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ABSTRACT

ON THE DIFFRACTION OF PLANE ELECTROMAGNETIC

WAVES BY AN INFINITE SLIT

by Robert J. Spahn

The problem of the diffraction of plane polarized electro-

magnetic waves incident normally on an infinite slit of

finite width is solved by the use of the Lebedev integral

transform and the Wiener-Hopf techniqne. In particular, an

expression for the ratio of the transmitted energy per unit

area to the incident energy per unit area (transmission

coefficient) is obtained for a <<9\, where a is one-

half of the slit width and ‘A is the wavelength.
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I. INTRODUCTION

In this thesis the exact solution of the problem of the

diffraction of plane electromagnetic waves by an infinite

slit of finite width in a perfectly conducting screen is

discussed. The wave is normally incident and plane polar-

ized with the electric vector parallel to the edge of the

slit. The problem was first solved exactly using elliptic

cylinder coordinates by Morse and Rubenstein1 in 1938.

The solution involves an infinite series of Mathieu func-

tions. The analytical prOperties of these functions are

even now insufficiently understood and in the exploitation

of the solution, one is led almost exclusively to numerical

work.

In our solution, we choose the circular cylindrical coordi-

nate system to describe the electromagnetic field. In

this coordinate system, the solution to the wave equation

is an infinite series of Bessel functions of integer order

multiplied by circular functions. We choose to represent

the electromagnetic field by a contour integral in the

complex order plane such that the infinite series of Bessel

functions becomes the residue series of the contour integral.
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In the circular cylindrical coordinate system, the boundary

value problem is of the so-called two part variety and the

boundary conditions lead to a dual set of homogeneous inte-

gral equations that we attempt to solve by the Wiener-Hopf

technique. This technique leads to an infinite set of

equations in an infinite number of unknowns which we solve

by successive approximation. The solution thus obtained

enables us to verify all of the terms except one and, in

addition, to obtain a new term in the expression for the

transmission coefficient. This quantity was first obtained

by a different approximation method by Sommerfeld2 (see,

also, the review article by Bouwkampa). It is defined as

the ratio of the power transmitted per unit area to the

power incident per unit area.



II. STATEMENT OF THE PROBLEM

 

 

  

 

A plane electromagnetic wave, polarized with its electric

vector parallel to the z-axis, is incident normally on an

infinite slit of finite width, 2a, in a perfectly conducting

screen. The slit lies in the xz plane with its length

parallel to the z-axis; the screen extends to infinity both

in the x and the z dimension (see Figure l).

The time dependence is arbitrarily chosen as eiwt, there-

fore, a plane wave of unit amplitude traveling in a given

direction can then be written as e-i(k.r), where k is the

5





prOpagation vector.

The quantity Ez shall, in this thesis, be denoted by the

symbol U. The total electric field Ua above the xz plane

will be written as

U = U + U 3 y 0 (1)

"
V

where U0 is the sum of an incident wave and a reflected

wave as if there were no slit present in the perfectly

conducting screen. The function U0 is written as follows:

no = .11" - .‘m (2)

UI is the perturbation in the total electric field caused

by the presence of the slit.

Below the xz plane, the total electric field Ub is just that

caused by the presence of the slit, viz.,

Ub=UII; ygo (3)

Hereafter, UI and UII will be called the scattered fields

above and below the slit, respectively.

A. Boundary Conditions

The functions U and UI II satisfy the scalar wave equation,

ViZee

szr + kzy = o , (h)

and are subject to the following conditions:

(a) UI,II(x’y’2) a UI,II(-x’y’Z) ; (UI and UII are

symmetric about the yz plane).





(b) UI(x,y,z) = UII(x,-y,z) ; (symmetry about the

xz plane).

(C) UI=UII=0,¢=K/2,Pgao

(d) a UII a U1

(e) UI=UII,p§a, 49:1/2.

(r) a III II

Lim ( ——-'—- + ikU

P->°° 3?

radiation condition).

— U
I,II) > O ; (Sommerfeld s

(5) UI’ UII and their first derivatives must be

square integrable over all points (x,y),

(Meixner's edge condition).

B. Discussion of the Boundary Conditions

Boundary conditions (a) and (b) are statements describing

the symmetries of the wave field which are the result of

the geometry of the diffracting obstacle.

Condition (0) says the surface currents in the conducting

screen have such a direction as to cancel, exactly, the

tangential component of the electric field incident on the

screen.

Continuity of the magnetic field in the aperture is contained

in condition (d). Also, continuity of the scattered field

in the aperture is contained in (e).

Boundary condition (f) ensures that at great distances from
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the slit, the scattered field represents a divergent

travelling wave.

The Meixner edge condition stated that only a finite amount

of energy may be radiated by the singularity in the field

at the edge of the screen (per unit length in the z

direction).

C. Integral Representation of the Scattered Field

We would like to represent the solutions of the wave equa-

tion by integrals of the form

[LIA/\(M) H#(kp) on

where HPkaU is a Hankel function and L is a contour in

the complex order plane. However, in earlier work,h it

was found convenient to discuss solutions of problems of

this type for pure negative imaginary k, viz.,

k = -i1 , y > O, (5)

because this puts milder restrictions on the choice of a

contour and allows the use of the Lebedev transform theorem.

