87 0.97 0.97
High-mismatch 0.45 0.9 0.71

Table 4.2 The final weights learned after 20 training dialogues (averaged over 100 runs of
simulation)

we then updated the current weights as9:

wt = wt−1 + γ(wnew − wt−1)

and move to the next instance in the training sequence. Besides, to evaluate the effect

of weight-learning on referential grounding, after each training dialogue we also apply the

current learned weights to ground all the other 53/54 dialogues that are not selected as

training data. Such a procedure repeats itself till the entire training sequence has been gone

through.

We started with uniform weights (i.e., all being 1), and repeated the weight learning

process throughout the sequence of the selected 20 training dialogues. Table 4.2 summarizes

the final learned weights on the low-mismatch and high-mismatch data after going through

the 20 training dialogues10. As we can see in Table 4.2, the most significant change from the

low-mismatch condition to the high-mismatch condition is the drop of the learned weight for

the type attribute (0.87 vs. 0.45). This is consistent with the situation (i.e., low-mismatch

vs. high-mismatch) from which the data was collected. To further demonstrate the weight-

learning efficiency, we plot the updated weight of the type attribute after each training

dialogue, as shown in Figure 4.2(a). It shows that when the robot’s object-recognition is

9γ is a step-size parameter set to be 0.5.
10We have run the simulation 100 times, and the weights shown in Table 4.2 are the average over the 100

runs.
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significantly mismatched with the human’s perception (i.e, the high-mismatch condition),

the weight for the type attribute quickly descends in the first 5 training dialogues, and after

that it starts to become stable and gradually converges to the final value. The results thus

demonstrate that our weight-learning approach can efficiently learn informative weights to

indicate the unreliable attributes of the robot’s perception.

Besides the type attribute, the learned weights of the other attributes also indicate how

reliable they are for referential grounding11. The color attribute appears to be a reliable

information source here, i.e., the color perception and grounding models are compatible

with human descriptions. The spatial location attribute is less reliable compared to the color

attribute, although the robot’s perception of spatial information ought to be accurate. This

is possibly due to the vagueness of spatial expressions themselves, since a spatial expression

such as “object in the front” can often result in several objects that all conform with the

description and thus difficult to resolve based on the spatial information alone.

These learned weights not only indicate the robot’s perceptual capabilities, but can also

improve the referential grounding accuracy when applied to subsequent dialogues. To demon-

strate this, we use all the remaining dialogues (i.e., those not selected as training dialogues)

as the testing set12. After each training dialogue, we applied the current learned weights

to generate referential grounding results on all the testing dialogues. The results (averaged

referential grounding accuracies on the testing dialogues) are shown in Figure 4.2(b). Un-

der the low-mismatch situation, applying the learned weights does not significantly change

the grounding accuracy. This is because the learned weights are close to the initial value

11Note that, the weights learned from the high-mismatch data can be more informative, because our
weight-learning method only updates the weights when referential grounding results are not aligned with the
ground-truth, which is more often the case under the high-mismatch situation.

12There are 53 and 54 testing dialogues for the low-mismatch and high-mismatch conditions, respectively.
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(b) Referential grounding accuracies on the testing set by
applying the learned weights

Figure 4.2 weight-learning and referential grounding results after each training dialogue
(averaged over 100 runs)

(i.e., 1.0) as all the attributes were reasonably reliable. Under the high-mismatch situation,

using the learned weights can improve grounding accuracy by 9.4% (from 44.4% to 53.8%)

within the first 5 training dialogues. After that the grounding accuracy stays stable since
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the learned weights also become stable as shown in Figure 4.2(a). Therefore the robot can

reduce referential grounding errors by assigning lower weights to those unreliable attributes,

once they have been learned by the weight-learning approach.

4.3.3 Weight-learning Results at Word Level

Besides learning weights at the attribute level as we just discussed, it will be even more

useful if the weights can be learned at a lower level, i.e., to learn a weight for each of the

words that are used to describe an attribute. The learned weight then indicates the reliability

of the robot’s perception and/or grounding model on that specific word. For example, if the

robot can learn that its perception of “red” is unreliable, it can then adjust the grounding

model for this specific word accordingly. This would be more useful than only knowing the

overall reliability of the color attribute.

To enable learning weights at the “word level”, instead of assigning only one weight for

an attribute (i.e., all the words that describe one attribute always share the same weight), we

need to assign each word’s grounding function a unique weight (as described in Section 4.2).

The same weight learning approach can then be applied to learn how well the robot’s per-

ception is aligned with the human’s description for each specific word. To evaluate word

level weight-learning, we again use systematic simulation of perceptual errors which allow

us to easily assess whether expected weights can be learned given the simulated situation.

Specifically, we use the low-mismatch data13 and modify the robot’s perception to simulate

some common errors that can happen in a real situation. The modifications we make are:

• For each object’s perceived color (i.e., an rgb vector), we increase the intensity of the

13Since the low-mismatch data contain few original errors, it would be easier to see the effect of simulated
errors here.
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Figure 4.3 An illustration of the different viewing directions. Direction 1 is the robot’s
original viewing direction in the experiments, which is the same as the human subject’s.
Direction 2 is the misaligned viewing direction simulated by decreasing the x coordinates
from direction 1. Because of the narrow viewing range of the robot’s camera, all the objects
become closer to the left edge of its field-of-view (i.e., their x coordinates decrease) under
direction 2.

Color “orange” “pink” “green” “blue”
Without simulated errors 0.92 0.95 0.9 0.95

With simulated errors 0.47 0.59 0.88 0.97

Location “left” “right” “front” “back”
Without simulated errors 0.95 0.81 0.97 0.95

With simulated errors 0.19 0.73 0.77 0.73

Table 4.3 Final learned weights for some common words of the two attributes after 20 training
dialogues (averaged over 100 runs of simulation)

r and g channels (by 100)14 and decrease the intensity of the b channel (by 100). This

is to simulate color-sensing error, e.g., due to environmental lighting noise or deficient

color sensor.

• For each object’s perceived position (i.e., x and y coordinates), we decrease the x

coordinate (by 300 pixels)15. This is to simulate a different viewing direction that may

affect the robot’s interpretation of spatial language such as “on the left”, as illustrated

in Figure 4.3.

14The range of the intensity of each channel is from 0 to 255.
15The size of the image produced by the robot’s camera is 1280× 960 pixels.
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With these simulated perceptual errors, we then use the same online learning scenario

to evaluate the effectiveness and efficiency of weight-learning at the word level. Namely, we

randomly select 20 dialogues as the training sequence and go through these dialogues one-

by-one to learn and update the weights. Table 4.3 summarizes the final learned weights of

some common words of the type and location attributes after 20 randomly selected training

dialogues. In the table we also show the learned weights from the situation that no errors

were simulated, so that the weights learned with simulated errors can be compared. As we

can see from Table 4.3, there are clear correspondences between the learned weights and the

simulated errors in the robot’s perception:

• For the color attribute, the learned weights indicate that the robot’s grounding of

“orange” and “pink” is affected by the simulated error of the inflated r and g channel

intensities and the deflated b channel intensity.

• For the location attribute, the very low weight learned for “left” indicates the robot’s

problematic interpretation of this concept, which corresponds to the simulated error

of shifting all the perceived objects to the left side.

