THE APPLICATIQN OF SHUBNEKQV fiROUM TO THE DETERMWATICN 0F ANTLFERRGMAGNEWC STRUCTURES Thesis for fhe Degree of hi. D. MtCHIGAN STATE UNIVERSITY E. Pam Riede! 1961 Illmflfll WI mnmruflnwm 1293 01743 0368 This is to certify that the thesis entitled .—_———a"' I ’r j ,I “ ‘ .//21 LV 1/ fl. (,._‘ (“‘34 Z: {‘3- u ‘. 4/ . , t» ’ - ‘. J ,I ) ’ I ' I ‘ u I _ - I K (7.10%.; 22’: 2/ (751‘! *'.I'..’ a . C; , 4.! i 1 // - _ _ x r' -f -, I, / I , \ J i. I ‘4 J“ , ' )’ 5 Colin-j ‘ ' .. . n .., I J flg/ LLéilkytcfi/Lv-‘d‘xfl31.4.74; C V'“ sented by r 7/ . — a 1 (3,4914% 1.4:- “a: 59$" has been accepted towards fulfillment of the requirements for D / r /' ;) ‘ ,lm/ degree in ft» 'II;.¢ j, 3/ , 7—-) - '\l. J) ‘ Major professor 2'. . “-’ .1;- »s L~ M . )- "-‘ .’ Date ‘ s AJ ’ . ‘1‘ 0-169 LIBRARY Michigan State University ABSTRACT THE APPLICATION or SHUBNIxov GROUPS r0 ‘IHB DITERMINATION or ANTIFERROMAGNETIC STRUCTURES by E. Paul Riedel Following a brief historical account of the development of black-white group theory in one, two and three dimensions, the results of proton-resonance and xbray studies are com- bined with the Shubnikov group theory in enumerating the possible arrangements of the magnetic moments in‘the anti- ferromagnetie state of asurite Cu3(603)2(0H)2. Four anti- ferremagnetic symmetry groups are found which describe all such possible arrangements of the magnetic moments. A description of twinning by merohedry and by retieular merohedry in the lh ordinary and 22 black-white three- dimensional space lattices is presented. All of the possible merohedry and reticular merohedry twin groups for these lattices are then constructed and listed. Included in this list are lh2 new merohedry and LO new'retieular merohedry twin groups. The antiferromagnetic 'T wall" twins in N10 are shown to be pseudo-merohedry twins. THE APPLICATION OF SHUBNIKOV GROUPS TO THE DETERMINATION OF ANTIPIRROHAGRBTIC STRUCTURES 3? \6 L3 31‘ Paul Riedel A THESIS Submitted to unchigan State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics and Astronomy 1961 302399 0 (9-12-64 ka1~\k&W\ .Acknowiedgment The author expresses his gratitude to Professor R. D. Spence for proposing the problems discussed herein and for his encouragement and indispensable aid in their solution. 11 TABLI OF CONTENTS SECTION I Suez-Imus GROUPS - Page Introduction..................l TheBrsvaisLatticeHethod . . . . . . . . . . .6 One-dimensional Space Groups . . . . . . . . . . ll Two-dimensional Space Groups . . . . . . . . . . l6 Three-dimensional Space Groups . . . . . . . . . 21» SECTION II m POSSIBL: urmomcmmc 3mm! GROUPS OF AZURITI A ' A Introduction . . . . . . . . . . . . . . . . . . 30 ProtonResonanceData.............32 Point-Group Operations . . . . . . . . . . . . . 38 I-Ray Structure . . . . . . . . . . . . . . . . b0 Point-Group Selection . . . . . . . . . . . . . bl Space-Group Requirements . . . . . . . . . . . . 1+3 Space-Group Selection . . . . . . . . . . . . . 45 Possible Magnetic Structures . . . . . . . . . . 52 iii SECTION III . . WINNING BY WOHEDRI AND RITICULAR HIROHEDRT . h A i i ' Page Introduction.........i.........59 Twinningbyuerohedry............. 61 a. OrdinaryLattices. . . . . . . . . . . 61 b. Black-white Lattices . . . . . . . . . 6k Twinning by Reticular Merohedry . . . . . . . . 6'. a. OrdinaryLattices. . . . . . . . . . . 65 b. Black-White Lattices . . . . . . . . . .67 MerohedryMnNotation. . . . . . . . . . . . .69 Reticular Merohedry Twin Notation . . . . . . . 70 Construction of the Twin Groups . . . . . .V . . 70 TwinsinAntiferromagneticNiO . . . . . . . . . 77 Possible Merohedry Twin Groups . . . . . . . . .107 Possible Reticular Merohedry Twin Groups for‘RhmbOhedral Canal. e e e e e e e e e e e 113 Possible Reticular Merohedry Twin Groups forcubiccrystals, ,.............lll. ”Pmn O O O O O O O O O O O O O O O O O O. O O O 0115 WC“ 0 O O O O O O O O O O O O O O O O O O O O 116 iv Table Number 1 10 Tables Title Page One-dimensional Space Groups based on Lattice 1p 12 ”Point Groups corresponding to the one- dimensional Space Groups 15 The two—dimensional uneolorsd Space _ Groups and.their.corresponding Point Groups 19 The two-dimensional blackdwhite Space Groups based on ordinary Lattices and their corresponding Point Groups 20 The two-dimensional Space Groups based on black-white Lattices and their corresponding Point Groups 21 The triclinic and Monoclinic Shubnikov Groups 28 The number of ordinary, black-white and gray Space and Point Groups in one, two and three dimensions 29 Local Magnetic Field vectors at Proton Positions 36 .aneclinie Heesch Point Groups #0 Space-GroupSSSlection #5 V Thble Number 11 12 15 16 17 18 19 2O 21 22 23 2h Title thnetie Field Transformations under Pas magnetic Field Transformations under P321 ' Inagnetie Pield Transformations under Pbc magnetic Pield Transformations under Gas Magnetic Structure: Pas Symmetry magnetic Structure: Pa21 JMagnetic Structure: Pbc Symmetry Magnetic Structure: Cac Symetry The 90 non-gray Heesch Groups and the derived Group Types {a1,a;} , {a1,a3*} and {a1,a3,a:,ai*} Groups of Type {a1,a3,a;,a3I} The Groups of the Set {3p} listed according to their Heesch subgroup of order two Possible Herohedry Twin Groups Possible Reticular Mbrohedry Twin Groups for Rhombohedral Crystals Possible Reticular Herohedry Twin Groups for Cubic Crystals Vi .Page #9 50 50 52 55 56 57 58 81 98 101 107 113 11k- Figure Number 1 6b 6c Figures Title Diagrams of the one-dimensional Space Groups based on Lattice 1p One-dimensional Space.Groups based on Lattice 19b The five ordinary and five black- uhite plane Lattices Diagrams of the.Space Groups pmfg and Pans The 1# original and 22.black-uhite three-dimensional Lattices Antiferremagnetic Resonance Diagram He in the al- c (afperpendiculsr to s) plane, T: l.6°K Antiferromagnetic Resonance Diagram H0 in the b-c plane, T=l.6°K Antiferromagnetic Resonance Diagram ll° parallel to b-al plane, T=l.6°l£ Stereographic Projection of the Local Field vectors in Table 8 Point Symmetry of a Magnetic Moment Vector in the Antiferromagnetic State of Asurite vii Page 13 1k 17 23 25 33 3b 35 37 37 Figure Number 10 11 12 1h 15 l6 17 18 19 20 21 22 23 Title The Effect of some symmetry Operations on Magnetic Moment ‘Vectors 'Sy-otry of an Axial. Vector. under the Triclinic Hoosch Point Groups W .