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ABSTRACT

The Lebedev integral transform is

applied to solve the mixed boundary

value problem representing the radiation

of a biconical antenna. The problem.is

formally solved by use of the conventional

Wiener - Hopf technique, and the above

transform. This method does not lead to an

explicit solution of the problem but to an

infinite system of linear equations for

the representation of the unknown transform

function.
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INTRODUCTION

The symmetrical biconical antenna of small apex angle

was devised by Schelkunoff as a model for the simple wire

dipole antenna for which no exact theory has yet been

provided. The biconical structure permits discussion of the

solution of Maxwell's equations in spherical coordinates.

Study of this problem.showed that the portion of space

between the two cones and bounded by their surfaces forms

a transmission line, with principal and higher modes. Thus

Schelkunoff reduces the radiation problem to what is

essentially a circuit problem, viz. the terminated biconical

transmission line "loaded by empty space" with a terminal

impedance whose value depends on the apex angle of the cones,

their slant height and the driving frequency (Schelkunoff-B).

Schelkunoff calculates approximate values for this

impedance making use of the simplifications that arise in

this problem when the apex angle is nearly zero. By a simple

transmission line transformation back to the origin, i.e.

common vertex of the cone, the input impedance at the point

generator can then be found.

.A problem of considerable mathematical interest - even

if of less practical significance - is the one involving

symmetric biconical antennas of arbitrary apex angles, i.e.

of any value between zero and 1809. This is a mixed boundary

value problem which can and has been attacked in spherical

coordinates by the method of separation of variables using



series expansions in terms of the appropriate sets of wave

functions (Schelkunoff-7). Being a mixed boundary value

problem one is led to an infinite linear system for the

coefficients of the expansions rather than explicit values

for them. The reason for this is lack of orthogonality over

the matching surface between the Open space and the

transmission line space.

Recent advances in the theory of mixed boundary value

problems indicate that such problemm can be solved explicitly

by use of integral transforms. We refer here to the

Wiener - Hepf technique applied to dual integral equations

applicable to two complementary parts of a boundary on which

the boundary conditions are not the same. This method is

surveyed critically by Karp (1).

In the present problem we consider the antenna to be

perfectly conducting finite conical sheets of equal apex

angle and situated end to end on a common axis of symmetry.

The boundary over which mixed conditions apply is the

infinite double cone part of which is perfectly conducting

the other part free space. In Schelkunoff's theory the

conducting surfaces are capped by spherical surfaces. Here,

in order to reduce the physical boundary to one coordinate

surface we consider the uncapped structure.

The integral transform appropriate to the geometry of

this structure is the Lebedev - Kontorovich transform (5).

It has recently been applied to the problem of radiation

from circular disks (Leitner, Wells - 5) which when



formulated in spherical coordinates is also a mixed boundary

value problem of the two part type. The present thesis is an

extension of this work to the theory of biconical antennas,

in the hopecfi'obtaining simpler expressions for the input

impedance of such antennas at the vertex.



II

STATEMENT OF THE PROBLEM

Consider a finite right biconical shell, c, shown in the

figure below.

 

 
 

We assume that the generators of the cone make an angle

6 = 6 (O < e < n) with the z axis, and that the slant height
0

of the cone is a..

Mathematically, we propose the following boundary value

problem:

Find a function R¢(r,6) satisfying the differential

equation

2 2

v2 60 csc 6
u-“ .-

(1) H“ * 02 2 H¢ 0

where wis the frequency and c the speed of light, subject to

the following conditions



(a, ___c_3...__
60°86‘8m93¢)=0, r<a,6=60

(3) Hg is continuous across 6 = 60 , r‘z a

as

(11.) r 81% '0' ikflfi bounded as r-> oo , k2 :93.

(Sommerfeld radiation condition).

We seek a solution of the time independent Maxwell's

equations (Stratton - 9)

V x‘g + iiuuig = O

V x

I
n
: -1we_E_=o

subject to the boundary conditions

(DE-=0 ,e=e

tangential

O

(2) Continuity of the field functions in free space,

(5) Sommerfeld radiation condition 3

)1 and E are inductive capacities, and w the angular wave

frequency.

It is well known that when symmetry with respect to C is

assumed, these equations separate into two independent sets,

6

interested only in the first set of equations, namely

one containing Er’ Ea, Hg and the other R¢, Hr' H . We are

1 3
- --- 1911 =iw£E

rsine 60 (an ¢) r



1 a ' __
3-5;” H¢)- nut-:36,

as
1 e _ = _

Fla}? ‘1‘ E9) ear} “"f‘na'

It is from this set of equations that one can derive the

 

equation

 

2 7

H + —2- E + 1 a sine fl 4- ‘23 - 28—639. H = 0

81.2 1' Br r2 sine 66 SB 02 r2 9‘

which is equation (I) cited above.

Physically, we have two conducting conical sheets fed by

an alternating voltage of fixed frequency and amplitude between

the two apices of the cone in the limit of zero gap. Such a

method of excitation produces electrical currents on the

conducting conical sheets which are purely radial. The

electromagnetic field of the structure is transverse magnetic,

i.e. the only component of magnetic field is H“ where C'is

the azimuthal variable about the axis of the antenna. For such

an excitation it is also known, from physical considerations,

that H¢ has azimuthal symmetry, and planar symmetry about the

plane 2 = O.



III

REPRESENTATION OF THE SOLUTION

Writing the differential equation in spherical coordi-

nates we have

 

2 a H 2

aH¢+3J+_&___§_,meEEE.92_-2§eEQ H

31,2 r Er 1.2 .1116 Be Be (32 r2 9‘ = 0'

Application of the method of separation of variables yields

(5) H¢ _._

oo 1

2:: - 5' - + 1 + 1 -

n=o(kr) anJg*£lkr) bnY£+llkr) cnPh(cose) ann( case)

2 2

where J (kr),Y' (kr) and Pl(iicose) are the Bessel,
,1 4.1 n

n n -
2 2

Neumann, and first order associated Lengendre functions,

respectively. The coefficients ‘n’bn’c and dn are unknownn’

constants whose values, once known, would yield a formal

solution to the problem.in terms of a series representation.

For physical reasons cited previously, the solution to

the boundary value problem is known everywhere provided we

obtain the solution to the problem in regions (I) and (II)

indicated in the figure below.

24\ I

 



Azimuthal symmetry and planar symmetry about the plane z = 0

provides the solution in the entire space.

We shall use a "function theoretic" method of solving

the problem Wherein we consider the functions in (5) as

functions of their order rather than their argument. Through

such an approach we will apply the Wiener-H0pf technique (1)

which is essentially an application of the concepts of

analytic continuation and Liouville's theorem.

