NUMERICAL METHODS IN MULTIPLE INTEGRATION Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY WAYNE EUGENE HOOVER 1977 LIBRARY Michigan State University This is to certify that the thesis entitled NUMERICAL METHODS IN MULTIPLE INTEGRATION presented by Wayne Eugene Hoover has been accepted towards fulfillment of the requirements for PI; . D. degree in Mathematics n fl “ w A $11 W Major professor I (J.S. Frame) Dag Octdber 29, 1976 . —- ., ,_.~_ (‘sq I MAY 2T3 2002 ABSTRACT NUMERICAL METHODS IN MULTIPLE INTEGRATION By Wayne Eugene Hoover To approximate the definite integral 1:" bl [(1):] f(x1"”’xn)dxl”'dxn an a‘ over the n-rectangle, n R = n [41, bi] , 1' =1 conventional multidimensional quadrature formulas employ a weighted sum of function values m Q“) = Z ij(x,'1:""xjn)- i=1 Since very little is known concerning formulas which make use of partial derivative data, the objective of this investigation is to construct formulas involving not only the traditional weighted sum of function values but also partial derivative correction terms with weights of equal magnitude and alternate signs at the corners or at the midpoints of the sides of the domain of integration, R, so that when the rule is compounded or repeated, the weights cancel except on the boundary. For a single integral, the derivative correction terms are evaluated only at the end points of the interval of integration. In higher dimensions, the situation is somewhat more complicated since as the dimension increases the boundary becomes more complex. Indeed, in higher dimensions, most of the volume of the n-rectande lies near the boundary. This is accounted for by the construction of multi- dirnendonal integration formulas with boundary partial derivative correction terms, the number of which increases as the dimension increases. Wayne Eugene Hoover The Euler-Maclaurin Summation formula is used to obtain new integration formulas including a derivative corrected midpoint rule and a derivative corrected Romberg quadrature. Several new open formulas with Euler-Maclaurin type asymptotic expansions are presented. The identification and utilization of the inclusion property, the persistence of form property, and the equal weight-altemate sign property coupled with the method of undetermined coefficients provide the basis for the derivation of a number of new multidimensional quadrature formulas. These new formulas are compared with conventional rules such as Gauss’ and Simpson’s rules and the numerical results show the derivative corrected formulas to be more efficient and economical than conventional integration rules. NUMERICAL METHODS IN MULTIPLE INTEGRATION Wayne Eugene Hoover A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mathematics 1977 (:> Copyfightby WAYNEEUGENEHOOVER 1977 to my wife Diane and daughter Susan ACKNOWLEDGMENTS It is a great pleasure to express my sincere appreciation to Professor J. Sutherland Frame, Michigan State University, East Lansing, for suggesting the problem. His invaluable guidance, expert advice, stim- ulating discussions, and useful insights made this work possible. [would also like to thank Professors Bang-Yen Chen, Edward A. Nordhaus, and Mary Winter for serving on my guidance committee. For imparting to me a generous measure of their enthusiasm for and wide knowledge of the field of numerical analysis, it is a pleasure to thank Professors E. Ward Cheney, J. Sutherland Frame, Gfinter Meinardus, and Gerald D. Taylor. The financial support for this work was provided by the U.S. Naval Air Test Center (NATC), Patuxent River, Md. For this I am indebted to Mr. James C. Raley, Jr., NATC Staff, Mr. Samuel C. Brown, Computer Services Directorate, and Mr. Theodore W. White, Employee Development Division. I wish to thank Mr. Howard 0. Norfolk and Mr. J. William Rymer, Technical Support Directorate, for making available the computing facilities of the Real Time Telemetry Processing System. I also wish to thank Mr’. Larry E. McFarling for providing the excellent 3-D plots, and Mr. Durwood Murray for capable programming assistance. NATC also provided for the composition and reproduction of this dissertation. The typesetting was done by Engineering Services and Publications, Inc., Gaithersburg, MD, and the printing by the Technical Information Department, NATC. Finally, I thank my wife, Diane, and daughter, Susan, for their confidence, patience, and under- standing displayed throughout the duration of this investigation. iv TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES KEY TO SYMBOLS INTRODUCTION FUNCTIONS OF ONE VARIABLE 2.1 Bernoulli Polynomials and Numbers 2.2 The Euler-Maclaurin Summation Formula 2.3 Error Estimates 2.4 A Numerical Example APPLICATIONS OF THE EULER-MACLAURIN SUMMATION FORMULA 3.1 Quadrature Formulas with Asymptotic Expansions 3.2 Error Estimates 3.3 Newton-Cotes Formulas 3.4 The Midpoint Rule and Some Open Formulas 3.5 Romberg Quadrature 3.6 Derivative Corrected Romberg Quadrature 3.7 A Numerical Example FUNCTIONS OF TWO VARIABLES 4.1 The Euler-Maclaurin Summation Formula 4.2 Error Estimates 4.3 Additional Error Estimates 4.4 Sharper Error Estimates 4.5 A Numerical Example APPLICATIONS OF THE 2-DIMENSIONAL EULER-MACLAURIN SUMMATION FORMULA 5.1 Cubature Formulas with Asymptotic Expansions 5.2 Some Cubature Formulas Obtained from the Euler-Maclaurin Summation Formula 5.3 The Midpoint Rule and Various Other Formulas 5.4 A Numerical Example Page viii M NMO‘M l4 14 21 22 22 31 33 34 38 38 42 45 45 48 54 54 57 92 94 MULTIDIMENSIONAL QUADRATURE FORMULAS WITH PARTIAL DERIVATIVE CORRECTION TERMS 6.1 6.2 6.3 6.4 The Equal Weight-Alternate Sign Property Derivation of MINTOV Comparison of Several Multidimensional Quadrature Formulas of Precision Five Construction of 47 New Cubature Formulas with Partial Derivative Correction Terms and Error Estimates NUMERICAL RESULTS 7.1 7.2 Double Integrals and the DC-MQUAD Algorithm 7.1.1 The Application of MINTOV 7.1.2 MINT OV vs JPL’s MQUAD 7.1.3 Error Estimates 7.1.4 A Rational Function with a Singularity Approaching the Domain of Integration 7.1.5 The Comparison of 45 New Cubature Formulas with 12 Conventional Rules Triple Integrals 7.2.1 A Function with Vanishing Mixed Higher-Order Partial Derivatives 7.2.2 MINTOV vs JPL’s MQUAD 7.2.3 An Example Illustrating the Persistence of Form CONCLUSIONS AND RECOMMENDATIONS LIST OF REFERENCES General References Bibliography Page 96 96 99 106 110 118 118 121 126 127 136 137 141 142 146 147 150 152 157 Table 2.1.1 2.4.1 3.1.1 3.1.2 3.1.3 3.1.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 5.4.1 6.1.1 6.1.2 6.1.3 6.3.1 6.3.2 6.3.3 6.3.4 LIST OF TABLES Bernoulli Numbers Computation of n Derivation of Closed Quadrature Formulas Quadrature Weights and Derivative Correction Terms Principal Errors and General Terms in the Asymptotic Expansions Leading Terms in the Asymptotic Expansions The Midpoint, DC Midpoint, and Simpson’s Rules Applied to I36 — = 1n 2 Derivation of Open Quadrature Formulas Chradrature Weights and Derivative Correction Terms Principal Errors and General Terms in the Asymptotic Expansions Leading Terms' in the Asymptotic Expansions Romberg Quadrature T-table for ID 1% sin (1rx)1rdx - 1 Derivative Corrected Romberg Quadrature (3 — l) Cl-table Derivative Corrected Romberg Quadrature (s - 2) C 2 -table Romberg Error for fol V2 sin (1rx)1rdx = 1 Derivative Corrected Romberg Error (3 = l) Derivative Corrected Romberg Error (s = 2) Partial Derivative Correction Sums @(h, h; 23, 23) Euler-Maclaurin Summation Formula: [(1) = 0.523 248 144 z T(h,h) - (h, h; 23, 23) ErrorR(h, h; 23, 23) =I(f) - T(h,h) + (h,h; 23, 23) Estimates for R(h,h; 23, 23) using (4.3.4) Estimates for R(h,h; 23, 23) using (4.3.5) Estimates for R(h,h; 23, 23) using (4.3.6) |(Error Estimate 4.3.k)/Error|, k = 4,5,6 Several Cubature Rules Applied to [01101 exydxdy = 1.317 902‘151 454 4 Elements Generators Generator Values Number of Function Evaluations for Several Fifth-Order Formulas MINTOV: Number of Function Evaluations Required for n Subdivisions in d-Dimensions Maximum Number of Subdivisions n such that nfe < 106 Maximum Usable Dimension d Assuming n > 4 and nfe < 10“ Page l3 l7 I8 19 20 24 27 28 29 30 35 35 35 36 36 36 51 51 51 52 52 52 53 94 97 98 98 108 108 109 109 Table 6.4.1 7.1.1 7.1.2.1 7.1.3.1 7.1.3.2 7.1.3.3 7.1.3.4 7.1.4.1 7.1.5.1 7.2.1 7.2.1.1 7.2.2.1 7.2.3.1 Cubature Formulas Nfe for Various Cubature Formulas Compounded nm Times. These are Fifth-Order Formulas Except for Simpson’s Rule Which is Third-Order 1011010 +x2y2)-1dxdy = 0.915 965 594 177 30 MINTOV vs MQUAD for the Integral 112" f 2" Relative Error Requested = 10'“, a = 1(1)10. Error Estimates for Approximating (if: m dxdy = 6.859 942 640 334 65 when h = k = 2 (n = m =1). Error Estimates for Approximating [id \/3—+x—+-y dxdy = 6.859 942 640 334 65 when h = k = 1/5 (n = m =10). {:13 m dxdy = 6.859 942 640 334 65. Guaranteed MINTOV Error = 10‘“, a =1(1)12. (Grid Size )1 #5 k.) [if-i m dxdy = 6.859 942 640 334 65. Guaranteed MINTOV Error = 10’“, a =1(1)12. (Grid Size h = k.) Application of Various Cubature Formulas to I: fl [4(w + 2 + x +y)]’1dxdy withh=k= l/50 (n=m = 100). The Comparison of 45 New Orbature Formulas with 12 Conventional Rules for the Double Integral fol I01 me" + 1) sin (1ry)dxdy = e/1r Nfe for Several Multiple Quadrature Formulas Repeated n ln2n3 Times flzflzflzln(xyz)dxdydz = 1.158 883 083 359 67 MINTOV vs MQUAD for the Integral f-ZI: 1:3: [:2 cos (x) cos (y) cos (z)dxdydz = 8. Relative Errors Requested = 10““, a = 1(1)10. "/2 "/2 "/2 -l—+!- sin (x) sin (y) sin (2) e'wdxdydz = f0 f0 f0 xyz 1.531670 226 93, w2 =x2 +y2 + 22. viii 1 (xy)-1dxdy = 0.550 471 023 504 079. Page 1 12 119 124 127 131 132 133 134 137 139 142 143 146 148 Figure 2.3.1 4.1.1 4.1.2 4.5.1 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 5.2.14 5.2.15 5.2.16 5.2.17 5.2.18 5.2.19 5.2.20 5.3.1 5.3.2 5.3.3 5.3.4 5.4.1 6.2.1 6.2.2 LIST OF FIGURES Values of h and 3 for the Best Error Estimate Trapezoidal Weights Partial Derivative Weight Assignments Graph ofz = (x +y + 1)‘1 on [0,1]2 Trapezoidal Rule DC Trapezoidal Rule Simpson’s Rule Component Trapezoidal Sums for Simpson’s Rule DC Simpson’s Rule Simpson’s Second Rule Component Trapezoidal Sums for Simpson’s Second Rule DC Simpson’s Second Rule 52 Point Rule DC 52 Rule Boole’s Rule Component Trapezoidal Sums for Boole’s Rule DC Boole’s Rule Weddle’s Rule DC Weddle’s Rule Newton-Cotes’ 72 Rule Component Trapezoidal Sums for Newton-Cotes’ 72 Rule DC Newton-Cotes’ 72 Rule Romberg’s 92-Point Rule Component Trapezoidal Sums for Romberg’s 92 Rule Squire’s Rule Ewing’s Rule Tyler’s Rule Miller’s Rule Graph ofz = e” on [0,1]2 Sign Arrangement for DI (f) Sign Arrangement for 0120) ix Page 10 39 40 50 58 59 60 61 62 63 65 66 67 68 69 70 71 72 73 79 81 82 93 93 93 93 95 100 100 Figure 6.4.1 7.1.1.1 7.1.1.2 7.1.1.3 7.1.2.1 7.1.2.2 7.1.3.1 7.1.3.2 7.1.4.1 7.1.5.1 7.2.1.1 7.2.1.2 7.2.2.1 7.2.3.1 7.2.3.2 Node Arrangements Graph ofz = (1 +x2y2)'1 on [0,1] 2 f(x.y) = (1 +x2y2)’l Error Curves in Approximating fol f 01 (l + x2y2)'ldxdy Performance Comparison in Approximating [12'1 f12.1(xy)_1dxdy Performance Comparison in Approximating [12.1 f12'1(xy)'1dxdy Graph ofz =W on [-1,1]2 Error Curves in Approximating f. i 1:: m dxdy Graph ofz = %(2 +x +y)‘1 on (-1, 1]2 Graph ofz = %(e" + 1) sin (ny) on [0,1]2 Graph ofz = ln(xy) on [1,2] 2 Error Curves in Approximating flz 1'12 {12 1n (xyz)dxdydz Graph of z = cos (3:) cos (y) on [-7r/2, 1r/2] 2 +5277: ’0’ Graph ofz = 1 sin (x) sin (y) e‘ x + y on [—7r/2, 1r/2] 2 Error Curves Page 116 122 123 125 128 129 130 135 136 138 143 144 146 147 149 Symbol Ac" al"'“s+l A 231.1. ..., 253-1(h) a' ”i 301) 3'0!) B 19a(t) i1": Iris KEY TO SYMBOLS A (a1 ’al)(a2, a1) -~-(as,a1)(62562) ... (as,as) (h,k) (2511'1'2512‘1)(2521'1’2522'1)'"(23n1‘1’23n2'1) Cubature element Cubature element Cubature element Cubature element Cubature element Cubature element Quadrature formula based on the Trapezoidal rule Lower limit of integration Lower limit of integration, i = 1(1)N Boole’s rule DC Boole’s rule a—th Bernoulli number Bernoulli polynomial of degree a Upper limit of integration Upper limit of integration, i= l(l)N a-th modified Bernoulli number Midpoint rule DC Midpoint rule Midpoint rule Function space Function space Function space DC Trapezoidal Sum (m + l, k+ 1) entry in the DC Romberg C‘-table 5" I 5,- 2 8' 8 A1112Ia11 a}: + “1'2 all Page 54 97 97 97 97 97 97 14 102 l7 17 102 22 23 92 38 42 33 34 55 13,0) Fhk("“) Vector (cl , - ° ' , c”) = vertex ofH or R Real constant i-th component of c = #hi, (1,, or bi Derivative correction term, 2 01(c) 91.1 f (c) C Derivative correction term, 262 ol-k(c) 911.1 Q) 11‘ f (c) Derivative correction term, 91.1 [f (v(b,)) - flv(ai))] Derivative correction term, 9 1191.1 [f(v (“1" 0,,» - f (v(ai, b k» - f(v(b,. a,» + f(v(b,-. bk))l Derivative correction term, fl“)(b) - f1“)(a) Partial derivative correction term Derivative Corrected Dimension, number of variables Partial derivative correction term a-th partial derivative off with reSpect to the i-th variable Truncation error hzaD 2 a-l Partial derivative correction term m-l n-l ha+1ke+1 Z Z f“5(x,-+th,y,-+uk) i=0 i=0 n-l Moving average h 2 f (x,- + th) i=0 m-l n-l Z f(x,- 1’ ’th’j ‘1' l4k) i=0 i=0 Moving average hk (b - a)(d - e)[h"kl'lir"{2 + flk’Mfliz] Cubature element Cubature element Cubature element Cubature element Cubature element Cubature element Cubature element Cubature element real valued function Page 99 14 99 99 99 104 40 16 106 39 96 101 41 41 38 111 116 116 110 110 110 111 110 111 Symbol f0!) f9? fe :- ”145‘ .3‘ 3‘ 1(f) 1(f) [If] 1(f) I“ 2 a3 aBIII7 Mjk...1 a—th derivative off, Olaf (x) Partial derivative off, W39? f (x, y) Function evaluation(s) Cubature generator Step size, (b - a)/n Hypervolume ofH,2Nh1x hz x ”'x hN Hypervolume of subregion,h1 x hz x - ' - x hN Limit of integration length of subinterval, (bi - ai)/n]- Set of positive integers Definite integral ff(x)dx f f bftx.y)dxdy bN b1 J‘ f(xl"”’xN)dxl’.H’dx/V ”N ‘1 Definite integral index x/I index Step size, (d-c)/m Definite integral Real constant max If“)(x)l a(h, 3) our, k; 23, 23) 49,,(1) 4,00 5201, k; 23, 23) 0.74 1.48 Page (a1 +ilhl, -",xi , aj+1+ii+1hj+1""'“1v +l'NhN) 104 (“1 +1'1’11' ""xj' ”7+1 +i,-,1h,-,1, 'xk' ak+1 + ik+lhk+l' 104 “N + ilvhlv) Romberg’s 9-Point rule 17 DC Romberg’s 9-point rule 17 wlxwzx-“wa 102 Length of j-th interval, bi - aj 102 Quadrature node, a + ih, i = 0(1)n 7 Quadrature node, c + jk, j = O(1)m 38 index 6 index 14 Positive integer 14 Area of rectangle (b - a)(d - c) 42 172.15 2a-l 3 {1 if 5,,- = 0 54 25,-, otherwise is an element of 10 Positive integer 54 { Vz if i= j 54 1 otherwise Cartesian product 1 Pi, 3.14159265358979 ~--' 12 Summation 1 {-1 if c]- = —h]- or aj 99 +1 otherwise 102 o,(c)ok(c) 99 S Derivative correction sum, Z A2a_1 8 a =1 Partial derivative correction sum 41 Bernoulli polynomial of degree a 39 Bernoulli polynomial of degree a. 39 Truncation error 56 n2/6\/5— 42 n2/3\/5_ 42 XV Symbol 2.17 2.66 2.95 3.00 5.31 5.93 7.17 10.61 11.17 r4/45 «flux/E 2n2/3\/§ 31r4l40\/g 1r4\/_6—/45 _4_1r3_[_1_+ n2 + 71/12] 3V5 2 12¢? 1.02/21»2 317—2}... "2 ,1 3x/521N5— 9 27r4\/6—/45 ——"4‘/6-[1 +6”2 + —_h/6 ] 45 1 -(h/21r)32 xvi Page 42 23 46 44 48 47 I. INTRODUCTION We wish to approximate multidimensional integrals of the form ij b1 [(1') =f ... [(xl,...’xN)dxl...de (11) “N 01 over the N-rectangle N R = II [c,-.12.] i=1 where a,- and b, are real numbers. The traditional methods of multidimensional numerical integration employ a weighted sum of m function values Qtf) = : Wif(x,-1."’,xuv)- (1-2) i= The w, are called weights and the (in , - - - , xi”) are called nodes. The difference E(f) = 10') - Q0) (1.3) is the truncation error (or error). Let pk = pk(xl, ‘ ' ' , x”) be a polynomial of degree k in N variables. We say that the multi- dimensional quadrature rule or formula Q(f) is of order k or has degree of precision k if for any pk, 50),) = 0, but 5(Pk+1) =/= 0 for at least one polynomial pk“. ‘ Since it is not uncommOn for numerical procedures to make use of partial derivatives, e.g. in optimization techniques, it is surprising that except for work by Tanimoto [50] 1, Obreschkoff [38] , and Ionescue [23] , very little is known concerning the use of partial derivatives in nonproduct multidimensional quadrature rules. 1The numbers in brackets refer to entries in the Bibliography. 1 2 Therefore, the objective of this investigation is to construct a number of new multidimensional quadrature formulas using first- and mixed second-order partial derivatives of the integrand in addition to function values of the integrand. It is shown that the use of partial derivatives of the integrand evaluated on the boundary of R increases both the efficiency and accuracy of composite multidimensional integration formulas. The accuracy and efficiency are achieved by the proper combination of the following three properties. The first is the “inclusion property”. It is well known that m-point Gaussian integration rules for the N-rectangle, R, are extremely accurate. However, when R is subdivided into 3 subrectangles or cells and the m-point Gauss rule is applied to each cell, the total number of nodes is ms since the nodes are interior to each cell. A more efficient procedure is to employ an integration rule in which some nodes coincide with the boundary of the domain of integration. Then when the domain is subdivided, these nodes are included in more than one cell. Thus the total number of nodes is considerably less than the sum of their numbers in each cell. We call this the “inclusion property”. The second is known as “persistence of form”. Briefly, this means that for many functions, it requires approximately the same if not less computer time to evaluate the partial derivative at a point where the function is being evaluated as it does to evaluate the function at another point. Finally, efficiency and accuracy result from applying the “equal weight-alternate sign property”. Essentially this means that in the composite formulation of a rule, the weights of the partial derivative correction terms cancel at interior points and consequently, the partials need be evaluated only on the boundary of R. This results in a substantial increase in efficiency. Numerical multiple integration is currently receiving considerable attention by numerical analysts. The first book on the subject, written by Stroud [49] , appeared only recently. An excellent introduc- tion may be found in Davis and Rabinowitz [13]. Comprehensive bibliographies are given by Fritsch [l9] , Stroud [49] , and De Doncker and Piessens [14] . 