‘s an Axial. Vector under the )Ionoslinic. Hoosch Point Groups Diagram of. P‘21/c Diagram of P‘c Diagram of Pazl Diagram of Pbc Diagram of C‘c Magnetic Cell: Pac Symetry Magnetic Cell: P821 Symmetry Hexagonal Prism and Rhombohedral Lattice R The Rhombohodral Primitive Coll of the Face-Centered Cubic F Lattice The Rhombohedral Primitive Cell RI of the face-Centered Cubic Lattice Fe Antiferromagnetic Structure of 1110 "T Walls" in N10 viii Page 38 39 $8383 50 51 53 51+ 65 33:38 Section I Blackéwhite Groups Introduction The material in Section I is intended to serve generally as an introduction to the existing theory of black-white crystallographic groups in one, two and three dimensions and specifically as a starting point.for the material in Sections II and III. As part of the introduction to Section I, a brief historical outline of the development of these groups and some of their applications is presented. Following this, a Bravais lattice method is described for the construction of the three-dimensional black-white space groups. This method is then illustrated by outlining the derivation of the black-white space groups in one and two dimensions. The three- dimensional triclinic and monoclinic Space groups are listed. The point groups which correspond to the space groups are also discussed. _ Ordinary crystallographic group theory is concerned with describing the symetry of Objects in space. During approx- imately the last thirty years an important extension of this theory has been developed which consists essentially of des— ' cribing the symmetry of these objects when a sign + or - is assigned to them. Such an extension of the theory therefore requires the introduction of new crystallographic operations Galled antioperations which transform an object in the same 1 way as an ordinary crystallographic operation but change its sign. Groups which contain antioporations are called anti- groups. Change of color of the Objects instead of change of sign is usually more convenient to use in diagrams represent- ing the symmetry of these groups. Antioperations are then called colored operations and ordinary operations are called uncolored operations. Groups which contain one or more colored Operations but not the colored identity operation are then called black-white groups. Groups which.contain the colored identity operation are called gray groups. Groups which do not contain colored operations are the ordinary crystallographic groups. The first extension of ordinary crystallographic group theory was made in two dimensions in 1928, and 1929 by - Alexander.and Herrmann.in connection with a study of the pessible symmetries of liquid crystals.l’2 If only one side of a plane is considered, the number of possible periodic symmetries of objects in the plane is described by the ~ordinary 17 two-dimensional crystallographic space groups. Alexander and Hermann derived all of the two-dimensional space groups when both sides of the plane are considered to ‘be distinct. They found that 63 new'greups as well as the original 17 are necessary to describe all such possible Bymetries. ‘ ' ‘ - WAlexander and K. Herrmann z. Kristallo r. 235 (192%) ' ' 3 92' .Alexander and K. Herrmanm Z. Kristallo r. In 1930 Heesch introduced a "fourth coordinate" to three-dimensional crystallographic group theory.3 This co- ordinate had no numerical value associated with it: instead it is represented only by a-+ or'— sign. Thus, the groups which he called “the four-dimensional groups of three- dimensional space" describe the space symmetries of objects in three-dimensional space and in addition label the objects -+ or - . These groups are today called the Shubnikov Groups. Heesch derived all such new triclinic and menoclinic space groups but did.not.work out explicitly those of the remain- ing crystal systems. He did, however, derive 90 new point groups which correspond to the new space groups (all the black-white and gray Shubnikov groups) in the same way as the ordinary 32 point groups correspond to the ordinary 230 space groups. .The 122 point groups (the 90 derived by Heesch plus the original 32) will be called the Heesch point groups in the present work.’ Shubnikov“ (1951) rederived the Heesch point groups _and also extended the theory to the study of the symmetries of three-dimensional figures using both crystallographic and non-crystallographic operations. 3- a. Heesch, z. Kristallogr. 21, 325 (1930). . * They are usually called the Shubnikov point groups in the literature. ‘4. v. Shub'ntkon We; [inite Piggggg-(in Russian), Mbscow: Academy of Sciences (1951). I, In 1952 Cochran5 rederived the blackdwhite plane groups - send suggested their applicability to the study of the symmetry caf'real periodic functions used in crystallography. The complete extension of the blackawhite group theory two three dimensions was first accomplished by Zamorzaev6'7 by a mathematical method in 1953. There are 11.21 new space groups, 1191 of which are black-white while the remaining 230 are gray. Zamorsaev named these as well as the original 230 space groups the Shubnikov groups. The new space groups were rederived by a Bravais lattice Inethod and listed by Belov et a1.3 in 1955. A revised list of these groups was published by the latter authors9 in 1957. In their discussion of the symmetry of magnetic crystals, ‘Tayger and Zaitsev (1956) derived 58 magnetic point groups.10 7-D. Cochran, Acta Cryst. 