These correspondences between the learned weights and the underlying perceptual er-

rors again demonstrate that our weight-learning approach is capable of learning informative

weights, which indicate how reliably the robot’s perception maps onto the human’s linguis-

tic descriptions. For the efficiency of weight-learning at word level, it is also the same as

the previous attribute-level weight learning. Figure 4.4 shows the plots of updated weights

for the words “orange”, “pink”, and “left”, after each training dialogue during the online

weight-learning process. It took only 5 training dialogues for the weight of “orange” to land

on its final value. The weight of “pink” and “left” took some more training dialogues to
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Figure 4.4 Word level weight-learning evaluation results after each training dialogue (aver-
aged over 100 runs of simulation)

converge to the final values because they did not appear as often as the word “orange” in

the data.

In a realistic setting, a more dynamic interaction and learning process would be expected.

For example, the robot could adjust and improve its perceptual capabilities dynamically,

based on the interaction with the human. Thus we further simulate one such dynamic

process to see how our weight-learning responded to it. We still use the same data (i.e., low-

mismatch data with simulated perceptual errors) and the online weight-learning process, but

add a model-updating process after the first 5 training dialogues. This is to simulate the

scenario that the robot automatically start to adjust its language grounding models for the

unreliable words with low learned weights.

Initially, the grounding models for color and location terms were all defined as Gaussian

distributions over the corresponding visual features [68]. To update the grounding models for

the two color words (i.e., “orange” and “pink”), we follow the online word model acquisition

approach as described in [104], which essentially keeps updating the mean of the Gaussian
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distribution by averaging out the old mean and the new observed values. In addition to

updating model parameters, the underlying models can be adjusted as well. For instance,

for the word ”left”, the robot can switch from the Gaussian model to the exponential decay

function model as in [53].
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(a) Learned weights with model updating
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Figure 4.5 Word level weight-learning results with model updating (averaged over 100 runs
of simulation)

Figure 4.5(a) shows the plots of learned weights for these three words with the model
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updating process. After adaptation, the weights for “orange”, “pink”, and “left” all become

high values, indicating their grounding models became more consistent with the human’s

descriptions. We also evaluate referential grounding accuracy on the testing dialogues as

we did earlier, but using both the updated models and weights after each training dialogue.

Figure 4.5(b) further shows that the model updating process is able to improve the perfor-

mance of the language grounding models which were previously affected by the simulated

perceptual errors. Referential grounding accuracy is improve by 10% (from 48.7% to 58.7%)

with the updated models and weights, compared to the initial state of using the original

models and uniform weights. These results again demonstrate that our weight-learning ap-

proach can efficiently update the weights which consistently reflect the underlying changes

of the robot’s perceptual and language grounding capabilities.

As we can also see in the simulated model updating process, the robot’s perceptual errors

can be accommodated by adjusting language grounding models or switching to a more robust

model. For color, because of the simulated perceptual errors (i.e., inflated r and g channel

intensity and deflated b channel intensity), the original grounding models became inaccurate

and misleading. For example, a blue object was likely to be perceived as pink, thus it

would lead to incorrect matching result. Such errors can be accommodated by re-calibrating

the parameters of the color grounding models, so that the models are more aligned with the

current environmental or robot’s sensory condition, as demonstrated by our simulated model

updating process (also see [104]). Our weight-learning approach can provide useful guidance

to the model adjusting effort by indicating the models of which words are unreliable and

thus need to adjusted.

For the grounding model of spatial descriptors like “left”, we have two models (i.e., a

Gaussian model and a exponential decay function model) and we switch from one to the
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Figure 4.6 Two grounding models for “left”. I.e., a grounding model here is a scoring
function w.r.t. the x-coordinate of an object’s center of mass. It measures how well an
object’s location conforms the descriptor “left”. Model 1 is the Gaussian model; Model 2 is
the exponential decay function model.

other in the model updating scenario. As indicated by the weight-learning outcome, the

exponential model is more reliable than the Gaussian model. Figure 4.6 shows the two

models for “left” (Model 1 is the Gaussian model and Model 2 is the exponential model.

Both are defined as functions w.r.t. the x-coordinate of the center of mass of an object).

The Gaussian model assigns higher scores to the central area of the left region in the image,

whereas the exponential model assigns higher scores to the area closer to the left edge.

The exponential model is actually more robust against the “misaligned view” error (e.g.,

all the objects are shifted towards the left side as in our simulation). For example, assume

that the original coordinates for object o1 is x1 = 350 and for object o2 is x2 = 700, and

the coordinates changed to x1
′ = 50 and x2

′ = 400 due to the perceptual error as in our

simulation. Although both models now incorrectly assign non-zero scores to o2 of being “on

the left”, model 2 still assigns a higher score to o1 and thus prefers o1 as a better match than
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o2. As demonstrated by the case of switching spatial models, when the robot has different

models to choose and needs to determine which one is better under the current situation,

weight-learning again provides important guidance.

One limitation of the current weight-learning approach is it only learns about false-

positive errors, but not false-negative errors. For instance, if the robot’s object-recognition

constantly mis-recognize bottles as “boxes”, a low weight can be learned for the word “box”

but not “bottle”. Namely, when the grounding model of “box” often produced false-positive

errors, the approach learned a low weight to indicate the problem. But it can not respond

to the false-negative errors (i.e., failed to recognize a bottle). Similarly, low weights were

learned for “pink” and “orange” but not for “blue” when blue color was likely to be mis-

recognized as pink or orange, and a low weight was learned for “left” but not for “right”

when objects on the right were likely to be mis-detected as on the left. How to develop a

systematic approach that can learn from both false-positive and false-negative errors is an

interesting topic for future work.

4.4 Conclusion and Discussion

Towards enabling robust and adaptive human-robot dialogue, we have developed an opti-

mization based weight-learning method that can mediate the perceptual differences between

a robot and its human partner for referential grounding. Since audio perception (i.e., speech

recognition) related issues have been addressed before (e.g., [21]), we focus on the robot’s

visual perception of the physical environment here.

As demonstrated by our empirical evaluations, our weight-adjusting mechanism is capa-

ble of learning informative weight values that reflect the alignment or misalignment between
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the robotic visual perception and the human’s description of the shared physical environ-

ment. Our method can efficiently and reliably adapt to new situations through just a small

number of interactions, as soon as the change occurs. The learned weights can be applied

to referential grounding and/or word grounding model learning algorithms to improve the

referential grounding performance. They can also be utilized by referring expression genera-

tion algorithms (e.g., [105, 106]) to facilitate referential communication between robots and

humans.

While many previous works mainly focused on learning semantic grounding models. The

work presented in this chapter addresses language grounding from a different angle. The focus

here is on assessing and adapting existing semantic grounding models for a given situation.

The reliabilities of the semantic grounding models can be affected by many situational factors,

such as noisy environment, faulty sensors, and human speakers individual differences. Thus,

even previously well-performed models can become unreliable in a different environment. We

address this challenge by proposing a weight-learning mechanism that quickly learns a set

of weights to indicate the reliabilities of the semantic grounding models under the current

situation.

For example, suppose a color-blind person speaks to the robot and swaps red and green.