3 Brief surveys of the literature may be found in Ahlin [2] , Hammer [21] , and Hammer and Wymore [22]. A history of the Euler-Maclaurin Summation formula is given by Barnes [4] . Squire [47] devotes an entire chapter to derivative corrected quadrature formulas. Stroud [49] states only one cubature formula, C2:2-l, which uses partial derivatives of the integrand. Lanczos [28] and Davis and Rabinowitz [l3] discuss quadrature rules using derivative data. Tanimoto [50] was one of the first to consider cubature rules with partial derivative correction terms. Burnside [l l] pub- lished the first nonproduct fifth-order cubature rule. Tyler [51] gave the first derivation of the 8-point Burnside formula. Finally, Price [41] gives some interesting examples. In this dissertation, Chapter 2 provides a background for the 1-dimensional Euler-Maclaurin Summation formula (Euler [15] , Maclaurin [33] ). Several error estimates and an algorithm due to Frame [18] are stated. It is shown in Chapter 3 that the Euler-Maclaurin Summation formula may be used to obtain asymptotic expansions for at least 5 of the Newton-Cotes’ quadrature formulas, the midpoint formula, and several new open formulas including some with end derivative correction terms. The third-order derivative corrected midpoint rule is shown to be more efficient than the classic Simpson’s rule [46]. After reviewing Romberg quadrature, we define a new technique called derivative corrected Romberg quadrature. The 2-dimensiona1 Euler-Maclaurin Summation formula is stated in Chapter 4. Also, several error estimates are given. In Chapter 5, the double Euler-Maclaurin Summation formula is used to obtain asymptotic expansions for a variety of formulas. New asymptotic expansions are given for Squire’s [48] , Ewing’s [15] , Tyler’s [51] and Miller’s [35] rules. The method of undetermined coefficients, the inclusion pr0perty, the persistence of form property, and the equal weight-alternate sign property are employed in Chapter 6 to construct 47 new derivative corrected cubature rules of orders 1, 3, 5, and 7. These formulas are generalizations of the midpoint, trapezoidal, Squire’s [48] , Ewing’s [l6], Tyler’s [51] , Miller’s [35] , Simpson’s, and Albrecht, Collatz [3] and Meister’s [34] rules. One of these, caUed MINTOV (for Multiple lNTegration, Order 5), may be considered a generalization of Lanczos’ [28] result which Lanczos calls Simpson’s 4 rule with end corrections. Error bounds are included for the 47 new cubature rules. As is shown in the case of MINTOV, these formulas may be generalized to multidimensional derivative corrected quadrature rules. In Chapter 7, we compare the first-, third-, and fifth-order formulas of Chapter 6 with existing formulas of comparable degrees of precision. The numerical results indicate that partial derivative correc- tion terms substantially enhance the efficiency of composite numerical integration formulas. Conclusions and recommendations for further study are given in Chapter 8. Lyness [29] states than an important objective of those concerned with the formulation of numerical integration techniques is “to determine which rule requires the fewest function evaluations to obtain a result of particular accuracy or degree”. Thus, we will pay particular attention to minimizing the number of points at which the function or partial derivatives are to be evaluated. This will require the generalization of the equal weight—alternate sign property to higher dimensions in order to obtain efficient composite integration formulas with partial derivative correction terms. In cases where derivative information is easily obtained, we will show the superiority of the derivative corrected formulas over the traditional rules which use only function information, provided that the first- and/or mixed second-order partial derivatives are easily evaluated. We conclude this introduction by recalling Oliver’s [40] classic statement: “Now for any given formula or algorithm a pathological problem can always be devised for which an arbitrary small accuracy cannot be attained; we can therefore never argue the universality of any particular method, and we do not attempt this.” Indeed, it is sufficient to take for the integrand, f = Mpk, where p is a polynomial having zeros which coincide with the nodes of the integration formula, [C > 2, and M is a sufficiently large positive constant. 2. FUNCTIONS OF ONE VARIABLE 2.1 BERNOULLI POLYNOMIALS AND NUMBERS The Bernoulli polynomial Ba(t) of degree a has the form 3.0) = 1;) (wk)! and the following properties: Bo(t) = I 1 t =t.._ Bl() 2 Ba-1(f) = 3&0) -..-1 bk _ lifa=l Ba(l) — 30(0) — g0 (a—k)! - 0 if 0 >1. (2.1.1) (2.1.2) The last property in (2.1.2) may be used to determine the coefficients ba. The coefficients Ba in the expansion a co -3. _a-1 2a l_-__.x.£ i=2: 1 2 + :1( 1) Bax /(2a). 2 + 2 coth<2) baxa a: are the Bernoulli numbers and are related to the 1),, by the relation 61 (2a)! ' 62,, = (-1)"'1 a > 0. (2.1.3) (2.1.4) It can be shown that b2a+1 = O for a. > 0. Also,b2,ll =Ba(0) =Ba(l) for a > 1. For reference we list the first 10 Bernoulli numbers in Table 2.1.1. Table 2.1.1 Bernoulli Numbers a. [ll 2 3 4 5 6 7 8 9 10 B 1 1 1 1 5 691 7 3617 43867 174611 a 6 30' If E E 2730 6 510 798 330 Adams [1] lists the first 62 Bernoulli numbers. The Unpublished Math. Tables Repository has the most extensive list of Bernoulli numbers containing the first 836. It is shown in Knopp [26] that Ba(2fl)2a " I , = Z - (2.1.5) 2(2a).k=1 k2a This shows that the 3,, increase rapidly for a. > 5. Indeed _BSLL > W ... a. (2.1.6) Ba 2172 asa—o 00. Frame [18] gives several interesting results concerning the Bernoulli polynomials and the Bernoulli numbers. Lemma 2.1.1 1 Ba 32 ___ (2.1.7) J; a (t)dt —(2a)! Lemma 2.1.2 Ba(2")2a ,4 (2a)! < :5 (2.1.8) Comparing Lemmas 2.1.1 and 2.1.2 we see that 1 f B}(r)dr < 2.17(21r)'2‘1 (2.1.9) 0 where 2.17 z n4/45. Lemma 2.1.3 1 Ibaal < 3b}, (2.1.10) Next we will state the Euler-Maclaurin Summation formula. 2.2 THE EULER-MACLAURIN SUMMATION FORMULA Let 025 [a,b] be the set of all real-valued functions defined on the finite closed interval [a,b] with the property that the derivatives f (“)(x), a < 23, are continuous on [a, b] . Let 0,, denote the following boundary derivative correction terms: D, = f(“’(b) - f‘“)(a),ae 1’. (2.2.1) Partition the interval [a,b] into n equal parts each of width h = (b - a)/n. Let the points of sub- division be denoted by x, = a + ih,i = 0(l)n, where x0 =0 and x,, = b. We now define the a-th remainder integral 1 R(h,a) = f Fig“) (t)Ba(t)dt (2.2-2) 0 in terms of the Bernoulli polynomials Ba(t) and the a-th derivative of the moving average n—l Fh(t) = a): f(x,+ th). (2.2.3) i=0 The celebrated Euler-Maclaurin Summation formula expresses a sum of values of f (3:) evaluated at the equally spaced points x i in terms of the definite integral b M) = I f (x)dx (2.2.4) and a series consisting of constant multiples of the derivative correction terms 02 (1.1. Theorem 2.2.1 (Euler [15], Maclaurin [33]) Forfe C74 [a,b] b n .. S , 1 I f(x)dx = hZ f(X,-) - Z h2“62a02a_1 + f F(2‘)(t)82‘(t)dt. (2.2.5) “ i=0 a=l 0 Here the double prime signifies that the first and last terms in the sum are assigned weights 1/2 and the remaining terms receive weights 1. The proof of Theorem 2.2.1 follows by integrating (2.2.2) by parts and noting that I: Z "f(x.) i=0 é—[Fh(0) + Fh(1)] = 1(f) + R(h,l), (2.2-6) T(h) l b I F),(t)dt = I f(x)dx, (2.2.7) 0 a and R(h,a-1) = bahaDa_l —R(h,a). (2.2.8) Introducing the notation _ 2 E2.1-1 - ’1 “020-1 (2.2.9) A2.1-1 "’ b2aE2a-1 3 Z A2a--1 ’ a=1 we may express the Euler-Maclaurin Summation formula with remainder in the more compact form: 901.8) 10‘) = T(h) - (h,3) + R(h,23). (2.2.10) For concreteness we write the first several terms of (h,s) in (2.2.10): b n h El I ftxldx = h f(a+ih) - 3 [f(a)+f(b)l - T2— (1 '-0 '- (2.2.1 1) E3 £5 E7 139 + —— .. + — —— + 720 30240 1209600 47900160 + R(h,23). From this we see that the Euler-Maclaurin Summation formula is a generalization of the Trapezoidal Rule, T(h). It relates a sum of equally spaced function values and an integral and states explicitly the boundary derivative correction terms which allow one to be converted into the other. Consequently, it may be used for summation as well as for numerical quadrature. Also, it has provided the basis for some useful results in the theory of asymptotic expansions. (See Oliver [39] .) 2.3 ERROR ESTIMATES Effective application of the Euler-Maclaurin Summation formula in the approximation of sums or integrals depends on a close estimate of the remainder integral, R(h,3), and a judicious selection of h and 3 which will achieve the required accuracy with a minimum of computational effort. For many functions, for example rational functions, the remainder integrals R(h,s) for a given h may first become smaller, but then grow without bound as 3 increases to infinity. The problem is to predict the h and s which will yield the desired accuracy without compromising computational economy. Applying the Cauchy-Schwarz inequality to (2.2.8) and applying Lemmas 2.1.1 and 2.1.2, Frame [18] obtained the following upper bounds for the quadrature error in the Euler-Maclaurin Summation formula. Theorem 2.3.1 h S lR(h,s)I < l.48(b—a)MS (5;) , s > 1 (2.3.1) where M, = Max lf(‘)(x)|, (2.3.2) a 1 (23.3) where 2.66 approximates 1r4/15\/E We observe that we now have in fact three error estimates. To see this, substitute b2,” = 0 in (2.2.14) to obtain R0623) = -R(h.23+ 1). (23.4) Then using (2.3.4) in (2.3.1) we may write the estimates as follows: 23 lR(h.2s)I < 1.48(b-a)M2, (5"?) (2.3.5) I! 28+I lR(h,23+ l)| < L48(b-a)M2,,l (3;) (23.6) h 23+2 lR(h,23+ l)! < 2.66(b -a)M2,.,2 (27-) (2,3,7) The selection of the apprOpriate estimate depends on the step size, h, the number of derivative correction terms, 3, and the modulus of certain derivatives of f (3:) over the domain of integration. 10 For example, for rational integrands, the sharpest error estimate may depend on h and s as roughly indicated in Figure 2.3.1. h S l 2 3. 4 l 1 / 2 1/ 3 (2.3.7) (2 .3 .6) (2.3 .5) 1/4 Figure 2.3.1 Values of h and s for the Best Error Estimate Of considerable interest is the question for which functions f and for which values of h and a does R(h,a) converge to zero. We are assuming f e C “[a,b] ; hence f is Riemann integrable on [a,b] and we have lim R(h,a) = 0. (23.8) -hfl On the other hand, many functions f e C,°°[a,b] , e.g. rational functions, satisfy limR(h,a) = 9°. (23.9) a»- However, if we assume f e C'[a,b] and if there are constants M and c such that Ma = max |f(“)(x)| 0, calculate M and c according to Ma < a! Mo“. (2.3.14) (ii) Choose h sufficiently small so that the error satisfies r(h) < (b -a)M(hc)'V110(l' H39'75) < e- (2.3.15) (iii) Determine 3 6 1+ by 3 = [n/hc] , (2.3.16) the greatest integer < 1r/hc. (iv) Apply the EuleroMaclaurin Summation formula to approximate a definite integral or a sum using the above values of h and s. 0 Thus, even though inn. R(h,a) = 0°, that is, the asymptotic series diverges, it may be useful in certain applications. The problem of a priori estimating the h and s which not only guarantee a stated error require- ment but also result in maximum computational efficiency by minimizing the number of function and/or derivative evaluations (nfe) is not completely solved. It may be stated as follows. Given f(x) 6 C“[a,b] , and e: > 0, find n = (b - a)/h and s < a/2 which minimize nfe 23 + n + 1 (2.3.17) subject to h 2(S+I) lR(h,23+ l)I < 2.66(b"a) ‘5; M2$+2 < 5. (2.3.18) 12 2.4 A NUMERICAL EXAMPLE Consider the definite integral ‘ M): = 11. (2.4.1) 0 1+):2 1(f) = Expand the integral into partial fractions and differentiate a times to obtain f‘“’(x) = a! 2110-10“ -(-i-x)’l'“]- (242) Since the maximum occurs at x = 0, we have Ma < 4a! (2.43) Now set M = 4 and c = 1 in (2.3.15) to obtain _1_o_ r(h) < 4h"*510I1 11”). (2.4.4) Then using (2.4.4) and (2.3.16) we compute the values in Table 2.4.1. The values of D2a_1 are calculated as follows. 02.1-1 f(2“'l’(l) - f‘2“'”(0) (2.4.5) (2a - 1)!22’asin (arr/2). Hence, employing the Euler-Maclaurin Summation formula, we have n=hin 4 (s+l)/2 - Z (—1)“h4a'2b4a-2(4a - 3)! 23‘2“ + R(h, 23) a=l n 2 6 10 14 ~ 4 h h h Z: + £6 ' 5%4' 1056 ' 384 M 1 + (1702 » (2.4.6) 1118 43 867 _h22 854 513 1 838 592 1 554 432 1126 8 553103 _ 1:30 8 615 841276 005 319 488 3 519 774 720 s-l +.--+ (-1) 2 rushes—nu“ + R(h,23), s = 1,3,5,-~ 12 2.4 A NUMERICAL EXAMPLE Consider the definite integral l4d): 01+):2 1(f) = =17. Expand the integral into partial fractions and differentiate a times to obtain f(“)(x) = a! 2i[(i-x)'1'“ —(-1—x)’1'a]. Since the maximum occurs at x = O, we have Ma < 40.! Now set M = 4 and c = l in (2.3.15) to obtain (22) 1'0!) < 4h'V‘10 “ " Then using (2.4.4) and (2.3.16) we compute the values in Table 2.4.1. The values of DZa-l are calculated as follows. DZa-l fan-”(1) _ f(2a-l)(0) (2a — l)!22'“sin (arr/2). Hence, employing the Euler-Maclaurin Summation formula, we have (rm/2 - Z (-1)ah4a'2b4a_2(4a - 3)! 23'2‘1 +R(h,23) a=l " .. 2 6 10 14 hZ 4 + L - _h_ + ——h 6 -——2 i=0 [+0702 6 504 105 84 + h18 43 867 _h22 854 513 1 838 592 1 554 432 h26 8 553103 _ h30 8 615 841276 005 319 488 3 519 774 720 s-l +---+ (-1) 2 h2‘b23(23-1)!22“ + R(h,23), 3 =1,3,5,---. (2.4.1) (2 .4 .2) (2.43) (2.4.4) (2.4.5) (2 .4 .6) 13 Computation to 14 decimals with h = 1/5 and s = 15 in (2.4.6) gives 1 1 100 100 100 100 - —,17 -— +—+——+—+——+ " R(s ) 5(2 26 29 34 39 1) 5-2 5-6 5-10 544+.” (2.4.7) +__——+——- 6 504 1056 384 3.141 592 653 590 07. The actual error is 2.8 x 10‘13 while the error from Table 2.4.1 is 2.1 x 10‘”. Finally we note in Table 2.4.1 that 50 decimals of 1r are guaranteed by taking h = 1/19 and s = 59 in (2.4.6). This requires 80 function evaluations (fe). It can be shown from (2.3.7) that 50 decimals of 11 are also guaranteed by taking h = 1/29 and s = 25. The computational cost is 55 fe. Table 2.4.1 Computation of 1r h 3 Upper bound for r(h) rife l 3 7.50-2* 6 1/2 6 993-5 9 1/4 12 986-10 17 1/5 15 2.07-12 22 1/8 25 1.7220 35 1/10 31 675-26 43 1/19 59 265-50 80 I'This means 7.50 x 10'2. 3. APPLICATIONS OF THE EULER-MACLAURIN SUMMATION FORMULA 3.1 QUADRATURE FORMULAS WITH ASYMPTOTIC EXPANSIONS Sheppard [45] , Becker [6] , and Frame [18] suggested a class of quadrature formulas which are obtained by taking a weighted average of T(h), T(2h), T(3h), - ' - with weights selected to eliminate one or more of the terms containing DI, D3, D5, - ' - . This is accomplished as follows. Let a1, a2, - - - , 03+; be factors of n = (b - a)/h. As before we write 5213-1 = hmDZB_1 and a‘azlllas+l A213-1 = bzeEze-l- Dem“ by Azo,-l,2o,-l.---.2a, (h) the approximation to the integral -1 b [(f) =f f(x)dx based on the weighted average of T(alh), T(azh), - - ° , T(asflh) which eliminates the a terms A2514, 1' = 1(1)13, but possibly contains some derivative correction terms involving A2714" ' ' . ’ A27t-l' Without loss of generality, suppose that 1aleu.~v:a.5+auc mflm Sn 2 w: R on 8 a: 3. 3n 8 02 mm a...“ 3 a: 3 3n 3 an 2 Ego: $3 an? ...—$.53on on .5 v3 «8 ~ «2 v8 _ one «8 a N2 «.8 _ SN .mmlmm :35 ”NM? ...; wanes. W1 ...: n mg m o: b m8 o So 22 2o 0 a: h 9: m Bub £2 em? #2 3895.32 on T S e: 2 E 2 SN T bw. $2 9%? ...: 3258.32 We. 2 E 8 _ 2 8 S o... 5 mm 3? mm? 0633 on d N n _ o ~ m _ $1 3; «MT. 0383 WI 5 3:. 2n 2.. in :~ 1mm 3:. em? 225 on n 3 NM 2 S h Iwmw SE em? 28m W 8 as ”2 § m2 3 1mm. «T .59: on m o w w m m 1mm... c? EBA—1m 1W1 2 8 Z a 2 m“. g a a? 28% £935 on _ N m m _ Wm 35 m? 28% 3.5355 WIN: 5 z o— N. Mal— }t. m NM< coma—Em Un— ~ N v g ..ml gm «7. .8355 .m. .m _ .m. a 3: _< 32835 on 1w _ w a 3: da. 12885 f .3. ma he a. m a m m c c. we awe"; :33. 23. 252 £83. concur—cu 339609 «:8 8.303 ouaflugo N. fin 03$. 19 Tamas u Tedd Ea Tan—3: u Tam. as $2 $3 1 €503 + $33“ a 1 3. SN. 33 m: N? tame? E. a an? ...E 9353. on 5 Q Fee 1 $09.” 133.2 1 08: 1&4 25 35mm: 2:3 mm? .....o 32.53. 8o N: :8 1 €va 1.0.38. m 1 as e: If So 3.23:1 32 an? .5. .3898302 8 94: $8 1 Ama N: 1.13% 1 9a: Taq 8a a}: 32 em? .5. 3,582.52 2Q 5% + $32 1 22 3.3 8m 5}? 2; mm? 2803 on o: 7% 1.30 1 m: an 9.x}. 3; a”? 583 ai 7.2 1.38 1 e8: Tfiq RN 81m? 3:. ..m? 28m 8 3 $2 138 1 E. Esq aim: Em .M ”< 28m 3Q $2 1 £2 Tao. m8 21m? 3.? 321m 8 22mm: 1 o: qu 3mm .7. .583 9: _ma 1 a. Taq cc :6? E: ...? 258m ...oaea on a re 1 a Tfiq 8mm 35 n T 2.8% «hogan m: we 1 o: Tfiq 02 «ET 3% a? Bag on Q E. 1 a Tm~< 25mm :3 a? Saga 3.3 oEmT 3: ~.... 3282:: on if N: _m 3:. 2 3282.5 =23.“qu “589:; 5 ESP 3250 8am 35055 305$. 23— 252 .3085me ozoEEAuc. 