1, 630 (1952). 6'A. M. Zamorsaev 'A Generalisation Of the Fedorov Groups." Dissertatioadn Russian), Leningrad (1953). 7°A. m; Zamorsaev, Soviet Physics Cryst., Vol. 2, no. 1, 10 (1957). 8'11. V. Belov, N. N. Neronova and T. S. Smirnova, Trudy Inst. Krist. Akad. Nauk 8.3.3.3. _1_._, 33 (1955). 9‘11. V. Belov, H. N. Neronova, and T. S. Smirnova, Soviet Physics Cryst., VOl. 2, No. 3, 311 (1957). 10-3. A. rev er and v. M. Zaitsev, J. Exptl. Theoret. Phys. U.S.s.a. 1_, 56h (1956). {the 58 point groups derived by Tavger and Zaitsev are isomorphic to the 58 black-white Heesch grOups. A The first application of Shubnikov groups to the deter- mination of magnetic structures was given by Denney et al.11 in 1958. They proposed a systematic method employing neutron cliffraction data in conjunction with the Shubnikov groups to cistermine the magnetic structure of ferromagnetic and anti- ferromagnetic crystals. They applied the method to the anti- ferromagnetic crystal chalcepyrite - (CuFesz). A table showing the effects of ordinary syn-Retry and antisymetry operations on magnetic moment vectors is also included. The Heesch groups were first applied in 1958 to the "‘['l~1](a1)I P! y 0* 2y I {some}? {spa}, {a1 "3) _(‘Li'g‘g } H931 [‘i-‘J {era’s} 75 the end of Section III along with the group types {“1083} , {avaS'Uand {a1,a3,a:,a'*} derived from them. In Table 20, the groups of type {a1,a3,a;,a3f}are listed. The notation used in writing the symbols for groups in the set {gp} (except for those in Table 21.) is the following: the Hecsch subgroup B of index two is written followed by a semi-colon after which is written a symbol a? or In"? which represents respectively either an uncolored or colored twin operation contained in the twin group. 2. The first step in the selection of the set of pos- sible twin groups {gt} from the. set {gpg may be accomplished by choosing for each Heesch group all those groups in { ‘13) for which that Heesch group is a subgroup of order two. This listing is shown in Table 21. The norohedry twin groups corresponding to each Hoesch group may be found from the above listing. They are those groups to the right of the fleeach group which belong to the same synetry system as that particular Hccsch group. The — norohedry twin groups are listed in Table 22. There are two kinds of norohedry twin groups for crystals with Hecsch groups of the type {a1} . One kind has the form Half where H is the uncolored Heesch group { a1} which repre- sents the point syuetry of any individual of the twin edi- fice. These twin groups are the same as found by Curien and Le Corre. The other kind has the form 11:14" where every twin operation is a. colored operation. ( . ' 76 The norohedry twin groups for crystals with Heesch groups of the type (91033} are of only one kind but have symbols of the torn and} and am"? where a is the black- white Hoesch groupjavaS} . ' The form Hm)"I has been used rarely and only for the purpose of sledding identical sym- hole for two different groups. The: norohedry twin groups for crystals with Reesch groups of..the type (“1"?) arise from twinning possibilities in black-white lattices. These twin groups have symbols of the form 8:14",I where B is the gray Heesch group {span . It is interesting to note that in this case for every possible twin operation If its colored companion 11'} also exists in the twin group. The reticular norohedry twin groups for rhombohedral crystals are listed in Table 23 . The classification of these groups by the type of their Hecsch subgroups of index two is the same as above for norohedry twin groups . For example, those groups of the form 8;)? where H is an uncolored Hoesch group are the same as found by Curien and Le Corre. The possible reticular norohedry twin groups for cubic crystals are the same as those fororhombohedral crystals. Following Curien and Le Corre, the cubic case is distin- guished from the rhombohedral case by writing in front of the rhombohedral twin group that cubic group which contains the rhombohedral Heesch group as a proper subgroup. These groups are listed in Table 21.. 77 M-&WM The only antiferromagnetic twins which seem to have been studied to date are those investigated by Roth29 and Slackao in N10. This crystal is cubic above the Nécl tempera- ture of- 523°K. Below this temperature the cube contracts slightly along one of its four-body diagonals. . The M ofthe imsthenbecsmesrhombehedralwitharhomhohedml angle ”90°13 for. a multiple rhombohedral. cell. containing Asia. The magnetic moments associated witth hi. ions .form ferromagnetic sheets which are perpendicular. to the contrac- tion axis. If the contraction axis is [111], the sheets are. parallel to (lll). The spin, direction is then. [110] and the spins in adjacent sheets have opposite senses. This cell is shown in Big. 22 (Pig. 1 in Roth's paper) where the open circles represent oxygen atoms. Fig. 22. Antiferromagnetic Structure of 310 [00!] k y C I ‘0‘“ /[:ool ”paw. L. Roth, J. of Appl. Phys. 1;, 2000 (1960) . 30-6. A. Slack, 'J. of Appl. Phys. 3_l_, 1571 (1960). 