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ABSTRACT
NUMERICAL METHODS IN MULTIPLE INTEGRATION

By

Wayne Eugene Hoover

To approximate the definite integral
bn b,
](f)= f f(xl"”’xn)dxl“'dxn
an ay
over the n-rectangle,
n
R = n [a,, bi] s
i=1

conventional multidimensional quadrature formulas employ a weighted sum of function values

m
0N = ) wif 1 Xjn).
j=1

Since very little is known concerning formulas which make use of partial derivative data, the objective
of this investigation is to construct formulas involving not only the traditional weighted sum of function
values but also partial derivative correction terms with weights of equal magnitude and alternate signs at
the corners or at the midpoints of the sides of the domain of integration, R, so that when the rule is
compounded or repeated, the weights cancel except on the boundary.

For a single integral, the derivative correction terms are evaluated only at the end points of the
interval of integration. In higher dimensions, the situation is somewhat more complicated since as the
dimension increases the boundary becomes more complex. Indeed, in higher dimensions, most of the
volume of the n-rectangle lies near the boundary. This is accounted for by the construction of multi-

dimensional integration formulas with boundary partial derivative correction terms, the number of which

increases as the dimension increases.
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The Euler-Maclaurin Summation formula is used to obtain new integration formulas including a
derivative corrected midpoint rule and a derivative corrected Romberg quadrature. Several new open
formulas with Euler-Maclaurin type asymptotic expansions are presented.

The identification and utilization of the inclusion property, the persistence of form property, and
the equal weight-alternate sign property coupled with the method of undetermined coefficients provide
the basis for the derivation of a number of new multidimensional quadrature formulas.

These new formulas are compared with conventional rules such as Gauss’ and Simpson’s rules
and the numerical results show the derivative corrected formulas to be more efficient and economical

than conventional integration rules.
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I.  INTRODUCTION
We wish to approximate multidimensional integrals of the form
by by
](f) =f f(xl""’xN)dxl'”de (l.l)
N ay
over the N-rectangle
N
R =[] la;.6,]
i=1
where a; and b; are real numbers.
The traditional methods of multidimensional numerical integration employ a weighted sum of m

function values

o) = i wif (i1, xin)- 1.2)
i=
The w; are called weights and the (x;;, - - -, X;y) are called nodes. The difference
E() = 1(f) - () (1.3)

is the truncation error (or error).

Let pp = pi(xy, -, xy) be a polynomial of degree k in NV variables. We say that the multi-
dimensional quadrature rule or formula Q(f) is of order k or has degree of precision k if for any p,,
E(pg) = 0, but E(py4;) # O for at least one polynomial py,,. |

Since it is not uncommon for numerical procedures to make use of partial derivatives, e.g. in
optimization techniques, it is surprising that except for work by Tanimoto [50] !, Obreschkoff [38],
and Ionescue [23], very little is known concerning the use of partial derivatives in nonproduct

multidimensional quadrature rules.

1The numbers in brackets refer to entries in the Bibliography.
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Therefore, the objective of this investigation is to construct a number of new multidimensional
quadrature formulas using first- and mixed second-order partial derivatives of the integrand in addition
to function values of the integrand.

It is shown that the use of partial derivatives of the integrand evaluated on the boundary of R
increases both the efficiency and accuracy of composite multidimensional integration formulas.

The accuracy and efficiency are achieved by the proper combination of the following three
properties.

The first is the “inclusion property”. It is well known that m-point Gaussian integration rules for
the N-rectangle, R, are extremely accurate. However, when R is subdivided into s subrectangles or cells
and the m-point Gauss rule is applied to each cell, the total number of nodes is ms since the nodes are
interior to each cell.

A more efficient procedure is to employ an integration rule in which some nodes coincide with
the boundary of the domain of integration. Then when the domain is subdivided, these nodes are
included in more than one cell. Thus the total number of nodes is considerably less than the sum of
their numbers in each cell. We call this the “inclusion property”.

The second is known as “persistence of form”. Briefly, this means that for many functions,
it requires approximately the same if not less computer time to evaluate the partial derivative at a
point where the function is being evaluated as it does to evaluate the function at another point.

Finally, efficiency and accuracy result from applying the “equal weight-alternate sign property”.
Essentially this means that in the composite formulation of a rule, the weights of the partial derivative
correction terms cancel at interior points and consequently, the partials need be evaluated only on the
boundary of R. This results in a substantial increase in efficiency.

Numerical multiple integration is currently receiving considerable attention by numerical analysts.
The first book on the subject, written by Stroud [49], appeared only recently. An excellent introduc-
tion may be found in Davis and Rabinowitz [13]. Comprehensive bibliographies are given by

Fritsch [19], Stroud [49], and De Doncker and Piessens [14].
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Brief surveys of the literature may be found in Ahlin [2], Hammer [21], and Hammer and Wymore
[22]. A history of the Euler-Maclaurin Summation formula is given by Barnes [4].

Squire [47] devotes an entire chapter to derivative corrected quadrature formulas. Stroud [49]
states only one cubature formula, C,:2-1, which uses partial derivatives of the integrand. Lanczos [28]
and Davis and Rabinowitz [13] discuss quadrature rules using derivative data. Tanimoto [50] was one
of the first to consider cubature rules with partial derivative correction terms. Burnside [11] pub-
lished the first nonproduct fifth-order cubature rule. Tyler [51] gave the first derivation of the 8-point
Burnside formula. Finally, Price [41] gives some interesting examples.

In this dissertation, Chapter 2 provides a background for the 1-dimensional Euler-Maclaurin
Summation formula (Euler [15], Maclaurin [33]). Several error estimates and an algorithm due to
Frame [18] are stated.

It is shown in Chapter 3 that the Euler-Maclaurin Summation formula may be used to obtain
asymptotic expansions for at least 5 of the Newton-Cotes’ quadrature formulas, the midpoint formula,
and several new open formulas including some with end derivative correction terms. The third-order
derivative corrected midpoint rule is shown to be more efficient than the classic Simpson’s rule [46].
After reviewing Romberg quadrature, we define a new technique called derivative corrected Romberg
quadrature.

The 2-dimensional Euler-Maclaurin Summation formula is stated in Chapter 4. Also, several error
estimates are given.

In Chapter §, the double Euler-Maclaurin Summation formula is used to obtain asymptotic
expansions for a variety of formulas. New asymptotic expansions are given for Squire’s [48],

Ewing’s [15], Tyler’s [51] and Miller’s [35] rules.

The method of undetermined coefficients, the inclusion property, the persistence of form
property, and the equal weight-alternate sign property are employed in Chapter 6 to construct 47 new
derivative corrected cubature rules of orders 1, 3, 5, and 7. These formulas are generalizations of the
midpoint, trapezoidal, Squire’s [48], Ewing’s [16], Tyler’s [51], Miller’s [35], Simpson’s, and
Albrecht, Collatz [3] and Meister’s [34] rules. One of these, called MINTOV (for Multiple INTegration,

Order 5), may be considered a generalization of Lanczos’ [28] result which Lanczos calls Simpson’s
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rule with end corrections. Error bounds are included for the 47 new cubature rules. As is shown in the
case of MINTOV, these formulas may be generalized to multidimensional derivative corrected quadrature
rules.

In Chapter 7, we compare the first-, third-, and fifth-order formulas of Chapter 6 with existing
formulas of comparable degrees of precision. The numerical results indicate that partial derivative correc-
tion terms substantially enhance the efficiency of composite numerical integration formulas.

Conclusions and recommendations for further study are given in Chapter 8.

Lyness [29] states than an important objective of those concerned with the formulation of
numerical integration techniques is “to determine which rule requires the fewest function evaluations to
obtain a result of particular accuracy or degree”. Thus, we will pay particular attention to minimizing
the number of points at which the function or partial derivatives are to be evaluated. This will require
the generalization of the equal weight-alternate sign property to higher dimensions in order to obtain
efficient composite integration formulas with partial derivative correction terms. In cases where
derivative information is easily obtained, we will show the superiority of the derivative corrected
formulas over the traditional rules which use only function information, provided that the first- and/or
mixed second-order partial derivatives are easily evaluated.

We conclude this introduction by recalling Oliver’s [40] classic statement: “Now for any given
formula or algorithm a pathological problem can always be devised for which an arbitrary small accuracy
cannot be attained; we can therefore never argue the universality of any particular method, and we do
not attempt this.” Indeed, it is sufficient to take for the integrand, f= Mp" , where p is a polynomial
having zeros which coincide with the nodes of the integration formula, k > 2, and M is a sufficiently

large positive constant.



2. FUNCTIONS OF ONE VARIABLE

2.1 BERNOULLI POLYNOMIALS AND NUMBERS
The Bernoulli polynomial B, (t) of degree a has the form

a bkta-k

B,(1) =
st0 (a-k)!

and the following properties:

Bi(t) =1t -%
B, (1) = Bg(1)

a-1
by 1 ifa=1
B,(1) - B,(0) = "Z=:o (@a-K)! = {0 ifa>1.

(2.1.1)

(2.1.2)

The last property in (2.1.2) may be used to determine the coefficients b,. The coefficients B, in

the expansion

2 2

a=1

x 3 - x  x x\_
1 —?1- Z (-1)° 1B,,sz"‘/(2a,)! =——+—-coth(—- =

.

a=0

are the Bernoulli numbers and are related to the b, by the relation

a

Qa)!’

by, = (1)1 a>0.

Z b, x®

(2.1.3)

(2.1.4)

It can be shown that b, 4, = 0 for @ > 0. Also,b,, =B,(0)=B,(1) for a > 1. For reference we

list the first 10 Bernoulli numbers in Table 2.1.1.

Table 2.1.1 Bernoulli Numbers

alltl213|4]|5s| 6 |7 8 9 10
p Il 1|11 |5 | 691 |7]3617 43867 174 611
a2l 6({30|42|30|66|2730 | 6 | 510 | 798 330

Adams [1] lists the first 62 Bernoulli numbers. The Unpublished Math. Tables Repository has the

most extensive list of Bernoulli numbers containing the first 836.

S



It is shown in Knopp [26] that

Ba(21r)2“ _ = 1

— =) — @.1.5)
00! e
This shows that the B, increase rapidly for @ > 5. Indeed
B
a+l > (a+1)2a+1) e @2.16)

B, 212

as a — oo,

Frame [18] gives several interesting results concerning the Bernoulli polynomials and the Bernoulli

numbers.
Lemma 2.1.1

1 B

2 = a (.1.7
J; BZ(t)dr Ga)! )
Lemma 2.1.2
B,(2m)2e 4
@a)! < ZS- (2.1.8)

Comparing Lemmas 2.1.1 and 2.1.2 we see that

1
f BX(t)dr < 2.17(2m)2@ (2.1.9)
(1]

where 2.17 =~ 74/45.

Lemma 2.1.3

1
lbagl < 51’22« (2.1.10)
Next we will state the Euler-Maclaurin Summation formula.

2.2 THE EULER-MACLAURIN SUMMATION FORMULA
Let C25[a,b) be the set of all real-valued functions defined on the finite closed interval [a,b]
with the property that the derivatives f()(x), a < 2s, are continuous on [, b]. Let D, denote the

following boundary derivative correction terms:



D, = fp) - fP@),ael’. @2.1)
Partition the interval [4,5] into n equal parts each of width & = (b — a)/n. Let the points of sub-
division be denoted by x; = a + ih,i = O(1)n, where xy =a and x,, = b.

We now define the a-th remainder integral
1
R(,a) = f F{®) (6)B,(t)dt (222)
°

in terms of the Bernoulli polynomials B (¢) and the a-th derivative of the moving average

n-1
Fy(t) = k) [(x;+th). (223)
i=0

The celebrated Euler-Maclaurin Summation formula expresses a sum of values of f(x) evaluated

at the equally spaced points x; in terms of the definite integral

b
I(f) = J. f(x)dx (2.24)

and a series consisting of constant multiples of the derivative correction terms Dy, _; .

Theorem 2.2.1 (Euler [15], Maclaurin [33])
For f e C% [a,b]
b n_, LI 1
f fo)dx = h ) f(X) = D k¥, Dy, + f FQ9) (1) B, (t)dt. (2.2.5)
a i=0 a=1 0
Here the double prime signifies that the first and last terms in the sum are assigned weights 1/2

and the remaining terms receive weights 1.

The proof of Theorem 2.2.1 follows by integrating (2.2.2) by parts and noting that

Tk) = h ) fx)
i=0

[F,(0) + F,(1)] =1(f) + R(h,1), (2.2.6)

N|~

1 b
j F(t)dt = j f(x)dx, (22.7)
0 a



and
R(h,a-1) = b h°D,_, - R(h,a). (2.2.8)
Introducing the notation

= n2
Ejy = H2°D, | (229)

A2:;-1 = bZaEZa-l

s
Z LY PR
a=1

we may express the Euler-Maclaurin Summation formula with remainder in the more compact form:

P(h.5)

I(f) = T(h) - ®(h.s) + R(h,2s). (2.2.10)

For concreteness we write the first several terms of ®(h,s) in (2.2.10):

b n E
[ rooe <02 sy - S ur@ssen -3
@2.11)

Ey Eg Eq Ey

+ — - + - +
720 30240 1209600 47900160

oo 4 R(h2s).

From this we see that the Euler-Maclaurin Summation formula is a generalization of the
Trapezoidal Rule, T'(h). It relates a sum of equally spaced function values and an integral and states
explicitly the boundary derivative correction terms which allow one to be converted into the other.

Consequently, it may be used for summation as well as for numerical quadrature. Also, it has

provided the basis for some useful results in the theory of asymptotic expansions. (See Oliver [39].)

2.3 ERROR ESTIMATES

Effective application of the Euler-Maclaurin Summation formula in the approximation of sums or
integrals depends on a close estimate of the remainder integral, R (h,s), and a judicious selection of A
and s which will achieve the required accuracy with a minimum of computational effort.

For many functions, for example rational functions, the remainder integrals R (h,s) for a given A
may first become smaller, but then grow without bound as s increases to infinity.

The problem is to predict the & and s which will yield the desired accuracy without compromising

computational economy.



cer




Applying the Cauchy-Schwarz inequality to (2.2.8) and applying Lemmas 2.1.1 and 2.1.2, Frame

[18] obtained the following upper bounds for the quadrature error in the Euler-Maclaurin Summation

formula.
Theorem 2.3.1
h s
IR(h,s)| < 1.48(b - a)M, (51-7-> , 521 (2.3.1)
where
M, = Max If®), (23.2)
a<x<b

148 ~ 12/3\/5.

For appropriate h and s, a sharper error estimate is the following.

Theorem 2.3.2

h 25+2
IR(n, 25+ 1)| < 2.66(5 - )Mygar (;) L8> 1 (233)

where 2.66 approximates 7% /15/6.
We observe that we now have in fact three error estimates. To see this, substitute b5, =0
in (2.2.14) to obtain

R(h,25) = -R(h, 25+ 1). (234)

Then using (2.3.4) in (2.3.1) we may write the estimates as follows:

h 2s
IR(h,25)| < 148(b - a)My, (F) (23.5)
h 2s+1
IR(r, 25+ 1)| < L48(b - )My (5;) 236)
h 2s5+2
IR(h, 25+ 1)| < 2.66(b - )Mygss (2—"> @23.7)

The selection of the appropriate estimate depends on the step size, h, the number of derivative

correction terms, s, and the modulus of certain derivatives of f(x) over the domain of integration.
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For example, for rational integrands, the sharpest error estimate may depend on & and s as

roughly indicated in Figure 2.3.1.

h Y 1 2 3. 4
1
1/2
1/3 3.7 (23.6) (23.5)
1/4

Figure 2.3.1 Values of h and s for the Best Error
Estimate
Of considerable interest is the question for which functions f and for which values of & and a
does R(h,a) converge to zero. We are assuming f € C%[a,b]; hence f is Riemann integrable on [a,b]

and we have

lim R(k,a) = O. (23.8)
-h-+0

On the other hand, many functions f € C [a,b], e.g. rational functions, satisfy

lim R (h,a) = oo, (239)

aQse

However, if we assume f € C"[a,b] and if there are constants M and ¢ such that

M, = max |f®x) < M, (23.10)
a<x<b

then for 0 < A < 2n/c we have

lim R(r,a) = 0. (23.11)

Examples of functions for which (2.3.11) apply are products of functions such as exponential
functions ek*, trigonometric functions sin (kx), cos (kx), and Bessel functions J,,, (kx).

Finally, in the case f(x) e C”[a,b] is a rational function, f(x) is a sum of partial fractions of the
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form a,/(x, - x) and f(®)(x) is a sum of terms each of the form a! a;/(x; - x)%*1. Moreover, there
exist constants M and ¢ such that M satisfies a weaker inequality

M, < a!Mce. (23.12)
Therefore, for 0 < h < 2n/c, Frame [18] has shown that

(1- ﬂ_)
r(h) = min R(h,a) < (b -a)M(hc) 100 117€

ael* (2.3.13)
and suggests the following algorithm for selecting a priori the step size, h, and s, the number of deriva-
tive correction terms, for use in the Euler-Maclaurin Summation formula:

(i) Given f(x), a, b, and an error requirement € > 0, calculate M and ¢ according to

M, < a!Mc®. (23.14)

(ii) Choose h sufficiently small so that the error satisfies

r(h) < (b -a)M(he)"’*lo(l' 1_132'7) <e. (23.15)
(iii) Determine s e I* by
s = [n/hc], (2.3.16)
the greatest integer < m/hc.
(iv) Apply the Euler-Maclaurin Summation formula to approximate a definite integral or a sum
using the above values of 4 and s. ©
Thus, even though ler: R(h,a) = oo, that is, the asymptotic series diverges, it may be useful in
certain applications.
The problem of a priori estimating the 4 and s which not only guarantee a stated error require-
ment but also result in maximum computational efficiency by minimizing the number of function
and/or derivativ: evaluations (nfe) is not completely solved. It may be stated as follows.
Given f(x) e C%*[a,b],and € > O, find n = (b — a)/h and s € a/2 which minimize
nfe=2s +n+1 (2.3.17)

subject to

h 2(s+1)
IR(, 25+ 1)] < 266(b - a) - Mye,y < €. (23.18)
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24 A NUMERICAL EXAMPLE
Consider the definite integral

' adx

o 1+x2

1) =

=m.

Expand the integral into partial fractions and differentiate a times to obtain

@) = a! 2i[(-x)'° - (-i-x)1).
Since the maximum occurs at x = 0, we have
M, < 4a!

Now set M = 4 and ¢ = 1 in (2.3.15) to obtain

(-2
r(h) < 4n7%100 1A

Then using (2.4.4) and (2.3.16) we compute the values in Table 2.4.1.

The values of D,,_; are calculated as follows.
DZa-l = f(2a-l)(l) - f(2a-l)(0)

= (2a - 1)12%sin (an/2).

Hence, employing the Euler-Maclaurin Summation formula, we have

Ry " 4

i=o 1+(@h)?

3
[}

(s+1)/2
- ) (1)PrAe 2y, o(4a=3)1 2722 + R(h,25)

a=1

L 2 6 10 14
h Z 4 D _ K h k-
ey 1 +(in)? 6 504 1056 384

h18 43867 K22 854 513
1838592 1554432

h26 8 553103 h30 8615 841276 005
319 488 3519774720

s-1

+oo4 (=1) 2 B2b, (25 -1)122% + R(h,29), s = 1,3,5, .

(24.1)

(242)

(243)

(24.4)

(24.5)

(24.6)
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24 A NUMERICAL EXAMPLE
Consider the definite integral

' 4ax

o 1+x2

1¢) =

=m.

Expand the integral into partial fractions and differentiate a times to obtain

@) = a!2i[(i-x)12 - (=i -x)1].
Since the maximum occurs at x = 0, we have
M, < 4a!

Now set M =4 and ¢ = 1 in (2.3.15) to obtain

)
r(h) < 4n %100 1A

Then using (2.4.4) and (2.3.16) we compute the values in Table 2.4.1.

The values of D,,_; are calculated as follows.

Dyoq f(2a-l)(1) - f(2a-l)(0)

(2a - 1)122%5in (an/2).

Hence, employing the Euler-Maclaurin Summation formula, we have

1r=hi" 4

{0 1+Gh)?

(s+1)/2
- Z (-1)°h*e2p,__,(4a -3)! 23722 + R(h, 2s)

a=1

n.., 2 6 10 14
7 ) DAL LRI "_6 _'3'_
=1+ (ih)? 6 504 105 84

, 1843867 h22854513
1838592 ~ 1554432

h26 8553103 530 8 615 841 276 005
319488 3519774720

s-1

oot (1) D%, (25 - 1)1 227 4 R(L2S), s = 13,5,

(24.1)

(242)

(243)

(24.4)

(2.4.5)

(24.6)
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Computation to 14 decimals with & = 1/5 and s = 15 in (2.4.6) gives

1 1 100 . 100 . 100 . 100
- -, 17 == t—+t— +— + — +
i R(s ) 5(2 26 29 34 39 l)

s2 56 510 514 (24.7)

- — e

e - — —
6 504 1056 384

3.141 592 653 590 07.

The actual error is 2.8 X 10713 while the error from Table 2.4.1 is 2.1 X 10712,
Finally we note in Table 2.4.1 that 50 decimals of n are guaranteed by taking # = 1/19 and s = 59
in (2.4.6). This requires 80 function evaluations (fe). It can be shown from (2.3.7) that 50 decimals

of n are also guaranteed by taking & = 1/29 and s = 25. The computational cost is 55 fe.

Table 2.4.1 Computation of 7

h s Upper bound for r(h) nfe

1 3 7.50-2* 6
1/2 6 9.93-5 9
1/4 12 9.86-10 17
1/5 15 2.07-12 22
1/8 25 1.72-20 35
1/10 31 6.75-26 43
1/19 59 2.65-50 80

*This means 7.50 x 102,



3. APPLICATIONS OF THE EULER-MACLAURIN SUMMATION FORMULA
3.1 QUADRATURE FORMULAS WITH ASYMPTOTIC EXPANSIONS
Sheppard [45], Becker [6], and Frame [18] suggested a class of quadrature formulas which are
obtained by taking a weighted average of T(h), T(2h), T(3h), - - - with weights selected to eliminate one
or more of the terms containing D,, D3, Ds, « * - . This is accomplished as follows.

