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ABSTRACT

The Lebedev integral transform is
applied to solve the mixed boundary
value problem representing the radiation
of a biconical antenna. The problem is
formally solved by use of the conventional
Wlener - Hopf technique, and the above
transform. This method does not lead to an
explicit solution of the problem but to an
infinite system of linear equations for
the representation of the unknown transform

function.
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INTRODUCTION

The symmetrical biconical antenna of small apex angle
was devised by Schelkunoff as a model for the simple wire
dipole antenna for which no exact theory has yet been
provided. The biconical structure permits discussion of the
solution of Maxwell's equations in spherical coordinates.
Study of this problem showed that the portion of space
between the two cones and bounded by thelr surfaces forms
a transmission line, with principal and higher modes. Thus
Schelkunoff reduces the radiation problem to what is
essentially a circuit problem, viz. the terminated biconical
transmission line “loaded by empty space" with a terminal
impedance whose value depends on the apex angle of the cones,
their slant helght and the driving frequency (Schelkunoff-8).

Schelkunoff calculates approximate values for this
impedance making use of the simplifications that arise in
this problem when the apex angle is nearly zero. By a simple
transmission line transformation back to the origin, i.e.
common vertex of the cone, the input impedance at the point
generator can then be found.

A problem of considerable mathematical interest - even
if of less practical significance = 1s the one involving
symmetric biconical entennas of arbitrary apex angles, i.e.
of any value between zero and 180°. This is a mixed boundary
value problem which can and has been attacked in spherical

coordinates by the method of separation of variables using



series expansions in terms of the appropriate sets of wave
functions (Schelkunoff-T). Being a mixed boundary value
problem one 1s led to an infinite linear system for the
coefficlents of the expansions rather than explicit values
for them. The reason for this 1s lack of orthogonality over
the matching surface between the open space and the
transmission line space.

Recent advances in the theory of mixed boundary value
problems indicate that such problems\can be solved explicitly
by use of integral transforms. We refer here to the
Wiener - Hopf technique applied to dual integral equations
applicable to tﬁo complementary parts of a boundary on which
the boundary conditions are not the same. This method 1s
surveyed critically by Karp (1).

In the present problem we consider the antenna to be
perfectly conducting finite conical sheets of equal apex
angle and situated end to end on a common axis of symmetry.
The boundary over which mixed conditions apply is the
infinite double cone part of which i1s perfectly conducting
the other part free space. In Schelkunoff's theory the
conducting surfaces are capped by spherical surfaces. Here,
in order to reduce the physical boundary to one coordinate
surface we consider the uncapped structure.

The lntegral transform appropriate to the geometry of
this structure is the Lebedev - Kontorovich transform (5).
It has recently been applied to the problem of radiation
from circular disks (Leitner, Wells - 3) which when



formulated in spherical coordinates is also a mixed boundary
value problem of the two part type. The present theslis is an
extension of this work to the theory of biconical antennas,
in the hope of obtaining simpler expressions for the input

impedance of such antennas at the vertex.



II
STATEMENT OF THE PROBLEM

Consider a finite right biconical shell, ¢, shown in the

figure below.

>7T

We assume that the generators of the cone make an angle

=0, (0 <0 < w) with the z axis, and that the slant height

0
of the cone 1s a .

Mathematically, we propose the following boundary value
problem:

Find a function gﬂ(r,e) satisfying the differential
equation
(1) VZH¢+“’-;-9—’-‘-’E9- Hy = 0

c 1'2

where w is the frequency and c¢ the speed of light, subject to

the following conditions



(2)-5-‘-%:—6-(511193’6)=0, r<a, 6=86,

(3) Hy is continuous across 6 = 6, , r > &

H
(4) r %—;2 + 1kH¢ bounded &s r—» 00 , K2 =w2

(Sommerfeld radiation condition),

We seek a solution of the time independent Maxwell's
equations (Stratton - 9)

VxE+1uwH =0
VxH-1WEE =0

subject to the boundary conditions

(1) E =0 , 6 =28
tangential

0

(2) Continuity of the field functions in free space,

(3) Sommerfeld radiation condition ;

P2 and € are inductive capacities, and W the angular wave
frequency.

It is well known that when symmetry with respect to g is
assumed, these equations separate into two independent sets,
one containing Er’ Ee, Hﬂ and the other E¢, Hr’ H.. We are

()
interested only in the first set of equations, namely

1 d
r 8in © 30 (sin ¢) € r



1 O (nuy oo
;—a—;(l‘ Hﬁ)- iwﬁEe

)

OE

1( 9 r

’{Br (r B) - 55 i

It is from this set of equations that one can derive the

equation

2
,é_fﬁ + 2 E§H¢ + 1 ) sineiigé + ‘23 - 22239 Hﬂ =0

dp2 T Or 2 de e 2 2

r s8iné r

which 1s equation (1) cited above.

Physically, we have two conducting conical sheets fed by
an alternating voltage of fixed frequency and amplitude between
the two apices of the cone in the 1limit of zero gap. Such a
method of exclitation produces electrical currents on the
conducting conical sheets which are purely radial. The
electromagnetic field of the structure 1s transverse magnetic,
i.e. the only component of magnetic field 1is H¢ where g 1is
the azimuthal variable about the axis of the antenna. For such
an excitation it i1s also known, from physical considerations,
that H¢ has agzimuthal symmetry, and planar symmetry about the

plane z = 0.



I1I
REPRESENTATION OF THE SOLUTION

Writing the differential equation in spherical coordi-

nates we have

2
&H¢+§®H¢+ 1 &(ameaﬁﬂ*wz

- csczq
ara r ar r2 aine oe

de o2 2

H¢ = 0.

Application of the method of separation of variables yields
(5) Eﬂ =

00 1
S (v 2 : + 1 +aq ol(o
n=o(kr) anJg*l(kr) bnY£+;(kr) cngn(cose) anh( co08é)

2 2

where J ,(kr),Y ,(kr) and Pl(i'cose) are the Bessel,
oL +1 n
n n¥s
2 2
Neumann, and first order assocliated Lengendre functions,
respectively. The coefficients an’bn’cn’ and dn are unknown
constants whose values, once known, would yield a formal
solution to the problem in terms of a series representation.
For physical reasons cited previously, the solution to
the boundary value problem is known everywhere provided we
obtain the solution to the problem in regions (I) and (II)

indicated in the figure below.
zZN g




Azimuthal symmetry and planar symmetry about the plane z = 0
provides the solution in the entire space.