78 The 'T domain walls'I which are the observed twin planes for the antiferromagnetic twins are restricted by the con- ditions given on page 2002 in Roth's paper: a. “The ferromagnetic sheets in adjoining domains intersect along a common magnetization direc-- tion and b. the domain wall contains this direction and is parallel to a mirror plane in the original cubic crystal.‘ Two examples are shown in Fig. 23 (Fig. 5 in Roth's paper) fig. 23. T walls in Rio 1' \ i T 1 ‘"F I 1 i - .. ---.J\ A . In an attempt to apply the twin theory developed in this section to these Rio twins, three general possibilities must be investigated: 1. Twinning by norohedry 79 2 . Twinning by reticular norohedry 3. Twinning by some other. method 1- newsroom The point croup syn-om of each member of the twin (in this case each domain such as that shown in Pig. 22) must first be found. This can be done in this case since the magnetic structure is known. The space syuetry of the ions is rhombohedral, however ,_ the magnetic moments do not have the three-fold synetry required by the rhombohedral cell. This implies a triclinic Shubnikcv group symetry. Therefore, the Heesch point group symetry is also triclinic. Since no triclinic lattice contains a symmetry plane, the twin planes in Rio are not norohedry twin planes. 2- m 321 noises: means: one possibility is also ruled out since this type of twinning does not take place in triclinic crystals. 3. Twinning EZ§2£2 mm The twinning in 1110 can be described by twinning by pseudo-nerehodry. Possible pseudo-norohedry twin planes are planes which are parallel to planes which are pimps; planes of symmetry of the lattice. The planes which are almost planes of symmetry of the anti- ferromagnetic lattice of Rio are the planes of symmetry of the cubic lattice I". This lattice contains anti-translations along all three edges. ’11 the rhombohedral distortion is neglected, there are only tool planes compatible with the lattice P. which are planes of symmetry of Fig. 22 and which also satisfy the requirements a and b above. One of these 80 is an antimirror plane parallel to (001) and the other is an antiglidc plane parallel to (110). These planes are Just those domain walls shown in Fig. 23.f I If the magnetic axis is changed to any one of the other observed directions shown in Table I,-psge- 2002, of Roth's paper, there again.exist Just two planes similar to the two found above which may be chosen from I. and which satisfy conditions a and b above. These planes are the domain walls listed in Thble I under that particular direction of the magnetic axis. L *Tho point group equivalent of the glide plane will also produce the observed twin. Group Table 19. Group Types {a1, a3}, . ‘ U ‘ O . U . C U . . Q . C C O . NMMMMMNMMMNHWMMHMNNNM Elements 81 The 90 nonegray Heesch Groups and the, erivcd , e vs {git a1.) andfai, a3, ak, a1 } The symbol definitions given below are the same as those in reference 10 L2, L3, L51, L4, Lzl, L6, L31 are rotations by 180, 120, ~120, 90, -90, 60 and -60 degrees res- pectively. s3, 351, 34' szl, 36, 831 are respectively rotations by 120, -120, 90, ~90, 60 and -60 degrecs together with reflection. in a plane at right angles to the axis of rotation. The inversion is C and P the reflection plane. The subscripts x, y, 2, xy, 3, indicate the direction 1 of the axis of rotation; the same on L1 and S subscripts on P indicate the direction of the normal to the plane of reflection. The subscript.Lorllindicatcs that the axis of rotation through 180° or the reflection plane is perpendicular or parallel to the main crystal axis of three-fold or higher symmetry. 82 2'/:. E, P,, '1, of is u: u: ' P C n ' . a :‘2: ' z' ‘2: .. 2;?y ,L ,Py,c_ - It v * '* 1"}?y E, C , Py' 27m" E, c, 1.5,, P; .. up u: 1; '* E, c, , Py_ '* 2’36? B! Léys Cf, Py, an: mfgc’f‘ n, 9;, c, 1.5; 222 2. 22s 22,. 22. a: 231;; E9 L23! 125x: L3, 2'.sz 3: L231 Léx, I22y * ‘ '* '* 23125: E? ["21" Lix' Lg; v 23ng E' 1‘27’ _I'Zz' L2x m E, 1'22! ‘30 FY * * * 23?}; E, 1.23, Px, Py * m; '3 E, P,, 1%,, P3: m'm' E, L22, 12,}, P N:- 0* "It 2313:. E, L28, Px‘, f: * i 1 ”.312: 3' Py' L222 if. 3 mm. 3’ PY’ 1'22' P1: '* ‘ u: "I: HUI-22 E, Py, L2", Px v 2'3P;f E0 1'2" P;: P: ‘ a: u: m'_; ; E, 12;, 12,, L22 m 3: 1'21: L2,: L23: Pit? ye P2: C * *' 2223?; Es L239 1'2" 1129? :: P’s Pg 6* . : UP; .I Es 1'23:pr P’s :stigszp‘spc? 2/msL33 3: 1'23: Pa: O, 30 L2,! P; WMMM.::MN C C C C C C C C C C C C C WMHMHHNIH'PZWNMMHNH 83 P! I 9 22x. 22, 22...? x2 P)" 2.. 2', :23. n2, 23.3, '* of? t P'* 0*. :2! e :icsp or szs 1‘2ny L2’1-P0L2x9 1.22,? x* 0 P21. c 1.2 , 12x, 1:, L2x,1.2,, 9,, cf. L'* 3* P'* L2z' tx' Py'L 2x' LZY'P a“z ’ c'* o It L229 P30 0., 1’; Pys L21: Lay ! Lzze Lixs 122’: P;' :;s Péaks 0'. Pxp Lay P30 L222? yL2x2c 0* Py: Lzyoc L232? xo L2;2 P * Lz‘, 12,, c, sz, Léy, 9;, 12; L2,, 12,, (3.1.2:, 1.2;, 12;“, 12"" P30 Léy’f x' L22' 0*, L22:! 23* La, 12;, 12;, 12:, c.‘_‘, 1.2;, 1.5; 122,153,, L5,, 12*, c*,*r,‘c*, 12;? c. a. L; 9:. 1.5;. 2;: Lbz’ L32 :2{* L21’ LZZ’L #2 L L' L'l' 22' :f:’ f:'* L232L Lhi' Lbs LRZ'L Lz' L2x' I’2y9 L2z' L2xy' L21, 11:21“ [.22 L222 L220 1'23" L220” 1'2? LZx'L L31’ L22' LZz' L:i:’ szy' L21! th'l‘ Lbf' L2? I‘2x'1'2y’ Lny’ 1%: 1.1.3.129”: 3.1%; L3,; 14%. 223.2,; sz I23:2 1‘21 Law Li: 2 szr L235 8h "2 3' L233 L2? L21 'L22’ L13:- Li‘x!’ L;— a.‘ -1'* ‘1... 222.314.; 3 L2» 3'27- ‘2‘: Lu: 1": ' 17;!" L23?!- Q 1...:sz .- 3- 1.3., Lbs' 1%} 'sz' 1;? LZH’LZ’U I"; fi/fl 3: th' Lk!’ 178’? l' 828' 31.2.6 MP: 3' L109 11.9 LZI'P :' 8,“, Si?" 0* . -1: - 2/m31-z. 3.: 1'2» Pan ‘3' Lin Lbs, ' 332' 8h? ELL 3. L2,, 31“: 31%: 1'23: Li?) 1’3: Cf lr/l'. 3: 134.: LE: 122-PL 3113' 313" 0' Lgpgf n, g“,, L;,, E291?”I ,si:, szl'*, c'* Z?:LZ. 3' ”22' 3&3' 35:; L:2:L LZ§*.% P'* C” 2/‘(31-31 , 3: 12,114: Cf,- LL, LEE" 81;” 3:73” “/31 3. L2,: Pr c, Liv Liz! 353' 8;? 