After obtaining the solution of the problem for pure negative

imaginary k, we transform to real positive k. In the light

of the above discussion, we represent the scattered fields

above and below the slit as follows:

UI =fii°°MA(LL) cosMCP KAY?) dLL 3

4’
(6)

M
a
n

H
A

H
A

m
m



U11:=fiwflAQL) cos{,u.(n - WINKfl(YP) d/(L,

§§¢<n,-n§¢§-%- ‘”

Here, §M(Y€U is the McDonald function.

The difference in the forms of the angular functions in the

representations for U and UII is a consequence of the
I

symmetry conditions (a) and (b).

The function jXLA) is the unknown function of our problem.

A theorem, which will be stated in the next section, enables

one to obtain necessary information concerning the poles and

growth Of A“)e

D. Lebedev-Kontorovich Integral Transform Theorem

As was stated earlier, this powerful theorem is used to

obtain necessary information about the unknown function

JALM) in terms of the boundary values. The transform

theorem5 will be stated without proof. It says the following:

suppose we represent a function gCYP) by ("transform

integral")

co

gm») = f4” A M.) Wye) an , (8)

then ("inversion integral")

M: 0 we) Knee) 9; (9)
sin mu

provided both integrals converge, g(O) = O, and >\(,u)/sin ye
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is an even function of ,u. and analytic in a strip of finite

width containing the imaginary axis.



III. APPLICATION OF THE BOUNDARY CONDITIONS AND A

DISCUSSION OF THE RESULTING INTEGRAL EQUATIONS

In this section, boundary conditions (c) and (d) will be

imposed on (6) and (7). These will lead to a pair of

integral equations that will contain the unknown function

Aw .

It will also be shown in this section that it is possible

to discuss the overall prOperties of [\Cu) on the complex

Lt-plane such as the location of its singularities and its

growth as I/LI —> on. This is possible without actual

knowledge of this function by discussions involving the

boundary values of the scattered field on the screen and in

the aperture.

Repeated use of Lebedev's transform theorem will be made in

this discussion.

Application of boundary condition (c) to (6) and (7) yields

a homogeneous integral equation, viz.,

ice

490/0. A“) Igufif’) cos/55!- (1,“. = O ; P: a. (10)

Application of boundary condition (d) to (6) and (7) yields
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an inhomogeneous integral equation, viz.,

ioo

f_i°°u2/\.(to sin 5-21 1am?) an e -yp;

p g a . (11)

The two integral equations, (10) and (11), are fundamental

in the solution of the problem and represent the known

boundary values on the screen and in the aperture.

The complete representation of the boundary values is as

follows:

twat/Mu) cos ”‘1‘ Ku(YP) dJ-«L =

U < a

= 3" P = (12)

O {9 Z a

100

_i°°u2.[\(p) sin’Eg-t- K“(YP) dpt =

“'71" 3 F é a

(1 )

_ 3{ Nu I 3

2 y
f}: p

where Uap is the unknown value of the scattered field in

"
V n
!

the aperture, and

_ aUII{ CyUII I }

374-33—

is the discontinuity of the magnetic field across the xz

ADI

y—>O- - 2Y3" y->O+ 

plane (unknown for p 2 a).
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A. Properties of JQJu)

It is now possible to study the properties of [\XLO without

actually knowing'j\XLO. In order to perform this study,

we apply the Lebedev theorem to equations (12) and (15)

giving the unknown function [\flu) in terms of the boundary

values.

By applying the Lebedev theorem to (13), we find, formally,

  

that

In: ’
Zya cos - ds (ix)

AHA) = - 2 2 {K»(x) deJA- -

n LL

dK“(x)

- 80,uflIX) dx x=ya -

. IAN a

1°°s7f{3——4—UHI}K< )d (11+)
RZLL a y u.Yp P °

Here, K“(x) is the McDonald function of complex order

and (ix) is a Lommel function which arises in evaluating
504:

a factor of the inverse Lebedev transform integral for the

function

«pspga

O ; P': a

ya

I; KJx)dx.

It remains to be proven that the conditions of the Lebedev

viz.,

theorem are satisfied. Two of these, viz., g(O) = O, and

the convergence of the first transform integral obviously
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are satisfied by inspection of (13). The other conditions

are that the inverse integral, viz., (lt), converge uniformly

and that .5352.. ‘A&¥A&&l- is even and analytic inill/LL =

sin EA' 2 coslfié

an infinite strip of finite width around the imaginary ,ic

axis. That these are, indeed, satisfied will be shown later.

Now it can be shown that the function inside the curly

brackets of (l#) is an entire function of‘ja.

The integral in the second member on the right side of (l#)

is also an entire function of J4. First of all, IKAWC’HN

rv e-Ye (0-1/2 as C’—-> 0° for all finite fl. Secondly,

”II I
1;;—-*- each satisfy Sommerfeld's radiation condition by

virtue of boundary condition (f) and, therefore, also behave

like {weed/2 as C —> m. Moreover, the integrand is

continuous in 6 for all finite ,4, except at 6’ = a, the

edge. However, bU/b y which here denotes the magnetic

vector behaves as (9 - a).l/2 by virtue of the edge

condition (3). Since Hflflve) is continuous at Q = a, the

integral, although an imprOper integral, converges uniformly

for all finite ‘;L-- it is entire inl/t.

Note that the proof in the last paragraph also verifies one

of the two validity requirements (viz., convergence of the

inversion integral, not shown before) in the use of Lebedev's

theorem above. Thus, (lA) gives us two properties of 1X9“):
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(i) odd function of M.

(ii) simple pole at LL = 0.