From.this point of view, the appropriate representation

of the solution in the given regions is not a series represen-

tation, but an integral representation on the complex order

plane. For the given set of boundary conditions the

corresponding eigenfunctions do not form on orthogonal system.

The usual methods for obtaining a formal solution in terms of

a series representation can not be applied without infinite

systems for the unknown quantities an to dn in (5), whose

coefficients are of a very complicated structure, as can be

found in the work of Schelkunoff (7).

We consider the integral representations over a contour L,

where L is a contour in a strip of finite width about the

imaginary axis in the complex order plane, from o-- 1 co to

0'* 1 oo , a-being a real number. The reason for such a

contour becomes evident if one considers the Wiener-Hopf

technique which is to be applied. This approach requires a

study of the functions involved as functions of their order

in overlapping half planes whose common region contains L.

The appropriate radial function for our solution, R¢ ,



is the Hankel function, H£2)(kr), where k is real. This is

the function which satisfies the Sommerfeld condition cited

above. However, in order that the integral representations of

the solution do not diverge we must let k = -17f', where‘y‘is

real. Such a substitution for k leads to the Macdonald function,

- Im

KFVIr). Since for |Im}1| >> 1, 13:2)(kr)~. 2 )1 and

u

' a I‘m/“l
, this change insures that our integrals

converge along the contour L.

Such a substitution leads to a transition from.a wave

problem to one of ”exponential - decay” with the same boundary

conditions. The integral representations over the contour L

would diverge if one returned from real'XKto real k under the

integral sign. However, these would converge if L were first

deformed to surround semi-infinite portions of the real

)u axis, and the consequent residue series leads to the correct

results in the wave problem. This has recently been demonstrated

in a paper by Oberhettinger (6), and verified in a paper by

leitner and Wells (3).

With these remarks we define our solutions in regions

(I) and (II) as follows:

—1=Jf A91)1§‘(7fr)Pi(cos 9)d,1,

V” L " “'7‘2

(6)H¢(r,9) =1 0 5 6 < 90,

P1(cos e)+ P1(-cos 6)

- l - l

0712)): B()1)151(Tr) ~31? fl

" L 1' -.1.
sin 5‘?» 2)

 
dp,

w
60 5 0 5:5.



My) and B(}1) are unknown functions to be determined for a

formal solution of the problem.

The term.sin §(u - %) appearing in the second integral

is introduced in order to explicitly indicate the proper

eigenfunction corresponding to the principal mode)1 = l of

the biconical transmission line. In the limit/p= l the

quantity in the bracket is indeterminate and has the value

1

sine

Utilizing the relation (Magnua-h)

 , which is the appropriate principal mode function.

‘2“?

one obtains from (6) the representation

55—:— §in6 19:}: cose) = 19.12 - 1:113” case)

3
ma H ) =(7) “3—0036 fl

2 1

fair 111191 -W“a???“ ° -‘- ° 5 “0

 

P(cose)-P(-cos6)

fijrB‘WTW1“" -4, 71711“ d)»
sin --()1 --—)

It follows from Maxwell's equations that

inr Er

 

(ineH ).

.033 16

Since the tangential component of E, the electric field, is

to be continuous at the boundary between regions (I) and (II)
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cited previously we see that the Jump in Er’ the tangential

component of E, across 6 = 60 for all r must be equal to zero.

Computing the jump by use of (7) we have

Sf“); - 1%) (Yr) Mp) - —§-9‘-% P(cos6o ) "’

L 5‘ ‘1“ 5‘?“% " “"71

+ _.$B_B) 1 P(--cos6o ) d); = 0

n
sin Elf‘g)’gtp

for 9 3 60 and all r.

Since this is to be true for all r we must have the

expression in brackets equal to zero and it follows that

 

P1(coseo )

- -1u
<8) ital. =_;

My).

31n.39u-l) P1(coseo)-1P (-coseO )

2. 2 - Efp' "-7u

Before enforcing condition (5) we rewrite (6) in the

form

Hdlr,0) 3

sine
 FL}: 1915mm;green): , o 5 e 5 90

.. 2.3.2; P .BJBL 1 x (3‘11) P;(cos9)-P;(-cose) 91,

I. L sin USPPEQ’P’ ' zip. ' zip

6 5.9:.

“
H
:

O



where prime denotes derivative and where we have used the

relations (Magnus-LL)

P: (4' cose) =+ sine P1(_f cose).

- 4;: ~71

Now enforcing condition (3) which states that H¢(r,6) must

be continuous for 9 = 60 and r a a we have

XLP51(Yr) [A9))-8m. l]-P1(coaeo) +

1"

5-44012 2‘?

+£(‘E-L- P(-coseo) c91=0

sin -<P-> - ~11

for6=6 and rza.

0

With the aid of the relation between A91) and 891) given by

(8) one may rewrite the integral expression just given in

 

 

the form

WlPlgfioseo),-P£(-coseo)l

at 1 (Yr) ___a a =0

P )1 5‘ p1(coseo-) Pl ( -coseo) P

L

"a"? “a”?

where W[P1(coseo), P ( noose0 )1 is the Wronskian of the

1

5T 37*

functions P (coseo) and P (-coseo), and has the value

1 1

' '2"? “27‘

l
.——2— cos 1:

sin 60 P

=
1
.
:
N
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Hence, it follows that

 

( )j cos n 11 101) d e

9 LP P(oos6°)- P(-cos6o ) K(I'l(Xr) )1:

-._tp .._ATI P

01

I
V 9

 Enforcing condition (2) which states that ‘9 (sine 3¢> = O

cose

for 6 = 60 land r‘g a

we have

2 l - -
(10) if. MPH}: - E) P1(cos60) KPQ‘rMP - O . 6 - 60

' 5' r‘g a

The expressions (9) and(10) form a set of dual integral

equations for the unknown function A91).

(1) Preperties of My)

 

By use of certain general properties of the electromag-

netic fields of radiating structures such as ours, it is now

possible to discuss the behavior of A(P) and certain related

“W' '

functions withoutexplicitly knowing them. To do this one

 

makesunseat the Lebedev transform theorem.

 

Such an analysis is necessary in order that the conventional

Wiener-Hopf technique can be applied without too much

difficulty in later paragraphs.

This, itheorem (5) we state as follows:

LetA()1) be analytic in astrip of finite width about the

imaginary axis containing L and having decay at least as



rapid as I)“ Z‘r) in the distant parts of the strip. Then,

-provided both integrals converge,

mm =JLp/1 ()1) 51mm}:

m

.. 1 dr

A91) " HS ¢(3‘r) KIJXI‘) -;- .

