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ABSTRACT

ON THE DIFFRACTION OF PLANE ELECTROMAGNETIC
WAVES BY AN INFINITE SLIT

by Robert J. Spahn

The problem of the diffraction of plane polarized electro-
magnetic waves incident normally on an infinite slit of
finite width is solved by the use of the Lebedev integral
transform and the Wiener-Hopf techniq#e. In particular, an
expression for the ratio of the transmitted energy per unit
area to the incident energy per unit area (transmission
coefficient) is obtained for a << A, where a is one-

half of the slit width and A 1is the wavelength.



ON THE DIFFRACTION OF PLANE
ELECTROMAGNETIC WAVES BY AN

INFINITE SLIT

By

Robert Joseph Spahn

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

1963



& Qe

P/ Ef 04

ACKNOWLEDGMENT

The author wishes to thank Dr. Alfred Leitner for
suggesting the problem and for helpful discussions
throughout the course of its solution. His constant
encouragement, criticisms, and assistance are greatly

appreciated.

ii



TABLE OF CONTENTS

Chapter

I. INTRODUCTION
II. STATEMENT OF THE PROBLEM
A, Boundary Conditions
B. Discussion of the Boundary Conditions
C. Integral Representation of the
Scattered Field
D. Lebedev-Kontorovich Integral
Transform Theorem
III. APPLICATION OF THE BOUNDARY CONDITIONS AND
A DISCUSSION OF THE RESULTING INTEGRAL
EQUATIONS
A. Properties of A (W
B. Growth of A\ (W
C. Validity of the Applications of
Lebedev's Theorem
IV. SOLUTION OF THE PROBLEM
A. The Dual Integral Equations and

the Wiener-Hopf Technique

iii

Page

w & W

11
16

19
21

21






TABLE OF CONTENTS, CONTINUED
Chapter

B. The Scattered Field Expressed
as a Series Expansion
Ce The Transmission Coefficient
V. DISCUSSION AND CONCLUSIONS

REFERENCES

iv

Page

20
31
b
45



LIST OF TABLES

Table
©o .
d
I. Variation of E: §§ii9%9 as a Function

§=0

of the Order of the Approximation

Page

39



I. INTRODUCTION

In this thesis the exact solution of the problem of the
diffraction of plane electromagnetic waves by an infinite
8lit of finite width in a perfectly conducting screen is
discussede The wave is normally incident and plane polar-
ized with the electric vector parallel to the edge of the
slit. The problem was first solved exactly using elliptic
cylinder coordinates by Morse and Rubenstein1 in 1938.

The solution involves an infinite series of Mathieu func-
tions. The analytical properties of these functions are
even now insufficiently understood and in the exploitation
of the solution, one is led almost exclusively to numerical

work.

In our solution, we choose the circular cylindrical coordie
nate system to describe the electromagnetic field. 1In

this coordinate system, the solution to the wave equation
is an infinite series of Bessel functions of integer order
multiplied by circular functions. We choose to represent
the electromagnetic field by a contour integral in the
complex order plane such that the infinite series of Bessel

functions becomes the residue series of the contour integral.
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In the circular cylindrical coordinate system, the boundary
value problem is of the so-called two part variety and the
boundary conditions lead to a dual set of homogeneous inte-
gral equations that we attempt to solve by the Wiener-Hopf
technique. This technique leads to an infinite set of
equations in an infinite number of unknowns which we solve
by successive approximation. The solution thus obtained
enables us to verify all of the terms except one and, in
addition, to obtain a new term in the expression for the
transmission coefficient. This quantity was first obtained
by a different approximation method by Sommerfeld2 (see,
also, the review article by Bouwkampa). It is defined as
the ratio of the power transmitted per unit area to the

power incident per unit area.



II. STATEMENT OF THE PROBLEM

z-axis

Figure 1

A plane electromagnetic wave, polarized with its electric
vector parallel to the z-axisy is incident normally on an
infinite slit of finite width, 2a, in a perfectly conducting
screen. The slit lies in the x2 plane with its length

parallel to the z-axis; the screen extends to infinity both

in the x and the z dimension (see Figure 1).

The time dependence is arbitrarily chosen as eiwt, there-

fore, a plane wave of unit amplitude traveling in a given

direction can then be written as e'i(k.r), where k is the

3






propagation vector.

The quantity Ez shall, in this thesis, be denoted by the
symbol U. The total electric field Ua above the xz plane
will be written as

+0;,5 y20 (1)

where Uo is the sum of an incident wave and a reflected

wave as if there were no slit present in the perfectly

conducting screen. The function Uo is written as follows:

Uy = 1KY _ o miky (2)

UI is the perturbation in the total electric field caused

by the presence of the slit.

Below the xz plane, the total electric field Ub is just that
caused by the presence of the slit, viz.,

U, =10

p = Urs IO (3)

Hereafter, UI and U will be called the scattered fields

II
above and below the slit, respectively.

A. Boundary Conditions

The functions U, and U 1 satisfy the scalar wave equation,

I I

viz.,
vy +x% =0, (&)
and are subject to the following conditions:

(a) UI’II(x,y,z) = UI’II(-x,y,z) 3 (UI and U , are

symmetric about the yz plane).
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(b) UI(x,y,z) = UII(x,-y,z) $ (symmetry about the
xz plane).

(C) UI=UII=0’¢=K/2’PZa.

Q) 2 Ul J U, .
J¢ >3 T g >3 T :
(e) Up =05, p<a, ¢

(£) 0V 11
Lim ( =s—=2== 4 ikU

po= O P

radiation condition).

x/2 .