We now consider (12). As it appears, the right side does

not satisfy one of the conditions of the Lebedev theorem,

viz., g(O) = 0, because the currents giving rise to the

diffracted wave field must satisfy symmetry condition (a)

and will interfere constructively along the z-axis, even in

the aperture, 103., Uap(0) )5 O.

The function UaP(YFU possesses a Taylor expansion about

the point P = O which converges for 0 g P g a. This

expansion is even in F) because of boundary condition (a),

i.e., the scattered field is symmetric with respect to the

yz plane and in the aperture, x is [9. Thus, we can write

Uap (“y/J)

ngga (15)

Uap(0) + bapz + bit/)4 4» ... :

where Uap(0) is the value of the scattered field at P = o.

In order to circumvent the difficulty appearing in (12),

we subtract the value of the scattered field at the origin

from both sides, viz.,

firms/Mu) mtg-‘- K‘jyp) du- UaP<o> =

Uap(YP) - Uap(O) ; pg a (16)

-Uap(0) ; p Z a
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Now it can be shown that

l .-. filiim cosL-‘g- KAY?) dpue (17)

Using (l7), (16) can be written

f” Hg (0) m

-i°° LA{A(M) - fi } cos -2- KM(Y’0) M». a

= V('Yp) (18)

where

Uapwp) - Uap(0) ; Pg a

mp) = (19)

-Uap(0) ; p _>__ a

NY?) now has the proper behavior near P = O and one may

use the Lebedev theorem to show that, formally,

Ua (0) 2i sin‘-’:=2'5-fu up

A0.) = 15;— + -—-——2——- o V(yl0)KH(yp) 7, . (20)
It

The validity conditions of Lebedev's theorem again require

verification in this application. Considering (18), it is

obvious that the condition g(o) = O is satisfied and also

that the transform integral, viz., (l8), converges. We

still have to prove that

U (o)

 

- .32...

M = Aw) ““1 (21)

Bin” 2 sin 521‘-

is even and analytic in the strip and that the integral in

(20) converges. This will be shown later.
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The integrand in-(ZO) is a continuous function of f) in

the entire infinite interval as follows from (19) and (15).

As P ——> oo, VHF) remains finite and le‘YP) I ~e-‘YFP-l/2

for all finite Lt. However, near {0 = O, V(Yp)r~fiP2 and

IKM(-{p)l~p"R°“’, therefore, the integrand in (20)

converges uniformly in AA, only in the strip -2 < R8LL< 2 .

At this point, notice that the result just obtained verifies

the convergence of the inversion integral in the use of

Lebedev's theorem on (18).

The function of AA. represented by the integral in (20) can

be continued outside this strip by a method whose steps

we now outline: substitute the infinite series (15), and

invert the order of integration and summation. This can be

justified. Two types of integrals will result:

1: fim+l KM(YP) dF 3 m = 09 1e 29 co. ,

and

-1

if) KM?) df) -

Each of these integrals lead to wronskians of Ku(yp) and

82m+1,pL1YP)’ m a O, l, ..., and 80,p5ti°’ respectively.

These expressions are analogous to the one in (14).

Now, these Lommel functions all possess simple poles at

}x.= I 2n, n = 1, 2, 5, ....7 The residues are unknown
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because the coefficients in (15) are unknown, however, we

do know where the singularities are located.

Now the factor sin (532“- of the integral in (20) has simple

zeros at Lt = 1 2n, n = l, 2, 3, ..., therefore, the product

is an entire function of M. . Thus, we again see from (20)

that

(i) AHA) has a simple pole at p, = 0

(ii) A04) is an odd function of M.

B. Growth of AHA)

In discussing the growth of A01), we consider (14) for:

(a) lRepJ —->°° and, (b) lImuI —-> on.

(a) IReuI ——> on

IAWI

dso' (iya)
1

  

' 27a cos (i;-

"
A

12,4.

dK“(YBJ l

—— +so,#(i'ya) d'ya

+

licos—

,ux

—-—g- I I]: { #‘3 }Ke<w> d? g
‘2“

 

KP(‘Ya) dso¥u(iya)

M ' H- d‘ya l +"
A

I so diva) dKP(Ya) l

[A d‘ya

*B'%"fx()d.' (22)
auYPP 9





where

A

and

B

M being the

Now when ”L

therefore,

A180,

I

By the same

I f:w ae |~ I it;

 

 

 

Combining these results, we can write

Thus, as

  

  

 

K (va) K (Ya)

l1l9u)| 5 A{ | ’“'3 + ’“ 2

‘ .x& .1‘

+ B l 53:8.) l .

,u.

leuJ'-->‘w

K’uflya)

IAgxm/vl #2 

l i cos/%; M i

n2 ,

maximum absolute value of { BUII I }-S§——1- .

is large7

3/2

o (iva)|~| —‘-E)——3| .
’1’“ 9/1. vat

‘1“ 9A ”“2

dK (ya)
/u

V I N l/C §m(ya)| e

token,

(23)

(2h)

(25)

(26)

(27)

(28)

(29)

(30)
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(b) IIm/al --> 0°

Again taking absolute values of both sides of (14), we

  

  

  

 

write _ L‘x .

2ya cos i? dso (iya)

K 1 -

”VF” E I I2“ ' I (Ya) dya

dKPfl‘Ya) 1 cos I?

" sown”) 373—— + T!

c)U
. a{ -——I—Iil }K“(YP) dPl . (31)

Now for large FTI, it can be shown9

I ( )I e-(x/2)rT| ( )

K ya ... 32

“ 171172

where 7' = Imp. Also, it is easy to see that

ICOB —l~ e(1/2) '7' (53)

Using (25) through (28), (32) and (33) in (31), we can

write

IA<u>I~ A' + B' + C' (at)

171772 m572 m572

where A', B', and C' are constants (independent of’T).