0

Here I (X‘r) is the modified Bessel function whose growth for
)1

*Elmfll

l

(IMF

With the aid of condition (2) and Maxwell's equations

large 9 Implis

 

we may write

= 93;...— )1 A91) (P2 - 11:) 51(Xr) Finesse)? '

r L " '5 )1

One may show that

if, 7,1- 1... -47 *7i_4_ a ._ _.___..,7fi_-.i-v_._.e,

(11) 1911912 - 13;) P1(cos90) =

.- .2.. +P

' m

= - ¥J v; Er(r,90) 51(3'1')”.

a
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It is well known that H¢(r,6) need not be continuous

(across the conducting conical sheets. If we denote by

[H¢(r,60)] the discontinuity in Hd(r,e) when 6 = 60 and

r 5 a we have

I' _<_ a [H¢(r,60)]

 

 

 
 

 

r‘z a O

__ 2 .cos 1111 A01)- )u ,7 K ()fr)dp.

w r sineo A P1(fos60) - Pi-foseo) P

L ' 5 P " '5 P

.. One may also show A ‘

.i 1, ______._____ _ --_ .3 _ .h . 1

(12) £113) cos 11p a “two IHHWJOH I (Xr)dr .

P1(coseo) - P1(-coseo) 21 V—r- )‘

- .2. 4"; - 5+}; 0

Er(r,eo) is a continuous function of r for a _<_ r < oo

 

 

and has the behavior 1

V r - a

-1rr

as r approaches a, and at infinity. IP(X‘r) has a

r

eYr

finite value at r =.a and behaves as --—— as r approaches

r

infinity. Furthermore, Ifler) is an entire function of p .

With these facts and theorems concerning integral represen-

tations of entire functions it can be shown that the integral

in the right member of (ll) defines an entire function of )1 .



Similarly, it is known that [H¢(r,60)] behaves as the

continuous function 3’; near r - O and is continuous elsewhere

in the range of integration in (12). At the lower limit, zero,

the integrand in the right member of (12) behaves essentially

as Era/2 . Upon further consideration, it follows that the

right member of (12) defines an analytic function of); for

1
38,1 ) 2 o

1
Now by (11) A94) has, at most, simple poles at/J = I 2

and at the zeroes, for fixed 60, of P (coseo). If MP) has no

‘ .. le-

2 l’
oo

poles at any of these values then I V r Er(r,OO)IP()’r)dr

a

must have zeroes there.

1

'5':

has simple poles at p. 8% , :2?» , i!”- , ... and only there. If

By (12) A91) at most, on the right half plane Re}! >

8

not, then Ip(rr)dr has zeroes there.

1/?

 

0

Since Pl(coseo) = O for): equal to certain irrational
4.

"if

real numbers, A91) cannot have, on the right half plane

Bela >§ , poles at the right hand zeroes of P1890890" since

.2)J

that would contradict (12). It follows that

m

J‘ 1/; Er(r,60) 51(Xr)dr = O at the zeroes of_P-1.(coseo).

a . 2 I‘

Since by (11) 1191) does not have poles at

)1 =3,%, 1321-1 ... , it follows that



a [ng'seol]

w1/?

1
have shown that, at most, My) may have poles at )5: 2 and at

 Bu(z‘r)dr = O at these values. In summary, we

0

the negative zeroes of P1930890), for fixed 60 .

2}“

We will now show that with certain assumptions, integrals

(9) and (10) can be closed on half planes, thus insuring a

formal solution for this set of dual integral equations. Actu-

ally we must show that they can be closed on complementary

half planes since this is essential to application of the

Wiener-Hopf technique.

We make the assumption that ‘3')“ '-—> oo in the right

half plane RE}: > 5;:-

‘ Ya P
H ( ,e ) --- ..

S 11.9.3. 1 (fr)dr::: 2 P °‘

0 Vr P P(1*}1)

where Rad> O .

This implies that in the distant portions of the strip we have

1'. - .1. -

the behavior e+ 2 |T| (t) 2 Re d

 With this assumption.” 00‘ '9‘ M21) K (Yr)

Pl(cos60) - P1(-cos00) )‘1

2 f“ 2

u - “

behaves as («i-T}: ciwhen (1‘)" co and asl’C'I Re on the strip.

Hence, (9) converges and can be closed to the right when r Z a.

In its present form (10) cannot be closed on either half
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plane and a decomposition

I (7‘ )'-I(X‘)

K(X‘r)=g- .341: .P' r

.3 up

 

which is the definition of 5“?“ in terms of Ipht‘r), is

necessary. It follows that (10) can be written in the form

 

u 2 l I (tr) ,
(13) '52-ij - K) A()1)_?%(:;seo) in ")1 (1)1. ._

L

w 2 l I I (Xr)
- — c P

= aairy: 1;) My)? %(f;aeo) Ji—-ain"P C)“ 0

We mention at this time that these arguments, involved

in closing (9) on the right half plane Rs); >% , restrict the

contour L such that a-> :- but finite. In order to carry out

the following arguments it is necessary to make another but

final restriction that % < cr< l.

’C’

a
)1 - plane

‘
P

V q

 

H

N
h
‘
w

H
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The integrand of the second integral in (13) is free of

poles in the strip - l < Re); < 1. If we make the transfor-

mation): 8 71' , and note that (P2 - i) P1(£oseo) is an even

“ P

function of )1, we obtain

I (Yr)

1 (22-1)AU' P( e)+£P
air): I: P)_%f;l80 sinfl):

 

where L' is a contour in the complex order plane from cr" 1 co

to o - ice and -l < a~< -%— . (See figure above).

With the aid of (11) and the assumption that the integral

involved behaves as Iphfa) u-fi, where Rcfi> 0, one can show

that the integrand of the above integral approaches zero on

distant parts of either end of the strip -1 < Rep < 1. It

follows by reversing the sense of L: that the resulting

contour may be deformed into L such that one may write (13)

in the form

)1

(114.) jpgiz- i) a()1)-P%(foseo) 1710’s)? = O

L r

I
A g
s

 where a()z) a g. ME)“: A)?!” . By the use of (11) and the

s T!

definition of a()1) we have

so

2 l _. w
()1 - 11’ a(P)’P%(:;SGO) - 7-75 M; Er(r,ao) gamma.
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-7fr

F

at infinity. Furthermore S37?) is an entire function of )1.

 S‘P’r) has a finite value at r = a and behaves as e

Using these facts and those cited previously in connection

with Er(r,60) one'can show that the integral in the above

expression converges and defines an entire function of )1.

