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ABSTRACT

THE APPLICATION or SHUBNIxov GROUPS r0

‘IHB DITERMINATION or ANTIFERROMAGNETIC STRUCTURES

by E. Paul Riedel

Following a brief historical account of the development

of black-white group theory in one, two and three dimensions,

the results of proton-resonance and xbray studies are com-

bined with the Shubnikov group theory in enumerating the

possible arrangements of the magnetic moments in‘the anti-

ferromagnetie state of asurite Cu3(603)2(0H)2. Four anti-

ferremagnetic symmetry groups are found which describe all

such possible arrangements of the magnetic moments.

A description of twinning by merohedry and by retieular

merohedry in the lh ordinary and 22 black-white three-

dimensional space lattices is presented. All of the possible

merohedry and reticular merohedry twin groups for these

lattices are then constructed and listed. Included in this

list are lh2 new merohedry and LO new'retieular merohedry

twin groups.

The antiferromagnetic 'T wall" twins in N10 are shown to

be pseudo-merohedry twins.
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Section I

Blackéwhite Groups

Introduction

The material in Section I is intended to serve generally

as an introduction to the existing theory of black-white

crystallographic groups in one, two and three dimensions and

specifically as a starting point.for the material in Sections

II and III. As part of the introduction to Section I, a

brief historical outline of the development of these groups

and some of their applications is presented. Following this,

a Bravais lattice method is described for the construction

of the three-dimensional black-white space groups. This

method is then illustrated by outlining the derivation of the

black-white space groups in one and two dimensions. The three-

dimensional triclinic and monoclinic Space groups are listed.

The point groups which correspond to the space groups are also

discussed. _

Ordinary crystallographic group theory is concerned with

describing the symetry of Objects in space. During approx-

imately the last thirty years an important extension of this

theory has been developed which consists essentially of des— '

cribing the symmetry of these objects when a sign + or - is

assigned to them. Such an extension of the theory therefore

requires the introduction of new crystallographic operations

Galled antioperations which transform an object in the same

1



 

way as an ordinary crystallographic operation but change its

sign. Groups which contain antioporations are called anti-

groups. Change of color of the Objects instead of change of

sign is usually more convenient to use in diagrams represent-

ing the symmetry of these groups. Antioperations are then

called colored operations and ordinary operations are called

uncolored operations. Groups which contain one or more

colored Operations but not the colored identity operation are

then called black-white groups. Groups which.contain the

colored identity operation are called gray groups. Groups

which do not contain colored operations are the ordinary

crystallographic groups.

The first extension of ordinary crystallographic group

theory was made in two dimensions in 1928, and 1929 by

- Alexander.and Herrmann.in connection with a study of the

pessible symmetries of liquid crystals.l’2 If only one side

of a plane is considered, the number of possible periodic

symmetries of objects in the plane is described by the

~ordinary 17 two-dimensional crystallographic space groups.

Alexander andHermann derived all of the two-dimensional

space groups when both sides of the plane are considered to

‘be distinct. They found that 63 new'greups as well as the

original 17 are necessary to describe all such possible

Bymetries. ‘ '

‘ -

WAlexander and K. Herrmann z. Kristallo r.

235 (192%) ' ' 3 92'

.Alexander and K. Herrmanm Z. Kristallo r.



In 1930 Heesch introduced a "fourth coordinate" to

three-dimensional crystallographic group theory.3 This co-

ordinate had no numerical value associated with it: instead

it is represented only by a-+ or'— sign. Thus, the groups

which he called “the four-dimensional groups of three-

dimensional space" describe the space symmetries of objects

in three-dimensional space and in addition label the objects

-+ or - . These groups are today called the Shubnikov Groups.

Heesch derived all such new triclinic and menoclinic space

groups but did.not.work out explicitly those of the remain-

ing crystal systems. He did, however, derive 90 new point

groups which correspond to the new space groups (all the

black-white and gray Shubnikov groups) in the same way as the

ordinary 32 point groups correspond to the ordinary 230 space

groups. .The 122 point groups (the 90 derived by Heesch plus

the original 32) will be called the Heesch point groups in

the present work.’

Shubnikov“ (1951) rederived the Heesch point groups

_and also extended the theory to the study of the symmetries

of three-dimensional figures using both crystallographic

and non-crystallographic operations.

 

3- a. Heesch, z. Kristallogr. 21, 325 (1930).

. * They are usually called the Shubnikov point groups

in the literature.

‘4. v. Shub'ntkonWe;

[inite Piggggg-(in Russian), Mbscow: Academy of Sciences

(1951).



I,

In 1952 Cochran5 rederived the blackdwhite plane groups

- send suggested their applicability to the study of the symmetry

caf'real periodic functions used in crystallography.

The complete extension of the blackawhite group theory

two three dimensions was first accomplished by Zamorzaev6'7

by a mathematical method in 1953. There are 11.21 new space

groups, 1191 of which are black-white while the remaining

230 are gray. Zamorsaev named these as well as the original

230 space groups the Shubnikov groups.

The new space groups were rederived by a Bravais lattice

Inethod and listed by Belov et a1.3 in 1955. A revised list

of these groups was published by the latter authors9 in 1957.

In their discussion of the symmetry of magnetic crystals,

‘Tayger and Zaitsev (1956) derived 58 magnetic point groups.10

7-D. Cochran, Acta Cryst. 1, 630 (1952).

6'A. M. Zamorsaev 'A Generalisation Of the Fedorov

Groups." Dissertatioadn Russian), Leningrad (1953).

7°A. m; Zamorsaev, Soviet Physics Cryst., Vol. 2, no. 1,

10 (1957).

8'11. V. Belov, N. N. Neronova and T. S. Smirnova, Trudy

Inst. Krist. Akad. Nauk 8.3.3.3. _1_._, 33 (1955).

9‘11. V. Belov, H. N. Neronova, and T. S. Smirnova,

Soviet Physics Cryst., VOl. 2, No. 3, 311 (1957).

10-3. A. rev er and v. M. Zaitsev, J. Exptl. Theoret.

Phys. U.S.s.a. 1_, 56h (1956).



{the 58 point groups derived by Tavger and Zaitsev are

isomorphic to the 58 black-white Heesch grOups. A

The first application of Shubnikov groups to the deter-

mination of magnetic structures was given by Denney et al.11

in 1958. They proposed a systematic method employing neutron

cliffraction data in conjunction with the Shubnikov groups to

cistermine the magnetic structure of ferromagnetic and anti-

ferromagnetic crystals. They applied the method to the anti-

ferromagnetic crystal chalcepyrite - (CuFesz). A table

showing the effects of ordinary syn-Retry and antisymetry

operations on magnetic moment vectors is also included.

The Heesch groups were first applied in 1958 to the

<iescription of certain types of twinning in crystals by

Curien and Le Come.”-

The possible point symmetry groups of ferromagnetic

and antiferromagnetic crystals were discussed by Tavger in

1959. The point groups imply that only certain directions

are possible for a macroscopic magnetic moment with respect

to the crystal axes. These directions are listed. Tavger

also lists the magnetic point groups for which piesomagnetism

is possible.14

 

’1G. Donnay, L. M. Corliss J. D. H. Donnay, N. Elliott,

and J. M. Hastings, Phys. Rev. fig, 1917 (1958).

12‘H. Curien, and I. Le Corre, Bull. Soc. franc. Minér.

Grist. 81,126 (1958).

13.3. A. Tavgcr, Soviet Physics Cryst., Vol. 3, No. 3.

3&1 (1959).

111.3. A. Tavger. Soviet Physics Cryst., Vol. 3. NO- 3.

3hh (1959lo
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The possible space groups and their corresponding point

Egroups were listed for ferromagnetic and ferroelectric crystals

in 1960 by Heronova and Belov.15

No attempt has been made abOve to include all the papers

Clealing with black-white groups. fibre extensive references

sappear in the review papers by Hockey16 and Lo Corre.l7

jgthBravaiseggggiggpygghgg

The method employed by Belov et al. in deriving the

black-white and gray ShubnikOv groups consists of the follow-

ing general steps:

1. From the 15 original Bravais lattices which describe

all the ordinary translational symmetry groups in

three dimensions, 22 new black-white lattices are

derived by coloring each translational element in

turn in a particular Bravais lattice, considering

all possible combinations of colored and uncolored

translational elements and eliminating those result-

ing combinations Of elements which lead to identities

or do not lead to groups.

2. All combinations of colored and uncolored symmetry

elements added to each of the 36 lattices are then

 

15's. u. Neronova and N. v. Belov, Soviet Physics

cry’to' Vol. I." NOo a 769 (1960)o

16". L. “okay, Ac“ crySt. E, 51.3 ‘1957)0

l7-I. Le Corre, Bull. Soc. franc. Minér. Crist. QI,

120 (1958).



considered. When these sets Of elements which

possess the properties of a group and various

identities between groups are recognised, the 1651

Shubnikov groups result. Ten theorems presented in

reference 8 and there employed in this process are

listed below.

Theorem‘;. The reflection in a plane and then a

translation in a direction perpendicular to the plane is

equivalent to a reflection (of the same character, i.e.,

mirror or glide) in a ”derived" plane which is parallel

to the initial one, but-located at half the translation

from it. The reflection will be uncolored if the first

reflection and translation are both uncolored or both

colored; and colored if one of the component operations

is colored and the other uncolored.

Theorem.g. If a colored translation is parallel to

a plane of symmetry, (m,n,c,g) the plane will simultan-

eously be colored. If this plane coincides with the cell

face 10! then in the presence of a color translation?

parallel to the x axis asa', nab', can. and bzn': in

the presence of 3' parallel to y one obtains mzb', nsa',

asn', bsm'. If the color translation lies on a diagonal

cut maul, nsm', asbl and heal.

If color translations are available along both axes

them mansa's b' and bsasm'a m'.

‘

 

llThe color (indicated by a prime) translation, t',

magnitude is half that of theduncolored translation in the

same direction, i.e., zlt;|=|tx|.





Theorem 1. If the translation is disposed obliquely

relative to a symetry plane, resolve the translation

into components perpendicular and parallel to the plane:

The first component determines the derived plane shift-

ing it intact parallel to itself just half its length,

the second component determines the additional glide

component. The derived plane is colored if the plane

and translation giving rise to it differ in color and

uncolored if both are the same color.

mA. _ _An axis of n fold order and a perpendi-

cular translation give rise to a parallel derived axis

of the same order and character (rotation, screw,

inversion, screw translation). The derived axis passes

through the apex of a triangle with an apex angle of

360°/n. The position of the apex is given by the basic

construction in the rotation plane. The color of the

axis is determined as previously by the color of the

elements giving rise to it.

mgogem 5. If there is a rotation or screw axis

and a colored translation parallel to it, the axis appears

simultaneously as a colored rotation or screw axis.

 

2xt.'.=2(21) oxt.'.=o(o;)

letu=21 (2) 63xt....63 (6)

3 x t..= 3 (6’)* 61 x t..-— 61 (6,.)

hxthbuz) 65 xt..=65 (6?)

hats: #1 (1.5) 621t£=62 (65)

(023%=102Ue:l 6hxt,.=6h(61)

bxbvh‘h’

‘1 6ris anew symetry element. 1t represents a rotation

of 120° followed by a colored?translation t” . This element is

therfore of 63:}; order.I:ggf‘t operation 1 repeated three

times, the result is}! :t + ..+ t...If,L6 ,and P are a

six-fold rotation, six-fold rotation invors on and P a minor

plane perpendicular to L6, then Lg:-12 and Li: P.
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Theorem 6. If a translation is directed obliquely

to an axis resolve the translation into components per-

pendicular and parallel to the axis. The first trans-

fers the axis to the apex of a triangle with an apex

angle of aeoo/h. The position of the apex is giVen by

the basic construction in the rotation plane. The

second component merges with the resultant axis.