2/thz; 3, L2.. Pg. 0. L". LZ}'* 31; Silff ‘f‘P; 3: sz: Lha’ L-1 ' Pfi' °* 35:. 33}ff If”: 39 L2” 8193's!“ ' P; 0*, 1"; Lg” I,af/nf 3, L2,, s,.. 83,. LL.. in'. P;. 07 ‘31.}; 3, L2,. 31:3. 31:1: 11;: L3” Pf, c” 4f;sz‘ 3, L2,.L L,. L;}' 32.. SZ:*- P;*. of? flags; 3, L2,, 2;. c'. 81,. 8;? . L33". LL: km. E, Lhz, Lit, I.2s WP Py, Pi?’ Bi; “1’; 3. Lbs: Lbs: 12:03:! 1);! ny' P'iy' msz' 3, L2,. 1’3. Py. L239 “3*: Pity. 1%; , , v c hm.h. E, Lbs, Liz, L2,.P P%; Py:*P,,. P§§;* m? E. as. 2%. 322-31. 1», ' PS {’3’ mfuf'azz E, 1.2”, P;, Py. L2,. 143*: Pg: 1);; hm £11131”; m;L. A';P: h/m m'n'm' ;L* h/n'. 31;: ha 85 a 1.25. L133 122,. 1%;- E 12.. 1:1,. Pia; P32- P; 14;. Lila}: s Lap. L3. L23" '* 3' I'Zz'l’ hs' 1%: ' P; P; ny' P; E L10.” L139 L220 LSY' I‘Zs' I‘ny' L236“ P3“ P7' P8 ,ny, Pg?) th, 8Z3, C 3' Lln' Lut'LZnLZY' L2" Luv 1‘2?!" P; P; p;, Pg, Pix-i, 32,, 33*, c“ E. In... L13. L2»? 2. 34,, 37;. c. 4;. 1:5,, 1510' $511,931.13, P10" P27 3 11.1.1.3,” Pr Pr? xy' P2!“ Law 1'21' - an 1'ny 1;qu? :9 1‘23st 31;: ' of E, 1.21‘ , Lzy, L22, PX, Py, 9,, c, L2,, Lg“, Lgxy' L21? Pg'xy 1"" 3-7:. 8;]: 3' LZz' LZXy'L ny' :10 PY’S M' 31m th' L55“. 153.1%, P“, P”, 9%, 0"“ E 1w Liv L2» L2,, 12.» szy' L255. P21. P}. ' -1. ' P”? 1'”, 13'”, s“, 3"? c ' -1* 3' L22, L21:' L2xy' shz' 8;! ' PX! Py' Lzzt Lhzn P'* c* '# LZX' L219? wpx’o c t v * E. 11...!- ;,. L2,.P 9;, 2,, ny-P ,2," 13,. L2,. 14* '* -l‘* '* 1‘25: P3 9 84;: 31,; o C. u: 8.1.)“, 1.3}, 1.2:, L2,, 1.23.1. 220’ szy pun Py P;* ‘ 0* P'* .1!* it P”. ii' 31:9 “31.; ,c~ ' v a: _ an 1%? P"; ‘2‘” $3" 8:“ 1c 2: o g * E, Lh": z'. L25. PZ' Sé:, Sh: , c , sz, L2,, ‘51:" L23?» 9x5 1’: .. P23». P—xy’ h/I.I.I hfllzLS; ZZIf 3L3, O 198': :P: 86 -1 n, Lb3,L b3, L2,.P ,. 3“,. 83;. 0. Léx. Léy. LI L23y9 L2339P x9 Py9 ny9 PE? -1 E. 99.9 Liz9 L2.9P :9 3999 3?: 9 P19 P! 9 PK!" Pi; 9* 9* L21y9 E9 31939 3139 L289}? 8' t t 9* Shi9 6.9 Px 9 Py: 9 ny9 -1 w‘é‘fifl’x ‘ °*9 Lé;9 Lé;9 92:9 Pfi; E' L“, 1'39 I"2:59P x9 Py- P;y9 Fifi, P29 31.39 ct. I'22::9 1‘5" L235” 1’15? E. L“" Li!) L23; LZX9 L2y9 L21y9 L21y9 P:’ 3:29 9* Pi? 0: It co sz9 L2y9 P! * L-1 thz' #2 t 9 * -1 t 31* 9 - 39112291)” 0, L219 L219 P19 149 1‘2” L193: 8:, SZ39 L2;y9 1L2;y9 2;;9 Pi; 9 E9 LL39 LL39 L239P x9 Py9 sz9-P§§b I9219 Léy9 I’ny' I‘Z“; Ps9 31989 3198 ' 0- E9191,39 L329 L239P WP 3* L;;y9 I‘2fi9 P: 9 31:93 ny In $19. 0"” hL2x9 9 #2 ' E911229 P19 Py9 81.29 3;: 9 I'22:)" szqo Lap 1912:. P* P;,.9 r,. L2;. L2;. P;*. 0" -1 n, th, Lit, L22, P;, 3;”, s -1 cl, 9;, P* 9* h9-9 7' xy9 2,. 95:. w; ' '25- 39*,1‘1, 9 Liz9 :‘229 1;}? L2,, L23? L21" PL? ;' P;y, P;§, P;* , s;:, s;:'*, c7* E, L2,, Px. Py, L23. Lzyi'55. 0.1.x” Lita? Pair * P-—9 Lé;y9 Léii'9 SL:9 SL3 132:8}; hawk: 4’mn"3* . ,’ [,3 #f/hsz; 87 E L2x' LZY’ HLZs'P x! hi Pl’ 0’ LL“, L;:" LQXY’ L' -—. P' ' 9* -1'* 2x9 23' va' shs’ 3:3 2 hr L2,. 13.- M c- I'w L1...--szy: P99 -199 '* szy'P xy’ P;;' 64:, 3“ -1' I 9__ * * B; 192:. 'P¥;’P'y'1'é:9 ft: 9 L2”! szy’ 1.2:, 1‘2” - '* o ’ C . * t E L29:P x0 P‘Y' Lkz' Lb; 9 P1!’ 215‘ L21' LZY' PL" 0&2; L217 31:. 331" .. ' E9 I239? 19 69 L489 Li; 9 31,39 81:: 9 IQx9 Lgy9 * t '* '* an Py9 szy9 L2;y9.P ;gy9 it; ' ' * E9 I‘2x9 I'2y9 1"'289 14:29 L7,; 9 szy9 I'2fi9 P“ Pt * "I ”K 3:1": 3, c, 91y, Pry, 81;, E 12,, Law 1.253.?» P)" 342's {2' Liv Liz ' sza L27' Pl' va' Pi?’ c 39 L2:' LZXV *L255; LLB' LZ%.' Léx' Lzy, P;' P;’ 32,, s;§*, P;* , P;;, P§;, c'* L-19* 3, *L2" L2”; 12$, Px'P y' 81", Sin. Lh;.1‘u .' 1.5;. 14;. P? . P” Pg. 0" 3. *W 39 PyO :y [.29 LE8 ' PW’P 17' 1.233.qu -1: '* 9* '9 shz' sh: ' L2x'1L 27’ P8110 3 L23,3 :3" 312' Law Liz-'1’ :' c 1;”: "ny' * 9* Px9p :9 L210 L2:9 ny9 P— E91'239Px9py9 LZX9 *L2y9 P89c - - '9 3:3“- L13: 14.: :«fi * t 9 LZth Lgiic 3&2, «:17; P;;, E. 81.293 :3. 1'23 - * 39 L229 3:5, 84; 2:31;: azP; * * “351+: Zénf 272'2gszz -;P:':* Ifl' :8:z Z2» 222334; Z";L§x, m n :szy I 2m «:81: 7i"; P; 272?2;3L; . * 3’Pll 3=PJ?* . Q C C ‘ Q C C Q . . U . MWWNNNWNNNNWNN IF! 5 u u b u y u 9 u MWWNNMNN L23: L22: L22: L38, L32: Q Shz,S '* 542:3 -1 8", Si,, PL: P Shz' .L'z'xyt 3:8, P: 88 3.1: In 3-1' * 1+: LZa' Lny’ Lny'P ‘x' Py L230 L21y! Lny' P;' Py -110: * a: xy'l'zzz 3:8! 310»! t P 1:0 far -13 a: y' 3L: 342 ' L2”: LEE? L22" 1210' I'Zfi' PJ'F' PY. !_ #1 -1t 9* "I 123,31.» 31.. . P: Py. can: 1.28;qu 1‘23”th PY- v -1* Shz' 8h: ' L215" LZXy szyn yLnyv 34:: 3:8 a Px. Py 33?, P19 PY’ 1“ny Lny' 31:; 3;: WP 3:333 3-1. ”L: 9L2:-' PJ: .1'* 0* 9* mLQIE' Ski: S“ P: D P? - v t t: 1* 31o; 9 LZXy’ L2? :31: 0 Py -1": .- ‘t' 0* ch P:: 34,30 31,1 9 L2”. W 3&2: szy. L33 - O 81+} O PXDP :9 12;: 1'2.ny .. at Ler 8108' 31$." va Py 1312.1. * L32' L32' BLZJ- L329 L§%n BLéJ. L32: L32' 15%. 1 1K 31-21. 3P" 5.. 151.3??? L35, 15%. 8. L3,. Léi. 3P& 395* “33.15%. E. L35. ‘i. 3' L38: -io 8: Lav ‘i. E. 13.. 'i. n, 93‘, ‘i, Po Lap ‘52: 3.8.5.15; 3.1-3» 1. 89 363, 33%, c 82.. 333‘. c"? -s;.. 85:7. 07 83:. saiff. 07* 365' 33' 3P", 31‘2.1' c 31121.! 3:31 35?. 3P3I : cf -1: * 3p". 32:! 362 ' 31‘21' cf - t It 35,- 36%: c, 31’u ' ”‘21 I 3L21! 36:0 33i’. 3P“: 0’ 3L2;, 333- 35§7*;‘BPJ*. 0” 3P5, 3L;1,.sg;, sg§f*, 00* 3;” 3613’! 0", 3L5]; 3P!“ 3pm $35.- 33?» 3L5;- 0'. 3P... 381'- Séif'fi 31-51. c * nay 3p; . 83:. 83%."; c'. 35,, sggf, cf. 3P: . 3L§}_ s65, 33}, c, 3P,'.. 31.5; 3639 83%: C, 3135*: 31%: 3L5]! 822' 33%,: 6*: 31):: 3P“- 323. 33?. 0*. 31-51 835' 85:, P2 33;, 85?. P: 352: Sii'. P; u: _ u: s3z, 33%. , P;* * . ~ . ‘ O D . C ‘ D . El P3 In El HI U! I! El F! Ifi In El EH :5 GI EU In El Dd In El U! I! In E! F! 90 L33: 15%. 3319 5.3%! 3L210 3P": P2 L62. 333' 33% Pa' BLED”: 3P"' s::’ S§;fv 3L;1.' P; _ a: a: ”‘21) 33's: 33%,“! 3P" 0 Pa 833' 85%! P39 3L51! 3&5 -832. 85%. PM 31-51. 3117* * - 318;. 33:: 83?. 3P!" s;z' '35:?! * P8: 3135*, t 9* P3! 