Thus, as I'TI —> ”9

IA<u> |~ m'5/2 <35)

Summarizing the properties of 1X1u9, we have

(1) odd function of LL

Ua (0)

(ii) simple pole at LA ='O with residue Ii
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‘ K “(7a)

(iii) lRepJ —> .e, lenni. ‘M__ I

(1V) IIm/L‘l —> “’9 IAW) l~ rTI-S/ae T 3: ImI-L-

C. Validity of the Applications of Lebedev's Theorem

In section A, the proofs of the applicability of Lebedev's

theorem to (12) and (13) were given except one, i.e.,

>\(u)/sinpx be even and analytic in the infinite strip of

finite width containing the imaginary axis. This proof

follows.

Referring to the theorem and to (13),

Nu) , Ml gm

sinus 2cos‘2?

Two of the preperties of AHA) already determined were that

JAKLO is odd and has a simple pole at LL = 0. Therefore,

F&nflk0 is analytic at LL.= O and is even in LL. The

circular function in the denominator coséég is even in AL

and has simple zeros at La = 1 (2n + l), n = O, l, 2, ....

Since IA<u>I~ITI'5/2 as m —> ...,

|mu__l_l~ -(x/2) ITI

2 cos (:2- |T|572

as [T1 -->‘~.

Thus, it has been determined that Afil;fl%&; is even and

2cos E-

analytic in a strip -1 < ReLk< 1.
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Referring now to (18),

U (0) U (0)

>\(!2 = .[KPQ -' ‘22-- = [AJGNUJ - -2£I-

  

Anni

51”,” 2 sin ’31 2 Msin ‘52-‘5-

By arguments, in terms of the prOperties of A“), analogous

to those above, it is easy to see that the numerator and

denominator are both even in.pt, therefore, the ratio is

even. Near L4 = O,

U (o)

{uA<u) - 132—1—- } ~11.

also,

Ail”..E§
Bin 2 2 ,

therefore, the ratio is analytic at LL = 0.

The circular function (sinfl%?) in the denominator ensures

prOper behavior for ITI -—> CO. Therefore, A1 - Ua (O)

Lani

2 sin‘é}

is even and analytic in an infinite strip -2 < Rel1< 2

containing the imaginary axis.



IV. SOLUTION OF THE PROBLEM

Before applying the Wiener-Hapf technique in the solution

of this problem, it is necessary that we obtain two homogeneous

integral equations over a contour L. The required prOperties

of the integrands of these integral equations are:

(a) that each integrand be analytic on a half plane

and that these two half planes be complementary

with a common strip of overlap containing the

contour L,

(b) that each integrand approach zero at least

algebraically in all directions as the variable

is allowed to go infinite in its respective half

plane of analyticity.

A. The Dual Integral Equations and the Wiener-Hapf Technique

The two integral equations that we are concerned with are:

finA(U) “03 8; KMYP) (1“ = 0 3 [9: a9 (10)

and a

impulsin‘fig-ACA) - 07w} KPWP) dpt = 0 ;

f) g a , (36)

where 601) is the Lebedev transform of the function

21
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we: Ma

0 3 f): a ’

ViZo, .

_g[129_3 - 12 {K (x) dso,L§ix) _

sinyx x2 “ dx

dxufix)

- Baum) 37—}... °

It can be shown by methods similar to those used in section

III-B that CT(L0 is even in 11. and analytic in a strip

sinux
‘

of width --1 < Reu< 1. As IRepI —> an, l 0.04) N

sinpx

KM(Ya) and as IImHl —> ”9 I 6- 0*) ~ e-(I/Z) '7' ”1-3/2

,\, -ZZ__- sinpa

  

where j” = Imlt.

Now the integrand in (36) is an entire function of}4.. ‘We

would like to modify it so that an infinite semicircle may

be added to the contour (here taken along the imaginary

axis but it can be moved since the integrand is entire)

without changing the value of the integral. To accomplish

this, we substitute, for Kyflvffl, the following identity, viz.,

I_ (7(3) - 1,1(YP)

-; sinpfi

 

With (37) substituted in (36), (36) becomes

Iii-”HEE- {Main‘é} AU!) - O-(LAU IMdpL= 0;

f): a . (38)
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One can see that the integrand in (38) is still entire.

Its decay on a right half plane is such as to allow the

addition of an infinite semicircle without changing the value

of the integral. In showing this, one needs the following

relation, viz.,

u -

I (1,0): F'g%{l + o(,-1;)} (39)

as Re Lt—> +00. The remaining factor in the integrand has

the following behavior, viz.,

eéL-{sein’gl Ado- 6<w1|~
 

p.

14(33):; {1 o<s)}|

as Refu——+> an. The product, therefore, behaves as

1(a)M but since < a, this product goes to zero.
1;. P-

 

( ) e(x/2)|’T|

I y ...

" P J at" IT":

and

L).

W {Main-é-IAKW- 0(M)}~

-(u/2)VT|

N ° sin(F(‘T))

21: IT!