I,II) —> 0 3 (Sommerfeld's

(g) Urs U;p and their first derivatives must be
square integrable over all points (x,y),

(Meixner's edge conditionm).

B. Discussion of the Boundary Conditions
Boundary conditions (a) and (b) are statements describing
the symmetries of the wave field which are the result of

the geometry of the diffracting obstacle.

Condition (c) says the surface currents in the conducting
screen have such a direction as to cancel, exactly, the
tangential component of the electric field incident on the

screene.

Continuity of the magnetic field in the aperture is contained
in condition (d). Also, continuity of the scattered field

in the aperture is contained in (e).

Boundary condition (f) ensures that at great distances from
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the slit, the scattered field represents a divergent

travelling wave.

The Meixner edge condition stated that only a finite amount
of energy may be radiated by the singularity in the field
at the edge of the screen (per unit length in the z

direction).

C. Integral Representation of the Scattered Field
We would like to represent the solutions of the wave equa-

tion by integrals of the form

fLLAA(bL) H,(kp) dix

where H (k) is a Hankel function and L is a contour in
the complex order plane. However, in earlier work,4 it
was found convenient to discuss solutions of problems of
this type for purevnegative imaginary k, viz.,

k=-iy , y >0, (5)
because this puts milder restrictions on the choice of a
contour and allows the use of the Lebedev transform theorem.
After obtaining the solution of the problem for pure negative
imaginary k, we transfgrm to real positive k., In the light
of the above discussion, we represent the scattered fields

above and below the slit as follows:

U, =f_ iAW) cos it K, (vp) am

¢

(6)

A
WA
nA
A



(-]

Urp = im’“‘/Xgu) cos{u(n = [¢1)} K, (ye) du 3

$psma mmgps-3. )

Here, KM(YFQ is the McDonald function.

The difference in the forms of the angular functions in the
representations for UI and UII is a consequence of the

symmetry conditions (a) and (b).

The function /\(«) is the unknown function of our problem.
A theoremy, which will be stated in the next section, enables

one to obtain necessary information concerning the poles and

growth of /\(u).

D. Lebedev-Kontorovich Integral Transform Theorem

As was stated earlier, this powerful theorem is used to
obtain necessary information about the unknown function

JQLM) in terms of the boundary values. The transform
theorem5 will be stated without proof. It says the following:
suppose we represent a function g(yf) by ("transform
integral™)

C

g(ye) = f geo A N Ku(YE) du (8)

then ("inversion integral")

2 o 8(ve) K. (yE) -d(,f (9)

sin mu

provided both integrals converge, g(0) = O, and A(w)/sin mu
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is an even function of 4L and analytic in a strip of finite

width containing the imaginary axis.



III. APPLICATION OF THE BOUNDARY CONDITIONS AND A

DISCUSSION OF THE RESULTING INTEGRAL EQUATIONS

In this section, boundary conditions (c) and (d) will be
imposed on (6) and (7). These will lead to a pair of
integral equations that will contain the unknown function

Aw).

It will also be shown in this section that it is possible
to discuss the overall properties of 1\9«) on the complex
M =plane such as the location of its singularities and its
growth as |x]| —> e, This is possible without actual
knowledge of this function by discussions involving the
boundary values of the scattered field on the screen and in

the aperture.

Repeated use of Lebedev's transform theorem will be made in

this discussion.
Application of boundary condition (c) to (6) and (7) ylelds

a homogeneous integral equation, viz.,

oo M A\ w) K. (YO) cos/"‘?n du =0 ; P> a. (10)

Application of boundary condition (d) to (6) and (7) yields
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an inhomogeneous integral equation, viz.,

fi“uzf\(w sin 5 K, (Yp) dk = ~yP;

p<a. (11)

The two integral equations, (10) and (11), are fundamental
in the solution of the problem and represent the known

boundary values on the screen and in the aperture.

The complete representation of the boundary values is as

followsi

f:iwu./\(u) cos‘éai K. (yP) dm =

P<a

Uap
] { (12)
0 F7 a

A

-e

nv

-e

00

PN sin ME K, (vp) ape =

P P
_E{ Q11,1
2

3y P

where Uap is the unknown value of the scattered field in

a

nA

(13)

nv
]

the aperture, and

J UII,I aUII

A1,
{dy Y= 33

y—>0" ° ay y—>0+

is the discontinuity of the magnetic field across the xz

plane (unknown for p > a).
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A. Properties of Aw
It is now possible to study the properties of_/xaﬂ without
actually knowing f\XLO. In order to perform this study,
we apply the Lebedev theorem to equations (12) and (13)
giving the unknown function j\OA) in terms of the boundary

values.

By applying the Lebedev theorem to (13), we find, formally,

that
2ya cos ‘&= (ix)
Aw = - — 2{K(x)—x‘l:——-—-.
nA
dK, (x)
L(ix) 3 }x=ya -

i (:OS"'A"‘lE
2 f TI-IA-I K, (yp) ap . (1)
n ﬁL

Here, K,(x) is the McDonald function of complex order

and 1) “(ix) is a Lommel function which arises in evaluating
,

a factor of the inverse Lebedev transform integral for the

function
P P

o 3 P 2 a
ya
fo K"(X) dx .

It remains to be proven that the conditions of the Lebedev

UN
o

Vvize,

theorem are satisfied. Two of these, viz., g(0) = O, and

the convergence of the first transform integral obviously
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are satisfied by inspection of (13). The other conditions

are that the inverse integral, viz., (14), converge uniformly

in . and that _hﬁﬁl_ ,Atéxﬁﬁl_ is even and analytic in

sin mu © 2 cr.nsz&é1

an infinite strip of finite width around the imaginary _«

axis. That these are, indeed, satisfied will be shown later.