Remarks: 1. The axis of odd order can only be

either uncolored or gray.‘ 2. An axis of.3 or 6-fold

order combined with a non-parallel color translation

can only be gray.

Theorg! 2, The planes (mirror or glide) intersect-

ing in 30°, h5°, 60° or 90° produce a rotation or screw

axis of 6, k, 3 or 2-fold order in the line of inter-

section or at a distance and parallel to it; the result-

ant axis is colored if both planes are of the sane color

and different if they are of different color.

. Theorem g, If two rotation axes of the second order

intersect in an angle of 30°, A5°, 600 or 90°, there

appear resultant axes of 6, k, 3 or 2-fold order perpen-

dicular to the plane of the axes producing them and pass-

ing through the point of intersection.of the axes pro-

ducing than. The resultant axis is uncolored if both

the axes producing it are of the same color and colored

if they are of different color. If one or both of the

original axes are screw'axes, the resultant axis is dis-

placed l/L of the translation along each glide direction.



 

.
a
‘

'-
4
4
.
4

.
f
-
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Remarksan Since one can consider the 6-fold axis as

the sum of a three and two-fold axis: 6==3+2, we may

write for the colored 6-fold axis 6'5.- 3+2'. Similarly:

6" i 6'— + '

6%:31‘? ? 6": 324-2

63= 3 + 21

Theorem.2, As a result of the intersection of three

mutually perpendicular planes of symmetry or the inter-

section of an axis and a perpendicular plane of symmetry,

there arises a center of symmetry. If there are an even

number of intersecting elements containing half-translation

components parallel to coordinate axes, the center is

not quite symmetrically located along these axes. The

center is colored if the number of colored generating

elements is not even and uncolored if the number is even.

Associated with the intersection of three planes (or an

axis and planes) not in a right angle there appears an

inversion axis colored or uncolored depending on the

number of colored generating elements.

Thegrem.;g,, The combination of a center of symmetry

with a translation produces a resultant center halfway

between the translation related centers. The resultant

center of symmetry is uncolored if the initial center

and translation are both of the same color and colored

if one is of a different color.
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One-digensional.§p§§3,§£ggpg

In order to illustrate the general method outlined above,

consider the problem in one dimension. There is only one

ordinary lattice in one dimension. It possesses just one

translational element of symmetry. The diagram of this

lattice is shown below where the open circles represent un-

colored lattice points and t represents the ordinary opera-

tion of translational symmetry.

<3__%_ :9 <3 <3

The only black-white lattice which can be found from

this lattice by the above procedure is shown below'where

dark circles represent black lattice points.

0 .2.) . O O

_ _u-)

Note that the definition of a colored translation implies

that for translations in the same direction

I E I = 21°31.

This is obviously true in two and three dimensions also.

The two translation lattices shown above may be denoted

by the symbols 1p and 1pb, where the subscript 1 denotes one

dimension, p primitive lattice type and b a colored trans-

lation in the b direction.

Consider now'step two of the process outlined above.

The only uncolored symmetry Operation which exists in one

dimension besides the identity and translation is the inver-

sion center i. Graphically this is denoted by a small

circle<3, while it shall be denoted byta and a gray center

(i.e., an uncolored and colored center superimposed) by CD .
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Using the 103h_theorem and the lattice 1p, we find five

groups which are listed in Table 1.

Table l. One-dimensional Space Groups based on

on Lattice 1p.

Space Group Symmetry Operations

Symbol or Group Elements .

1p]. 3,;

lpl E,t,i

151-}. 3,-1.5,1"

1p1' 3.33%.“?

1p'il' 3,3' ,E,‘E‘,i,i'

The groups in Table l are shown graphically in Fig. l

where the triangles are used as objects in general position

to show the effect of the group operations.



 

Pu
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1h

Consider next the blackdwhite lattice lpb’ From.this two

groups are found, lpbl with elements 8 and.t' and.1pfil with

elements E,t',i and 1'. These groups are shown in Fig. 2.

Fig. 2. One-dimensional Space Groups based on

Lattica lpb

1%1

[L04] Q ‘0‘ [7 Bod

In the symbol lpfil only the uncolored symbol for the inver-

sion, l, is given; the colored inversion centers being im-

plied by the other elements of symmetry. This method of

group notation is used for the Shubnikov groups which have

black-white lattices, i.e., only the uncolored elements of

symmetry are shown to the right of the lattice symbol. The

colored elements in the group are implied by the lattice

symbol and the uncolored elements. This method of notation

will be used in two dimensions also.
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The point group of a crystal describes the directiOnal

symmetry of the crystal. The translational part of the

symmetry operations contained in the space group do not -

. change directions. Hence, the point group corresponding to

any space groupumay'be.obtained from,the space group.by rep.

placing the translational part, if any, of every symmetry

operation by the identity operation. The translation't is

therefore replaced by E, if by E', a glide plane in the c

crystallographic direction .c .by m a mirror plane, c’ by

my, etc. in obtaining the elements of the point group. The

five-point groups obtained in this way from.the one-dimensional

space groups are listed in Table 2.

Table 2. Point Groups corresponding to the one-

dimensional Space Groups

Space Group Corresponding Point Symmetry Operations

Symbol Group Symbol or Group Elements

lpl l 3

1p; ll E,i

lp'l" I? s,i'

1pl' 1' 3,3.

1p'i'l' i'l', s,1,a',1'

lpbl If 8,3.

1pr I17 3,3',i,i'
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Egg-dimensional.Spgggtggggpg-

There are 17 ordinary, l7 grayand £6 black-white plane

groups. In the following description of these groups, we

shall continue to follow the methods and, unless otherwise

stated, the notation developed by Belov et al.

From the five ordinary lattices in two dimensions five

blackdwhite lattices can be derived. These 10 lattices are

shown in Pig. 3. Consider, for example, the oblique p

lattice. A colored translation along an edge in the a

crystallographic direction gives the lattice Pa‘ The only

other possibility is that of a lattice with colored trans-

lations along both edges. This gives the lattice shown below'

(solid lines) which is seen to be identical with pi (broken

lines).

 

_..-_-..-._ i,,_n,__ ”U

The notation for the ordinary lattices is the same as

that given in the ”International Tables for X-Ray Crystall-

ography.*18 The black-white lattice notation is the same as

that used by Belov et al. except that small instead of capi-

tal pf” and c?“ are used in order to denote two dimensions.

 

18’InternationaleTables.for X-Raz szgt., vol. 1,

Kynoch Press, Birmingham (1952).
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Fig. 3. The five ordinary and five black-white

plane Lattices

4 Z ;
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hexagonal
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The lattice symbols have the following meaning:

1. p‘: primitive lattice with a colored translation

along the a direction.

2. p1: primitive lattice with a colored translation

along the special diagonal of the cell.

3. ca: centered lattice with colored translations

along two non-parallel edges.

This notation is also the same as that used for the Shubnikov

groups, except that in this case capital letters such as P

and C are used to indicate the lattice types.

The full and short international symbols for the 17

uncolored two-dimensional space groups are shown in Table 3

along with their corresponding point groups. The right-hand

column consists of the symbols used in reference 8 for these

groups except that in Table 3 the capital P'8 and C" have

been replaced by small letters as mentioned above.

From the original 17 .groups 17 gray groups are found by

coloring the identity element. Then every element in the

group is simultaneously colored and uncolored. These groups

are written as pl', p21', pml', etc.

The 17 original groups also give rise to 26 black-white

groups based on ordinary lattices when the elements to the

right of the lattice symbol, excluding the identity, are

colored in all possible combinations. These groups are shown

in Table A along with their corresponding point groups.
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Table 3. The two-dimensional uncolored Space Groups

and their corresponding Point Groups

stem and . Corresponding Space Group Symbols Belov et al.

3,333” “1‘“ Gm" an; snort SP3§fibSE°“P

oblique l p1 pl 131

p p211 p2 p2

imectangular m plml pm pm

p 9131 pa pa

and clml cm cm

c 21-! 92m pm pm

9225 plus pus _

9238 pas 933

chm. cmm cmm

square h Pk Ph P#

P has phmn phm phmn

plosm pkg phsm

hexagonal 3 93 P3 P3

p ’ 3m p3m1 P3111]. P3111

palm. pBIm p31m

6 'b6 p6 p6

6m . pém p6m p61“:



20

Table 1.. The two-dimensional black-white Space Groups

based on ordinary Latticesand their corresponding

Point Groups

System and Corresponding Belov et al.

Lattice Symbol Point Group Space Group Symbol

oblique 2' p2'

P

T

rectangular m Pm.

v

p P8

T

on

and c v t‘ e
m m pm m

c ‘- a a
as a

T T

P” 8

O 0

cm m

m' pm‘

pas'

I”?
M

cmm'

hexagonal 3m. p3m' .

p , p333

6 P6

6m' ' p6m'm'

6'm'm p6'm'm

square ‘0’" ph'.

p 1m. ' plm'm'

Plrs'm'

b'm' pk'lllln'

9' a

pit m m

0

pl» 9'
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The 20 blackdwhite groups based on blackdwhite lattices

are listed in Table 5 along with their corresponding point

mupae

Table 5. The two-dimensional Space Groups based on black-

white. Lattices and their corresponding Point Groups

System and Corresponding Belov et al.

Lattice Symbol Point Group Space Group Symbol

oblique l pa1

Pa 21 - 1’a2

rectangular m1 p m

Pa Pall

. pas

I pals

a PI"!

PIS

can

nnl' pgmn

pies

pine

pass

Pr'“

PI“

PI"

cam

square 1,1 p‘IL

p luml' piles-

pIhsn
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In order to illustrate the meaning of the symbols for

9

the space groups, the groups pm g and p‘mg are shown in

There are as yet no standardised symbols for the

They will

Fig. A.

graphical representation of the antioporations.

here be represented by cross hatching the uncolored operations

as far as is practicable. The uncolored operations will be

represented as in ”the International Tables for X-Ray

Crystallography." For convenience however, all symbols will

be defined as they are introduced.
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Fig. 1.. Diagrams for the Space Groups pm'g and p.mg.

. r b an

a 90 e gig—colored two-fold axis

 

D 0%....” uncolored glide plane
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0
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a e G —
mirror image.

__.- colored mirror plane

  
    

3-x-“ uncolored two-fold axis

9...“..-colored mirror mi and

uncolored glide plane g

superimposed .

 

 

uncolored mirror m.
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A reproduction of the 1!. original and 22 black-white

lattices shown in reference 9 is shown in Pig. 5. The

lattice symbols are described below. The numbers to the

loft refer to the lattice number in Fig. 5.