 

where ’T’ = Imu, and - F(’T) is a real function of ’T . It is

easy to see that the product behaves as sin(F(T)) : this
T

goes to zero for large I71.
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Now that (38) defines a right half plane, we must be able

to define (10) prOperly on a left half plane. In the present

form of the integrand, this cannot be done. It is necessary

to make the following "split":

,aAga) see/9:23 ,.. 6w. 9(7).) (to)

where 994), obtained from (20), is the following expression:

69%) gfj: (vapor?) - Uap(0)} 17579) 96-9 .

iU (0)}; ds_ (~iya)

_EL—{%a.}{%.¥a) (1 13M _

1: ya'

'
4
'

dI_ (Ya)

s_1,/u_(-iya) _L-dya } (1+1)

Analysis of (41) by methods similar to those used previously

shows that 954%) is analytic to the left of the line

Ros/4: +2, and that for large /a, it behaves as IIy‘éyaH.

Utilizing these prOperties of 6}“), (10) can be modified

and written as follows:

Ana/(a) 94W?) got, = O; 6’ Z a . (#2)

Now as Re/u—> duo, 65¢)N ( a 2)?“ and 9L(Y€)N

fiat-7L"?

(%fl2)flb , therefore, the product behaves as 11%: (CD/a7“).

l +/%

Since Re/u,< 0, this product goes to zero for G _>_ a as

Re/L —> - me
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‘ 9 e+(1t/2)I”rl

As llmul = ITI -—-> on, (M)~ ”11/2 and KM(yp)~

-(n/2)IT|

...e 172 sin(F(T)), therefore, the product again goes

ITI

to zero. Thus, we may add an infinite semicircle to the left

of the contour and, since the integrand is analytic to the

left of ReLA= +2, the value of the integral is not changed.

Summarizing, we now have a dual set of integral equations

satisfying the preperties stated at the beginning of this

chapter and, also, a so-called functional relation connecting

the two integrands. They are:

f .4:— {nsnt-g: Am - C(11)}IJYP) dM= o :
-i~ SinLL!

pg 8. e (58)

£1006 (M) KM(YP) dyL = O ; {J in, (1+2)

and

MAW) eoe‘tg- a 6040 +. 6(4)) . (#0)

We now apply the Wiener-Hopf technique beginning with (38)

by writing the integrand in terms of a ”plus function," i.e.,

a function that is analytic on a right half plane with

algebraic decay in all directions on that half plane, viz.,

‘* Assin‘tzuj\flu9 - (7(L9

PEI-2 2) { 2 sinut } 3 8+0» 3 (#3)

3*(UQ has a decay built into it which is at least of order
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3L . Using (#0), (43) can be written

2LL

 

pa:

+ (a 2)“ tan -2' (em) +961») -6(LA)

g (M) =fifiéfiT£ sinpcn } .(lH-t)

We now define h-(VJ by

 

. up. -

9(a) = _LLT&_7_(8‘ f3, 1 -1L0u) (“5)

or
M

jut

One can easily see that h-OU) is analytic to the left of

the imaginary axis with algebraic decay, e.g., a "minus

function." Also, h-(—LD (a corresponding "plus function")

would be analytic to the right of the imaginary axis and

its value would be

 

 
 

 

h-(w) ___ (Ya/2)"*I:'£b+n)_e_<-u> . (,7)

when (45) and (47) are inserted in (nu), we get

1:15 -

W = i W -r~n_

_ were (u) . 8 (,8,
rUCUIsinps

One more step is to write C7(L0 in terms of a "plus function"

and a "minus function." We begin by writing

60¢) = Q1019 + Q20A) (1+9)

where
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(iva)
a 80 pt

Q1013 = - 3;; {I_“_(Ya) :Ya’ -

dI_ (ya)

- so,#£iya) dya (50)

and ( )

iya
a ds0,};-

Q2(H) = 32¢; {I#('Ya) m -

defiya)

- 50,“.(iva) E??— . (51)

Now, it can be shown that Q1 and Q2 are entire functions

and that Q2(-p) = -Q1(p0. we introduce "plus" and "minus"

functions into 0 (u) by writing

-L& A

calm) = 3% qi’ou) (52)

QZuHJaZ) ago». (53)

Notice also that q;(-u) = -qI(uJ. Now by inserting (49),

(52), and (53) into (#8), there results

  

  

i ii iii

gen
tan _ 2L!- -

+ 2 - (YaZZ) h (~I-A)

s (n) = { )h (u) -

n 21" (IQFU +M) cos2 LEE

iv v

qim) (Ya/2)“ qgm)

M n - . (51+)

['20. + l)sinp.x

Considering (5#), we would now like to collect plus terms on

one side and minus terms on the other. Before doing this,
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we must discuss where the poles lie in each of the terms (i),

(ii), (iii), (iv) and (v) in (SA):

(i) is an entire function of LL. having algebraic decay

in all directions,

(ii) -- remove its simple poles at LL 2 -1, -3, ...,

-(2n + l), n = O, l, 2, ... by subtracting an

infinite partial fraction series; then this

function minus this partial fraction series will

be a minus function to the left of ReLA= +1,

(iii) -- remove simple and double poles at Lu'z (2n + l),

n = O, l, 2, ... by infinite partial fraction

series, then this function minus its partial

fraction series will be a plus function to the

right of Rep: -1, A

(iv) is a minus function to the left of _Retms o,

(v) -- remove simple poles at LL = O, l, 2, ...,

then this function minus its partial fraction series

will be an entire function of;x..

When each term in (SA) is modified according to the preceeding

prescription, "plus functions" are collected on one side of

the equation and "minus functions" on the other. The

properties of the "minus" side of the resulting equation are

(l) analytic to the left of the line ReLL= O,

(2) algebraic decay in all directions in that half

plane.