Now it can be shown that the function inside the curly

brackets of (14) is an entire function of .

The integral in the second member on the right side of (14)

is also an entire function of 4. First of all, I[K,(ye)|~

,.ve"Yf‘ e'l/a ag (—> o for all finite . Secondly,
0Urr.1
1;;—-*— each satisfy Sommerfeld's radiation condition by

virtue of boundary condition (f) and, therefore, also behave

like e-Yee-l/a as @ —> =, Moreover, the integrand is
continuous in ¢ for all finite «, except at @ = a, the
edge. However, bU/a y which here denotes the magnetic

vector behaves as (€ =- a).l/2

by virtue of the edge
condition (g). Since K, (y€) is continuous at € = a, the
integral, although an improper integral, converges uniformly

for all finite _« -- it is entire in «.

Note that the proof in the last paragraph also verifies one
of the two validity requirements (viz., convergence of the
inversion integral, not shown before) in the use of Lebedev's

theorem above. Thus, (14) gives us two properties of A(W):
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(i) odd function of i

(ii) simple pole at (o = O.

We now consider (12). As it appears, the right side does
not satisfy one of the conditions of the Lebedev theorem,
viz., g(0) = O, because the currents giving rise to the
diffracted wave field must satisfy symmetry condition (a)
and will interfere constructively along the z-axis, even in

the aperture, i.e., Uap(O) £ O.

The function Uap(YF» possesses a Taylor expansion about
the point P = O which converges for 0 < 0 < a. This

expansion is even in F’ because of boundary condition (a),
i.es«y the scattered field is symmetric with respect to the

yz plane and in the aperture, x is /9. Thus, we can write
U('Y)-—-U (0)+bP2+b “'+'.. :
ap f’ ap 2 #/o '
OSPSa (15)
where Uap(O) is the value of the scattered field at f7 = 0.
In order to circumvent the difficulty appearing in (12),

we subtract the value of the scattered field at the origin

from both sides, viz.,

jiimMA(M) cos&Zl K (YP) d - Uap(o) =

Uap(YP) = T,(0) 5 Psga

'Uap(O) : P > a

(16)
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Now it can be shown that

1= ;}i-fii“ cos ¥F K,(yp) a8 (17)

Using (17), (16) can be written

j“‘” v__(0) x
—joo }.A{A(M) - -—%‘: } cos > K.(yp) du =

= Viyp) (18)
where

Uap(‘YP) - Uap(O) i P<a

-Uap(O) ; p > a

V(YP) now has the proper behavior near f’: O and one may

use the Lebedev theorem to show that, formally,

AR

A U0 21 sin'S f' ap
(L = xE + = 0 V(YfﬁK“(YF) 7 - (20)

The validity conditions of Lebedev's theorem again :equire
verification in this application. Considering (18), it is
obvious that the condition g(o) = O is satisfied and also
that the transform integral, viz., (18), converges. We

still have to prove that

A U, (0)
sinpn 2 sin 4

is even and analytic in the strip and that the integral in

(20) converges. This will be shown later.






15
The integrand in .(20) is a continuous function of F’ in
the entire infinite interval as follows from (19) and (15).

As [0 —> =, V(yp) remains finite and [K.(yp)| Ne-w’P-l/z

for all finite A.. However, near [ = 0, V(YP),‘,pZ and

IKﬁjypﬁ|—~—/7'ReLA, therefore, the integrand in (20)

converges uniformly in A+ only in the strip -2 < Reix< 2 .

At this point, notice that the result just obtained verifies
the convergence of the inversion integral in the use of

Lebedev's theorem on (18).

The function of 4« represented by the integral in (20) can
be continued outside this strip by a method whose stgps

we now outline: substitute the infinite series (15), and
invert the order of integration and summation. This can be

justified. Two types of integrals will result:

j:fm*'l K“(YP) dF H m = 0, 1’ 2, eoe 9
and
f "Lk (yp) a
aP wlYP P ®
Each of these integrals lead to Wronskians of K,(yp) and

32m+1.LJiYP)' m=0, 1, «.oy and so’kéiyp), respectively.

These expressions are analogous to the one in (14).

Now, these Lommel functions all possess simple poles at

M= +2ny n = 1, 24 3, ....7 The residues are unknown
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because the coefficients in (15) are unknown, however, we

do know where the singularities are located.

Now the factor sin‘%; of the integral in (20) has simple
zeros at M = + 2ny n =1, 24 3, ecey therefore, the product
is an entire function of (4. Thus, we again see from (20)
that

(1) A nas a simple pole at gy =

(ii) A(}A) is an odd function of At.

B. Growth of /\(w
In discussing the growth of JAKPO, we consider (14) for:

(a) |Remd => @ and, (b) |Imul —> e,

(a) |Red| =—> o

2ya cos"i;- dso.“_(iya)
—_—r . o
| Aw | < ' = I lK’*(Ya) Ta
dK,(va)
- M(iYa) ava I +
i cos & jw
+ ' | ( }K (yp) ap| <
K, (ya) ds | (iya)
P 0,“
s A{ | dya l +

BO,IA( iya) dK'A('Ya)
' A dya I

B |=]

+







where

2vya cos»‘“?,t
A= l 3 I
R
and x
i cos A M
B = |,
2
n
M being the maximum absolute value of

Now when u is large

therefore,

Also’

7

3/2
lso!ﬂ(iya)lfvi Sya) I ’

W -
dya 9o/t - p?
dK ,(ya)
jL
| e | ~ Vngﬁya)l .