We shall use a "function theoretic" method of solving
the problem wherein we consider the functions in (5) as
functions of thelir order rather than their argument. Through
such an approach we will apply the Wiener-Hopf technigue (1)
which 1s essentlally an application of the concepts of
analytic continuation and Liouville's theorem.

From this point of view, the appropriate representation
of the solution in the given regions is not a series represen-
tation, but an integral representation on the complex order
plane. Por the given set of boundary conditions the
corresponding eigenfunctions do not form on orthogonal system.
The usual methods for obtalning a formal solution in terms of
a series representation can not be applied without infinite
systems for the unknown gquantities &, to dn in (5), whose
coefficlents are of a very complicated structure, as can be
found in the work of Schelkunoff (7).

We consider the integral representations over a contour L,
where L is a contour in a strip of finite width about the
imaginary axis in the complex order plane, from o - 1 00 to
o+1 o0 , ocbeing a real number. The reason for such a
contour becomes evident if one considers the Wiener-Hopf
technique which is to be applied. This approach requires a
study of the functions involved as functlons of their order
in overlapping half planes whose common region contalns L.

The appropriate radial function for our solution, Hﬂ ’



is the Hankel function, Ii)gz)(kr), where k is real. This is

the function which satisfies the Sommerfeld condition cited
above. However, in order that the integral representations of
the solution do not diverge we must let k = -1 , where Y is
real. Such a substitution for k leads to the Macdonald functioﬁ R

-5 Im p
K (¥r). 8ince for |Im)z| > 1, H(a)(kr),v, 2 and
A M
o
"z |
51(71')~e , this change insures that our integrals

converge along the contour L.

Such a substitution leads to a transition from a wave
problem to one of "exponential -~ decay" with the same boundary
conditions. The integral representations over the contour L
would diverge i1f one returned from real 'fto real k under the
integral sign. However, these would converge 1if L were first
deformed to surround semi-infinite portions of the real
@ axis, and the consequent reaidue series leads to the correct
results in the wave problem. This has recently been demonstrated
in a paper by Oberhettinger (6), and verified in a paper by
Leitner and Wwells (3).

With these remarks we define our solutions in regions
(I) and (II) as follows:

f\/l?{}l A()l)sl(xrlPi‘s;oa e)dp,

2
(6)HEg4(r,8) = 0<0 <86,

Pl(coa o)+ Pl(-cos 0)

-1
W.lr_-i P BPIE,(F ) -ia 2 : dp,




A(n) and B(p) are unknown functions to be determined for a
formal solution of the problem.

The term sin g-()z - —;—) appearing in the second integral
i1s introduced in order to explicitly indicate the proper
eigenfunction corresponding to the principal mode l.x = —1- of
the biconical transmission line. In the limit).l -1— the
quantity in the bracket is indeterminate and has the value

1
8iné
Utilizing the relation (Magnus-l)

, which 1s the appropriate principal mode function.

a.ﬁi- %me Pi(_t cos®) > = :().12 - —E)Pl(: cos@)
2

one obtains from (6) the representation

in® H,) =
(D act(;»:e ¢
1 2 1
-\—/—_r_-J}l A(}l)()l - E)K}J(YrZPA(:ose)d)a, 0<6x<8
L 2 P

P(t{oae)-P(Icqse)

——-J,a () (= K, (') 27 57‘1 ap,
"
otn 3(p = 3)

It follows from Maxwell's equations that

iwer Er

(sine H,).
cosg ‘

Since the tangential component of E, the electric fleld, 1s

to be continuous at the boundary between regions (I) and (II)



=11~

cited previously we see that the jump in Er’ the tangential
component of E, across 6 = 90 for all r must be egqual to zero.

Computing the jump by use of (7) we have

S)J(}-la - 11;)5‘()%-) A( ) - —'Bl P(coae ) +
L sin = ()-1- 2"}«1

+ -—BM 1 P]('-coseo) d)l =0
w
sin gz 2%
for 6 = eo and all r.

Since this is to be true for all r we must have the

expression in brackets equal to zero and it follows that

Pl(coseo)
(8) B - Ap) .
sin .g.();--l.) _ l(coseQ)-.P_(-coase :
by
Before enforcing condition (3) we rewrite (6) in the
form
Hﬂ(r e) =
8iné

j)a A()l)l&l(fr)P f;ose)d): » 0=<8x<8,

-E;_n__g P—E‘EL L KP(X‘r) P;(cose)-P;(-cose) dp,
r  s8in 11()1-5) - E‘}l - '2"'71

w
% =9=3



where prime denotes derivative and where we have used the

relations (Magnus=-l)
P (+ cose) =+ sine P (* cose).

- 37 37

Now enforcing condition (3) which states that H,(r,8) must
[}

be continuous for € = eo and r > a we have

j p (YD) [A()-l)- Bl ) p'(cosey) +

1
in 2p=3) - 7
+ Blp) P(-coae) dp =0
’m"(flz)"'}‘
for € = 6, and r > a.

With the aid of the relation between A(u) and B()z) given by

(8) one may rewrite the integral expression just given in

the form

W[Pl(coseo) R Pl(-coseo) ]
2
P (coseo) P (-cos®, )

Fr -

)1 A()l) 5‘(?1‘) dp =

where W[P (cose ), P (-cose )] is the Wronskian of the
1
o

functions P (coeeo) and P (-coseo), and has the value
1

1
- 3P - 3p
--2-o -—12—008‘")10
w sin“e

0



Hence, it follows that

"
@

? L)l P(oose) P(-cose) PXr))u ) 0’

__7‘ __..)1 r>a.

Enforcing condition (2) which states that C) (sine Hﬂ) =0

cosé
for6=eo end r < a
we have
(10) j}z A()))()az- ﬁ) Pl(coseo) KP(U‘r)d)z =0, e = eo
L -2 r<a

The expressions (9) and (10) form a set of dual integral

equations for the unknown function A(}l).

(1) Properties of A(}A)

By use of certain general properties of the electromag-
netic fields of radiating structures such as ours, it 1s now

possible to discuss the behavior of MP) and certain related

Cew - -

functions without explicitly knowing them. To do this ono

makes.use. dﬁ the Lebedev transform theorem.