Let a;, ap, - -+, ag4y be factors of n = (b - a)/h. As before we write EZB-I = hzﬁDm_1 and

al“2”'°~g+1

Bog-1 = bagEag-y- Denote by Ayy 4 o5 o1,ee 28,

(h) the approximation to the integral
-1
b
I(f) =f f(x)dx based on the weighted average of T'(a;h), T(ayh), - - -, T(ag4h) which eliminates the
a
terms Aza,--l’ j = 1(1)s, but possibly contains some derivative correction terms involving

A27l-l’ Y A27,—1'

Without loss of generality, suppose that

1 €a) <ay) < - < gy Sn
1 <8 < By < - < B 3.1.1)
1 <79 <7y << 7,

We wish to find constants w;, i = 1(1)s + 1 such that

s+l t
ayag _
Aza,-l,---,zas-l(h) - Z wiT(a;h) + ZCI'A21,~-1
i=1 j=1

(.12)
=) + cglgyy *+ -

where 7 is the smallest positive integer distinct from the g; and 7j» and ci are certain constants. The

constants w; which are found by solving the linear system

14
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B 1 1] [wi] (1]
28, 28, 28,
ay ay U G| (W2 | _ |0
(3.13)
2 28 28
1 s ‘12 s e as+-{— :VS""IJ —0—

determine the asymptotic expansion for the resulting quadrature formula:

s+1

a1 Gs4]
Aza,-l 28,1 = ZWT("'"')

t s+l

Z Ay -IZwa (3.14)

=1

- s+l
2k
=y i=1

k+#B; L
k¢‘7j

The principal error term is defined to be
s+1

A21-l Z w,-aiz"'. (3.1 .5)
. i=1

A quadrature formula of degree at least 2s+1 may be constructed by taking a; =jand B =k in
(3.1.3). In this case, it is easily seen that the following matrix has rank s+ 1 and hence a unique

solution exists.

— i

1 1 1 cee 1

1 22 32 ces (s+1)?

l 24 34 e (s+ 1)4 = [12(1'1)]” (3.1.6)
122 3% .. (g1

The Vandermonde determinant associated with this matrix is nonzero:

(S+l)!kl;lo (2k+1)! # 0.
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Thus there are countably many quadrature formulas in this class. Becker [6] conjectured but did not
prove this result.

The principal error term is

s+1

8o Z w;i%s (3.1.7)
i1

and the asymptotic expansion is

s+l

Jeee, 541 _ .
AVR ) = ) wih)
i=1

(3.1.8)
o s+1
=10+ ) [Bgpa D wid ™|,
k=s i=1

We hasten to point out that this may not be the best quadrature formula. A more efficient
quadrature rule may be obtained by selecting n = (b — a)/h to have as many factors as possible, 1 = a; <
a; < :++ < agyy = n. This may be seen by comparing the principal error terms in the 7-point
formulas A}? and Ai%gﬂ which are h8D/840 and 3h8D,/2800, respectively.

For reference we list in Tables 3.1.1 to 3.1.4 several formulas constructed by this method. The
entries in the tables may be understood by comparing them with the derivative corrected (DC)

Simpson’s Rule where h = (b - a)/2n and f; = a + ih.

A2 = [16T(h) - T(2h) - E|1/15

l"—5[7f0 +16f, + 18f, 4+ +7fy,] -%h%f’(b)- £'@)]

hSD;  H8D,  K10D,
+ - +
9450 ~ 75600 712800

1) -

(3.19)

b -
J f(x)dx + th‘bzpn_,(m - 4%)/15.
a s=3

The principal error is the first term in the asymptotic expansion, —h6DS/9450.
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Table 3.1.4 Leading Terms in the Asymptotic Expansions*

Name Rule Abbrev El E3 ES E., E9
Trapezoidal Al ) | L |sL ] -1
pe 12 | 720 | 30240 | T209600 | 379001
. 1 , -1 1 -1 1
DC Trapezoidal A Tth) 0 30240 | 7209600 | 37900160
. 12 1 -1 1 -17
Simpson Ay Sth) 780 | 7512 | 14400 | 2395008
DC Simpson Al2 S’h) -1 ] ;1
ps: 3 9430 75600 712800
. 13 1 -1 13 41
Simpson s Second Al Ulh) 80 336 766 112
DC Simpson’s Second || A!3 Uth) =3 3 -13
ps 3 11200 | 44800 8§44 800
14 1 -17 13 -4369
5-Point A 35 | T390 29937
. 14 -8 17 -13
DC 5-Point Ay 16065 | 80325 | T351470
124 2 -1 119
Boole Ay | B %5 | 900 | 789480
124 , . -4 2
DC Boole Ass Bh) 39235 93555
’ 123 1 -1
Weddle A | VW 840 | 7400 | ©3360
123 , -3 1
DC Weddle Ass Vih) 137200 | 129360
s 1236 3 -5
Newton-Cotes’ 7-Pt. Al 35 N(h) m m
» 1236 " -3
DC Newton-Cotes’ 7-Pt. | A, N'th) 154 000
1248 16 -136
Romberg 9-Pt. Ajss | Wik 75 TR7IT
1248 , =512

_,28
*Exg1 ™A Dysy.
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Uspensky [52] uses the expansion of a function in terms of Bernoulli polynomials (see Krylov
[27]) to derive asymptotic expansions for the trapezoidal, Simpson's, Simpson’s Second, Boole’s, and
Newton-Cotes’ 7-Point rules. Except for these Newton-Cotes’ rules, Weddle’s rule, the DC trapezoidal
rule, and the DC Simpson’s rule given by Tanimoto [50], the asymptotic expansions of this section are
believed to be new; the derivation is based on the Euler-Maclaurin Summation formula.

Becker [6] constructed Simpson’s, Boole’s, Newton-Cotes’ 7-Point, Weddle’s, Romberg’s 9-Point,
and several other rules, but did not construct the corresponding derivative corrected rules as we have

done.

3.2 ERROR ESTIMATES

The quadrature error in (3.1.4) may be estimated from the principal error term by

s+1
aya
() - Agl g )] = (b=a)lbyy 1K My, D" Iw;la?7. (3.2.1)
i=1
Here we have replaced D,y in (3.1.5) with (b - a)M,,,. Also, as before,
7=min[I*-{B]»...rﬁ_gy‘Y[’.”"Y{}]‘ (3‘2'2)
For example, let us compare Simpson’s formula S(h) with the DC Simpson’s formula S’ (k).
The error in Simpson’s formula is less than (b - a)h4M4/ 180, whereas, the error in the DC

Simpson’s formula is less than (b - a)h6M6/9450. Now if

2n2M,
105 M,

(323)

then this additional accuracy of fifth-order vs. third-order is gained at the one-time minimal cost

of computing the correction term -h2[f'(b) - f (@)} /15.
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3.3 NEWTON-COTES FORMULAS

Examination of Tables 3.1.1 to 3.1.4 reveals that we have obtained asymptotic expansions for
five of the Newton-Cotes’ quadrature formulas: the trapezoidal rule, T(#), Simpson’s rule, S(h), Simp-
son’s Second rule, U(h), Boole’s rule, B(h), and the Newton-Cotes’ 7-Point rule, N(h).

Examination of

A13(r) = [26T(n) - T(Sh)}/25

h
5—0-[21f0 + 52f) + 52f, + 52fy + S2fy + 42fs +---+ 21f] 33.1)

I(f) + 599h*D,/18 000 - - - -
reveals that it is impossible using the technique described in Section 3.1 to obtain the 6-point Newton-
Cotes’ rule. Therefore, this class of quadrature formulas is not merely a restatement of the Newton-
Cotes’ rules.

As previously noted, Uspensky [52] shows how another technique may be used to obtain an

asymptotic expansion for any Newton-Cotes’ quadrature formula.

3.4 THE MIDPOINT RULE AND SOME OPEN FORMULAS
An asymptotic expansion for the midpoint or centroid formula, C(h), may be derived from the

Euler-Maclaurin Summation formula by writing

C(h) = 2T(h/2) - T(h)

h Z f@+irf2)
i=0

b (34.1)
= J‘ f(x)dx - E|[24 + 7E;/5760
a

-31E5/967 680 +-- -+ (21-25 - 1)E, 1 by

+ R(h, %)
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where h = (b = a)/n and the absolute error IR(h, 2s)| = IR(h, 2s+1) | is estimated by

1
IR(h,25+1)1 = J-O [zﬁ;,};*”(x) - 2D, L (1)ar
(342)
-(25+1) 1r4 b - M. _h_ 2s+2
<[1+2 ]Evé-'( a)M, L, o
Of course, (2.3.5) and (2.3.6) may also be employed to obtain additional estimates for R (h, 2s).
As before,
My, = max |f2)(x)] 3.4.3
2 a<x<b f ) ( )
and
DZs-l = f(2$-l)(b) - f(2s-l)(a)
Eyy = WDy, (3.4.9)
A2s-l = bZSEZS-l'
From (3.4.1) we immediately obtain the derivative corrected (DC) midpoint formula
n
C'(h) = h ) fa+inf2) + E /24
i=0
b (345
= f fx)dx + TE3/5760 - 31E5/967 680 4-5)
a
+ o0+ 212 - 1)h2by Dy + R(h,2s).
The error R (h, 25) may be estimated by
IR(h,25)| < 3(b-a)My(h/2m)*. (3.4.6)

Here 3 is an approximation for (37%/40v/6 ).

The principal error term of the DC midpoint quadrature formula is 7hAD3/5760. This compares
favorably with the Simpson’s principal error term, h4D3/ 180.

Squire [47] observed that Simpson’s rule is “probably the most widely used integration formula.”

Thus it is of interest to compare the third-order DC midpoint and Simpson’s quadrature formulas.
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Clearly the DC midpoint rule is easier to apply than Simpson’s rule since the weights in the
former are unity whereas there are three different weights for (composite) Simpson’s formula.

If n represents the number of times the basic or holistic quadrature rule is applied, then tra-
ditionally, for Simpson’s rule, h = (b - a@)/2n while for the midpoint rule, h = (b — a)/n. Thus one is
tempted to compare the midpoint and Simpson results for the same step size h. Rather one should
compare results when the holistic rule is applied an equivalent number of times, n. (Note that this
is done in Chapters 6 and 7.) Milne [36] also discusses this.

When this method of comparison is used, then one sees that for n applications, the DC midpoint
principal error is exactly 3.5 times the Simpson principal error. However, the DC midpoint rule uses
only n+2 function evaluations (counting a derivative evaluation as one function evaluation), while
Simpson’s rule requires 21 + 1 function evaluations.

Therefore, for the same order of magnitude error, the Derivative Corrected midpoint formula
(3.4.4) requires approximately half the number of function evaluations as Simpson’s rule. This

represents a considerable savings in computer time.

Table 3.4.1 The Midpoint, DC Midpoint, and Simpson’s Rules
. 6 dx
Applied t —_=
pplied to j; p In 2

Midpoint DC Midpoint Simpson

Error nfe Error nfe Error nfe

3 | 3.39-3* 3 =1.97-5 S || -2.26-5 7
6 (| 8634 6 | -5.20-6 8 || -1486 | 13
12 | 2.174 12 | -3.28-7 14 |f -941-8 | 25
24 || 5.42-5 24 | -2.08-8 26 || -6.20-9 | 49

*This means 3.39 x 1073,
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As can be seen in the Table 3.4.1, for n = 6 the DC midpoint rule produces an error of 5.20 X 10
using only 8 function evaluations while Simpson’s rule requires 13 function evaluations to produce an
error of 1.48 X 1075,

Thus, in situations where Simpson’s rule is considered adequate for the approximation of a
definite integral, the DC midpoint rule should be considered as a viable alternative to Simpson’s rule.

Next we use the midpoint rule (3.4.1) to derive several open formulas based on the methods of
Section 3.2. A numerical integration formula is defined to be open if all of the nodes are interior to
the domain of integration.

Let a;, - - *, a5y be factors of n = (b — a)/h. Denote by Q;B’l_la"' l2ﬁs-l(h) the approximation

b
to I(f) =J‘ f(x)dx based on the weighted average C(a h), - - -, C(ag4h) which eliminates the
a

terms containing Aza,-l y T, AZﬂs-l' but possibly contains ¢ derivative correction terms
involving AZ‘n-l’ ety A27’-l‘

Assuming that (3.1.1) holds, we seek constants w;,i = 1(1)s+1, such that

s+1 t
ay gy _
Q251'1,'f'»253'l(h) - Z w; Clah) + ch27i-l
i=1 j=1 (347

= 1) + ¢o@ 2V - Dby, + -
Here 1 is the smallest positive integer distinct from the f; and v; and ¢; are certain constants. Now

using (3.1.3) to find the numbers w;, we obtain an asymptotic expansion for the resulting quadrature

formula

s+1 t s+1
ay ---as“_1 - 1_27 271
QZBl-l,---,Zﬁs-l(h) N Z wiC(ah) - Z @h- 1)A27,-IZ""“.'
i=1 j=1 i=1
(34.8)
b o s+1 x
= f f(x)dx + Z (21-2k - I)Azk-l Z w,-a.iz
a k=y i=1
k#ﬂi

k#yi
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having the principal error
s+1
Q127 - DAy, ) wal? (349)
i=1
Several open and derivative corrected open quadrature rules obtained by this technique are
presented in Tables 3.4.2 to 3.4.5.

For reference we state the open quadrature formula Q;z which is the analog of the derivative

corrected Simpson’s formula.

0% = s,

[16C(r) - C(2h) - E,[2]/15

212 @+hI2) - f@+h) + 2 @+3h2) + -

2
+ 2f(b-31/2) - f(b-h) + 26 (b-h/2)] + %6 [F®) - F@)] (3.4.10)

311Dg  127h8D,

= + -
IU) * 357300 ~ 9676800 *

b o0
=f fx)dx + Z h%byD, (21725 - 1)(16 - 4%)/15.
a 5s=3

The open quadrature formula Q; ‘;;_‘;.ff?ﬁ -l(h) based on the asymptotic expansion of the
vtee 28

midpoint rule is the analog of the closed formula 4 ; 51 LY. PP

(<1028 -1 (1) which is based on the Euler-
bt 2B

Maclaurin Summation formula.

In particular, the open formulas Sy, Uy, By, V. Ny, and Wy are the analogs of Simpson’s,
Simpson’s Second, Boole’s, Weddle’s, Newton-Cotes’ 7-point, and Romberg’s 9-point formulas,
respectively.

Finally we note the following relationships:

Solh) = [4C(r) - C@M1/3
By(h)

Wo(h)

[16S(r) - So(2h)] /15 (34.11)

[64 Bo(h) - Bo(2h)]/63.
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Table 3.4.5 Leading Terms in the Asymptotic Expansions*

Rule Abbrev E, E3 E5 E, 1-29
Q' Crr) 7 | T 56660 | T5788500 | 74579981000
Q' Clh) 760 | 967680 | TSHEEW | IASIALIT
Q2 Soh) [0 | RTER VPR RPE
Q;’ Sofh) 303,400 SEIERT TaIST
o’ Uqfh) &0 Y0753 T 15T 600 5464153
Q;’ Uylh) a0 TAA0 TS5 600
Q3! By(h) 15950 112300 SEprad o
it | By TT5 5% TET#0
Q3 Vofh) 76880 307400 T
G| v 7361 600 251760
Q33° Nofh) 555960 270335
G| N IT364000
Q3 | wym 500 o
Q2% | warm SETEA4 300
*Eys1 =hDyg ;.
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For the derivative corrected formulas we have

S5 (m) = [16C'(R) - C'(2n)])/15

By(h) = [6454(h) - Sy(2h)] /63 (34.12)

u"d(h) = [256 By(h) - B,(2h)]/255.

This leads to the observation that the derivative corrécted Romberg quadrature to be defined

in Section 3.6 may be based on the asymptotic expansion for the midpoint rule, (3.4.1), in place of
the Euler-Maclaurin Summation formula. In this case the first 4 columns of the *“open Romberg”

table are given by the open quadrature rules C (h), Sy(h), By(h), and W(h), respectively.

3.5 ROMBERG QUADRATURE

The Euler-Maclaurin Summation formula is a tool of strategic theoretical importance. Indeed,
Romberg [44] proposed a new class of quadrature formulas for a finite closed interval {a,b] based on
Richardson’s extrapolation technique [24, 43] applied to the Euler-Maclaurin formula. It involves re-
peated halvings of the integration interval and successive elimination of higher order terms in the Euler-
Maclaurin expansion.

An extensive discussion of the theory is given by Bauer, Rutishauser, and Stiefel [5].

Romberg concluded that Richardson’s deferred approach to the limit would improve the accuracy

of the trapezoidal rule.

n
o) = h[;“fo NP +Lf"] = h £" f(a+ih). 35.0)
2 i=0

For n = (b - a)/h even, he obtained Simpson’s formula by writing

S(h) = [4T(h) - T(2n)]/3. (35.2)
Next for n a multiple of 4 he obtained the Newton-Cotes’ formula of order 6, Boole’s Rule:

B(h) = [16S(k) - S(2h)]/15. (3.5.3)
In the next step Romberg obtained the formula

W(h) = [64B(h) - B(2h)]/63

4h
= 235 [217fo + 10241, +352f, + 1024, (3.54)

+ 436, +1024f5 +352f¢ +1024f; +434fg + - -+ +217f,]
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which is not a Newton-Cotes’ quadrature rule. Thus Romberg’s method is not a reformulation of the
Newton-Cotes’ formulas. Apparently, W(h) was first derived by Sheppard [45] and later rediscovered
by Becker [6].

Now let

2k
Tor = hZ f(a+in) (3.5.5)
i=0

be trapezoidal sums where & = (b - @)/2%. Recalling the Euler-Maclaurin formula

s

T(h) = I(f) + Z e h?® - R(h,2s) (3.5.6)

a=1

where ¢, = byDj,.1, it is easy to understand the definition
ka = [4me-l,k"’l -Tm-l,k]/[4m —1]. (3.5.7)
In fact

0 51 -
T,k = 422 ,...,2m(b a

1,2,+,m —2"—->, m > 0. (358)

From this the Romberg T-table is constructed:

3.5.9)

We have already seen that the first three columns are the trapezoidal, Simpson, and Boole’s values,

respectively.
Bauer, Rutishauser, and Stiefel [S] show for any f e C2™*2[q,b] thereisa ¢ € [0,1] such that
(b - 8)Byaz I 2™ D)

I T - 1N < i) 2 (3.5.10)

Combining this result with lemma 2.1.2 we obtain a new and much more convenient error estimate for

any entry in the Romberg table.
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Theorem 3.5.1

If f e C2™M*2[q, b] then the error for any entry in the Romberg T-table may be estimated by

®- a)M2m +2

-I(f) <
(Tomi = 1(N)] 25 T2m D) pm e 2 2k m) (3.5.11)

where

Mymsz = max |1, (35.12)

3.6 DERIVATIVE CORRECTED ROMBERG QUADRATURE
Lanczos [28] shows how the addition of only one derivative correction term can significantly
improve the accuracy of a quadrature formula at the minimal expense of a small increase in computa-
tional effort. He also states the derivative corrected (DC) trapezoidal and Simpson’s Rules.
We note that the DC trapezoidal rule generates the DC Simpson’s rule.
S'(h) = [16 T'(h) - T'(2n)]/15 (3s6.1)
which in turn generates the DC Boole’s rule
B'(h) = [64S'(h) - S'(2n)]/63. (3.6.2)
Next, the DC Boole’s rule generates the DC 9-point Romberg formula
w'(h) = [256B°'(h) - B'(2h)]/255 (3.6.3)
which is distinct from any DC Newton-Cotes’ rule.
This suggests a new quadrature scheme, the derivative corrected Romberg quadrature. Let
h = (b-a)2k (3.64)

and

|

2" s
C=h) . fQa+in) - Y Bgans
=0 a=l (36.5)

TOk - ‘b(h,S)

be DC trapezoidal sums. Define
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Gk = 4mﬂcfn-l,k+l = C}‘n-l,k)/("m tr-n (3.6.6)

and construct the DC Romberg C*-table

s

COO

s

COl Cil

Coa Ci2 €3 (B6.7)

s s s s
Cos Ciz €33 Cy

The first column is the Euler-Maclaurin formula with & = (b - g)/2% and the m-th column, m > 0, is

given by the quadrature formula

s _ 42%2',..2m [b-a
Ciy = AM'M'_“’HM(—Z" > (3.6.8)

For the case s = 1, the first three columns of the C=table are the DC trapezoidal, DC Simpson’s,
and DC Boole’s rules, respectively.
In general, comparing (3.5.8) with (3.6.8), we see that the m-th column of the C3-table is the

derivative corrected quadrature rule corresponding to the m-th column of the Romberg T-table.