The prOperties of the "plus" function side are
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(1) analytic to the right of the line ReLx: -1,

(2) algebraic decay in all directions in that half

plane.

Thus, the "plus" side and the "minus" side have a common

strip of overlap, each side is analytic in its respective

half plane and has algebraic decay in that half plane,

therefore, by Liouville's theorem, each side is equal to a

constant, zero.

Letting LL.= -2m - l, m = O, l, 2, ..., the minus side of

the above discussed equation (drapping the superscript) can

be written

 

2 l h(-2n - l)

-—h'(-2m-l)+-—Z
1‘2 1‘2 n=0 n - m

min

1 (ya/2)hn+2h(-2n - 1)
 

“"72 2 +
21 n=O (2n):(2n + 1)£(m + n + l)

hn+2
_g- 2 (YRZZ) h(-2n - 1) y {108(E58') -

+

:2 n=O (2n):(2n + l):(m + n + l

hn+2
l ]. (vs/2) h'(-2n-l)

-(p(2n + l) ' En + 2} - IZDBO (2n)1(2n+l)2(m+n+l) g

_ q(2m . 1) _ (~1)nq(n)(va/2)2n (55)

’ u(2m + 1) 2
n=0 x(n!) (2m + n + 1)

As can be seen by inspection, this infinite system involves

the unknown h(-2n - l) and its derivative. It will be

seen in the next section that the scattered fields can be
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written in terms of this unknown.

B. The Scattered Field Expressed as a Series Expansion

Referring to (7), the scattered field, U for y g 0
II’

(below the slit) is

m

UH a $0qu cos[M(1t - |¢|)}K“(YP) an . (7)

We wish to express this integral representation as a residue

series. To accomplish this, it is necessary to use (#0),

712. 9

MAW) eos‘éé‘l = em) + 9am . (1+0)

Inserting (40) in (7) yields

 

f“ 90.) cos{p\(u - |¢|).}K“(yp) on

”I: = 2 -i°° ILL
cos 2!

. (56)

Since 9(1).) is analytic to the left of Re u: +2 and

behaves as |I_L£va)l, an infinite semicircle can only be

added on a left half plane.

The poles of the integrand are the simple poles of cos (i;-

which occur at Ix = :(2p + l), p = O, l, 2, .... Therefore,

applying the Cauchy Residue Theorem yields

n

on = -81 D; e(-2n - 1) K2n+1(vp)(-l) .

. cos{(2n + l)|¢l} . (57)

Now
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(ika 2)2n+1h(-2n - 1)
6(-2n - l) = - —Lr(2n + l) (58)

and

K(ik€’) e - 951‘- e‘(i“/2)(2n*i)nHéillme) . (59)

Substituting (58) and (59) into (57), UII becomes

 

Z (-1) n(ka/2)2n+1h(-2n - 1)

= I” r‘(2n + 1)
n=0

. cos{(2n + l)|¢|]H(2)l (he) . (60)

Note that the transformation back to real positive k has

been made via Y = ik.

C. The Transmission Coefficient

The transmission coefficient,‘T, is defined as the ratio of

the power transmitted by the slit per unit length along 2

to the incident power on the slit per unit length along 2.

In terms of the complex Poynting vector, it can be shown that

this quantity may be written

bu

7.... - ifs/2 Re(iUII 3-52 )€d¢ . (61)

When equation (60) is substituted into (61) and the integral

is evaluated for large p , the following expression is

obtained:

an

7': 2u2ha{|h(-l)l2 + Egfi- |h(-3)|2 + ...} . (62)

Reference is now made to equation (#6), viz.,
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t M .

h(M98) = C F(1 -i)e(‘*1€) (#6)

where

c = 2: , k = -iY' .

Now it can be shown that equation (#1) can be expressed as

a double series, viz.,

 

 

2p
19 2j-M2 c

6(MQC) =3 2nj=o bZJc P30 (-#+2P+23)P:_T—MP+l" (63)

where the sz are the same as in (15).

Combining (#6) and (63), we arrive at

( ) i Z ( )2 ‘Zpd (6#)h M-c = - d c ,.9 at 3:0 23 on (2p-u¢23)p£(l-P9p

where

_ 2j-1
d23(c) - szs

and

(a)p = «(a + l)(a + 2)...(a + p - l)

.
0

10:1, p=0’ 19 see.

Setting AA = -2n - l in (##) yields

h(-2n - 1,5) = '3‘- }: d2 (5) '

 

2x 380 j

Z r ‘Zpd (6 )e
. 5

P=0 2p + 2j + 2n + 1)p2(2n + 2)P
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Taking the derivative of (6#) and letting Lk = -2m - 1

gives

 

 

  

c2p+l

2%J ==JL-§Eflj(c)
d'lpa-Zm-l 2n 3:0 p=0 p3(2p+2m+2j+l)(2m+2)p

e{ 1 ...—L...

2m + 2j + 2p + 1 2m + 2

+ + + 1 } (66)
2m + 3 "' 2m + l + p °

When (65) and (66) are substituted into (55) and the right

side of (55) is expanded in terms of powers of c, there

results the following expression:

 

1 22
2p+l

' :3j=0 d23(°) P=0 p1(2p + 2j + 2m + l)(2m + 2)p .

 

 

  

 

. {2 1 + —1_ + ——— + . . . +

p + 2j + 2m + 1 2m + 2 2m + 3

l } +

2m + l + p

i Z 1 Zodz p20 c2p+l

+ 3 n - m j<c> 2p+2n+l+2j)p. (2n+2) -
2K n:O =0 P

m c#n+2 on

--3*- 220 2 E: d. (c) ‘
M3 W: (2n)!(2n + l)1(m + n + 1) 1:0 2j

29+!