In this case, our approach can quickly learn new weights for color words, indicating the

inconsistency between the current color models and this specific speaker. It will allow the

robot to discount the color terms (since they are not reliable for this user) and rely on other

more reliably terms (e.g., spatial terms) to ground linguistic expressions to the environment.

When the system turns to a normal person again, it can also quickly update the weights

back to normal values, even if the weights have been offset by the color-blind person. Our

approach can learn and remember specific weights for each specific person/situation in an
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online manner through a couple of training dialogues as demonstrated by the evaluation

results.

There are several interesting future directions that can be further explored. First, our

current evaluation is based on several simplifications, including the simulation of perceptual

errors and the strong assumption that the correct grounding information can be provided

to the robot through dialogue with a human. Using simulated visual perceptual errors

enables us to do controlled evaluations (e.g., manipulating color and spatial perception in

a systematic way) without concerning about the effects of many nuisance factors that may

occur in real-time physical setting. It allows us to focus on evaluating whether the algorithm

performs the way expected (e.g., when the color perception changes whether the algorithm

correctly responds to such change). Now we have evaluated the algorithm using the simplified

setting, the next step is to integrate this algorithm into our dialogue system, and evaluate

our algorithm with actual perceptual errors from real environments (e.g., varying lighting

conditions, camera angles, etc.). Besides, the assumption that the ground truth is provided

at the end of dialogue is certainly a strong assumption, which points to the importance

of engaging humans in providing feedback to the robot during dialogue. This again calls

for sophisticated and integrated models to support collaborative referential communication

between humans and agents.

Second, we have only evaluated exact graph-matching results so far. To enable more

robust situated referential grounding, learning useful values of parameter η1 and η2 for con-

trolling inexact-matching should be further explored. The role of η1 and η2 in the matching

process is like two “threshold” values that will determine whether a node can be found a

proper matching or not. Inexact-matching can signal the problematic situation (by assign-

ing a node the “NULL” label) in which a discourse graph node’s matching compatibility is
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too low with any node in the vision graph. Such situation can happen due to errors from

both language and vision processing. For example, one situation is there can be a “missing

object” which the agent cannot see at all due to CV segmentation error. In such case, only

inexact-matching can produce a proper matching, i.e., to match human’s description on a

missing object to NULL. In general, allowing NULL-matching with inexact-matching makes

referential grounding more flexible and thus provides the dialogue manager better choices to

deal with problematic situations.

Last but not least, it is important to explore a broader range of information and knowledge

that can be dynamically acquired to further mediate perceptual differences between the

human and the agent. For example, it can be very helpful to learn context-dependent models

for language interpretation and grounding, or to acquire knowledge about out-of-vocabulary

words. Furthermore, it is also important to investigate how to utilize different kinds of

machine learning mechanisms (e.g., online learning, reinforcement learning, or unsupervised

learning) to better serve the purposes of supporting situated interaction in the open world

and long-time relationship between agents and their human users.
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Chapter 5

A Probabilistic Labeling Approach

The graph-matching approach for referential grounding we have discussed so far is based

on the state-space search algorithm to obtain proper grounding results. Although it has made

meaningful progress in addressing collaborative referential grounding under mismatched per-

ceptions as demonstrated in Chapter 3 and 4, the state-space search based approach has two

major limitations. First, it is neither flexible to obtain multiple grounding hypotheses, nor

flexible to incorporate different hypotheses incrementally for follow-up grounding. Second,

the search algorithm tends to have a high time complexity for optimal solutions. Thus, the

state-space search based approach is not ideal for collaborative and incremental dialogue

systems that interact with human users in real time.

To address these limitations, this chapter presents a new approach to referential ground-

ing based on probabilistic labeling.1 This approach aims to integrate different types of

evidence from the collaborative referential communication discourse into a unified proba-

bilistic scheme. It is formulated under the Bayesian reasoning framework to easily support

incorporation and generation of multiple grounding hypotheses for follow-up processes. Our

empirical results have shown that the probabilistic labeling approach significantly outper-

forms the state-space search approach in both grounding accuracy and efficiency.

In this chapter, we first discuss some motivations for developing a probabilistic approach

1This chapter is based on the following publication:
C. Liu, L. She, R. Fang, and Y. J. Chai, “Probabilistic labeling for efficient referential grounding based on
collaborative discourse,” in Proceedings of the 52nd ACL conference, pp. 13–18, 2014.
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to situated referential grounding. We then give a detailed account on the key limitation of

the state-space search based approach. The technical details of the probabilistic labeling

based approach is presented next, followed by the evaluation of this new approach. Lastly,

we conclude this section with some discussions on future directions.

5.1 Motivation

As we have already discussed in Chapter 1, one key challenge for referential communi-

cation in situated settings is the mismatched capabilities between the human and the agent

to perceive and reason about the shared environment. Because of the mismatched capabil-

ities, the human’s and the agent’s knowledge and representations of the shared world can

be significantly different. Object-specific properties such as object-class, color and shape

now become unreliable and insufficient for communicating the intended objects. Referential

communication thus becomes more difficult and extra efforts have to be made to mediate

between the mismatched perceptions [107].

To overcome this challenging problem, collaborating through extensive dialogue between

the human and the agent becomes an important strategy [17, 108, 26, 27]. As demonstrated

by our experiments using simulated mismatched perceptions in Chapter 1, there are rich

dynamics that can be observed from human partners’ referential grounding dialogues. Such

dialogue always unfolds as a well-formed structure of presentation and acceptance phases

contributed by both partners.

For example, speakers often refer to the intended object(s) through multiple “episodes”

of actions, such as an initial installment followed by further refashioning (e.g., expansion,

replacement or repair) based on the hearer’s immediate feedback. The hearer, on the other
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hand, can also refashion what the speaker just said in a relevant next turn.2 It is through

utilizing collaborative dialogues, human partners can often succeed in referential communica-

tion even under mismatched perceptions. Therefore, it is important that a situated dialogue

system can also capture and utilize the dialogue dynamics and engage in the dialogue col-

laboratively.

Besides, to build robust situated dialogue systems, a computational framework should

be able to handle uncertainties and errors that can arise from every step of the its decision

making process. For instance, these uncertainties and errors can come from:

• Speech and language processing, such as acoustic speech recognition, parsing, and

coreference resolution.

• Computer vision, such as segmentation, object recognition, and feature extraction.

• Vagueness/flexibility of human language, for example, how to map language to numeric

metrics.

• Individual differences among human users, for example, differences in personal experi-

ences, differences in language using habits.

• Situational/environmental changes, that can often affect language and perception from

time to time.

Therefore, a computational approach to situated referential grounding needs to fuse the

uncertainties from different sources to generate and evaluate the most likely grounding hy-

potheses. It is desirable that the approach is based on a probabilistic framework, under

which the information from different sources can be incorporated and reasoned in a unified

2See the discussions in Section 1.2.2 and Section 1.2.3 on these collaborative referring patterns.
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and principled manner. As the information from different sources is often interrelated (e.g.,

the dialogue content is always related to the surrounding environment in situated dialogue),

incorporating the information from one source into the processing of another information

source can potentially reduce the uncertainties and errors in the latter (e.g., vision process-

ing results can help with language processing, and vice versa). A unified scheme will make

it much easier to share information between different components and integrate them in a

principled way to make better decisions.