312.1. P - v c 9 3P": 3339 33% o 3L2L0P; -1”: u: u: 3P... ":3 83,. .. 31.21. P. .1!* 9* 3:413 3P5:- 35; 332.} P2. - t 35:: 33%70 9;: 3fifv 3Lé1 ' - 3L21' 3 3:: 33i'v 3P; - P; 1* _ 0* 0* 3L21' 33:- 33§7*' 3Pu : Pa 3% 31$» 35.1“. 5555 P? 353! 55%.! P;, 3L;1. 3Pfi* L33! L§%, L23 L22. La%*. L3, Le,. La%*. L5. Léi. %'*. Li: L3!” 152' L28’ “‘21- Laz. L5%. L23. 6L;1 31:2» L22. L63“. L352- 31-31. L32: 1:3}: L28! 614.]. L32: L§§, LZz' 6Léi. 3L;J, Lz,. L5§P. L§.. BLEI, 6 2 323Lé§ BZ'BLz; 6/h 91 , L3,, Lgi, LBz"L§z' L .1 O 3..) ’ O . L3,. L§%. En L659 L6}: L33: P3, c 3, L359 L530 8380 sgif, c8, 2. L3,. ‘3; L2” P1. of ' -1 39 L33: L330 868' -1: t 833.! P! 3' L310 L5}! 338' 353?, C' ED 1‘3" -1! 33a. sai'*. °** -1 ' E! L339 39 368' -1vt 0* L62- ' L281 , - 9 30 L33. L319 L61' sai**- c'* E, L62, Lag, L32: 2;. at -1 E. L6,. Léz' L33. - 9* '* Pt 33;, : Pz.: 0.. 3' LBz' ng' Séz' ssi". P;* _ o 3! L330 L3iv 333' 86l'*. 0'* 3L2L: Last * 3L2Lp Lé:t L63... L53! 3L5: I * ct 3L21. 3L2&’ L6:' L6! L6}. -1!* .10* , L a L82: 31%.1. 0* 23 L639 Lai'o L589 3L5Lo 3L5: -1 _ - L319 L22: 36:: 36%: 83:! 33;: 35;, 9,, L2,. L3§*..LS.. 832. Le.. La}. 33,, Sa%*.832» Siif. 35%: 0, Last L8§*' L;3' ng, -%. P2: L32: ngf. Léfi' 335' 35%, P3, Lé:. '§'*. L£:o 53;: sai'. c'. s;.. s;i*..r:. na:. Léi'. L52! 3;3' S§;*' P:’ 83;, L5;' L22' 882' 33:7: 8;“, 851’, 151.12.. as; saw. 85:. - # S6}ft Cf, L62' 6 _1, v t 832.9 P2, Léz' L'1* -1* L62.- * 0* L23. 33:0 * L2,. 33;, 5:145: 3‘ PL6I 6'n'n 3‘3L6z 3:: ';P,* 92 - _ _ I I 3I L3.) L3it 86') 86%! cI L62I L6;} LZgI 353I EI L35I LgiI 363I SgiI cI Lé;I Lgith Lézt 8339 3-1” PM 32. I z .. I .. I I all a: BI L3zI :0 333I 3 1 I PsI $68! Bait! c,I Lé;I 65‘ P z , . 1 L“ -11: at S'* E» Lam Lai- 15,1.“ 1’ 1%.: 862’ 3 . 33.. 3'1"“ P'* 32..' SI -1 - EI LégI L6.I L33I LBzI zI 6|. -1 L69 L29 6?" 3I 13y I313 3?" I Lego Lay: 1;” 3pr E' 1‘33' -11" I361' L6§P LZIP 61": 1L6... L23. 61%? . 3’ L32' ‘1' 3P".P L63P 1$321?” 3P" BI L33! -%P 31)"P L6z' 16%.: L5” 31": III 3I L33, .;0 3P!“ L6:I L 61.12 LZZP 31%;: - -1": EP LBII 6;. BPIIP 3P“ P L6IP 1'65 '1’25 Ilézv 3?" I ”I? -1 -1 -1 -1 ‘ -1 ‘ * -1* 21.3" “13:0 3121' 332' SBIP 3PM PI' 163' L62-' 3;,” 31713136” 86:12? 3P: 0* 3 L3,: L5, L63' L6.I L22: 863' 362' 331' 332' PIP GP 61’2.lP 6P“ EI HngI :3 *3L2¢I s6ZI SézI 3PuI cI L8;-, L3%*I LZII 3Lz1I ‘33:? 338.3 31’s,}: 35" 1L6” 1‘2” 6L2» 36v 36:12 3;” ,6 III PI» 3; ”3:115:18” 1%.. L2,. 6P... 6L2» 33,. 33“, 33313I 3* 3.1* 363 I 93 E ‘1 . s 3'1 P P L' 1' I II31I L3” 3L2.” 3zI 3y 3 III zI 62I z I . - Légt 3L210 SéaI séif’ 33:! C. - - -1”: E, L32, 1.3:, 31.21, 33‘, 33:, 3?“, P2, L3, L6, , 1.5:. 31.51, 36;. saIff. 311?“. c'.".‘ 3' L3I' LiiI 3L2LP 368' SgéfP 3R:P C'P ngP 85:*P Brit. PL L82. L5H L53. 31%"; EI ¥3zI Pgi' 3R|D SggI sgifI BLél! ch 3L;;; ngI ‘3. Pi. 1.3:. L61“. 1.5:, 39.?“ -1 -1 I I * III E. 13.. L3,. 33.. 83.. Pa. 31m. 3?“. 31-21. 3P.. . '* .. '* g '* ' - '* LéI' L6§..' L2;I 8629 36%'*, c - I J. I I I III _ 3:19,. 19%. 3% L62I Lei. 1.2,, 3L2» 83.. 53?. - 9 P2, 33:, 36;"; 33;"; 3px" c"'_‘ EI L33! L51? S33I 85:! P‘O LégI Lgi'I LégD sézI 83:7. 0', 314;. 311?. 31:51. 311;" -1 I -1P P I III III EI L32! LBzI 3g|0 L620 L6z.I LZII 3RII 3L21I SBZI 85?. P13 3L3. 86:. 33m 0" -1 -1 ‘ -1 . 3: L62: L92: Lag: L32. L2IP 362' 362: 33s: 33%» P‘, C, 61:21, 6?“ 1 B, LBzI Lii’ L6§1 L6§I Lzso 562- 36zI 332; 35%I P3, 0, 6L , 6P." I E; L3" L§II1§6II*35%I,E‘I 3mg; 31‘5“ L6” 1'3; I L22. 33,, 85... PI. 3L21I 3r» , * 1* - - 1 - 3,1. 1'32' L3; S38'*83%P':ZP 31:2“ 3!,III 1'6” L63 I 1'2” 36m 26%‘3 CI 312» 3PI|*' * 1* * E, 23"}3‘; L62: L62I LZzI 6PIII 36v 36:: I 33v 55%.» PI: CI 6L2: "' - ' - * * EI L310 :0 L63I L6}! I"23I éLélI sgsI 36% I s3zI safif. Pt. c*..6a5* 62 .36: 5'; 3L6: Z'.'2;Lg, 5/" 313.1 I I t 6:}: ”'21. 96 -1I Z O EI L3,, Lit. 3L21! S~6III 36;. 3III 0, L62. I I I-'23I 3L21I 33¢I 333'! 3III1P; E. L3, L3,. 31-“. 86.. 86%. 3P... 0 1.3;, L175 LzII 3L2II 33II Sii':I 3%? IP;* 3,333, ’5; §63I 36% CI 3PIII 3L2LI 312» 3p II I L6.. L61'* in. S'§. Sil'fI P'* _ _ ' III II: P 5.. lei-Paps ;,. 8 i'I ILIIIP éI3L2II 36,, S'1* * -1P* L'# It: 86.3PcP s..I L6” I'22I 3P|l* -1 -'1 EI LBII L32, 3L2.lI 838P 332 I *BfiII 3P3} 0*! L6zI L61"; LézI 3L2}. # E, L33, L33, *3L2;I L6:" L6: I Léz. 3Lé1p S6zI Sai'SP 3P ... "ISSL 35;”, 3P..".‘ I P? I EP LBIP'LBzP S6zP 362P CI L63I L6: I LZzI 85v 0 85?. PI. 31-31. 31:13 PLI'III 3P.I* -1I I - III I: E, 11'3” 1.3%, 3PIII Lay I'62 I L225 3PII'P 31‘le 36m - 0* 9* — '* 0* 363* I I BLZL’ 332IS 83% ,I P; 3"1538. L33I L6z’L6L1’L22’ 6L2;I 362I 35%f0 35, , 611.3,": 1” w u EI *L33I L33ISL zI L6zI L23I 6L21I SézP 362 P 33;, 35%”, 6P.l*, P? ,'*c 6' EP L32I *L3%D 3L21I :6;I 56% I 3PIIIc .I LzaIL66fP LZzI 3L21I SBzI $32 I 33:::: P? . ' 1* EP L31" 1333.51.21, S39 358 I 035" Pz, I'63I L62 I L23, 312131369 362 :I 3P"* I EI L3zI LBII L6m I'6zI LZII 368I 366'I P;' c. , 6L21, 6P:* * ' 6 * S'* 86%. RI LBII LSII L6zP L6zP L22I6 P... LZII 6" . 81* ., 9*. 3* 333, s3§‘*, P c U * * P2P s6v 86%.P 853! ' 33IIS 3: I 95 é/I'I PI lap ‘iI Lam Lad-III 6PII 61-22» SEII 33y, SSII “:3 PiI 0'. ' é-IILé‘i PI IIII ISL. LI.” 1:1, LIII 6?", $513 83:. 83?". 3;; 35:“. In c'.* TIIIIZ. EI L3... ng, III. I 339 35?. 31-5“ 0'. L2.. 13%“. 14.. 3.9;. ILI'I’II 35:. 85%"3 Pf'.‘ . 37-23% B, 13.. 15%.?" I 35II 353", 31-51. I!" LZII La? 14,, 3an 31-51. 3g, 86% I” III: I. III “3:. II... III. II." 61-5“ 611:". II; 36%"'.'I ‘ -10* II 00* 35; I. I P. I _ 6/56333 E, E33I .1.I* I LgiI LZSI 86m 36%fo sizI 85%.! II. c'.. 6P.TI 6L3 23 z, 3L2, 4L3, IL§1 :3 E. 3L2. LL3, '1. A86. 4351, 3?, c 311». III-3. W1. #86 “31*, 3P".‘I 07‘ 3L2. hL3, hL’l. 483, hsgl'. 39', c' 3L2. 4L3. IL3 , usg*, Isg1'*. 3P'*. 07* 3L2I,“F3I uLgl. 6?. 38k. 38:1 31-2. 43. IL". 61". 382. 