05 5 «Econ. 3350 was Eobm 22:35:— m._.m 035. 20 Table 3.1.4 [leading Terms in the Asymptotic Expansions“ Name Rule Abbrev E1 E3 E5 E7 89 T 'dal Al T(h) i- -'-1- 1 '1 l rapezm 12 720 30 240 1 209 600 47 900 160 . l I -1 1 ‘1 1 DC Trapezo1dal A T ”1) 72—0 30 240 1 209 SW 47 960 136 . 12 l —1 1 -l7 Sunpson A1 SW 136 1121 "12766 W 395 unpson 3 9756 73366 7121176 , 13 1 -1 13 -41 Simpson 3 Second A1 Up!) §6 336 9 233 112 DC 8' ’ Seco 11 A13 U’(h) ‘3 3 ‘13 unpson s n 3 11 20 H 800 W . 14 1 -l7 13 -4369 S-Pomt A, ‘4‘5‘ T1 0 W 993 7 _ 14 -8 17 -13 DC S-Pomt A3 16 065 80 325 151 470 Boole A13 30*! 975' 966 W9 4 0 DC Boole A35 B (h) 99 225 93 S33 ‘ 123 _1- ‘1 7 Waddle A13 WM 840 2 400 6‘73 3 o 123 1 '3 1 DC Weddle A35 V W 137 200 129 360 , 1236 ._3- '5 Newton-Cotes 7-Pt. A13 5 NM} 2 800 3 3% . 1236 1 ‘3 DC Newton-Cotes 7-Pt. A357 N (h) 154 000 Romberg 9-Pt. A135 W01) 4 725 13 7” 1248 I -512 DC Romberg 9-Pt. A357 W (h) 7 952 175 , 2s ‘Ezs-l ” D25-1. 21 USpensky [52] uses the expansion of a function in terms of Bernoulli polynomials (see Krylov [27]) to derive asymptotic expansions for the trapezoidal, Simpson’s, Simpson’s Second, Boole’s, and Newton-Cotes’ 7-Point rules. Except for these Newton-Cotes’ rules, Weddle’s rule, the DC trapezoidal rule, and the DC Simpson’s rule given by Tanimoto [50] , the asymptotic expansions of this section are believed to be new; the derivation is based on the Euler-Maclaurin Summation formula. Becker [6] constructed Simpson’s, Boole’s, Newton-Cotes’ 7-Point, Weddle’s, Romberg’s 9-Point, and several other rules, but did not construct the correSponding derivative corrected rules as we have done. 3.2 ERROR ESTIMATES The quadrature error in (3.1.4) may be estimated from the principal error term by s+l a ...a |I(f) — ABI‘H,BSS+1(}1)I 2». (b-a)|bz,IhZ7M2,Z 1111,1637. (3.2.1) i=1 Here we have replaced 027.1 in (3.1.5) with (b - a)M27. Also, as before, 7:min[1+-{311...5B51713H'97t}]' (3.2.2) For example, let us compare Simpson’s formula S(h) with the DC Simpson’s formula S '(h). The error in Simpson’s formula is less than (b - a)h4M4/180, whereas, the error in the DC Simpson’s formula is less than (b - a)h6M6/9450. Now if 21121116 < 1 105 M4 (3.2.3) then this additional accuracy of fifth-order vs. third-order is gained at the one-time minimal cost of computing the correction term -hz[ f ’(b) - f '(a)] [15. 22 3.3 NEWTON-COTES FORMULAS Examination of Tables 3.1.] to 3.1.4 reveals that we have obtained asymptotic expansions for five of the Newton-Cotes’ quadrature formulas: the trapezoidal rule, T(h), Simpson’s rule, S(h), Simp- son’s Second rule, U(h), Boole’s rule, B(h), and the Newton-Cotes’ 7-Point rule, N(Iz). Examination of A1501) [26 T(h) - T(Sh)]/25 h 5.69% + 52f1 + 52f2 + 52f3 + 52f4 + 42f5 +---+ 21f,,] (3.3.1) 10”) + 59911403/18 000 - - -- reveals that it is impossible using the technique described in Section 3.1 to obtain the 6-point Newton- Cotes’ rule. Therefore, this class of quadrature formulas is not merely a restatement of the Newton- Cotes’ rules. As previously noted, Uspensky [52] shows how another technique may be used to obtain an asymptotic expansion for any Newton-Cotes’ quadrature formula. 3.4 THE MIDPOINT RULE AND SOME OPEN FORMULAS An asymptotic expansion for the midpoint or centroid formula, C(h), may be derived from the Euler-Maclaurin Summation formula by writing C(h) 2701/2) - T(h) 11 Z f(a +171/2) i=0 b (3.4.1) = f f(x)dx - 191/24 + 7E3/5760 -3155/967 680 +---+ (2145- 05234112, + R(h,2s) 23 where h = (b - a)/n and the absolute error lR(h, 23)l = lR(h, 23+ 1) l is estimated by 1 IR(h.2s+1)|= I] IZFlié’Wr) - FAM’lemuwr O (3.4.2) 4 - 7r . . h 2 2 Of course, (2.3.5) and (2.3.6) may also be employed to obtain additional estimates for R(h, 2.5). As before, M = max I (2" x I 3.4.3 25 a + 2101-1112)] £5110)- 1(a)] (3.4.10) 3111605 127 11807 = + .- IU) 302400 9676800+ b = f f(x)cbc + 11211222,-101-21-11(16-411/15. 0 s=3 Ico’as+l The open quadrature formula Q:;:;-1 213 _1(h) based on the asymptotic expansion of the ’ , s midpoint rule is the analog of the closed formula A; 6114a“ ’2 35401) which is based on the Euler. Maclaurin Summation formula. In particular, the open formulas S0, U0. Bo, V0, N0, and W0 are the analogs of Simpson’s, Simpson’s Second, Boole’s, Weddle’s, Newton-Cotes’ 7-point, and Romberg’s 9-point formulas, respectively. Finally‘we note the following relationships: 30111) = 14c<10~ «2101/3 3001) [1650(h) - 50(211)]/15 (3.4.11) 111001) [648001) - 30011)] /63. 27 ..a «an _m Es :36 new. as _ 1 1 2.... oz 6 an lowl _ 6mm 4% _N 3; SN _ E .3 SN .0 _1 S can _1 68 e Mmmm $63 an “o 9% _1 m3. 2: m1 68 3. bolmb 3? ammo 1 1 E 6 n2 _ N: Sm £33 _ E 2 £20 mb 1 .mlvm o 2 m N 2 EN . _ As .> 26 1 .E. o 2 _ o 2 _ E > n20 1mm E o 2“ N 2 ow. 2.8 _ _ E .m z _o 1 o m— _ 8 3 mm 2: m 4:0 w 1 .8 6 ... pm _ 5 .._.1 3 .2 m _o — 0 1M1 5: 0: M —0 pm _1 2 Mm Eon mo 1 1m. 6 _ ~ v _ it m N _0 Hum _ _ xtfb ~O _ _ \50 _O 2 a e v n N _ ab m u u o u o o .8 .22.... 55.2 63. 5836.55 2335.30 :30 15 20:92.28 N66 632. 28 q 2.3:. 1 a 1 N 223 NE 1. N 1... NN: NNN NNN NNN N2 NNN NNN NNN _1 NNN NNN NNN N2 NNN NNN NNN NNNSN E63 NNNo NN NN N1 NN NN N1 NN NN N1 NN NN N1 NN NN . NNN. NNN o N: NE NNN1 N3 N4 N2 NNN1 N: T N: NNN1 NNN N4 N2 NNN1 N: 1m“ E 3 N620 NW1 NNN N 8N T 8o N NNN N NNN T NNN N 8° N SN _1 NNN N BNE sz ommmo 2N NNT NNN SN 2:1 SN NNN NNT 2N old E62 N20 N N: .NIN. 1 1 1 MR 6 NN N NNN N_ a N: N_ N: a N. N: N E.> N20 .ol_ 6 N. N T N N T N N T N N E > NN_o B m... o a N NNN 3.1 NNN N NNN 91 NNN 5. EN NNNO 1 1 1va o N. N: S 2 _ S 2 N. s. E N 320 B 9.1 1 N N NN NN NN N E. a 20 N o _ N N N N E a 20 .8 1 m. o N _ N N N N E.N So 1 11N1 o N N _ N N E N 20 R _ .N Eb o _ N _ N Eu .0 . _ Nm 2.“ z. NNN N: 2. SN N. N. N. NN m. a N. NN : .6 8.83 .653. 23. .3th 5:60:00 o>zm>ton Ea 3:363 232330 min 635. 29 . ~1m~m £0 .11 Tmmd b5 _ImND an: n TmNWe NNN SENS 1 AmoceNN + NNNVSN _N 1 a: NNN. :1NN1_NV _1NN< N: 3318: EN; Nmmo NNN N53 1 NNNQN 1. N33: 1 N8 3 21.1.33 TNNq 8N NN\NmNN_1 E63 Nwmo o8 NENNN 1 AmeNNv 1. ANNE: N 1 NNN N: :1NN1_NV7NN< SNNNN NNENNN. E...z ammo SNENN 1 NNeN: + NNENNN 1 NNN : 2121.8 TNN< SNNNQNENT Eoz ammo NNNENeN + ANENN 1 NNN. :1NN12NV _1NN< 8... EN ENENN E...> . Nmmo 22% 1. ANN: 1 N: 21.1.39 _1NN< NNN NN\NN.:N1 E6> Nmo $352 + NNNEN 1 No : :1NN1_NV_1NN< 8N N: N\NmNN_ Em. ammo NENE .1 N38 1 S. :1NN1_NV_1NN< ON. ENE? Eom cmo 82% 1 _N_ :1NN1_NV_1NN< 8N Emma E...: Nmo N236 1 N. :1NN1_NV _1NN< o§NmN1 E6: Lo 22.1... 1 N_:_1NN1_NV_1NN< 84 NNN}: ENN Nmo szv 1 a :1NNLNV _1NN< o3 :NmN1 EON Nflo :1NN12NV TNN< 8N N\NmN Eb _o :1NN1NNV £3 E _m1 Eu Ho coufimxm 633.333 5 ENE _Socoo Norm 390:2 >2nn< 23— ..NcomNcauxm ozoafixfix 2: 5 NENNF 38:00 23 team .2635 vim 03¢. 30 Table 3.4.5 Leading Terms in the Asymptotic Expansions“ Rule Abbrev E 1 E3 E5 E7 E9 Q1 C111) 1 7 —31 127 -511 24 "5 76—0 967 680 "154—828 800 24—524 881 900 5—760 ‘6—9 7 68—0 "154 82 8800" '2'4'_5'2_4 8'8‘1‘9'00'“ 12 -7 31 —127 1241 01 56”” ”—“1 440 4—8 38'4“ 1 843 200 —175"1'7'—7 7'28" 12 1 31 -127 511 03 sow 302 400" '9 6‘76 800' 364 953 600' 13 ;7_ 31 -1651 2993 Q1 ”6”" 640 10 75 2’ 2 45 7' 600 ’19 464192 013 U, (11) 93 -381 6643 3 o —358 400 W34 4 4—32 5_37 600 124 —31 127 —8687 Q13 80”” 15120 115 200" ‘18' 24—7 68—0“ 124 1 127 -73 Q35 311/") 3 175 200 _3 421 440— 123 -31 127 -3577 013 V6”) 26 880 307 200‘ '32 44""‘0‘3‘2‘0 123 . 381 -73 Q35 Vo/h/ —17"5_6"1'60_0 *9 461 760 1236 —381 365 Q135 New 358 400 270 336 1236 1 219 0357 NJ") '1'1"2"64‘0‘00 1248 -127 1241 Q135 wow 37 800 _171 072' ms 1 _L_ 0357 wow 581644800 .. ZS 'Ezs-i ”h D23-1. 31 For the derivative corrected formulas we have 56 (11) = [16C'(h) - c'(211).]/15 8601) = [64S6(h) - Sd(2h)]/63 (3.4.12) 196(k) = [256Bd(h) - Bd(2h)]/255. This leads to the observation that the derivative corrected Romberg quadrature to be defined in Section 3.6 may be based on the asymptotic expansion for the midpoint rule, (3.4.1), in place of the Euler-Maclaurin Summation formula. In this case the first 4 columns of the “open Romberg” table are given by the open quadrature rules C (h),SO(h),BO(h), and W001), respectively. 3.5 ROMBERG QUADRATURE The Euler-Maclaurin Summation formula is a tool of strategic theoretical importance. Indeed, Romberg [44] proposed a new class of quadrature formulas for a finite closed interval [a,b] based on Richardson’s extrapolation technique [24, 43] applied to the Euler-Maclaurin formula. It involves re- peated halvings of the integration interval and successive elimination of higher order terms in the Euler- Maclaurin expansion. An extensive discussion of the theory is given by Bauer, Rutishauser, and Stiefel [5]. Romberg concluded that Richardson’s deferred approach to the limit would improve the accuracy of the trapezoidal rule. T(h) = h[l—f0 + f, + + ifn] = h Z"f(a+ih). (3.5.1) 2 2 i=0 For n = (b - a)/h even, he obtained Simpson’s formula by writing S(h) = [4 T(h) - T(2h)]/3. (3.5.2) Next for n a multiple of 4 he obtained the Newton-Cotes’ formula of order 6, Boole’s Rule: 301) = [16S(h) — 3(211)]/15. (3.5.3) In the next step Romberg obtained the formula “’01) = [643(k) - 8(2h)]/63 _ 4h - 33;}? [217f0 +1024f1+ 352f2 +1024f3 (3.5.4) + 436f4+1024f5 +352f6+ 1024f7+434f8+ +217fn] 32 which is not a Newton~Cotes’ quadrature rule. Thus Romberg’s method is not a reformulation of the NewtomCotes’ formulas. Apparently, W(h) was first derived by Sheppard [4S] and later rediscovered by Becker [6]. Now let kl! To. = hZ f(a+ih) (3.5.5) 1' =0 be trapezoidal sums where h = (b - a)/2k. Recalling the Euler-Maclaurin formula 8 T(h) = 1(f) + Z cahZ“ — R(h,2s) (3.5.6) a = l where ca = b2aD2a-1’ it is easy to understand the definition ka = [4me-l,k+1_ m-1,k]/[4m -1]. (3.5.7) In fact _ 20’21’,,,,2m b-d ka - Al,2,-~,m (T), m > 0. (3..58) From this the Romberg T-table is constructed: (3 .5 .9) We have already seen that the first three columns are the trapezoidal, Simpson, and Boole’s values, respectively. Bauer, Rutishauser, and Stiefel [5] show for any f e C2m+2[a,b] there is a f 6 [0,1] such that IT [W < (b -a)82m.2 If‘2m*2’(r)l (3 510) "'k (2m+2)! 2<2k-m> ' ' ' Combining this result with lemma 2.1.2 we obtain a new and much more convenient error estimate for any entry in the Romberg table. 33 Theorem 3.5.1 If f e C2"'*2[a, b] then the error for any entry in the Romberg T-table may be estimated by (b -U)M2m+2 T - I < I mk UN 45 "2(m-1)2(m+1)(2+2k-m) (3'5'11) where M2,“; = aff§b|f(2’"+2)(x)|- (3.5.12) 3.6 DERIVATIVE CORRECTED ROMBERG QUADRATURE Lanczos [28] shows how the addition of only one derivative correction term can significantly improve the accuracy of a quadrature formula at the minimal expense of a small increase in computa- tional effort. He also states the derivative corrected (DC) trapezoidal and Simpson’s Rules. We note that the DC trapezoidal rule generates the DC Simpson’s rule. S'(h) = [16T'(h) - T'(2h)]/15 (3.6.1) which in turn generates the DC Boole’s rule B'(h) = [64 S’(h) - S'(2h)]/63. (3.6.2) Next, the DC Boole’s rule generates the DC 9-point Romberg formula W'(h) = [256B'(h) - B’(2h)]/255 (3.6.3) which is distinct from any DC Newton-Cotes’ rule. This suggests a new quadrature scheme, the derivative corrected Romberg quadrature. Let h = (b -a)/2" (3.6.4) and 2" 3 C3,, — h Z: f(a+ih) — Z AZH ”0 “=1 (3.6.5) TOk - (1’01”?) be DC trapezoidal sums. Define 34 Crsnk = “much-mu ‘ qr-1,k)/(4m H '1) (3'6-6) and construct the DC Romberg C3-table 3 C00 5' C01 Cil S 3 C32 C12 C22 (3.6.7) 5' s s 3 C03 C13 C23 C33 The first column is the Euler-Maclaurin formula with h = (b - a)/2" and the m-th column, m > 0, is given by the quadrature formula 0 I .. _ cf", = .42 '2 " '2'" (L1). (3.6.8) 3+1,,+2,...,s+m 2): For the case s '= 1, the first three columns of the Citable are the DC trapezoidal, DC Simpson’s, and DC Boole’s rules, respectively. In general, comparing (3.5.8) with (3.6.8), we see that the m-th column of the C‘-table is the derivative corrected quadrature rule corresponding to the m-th column of the Romberg T-table. 3.7 A NUMERICAL EXAMPLE To illustrate, we employ the Romberg and derivative corrected Romberg quadrature formulas to estimate the integral 1 f l—sin(1rx)1rdx = 1. (3.7.1) 0 2 We note that h = 2"‘ DZa-l = (_1)a1r2a 2k-1 C3,, = «21* Z sin(jn2"‘) (3”) Fl 8 (h,s) = Z(-1)an2“2'2kab20. a=l 35 Table 3.7.1 Romberg Quadrature T-table for L: V2 sin(1rx)1rdx = l (Newton-Cotes k 0 (Trapezoidal) 1 (Simpson) 2 (Boole) 7-Point) 0 0.900 000 000 000 1 0.285 398 163 397 1.047 197 551 20 2 0.948 059 448 969 1.002 279 877 49 0.999 885 365 912 3 0.987 115 800 973 1.000 134 584 97 0.999 991 565 473 1.000 00; 774 99 Table 3.7.2 Derivative Corrected Romberg Quadrature (s = 1) Cl-table m (Corrected (Corrected (Corrected (Corrected , k Trapezoidal) 1 Simpson) Boole) 3 Newton-Cotes 7-Point) 0 0.822 467 033 424 1 0991 014 921 753 1.00; 251 447 64 2 0.999 463 638 558 1.000 026 886 34 0.999 99_1_ 575 848 3 0.999 9_6_6 848 370 1.000 000 895 69 0.999 999 9:15 204 1.000 000 008 14 Table 3.7.3 Derivative Corrected Romberg Quadrature (s = 2) CZ-tablc m (Corrected 1 (Corrected (Corrected (Corrected , k Trapezoidal) Simpson) 2 Boole) 3 Newton-Cotes 7-Pomt) 0 0.987 757 437 638 1 0.999 470 572 017 1.000132 685 26 2 0.999 99; 116 699 1.000 000 895 19 0.999 999 876 401 3 0.999 999 878 254 1.000 000 001 45 0.999 999 999 999 1.000 000 000 08 36 Table 3.7.4 Romberg Error for fol 16 sin (nx)1rdx = 1 m 3 k 0 (Trapezoidal) 1 (Simpson) 2 (Boole) (Newton-Cotes 7 Pornt) 0 1.00+0 1 2.15-1 -4.72-2 2 S.19-2 -2.28-3 7.15-4 3 1.29-2 -1.35-4 8.44-6 -2.78-6 Table 3.7.5 Derivative Corrected Romberg Error (3 = l) m (Corrected (Corrected (Corrected (Corrected , k Trapezoidal) 1 Simpson) 2 Boole) 3 Newton-Cotes 7-Point) 0 1.78-1 1 899-3 -2.25-3 2 536-4 -2.69—5 8.42-6 3 332-5 -3.96-7 2.48-8 -8.14-9 Table 3.7.6 Derivative Corrected Romberg Error (s = 2) m (Corrected 1 (Corrected (Corrected (Corrected . 1‘ Trapezoidal) Simpson) Boole) 3 Newton-Cotes 7-P01nt) 0 422-2 1 5.29—4 —1.33-4 2 788-6 -3 .95-7 1.24-7 3 122-7 -1 .45-9 909-” -2.98-11 ‘This means 4.22 x 10‘2. 37 The values in the C l-'I'ab1e 3.7.2 show a marked improvement over those in the Romberg T—Table 3.7.1. For the calculation of the Cl-table, it should be emphasized that D.” = f’(l) - f'(0) (3.7.3) is computed only once, in fact before the calculation of the‘Cl-table commences. Thus the first deriva- tive of the integrand is evaluated only at the two end points of the interval of integration. The advantage of the derivative corrected Romberg quadrature over the classical Romberg quadrature is its increased accuracy and efficiency. Indeed, it can be shown that the m-th column of the CS-table is given by a quadrature formula of order h2lm +1“ 2‘ as compared with an h2(m +1) order for the m-th column of the Romberg T-table (m=0,l ,2,‘ ' -). This improved accuracy is gained by the minimal cost of evaluating the derivative correction terms, Dza-li once. Moreover, the derivative corrected Romberg quadrature is appealing because the trape- zoidal sums are closely related to Riemann sums, and the weights are easy to program. As noted on page 31, an extrapolation procedure may be applied to an asymptotic expansion for the midpoint rule in place of the trapezoidal rule. 4. FUNCTIONS OF TWO VARIABLES 4.1 THE EULER-MACLAURIN SUMMATION FORMULA Let C” [R] denote the set of functions f (x, y) of two real variables where the partial derivatives (see 4.1.5) f “5(x, y), 0 < a, 5 < 23, exist and are continuous on the rectangle R = [c, b] X [c,d] and let f (x, y) e C23 [R]. We wish to estimate the integral (1 b Itf) = f f f (x.y)dxdy. (4.1.1) c a Divide [a, b] into n equal parts each of width in = (b - a)/n by points x,- = a + ih setting x0 = a and x" = b. Similarly divide [c,d] into m equal parts each of width k = (d - c)/m by points yl- = c + jk where yo = c andym = d. Now for 0 < t, u < 1, average the values of (b - a)(d - c) f in each subrectangle Rf], = [x,,xi+ 1 ] X D’i’YJ’HI at points at a distance of t from the left side and a distance of u from the bottom by writing m-l n -1 Fhk(t,u) = th Z f(x,- + my]. + uk). (4.1.2) [=0 i=0 Then the double integral of this moving average over the unit square is exactly the integral I (f ) over the rectangle R: 1 1 J J Fhk(t,u)dtdu O 0 m-l n-l l l = Z Z] J f(x,- + my]. + uk)hkdtdu 0 0 M i=0 (4.1.3) ""1 "'1J~H(i+l)kJ~a+(i+l)h a+ih f (x .y)dxdy 38 39 The average T(h,k) is the (composite) trapezoidal rule: T(h,k) = %[F(0,0) + F(1,0) + F(O,l) + F(1,1)] (4.1 .4) m n n H = ME 2 f(x,-.m- i=0 i=0 The double primes on the summation signs indicate weights are to be assigned as indicated in Figure 4.1.1. 14 V2 ‘26 14 V; 1 1 )‘z 16 1 1 95 $4 ‘26 V2 % Figure 4.1.1 Trapezoidal Weights The mid-value FhkOé, V2) is the composite centroid or midpoint rule and has been investigated by Good and Gaskins [20]. Before proceeding, we define some notation which will simplify the writing of the Euler- Maclaurin Summation formula. Let ¢a(t) and ih,,(u) represent the a-th Bernoulli polynomials in the variables t and 11 respectively, a > 1. For 1 (h.k;2s,ZS) + R(h,k;25.25) where S a. ¢(h.k;28s281 = Zb2a|:-E2a-1,O * ZbZBEZa-l.28-l a-1 6—1 and S R(hkfltzs) = L2s,o ”Z bzaLzs,2a-1 + L2$.25' a-l (4.1.9) (4.1.10) (4.1.11) (4.1.12) (4.1.13) (4.1.14) (4.1.15) Lyness and MCHUgh [32] give an n-dimensional formulation of the Euler-Maclaurin Summation formula. It may be the case for some functions that over the rectangle R, higher partial derivatives exist 42 with respect to the second variable than exist with respect to the first. In this connection we observe that the Euler-Maclaurin Summation formula may be generalized as follows. Let C 28’2’ [R] denote the set of all functions f (x, y) where the partial derivatives f “5, 0 < a ‘\< s, 0 < B < r exist and are continuous on the rectangle R. Then Theorem 4.1.2 Iffe C231” [R] and 0 < s < r, then [(f) = T(h,k) + d>(h,k;2s.2r) +R(h,k;23,2r) where S a .