5.2 Limitation of the State-Space Search Based Ap-

proach

In Chapter 3, we introduced the ARG (Attributed Relational Graph) based model and the

state-space search algorithm for situated referential grounding. It showed some encouraging

results as a first step towards modeling and interpreting episodic and collaborative dialogues

of situated referential communication. However, there are two major limitations:

(1) The state-space search based graph-matching algorithm can only produce “hard” and

“one-to-one” matching results (see the later discussion in this section for more details).

We believe such an algorithm is not adequate to produce meaningful multiple grounding

hypotheses, which is the key for generating collaborative responses. In this chapter,

we present a probabilistic relaxation labeling algorithm [109], which permits “soft” and

“many-to-one” graph matching outcome. It significantly outperforms the state-space

search algorithm in generating multiple matching hypotheses.

(2) The evaluation in Chapter 3 was not based on automatic dialogue processing and the
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graph representations were built based on manually annotated information. This makes

the overall referential grounding problem much easier and unrealistic, since the uncer-

tainties arise from automatic dialogue processing is often one key challenge that a real

system has to deal with. In this chapter, we present the work of building an end-to-end

system using all automatic components. We especially tackle the issue of handling the

uncertainties of automatic dialogue processing through the probabilistic approach.

Here we give a detailed account on the key limitation of the state-space search algorithm

to referential grounding, i.e., it only supports “hard” (or binary) matching between two

graphs. More specifically, if we organize the matching Θ that we have defined in Section 3.2.2

in the form of a matching matrix as:

x′1 x′2 · · · x′N

Θ =

x1 p11 p12 · · · p
1N

x2 p21 p22 · · · p
2N

...
...

...
...

xM p
M1

p
M2

· · · p
MN

Namely, Θ now becomes a M × N matrix and each element pmn in this matrix can

be viewed as P
(
θm = x′n

)
, i.e., the probability of matching node xm with node x′n. The

state-space search algorithm only supports binary matching because it produces matching

matrices in which each pmn can only be either 1 or 0, as illustrated in the following example:
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x′1 x′2 · · · x′N

Θ =

x1 1 0 · · · 0

x2 0 0 · · · 1

...
...

...
...

xM 0 1 · · · 0

Thus, for the state-space search based matching, only binary decisions can be made on

whether a node xm is matched with node x′n or not. Such a binary matching nature makes it

difficult to incorporate multiple hypotheses from other components and to generate multiple

matching hypotheses.

For instance, machine-learning based coreference resolution often produces multiple hy-

potheses that are ranked by probabilities. For the state-space search based graph-matching,

the only way to handle multiple coreference hypotheses is to keep different “versions” of the

discourse graph, each of which represented one coreference hypothesis (e.g., node x4 should

be merged with x3 or with x1 needs to be represented by two different versions of a discourse

graph). Furthermore, state-space search is also inadequate for generating multiple match-

ing hypotheses for each individual node. For example, if there are M discourse entities,

state-space search will need to generate at least 3M states to produce 3 different grounding

hypotheses for each entity. However, this is not computationally feasible.

To address these key limitations, we have developed a probabilistic approach that handles

the uncertainties of automatic dialogue processing and produces “soft” grounding results.

Specifically, we extend the ARG model to capture not only the discourse of referring expres-

sions, but also the dialogue dynamics in situated referential communication. To cope with

the uncertainties that arise from mismatched perceptions and other sources (e.g., language
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and dialogue processing), we employ a probabilistic graph-matching algorithm to combine

different sources of information and produce multiple reference grounding hypotheses.

The empirical evaluation results demonstrate that the probabilistic graph-matching based

approach is capable to incorporate dialogue processing uncertainties and generate multiple

grounding hypotheses, whereas the state-space search based approach fails to do so. It

outperforms the state-space search algorithm in both grounding accuracy and efficiency.

Thus, our probabilistic graph-matching based approach provides a better framework for

interpreting the unfolding dialogue in real time and generating collaborative agent’s responses

in situated referential communication.

5.3 Probabilistic Labeling for Referential Grounding

In this section, we first describe the automatic language processing components we use

to build an end-to-end referential grounding system. Then the procedure of the probabilistic

labeling algorithm and how the outcomes of different components are integrated under its

unified scheme are presented in detail.

5.3.1 Automatic Language Processing

One necessary step in building the discourse graph is the semantic parsing of human

utterances. As shown in the examples in Section 1.2.2, these utterances are often informal,

fragmented, and contain various types of disfluencies. Therefore we apply a partial parsing

approach based on Combinatory Categorical Grammar (CCG) [110]. We have defined a set

of basic CCG lexicon rules, which covers key expressions in our domain, such as describ-

ing object properties, spatial relations, and so forth. Given a human utterance, the CCG
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parser [111] searches for the longest word sequences (i.e., chunks) covered by the basic CCG

grammar iteratively until the end of the utterance. A semantic interpretation (represented

in logic forms) is then generated for each chunk.

For example, given the utterance “ok then to the right of the green object I have got a giant

coffee cup”, the parser can extract all key chunks. It generates the semantic representation

Rightof(x, y)∧Color(y,Green) for the first chunk “to the right of the green object”, and the

semantic representation Size(z,Giant) ∧ Isa(z, Cup) for the second chunk “a giant coffee

cup”. The semantic representations of these chunks will be further combined to form the

final representation as following:

[x, y], [Size(x,Giant) ∧ Isa(x,Cup)∧

Color(y,Green) ∧RightOf(x, y)]

This final semantic representation is in the form of the Discourse Representation Structure

(DRS) [112], which contains a list of discourse entities introduced by the utterance, and a list

of first-order-logic predicates specifying the properties and relations between these entities.

Then for each discourse entity, a node is added to the discourse graph. Unary predicates

become the attributes of corresponding nodes, and binary predicates become the attributes

of corresponding edges in the graph. Group-based descriptions are analyzed in the same way

and incorporated into the graphs as hyperedges (see Section 3.2.1 for details).

To assess the performance of automatic semantic parsing on our data, we compared

the parsing outcome with manually annotated semantics of all the utterances. Our partial

parser can achieve 66.95% recall and 74.4% precision in extracting the correct first-order-logic

predicates from the utterances in our data.

91



5.3.2 Tracking Dialogue Dynamics via Coreference

As we have already discussed in Section 1.2.2, situated referential communication is often

a highly incremental and collaborative process between two dialogue participants. Because

of the incremental and collaborative nature of these dialogues, keeping track of the dialogue

dynamics can be important for correctly grounding all the interrelated referring expressions

in the dialogue.

Based on the observations from our data, we simplify tracking the dynamics of situated

referential communication as a coreference resolution problem. We now use the same exam-

ples in in Section 1.2.2 to illustrate the idea (For the convenience of reading, here we show

the two examples from Section 1.2.2 again):

Example 1:

D : what I am seeing on my screen are three apples (1)

D : and there is an apple that is directly below, slightly to the right of the battery (2)

M : ok (3)

D : and then there is an apple to the right of that (4)

D : and there is an apple below that last apple (5)

M : ok (6)

D : so the apple directly below the battery is called Alexis (7)

M : ok, this is Alexis (8)

D : and then to the right of Alexis is an apple (9)

D : and then below that apple is (10)

D : I am sorry, actually that is a red pear (11)

D : but it looks like an apple (12)
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. . . . . .