 

"
F
\
/
1
8

p==0 (2p + 2n + l + 2j)p:(2n + 2)p +

 

c#n+2

.1. E:OT :1 {lo c -
“3 W: fin) (2n + l)' (m + n + l) 8
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(P(2n+l)-EE—;—}J:odaj(c).

. c2p+1

i=0 (2p + 2n + 1 + 237§:(§n + 27;

 

 

4n+2

' ‘1‘: (27:?2 m c 1 )2d (c) ‘
213 n=0 n n + m + n + 1 jgo 23

 

Z c2p+l

. (2p + 2n + 21 + 17(2n + 2)p

 
 

p==0 p'

.{ 1-+_-_1-—+ .00 + 1 )3

2p + 2n + 23 + 1 2n + 2 2n + l + p

 

is
m 1

(2m + 1)1:2 {(1 - 61390) E IZn + 15 - 1} "

3
16

2m-1
1

2(2m + 1);2 {- 3(2m + 2F "5
(1 - 5 O) .

1 (1-31)(2n-2)

' {m(m + l) (m + 2)(m1+ l)m(m€ '17} + "°} ° (67)

 

We now seek a solution of (67) for the d2j(c) valid at

and in the neighborhood of c = 0 by successive approximation.

Comparison of the magnitude of terms in (67) leads us to

conclude that d2 (c) must have the following form:

3

d (c) = d + :2{(log c - q:(1) - 1)d +
Zj 2j,0,0 2 Zj ,1, O

h l 2
d23,1,1} + 8 {(log 5 — g)(1) - 2) d2j,2,0 +





+ (log a 4(1) - lm ' ' +

35

2 23,2,1 d23,2,2} *

€6{ coo } + co. 9 (68)

Before proceeding further in the solution of (67), let us

utilize (68) to obtain a more appropriate expression for the

transmission coefficient. First, the transition back to

real k is made via y = ik and since c = Ya/Z, this is

equivalent to replacing a by ika/2. With this modifica-

tion, one can write (6h), using (68), as follows:

hsuqka)

 

a2 d23,0,0 +

330 (23 + 2 -,a)(1 ng)

a .

+(longa-é-4-i‘); —J-'—'-210 +

..
.

 

+

3

...

=0 (2 -,u. + 2j)(l «703



+ _§1;§;§ } + 0(k7a7) (69)

where q)(l) = - log 8.

When (69) is squared and pk takes on the values -1, -3,

-5, ..., the transmission coefficient can be written as

follows:

.(Zgam,(zm,+1(zm).
3:0 3 + l 3=0 23 + 1 2 3:0 23 + 3

.(2 1211252)“: fawn}: Sam)“

3:0 23 + 1 3:0 23 + 1 3:0 23 * 1

7 7
Ail-{(10%-EEK-)2“: 333131214.

42%)1(§od23,1,0

3:02 23 + l

1 l 2 0 2 1 0

+ (log%—- 2)(2(3:0 Eli-T)(Zod5311—?)4-
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+

“
N
I
H

+

(:0 d23,o,o)(§Od23,2,1)

23 + 1 23 + 1

d d

21.1110 :0 211131

(HZOZJ+1)(
23+1)}+ooo}+

+
+

In order to obtain expressions allowing solutions for the

unknown d's, we substitute (68) into (67) and set coef-

ficients of like orders of magnitude in c equal to each

other. Only the systems of equations giving solutions for

  

the d23,o,o’ d23,l,0’ d2j,l,l’ d23,2,0’ and d23,2, 1 "ill

be listed:

.. ..

Eda. { 1 “1-2 1 }=
i=0 3’0’0 (23 + 2m + 1)2 2n=0 (n-m)(23+2n+1)

aim

 

x m x

- - (§;_:_T) {(1 - sm,0) 2m(m + l) - 1} - E’Sm,0

  

 

(71)

Z. { 1 J): 1 }=
3:0 23.1.0 (23 + 2m + 1)2 2n_-0 (n-m)(2n+23+1)

nfim

d

1 2 0 O

=m+l Zj+1
(72)
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co

D
\
/
1
8

1 l2 1 }_

- 2 (n-m)(2n+23+l) -

  

d23,l,l{

 

i=0 (23 + 2m + 1)2 n=0

nfim

- E: d23,o,o { 1 (21 2 2 g
” 3:0 (23 + 2m + 3)‘E3_:—2 08 - - 3 - °"

2 1 1 1 1

-2j+1)-Fm(l+-2-+-3-+...+E)}-
 

co

 

 
 

  

 

_ n , _ 1 d21,0,0 _ n +

8(m + 1)2 2(m + 1) 3:0 (23 + 1)2 8. m,0

+ I g + I {_ (2m - 1)-

EH m,l 2(2m + l) 3(2m + 2)

- 2 m(m + l) - m,l (n+2)(m+l)m(m-1)

(73)

2 a { 1 A): 1 }=
3:0 23’2’0 (23 + 2m + 1)2 2n=0 (n-m)(2n+23+l)

nfim

—- 1' 2: 3211119 (7#)
" m + l 5=0 23 + l
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d