3.7 A NUMERICAL EXAMPLE
To illustrate, we employ the Romberg and derivative corrected Romberg quadrature formulas to

estimate the integral

1
f l—sin(mc)rrdx = 1. 3.7.1)
0 2
We note that
h=2%k

€5y = 12'* Y sin(jn2%) G1.2)

s
®(h,s) = ) (-1)Pn2er2kep, .

a=1
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Table 3.7.1 Romberg Quadrature T-table for fo' Ysin(nx)ndx =1

m .
. . (Newton-Cotes
k 0 (Trapezoidal) 1 (Simpson) 2 (Boole) 7.Point)
0 0.000 000 000 000
1 0.785 398 163 397 | 1.047 197 551 20
2 0.948 059 448 969 | 1.002 279 877 49 | 0.999 285 365912
3 0.987 115800973 | 1.000 134 584 97 | 0.999 991 565473 | 1.000 002 774 99

Table 3.7.2 Derivative Corrected Romberg Quadrature (s = 1) C!-table

m . (Corrected
DN | oot |Gt (ot 3 Novioncos
7-Point)
0 0.822 467 033 424
1 0.991 014 921 753 | 1.002 251 447 64
2 0.999 463 638 558 | 1.000 026 886 34 | 0.999 991 575 848
3 0.999 966 848 370 | 1.000 000 39569 | 0.999 999 975 204 | 1.000 000 008 14
Table 3.7.3 Derivative Corrected Romberg Quadrature (s = 2) C2-table
m (Corrected (Corrected (Corrected (Corrected i
k Trapezoidal) Simpson) 2 Boole) 3 Newton-Cotes
7-Point)
0 0.957 757 437 638
1 0.999 470 572017 | 1.000 132 685 26
2 0.999 992 116 699 | 1.000 000 39519 | 0.999 999 876 401
3 0.999 999 878 254 | 1.000 000 001 45 | 0.999 999 999 909 | 1.000 000 000 03
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Table 3.7.4 Romberg Error for f % sin (nx)mdx = 1

m 9
k 0 (Trapezoidal) 1 (Simpson) 2 (Boole) grjllf:ir:(:;l-Cotes
0 1.00+0
1 2.15-1 -4.72-2
2 5.19-2 -2.28-3 7.154
3 1.29-2 -1354 8.44-6 -2.78-6
Table 3.7.5 Derivative Corrected Romberg Error (s = 1)
m (Corrected
t
DN | oot |y Gt |3 Gt Nt
7-Point)
0 1.78-1
1 8.99-3 -2.25-3
2 5364 -2.69-5 8.42-6
3 3.32-5 -3.96-7 2.48-8 -8.14-9
Table 3.7.6 Derivative Corrected Romberg Error (s = 2)
m (Corrected | (Corrected (Corrected (Corrected .
k Trapezoidal) Simpson) Boole) 3 Newton-Cotes
7-Point)
1] 4.22-2
1 5.294 -1334
2 7.88-6 -3.95-7 1.24-7
3 1.22-7 -1.45-9 9.09-11 -298-11

*This means 4.22 x 1072,
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The values in the C!-Table 3.7.2 show a marked improvement over those in the Romberg T-Table

3.7.1. For the calculation of the C1-table, it should be emphasized that

Dy = f(1) - £(0) (3.73)
is computed only once, in fact before the calculation of the C l.table commences. Thus the first deriva-
tive of the integrand is evaluated only at the two end points of the interval of integration.

The advantage of the derivative corrected Romberg quadrature over the classical Romberg
quadrature is its increased accuracy and efficiency. Indeed, it can be shown that the m-th column of the
C*-table is given by a quadrature formula of order A2(m *+ 1)+ 25 a5 compared with an h2(m*1) order for
the m-th column of the Romberg T-table (m=0,1,2,- - ).

This improved accuracy is gained by the minimal cost of evaluating the derivative correction terms,
Dj,_1,o0nce. Moreover, the derivative corrected Romberg quadrature is appealing because the trape-
zoidal sums are closely related to Riemann sums, and the weights are easy to program. As noted on
page 31, an extrapolation procedure may be applied to an asymptotic expansion for the midpoint

rule in place of the trapezoidal rule.



4. FUNCTIONS OF TWO VARIABLES
4.1 THE EULER-MACLAURIN SUMMATION FORMULA
Let C2¢ [R] denote the set of functions f(x, y) of two real variables where the partial derivatives

(see 4.1.5) f%¥(x, ), 0 < a, f < 2s, exist and are continuous on the rectangle R = [a,b] X [c,d] and

let £ (x,y) € CES[R]. We wish to estimate the integral

1(f) = fc dfabf (x.y)dxdy. @4.1.1)

Divide [a,b] into n equal parts each of width & = (b - a)/n by points x; = a + ih setting x, = a and
x,, = b. Similarly divide [c,d] into m equal parts each of width k = (d - c)/m by points yj=ctjk
where yg = c and y,,, =d.

Now for 0 < ¢, u < 1, average the values of (b - a)d - c¢)f in each subrectangle
Ry, = [x1,x;411XDy;,yj+1] at points at a distance of ¢ from the left side and a distance of u from

the bottom by writing

m-1n-1

Fyp(tou) = hk ) D" flx; + th,y; + uk). “.12)
j=0 i=0

Then the double integral of this moving average over the unit square is exactly the integral /(f)

over the rectangle R:

1 p1
J. J Fhk(t,u)dtdu
0vYo0

m-1 n-1

1 ¢l
= Z ZJ j fGx; + th,y; + uk)hkdtdu
0vYo

S E (8.13)

molncl b+ 1)k atG+1)h
- f J fG,y)dxdy

j=0 i=0 Jctik a+ih

=f:f f(x,y)dxdy.

38



39

The average T'(h,k) is the (composite) trapezoidal rule:

T(h,K) = %[F(0,0) + F(1,0) + F(0,1) + F(1,1)]

4.14)

m " n .
= th Z f&x.9))-
j=0 i=0

The double primes on the summation signs indicate weights are to be assigned as indicated in

Figure 4.1.1.
Y % % Y%
% 1 1 %
% 1 1 %
Y % % %

Figure 4.1.1 Trapezoidal Weights

The mid-value F},; (%, %) is the composite centroid or midpoint rule and has been investigated
by Good and Gaskins [20].

Before proceeding, we define some notation which will simplify the writing of the Euler-
Maclaurin Summation formula. Let ¢,(f) and y ,(u) represent the a-th Bernoulli polynomials in the
variables ¢ and u respectively, a > 1.

For 1 < a,f<2s denote

1%x.y) = 2592 f(x,») 4.1.5)
and
m
dag = D" [f*0b.y)) - 2@ “16)
j=0 1

dgs = Z [£%(x;,d) - fO8(x;,0)]
i=0

dgg = fo8(b,d) - *¥(b,c) - f%(a,d) + f*¥(a,c).
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The double primes signify trapezoidal weights, that is, the first and last terms in each sum are to be

assigned weights % and the remaining terms are assigned weights 1. The weight assignment is illus-

trated in Figure 4.1.2.

% 1 1 % -1
-% %
-1 1
-1 1
-% %
-% -1 -1 -% 1
dao dOﬂ

Figure 4.1.2 Partial Derivative Weight Assignments

Next for a, 8 = 1(2)2s - 1 we define

N =

D, [F20(1,1) + F29(1,0) - F20(0,1) - F29(0,0)]

Dos = = [FO(1,1) - FO8(1,0) + FO%(0,1) - F%(0,0)]

0|

D,z = F°(1,1) - F%(1,0) - F?%(0,1) + F*%(0,0)
and
1 1
Iy = —j [Fo0(t,1) + FoO(r,0)] ¢, (r)dr
0
(Y o 0
log =5 [FO1,u) + FOP0,u)] Vy(u)du
0
1
I s = f [F2B(1,1) = F258(1,0)] ¢,5(r)dt
0

1
I35 =f [FO2(1,u) - F®25(0,u)] Yp5(u)du
0

1 1
la,a = J‘ J‘ Faa(h“)‘%(') Vo (w)dtdu.
0vYo

-1

dyg

@4.1.7)

(4.1.8)
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Now since
-1 n-1
FoB(t,u) = pot1jh*] Z [o8(x; + th, yj + uk)
j=0 i=0
we see that

DaO = haﬂkdao

= +1
Doy = hkP*ldy,

= patlgf+l
Dy = kP a .

Finally, for unequal positive integers a, 8 we define

EaO = EOa. = DaO + DOa
Eaﬁ = Eﬂa = Daﬂ + DBa
Ea.a = Daa

and
Log = Log = I *1pg
La.ﬂ = Lﬂa = 12.\”,13 + Ia.2$

L, =1

aa aa’

Theorem 4.1.1 (EULER-MACLAURIN SUMMATION FORMULA)

Let fe C*[R]. Then
I(f) = T(h,k) + ®(h.k;2s,25) + R(h,k;2s,25)

where

s a
®(h,k;25,25) = ZbZa[-EZa-l o0t ZbZBE2a-l.2ﬁ-l

B=1

a=1

and

§
R(h,k;25,25) = Ly o 'Z byaL2s,2a-1 * Los, 25

a=1

(4.19)

(4.1.10)

@4.1.11)

(4.1.12)

(4.1.13)

(4.1.14)

(4.1.15)

Lyness and McHugh [32] give an n-dimensional formulation of the Euler-Maclaurin Summation

formula.

It may be the case for some functions that over the rectangle R, higher partial derivatives exist
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with respect to the second variable than exist with respect to the first. In this connection we observe

that the Euler-Maclaurin Summation formula may be generalized as follows.
Let C2527[R] denote the set of all functions f (x,y) where the partial derivatives 2,

0<a<s, 0<f <r exist and are continuous on the rectangle R. Then

Theorem 4.1.2
If fe C2%¥[R] and 0 <5 <, then
I(f) = T(h,k) + d(h,k;25,2r) + R(h,k;2s,2r)
where

s a
®(h,k;2s,2r) = Z bza['Eza-l,o + Z bygEra-1 ,213—1-|

a=1 =1 .!

r - s
+ Z bZal'DO,Za-l + Zb2ﬂDZB-l,2a-l]
=1

a=s+1

and

s
R(h,k;25,2r) = Iyg o + Iy 5, - Zbla(12s,2a-l + Iyg1,2) ¥ Iys s

a=1

42 ERROR ESTIMATES

Let
Myg = max [f%(x,y)]
’ (xy)eR
2s 2s
h k“M2“l + h%k Ma‘zs a<2s
N2:,a

10.74(hk/21r)2‘M25,23 a=2s
0.74 ~ n2/6\/5
148 = n2/3\/5
295 =~ 212/3V/5

y=((B-aXd-c)

(4.1.16)

4.1.17)

(4.1.18)

(4.2.1)

We now give an estimate for the remainder term in the Euler-Maclaurin Summation formula.
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Theorem 4.2.1

Let f e C2°[R] and

s
Py = 1by Nz 0 + Z 1b2q IN25,20-1 + Nog,25 - @422
a=1
Then
IR(h,k;2s,25)| < 2.95(b - a)(d - c)P, (2m)"25. 423)
Proof:

For 0 < a # B < 25 we have
m-1 n-1
IFO(u)l < hOH P )" 3" 1798 + th, yj + uk)| < KM, 5. (4.24)
Jj=0 i=0
Take absolute values in (4.1.8) and apply (2.3.1) to obtain the inequality
gl < 295 7)\h“k“MaB(2n)'2’, a=2s or =2 4.2.5)

where A = 1/2if a or =0 and X\ = 1 otherwise. We estimate I; 5 as follows.

g 251 < l.4827(hk)2’M23’23(21r)'4’- (4.2.6)

Finally from (4.1.12) we obtain the result
s
Rk, 25,291 < WLy gl + D Ibyalag | * ILgg !
a=1

s
< 295y@ny 2 [Iby [Ny 0 + ) 1b2g I Nyg pact *+ Nag il @.2.7)

a=1

= 2.95yP,(2m)’% ©

Theorem 4.2.2
If there exists a positive constant C such that for 0 <a <25, 0<k<h <n/2, My; , <C, and
M, 55 <C, then

IR(h,k;2s,25)| < 5.93(b - a)d - c)C(h/2m)%. 4.2.8)
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The obvious result holds if 0 < h < k < n/2. Here 5.93 is a bound for the expression

an?ll m L h12
V5|2 12V5  1-(n/2m)? (429)
The proof of this and several succeeding theorems are similar to the proof of Theorem 4.2.3 and

therefore are omitted.

Theorem 4.2.3
If there exists a positive constant C such that for 0 <a <2s, 0 <k <h < n/c,

My, o, <CH¥*% and M, , < C25*°, then

hC 2s
IR(h, k;2s5,25)| < 7.17(b-a)(d-c)(7> (4.2.10)

Proof:
Apply the bounds on the partial derivatives and the well-known result

2(2m)2e

by, | < =L —
by e @.2.11)

to (4.2.7) to obtain

W5 \m) |2 3@n?e T a5\ 2n

<j4_l'i hC 2s Fl .\ ne\1 - (hC2m)%s N n? (hC)zs
s \2n) |2 \12 )T-mcizm?  12v3\27, (4.2.12)

4n? (hc>2‘ L hC/12
S —=7v|l— —+ +
W5 \2n/) |2 125 1-(nC/2m)?

2 a-
R(h,k;25,25)| < -7 ("_C_) L, Z n2(ncy2e! 2 [ hc)”]

Finally since hC < m,

e, ]
3502 12v5  1-(nC/2m)?
(4.2.13)
< [ . ]< 7.17. ©
3\/’ 12\/_
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43 ADDITIONAL ERROR ESTIMATES

For 0 < a, §# < 25 we note that
Ingg = ~Iyse1 90 Laps = ~Laps+1s T2s2s = 12541 2541 4.3.1)

Hence we have the inequalities:

Fpseq 6 < 295 YRS LMy (2my (2stD)

g 2501 < 295 YMKETIM 50,y (2m) 2T D) (432)

Uy 25l < 1482 y (k)" WMygyy 5guy @y @5*D)

where A = 1/2 if @ or B is zero and A = 1 otherwise. Then the analog of Theorem 4.2.1 is

Theorem 4.3.1

IR(h,k;25,25)l = IR(h,k; 2s5%1, 25+1)|

433
< 295(b - a)(d - €)Pyg4 ) 2*D) “33)
where
s
Paser = 1by1Npee1 0 + ) 1520 INpeut pact * Nagap aer- “34)
a=1
_ 2 [hk\®
Nos+1,25+1 YAV Moger 2541+
Theorem 4.3.2

Theorem 4.2.2 is true if 2s is replaced by 2s + 1.

Theorem 4.3.3

Theorem 4.2.3 holds if 2s is replaced by 2s + 1.

44 SHARPER ERROR ESTIMATES
Due to the asymptotic nature of the Euler-Maclaurin series, the following error estimates will

often provide closer error estimates than those given in the two previous sections.
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Theorem 4.4.1

IR(h, k; 251, 25+1)| < 5.31(b - a)d = ¢)Pyy o 2my 3+

where
s
Pysez = b1 I1Npgap0 * Z 1624 1N25+2,2a-1 + Noge2,2542-
a=1
_ hk\2s M2.\'4>l,2s+l
Nassa2s42 = \ 57 v
and
531 ~ m4\/6/45.
Proof:

Recall from (2.1.2), (2.1.7), (2.1.8), and (2.1.10) the following properties:

85(1) = 840), B>1
1
J; ¢§(t)dt = (-1)P*1by, < 2.17(2n)%

1.3
lbagl < > b3

2.17 ~ n%/45.

(44.1)

(44.2)

(4423)

For convenience we let t signify + if =0 and - if > 0. Also, let ¥ signify —if § = 0 and +

if 8 > 0. Then integrating by parts and applying (4.4.3) we find

1
s ‘J [F29(.1) £ F25,0) 65, (1)dr
0

2s+1

= ¥hyge1Dosp + Inge1
= Iysi1 8

= thysraDoser g — Tasr2

1
=J [F2*28,1) £ FE*28(,0)] [£bys4g = p542(0)] dt.
0

444)
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Apply the Cauchy-Schwarz inequality and use (4.4.3) to obtain

yes1g) < 29R2 2000 563, - bassa)?

(44.5)
<5319h2* 2P My, 4(2m) (250 D).
Similarly
“la25 = 12541
(4.4.6)
g 2se1| < 5317R%K**2M 500y (2my(35*2),
Moreover
Iys,25 = Ipsey,2541- 44.7)
Applying these results to (4.1.15) we have
R(h,k;25,25) = -R(h, k; 25+1, 25+1)
s (4.4.8)
==Ly * szaL2s+1.2a-1 = Losey,2541-
a=1
Finally
IR(h,k;2s,25)| = |R(h,k; 251, 25t1)]
< 5317Qm) B D [1b, INyeq
. (4.4.9)
+ Z 1624 1N25+2,2a-1 + Nase2,2542] - O
a=1
Theorem 4.4.2

If there exists a constant C such that for0 < a < 25, 0<k<h<m, Miyse,4 <C,and

M, 2542 < Cthen

a

IR(h, k; 25, 25)| < 11.17(b-a)d-c)C(h/2m)2s*2. (4.4.10)

Here 11.17 approximates

—”4‘/g[1 N L ] @4.11)

45 1 - (h/2m)2
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Theorem 4.4.3

If there is a constant C such that for 0 <a <25, 0<k <h < n/C, My 4 < C2’+°, and

M, 3549 < C%*9, then

a,

IR (h,k;2s,25)| = IR(h,k;2s+1, 25+1)]

nc\*2[6 hC/12
< 10.61 (b -a)d - c)( ) [ :;/— + 1-(hé;2n)2] (4.4.12)

where
10.61 ~ 2m \/6/45. (4.4.13)
Proof:
IR(h,k; 251, 25+1)|
4\/‘ 25+ hc\¥® 1
20234-2 [lb l + lb |(hC)2a -1 +( ]
( ) .,Zl 2a 2 2\/6_
2"“\/— c\**2 1§ 2a m2a-1 4 V6
- +
(b -axd- c)( ) 3t Zl 2 a0 il (4.4.14)
a=
21r4\/— (b —aXd )<hC)2’+2 [6 +V6 | n(hc\l —(hC/21r)2s]
2n 12 6\2n/1 -(hC/Zn)z )
4.5 A NUMERICAL EXAMPLE
The Euler-Maclaurin Summation Formula (4.1.13) applied to the integral
1) = J'l _axdy In (27/16) = 0.523 248 144 45.1)
o Jo Ty . 5.
results in the formulation
I(f) = R(h,h; 25,25) = ®(h,h; 2s,2s)
n "
= hz
; Z—B‘ (x+1)h+l
§ n .
- szahz“[Zh(Za-l)!Z {(1 +Bhy2e - (2+3h)'2“}
a=1 8=0 45.2)
a-1
+ ) 265020+ 28 -2)!{4"‘“*") - 312+ _ 1}
g=1

+ b20h2“(4a-2)!{41'2a - 3l4a 1}]
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where

h=1, n=12 -
n

_ (1)*R@+p)!

(453)
(x 4y + 120

%x.»)

Applying the error estimates (4.2.3), (4.3.3), and (4.4.1) we find

h 2s s 2a-1 h 2s ]
. —_— a- - 1 1
IR(h, h; 25, 25)| < 2.95(%) [(m)! + 2a§=l lbyg 1h“ (s +2a-1)! + 74(ﬁ (4s)!

(4.5.4)
h 2s+1 S
IR(h,h;2s,25)| < 2.95(2—"> [(Zs+ !+ ZZIbzalh2“'1(2s+2a.)!
a=1
e 4.5.5)
+ .74(27> (4s+2) !]
h 25+2 s
IR(h,h; 25+ 1,25 +1)| < 5.31(=— s+2)! +2) by l(2s+2a+1)! (4.5.6)
2" 20
a=1
2s
+ \;—€<2L"> (4s+2)!]

The results are presented in Tables 4.5.1—4.5.7. The partial derivative correction sums are given in
Table 4.5.1. Table 4.5.2 gives the results of the Euler-Maclaurin Summation formula for several values
of h and s; the associated errors are listed in Table 4.5.3.

Tables 4.5.4 through 4.5.6 present the results of applying the error estimates (4.5.4) through
(4.5.6), respectively. Finally, in Table 4.5.7, we give the absolute value of the ratio (Error Estimate
4.5.k)/(Actual Error), k = 4,5,6. The results indicate that the choice of the error estimate depends
not only on the integrand f but also on the values of & and s.

For values of s € 1/h, (4.5.6) provides the sharpest error estimate while for s » 1/h, (4.5.4) should
be used. For s = 1/h, (4.5.5) provides the best estimate of the truncation error.

In practice, one would fix the value of s and let A decrease to zero. In this case, error estimate

(4.5.6) should be applied.
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Table 4.5.1 Partial Derivative Correction Sums ®(h, h; 2s, 25)

s
h 1 2 3 4 S
1 .063 143 004 .058 775 925 .058 555 694 .018 202 954 ~2.147 609 63
12 .014 501 993 014 231 639 014 255757 014 250457 014 251 156
1/3 .006 301 135 .006 2.47 312 .006 249 366 .006 249 187 .0U6 249 216
1/4 .003 513 700 .003 496 638 .003 497 003 .003 496 985
1/5 002 239 387 .002 232 394 .002 232 490
1/10 .005 566 435 .005 562 062

Table 4.5.2 Euler-Maclaurin Summation Formula: /(f) = 0.523 248 144 =~ T(h,h) - ®(h,h; 2s, 2s)

S
A 0 1 2 3 4 5
1 | 583333333 [.520190329 | .524 557 409 |.524 777 640 | .565 130379 | 2.730 942 96
1/2 | .537 500 000 | .522 998 007 | .523 268 361 |.523 244 843 | .523 249 543 | .523 248 844
1/3 | .529 497 354 |.523 196 230 | .523 250 043 | .523 247989 | .523 248 167 | .523 248 138
1/4 | .526 745 130 |.523 231430 | .523 248 492 | .523 248 127 | .523 248 145
1/5 | .525480 630 |.523 241 243 | .523 248 236 | .523 248 140
1/10| .523 804 351 [.523 247 708 | .523 248 146
Table 4.53 Error R(h,h; 25, 25) = I(f) - T(h,h) + ®(h,h; 2s,2s)
s
A 0 1 2 3 4 5
1 -6.01-2" 3.06-3 -1.31-3 -1.53-3 -4.19-2 22140
1/2 -1.43-2 2.504 -2.02-5 330-6 -1.40-6 -7.00-7
1/3 -6.25-3 5.19-5 -1.90-6 1.55-7 -2.32-8 5.20-9
1/4 -3.50-3 1.67-5 -3.49-7 1.65-8 -1.40-9
1/5 -2.23-3 6.90-6 -9.24-8 3.30-9
1/10 -5.56-4 4.35-7 -1.80-9

*-6.01-2 means —-6.01 X 10-2.
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Table 4.5.4 Estimates for R(h, h; 2s, 25) using (4.5.4)

1 2.57-1 145-1 | 5.23-1 1.11+1 7.50+2
1/2 4.87-2 | 4.36-3 107-3 | 6.574 1.34-3
1/3 197-2 | 7324 | 6.93-5 1.26-5 3.99-6

1/4 1.06-2 | 2.164 1.11-§ 1.07-6 1.67-7
1/5 6.61-3 | 8.50-5 | 2.75-6 1.66-7 1.61-8
1/10 157-3 | 491-6 | 3.85-8 | 5.63-10 1.32-11

Table 4.5.5 Estimates for R(h,k; 2s, 25) using (4.5.5)

1 144-1 1.88-1 1.67+0 6.77+1 7.26+3
1/2 1.23-2 1.90-3 7.10-4 7.10-4 2.63-3
1/3 3.26-3 2.044 2.74-5 6.55-6 2.73-6

1/4 1.30-3 4.46-5 3.21-6 4.00-7 7.73-8
1/5 6.47-4 1.39-5 6.31-7 491-8 5.85-9
1/10 7.59-5 3.97-7 4.36-9 8.19-11 | 2.35-12

Table 4.5.6 Estimates for R(h,h; 2s, 2s) using (4.5.6)

1 1.75-1 3.03-1 2.62+0 9.83+1 1.00+4
1/2 7.63-3 1.78-3 9.07-4 1.11-3 431-3
1/3 1.32-3 1.24-4 2.23-5 6.81-6 3.53-6

1/4 3924 2.00-5 1.92-6 3.01-7 7.04-8
1/5 1.54-4 4.95-6 2.99-7 291-8 4.17-9

1/10 8.87-6 6.94-8 1.01-9 238-11 | 8.22-13
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Table 4.5.7 |(Error Estimate 4.3.k)/Error|, k = 4,5,6

A 1 2 3 4 5

1 84 47 57 | 111144231 | 34210921712 | 2651616 2346 | 339 3284 4575
1/2 | 195 49 31 | 216 94 88 | 324 215 275 | 469 507 793 | 1914 3757 6157
1/3 | 380 63 25 | 385107 65 | 447 177 144 | 543 282 294 | 767 525 679
1/4 | 635 78 23 | 619128 57 | 673 195 116 | 764 286 215 | 835 387 352
1/5 | 958 94 22 | 920150 54 | 833 191 91

1/10 3609174 20 |2728221 39




S. APPLICATIONS OF THE 2-DIMENSIONAL EULER-MACLAURIN
SUMMATION FORMULA

5.1 CUBATURE FORMULAS WITH ASYMPTOTIC EXPANSIONS

The generalization of the quadrature formulas in Section 3.1 to functions of two variables involves
expressing the Euler-Maclaurin Summation formula (4.1.15) in terms of a rectangular grid and Yaking
appropriate weighted trapezoidal sums for various grid sizes in order to eliminate the desired number
of terms in the asymptotic error expansion. The result is a cubature formula of the required degree of
precision. The details of the technique are as follows.