Example 2:

D : there is basically a cluster of four objects in the upper left, do you see that (1)

M : yes (2)

D : ok, so the one in the corner is a blue cup (3)

M : I see there is a square, but fine, it is blue (4)

D : alright, I will just go with that, so and then right under that is a yellow pepper (5)

M : ok, I see apple but orangish yellow (6)

D : ok, so that yellow pepper is named Brittany (7)

M : uh, the bottom left of those four? Because I do see a yellow pepper in the upper right (8)

D : the upper right of the four of them? (9)

M : yes (10)

D : ok, so that is basically the one to the right of the blue cup (11)

M : yeah (12)

D : that is actually an apple (13)

D : that is a green apple and it is named Ashley (14)

. . . . . .

In Example 1, for instance, utterance (4) expands utterance (2) by adding new informa-

tion about a spatial relation (“right of”) between two referents. Such a relation can be very

informative for identifying the referred objects, but first we need to link this new piece of

information to what we already have. Here the pronoun “that” in utterance (4) serves as

the key: since we can infer this “that” corefers to the phrase “an apple” in utterance (2),

then we can update the snapshot of the current dialogue to be something like “apple 1 is
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below and to the right of battery 1, apple 2 is to the right of apple 1”. With such updated

information, we can further search through the environment to find objects that conform to

the described situation.

Example 2 demonstrates another interesting collaborative pattern. In utterance (4), the

matcher proactively describes what he perceives (i.e. “a blue square”). Then in utterance (5)

the director confirmatively accepts this presentation and further expands it by introducing

a new object that is “under” the matcher’s squarish object. An utterance like (5) is called

a relevant next turn [16], which is often an effective way of moving the dialogue forward.

From the matcher’s point of view, utterance (5) also can be easier to ground since it is built

on what has already been jointly accepted. He now only needs to look at the area below his

blue square to find the next referent (i.e. “a yellow pepper”).3 Notice that, this again relies

on correctly linking the second “that” in utterance (5) to “a blue square” in utterance (4).

As we can see from these two examples, tracking the dialogue dynamics for the referential

grounding purpose boils down to the coreference resolution problem (e.g., [113]). Namely,

we want to infer whether a referring expression introduces a new referent (i.e., an object

that is not mentioned before) or it (co)refers to the same referent as a previous referring

expression does. With such inferences, we can link the information across multiple referring

expressions or overwrite old information with new information, and then search for proper

referents based on all the accumulated information.

We use the similar machine learning based approach for coreference resolution4 (e.g., as

in [114, 115]). Formally, let xi be a discourse entity extracted from the current referring

3Recall that, in Section 3.2.3, we have already discussed this prevalent collaboration pattern and given it
a name as “agent-present-human-accept”.

4To serve our referential grounding purpose, we specifically focus on coreference resolution on mentions
of the physical objects in the shared environment, but not mentions of people, event, and so on.
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expression, and xj is a discourse entity from a previous expression. We then perform coref-

erence resolution as binary classification on the entity pair
(
xi, xj

)
, i.e., we train a maximum

entropy classifier5 [116] to predict whether xi and xj should both refer to the same object

(i.e. positive) or each of them should refer to a different object (i.e. negative). The fea-

tures we use for the classification include the distance between xi and xj , the determiners

associated with them, the associated pronouns, the extracted object-specific properties, the

syntactic roles, who is the speaker, etc.

Note that, although our coreference tracking task is similar to the pairwise classification

step in regular coreference resolution (e.g., as in [117]; [118]; [119]), it does have some unique

characteristics:

• Since its purpose is to link between separated pieces of information (e.g., due to the dia-

logue dynamics, fragmented utterances, or partial parsing results), coreference tracking

directly deals with the extracted discourse entities but not the linguistic mentions as

regular coreference resolution does. For example, our parser can extract a discourse

entity as [x, red(x)] from a one-word fragment “red”, which even does not count as a

mention. Furthermore, it only focuses on expressions referring to physical objects in

the shared environment, but not people, event, etc.

• The situated context (i.e., the shared environment) plays an important role. Recall

the earlier Example 1, the director was trying to communicate the identities of three

objects (two apples and a pear). However the phrase “an apple” appeared five times

plus another “a red pear”. This is contradictory to non-situated discourse, where

after an entity has already been evoked the definite determiner “the” should be used

5http://nlp.stanford.edu/downloads/classifier.shtml
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in the following referring expressions. Thus coreference tracking based on linguistic

information alone may be difficult and the situational context needs to be taken into

consideration. Actually, solving coreference resolution and referential grounding as a

joint problem in situated dialogue itself is an interesting future work to pursue.

• Since our dialogue graph use edges to represent only binary relations between discourse

entities, entity-pairwise coreference tracking is sufficient and it is not necessary for us

to look at coreference chains.

To incorporate the coreference tracking results into the dialogue graph, we add a special

type of “coreference edges” into the graph. Such an edge (i.e., denoted as xixj) exists

between each pair of nodes in the graph. It is also assigned an attribute to encode the

coreference tracking result (i.e., positive or negative, as well as the classification probability)

on this pair of discourse entities.6

5.3.3 Iterative Probabilistic Labeling Algorithm

The probabilistic relaxation labeling algorithm [109] is formulated in the Bayesian frame-

work for contextual label assignment. It provides a unified probabilistic evidence-combining

scheme to integrate unary attributes, binary relations and prior knowledge for updating the

labeling probabilities (i.e. P
(
θm = x′n

)
). In essence, the probabilistic relaxation labeling

algorithm is based on several conditional independence assumptions, such as the matching

of a node xm is only dependent on itself and its neighbors but not all other unrelated nodes.

Given the same kind of graph representations (i.e., the discourse graph and the vision

graph) as described in Section 3.2.1, probabilistic relaxation labeling finds proper labelings

6If the distance between a pair of discourse entities is greater than a predefined window size, we just
assign it to the majority class (i.e. negative) based on the class prior probability.
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(i.e., matchings) in an iterative manner. It first initiates the labeling probabilities by con-

sidering only the unary attributes of each node, and then efficiently and effectively updates

the labeling probability of each node based on the labeling of its neighbors and the relations

with them. The detailed algorithm is as follows:

Initialization:

Compute the initial labeling probabilities:

P (0)(θm = x′n) =
P
(
xm | θm = x′n

)
P̂
(
θm = x′n

)∑
x′n2
∈X′

P
(
xm | θm = x′n2

)
P̂
(
θm = x′n2

) (5.1)

in which P̂
(
θm = x′n

)
is the prior probability of labeling xm with x′n. The prior probability

can be used to encode any prior knowledge about possible labelings. Especially in incremental

processing of the dialogue, the prior can encode previous grounding hypotheses (e.g., the

agent-present-human-accept pattern as discussed in Section 3.2.3), and other information

from the collaborative dialogue such as confirmation, rejection, or replacement (see the

collaboration patterns summarized in Section 1.2.3).