| ¢(h.k;23.2r) = Z b2a[-E2a-l,0 + Z bZBEZa—l,2£3-ll a=1 6:1 .5 r r s + Z bza'L‘Do,2a-1 + Zb26026-1,2a-1] a=s+1 (i=1 and S R(h.k;28.2r) = 123.0 + [0,2r " Z b2a(12s,2a-1 + IZa-l.2r) + 125,25" a=1 4.2 ERROR ESTIMATES Let Mae = max lf“5(x.y)l ' (XJHR hzskaMzs a + haksta 2 a < 2s S N23, 0. = 10.74(hk/21r)2‘M23,23 a = 23 0.74 z n2/6\/§ 1.48 z n2/3x/5— 2.95 as 2112/37? 7 = (b-aXd-c). (4.1.16) (4.1.17) (4.1.18) (4.2.1) We now give an estimate for the remainder term in the Euler-Maclaurin Summation formula. 43 Theorem 4. 2. I Letfe C25 [R] and 8 P2: = lbi'st,0 + Z Ib20|N23,2a-1 + N2s,2s- (4-2-2) a=1 Then |R(h,k;2s,2s)| g 2.95(b -a)(d —c)P2,(2n)-2S. (423) Proof: For0 1—+———( M) + n <—) (4.2.12) 3J5 2w 2 12 l-(hC/21r)2 1% 211 4"2 (hCY‘ 1 n2 710/12 g — 7 —- — + + _— 3\/§ 2" 2 12x/5 1-(hC/2rr)2 Finally since hC < 1r, fifiF... "2 + hC/12 J 3x/5 2 12\/5_ 1-(hC/21r)2 (4.2.13) 47r2[1 112 1r] <——-—+ +——<7.17.6 3x/3' 2 12¢? 9 45 4.3 ADDITIONAL ERROR ESTIMATES For 0 < a, (i < 23 we note that 12w = ‘123+1.13’ [a,23 = _la,23+1’ [23,25 = I2s+1,2s+1- Hence we have the inequalities: ”2.3-+1431 g 2.95 7KhZS+lkfiM2s+l'fi(2n)-(23+1) Haas-+11 < 2.95 7Ahak23+lMaJS+1(2n)-(Zs+l) ”23.231 < 1-432 ”r(hk)2’+1M2s+1.2s+1(21r)'(4”2) where A = 1/2 if a or B is zero and A = 1 otherwise. Then the analog of Theorem 4.2.1 is Theorem 4.3.1 lR(h,k;25.23)| = lR(h.k;25+1.23+1)| < 2.95(b — a)(d - 29102,, 1 (210423+ 1) where S P2s+l = |b1|N28+1,0 + Z |b2a|N25+l,2a-l + N2s+1.2s+1- a=1 _ n2 hk 2" N28+l,2s+l _EV‘; E; M28+l,25+1' Theorem4.3.2 Theorem 4.2.2 is true if 25 is replaced by 7.5 + 1. Theorem 4.3.3 Theorem 4.2.3 holds if 23 is replaced by 28 + l. 4.4 SHARPER ERROR ESTIMATES (4.3.1) (4.3.2) (4.3.3) (4.3.4) Due to the asymptotic nature of the Euler-Maclaurin series, the following error estimates will often provide closer error estimates than those given in the two previous sections. 46 Theorem 4.4.1 lR(h,k;2s+l, 23+1)| < 5.31 (b — a)(d _ c)p23+2(2n)-(2s+2) where S P2s+2 = 'bIIN2s+2,o + Z lb2a|N23+2,2a-l + N2s+2.2s+2- a=1 _ hk 2‘ M2s+1,2s+1 N2s+2.2s+2 ‘ '2; ——\/'6— . and 5.31 z 114\/6_/45. Proof: Recall from (2.1.2), (2.1.7), (2.1.8), and (2.1.10) the following properties: 1 J; ¢§(t)dt = (-1)"“b23 < 2.17(2n)'2‘3 1 2 2.17 z 114/45. (4.4.1) (4.4.2) (4.4.3) For convenience we let i signify + if B = 0 and - if B > 0. Also, let 1' signify - if {3 = 0 and + if B > 0. Then integrating by parts and applying (4.4.3) we find 1 425,3 = -fO[F2"B(t,1) i F25’5(1,0)]¢és+1(t)dr ' szs+102sp + 128+l,{3 123+] .13 ‘ iI’2s+21)2s+1,11 - [28+2,B 1 if [F2’+2"3(t.1) i F23+2’3(110)11ib2s+2 ‘ ¢2s+2(’)] ‘1’- 0 (4.4.4) 47 Apply the Cauchy-Schwarz inequality and use (4.4.3) to obtain 1123-0-14” < 27h28+2kBM25+2,fi(b225-+2 - b4s+4)% (4.4.5) < 5.317h23+2k3M25+2,B(21r)'(25+ 2). Similarly ”111,2: = Ia.2s+1 (4.4.6) 11,135.11 < 5.317hak23+2Ma,25+2(21r)‘(2‘+2). Moreover [23,23 = [23+1,25+l ‘ (4.4.7) Applying these results to (4.1.15) we have R(h,k;28,23) = —R(h,k;28+1,2s+1) 8 (4.4.8) = “L2s+1.0 + ZbZaL23+l,Za-l ‘ L25+l,2$+1' a=1 Finally IR(h,k;28, 2s)| = lR(h,k; 2s+l, 2s+l)l < 5.317(2n)“2‘*2’llb1|N2.+2.o 5 (4.4.9) + Z Ib2aW2s+2,2a-1 + N25+2,2s+2]' D a=1 Theorem 4.4.2 If there exists a constant C such that for 0 < a. < 28, 0 < k < h < 71, M23+2’a < C, and M ’25....2 < Cthen a IR (h, k; 23, 23)| < ll.17(b- a)(d- c)C(h/2n)2s+2. (4.4.10) Here i 1.17 approximates (4.4.11) __,,4\/g[1 + 6"/2 + —————h/6 ] 45 1 - (h/27r)2 48 Theorem 4.4.3 If there is a constant C such that for 0< a < 25, 0 < k< h < 1r/C, M23” a < C25”, and M 25.4.2 < CZS+a, then a! lR(h.k;23,2s)| = lR(h.k;25+l,28+1)| 25+2 (1061(b_ a)(d- c)(h_£) [LL/8+ hC/l2 1 12 1 4126721024 (4'4‘12) where 10.61 z 2114 \/6‘/45. (4.4.13) Proof: |R(h,k; 2s+1, 2s+1)| <47r4\/6- 2" 3., a hC l (b- aXd- 0(2), ) 22C2 2[lb1 1"“;lb2a'0702 1+(27r)2 2776‘] 1r4 25+2 5 <2 4\/6_(b_ a)(d- c)(h_C) [i+ z_(2 fl)-2a(hc)2a-l +\_/_6] 2 12 (4.4.14) a=1 2145/— (b a)(d )(hc)2‘+2 [6 +~/6_ + «(hey -(hC/2n)2‘] 21r 12 6 211/1—(hC/2‘rr)2 ° 4.5 A NUMERICAL EXAMPLE The Euler-Maclaurin Summation Formula (4.1.13) applied to the integral 1 l dxdy [(f) = J —— = 1n (27/16) = 0.523 248144 (4.5.1) 0 0 x +y + 1 results in the formulation [(f) - R(h,h; 23, 25) <1>(h,h;2s,2s) "Znin 1 h2 _— '+' + i=0 i=0 0 ”h l -Z=:b2ah2“[2h(2a-l)! Z {(1 +511)?“ - (2+Bh)'2“} 1 6= -—0 (4.5 .2) a-l + Z 2b26h2"(2a + 20 -2)! {41‘(a*‘” — 314W“) - 1} =1 13 + 152,,112“(4a.-2)![41'2a - 3"4a - 1}] 49 where h=—1—, n= 1,2, r1 = (-1)a+fi(a+11)! . (x +y + 11W” fa‘3(x,y) (4.5.3) Applying the error estimates (4.2.3), (4.3.3), and (4.4.1) we find h 25 S 2 1 ’1 ZS ] . __ a- __ 1 l lR(h.h,2s,2s)| < 295(2fl) [(291 + 22:] Ibzalh (2s+2a 1)- + “(fin (43). (4.5.4) ’1 ZS+I S lR(h,h;2.s,2s)l < 2.94;) [(23+1)! + ZZlbzalhza'l(23+2a)! a=1 h 25,, (4.5.5) h 23+2 S |R(h,h;Zs+ 1,2s+1)| < 5.31(2—-> [(2s+2)! + 2Z162a|(2s+2a+1)1 (4.5.6) " a=1 2s + 5%???) (4s+2)!] The results are presented in Tables 4.5.1-4.5.7. The partial derivative correction sums are given in Table 4.5.1. Table 4.5.2 gives the results of the Euler-Maclaurin Summation formula for several values of h and s; the associated errors are listed in Table 4.5.3. Tables 4.5 .4 through 4.5.6 present the results of applying the error estimates (4.5.4) through (4.5.6), respectively. Finally, in Table 4.5.7, we give the absolute value of the ratio (Error Estimate 4.5.k)/(Actua1 Error), k = 4,5,6. The results indicate that the choice of the error estimate depends not only on the integrand f but also on the values of h and s. For values of s < l/h, (4.5.6) provides the sharpest error estimate while for s > l/h, (4.5.4) should be used. For 8 z l/h, (4.5.5) provides the best estimate of the truncation error. In practice, one would fix the value of s and let )1 decrease to zero. In this case, error estimate (4.5.6) should be applied. 50 O 90 4 4.444444444444444. O 4 e 0 044444 O O O O O O O 4 9 000 9000 O O 006 e 0004444444444 .... 4 4 4 O 4 O 4 o 04 4 4 4 4 4 4 4 4 4 4 44 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4. 4 :4 4 Y 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .. . . 4 .. 4 4 4 4 4 44 = (x +y + 1)"or110.112 Figure 4.5.1 Graph of z 51 Table 4.5.1 Partial Derivative Correction Sums (h,h; 2s, 2s) s h l 2 3 4 5 l .063 143 004 .058 775 925 .058 555 694 .018 202 954 -2.l47 609 63 1/2 .014 501 993 .014 231 639 .014 255 757 .014 250 457 .014 251 156 1/3 .006 301 135 .006 247 312 .006 249 366 .006 249 187 .006 249 216 1/4 .003 513 700 .003 496 638 .003 497 003 .003 496 985 1/5 002 239 387 .002 232 394 .002 232 490 l/lO .005 566 435 .005 562 062 Table 4.5.2 Euler-Maclaurin Summation Formula: I( f ) = 0.523 248 144 z T(h,h) - <1>(h,h; 23, 2s) h s 0 1 2 3 4 5 1 .583 333 333 .529 190 329 .524_ 557 409 .525 777 640 .585 130 379 3,730 942 96 1/2 527 500 000 .52; 998 007 .523 268 361 .523 241843 .523 24g 543 .523 248 844 1/3 .52_9_ 497 354 .523 126 230 .523 259 043 .523 247 289 .523 248 197 .523 248 138 1/4 .529 745 130 .523 281430 .523 2485192 .523 248 1_2_7 .523 248 14_5_ 1/5 .52_5_ 480 630 .523 24; 243 .523 248 _2_36 .523 248 149 1/10 .523 804 351 .523 247 108 .523 248 148 Table 4.5.3 Error R(h,h;2s, 28) = [(f) — T(h,h) + (h,h;29,28) S h 0 1 2 3 4 5 1 -6.01-2* 3.06-3 —1.31—3 -1.53-3 -4.19-2 -2.21+0 1/2 -1.43-2 2.50-4 _2.02-5 330-6 -l.40—6 4.004 1/3 —6 .25—3 5.19-5 -1 .90—6 155-7 —232-8 520-9 1/4 -3.50—3 1.67-5 -3.49-7 1.65-8 -1.40-9 1/5 -2.23—3 6.90-6 —9.24-8 330-9 1/10 -5.56-4 4.35-7 -1.80—9 ‘-6.01-2 means —6.01 x 10-2. 52 Table 4.5.4 Estimates for R(h,h; 2s, 23) using (4.5.4) s h I 2 3 4 5 l 2.57-1 1.45-1 ' 5.23—1 1.1 1+1 7.50+2 1/2 4.87-2 436-3 107-3 6.57-4 1.34-3 1/3 1.97-2 732-4 693-5 1 .26-5 3.99-6 1/4 1.06—2 2.16-4 1.11-5 1.07-6 1.67-7 l/S 6.61-3 8.50-5 2.75-6 1.66-7 1.61-8 1/10 1.57-3 4.91—6 3.85-8 563—10 132—11 Table 4.5.5 Estimates for R(h,h; 2s, 23) using (4.5.5) h s 1 2 3 4 5 1 1 .44-1 1 .88-1 1 .67+0 6.77+1 7.26+3 1/2 123-2 190-3 7.10—4 7.10—4 2.63-3 1/3 3.26-3 2.04-4 2.74-5 6.5 5—6 2.73-6 1/4 1 .3 0-3 4 .46-5 3.21-6 4.00-7 7.73-8 1/5 647-4 139-5 631-7 491-8 585-9 1/10 759-5 397-7 436-9 8.19-11 2.35-12 Table 4.5.6 Estimates for R(h,h; 2s, 2s) using (4.5.6) h S 1 2 3 4 5 1 1.75-1 3.03-1 2.62+0 9.83+1 1.00+4 1/2 7.63-3 1.78—3 9.07-4 1.11—3 4.31—3 1/3 1.32-3 1.24-4 2.23—5 6.81-6 3.53-6 1/4 392-4 200-5 192-6 301-7 7 .04-8 1/5 154-4 495-6 299-7 291-8 4.17-9 1/10 8.87-6 6.94-8 1.01-9 238-11 822-13 53 Table 4.5.7 I(Error Estimate 4.3.k)/Errorl, k = 4,5,6 h 1 2 3 4 5 1 84 41 57 i1 144 231 8Q]0921712 2_6_51616 2346 38932844575 1/2 195 49 21 216 94 88 324 _2_1_§ 275 192 507 793 £13 3757 6157 1/3 380 63 _25 385107 65 447 177 £4 543 _2_§_2_ 294 767 5g 679 1/4 635 78 .22 619128 _51 673 195 M 764 286 2.15 835 387 222. 1/5 958 94 gg 920150 21 833 191 2; 1/10 3609174 30 2728221 12 5. APPLICATIONS OF THE 2-DIMENSIONAL EULER-MACLAURIN SUMMATION FORMULA 5.1 CUBATURE FORMULAS WITH ASYMPTOTIC EXPANSIONS The generalization of the quadrature formulas in Section 3.1 to functions of two variables involves expressing the Euler-Maclaurin Summation formula (4.1.15) in terms of a rectangular grid and Taking appropriate weighted trapezoidal sums for various grid sizes in order to eliminate the desired number of terms in the asymptotic error expansion. The result is a cubature formula of the required degree of precision. The details of the technique are as follows. Let I \ ' a 111a 122 + ”I 122 1112 1112 j, ['2 “1'2 air ' (5.1.6) We wish to find 77 + 1 constants xi}- such that n+1 A = Z xiiTal-aj = Hf) + CbzubQOzu-i,2v-1 (5-1'7) i>i=l where C is some constant, u and v are appropriate nonnegative integers, and Q is given by n+1 Q2u-l,2v-I = Z xrrEzu-1,2v-1(arh»07'k)- (5-1-8) 1>i=1 If we write “’1 = x“, wz = x21, ° ' ' , wnfl = xs+1’s+l, then the 17+] constants w,- may possibly be found by solving the linear system f2)“ 27‘21 2’81 2‘22 2282 ”my: FWIT P1- 11 11 11 11 11 11 611 C21 Csl C22 Csz Cs+1,s+1 “’2 0 22 22 22 22 22 22 _ C11 C21 C81 C22 ’ ' ' C32 ' ' ' Cs+l,s+1 W3 ' 0 ' (5.1-9) 1111 1m _CH C2212 ' ' ' C21" C22 ' ' ' C372" ' ' ° Cs+l.s+1_ _wrfil‘ _Oj If a solution to (5.1.9) exists, then for some integer a we obtain an asymptotic expansion for the cubature formula, A: s+1 t A = Z xi/Taiai ’ szmbhzz 92711-142712:l i>j=l 1=1 (5.1.10) [(0 + Q(h,k; 00). A“ .1)(2.l)(2.2)(4.l)(4.2)(4.4) Note that in some cases, for example, (1,0)(3,0)(3,1)(3,3)(5,o) (h ,k), correction terms of the form E a0 may not be eliminated. Recalling (4.1.15), the definition of R(h, k; 2s, 2s), we write Raiai = Ail-[R(aih,ajk;o,o) + R(afh,a,-k; (7,0)], (5.1.11) 56 Then the truncation error 52 in (5.1.10) is S 902.1640) =. Z x.,R.,., (5.1.12) i>f=l and may be estimated by the methods of Chapter 4. To illustrate the technique we will derive the partial derivative corrected (DC) Simpson rule: . _ (1.1)(2.1)(2,2) S(h,k)—A(3’O)(3,l) (h,k). (5.1.13) Settings= 1, 17:2, (a1,a1)=(1,1), (a2,a1)=(2,1), (aQ,a2)=(2,2), (811,612)=(2,0), (1321,22)=(2.1), (711.712): (1.0). and(721,722)= (1,1) we obtain the system .— -[ " " T 1 18 32 w2 = 0 (5.1.14) 1 20 64Lw3 0 having the unique solution (wl, W2, W3) = (256/225, -16/225,1/225). (5.1.15) Thus we obtain (5.2.4), an asymptotic expansion for the DC Simpson’s rule. The error is given by Q(h,k;2s, 23) = [256R11-16R21+R22]/225. (5.1.16) This cubature rule is illustrated in Figure 5.2.5 and the trapezoidal sums are shown in Figure 5.2.4. In Section 5.2 we give without comment several cubature formulas with asymptotic expansions, error terms, and appropriate diagrams. These formulas are the 2-dimensional generalizations of the quadrature formulas of Section 3.1. Some of the results, e.g., theDC Weddle’s rule, are believed to be new. Sheppard [45] obtained the double Simpson’s and Weddle’s rules. A number of additional cubature rules were obtained but are not presented here. Using another technique, Tanimoto [50] derived what we call the DC Simpson’s rule, (5.2.4). However, his paper has several errors. Moreover, he does not give an expression for the error. 57 Finally we note that (l .l)(2.1)(2.2)(4.1)(4.2)(4.4) (l ,0)(l.1)(3.0)(3,l)(5.1) results in the linear system ~_— "1 2 1 2 2 1 w, 1 6 8 20 48 64 w2 1 8 16 32 128 256 W3 1 18 32 260 576 1024 w, l 20 64 272 1280 4096 “’5 1 68 256 4112 17408 65536 W6 .1 _1 in which the coefficient matrix is singular.1 In this case there are infinitely many solutions. 5.2 SOME CUBATURE FORMULAS OBTAINED FROM THE EULER-MACLAURIN SUMMATION FORMULA Euler-Maclaurin Summation Formula: Trapezoidal Rule m n T(h,k) _=_ th Z f(a+ih,c+jk) i=0 i=0 d b E10 E11 = , dxd +— _— fcfaflx”) y 12 144 _flg_531 _ E33 720 8640 518 400 E50 551 553 + + — - 30 240 362 880 21 772 800 914 457 600 E70 E71 E73 _ _ + _ _________. 1209 600 14 515 200 870 912 000 36 578 304 000 (5.1.17) (5.1.18) (5.2.1) (Equation (5 .2.1) continues) 1 . . . . . . If the 1 on the right Side of (5.1.18) 15 changed to 2025, then a solution 18 given by (4096, -1280, 400, 64, ‘20. I). This system proved difficult to evaluate numerically. A modified version of the Fortran program recommended by Forsythe and Molcr [17] was used. E77 58 E90 E91 E93 " 1 463 032 160 000 E 95 + — 1 448 500 838 400 + + ——-———-— - 47 900 I60 574 801 920 34 488 115 200 E97 E99 57 940 033 536 000 - 2 294 425 328 025 000 S - + b2s [En-1,0 + szeEzs-ma-I] +R(h,k§2‘12‘)' [i=1 (5.2.1) )4 5.4 % th )4 Figure 5.2.1 Trapezoidal Rule DC T rapezoidal Rule E10 E11 T(hJC) = T(h,k) -7 + m E30 531 IU) _ _ E33 720 8640 518 400 + (5.2.2) S + b25[E2S'1,0 + Zb23E25-1926-1] + R(h,k; 23, 23)‘ {i=1 59 -hkfxy -kfy -kfy hkfxy 144 12 12 144 hfx 41)“, E V: V: 12 x hk hf, -hfx _1'2— V“ y‘ 12 hkfxy kfy kfy 41ka 144 7 1_2‘ 144 Figure 5.2.2 DC Trapezoidal Rule Simpson ’s Rule S(h,k) = (1.1)(2.1)(2.2) A(1.0)(1.1) 0”” [16 T11 -4 T21 '1‘ T221/9 (5.2.3) Q30 533 Qso E53 I555 [(f) - — - + - .. + . . . 720 32 400 30 240 272160 2286144 s l + b25[Q2s-1,0 + 32 b23[16’4(4s +4”) + 4S+BIE23-1,25-1] + 5201,16; 23. 23)- B=l 60 1 4 1 l6 4 4 X ’31 9 1 4 I Figure 5.2.3 Simpson’s Rule V: 16 ’24 l I 1 ‘A % 1 V: V2 V: 1 l T“ = T(h,k) T21 = T(2h,k)+T(h,2k) 1 l 1 T22 = T (211.210 Figure 5.2.4 Component Trapezoidal Sums for Simpson’s Rule 61 DC Simpson 's Rule (3.0)(3.1) =[256T 16T +T 1/225 g9+i 950 E51 E55 = + - - IU) 30 240 ' 141 750 89 302 500 S l + b23[Q23_1,0 + 2752 1’23 [256 -16(4‘ + 43) + 4S+B]E23,1,2B_1] a=1 + Q(h,k; 23, 2s). —hkfxy -7kfy -l6kfy ~7kfy 7hfx 49 l 12 49 1 12 256 1 12 l6hfx 7h)“, 49 112 49 hkfxy 7kfy 16kfy 7kfy Figure 5.2.5 DC Simpson’s Rule hkfxy -7hfx -16th -7th —hkfxy .44.. 225 (5 .2.4) 62 Simpson's Second Rule (LOXIJ) Q E Q E E =IU)- 30__ 33+ 50_ 53_ 55 +... 720 6400 30 240 26 880 112 896 (5.2.5) 1 S + b25[Q25-1,0 + g; 2528181 '9(9‘ *9”) + 93+6]EZS-1,213—l] a=1 + Q(h,k;2s,2$). 1 3 3 l 9 9 3 3 9hk (,4 9 9 3 3 I 3 3 1 Figure 5.2.6 Simpson’s Second Rule 1/4 1/2 1/2 I 1 1/2 1 1 1/2 1/4 1/2 1/2 T11 = T(h,k) 3/2 3/2 1/4 1/2 1/2 1/4 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 T31 = T(3h,k)+T(h,3k) 3/2 3/2 T33 = T(3h,3k) Figure 5.2.7 Component Trapezoidal Sums for Simpson’s Second Rule 3/2 3/2 3/2 3/2 DC Simpson '8 Second Rule Q10 A(1’1)(3’1)(3’3)(h,k) = [65617111 -31131+ T33]/6400 _ __ + (3.0)(3.1) 4111:ny 26hfx 54h f, 54h f, 26th 411kny 12 950 9E 51 9555 [(f) + - — -————+ 30 240 44800 1254 400 95” 1600 S l 13:1 + 9$+61 E25._1’2B_1] + S2(h,k,2S,25). —26kfy —54kfy -54kfy -26kfy 169 351 351 169 351 729 729 351 351 729 729 351 169 351 351 169 26kfy 54kfy 54kfy 26kfy Figure 5.2.8 DC Simpson’s Second Rule 41:1:ny -26hfx —54th -54hfx -26th -4h kfxy (5.2.6) 6—400 65 5 2 Point Rule (1.1)(4.1)(4.4) _ Au’om’” (h,k) — [256T11-16T41 + 7441/225 Q3O E33 17553 289555 + " 720 ' 2025 -‘ 85 050 ' 3 572100 (5.2.7) 1 S (i=1 + 16s+6152,_1,25-1] + S2(h,k;25,2s). 9/8 3 3 3 9/8 8 8 8 3 3 8 8 8 32hk 3 x _— 225 8 8 8 3 3 9/8 3 3 3 9/8 Figure 5.2.9 52 Point Rule 66 DC 52 Rule 0 165 (1.1)(4.1)(4.4) _ ~10 11 A(3’0)(3’1) (h,k) - [65 536T11- 256 T4] + T44]/65 025 -—12 + _2601 Q50 32E51 645 5 = [(f) + _ _ ____.5___ + 30 240 819 315 258 084 225 (5.2.8) S + b Q + -——1—- b [65 536 256 (168 +163 2s 2s-1,0 65 025 Z 213 - ) + 163+B]E2s_1,23_1] + Q(h,k;28,2S). 25 315 315 25 — ? hkfxy - 64 kfy -10kfy -10kfy -10kfy — H kfy .8. hkfxy 315 315 —- hf 3969 63 63 63 3969 - — hfx 64 x —— — 64 128 128 63 128 128 128 63 10th -10th x 512hk 65 025 63 128 128 128 63 10th -10hfx 63 128 128 128 63 10th -10th 315 3969 3969 315 _ h __ __ _— 64 fx 128 63 63 63 128 64 hfx 25 315 315 25 —8—hkfxy a kfy lOkf), lOkfy IOkfy 64— kfy --8- hkfxy Figure 5.2.10 DC 52 Rule 67 Boole '8 Rule __. (l,1)(2.1)(2.2)(4,1)(4,2)(4,4) R(h’k) A(1.0)(l.1)(3.0)(3,1)(3.3) (h’k) [4096 T11 - 1280 721 + 400 T22 + 64 T4, - 20 T42 + T44] /2025 [256511-16512 +S22]/225 + Q50 4E55 Q70 E75 E77 + 30 240 ' 893 025 ' 1 209 600 ' 425 250 ' 810000 [(f) S + b2$[Q2s-1,0 + $52 bZB [4096 ‘ 1280913 + 46) + 400W”) 5:1 h + 64(163+16B)-20(425+5+4S+23) + 16S+5]E25-1,23;1] + 52(h.k;2s,231. (5.2.9) 49 224 84 224 49 1024 384 1024 224 224 84 384 144 384 W, 2025 1024 384 1024 224 7 224 49 224 84 224 49 Figure 5.2.11 Boole’s Rule V; 1A ‘A V; V; % 1/2 ‘2’2 1 1 1 l 1 l 1 1 I v. 14 V2 T11 = T(h,k) l 2 1 2 2 4 2 2 1 2 1 T21 = T(2h,k) + T(h,2k) 2 2 T22 = T(2h,2k) V1 68 2 2 2 T41 = T(4h,k)+ T(h,4k) 4 4 T42 = 7(4h,2k) + T(2h,4k) T 44 = T(4h,4k) Figure 5.2.12 Component Trapezoidal Sums for Boole’s Rule 69 DC Boole’s Rule A“ .l)(2.1)(2.2)(4.1)(4.2)(4.4) Figure 5.2.13 DC Boole’s Rule 3'0““ ._. (3.0)(3.1)(5.0)(3,3)(5.1) 0"") = [1048 576711 —81 920721 +64007‘22 + 102471,,- 80T42 Q10 1615‘11 + T 893 025 -— + —.