Let 1 €a;<a; <:--<agy be factors of n = (b - a)/h and m = (d - c)/k. For1<i,

j < s+ 1, define the n + 1 = (s+1)(s+2)/2 trapezoidal sums

T’, = )\,I[T(a,h,a.lk) + T(a7h,a,k)] (5.1.1)
where
1R2ifi=j
)\,'I' = { 1 otherwise (51.2)

and T'(h,k)is defined by (4.1.4). For convenience, we define Eﬁ,-l = Egp and E-l.ﬁ =Eyg-
Denote by

4= A(al.a.)(az.al)"'(a,.a.)(az.ag)-“(a,,a:)

- (25“'1.2512'1)(21321'1.2521'1)"‘(2ﬂn] ’1.23"2'1)(h'k) (513)

the approximation to the double integral

drb
I(f) =J;£ f(x,y)dxdy (5.1.4)

based on the weighted average of the n sums T, 1 <i, j < s+ 1 which eliminates the n terms

%’
involving Eza“-l, 26;,-1> 1 €i < 7, but possibly has some lower-order partial derivative correction
terms, Ez;,“-l, 2yi2-1» 1<i<zt.

Let

5 _{1 N 5.1.5
v 25" otherwise (. ')

and

54
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Iyia 6;16; 8i 1 8
- i %iz2 iyl %02
=N +
AR 1)z [a,'l %, %4, % |- (5.1.6)

We wish to find n + 1 constants X such that

n+l
A=) XijTaja; = 10 + Cb2u52,Q2u-1,201 (-1.7)
i>7=1

where C is some constant, ¥ and v are appropriate nonnegative integers, and Q is given by

n+1

Qru-1,2v1 = Z XitEpu-1,2v-1(0h, a;k)-

i»j=1

(5.1.8)

If we write wy = X1}, Wy =X31, """, Wy = X4, 41, then the n+1 constants w; may possibly

be found by solving the linear system

22y gy D gy g Agepger [ W1 ] 1]
11 1 ... A1 11 .. Al 11
h Oy C1 Cxn Cs = Coapser || W2 0
22 2 .22 22 22 22 _
Cll C21 csl c22 ...cs2 Cﬁl,“l wy |=]0|. (5.19)
nn nn
e o TR o o R o e | MY I ]

If a solution to (5.1.9) exists, then for some integer 0 we obtain an asymptotic expansion for the

cubature formula, 4:

s+1 t
4= Z "iiTaia/ - ZbZ“'n b2y, Covpy-1.27p1
i»j=1 =1

(5.1.10)

I(f) + Q(h,k;00).

Note that in some cases, for example, Ag :(l);g:(l);g:f;g:;;g:g;“'4)(h,k),correction terms of the

form E_, may not be eliminated.

Recalling (4.1.15), the definition of R(h, k; 2s, 2s), we write

Raia; = Nj[R(azh, ajk; 0,0) + R(ash, ak; 0,0)]. (5.1.11)
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Then the truncation error £ in (5.1.10) is

S
Q(h,k;0,0) 3 Z xiiRa,-a/ (5.1.12)
i»f=1

and may be estimated by the methods of Chapter 4.

To illustrate the technique we will derive the partial derivative corrected (DC) Simpson rule:

P = 4 (L2, 1)2.2)
S'hk) = A5 oG (k). (5.1.13)

Settings =1, n=2, (a,a;)=(1,1), (a3,a,)=(2,1), (a3.23) =(2,2), (By;.8,2)=(2,0),
(B21,22) =2, 1), (711, 712) = (1,0), and (77;.722) = (1, 1) we obtain the system
1 2 1| wy 1
118 32||wy|=]o0 (5.1.14)

1 20 e64||lws| |0

having the unique solution

(wy, wy, w3) = (256/225, -16/225, 1/225). (5.1.15)
Thus we obtain (5.2.4), an asymptotic expansion for the DC Simpson’s rule. The error is given by
Qh,k;25,25) = [256 Rj; - 16 Ry; + R»,]/225. (5.1.16)

This cubature rule is illustrated in Figure 5.2.5 and the trapezoidal sums are shown in Figure
5.2.4.

In Section 5.2 we give without comment several cubature formulas with asymptotic expansions,
error terms, and appropriate diagrams. These formulas are the 2-dimensional generalizations of the
quadrature formulas of Section 3.1. Some of the results, e.g., the DC Weddle’s rule, are believed to be
new. Sheppard [45] obtained the double Simpson’s and Weddle’s rules. A number of additional
cubature rules were obtained but are not presented here.

Using another technique, Tanimoto [50] derived what we call the DC Simpson’s rule, (5.2.4).

However, his paper has several errors. Moreover, he does not give an expression for the error.
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Finally we note that

(1,1)(2,1)(2,2)(4,1)(4,2)(4,4)
(1,00(1,1)(3,0)(3,1)(5,1) .1.17)

results in the linear system

— —-—— —. —

1 2 1 2 2 1 wy 1
1 6 8 20 48 64 |[|wy 0
1 8 16 32 128 256 ||ws 0
= (5.1.18)
1 18 32 260 576 1024 | | wy 0
1 20 64 272 1280 4096 | | wg 0
1 68 256 4112 17408 65536 || wg 0
L —~ L6 L
in which the coefficient matrix is singular.! In this case there are infinitely many solutions.
5.2 SOME CUBATURE FORMULAS OBTAINED FROM THE
EULER-MACLAURIN SUMMATION FORMULA
Euler-Maclaurin Summation Formula: Trapezoidal Rule
m " n "
T(h,Kk) = hk)_ ") fla+in,c+jk)
j=0 i=0
E
0 11
+ — —_—
f f feeyaxdy + =2 - =
(5.2.1)
B By Ey
720 8640 518 400
Eso Es) Ess Ess

+ + - -
30240 362880 21772800 914457600

Eqg Eq, . Eqy Eqs
1209 600 14 515 200 870912 000 - 36 578 304 000

(Equation (5.2.1) continues)

| . . . L
If the 1 on the right side of (5.1.18) is changed to 2025, then a solution is given by (4096, -1280, 400, 64,

=20, 1). This system proved difficult to cvaluate numerically, A modificd version of the Fortran program recommended
by Forsythe and Moler [17] was used.
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Egy Eg) Eg3

~ 1463 032 160 000

Ey;s

+ + -
47 900 160 574 801 920 34 488 115 200

Egy Egg

+ -
1 448 500 838 400

57 940 033 536 000 2 294 425 328 025 000

§
-+ b2s [EIS-I,O + ZbZBEZS-l,Zﬂ-l] +R(h,k;2s,2s).

=1
(5.2.1)

Y

Ya

Y%

X hk

Y%

Figure 5.2.1 Trapezoidal Rule

DC Trapezoidal Rule

Eyg Ey
T(h,k) ——]? +_IT4

T'(h,k)

Eyy  Ey

1(f)

Eyp £y E33 .
720 ~ 8640 518400

(522)

5
+ sz[EZs-l.O + ZbZﬂEZS-l,Zﬁ-l] + R(h,k; 2s, 2s).

g=1
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-hkfxy -kfy -kf:y hkfxy
144 12 12 144
hfx -hfx
12 " “ 12
X hk

hf, -hf,
12 “ " 12
hkfy,  kf, kfy —hkfy,

144 12 12 144

Figure 5.2.2 DC Trapezoidal Rule

Simpson’s Rule
S = A
= [16 Tll -4T21 + T22] /9
(5.23)

Q3¢ E3; Oso Es3 Ess
=I(f) - 7>~ - + - - + -
720 32400 30240 272160 2286144

s
1
+ bzs[st_,,o +570 bapl16 - 44 +49) + 4s¥9] Ez,_l,zﬁ_,} + Q(h,k; 25, 25).
51
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1 4 1
16 hk
4 4 X —
9
1 4 1
Figure 5.2.3 Simpson’s Rule
Y% % Y% 1 1
1
% % 1
Y % Y% 1 1
Ty = T(h,k) Ty, = T(2h,k)+ T(h,2k)
1 1
1
Tzz = T(2h,2k)

Figure 5.2.4 Component Trapezoidal Sums for Simpson’s Rule
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DC Simpson’s Rule

S'(h k) = A(l'l)(z’l)(2’2)(h k)

3.0)3.1)
= [256 Ty; = 16 Ty; + T»,]/225 TITE
Q50 Es) Ess
= I() + (524)

30240 ~ 141750 ~ 89 302 500

S
1
+ bZS[QZs-l 0t Eﬂz_; by [256 - 16(4° +4P) + 4S*B) E, ,23-1]

+ S2(h, k; 2s, 25).
—hkfy, -Tkf, -16kf,, ~Tkf,  hkfy,
Thf, 49 112 49 | -Thf,
112 256 112
hk
16kf, -16hf, 5%
Thf, 49 112 49 ~Thf,
hkfy,  Tkf, 16kf,, Tkfy -hkf,

Figure 5.2.5 DC Simpson’s Rule
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Simpson’s Second Rule

(1,0X1,1)
0y E 0 E E
s B B, O B B
720 6400 30240 26 880 112 896
s (5.2.5)
1
+ by l:st-n ot ;bzplsl -9(%° +98) + 9"’“152:-1,213-1]
+ Q(h,k; 2, 2s).
1 3 3 1
9 9
3 3
Shk
64
9 9
3 3
1 3 3 1

Figure 5.2.6 Simpson’s Second Rule



1/4 1/2 1/2
1 1

1/2
1 1

1/2
1/4 1/2 1/2

3/2

3/2

1/4

1/2

172

1/4

63

32

3/2

32

3/2

3/2 3/2

3/2 3/2

T3, = T(3h,k)+ T(h,3k)

3/2

3/2

T33 = T(3h,3k)

Figure 5.2.7 Component Trapezoidal Sums for Simpson’s Second Rule

32

3/2

3/2

3/2
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4hkf,,

—26hfy

-54hf,

-54hf,

~26hf,

DC Simpson’s Second Rule
ALDBDGIDG 4y = [6561 T - 81Ty +T33]1/6400 - S +
(3.0)(3,1) ’ i 31743 12
Os0 95 9E 55
=I(f) + - -
30240 44800 1254400
l §
+ sz[Qz,_,,O teos D bgl6561 - 81(% +96)
g=1
+ 9S+B] sz_l’zﬂ_]‘l + Q(h,k,ZY,ZS)
—4hkf,,  -26kf, -54kf, -54kf, -26kf,,
26hf, 169 351 351 169
351 729 729 351
54hf,
351 729 729 351
54hf,
26hf, 169 351 351 169
dhkf,,  26kf, 54kf, 54kf, 26kf,

Figure 5.2.8 DC Simpson’s Second Rule

~4hkf,,

(5.2.6)

9h
6400
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52 Point Rule

(1,1)(4,1)(4 4) _
A(l.O)(l,l) (h, k) = [256T11 -16T4 + Ty441/225

Q30 Eq; 17E 4 289E s
=1() - - - - +
720 2025 °85050 3572100

(5.2.7)
1 s
+ by [st-l ot EZb25[256 - 16(165 +16°)
g=1

+ 16°%9] EZs-l.Za-l] + Q(h,k; 2s, 2s).

9/8 3 3 3 9/8
8 8 8
3 3
3 5 8 8 3 32hk
225
8 8 8
3 3
9/8 3 3 3 9/8

Figure 5.2.9 52 Point Rule



66

DC 52 Rule
0 16E
(1,1)(4,1)(4,4) - <10 11
450G (h,k) = [65536T;; = 256 T4, + T44) /65025 T + Seor
1) 32F 64E
- 1) + s0 st s,
30240 819315 258084 225
(5.2.8)
s
+ by 0 3" by [65 536 - 256 (16 + 16)
2s 2s-1 ,0 65 025 ﬂ—l ZB
+ 16s+a152s_1,23_,] + Q(h, k; 2s, 25).
25 315 315 25
—?hkfxy by kf,  -10kf, -10kf,, -10kf,, -kay _8-hkfxy
315 315
thx 3969 63 63 63 3969 | - T‘Ihfx
128 128
63 128 128 128 63
10hf, -10hf,
si2nk
65 025
63 128 128 128 63
10Kf, -10hf,
63 128 128 128 63
10hf, -10hf,
315 3969 3969 315
h i 2 A=
64 fx 128 63 63 63 128 64 hix
25 315 315 25
—8—hkfxy Ty kf, 10kf, 10k, 10kf,, a—kfy oy hkfy,

Figure 5.2.10 DC 52 Rule



6

Boole’s Rule

= 4(1,1)(2,1)(2,2)(4,1)(4,2)(4,4)
Bk, k) A(l.0)(1,1)(3.0)(3,1)(3,3)

(2568, - 16 S} +55,]/225

Qs0 4Es

7

(h,k)

070

Eqs

Eqq

[4096 T}y - 1280 Ty, +400 Ty + 64 T4y =20 Tyy + Ty44]/2025

()

1

-

+ - - - - 4 o
30240 893025 1209600 425250 810000

s
* sz[QZs-l o0t Mz by [4096 - 1280(45 +48) + 400(45*#)
p=1

+ 64(16° + 16P) - 20(42:+B +4s*23) + 165*8] EZs-l.2a4l] + Q(h,k;2s,2s).

49 224 84 224

1024 384 1024
224

384 144 384
84

1024 384 1024
224
49 224 84 224

Figure 5.2.11 Boole’s Rule

49

224

224

49

4hk
2025

(529



%

%

Y4

Y4

%
1 1 1
%
1 1 1
%
Y% % % Y
Ty, = T(h,k)
1 2 1 1
2
1
2 4 2
2
2
1
1 2 \ 1
Ty, = T(2h,k) + T(h, 2K)
2 1
4
2
2 1

68

2 2 2
Ty, = T(4h,k) + T(h,4k)

4

4
T4y = T(4h, 2k) + T(2h, 4k)

T44 = T(4h, 41()

Figure 5.2.12 Component Trapezoidal Sums for Boole’s Rule
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DC Boole’s Rule

. _ 4(1,D(2,1)(2,2)(4,1)(4,2)(4,4)
B'(h,K) = A30)(311)(5,003.3)(5.1) (n,k)
= (1048576 T), - 81920 T, +6400T,, + 1024 T4y - 80Ty
+ T,.]/893 025 Qo , 168
44) T 12 3969
= A 't g
[4096 S 64 S sn] /3969
-1 Q70 16E7, 16E+47 . (5.2.10)
= 1) - 1709600 ~ 6251175 ~ 9845 600 625
] s
+ b + — 1048 576
2s [QZS-I ,0 893 025 BZ=:1 bZﬁ[
— 8192045 +4B) + 6400(45*F) + 1024(165 + 16F)
- 80(42*8 + 45*26) + 165*F) E2:-l,26—l]+ Qh,k;25,25) s =4,5""
225 6510 6510 225
- Mkly =gkl ~960KS, -810kf, =960k, === kfy —z=Mklxy
6510 47089 6 |944 5| 859 6| 944 47089 | 6510
16 Mx 16 6 | 16 Mx
6944 16 | 384 13824 16| 384 6944
960h/, -960hf,
5859 13| 824 11]664 13| 824 5859
810kf, -810hf,  x 895:’(’)’;5
6944 16| 384 13 824 16| 384 6944
960k, ~960h,
6510 47 089 47089 6510
16 Mx 16 6| 944 s| 859 6| 944 6 | ~ 16 Vx
225 6510 ) , 6510 225
= Mkfxy g Ky 980ks, 810kf), 960kfy  —e=kfy ——hkfxy

Figure 5.2.13 DC Boole’s Rule



Weddle’s Rule

(1,1)(2,1)(2.2)(3,1)(3,2)(3,3)
A(I,O)(l,l)(3.0)(3.1)(3,3) (h, k)

Qso Q270

70

Eqs

[225Ty, -90T,, +36Ty, + 15Ty, - 6 T3, + T33]/100

Epy

1(f)

s
1
+ bzs[st_, ot mgbw [225 - 90(45 + 48) + 36(45*8) + 15(95 +9)

- 6(9548 + 459F) + 9s*A) Eyy ,2‘,_1} + Q(h,k; 2s, 2s).

1 5 1 6 1

25 5 30 5 25
5

s 1 6 1 5
1

30 6 36 6 30
6

5 1 6 1 5
1

25 5 30 5 25
5
1 5 71 6 1

Figure 5.2.14 Weddle’s Rule

+ - - - PR
30240 1209600 2016000 5760000

9hk
100

(5.2.11)
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DC Weddle’s Rule

(1,1)(2,1)(2,2)(3,1)(3.2)(3,3)
A(3,0)(3.1)(3,3)(5,0)(5.1) (h.K)

Q1o |, 9%n
= [72900Ty; =7290 Ty +729 Ty + 540 T3 = 54 T3, +4T33]/60 025 - 45— * =757
_, Q70 45E 5, 9E 44 .
=100 - 1209600 ~ 722800 ~ 18823 830000 (5.2.12)

s
1
+ by [Qz,-l 0 * 55058 ‘; by [72 900 = 7290(45 + 46) + 729(45*6) + 540(95 + 98)

- 54(9‘4‘3+4’9’3)+9“"]Ezs-1.2a-1j| + Q(h,k;2s, 2s).

-25hkfy, -185kf, -450kf, -360kf), 460k, -360kf), -450kf,  -185Kf, 2Shkfy,
185kf, | 1369 3| 330 2 | 664 3| 404 2 | 664 3(330 1369 | -185hf,
3330 8| 100 6 | 480 8| 280 6 | 480 8| 100 3330
450k, -450hf,
2664 6480 5 | 184 6624 5| 184 6| 480 2664
3604 f, -360hf,
o« Ohk
3404 8| 280 6 | 624 8| 464 6 | 624 8| 280 3404 60025
460hf, -460hf,
2664 6480 5 | 184 6624 5 | 184 6| 480 2664
360k, -360hf,
3330 8100 6 | 480 8| 280 6 | 480 81100 3330
450hf, 450hf,
1369 31330 2 | 664 3 | 404 2 | 664 3(330 1369
185hf, -185hf,
25hkfyy, 185kf,  450kf, 360kf, 460kf,, 360kf,, 450kf, 185kf,, -25hkfy,

Figure 5.2.15 DC Weddle’s Rule




Newton-Cotes’ 72 Rule

N(h k)

= A

(l,l)(Z.l)(2,2)13.l)(3.2)(3.3)(6.1)(6.2)(6‘3)(6.6)(h k)
(1,0)(1,1)(3,0)(3.1)(3,3)(5,0)(5.1)(5,3)(5,5) ’

- 1296 Tg, + 567 Tgy - 112 Tg3 + T¢) /705 600

1(1)

+ sz[Qh-l,O +

+ 145 152(9° +98) = 63 504(9548 + 4598) + 12 544(95*F) - 1296(36° + 368)

070

9E77

Q90

Egq

25Eqgq

- - + - - +
1209600 7840000 47900160 689920 13660416

705 600

(1679616 T)) - 734 832T,; +321489T,, + 145 152T3,- 63504 Ty, + 12544 Ty,

(5.2.13)

s
D bagl1 679 616 - 734 83245 +48) + 321(45*)
6=1

+ 567(36548 +45368) - 112(36598 + 95368) + 365*6] E, | ’2,3_1] + Q(h,k; 2s, 2).