2. Pa colored translation along one edge

1.. Pb " " ' an edge in the b direction

5. pa w m s w m s w a w

6. PC " " " the diagonals of the 0 face

8. Ce " " in the c direction

9. Ca " " along edges in the a and b

. directions

11‘. Pc " " along an edge in the c direction

1213’ PA " " " the diagonals of the A face

13. PI " " " ' spacial diagonals

15b. As " " " " a direction

16b. Ac " " " edges in the b and c

directions

17b. AC ' " " :he diagonals of the C

ace

19. Fs " " ' the three edges

21. Ic " " in the c direction

29. Cc " 5 along the c edge

31. RI I I fl " spacial diagonals
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three-dimensional Lattices

Fig. 5. ‘The IL original and 22 black-white
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Orthorhombtc system (continued)
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The Shubnikov groups of the triclinic and monoclinic

systems are shown in Table 6. Table 6 is a replica of the

first part of the complete list in reference 9. Specific

examples of a few space groups will be illustrated later in

connection with the discussion of asurite.

To the ordinary 230 space groups there correspond 32

point groups. In addition, there are 32 gray and 58 black-

white point groups, or 122 Heesch groups in all. All Heesch

point groups which contain antioperations have the same

general structure. They contain a subgroup of index 2 of

unprimed elements, the remaining elements being primed. All

122 Heesch point groups are tabulated in the discussion of

the twin problem in the last section. Some examples will

also be used in the next section on azurite.

In suhary, the number of point and space groups in

various categories are listed in Table 7.
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Table 6. The Trielinic and monoclinic Shubnikov Groups

Triclinic

System

c1

1. Pl

2. Pl'

3. Ps1

ci

a..Pl'

5.fihf

6. 913

7. Pal

Mbnoclinic

System

02

1. P2

2. P21'

0

3. P2

5. 282

5. Pb2

6. Pc2

7. P21

9

I

9. p21

10. Pa21

11. szl

12. P021

13. oz

9

it. 021‘

15.

16.

17.

c.

18.

19.

20.

21.

22.

23.

25.

25.

26.

27.

28.

29.

.30.

31.

32.

33.

3b.

35.

36.

37.

38.

39.

#0.

02'

0,2

caz

Pm

Pnlf

me

Pam

Pbm

P03

Pc

Pcl

Pc'

Ccl'

Cc’

Ccc

us Cac
67. Pz'/t

C

52.

as.

it.

45.

#6.

47.

28.

49.

so.

51.

52.

53.

54.

55.

56.

57.

53.

59.

60.

61.

62.

63.

6t.

65.

66.

2h

P2/m

Pz/nlf

P2'/m

P2/mf

sz/nf

P.2/m

sz/n.

PCZ/m

le/n

t

P21flml.

I

le/m

le/I'.

' O

rzl/n.

2,21/a

cz/n

cz/nlf

CZf/m

CZ/mf

62'/m'

CcZ/m

Ca2/m

P2/c

22/61'

68.

69.

70.

71.

72.

73.

7h.

75.

76.

77.

78.

79.

80.

81.

82.

83.

8h.

85.

86.

87.

88.

89.

90.

91.

P2/c'

P2'/c'

PaZ/c

sz/c

PcZ/c

9,2/o

pcz/o

P21/c

P21/cl'

PZi/c

P2}/c:

P21/c

P.21/c

Pb21/c

Pczllc

9,21/6

2621/6

cz/a

c2/.lf

02'/c

CZ/c'

02'/cf

Caz/c

c,2/.



Table 7.

ordinary

black-white

gray

total

ordinary

black-white

8P8!

total

ordinary

"blackdwhite

SP3!

total
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The Numbers of ordinary, black-white and

gray Space and Point Groups in one, two

and three Dimensions

Number of Number of

Dimensions Point Groups

1 2

l l

l 2

5

2 10

2 ll

2 10

31

3 32

58

3 32

122

Number of

Space Groups

230

1191

230

I651



Section II

The Possible Antiferromagnetic Symmetry Groups of Asurite

Laggoductign

Host of the material in this section has recently been

pUblished by the present author and Professor R. D. Spence.19

Antiferremagnetic crystals have been shown by neutron

diffraction techniques to be periodic structures where the

chemical cell which displays only the x-ray symmetry is re-

placed by the magnetic cell which displays the neutron dif-

fraction symmetry.20 The magnetic cell represents the symmetry

of the magnetic moments, associated with certain ions, as well

as the atomic positions.

For any particular magnetic moment direction, there

exist two possible senses for the magnetic moment vector.

Given a magnetic moment with a certain direction and sense

in a unit magnetic cell of an antiferromagmetie crystal,

there must also exist in the same cell another magnetic

moment with the same magnitude and direction but with oppo-

site sense. Hence, a magnetic lament is subject to both

ordinary symmetry and antisymmetry eperations where the change

' of sign operation which characterises an operation of anti-

symmetry is here interpreted as an operator R which reverses

Ig’ge 1e fifeaol and He 5e Waco, Phys—17:3 _26, II,‘ (1960’s

zo'See for example: C. G. Shull and E. O. Wollan Solid

325. Ph s c edited by r. Belts and D. Turnbull, (Academi-

ress, ew' ork, 1960), vol. 2, p. 137.
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the sense of a magnetic moment vector. Thus, an antioperation

transforms a magnetic moment vector in the same way as an

ordinary crystallographic operation followed by a reversal

of the sense of the magnetic moment vector.

Two properties of the R operator are implied by the

above. R must commute with every symmetry operation and

82:3. '

The first published application of Shubnikov groups to

the description of an antiferromagnetic crystal appeared in

a paper by Donnay et al.21 Here x-ray and neutron diffrac-

tion data were used together with the Shubnikov group theory

to find the magnetic structure of chalcopyrite, CuPeSZ.

Proton resonance studies of the monoclinic crystal

asurite Cu3(003)2(0H)2 have shown it to be antiferromagnetic

below‘l.86°K.22 In this section, the results of recent pro-

ton resonance* and xpray studies will be combined with the.

theory of-Shubnikov groups in order to enumerate the various

possible arrangements of the magnetic moments in the anti-

ferromagnetic state.

The general method used to do this is new. Briefly, it

consists of the following. First, the point group symmetry

of the local magnetic field vectors at the proton positions

 

21'Donmay et al., op. cit.

22.R. D. Spence and R. D. Ewing. Ph131°81 3‘75 ALE:

1544 (1958).

* performed by Professor R. D. Spence
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is found in the antiferromagnetic state. The magnetic field

is an axial vector. The operations of a point group however

.must transform gl;_axial vectors in exactly the same way.

Therefore, the point symmetry of the local field vectors must

also be the point symmetry of the magnetic moment vectors

(which are also axial vectors) associated with the magnetic

ions in the crystal. The Shubnikov space group which repre-

sents the symmetry of the magnetic cell must also transform

all axial vectors in the same way. It must therefore have

as a corresponding Heesch point group one which permits the

observed axial vector point symmetry. This space group must

also permit the same number of protons which are observed to

experience different local magnetic fields. The imposition

of these requirements on all Shubnikov groups which do not

violate the observed x-ray symmetry of the crystal leads in

the case of asurite to four possible antiferromagnetic syms

metry groups.

ngton Rgsonggge 23;;

Figs. 6a, 6b and 6c show’the angular dependence of the

proton resonance lines in the antiferromagnetic state of

asurite in‘the af-c, b-c, b-af (a' perpendicular to c) planes.

From the figures, it is clear that in the magnetic unit cell

there exist eight protons all with different local magnetic

fields. The local fields arising from.the copper ions were

found by fitting the data to the relation

z y °

V’Vo :{14-(fié) + ZHL Cod/9}2 _/

‘95 Ho Ho

where')% is the frequency of the free proton resonance in
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the dc magnetic field no and ® is the angle between Ho and

the local field Hi“ A derivationof this equation is given

in the appendix. The data in Figs. 6a, 6b, and 6c were

‘tmflken with no: 3430 genes and r: 1.6°x. The magnitudes and

orientations of the local. fields are given in Table 8, where

9 is measured from the c axis and¢ from the a'f-c plane.

Table 8. Local Magnetic Field Vectors at Proton

Positions

2 H (sauce) 9 ¢ .

1 580 23° 62°

2 580 23° 298°

3 580 157° 242°

4 580 157° ll8°

5 545 27° ‘ 56°

6 545 27° 304°

7 545 153° 236°

8 545 153° 124°

The angular relations between the directions of the

local field vectors _in the crystal can be conveniently rep-

resented by a stereographic projection as shown in Pig. 7.

The usual crystallographic convention has been employed in

F'13. 7, i.e., vectors in the upper hemisphere are projected

through the south pole and indicated by solid circles while

Vectors in the lower hemisphere are indicated by open circles.

In. considering the smetry of Fig. 7, one must bear in mind

that it represents angular relations between axial. vectors

rather than polar vectors which are comonly shown in
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Fig. 7. Stereographic Projection of the Local

Field Vectors in Table 8.

  

.%‘_- -’

crystallographic applications of stereographic projections.

Since the magnetic moment vectors of the copper ions are

axial vectors, they must be transformed by the symmetry

operations of the crystal in exactly the same way as are

the local field vectors. Hence the point symmetry of any

particular magnetic moment vector in the antiferromagnetic

state of asurite may be represented as shown in Fig. 8.

Fig. 8. Point Symmetry of a Magnetic moment vector

in the Antiferromagnetic State of Asurite.
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£21.11: £119.12 229—2...“on!

Diagrams showing the effect of some ordinary and anti-

symmetry operations on magnetic moment vectors have been

constructed by Denney et al.23 Some of these are shown in

Pig. 9. (A few slight changes in the graphical symbols of

some of the operations have been made).

Fig. 9. The affect of some syuetry Operations on

Magnetic Moment Vectors

  

  «OJ'G'

The effect of the symmetry operations of the Heesch

Peint groups of the triclinic and monoclinic systems on a

Bill'igle arbitrarily oriented axial vector is shown in Figs. 10

and 11 respectively.

 

23‘Donnay et al., op. cit. p.l9l8
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Fig. 10. Symmetry of an Axial vector under the

Triclinic Heesch Point Groups

/,» O O

.‘ 0 ®

0 X e _ e \ e

\1' 1' - ‘1" \‘1"

0

e
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Fig. ll. Symmetry of an Axial Vector under the

monoclinic Heesch Point Groups
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The symmetry operations comprising each of the triclinic

point groups have been listed in Table 2. Those for the

monoclinic system are listed in Table 9.

Table 9.

Point Group

(in Belov notation)

2

20

£11115; Structure

Moneclinic Heeach Point Groups '

Symmetry operations

or group elements

2,3

2f,z

2,2',E,s'

mJ

m'J

m,m'.,E,E'

2,m,i,E

' C

2,mi,i ,E

v v

2.0.91 ,3

2',m',1,n

. v t v c

2,m,i,E,2 ,m,i ,1

The chemical space group of azurite is P21/c at room

:emperature.2" Theounit cell dimensions are: a0 = 5.00,

o: 5.35, co= 10.35;, (3: 92°20.

divided in two sets.

Occupy the special position

The copper ions may be

In the first set are the ions which

o'o'o;0'*’£.

 

2‘" G. Gattow und J- Zemann, Acta Cryst. g, 866 (1953) .
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The second. set occupy the general position

3”." 2.1.33 £+YO é": X, é’Ys *+'s

where 220.252, y: 0.1.95 and z : 0.085. There are also four

hydroxyl radicals in general position.

“PointW-

There are two possibilities to consider at l.6°K.

l. The smetry of the atomic positions

remains le/c.