—— 441/ 12 3969 = ' .. ' + ' [4096s11 64s21 $22]/3969 Q70 167571 16577 (5.2.10) = [(f) - —————- - - + 1 209 600 6 251 175 9 845 600 625 l S + b + —— b 1 048 576 23[Q2$-1,0 893 025 g1 2131 — 81920(4s +4?) + 6400(4W) + 1024(16s + 165) — 80(423+5 + 43*”) + 16W] 52,,1,2,,_1]+ 52(h,k;2s,2s) s = 4,5,--- 225 _2—2§ kfxy ”gig/cf). -960kfy -810kfy ~960kfy —E:—;9kfy T-hkfxy 6_5i0hf 47 089 6 944 5 859 6 944 47 089 _6510hf 16 x 16 16 ’1? x 6944 16 384 13 824 16 384 6944 960th —960hfx 5859 13 824 11 664 13 824 5859 810th -810th 896:2; 6944 16 384 13 824 16 384 6944 960th -960hfx 6510“ 47 089 47089 _6510U 16 x 16 6 944 5 859 6 944 16 16 'x 225 6510 , , 6510 -225 —4-hkfxy —l—6~kfy 960ka 810ka 960kfy To, Thkfxy 70 Weddle ’8 Rule (1.1)(2.1)(2.2)(3.1)(3,2)(3,3) Au,0)(1,1)(3.0)(3,1)(3.3) 0"") = [225T11-90T21+36T22 +15T31-6T32 + T33l/100 Q50 Q70 E75 577 [(f) + - _ _ _ __._ + . . . 30 240 l 209 600 2 016 000 5 760 000 (5.2.11) S + b2.[Q25-1,0 + 1002b28l225 -90(4s +4?) + 36(4S+B) + 15(93 +96) a=1 — 6(9‘43 + 4599) + 9s+9152,,1,2,,_1] + S2(h,k;2s,23). 1 5 1 6 1 5 1 25 5 30 5 25 5 5 5 1 6 1 5 1 1 30 6 36 6 30 9hk 6 100 5 1 6 1 5 1 1 25 s 30 5 25 5 5 1 5 ‘ 1 6 1 5 1 Figure 5.2.14 Weddle’s Rule 71 DC Weddle’s Rule (1 .1)(2,1)(2.2)(3,1)(3.2)(3,3) A(3.0)(3.1)(3.3)(5,0)(5,1) 0"") Q10 9511 = [72 900 Tn - 7290 721+ 729 T22 + 540 T31 - 54 T32 + 4 T33]/60 025 "17— + 240T Q70 45571 9577 = [(f) _ - _ + . . . 1 209 600 6 722 800 18 823 840 000 (52.12) S + 62, [023-1 ,0 + 6—01025 Z 62, [72 900 - 7290(46 + 46) + 729(4s+6) + 540(96 + 96) a=1 - 54(9646 + 4696) + 95113119234334] + 52(h,k; 2s, 2s). 25711:ny -185kfy 450M, -360kfy 4601(7), ~360kfy 45074,, 4851.], 25hkfxy 185th 1369 3 330 2 664 3 404 2 664 3 330 1369 485th 3330 8 100 6 480 8 280 6 480 8 100 3330 45014,, 45072;, 2664 6 480 5 184 6 624 5 184 6 480 2664 360hfx 660th X 911k 3404 8 280 6 624 8 464 6 624 8 280 3404 60025 460hfx -460th 2664 6 480 5 184 6 624 5 184 6 480 2664 360th 860th 3330 8 100 6 480 8 280 6 480 8 100 3330 450hfx 450117,, 1369 3 330 2 664 3 404 2 664 3 330 1369 185th 485th 251:1:ny 1851(7), 450kfy 360kfy 460w), 3601(7), 450kfy 185kfy 4511ka Figure 5.2.15 DC Weddle’s Rule Newton-Cores’ 72 Rule N(ll,k) =A (l,0)(l.l)(3.0)(3.l)(3,3)(5,0)(5.1)(5,3)(5.5) (1,1)(2.1)(2.2)(3.1)(3.2)(3.3)(6.1)(6.2)(6.3)(6,6)(h k) — 1296 761+ 567 762 -112 763 + 7661/705 600 + b25|:Q2$-1,O + + 145 152(95 + 96) - 63 504(9646 + 4696) + 12 544(967‘6) - 1296(366 + 366) Q70 9577 Q90 E97 10)- l 705 600 _ + _ _ + 1 209 600 7 840 000 47 900 160 689 920 13 660 416 [1679 616 T11 - 734 832 721+ 321489 722 +145152 T31 - 63 504 732 +12 544 T33 (5.2.13) S Z62, [1 679 616 - 734 832(4‘ + 46) + 321(4S+6) a=1 + 567(36646 + 46366) — “2069‘3 + 96366) + 365+31E2H 213-1] + S2(h,k;2s, 2s). 1681 8856 1107 11152 1107 8856 1681 8856 1107 11152 1107 8856 46 656 5 832 58 752 5 832 46 656 832 729 7 344 729 5 832 58 752 7 344 73 984 7 344 58 752 832 729 7 344 729 5 832 46 656 5 832 58 752 5 832 46 656 8856 1107 11152 Figure 5.2.16 Newton-Cotes’72 Rule 1107 8856 1681 8856 1107 11152 1107 8856 1681 hk 19 600 73 56 ‘6 56. ’72 1/2 92 ‘24: l 1 1 l I 1/2 '72 1 l 1 1 1 1/2 % 1 1 1 1 1 ‘22 52 l 1 1 1 l 15 % 1 l 1 1 1 ti 14 ’74 ‘A ‘A 1/z '72 $2 ’74 T“ = T(h,k) l 1 2 l 2 1 l 2 2 l l 2 4 2 4 2 2 2 2 2 l 1 2 4 2 4 2 2 2 2 2 l 1 1 1 2 1 2 1 1 72, = T(2h,k)+T(h.2k) Figure 5.2.17 Component Trapezoidal Sums for Newton-Cotes’ 72 Rule 74 1 2 2 4 4 2 4 4 2 1 2 2 7“22 = 7(2):, 2k) 3/2 3/2 3/2 3 3/2 3/2 3 3/2 3 3/2 3 3 6 3 3 3 3 3/2 3 3/2 3/2 3/2 3/2 3 3/2 3/2 T31 = T(3h,k) ‘1’ T(h,3k) Figure 5.2.17 (cont’d.) 3/2 3/2 3/2 3/2 3/2 3/2 75 3 3 3 3 3 6 3 3 6 6 3 3 6 3 3 3 3 3 3 3 T32 = T(3h, 2k) + T(Zh,3k) 9/4 9/2 9/4 9 9/2 9/2 9/4 9/2 9/4 733 = T(3h,3k) Figure 5.2.17 (cont’d.) 76 3 3 3 3 3 761 = T(6h,k)+T(h,6k) 6 6 6 6 6 6 6 6 762 = T(6h,2k)+T(2h,6k) Figure 5.2.17 (cont’d.) 77 9 9 9 9 9 9 9 9 T63 = T(Oh,3k) '1' T(3h,6k) 766 = T(6h,6k) Figure 5.2.17 (cont’d.) 78 Dc Newton-Cotes’ 72 Rule (1.l)(2,1)(2,2)(3.l)(3.2)(3.3)(6.1)(6.2)(6.3)(6.6)(}2 k) (3.0)(3.l)(3.3)(5 ,0)(5,1)(5 ,3)(5.5)(7,0)(7 ,3) ’ N'(h,k) = A = [2176 782 336 711 - 238 085 568 721 + 26 040 609 722 + 20 901 888 7,1 — 2286144732 + 200 704 T33 — 46 656761 + 5103 762 — 448T63 + 7661/1 764 000000 Q10 + 9511 12 2500 Q90 9591 9E99 (5.2.14) = 1U) + - - + 47 900 160 7 700 000 23 716 000 000 1 + __.—__.— b2‘[Q2"160 1 764 000 000 + S Z 62,, [2 176 782 336 — 238 085 568(46 + 46) a=1 + 26 040 609(46+6) + 20 901 888(96 + 96) — 2 286 144(9646 + 4696) + 200 704(96+6) — 46 656(366 + 366) + 5103(36646 + 46366) 448(36‘9" ’6 9’36") ’6 36”“1525-126-1] + Q(h,k;23,2s). 9 7 coo coo av 63 x 85.88 2- $88 82- $88 68. $82 68. U$88 68- 982 88. $88 88- U$88 82- .3888 : .588 82 .588 88 .382 m8 988 68 .582 “8 use 1 688.8252 8. 2.88 28m .988 8m 9888 8: 838 88 $8 88 2.: 88 28 88 :2 88 88 .838 8888 6:6 88 88 8:. 88 886 88 8:. 6:6 88 8838 83:2 88 8:. 88 88 88 83. 88 88 88 8:. 85:2 88 28 88 88 88 88 88 88 88 88 88 88 8828 8322 88... 8:. 88 88 88 88 88 88 88 8:. 88:2 8888 83 $8 88 8:. 88 88 88 8:. 8; 88 883.8 838 88 3.8 88 :2 88 $8 83 :2 88 88 8.38 $8882. $8888- $8288- $8868- $8288. .988 88. 8.388% : R388 82 $88 88 4.882 m8 $88 68 982 88 $88 68 $88 82 $88 82. 55.88 :- 80 Romberg's 9 2-Point Rule A“ ,1)(2,1)(2,2)(4,l )(4.2)(4,4)(8.l)(8,2)(8,4)(8.8)(h k) (l ,0)(l ,1)(3,0)(3,1)(3,3)(5,0)(5,1)(5.3)(5.5) ’ [16777 216TH - 5505 024T21 + 1806336T22 + 3440647‘41 -112896T42 + 7056T44 — 4096T81 + 1344 T82 — 84T84 + T88]/8 037 225 = [40961211 — 64821 + 8221/3969 Q7O 256E77 Q90 2176E97 18 4961599 .. + _ _ ... 1 209 600 22 325 625 47 900160 88 409 475 350 101 521 10)- (5.2.15) 4. S 1 b25[Q25-l,0 + WEI)” [16 777 216 — 5505(4S +44) + 1806 336mm) + 344 064(16‘ + 165) - 112 896(16‘4fi + 45163) + 7056065”) - 4096(643 + 643) + 1344(64545 +4564‘3) 84(64316‘i +16564‘3) + 645+B]Ezs_1,23,1] + ”(hvk; 25) 25)‘ 81 gm :6 m 923— x amok. v QONN NN vwme s mONN mm chm womm NN vwmo N. wONN NN one» v 22% “Eomdm MwSQEoM wONN NN vane N. momm mm 23. a wo- mm vwmc N. momN NN 2.3 X: $56 on 053 X: wove 3 2.3 3: 336 cm 2.3 2.: wvvo on 3mm 2 wvvo on N53.” 2 3.3 cm coon N. 3.3 on 2.3 1: 3.3 em 22 2: $3 3 2.3 X: wvvo on 2.3 X: vove 3. 23 w— vocw 3. oaoo m— wove 3 2.3 2 93% 3. 3.3 X: 3.3 on 2.3 X: wove 3. 3.3 X: 3.3 on 2.3 X: 3.3 on voam 2 wvvo on 2% n. wvvo cm 33 S 38.0 on 2.3 3: avg on 2.3 2: vote 3. 2.3 we. wvwo on cam vo— woNN NN vane N. womm NN «_ov a .woNN NN 336 n momm mm 2.3 285 one. v womm «m gmo h wONN mm «Sea womm mm vwmo 5 menu NN omen v 82 ‘54: 1/’z ‘A 95 1/z lé IA % l 1 l l 1 1 l ‘A 1 l l l 1 1 1 ‘24 l 1 l l l l 1 ‘A l 1 1 l 1 l l 56 l 1 1 l l 1 1 ‘5 l 1 l l 1 l 1 1/2 l 1 l l 1 1 l 1A ‘4 5’2 ‘5 V2 % 1A 'A Vz Tll = T(h,k) Figure 5.2.20 Component Trapezoidal Sums for Romberg’s 92 Rule 54 83 1 1 2 1 2 1 2 2 1 2 4 2 4 2 2 2 2 1 2 4 2 4 2 2 2 2 1 2 4 2 4 2 2 2 2 1 1 1 2 1 2 1 T21 = T(2h,k) + T(h,2k) Figure 5.2.20 (cont’d.) 84 l 2 2 4 4 2 4 4 2 4 4 2 1 2 2 T22 = T(2h,2k) Figure 5.2.20 (c0nt’d.) 85 2 2 2 2 4 2 2 2 4 2 4 2 4 2 4 4 4 8 4 4 4 4 4 2 4 2 4 2 2 2 2 2 4 2 2 2 T41 = T(4h,k) + T(h,4k) Figure 5.2.20 (cont’d.) h) 86 4 4 8 4 8 4 8 l6 8 8 8 4 4 4 8 4 T42 = T(4h,2k) + T(2h,4k) Figure 5.2.20 (cont’d.) 87 4 8 16 8 4 8 T44 = T(4h, 4k) Figure 5.2.20 (cont’d.) 88 4 4 4 4 4 4 T81 = T(8h,k)+T(h,8k) Figure 5.2.20 (c0nt’d.) 89 8 8 8 8 8 8 8 8 8 T82 = T(8h,2k)+T(2h,8k) Figure 5.2.20 (cont’d.) 90 16 16 16 16 16 16 16 16 T84 = T(8h,4k) + 71(4h,8k) Figure 5.2.20 (cont’d.) 16 91 16 Figure 5.2.20 (cont’d.) T33 = T(8h , 8k) 16 16 92 DC Romberg's 92—P0im Rule (l.l)(2.1)(2.2)(4.1)(4.2)(4,4)(8,l)(8,2)(8,4)(8,8)(h k) A13,O)(3.11133115411154)15.3)(5.5117.01<7,1) [68 719 476 736 Tll - 5 637 144 576 T21 + 462 422 016 T22 + 88 080 384 T41 - 7 225 344 T42 + 112 896 T44 - 262 144 T81 Q10 125441?“ [65 536/31'l — 256Bé1 + 32'21/65 025 Q90 8 192591 262 144E99 = I + — - + (f) 47 900 160 2 027 804 625 63 237 087 230 625 (5.2.16) 5' + b _1___ 2 Q - + b [68 719476736 5[ 23 1.0 (240 975)2 g1 26 S 637 144 576(45 + 43) + 462 422 016(45+5) ... 88 080 384(16‘ +163) — 7 225 344(16‘43 + 45163) + 112 896065”) - 262 144(645 + 643) + 21 504(64543 +4364“) — 336(64516‘3 + 16564“) + 64””1523-126-1] + Q(h,k;2s,2s). 5.3 THE MIDPOINT RULE AND VARIOUS OTHER FORMULAS The double Euler-Maclaurin Summation formula (5.2.1) may be used to derive an asymptotic expansion for the midpoint or centroid formula C(lr,k) by writing [1 k h k 4T(—2—,3) - 2[T(3,k) + T( ,9] + T(h,k) hki ifla + 171/2, 6' + jk/2) i=1 i=1 d b fff(x.y)dxdy + C(Iz,k) (5.3.1) 93 1f the first- and mixed second-order partial derivative correction terms in (5.3.1) are transposed, a third-order derivative corrected midpoint formula analogous to (3 .45) is obtained. The resulting DC midpoint formula is the same as formula EX183S of Table 6.4.1 and consequently the details are not given here. The technique described in Section 5.1 may be applied to (5.3.1) to obtain a number of Open cubature rules including generalizations of the Open quadrature rules of Section 3.4. Because of space limitations, the results will be omitted. However, we will indicate how to obtain asymptotic expansions for several nonproduct cubature formulas. Figures 5.3.1 to 5.3.4 illustrate Squire’s [48], Ewing’s [16] , Tyler’s [51] and Miller’s [35] cubature rules. 1 l 1 hk hk 1 0 0 1 x 0 _ T 8 12 1 1 1 Figure 5.3.1 Squire’s Rule Figure 5.3.2 Ewing’s Rule 1 -1 4 -1 hk hk 1 o o 11 1 x — 0 (1 x __ 2 6 4 4 12 l -l 4 -1 Figure 5.3.3 Tyler’s Rule Figure 5.3 .4 Miller’s Rule 94 Asymptotic expansions for these rules may be obtained from the following: Squire = -T(h,k) + [T(h,k/2) + T(h/2,k)] Ewing = T(h,k) -—:—[T(h,k/2) + T(h/2,k)] +2—T(h/2,k/2) 1 4 (5.3.2) Tyler = - ? T(h,k) + —3— T(h/2,k/2) , 5 4 Miller = —?T(h,k) +?[T(h,k/2) + T(h/2,k)]. These expansions are believed to be new. Another approach to these 4 cubature formulas is via the Taylor series; this is done in Chapter 6. 5.4 A NUMERICAL EXAMPLE The results of applying the midpoint and DC midpoint rules to the double integral 1 l J- J. exydxdy 3 1.317 9021514544 (5.4.1) 0 0 for grid sizes ofh = k = 1/5 and h = k =1/10 are shown in Table 5.4.1. Table 5.4.1 Several Cubature Rules Applied to fo’fo’ exydxdy = 1.317 902151454 4 h=k=1/5 h=k=ll10 Rule nfe“ Error nfe Error Midpoint 25 165-31 100 4.16-4 DC Midpoint 49 -l.22-6 144 -7.62-8 ‘Number of function evaluations mus means 1.65X10‘3 The DC Simpson’s rule shows a similar improvement over Simpson’s formula. Additional numerical results are given in Chapter 7. 95 1111 MHLLHJWM‘ Figure 5.4.1 Graph ofz = ex" on [0,1] 2 6 MULTIDIMENSIONAL QUADRATU RE FORMULAS WITH PARTIAL DERIVATIVE CORRECTION TERMS 6.1 THE EQUAL WEIGHT-ALTERNATE SIGN PROPERTY Let f(xl , - ° - ,xN) be a real valued function defined on the symmetrically placed N-dimensional rectangle 2: ‘=2 II p— [411311,], N 2 2. I We wish to estimate the multiple integral hN h, 1(‘f)=‘JI ... f(xl,...,xN)dxl...dx1v (6.1.1) by a multidimensional quadrature formula with partial derivative correction terms. Partial derivatives are denoted by ’1’? . . .(jftjiaf(xl’...’xN) (6.1.2) where ’1'.“ denotes the a-th partial derivative of f with respect to the i-th variable. Before proceeding we make several observations for the Specific case N = 2. The study of the Euler-Maclaurin Summation formula for a function of two variables led to an investigation to search for additional cubature formulas involving first- and perhaps second-order partial derivative correction terms with weights of equal magnitude and alternate signs at the four corners or at the midpoints of the sides of the rectangular domain of integration so that when the rule was com- pounded or repeated, the weights would cancel except on the boundary. We call this the “equal- weight, alternate-sign property.” The objective is to select nodes and weights which result in efficient cubature formulas of high precision. In this connection we observe that for a composite formula of given degree of precision, a rule in which most of the nodes coincide with the boundary will be more efficient than one in which almost all of the nodes lie in the interior of the domain of integration. Moreover, additional economy can be gained by requiring the equal-weight, alternate-sign property. Because of the endless variety of possible combinations, it was decided to limit the study to the six “cubature elements” listed in Table 6.1.1. 96 97 Table 6.1.1 Elements Name Cubature Element Diagram Centroid A (f) = 4h h f(O 0) Value 0 l 2 ’ 0 Corner Sum ACU) = 4’11h2[f(h1:h2)+f('h1rhz)+f(’h19'h2)+f(h1"h2)l Mid oint T Sump AmU) = 4h1h2[f(h1:0)+f(0.h2)+f(‘h1-0)+f(0,'h2)l " - ‘ CDzrnerr Ac:(f) = 4h12hzlfx011’h2) 'fx(‘h1:h2)'fx('h1v’h2)+fx(h1v‘h2)] —+ ++ rivative 2 Correction + hlhz Uy(h1'h2)+fy('hirh2) -fy(-h1,-h2) -fy(h1,-h2)] __ + $415616: A,;,(f) = 4h 12712140116)- fx(-h1.0)] : rivative _4 0+ Correction + hlhz2 [6409112) ‘fym' 4'2“ : Comer ,. 2 2 - + Mixed Ac U) = 4hikz [fxy(h12h2) "fxy(‘h11h2) Derivative - - _ _ + _ Correction + fxy(h1' hz) fxy(h1. ’12)] The selection of the derivative correction cubature elements AC', A5,, and AC" is based on the following considerations. For a and B nonnegative integers, define the “cubature generators” G,- listed in Table 6.1.2. Now suppose f(x1,x2) can be expanded in a Taylor Series about the point (0,0) as far as may be required. If the series converges on R. then the 01' assume the values indicated in Table 6.1.3. Examination of Table 6.1.3 reveals that odd/even constraints must be placed upon a and B to avoid nonzero generators Gr" which are components of the partial derivative correction elements A C , Ag], and Ac". These cubature elements are then candidates for' inclusion in cubature formulas. Now in order to construct multiple integration formulas with partial derivative correction terms, it is necessary to generalize the cubature elements in Table 6.1.1. Consideration of the geometry of the N-rectangle suggests how to proceed for arbitrary N > 1. We are now ready to derive MINTOV (an acronym for “Multiple lNTegration, Order 5”). 98 Table 6.1.2 Generators Name Cubature Generator Diagram _ + a, 914‘; [f(hlJiz) - f(—h1.h2) +r(-h1.-h2) 4011.412)! .1.. __ G 6 . a. - + 2 v» ,u 1 0011.112) -f(-h1.h2) —f(-h1.-hz)+f(h1,-h2)1 _ 1 + + 03 9’39? [f(h1.h2)+f('h1.h2) ““411. 412) 'f(h1. 412)] 0. 93911f(h1.01—f(-h1.011 -» 1+ 1' G, 930110682) - f(O. 412)] Table 6.1.3 Generator Values 61,5 a Odd a Odd (1 Even a. Even Generator [3 Odd [3 Even 6 Odd B Even GI Nonzero 0 0 0 02 0 Nonzero 0 0 G3 0 0 Nonzero 0 G4 0 Nonzero 0 0 05 0 0 Nonzero 0 99 6.2 DERIVATION OF MINTOV Denote the vertices of the N-rectangle N R = [I [-h,-,h,-] i =1 by c = (cl, 1 ° - , cN) where cf = —h]- or hf, and the volume by N h = 1.11 Zhj. ’3 Define the sign functionals ( ) {-1 if Ci = 41" a c = I +1 otherwise (6.2.1) ojk(c) = oi(c)ok(c) and the first. and second-order partial derivative correction terms 0,0) = 2 0,-(c)-"l,-'f(c) C (6.2.2) Dij) = §0jk(c)€/;9,éf(c) where the sums are over the 2” corner points of R. Figures 6.2.1 and 6.2.2 illustrate two of the partial derivative correction terms for the 4-cube. Moreover, careful inspection will reveal the sign arrangements for D1 (f) and Dlz( f ) for the 2- and 3-cubes. 100 + Figure 6.2.1 Sign Arrangement for D1(f) Figure 6.2.2 Sign Arrangement for 012(f) 101 Since [0") and the “cubature elements" A00") = hf(O) 4.0) = 11ch {(c) .v A'c(f) = thzl-DIU) (6.2.3) 1' =1 A: (f) = h Z hjthij) j‘2Ac + A3142 + 44A; (624) 4 2 x2 which is exact for the even functions 1, xi x1. and x1 x2 . By symmetry, Q(f) will then also be exact for all polynomials of degree at most 5. Now let x = (x1. ' ' ' , xN) and Mf‘fi'”- max 197 v“v.“f(x)l. (6.2.5) 1km] xeR k I Theorem 6.2.1 Iff(x] , ~ - ° ,xN) has continuous partial derivatives of the first six orders on R, then [(7) = [8A0 + (74,. — 4' -A'c' /3)/2N1/15 +E(f) (6.2.6) C is a multidimensional quadrature formula with degree of precision 5. The truncation error. E(fl), is bounded by N |E(f)l< 94—-5—-hOthjM6 +35 2h; IrkM 1k 1k 1 j¢k (6.2.7) + 280 Z h] zhzth?“” j 2. D Next we transform the variables to obtain a formula for an N-fold integral over an arbitrary N-rectangle, N R = H [aybl J i=1 N Letwj=bj—aj, w= H w', m=(ml, - ' ' ,mN),andc=(c1,--',cN)where i=1 m,- =-;(a,- + bi) and Ci = of or bi. Define -1 if c- = a- I I o. c = ’( ) { +1 otherwise (6.2.10) Oik (c) = ol-(c)ok(c). Corollary 6. 2. 