Such an analysis 1s necessary in order that the conventional

Wiener-Hopf technique can be applied without too much

difficulty in later paragraphs.
This . theorem (5) we state as follows:

Let./\.().\) be analytic in a strip of finite width about the
imaginary axis containing L and having decay at least as



rapid as IP( Y'r) in the distant parts of the strip. Then,
provided both integrals converge,

g(¥r) =JL)4/\. (p) xP(Xr)d);

(0 o]
R | dr
J\w)-;;y ﬂUW)SJXﬂ-;

Here I (¥'r) 1s the modified Bessel function whose growth for

}l L
iz lmpl

large

Im,.l|1a

2
| 12 4]
With the aid of condition (2) and Maxwell's equations

we may write

r a 0

1A

r>a -1WErE,

=1 Alp) ( ) K. (¥r) P (cose,)
:i PO - ) s T

One may show that

(11) A(}l)(}l K) P (cose ) =

' 00
= - ‘-‘-’FEJ Vr E,(r,6,) %(Xr)dr.
a



It is well known that Hﬂ(r,e) need not be continuous
across the conducting conical sheets. If we denote by
[Hﬂ(r,eo)] the discontinuity in H“(r,e) when € = 6, and

r < a we have

r<a [Hﬂ(r,eo)]

r>a 0
_ 2 €08 mu Alp)
= K (¥r)dn.
w VT sing . P (:oseo) - P:(L-:oseo) ) o .
L -3°p e
, One may also show )
- a
(12) aA(p) cos wu = sineo [Hﬁ(r'ﬂo)] I (¥r)ar.
Pl(coseo) - Pl(-cosoo) 21 Vr ) o
- 5 +P - E+P 0

Er(r’eo) is a continuous function of r for a < r <

and has the behavior 1
Vr-a
-Yr
as r approaches a, and at infinity. IP(X‘r) has a
r
oYr
finite value at r = a and behaves as =——— as r approaches
r

infinity. Purthermore, :[P(Xr) is an entire function of p.
With these facts and theorems concerning integral .repreaen-
tations of entire functions it can be shown that the integral
in the right member of (11) defines an entire function of m .



Similarly, it is known that [Hﬂ(r,eo)] behaves as the

continuous function % near r = 0 and 1s continuous elsewhere

in the range of integration in (12). At the lower limit, zero,
the integrand in the right member of (12) behaves essentially

as rn-a/ 2 « Upon further consideration, it follows that the
right member of (12) defines an analytic function qf)x for

1
Re)l > > o

1

Now by (11) A()1) has, at most, simple poles at).l =+ 3

and at the zeroes, for fixed 6,, of P (coseo). If A(,A) has no
-1
2 N

0o
poles at any of these values then J Vr Er(r,eo)I’l()’r)dr
a

must have zeroes there.

By (12) A()l) at most, on the right half plane Rep > -;—,

has simple poles at p 8-3 » :2{- » !'é:-l'- s *++ and only there. If
a
[%(r,eo)]
not, then I (¥r)dr has zeroes there.
Vr M
0

Since Pl(foaeo) =0 for)x equal to certain irrational

}.l

real numbers, A(}x) cannot have, on the right half plane

Re’l>§ » boles at the right hand zeroes of Pl(f;aeo), since
2

that would contradict (12). It follows that

o0
J‘ Vr Er(r,eo) }()’r)dr = 0 at the zeroes of_Pl(coseo).
a : 2 P

Since by (11) A()1) does not have poles at
/A =2 ’ -'21- ’ -]—'2}- eee , it follows that



& [Hg(r,eo)]
5 I (Yr)dr = 0 at these values. In summary, we

o VT s
have shown that, at most, A(}.z) may have poles at p=* :-21- and at

the negative zeroes of Pl(foaeo), for fixed €

2 M

We will now show that with certain assumptions, integrals

O.

(9) and (10) can be closed on half planes, thus insuring a
formal solution for this set of dual integral equations. Actu-
ally we must show that they can be closed on complementary
half planes since this 1s essential to application of the
Wiener-Hopf technique.

We make the assumption that aal}.x |—> 0o in the right

1
half plane Re =
a plan R}J>2

8 B
(B (r,e.)] LAY - X
é 0 ~ 2
= I’I(Yr)dr.. —p
0 d [fa
where Reo(> O .
This implies that in the distant portions of the strip we have

s -1
the behavior e+ 2 lT‘ |T:| 2 e o

with this assumption 2228 mp A(p) K (Yr)
Pl(coseo) - Pl(-coseo) P
2 M 2 M

- - o
behaves as (3-T}1 > when lpl —» 00 and aa|’C’| REn the strip.
r

Hence, (9) converges and can be closed to the right when r > a.

In its present form (10) cennot be closed on either half



plane and a decomposition

K () =T Itp(rr)' - Ip(X‘r)
P 2  sin w}x

which 1s the definition of 151(3‘1») in terms of IP(}{‘I'), is

necessary. It follows that (10) can be written in the form

1w 2 1 I_(¥r) v
(13) EJF(}* - H) A()l)_%(f)zﬂeo) —ﬁn—"—; ap:

L

I(¥r)
- 'ij)“}‘z' ﬁ) A()a)-P}.(foseo) Jiin—;r— dgu = 0.
4 "2 P sn wa

We mention at this time that these arguments, involved

in closing (9) on the right half plane Re)1 >-;- , restrict the

contour L such that o > %— but finite. In order to carry out

the following arguments i1t 1s necessary to make another but

final restriction that % < o<1,

T
A A
_);-plane
L
:1 1L ‘ > o
-1 - - 1
2 2
1
L
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The integrand of the second integral in (13) is free of
poles in the strip -1 <« Re)x < 1l, If we make the transfor-

mation p = -).1' s and note that (Pa - ﬁ) Pl(foaeo) is an even
e
function of J» we obtain

I_(¥r)
Z‘IJ‘:PP E) Al )1)- %(f;;a o) — o d}l

where L' 1s a contour in the complex order plane from o + 1 00

too~100 and =1 < o< --;— o (See figure above).

With the aid of (11) and the assumption that the integral
involved behaves as I}l(‘(a) u-’e, where Re > 0, one can show
that the integrand of the above integral approaches zero on
distant parts of either end of the strip =1 < Rep <1, It
follows by reversing the sense of L: that the resulting
contour may be deformed into L such that one may write (13)
in the form

(1k) S}A(}AZ- %;) a()x) Pl(j‘;seo) I?(X‘r)dy =0
-2

L r<a

where a()x) = g- M}:in-nA}&.p) o By the use of (11) and the

definition of a().l) we have
0

2 1 w
(p~= K) a()-l)-P%(f;seo) = -;5 Vr E.(r,85) &(Yr)dr .