By the same token,

[, sacver oo |~ B2

Combining these results, we can write

Thus, as

1A | < a{

|Repu| —> oo

1Ayl ~ |

E
w3

a) I .

| =
2

K,(ya)
2

a) | .

| .

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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(b) |Impd —> o

Again taking absolute values of both sides of (14), we

write “x :
2ya cos = ds, ,(iya)
Aot < | 22| e opm oY)
= xS Ya

(. ) dKM('Y&)I | i COSA:Z'I' I
S0, {8¥8) G|+ | — == | -

ta,u-
JU
. f: ( -C)-yi:l }K, (yp) dpl . (31)
Now for large |7|, it can be shown9
& (va) | .-(1/2) 17| (32)
K,(ya) |~ 22
g 71272
where 7 = Im, Also, it is easy to see that
Using (25) through (28), (32) and (3%) in (31), we can
write
| N |~ A . B, & (34)
1772 171572 71572
where A'y B', and C' are constants (independent of 7).
Thus, as [T| ——> oo,
| AW | ~ 71752 (35)

Summarizing the properties of _A_(M), we have
(i) odd function of
v, (0)

(ii) simple pole at L = O with residue xi
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K, (ya)
2 '

(1v) |Imud —> =y A I~ 1752, T = Imwc.

(11i) |Repd —> oo, IA(M)IA« |

c. Validity.of the Applications of Lebedev's Theorem

In section A, the proofs of the appliecability Qf Lebedev's
theorem to (12) and (13) were given except one, i.e.,
>\(u)/sinmt be even and analytie in the infinite strip of
finite width containing the imaginary axis. This proof

follows.

Referring to the theorem and to (13),

A(m) - JTPAN(N

sinux 2cos “?‘

Two of the properties of A(M) already determined were that
M is odd and has a simple pole at A& = O, Therefore,

HA(M) is analytic at /4 = O and is even in AL. The
circular function in the denominator cos‘-g- is even in (&

and has simple zeros at At = + (20 + 1)y n = 0, 1, 2, ....

since AW I~ITI"2 as [F| —> w,

‘MAM |~ o= (3/2)IT1
2 cos ‘;‘.2’_‘. T 3/2

as || —> e,

Thus, it has been determined that M—A—(’“;)“- is even and
2cos >

analytic in a strip =1 < Remn< 1,
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Referring now to (18),

U__(0) U _(0)
AR _ Moo - B __’*A("‘J' o1

AATC
sinjo 2 sin &5 2 8in "525

By arguments, in terms of the properties of lAKLO, analogous
to those above, it is easy to see that the numerator and
denominator are both even in p\p 4 therefore, the ratio is
even. Near AL = O,

u__(0)
WA - 2B} ~ 4,

&1809

ME __4x
sin > > 9

therefore, the ratio is amalytic at AL = O,

The circular function (sinﬁ%?) in the denominator ensures

proper behavior for |[Y| —> e, Therefore, jﬁl U, (0)
W - JARE
2 sin‘%?

is even and analytic in an infinite strip -2 < Remu< 2

containing the imaginary axis.



IV. SOLUTION OF THE PROBLEM

Before applying the Wiener-Hopf technique in the solution
of this problem, it is necessary that we obtain two homogeneous
integral equations over a contour L. The required properties
of the integrands of-these integral equations are:
(a) that each integrand be analytic on a half plane
and that these two half planes be complementary
with a common strip of overlap containing the
contour L,
(b) that each integrand approach zero at least
algebraically in all directions as the variable
is allowed to go infinite in its respective half

plane of analyticity.

A. The Dual Integral Equations and the Wiener-Hopf Technique

The two integral equations that we are concerned with are:

and

j:,,}*{p.sin‘iziAm) -OW} Kyp) d =0 3
P § a o (36)

where O () is the Lebedev transform of the function

21



YP3 pPga
o ; [)Z a ’
ViZo’ .
O‘(m .. x-a- {K (x) dBo u(iX) _
sinux 12 M dx
dK, (x)
- "o,u(i‘) ax }x='1a *

It can be shown by methods similar to those used in section

III-B that (O (L) is even in AL and analytic in a strip

sinux
of width -1 < Reu< 1l. As |Rey| =—> e, I g M| __
sinux
K (ya)| and as |Impul —> o, | g (W Ne-(:/a) 17 |,:”-3/2
-~ T- sinux

where T = Imgc.

Now the integrand in (36) is an entire function of (L . We

would like to modify it so that an infinite semicircle may

be added to the contour (here taken along the imaginary

axis but it can be moved since the integrand is entire)

without changing the value of the integral. To acconpligh

this, we substitute, for K“('Yp), the following identity, viz.,
£p - =t 2000 (37)

= sinux

With (37) substituted in (36), (36) becomes

j‘:i"o si:kpn {‘*sinb‘a—n A.(U) -0} I, du=0 3
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One can see that the integrand in (38) is still entire.
Its decay on a right half plane is such as to allow the
addition of an infinite semicircle without changing the value
of the integral. In showing this, one needs the following

relation, viz.,

LIy 78
I.(yp) = F%% (1 + o) (39)

as Repu——> +»o, The remaining factor in the integrand has

the following behavior, viz.,

|2 (et N1 - oo}~

-pa
as Rep——> +», The product, therefore, behaves as

,,u (ﬂ) I but since p < a, this product goes to zero.