1681

8856

1107

11152

1107

8856

1681

8856

1107

11152

1107

8856

46

656

5 |832

58| 752

S| 832

46| 656

832

729

7] 344

729

S| 832

58

752

7| 344

73| 984

71 344

58| 752

832

729

71 344

729

5832

46

656

5832

58| 752

5| 832

46| 656

8856

1107

11152

Figure 5.2.16 Newton-Cotes’ 72 Rule

1107

8856

1681

8856

1107

11152

1107

8856

1681

hk
19 600
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Y % % % % % Y
1 1 1 1 1
% %
1 1 1 1 1
Y% %
1 1 1 1 1
% %
1 1 1 1 1
" %
1 1 1 1 1
% %
A % % % % % Ya
Tll = T(h,k)
1 1 2 1 2 1 1
2 2
1 1
2 4 2 4 2
2 2
2 2
1 1
2 4 2 4 2
2 2
2 2
1 1
1 1 2 1 2 1 1

Ty, = T(2h.k)+ T(h.2k)

Figure 5.2.17 Component Trapezoidal Sums for Newton-Cotes’ 72 Rule



74

1 2 2
4 4
2
4 4
2
1 2 2

Ty, = T(2h,2K)

3/2 3/2 3/2 3 3/2 3/2
3
3/2
3
3/2
3 3 6 3 3
3
3
3/2
3
3/2
3/2 3/2 3/2 3 3/2 312

T3, = T(3h,k) + T(h,3k)

Figure 5.2.17 (cont’d.)

3/2

372

3/2

3/2

3/2

3/2
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3 3 3 3 3
6

3 3

6 6

3 3
6

3 3

3 3 3 3 3

T3, = T(3h,2k) + T(2h,3k)

9/4 9/2 9/4
9

9/2 9/2

9/4 9/2 9/4

T33 = T(3h,3k)

Figure 5.2.17 (cont’d.)
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3 3 3 3 3
T = T(6h,k)+ T(h, 6k)

6 6 6
6
6
6 6 6

Tg, = T(6h,2k) + T(2h,6K)

Figure 5.2.17 (cont’d.)
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9 9 9
9 9
9 9 9

Tey = T(6h,3k)+ T(3h,6Kk)

Figure 5.2.17 (cont’d.)
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DC Newton-Cotes’ 72 Rule

' = 4(1,1)(2,1)(2,2)(3,1)(3,2)(3,3)(6,1)(6,2)(6,3)(6.6)
N'(h,k) A(3,0)(3.1)(3,3)(5,0)(5,1)(5.3)(5,5)(7,0)(7,3) (h.K)

[2176 782336 T;, - 238 085 568 T
+ 26040 609 T, + 20901 888 T3, - 2286 144 T3, + 200 704 T3,

- 46656 Tg, + 5103 Tg, — 448Tgy + Teg/1 764 000 000

Oo . 9E |,
12 2500
Q90 9Eyg; 9Eg9

(5.2.14)

I(f) + - - PR
47 900 160 7 700 000 23 716 000 000

1

s
+ bZS[ 02510 * 1964000000 ﬁZ::lbzﬁ [2 176 782 336 - 238 085 568(4° +49)

+ 26 040 609(45+8) + 20 901 888(9° + 98) — 2 286 144(9548 + 49F)
+ 200 704(95*6) - 46 656(36° + 368) + 5103(36°48 +4536F)

- 448(3659‘3 + 9‘363) + 36S+B]E2:_1’23_1]

+ Q(h,k; 2s, 2s).
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Romberg’s 92-Point Rule

(l,l)(Z,l)(2,2)(4,l)(4.2)(4,4)(8.1)(8.2)(8,4)(8.8)(h k)

4 (1,0)(1,1)(3,0)(3,1)(3,3)(5,0)(5,1)(5,3)(5.5)

(16 777216 T, - 5505024 T, + 1806336 Ty,
+ 344064 T, - 112896 Ty, + 7056 Tyy

- 4096Tg, + 1344 Ty, - 84Ty, + Tge]/8037225

"

[4096 B, - 64 B, + By,]/3969

Q70 256E 47 Qg0 2176 Eg, 18 496 Egq
- - + - - +
1209600 22325625 47900160 88409475 350101521

1(f)

(5.2.15)

s
1
+ bzsl:st_l,O * 5037535 ;bw[w 777 216 - 5505(4° +45)

+

1806 336(45*F) + 344 064(16° + 168) ~ 112 896(16548 + 4516P)

+

7056(165%8) - 4096(645 + 648) + 1344(64545 + 45648)

- 84(64516F +16564F) + 645*F] Ezs-l.Zﬂ-l]

+

Q(h, k; 2s, 25).
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Ty, = T(h,k)

Figure 5.2.20 Component Trapezoidal Sums for Romberg’s 92 Rule
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Tz] = T(Zh,k) + T(h,2k)

Figure 5.2.20 (cont’d.)
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T22 = T(Zh N 2k)

Figure 5.2.20 (cont’d.)
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Ty, = T(dh,k)+ T(h,4k)

Figure 5.2.20 (cont’d.)
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T4y = T(4h,2k) + T(2h,4k)

Figure 5.2.20 (cont’d.)
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4 8
16

8

4 8

Ty = T(4h,4k)

Figure 5.2.20 (cont’d.)
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4 4 4 4 4 4

Tg, = T(8h,k)+ T(h,8k)

Figure 5.2.20 (cont’d.)
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Tgy = T(8h,2k) + T(2h, 8k)

Figure 5.2.20 (cont’d.)
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16 16 16
16 16
16 16 16

T84 = T(8h,4k) + 7(4h,8k)

Figure 5.2.20 (cont’d.)
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Figure 5.2.20 (cont’d.)

T88 = T(8h,8k)
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DC Romberg’s 92-Point Rule

A

(1.1)(2,1)(2,2)(4.1)(4v2)(4,4)(8,l)(8,2)(8,4)(8,8)(’1 k)
(3,0)(3,1)(3,3)(5,0)(5,1)(5,3)(5,5)(7,0)(7,1) ’

(68 719 476 736 T); - 5637 144 576 Ty, + 462 422 016 T5,

+ 88080384 T, - 7225344T,, + 112896T,, - 262 144 Ty,

Q10 12544E(,

+ 21504 Tgy - 336 Tgy + Tgg]/58 068 950 625 EET) + 3186 225

(65536 B - 256B;, + B;,]/65025

090 8 192y, 262 144E g,
+ - - PO
10 47900160 2027804 625 63 237 087 230 625

(5.2.16)

1

£
m Z by, [68 719 476 736

* bZS[st-l,o +
=1

- 5637 144 576(45 +48) + 462 422 016(45*F)

+ 88080 384(16° + 168) — 7 225 344(16548 + 4516F)

+ 112 896(165*6) - 262 144(64° + 64F)

+ 21 504(6454F + 45648) - 336(64°16F + 165648) + 645*‘3]Ezs_1_26_1]

+ Q(h,k;2s, 2s).

5.3 THE MIDPOINT RULE AND VARIOUS OTHER FORMULAS

The double Euler-Maclaurin Summation formula (5.2.1) may be used to derive an asymptotic

expansion for the midpoint or centroid formula C(h, k) by writing

C(h,k)

h k h k
ar{2. ) - 2[T(5”‘) * T(”’?ﬂ M

hki Z”:f(a +ih/2, ¢ +jk/2)

j=1i=1

d rb
=f f f(x,y)dxdy + ---

(5.3.1)
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If the first- and mixed second-order partial derivative correction terms in (5.3.1) are transposed,

a third-order derivative corrected midpoint formula analogous to (3.4.5) is obtained. The resulting DC
midpoint formula is the same as formula EX183S of Table 6.4.1 and consequently the details are not
given here.

The technique described in Section 5.1 may be applied to (5.3.1) to obtain a number of open
cubature rules including generalizations of the open quadrature rules of Section 3.4. Because of space
limitations, the results will be omitted. However, we will indicate how to obtain asymptotic expansions
for several nonproduct cubature formulas.

Figures 5.3.1 to 5.3.4 illustrate Squire’s [48], Ewing’s [16], Tyler’s [5S1] and Miller’s [35]

cubature rules.

—
—
—

19 ® 1 X —%’i .8 %
) 1 ,

Figure 5.3.1 Squire’s Rule Figure 5.3.2 Ewing’s Rule
. o8

19 02 4»1xi6k— 41 ‘ ® 4 x%
i A & 4

Figure 5.3.3 Tyler’s Rule Figure 5.3.4 Miller’s Rule
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Asymptotic expansions for these rules may be obtained from the following:
Squire = -T(h,k) + [T(h,k/2) + T(h/2,k)]

Ewing = T(h.k) —% [T(h,k/2) + T(n/2,k)] +—§-T(h/2,k/2)

(53.2)

Tyler = -31 T(h,k) + _;'. T(h/2, k/2)
, 5 4
Miller = == T(h.k) +—(T(h. k/2) + T(h/2,K)].

These expansions are believed to be new. Another approach to these 4 cubature formulas is via the

Taylor series; this is done in Chapter 6.

5.4 A NUMERICAL EXAMPLE

The results of applying the midpoint and DC midpoint rules to the double integral

11
f f e*dxdy = 1317902151454 4 (54.1)
00

for grid sizes of h =k = 1/5 and h = k = 1/10 are shown in Table 54.1.

Table 5.4.1 Several Cubature Rules Applied to fo'f 0' e*Vdxdy =
1.317902 151454 4

h=k=1/5 h=k=1/10
Rule
nfe* Error nfe Error
Midpoint 25 1.65-3% 100 4.164
DC Midpoint 49 -1.22-6 144 -7.62-8

*Number of function evaluations
+This means 1.65%103

The DC Simpson’s rule shows a similar improvement over Simpson’s formula. Additional numerical

results are given in Chapter 7.
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LLLHL

..H!

Figure 5.4.1 Graph of z = ¢*¥ on [0,1] 2




6 MULTIDIMENSIONAL QUADRATURE FORMULAS WITH

PARTIAL DERIVATIVE CORRECTION TERMS

6.1 THE EQUAL WEIGHT-ALTERNATE SIGN PROPERTY

Let f(x;," -, xp) be a real valued function defined on the symmetrically placed N-dimensional

rectangle

]
.:2

]
b

[-h]'. h]'], N = 2.
]

We wish to estimate the multiple integral

hN h,
1(f)=J’ f(xl"”’xN)dxl”'de
-hy

hl
by a multidimensional quadrature formula with partial derivative correction terms.
Partial derivatives are denoted by
//kB Ce I/;’I/iaf(xl' L Xp)
where f/,.“ denotes the a-th partial derivative of f with respect to the i-th variable.

Before proceeding we make several observations for the specific case N = 2.

6.1.1)

(6.1.2)

The study of the Euler-Maclaurin Summation formula for a function of two variables led to an

investigation to search for additional cubature formulas involving first- and perhaps second-order partial

derivative correction terms with weights of equal magnitude and alternate signs at the four corners or at

the midpoints of the sides of the rectangular domain of integration so that when the rule was com-

pounded or repeated, the weights would cancel except on the boundary. We call this the “equal-

weight, alternate-sign property.”

The objective is to select nodes and weights which result in efficient cubature formulas of high

precision. In this connection we observe that for a composite formula of given degree of precision, a

rule in which most of the nodes coincide with the boundary will be more efficient than one in which

almost all of the nodes lie in the interior of the domain of integration. Moreover, additional economy

can be gained by requiring the equal-weight, alternate-sign property.

Because of the endless variety of possible combinations, it was decided to limit the study to the

six “cubature elements” listed in Table 6.1.1.

96
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Table 6.1.1 Elements

Name Cubature Element Diagram
Centroid
Value Ag(f) = 4hhyf(0,0) .
Corner
Som Af) = 4hihy £y ho) + f(hy hp) + f(hy k) + £l -hy))
Midpoint -
Sur Am() = 4hyhy[f(r),0) + £(0,hg) +f(-hy,0) +£(0,4))] t ot
(l;(;mer, AN = 4h12h2 [(hy hy) = fx(hy b)) = Ry ~hy) + Ry -hy)] | % t,

rivative

2

Correction + hihy Uy k) + £, (G k) = £y(hy s -hy) = £y -ho)] _ +
Midpoint A (f) = 4h,2h2[fx(h,.0)—fx(-hl.o)] .
Derivative 5 — o+
Correction + hyhy [£(0, k) - £,(0,-h3)]
Corner . 2,2 - +
Mixed A1) = 4hihy Uxy(hyhy) = fry(-hy o hy)
Derivative
Correction * fxy('hl"hz) -fx}’(hl =)l + -

The selection of the derivative correction cubature elements A4, A, . and A" is based on the

following considerations. For a and 8 nonnegative integers, define the “‘cubature generators” G;
listed in Table 6.1.2.

Now suppose f (x;, x,) can be expanded in a Taylor Series about the point (0,0) as far as may
be required. If the series converges on R. then the G; assume the values indicated in Table 6.1.3.

Examination of Table 6.1.3 reveals that odd/even constraints must be placed upon a and 8 to
avoid nonzero generators G;, which are components of the partial derivative correction elements Ac',
A, .and A. These cubature elements are then candidates for inclusion in cubature formulas.

Now in order to construct multiple integration formulas with partial derivative correction terms,
it is necessary to generalize the cubature elements in Table 6.1.1. Consideration of the geometry of the
N-rectangle suggests how to proceed for arbitrary N > 1. We are now ready to derive MINTOV (an

acronym for “Multiple INTegration, Order 5™).
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Table 6.1.2 Generators

Name Cubature Generator Diagram
4
G, f/";'/‘i [f(ry.hp) = f(-hy, k) + f(hy,=hy) = f(Ry, 1))
+ —
- +
G, Vg'/al'[f(hphz)-f(‘hl,hz)‘f('hp'hz)*f(hl,'hz)] _
+  +
Gs PELL[f(hy hy) + (ko) = f(hy ., -hy) = By )
G, 48251 (ry,0) - f(-hy,0)] - 4+
3
Gs 2878 [£(0,hy) - £(0,-hp))

Table 6.1.3 Generator Values

a,p a 0dd a Odd a Even a Even
Generator g Odd B Even g 0Odd B Even
G Nonzero 0 0 0
G, 0 Nonzero 0 0
G, 0 0 Nonzero 0
Gy 0 Nonzero 0 0
Gs 0 0 Nonzero 0
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6.2 DERIVATION OF MINTOV

Denote the vertices of the N-rectangle

N
R =[] [-h; )
i=1

byc=(cy," -, cp) where cj = -hj or hj, and the volume by
N
h = n Zh]
j=1

Define the sign functionals

-1 if ¢; = -h;
o,{c) = { ] ]

+1 otherwise
6.2.1)
ojx(c) = ai(c)ox(c)
and the first- and second-order partial derivative correction terms
DAf) = Zof)%f ()
[
6.2.2)
D (f) = Zoj ()% f(c)
where the sums are over the 2V corner points of R. Figures 6.2.1 and 6.2.2 illustrate two of the

partial derivative correction terms for the 4-cube. Moreover, careful inspection will reveal the sign

arrangements for Dy (f) and D;,(f) for the 2- and 3-cubes.
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+ +

Figure 6.2.1 Sign Arrangement for D,(f)

Figure 6.2.2 Sign Arrangement for D,(f)
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Since /(f) and the “cubature ¢lements”
Ag(f) = hf(0)
4. = kL 1@

N
AL (f) = h ) hiDAS) (6.2.3)

i=1
AL ) = h ) D)
j<k
vanish for functions which are odd in any variable, we may approximate /(f) by the linear
combination
Q(f) = NAg + MA + MAp + \A] 6.2.4)
4 2.2

which is exact for the even functions 1, xf, x|.and x{ x5 . By symmetry, Q(f) will then also be exact

for all polynomials of degree at most S.

Now let x = (x, - - -, x») and
ag-y _ Y ... th/ a
M. = max 17 I (CI] (6.2.5)

Theorem 6.2.1

If f(x;, -, xp) has continuous partial derivatives of the first six orders on R, then

I(f) = [84y + (14, - A, - A, 3)2N115 + E(f) (6.2.6)

c

is a multidimensional quadrature formula with degree of precision 5. The truncation error. E(f), is

bounded by

N N
h 6,6 4, 2,42
< ‘MY + X ,
EUN S sl Do nfMy + 35 ) ningm
j=1 jk=1
J*k
(6.2.7)
2,2,2,,222
+280 ) mlnlitm?2
j<k<l
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Proof:

Applying Taylor’s theorem for N-variables to (6.2.4) and equating coefficients of similar terms

we obtain the linear system

1 2N 0 oT N 1
0 21 N o | 2, =
. | =, 6.2.8)
=~ IN-3 1 HN-1 _
032 3 2 of | a5 7%
1
N-2 N N —
0 2 2 2 ] N %
- - _J L
having the unique solution
(A1, A3 A3, 0g) = (8/15,7/2V15, -1/2V15, -1/2V45). (6.2.9)

The bound on the truncation error is a consequence of Taylor’s theorem and is a straightforward

calculation. Observe that the last term in the error appears only for N > 2. e

Next we transform the variables to obtain a formula for an N-fold integral over an arbitrary

N-rectangle,

N
R= II [a],b/]
j=1

N
Let w;j = bj - aj, w= I1 wj, m=(my, - ,my),and ¢ = (cy, ", cy) where
j=1
m; =-;(ai + bi) and ¢; = g; or b;. Define
-1 if CI' =a]-
oic) =
’( ) { +1 otherwise
(6.2.10)

0jx(c) = ol-(c)ok(c).

Corollary 6.2.1

N
For any N-dimensional hyperrectangle, R = rl [a]-, bl'] ,
j=1
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by b,
J f f(xl""'xN)dxl"'de
a,

aN

_ 8w w_
= 5f(m) + 2N15>;f(c) 6.2.11)

Z“’J i WZWM (/) + E(f)

2N*115
where
y 4,242
6
E g — M + 35 w.w
DI < e Zw ,;1 7w kM
%k
= (6.2.12)
+ 280 Z w]wkw,M}]%%
j<k<l
Proof:

Make a linear change of variables in (6.2.7) to obtain

by b,
f e e f(tl’...‘rN)dtl...dtN
‘N “ (6.2.13)

WN_\ W . o
J J‘ <2h1X1 cee 2}INXN)‘;‘dxl dXN.

Finally, we obtain the composite formulation of (6.2.11). Partition each interval [al-, bj] into n;

subintervals each of length h; = w]-/n]- and write

N
= 14
j=1
In order to condense notation we define

u(e) = ("l +hl(il‘0)’ o, ay +hN(’N —0)) (6214)

and



Furt

We r.

Cor
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v(xj) = @@y *+iyhy. o Xjajey Y hjey o ay tighy)
v xg) = @y *iyhy oo X Gy ey (6.2.15)

Xfo Qksy Yigarhger ay Yiyhy).

Furthermore

D)) = 4G - fCa)]

Dy(FO) = ¥, v/ ap)) - f((aj by)) (6.2.16)

- f(v(bl' ak)) + f(V(b], bk))] .

We now state our main result.

Corollary 6.2.2 (MINTOV)
If f(xy, - - -, xp) has continuous partial derivatives of the first six orders on the N-rectangle

N
R = H [a;. b;] then
i=1
by by
f flep. - xpy)dxy - dxy

aN a;

na

- —’;—i . S +

a=1i,=1

(6.2.17)

N "a
S NPINNLO)
15 G310

N

2 2. Z h D F0)) + EC)

N+2
21 45 J<k a=1i,=
a#j.k

is a composite multidimensional quadrature formula with first- and second-order partial derivative
correction terms having degree of precision five. The primes signify the weight 7y is to be assigned if

the node is common to ¥ subregions. The truncation error, £/(f), is bounded by
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/ N
BT < S50 500 > Wems v 35 )0 nindmf? + 280 2wt 6219)
j=1 jk=1 j<k<li
j#k

Proof:

The proof follows by repeated use of (6.2.11). 0

Note that the last term in (6.2.18) appears only for N>2. The 2-dimensional formulation is given
in (6.4.4).

The name MINTOV (Multiple INTegration, Order V) is given to (6.2.14).

With appropriate interpretation of the corner and centroid nodes and the partial derivative

correction terms, MINTOV is a nonproduct N-dimensional generalization of the composite Simpson’s

formula with end corrections (Lanczos, [28]:

b n n_,
f,, f()dx = %Z:l,f(a‘rh(i-’/z)) . %’(;—ZO f@+in)
(6.2.19)
h2 , , b-a 6
- U ®)-1 @] + zoae hR).

As before, the prime on the summation signifies that the weight v is to be assigned in case the
node is common to 7y subintervals. Also, # = (b - a)/h and { is some point in {4, b]. The number of
function evaluations is 2n + 3.

It may also be stated that MINTOV is composite Ewing’s formula [16,49] with partial
derivative correction terms. In the next section, a two-dimensional composite formulation of Ewing’s
formula is given as DO503.

The MINTOV truncation error estimate (6.2.18) is primarily of theoretical importance. It is
useful for comparing MINTOV with other fifth-order multiple integration formulas. In practice it is
usually not possible or at least not feasible to bound the required sixth-order partial derivatives. For

example, it would be tedious to calculate and estimate the requisite sixth-order partials for the function

l+w
Sy 2) =
xyz

3 (6.2.20)
on. say, the cube H [0, m/2] where w2 =x2 +y2 + 22,

i=1

w

sin (x) sin () sin (2) e~
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6.3 COMPARISON OF SEVERAL MULTIDIMENSIONAL QUADRATURE
FORMULAS OF PRECISION FIVE

The attempt to compare various quadrature routines leads to the discovery of the absence of
generally accepted standards of benchmarking techniques. Lyness and Kaganove [30] state that “any
individual who constructs a routine can find some problem for which it is more efficient than an
existing available routine, and with this evidence, arrange for its inclusion in the local subroutine
library. Existing routines are not removed because there are other problems for which they are more
efficient than the new routine.”

They add that numerical experiments must play a basic role in the comparison testing and then
distinguish between “battery experiments” and the “performance profile evaluation technique.”

The battery experiment method requires the use of many different integrand functions, limits
of integration, tolerances, and different quadrature routines. Two notable investigations were con-
ducted by Caselleto, Pickett and Rice [12] at Purdue University, and by Kahaner [25] at Los Alamos
Scientific Laboratory.

Kahaner tested 11 quadrature routines on 21 integrands using 3 error tolerances and eventually
selected 3 routines based on average reliability and average speed.

Lyness and Kaganove [30] object to the technique used in these investigations on the basis of the
difficulty of interpreting the results and of extracting definite conclusions, and because integrand
functions which are *“close’ to one another were not used. Consequently, they recommend the use
of the more popular performance profile evaluation technique which is described in detail in [31].