-20~

-Yr
Vr

at infinity. Purthermore 151(7(‘1') is an entire function of p.

5}(7‘1') has a finite value at r = a and behaves as 2

Using these facts and those cited previously in connection
with Er(r,eo) one can show that the integral in the above
expression converges and defines an entire function of u.

With regard to the value of this integral we assume
J»oo ﬁ
Vr E_(r,0.) K (¥r)drx K _(Fa)p”
A A 51 /a

where ReP > 0, which, in the distant portions of the strip

becomes 2"
V 17|

With this assumption the integrand of (1lL) behaves as

Tt
o Z' |lTl-ReP .

(..::Y"P'p when g —» = and as ‘TrRePon the strip. Hence

(14) can be closed to the left when r < a. Thus we have shown
that this integral equation is formally satisfled.

To summarize, it has been shown that the dual integral
equations are convergent and meaningful statements of the

provlem when they are written in the form

(15) cos R AR g (fr)ap = 0 r
? L)l Pl(coseo) - Pl(-coseo) s
i - 1%
z P s

v
)]

(16) j}u(ya- 1 a(p) Py(cose ) I_ (¥'r)dp =0 r<a
L 4 oA ¥

where a(p) = ,Z, %ﬂ‘l .



IV

SOLUTION OF THE PROBLEM

We are now 1n a position to attack the revised integral
equations by function - theoretical techniques. In order to

carry out thils procedure it is more convenient to write them

in the form

(L=)”
(15a) D+()1) 2 51()"1')(1}.1 = 0 r>a

L I"(’-t) ‘
16 j cm() i) -
( a)L (p) (15)_}“171()‘1')6/1 o r<a
. 2
where
(A7) D (u) = - ‘:“ :l; *lﬁ’&()co e P‘I‘E)F
_F1'8089q) = £17e038, ¥a
2P stp (‘E‘)
"

(18) C™(p) = u(p- ) a(p) P (cosey)e 27 .
D+()1) is a function analytic on the right half plane 391 > %

and of algebraic decay of the order)fdin the strip,

-;- < Rg); < 1, and in all directions to its right. c-()x) is an

entire function and of algebraic decay of the order )1" ﬁ in -
the strip and in all directions to its left. The superscripts

+ and - are to denote “analytic"™ on a “plus" or "minus" half



plane with the additional property of at least algebraic
decay in those regions respectively.
With the aid of the definition of a(}.a) we can now

+ -
establish a relationship between D ().1) and C ().1) of the form

1

c()=(p 1) pg 8g) [P, (cose,) - P( vl
)1 H lco;1 ; c;la cose 3 cos n
+ E ~2n P(l

We now define M (cose ) = Pl(cose ) - .Pl(-coseo)

2" A -3'm

d utilize th lation —%— =| (= +p) -
and u 2e e rela oncosﬂz r( PF‘ZP)

wherein we rewrite the previous expression in the form

a9) " = 22 Hl' e[ d-p) _P(gossg) ¥ (eouey)-
2 2 P

T (87T R
Q)

OQur immediate purpose is to transform this equation into
one whose left and right hand members, say, are minus and
pPlus functions respectively. It is at this point where a
modicum of investigation reveals that such an squation
defines an analytic function in the entire plane and hence
by Liouville's Theorem i1s identically zero. This will be
illustrated preclsely 1In later paragraphs. However, in



order to carry out this procedure we need first to investi-
gate some of the properties of Pl(cose ) and Ml(cose ).
TR 3P

(1) Pactorization of Plgsoseo) - Asymptotic Behavior of the

factors.

Plgfoseo) is known to possess a countable number of

irrational simple zeroes which we shall denote by m (eo),
]

m= *** =-2,-1,0,1,2,°°¢ For fixed eo it is an entire even

function of j end its zeroes are glven asymptotically by

the expression

(20) P (e )~g—(m - K) + ) 0 <g<6,<m-¢,

-23.

It can be showrn” that we may factcr Pl(cose ) as follows:

-_+}1
(21) Pl(coseo) =

"2 ,&Lr)

- P,m
= P%(OOBO )II]. }'l&:ﬁ )

@ B (6 o)
Ol—r 1 - L_ e P,m

Let us call the first infinite product appearing in (21)

4 See note 1
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k + ().1,60) and the second k‘(}g,eo). In order to investigate

Pl(foseo) as a combination of "plus" and "minus" functions

defined previously we will need to know the asymptotic

+ -
behavior of both k (}1,60) and k ()1,60).

For the present we confine our attention to the growth

+
of k ();,eo) as compared to the growth of the infinite product

® ‘ %P 4
L()x) =T|-é_+_e_§’:_/( .-_t))e " /( ‘E).

m=1

We can express L(}l) in terms of gamma functions and

obtain

re &2
r((egﬁ + E) ° (h)

To carry out this transformation we have made use of the

- Z

+

Z em a
m+ a

where Y (z) 1s the logarithmic derivative of the gamma
°)
and a = -1

(22) L(u) =

expression (Magnus=-l)

00
(23) r‘(a + l) ez %(a"l) = -'T 1 +
r(z +a+t1) m=1

function P(z). To obtain (22) we take z = =

in (23) and compare with the original form of L(P)'
+
Now form the ratio R(}")’ of k ()z,eo) and L()x). We obtain
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Brny )
1+ e 1
e
k (p,eo) m=1( }lP m0)>
(24) R()l) = o) = - .
y
u 1

Taking the logarithm of both sides and adding corresponding

terms we get

- 1 !
o R \ M) 7 (e)
’ 0 P,m
log R().l) SZ log e ’
m=1 1l + .&—-—.—.—.
o -1

— — .
1"‘»&—(— N
© )‘Pgo) ©
=Zlos . + Z 2 1‘—.}1( )
= - S =\ - e
m=1 1+L 1 mleo(m E))JP,mo
90 L

since each series converges separately for all M, as a

consequence of the asymptotic property of u (6 ) (See (20)).

P, m°
It follows that \
RS (N °d‘ S 1
R(}l)' TT F,m » e m=1\ * ~ t To)l (30) .
m=1\ | 4 M P,m
T (m - 3})
eo L J




oF < 1 1
PR N R A P ol
-rl- (m - E) o m=1 E ;“prgo)

R(}l)"‘

or

-0 B(e.)
R()z)'VA(e )e Xa

where a(eo) denotes the infinite product and B(eo) the
infinite sum.