With regard to the value of this integral we assume

J? E (r e ) K (Yr)dr;:: (Fa) "

. r ’ ° 1‘ ’5» P

where ReP> O, which, in the distant portions of the strip

27:

becomes

V ITI

With this assumption the integrand of (1)4) behaves as

 

1T

- T
0 2| '|T|-Rep .

(3),}..5 when» --> - co and as ‘TVRcFon the strip. Hence

(114.) can be closed to the left when r 5 a. Thus we have shown

that this integral equation is formally satisfied.

To summarize, it has been shown that the dual integral

equations are convergent and meaningful statements of the

problem when they are written in the form

 (1 ) “8 "3‘ “Bl—Mm x (rrm = o r > a

S LP_Pl(f°860) '_Plg,-°°860) ’1 '-

2? '2'"

(16) Jfi(P2- 3-) a()1) P1(coseo) I_ (X‘r)d}1 = O r 5 a

L 1‘ " 2’71 ’1

 where 9.91) = g “.911; 2:31.). .
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IV

SOLUTION OF THE PROBLEM

We are now in a position to attack the revised integral

equations by function - theoretical techniques. In order to

carry out this procedure it is more convenient to write them I

in the form

(1; es)»

 

) ( )d = > a

L (P NP) 5‘ fr P o r

- P 1

Ta 7“ 7“

.L (2)

where

<17) {91): my: Asa; . “(12)

_P1(fos60) - P1(:coseo) (Lg-DP

'5 P -2

(1%"
(18) c'( ) = u(2--1-) a< ) rccoae» 2 --

 

4.

D ()1) is a function analytic on the right half plane R6): > g

and of algebraic decay of the order )fo‘in the strip,

2%.. < R9): < 1, and in all directions to its right. c'(;:) is an

entire function and of algebraic decay of the order If P in'

the strip and in all directions to its left. The superscripts

4‘ and - are to denote ”analytic” on a “plus" or "minus“ half
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plane with the additional property of at least algebraic

decay in those regions respectively.

With the aid of the definition of My) we can now

+ ..

establish a relationship between D ()1) and C ()1) of the form

 C()=( 1)P(cos60)[P (cos90-)P(cose)1 l
)1 ’12 E:_ 2 +1” -‘:+)u 2 cos "I”

-2

fi’vn-(Ifi) PMD(;}.

2 [(171)

We now define M1(cos90) IPlgcos890)- IP1(;coseo)

“PIP 5P “I“

d tili th lti ) -1--anu ze ereaon:—————o:flz8(%r +PF(2I‘)

wherein we rewrite the previous expression in the form

(19) c“(,n - -—-(}12-71;1)P(—+)1)P(%-p) 3.1.“;“0o) lecoseo)-

2 2 F

D‘P’ (2‘)2,11% ”"7“ -)1)

Our immediate purpose is to transform this equation into

one whose left and right hand members, say, are minus and

plus functions respectively. It is at this point where a

modicum of investigation reveals that such an equation

defines an analytic function in the entire plane and hence

by Liouville's Theorem is identically zero. This will be

illustrated precisely in later paragraphs. However, in
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order to carry out this procedure we need first to investi-

gate some of the properties of P (0086 ) andM (coseo ).
1+0 1

2" 2"1

(l) Factorization of Plgfoseo) - Asymptotic Behavior of the

  

factors.

P190390) is known to possess a countable number of

irrational simple zeroes which we shall denote by )1 (60),

3

m = °°° -2,-l,0,l,2,°-- For fixed 60 it is an entire even

function of ‘p. and its zeroes are given asymptotically by

the expression

 

)

(20) P (90)~r-(m ' K) + m0 ) O ‘65.. 90 i" “E .

It can be shownx that we may factor P1(cos6O ) as follows:

-_2_+P

(21) Pl(coseo) =

' _(Inf-1‘0)
: _Pl(coseo)TTl +#— e 9,130

2 “=1 )1PE:0)

a: )1 (6o)

’T—T l.-lL——- e P'mo

Let us call the first infinite product appearing in (21)

 

a See note 1



-2 1+.

k " 91,60) and the second k‘().1,eo). In order to investigate

Pficoseo) as a combination of "plus" and ”minus" functions

defined previouslywe will need to know the asymptotic

+ -

behavior of both k 91,60) and k 91,60).

For the present we confine our attention to the growth

4.

of 1; 91,60) as compared to the growth of the infiniteproduct

9

°° a . - OPX -1)

L91) 1:116 11 / LR) °

 

We can express L91) in terms of gamma functions and

obtain

(22.) L(u) = FLZ/LLL . e 1'

r1 W a)w 1

To carry out this transformation we have made use of the

_z

+z 6mg

m+a

where )0 (z) is the logarithmic derivative of the gamma

90" 1

1r

 

expression (Magnus41)

  

m

(25) He + 1) ezwen) a TI' 1 +

["(z + a + 1) m=1

function F”). To obtain (22) we take z = and a = -—-

in (25) and compare with the original form of 1.91).

4.

Now form the ratio I191), of k 91,60) and L91). We obtain
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- 11

oo )1 ppwo)

,m

k+( 6) 11(1 +P e°>6P, 0 P,m

(21+)R91) = L( ) = 00

P - .A‘..___I
1 + .B..__

m=1 F—(m-l)e %6(m " E)

90 11

Taking the logarithm of both sides and adding corresponding

 

terms we get

 

 

as

log R().1) 8: log

m==l 1-+.£L_.___.

  

 

  
 

w _ 1

3117. 1 1- _
00 PP :0) roe ‘

= 2108 i " Z —£————-1- - JET—3

= .25..— .. IL. .. 9
m 1 1 + l. - .13. m 1 60(m E) Pfimo

 

since each series converges separately for all )1, as a

consequence of the asymptotic property of u (60) (See (20)).

P,m

 

 

 

It follows that

as

m +p 0) :9): Z 1 - 5—3....

R()l)‘ T) Lu e n “=1 m “t 7,9): (90) .
m=1 1 + +11 P,m

w l

--(m - —)



For large lp' , in the region

 

> 11 a-
arg P l— 2- , R()1) becomes

 

1

r; 1 '1 {2-,- Z :71” " 63*“
(m - ) 1 —— (e )

my»; 1T E e m= I; 1' PP,mo

m=1 60 )

E‘prgo

  
or

—B(e0)}:

R()1)~A(60)e—

where MOO) denotes the infinite product and 8(60) the

infinite sum.

(From equations (22) and (211) we have then

<25) k91.09 )ur‘ Me nag—"OB“6° ) #8)]

P719“ 1) ° ’

R941: 0.