1 N For any N—dimensional hyperrectangle, R = H [lily bj] . i=1 103 bN b, ‘J. ...I f(xl,...,xN)dxl...de UN 01 8w 7W = —- m + —— Sf( ) 2(“Slim-f0) (6.2.11) N . + E 2N+115 ,ZilDi w 2N2“ Z W ’wk 0km (f) where W 6 M? + 35 w w IE(f)I < 604800 Z w,- :21? W k ,2 (6.2.12) + 280 Z w fwkwmfif j2. The 2-dimensional formulation is given in (6.4.4). The name MINTOV (Multiple lNTegration, Order V) is given to (6.2.14). With appropriate interpretation of the corner and centroid nodes and the partial derivative correction terms, MINTOV is a nonproduct N-dimensional generalization of the composite Simpson’s formula with end corrections (Lanczos, [28] : b I f(x)dx = ——~Zf(a+h(i -1,» + ——Z f(a+ih) (6.2.19) -—lf '(b)- f(a)] + 116/68) 604 800 As before, the prime on the summation signifies that the weight 7 is to be assigned in case the node is common to 7 subintervals. Also, :1 = (b - a)/h and § is some point in [(1, b] . The number of function evaluations is 2n + 3. It may also be stated that MINTOV is composite Ewing’s formula [16, 49] with partial derivative correction terms. In the next section, a two-dimensional composite formulation of Ewing’s formula is given as D0503. The MINTOV truncation error estimate (6.2.18) is primarily of theoretical importance. It is useful for comparing MINTOV with other fifth-order multiple integration formulas. In practice it is usually not possible or at least not feasible to bound the required sixth-order partial derivatives. For example, it would be tedious to calculate and estimate the requisite sixth-order partials for the function w sin (x) sin (v) sin (2) e'w f (x. y, 2) = 3 (6.2.20 on. say, the cube H [0,1r/2] where w2 =x2 +y2 + 22. i=1 106 6.3 COMPARISON OF SEVERAL MULTIDIMENSIONAL QUADRATURE FORMULAS OF PRECISION FIVE The attempt to compare various quadrature routines leads to the discovery of the absence of generally accepted standards of benchmarking techniques. Lyness and Kaganove [30] state that “any individual who constructs a routine can find some problem for which it is more efficient than an existing available routine, and with this evidence, arrange for its inclusion in the local subroutine library. Existing routines are not removed because there are other problems for which they are more efficient than the new routine.” They add that numerical experiments must play a basic role in the comparison testing and then distinguish between “battery experiments” and the “performance profile evaluation technique.” The battery experiment method requires the use of many different integrand functions, limits of integration, tolerances, and different quadrature routines. Two notable investigations were con- ducted by Caselleto, Pickett and Rice [12] at Purdue University, and by Kahaner [25] at Los Alamos Scientific laboratory. Kahaner tested 11 quadrature routines on 21 integrands using 3 error tolerances and eventually selected 3 routines based on average reliability and average speed. Lyness and Kaganove [30] object to the technique used in these investigations on the basis of the difficulty of interpreting the results and of extracting definite conclusions, and because integrand functions which are “close” to one another were not used. Consequently, they recommend the use of the more popular performance profile evaluation technique which is described in detail in [31]. We will apply neither the battery experiment nor the performance profile technique to assess the merits of MINTOV. Instead, we will make general comparisons and conduct several numerical experiments using some definite integrals of our selection and several found in the literature. Now we observe that the number of function evaluations, nfe, required for the d-dimensional MINTOV (6.2.14) is given by d d d a a nfe = [I n,- + “(ni+l)+ZZn(ni+l)+4Z I] (ni+1). (6.3.1) i=1 i=1 i=1i=1 j d, MINTOV nfe < C" : 5-5 nfe; equality holds only for n = d = 2. Also, for any n > 1 and any d, MINTOV nfe < Gauss rife. Moreover, for all n,d, MINTOV nfe < Boole nfe. For example, for 8 partitions in 4 Space, MINTOV, Lyness, Gauss, and Boole require 18 433, 43 425, 331 776, and l 185 921 function evaluations, respectively. Table 6.3.2 lists the number of function evaluations required by MINTOV for various subdivisions n and dimensions d. Table 6.3.1 108 Number of Function Evaluations for Several Fifth-Order Formulas Formula nfe MINTOV nd + (n + l)d'2[(n + 1)2 + 2d(n +d)] Lyness (n + DJ + (2d + l)nd Gauss (3n)d Boole (4n + 1)d Table 6.3.2 MINTOV: Number of Function Evaluations Required for n Subdivisions in d-Dimensions "(1 1 2 3 4 5 6 7 8 9 10 1 5 17 57 177 513 I 409 3 713 9 473 23 553 57 345 2 7 29 125 529 2165 8 569 32 933 123 457 453 221 l 634 713 4 ll 65 399 2 481 15 399 94 721 575 759 3 456161 20 496 519 8 19 185 1835 18433 186587 1985 945 19 280 411 16 35 617 10 947 195 297 3 500 163 32 67 2 249 75 635 2 548 129 64 131 8 585 562 899 128 259 33 545 4 345 235 256 515 132 617 512 1027 527 369 MINTOV may be sized by computing the maximum number.of subdivisions n such that the number of function evaluations is less than some preassigned limit, say 106. This is done in Table 6.3.3 and the results indicate that compared to the techniques listed, MINTOV is substantially superior for dimensions l-S. 109 Table 6.3.3 Maximum Number of Subdivisions n such that nfe < 106 Rule d 1 2 3 4 5 6 7 8 9 1o MINTOV 499 998 705 77 24 ~12 6 4 3 2 1 Lyness — 408 49 17 9 6 4 3 3 2 Gauss 333 333 333 33 10 s 3 2 1 1 1 Boole 249 999 249 24 7 3 2 1 1 — — Finally, considering the speed of today’s fourth-generation computers (cycle times are measured in nanoseconds), it is not unreasonable to expect a composite multidimensional quadrature formula to perform at least n = 4 subdivisions using. say, 106 function calls. With these admittedly rough but realistic guidelines, it is possible to estimate the maximum usable dimension for the formulas under consideration. The results in Table 6.3 .4 indicate that the useful dimensional range for MINTOV is 1-7. Later we will show that MINTOV is particularly efficient and accurate in dimensions 2 and 3. In particular, from Table 6.3.4 we see that if there is a requirement that a multiple quadrature formula employ at least n = 4 partitions (i.e.,4d subregions), and not more than 106 function evaluations, then the maximum usable dimensions are 5 for Gauss and 7 for MINTOV. Table 6.3 .4 Maximum Usable Dimension 0' Assuming n 9 4 and nfe < 10“ "m" nfe Rule 102 103 104 105 106 MINTOV 2 3 4 6 7 Lyness — 3 4 6 7 Gauss l 2 3 4 5 Boole 1 2 3 4 4 110 6.4 CONSTRUCTION OF 47 NEW CUBATURE FORMULAS WITH PARTIAL DERIVATIVE CORRECTION TERMS AND ERROR ESTIMATES In this section, for concreteness. the discussion will be limited to 2-dimensional quadrature or “cubature” formulas. We will simplify the notation whenever possible. We wish to approximate the integral d b 1(f) =ff f(x.,V)dxd.V (6.4.1) over the rectangle R = [a, b] X [c, d] by a cubature formula Q(f) which contains partial derivative correction terms. Partition R into nm subrectangles each of size hk where h = (b -a)/n and k = (d~c)/m. Define the following cubature elements: likZZf(a+h(i-‘/z), c+k(j-'/z)) F0 = j=li=l FV = hk Z): f(a+1'h,c+jk) i=0 i=0 FM = lsz [f(a+h(i-'/2).c) + f(a+h(i-‘/2).d)] i=1 + hk ma. c+ko°- a» + f(b.c+k(i-%))l j=1 m n-l + thZ f(a+ih,c+k(i-‘/2)) j=l i=1 "'1 ——. + th Lf(a+h(i-‘/z),c+jk) j=l i=1 FV] = hzk Z '[ fx(b. c+ fk)- fx(a.c+ 12)] i=0 + hk2 Z ' [fy(a +171, d) -fy(a +171, c)] i=0 (6.4.2) (Equation (6 .4.2) continues) where 111 FM] = 1.sz mo, c+k(i - 14)) -fx(a. c+ko°- v2») j=1 + hkz 2.161" + h(i - ma) -f,(a +h(i - ‘ri),c)] i=1 FVll = h3k2[ fxyo, c)- fx},(b, c)+ fxy(b. .1)- fx},(a, d)] g=vvom g=vyww fxy = ”1” } f(x,,v). M11]2 = maxR l'l’z’j'lf(x.y)| (x.)')e Fij = (b-a)(d-c) [hikiM'iff hikifli{iz] = F/‘i. mon to a subrectangles. As in the case of MINTOV, the method of undetermined coefficients is used to construct a (6.4.2) (6.4.3) (6.4.4) The primes on the summations in (6.4.2) signify that weight a is to be assigned if the node is com- variety of new cubature formulas. The results are compiled in Table 6.4.1. Of the 88 combinations considered, 52 had nonvanishing determinants. Some of the unsuccessful attempts are indicated by zeros. The significance of the entries in Table 6.4.1 may be understood by observing that formula DCSC5 is the 2-dimensional formulation of MINTOV (6.2.17): fd bf(x )dxd ——8-F0+—7—FV i—FVi —1-FV11+F(f) c]; 'y y 15 60 120 720 ‘ ' |E(f)| < (F60 + 35 F42)/604 800. The number of function evaluations is nfe = 2(nm) + 3(n+m) + 9. (6.4.5) (6.4.6) (6.4.7) Table 6.4.1 Cubature Formulas Elements [Error Bound nfc No. Name 170 W FM 131 [MI W" 120 140 1522 160 142 nm n+m c Midpoint 1 1 [£0101 1 271 1 0 0 — 131140 0 0 I 0 4 1 -7 1 2 EM143 1 24 m m I 2 0 l -7 -5 .’ _ __ __ 7 3 1.T183 1 48 5760 576 1 - 4 4 15111335 1 —'— J— :7— 1 2 4 ’ 24 576 5760 .. . _L :5_ __'7 5 L(1(,3s 1 4a 576 5760 1 2 8 . ~ _L _5_ _‘7 6 1'5”” i 288 144 5760 l 4 4 — EHIGO 0 0 0 0 1 4 8 Trapezoidal 1 -1 7 T0401 4 1—2 1 1 1 — T1440 0 0 0 1 1 5 1 -1 1 -1 8 TM443 Z 12 7—2—0 3 1 3 l 1 -1 1 1 10 T\'483§ i "—1 i —'— 1 3 5 ' " 4 12 72 720 11 T("4C3S l i —'— —'— 1 3 9 ' 4 24 144 720 .. . . 1 —1 —1 1 12 T6403. 3- E 36 7—2—0- 1 5 5 _ T114011 0 0 0 0 1 5 9 Squire 1 -1 13 110401 Z 4—8 2 1 0 -— 311-440 0 0 ‘0 2 1 4 1 -1 1 1 l4 ““443 I W 11520 5‘76 2 3 0 1 -1 1 1 _ —- — 7 ‘5 ”T433 4 96 11520 144 “ 3 4 1 —1 1 1 .' ‘ _ _ _ ‘) l6 ”"4835 4 4a 576 11520 ‘ 3 4 , . l -1 1 1 ‘7 M(.4(3S 4 '9—6 F 11530 2 3 3 18 MS4(‘3‘ 1— _l_ :1 I , 5 4 '3 4 2311 36 11520 ' — 11111400 0 0 0 0 2 5 8 [using 19 110503 3 i —"— LL 2 1 1 * 3 I2 2880 288 20 015435 3— i " Si 2 1 5 ' .. 3 12 288 2880 8 1 1 -1 21 DMS43A 3 3—6- -3_6 m 2 3 1 22 D~15433 3 '7— ;1 ll— 2 3 1 ' ‘ 15 60 60 180 4 5 -1 1 S —. ... __ 23 DT.83A 9 36 72 4320 2 3 5 8 7 -1 -1 4 _ _ 2 [”5833 15 60 120 720 2 3 5 113 Table 6.4.1 (cont‘d.) Elements l-lrror Bound nfe No Name to W I-M 17V] 1w 1=v11 140 1:22 1‘60 142 nm n+m c ____ _ _,._ 8 7 -1 -1 l 7 25 0x585 ~1—5 m 66 “1+1—0 604800 69120 3 3 3 MINTOV , 8 7 -1 -1 1 1 36 ”3‘33 F E 120 720 604800 17280 2 3 9 8 7 -1 1 1 1 _ __ __ _ __ __ 2 5 5 27 055“ 15 60 90 180 604800 23040 054 8 7 _7 1 1 1 28 15115055 73 60‘ 3710 R“ 240 6’——"04800 3 3 9 Tyler 29 x0503 i —' -1 l— 3 l 0 -~ 3 6 2880 576 30 x1-‘543s _l— i —' " 3 1 4 3 6 576 2880 1 7 -1 1 .4 3 ._ — — —— 31 x154.r 15 30 60 576 3 3 0 4 5 1 -l7 32 XTS83A 3 E _2_8 34560 3 3 4 1 7 -1 I7 33 XT583B '1—5' 3—0 '20 2880 3 3 4 1 7 -I 1 1 '7 34 xx585 E :5 60 57—6 604800138240 3 3 4 ‘ ‘ 1 ‘7 -l 17 1 ‘13 35 ’“5‘5 E 30— 12?) 28% 60480013824013 3 8 . 1 7 1 -17 1 -1 3" X55“ E 37) 288 7271 __604800 30720 3 5 4 . 1 7 7 -13 —1 1 37 x11505s T5 301720 360 32—0 604800 3 S 8 Miller 1 . -1 1 , -1 1 38 00303 T2 3] 2880 1‘47 3 3 l -1 1 i I -| -43. — —- —— 39 0'3 3 12 3' 14 7880 13 3 3 40 OMB43A i 3’ i I 3 4 ' 36 9] 36 4320 -1 4 1 -1 1 M84313 — —- _— 3' O 60 15] 60 360 3 4 l , _ -1 4 1-1 I 2 883 — — —— 4 or r 60 15 120 144 3 4 3 -1 4 -1 1 I I 43 0“” a r5 5 no 604800 ram ‘ 4 5 , -1 4 -1 1 I -l 4" 003” 6—0 B 120 T4? ,604800 8640 3 3 9 , -1 4 I -5 l '1 45 058(5 60 T5 17?) 180 604800 23040 3 6 3 . —1 4 5 -2 —1 l 1 46 0119055 E 15 327) F 240 1604800 3 6 9 _l 1 Simpson 47 309035 4— '— i —" 4 7 1 9 36 9 2880 ' — 51940 0 0 0 0 I 4 2 5 8 1 8 -1 . l -' 48 531945 4—5— 33 4-5- 35 1604800 69120 ‘3 3 l 4 17 2 -1 ' l l 4 _. _. _ ._ _— 9 ”985 9 180 45 120 1604800 34560 4 4 3 2 7 7 -1 —1 1 50 SX985$ -9- W 3; K5 1735 604800 3 3 5 16 13 4 -1 1 1 5 4 4S _ ~— _ __ ______ -—-——'— 1 st9(-s 45 180 45 120 720 604300 3 3 9 4 1 2 -1 -1 l 52 559 55 ~ -— —— ——- — C 15 20 15 360 90 604800 4 6 3 4 511900 0 0 0 o 0 0 4 6 9 114 The first two symbols of the names assigned to the fonnulas listed in Table 6.4.] were chosen somewhat arbitrarily, whereas, a digit was selected for the third symbol to represent the number of function evaluations required for the holistic or basic rule. that is for n = m = 1. The fourth symbol represents the number of partial derivative evaluations required for the holistic rule. Here C= 12 and G = 16. The fifth digit is the order or degree of precision. The presence of a sixth symbol signifies that the method of undetermined coefficients led to more equations than unknowns. The symbols A and B are used to indicate two successful combinations: whereas an S or T indicates that only one combination was successful. For completeness, formulas l, 7. and 47, which are the composite formulations of the midpoint, trapezoidal, and Simpson’s rules, respectively, have been included. Good and Gaskins [20] recently investigated the midpoint or centroid mle. The holistic formulations of formulas 13, 19, 29, and 38 were investigated by Squire [48] , Ewing [16], Tyler [51], and Miller [35] respectively. Thus except for formulas 1, 7, 13, 19, 29, 38 and 47 the remaining 45 cubature formulas are new. Formula X0503 was apparently discovered independently by Bickley [7] and Tyler [51]. We will follow Stroud [49] and call it Tyler’s rule. It is interesting to compare DF543S with Simpson’s rule, 809033, because both are third-order formulas and both have the same error bounds; however, the former requires half as many function evaluations as Simpson’s rule. Moreover, DF543S requires only 4 second-order mixed partial derivatives evaluated at the vertices of the rectangle R. There may be applications where DF543S should be considered as a viable alternative to Simpson’s Rule. DF543S is a combined trapezoidal-midpoint or Ewing rule [16] with boundary correction terms. This was the first cubature formula discovered which requires mixed second-order partial derivatives evaluated only at the comers of the rectangular domain of integration R. Observe that the two formulas, XFS43S and OF893S, which share this property with DF543S also have the same error bound as Simpson’s rule. They are also more efficient than Simpson’s rule. 115 For smooth functions, DHSGSS will likely provide the greatest accuracy with the most economy. For brevity, we shall refer to DHSGSS simply as “CSA” (Corrected Sth-order Approximation). Except for DF543S, XF543S, and OF843S, the derivative corrected formulas listed in Table 6.4.1 exhibit the same property as the formulas of Chapter 4: namely, the partial derivative correction terms are evaluated on the boundary as well as the vertices of R. Nevertheless, the cubature rules with boundary correction terms are more efficient than conventional formulas. Since the nodes do not form a lattice, it follows that most of the cubature formulas in Table 6.4.] are not product formulas. Since the DC Simpson quadrature rule, (6.2.19), is constructed using the method of undetermined coefficients, it was conjectured that SH9G0 = MFO + AZFV + A3FM + A4FV1 + ASFMI + A6FV11 would be the product formulation of (6.2.19). However, the coefficient matrix of the resulting system "1 4 4 0 0 0 7 PM F 1 7 0 4/2! 2/2! 4 2 0 82 1/31 0 4/4! 2/4! 4/3! 2/3! 0 713 1/51 = (6.4.8) 0 4/2!2! 0 8/2! 0 4 8,, 1/313! 0 4/6! 2/6! 4/5! 2/5! 0 7.5 1/71 _0 4/4!2! 0 1/2 0 4/3!J J6- L0513!] was singular and the attempt was unsuccessful. A second and different derivation of the DC Simpson quadrature rule (6.2.19), employs the Euler- Maclaurin Summation formula. This was done in (3.1.9). (Recall that prior to Chapter 6, h denoted the distance between nodes, whereas here h = (b - a)/n and k = (d - c)/m). Similarly, the double Euler-Maclaurin Summation formula may be used to construct the DC Simpson cubature rule (5.2.7), which is a product formulation of (3.1.9). 116 The formulas in Table 6.4.1 are first-, third-, and fifth-order rules. It is somewhat disappointing that SH9G¢ did not produce a seventh-order formula. However, by selecting different nodes, several seventh-order derivative-corrected rules can be constructed. To this end, define the elements 2m n Z Zf(a - h/2 +171. c + k/4 +jk/2) FA = i=1 i=1 m 2n + ZZf(a+h/4 + ih/2,c—k/2 + jk) i=1 i=1 2m—I 2n-l FB = Z Z f(a+h/4+ih/2,c+k/4 + jk/2) i=0 i=0 with nodes arranged as shown in Figure 6.4.1. O O O O O o o 0 FA FB Figure 6.4.1 Node Arrangements Thus we have the seventh-order formulas fdfbfl )dd 44F0+13 FV+10FM x. x = -— -— 1 — C a y y 105 420 189 256 l l + —FA - -—FV1 + —FV11+E(f) 945 504 3360 |E(f)| < (F80 + 28 F62 + 364F44)/l 625 702 400 and (6.4.9) (6.4.10) (6.4.11) 117 fdfbflx )dxdv = 1m + fl—FV + lé—FM c a 'y ' 63 378) 315 (6412) +13—8-FB - —1—FV1 + —l—FV11+E(f). 945 504 1440 16ml < (F80 + 112F62 + 854F44)/1625 702 400. (6.4.13) Here (6.4.10) is a derivative corrected Tyler [51] cubature rule and (6.4.12) is a derivative corrected Albrecht, Collatz [3] and Meister [34] rule. In both cases nfe = 8(nm) + 4(n + m) + 9 (6.4.14) which is substantially better than the 167m fe required by the seventh-order composite product Gauss formula. Finally. we note that as in the case of MINTOV. the formulas of this section can be generalized to multidimensional quadrature rules. Indeed, with appropriate generalizations of F0, FV, etc., for N23 it can be shown that b . hi IV . f j(-x19333.-x‘~')datl ...d'Y/V 01‘! ° 01 8(14-5N) . 33 4 =—_——- +——."— I _ .11 135 27113533327“ (6.4.15) 1 PM 3 FM] ] FV11+F(f) T70 '13s 21’540 ’ ' N W 6, [E(_f)| 0 by taking 11 = m > 0.876 541/6). (7.1.3.4) 133 Table 7.1.3.3 I}, 1.11 ¢3 +3: + y dxdy = 6.859 942 640 334 65. Guaranteed MINTOV Error = 10‘“, a = 1(1)] 2. (Grid size h =# k.) Absolute Time _ - Error Error n m nfe Approxrmation Error _ lEst/Errl Guaranteed (sec) Estimate 10'1 l 2 22 .009 6.860 4.73 009 882 55 -530-4 747-2 141. 10'2 2 2 29 .010 6.860 014 219 003 29 -7.l6-5 703-3 98. 10'3 3 3 45 .016 6.859 95g 207 911 96 -7.57-6 617-4 82. 10'4 4 5 76 .026 6.859 943 _428 653 38 -7.88-7 580-5 74. 10‘5 6 6 117 .037 6.859 942178 121 94 -1 .38-7 9.65-6 70. 10‘6 8 10 223 .066 6.859 942 653 717 00 -1 .34-8 906-? 68. 10‘7 12 14 423 .119 6.859 942 64 .1. 780 92 445-9 9.63-8 67. 10'8 18 20 843 .227 6.859 942 640 481 64 -1.47-10 9.71.9 66. 10'9 25 31 1 727 .450 6.859 942 640 339 67 -1.50-1l 994-10 66. 10"10 37 45 3 585 .910 6.859 942 640 336 07 -142-12 998-11 70. 10'11 56 64 7 537 1.882 6.859 942 640 334 21* 4.43-13 988-12 22. 10'12 82 94 15 953 3.936 6.859 942 640 33_3_ 46* 1.20-12 994-13 1. *Contaminated by roundoff error. The results are given in Table 7.1.3 .4 and are similar to those presented in Table 7.1.3.3, except the cost of setting h = k requires a few more function evaluations. In Figure 7.1.3.2, the grid size h = k versus the log of the absolute error is plotted for several cubature rules. Thus for n = m = 41 or I: = k as .05, the actual MINTOV error is -1.35 X 10'”. The inequality (7.1.3.3) provides a guaranteed error estimate of 9.47 X 10"“. 134 Table 7.1.3.4 1:115/3 +x+y dxdy = 6.859 94264033465 Guaranteed MINTOV Error = 10'“, a = 1(1)12. (Grid Size h = k.) Absolute Time Grid Error Error n=m nfe Size Error . IEst/Errl Guaranteed (sec) h=k Estimate 10'1 2 29 .011 l -7.16-5 7.03-3 98 10'2 2 29 .01 1 1 -7.l6-S 7.03 -3 98 10'3 3 45 .016 .667 -7.57—6 617-4 82 10'4 5 89 .030 .400 -4.01-7 288-5 7 2 10‘5 6 1 i7 .037 .333 -1.38-7 965-6 70 10‘6 9 225 .068 .222 -1.25-8 847—7 68 10'7 13 425 .120 .154 4.409 9.32-8 67 10‘8 19 845 .227 .105 -1.45-10 957—9 66 10’9 28 i 745 .456 .0714 -1 .41-11 9.34-10 66 10'10 41 3 617 .919 .0488 —i.35-1 2 9.47-11 70 10'11 60 7 569 1.890 .0333 466-13“ 9.65-12 21 10‘12 88 16 025 3.956 .0227 122-12* 969—13 1 * Accuracy affected by machine limitation of 15 significant digits. 