From equations (22) and (24) we have then

B(e,) +¥ _J
(25) k+(}1.90)~r‘ A(e,) [: y Rep>o0.

Murd)

A similar treatment of k-'ya,eo) yields

(26) k'(}*.eo)'uj(’}_—g P> Al )e [e ! +Y/(ﬁﬂ,ﬁe)l.<. 0.

¥*
See note 2



(2) Pactorigation of Ml(coseo) - Asymptotic Behavior of
2

the PFactors .

Ml(cosao) has simple gzeroes at the half odd integers
2 M
p=2(2m - g), m=1,2,3,*ec and, for fixed 6y, &t certain
irrational values of o which we shall denote by

tp (eo), m=1,2,3,°** , Purthermore, Ml(coseo) is an

entire function of ju . The irrational zeroces are given

asymptotically by the expression

. ?
2mn c (60)
D P = T 20 M

Analogous to Pl(coaeo) just investigated, lll(coseo) has an
-+ -=+
2P 3P
infinite product representation of the fom*
(28)-141(:0560) =

ztm - S M
o0 2 2m-2 % 2m -;
M, (cose ) l | [1+ e 2 T[ 1-2_\e
- = 0" m=1 2m-2 m=1 2m -2
2 2
© ©
(e 6,)
Lo B Pyl o)ﬂ- i Pyl .
1 e 1 e
- )Aufm") i anm")

*See note 3
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Let us denote the last two factors of (28) by k;gn,eo)
and k;(}x,eo) respectively. We now utilize (23) to rewrite
the second and third factors in terms of gamma functions and

it follows that we may write (28) in the form

(29) M,(cose®.) =
- %+)‘l Y

23 m oy lyoomy,
N (coseo) A (E) o2 y(n)e zY (E)k;(}l.

8o ky(p,0,) .
- 1 a,l 0’ M 0
2 G5

For future needs we now develop the asymptotic behavior

+ -
of kl(p, eo) and kM(P,ao). We begin by considering the growth

+
of ku(l‘"eo) as compared to the growth of the infinite product

o ) ‘p(w-aeo)
N(u) = 1T 1 +).1_(1._..2.29) e 2m .
M m=1 am

A detalled discussion 1s not necessary in this case since the
approach 1s exactly the same as that wused to develop (25).
We simply state the result which takes the form

e
A' (o) (3'---9){5'9 -c}
(30) k';()l,eo)'v—-(——g——rep 2 w ( 0)



A similar treatment of k;(p,oo) yields

- A'(e,) -n(—--)B(e)C
(31)  ky(p,00)~ —2— { 0 }

ol 3]

C is the well known Euler constant and has the value
5T7215 oo A’(eo) is an infinite product given explicitly

as

m=1 ,luf:o) (ﬂ - 260

' > 2
A(Oo)"TT el )}

B'(eo) is an infinite sum of the form.

oD
U 1 am
(‘“ )Anfgo)(w - aeo>

m=1

Both expressions Jjust mentioned are convergent and represent

constants for a particular value of 90.

Using (21) and (28) we now rewrite (19) as
(32) C-QP) =

l .2 _1,.% -
vl UL U

(X P Ca+p g
{D(P) ( ) M =-p (7“)}
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where

(33) K (n,0,) =

00 2m - 2
\/_Pi(coseo).l_l-(coseo) r(-al- + P)nLTl(l » L2 )e m =3
2

2 2n - 2
Bfoz)s ™ T e
’AP,mo Pufgo)
(34) K (p,8,) =

2
00 2m - 2
\/_P;_("“eo).“l("“eo)r(% -P)El(l .M )e 2

2 2 2m - %

o

00 6.] © F%T
T - 22— ePP’mo TMh-2-1Y, bym® o flp)
m=1\  p (8g) (85)

Py

where f(,.x) is so determined that the growths of K+(P’°o)

and K‘(}x,eo) are algebraic in the proper regions.

To study the asymptotic behavior of K+()x,90) and K'(}x,eo)
we refer to (25),(26),(29),(30),(31) and thus obtain
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(35) K+()1,eo) =

e
P, (c08@,) M (cose ) —E&)-[(g-—’l—)- .

ETET )
E)"‘f()-l)

k" (p,00)ky(p,0,) 0 *(

(36) K-yheo) =

P, (cos® )Hl(cose ) .
1 0 0
\/ 2 2 I ( 2§

k'();,eo)k;()z,eo)e

o)

Now these factors are, by Stirling's formula*,

asyumptotically

+
(37) K ().\,eo)rv

-1
\/_l"%(ooaeo)!%(coseo) F(i)[’(ﬁ) MO A (8)p 2, Repz 0
K-(P’QO)N
1
2) Rep < 0

\/f}_(coseo)).l%(coseo) r(ﬁ)r(ﬁ) A(OO)A' (e,) (-);)-

—

*
r().a)ru&__y—a-;’-" for larg)l I <
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We now begin the task of transforming equation (32)
into one whose left member consists of functions all of
which are minus functions and whose right member consists
entirely of plus functions., It is important that all these
functions, as functions of their order, have a common strip
of regularity. Reasons for this restriction were stated
previously and will again be emphasized. As will be shown
in the following pages this common region of regularity 1is
the strip -1 < Repm <pP{eo) or pu{eo), taking the smallest

of these two values. For future reference we shall call this

smallest value PP! 1° T
, ,
l A

!

= T
N1

.
0

We now write (32) in the form
(39)_C7(u) = (u = 2)(p + K" (p,0,)D" (u) -
K-(}ljeo)

P | 1, + ¥a\"F [(1+p) .+
()1 2)(IA+ E)K (’1990)(—2—&) T,ﬁ—)-l) (71).



(3) Properties of functions in (39),

(a) The function .CT(&l__ .