38;“ 312. III-3. 1.1.3 . 61". 33;. 333' 31.2, 1.1.3. 1.1.4, 6P"; 33?. 333:1” 3L2. 4L3. '1, BLh, 3L; , 6L2 3L2. hLB. 4L3 . 3L2. 3L;1*. 6L; 31.2. 41.3. 14:1, 3LL. 314;”, 61.; 3L3. WWI 6L? 2338; V 23;Sé* :33 Q 233Pf 33:. 23;P'* #3 V C , * 23'Lh #33 NNWWNPHWHFJH ' 233LL+ I 35L 1:33er m 333 49* h'Bgsz 96 E. 3L2. 6L3. ule. 3&5. 3L;?. 6L2. 384. 3831. :36, #331. 6?. 3P. 0 2.2.13, 61.51. 3L4, 31.,';1,1.6L2 ,*33 . 33;“, #82. £331». 6P5. 3P*. 0* - - - * E: 3L2: “39 LL31: 381,; 381,10 6P: 3L:: 3L5]. o 6L;. #32. #861*. 3? 3.31.2, 4L3, 61.51, 436: 1.351 . 3P 0 31-1» 31-12” -1: 61.* L2, 33:, 3s“, 6P* ' E, 3L2: “39 IDLE]; 31",; BLZI' 6L2’ 3310’ 38Z1~’ 63g. asgl', 6P' . 3P -1 t E. '3L2' “'3, LL31: 3L4: 3101:}. 6L2. 33L* , 33" “86* 0 “361'*.P 6P '*9 3P'* 0': E, 3L2, hL3, hL31, #36. 4361, 3P3 31.4"", 61.2, 33'*,3s;1'*,61>'* E, 3L2, #L3, 6L§1,P 6P' , 33;, 33;}', BLZ, 3L;4*, 61;. wet we”. aw. E. 31.2. 4L3, M51, 33,, 337,1, 6?. 31.1,, 31.2,”, I c -1! c c! 6L2, #36, #36 , 3P , E, 3L2, 1.1.3, 1.1.51, 33!» 33?, 6?, 31.3, 31.7.1", 6L£* h3é* #361'*, 3?” 00* 0'9 3L2: 8,3102, “L3, “51,1086: 1:881. ' 3P2 C" 38:, .1* -l' * 1* as“, 69* , 3sz , 3L“ ,61.2 -10 -1: E, *3L2, 'inLB'u 1' 3L1, BLk '6L2. 33:. 33h , 6P* _ h36* . #361;*. 3P,* . c'* 97 .‘3-' 2.31.2. 66,. 1.1.51, use, 6831. 3P. c, 3111. 317:1", 6L2, 33;, 3s;1',16P1 333L111“ no 31-20 “‘39 “9111.36! #331, 3P: C, 31'111119 .1!* -1 * 3L“ .. ,6Lz*, 351* , 33L ,6P'* 1* an';s; E, 3L2, 6L3, 6L51, 6P' , 33;,Pasg1', 482, A35 3P",‘.c . 3166* . 31f", 6L? 1.73:8; 3.31.2. “-3. «151. 31.“. 3L,‘;1_.6L2. 1.82. 6331*. 3P*, 6*, 33;* , 3s;1'*, 6P7? 98 Table 20‘!I Groups or Type {air a3, a;, a3*} Group Elements 1 t a: 1 :6 E, c , 8r. ' v I! at 1 3L2: 3' I‘Zz' 8“ ' ' at a: ' l :P E, P , 8r. ' Y y » 21';P"' E, 1.2 P’, 0*, 8:. v .‘ z " I . - mlzzy E, Py, Lzy,cv,&.' - v at a: all 11_;1.2y E, c, 1.2,, Py, as" 0 It at s ' 21.3 x 3' L29 1'va LZy! 8? ' 21'-P* E P“ P" a v .9 x 9 L23. *x’ I, . ‘ c. a: . I]... 2: B, Py' L23' Px, 8c ' . ‘sl: It at at 22212151 E, 1'2:- L2,, 1.2,, P‘, Py, P,, c , a. c at an: s t ‘1';sz Es L23: sz Pys L219 L2yo PLV 0 8° ' v » s an: 2/n1 n.3,: E, L2,, P,” c, Lgx, 1.33,, PX, Py, a; ' an: '- It 21.11;: E' 1’23' thv L 1,9 35 ' . v 'at - at s at 41;sz 3: L1,”. LA}: L239 1'sz L2,, Lazy. LZfi! & ' v * - 1* 2221 :1.“ 3. L2,. L2,. L2” LT... L H. L2”. 1.3—. as ' 0 s - a: ‘ .. a: 1.1 331.2 E, L“, 1.1.}, 1.2,, Pa, 333, sky, c , e . ‘ 1 all ' a: .. .. at ' 2/nl :1.“ E, 1.2,, P2, 0, 1.“, 1.1%“, 3Z3, 31.; , as ' "' v as - at _ * at 41 3101‘: E, L22, 81." Ski, 1.1.2, Lhi." P3. 0 ’ & ' c s .. at an: * at 41 31’): n, L“, 1.4;, 1.23, P1, Py, ny, P-i-i, 8c ' '. * ‘ at .. a: it at ‘ ‘ Ill 6L1}: E, 10221 PX. Py, Ll“, Lag , ny. P-xy-y 8r. ' n eae , te enentsinMarenot written explicitly for each group. Instead, only half the elenents in each group are explicitly written. the retaining half are collectively indicated by the symbols as '. T0111“ these elenents explicitly, write the slenentcto thvleft Of a; and then prise each of then. For supple the four elements of the first group (1':C*) ,are'E, 0* E , c”. 2221 :31“, t * ml 331.3 31 :13; 31.31," 31'ssz, azlfgsg, 9. * 2‘1 P363 31.38;a ~ 2 * 61 31‘21. 3-1'; ,3; 31'»; ' t 61 iLzl 321 3L2: £91311 1'5}: 31419 8380 33%.; 3P“, 99 E, 1.1.3.1-3‘. L21; L2,: 112;: szyo L259? :9 Pyo P:, Pf“, PL,S:,,3;1'+, (:1, a; P . s s as no LWL 1:39 1‘23: P8: 81,39 3;;s C, L23: L2,: L2”. 1 * t Px, Py, PH, PL, a P P a: L25, L-l 3’ Lks'L hs' 228' 3" Pr ny' P17: 173‘, 1;" * - * L2”, 1.2;, 11:, 87;, 3“ , Cf, & ' -l* :3: BP I’ZxP HLZyP 1.29:1," PyP I", C, 1'th Lbs P 1'2”: 123:? 1’ . PLP 3;... 3351‘ ' -1 Pk E; 128' L2”! L252!) 19 Pys 31,30 31,5, LhzsL Lax,1.2’,P*P;yP;y, claw -* E, 1.2,, 3:1,, 31.11:: a: P * t t E, s“, 3;” 1.2,, 1%,, L25, Px, Py, 8:. P 3P 12:» I'nyP 1'23, 3:2. 3;}:9 P; P; 8‘ ' 3P I‘2st xP pyP 3:” 33?: Lnyo LEE,- 3,13,, :1, 31%,, as P 8 1'3s- 2' 3111'. P' P. 19...}. 82.. 83?. 0*. as ' E, L3,, ', 31.2]! Says 331* 3121’6 a; o 3' L3:" 1'3!” 33! P Says-1*P *3L21,0*, ‘1‘ ' B La» 1.5:, 86.. 831 c 31%;“. 31;, P ' If” I»: P 3' I‘3s' s’ S;:‘ 8'32", PI. ¢'&' 3" *‘ E. L3,. 1.5,.8 3,. 31:. P,. 31.21. 3P.‘.". PH 33%", 3L2.I.P P3, 11" ' P,,&.' -1 E! 1‘33, L3,! 3P" O 838' P L3,. ‘1. guns-1* 4.: P' Be 1'63: 1:11 13.3.1329 LZS' 6L2." 8:. ' .1 s -l* a: at 3' 13v L3,. 312.1! L6,. 1'62‘P 1‘2;- 31'2» 1‘ ' 100 - - * P. 5.» Pat: 33:.» 33;, P.» 1%.. L39: L2,, 32.. 3311‘, c"_‘, 8'. P - ' - - t -1* Be 1‘3" 13:: L2,: L63: Léio 33p 36;}! 33;: 333 a 1’1- 6‘3 as P .1 - __ Es L3‘o 9339 36,9 36:: C, L230 L 1*: L33: sggs - * 433% , P:, 8: P 8, L33: .;1 1L6“: 16:”. L23: 6Pu*_o 3‘ ' 3- 13v Psi. 3P..- L3... 16?. 132.. 3P3“. as P 3' L3I' LigP 3L21' 33;: 35;, 33.. Pan L32: La:*, L3v 3L;lP 32‘: 33:*P 33f: O*P &.' . EP L3sP LiaP L63' Lat. L23, 36;: 33;. S3,, 35%. P”, c, 61.3,, 6P,’,", a; P 2. Lung-1.31.26 s... 83:. n... c. L2,. Lara 1%.. 31-2.. 33;, 35?. 311?. Pi- PP EP LBsP LitP L6zP LE:P L23. 6L21P 332. 3g;*, 3;,: .13 t It III 533.3 6P”: Pg: 0.9 & ' -13: -l - t s E; L33P LBsP L63; LfiiP LZsP 6fil' 6L21P SésP 36: P _ ‘ 33v 33?? P2P ‘1 P ‘1‘ ' a, 31-2. 1.1.3. 1.1.51. usz, usg1“. 3P“. 0*. as P s, 31.2. 1.1.3. 1.1.51, 6P") 38:, 33;”, a; P E, 31.2, 1.1.3, 4.1.51, 31.x, 31;”, 61;, a P 1:, 31.2. 1.1.3. LL51, 3L“. 31.31, 61.2, 38:, 33;;1“, 1.3;, we”. 6P",‘. 3P“. 07‘. as P E, 31.2, 1,1,3, 1.1.5.1, 331w 33,21, 6P, 3LZ,. 31.;1‘1', 61;. 1.3;, 1.3;“, 3P"_‘. 0". a: P a, 31.2. 1.13. #151. #86. #831. 3P. 0: 312- 3121‘ 61;, 33:, 33;“, 6P"; a. P 101 Table 21. The Groups of the Set{g§}listed according to their Heesch Subgroup of Order Two Heesch Group Triclinic Monoclinic 2 Groups in{gp}uhich contain the Heesch Group as a subgroup of Order Two 1;c"' 1:69" 1:13, 13.5: 1;P; 19;? ifgcf 11; *, 11;P; _ * .. e. if”! 