We will apply neither the battery experiment nor the performance profile technique to assess the
merits of MINTOV. Instead, we will make general comparisons and conduct several numerical
experiments using some definite integrals of our selection and several found in the literature.

Now we observe that the number of function evaluations, nfe, required for the d-dimensional
MINTOV (6.2.14) is given by

d d d d d
nfe = [[m+ [[ i+ +2) [[ @+ D+4). T] o+ 1. 63.1)
i=1 i=1

j=1i=1 i<k i=1
i#f TS ik
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Furthermore, in the case n; = (bi - ai)/h,- =n for all i,

nd + (n+ 1) + 2+ 1)+ 24(d -1)(n + 1472

nfe
(6.3.2)

d-1
m9 + 2___‘(') [2d-i)? + 1](‘:>ni.

Hereafter we refer to n as the “‘number of subdivisions” of R. Note that R is partitioned into nd sub-
regions. In (6.3.1) a partial derivative evaluation is counted the same as a function evaluation. For
some integrands it may be necessary to weight the partial derivative evaluations. However, in many
cases, because of persistence of form, the present enumeration technique will suffice for our purpose,
namely, to size MINTOV and compare it with several well-known formulas.

Indeed, for functions such as In(xyz) the first order partials require only about 40% of the time to
evaluate the given function whereas functions similar to cos(x)cos(y )cos(z), exp (-xyz),

(l1+x+y+ z)'4, and even (6.2.18) require not more than 5% additional time to evaluate the first-
and second-order partials than the original functions.

We will compare MINTOV with the fifth-order composite multidimensional quadrature formulas
Lyness, Gauss, and Boole, which refer to the composite formulations of C,,:5-5 as listed in Stroud [49]
and which is due to Mustard, Lyness and Blatt [37], the composite product Gauss, and the fifth-order
composite product Newton-Cotes formulas, respectively.

MINTOV and Lyness are nonproduct formulas and as such might be expected to be more
efficient than Gauss and Boole, as indeed they are.

The number of function evaluations for each rule is given in Table 6.3.1.

It can be shown that for n 2> d, MINTOV nfe < C,, : 5-5 nfe; equality holds only forn=d = 2.
Also, for any n > 1 and any d, MINTOV nfe < Gauss nfe. Moreover, for all n,d, MINTOV nfe <
Boole nfe. For example, for 8 partitions in 4 space, MINTOV, Lyness, Gauss, and Boole require
18 433, 43 425, 331 776, and 1 185921 function evaluations, respectively.

Table 6.3.2 lists the number of function evaluations required by MINTOV for various subdivisions

n and dimensions d.
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Table 6.3.1 Number of Function Evaluations for Several
Fifth-Order Formulas

Formula nfe
MINTOV nd + (+ 1E2[(n+ 1)2 + 2d(n +d)]
Lyness (n+1)4 + (2d+1)nd
Gauss 3n)d
Boole (4n+1y

Table 6.3.2 MINTOV: Number of Function Evaluations Required for n Subdivisions
in d-Dimensions

8 19 185 1835 18433 | 186 587 |1 985 945 |19 280 411

16 35 617 10947 | 195297 (3500163

d
Nl 1] o2 3 4 5 6 7 8 9 10
1 5 17 57 177 513 1409 3Nn3 9473 23553 57 345
2 7 29 125 529 2165 8 569 32933 | 123457 453221 |1 634713
4 11 65 399 2481 15399 94 721 575759 |3456 161 20496 519

32 67 2249 75635 12548 129
64 | 131 8 585| 562899
128 | 259 | 33 545 |4 345 235
256 | 515 |132617

512 11027 |527 369

MINTOV may be sized by computing the maximum number,of subdivisions n such that the

number of function evaluations is less than some preassigned limit, say 105. This is done in Table

6.3.3 and the results indicate that compared to the techniques listed, MINTOV is substantially

superior for dimensions 1-5.
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Table 6.3.3 Maximum Number of Subdivisions n such that nfe < 106

N 1 2 3 4 5 6 7 8 9 10
MINTOV | 49998 705 77 24 12 6 a 3 2 I
Lyness ~ 408 49 17 9 6 4 3 3 2
Gauss 333333 333 33 10 5 3 2 1 1 1
Boole 19999 249 24 7 3 2 1 ! - -

Finally, considering the speed of today’s fourth-generation computers (cycle times are measured
in nanoseconds), it is not unreasonable to expect a composite multidimensional quadrature formula to
perform at least n = 4 subdivisions using, say, 10° function calls. With these admittedly rough but
realistic guidelines, it is possible to estimate the maximum usable dimension for the formulas under
consideration. The results in Table 6.3.4 indicate that the useful dimensional range for MINTOV is
1-7. Later we will show that MINTOV is particularly efficient and accurate in dimensions 2 and 3.

In particular, from Table 6.3.4 we see that if there is a requirement that a multiple quadrature
formula employ at least n = 4 partitions (i.e.,49 subregions), and not more than 100 function evaluations,

then the maximum usable dimensions are 5 for Gauss and 7 for MINTOV.

Table 6.3.4 Maximum Usable Dimension d Assuming n =>4
and nfe < 10¢

MIX nfe
Rule 102 103 10t 100 108
MINTOV 2 3 4 6 7
Lyness - 3 4 6 7
Gauss 1 2 3 4 S
Boole 1 2 3 4 4
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6.4 CONSTRUCTION OF 47 NEW CUBATURE FORMULAS WITH PARTIAL

DERIVATIVE CORRECTION TERMS AND ERROR ESTIMATES

In this section, for concreteness, the discussion will be limited to 2-dimensional quadrature or

“cubature” formulas. We will simplify the notation whenever possible.

We wish to approximate the integral

d ;b
l(f)=ff f(x,y)dxdv

(6.4.1)

over the rectangle R = [a, b] X [c. d] by a cubature formula Q (f) which contains partial derivative

correction terms.

Partition R into nm subrectangles each of size hk where h = (b-a)/n and k = (d-c)/m. Define

the following cubature elements:

thZf(a+h(i-’/z). c+k (- 1)

FO =
j=1i=1
m n
FV = hk) ) fla+in c+jk)
j=0i=0
n
FM = hk ) [f@+h(i-%).c) + f@+h(i-%).d)]
i=1
+ k) [f@ c+kG-R) + [(b.c+kG - %))
j=1
m n-1
+ k)Y fla+ih ctk(-%)
j=li=1
mel n
+ k) ) f@+hGi-%).c+ k)
j=1 i=1
m ’
FV1 = h% )" [ filb. c+ jk) = fila, c + k)]
j=0

+hk2) fa+in d)-f(a+ih,c))
i=0

(6.4.2)

(Equation (6.4.2) continues)
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EMU = 1K) [f(b, e +kG - %)) - fila. ¢ +K( - %))
i=1

n

+H2 ) (S @+ - 4).d) - f(a + hii - %), 0)]

i=1

FVIL = B2k (£, (@ €) = £ (B, €) + i (b, d) = [, (@, )] (64.2)
where
[y = 41 fxp)
fy = 43/ x) (64.3)
fry = 271 @¥).
Let

Fij = (ba)(d~c) [hikiM¥,+ hikiM]L] = Fii

The primes on the summations in (6.4.2) signify that weight ¢ is to be assigned if the node is com-
mon to o subrectangles.

As in the case of MINTOV, the method of undetermined coefficients is used to construct a
variety of new cubature formulas. The results are compiled in Table 6.4.1. Of the 88 combinations
considered, 52 had nonvanishing determinants. Some of the unsuccessful attempts are indicated
by zeros.

The significance of the entries in Table 6.4.1 may be understood by observing that formula

DCSCS is the 2-dimensional formulation of MINTOV (6.2.17):

d b
8 7 1 1
: =2 r0o+Lrv - L - v v E. a.
fcj; fG,y)dxdy == FO + —=FV = —= FV1 = =—F (f) (64.5)
|E(F)] < (F60 + 35 F 42)/604 800. (6.4.6)

The number of function evaluations is

nfe = 2(nm) + 3(n+m) + 9. (6.4.7)



Table 6.4.1 Cubature Formulas

Elements Error Bound nfe
No,| Name
FO FV  FM |EVI EMI FVI]| 120 140 F22 | K60 K42 || nm n+m ¢
Midpoint |
1| E0101 1 2 oo
- | Er140 0 0 oo
1 -1 1
2| EM143 1 24 5760 576 2o
1 -7 =5
- o 760 76 2
3| ETIB3 1 8 5760 576 b
4| EXI183S 1 % o T : 2o
) 4§76 5760
e 1 =5 il
S| ECIC3S 1 18 576 5760 ! 28
e LI i
6| ESIC3S 1 338 144 5760 : ‘o
- | EHIGO 0 0 0 0 P8
Trapezoidal
1 -1
7| T0401 T ) ! ol
- | Tras0 0 0 0 b
] -1 | -1
8| TMa43 a 2 720 T2 bt
o| Trass 1 -1 LI 13 s
Y 13 7200 144
10 | TX483S 1 = 32 73 ! 3os
X483 3 12 n 720
11| TCaC3s 1 = o o ! 39
4 24 133 720
s ! L !
12| TS4C3$ 7 % 36 720 s s
- | TH4GO 0 0 0 0 15 9
Squire
1 -1
13 | Mo401 7 b 2 to
- | Miado 0 0 0 2o
1 -1 ! !
14 | MM443 ry kT 11520 576 2 20
1] -l 1 !
1 -t - 2
1S [ MT483 7 |9 11520 144 L
1 -1 ! 1
. o —_— —— —_— 2
16 | MX483S i I’ 76 11520 23
. 1 -1 1 !
17 | MC4C3S 2 |96 133 11520 2 P8
1 1 -l !
3 . ~ -— Pn— — 2
18 | MS4C3s T |38 36 11520 P
- | MiaGo o fo o o : 5 8
Lwing
19 [ D503 LR e 2 b
3 I N 2880 288
20 | DIS43S LA 38R - 2o
S 312 288 2880
8 | 1 -1
21 | DMS43A TS 36 1080 po
22 | DM543B LA = 6 2 3
M543 15 60 60 180
4 5 -1 1
p 4 5 i}
23 | DTS83A 5 36 73 4320 2o
8 7 -1 -1
4 8 7 il
2 DTS838 5 %o T30 720 ro3s




Table 6.4.1 (cont’d.)
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Elements Error Bound nfe
No. Name o
FO  FV OFM | FVI ML v #20 Fa0 122 | K60 ¥42 | nm nem
8 7 -1 -l ! 7
25| Dxsss % TR0 soamoo et 2 3 S
MINTOV | | |
: 87 - ! _l
26 DCSCS 5 80 120 720 604300 17280 2 3
8 1 fd I I _t 1y s s
27| DS5CS 5 50" 180 604800 23040
CSA 8 7 -1 1 1
1 pnsass | B w0 360 35 290 604800 250
Tyler
29| X003 1 1 - 31 0
3 6 2880 576
. 1 1 1 -1
30| Xrsass . - = SRR0 o4
1 7 -1 1
31| XMS43T T3 o ol T3 33 0
4 5 1 -17
32 XTS83A 5 36 | 8% 33560 3 3 4
1 7 | -l 17
33 | XTs83B 5 35 | 170 2880 O
] 7 -1 1 1 -7
34 | XX585 T3 30 60 576 604800 133:40‘ 334
e 1 7 | -1 17 1 -13
3] X0sCs 15 30 | 120 7850 604800 13824% 338
! 1 7 1 -7 1 -1
36 | XSSCS 3 0 |38 0 gaso0 30770, o > 4
. 1 A S E 1
37 | XHSGSS I 30 1720 360 320 604800 oS8
Miller E
38 | 00803 £ L o T 3 21
12 3 } 2880 144 !
-1 0 | -1
438 = 5 T 580
39 OI-843S o3 i 144 2880 ’ } : e
12 -1 1
43 - = - —
40 | OM843A % 9 | 3 0 o
-1 4| -1 !
M843 e — 160
411 OMB4IB 60 T3 | 60 360 3o
. -1 4 -l !
2 — — | —
42 | OT883T @ 1T 7% =13 3 4 s
-1 4 -1 1 1 1
43| OxEs % 15 & 60 goikoo  Tawm|| * 4 S
. -1 4 - 1 ! -1
44 | OCBCS %0 15 | T30 [Er |boaroo gean | 24 ®
. -1 4 1 =5 ! ol
45| OS8CS %0 15 |80 TR0 03800 Z3oan) ° & S
a6 | onYGss b R T - o6
’ 60 15 |360 345 30 1 604800
-4 4
Simpson
47 | s0903s A L - 4 2
9 36 9 2880 -
- | s1940 0 0 0 0 l 4 2 5
8 1 8 -1 L -1
48 | sMo4s $ % 5B r KT R
a1 2 |-l | 1|
49 | sT98S 3 TR0 35 |730 ;604300 wseo || 448
717 -1 - 1
50 | SX985S T TR0 TS % 1330 |604.\m0 44
o 16 13 4 |-l 1 | 1
S —_ — — —_— —
ST} Se9css 35 T80 35 (T30 720 | 604800 | I
52 | SS9CSS 4 Lot o : 4 6 3
IS 20 15 |360 90 604800
- | su9co 0 o o [0 o 0 } 4 6 9
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The first two symbols of the names assigned to the formulas listed in Table 6.4.1 were chosen
somewhat arbitrarily, whereas, a digit was selected for the third symbol to represent the number of
function evaluations required for the holistic or basic rule, that is forn =m = 1.

The fourth symbol represents the number of partial derivative evaluations required for the holistic
rule. Here C =12 and G = 16. The fifth digit is the order or degree of precision.

The presence of a sixth symbol signifies that the method of undetermined cocfficients led to more
equations than unknowns. The symbols A and B are used to indicate two successful combinations: whereas
an S or T indicates that only one combination was successful.

For completeness, formulas 1, 7, and 47, which are the composite formulations of the midpoint,
trapezoidal, and Simpson’s rules, respectively, have been included. Good and Gaskins [20] recently
investigated the midpoint or centroid rule. The holistic formulations of formulas 13, 19, 29, and 38
were investigated by Squire [48], Ewing [16], Tyler [51], and Miller [35] respectively. Thus except
for formulas 1, 7, 13, 19, 29, 38 and 47 the remaining 45 cubature formulas are new. Formula
X0503 was apparently discovered independently by Bickley [7] and Tyler [S1]. We will follow Stroud
[49] and call it Tyler’s rule.

It is interesting to compare DF543S with Simpson’s rule, S0993S, because both are third-order
formulas and both have the same error bounds; however, the former requires half as many function
evaluations as Simpson’s rule. Moreover, DF543S requires only 4 second-order mixed partial
derivatives evaluated at the vertices of the rectangle R. There may be applications where DF543S
should be considered as a viable alternative to Simpson’s Rule.

DF543S is a combined trapezoidal-midpoint or Ewing rule [16] with boundary correction terms.
This was the first cubature formula discovered which requires mixed second-order partial derivatives
evaluated only at the comers of the rectangular domain of integration R. Observe that the two formulas,
XF543S and OF893S, which share this property with DF5438S also have the same error bound as

Simpson’s rule. They are also more efficient than Simpson’s rule.
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For smooth functions, DH5G5S will likely provide the greatest accuracy with the most economy.
For brevity, we shall refer to DH5GSS simply as “CSA™ (Corrected Sth-order Approximation).

Except for DF543S, XF543S, and OF843S, the derivative corrected formulas listed in Table 6.4.1
exhibit the same property as the formulas of Chapter 4: namely, the partial derivative correction terms
are evaluated on the boundary as well as the vertices of R. Nevertheless, the cubature rules with
boundary correction terms are more efficient than conventional formulas.

Since the nodes do not form a lattice, it follows that most of the cubature formulas in Table
6.4.1 are not product formulas.

Since the DC Simpson quadrature rule, (6.2.19), is constructed using the method of undetermined
coefficients, it was conjectured that

SHIGO) = N\ FO + MyFV + NgFM + MNFV1 + AFM1 + A FV11

would be the product formulation of (6.2.19). However, the coefficient matrix of the resulting

system
1 4 4 0 0 0T 1 ]
0 420 2/2! 4 2 0 || 1/3!
0 4/4r  2/40  4/30 230 0 || 1/5!
= (6.4.8)
0 4212 0 82! 0 4 (| 1/313!
0 4/6! 2/6!  4/5! 2/5' 0 ||Xs 1/7!
0 4/412! 0 /2.0 431 ]| A 1/5!3!

was singular and the attempt was unsuccessful.

A second and different derivation of the DC Simpson quadrature rule (6.2.19), employs the Euler-
Maclaurin Summation formula. This was done in (3.1.9). (Recall that prior to Chapter 6, h denoted
the distance between nodes, whereas here h = (b - a)/n and k = (d - c)/m).

Similarly, the double Euler-Maclaurin Summation formula may be used to construct the DC

Simpson cubature rule (5.2.7), which is a product formulation of (3.1.9).
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The formulas in Table 6.4.1 are first-, third-, and fifth-order rules. It is somewhat disappointing
that SHOG@ did not produce a seventh-order formula. However, by selecting different nodes, several

seventh-order derivative-corrected rules can be constructed. To this end, define the elements

2m n
FA = ZZf(a-h/2+ih,c+k/4+jk/2)

j=li=1

m 2n

+ ZZf(a+h/4 + ih[2,c - k2 + jK) (649)
j=1i=1

2m-1 2n-1
FB = Z Z fl@a+h/ad+in/2,c+k/a + jk/2)
j=0 =0

with nodes arranged as shown in Figure 6.4.1.

. . °
. .
° ° .
FA FB

Figure 6.4.1 Node Arrangements
Thus we have the seventh-order formulas

drb 44 13 10
fx,y)dxdy = =—FO + — FV + —FM
(4 a

105 420 189
(6.4.10)
256 1 1
+ =—FA - — FVl + —FVI1 +E
9as I 5 V1 ¥ 530 VM HEWD
|E(f)| < (F80 +28F62 + 364F44)/1 625 702 400 6.4.11)

and
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61
) = — —FV + —
f f f(x, y)dxdy FO ?780F 315FM
(6.4.12)
L L R 272
945 504 1440 )
IE(N! < (F8O + 112F62 + 854F44)/1625 702 400. (6.4.13)

Here (6.4.10) is a derivative corrected Tyler [51] cubature rule and (6.4.12) is a derivative corrected
Albrecht, Collatz [3] and Meister [34] rule. In both cases
nfe = 8(nm) + 4(n+tm) + 9 (6.4.14)
which is substantially better than the 16nm fe required by the seventh-order composite product
Gauss formula.
Finally. we notc that as in the case of MINTOV. the formulas of this section can be generalized
to multidimensional quadrature rules. Indecd, with appropriate generalizations of FO, FV, etc., for

N2=3 it can be shown that

by b
f(xl’....x‘/v)dxl ...dxlv
a a

N -9
CBOI4SN) 23 4
ST OtV
(64.15)
]
‘m FV1 HSFMI Of‘Vl]‘f[(f)

w 6
EUDI< 53500 205 M- (6.4.16)



7. NUMERICAL RESULTS

7.1 DOUBLE INTEGRALS AND THE DC-MQUAD ALGORITHM

The 2-dimensional formulation of MINTOV is an accurate and efficient cubature rule. As pre-
viously noted, it requires 2(nm) + 3(n + m) + 9 function evaluations.

Let the rectangle R = [a, b] X [c. d] be partitioned into nm subrectangles each of size
hk = (b - a)(d - c)/nm and let Q(f) denote the approximation provided by a cubature rule.

For ease of reference the two-dimensional formulation of MINTOV is given below.

deb 8hk m n
ch; SCx, y)dxdy =TZZ“" +h(i-%),c+ k(- %))

j=li=1

L 7
Z Zf("“" ¢+ k) (.1.1)

1010

h2k <<

1202 [£(b, c +jK) - £, (a. c +jk))]

m Z (£, +ind) - f,(a+ ih, )]

hlk?
- % [fxv(” ) - fx (b c) + fxv(b d) - fxy(a,d)] +E(f).
b-a)d-
lE()! < %Wc) [(hOMS + KOMS) + 3S(h*k2M]7 + b2 24, (7.12)

Mustard, Lyness, and Blatt [37] proposed a 9-point, degree 5 cubature formula which when
compounded nm times requires 6mm + (n + m) + 1 function evaluations, fe. As before, we refer to
this as Lyness. This is the most eff:lcient, non-derivative-corrected composite fifth-order cubature
formula given in the literature.

The Radon [42], Albrecht, Collatz [3] 7-point, degree 5 composite formula requires 7nm fe.

For brevity we will call it Radon’s formula.

118



119

The 9-point, degree 5 composite product Gauss cubature formula requires 9nm fe, and the
25-point, degree 5 composite product Boole’s rule when compounded nm times requires
(4n+1)4m+1) fe.

Tanimoto's [50] corrected Simpson rule requires 4nm + 6(n + m) + 9 fe. Tanimoto’s rule is
the only fifth-order derivative corrected cubature formula which we found in the literature.

Table 7.1.1 shows the number of function evaluations these formulas require for various
subdivisions. Clearly, in this respect, MINTOV and C5A are superior to Tanimoto, Lyness, Radon,
Gauss, Boole, and even Simpson's rule.

MINTOV and C5A (formulas 26 and 28, respectively, in Table 6.4.1) have been tested on a
variety of integrands with many different grid sizes and have produced excellent results with respect
to accuracy, computational efficiency, and economy.

The Lyness rule also pertormed well on the same examples; however. it required up to 3
times the number of function evaluations and was therefore much more expensive than MINTOV or
C5A. Tanimoto’s rule required nearly twice as many function evaluations as either MINTOV or CSA.

We now propose a new technique for cubature with error estimates called the DC-MQUAD

(Derivative Corrected--Multiple Quadrature) Algorithm.

Table 7.1.1 Nfe for Various Cubature Formulas Compounded nm Times. These are Fifth-Order
Formulas Except for Simpson’s Rule Which is Third-Order.