As |Imp] =—> o,

o) e(:/z)ITI
I,(yp)~*———
WY T T

and

A
sinux

e-(:/a) 7
2n |7l

(,usin 2 Nw -0 W}~

sin(F (7))

where T = Imw, and - F(T) is a real function of 7'. It is

easy to see that the product behaves as sin(F(J)) ; this
7T

goes to zero for large |7l.
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Now that (38) defines a right half plane, we must be able
to define (10) properly on a left half plane. In the present
form of the integrand, this cannot be done. It is necessary

to make the following '"split':

L) cosAR = O + 6o (40)

where 95#), obtained from (20), is the following expression:

6 ¢

[* d
5z Jo (T, (v®) - 7, (0)} 1_/“(79) ?Q .

iU _(0)u ds_ | (-iya)
S (g e

+

d1_ (ya)
s_l’/‘(-i'ya) —4"——‘”& } (41)

Analysis of (41) by methods similar to those used previously
shows that G(«) 1is analytic to the left of the line

Reu = +2, and that for large 4, it behaves as II_?“(Yg)I.

Utilizing these properties of (9}//—), (10) can be modified

and written as follows:

_iwﬂl(ﬂ—) Bu(yQ) d =05 C2a. (42)
Now as Rew—> =m, B ()~ (ya/2)™" and K (ye) ~
M A== >

(¥sz)ﬂ' , therefore, the product behaves as l‘% (C/aY“l.
1l + 4

Since Rex < Oy this product goes to zero for € >a as

RQ/L — - 00,
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' e+(t/2)|71
As |Impl = IT1 —> =, & (W)~ —7z— end K,(yp) ~
T
e-(n/z) [Tl
—~ | |l 5 sin(F(Y)), therefore, the product again goes
T

to zero. Thus, we may add an infinite semicircle to the left
of the contour and, since the integrand is analytic to the

left of Rem= +2, the value of the integral is not changed.

Summarizing, we now have a dual set of integral equations
satisfying the properties stated at the beginning of this
chapter and, also, a so-called functional relation connecting

the two integrands. They are:

f 2 — (msin S Awy - 0w vp) au= 0

~joo ginpux
/)g a (38)
j:wé (W K (yp) au=0; >a, (42)
and
uAw) cos™sE = Ow) + B(-1 . (40)

We now apply the Wiener-Hopf technique beginning with (38)
by writing the integrand in terms of a "plus function," i.e.,
a function that is analytic on a right half plane with

algebraic decay in all directions on that half plane, viz.,

“ einsE AW - 0w
}ir_.’ 20( 2 =gt 5 43)

g'() has a decay built into it which is at least of order
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1l . Using (40), (43) can be written

}LZ
y s
# tan’== (B +O(-W) - O (LW
gt = xaz2) 2 : } . (sh)
i Mm] sin (4m
We now define h () by
' (ya/2) % nT (W
W = = (45)
or “
BT (W) = (ya/2) l_;(i - 1) G . (46)

One can easily see that h~ (1) is analytic tq the left of
the imaginary axis with algebraic decay, e.g.y, a "minus
function." Also, h (=) (a corresponding "plus function")
would be analytic to the right of the imaginary axis and

its value would be

-
R (o) = (ya/2) [;'E:A)+“)-8'(-w . (47)

When (45) and (47) are inserted in (44), we get

s

tan ‘= 2M .-
+ 2 - (ya/2) " h™ (=w)
g W = { } T (W - -
x ar'(#)r‘(l +u~)c052‘%t-
® .
[0 sinpx ¢

One more step is to write O (1) in terms of a "plus funection"

and a "minus function." We begin by writing

O W = o + a0 (49)

where
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(:wa)

a 50,
QW = - ¥ (1_ (va) ay—a'—" -
ar_ (ya)
- so"’.(i'ya) Ta (50)
and ( )
d iya
a [
LW = (1,(ya) T -
dI, (ya)
- sO,}.‘(iYa) E'-Y-a—‘—- . (51)

Now, it can be shown that Ql and Qz are entire functions
and that QZ(-;Q = -Ql(,u). We introduce "plus" and "minus"

functions into U (W) by writing

- jA
QW) = Sﬁ%ﬂ a] (W (52)
Q()-%qa(ﬁt) : (53)

Notice also that q‘z'(-u) = =q7(). Now by inserting (49),

(52), and (53) into (48), there results

i ii iii
Mmn

tan — 24 . -
+ - (ya/2)“" h™ (=)
g (m) = { Jh™ (k) -

ol w1 + ) cosa"-"‘,g1
iv v
q;(u) (Ya/a)z“ q; ()
- . (54)

Mo Fz(u+ 1l)sinm x

Considering (54), we would now like to collect plus terms on

one side and minus terms on the other. Before doing this,
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we must discuss where the poles lie in each of the terms (i),
(ii), (iii), (iv) and (v) in (54):
(i) is an entire function of j+ having algebraic decay
in all directions,

(ii) =-- remove its simple poles at & = =1, =3, ...,
-(2n +1)y n=0,1, 2, ... by subtracting an
infinite partial fraction series; then this
function minus this partial fraction series will
be a minus function to the left of Relr= +1,

(iii) =~ remove simple and double poles at jo = (2n + 1),
n=0y1y 29y eeo by infinite partial fraction
series, then this function minus its partial
fraction series will be a plus function to the
right of Rep= =1,

(iv) is a minus function to the left of Rem= 0,

(v) == remove simple poles at fr = 0y 1y 2, ceoy
then this function minus its partial fraction series

will be an entire function of jfu .