1332’. l ; y 1‘;Py ., , ll 3L2, '* i t 29; 2gp, 2:1.2x 2:14; 29; 2;P;* 2:1.“ 0* , s '* Z’Lk‘ 2,3“: 2,8h' 2'; "' 2';c* 2';ng 2';P;* 21';p; 2113Lgx 21'3P; 21.31.:3 21';8:, nng’ ngLé; ”L;a nzLé: {a}; “he“ (a; I'3P .113Lgy ‘1'3ng 2/n;L;x 2/-;L§; 2/nsz. Z/nzLL'; Zf/P:L;z 2/i'3sz 2/h13LZz 2/3'33:s Z/h';P; 27";ng 261131.33c 2/-17=LZ. * Y 102 Orthorholbic 222 222;P; 222;P;f 22231:; 2223LL; 222gsz, ‘ 222:3L; 2'2'2 2'2'23P; 21212;P: zfzfszz‘ 2'2'2;sz, 2'21zgsz: 2221' 22211gP; 2221';LZi 2221';3Z, .- ...ng an; ngLZ, ..ng: mags}; nag; n'nf 1'1“;ng Ifnsz: n'n'flt, {11.33221 ' 3'1.ng {11131.}; In. “21;. “0:01: unl' nml' .L;, .mi' :Lz, unl';sZ, III III3LZ‘ *nnnzLi: Ilia..." n _n 3.31.2. ammf ‘fln'3Lzs "'1;SZz n'n'n l'n'mngs Tetragonsl 1. 6:13,, 4:14,; MP: MP? MP; MP” 4' #1:L;x asz: h':sZ, h'BP; In" 411qu 1.11:8; HEP; 42 hzzP; 1.29;: «2' 1.27:1": 1.251»; a'z ufng; A'Z;Sts #21. #21';P; u/n. ulna-Z; Mug; h/nf h/n'agx IMP-3?; 13/- 13/." u/i11 IPIPPI G ‘ . E'EJEJE'E'PE .103 .- _'*_*- u;LZ, u:L,, usP, a:P;f .... * .. 13:1.“ PUP, Pug” A'sP; :1'11'23 :1.qu 22:92; 1.22:ng "’ I * 1'2“ 31%: “12‘1“"; * a'z-ngz #2.th .. , * 1.2.1 a,“ Rhonbohedral 3 31 32 32 321 " 9 I Hexagonal 61 6I2 31:12ng: 10h 331-3; mil 3:??? 3:11?“ 3:32. 333%: azsg, 3:35: 331;; 33L3: 31131; 311:??? 3133;, 31533, 3131.3, 32;sg, 32;sg; 32:8;, 32:85: 32;LZ, 32;Lg: 32:;11: 32383, 3258;, 32':ng 3251-2, 32 ;L i ‘ 321132;, 321133;; 321'3133 3mzsz, amzsg: 3m:8§. 3-385: 3msz, 3-PL6: 3n:;L;J. 3n';szz 3-f:3;, 3-1385: 3-':L2. 33,:3? 331133;: 3M1';s;s 3'111in 3:37 3:137.” 331-3. 5316: 3'1ng: 3";11’.“ 5';3;, 551.3, 51'3L21 Si'PLZs 3-33. 3-1133: 5""s;z 35'“; 313:8; 3532, 31-31:; 3.3.313; 5P1'3L62 .. - - t 6:13; 6:141 631-6. 6'3??? 631-21 5'3ng 6.3362 61'3L21. 31'313. 6.2;ng 311'2' 3‘22' "'0 O 612 621 105 2".231’22 "t t a: 6"? “'2 6! 2;L68 34231-31 35233;: 3.11.2: 8;, 2;“2151‘22 ‘ 6:L;2. 6=L£I 6:82. 6:22: 6:83: 6:3? 6.31;; 693;: 6382: 6'33? 61.31.;l 6138;, 61.9: 623822 62:83: 62';P.’:‘ 62.282, 6f2;8§, 6'2;ng 621382z 6/131;1 6/n3L';J_ 67:121.; mun;L shun»: 67"..31'32 6/n1';L;J_ 6n=322 6mg: 6111553; 6mfnf;L;l 65.23;ng Cat-1332‘ “#382: w 6;?” 106 Cubic 23 23:83‘ 3338;? 23;P* 23;??? 233L: 23:LL* 231* 231?;32 231728: 231'2LZ m3 ' :20sz nan-If n'3 .73ng {3:3}: n31' 10151.: 7:3- Z3m3LZ .1:ansz 23-. 231;“: 2311:3922 Ian-1' Kan-1'37; 23 43:8: 2328;? 2'3 1:3;3}: 25:32 431? 231'282 I13- - 31.31:. - Ian" - 3'3; «- 107 Table 22. The Possible Herohedry Twin Group. Hench Poeeible Merohedry Twin Groups Group Triclinic a: u: 1 1;c 1;c,_ * 1' 1'30 I - '1" .. Il' - Monoclinic a: 2 22;?Jr 2:15;" 2' 25?; 220* t ' * 2 . 1 21 1;, ' n 1n;L2y nsz; m' n'; all m';C* 9 I * n1 ml 3.2, 2/n ' - 2./I - 2/m' __ 2'/n' - Orthorhombic 222 ' I 2 22 22211 I. . 'P. 108 222:2; 2223;? 2'272;1>; 222:1): 2221732; mgr“! 31:15; 0 ' t v 2 * an; x tm 3P: c a: c n- “ 3 z- ”.30. I a: I ”1.;1‘21 . t . 1* . t . 0* t '* [”sz 1”sz ’09P; “9?; thx h3Px I * I * 0 * f * it 3102: 12.3}; 10351.2 5.3Px c c c an: 2121.; 2123:, u 3"; 1223?; 223?? 3|! at REP: 1.231} a: c 2'29: I. 233:2 2213?; Mir-31;; wag; Min-UL; u/nfgp; {final-3x tr]. 3?; h/nlfsbzx -. * -. '* -. * . 4'2LZ, 4'2 P 2'21.“ 21' 31-7.; {$21.25; 122' ;L2: I. 21:11:; -2 an: ‘12 2n,1.:: 1232:;sz m1 “:3 * '* 0 331-22 321.21 32?: 32P.._",‘ 3 .66, 3 .83: 31':L§1, 31'23f 31’3322 322322 3228;; 32311:? 32'282, O * 321 :26: ' O O * 3"“;1 3"..3322 fin “_r I —- I! 3nl ”‘9 31 3'22: 110 321.31 33;: 331.22 3";1’: gfng‘L '5';th 3:82; .6-1'31-3; Elfin; sum-2, 3-2222 35'2'2Lgl Eh'z'ng, 33253;; Z'm2'2LZ, 3.12.252; 3.113231%; 332131.25 631;; 6&5: égsgz 63;: 6:82;; 6'3L;L 6'5;z 633; 6'9: 61'21;¢ 61'232z 61f22f 6223;II ézgsg; 62'23f 62'233, 6'223;a 6722s;z 621';82‘ 6/n;L;J_ 6/nzLé: an: 631’“ 6: '* fl: 6' /I 6/I 6 /I 6/l1 . 6.". 6'..- 6/mm 6 /m 6/u 6' /n'n 6/3'3' 6/m'n 6/Im1 Cubic 111 6713.5; 6/n';L;.L 6/"51’2: 6'fl-13Lz; H.131; ongsz’ Gum-é: 6.333;, 6I'.I'.3L;.L 6335;, 6flfmfiszz “’33:: 23282 2328? 2322* 2331’" 2331': 23‘le 231';sg 231';P*' 231':LZ . III . I “3-14. “3-103 n'3;Lz H.333: ! * 3.31:1.1'... 2* 2.3221,: 23:21”. Tania: 332-232 .. * 12.331..ng “age: #333L* 1.73:3: 5.3332 112 Table 23. Heesch Group 321 113 The Possible Reticular Merobedry Twin Groups for Rho-bobedral Crystals Possible Reticular Merohedry Twin Groups 321;; 321.3 32P.‘." 3 .19."? 3233', 3285: 331‘68 3 L6: 31312131 .3PIL 31'. 3:3: 31.32;: 322 332 322 33, 32 .16, 3221.6: 32' 2332 32 232: 32' 21.6, 32' L222 321' 233, 321' 216, 3.233: 32.233: 3.21.2, 3.21.3: 3-'_ 23;: 33' 233; 322231.22 3.22,? 3.123;, 32.1-21.6, 331’: 3311." 3'13: 53:5: -'3L;.L 3 3P: 3' 3332 5.31%: E “3333 5"31‘62 3n' 3L2, 3.312;... ._ ,. * 114 Table 2‘». Th. Possible Rsticulsr Morohodry Twin Groups for Cubic Crystals Hoosch Possible Roticulsr Morohodry Mn Groups Group 23 23,321.31 23,321.51 23.3235." 23,322."? 23.3233. 23.3283: 23,321.22 23.32ng 231' 2313313135; 231331512: 231’231'2332 231'.31f21g2 .3 .3523: .3322? $521.22 .3533; 3'3 133.33%; £3,339: {3.553% 113353322 331' $133131; 01'231'3Lz. 2'3- 23-3-2832 23.,3.233: 33.3.21; Ina-21.2,: 33-' 23.33.7233, 2322336235: 33.23-31.22 Baal-3311'." Kan-1' I3-1',3n1'2s§2 Z3m1',3n1'216'2 1.3 23.322333; «3.32235: 1.3.3232. 1.3.3233: 3'3 33.32728; 1.33.3255; 133.32'2LZ2 1.5.3236; 1231' 2313321385. 431333213333: :31: wry-3.113132 133.51%; 333:3 I'Bn'23-333383; .3333,3'n3;Lz2 I333 n3; 233-31138}; IBD' 333:1.22 n'Bn' 113333,; 33,3333L2’ 133.3,31133L3‘L n3n1' 113-13 5111' 31.22 Appendix Let g be the total magnetic field at the proton eite. Then the Hamiltonian/V for the proton nay be mitten an A! = - 573 I ' .H where g is the alt-emetic ratio, ,6 the nuclear nagneton ’2 t/Z MC and ; the total nuclear angular momentum in units of ‘k . Then ' 0 7'} (a L2) {11 0) _ L