2. Statement number 1. is false.

If atomic positions are altered so that the x-ray sym-

metry is no longer P21/c in a crystal with as complicated a

structure as asurite, it is almost certain that the symmetry

change would result in a triclinic crystal. If the x-ray

syn-etry is triclinic at 1.6°x, then one of the triclinic

Shubnikov space groups must represent the symmetry of the

magnetic cell. Then this group must correspond to one of

the triclinic Heesch point groups in Fig. 10. However, none

or the triclinic point groups of Fig. 10 have the observed

aRial point group syuetry shown in Fig. 8. Therefore, we

311311 seems in the future that the x-ray smetry of asurite

‘t l.6°K is le/c. There exist however, four other possibil-

ities. Before proceeding further these will be discussed.

1. If the x-ray symmetry at l.6°K is triclinic,

it would still be possible to observe the local

field pattern shown in Fig. 7., as the point

groups 12? and ll' in Fig. 10 permit the
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observed symmetry provided that vectors 1 and

2 and 5 and 6 of Fig. 7 are unrelated to each

other by any symmetry operation. This would

imply that the observed symmetry of orienta-

tion which for example seems to relate vectors

1, 2, 3 and b is accidental. This possibility

is unlikely especially in view of the fact that

the magnitudes of the vectors 1, 2, 3 and h are

the same.

2. Suppose the xrray symmetry at l.6°K is a mono-

clinic space group other than P21,Pc or P21/c.

Again, this would require a considerable re-

arrangement of ions and therefore lead almost

certainly to triclinic symmetry.

3. If the xpray symmetry at l.6°K belongs to some

system other than triclinic or monoclinic25,

then the Heesch point group might also be one

of higher symmetry than those in the monoclinic

system. An investigation of all of the point

. groups of these higher symmetry systems shows

none which predict the observed axial vector

symmetry.

4. In the event that the xpray symmetry is P21, or

. Po at l.6°K, none of the arguments to follow

need be altered. The only change would appear

 

25"1'he possibility, although unlikely, exists: see

L. D. Landau.and E. M. Lifshits, Statistical?hsics(Addison-

wesley Publishing Company, Inc., Massachusetts, p.k33.
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in the final conclusion. If, for example, the

xpray symmetry at l.6°K were P21, then instead

of the four Shubnikov groups found in Table 10

as representing the possible magnetic space

group symmetries, P321 could be immediately

selected as the only possible antiferromagnetic

symmetry group. That is, it would be the only

one of the four groups which would have the

correct xbray symmetry.

In view of the previous remarks, the point group in

the antiferromagnetic state must satisfy the following

'conditions:

1.

2.

The point group must transform an arbitrary

axial vector in the same way as is permitted

by the resonance pattern. (Fig. 8 for asurite).

The ordinary crystallographic point group ob-

tained by replacing_all antioperations of the

point group by their corresponding ordinary

operations must be either a proper or improper

subgroup of the ordinary crystallographic point

group of the crystal. For asurite, this is 2/h.

From Fig. ll it appears that the only point groups which

'

satisfy these requirements are 2./a, 2/5', 2/51', 21' and ml'.

Space-Group Egggirement ‘

If the crystalstructure.and resonance data (previously

described for asurite) are available, then one may proceed



M

to select as possible antiferremagnetic.space groups those

groups in Table 6 which satisfy the following requirements.

1.

2.

3.

h.

The operations of the Shubnikov space group

must leave unaltered the positions of the ions

as determined by the xsrey data. This implies

that if a symmetry operation of the Shubnikov

group transforms the ion position‘? into'§,"

then the chemical space group must contain a'

_corresponding symmetry operation which will

transform é into h. The converse ig,ng§ true

and therefore there may exist pairs of ions

whose positions are related by symmetry opera-

tions of the chemical space group but which

are not related by a symmetry operation of the

Shubnikov'group.

The Shubnikov space group must have as its

point-group one of the possible point groups

predicted by the data. For asurite, this is

one of the five point groups feund above.

The Shubnikov group must permit a magnetic unit

cell which contains the same number of protons

with different local magnetic fields as there

are resonance lines in the nuclear magnetic

resonance pattern. For asurite, this number

is eight.

A magnetic ion may not occupy an anticenter.

An anti-inversion moves an axial vector through
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the anticenter and then reverses its sense.

Hence, the magnetic moment of an ion located

at an anticenter is zero.

SE§¢69020§£.30;g¢t;Qnu

The left-hand column in Table 10 consists of all those

monoclinic groups in Table 6 which satisfy the previously

discussed requirement number 1. An asterisk to the right

of a group under one of the columns indicates that that

particular requirement number which heads the column.i§,ng§

satisfied by the group. In the last column at the right,

the corresponding point groups are listed.

Table 10. Space Group Selection

Shubnikov Requirement

Point Group

Space Group 2 3 h

'

Pazl/c * Z/hl'

Pzi/cf * * 2'/m

le/cf .. t Z/mf

PZi/c * * 2'/m

P21/c t t ' 2/m

0

08¢ ml.

1

Pbc ml

0

Pac ml,

Pc ‘ * =0: m'

Pc * S m

9

P821 21

' v
a aP21 2'

921 a: * 2
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Consider Fig. 17 page 53. Disregarding for the time

being the numbers in the circles, it may be seen from the

x-ray data that the circles represent the positions of the

copper ions in two chemical cells placed next to each other '

along the x direction where the x,y and s axes of Fig. 17

coincide with the a,b and c crystallographic axes in the

x-ray section. Let us now investigate the group Pazl/c in

Table 10. Fig. 12 is a diagram of the group where the

solid rectangle represents the outline of the projection of

the double chemical cell of Fig. 17 in the x,y plane. A

double chemical cell is needed for Pazl/c since the group

contains an antitranslation in the a direction.‘ The unit

cell of Pazl/c is therefore Just twice the volume of the

chemical cell. The unit cell of this group therefore con-

tains eight protons. However, as may be seen from the

Fig. 12. Diagram of Pazl/c.
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following they do not possess different local fields. Suppose

the components of the local magnetic field at one proton

located at (x,y,s) is Ex,fly,H‘. The anticenter at (£,£,£)

in the magnetic cell implies that the proton at (é-x,y,s)

will experience a local field the components of which are

‘§¥,§; and E, where the bar indicates a negative quantity.

The two protons as well as the local field vectors are trans-

lated to (x+ é,y,s) and (25,?) respectively by the antitrans-

lation in the a direction. The local field components at

these positions are then Evil-53: and £198,413. Thus only

two of these four protons experience different local magnetic

fields. A similar argument applied to the remaining four

protons leads to a similar conclusion, indicating thatthere

are in all only four proton positions at which there are

different local fields in the unit cell of 9321/6.

The group Pac, the diagram of which is shown in Fig. 13,

also contains an antitranslation in the a direction.* There-

fore, the magnetic unit cell of this group contains eight

protons. These may be divided into two sets of four each in

such a way as to make those in one set completely independent

of those in the other set as far as the operations of the

group Pac are concerned. Let the components of the local

field vector at the proton‘ position (x,y,z) in one set

*In the diagrams of the space groups Pac, Pa21, Pbc and

one to follow}_as well as thegroup Pazl/c, the a, b, and c

crystallographic axes coincide with the x,y and a cell axes

with one exception. In the diagram of the group P c, the c

axis is directd-£rom.cell coordinates; (0.04))» (3,0,1).
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Fig. 13. Diagram of Fee.

 

 

  

 

fe-
0+ '2' Oink

1: ! 0+

a 31’ if f

{ '1?

i- {L

f 1

~15." “1 1 0+

1
1. :1, 1

. '1

0+ ’ Oi+ 0+

be Hx,fiy and Hz and those of a proton in the other set at

(x. ,y',s') be Bx" Ii", and Hz! where the positions (x,y,s) and

(x',y’,s') are related by the operations of the space group

le/c but are unrelated by those of Pas. The existence of

eight different local fields is predicted by the group Opera-

tions as shown in Table 11 where c,n, and t8 represent a

glide reflection (reflection followed by a translation of

half the length of the magnetic cell in the c direction), a

diagonal glide reflection and a translation in the a direction

respectively.

Similar magnetic field transformation tables may be

constructed for the groups P821 and Pbc. Their diagrams

are shown in Figs. lb and 15.
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Table 11. Magnetic Field Transformations under

Pac

F c n7 t;

197.: 1.! - v.8 + i x + Liv - v.2 -1 i: 2H tam

3,, fix ax fix

By 3’ Hy "y

a, 3, Hz If,

x',y',s' x',é - y',s'+ is xf+ bi - y',2'+i x'+§,y',z'

ax. if; ax. Fix.

Hy} 3y! 4 Rye 5y;

“5’ Hz! H39 Hz!

Fig. la. Diagram of Pa21°
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Fig. 15. Diagram of Pbc
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For brevity, only the local fields at the proton posi-

tions belonging to one of the two sets of protons are shown

in Tables 12 and 13. The other set is obvious as in the case

of Pas.

Table 12. Magnetic Field Transformations under Pazl

'

i: 2 2 "
1 1 *3,

X.Y.z i-X.Y+£.i-z 1-X.Y+£.i-z X+imz

Hx ' Hx Hx Hx

H. E. *5 5
Hz Ha as as

Table 13. JMagnetic Field Transformations under Pbc

I t

E c p c tb

sz _ Li - 3m + i 1% - v.2 + i any + 1.2

”an Hx 3:

‘
4
:

t
r

f

f
i
J
I
-
‘
o
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x
t
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The antitranslation in both the a and b crystallographic

directions in the group cac leads to a unit magnetic cell

four times the volume of the chemical cell. The diagram is

shown in Fig. 16.

Fig. 16. Diagram of cac
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The sixteen protons in this magnetic cell may be

divided into two sets of eight each, again in such a way as

to make those in one set unrelated by the operations of

Cat to those in the other set. is above, only the local

.fields at the proton positions in one set are shown in

Table 1h.
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Table 1h. Magnetic Field Transformations under Gas

3 c _ c 11

am 21.14.2111 X.%-7.z+i an him“ 1

Ex i; Hx ax

“y E, “v f,

Hz Hz Hz Hz

1 o ' t t

n th ta tatb

3“ iek’yez12 X,Y+§,Z x+2eYez 1+ *eY‘f £93

Hx Hx x Hx

Hz 5, a; a,

Possible Magetic Structures-

Two possible magnetic structures with the syuetry of

the groups Pac and P821 are shown in Figs. 17 and 18 respec-

tively. Tables 15 and 16 accompany the figures. Magnetic

structures for the two remaining groups26 Pbc and age are.

illustrated in Tables 17 and 18. The first number in the

symbols in the left-hand column of each of the tables 15, 16,

17, and 18 designates one of the four magnetic moments which

belong to that particular family of ions which are all con-

nected by the group operations. The second number in the

same symbol indicates to which one of the three families

(1,2, or 3) the ion belongs. The copper ions in special

*

2!)..th structure a ested by W. Van der Lugt and N. J.