A similar treatment of {91,00) yields

(26) k'(y,eo)~F%)—1 . Moon)1:OEGO) ”431,391: 0.

¥

#-

See note 2



(2) Factorization of M1 (coseo ) - Asymptotic Behavior of

2
 

the Factors .

 

M1(coseo) has simple zeroes at the half odd integers

- i+p

)1 = +(2m - g), m = l,2,5,--- and, for fixed 60, at certain

irrational values of .P' which we shall denote by

3;}1 (60), m = 1,2,3,'" . Furthermore, M (coseo) is an

u’m - .]_.+

2 P

entire function of )1. The irrational zeroes are given

asymptotically by the expression

 

I

Zmfl C(60)

(7) pfeo) "-2904.

Analogous toP1(cos6o ) Just investigated, M1(coseo) has an

2")“ " '2“?

infinite product representation of the fonm*

(28) M1(coseo) t

 

- 2 4'}: 00 - 2 1 m p
- 2 .;g

M1(cos60)I—l 1+ )1 1 e m 2 n l- Lg e m

m=l 2m- m=l 2m-

1- ' ,

’p.(90)e mel ‘p.(eo)

M,m

 

00 +

)1 :Pn(g°)m it PM :10)

 

*See note 5
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Let us denote the last two factors of (28) by k;(’.1,90)

and k;()z,eo) respectively. We now utilize (23) to rewrite

the second and third factors in terms of gamma functions and

it follows that we may write (28) in the form

(29) H1 (coseo ) =

-—l.+P

-Ju

H1(oosOO)-E—-—E——-——ez Y(E)e E)” (1):“kM-(flfioh(.90.)

2 Or(e+n)r("2'* 1:) MP

For future needs we now develop the asymptotic behavior

4. -

of kl(P' 60) and kM(}.1,eo). We begin by considering the growth

of k;(p,60) as compared to the growth of the infinite product

00 , - .- pht- 260)

”(I +P(fl 260) 6 2m T!

21111!

 

N91) =

A detailed discussion is not necessary in this case since the

approach is exactly the same as that used to develop (25).

We simply state the result which takes the form

9
l .. .9 ' -(50) k;(P'°o)”A (60) {1(2 1, ){B (90) c}



A similar treatment of Iii-401,90) yields

9

a'e) -(l--9- B'e 43}

PM?)
0 is the well known Euler constant and has the value

 

.577215 0" . A' (60) is an infinite product given explicitly

as

 

oo

a Zmu

A (e ) = H

0 (6 )(v - 26 ) '
mp1 (”hang O

B'(Oo) is an infinite sum of the form.

3'90): _-

( :(i )1”(OSufi-200)

Both expressions Just mentioned are convergent and represent

 

constants for a particular value of 90.

Using (21) and (28) we now rewrite (19) as

(32) 0'91) =

1 2 l + -

3W ‘ ENC 91:90” 91.90)’

+ ,_ 1‘1"? PU +11) 4'
{1391) (a) F‘l'F)D(7u)} 
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8 where

4.

(55) x 91.90) -

 

 

 

2 .. 1

\j-P1(60800)M1(00860) r(— +P)Tr(1 + I“ 2)° In 2

 

 

2 2 2m -

_ N

m )1 (90) (D - 9 )

111; 1 * ° P’m TT 1 + —£—- e PM’mo on)”

P “o) m=1 )1 (e ) ’

Psmo M,m°

oo ‘ 2m - 1

\F’l(coseo)ldl(coseo) r095:- -)1)U 1 - )1 e 2

'2 ' E ”’1 2m - %

Pfio "fin"-r( )

fl p(OQ°P)>‘.7le81([AME]:LN): e )1

P,mo

 

 

where HP) is so determined that the growths of 1691,00)

and (91,90) are algebraic in the preper regions.

To study the asymptotic behavior of 1891,90) and 1591,60)

we refer to (25),(26),(29),(50),(§1) and thus Obtain
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(55) K+(}1,60) =

1 1+)
- P

P‘ 9)H(0089)-E(fl[‘£2——’

\/-_:.°°a°-%- O l"(&+}.)

2 h

)u 1
5%K)+f()1)

)

k+()1,80)k;(}1,60)e

 

(56) K-9‘seo) 3

 

Mare-1») .
\/.P;(coseo)l}lcoseo) ( K)

2 2

k'(y,eo)k;()1,eo)o
W491,

«-

Now these factors are, by Stirling's formula ,

asymptotically

4.

(37) K 9:,90)~

 

 

- l

\k%(ooseo)!%(coseo) P(fi)r(fi) A(60)A'(eo))1 2 ) Hell: 0

K-(P’GO)~

.. l

\lfl(cos60)ll(cos60) r(fi)r(fi) MGOM' (eon-)1) 2, Rep: 0 ,

'2‘ -2

 

 

* -l

r94)~}if‘/_§;_°.P for 'argr'<fl
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We now begin the task of transforming equation (52)

into one whose left member consists of functions all of

which are minus functions and whose right member consists

entirely of plus functions. It is important that all these

functions, as functions of their order, have a common strip

of regularity. Reasons for this restriction were stated

previously and will again be emphasized. As will be shown

in the following pages this common region of regularity is

the strip -1 < Re)u<)aP{60) or Plieo), taking the smallest

of these two values. For future reference we shall call this

smallest value P911 1 . T
, _

g m
/‘ -4

'/"'/

’//

g
r
i
n
.

-

m
y
“

i
n

8
H
i
,

 
We now write (52) in the form

(59)0(a = ()1 - —)()1 + -)K91.90)!) ()1) -

K (p.60 )

4)-? r(1“‘£) D+('7.l).-9, - -)(}1 + -)K91.00%}:- m1 -1“,



(3) Properties 93‘ functions i_x_1_ (39),

(a) The function SLAB-L— .

X 91,60)

 

Recall that according to our assumptions 0.91) is an

entire function with algebraic decay of the order p.76, Rep >0,

in the left half plane. 2%)- has poles, see (314), at): (60 )

K ()1) P,m°

and): (60),m =l,2,5, "- .—:$&-)— is a function analytic

M,m° K ()1)

on the left half ju plane R3P<FP1§3°) and of algebraic decay

of the order u? in the strip, -l<Re/a <)1l(00 ) , and in all

directions to its left. It is clear that) provided Re‘fl > ‘2' ,

2;Qfl__ is a minus function.