MINTOV CSA Simpson Tanimoto Lyness Radon || Gauss Boole
TN 22 v 6n+9 | 22+ 10n49 || an2ean+1 | an2e 12149 || 62 2m 1 e || 92 |@n+1)2
1 17 21 9 25 9 7 9 25
2 29 37 25 49 29 28 36 81
4 65 81 81 121 105 112 144 289
8 185 217 289 361 401 448 576 | 1089
16 617 681 1089 1225 1569 1792 2304 | 4225
32 2249 2377 4225 4489 6209 7168 9216 | 16641
64 8 585 8 841 16 641 17 161 24 705 28672 || 36 864 | 66 049
100 20 609 21 009 40 401 41209 60 501 70 000 (| 90 000 {160 801
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The DC-MQUAD Algorithm

1. For a given step size, compute the 4 cubature elements FO, FV, FV1, and FV11. (For
2-dimensions this requires 2nm + 3(n + m) + 9 function evaluations.)

2. Apply the appropriate weights given in Table 6.4.1 to these cubature elements, and compute
the first-order approximations, trapezoidal (T0401) and midpoint (EQ101): the third-order
approximations, Ewing (D0503), DF543S, and DT583A; and the fifth-order approximation MINTOV
(DC5C5) (see Table 6.4.1). In the case of apparent convergence, accept MINTOV as the approximation
to I(f).

3. Estimate the actual and relative errors for the first five cubature rules by computing
MINTOV-Q(f) and [MINTOV-Q(f)] /MINTOV, respectively. Use MINTOV (h,, k,)—

MINTOV (k. k;) and [MINTOV (h,. k5)-MINTOV (h,. k)] /MINTOV (h,, k,) to estimate the
actual and relative errors for MINTOV. Here h, < h, and k; < k;. Stop when the error estimate
meets the preselected requirement.

4. Decrease the grid size and repeat steps 1-3.

For a sufficiently smooth function, say one having continuous partials of the first six orders, this
technique provides a close error estimate which is not only practical but is also computable.

The convergence of the DC-MQUAD algorithm is guaranteed by the following theorem.

Theorem 7.1.1

If f(x, y) has continuous sixth-order partial derivatives over R = [a, b] X [c, d], then

lim

Vi + k=0

=0. (7.1.3)

d b
MINTOV -f f £, y)dxdy

Proof:
Since the sixth-order partial derivatives are continuous over a compact region R, they are

bounded on R. Then clearly. the truncation error is bounded by

(b-a)d-o)

E(f)I<
TE(S) | 603 500

(oM + k81 + 35 k2M 32 + n2k4M 23)) (7.1.4)

and goes to zerc as V h2 + k2 goes to zero. o
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Similar theorems can be proved for each of the formulas listed in Table 6.4.1.

Since the cubature formulas in Table 6.4.1 generalize to n-dimensions, it follows that the

DC-MQUAD algorithm can be generalized for the approximation of multiple integrals of the form

n hy
]U‘):J J. f(xl,'“,x,,)dxl"'dx,,. (7'1.5)
a, a,

Finally we note that if the six cubature elements FO, FV, FM, FV1, FM]1, and FV11 are com-
puted, by using only 4nm + 6(n +m) + 9 function evaluations, all 52 approximations to the integral
I(f) furnished by the cubature formulas of Table 6.4.1 may be obtained. In this connection, see
Section 7.1.5 for numerical results.

Now we give the results of some numerical experiments.

7.1.1  THE APPLICATION OF MINTOV

Consider the approximation of

J‘lJ‘ _dxdy J'”DJ’ dxdy _J’l tan~! (x)dx
0 Jo THx22 2(1 + cos(x) cos () J, x (7.1.1.1)

= 0.915 965 594 177 30.

Taking f(x,y)=(1 +x2y2)~and h =k = 1/2 in (7.1.1) we obtain
~ 8 11256 256 256
= + 22—+

17 15 4[257 2(265) 337]

+ l“‘[l +2(1)+1/2+2Q2)(1) + 2(2)4/5) +4(16/17)]

60 4
11 (7.1.1.2)
- — —[-1/2-28/29)](2
130 3 (-1/ ( )(2)

169 281 536 + 17 213 + 57
344 270775 40800 24 000

0.491 710445 + 0.421 887 255 + 0.002 375 000

0.915972 700 0.

The error is 0.000 007 106 8. Here f, = -2xr2(1 + x2y2)2 7 = 2x%(1 + x4?J % and
fxy=4x,v(x2y2-l)(l + xzyz)'z. The first-order partial derivatives £ and f,, vanish on the axes while

the second-order mixed partial derivative fx v vanishes at the corners as well as on the axes.
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= = = . =.1/D =
fiy=0  £,=0 £, =-8/25 fy=-12 £y, =0
f,=0 ] 4/5 B f,=-1/2
256 256
® 765 ® 337
1 16/17 4/5
f=0 f,=-8/25
257 265
f=0 1 1 1 £,=0
fxy=0  f,=0 fy=0 =0 £y=0

Figure 7.1.1.2  f(x,y) = (1 +x2y2)!

Figure 7.1.1.2 shows the function and partial derivative values used in the calculation (7.1.1.2).
Note that the partial derivative correction terms are evaluated only on the boundary and not at
interior points.

In Table 7.1.2 MINTOV is compared with several other cubature formulas.

The examples were run on the U.S. Naval Air Test Center’s Real Time Telemetry Processing
System Xerox Sigma 9 computer using the CPR version C@Q8 operating system and Fortran IV in
double precision with 15 significant decimal digits.

Figure 7.1.1.3 shows a plot of the grid size h = k vs. the logarithm of the absolute error,
log 11(f) - Q(f)|. The theoretical results indicate and the numerical results confirm that in terms
of accuracy and economy, the derivative corrected cubature formulas provide approximations

superior to comparable conventional rules.
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Table 7.1.2 fo' fo'(l +x2y2) ldxdy = 0.915965 594 177 30

h=k=1/5(n=m=5) h=k=1/10(n=m=10)

Rule nfe '(l:en:; Error nfe '(I:en;; Error Order
Trapezoidal 36 .006 1.90-3* 121 .023 4.76-4 1
Midpoint 25 .005 -9.524 100 020 -2.384 1
EM143 45 015 -1.11-6 140 .039 -6.97-8 3
Ewing 61 .012 -3.44-7 221 043 -2.04-8 3
DF543S 65 .014 -3.44-7 225 .045 -2.04-8 3
Simpson 121 023 -3.16-7 44] .086 -1.99-8 3
MINTOV 89 .026 -2.20-8 269 .065 -3.39-10 5
CSA 109 .035 4.31-10 309 .084 8.61-12 5
SC9CsS 149 .037 5.46-10 489 .108 9.04-12 5
Tanimoto 169 .046 591-10 529 .128 9.22-12 5
Lyness 161 .028 5.66-9 621 .108 8.70-11 S
Radon 175 .030 -1.84-9 700 116 -2.81-11 5
Gauss 225 .037 1.78-10 900 145 2.83-12 5
Boole 441 .078 -1.85-10 1681 297 -2.77-12 S

*By 1.90-3 we mean 1.90 X 1073
tDegree of precision
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10’
- 1 1
ff Axdy - 0,915 965 594 177 30
- b % 1+ (xy)
10° |-
E3
, N
£
w
N —
@
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©
(L)
10" |
O C5A
O MINTOV
# FUNCTION EVALUATIONS
1072 ] 1 1 1 1 1 1 ] | ] ] 1 1
107" 107" 107" 108 10°® 10 1072 10°

LOG (ABSOLUTE ERROR)

Figure 7.1.1.3 Error Curves in Approximating fo' 11+ x2y2)ylaxdy
o



7.1.2 MINTOV vs. JPL’'s MQUAD

Bunton, Diethelm, and Haigler [8] (hereaftcr referred to as Bunton) of Jet Propulsion

Laboratory proposed the following example.
21 p21
J f (xy) 'dxdy = In2(2.1) = 0.550471 023 504 079. (7.12.1)
1 1

MQUAD! is a Modified Romberg Multiple quadrature routine in the JPL program library. Since the
single precision version computes only the first three columns of the Romberg Table, it has degree of
precision 5.

Bunton states that MQUAD was designed to . . . satisfy all the needs of a large scientific and
engineering computer community. The routine is to be the ‘library standard,’” and its use should be
greater than the total of all other special purpose quadrature routines. The standard should be one

'’

against which others could be measured. . . .

Since both MQUAD and MINTOV are fifth-order methods, it seemed reasonable to compare them.
The relative error tolerance requested for MQUAD was 10, The grid size for MINTOV was decreased

until the relative error as estimated by

[(MINTOV (h/2, k/2) - MINTOV (h, k))/MINTOV (h/2, k/2)|
was smaller than 107, Under these conditions MQUAD required 441 function evaluations while
MINTOV used only 65 function evaluations.

The results of MINTOV and MQUAD for a variety of relative error tolerances are presented in
Table 7.1.2.1. Here MINTOV required from 1/2 to 1/26 the number of function evaluations required
by the JPL routine MQUAD. Of greater significance is that MINTOV required 2% to 28% the actual
computer time required by MQUAD. On the average, MINTOV is better than MQUAD by an order
of magnitude.

Figures 7.1.2.1 and 7.1.2.2 show the number of function evaluations vs. absolute error for 10

different cubature formulas. For this example, SC9C5S, Tanimoto, Lyness, and Radon exhibit

lI am grateful to Mr. Wiley R. Bunton of JPL for sending a FFortran listing of MQUAD.
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Table 7.1.2.1 MINTOV vs MQUAD for the Integral flz'l flz'] Gev) Vdxdy =
0.550471 023 504 079. Relative Error Requested = 107, a = 1(1)10.

Relative MINTOV MQUAD
Error - ' -

Requested | nfe | iy | e | e |G| R
107! 17 | .002 1.41-3 441 157 -1.38-7
102 17 | .002 1.41-3 441 157 -138-7
1073 29 | 003 3.26-5 441 157 -138-7
104 65 | .010 5.91-7 441 157 -1.38-7
1075 185 | 030 | 9.67-9 625 217 -3.51-8
1076 617 | .100 1.53-10 1 089 370 -493-9
1077 617 | .100 1.53-10 2025 676 -3.05-10
108 249 | 365 243-12 4761 1.567 -1.19-11
1079 8585 | 1.395 | 9.41-14 15129 4958 -3.92-13
10710 8585 | 1395 | 9.41-14 || 42849 13.965 -3.27-14

*Relative error = [T =QNN )

approximately the same efficiency. That is, for a given number of function evaluations, they produce
approximately the same absolute error.

The graphs indicate that the formulas XS5CS, C5A, and MINTOV are the most efficient cubature
rules for this double integral, and MQUAD is the least efficient.

Here the Lyness truncation error is estimated by

(b-a)d-c)

LE(N)] <
0 12 096 000

((1OMS + kOM8) + 175(* K2M 32 + W2k M3Y)). (7.1.2.2)

7.1.3 ERROR ESTIMATES
Stroud [49] uses the Radon-Albrecht-Collatz formula which he designates C5:5-1 (and which

we call Radon) to approximate

1 p1
4
f J V3+xt+y dxdy =TS—(1-18\/§' +25V5) (7.1.3.1)
-1

-1
~ 6.859 942 640 334 65

and then gives several error bounds.
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Using (7.1.2), the MINTOV truncation error estimate for this example is

(7.132)
(7.133)

(15 +Kk8) + 35(n*Kk2 + h2k%))

1

10 240

9h’
1280

IE(f) 1<
=k
1E(f) 1<

or in the case h

The results of applying various cubature formulas and error estimates to the integral (7.13.1) are

tabulated in Table 7.1.3.1.

3+x+y on[-1,1]2

Figure 7.1.3.1 Graph of z
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Table 7.1.3.1 Error Estimates for Approximating f_ll f_ll V3+x+y dxdy =

6.859942 64033465 whenh=k=2 (n=m=1).

Rule nfe ;l::)e Error Esltzir;(::te‘ |Est/Err| OrderT
Trapezoidal 4 .001 1.60-1 6.67-1 4 1
Midpoint 1 .000 -6.83-2 3.33-1 5 1
EM143 5 .002 7754 2.50-1 323 3
Ewing 5 .001 7.75-3 2.50-1 32 3
DF543S 9 .003 -2.03-3 4.17-2 20 3
Simpson 9 .002 1.42-3 4.17-2 29 3
MINTOV 17 .007 -2.61-3 4.50-1 172 5
CSA 21 .009 7274 1.25-2 17 5
SC9CSS 21 .008 1.534 1.25-2 81 5
Lyness 9 .002 4514 1.10-1 244 5
Radon 7 .002 -1.39-4 1.48-1% 1065 s
Radon 7 .002 -1.39-4 3.56-2F 256 5
Radon 7 .002 -1.394 5.73-11 14 696 5

*See Table 6.4.1.
+Computed by Stroud [49].

At first glance, Radon appears more accurate and efficient than MINTOV. Indeed, for this
example, one application of Radon does win over MINTOV. In fact, Simpson and Lyness also win
over MINTOV.

However, as the grid size is decreased, the efficiency of MINTOV becomes evident. This may be
seen in Table 7.1.3.2 where n = m = 10. Here Radon uses 2.6 times as many function evaluations as
MINTOV and yet produces approximately the same error. MINTOV is now more efficient and
accurate than the third-order Simpson rule.

The accuracy and efficiency of the th.rd-order cubature formula EM143 are somewhat surprising.
For n = m = 10, EM143 uses only 1/3 as many function evaluations as Simpson and yet produces a

smaller error.
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Table 7.1.3.2 Error Estimates for Approximating f_: f_ll V3it+tx+ty dedy =

6.859 942 640 334 65 when h=k=1/5 (n=m=10).

Rule nfe ;FSLT; Error Eig::;te |[Est/Err| Order
Trapezoidal 121 029 1.52-3 6.67-3 4 1
Midpoint 100 025 -7.594 3.33-3 4 1
EM143 140 .046 1.92-7 2.50-5 130 3
Ewing 221 054 1.16-6 2.50-5 21 3
DF543S 225 056 1.86-7 4.17-6 22 3
Simpson 441 .106 1.95-7 4.17-6 21 3
MINTOV 269 079 -6.69-9 4.50-7 67 5
C5A 309 .100 -1.28-10 1.25-8 98 5
SC9CsS 489 131 -1.70-10 1.25-8 74 5
Lyness 621 136 1.62-9 1.10-7 68 5
Radon 700 .148 -5.55-10 - - 5

The error estimates given by Stroud [49] for Radon have no provision for estimating the grid size
h X k which guarantees a prescribed error. The MINTOV error estimate (7.1.3.2) as well as those
given in Table 6.4.1 enjoy this advantage over those given by Stroud. Moreover, our error estimates are
much easier to obtain and apply than Stroud’s estimates.

Now we compute the grid size h X k which minimizes the number of function evaluations,
2(nm) + 3(n +m)+9, and which guarantees that the MINTOV truncation error (7.1.3.2) is smaller than
107¢. The results are presented in Table 7.1.3.3.

For a function such as g(x, y) = ™Y sin (100x) which is changing more rapidly with respect to one
variable than the other, one would take h < k.

However, in the case of (7.1.3.1), it is more convenient to set A = k in (7.1.3.2). With this

simplification, the MINTOV truncation error is guaranteed to be smaller than a prescribed € > 0 by taking

n=m> 087616 (7.1.3.4)
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Table 7.1.3.3 f_ll f_ll V3 ¥x+y dxdy = 6.859 942 640 334 65.
Guaranteed MINTOV Error = 1072, a = 1(1)12. (Grid size h # k.)

Absolute Time L Error
Error n|m nfe Approximation Error . |Est/Err|

Guaranteed (sec) Estimate
1071 1] 2 22 | 009 [6.86047300988255 | -530-4 | 7.47-2 141.
102 2| 2 29 | .010 [6.86001421900329 |[-7.16-5 | 7.03-3 98.
103 3| 3 45 | 016 ||6.85995020791196 || -7.57-6 | 6.174 82.
1074 afs 76 | 026 [ 6.859 94342865338 || -7.88-7 | 5.80-5 74.
1075 6| 6 117 | 037 [|6.859942778 12194 | -138-7 | 9.65-6 70.
1076 8|10 223 | 066 || 6.85994265371700 || -134-8 | 9.06-7 68.
1077 12 | 14 423 | 119 ||6.859942641 78092 | -145-9 | 9.63-8 67.
1078 18 | 20 843 | 227 | 6.859 94264048164 | -1.47-10 | 9.71-9 66.
10°° 25 |31 | 1727 | 450 |[6.859 94264034967 | -1.50-11 | 9.94-10 66.
10010 37 |45 | 3585 910 || 6.85994264033607 | -1.42-12 | 9.98-11 70.
1001 |l s6 | 64 | 7537 |1.882 || 6.85994264033421* | 4.43-13 | 9.88-12 22.
10712 || 82 | 94 | 15953 | 3.936 || 6.859 942 64033346* || 120-12 | 9.94-13 1.

*Contaminated by roundoff error.

The results are given in Table 7.1.3.4 and are similar to those presented in Table 7.1.3.3, except
the cost of setting h = k requires a few more function evaluations. In Figure 7.1.3.2, the grid size
h = k versus the log of the absolute error is plotted for several cubature rules.

Thus for n = m = 41 or h = k =~ .05, the actual MINTOV error is =1.35 X 10712, The inequality

(7.1.3.3) provides a guaranteed error estimate of 9.47 X 10711,
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Table 7.1.3.4 f_: f_: V3+x+y dxdy = 6.859 942 640 334 65
Guaranteed MINTOV Error = 107%,a = 1(1)12. (Grid Size h = k.)

Absolute . Grid
Error n=m nfe Time | o e Error Error |Est/Err|
Guaranteed (sec) | Lk Estimate
107! 2 29 | 011 1 || -7.16-5 7.03-3 98
1072 2 29 | 011 1| -7.16-5 7.03-3 98
103 3 45 | 016 | 667 || -7.57-6 6.17-4 82
107 5 89 | 030 | 400 | 4.01-7 2.88-5 72
1073 6 117 | 037 | 333 || -1.38-7 9.65-6 70
1076 9 225 | 068 | 222 || -1.25-8 8.47-7 68
10”7 13 425 | 120 | 154 || -1.40-9 9.32-8 67
1078 19 8as | 227 | .105 || -145-10 | 9.57-9 66
109 28 1745 | 456 | 0714 || -1.41-11 9.34-10 66
10710 |f 4y 3617 | 919 | 0488 || -1.35-12 | 9.47-11 70
10711 60 7569 | 1.890 | .0333 || 4.66-13* | 9.65-12 21
10712 88 | 16025 | 3956 | 0227 || 1.22-12* | 9.69-13 1

*
Accuracy affected by machine limitation of 15 significant digits.
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A RATIONAL FUNCTION WITH A SINGULARITY APPROACHING THE DOMAIN OF

INTEGRATION

7.14

Consider the double integral

=0.

Yl(w+4)in(wtd) - 2(w+2)In(w+2)+twin(w)],w >0
In(2) (Cauchy Principal Value), w

{

The errors obtained when various cubature formulas are applied to this integral with A

dxdy
4w+2+x+ty)

1 Al
J.

I

(7.14.1)

k =1/50 or

and O are given in Table 7.1.4.1.

.

.1,.05, .01, .001

100 as the parameter w takes on the values 1, .5,

n=m=

Squire and the derivative corrected formula, EM143, perform quite well as w approaches 0. Simpson,

Tanimoto, Lyness, Radon, Gauss, and Boole require too many function evaluations for the error

returned.

B2 +x +y)'| on (-1,1]

2

Graph of z

Figure 7.1.4.1
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Table 7.1.4.1 Application of Various Cubature Formulas to f_ll f_: [4(w+2+x+y)] 'ldxdy

withh=k=1/50 (n=m=100).

Avg w
Rule nfe Time Order
(sec) 1.0 0.1 0.01 0.001 0.0
Trapezoidal |, 10 201 1.755 || -8.89-6 | -1.554 | -1.81-3| -2.31-2 * 1
Midpoint 10 000 1.771 4.44-6 7.71-5 6.704 1.87-3 249-3 1
EM143 10 400 1.976 || -5.18-11 | -5.32-8 -9.48-6 1.254 | 4444 3
Squire 20 200 3491 | -2.22-6 | -3.84-5 -2.874 | -3.124 | 3.12-6 3
MM443 20 600 3.696 1.43-10 1.49-7 5.29-5 5.604 1.03-3 3
Ewing 20 201 3.527 || -3.11-10 | -3.27-7 -1.574 | -6.46-3 * 3
DF543S 20 205 3.529 || -5.17-11 | -4.94-8 1204 | 2.71-1 * 3
DM543A 20 601 3.731 || -1.38-10 | -1.45-7 -5.88-5 | -2.07-3 * 3
Tyler 30 200 5.263 7.79-11 | 8.14-8 3.21-5| 4.154 | 8334 3
XM543T 30 600 5.468 1.30-10 | 1.35-7 487-5| 5314 | 9894 3
Miller 30401 5.247 4.67-10 | 4.90-7 2.224 | 7.29-3 * 3
Simpson 40 401 7.019 || -5.18-11 | -5.48-8 -3.11-5 | -1.88-3 * 3
MINTOV 20 609 3.735 1.26-13 | 4.37-9 1.094 1.35-1 * B
CSA 21 009 3.940 8.21-14 | 5.25-11 | -4.83-5 | -2.66-1 * S
SC9CsS 40 809 7.227 8.28-14 | 1.03-10 | -1.17-5 | -8.36-2 * 5
Tanimoto 41 209 7.390 8.41-14 | 1.23-10| 3.00-6 | -1.08-2 * 5
Lyness 60 201 9.140 1.06-14 | -1.05-9 | -1.55-5 | -1.78-3 * 5
Radon 70 000 | 10.034 5.06-14 | 3.59-10| 4.43-6 | 1.84-4 5.094 5
Gauss 90 000 | 12.458 3.92-14 | 3.68-11 8.44-7 ; 8.71-5 3.384 5
Boole 160 801 | 24.881 495-14 | -3.79-11 | -9.66-7 | -2.734 * S
" Cubature rule not applicable due to singularity at (-1, =1) when w = 0

7.1.5 THE COMPARISON OF 45 NEW CUBATURE FORMULAS WITH 12 CONVENTIONAL RULLS

In this example we present the results of applying each of the 52 cubature formulas listed in

Table 6.4.1 to the integral

1 1
J‘ j Va(e® + 1)sin (mv)dxdy = efn.
0 Y0

(7.1.5.1)
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Figure 7.1.5.1 Graph of z = %(e* + 1) sin(ny) on [0,1]2

For the sake of comparison, several additional cubature formulas are included. Error estimates are
also provided.