5°“11’ (P1373133 35.- 1313 1959)) is permitted by the group

ac.
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Table 15. Magnetic Structure: Pac symmetry

Numbers in symbol Ion position Magnetic Ion in

at copper ion (x,y,z) in Moment set

position magnetic cell Components - number“)

1,1 ' 0,0,0 “lictulyvulz l 1

1.1 1.0.0 Elx'fily'fils 1

2,1 0.1.1 uu'fily'“1s 1

2,1 1,4,; $111,111,512 1

1,2 .126, .005, .585 uzx,u2y,u2, 2

1,2 .626, .005 , . 585 321,523,523 2

2,2 .126,.l.95, .085 “2x'32y0‘122 2

2,2 .626, .195, .085 fizxenZye-fiZg 2

1.3 3711,1995..le u3x,u3y,u33 2

1,3 .8711, .995 , .415 33:53,.‘63, 2

2,3 .371, .505 , .915 u3x,‘113y,u3z 2:

2,3 .871. .505, .915 63x,u3y,ii3, 2

*) See section on x-ray data

Position (set number 1 in the right—hand column of the above

1‘our tables) are not connected by the operations of the group,

1'or which the particular table is constructed, to those in

Senoral position (set number 2).

If every copper ion which is linked to another copper

1011 through a common oxygen ion is coupled antiferromagneti-

ealily by a super-exchange mechanism to the other copper ion,

th. resulting magnetic structure forbids an anti-translation
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Table 16. .Magnetic Structure: 2,21 symmetry

Numbers in symbol Ion position Magnetic Ion in

at copper ion (x,y,s) in Moment set

position magnetic cell Components number

1,1 0,0,0 ulx,u1y.ui5 l

1,1 £,0,0 “lx'uly'a1s 1

2,1 0,},f “1x,aiy,“13 l

2,1 2.2.2 21:,u1y'fii‘ 1

1,2 .126,.005,.585 112:,”an8 2

1,2 .626,.005,.585 influx” 2

2,2 .371...505,.915 fizxmzyifiz. 2

2,2 .871», .505, .915 u2x,‘i2y,u2, 2

1.3 o37h.o995.ohl5 “3;,u31,u3, 2

'1',3 .871...995..1.15 631,3”,33, 2

2,3 .126,.z.95,.085 331,113,,33, 2

2,3 .626, .195 , .085 u3x,33y,u3z 2

in the b direction. In such a case, the groups Pac and

P82 are the only possibilities.

1 It should be noted that except for the fact that they

are not zero no use has been made in the above analysis of

the magnitudes of the local field vectors listed in Table 8.

In principle it may be possible to obtain a complete des-

cription of the magnetic structure by combining the known

local fields in the antiferromagnetic state with the posi-

tions of the protons obtained from proton resonance in the
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Table 17. Magnetic Structure: Pbc symetry

Numbers in symbol Ion position Magnetic Ion in

at copper ion (x,y,s) in Moment set

position magnetic cell Components umber

1,1 0,0,0 uh,u1y,u1, 1

1,1 0,1,0 . enamel, 1

2:1 0.1.2 313.“).y0-‘ilz 1

2,1 0,137fi ullenun 1

1,2 .252, .0025, .585 unwary, 2

1,2 .252,.5025,.585 321,122,332, 2

2,2 .252,.2A75,.085 91.9,,32, 2

2,2 .252,.7t.75,.085 1121,32,,112, 2

1.3 .7118, .2525, .915 u3x,u3y,u3z 2

1.3 .7618, .7525, .915 Era-3,0332 2

2.3 .7118, .4975 , .1115 u3x,23y,u3, 2

2,3 .7w,.9975,.z.15 33x,u3,.'63, 2

paramagnetic phase and the known crystal structure. However,

the work of Poulis at al. on Cucn.2 . 21120 has clearly indicated

that this program is extremely difficult if not impossible.
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Section III

Twinning by.Merohedry and ReticularlMerohedry

Inggggugtiggr

1 .Two identical crystals (or individuals) are said to be

in twin relation to each other if they are joined together in

some way such that the pair possesses an element of macro-

scopic symmetry which is not a symmetry element of either

individual. This element of’macrescopic symmetry is the same

as that dealt with in crystal morphology. A plane of symp

metry which relates two twinned individuals to each other

(twin plane) must be parallel to a lattice plane in both

individuals. A twin axis must be parallel to a lattice row

common to both individuals.

‘With rare exceptions, all known twins can be described

in one of four ways (known as Friedel's rules of twinning.)27

1. The individuals of the twin are related by a

twin symmetry element which is an element of

symmetry of the lattice of each individual but

which is not a symmetry element of the crystal

(i.e., either individual). This type of twin-

ning is called twinning by merohedryi'i

 

,. 27°See1the review'by R. U. Cahn,,idvances in Phys. 3,

* The term merohedry, of Greek origin, implies that

each individual of the twin has fewer faces than it would

have if it had the full symmetry of its lattice.
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2. The individuals of the twin are related by a

twin symmetry element which is an element of

symmetry of what is called a coincidence lattice

but which is not a symmetry element of the

crystal. The coincidence lattice extends from

one individual to the other without modifica-

tion but consists of only some of the lattice

points of each. This type of twinning is called

twinning by reticular (or lattice).morohodry.

3. The individuals of the. twin are related by a

twin symmetry element which is g1g3g5;a cym-

notry element of the lattice (i.e., a pseudo-

symmotry element of the lattice). This method

of twinning is therefore Just an extension of

the first method and is called twinning by

pseudo-norohedry.

L. The individuals of the twin are related by a

twin symmetry element which is giggg§,an ole-

mont of symmetry of a coincidence lattice.

This extension of the second method is «11.4

twinning by pseudo-reticular norohedry.

The formalism of the Hoosch groups has only recently

been employed by Curien and Le Corre28 to describe all of

the possible norohedry and reticular norohedry twin relations

in crystals the symmetry of which is completely described by '

 

 

28. H. Curien, and 1. Le Corre, op. cit.
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the position of the ions. These relations are called twin

groups. '

Although twinning in the antiferronagnotic crystal liO

has been observedf, so far as is known to the author no one

has yet described the possible.merehedry and reticular*mere- I

:hedry twin relations in antiferremagnetic crystals. These

twin groups are constructed and listed in this section. A

total of 177 nerehodry twin groups are described; of these,

35 are the sane as the 35 lerehodry twin groups found by

Curicn and Le Cerrc while the remaining 1&2 groups are new;

In addition, 51 reticular nerehodry twin groups are listed;

of these, ll are the same as the ll reticular nerehodry twin

groups found by Ourien and Le Corre while the remaining 1.0

groups are new;

mum

a. Ordinary Lattices

If the symmetry of a crystal is lower than the symmetry

of its lattice, twinning by nerehodry is possible. This is

because there are then various possible orientations of the

atoms of the crystal relative to its lattice. A possible

twin operation is an operation which relates one of the pos-

sible orientations of the atone to another. These operations

are.the point group symmetry operations of the lattice which

are not contained in the point group of the crystal. But

fDiscussed_at the end of this section



62

what are the point group symnetry operations of the lattice?

In ordinary crystallography, these operations conprise the

highest point group symmetry possible for the particular

sy-etry system to which the lattice belongs (This is called

the helohedral point group.) . For exanple, for the mono—

clinic lattices, the holohedral point group is 2/n. For our

purposes, it is helpful to think of the holohedrnl point

group as resulting fren the fact that the sy-etry of the

noneclinic lattices permit the simultaneous existence of a

two-fold axis (or two-fold screw axis) and a plane (or glide

plane). Those two operations also imply a center of sym-

metry and hence the group 2/n contains 1. elements. Consider

now a crystal which has point sy-etry 2. According to tb

above, it is therefore possible fron the standpoint of sym-

metry for the crystal to twin by norohedry by either a twin

plane or an inversion center (it will later be shown that

these two are equivalent in this case). Ourien and Le Corre

express this fact by using the Heesch group 2/n'. which they

call a twin group. The twin group therefore expresses the

point sy-etry of the crystal (2) and also identifies the

equivalent twin operations (n'. and i'.) threughthe use of a

prime (see Thble 9). In the next two paragraphs the notation

in Section II for the Hoesch groups will be used to express

twin groups. However, a prine will only denote a colored

operation which nay or may not be a twin operation. A twin

operation will be those operations not contained in the point

group of the crystal but which.are included in the 'helehedral'
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point group. In all work which follows the next two para-

graphs, an asterisk will be.used—to.explicitly indicate twin

operationsvand the twin group notation will be changed. For

example, Curios and Le Gerre's.twin.group.2Amf above will be

denoted by 2:19;. ‘ ' ‘

Suppose that the point group of a crystal under considera-

tion is 2’. The lattice of this crystal is the same as the

previous crystal, i.e., an ordinary uncolored lattice. How»

ever, as the list of Shubnikov groups show; the uncolored

lattices of the monoclinic system permit the simultaneous

existence of combinations of colored axes with colored and

uncolored symnetry planes which result in two 'helohedral'

point groups as far as the crystal with point group 2) is‘

concerned. These are 2'/n and zffim'. These two groups imply

two possible twin groups and therefore two possible distinct

twins. The equivalent twin operations implied by the first

group (2f/h) are an uncolored mirror plane and a colored in-

version centcr, while those implied by the second group are

a colored mirror plane and an uneolorcd center.

Let us return to the example where the crystal has point

symmetry 2. If the crystal is a type for which its symmetry

is completely expressed by the position of its ions, then the

only twin group which exists is that found by Curien and

Le Corre, discussed above. If the crystal possesses some

other characteristic (such as magnetic moments) so that it

belongs to a general category of crystals (such as antiforro-

magnetic crystals) the symnetry of which can be described by'
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the Shubnikov group theory, then there exists the possibility

of colored twin operations even though the point group of the

crystal is uncolored. Proceeding then, in the same way as

in the case of point symmetry 27(where the possibility of:

colored twin operations must obviously be considered) leads

to another “holohcdral“ point group Z/hf. This twin group

implies that the crystal can twin by a colored plane or

equivalently by a colored inversion center.

It is therefore evident that the point symmetry of the

lattice must be modified as described above in extending the

idea of twinning to types of crystals subject to the Shubnikov

theory whose space groups are based on ordinary lattices.

b. Egg-M Lattiggs

For twinning in blackuwhite lattices there is always

only one holohcdral point group. This group is Just the

gray Hecsch group which may be constructed from the ordinary

(or uncolored) holohcdral Hccsch group by introducing the

element 3’. For example, 2/m-r2/ml'.

mission 9.: 1mm5mm

When twinning by reticular norohedry takes place, the

lattices of the two members of a twin are not parallel in

orientation. There exists, however, what is called a coinci-

dence lattice which consists of some of the lattice points of

both individuals and continues from one individual to the

other without modification. The remarks made above concern-

ing the 'helohedral'.point groups of uncolored (or ordinary)

lattices and the holohcdral point group of blachdwhite
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lattices are also true for uncolored and black-white coinci-

dence lattices.

a. Ordigggz Latticoeeg_i coincidence lattice may be

defined for rhembohedral and cubic crystals. This coincidence

lattice consists of some of the lattice points of the rhombo-

hedral lattice for a rhembchcdral crystal and some of the

lattice points of the cubic lattice for a cubic crystal. For

rhembehodral crystals, the coincidence lattice is only those

points of the rhombohedral lattice which generate those

lattice points described by the symmetry of a hexagonal

prism. The hexagonal prism and the rhombohedral lattice R

is shown on page 20 in the 'Thc.International Thbles for

IéRay Crystallography" and redrawn for convenience in Fig. 19.

Fig. 19. Hexagonal Prism and Rhombohedral Lattice R.
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The hexagonal prism is Just a multiple of the C lattice of

the hexagonal system in Pig. 5. Hence, possible reticular

nerehodry twin operations for rhombohedral crystals will be

point group operations contained in the hexagonal system

which are not symmetry operations of the rhombohedral crystal.

