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ABSTRACT

THE APPLICATION OF SHUBNIKOV GROUPS T0
THE DETERMINATION OF ANTIFERROMAGNETIC STRUCTURES

by E. Paul Riedel

Follouipg a brief historical account of the development
of black-white group theory in ene, two and three dimensiens,
the results of proton-resonance and x-ray studies are com-
bined with the Shubnikov group theory in enumerating the
possible arrangements of the magnetic moments in the anti-
ferromagnetic state of asurite C“B(COB)Z(OH)z‘ Pour anti-
ferromagnetic symmetry groups are found which describe all
such possible arrangements of the magnetic moments.

A description of twinning by merohedry and by retieular
merohedry in the 14 ordinary and 22 black-white three-
dimensional space lattices is presented. All of the possible
merohedry and reticular merohedry twin groups for these
lattices are then censtructed and listed. Inecluded in this
list are 142 new merohedry and 40 new reticular merohedry
twin groups.

The antiferremagnetic "T wall®" twins in NiO are shown to

be pseudo-merohedry twins.
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Section 1
Black-White Groups

Introduction

The material in Section I is intended to serve generally
as an introduction to the existing theory of black-white
crystallographic groups in one, two and three - dimensions and
specifically as a starting point for the natnrigl in Seetions
II and III. As part of the introduetion to Section I, a
brief historical outline of the development of these groaps
and some of their applications is presented. Following thié,
a Bravais lattice method is described for the construction
of the three-dimensional black-white space groups. This
method is then illustrated by outlining the derivation of the
black-white space groups in one and two dimensions. The three-
dimensional triclinie¢ and monoclinic space groups are listed.
The point groups which correspond to the space groups are also
discussed.

Ordinary crystallographic group theory is concerned with
describing the symmetry of objects in space. During approx-
imately the last thirty years an important extension of this
theory has been developed which consists essentially of des-
Cribing the symmetry of these objects when a sign + or - is
assigned to them. Such an extension of the theory therefore
requires the introduction of new crystallographic operations
called antioperations which transform am object in the same

1



way as an ordinary erystallographic operation but change its
sign. Groups which contain antioperations are called anti-
groups. Change of color of the objects instead of change of
sign is usually more convenient to use in diagrams represent-
ing the symmetry of these groups. Antioperations are then
called colored operations and ordinary operations are ealled
uncolored operations. Groups which eontain one or more
colored operations but not the colored identity operation are
then called black-white groups. Groups which contain the
colored identity operation are callod,grai groups. Groups
which do not contain colored operations are the ordinary
crystallographic groups.

The first extension of ordinary crystallegraphie group
theory was made in two dimensions in 1928, and 1929 by
- Alexander and Herrmann in connection with a study of the
possible symmetries of liquid cryatals.l’z If only one side
of a plane is considered, the number of pessible periodie
symmetries of objects in the plane is described by the
ordinary 17 tw-dimensional crystallographic space groups.
Alexander andHerrmann derived all of the two-dimensional
space groups when both sides of the plane are considered to
be distinct. They found that 63 new greups as well as the
original 17 are necessary to deseribe all such possible
Symmetries. '

——— -

Alexander, and K. Herrmann, Z. Kristallogr.
285 (1928) ’ ’ 2.

328 (1929)A10xandor, and K. Herrmann, Z. Kristallogr. 70,



In 1930 Heesch introduced a "fourth coordinate®™ to
three-dimensional erystallographic group thoory.3 This co-
ordinate had no numerical value associated with it; instead
it is represented only by a + or — sign. Thus, the groups
which he called ®the four-dimensional groups of three-
dimensional space® describe the space symmetries of objects
in three-dimsnsional space and in addition label the objects
+ or - . These groups are today called the Shubnikov Groups.
Heesch derived all such new triclinic and momoclinic space
groups but did not work out explicitly those of the remain-
ing crystal systems. He did, however, derive 90 new point
groups which correspond to the new space groups (all the
black-white and gray Shubnikov groups) in the same way as the
ordinary 32 point groups correspond to the ordinary 230 space
groups. The 122 point groups (the 90 derived by Heesch plus
the original 32) will be called the Heesch point groups in
the present work.*

Shubnikov# (1951) rederived the Heesch point groups
‘and also extended the theory to the study of the symmetries
of three-dimensional figures using both erystallographic
and non-erystallographic operations.

3+ H. Heesch, Z. Kristallogr. 73, 325 (1930).

- They are usually called the Shubnikov point groups
in the literature,

hed, V. Shubnikov, The Symmetry and Antisymmetry of
Finite Figures (in Russian), Moscow: Academy of Sciences

(1951).
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In 1952 Cochran’ rederived the black-white plane groups
. and suggested their applicability to the study of the symmetry
of real periodic functions used in crystallography.

The complete extension of the black-white group theory
to three dimensions was first accomplished by Zanorzaov6'7
by a mathematical method in 1953. There are 1421 new space
groups, 1191 of which are black-white while the remaining
230 are gray. Zamorsaev named these as well as the original
230 space groups the Shubnikov groups.

The new space groups were rederived by a Bravais lattice
method and listed by Belov et al.8 in 1955. A revised list
of these groups was published by the latter authors? in 1957.

In their discussion of the symmetry of magnetic crystals,
Tavger and Zaitsev (1956) derived 58 magnetic point groupa.lo

2+W. Cochran, Acta Cryst. 5, 630 (1952).

6°A. M. Zamorszaev, "A Generalisation of the Fedorov
Groups.®” Diaqortation(in Russian), Leningrad (1953).

7‘A. M. Zamorszaev, Soviet Physics Cryst., Vol. 2, No. 1,
10 (1957).

8’N. V. Belov, N. N. Neronova, and T. S. Smirnova, Trudy
Inst. Krist. Akad. Nauk S.S.S.R. 11, 33 (1955).