K (n,6g)

Recall that according to our assumptions C (u) is an
entire function with algebraic decay of the order }x"p, ReF >0,

in the left half plane. EA(B-) has poles, see (3l), at p (eo)
(1
and (60), m=1,2,3, *°° ——SL- is a function analytic
K~ ()

on the left half m plene Re.pgur égo) and of algebraic decay
of the order u? in the strip, -1<Re}x <)1 (e ) , and in all
directions to its left. It 1s clear that,provided Ref > % ,

S W) 35 a minus function.
K (m)

b) The function (}A - %) (}.1 + %)K+(P)D+9‘)

D ()1) has simple poles at mu =
P,n

NIH

n=1,2,3, sc¢ K+94,eo) has simple gzeroes at

B ==p(8,), =p (60) ,n=1,2,3, *+¢ and simple poles at
P,n M,n

p = -(2n - -21-), n =1,2,3, +++ . It follows that

! 1.+, . + 1
(n - E) (n + -2-)K (1)D"(p) has simple poles at u = -n,~(2n - 3),
n=1,2,% °°* and thus is a function analytic on the right
half plane Rep > - 1. Furthermore, it 1s of algebralc decay



- o
of the order 3/2 in the strip, -1 < Reanc (6,.), and
r ’ A Fpu10"?

in all directions to its right provided REX> g o

L0 - Lyt ¥a\"# Cam) p*
(c) The function (n + 2)(}1 2)K ()1,60) (2) F(f:))- D (=),

Using information already stated in part (b) and
properties of the gamma function we see that

1 1, + Ya\™¥ M +
(n + 2)()1 - E)K ()1,00) (—25> -,_[:-:—1-3} D (71) has simple

= - - - l = LR
poles at u )llfgo)'}lpf:o)a n, =(2n 2), n =1,2,3, .

20 + 2 - ot
It behaves aal't‘l TT2 in the strip, where o 1s equal to

to the real part of m.
If we let u 3(,010 and apply Stirling's formula we find

(o + %) (- %)K+()1.0°) (%—9-)-2)1 %—%iﬁ% D+(-)x) behaves

asymptotically as, FZ(’ cos@® e-e(Ze - w)sin® -2¢ coae.

Hence, it decays in the left half plane and would be a minus
function if it did not have simple poles at p = -n, =(2n = %)
n=1,2,3, **+, We have found no way in which this mixed term
can be avoided such that separation into half planes of
analyticity 1s possible. However, this mixed function can be
split into two parts by adding and subtracting Mittag-Leffler

series which have the same residues, of the form



© R ® T,
(Lo) Z +2 ’ 1
n=1M n=1p + 2n -3

where Bh and Tn are residues of

1 1,.+ Yo\ P [N +
B-Pprx 9»%)(—25) f'ﬁa—:ﬁ%

D+(-71)

at the simple poles m = -n snd g = -(2n - -;-). n =1,2,%,°°",

respectively. These residues are

2n
nta? - bretn) (L)

R, = — ' D(n)
@[ & + ol
(
) 1 X‘a‘m-l
an w g(-2n + SN 5~ 1
T = D(zn - 3)

1 1.m2 -l
(2n - 2).(2n - E)P (2n = 2)

r‘(l + u) cos ma AM

(—rz—.yl -M% ( 2;890)

where D(,).) =

om - 2

w .n
and g(P)=T|-(L+—£——>o zm-%.
m=1
2

a——

o) (e,)
m=1 2 (60)
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Using (41) and our assumptions about D()A) it can easily
be shown that both series in (4O) are unifoi'mly convergent
in p. If we consider the functions representing each seriles
in (40) we f£ind that these functions are free of poles on the
right half plane Rem > = 1. The behavior of these functions
or their series representations as | P l—» 0 1s a difficult
question. Thelir nature strongly suggests that they approach
zero as lpl—» 00 and we will assume this fact and consider
both series in (4O) as plus functions.

The difference between ‘

-1 1.+ Yo\ P (1 + +
(a 2)()1“‘-5)1( ()1,00) (T) ——.—El D (-p) and the two
M1 - p)
Mittag-Leffler series is pole free on the left half plane,
Rep < )IP l‘(30), and because of previous considerations 1s in

fect a minus function. Hence it may be transposed to the left
hand side of (39). We have

-2
(42) —JP-L ' (R-2)u+ 3K (0 )("“ # L) p¥ )

(’49 0 r(l.P)

o) [
+Z R, +Z£g__l=

+4 n -
n=1" n=1p * 2 =3

00

R 2 T
= (p - 2+ 3K (u,0,)D" () +2_ D ":4—._1 = '

n=l p+n };+2n-.];
2
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The separation of functions 1s now complete. The result-

ing left hand side is a minus function and the resulting

right hand side a plus function. The equality states that the

two sides are analytic continuations of the same function

defined in the common strip, =1 < Remn < e.).
M )“ulo

Since these

continuations decay as p—» 00 in the respective half planes,

the function so defined has by Liouville's Theorem the value

Z6Tr0 ¢

Hence we have

)
" +

}J. +n n=1l

(L3) (u - -) (p + -)x (n, 0)D (p) + Z

M1 +p) cos tuuAjE) and

()" n) Uy (:;3590)

A()x) is the unknown function to be determined.

where D+()x) =

..._T_g__ =0
1
pra-3

When u is set equal to 1, %, 2, 3, :21, eee, it is clear

that there arises an infinite system of equations. Hence, (L3)

does not allow explicit evaluation of the unknown function

A(un) but only at the values u =1, 2 2, 3, l L, 5.

’ o0

which are themselves the roots of the 1nf1n1te system

mentioned above. This set of linear equations may possess a

simple explicit inversion, but the present author has not

studlied this question in detail,



V.

INPUT IMPEDANCE AT THE ORIGIN OF THE BICONICAL ANTENNA

The input impedance, z(eo,ka), at the origin of the

biconical antenna 1s defined as follows:

V(r;e,,ka)

(LL) Z2(6y,ka) = 1lim
r—»0 I(r;Oo.kl)

where n .

2 2
(45) V(r;e,,ka) = 2 Eerdeszsi-S —aa-;(rnﬂ)de

90 60

and

(46) I(r;eo,ka) = 2nr 81in@, Hﬂ(r,eo).

The relation needed to derive the value of the voltage

and current at the origin of the antenna is given by

(L7) \Vr Hﬂ(r,o;eo,ka) =

-58-

- L 5 Il(X‘r)Res A(-%-) + Il(‘o‘r)Res A(%)
L, siné log tan-éq 2 "2

= {P]‘l(cose) + Pi é-cos@?
~Stp e
-jP J;P(X‘r)a(p)_l’_l_(foseo) 2 2 °‘ dp .
L

R P,(cos8,) - P,(-cose )
- E"-)‘ 0 - 5"’}1 0

The above expression is derived from



]‘( 080)+P (-cose}
18 1%,
e W

P
(47-a) Hy = ‘/_ K (ErIpalp) Pl(coseo){

d}x,
+u l(cosao) Pl( ~-c08® )
L “3tA e
0, <83,

which is obtained from (6) using the representation in the
region 6, < @ 5_% and the relation (8). In order that (47-a)

be a convergent and meaningful expression in the right half

}1
previous arguments this synthesis leads to a kernel involving

J-plane requires a transition from I&l(x‘r) to I (¥r). As in

a(u) instead of A(m). However, 1n our present case the
transformation of contour leads to residues due to simple
poles at u = + %. The two residue terms signify the outgo-
ing principal biconical wave and 1its reflection from the
terminus of the antenna.