For cubic crystals, the coincidence lattice consists of

only those points of the cubic lattice which generate the

lattice points described by the symmetry of a hexagonal

prism. This hexagonal prism is the same as the one generated

for rhombohedral crystals and arises in exactly the same

way, i.e., from a rhombohedral lattice. The origin of the

rhombohedral lattice in cubic crystals is clear when it is

remembered that cubic lattices are Just special cases of

rhombohedral lattices. As an example, consider the face-

centored cubic P lattice. It may also be described by a

rhombohedral primitive coll shown in Pig. 20.

Fig. 20. The Rhombohcdral Primitive Coll of the

the Face-Centered Cubic I Lattice
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The operations available for possible twinning by roti-

cular norohedry in cubic crystals are therefore those opera-

tions of the hexagonal system which are not symmetry opera-

tions of the cubic crystal.

Sineorthere are four space diagonals of a cube, the

rhombohedral primitive cell can be oriented in four ways.

This implies.four possible orientations ofthe hexagonal.

lattice witherespect to the cube. Then a.posaible reticular

norohedry-twin operation.can be.orionted in four possible

directions.- The sithold rotation.axis.for example can.

have the direction.of any one of the four space diagonals of

the cube. .

b. Blackéihite Lattices. If the rhombohedral lattice

in Fig. 19 ia.body centered with a black lattice point, it .

becomes the black-white.rhombohedral lattice RI in Pig. 5.

The hexagonal prism then has a colored translation in the

c direction and is Just a multiple of the Cc lattice of the

hexagonal system in Fig. 5. This implies that the coincidence

lattice for rhombohedral crystals with lattice RI consists

of those points of the rhombohedral lattice RI which gene-

rate the lattice points of a hexagonal prisn.with a colored

translation in the c direction. The possible operations of

reticular norohedry twinning for crystals with lattice RI

are then those point group operations compatible with the

symmetry of the black-white hexagon which are not point

symmetry operations of the rhombohedral crystal. The holo-

hcdral point group of the black-white hexagon is 6/mmlf.
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As mentioned above, the lattice P of the cubic system

is a special case of the lattice R of the rhombohedral system.

Similarly, the lattice PI of the cubic system is a special

case of the lattice RI. 'The only other black-white lattice

in the cubic system, I", is also a special case of RI. This

is shown in Fig. 21.

Fig. 21. The Rhombohedral Primitive Cell RI of the

race-Centered Cubic Lattice P.

“
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For cubic crystals with black-white lattices, the coin-

cidence lattice is therefore the same as the coincidence

lattice for rhombohedral crystals with lattice RI. The

possible reticular norohedry twin operations are therefore

these point group operations compatible with the. symetry of

the blacks-white hexagon which are not point sy-etry operations

of the cubic crystal.
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gm.unflotation. ‘

Let a twin operation be denoted by qf. This operation

may be thought of in the following way. The operation q .is

(the operation which transforms one individual of the twin

at position #1. to the other individual at position #2. The *

then colors the individual at position #2 black while the

other individual is left uncolored. If t is this coloring

operation we may invite qf: tq. If the coloring takes place

before the operation q, the result is still the same, i.e.,

q*-_-. qt, or t comutes with q. Since there are only two

colors, t2: 3. Thus t has the same mathematical properties

as the reversal operator (see Section II).

A twin group gt is defined as a set of elements of the

‘ general type (9109:} satisfying the group properties with

the following structure: the set { p1} is a subgroup of index

two of 3t and ipflEH where H is the Heesch group of each of

the two individuals of the twin. Since I! is an invariant

subgroup of ‘t' the group g‘ may be written as

5t: 11,qu or

3t: (11,3;B

where for example, the elements in the left coset q'fB are

q*p,qu2, ... , and where q*p1§ (1;. A group of the type gt

is therefore constructed from H and one element q not in 1!.

Since all of the p1 belong to 3, all the twin elements q:

in 3t are equivalent. That is, they all imply two individuals

of a twin related to each other in exactly the same my.

Therefore, the group ‘t so defined expresses the symmetry
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of each of- the twoindividuals. of.thc.twin .and- enumerates a

possible twin operation as well as. all possible twin opera:-

tions equivalent to this twin Operation. In order to make

the notation as explicit as possible, the group gt will be

written in the general form ngf'

 

. Except for a slight modification for cubic crystals

which will be discussed later, the .notationncmployed for

twinning by reticular norohedry is the same as that used

for twinning by norohedry.

Con of m

The problem of finding all of the possible norohedry

and reticular norohedry twin groups may be broken into two

parts:

1. The construction of the set of point groups

{gp} from which a set of point groups { gt}

may be selected where the set { ‘t) are those

groups which describe all of the possible

point symmetry twin relations.

2. The selection of the set { gJ .

l. The Shubnikov space groups which are not gray may

be divided into three general types: 81,82, and 33. To

describe these, lot 1'1 represent a pure translation operation

of the symmetry. Lot 11 represent any one of the other

operations of the space group synotry.
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The three general types may then be written symbolically

in terms of the types of operations they contain:

81:: A1,T1

32 = A1,A3 ,1'1

33: A1,A3,T1,T3

where the identity I may be thought of as one of the opera-

tions of the set {A1} .

The point group operation a1 corresponding to A1 may be

found by replacing the translational part, if any, of A1,.

with the identity 8. The point group operations correspond-

ing to A331 and T3 are then a3,3, and If respectively.

Consider now the Hoosch point groups corresponding to

groups of type 81. These groups are the well known 32 point

groups any one of which may be written as in“ . Therefore,

any point group belonging to the sot { gp‘g which could des-

cribe a twin in a crystal with space group type 81 can con-

tain only two kinds of operations: a1 and a; where a; is

a possible operation which carries one individual of a twin

edifice into another. This group type may be written as

{ are?) . Groups of this type are isomorphic to the 58

black-white ficesch point groups. Groups of the type {‘i";}

are not considered as possible twin groups since they contain

the operation 3". Those are isomorphic to the 32 gray acesch

groups.

A Heesch group corresponding to a group of type 82 con-

tains only operations of the type a1 and a3 and may be written

symbolically as {eras} . Therefore any point group in the
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set {gp} which could describe a twin in a crystal with space

group type 32 can have only operations of the type: a1,a3,a:

and a'f'. There are two general kinds of these groups: one

contains a subgroup of index two of the type {a1} with the

rest of the operators of the type or. A group of this kind

may be written as {a1,a3"_‘} . There are 58 of these since

they are isomorphic to the 58 black-white Heesch. groups. The

second kind of group is that which has as a subgroup of in-

dex two one of the black-white Hoesch groups. This kind con-

tains all for. possible types of operations and may be written

as {a1,a3,a:,a;f . There are 111 such groups. These groups

are constructed in the following way. Start with the Hoeeeh.

group {sung} . Find all Heesch groups for which ferns)“

a subgroup. of order two. In those groups place an asterisk

over those elements which are not contained in the original

Heesch group brag} .

Finally, consider those Heesch groups corresponding to

groups of type 83. Any one of these may be written “(31";,(°

Therefore, any point group in the set fgphhich could. describe

a twin in a crystal with space group type 33 can contain only

operations of type a1,a;,a; and a3; that is, groups. which

contain 3' but not 8*. The following argument shows that

the only possible groups,“ this type may be written as

'*

J
81.8;,a3,a
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1. According to the above, every conceivable group

must contain operations of the type a1 and a;. Suppose those

of type a; are also in the group. Then Bfa3:a3*. Since no

other types of operations satisfy the group requirements, the

operations aéf above may be written as the special type a3*.

2. Suppose we start with only the operations a1,a; and

a3‘. Then E'aa3‘: a; and again no other operations satisfy

the group requirements.

The groups of type {a1,a1,a;,a3*} may be constructed

by introducing the element I. into the group {a1,a: I. There

are therefore Just 58 of the groups {avaLagJB’f‘ .

The following table summarises the above’.

Shubnikov Space Corresponding Hoesch Group Types

Group Type Point Group Type in the Set {gp}

31 ‘1'? (‘1)32 58 {‘1"J)58

S2 A1A3,T1{a1,aé} {a1,a3*}“:{a1,a3,a;,a‘‘m

'fSB A1,A3,Ti,T3 {a1,a1}32 {a1,aJ.a1,a3m}

Specific and general examples of the multiplication

tables for those groups in the right-hand column above, are

shown on pg. 7b.

From the above, the set {gp} contains 285 groups. The

original 90 non-gray Hoesch groups are listed in Table 19 at

 

?) }“ denotes I groups of type {'}.

'T'Included in S3.is the group P.1, even though it con-

tains no elements Ad.
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the end of Section III along with the group types {“1083} ,

{avaS'Uand {a1,a3,a:,a'*} derived from them.

In Table 20, the groups of type {a1,a3,a;,a3f}are

listed.

The notation used in writing the symbols for groups in

the set {gp} (except for those in Table 21.) is the following:

the Hecsch subgroup B of index two is written followed by a

sou-sash after which is written a symbol a? or In"? which

represents respectively either an uncolored or colored twin

operation contained in the twin group.

2. The first stop in the selection of the set of pos-

sible twin groups {gt} from the. set {gpg may be accomplished

by choosing for each Heesch group all those groups in { ‘13)

for which that Heesch group is a subgroup of order two. This

listing is shown in Table 21.

The norohedry twin groups corresponding to each Heesch

group may be found from the above listing. They are those

groups to the right of the fleeach group which belong to the

same synetry system as that particular Hccsch group. The —

norohedry twin groups are listed in Table 22.

There are two kinds of norohedry twin groups for crystals

with Hecsch groups of the type {a1} . One kind has the form

Half where H is the uncolored Heesch group { a1} which repre-

sents the point syuetry of any individual of the twin edi-

fice. These twin groups are the same as found by Curien and

Le Corre. The other kind has the form 11:14" where every twin

operation is a. colored operation. ( . '
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The norohedry twin groups for crystals with Heesch

groups of the type (91033} are of only one kind but have

symbols of the torn and} and am"? where a is the black-

white Heesch groupjavaS} . ' The form Hm)"I has been used

rarely and only for the purpose of sledding identical sym-

bols for two different groups.

The: norohedry twin groups for crystals with Reesch

groups of..the type (“1"?) arise from twinning possibilities

in black-white lattices. These twin groups have symbols of

the form 8:14",I where B is the gray Heesch group {span .

It is interesting to note that in this case for every possible

twin operation If its colored companion 11'} also exists in

the twin group.

The reticular norohedry twin groups for rhombohedral

crystals are listed in Table 23 . The classification of these

groups by the type of their Hecsch subgroups of index two is

the same as above for norohedry twin groups . For example,

those groups of the form 8;)? where H is an uncolored Hoesch

group are the same as found by Curien and Le Corre.

The possible reticular norohedry twin groups for cubic

crystals are the same as those fororhombohedral crystals.