The approximations were computed by a single computer program which contained a subroutine
to calculate the 6 cubature elements, FO, FV, FM, FV1, FM1, FV11, using 4nm + 6(n + m) + 9 fe.
The cubature elements were then combined as indicated in Table 6.4.1 to produce the 52 approxima-
tions to /(f). The results are tabulated in Table 7.1.5.1.

For comparison we include the results of 5 additional fifth-order cubature formulas: Tanimoto,

Lyness, Radon, Gauss, and Boole.
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Table 7.1.5.1 The Comparison of 45 New Cubature Formulas with 12 Conventional Rules for
the Double Integral fol J‘Ol Y(eX + 1)sin(ny)dxdy = e/n
h=k=1 (h=m=1) h=k=1/10 (n=m=10) Or-
No* Rule - : der
nfe | Time [ o Error l:_st_| nfe | Time Error Error E_sll
(sec) Estimate* | |Err (scc) Estimate*| JErr
1 | Midpoint 1 .000 | 4.59-1 | 8.21-1 2 100 | .047 |-3.34-3 8.21-3 2 1
2 | EM143 5 .002 | -1.48-1 | 2.45-1 2 140 | .063 |[-1.13-5 245-5 2 3
3 | ET183 9 .003 | -8.48-2 | 3.38-1 4 144 | 065 [-5.64-6 3.38-5 6 3
4 [ EX183S 9 .003 | -1.39-1 | 2.22-1 2. || 144 | 065 |-1.03-5 2.22-5 2 3
5 | ECI1C3S 13 .004 | -1.32-1 | 2.22-1 2 148 | .066 |[-1.03-5 2.22-5 2 3
6 | ESI1C3S 13 .005 | -1.38-1 | 2.22-1 2 184 | .081 |-1.03-5 2.22-5 2 3
7 | Trapezoidal 4 .001 8.65-1 | 1.64 2 121 | .054 6.68-3 1.64-2 2 1
8 | TM443 8 .002 | 2.43-1 | 4.40-1 2 161 | .070 1.93-5 4.40-5 2 3
9 | TT483 12 .004 1.17-1 | 3.47-1 3 165 | .071 8.06-6 347-5 4 3
10 | TX483S 12 .003 1.68-1 { 2.53-1 2 165 | .071 1.18-5 2.53-5 2 3
11 | TCAC3S 16 .005 1.54-1 | 2.53-1 2 169 | .073 1.18-5 2.53-5 2 3
12 | TS4C3S 16 .005 1.59-1 | 2.53-1 2 205 | .087 1.18-§ 2.53-5 2 3
13 | Squire 4 .001 1.50-1 | 4.11-1 3 220 | .100 1.66-3 4.11-3 2 1
14 | MM443 8 | .003 | 4.99-3 [ 3.91-2 8 260 | .116 |-2.03-7 391-6 19 3
15 | MT483 12 .004 | -3.67-2 | 1.09-1 3 264 | .118 [-3.02-6 1.09-5 4 3
16 | MX483S 12 .004 | 4.38-3 | 1.58-2 4 264 | .118 7.34-7 1.58-6 2 3
17 | MC4C3S 16 .005 | 8.284 | 1.58-2 19 268 | .119 7.32-7 1.58-6 2 3
18 | MS4C3S 16 .006 | 5.57-3 | 1.58-2 3 304 | .134 7.35-7 1.58-6 2 3
19 | Ewing 5 .001 | -1.77-2 | 1.10-1 6 221 | .101 ([-1.08-6 1.10-5 10 3
20 | DFF543S 9 .002 | -3.64-2 | 6.34-2 2 225 | .103 |[-2.95-6 6.34-6 2 3
21 | DMS543A 9 .003 | -1.05-1 | 1.69-1 2 261 | 117 |-7.87-6 1.69-5 2 3
22 | DM543B 9 003 | 3.46-2 | 7.45-2 2 261 | .117 3.00-6 7.45-6 2 3
23 | DTS583A 13 004 | 2.71-2 | 4.22-2 2 265 | .119 1.97-6 4.22-6 2 3
24 | DT583B 13 .004 | 9.23-3 | 1.86-2 2 265 | .119 7.51-7 1.86-6 2 3
25 | DXS58S 13 .004 | 457-3 | 1.77-2 4 265 | .119 3.48-9 1.77-8 S R
26 | MINTOV 17 .005 1.73-3 | 1.14-2 7 269 | .120 1.40-9 1.14-8 8 S
27 | DSSCS 17 006 | 7.814 | 9.29-3 12 305 | .135 7.04-10 | 9.29-9 13 5
28 | C5A 21 .007 | -2.06-3 | 2.96-3 1 309 | .136 [-1.38-9 2.96-9 2 S
29 | Tyler S .002 | -5.27-2 | 8.66-2 2 320 | .148 |-3.89-6 8.66-6 2 3
30 | XF543S 9 | .003 [ 4.33-2 | 6.34-2 2 || 324 | 149 |-2.96-6 6.34-€ 2 3
31 | XM543T 9 | .003 | -1.45-2 | 2.33-2 2 || 360 [ .164 |-9.41-7 2.33-6 2 3
32 | XT583A 13 005 | -5.81-2 | 8.97-2 2 || 364 | .165 |-4.19-6 8.97-6 2 3
33 | XTS83B 13 005 | -3.99-2 | 7.92-2 2 || 364 | .165 |-3.19-6 7.92-6 2 3
34 | XX585 13 .004 | -5.16-3 | 1.03-2 2 || 364 | .165 |-3.81-9 1.03-8 3 S
35 | XCsCs 17 .006 | -8.01-3 | 1.67-2 2 368 | .167 |-5.89-9 1.67-8 3 5
36 | XS5CS 17 .006 | -3.98-3 | 7.70-3 2 ||404 | .181 |-2.94-9 7.70-9 3 S
37 | XH5GSS 21 | .007 | -1.85-3 | 2.96-3 2 |l408 | .183 |-1.38-9 2.96-9 2 S
]

*See Table 6.4.1
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Table 7.1.5.1 (cont’d.)

h=k=1 m=m=1) h=k=1/10 (n=m=10)
No* Rule E‘l);;
Time . Error Est ] Time Error Est
nfe (sec) rror Estimate* 'k_rrl nle (sec) Error Estimate® [—rrl
38 | Miller 8 .002 -8.78-2 | 1.57-1 2 | 341 .154 | -6.71-6 1.57-5 21 3
39 | OF843S 12 .003 =5.03-2 | 6.34-2 1 |f 345 .156 | =2.96-6 6.34-6 243
40 | OM843A 12 .004 2.26-2 | 4.22-2 2 | 381 170 | 1.97-6 4.22-6 24 3
4] | OM843B 12 .004 -2.15-2| 3.713-2 2 | 381 .170 | -1.50-6 3.73-6 24 3
42 | OT883T 16 .005 -4.69-2| 9.32-2 2 | 385 172 | -3.76-6 9.32-6 24 3
43 | OX885 16 .005 -6.55-3 | 1.35-2 2 || 385 172 | 4.85-9 1.35-8 3| S
44 | OC8CS 20 | .006 |- -9.40-3| 1.98-2 2 || 389 173 | -6.93-9 1.98-8 31 S
45 | OS8CS 20 | .007 | -4.66-3| 9.29-3 2 | 425 .188 | -3.46-9 9.29-9 34 S
46 | OHIGSS 24 .008 | -1.81-3| 2.96-3 2 | 429 .189 | -1.38-9 2.96-9 24 5
47 | Simpson 9 | .003 | -4.10-2| 6.34-2 2 || 441 .202 | -2.95-6 6.34-6 203
48 | SM945 13 .004 -2.85-3| 5.07-3 2 | 481 213 | -2.07-9 5.07-9 201 S
49 | ST98S 17 | .006 | -1.264| 7.18-3 57 | 485 | .219 | 9.91-12| 7.18-9 [ 724 | 5
50 | SX985S 17 .005 -1.92-31 2.96-3 2 || 485 219 | -1.38-9 2.96-9 2] s
51| SCI9CSS 21 .007 -1.98-31 2.96-3 1 |l 489 221 | -1.389 2.96-9 2 S
52 | SS9CSS 21 .007 | -1.94-3| 296-3 2| 525 235 | -1.38-9 2.96-9 21 5
53 | Tanimoto 25 .010 | -1.95-3 - - 1| 529 236 | -1.38-9 - - S
54 | Lyness 9 .004 -8.60-4 | 2.26-3 3] 621 272 | 6.26-10( 2.26-9 41 5
55 | Radon 7 .003 8.794 - - |l 700 303 | 6.38-10 _ _ 5
56 | Gauss 9 | .004 { -6.014 - - || 900 .385 | 4.14-10 - - 5
57 | Boole 25 .010 6.18-4 - - [h681 .739 | 4.31-10 - - 5

*Sec Table 6.4.1

These results are included in the sense of a benchmark test to reveal possible errors in the cubature
formulas of Table 6.4.1. These and other results confirm the accuracy of the entries in Table 6.4.1.

Finally, we observe that for the double integrals considered, for any reasonable grid size the
composite fifth-order cubature rules, C5A, Tanimoto, Lyness, Radon, Gauss, and Boole generally all
produced approximately the same error; however, C5A required far less function evaluations and thus is
the best fifth-order method.

Similar comparisons can be made for the powerful third-order derivative corrected rule EM143.
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7.2 TRIPLE INTEGRALS
Denoting the step size in each dimension by h; = (b; - ai)/"i' i = 1(1)3, the 3-dimensional

formulation of MINTOV is

b3 by b,y
f / f f(x, y, z)dxdydz
aj ajy ay

= 2 h2h3Z Z Zf(al +hy iy - %), ag * hylia - %).a3 * hy iz - 4))

13-l lz-l ll-l

ny n, ny

7 gy . .
+ mhlh2h3 Zl Z L f(al +’1h1*”2 +12h2. as +l3h3)
i3=0i7=0i,=0

ny na
1 ' ' . .
- '24_0}1%}12}13 Z z [fx(bl,az +12h2, as +l3h3)
i3=0iz=0
- fx(al. Hz +i2h2. 03 +i3h3)]
ny
1 ’ ' . .
- 2—40—hlh§h3 Z Z [f,(al +’1hl' bz. as +I3h3)
i3=0 i|=0
- f;v(al +ilhl’ a,, az +I3h3)]
ny ny
| 2 ’ ’ . .
- 270—’1]}12,13 Z Z [fz(al +Ilhl, %) +12h2, b3)
i2=0 il=0
- fz(al +ilhl‘ a, +i2h2’ 03)]
n3

1

- 430 h h h3 ZO [fxy("l a,.ay tizh3) - fxy(al,bz,a3 +izh3)
3

- fxy(bl,az,a3 +i3h3) + fxy(bl'bZ'a3 +i3h3)]

nay
1 ’ . .
thhzhg Z [fxz(al.az +12h2,a3) - fxz(al,az +12h2.b3)
i2=0
= fxby a3 izhy.a3) + £,(b).ay +izhy. b3)]
ny

- 1440;1 1h3h3 D0 @ +ivhy ay.a3) - £, (@) +irhy a3, b3)
i1=0

- fvz(al +iyhy,by,a3) + fyz(al +ijhy. by, b3)] +E(S)

(7.2.1)



The truncation error may be estimated by

(by - ay)by - ay) by - a3)
604 800

E(N] < [(h?M? + hSmS

61,6 4,242 , ;2,802
t hyM3) + 35(h oMy + hihy M (722)
4,20042 , 12, 40,24 4 18, 2,42
thih3Myy + hyhy M3 + hyhy M3

2, 4,024 212,200222
+ hIng M) + 280hlh2h3M123]

Table 7.2.1 lists the number of function evaluations required by various composite multiple

quadrature formulas. In this respect, MINTOV is superior to the conventional formulas.

Table 7.2.1 Nfe for Several Multiple Quadrature Formulas Repeated nn,n3 Times

o MINTOV Simpson Lyness Gauss Boole
NI m3+9n2+27n+19 | (2n+1)3 | (n+1)3+7n3 (3n)3 @n+1)3

1 57 27 15 27 64

2 125 125 83 216 729

4 399 729 573 1728 4913

8 1835 4913 4313 13 824 35937

16 10 947 35937 33585 110 592 274 625

32 75 635 274 625 265313 884 736 2 146 689

64 562 899 2 146 689 2109 633 7077 888 16 974 593

100 2092719 8 120 601 8 030 301 27000000 | 64 481 201

7.2.1 A FUNCTION WITH VANISHING MIXED HIGHER-ORDER PARTIAL DERIVATIVES

We wish to approximate the triple integral

2,2 2
f J J- In(xyz)dxdvdz = In 64 - 3.
1 Y1 1

(7.2.1.1)
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Figure 7.2.1.1 Graph of z =In (xy) on [1,2]2
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The first-order partial derivatives of the function f(x,y) = In (xyz) are much less costly to
evaluate on a computer than is f. Moreover. the mixed second-order partials vanish everywhere. Thus it

is of interest to apply MINTOV to this tunction. The results are presented in Table 7.2.1.1.

Table 7.2.1.1 flz flz flz In (xyz)dxdvdz = 1.158 883 083 359 67

h|=h2=h3=l hl=h2=h3=l/10

Or-

Rule der
nfe Time (sec) Error nfe Time (sec) Error ¢
Trapezoidal 8 .002 1.19-1 1331 457 1.25-3 1
Midpoint 1 .000 -5.75-2 1000 361 -6.24-4 1
Ewing 9 .003 1.38-3 2331 818 1.82-7 3
MINTOV 57 .009 -6.41-5 3189 933 -1.14-10 5

For hy = hy = hy = 1/10, the MINTOV approximation is better than Ewing’s result by 3 orders
of magnitude. This confirms the theoretical result that the addition of partial derivative correction

terms can greatly enhance a numerical integration formula.

7.2.2 MINTOV vs. JPL’s MQUAD

Bunton, Diethelm, and Haigler [8] give the following example:

/2 ,Anf2 An/2
j f f cos (x) cos () cos(z)dxdydz = 8.0. (7.2.2.1)
-nf2 Y-n/2Y-n/2

The results of the DC-MQUAD algorithm using n; =n, =n5=2,3,5,8," - -, (cf. the Fibonnaci

sequence) and JPL’s routine MQUAD are presented in Table 7.2.2.1. Again, our method based on the

3-dimensional MINTOV formula (7.2.1) is superior to MQUAD.
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Table 7.2.2.1 MINTOV vs. MQUAD for the Integral [ (™7

Relative Errors Requested = 107, a = 1(1)10.

S con x) c0s ) o8 (D = 8.

Relative ||  MINTOV (DCMQUAD Algorithm) MQUAD (JPL Routine)
Error ]

Requested nfe Time (sec) Re;:l:rt‘i;:e nfe Time (sec) Rg:;:e
1071 360 198 | -1.11-3 2197 1634 | 874-5
1072 989 546 | -5.07-5 2197 1.635 | 8.74-5
103 2824 1.529 | -3.00-6 2197 1627 | 8.74-5
1074 2 824 1.529 | -3.00-6 24 389 17.641 | 4.13-6
103 9109 4971 | -1.63-7 35937 25693 | 9.70-8
10°6 32186 17.558 | -9.14-9 117 649 82.090 | 1.63-9
10”7 122135 66.611 | -5.06-10 614 125 421.889 | 2.59-11
108 122135 66.611 | -5.06-10 4173 281 2844.152 | 4.07-13
1079 483614 | 264343 | -2.69-11 4173 281 2844.114 | 4.07-13
10710 || 1967263 | 1076.794 | 1.55-11 || 31855013 | 21647.323 | 8.40-15

Figure 7.2.2.1 Graph of z = cos (x) cos (¥) on [-7/2, /2] 2
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7.2.3 AN EXAMPLE ILLUSTRATING THE PERSISTENCE OF FORM

Consider the integral

dydz
xyz

72 w2 .xf2 x2 3 p)
L LIVEEY722 in (o) sin0)sin@e X P
0 0 0

= 1.531 670 226 93.

If we let w2 = x2 + y2 + 22 then the first-order partial with respect to x is

fxp,.2) = [(l +w)cos(x) - (1 +w+x2)§“(")]5iﬂ(}’)8iﬂ(2)e’“’
x xyz

and the mixed second-order partial with respect to x and y is

w+ w2 +W(X2 +y2)+x2y2
wxy

fxy(x, »z) = [(l + w) cos (x) cos (y) +

- H%i sin (x) cos (y) - # cos (X) sin (y)].s_lm

xyz

sin (x) sin (v)

Figure 7.2.3.1 Graphofz =

1 +Vx2 ‘l'y2
xy

(7.23.1)

(7232)

(7233)

sin (x) sin () e"V* +y? on [-n/2,n/2]
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The results of applying MINTOV with various grid sizes are presented in Table 7.2.3.1.

a2 . n2 . m2 Ltw

Table 7.2.3.1 fO }'0 fo _x_\T sin(x) sin (') sin (z) e “dxdvdz = 1.531 67022693,
w2 = x2 +y2 4 72
Ewing MINTOV
ny=n,=n;
nfe Time (sec) Error nfe Time (sec) Error
1 9 .007 -1.54-2 57 048 -5.30-3
2 35 .031 -1.04-3 125 11 -8.75-5
189 174 -6.59-5 399 364 -1.36-6
1241 1.159 -4.13-6 1835 1.712 -2.13-8
16 9 009 8.486 -2.58-7 10 947 10.314 -3.66-10
32 68 705 64.978 -1.62-8 75 635 71.579 -3.76-11
64 536 769 509.407 -1.03-9 562 899 534.424 -2.00-11

This example illustrates the persistence of form concept, namely, the cost of evaluating a

derivative is approximately the same as the cost of evaluating the function.

In Table 7.2.3.1 for a given mesh size. the difference between the number of function evaluations
required by MINTOV and Ewing is the number of partial derivative evaluations required by MINTOV.
For example, for n; = ny = n3 = 16, MINTOV uses 1938 first- and second-order partial derivative
evaluations (pde) and takes 1.841 seconds, or an average of 950 microseconds per partial derivative
evaluation (us/pde). This is to be compared with the conventional Ewing’s formula which uses 9009 fe
in 8.438 seconds, or an average of 937 us/fe. MINTOV averages 939 microseconds per evaluation,
whether function or partial derivative.

Thus throughout this study we_have weighted a partial derivative evaluation the same as a function

evaluation, and refer to either simply as a function evaluation.
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8. CONCLUSIONS AND RECOMMENDATIONS

We have studied the problem of enhancing the accuracy of conventional formulas for evaluating
multiple integrals numerically over d-dimensional rectangles by the addition of partial derivative
correction terms evaluated on the boundary of the domain of integration.

The formulas in Chapter 5 were based on the double Euler-Maclaurin Summation formula (5.2.1)
and were found somewhat cumbersome to apply to practical situations because of the different weights
for different nodes.

The formulas in Chapter 6, based on the finite Taylor Series expansion of the integrand, are
much easier to apply in practice. We have constructed MINTOV (6.2.17), a fifth-order multi-
dimensional integration formula which may be considered as the d-dimensional generalization of the
1-dimensional Lanczos quadrature formula (6.2.19) or of Ewing’s cubature formula D@5@3 given in
Table 64.1.

For a single integral, the derivative correction terms are evaluated only at the end points of the
interval of integration. The situation is somewhat more complicated in higher dimensions since, as the
dimension increases, the boundary becomes increasingly more complex.

Of greater significance is the fact that in higher dimensions. most of the volume of a d-rectangle
lies near the boundary. We have accounted for this by constructing multidimensional integration
formulas with boundary partial derivative correction terms, the number of which increases as the
dimension increases.

Indeed, as can be seen in (6.3.2), the d-dimensional MINTOV with n subdivisions requires nd fe
at the centroids of the subregions, (n + 1) fe at lattice points, 2d(n + 1)9~! first-order partial
derivative evaluations at the lattice points of the 2d “faces” or (d-1)-dimensional hyperplanes, B,
which bound the domain of integration, and 2d(d - 1 {n +1)4~2 mixed second-order partial derivative .
evaluations at the lattice points of the 24 “edges™ or (d - 2)-dimensional hyperplanes which bound B.

In Chapter 6. 47 hitherto unpublished cubature formulas with boundary partial derivative

correction terms were given. Computable bounds for the truncation errors were also given.

150
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Three integration formulas, DF543S, XF543S, and OF843S (see Table 6.4.1) were discovered
which require mixed second-order partial derivative correction terms evaluated only at the corners of
the rectangular domain of integration. These formulas have the same error bound as Simpson’s rule;
however, they require far fewer function evaluations than Simpson’s rule. Of the three, DF543S is the
most efficient, requiring only half as many function evaluations as Simpson’s rule.

OF543S has no interior nodes and yet it is not as efficient as DF543S which has one node interior
to each cell. Thus, it is not always advisable to take as many points as possible on the boundary.

In cases where a third-order rule is considered adequate, DF543S should be preferred to Simpson's
rule.

The fifth-order MINTOV was compared with JPL’s routine MQUAD, and on the two test integrals
considered, MINTOV required fewer function evaluations to achieve a prescribed relative error than did
MQUAD.

The numerical results presented indicate that formula C5A or DH5GSS is an efficient and accurate
composite fifth-order integration rule. For a sufficiently small grid size (n = m = 4 for a double integral,
n =m =2 for a triple integral. etc.) C5A requires fewer function evaluations than Simpson's rule.

Therefore, in situations where first- and mixed second-order partial derivatives are easily calculated.
we have shown that the use of nodes satisfying the inclusion property coupled with the use of derivative
correction terms exhibiting the equal weight-alternate sign property can improve the accuracy and
efficiency of integration formulas. That is, whenever the first- and mixed second-order partial derivatives
are easily computed, the formulas of Chapter 6 are to be preferred to conventional composite integration
rules of comparable degrees.

Finally, future investigations should include the addition of weight.functions. more general domains

of integration. and the use of “‘difference correction terms.”
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