P
(
xm | θm = x′n

)
is called the “compatibility coefficient” between xm and x′n, which is

computed based on the attributes of xm and x′n:

P
(
xm | θm = x′n

)
≈
∏
a
P
(
uma | θm = x′n

)
(5.2)

and we further define

97



P
(
uma | θm = x′n

)
= P

(
uma | u′na

)
=

p
(
u′na|uma

)
p(uma)∑

uma∈La
p(u′na|uma)p(uma)

(5.3)

where La is the “lexicon” for the a-th attribute of a discourse graph node, e.g., for the color

attribute:

Lcolor = {red, green, blue, . . .}

and p
(
u′na | uma

)
is what we have called the “semantic grounding function” earlier in Sec-

tion 3.2.27, i.e., the probability of observing u′na given the word uma. It judges the com-

patibilities between the symbolic attribute values from the discourse graph and the numeric

attribute values from the vision graph.

Iteration:

At each iteration (i.e., in the equation, superscript (r) means at the r-th iteration) and

for each possible labeling, compute the “support function” as:

Q(r)
(
θm = x′n

)
=∏

m2∈M̆m

∑
x′n2
∈X′

P (r)
(
θm2 = x′n2

)
P
(
xmxm2 | θm = x′n, θm2 = x′n2

) (5.4)

in which the set of indices M̆m is defined as:

M̆m = {1, 2, . . . ,m− 1,m+ 1, . . . ,M} ,

The support function Q(r)
(
θm = x′n

)
here expresses how the labeling θm = x′n at the

7Here we use the same set of manually defined semantic grounding functions as introduced in Section 3.2.2.

98



r-th iteration is supported by the labeling of xm’s neighbors, taking into consideration the

binary relations that exist between xm and these neighbors (Here we denote an edge between

node xm and node xm2 directly as xmxm2).

Then update the probability of each possible labeling as:

P (r+1)(θm = x′n) =
P (r)

(
θm = x′n

)
Q(r)

(
θm = x′n

)∑
x′n2
∈X′

P (r)
(
θm = x′n2

)
Q(r)

(
θm = x′n2

) (5.5)

Similar to the node compatibility coefficient, the edge compatibility coefficient between

xmxm2 and x′nx
′
n2

, namely the P
(
xmxm2 | θm = x′n, θm2 = x′n2

)
for computingQ(r)

(
θm = x′n

)
,

is also based on the attributes of the two edges and their corresponding semantic grounding

functions. For an edge that represents the spatial relation between two entities, this is similar

to the state-space search approach as described in Section 3.2.2.

The discourse coreference relations, however, can be handled differently under the uni-

fied scheme of the probabilistic labeling method. For the state-space search method, two

coreferential nodes need to be merged for them to be grounded jointly, but in this way a

discourse graph can only represent one hypothesis of the coreference relation between two

nodes. To be able to utilize multiple hypotheses from the coreference resolution component,

the probabilistic labeling approach can directly incorporate them as the edge compatibility

coefficients.

Recall that in Section 5.3.2 we have treated coreference resolution as a classification

problem on discourse entities pairs: for each pair of discourse entities (i.e., discourse graph

nodes)
(
xm, xm2

)
, we trained a statistical classifier to predict whether xm and xm2 should

both refer to the same object (i.e., positive) or each of them should refer to a different object
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(i.e., negative). To incorporate the coreference results into the discourse graph, we now add

a special type of “coreference edges” into the graph. Such an edge (i.e., denoted as xmxm2)

exists between each pair of nodes in the graph. It is also assigned an attribute to encode

the coreference tracking result (i.e., positive or negative, and the classification probability)

on this pair of discourse entities.

Suppose xmxm2 is assigned a positive attribute value by the coreference classifier, the

compatibility coefficient then can be computed as:

P
(
xmxm2 = + | θm = x′n, θm2 = x′n2

)
=

P
(
θm=xm,θm2=x′n2

|xmxm2=+
)
P
(
xmxm2=+

)
P
(
θm=xm,θm2=x′n2

) , where

P
(
θm = xm, θm2 = x′n2

)
= P

(
θm = xm, θm2 = x′n2

| xmxm2 = +
)
P
(
xmxm2 = +

)
+P

(
θm = xm, θm2 = x′n2

| xmxm2 = −
)
P
(
xmxm2 = −

)
(5.6)

in which P
(
xmxm2 = +

)
is the coreference classifier’s output probability of assigning the

entity pair
(
xm, xm2

)
to the positive class, and P

(
xmxm2 = −

)
= 1−P

(
xmxm2 = +

)
since

it is a binary classification. Furthermore, we use the coreference classifier’s precision to es-

timate P
(
θm = x′n, θm2 = x′n2

| xmxm2 = +
)

and P
(
θm = x′n, θm2 = x′n2

| xmxm2 = −
)

.

Namely, when the classifier assigns an entity pair to the positive or negative class, how likely

that they are truly mapping to the same object (i.e. when θm = θm2) or mapping to different

objects (i.e. when θm 6= θm2). The compatibility coefficient for a negative coreference edge

can be computed in a similar way.

Termination:

Terminate the algorithm if any one of the following conditions is true:
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• For each m, one of P (θm = x′n) exceeds 1− ε1, where ε1 � 1;

• In the last iteration, none of P (θm = x′n) changed by more than ε2, where ε2 � 1;

• The number of iterations has reached a specified limit.

In practice, we find that this algorithm often converges very fast (≤ 5 iterations).

5.4 Evaluation

5.4.1 Data

We use the same data as in Section 3.3 and compare the referential grounding perfor-

mances between the probabilistic labeling approach and the state-space search approach.

As described earlier in Section 3.3, the dataset we use for evaluation purposes contains the

transcriptions of human-human (i.e., a director and a matcher) dialogues on a object-naming

task, along with the images that were used to collect each dialogue. This time we build the

discourse graph completely based on automatic language processing and coreference resolu-

tion. It thus allows us to use more data collected from the experiment, since we don’t need

to manually annotate the semantics and coreferences for each dialogue.

Our dataset for evaluation now has 62 dialogues, each of which contains an average

of 25 valid utterances from the director. We first apply our CCG-based parser to extract

semantic representations (i.e., the DRS representation as described in Section 5.3.1) from

these utterances. An average of 33 discourse entities per dialogue (1.3 per utterance) are

extracted through automatic parsing. Since the matchers in these dialogues actually played

the role of a computer-vision based agent, we treat all their decisions as known to our system8

8We leave the agent’s decision making (e.g., response generation) into our future work.
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and focus on only the processing of the directors’ utterances.

Based on the semantic parsing outcome, we need to further infer the coreference relations

between each pair of extracted discourse entities. As discussed earlier in Section 5.3.2, such

coreference relations become the key for tracking the collaborative dynamics in the dialogues

of this dataset, thus building the dialogue graph representation and generating the grounding

(i.e., graph-matching) results rely on coreference resolution. To infer the pairwise coreference

between discourse entities, for each dialogue we create a list of entity pairs by pairing each

discourse entity with each of the previous discourse entities within a predefined window. On

average over 300 entity pairs are created for each dialogue. We then use each dialogue as

one testing set and all others as training set (i.e., in the “leave-one-out” manner) to train

and evaluate the coreference classifier.

5.4.2 Results

We apply both the probabilistic labeling algorithm and the state-space search algorithm

to ground each of the director’s discourse entities onto an object perceived from the image.

The referential grounding performances of the two algorithms are compared in Table 5.1.