Following Curien and Le Corre, the cubic case is distin-

guished from the rhombohedral case by writing in front of

the rhombohedral twin group that cubic group which contains

the rhombohedral Heesch group as a proper subgroup. These

groups are listed in Table 21..
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M-&WM

The only antiferronegnetic twins which seem to have

been studied to date are those investigated by Roth29 and

Black” in 1110. This crystal is cubic above the heel tempera-

ture of 523°K. Below this temperature the cube contracts

slightly along one of its four-body diagonals. . The syn-try

ofthe imsthenbecaleerhonbehedralwitharhonhohedml

angle ”90°13 for. a multiple rhombohedral. cell. containing

Asia. The nagnetic moments associated within Ii. ions for.

ferromagnetic sheets which are perpendicular. to the contrac-

tion axis. If the contraction axis is [111]. the sheets are.

parallel to (111). he spin, direction is then. [ll-0] and the

spins in adjacent sheets have opposite senses. This cell is

shovel in Big. 22 (Fig. l in Roth's paper) where the open

circles represent oxygen atoms.

Fig. 22. Antiferronagnetic Structure of 310

[00!]

 
 

k

y C I ‘0‘“

/[:ool
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the '2 domain mnlls'I which are the observed twin planes

for the antiferronagnetic twins are restricted by the con-

ditions given on page 2002 in Roth's paper:

a. “The ferromagnetic sheets in adjoining domains

intersect along a cannon magnetization direc--

tion and

b. the domain wall contains this direction and is

parallel to a mirror plane in the original

cubic crystal.‘

Two examples are shown in Fig. 23 (Fig. 5 in Roth's paper)

fig. 23. T walls in 310
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In an attempt to apply the twin theory developed in this

section to these Rio twins, three general possibilities must

be investigated:

1. Twinning by.merohedry
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2 . Twinning by reticular merohedry

3. Twinning by some other. method

1- maxim The point croup syn-om of

each member of the twin (in this case each domain such as

that shown in fig. 22) must first be found. This can be

done in this case since the magnetic structure is known.

The space syuetry of the ions is rhombohedral, however,_ the

magnetic moments do not have the three-fold synetry required

by the rhombohedral cell. This implies a triclinic Shubnikev

group symetry. Therefore, the Heesch point group symetry

is also triclinic. Since no triclinic lattice contains a

symmetry plane, the twin planes in Rio are not merohedry

twin planes.

2- minis: 321 lotions:W m. possibility

is also ruled out since this type of twinning does not take

place in triclinic crystals.

3. Twinning EZ§2£2mm The twinning in 1110

can be described by twinning by pseudo-merohedry. Possible

pseudo-merohedry twin planes are planes which are parallel

to planes which are 1134s; planes of symmetry of the lattice.

The planes which are almost planes of symmetry of the anti-

ferromagnetic lattice of Rio are the planes of symmetry of

the cubic lattice I". This lattice contains anti-translations

along all three edges. ’11 the rhombohedral distortion is

neglected, there are only tie; planes compatible with the

lattice P. which are planes of symmetry of Fig. 22 and which

also satisfy the requirements a and b above. One of these
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is an antimirror plane parallel to (001) and the other is

an antiglide plane parallel to (110). These planes are Just

those domain walls shown in Fig. 23.f I

If the magnetic axis is changed to any one of the other

observed directions shown in Table 1,-pogo- 2092, of Roth's

paper, there again.exist Just two planes similar to the two

found above which may be chosen from I. and which satisfy

conditions a and b above. These planes are the domain walls

listed in Table I under that particular direction of the

magnetic axis.

L

*The point group equivalent of the glide plane will

also produce the observed twin.



Group

Table 19.

Group Types {a1, a3},

.
‘

U
‘

O
.

U
.

C
U

.
.

Q
.

C
C

O
.

N
M
M
M
M
M
N
M
M
M
N
H
W
M
M
H
M
N
N
N
M

Elements

81

The 90 nonsgray Hessch Groups

and the, erived , n it
{git aJ.} andfai, a3, ak, a1 }

The symbol definitions given

below are the same as those in

reference 10

L2, L3, L51, L4, Lzl, L6, L31

are rotations by 180, 120, ~120,

90, -90, 60 and -60 degrees res-

pectively. s3, 351, 34' szl, 36,

831 are respectively rotations by

120, -120, 90, ~90, 60 and -60

degrees together with reflection.

in a plane at right angles to the

axis of rotation. The inversion

is 0 and P the reflection plane.

The subscripts x, y, 2, xy, 3,

indicate the direction
i

of the axis of rotation; the same

on L1 and S

subscripts on P indicate the

direction of the normal to the

plane of reflection.

The subscript.Lorllindicates

that the axis of rotation through

180° or the reflection plane is

perpendicular or parallel to the

main crystal axis of three-fold or

higher symmetry.
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Table 20‘!I Groups or Type {air a3, a;, a3*}

Group Elements

1 t a:
1 :6 E, c , 8r. '

v I! at

1 3L2: 3' I‘Zz' 8“ '

' at a: '
l :P E, P , 8r. '

Y y »

21';P"' E, 1.2 P’, 0*, 8:. v

.‘ z " I . -
mlzzy E, Py, Lzy,cv,&.'

- v at a: all
11_;1.2y E, c, 1.2,, Py, as"

0 It at s '

21.3 x 3' L29 1'va LZy! 8? '

21'-P* E P“ P" a v
.9 x 9 L23. *x’ I, . ‘

c. a: .
I]... 2: B, Py' L23' Px, 8c ' .

‘sl: It at at
22212151 E, 1'2:- L2,, 1.2,, P‘, Py, P,, c , a. c

at an: s t
‘1';sz Es L23: sz Pys L219 L2yo PLV 0 8° '

v » s an:
2/n1 n.3,: E, L2,, P,” c, Lgx, 1.33,, PX, Py, a; '

an: '- It

21.11;: E' 1’23' thv L 1,9 35 ' .

v 'at - at s at
41;sz 3: L1,”. LA}: L239 1'sz L2,, Lazy. LZfi! & '

v * - 1*

2221 :1.“ 3. L2,. L2,. L2” LT... L H. L2”. 1.3—. as '
0 s - a: ‘ .. a:

1.1 331.2 E, L“, 1.1.}, 1.2,, Pa, 333, sky, c , e .

‘ 1 all ' a: .. .. at '
2/nl :1.“ E, 1.2,, P2, 0, 1.“, 1.1%“, 3Z3, 31.; , as '

"' v as - at _ * at
41 3101‘: E, L22, 81." Ski, 1.1.2, Lhi." P3. 0 ’ & '

c s .. at an: * at41 31’): n, L“, 1.4;, 1.23, P1, Py, ny, P-i-i, 8c '

'. * ‘ at .. a: it at ‘ ‘
Ill 6L1}: E, 10221 PX. Py, Ll“, Lag , ny. P-xy-y 8r. '

  

n eae , te enentsinMarenot

written explicitly for each group. Instead, only half the

elenents in each group are explicitly written. the retaining

half are collectively indicated by the symbols as '. T0111“
these elenents explicitly, write the slenentcto thvleft Of
a; and then prise each of then. For supple the four elements

of the first group (1':C*) ,are'E, 0* E , c”.



2221 :31“,

t *

ml 331.3

31:13;

31.31,"

31'ssz,

azlfgsg,

9. *

2‘1 P363

31.38;a

~ 2 *

61 31‘21.

3-1';,3;

31'»;

' t

61 iLzl

321 3L2:

£91311 1'5}: 31419 8380 33%.; 3P“,

99

E, 1.1.3.1-3‘. L21; L2,: 112;: szyo L259?:9 Pyo

P:, Pf“, PL,S:,,3;1'+, (:1, a; P .

s s as

no LWL1:39 1‘23: P8: 81,39 3;;s C, L23: L2,: L2”.

1 * t

Px, Py, PH, PL, a P

P

a:

L25,

L-l

3’ Lks'Lhs' 228' 3" Pr ny' P17: 173‘, 1;"

* - *

L2”, 1.2;, 11:, 87;, 3“ , Cf, & '

-l* :3:

BP I’ZxPHLZyP1.29:1," PyP I", C, 1'th Lbs P 1'2”:

123:? 1’ . PLP 3;... 3351‘ '
-1 Pk

E; 128' L2”! L252!)19 Pys 31,30 31,5, LhzsL

Lax,1.2’,P*P;yP;y, claw

-*

E, 1.2,, 3:1,, 31.11:: a: P

* t t

E, s“, 3;” 1.2,, 1%,, L25, Px, Py, 8:. P

3P 12:» I'nyP 1'23, 3:2. 3;}:9 P; P; 8‘ '

3P I‘2stxP pyP 3:” 33?: Lnyo LEE,-

3,13,, :1, 31%,, as P

8 1'3s- 2' 3111'. P'

P. 19...}. 82.. 83?. 0*. as '

E, L3,, ', 31.2]! Says331* 3121’6 a; o

3' L3:" 1'3!” 33! P Says-1*P*3L21,0*, ‘1‘ '

B La» 1.5:, 86.. 831 c31%;“. 31;, P '

If”

I»: P

3' I‘3s' s’ S;:‘ 8'32", PI.¢'&'

3" *‘

E. L3,. 1.5,.83,. 31:. P,. 31.21. 3P.‘.". PH

33%", 3L2.I.P P3, 11" '

P,,&.'

-1

E! 1‘33, L3,! 3P" O 838'

P L3,. ‘1. guns-1*4.: P'

Be 1'63: 1:11 13.3.1329 LZS' 6L2." 8:. '

.1 s -l* a: at

3' 13v L3,. 312.1! L6,. 1'62‘P 1‘2;- 31'2» 1‘ '
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- - *

P. 5.» Pat: 33:.» 33;, P.» 1%.. L39: L2,, 32..
3311‘, c"_‘, 8'. P

- ' - - t -1*

Be 1‘3" 13:: L2,: L63: Léio 33p 36;}! 33;: 333 a

1’1- 6‘3 as P
.1 - __

Es L3‘o 9339 36,9 36:: C, L230 L 1*: L33: sggs

- *

433% , P:, 8: P

8, L33: .;1 1L6“: 16:”. L23: 6Pu*_o 3‘ '

3- 13v Psi. 3P..- L3... 16?. 132.. 3P3“. as P

3' L3I' LigP 3L21' 33;: 35;, 33.. Pan L32: La:*,

L3v 3L;lP 32‘: 33:*P 33f: O*P &.' .

EP L3sP LiaP L63' Lat. L23, 36;: 33;. S3,, 35%.

P”, c, 61.3,, 6P,’,", a; P

2. Lung-1.31.26 s... 83:. n... c. L2,. Lara
1%.. 31-2.. 33;, 35?. 311?. Pi- PP

EP LBsP LitP L6zP LE:P L23. 6L21P 332. 3g;*, 3;,:
.13 t It III

533.3 6P”: Pg: 0.9 & '

-13:-l - t s

E; L33P LBsP L63; LfiiP LZsP 6fil' 6L21P SésP 36: P

_ ‘

33v 33?? P2P ‘1 P ‘1‘ '

a, 31-2. 1.1.3. 1.1.51. usz, usg1“. 3P“. 0*. as P

s, 31.2. 1.1.3. 1.1.51, 6P") 38:, 33;”, a; P

E, 31.2, 1.1.3, 4.1.51, 31.x, 31;”, 61;, a P

1:, 31.2. 1.1.3. LL51, 3L“. 31.31, 61.2, 38:, 33;;1“,

1.3;, we”. 6P",‘. 3P“. 07‘. as P

E, 31.2, 1,1,3, 1.1.5.1, 331w 33,21, 6P, 3LZ,. 31.;1‘1',

61;. 1.3;, 1.3;“, 3P"_‘. 0". a: P

a, 31.2. 1.13. #151. #86. #831. 3P. 0: 312- 3121‘

61;, 33:, 33;“, 6P"; a. P
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Table 21. The Groups of the Set{g§}listed

according to their Heesch Subgroup of Order Two

Heesch

Group

Triclinic

Monoclinic

2

Groups in{gp}uhich contain the Heesch Group

as a subgroup of Order Two

1;c"' 1:69" 1:13, 13.5: 1;P; 19;?

ifgcf 11; *, 11;P;
_ * .. e.

if”! 1332’.
l ; y 1‘;Py

., ,

ll 3L2,

'* i t

29; 2gp, 2:1.2x 2:14; 29; 2;P;* 2:1.“

0* , s '*
Z’Lk‘ 2,3“: 2,8h'

2'; "' 2';c* 2';ng 2';P;*

21';p; 2113Lgx 21'3P; 21.31.:3 21';8:,

nng’ ngLé; ”L;a nzLé:

{a}; “he“ (a; I'3P

.113Lgy ‘1'3ng

2/n;L;x 2/-;L§; 2/nsz. Z/nzLL';

Zf/P:L;z

2/i'3sz 2/h13LZz 2/3'33:s Z/h';P;

27";ng

261131.33c 2/-17=LZ.