K (p)

b) The function ()4 - $091 + %)K+()1)D+(p)

 

N
I
H

D+()J) has simple poles at); = , -n, 71 (60),?! (60),

P,n ll,n

n = 1,2,3, ... , K+94,90) has simple zeroes at

)4 =-}1(60), -)1(eo) , n = 1,2,3, "- and simple poles at

P,n ll,n

ju . -(2n - é), n = 1,2,3, . It follows that

()1 - i.) ()1 4' %)K+(}I)D+()1) has simple poles at); = -n,-(2n - %).

n 3 1,2,5, ... and thus is a function analytic on the right

half plane Re]: 2- - 1. Furthermore, it is of algebraic decay



5/2 -°<Of -the order); in the strip, 1 < Refi<);m(30), and

in all directions to its right provided R2cX> g .

1 _}_ + 134/“ N132) 4’
(c) The function ()3 4- 2MP 2)K 91,60) (2) PM?) D (71),

 

Using information already stated in part (b) and

preperties of the gamma function we see that

l _ A; + 75‘s .2“ (l 4’
()1 + 2H): 2)K (p.00) (3-) fl D (71) has simple

8 - C -l a .0.poles atp Pufzobfrfgo)’ :1, (2n 2),n 1,2,5, ,

2 + 2 - o<

It behaves asITI d‘ 2 in the strip, where 0’ is equal to

to the real part of )1.

If we let» =(e19 and apply Stirling's formula we find

1 1 + r ’2)‘ [‘(1 +
(P + '2") ()1 "' '2")K 91,90) (“'55) Ffi D {-y) behaves

asymptotically “5 F2? coso e-HZG - whine - 2e cosO.

Hence, it decays in the left half plane and would be a minus

function if it did not have simple poles at‘p = en, -(2n - g)

n = 1,2,3, 00-, We have found no way in which this mixed term

can be avoided such that separation into half planes of

analyticity is possible. However, this mixed function can be

split into two parts by adding and subtracting Mittag-Leffler

series which have the same residues, of the form



 

 

00 a co Tn

((+0) 11 9 E

Epi'n n==l)‘l + 2n ‘2'?

where an and Tn are residues of

‘)-2}1 Pu +21 13"
("<1 I.” (71)()1 - 49. + in:91,90)(1-

at the simple poles p = -n and}: '-'-‘ -(2n - -)a n = 13.5:

respectively. These residues are

2n

-«(n‘°' - flung-‘1)

rm H;— + run!

Rn: D(n) 

( )

1+1 dam-1

2nfl8(-2n+-)——-
1

n
D(2n '5)

(2n - 2).(2n - 51P2(2n - is

 

("(1 +p) cos 11}: AM

(Ly) _u§(:;f°°0)

where D91) 3

.0 ...E._‘

and 8(P)=T‘;l+._£_
_3>°

2m-
.

M‘

2""2

-_£___ - 1“
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Using (141) and our assMptions about D91) it can easily

be shown that both series in (ho) are uniformly convergent

in p. If we consider the functions representing each series

in (be) we find that these functions are free of poles on the

right half plane Rep > - l. The behavior of these functions

or their series representations as | ,1 |—> as is a difficult

question. Their nature strongly suggests that they approach

zero as lyi—p co and we will assume this fact and consider

both series in (110) as plus functions.

The difference between .

 (pr %)(}1+%)K+()1.00) 68%)-? Ft: :13 D+(-)1) and the two

Mittag-Leffler series is pole free on the left half plane,

R011 <)1Pu(30), and because of previous considerations is in

fact a minus function. Hence it may be transposed to the left

hand side of (39) . We have

-2

(142) __$B_L + (P--)(P+%)x91,90)(x‘..2‘.2>)‘1 £339.11! p(.}1)+

 

co as ’E’

+2311 +ZIn 1:

4' n - .—

n=lP n==l)1 + 2n 2

 

co as
R T

1 1 + + n n °
= (P - 5) ()1 4' '2')K 9.1960“) ()1) +;1 F + 11 +1;

1

2
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The separation of functions is now complete. The result-

ing left hand side is a minus function and the resulting

right hand side a plus function. The equality states that the

two sides are analytic continuations of the same function

defined in the common strip, --1 < Re); <}x(e). Since these

P
6O

continuations decay as p—p oo in the resplegtive half planes,

the function so defined has by Liouville' s Theorem the value

zero.

Hence we have

3—9— 1'

1Pn n=1 -_
P’Z" 2

 (1+3) (,1 - --)()l + -)x91:90)”()1) + :1

where D+(P) a: ELL: P) 308 ")1 ‘Q) , and

(3)!“ Mycoseo)

2 “71

59.1) is the unknown function to be determined.

 

When}: is set equal to 1,3, 2, 3, :21, on, it is clear

that there arises an infinite system of equations. Hence, (14.5)

does not allow explicit evaluation of the unknown function

Mp) but only at the values}: = l, 1, 2, 5, 1.14., 5,17, ...

2

which are themselves the roots of the infinite system;2

mentioned above. This set of linear equations may possess a

simple explicit inversion, but the present author has not

studied this question in detail.
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V.

INPUT IMPEDANCE AT THE ORIGIN OF THE BICONICAL ANTENNA

The input impedance, 2(eo,ka), at the origin of the

biconical antenna is defined as follows:

V(r;6°,ka)

 

W4) Z(Bo,ka) a 1m

r-—>0 I(r;00,ka)

where 1'. fi

08

90 60

2 '5

W5) V(r;80,ka) =2 Eerde= 3-1-3 aarunfl)“

and

(he) 1(r;eo,ka) = 2nr sineO H¢(r,ao).

The relation needed to derive the value of the voltage

and current at the origin of the antenna is given by

um \E aficrmeom) =

fl
.. E; {1;(eres Mu) 4' 11(‘6‘r)Res M5)

m-— 2
2

L]. sine log tan '5

{11(0089) 4' P1 é-cose?

- _.+ ..

z-j’z)‘I (X‘r)a(p)P_1-(coseo) P P
5

5"}1 P1(coseo)-_P:cl(os60 ) d}:

2 2

 

 

The above expression is derived from



Pll(c5-039)+P1(-cosO?

‘2 P :71
 (tn-a) H KPWr) M )P (coaeo ) a

16:71.: )1 P'1+PMP1(°°860)-P_15.(-0°089))h

L '5 V“ "P

90.: 9.:f§.a

which is obtained from (6) using the representation in the

region 60 59 5-3- and the relation (8). In order that (LN-a)

be a convergent and meaningful expression in the right half

p-plane requires a transition from 151(25‘r) to ZIP(X‘r). As in

previous arguments this synthesis leads to a kernel involving

a(p) instead of A01). However, in our present case the

transformation of contour leads to residues due to simple

poles at )1 = I in The two residue terms signify the outgo-

ing principal biconical wave, and its reflection from the

terminus of the antenna.