135 10‘ _ ‘l 1 T f f (‘3 +——_x +y dxdy = 6.859 942640 334 65 _ -1 -1 10° _. x F II .C 11.1 E p U) 9 C 0 10“ .. - 3 617 o MINTOV 13 5119011 ESTIMATE ; FUNCTION EVALUATIONS 10-2 i i 1 i i i i l i 1 i i i 10'“ 10“? 10“° 10"3 10“ 10‘4 10‘2 LOG (ABSOLUTE ERROR) . . . . 1 Figure 7.1.3.2 Error Curves in Approx1mating f: 1:1 V 3 + x +y dxdy 136 A RATIONAL FUNCTION WITH A SINGULARITY APPROACHING THE DOMAIN OF INTEGRATION 7.1.4 Consider the double integral =0. 1/4 [(w +4)ln(w+ 4) - 2(w+2)ln(w+2) + W In (w)] , w > 0 ln(2) (Cauchy Principal Value), w l The errors obtained when various cubature formulas are applied to this integral with h dxdy 4(w + 2 + x + y) I 1 III 1 (7.1.4.1) k =1/50 or and 0 are given in Table 7.1.4.1. Q 100 as the parameter w takes on the values 1, .5. .1, .05, .01, .001 n=m= Squire and the derivative corrected formula, EM143, perform quite well as w approaches 0. Simpson, function evaluations for the error Tanimoto, Lyness, Radon, Gauss, and Boole require too many returned. 2 %(2 +x +_v)'l on (-l.1] Graph of 2 Figure 7.1.4.1 137 Table 7.1.4.1 Application of Various Cubature Formulas to (111.: [4(w+ 2+x+y)] 'ldxdy withh =k = 1/50 (r1 =m= 100). Avg w Rule rife Time Order (sec) 1.0 0.1 0.01 0.001 0.0 Trapezoidal 10 201 1.755 -8.89-6 -155—4 -1.81-3 -231-2 * l Midpoint 10 000 1.771 4.44—6 7.71—5 670-4 187-3 249-3 1 EM143 10 400 1.976 -5.1 8-11 -5.32-8 ~9.48—6 125-4 444-4 3 Squire 20 200 3.491 -2.22-6 -3.84-5 ~2.87-4 -3.12-4 3.12—6 3 MM443 20 600 3.696 1.43-10 1.49-7 5.29-5 560—4 103-3 3 Ewing 20 201 3.527 -3.1 1-10 -3.27-7 -1.57-4 -6.46-3 * 3 DF543S 20 205 3.529 -5.17-11 -4.94-8 1.20-4 2.71—1 :1: 3 DM543A 20 601 3.731 -1.38-10 -1.45-7 -5.88-5 -2.07-3 * 3 Tyler 30 200 5.263 779-1] 814-8 321-5 4.15-4 8.33—4 3 XM543T 30 600 5.468 1.30-10 135—7 487-5 5.31-4 989-4 3 Miller 30 401 5.247 4.67-10 490-7 222-4 7.29-3 * 3 Simpson 40 401 7.019 -5.l8-1 1 -5.48-8 ~3.1 1-5 —1 .88-3 * 3 MINTOV 20 609 3.735 1.26-13 437-9 109—4 135—1 * 5 CSA 21 009 3.940 821-14 525-11 -4.83-5 —2.66-1 * 5 SC9C5S 40 809 7.227 8.28-14 103-10 -1 .17—5 -8.36-2 * 5 Tanimoto 41 209 7.390 8.41-14 .23-10 3.00—6 -1.08-2 * 5 Lyness 60 201 9.140 106-14 -1 .05-9 --1 .55-5 -1.78-3 * 5 Radon 70 000 10.034 506-14 359-10 4.43—6 184—4 509-4 5 Gauss 90 000 12.458 392-14 368-1] 844-7 871-5 338-4 5 Boole 160 801 24.881 4.95-14 -3.79-1 l -9.66-7 —2.73-4 * 5 * Cubature rule not applicable due to singularity at (-1. -1) when w = 0 7.1.5 THE COMPARISON OF 45 NEW CUBATURE FORMULAS WITH 12 CONVENTIONAL RULES In this example we present the results of applying each of the 52 cubature formulas listed in Table 6.4.1 to the integral 1 1 I J. 112“} + 1)sin (7(1')(].\'(1_1' : e/n. (7.151) O 0 138 Figure 7.1.5.] Graph ofz = 111(e" + 1) sin(1ry) on [0,1]2 For the sake of comparison, several additional cubature formulas are included. Error estimates are also provided. The approximations were computed by a single computer program which contained a subroutine to calculate the 6 cubature elements, F0, FV, FM, FVI, FMl, F V1 1, using 4nm + 6(n + m) + 9 fe. The cubature elements were then combined as indicated in Table 6.4.1 to produce the 52 approxima- tions to [(f). The results are tabulated in Table 7.1.5.1. For comparison we include the results of 5 additional fifth-order cubature formulas: Tanimoto, Lyness, Radon, Gauss, and Boole. 139 Table 7.1.5.1 The Comparison of 45 New Cubature Formulas with 12 Conventional Rules for the Double Integral fol fol 12(e" + l)sin (11y)dxdy = e/rr h=k=1(n=m=l) h=k=1/10 (n=m=10) Or- No“ Rule . der rife Time Error Error Estl nfe Time Error Em” I3331' (sec) Estimate"I Err (SOC) Estimate‘ E11 1 Midpoint 1 .000 -4.59-1 821-1 2 100 .047 -3.34-3 821-3 2 l 2 EM143 5 .002 -1.48-1 245-1 2 140 .063 -l.l3-5 245—5 2 3 3 ET183 9 .003 -8.48-2 3.38-1 4 144 .065 -5.64-6 3.38-5 6 3 4 EX183S 9 .003 -1.39-1 2.22-1 2'. 144 .065 -1.03-S 222—5 2 3 5 EC1C3S 13 .004 -l.32-l 222-1 2 148 .066 —l.03-5 2.22-5 2 3 6 ESIC3S 13 .005 —1.38-1 222-1 2 184 .081 -1.03-5 222-5 2 3 7 Trapezoidal 4 .001 865-1 1.64 2 121 .054 668—3 1.64-2 2 1 8 TM443 8 .002 243-1 4.40-1 2 161 .070 1.93-5 4.40-5 2 3 9 TT483 12 .004 1.17—1 3.47-1 3 165 .071 806-6 3.47-5 4 3 10 TX483S 12 .003 1.68-1 253-1 2 165 .071 1.18-5 2.53-5 2 3 11 TC4C38 16 .005 1.54-1 2.5 3-1 2 169 .073 1.18—5 253-5 2 3 12 TS4C3S 16 .005 1.59—1 2.5 3-1 2 205 .087 1.18-5 253-5 2 3 13 Squire 4 .001 1.50-1 4.11-1 3 220 .100 166-3 4.11-3 2 l 14 MM443 8 .003 -4.99—3 3.91-2 8 260 .1 l6 -2.03-7 391-6 19 3 15 MT483 12 .004 -3.67-2 109—1 3 264 .118 -3.02-6 109-5 4 3 16 MX483S 12 .004 4.38-3 1.5 8-2 4 264 .118 7.34-7 1.58-6 2 3 l7 MC4C3S 16 .005 8.28-4 1.5 8-2 19 268 .119 732-7 1.5 8-6 2 3 18 MS4C38 16 .006 5.5 7-3 1.58-2 3 304 .134 735-7 158-6 2 3 l9 Ewing 5 .001 -l.77-2 1.10-1 6 221 .101 -l.08—6 1.10-5 10 3 20 DF543S 9 .002 -3.64-2 6.34-2 2 225 .103 -2.95-6 634-6 2 3 21 DM54 3A 9 .003 —1.05-1 169—1 2 261 .117 -7.87-6 169-5 2 3 22 DM543B 9 .003 3.46-2 7.45-2 2 261 .117 3.00-6 7.45-6 2 3 23 DT583A 13 .004 271-2 4.22-2 2 265 .119 1.97-6 4.22-6 2 3 24 DT583B 13 .004 923-3 186-2 2 265 .119 7.51-7 186-6 2 3 25 DX585 13 .004 4.5 7-3 1.77-2 4 265 .119 3.489 1.77 -8 5 5 26 MINTOV 17 .005 1.73-3 1.14-2 7 269 .120 1.40-9 1.14-8 8 5 27 DSSCS 17 .006 7.81-4 929-3 12 305 .135 704-10 929—9 13 5 28 CSA 21 .007 -2.06-3 296-3 1 309 .136 -l.38-9 296-9 2 5 29 Tyler 5 .002 -5.27-2 8.66-2 2 320 .148 -3.89—6 866-6 2 3 30 XF543S 9 .003 -4.33-2 6.34-2 2 324 .149 -2.96-6 6.34-6 2 3 31 XM54 3T 9 .003 -1.4S-2 233-2 2 360 .164 -9.41-7 233-6 2 3 32 XT583A 13 .005 -5.81-2 897-2 2 364 .165 -4.l9-6 897-6 2 3 33 XTS 83B 13 .005 -3.99—2 732-2 2 364 . 165 -3 .19-6 7 .9 2-6 2 3 34 XX585 13 .004 —5.16-3 103-2 2 364 .165 -3.81-9 103-8 3 5 35 XCSCS 17 .006 -8.01-3 1.67-2 2 368 .167 -5.89-9 167-8 3 5 36 XSSCS 17 .006 -3.98-3 7.70—3 2 404 .181 -2.94-9 7.70-9 3 5 37 XHSGSS 21 .007 —1 .85-3 2.96-3 2 408 .183 -1.38-9 236-9 2 5 "' See Table 6.4.1 140 Table 7.1.5.] (cont’d.) h=k=l (n=m=l) ll=k=l/10 1n=m=10) No” Rule 3;; Time . Error list - Time Error 1351 nfe (sec) I-.rror Estimate" It—rrI nie (sec) Error Estimate" E—rr 38 Miller 8 .002 -8.78-2 157-1 2 341 .154 -6.71-6 1.57-5 2 3 39 OF843S 12 .003 -5.03-2 634-2 1 345 .156 -2.96-6 6.34-6 2 3 40 OM843A 12 .004 226-2 4.22-2 2 381 .170 1.97-6 4.22-6 2 3 41 OM84BB 12 .004 -2.15-2 3.73-2 2 381 .170 -l.50-6 3.73-6 2 3 42 OT883T 16 .005 -4.69—2 932-2 2 385 .172 -3-76-6 932-6 2 3 43 OX885 16 .005 -6.55-3 135-2 2 385 .172 485-9 1.35-8 3 5 44 OC8C5 20 .006 - -9.40-3 1.98-2 2 389 .173 -6.93-9 138-8 3 5 45 OSSCS 20 .007 -4.66-3 9.29-3 2 425 .188 -3.46—9 929-9 3 5 46 OH9GSS 24 .008 -1.81-3 296-3 2 429 .189 -1.38-9 296-9 2 5 47 Simpson 9 .003 -4.10-2 6.34-2 2 441 .202 -2.95-6 6.34-6 2 3 48 SM945 13 .004 -2.85-3 507-3 2 481 .213 -2.07-9 507-9 2 5 49 ST985 17 .006 426-4 7.18-3 57 485 .219 991-12 7.18-9 724 5 50 SX985S I7 .005 -1.92-3 296-3 2 485 .219 -l.38-9 296-9 2 5 51 SC9CSS 21 .007 -l.98-3 2.96-3 1 489 .221 -1.38-9 2.96-9 2 5 52 SS9C‘SS 21 .007 -1.94—3 296-3 2 525 .235 -l.38-9 296-9 2 5 53 Tanimoto 25 .010 -1.95-3 — — 529 .236 -1.38-9 —- — 5 54 Lyness 9 .004 —8.604 226-3 3 621 .272 -6.26-10 226-9 4 5 55 Radon 7 .003 879-4 _ — 700 .303 6.38-10 — — 5 56 Gauss 9 .004 -6.01-4 — — 900 .385 4.14-10 - — 5 57 Boole 25 .010 6.18-4 — — 1681 .739 4-31-10 — — 5 *See Table 6.4.1 These results are included in the sense of a benchmark test to reveal possible errors in the cubature formulas of Table 6.4.1. These and other results confirm the accuracy of the entries in Table 6.4.]. Finally, we observe that for the double integrals considered, for any reasonable grid size the composite fifth-order cubature rules, CSA, Tanimoto, Lyness, Radon, Gauss, and Boole generally all produced approximately the same error; however, CSA required far less function evaluations and thus is the best fifth-order method. Similar comparisons can be made for the powerful third-order derivative corrected rule EM 143. 141 7.2 TRIPLE INTEGRALS Denoting the step size in each dimension by h]- = (bi - ai)/nl-, i = 1(1)3, the 3-dimensional formulation of MINTOV is b3 b2 61 f f j f(x, y, z)dxdydz ”3 02 01 =—h h2h3Z Z Ema, +h (11 My.) az+h (12-14), a3+h3 (13-14)) 13:1 12=li1=l "3 "2 "I 7 fit 7 "1' . . . + 1—2—6-h1h2h3 Z Z L f(l11 +11’111‘12 +12h2~ ”3 +’3h3) i3=012=011=0 1 "3 ”2 _ _ 2 ' YT“ . . 240111112113 Z 2‘ Ifx(b1~02 +12h2~03+l3h31 I3=OIZ=O — fx(al. (12 + izhzr a3 +1'3h3)] "3 ”1 I 2 ' ' . . '- jib—(1115,13 Z Z [f,(al+11hl. b2. 03 +l3h3) 13:0 11:0 ' fy(al +1.1hl302~a3 +1'3’13)I (72.1) "2 "I I 2 ' ' . . 12:0 11:0 - fz(a1+ilh1. 02 'I'Izhz. 03)] "3 l 2 2 ' . . - fill—O- hlh2h3 ZO [fxy(al.a2.a3 +13h3)- fxy(al,b2.a3 +l3h3) I3: - fxy(b1,a2.a3 +i3h3) + fxy(b1,b2,a3 +i3h3)] "2 .. I 2 2 ’ . . 144Oh1h2h3 Z [fxz(01,02 +12h2,a3) - fxz(al,02+12h2,b3) 12:0 _ fxz(b11a2 +i2h21a3) + fxz(b1.02 +i2h2,b3)] "1 1,12 2 - mill}? 23h 20 [f),z(al +ilh1,02,a3)- fyz(al +iIhI 02,123) I]: The truncation error may be estimated by (b1 ‘ 00092 ‘ ”211.193 ' ‘13) 604 800 lE(f)I < [(th? + 713/143 6 6 4 2 42 2 4 24 4 2 42 2 4 24 4 2 42 + h1h3M13 + hlh3M13 + h2h3M23 2 4 24 2 2 2 222 + h2h3 M23) + 280hlh2h3M123] Table 7.2.1 lists the number of function evaluations required by various composite multiple quadrature fomiulas. In this reSpect, MINTOV is superior to the conventional formulas. Table 7.2.1 Nfe for Several Multiple Quadrature Formulas Repeated 711112173 Times _ _ MINTOV Simpson Lyness Gauss Boole "1 ”12-,” 2n3+9n2+27n+ i9 (2n+1)3 (n+1)3+7n3 (3n)3 (411311)3 1 57 27 15 27 64 2 125 125 83 216 729 4 399 729 573 l 728 4 913 8 1835 4913 4313 13824 35 937 16 10 947 35 937 33 585 110 592 274 625 32 75 635 274 625 265 313 884 736 2 146 689 64 562 899 2 146 689 2 109 633 7 077 888 16 974 593 100 2092 719 8120601 8 030 301 27 000 000 64 481 201 7.2.1 A FUNCTION WITH VANISHING MIXED HIGHER-ORDER PARTIAL DERIVATIVES We wish to approximate the triple integral 2 2 2 J‘ J J ln(xyz)dxdydz = In 64 - 3. I l 1 (7.2.1.1) 143 Figure 7.2.1.1 Graph ofz =ln (xy) on [1,2]2 144 10 "' 2 2 2 _ If] ln(xyz)dxdydz = 1.158 883 08335967 1 1 1 10° _ o MINTOV : c1 EWING L— o MIDPOINT " o TRAPEZOIDAL M a: r- I N 8 I h ‘P I“ '3 In 9 I- E 0 10‘1 1. P P F75 635 * FUNCTION EVALUATIONS 10'2 1 1 1 1 1 i i 1 1 1 i i 10'“ 10"? 10"° 10'8 10'6 10“ 10'2 10° LOG (ABSOLUTE ERROR) Figure 7.2.1.2 Error Curves in Approximating (2 If f: ln(xyz)dxdydz 145 The first-order partial derivatives of the function f(x,y) = ln (xyz) are much less costly to evaluate on a computer than is f. Moreover. the mixed second-order partials vanish everywhere. Thus it is of interest to apply MINTOV to this function. The results are presented in Table 7.2.1.]. Table 7.2.1.1 [12112112 In (xyz)dxd_vdz = 1.158 883 083 359 67 hl=h2=h3=1 hl=h2=h3=I/IO Or- Rule der rife Time (sec) Error nfe Time (sec) Error Trapezoidal 8 .002 1.19-1 1331 .457 125-3 1 Midpoint l .000 —5.75-2 1000 .361 .6,24.4 1 Ewing 9 .003 138-3 2331 .818 132.7 3 MINTOV 57 .009 -6.41-5 3189 .933 _1 .1440 5 For hi = h2 = 113 = 1/10, the MINTOV approximation is better than Ewing’s result by 3 orders of magnitude. This confirms the theoretical result that the addition of partial derivative correction terms can greatly enhance a numerical integration formula. 7.2.2 MINTOV vs. JPL’s MQUAD Bunton, Diethelm, and Haigler [8] give the following example: 11/2 11/2 1r/2 J. I f cos (x) cos (13) cos (z)dxdydz = 8.0. (7.2.2.1) -1r/2 -1r/2 -11/2 The results of the DC-MQUAD algorithm using n1 = n2 = 713 = 2,3,5,8,° ° 3 , (cf. the Fibonnaci sequence) and JPL’s routine MQUAD are presented in Table 7.2.2.1. Again, our method based on the 3-dimensional MINTOV formula (7.2.1) is superior to MQUAD. 146 Table 7.2.2.1 MINTOV vs. MQUAD for the Integral 1:; : [Zr/22 L1]; Relative Errors Requested = 10’“, a = 1(1)10. cos (x) cos (y) cos (z)dxdydz = 8. Relative MINTOV (DC'MQUAD Algorithm) MQUAD (JPL Routine) Error . Requested rife Time (sec) R2128 rife Time (sec) R2132? 10"1 360 .198 -1.1 1-3 2 197 1.634 8.74-5 10'2 989 .546 -5.07-5 2 197 1.635 8.74-5 10“3 2 824 1.529 -3.00—6 2 197 1.627 874-5 10'4 2 824 1.529 -3.00-6 24 389 17.641 4.13-6 10‘5 9 109 4.971 -1.63-7 35 937 25.693 9.70—8 10'6 32 186 17.558 -9.14-9 117 649 82.090 1.63-9 10'7 122 135 66.611 -5.06-10 614 125 421.889 259-11 10'8 122 135 66.611 -5.06-10 4 173 281 2 844.152 407-13 10’9 483 614 264.343 -2.69—1l 4 173 281 2 844.114 407—13 10'10 1 967 263 1 076.794 155-11 31 855 013 21 647.323 8.40-15 .//LL“11L Figure 7.2.2.1 Graph of z = cos (x) cos (v) on [-1r/2, 11/2] 2 “a LLrul 147 7.2.3 AN EXAMPLE ILLUSTRATING THE PERSISTENCE OF FORM Consider the integral f'lzf'flf'” 1 “Kim Wadydz (7 23 1) sin (x) sin (y) sin (z)e - = 1.531 670 226 93. If we let w2 = x2 + y2 + 22 then the first-order partial with respect to x is sin sin sin “9 fx(x.y.z) = [(1 +w) cos(x) - (l +w+x2) x(x)] 0: (z)e (723.2) yz and the mixed second-order partial with respect to x and y is + 2+ 2+ 2 + 2 2 from.» = [(1 + W)c08(x)costy) + w “’ ”(3” y) " ” sin(x)sin(y) (7.23.3) .. l + w: x2 sin (x) cos (y) - 1 +wy+y2 cos (x) sin(y)]——L-$in (z 640' xyz Figure 7.2.3.1 Graph ofz = sin(x) sin (y) e' V ‘2 ”2 on [-11/2,1r/2] 2 l +\/.1:I -1-yI xy 148 The results of applying MINTOV with various grid sizes are presented 111 Table 7.2.3.1. _ 1+ , . Table 7.2.3.1 10”” 10”” 10"” “ sin(x)sin(1')sin(:)e’“dxd_l'dz = 1.531670 226 93. xyz Ewing MINTOV nl=n3=n3 nfe Time (sec) Error rife Time (sec) Error 1 9 .007 -1 .54-2 57 .048 -5 .30-3 2 35 .031 -1.04-3 125 .111 -8.75-5 4 189 .174 —6.59-5 399 .364 -1.36-6 1241 1.159 -4.13-6 1835 1.712 -2.l3-8 16 9 009 8.486 -2.58-7 10 947 10.314 -3.66- 10 32 68 705 64.978 -1 .62-8 75 635 71.579 -3.76-1 I 64 536 769 509.407 -1.03-9 562 899 534.424 -2 .00-1 1 This example illustrates the persistence of form concept, namely, the cost of evaluating a derivative is approximately the same as the cost of evaluating the function. In Table 7.2.3.1 for a given mesh size. the difference between the number of function evaluations required by MINTOV and Ewing is the number of partial derivative evaluations required by MINTOV. For example, for n] = n2 = r13 = 16, MINTOV uses 1938 first- and second-order partial derivative evaluations (pde) and takes 1.841 seconds, or an average of 950 microseconds per partial derivative evaluation (us/pde). This is to be compared with the conventional Ewing’s formula which uses 9009 fe in 8.438 seconds, or an average of 937 us/fe. MINTOV averages 939 microseconds per evaluation, whether function or partial derivative. Thus throughout this study we‘have weighted a partial derivative evaluation the same as a function evaluation, and refer to either simply as a function evaluation. 149 10‘ h .3. 1 1 ’- 2 2 21+ (x2+y§+22 ._ f f f ———————sin(x)sin(y)sin(z)e' I” T V I z dxdydz = 1.531 67022693 xyz 0 0 0 14 10° _ 0 MINTOV : 13 EWING _ o MIDPOINT :9 ” FUNCTION I EVALUATIONS .cN _ II zp ... L '2‘ (I) 9 t o F- 10"_ ~ 75635 )— 536769 L 4243841 2097152 10‘2 1 l i 1 1 1 i i 1 1 i 1 i 10“ to"2 10'” 10" to" to" 10‘2 10° LOG (ABSOLUTE E RROR) Figure 7.2.3.2 Error Curves 8. CONCLUSIONS AND RECOMMENDATIONS We have studied the problem of enhancing the accuracy of conventional formulas for evaluating multiple integrals numerically over d-dimensional rectangles by the addition of partial derivative correction terrr'is evaluated on the boundary of the domain of integration. The formulas in Chapter 5 were based on the double Euler-Maclaurin Summation formula (5.2.1) and were found somewhat cumbersome to apply to practical situations because of the different weights for different nodes. The formulas in Chapter 6, based on the finite Taylor Series expansion of the integrand. are much easier to apply in practice. We have constructed MINTOV (6.2.17), a fifth-order multi- dimensional integration formula which may be considered as the d-dimensional generalization of the l-dimensional Lanczos quadrature formula (6.2.19) or of Ewing’s cubature formula D0503 given in Table 6.4.1. For a single integral, the derivative correction terms are evaluated only at the end points Of the interval Of integration. The situation is somewhat more complicated in higher dimensions since, as the dimension increases, the boundary becomes increasingly more complex. Of greater significance is the fact that in higher dimensions. most of the volume of a d-rcctangle lies near the boundary. We have accounted for this by constructing multidimensional integration formulas with boundary partial derivative correction terms. the number of which increases as the dimension increases. Indeed, as can be seen in (6.3.2), the d-dimensional MINTOV with n subdivisions requires 71" fe at the centroids of the subregions, (n + I)“ re at lattice points. 2d(n + l)"‘1 first-order partial derivative evaluations at the lattice points of the 2d “faces" or (d—1)-dimensional hyperplanes. B, which bound the domain of integration, and 2d(d-1)(n + l)‘1"2 mixed second-order partial derivative . evaluations at the lattice points of the 2‘1 “edges” or (d - 2)-dimensional hyperplanes which bound B. In Chapter 6. 47 hitherto unpublished cubature formulas with boundary partial derivative correction temis were given. Computable bounds for the truncation errors were also given. 