*

Y
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Orthorholbic

222 222;P; 222;P;f 22231:; 2223LL; 222gsz,

‘ 222:3L;

2'2'2 2'2'23P; 21212;P: zfzfszz‘ 2'2'2;sz,

2'21zgsz:

2221' 22211gP; 2221';LZi 2221';3Z,

.- ...ng an; ngLZ, ..ng: mags}; nag;

n'nf 1'1“;ng Ifnsz: n'n'flt, {11.33221'3'1.ng

{11131.};

In. “21;. “0:01:

unl' nml' .L;, .mi' :Lz, unl';sZ,

III III3LZ‘ *nnnzLi:

Ilia..." n_n3.31.2.

ammf ‘fln'3Lzs "'1;SZz

n'n'n l'n'mngs

Tetragonsl

1. 6:13,, 4:14,; MP: MP? MP; MP”

4' #1:L;x asz: h':sZ, h'BP;

In" 411qu 1.11:8; HEP;

42 hzzP; 1.29;:

«2' 1.27:1": 1.251»;

a'z ufng; A'Z;Sts

#21. #21';P;

u/n. ulna-Z; Mug;

h/nf h/n'agx IMP-3?;



13/-

13/."

u/i11

I
P
I
P
P
I

G
‘

.

E
'
E
J
E
J
E
'
E
'
P
E

.103

.- _'*_*-

u;LZ, u:L,, usP, a:P;f
.... * ..

13:1.“ PUP, Pug” A'sP;

:1'11'23 :1.qu

22:92; 1.22:ng

"’ I *

1'2“ 31%:

“12‘1“"; *

a'z-ngz #2.th

.. , *

1.2.1 a,“



Rhonbohedral

3

31

32

32

321

" 9

I

Hexagonal

61

6I2 31:12ng:

10h

331-3; mil 3:??? 3:11?“ 3:32. 333%:

azsg, 3:35: 331;; 33L3:

31131; 311:??? 3133;, 31533, 3131.3,

32;sg, 32;sg; 32:8;, 32:85: 32;LZ, 32;Lg:

32:;11: 32383, 3258;, 32':ng 3251-2,

32 ;L i ‘

321132;, 321133;; 321'3133

3mzsz, amzsg: 3m:8§. 3-385: 3msz, 3-PL6:

3n:;L;J. 3n';szz 3-f:3;, 3-1385: 3-':L2.

33,:3?

331133;: 3M1';s;s 3'111in

3:37 3:137.” 331-3. 5316:

3'1ng: 3";11’.“ 5';3;, 551.3,

51'3L21 Si'PLZs

3-33. 3-1133:

5""s;z 35'“;

313:8; 3532,

31-31:; 3.3.313;

5P1'3L62

.. - - t

6:13; 6:141 631-6.

6'3??? 631-21 5'3ng 6.3362

61'3L21. 31'313.

6.2;ng



 

 



311'2'

3‘22'

"'0 O

612

621

105

2".231’22

"t t a:

6"? “'2
6! 2;L68

34231-31

35233;:

3.11.2: 8;,

2;“2151‘22 ‘

6:L;2. 6=L£I 6:82. 6:22: 6:83: 6:3?

6.31;; 693;: 6382: 6'33?

61.31.;l 6138;, 61.9:

623822 62:83:

62';P.’:‘ 62.282,

6f2;8§, 6'2;ng

621382z

6/131;1 6/n3L';J_

67:121.;

mun;L shun»:

67"..31'32

6/n1';L;J_

6n=322 6mg:

6111553; 6mfnf;L;l

65.23;ng Cat-1332‘

“#382:

w
6;?”



106

Cubic

23 23:83‘ 3338;? 23;P* 23;??? 233L: 23:LL*

231* 231?;32 231728: 231'2LZ

m3 ' :20sz nan-If

n'3 .73ng {3:3}:

n31' 10151.:

7:3- Z3m3LZ .1:ansz

23-. 231;“: 2311:3922

Ian-1' Kan-1'37;

23 43:8: 2328;?

2'3 1:3;3}: 25:32

431? 231'282

I13- -

31.31:. -

Ian" -

3'3; «-
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Table 22. The Possible Herohedry Twin Group.

Hench Poeeible Merohedry Twin Groups

Group

Triclinic

a: u:
1 1;c 1;c,_

*

1' 1'30

I -

'1" ..

Il' -

Monoclinic

a:
2 22;?Jr 2:15;"

2' 25?; 220*

t ' *

2 .
1 21 1;, '

n 1n;L2y nsz;

m' n'; all m';C*

9 I *

n1 ml 3.2,

2/n ' -

2./I -

2/m' __

2'/n' -



Orthorhombic

222

' I

2 22

22211

I.

.

'
P
.

108

222:2; 2223;?

2'272;1>; 222:1):

2221732;

mgr“! 31:15;

0 ' t v 2 *

an; x tm 3P:

c a: c n-

“ 3 z- ”.30.

I a:

I ”1.;1‘21

. t . 1* . t . 0* t '*

[”sz 1”sz ’09P; “9?; thx h3Px

I * I * 0 * f *

it 3102: 12.3}; 10351.2 5.3Px

c c c an:
2121.; 2123:, u 3";

1223?; 223??

3|! at
REP: 1.231}

a: c

2'29: I. 233:2

2213?;

Mir-31;; wag;

Min-UL; u/nfgp;

{final-3x

tr]. 3?;

h/nlfsbzx



 

-. * -. '* -. * .

4'2LZ, 4'2P 2'21.“

21' 31-7.; {$21.25;

122';L2:

I.21:11:;

-2 an:
‘122n,1.:: 1232:;sz

m1“:3

* '* 0

331-22 321.21 32?: 32P.._",‘ 3.66, 3.83:

31':L§1, 31'23f 31’3322

322322 3228;;

32311:? 32'282,

O *

321 :26: '

O O *

3"“;1 3"..3322

 fin
“
_
r

I
—
-

I
!



3nl

”‘9

31

3'22:

110

321.31 33;: 331.22

3";1’: gfng‘L '5';th 3:82;

.6-1'31-3; Elfin;

sum-2, 3-2222
35'2'2Lgl Eh'z'ng,

33253;; Z'm2'2LZ,

3.12.252; 3.113231%;

332131.25

631;; 6&5: égsgz 63;: 6:82;;

6'3L;L 6'5;z 633; 6'9:

61'21;¢ 61'232z 61f22f

6223;II ézgsg;

62'23f 62'233,

6'223;a 6722s;z

621';82‘

6/n;L;J_ 6/nzLé:

an:
631’“ 6:

'*

fl:

 



6'/I

6/I

6 /I

6/l1 .

6.".

6'..-

6/mm

6 /m

6/u

6' /n'n

6/3'3'

6/m'n

6/Im1

Cubic

111

6713.5;

6/n';L;.L 6/"51’2:

6'fl-13Lz;

H.131;

ongsz’ Gum-é:

6.333;, 6I'.I'.3L;.L

6335;, 6flfmfiszz

“’33::

23282 2328? 2322* 2331’" 2331': 23‘le
231';sg 231';P*' 231':LZ

. III . I

“3-14. “3-103

n'3;Lz H.333:

! *

3.31:1.1'... 2*

2.3221,: 23:21”.

Tania: 332-232

.. *

12.331..ng

“age: #333L*

1.73:3: 5.3332
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Table 23.

Heesch

Group

321

113

The Possible Reticular Merobedry Twin Groups

for Rho-bobedral Crystals

Possible Reticular Merohedry Twin Groups

321;; 321.3 32P.‘." 3.19."? 3233', 3285:

331‘68 3L6:

31312131.3PIL 31'.3:3: 31.32;:

322332 32233, 32.16, 3221.6:

32' 2332 32 232: 32' 21.6, 32' L222

321' 233, 321' 216,

3.233: 32.233: 3.21.2, 3.21.3:

3-'_ 23;: 33' 233; 322231.22 3.22,?

3.123;, 32.1-21.6,

331’: 3311." 3'13: 53:5:

-'3L;.L 33P: 3'3332 5.31%:

E “3333 5"31‘62

3n' 3L2, 3.312;...

._ ,. *
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Table 2‘». Th. Possible Rsticulsr Morohodry Twin Groups

for Cubic Crystals

Hoosch Possible Roticulsr Morohodry Mn Groups

Group

23 23,321.31 23,321.51 23.3235." 23,322."? 23.3233.

23.3283: 23,321.22 23.32ng

231' 2313313135; 231331512: 231’231'2332

231'.31f21g2

.3 .3523: .3322? $521.22 .3533;

3'3 133.33%; £3,339: {3.553% 113353322

331' $133131; 01'231'3Lz.

2'3- 23-3-2832 23.,3.233: 33.3.21; Ina-21.2,:

33-' 23.33.7233, 2322336235: 33.23-31.22

Baal-3311'."

Kan-1' I3-1',3n1'2s§2 Z3m1',3n1'216'2

1.3 23.322333; «3.32235: 1.3.3232. 1.3.3233:

3'3 33.32728; 1.33.3255; 133.32'2LZ2 1.5.3236;

1231' 2313321385. 431333213333:

:31: wry-3.113132 133.51%;

333:3 I'Bn'23-333383; .3333,3'n3;Lz2

I333 n3; 233-31138}; IBD' 333:1.22

n'Bn' 113333,; 33,3333L2’ 133.3,31133L3‘L

n3n1' 113-13 5111' 31.22



 

Appendix

Let g be the total magnetic field at the proton eite.

Then the Hamiltonian/V for the proton nay be mitten an

A! = - 573 I ' .H

where g is the alt-emetic ratio, ,6 the nuclear nagneton

’2 t/Z MC and ; the total nuclear angular momentum in units

of ‘k . Then '

0 7'} (a L2) {11 0)

_ L<HZ HK'CHY)

_- Z HX+£HY —Hz 0

Let H 5.- {10+ H" where 8.. is the applied dc field and H“ is

the a component of the local field H1. Then ,‘(W = E W and

H +3275 HK-iH,

Hx+iHY -HZ+§7

 

-.: :: g3 /(H,,+H,,)"+(Hf+ Hf) and

 

= A1: = gflflzz+2HaHn+H2

Let AVG: jfl HO . l'hen since H,,=H£Co<1®)

/{-1‘-Z.H_£Coa@— -/.
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