By substitution of (147) into (L6) and taking the limit

as r approaches zero one obtains

"a (W
 (1+8) 11m I(r;90,ka) = - __ 2 T Res 13%).

r“'° 2 r(%)log tan-59

The same substitution in U45), assuming that the

process of integration and taking the limit can be

interchanged, leads to



a
;

(9%

W3)
Using these results (141;) takes the form

(19) lim v(r;e

r——>0

 

- 21 l

o,k8) -JEE Res A(""2') .

a - 1

(50) Z(Oo,ka) = -——-X1 log cot—9- ________Z__ResA( ) .

"WE 2 R 1

es ME)

One can write the system (ll-5) in the more convenient

 

 

form 6’ 5 1
0° °° 2n--

(51)5)1'%-: n +%—: 2 =0:

Pn-lpi’n Pn'lp‘FZn-é-

=3 1 l .0.

P 1,2,233,2’

where 2 1 2

(52) e =£F<P+EWHAEL
)1 11 (3)91 shy)

'2

and "(p + £03071)(fig-y-‘Yf1 D+(}a)

(55) SP =- - 1 2 .

P9: - 5) )1 F ()1)

 

Recalling an earlier relation between MP) and D+(}1)

given by

3. P _ll1(cos90)

( 2“) 5*“ 4.

*- D ( )

['(1 +p) cos up P

 

M») =

and using (53) we have



4&1-

 
 

. 00 00 J _ .1.

Ml(cosed) {Z ”inn '2 21

(51+) up {lay If" . n=1n= P + 2“ ‘2' .

2 1MP?” - i) Fwa + imbue“ up

 

Using (51+) we can now write an explicit relation giving

the quotient of residues in (50). We observe that the simple

pole of MP) atp= ~1- is due to the factor 91 - -2-), and the

 

 

  

21 _ 1
simple pole at}: = - 2- due to a zero of gyi) at); - - 5 .

Computing residues at these values we have

a. g,“ .1.
_______2___

1 n _ _ Zn- 1

(55) R" A" '2" = 1 .1. 1 n=1nl= .8(2)Res

Res M5) (ks) 32p.-) .1 co Jan __l_

2-5—21-Z—z—
n==l1n +‘g’ n=l

In view of this relation, and the fact that

& —1— (50) becomes

 

 

 

 

(05a 5 1“

a. -5211 A

Z5 Z 2_l 2n-l

(56)Z ='"1\/:E-—8(-2)Res n=1 2 11:1

89'") co Ln 00 Jan -3.

Z32:-‘°'

This is a general formulafor the impedance at the

origin of the biconical antenna.
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VI.

DISCUSfiION OF THE INFINITE SYSTEM

Cm cursory inspection of the system given by (51) one

finds that the convergence in the matrix of coefficients is

strong in columns and slow in rows. To see that this is true

computations were performed of the GP for certain values of

the parameters Xa and 60. This computing project requires the

calculation of certain infinite products involved in the

definition of g(}.1), see eq. Lil. These products contain the

zeros of P (cose ) and H (cose ). A table of these zeroes

- .1; + 0 .. l + 0
2 F 2 P

for the angles so = 30° and 60° is given in note L). of the

appendix.

Asymptotically 6}“ takes the form

(57) 6);" lug" -

With this behavior one hopes that (51) can be concluded

after a few terms and that the infinite system can be

approximated by a finite one. Actual computations show that

quite a number of terms are needed. The function 9’11 does not

grow fast enough for initial “values of the set 1, g, 2, 3, :21...

For example, computations for 60 = 60° show that

6.12% .021216

2 (X9319

Thus numerical exploitation of the system (51) for arbitrary

values of 60 without automatic computing equipment is a very

tedious project in itself.



In the belief that for the limiting case of small 6

-h}-

0 the

computations simplify, we chose for numerical approximation

00-7-1 degree ,

10

i.e. a thin and short antenna. In this case the 6)1 increase

monotonically and rapidly as flincreases. The system (51) was

cut off, successively, at 2, 5, u, and 5 square. The results

are given in the following table.

‘ LL-s uare
 

   

 

 

 

 

 

   

 

 

  

”mg-Jame -s uare

J _ -u - . 4. - -u _ --u
3 (2)10 (1.81569no (5.59m (1.025)1o

31' .185850 1 .188016 1 .192501. 1 493572 1

J I28.2119 (h.5702)1o'l‘ -(2 .16 )10'“ (.m10'3

3': '.297561 1 (1.1;)10'5 i (1)10’6 i (1)10‘6 i

‘ -M _

5 -u -3% -27.2378 (.25)1o (.152615)1o

3r: -.3§8h19 i (1)10"6 i (1)10"6 i

4

i2 36 - 5171+ -( o32799)10.h

81. $62011 i (3)10"8 i

J m 2. ,

ig- -§9.3u37

6'1 «503287 1    
(In this case 8.2, 51+, i.e. all 8's of even subscripts were

negligible).

As more and more unknowns of the system are included,



J
the first unknowns (in this case 5/2 6. is the only

1

significant one) seem to converge to some value; presumably

the root of the infinite system. The root for the last unknown

of each system is in complete contradiction with the root for

the corresponding unknown in the systems of higher order

of approximation. An explanation of this is not available at

the present time.

On the basis of these results the value for the input

impedance of the antenna with Ya 8 21—5 , 90 = l0 was found

to be

2:219-23111 ohms.

Clearly much more numerical work must be done to estab-

lish the properties of this infinite system.

We also attempted to extract approximate solutions of

this system for the limiting case of small or large X‘s, by

use of ascending or descending power series expansions. In

all these attempts the coefficients of these series are

themselves roots of infinite systems and not of finite

systems. This is contrary to situations in many other problems

from the field of mixed boundary value problems (Leitner and

Wells -3).

Thus we conclude that at present a complete check on the

assumptions made previously in connection with the behavior

Of certain integrals cannot be made. A great amount of further

Study of the infinite system is required before they can be

established beyond all doubt.
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APPENDIX

Note I: An Infinite Product Expansion of the Legendre

Functions of the First Kind.

An entire function f(z) is said to be of finite order

if there is a positive number A such that as

|z|=r——soo

rA

f(2) = 0(Q ).

The lower bound (3 of numbers A for which this is true is

called the order of the function. Thus, if f(z) is of

order {3

+8

f(2) = More )

for every positive value of E , but not for every negative

value (Titchmarsh - 10).