Variation of Z iii-212

23 + l

3:0

as a Function

of the Order of the Approximation

4x#
8x8

d0,0,0 = 2.0187102 40,0,0 = 2.005408#

62.0.0 = -1.0672165 42,0‘0 = -0.89439#63

9 ? - -

d4 0 0 = 0.202h5745 dh,o,o = -2.5352520

? ? l .

d6,0,0 = -°-735635#9 d6,6,6 = 11-119179

d89090 8 .#3'9h5776

d d . 66.2669 4

5311-919 = 1.5983721 1°'°'.° 3
i=0 d12’0’0 a -67.7183h5

d14’0,0 = 12.717386

6x6
7

. . _ d

d090g0 - 2.0077678 320 #2:+010 I 1.530171

d2,0,o . -1.058509o

d4’0,0 = 0.35200261

d6.0.o = -2.7605063

d8,0,Q 3 “01"203099

d10,o,o = -2.7091091

5 d
23,0,0 3

21 + 1 1.5825320

i=0



#0

10x10

do;o;o = 2.002967#

d2,0,0 = -1.1958266

dines) = 3.8505777

de’o’o = -28.299519

d8,0,0 = 81.291771

d10’0,o = -87.507227

d12,0;0 . -38.883055

d1h.0.0 s 163.80%38

d16,0,0 = -12#.17881

d18,0’0 = 29.265336

9

£28 ggligfg 8 1.57385

12x12

do;o;0 = 2.0026802

d2’0,0 = -1.0015692

d#.0.0 a -0.303958h3

66’0’0 = 1.1861691

d8,o’o = -7.7028185

d10’0,o = 18.972307

d124040 a -2h.769373

d1h4040 = 25.0h0875

dlé’o’o = -26.08380h

d18;040 = 7.563h3u1

d20,0,0 . 17.h76718

d22,o,o . ~12.216622

11 ,

2 12.1.2.9:2 = 1.57#942
3:0 23 + 1



60,040 - 2.0025757

d24040 = -o.987838#2

d#,0,o = -0.53010458

d64040 = 2.1633397

d8’0,0 = -7.5h75131

010,0,0 = 9.1255387

d12,o’o = -2.0882360

d1#,0,0 = 6.0645652

d16,0,0 = -16.#36335

d18,0,0 s —12.h38990

620,0,0 = u3.091#01

622;0;o = -20.321572

dah’o’o = -3.8012758

626,0;0 = 1.8655891

1

2311919 . 1.57h912
3:0 3 + 1

16x16

d0,0,0

d2,0,0

d9,0,0

d6,0,0

d8,0,0

d10,0,0

d12,0,0

d11+,0,o

d16,0,0

d18,0,0

d20,0,0

d22,0,0

d29,0,0

d26,0,0

d28,0,0

d30,0,0

15

d

i=0

2.0023806

-0.97961759

-o.65507263

2.5709285

-6.9332251

5.65507ot

-2.6968822

15.213107

-2#.266l56

36.726h81

-31.9hh528

31.938553

18.111970

-52.795791

21.888138

£112.19. = 1.5711668
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E: d2' 2 1 { 1 2 ' %’ I )(21 2 1)} 3
3:0 3’ ’ (23 + 2m + 1) n=O 3‘” 3+ 3*

nil

_ _ 1 Z d23,1,0 + 1 Z d23,1,1 _

‘ 23 + l m + l 23 + l

 

 

#(m + l)2 3:0 3:0

_ 1 d23,1,0 . (75)

at“ 1 15 3:0 (23 + 1)2

In all of the above expressions, m = 0, +1, +2, +3, ....

It is to be pointed out that the solutions for d ,
23,0,0

and d are identical.

d23,1,0 23.2.0

One also notices that the matrix of the coefficients of all

the d's is the same for each expression, i.e., (71)

through (75).

The method used to solve (71) and (73) was that of successive

approximations. The order of the matrix and its corresponding

solution is listed in Table I.

d _

From this table, one notices that the E: 2%11212 appears

380

to approach x/2. This value is necessary in order to have

agreement with Sommerfeld's resultz. (See also Bouwkampa).

as

12.1.2.2
Granting that 23 + 1 approaches x/2, then also do

3:0
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co ‘

d d . ’
2110 2 2

Z 53-11-4— amid:0 gilt—1’:- approach n/2.

i=0

In obtaining a solution to (73), it was necessary to use

the numbers d0,0,0’ d2,0,0, dh,0,0’ .... But as can be

seen from Table I, the only numbers that were determined

were d0,0,0 and d2,0,0 perhaps to the tenth place.

Thus it was not possible to obtain even an approximate

solution to the first coefficient d . .

0,1,1

However, using

the results that have been obtained above, one can express

the transmission coefficient, as far as we have gone in

the expansion, as

233 255

T=1‘—‘g‘%- - 1%fi-<1°s%‘-‘--%> +

77
ka

§_§i§_— (103 2%5 - %02 + unknown terms .



V. DISCUSSION AND CONCLUSIONS

The Lebedev transform, when applied to the problem of the

slit, yields two homogeneous integral equations. These

two equations are solved by the Wiener-Hapf technique

resulting in a double infinity of linear algebraic equations

in terms of the unknowns h(-2n - l) and h'(-2n - l),

n = O, 1, 2, .... _The method of successive approximations

was applied to these equations.

An expression was obtained for the transmission coefficient

involving the unknowns h(-2n - l) and h'(-2n - 1). It

was possible to obtain the first few terms in this expression.

There was exact agreement between our result and the known

result5 except for a constant which we have not been able

to ascertain because of the slow convergence of the series

involved. However, a new term has been obtained.

an
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