150 151 Three integration formulas, DF543S, XF543S, and OF843S (see Table 6.4.1) were discovered which require mixed second-order partial derivative correction terms evaluated only at the corners Of the rectangular domain Of integration. These formulas have the same error bound as Simpson’s rule; however, they require far fewer function evaluations than Simpson’s rule. Of the three, DF543S is the most efficient, requiring only half as many function evaluations as Simpson’s rule. OF543S has no interior nodes and yet it is not as efficient as DF543S which has one node interior to each cell. Thus, it is not always advisable to take as many points as possible on the boundary. In cases where a third-order rule is considered adequate, DF543S should be preferred to Simpson’s rule. The fifth-order MINTOV was compared with JPL’s routine MQUAD, and on the two test integrals considered, MINTOV required fewer function evaluations to achieve a prescribed relative error than did MQUAD. The numerical results presented indicate that formula CSA or DH5G5S is an efficient and accurate composite fifth-order integration rule. For a sufficiently small grid size (n = m = 4 for a double integral, n = m = 2 for a triple integral. etc.) CSA requires fewer function evaluations than Simpson's rule. Therefore, in situations where first- and mixed second-order partial derivatives are easily calculated. we have shown that the use of nodes satisfying the inclusion property coupled with the use of derivative correction terms exhibiting the equal weight-alternate sign property can improve the accuracy and efficiency Of integration formulas. That is, whenever the first- and mixed second-order partial derivatives are easily computed. the formulas of Chapter 6 are to be preferred to conventional composite integration rules of comparable degrees. Finally, future investigations should include the addition of weight. functions. more general domains ofintegration. and the use of “difference correction terms." LIST OF REFERENCES 152 GENERAL REFERENCES Abramowitz, Milton On the practical evaluation of integrals. J. Soc. lndust. Appl. Math 2 (1954) 20-35. Abramowitz, Milton and Stegun, Irene A. Handbook of Mathematical Functions. National Bureau of Standards. Applied Math. Series. V55 (1964) Aitken. A.C. and Frewin. G.L. The Numerical Evaluation of Double Integrals. Proc. Edinburgh Math. Soc. 42 (1923) 2-13. Anders, Edward B. An Extension of Romberg Integration Procedures to N-Variables. J. ACM 13 (1966) 505-510. Bailey, Carl B., Jones, Randall E. Usage and Argument Monitoring of Mathematical Library Routines. ACM Trans. 011 Math. Software. 1 (1975) 196-209. Baker, Christopher TH. and Hodgson, Graham S. Asymptotic Expansions for Integration Formulas in One or More Dimensions. SIAM J. Numer. Anal. 8(197l)473-480. Barnes, E.W. The Generalisation of the Maclaurin Sum Formula, and the Range Ofits Applicability. Quart. J. of Pure and Appl. Math. 35 (1904) 175-188. Barrett. W. On the Convergence of Cote’s Quadrature Formulae. J. London Math. Soc. 39 (1964) 296-302. Baten, William D. A Remainder for the Euler-Maclaurin Summation Formula in Two Independent Variables. Amer. J. Math. 54 (1932) 265-275. Bierens de Haan, David Supplément aux Tables D’lnte’grales Définies. Amsterdam: G.G. Van Der Post (1864). Camp. C.C. Note on Numerical Evaluation of Double Series. Ann. Math. Stat. 8 (1937) 72-75. Chakravarti, P.C. Integrals and Sums. Some New Formulae for their Numerical Evaluation. London: The Anthlone Press (1970). Cody, WJ. The Construction of Numerical Subroutine Libraries. SIAM Rev. 16 (1974) 3646. Cranley, R. and Patterson, T. N. L. The Evaluation Of Multidimensional Integrals. Comp. J. 1 1 (1968-69) 102-110. Davis, Philip J. and Rabinowitz, Philip Methods of Numerical Integration. New York: Academic Press (1975). Frame, J.S. Numerical Integration. Amer. Math. Monthly 50 (1943) 244-250. 153 Frank, Irving An Application of the Euler-Maclaurin Sum Formula to Operational Mathematics. Quart. Appl. Math. 20 (1962) 89-91. Gauss. C.F. Metliodus Nova Integralium Valores per Approximationem lnveniendi. Carl Friedrich Gauss Werke. GOItingen: K611igliclien Gesellschaft der Wissenschaften 3 ( 1866) 163-196. Ghizzetti. A., and Ossicini. A. Quadrature Formulae. New York: Academic Press (1970). Gibb. David Interpolation and Numerical Integration. London: G. Bell & Sons. Ltd. (1915). Gould, H.W. and Squire, William Maclaurin's Second Formula and Its Generalization. Amer. Math. Monthly 70 (1963) 44-52. Gradsliteyn, LS. and Ryzhik, I.M. Tables of Integrals. Series. and Products. (Trans. from 4th Russian ed. by Alan Jeffrey). New York: Academic Press (1965 ). Grant. J.A. Derivation of Correction Terms for General Quadrature Formulae. Proc. Cambridge Phil. Soc. 66 (1969) 571-586. Guenther. RB. and Roetman. E.L. Newton-Cotes Formulae in n-Dimensions. Numer. Math. 14 (1970) 330-345. Haber. Seymour Numerical Evaluation of Multiple Integrals. SIAM Rev. 12 (l970)481-526. Hammer, Preston C. and Wicke, Howard H. Quadrature Formulas Involving Derivatives ofthe Integrand. Math. Comp. I4 (1960) 3-7. Hamming, R.W. and Pinkham, R.S. A Class of Integration Formulas. J. ACM 13 (1966) 430-438. Hgvie, T. Derivation of Explicit Expressions for the Error Terms in the Ordinary and the Modified Romberg Algorithms. BIT 9 (1969) 18-29. Hfivie, T. Some Algorithms for Numerical Quadrature Using the Derivatives of the Integrand in the Integration Interval. BIT 10 (1970) 277-294. Hildebrand, F.B. Introduction to Numerical Analysis. New York: McGraw-Hill Book Company. 211d Ed.. (1974). Hillstrom, K.E. Comparison of Several Adaptive Newton-Cotes Quadrature Routines in Evaluating Definite Integrals with Peaked Integrands. ANL-7511. Argonne Natl. Lab. Argonne, II. (1968). Hummel, PM. and Seebeck, Jr., CL. A Generalization Of Taylor’s Expansion. Amer. Math. Monthly 56 (1949) 243-246. 154 Irwin, .10. On Quadrature and Cubature or 011 Methods of Determining Approximately Single and Double Integrals. London: Tracts for Computers. No. 10. Cambridge: Cambridge Univ. Press. (1923). Isaacson, E. and Keller. [1.8. Analysis of Numerical Methods. New York: John Wiley & Sons, Inc. (1966). Johnson. W. Woolsey 011 Cotesian Numbers: Their Ilistory. Computation and Values to ”=20. Quart. J. Pure Appl. Math. 46 (1915) 52-65. Kahaner. David K. Los Alamos Workshop on Quadrature Algorithms. SIGNUM Newsletter 11 (1976) 4-26. Knuth. Donald E. and Bucklioltz. Thomas J. Computation of Tangent. Euler. and Bernoulli Numbers. Math. Comp. 21 (1967) 663-688. Krylov, VI and Pal‘tsev. A.A. Tables for Numerical Integration of Functions with logarithmic and Power Singularities. (Trans. frorr lst Russian ed., 1967. by the Israel Program for Scientific Translations Staff). Jerusalem: Keter Press (1971). Krylov. VI and Si'llgina. LT. Handbook ofNumericaJ Integration. (In Russian). Moscow: Izdat. Nauka. (1966). Lambert, JD. and Mitchell. A.R. The Use of Higher Derivatives in Quadrature Formulae. Comp. J. 5 (1962-63) 322-327. Lambert, John D. and Mitchell, Andrew R. Repeated Quadratures Using Derivatives of the Integrand. Z. Aiigew. Math. Phys. 15(1964)84-90. Lehmer. D.H. An Extension of the Table of Bernoulli Numbers. Duke Math. J. 2 (1936) 460-464. Lipow. Peter R. and Stenger. Frank Ilow Slowly Can Quadrature Formulas Converge? Math. Comp. 26 (1972) 917-922. Lyness. IN. and McHugh, B.J.J. Integration Over Multidimensional Hypercubes. I. A Progressive Procedure. Comp. J. 6 (1963-64) 264-270. Lyness. J.N. and Ninham. B.W. Numerical Quadrature and Asymptotic Expansions. Math. Comp. 21 (1967) 162-178. McNamee. John Error-Bounds for the Evaluation of Integrals by the Euler-Maclaurin Formula and by Gauss-Type Formulae. Math. Comp. 18 (1964) 368-381. Maxwell, .1. Clerk On Approximate Multiple Integration between Limits of Summation. Proc. Cambridge Phil. Soc. 3 (1877) 3947. Miller, J.C.P. Quadrature in Terms of Equally-Spaced Function Values. U.S. Army Math. Research Center. Madison. Wisc. Rep. I67,July. 1960. 1-91. Munro, W.D. Note on the Euler-Maclaurin Formula. Amer. Math. Monthly 65 (1958) 201-203. Mysovskih. I.P. Lectures on Numerical Methods. Groningen, The Netherlands; Wolters-Noordhopf Publishing (1969). Nikol‘skii. S.M. Quadrature Formulae. (Trans. from the lst Russian ed., 1958) Delhi: Hindustan Publishing Corp. (1964). Nortliam. Jack 1. Certain Summation and Cubature Formulas. Iiast Lansing: Michigan State University. Master‘s thesis (1939). Ohm. M. Etwas Uber die Bernoullischen Zalilen. J. Reine Angew. Math. 20 (1840) I l-l2. Patterson. T.N.L. Integration Formulae Involving Derivatives. Math. Comp. 23 (1969)411412. Philips. G.M. Numerical Integration in Two and Three Dimensions. Comp. J. 10(1967) 202-204. Ralston. A. A Family of Quadrature Formulas Which Achieve High Accuracy in Composite Rules. J. ACM 6(1959) 384-394. Rosenstock. Herbert B. Euler-Maclaurin Formula in Three Dimensions. J. Math. and Phys. 43 (1964) 342-346. Sack. R.A. Newton-Cotes Type Quatrature Formulas with Terminal Corrections. Comp. J. 5 {1962-63) 230-237. Sadowsky. Michael A Formula For Approximate Computation of a Triple Integral. Amer. Math. Monthly 47 (1940) 539- 543. Saidel. Frank Some Interpolation Formulas in Two Variables. East Lansing: Michigan State University. Masters thesis (I941). Scarborough. J.B. On the Relative Accuracy of Simpson’s Rules and Weddle’s Rule. Amer. Math. Monthly 34 (1927) 135-139. Scarborough. James B. Numerical Mathematical Analysis. Baltimore: The Johns Hopkins Press. 5111 ed. (1962). Schoenberg. H. and Shanna. A. The Interpolatory Background of the Euler-Maclaurin Quadrature Formula. Bull. AMS 77 (1971 ) 1034- 1038. 156 Shampine, Lawrence F. Quadrature Formulas Using Derivatives. Math. Comp. I9 (1965) 481-482. Smith, Francis J. Quadrature Methods Based on the Euler-Maclaurin Formula and on the Clenshaw-Curtis Method of Integration. Numer. Math. 7 (1965) 406-41 1. Smith, J.M. Recent Developments in Numerical Integration. J. Dynamic Systems. Measurement. and Control. March (1974) 61-70. Squire. William Some Applications of Quadrature by Differentiation. J. Soc. Indust. Appl. Math. 9(1961)94-108. Steffensen, J.F. Interpolation. New York: Chelsea Publ. Co., 2nd ed. (1950). Strb’m, Torsten Strict Error Bounds in Romberg Quadrature. BIT 7 (1967) 314-321. Stroud. A.H. Quadrature Methods for Functions of More Than One Variable. Ann. NY Acad. Sci. 86 (1960) 776-791. Stroud, A.H. A Bibliography on Approximate Integration. Math. Comp. 15 (1961) 52-80. Stroud, A.H. Numerical Quadrature and Solution of Ordinary Differential Equations. New York: Springer-Verlag (1974). Stroud. A.H. and Secrest. D. Gaussian Quadrature Formulas. Englewood Cliffs: Prentice-Hall, Inc. (1966). Strubble. George Tables for Use in Quadrature Formulas Involving Derivatives of the Integrand. Math. Comp. I4 (1960) 8-12. Takeyama. Hisao Expressions for Interpolation and Numerical Integration of High Accuracy. TOhOku Univ. Technology Reports. 23 (1958) 47-70. Thacher, Jr., Henry C. An Efficient Composite Formula for Multidimensional Quadrature. Comm. ACM 7 (1964) 23-25. Tyler, G.W. Numerical Integration of Functions of Several Variables. Canadian J. Math. 5 (1953) 393-412. USpensky, J .V. On an Expansion ofthe Remainder in the Gaussian Quadrature Formula. Bull. AMS 40 (1934) 871-876. Weddle, Thomas On a New and Simple Rule for Approximating to the Area Ofa Figure by Means of Seven Equidistant Ordinates. Cambridge Math. J. 9 (1854) 79-80. f0 BIBLIOGRAPHY Adams. J.C. Table of the values of the first sixty-two numbers of Bernoulli. J. Reine Angew. Math. 85 (1878) 269-272. Alilin, A.C. On Error Bounds for Gaussian Cubature. SIAM Rev. 4 (1962) 25-39. Albrecht. J., and Collatz, L. Zur Numerischen Auswertung h’lellrdimensionaler Integrale, Z. Angew. Math. Mech. 38 (1958) 1-15. Barnes. E.W. The Maclaurin Sum-Formula. Proc. London Math. Soc. 3 (1905) 253-272. Bauer, F.L., Rutishauser, H.. and Stiefel. E. New Aspects in Numerical Quadrature. Proc. Symp. Appl. Math. Providence: Amer. Math. Soc. 15 (1963) 199-218. Becker. George F. Some New Mechanical Quadratures. Philos. Mac. 22 (191 ”342-353. Bickley. W.G. Finite Difference Formulae for the Square Lattice. Quart. J. Mech. Appl. Math. 1 (1948) 3542. Bunton. Wiley R.. Diethelm, Michael. and Haigler. Karen Romberg Quadrature Subroutines for Single and Multiple Integrals. Jet Propulsion Lab.. Pasadena. Calif. TM-314-22l. July I, 1969,1-50. Bunton, Wiley R., and Diethelm, Michael Modifications to the JPL Romberg Subroutines. Jet Propulsion Lab., Pasadena. Calif. TM-314-247. September 1. 1970, 1-9. Bunton, Wiley R.. Diethelm, Michael. and Winje. Gilbert L. Modified Romberg Quatrature: A Subroutine to Support General Scientific Computing. Jet Propulsion Lab. Pasadena. Calif. TM-3l4-258. April I. 1970. 1-35. Burnside, W. An Approximate Quadrature Formula. Messenger ofMath. 37 (1908) 166-167. Caselleto, J.. Pickett. M., and Rice. J. A Comparison of Some Numerical Integration Programs. SIGNUM Newsletter. 4 (1969) 3040. Davis. Philip J.. and Rabinowitz. Philip Methods of Numerical Integration. New York: Academic Press (1975). 26 27 158 DeDoncker. Flise. and Piessens. Robert A Bibliography on Automatic Integration. J. Comput. and Appl. Math. (to appear). Euler. Leonhard Methodus Generalis Summandi Progressiones. Commentarii Acad. Sci. Imp. Petropolitanae. Vol. 6 (1732-33, published 1738) St. Petersburg. Ewing. G.M. Oii Approximate Cubature. Amer. Math. Monthly. 48 (1941) 134-136. Forsythe. George E.. and Moler. Cleve B. Computer Solution of Linear Algebraic Systems. Englewood Cliffs: Prentice-Hall (1967). Frame. J. Sutherland Numerical Integration and the Euler-Maclaurin Summation Formula. East Lansing: Michigan State University (to appear). Fritsch. F.N. A Bibliography on Approximate Multidimensional Integration 1960-1968. Lawrence Radiation Lab., Livermore. Calif. UCRL-50610. March 5, 1969. 1-20. Good. I.J.. and Gaskins, RA. The Centroid Method of Numerical Integration. Numer. Math. 16 (1971) 343-359. Hammer. Preston C. Numerical Evaluation of Multiple Integrals. On Numerical Approximation. Langer. R.E. (Ed.) (Proceedings of a symposium conducted by the U.S. Army Math. Research Center). Madison: The University of Wisconsin Press (1959). 99-1 15. Hammer. Preston C.. and Wymore. A. Wayne Numerical Evaluation of Multiple Integrals I. MTAC II (1957) 59-67. Ionescue, D.V. Generalization of the Quadrature Formula of N. Ob reschkoff for Double Integrals (In Romanian). Stud. Cerc. Mat. 17 (1965) 831-841. Joyce, D.C. Survey of Extrapolation Process in Numerical Analysis. SIAM Rev. 13 (I97l)435490. Kahaner, D.K. Comparison of Numerical Quadrature Formulas. Mathematical Software. I. R. Rice (ed). New York: Academic Press (1970) 229-259. Knopp, K. Theory and Application of Infinite Series. London: Blackie and Son (1951). Krylov, V.I. Approximate Calculation of Integrals. (Trans. from lst Russian ed., 1959, by A. H. Stroud) New York: Macmillan Company (1962 ). Lanczos, C. Applied Analysis. Englewood Cliffs: Prentice-Hall (1956). 30 31 33 34 35 36 37 38 39 40 41 43 44 159 Lyness. J.N. Symmetric Integration Rules for Ilypercubes I. Iirror Coefficients. Math. Comp. I9 (1965) 260-276. Lyness. J.N... and Kaganove. J.J. A Technique for Comparing Automatic Quadrature Routines. Private communication (1975). Lyness. J.N., and Kaganove, J.J. Comments on the Nature of Automatic Quadrature Routines. ACM Trans. on Math. Software. 2(1976)65-81. Lyness, J.N., and McHugh, B.J.J. On the Remainder Term in the N-I)imensional Euler Maclaurin Expansion. Numer. Math. 15 (1970) 333-344. Maclaurin. Colin A Treatise on Fluxions. Edinburgh ( 1742). p. 672. Meister, Bernd 011 a Family of Cubature Formulae. Comp. J. 8 (1966) 368-371. Miller, J.C.P. Numerical Quadrature over a Rectangular Domain in Two or More Dimensions. I Quadrature over 3 Square using up to Sixteen Equally Spaced Points. Math. Comp. 14 (1960) 13-20. Milne, W.E. Numerical Calculus. Princeton: Princeton University Press (1949). Mustard. D.. Lyness. J.N.. and Blatt. J.M. Numerical Quadrature in N Dimensions. Comp. J. 6 (1963-64) 7587. Ob reschkoff. N. Neue Quadraturaturformeln. Abhanrllungen der Preussisclien Akademie der Wissenschaften. Berlin. 4 (1940) 1-20. Oliver. F.W.J. Asymptotics and Special Functions. New York: Academic Press (1974). Oliver. J. The Evaluation of Definite Integrals Using High-Order Formulae. Comp. J. 14 (1971) 301-306. Price, J.F. Examples and Notes on Multiple Integration. Boeing Scientific Research Lab.. Seattle. Wash. Mathematical Note No. 285, Dl-82-023l (1963). 1-34. Radon. Johann Zur Meclianischen Kubatur. Monatsh. Math. 52 (1948) 286-300. Richardson. L.F.. and Gaunt. J.A. The Deferred Approach to the Limit. Trans. Roy. Soc. London 226A (1927) 299-361. Romberg, Werner Vereinfaclite Numerische Integration. Norske Vid. Selsk. Forli. Trondheim 28 (1955) 30-36. 46 47 48 49 50 51 I60 Sheppard. W.E. , Some Quadrature-Formulae. Proc. London Math. Soc. 32 (1900) 258-277. Simpson. T. Mathematical Dissertations. London (1743). Squire. William Integration for Engineers and Scientists. New York: Amer. Elsevier Pub. Company (1970'). Squire, William Numerical Evaluation of a Class of Singular Double Integrals by Symmetric Pairing. Intl. J. for Numer. Meth. in Engr. 10 (1976) 703-708. Stroud, A.H. Approximate Calculation of Multiple Integrals. Englewood Cliffs: Prentice-Hall (1971 ). Tanimoto, B. An Efficient Modification of Euler-Maclaurin‘s Formula. Trans. Japan Soc. Civil Engrs. 24 (1955) 1-5. Tyler, George W. The Experimental Evaluation of Definite Integrals. Blacksburg: Virginia Polytechnic Institute and State University. Ph.D. dissertation (I949). Uspensky, J.V. On the Expansion of the Remainder in the Newton-Cotes Formula. Trans. AMS 37 (1935) 381-396. .‘r‘ 111111191111111111111111I