If fly) is an even function of )1 and if the order

Of f().1) is such that O _<_ e _<_ 1 then the Hadamard Factorization

theorem permits the writing of f(p) as an infinite product

in the form

oo 00

(a) r( ) = r(o)| (1+ &) - 1!. (Tu- A A
)1 m=l M 0311‘ P ) )fin)exp( Pm)

m m=l

 

 

Where it is assumed that f(0) # 0. The Pm are of course the

I‘Oots of f(}1).

Now we know (Magnus and Oberhettinger - h) for

ly-%|>>>l and arg)i-%|<uthat



 

4-}. e

(b) P1(coseo) = 2 P912) cos[po E] [I + 0(—i]

"2*!“ rr(P+1)\/Zsin90

It can easily be shown that the order (9 of cos[).190- £-

18 1. By use of Stirling's approximation formula it can be

shown that in the region arg‘P - —2| < 11 the quotient of

gamma functions in (b) behaves asymptotically like )11/2

and hence does not affect the order of Pl(coseo). Thus we

can say inthe region IF-%'>>>l and2‘srg,1-%|<w,

$93,389") = O(e (Pl) smce-Pl(:,oseo) is even in )2 it is

of order 1 and we may apply equation (a) to arrive at

P1(cosG0 )=

m}.11’(6)ooe&gopp'

=P( a)“ l++e -—lz——)-.- % coa o m==l pp,go)°
m_1

which was to be shown. It might be added that the above

expression is a meaningful one in the sense that all infinite

products involved converge.
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Note 2: The Asymptotic Behavior of a Certain Infinite Product.

We wish to show that

 

 

co 1 +P/p (60)

_ P,m
1391) "’ 1 1 4-,1/ 1T ( 1

m: _ m - ..

60 1+

for 'argpl 5127- approaches the constant M60), as I’M—.50 ,

where

00
(m- )

M6 ) " T'— E -

1T P’mo

We make the substitution

§=_1.
)1

and examine the behavior of Ni) in the neighborhood of C= 0

for larg El _<_ E.

R(§) can be written as

tr 1

1 °° 53“” 1:) (gaggle) + 1
(8) Mg) =TT ___ ’

"1:1 )u (90) lgm-lll’ 1' +1

 

0
°
!

P,m

As stated previously, asymptotically (Karp - 2)

 

C(e )

(b) flP(90)~%-(m-fi) + m° 3 0.90.121.

cm 0

From this fact, it follows that the infinite product

tr 1

CD 90011 E)

= (e )m 1 ”151110

 

5 A(60)

converges .



If we call the infinite product of the second factors

in (a) Mg), that is

CF)10(6)+1

n(C)=-[T Pm 3

m=l fl

gha" 1:) 6-5 "' 1

 

it can be shown that N( g) converges uniformly in all E in

the region larg glgz-. For, Mg) can be written as

(0) mg“) =fi1 +2§L_(Wfi) ”1‘3:“‘01

m=l §(m-E)%6+l

If we define fm(§) as

[L(m-1) ‘P‘9 )1
9 0

f(;)=-c 0 E Psm h

m C(m-l)E—-+l

14-90

 

then M I: ) converges uniformly in the region |arg§l_-g- if

and only if the series

00

((1) Z Irm(1§)l
m=1

converges uniformly in this region.

By use of (b), we have for large m

l°<9>l
 

 

IEI
(If) <

'fm l- |g(m-K)__+1|

However ,



-50-

It follows,

Irmuf) l _<_
90 C(60)

 

11m(m - 11;)

We have shown that the series (d) converges uniformly for all

g , larg C's-12'- , and hence so does the right hand side of

(C)\

1
Since m?) = M60) mg)

we have that

1 _ 1!

lim 12(3) --A.(60)J |argp‘_<_§ 5

‘El—so

as was to be shown. The last statement follows from the fact

that m5) is continuous for all g , ‘arg §| _<_-g- .
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Note 5: An Infinite Product Expansion of M1(coseo) .

- _. +
2 P

 

 

Refering to the discussion in Note I, we need only show

that the orderf of Ml(cos60) is such that O < f < l.

.. _.+ "' "

2 P

Recall that

Ml(cos60) = 1(coseo) - P1(-cos9o).

"2"“)‘1 ‘5‘!“ 7“!“

We have (Note 1 - (b)) that for ‘p - £21-|>>> 1 and

law-w

 

(+1)co‘ e -1

“_P fir()a+l)\l2sineo -

It follows that

P (-cose ) = P [008(fi - e 1-
l O l 0

—.2.+P -§+P

2 P91 + ~21?) cos[}1(n’ - 90)- FL] 1

_. P r [1 + 05-3)].

#7? ()1+1) Vasineo

 

Hence ,

3.4.3:.(30860) =

2

 

+ .1.)

avg PO) 2 cos 21'9” - %)cos%(260-11)[1 4' 001‘”.

n _ )1

r9; + 1N ameo

 

It can easily be shown that the order of both coslyeo '- E]

and cos[)1(n - 90) - E] is 1. Recalling the behavior of the



gamma functions from Note 1 we have in the region

lp-%|>>>l and larg/i-%|<rr

M1(cose = New”) .

-E+)1

0)

Since Ml(cose ) is even in )1 it is of order 1 and we

2

may write

 

Lila-00360) =

“5 P - 1* .2...

2m - 0° 2m - 2

Ml(coseo)n 1+ #- e 2 TT 1- L— e 2 .

- E m==l 2‘" ' 2 '1 2m ' 12 m- 2

00 -)1 6 ) co ( )
9

T]- 1+—P——— e “'m0 U 1- —-£-— apu'mo.
m=1 [u (so) m=1 )1 (60)

mm ll,m

This is a meaningful expression since all the infinite

products involved converge.



Note 1+: Zeros of 21(60360) and

_.--—+f1

2

 

= 0‘30 50

F
W
N
H

O
\
D
C
O
-
~
'
J
O
\
\
J
'
I

H

= 7 0
£30 60

 

p
u
m
p

O
\
O
C
D
-
\
]
O
\
\
n

p
.
»

 

 

 

PP,m

u.585687609

10.558550385

16.52u9

22.5185

28.51u5

3h.5119

h5.51020

u6.50888

52.50786

58.50706

2.2772882?

5-262779h

8.25825872

11.25608

1u.25u81

17.25598

20.25339

25.25295

26.25262

29.25255

 

M1(coseo) for 60

-54.);
 

 

 

_—

‘pM,m

2.9160u11

5.9651520

8-975h71

11.981981

5.97738oh

11.988560671

17.992559

23.991251

= 300,609 0
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