When each term in (54) is modified according to the preceeding
prescription, "plus functions" are collected on one side of
the equation and "minus functions" on the other. The
properties of the "minus" side of the resulting equation are
(1) analytic to the left of the line Refi= O,
(2) algebraic decay in all directions in that half
plane.

The properties of the "plus" function side are
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(1) analytic to the right of the line Rem= -1,
(2) algebraic decay in all directions in that half
plane.

Thus, the "plus" side and the "minus'" side have a common
strip of overlap, each side is analytic in its respective
half plane and has algebraic decay imn that half plane,
therefore, by Liouville's theorem, each side is equal to a

constant, zero.

Letting . = =2m =1, m =0, 1, 2y ¢¢.y the minus side of
the above discussed equation (dropping the superscript) can

be written

2 1 h(-2n = 1)
- = h'(=2 -1)+—Z——-——
t2 m x2 pco B~ m
n¥m
1 (ya/2)*™*2p(_on - 1)

-T2 2 ¢
2x° n=0 (2n)¢(2n + 1)!(m + n + 1)

©o

bn4+2
_a_z (ya/2)*2*2h(<2n - 1) a
x2 n=0 (2n)¢(2n + 1) (m + n + 1) {108(%?) =

+
N oo

kn+2
1 12 (a2) 2201 (-20-1)
-y +1) - In + 2} - 2n)3(2n+1) ! (m+n+1)

tznso

_alzme1) | ) (D@ e/ (55)
mlem + 1 n=0 x(a)%(2m + n + 1)

As can be seen by inspection, this infinite system involves
the unknown h(-2n - 1) and its derivative. It will be

seen in the next section that the scattered fields can be
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written in terms of this unknown.

B. The Scattered Field Expressed as a Series Expansion

Referring to (7), the scattered field, U for y <O

I1°
(below the slit) is

Urg =j:°°uA(p) cos{(n = IPDIK (yP) d . (7)

We wish to express this integral representation as a residue
series. To accomplish this, it is necessary to use (40),

ViZ.’

WA cosE = BW + O(-d . (40)

Inserting (40) in (7) yields

f°° O (W cos{in - 1P }K,(yp) du
Ui = 2J 4 . (56)

LY %
cos 3

Since O(W is analytic to the left of Rem= +2 and

behaves as II_Léya)l, an infinite semicircle can only be

added on a left half plane.

The poles of the integrand are the simple poles of cos ‘:23-

which occur at i = #(2p + 1), p = 0y 1, 2, «... Therefore,

applying the Cauchy Residue Theorem yields

U = -8 ) O-zn - 1 Koy, (Y (<D

n=0

. cos{(2n + 1)I®l} . (57)

Now
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O(-2n - 1) = = (ika/2)2n+lh(-2n -1)

e+ D (58)
and
_ _in _<(in/2)(2n+1) _(2)
K(ikf) = - > e | Hy 1€ . (59)
Substituting (58) and (59) into (57), U;; becomes

z (-1)%(ka/2)2*p(-2n - 1)
UII = ll»‘l

n=0 f=(2n + 1)
(2)
. cos{(2n + 1)I¢I}32n+l(ke) . (60)

Note that the transformation back to real positive k has

been made via Yy = ik.

C. The Transmission Coefficient

The transmission coefficient, T, is defined as the ratio of
the power transmitted by the slit per unit length along =z

to the incident power on the slit per unit length along =z.
In terms of the complex Poynting vector, it can be shown that

this quantity may be written

- -1—-f( Re(1U aUII) a¢ (61)
T ==K Jnyo ReWIp 357047 .

When equation (60) is substituted into (61) and the integral
is evaluated for large f), the following expression is
obtained:

b 4
T = 2ka(In(-1) 1% + B2 n(=3)1% + ..} . (62)

Reference is now made to equation (46), viz.,
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" .
h(u,c) = € r'(l .:)G(M)C) (l’s)

where

e=2, k=-iy .
Now it can be shown that equation (41) can be expressed as

a double series, viz.,

2p
_im Zj-uz €~
G(e) = 57 obajt pao (~k+2p+23)pI[(p+l-py (63)

Jj=

where the sz are the same as in (15).

Combining (46) and (63), we arrive at

2p+l
i €
h(uye) = o= Z d (c)z _ (64)
! 2% =0 23 p=0 (2p-u¢2j)p2(1-p)p
where
= 2j-1

dzj(c) = sze

and

(a)p =ala + 1)@ + 2)esela + p = 1) 3
a0=1, p=0’ 1’ eceoe

Setting ML = =2n = 1 in (44) yields

)
h(-2n = 1l,¢e) = % d2

(e) -
j:o j
Z o (65)
[ ] . 5
p=0 (2p + 2§ + 2n + 1)pi(2n + 27p
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Taking the derivative of (64) and letting M = =2m - 1

gives

%.I = ‘Lz (c) z ¢°PHL .
4 pem2m-1 2x J=0 p=0 pd(2p+2m+2j+1) (2m+2)p

o{ 1 + 1
2m + 2j +2p + 1 2m + 2

+

. (66)

+ l +ooo+-—l_'}
2m + 3 2m + 1 +p

When (65) and (66) are substituted into (55) and the right

side of (55) is expanded in terms of powers of ¢, there

results the following expression:

o0
N Z 2p+l
“3 {=o 23(5) p=0 pl(2p + 2] + 2m + 1) (2m + 2)p :
-{ 1 + 1 + 1 + +
2p +2j+2m+1 2m+ 2  2m+ 3 °°°
NP S
2m + 1 +p
©0
2p+l
+ 13 n i m z daj(':) z (2p+2n+1+23)pd(2n+2)_ ~
2n n;O j=0 p=0 <P L P
nfm