By substitution of (47) into (46) and taking the limit

as Ir approaches zero one obtains

e Q) :

(48) 1im I(r;e ,ka) = - I =2 —— Res A(%) .
r—»0 2 r(%)lcg tanio

The same substitution in (L45), assuming that the
process of integration and taking the limit can be
interchanged, leads to



L4

G
@

Using these results (L4) takes the form

_liw
(49) 1im V(r; eo,ka P

Res A(-%-) .
r—>»0

Y1 e0 Res A( z)
(50) Z(eo,ka) = log cot — .
nWwe Res A(-z-)

One can write the system (h}) in the more convenient

form é‘

o0 (>0)
(s1) 8, -1 D B+l ) 2— =0,

P O n=lp+n =1 1
]| n=i Mo ).1+2n—-2-

Recalling an earlier relation between A(m) and D+()z)

&glven by

+
D (m)
M1+ p) cosmu s

Alp) =

and using (53%) we have



41~

21'1 -_.
M, (cose )Z(Zp+nz 2
(5L) g =(ikayl v aiptam-2)
2 /A(/u - E) [ [ (u *E)s()z)cosw)u

Using (54) we can now write an explicit relation giving
the quotient of residues in (50). We observe that the simple
pole of A().l) at p = l 18 due to the factor (m - E)’ and the

%) __1
simple pole at u = - 5 due to a zero of g(m) at u = 3.

Computing residues at these values we have

Zn-- =5

Res A(- =
(59) _"_:___i__g_)_ g( )Res n n=l
(ka) g(- -2')
Z——-za—

n=l nt*+s ‘p=1

- Nll—'

In view of this relation, and the fact that

& Y (50) becomes

(47{&3 £ ka g
oo 00 1
Z g Z —
s 2n - 1
2
(56) 2 ‘"1\/8 8(3 1)Res ; ’;1 n:olg —
WL e
R 2n

n= -2' n=
This 1s a general formula for the impedance at the

origin of the biconical antenna.



VI.
DISCUSSION OF THE INPFINITE SYSTEM

On cursory inspection of the system given by (51) one
finds that the convergence in the matrix of coefficlents 1is
strong in columms and slow in rows. To see that this is true
computations were performed of the 6)1 for certain values of
the parameters 'a and eo. This computing project requires the
calculation of certain infinite products involved in the
definition of g(m), see eq. L1. These products contain the

zeros of P,(cos@e,) and M,(cose.). A table of these zeroes
2 2

for the angles 6, = 320° and 60° 1s given in note L of the

appendix.
Asymptotically OF takes the form

(57) 3“~p2f‘ :

with this behavior one hopes that (51) can be concluded
after a few terms and that the infinite system can be

approximated by a finite one. Actual computations show that

quite a number of terms are needed. The function Gp does not
grow fast enough for initlal values of the set 1, g, 2, 3, %...
For example, computations for eo = 60° show that
eﬁz 023976
2 (¥a)l?

Thus numerical exploitation of the system (51) for arbitrary
WVvalues of Go without automatic computing equipment is a very
tedious project in itself,



In the belief that for the limiting case of small €

-l 3=

o the

computations simplify, we chose for numerical approximation

L0

= 1 degree ,

-‘a_—.—i—

10

1.0. a thin and short antenna. In this case the 6).1 increase

monotonically and rapidly as pincreases. The system (51) was

cut off, successively, at 2, 3, 4, and 5 square. The results

are given in the following table.

g 2-square 1 3-square L~square S=square
% -(2)10'“ -(1.61569)10"‘ -(5.59)10'“ --(1.0.25)10"‘*L
§, | -185850 1 |.188016 1 19250k 1 1.193572 1
d, bay.2119 (h.5702)1o"‘ -(2.16)10"“ (4)10™7
J'f 297361 1 J(2p107% 1 J(110® 1 f(1)1076 1
. ‘—W
5% -27.2378 (.25)1074 (.152615)102
?I -.338,19 1 (1)1076 1 (1)1076 1
5:5 36..317L ~(.32799)10°%
$ L 462011 1 (3)10'8 1
S
2 -39.3437
——
d L -.503287 1
LT R j—‘

(In this case ga,gh, i.6, all S's of even subscripts were

legligible),

A8 more and more unknowns of the system are included,



g

the first unknowns (in this case 3/2 cf is the only
1l

significant one) seem to converge to some value; presumably
the root of the infinite system. The root for the last unknown
of each system is in complete contradiction with the root for
the corresponding unknown in the systems of higher order
of approximation. An explanation of this 1s not available at
the present time.

On the basis of these results the value for the input

impedance of the antenna with Ya = %a s 6. = 1° was found

0
to be

Z =219 - 2311 1 ohms .

Clearly much more numerical work must be done to estab-
lish the properties of this infinite system.

We also attempted to extract approximate solutions of
this system for the limiting case of small or large Ya, by
\ase of ascending or descending power series expansions. In
&all these attempts the coefficients of these series are
themselves roots of infinite systems and nét of finite
aystems. This 1s contrary to situations in many other problems
Lfrom the field of mixed boundary value problems (Leitner and
Wells =3).

Thus we conclude that at present a complete check on the
assumptions made previously in connection with the behavior
Of certain integrals cennot be made. A great amount of further
8tudy of the infinite system 1s required before they can be
© stablished beyond all doubt.
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APPENDIX

Note I: An Infinite Product Expansion of the Legendre

Functions of the First Kind.

An entire function f(z) 1s said to be of finite order

1f there 1s a positive number A such that as

|z|=r—->oo

rA
£(z) = o(0" ).,
T he lower bound e of numbers A for which this is true 1is
called the order of the function. Thus, if f(z) 1is of

order (’ o +g
£f(z) = o(e’ )

for every positive value of £ , but not for every negative
value (Titchmarsh - 10).