Note that, the results in Table 5.1 are calculated and organized based on three ideas:

(1) Besides the accuracy of the top-1 grounding hypothesis, we also measure and compare

the accuracies of the top-2 and top-3 grounding hypotheses. The “accuracy” of the top-2

grounding hypotheses is measured in this way: suppose x̂′ is the ground-truth mapping

of xm, and T2 =
{
x′1, x

′
2

}
is the top-2 grounding hypotheses generated by the labeling

algorithm. The matching of xm is counted as a “hit” if x̂′ ∈ T2, otherwise a “miss”.

And the overall accuracy is the percentage of all the hits among all the discourse entities
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Top-1 Top-2 Top-3

Random
7.7% 15.4% 23.1%

Guessa

S.S.S. 19.1% 19.7% 21.3%
P.L. 24.9% 36.1% 45.0%

Gainb 5.8% 16.4% 23.7%
(p < 0.01) (p < 0.001) (p < 0.001)

P.L. using
66.4% 74.8% 81.9%annotated

coreference

aEach image contains an average of 13 objects.
bp-value is based on the Wilcoxon signed-rank test [92] on the 62 dialogues.

Table 5.1 Comparison of the reference grounding performances of a random guess base-
line, Probabilistic Labeling (P.L.) and State-Space Search (S.S.S.), and P.L. using manually
annotated coreference.

being evaluated. The accuracy of the top-3 grounding hypotheses is measured similarly.

(2) The reference grounding results are evaluated in an incremental manner to resemble the

situation in a real dialogue: For each dialogue, we go through the director’s utterances

one-by-one from the beginning to the end. At each utterance, we first update the di-

alogue graph (e.g., add in new discourse entities and relations), and then (re-)evaluate

the updated grounding results of all the so far encountered discourse entities9. The

final accuracy then is the averaged accuracy over all the “evaluation points” (i.e., each

utterance is a evaluation point).

As shown in Table 5.1, probabilistic labeling (P.L.) significantly outperforms state-space

search (S.S.S.), especially with regard to producing meaningful multiple grounding hypothe-

ses. The state-space search algorithm actually only results in multiple hypotheses for the

9Note that, when a “new” discourse entity is added into the graph, it can change the grounding results of
previous discourse entities with the new information it brings in. This is why we re-evaluate the grounding
results of all the encountered discourse entities each time after new information is added.
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overall matching, and it fails to produce multiple hypotheses for many individual discourse

entities. Multiple grounding hypotheses can be very useful to generate responses such as clar-

ification questions or nonverbal feedback (e.g. pointing, gazing). For example, if there are

two competing hypotheses, the dialogue manager can utilize them to generate a response like

“I see two objects there, are you talking about this one (pointing to) or that one (pointing to

the other)?”. Such proactive feedback is often an effective way in referential communication,

as we discussed earlier in Section 1.2.3 and 3.2.3.

The probabilistic labeling algorithm not only produces better grounding results, it also

runs much faster (with a running-time complexity of O
(
M2N2

)
,10 comparing to O

(
N4
)

of the state-space search algorithm11). Figure 5.1 shows the averaged running time of the

two algorithm algorithms (the red curve is the state-space search algorithm and the blue

curve is the probabilistic labeling algorithm) on a Intel Core i7 1.60GHz CPU with 16G

RAM computer. As we can see, when the size of the dialogue graph becomes greater than

15, state-space search takes more than 1 minute to run, whereas probabilistic labeling only

takes 1 second or less even for large graphs. The efficiency of the probabilistic labeling

algorithm thus makes it more appealing for real-time interaction applications.

Although probabilistic labeling significantly outperforms the state-space search, the ground-

ing performance is still rather poor (less than 50%) even for the top-3 hypotheses. With no

surprise, the coreference resolution performance plays an important role in the final ground-

ing performance (see the grounding performance of using manually annotated coreference in

the bottom part of Table 5.1). Due to the simplicity of our current coreference classifier and

the flexibility of the human-human dialogue in the data, the pairwise coreference resolution

10M is the number of nodes in the vision graph and N is the number of nodes in the dialogue graph.
11Beam search algorithm is applied to reduce the exponential O

(
MN

)
to O

(
N4
)

.
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Figure 5.1 Average running time of the state-space search algorithm with respect to the
number of nodes to be grounded in a dialogue graph. The red curve is the state-space search
algorithm and the blue curve is the probabilistic labeling algorithm.

only achieves 0.74 in precision and 0.43 in recall. The low recall of coreference resolution

makes it difficult to link interrelated referring expressions and resolve them jointly. So it is

important to develop more sophisticated coreference resolution and dialogue management

components to reliably track the discourse relations and other dynamics in the dialogue to

facilitate referential grounding.

5.5 Conclusion and Discussion

In this chapter, we have presented a probabilistic labeling based approach for referential

grounding in situated dialogue. This approach provides a unified scheme for incorporating

different sources of information. Its probabilistic scheme allows each information source to

present multiple hypotheses to better handle uncertainties. Based on the integrated infor-

mation, the labeling procedure then efficiently generates probabilistic grounding hypotheses,

which can serve as important guidance for the dialogue manager’s decision making.

As demonstrated by the empirical evaluation results, the probabilistic labeling approach

has some desirable advantages compared to the state-space search algorithm based approach:
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• The probabilistic labeling approach is designed to incorporate uncertainties from dif-

ferent sources through its unified evidence-combing scheme. Its outputs are directly

multiple-hypotheses with probabilities. For the state-space search approach, maintain-

ing multiple-hypotheses is very cumbersome and inefficient.

• The probabilistic labeling approach outputs an individual score/probability for each

possible matching of each discourse entity. Individual matching scores and multiple-

hypotheses can provide important guidance for dialogue management.

• The probabilistic labeling approach is more efficient than the state-space search ap-

proach, and incremental grounding can be easily implemented. It is thus more suitable

for building a system that interacts with human in real-time.

One future direction is to extend the probabilistic labeling approach to handle group-

based (i.e., n-ary) relations, as what we have done in Section 3.2.1 using hypergraph repre-

sentations. The issue with the probabilistic labeling approach is that its iterative labeling

scheme only takes binary relations into consideration. How to incorporate n-ary relations

into probabilistic labeling in a theoretically sound and computational efficiently way is an

interesting research question to address. One straightforward approach to try is to decom-

pose a n-ary relations into several binary relations without loss of expressive power. Such a

method may work well for “inter-group” relations (such as “the apple is behind the cluster

of four”), but may not for “intra-group” relations (such as “the apple is in the middle of the

cluster of four”).12 Nevertheless, a general approach that can account for any kind of binary

and n-ary relations is desirable.

In Chapter 4, we introduced a weight-learning method that is based the state-space

12See [55] for some discussion on different types of group-based relations.
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search algorithm. One open question is whether we can also design a similar weight-learning

mechanism for the probabilistic labeling algorithm. In general, we can always assign some

weights to different attributes and attribute-values to specify how reliable/important they

are for referential grounding. Just the same as the state-space search, probabilistic labeling

also relies on the combination of all the attributes to find proper matchings. Thus it should

benefit from meaningful weights in the same way as state-space search does. However, weight

learning under the probabilistic labeling framework may not be easy to design and implement,

because of the non-linear calculation and iterative procedure it involves. More complex

optimization techniques (such as quadratic programming) may need to be considered. One

possible simpler solution is to use the state-space search for weight-learning and apply the

learned weights in probabilistic labeling for real-time grounding. If the weights learned by

our weight-learning method make general senses, such a “hybrid” approach may produce

better results than using either of the two approaches alone.