‘+n+2 z
5 (20)3(2n + 1)(m + n + 1)2 dyye) -

£k
u[\/_l8

j=0
o 2p+l
L) f .
p=0 (2p + 2n + 1 + 23)p2(2n + 2)
1 Z ’+n+2 1 (10 i
(2n) (2n + 1)! (m + n + 1) g ¢

15 n=0
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(P(2n+l)-m—} Z (c)o

. c2p+1

=0 (2p +2n +1 + 2j)pt(2n + 27;

Ln42
- L E: z L E: d,.(e) -
3 n=0 (2n)!(2n + 1) (m + n + 1) 23

2% j:O
©0
z 2p+1
. p=0 pi(2p + 2n + 2§ + 1)(2n + 2)p
1 i 1 oo e 1
: {Zp +2n +2j +1 *Zne2t *%58 + 1 ;';} =

ie n 1
repere A RIS o R R

3
ie 2m - 1 1
2(2m + 1).2 (- 3(2m + 2) =2 1 - é ) .

1 (1-5 ) (em = 2)
) {n(n + 1) (m+ 2)(n + l)n(m - 1)

} o+ eel} . (67)

We now seek a solution of (67) for the dzj(c) valid at

and in the neighborhood of € = O by successive approximation.
Comparison of the magnitude of terms in (67) leads us to

conclude that d, (¢) must have the following form:

J
d,.(e) =d + 52{(log e - () - Lya +
23 2350,0 2'%23,1,0
L 1,2
dZJ,l,l} +¢ {(log e - Q) - 3) d2j,2,0 +
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+ (loge =Y =Da,, . +a

2’%j3,2,1 23,2,2} *

Ol v } % een (68)

+ €

Before proceeding further in the solution of (67), let us
utilize (68) to obtain a more appropriate expression for the
transmission coefficient. First, the transition back to
real k is made via Yy = ik and since ¢ = ya/2, this is
equivalent to replacing ¢ by ika/;. With this modifica-

tion, one can write (64), using (68), as follows:

| kaz 924,0,0 | 138
hiuska) = 2! {2 =0 2;j - " _3_ :
) 424,00

+

j=0 (23 + 2 = )1 =4)

d

+(logm- 23

2

ni-

[N
418
F
(=]

(@]
+

+12—‘)

Y

zda 1,1, k5a5 Z "23,0,0
{=o 2 -,u. {¢ 2323+

+

)+ (logga--l*,-ji) .

1
T @ 20 2 "2*73

o0

2.‘],1 0
(2 +2 = ) (1 =p)

+
;jO

©o

d2_'],1,1
L G oics 20T <)

+

J

+



Z 2122} 4 ox’a?) (69)

23 = M

where (Y (1) = - log B.

When (69) is squared and M
=59 eeey the transmission coe

follows:

T j=023+

33 Y 440, 5

takes on the values -1, -3,

fficient can be written as

1l

¢ z 2§ +olo)(z 2§ +110 1( z 2§ *030

,(z da;j,o,o)
j=0 23 *

+ -gu- {(log
d
.(z ~2422,0,

.']=°

(E 2§ ,,010)(2 924,151 11)}+

2 EE 23,0,0
B2 . )2 (« 53-31—{-)

1( E: Zj + 1

2 +

L
. (1og B2 - Ld( ) M)(z i,
i =

0 2 + 1



37

1) e ) e

j=0 2

+

+

_23,0,0 23,2,1 2 l
(32 2j+l)(z s2d12,1,

d
2j,1,0 23,1
‘233‘11"{')‘22—3‘1‘1—{"}*"-}"

+

+

In order to obtain expressions allowing solutions for the
unknown d's, we substitute (68) into (67) and set coef=
ficients of like orders of magnitude in ¢ equal to each

other. Only the systems of equations giving solutions for

the dyy 5.0 955,1,0° 925,1,1° 925,2,00 8B4 dy5 5 9 will
be listed:
o w
z a ( 1 it 1 -
j=0 3+0,0 (2§ + 2m + 1)2 2n 0 (n-m)(2§+2n+1)
nfm

- (- ) mm - -3 %0

(71)
). 4y 1ol L -3 1 } =
i 23491,0 (25 + 2m + 12 2,20 (n-m)(2n+2j+1)
n#m
d
1 23,0,0
m+ 1 2j + 1 (72)



©0
) o
23,
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( : -3 : } =
2o 1,1 (25 + 2m + 12 2.2 (n-m) (2n+23+1)
n#m
= Z 22110, (s (2log 2 - 2 = 2
"j=o(2j+2m+3)l+j+2 °8 < = I
2 1 1 1 1
-2j+l) -#m+4(1+-2'+-3-+ e *;)}-
% 25,00 _x¢
8m + 12 2@+ 1) o6 (55, 1p2 8 mo
n n (2m - 1)
* 2% gm,l * SGm s D 3(2m + 2)
- 2 m(m + 1) ~ " %n,17 (m+2) (m+1)m{m-1)
(73)
) 4o . ) 1 } =
j=0 2j,2,0 (Zj + 2om + 1)2 2n=0 (n-m) (2n*2j+17
ngm
d
1l 2341,0
“m+ 1 2 + i (74)