If f(p) is an even function of j and if the order
of f(m) is such that 0 < ¢ <1 then the Hadamard Factorization
theorem permits the writing of f(p) as an infinite product

in the form
0o

00
(a) f£(p) = £(0) ||(1+ 2)0xp(- £ || (2= 2yexpr2)
a m=1 P Pn m=1 P P M
where it is assumed that £(0) # 0. The )4, are of course the
Toots of f(p).
Now we know (Magnus and Oberhettinger - L) for
I).z-%|>>>l and arg)l-%-l<ﬂthat



+ 1 o
(b) Py(cose,) = 2 [+ 3) oot [1+0(._J

)
--+)"0 ‘/—F(P+1) \/Zsine

It can easily be shown that the order e of coa[}ae ll-
483 1. By use of Stirling's approximation formula it can be
shown that in the region arg‘}; -= l < 7 the quotient of
gamma functions in (b) behaves asymptotically like p. /2

and hence does not affect the order of Pl(coseo). Thus we
1

can say in the region |p-%|>>>l and ‘arg,x--z-l< ,

_P_];(f;aeo) = 0(e I"‘l) Si_nce-Pl(f;:seo) is even in p it 1s

of order 1 and we may apply equation (a) to arrive at

Pl(cosa ) =

- —+
4 e £
=-Pl(°°se°)l;rl 1+ }7%6 P,m 'ﬂ- F’%e';)' e)‘IP,mO
P,m

> P,m m=1

which was to be shown. It might be added that the above

expression 1s a meaningful one in the sense that all infinite

products involved converge.
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Note 2: The Asyuptotic Behavior of a Certain Infinlte Product.

We wish to show that
+
o [* ,"‘/p (90)

P,m
m=1\1 + p/ ==(m - L
0

R(p)

for larg)xl < -g- approaches the constant A(eo), as ')1|-—+oo »
where
00 (m - l)
aiog) = [[{gm— B L.
m= 0
w P’m

We make the substitution

C-1
)
and examine the behavior of R(%) in the nelighborhood of C= 0
)14
Lfor Iarg gl 5 -2-o
R(é) can be written as
o 1
(m - ) f'g)z(e ) +1
—T—oi- .53 H P,mo
m=1 (e,) iy,

(a) a(é) =

As stated previously, asymptotically (Karp - 2)

c(e,)
1l 0 w
(b) m (8 )~ I~(m - =) + s 0o<eo. <X,
Fo 0" o L 0~ 2
PFProm this fact, it follows that the infinite product
o %—(m - ]]-‘;)
(] =
m=1 PP(QO

converges.



If we call the infinite product of the second factors
in (a) N(g), that 1is

m-l g(m K) --+ 1

it can be shown that N( g) converges uniformly in all C in
the region larg g‘ < -. For, N(G) can be written as

(c) u(é’)=ﬁ g[:—‘m-u) i, :]

m=1 g““"ﬂ’%”

If we define f (;) as

Z~(m - )-)1(6)
[ : ]

-2 4+
(m u) o

fm(l;) = -

then N( g) converges uniformly in the region |argq§% ifr
&nd only if the series

(o)
(a) > e )
m-‘-—'l| m l
converges uniformly in this region.
By use of (b), we have for large m
I | c(eo) |

g l—>—
t (B)] < L .
'm l |§‘m'%)g.5+1|

However,

lg(m‘ |C|(m- -— for‘argl:'f_%v.
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It follows,
6, C(e,)

|fm(l:)|f."m(m.l *

L

Wwe have shown that the series (d) converges uniformly for all

[

(c) .

arg I;|_<_% , and hence so does the right hand side of

Since R(%) = A(8,) N(G)

we have that
1im  R(Z) = a(e.) argu| <2,
G o’ 3 |rer|=2
‘gl—»o
as was to be shown., The last statement follows from the fact

that N(5 ) 1s continuous for all 5 , ‘arg ;l 5% .



Note 3: An Infinite Product Expansion of M)(cose,) .
-+
M

Refering to the discussion in Note I, we need only show
that the orderC of Ml(coseo) is such that 0 < ( <1,
- =+ - -
>TR
Recall that
M, (cos6.) = P,(cos®.) - P,(-cos8,.).
Ztp 5 tp Stm
We have (Note 1 = (b)) that for ‘).1 - -;-|>>> 1l and

e <3<

1 .
(p + =) 6. - 1]
Pl(coseo) = 2 F!l 2) cosim 0 ﬁ (1 + 0(1)] .
-E+P ﬁ ,"()44-1)\/2 aineo
It follows that

P,(=-cos6.) = P,[cos(m - 8.]=
1 0 1 0
iRV RSBy

(u + %) coslp(m -~ 6.)= &
2 [W+3 F " L 11+ ok,
ﬁP(}x*l) 2 siné

Hence,

Ml(coseo) =

-_ +

2
1
Azl w3

" [ (u+ 1V sine,

cos %()m - %)cos %(260- 11 ).[1 + 0(}%)].

It can easily be shown that the order of both cos(pe, - -E]

and 008[)1(11 - 90) - -E] is 1. Recalling the behavior of the



gamma functions from Note 1 we have in the region

IP-%I>>>1 and |arg/4--§-l<n

Ml(coseo) = 0(3|P|) .

- 34»);
Since Ml(coseo) is even in y it is of order 1 and we
- §+P
may write
.Mi(‘..coseo) =
2 K Xk B
o0 2m = o0 2m - i
Ml(coseo)n 1+ =& \e 2 TT 1- =& ___\oe
- - Zm - 1 _ Zm - 1
2 m=1 2 m=1 2
o) TR (8,) (6.)
»(e
TT 1+ £\, ,m® ﬂ 1- —a_\ ¢ um°
m=1\ P.(8) m=1\ P (&)
M,m M,m

This is a meaningful expression since all the infinite

products involved converge.



Note L: Zeros of Pl(coseo) and

= o
e, = 30

Fw N+

O Vv o= oW

[

3 (-]
e, 60

v

O 0 = O\

[

— :2-"”1

Pp’m

14 .583687609
10.538550385
16.5249
22.518%
28.5145
3Le5115
L5.51020
L6 .50888
52 .50786
58.50706

2.27728827

52627794

8.25825872
11.25608
1k4.25481
1725398
20425339
23.25295
26.25262
29.25235

Ml(coseo) for 60

-.2_4-)1

"‘M,m

2.9160411

59631520

8.975471
11.981981

5.9773804
11.988560671
17.992359
23.994251

= 309,60°.
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