Finally, another important future direction is to tackle coreference resolution and referen-

tial grounding in situated dialogue as a joint problem. As we discussed earlier in Section 5.3.2,

coreference is often the key to track the relations at the locutionary level (i.e., the relations

among the formal semantic representations of different referring expressions) and to build

a well-connected discourse graph for referential grounding. It may also serve as one impor-

tant source of information to track the dynamics at the illocutionary level (i.e., identifying

and tracking dialogue acts) for sophisticated dialogue management. Our empirical results

have already demonstrated that, on one hand, referential grounding relies on good corefer-

ence resolution to achieve better performance, but on the other hand coreference resolution

in situated dialogue is difficult and needs to incorporate the situational context and other

information from the interaction. As we have mentioned earlier at the beginning of this
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chapter, information from different sources is often interrelated (e.g., the dialogue content

is always related to the surrounding environment in situated dialogue), incorporating one

source of information into another can potentially reduce the uncertainties and errors within

the latter one. Thus, based on the probabilistic and iterative scheme of probabilistic labeling,

we should further investigate how to solve coreference resolution and referential grounding

jointly and iteratively, and expect that the performances of both can be jointly leveraged.
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Chapter 6

Conclusion and Future Work

In situated dialogue, one significant challenge is the agent (i.e., the dialogue system) needs

to perceive and make sense of the shared environment simultaneously during conversation.

The agent’s representation of the world is often limited by its perceptual and reasoning capa-

bilities. Therefore, although co-present, humans and agents do not share a joint perceptual

basis, and the lack of such a joint basis will jeopardize referential communication between

humans and agents. It will become more difficult for the agent to identify referents in the

physical world that are referred to by the human, i.e., the problem of referential grounding.

The work presented in this dissertation has focused on developing computational approaches

to enable robust and adaptive referential grounding in situated dialogue.

In Chapter 3, graph-based representations are utilized to model the linguistic discourse

of collaborative referring dialogue and the visual perception of the physical environment.

Referential grounding is then formulated as a graph-matching problem and a state-space

search algorithm is applied to ground linguistic references onto perceived objects. In addi-

tion, hypergraph representations are introduced to account for group-based descriptions, and

the most prevalent pattern of collaborative communication observed from dialogue data is

incorporated into the search algorithm. The empirical results show that, even when the per-

ception of the environment by computer vision algorithms has a high error rate (95% of the

objects are mis-recognized), this approach can still correctly ground those mis-recognized

referents with 66% accuracy, whereas a object-properties-only baseline just obtains 31%
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grounding accuracy. As demonstrated by the results, the graph-matching approach has pro-

vided a potential solution to robust referential grounding through modeling and utilizing

spatial relations, group descriptions, and collaborative referring behaviors.

In Chapter 4, an optimization based approach is further developed to allow the agent to

detect and adapt to the perceptual differences through interaction and learning. Through in-

teraction with the human, the agent can learn a set of weights indicating how reliably/unreliably

each dimension (object type, object color, etc.) of its perception of the environment maps to

the human’s linguistic descriptors. The agent can then adapt to the situation by applying the

learned weights to the grounding algorithm, and adjust its word grounding models accord-

ingly. The empirical evaluation shows this weight-learning approach can effectively adjust

the weights to reflect the agent’s perceptual insufficiencies. When the perceptual difference

is high (i.e., the agent can only correctly recognize 10-40% of objects in the environment),

applying the learned weights with updated word grounding models significantly improves

referential grounding performance by an absolute gain of 10%.

In Chapter 5, a probabilistic-labeling based approach is developed to better support

collaborative and incremental dialogue systems that interact with human users in real time.

This approach provides a unified scheme for incorporating different sources of information.

Its probabilistic scheme allows each information source to present multiple hypotheses to

better handle uncertainties. Based on the integrated information, the labeling procedure

then efficiently generates probabilistic grounding hypotheses, which can serve as important

guidance for the dialogue manager’s decision making. Evaluated on the same dataset, the

probabilistic labeling approach significantly outperforms the state-space search approach in

both grounding accuracy and efficiency.

As we have already discussed in Section 3.4, Section 4.4, and Section 5.5, there are a broad
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range of future directions that can be further explored. One very interesting and important

future work is to solve coreference resolution and referential grounding as a joint problem in

situated dialogue. Coreference resolution in situated settings is to determine whether two

linguistic entities refer to the same physical object or not, and referential grounding is to

find out which physical object an linguistic entity refers to. It should not be difficult to see

that these two problems are intertwined and need to be solved jointly in situated dialogue.

However, in our current work they are treated as two separate problems and solved

individually. For coreference resolution, we used the same kind of classification method and

feature set as in the previous text-based work. Unsurprisingly, the performance is rather

low because the key characteristic of situated dialogue, i.e., the situational context, was

not taken into consideration. And unreliable coreference results have further impacted the

performance of referential grounding because the latter relies on the coreference to combine

information across the collaborative discourse.

Our probabilistic labeling approach has provided a unified and iterative scheme to up-

date beliefs on the matchings between linguistic entities and physical objects, and on the

relationships between linguistic entities as well1. Thus, probabilistic labeling may provide a

potential solution for jointly updating both the coreference resolution and referential ground-

ing beliefs throughout its iterative evidence-combining procedure. If we can develop such a

joint approach and demonstrate its effectiveness in improving both coreference resolution and

referential grounding performances, it will be an interesting and meaningful achievement.

To enable situated dialogue systems in the open world, sophisticated machine-learning

techniques are indispensable. Recent works on joint learning (e.g., [120, 35]) have demon-

strated the nice idea of jointly acquiring/updating models of different components from the

1I.e., this is captured by the “supporting function” as described in Section 5.3.3.

111



system’s direct inputs and outputs, without providing supervised data for each individual

component. Such kind of learning methods is desirable for our goal, i.e., building systems

that can learn and adapt from the interactions with human users and the environment.

While most of the previous work on situated referential grounding only focused on the

locutionary level (i.e., interpretation of single referring expressions), processing information

at the illocutionary level (i.e., collaborative discourses) should also play an important role

in building interactive systems. Although we have incorporated a prevalent collaborative

pattern into our graph-based approach for referential grounding, it is still an ad-hoc solution.

The probabilistic labeling approach provides a unified scheme for incorporating different

source of information for referential grounding, and supports agent’s response generation by

providing probabilistic grounding hypotheses to the dialogue manager component. But we

just have focused on only the interpretation aspect.

Can we have a more general framework, under which the interpretation of referring

expressions, incorporation of dialogue dynamics, generation of collaborative actions, and

mediation of perceptual differences can be all handled in a unified manner? Furthermore,

such a framework should be based on or integrated with advanced machine-learning tech-

niques, so that it can continuously adapt to changing environments and situations through

learning from the interaction with human users. One important step along this direction is

to utilize some well-established machine-learning techniques/frameworks, such as POMDP

and reinforcement learning [121, 122], and tailor them to best address our focused problem

here – situated referential communication.
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