)}
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.
Variation of 2 -23,0,0
33 + 1

§=0

as a Function

of the Order of the Approximation

l"xl} 8x8
dO’O.O = 2.,0187102 do,o,o = 2,0054084
40,0 = 1-0672165 d5,0,0 = =0-89439463
"y P
dy 0.0 = 0-20245745 dy 0,0 = =2+3352320
" v ’
N = 1h.1494
dg 0,0 = =0:73563349 ds,o,o 149479
dg 0,0 = -k3,945776
;§ 010 . 1.5983724 “10,0,0 = ©6-26693%
+
3=0 42,0,0 * -47.718345
d14,0,0 = 12.717386
6x6 )
| d
j=0
da ’ 0 , 0 = -], 0385090
d[}’o’o = 0035200261
de,o,o = =2,7603063
d8’°'° = 4.4203099
dlC,0,0 = -207091091
2 a
23,0,0
H’ii_i" = 1.5825320

j=0



Lo

10x10 12x12
do;o;o = 2.0029674 do;o;o = 2.0026802
40,0 = -1.1958266 4 0,0 = -1-0015692
4, 0,0 = 3.8505777 4. 0,0 = =0.30395843
dg. 0,0 = -28.299519 dg.0,0 = 1-1841691
d4g 0,0 = 81.291771 dg o,0 = =7-7028185
d)0,0,0 = =-87-507227 d10,0,0 = 18-972307
d5.0,0 = -38.883055 dla;o;o = =24,769373
dlu,o,o = 163.80438 dlh,o,o = 25.040875
d16,o,o = -124,17881 d16,°'° = -26,082804
dg 0,0 = 29-265336 dls’o;o = 7.5634341
9 d50,0,0 = 17-476718

jZ; ;%thig = 1.57383 435.0,0 * -12.216622

11

Z ;—i—iigig = 1.574942

3=0



14x1h

d

0,0,0
%2,0,0

44,0,0

d¢,0,0

dg,0,0 =
d

10,0,0

45,0,0

44,0,0

46,0,0

4,8,0,0
d

20,0,0
d

22,0,0

424,0,0

456,0,0

1l
d

§=0 2 + 1

2.0025757

-0.98783842
-0.52010458

2.1633397
=7.5475131
9.1255387
-2.,0882360
6.0644652
-16.426235
~12.438990
43,091401
-20.321572
-2.8012758
1.8655841

212040 _ 4 594912

16x16
%,0,0
d5,0,0
44,0,0
46,0,0
48,0,0

4,0,0,0

42,0,0
%4,0,0
%6,0,0
%8,0,0
920,0,0
455,0,0
%24,0,0
%26,0,0
458,0,0
420,0,0

15
d

§=0

2.0023806
-0.97961739
-0.65507263%

2.5709285
-6.9%232251

5.6550704
-2.6968822
15.213107

-13,678%65
-2k ,266156
36.726481
-31.944528
31.9%8553
18.111970
=52.795791
21.888138

E%Jfgfg = 1.574668
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z: dy5,2,1 { . 3 - % ¢ )(21 syl
j=0 Il " (25 4 2m + 1) n=0 ‘B-m)(2j+2n+

nfm

1 zi 924,10 , _1 ZE 424,151
- 2j + 1 m+ 1 2§ + 1 ~

b(m + 1)2 j=0 j=0
d
1 z 2j,1,0
= 2(m + 1) . (75)

§=0 (2§ + 1)

In all of the above expressions, m = O, +1, +2, +3, eccco

It is to be pointed out that the solutions for d ’
2340,0

and d are identical.

d34,1,0 2§,2,0

One also notices that the matrix of the coefficients of all
the d's is the same for each expression, i.e., (71)

through (75).

The method used to solve (71) and (73) was that of successive
approximations. The order of the matrix and its corresponding

solution is listed in Table I.

©0
d
From this table, one notices that the E: E%itgig appears
§=0

to approach =x/2. This value is necessary in order to have

agreement with Sommerfeld's result®. (See also Bouwkanp3).

-}
d
Granting that 2: E%Jigig approaches =x/2, then also do

§=0
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00 . ©0

d d
) Su1i0 Ly ) 20200 Lpeen e,
j=0 3+ j=0 i+

In obtaining a solution to (73), it was necessary to use

the numbers d0,0,0’ da,o,o’ dh,o,o’ seeese But as ecan be

seen from Table I, the only numbers that were determined

were do’o’o and d2,0,

0 perhaps to the tenth place.
Thus it was not possible to obtain even an approximate

solution to the first coefficient do 1,1° However, using
b}

the results that have been obtained above, one can express
the transmission coefficient, as far as we have gone in

the expansion, as

2 2,55
TB‘;zaB -‘—%’-’-(logﬁ?-%) +
t2k7a7

(1log Bka _ %)2 + unknown terms .

M 2

512



V. DISCUSSION AND CONCLUSIONS

The Lebedev transform, when applied to the problem of the
slity yields two homogeneous integral equations. These

two equations are solved by the Wiener-Hopf technique
resulting in a double infinity of linear algebraic equations
in terms of the unknowns h(-2n - 1) and h'(-2n - 1),

n =0, 1y 2y ccee 'The method of successive approximations

was applied to these equations.

An expression was obtained for the transmission coefficient
involving the unknowns h(-2n = 1) and h'(-2n = 1). It

was possible to obtain the first few terms in this expression.
There was exact agreement between our result and the known
result3 except for a constant which we have not been able

to ascertain because of the slow convergence of the series

involved. However, a new term has been obtained.

Ly
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