9‘N. V. Belov, N. N. Neronova, and T. S. Samirnova,
Soviet Physics Cryst., Vol. 2, No. 3, 311 (1957).

10. 5, A, Tavger, and V. M. Zaitsev, J. Exptl. Theoret.
Phys. U.S.S.R. 30, 564 (1956).



The 58 point groups derived by Tavger and Zaitsev are
1 somorphic to the 58 black-white Heesch grbups. |

The first application of Shubnikov groups to the deter-
mination of magnetic structures was given by Donnay et al.ll
in 1958. They proposed a systematic method employing neutron
diffraction data in conjunction with the Shubnikov groups to
determine the magnetic structure of ferromagnetic and anti-
ferromagnetic crystals. They applied the method to the anti-
ferromagnetic crystal chaleopyrite (Cu!'esz). A table
showing the effects of ordinary symmetry and antisymmetry
operations on magnetic moment vectors is also included.

The Heesch groups were first applied in 1958 to the

description of certain types of twinaing in crystals by

Curien and Le Corre.l?

The possible point symmetry groups of ferromagnetic
and antiferromagnetic crystals were discussed by Tavger in
1959. The point groups imply that only certain directions
are possible for a macroscopic magnetic moment with respect
to the crystal axes. These directions are listed. Tavger

also lists the magnetic point groups for which piesomagnetism
is poeaiblo.l" '

323G, Donnay, L. M. Corliss, J. D. H, Donnay, N. Elliott,
and J. M. Hastings, Phys. Rev. ;,1._2_, 1917 (1958).

12.4, Curien, and Y. Le Corre, Bull. Soc. franc. Minér.
Crist. 81, 126 (1958).

3.5, a. Tavger, Soviet Physics Cryst., Vol. 3, No. 3,
341 (1959). :

lkeg, a, Tavger, Soviet Physics Cryst., Vol. 3, No. 3,
344 (1959).
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The possible space groups and their corresponding point
&Zroups were listed for ferromagnetic and ferroelectric crystals
in 1960 by Neronova and Belov.l’

No attempt has been made above to include all the papers
dealing with black-white groups. More extensive references
appear in the review papers by Mac':kay:L6 and Le Corro.n

The Bravais-Lattice Method

The method employed by Belov et al. in deriving the
black-white and gray Shubnikov groups consists of the follow-
ing general steps:

1. From the 14 original Bravais lattices which deseribe
all the ordinary translatiomal symmetry groups in
three dimensions, 22 new black-white lattices ari
derived by coloring each translational element in
turn in a particular Bravais lattice, considering
all possible combinations of colored and uncolored
translational elements and eliminating those result-
ing combinations of elements which lead to identities
or do not lead to groups.

2. All combinations of eolored and uncolored symmetry
elements added to each of the 36 lattices are then

15N, N. Neronova and N. V., Belov, Soviet Physics
Cryst., Vol. 4, No. 6 769 (1960).

16.4. L. Mackay, Acta Cryst. 10, 543 (1957).

17.yY, Le Corre, Bull. Soc. franc. Minér. Crist. 81,
120 (1958).



considered. When those sets of elements which

possess the properties of a group and various

identities between groups are recognised, the 1651

Shubnikov groups result. Ten theorems presented in

reference 8 and there employed in this process are

listed below.

Theorem 1. The reflection in a plane and then a
translation in a direction perpendicular to the plane is
equivalent to a reflesction (of the same character, i.e.,
mirror or glide) in a "derived” plane which is parallel
to the initial ene, but loecated at half the translation
from it. The reflection will be umcelored if the first
reflection and translatien are both uncolored er both
eolored; and colored if one of the compoment operations
is colored and the other uncolered.

Theorem. 2. If a eolored translation is parallel to
a plane of symmetry, (m,n,c,g) the plane will simultaa-
eously be eolored. If this plane coincides with the cell
face XOY thea im the presence of a eoler translationf
parallel to the x axis nsa', nab', aa-' and bzn'; in
the presence cf’%' parallel to y ene obtains -;b', nsa',
a;n', b=m'. If the eelor translation lies on a diagonal
cut lsnf, nzn', azbf and b:a',

If eoclor tramslations are available aleag both axes

them m:n:a™ b' and b=a:m% n'.

f

~*The eolor (indieated by a prime) translation,q:',
magnitude is half that of the uncolored translation ia the
same directien, i.e., 2[t;l=|Exl.






s
of 120° followed by a colored translation ty

Theorem 3. If the translation is disposed obliquely
relative to a symmetry plane, resolve the translation
into components perpendicular and parallel to the plame:
The first component determines the derived plane shift-
ing it intact parallel to itself just half its length,
the second component determines the additional glide
component. The derived plane is colored if the plane
and translation giving rise to it differ in color and
uncolored if both are the same color.

Theorem 4. An axis of n fold order and a perpendi-
cular translation give rise to a parallel derived axis
of the same order and character (rotation, screw,
inversion, screw translation). The derived axis passes
through the apex of a triangle with an apex angle of
360°/n. The position of the apex is given by the basic
construction in the rotation plane. The color of the
axis is determined as previously by the color of the
elements giving rise to it.

Theorem 5. If there is a rotation or screw axis
and a colored translation parallel to it, the axis appears
ainnltaneoualy as a colored rotation or screw axis.

2:1;..-2(21) 6xt.'._6(6;)
let,,-z (2') 63xt....63 (6)
3xty:3 (6’)* 6y x c..-él (6,)

L x tu-b (62) 65 x t"— 65 (6;)

b Xty = by (43) 62 x tu- 62 (65)

by x tu ko (h ) 6, x t, = 6, (61)

by x =y (by)

a new symmaetry element. It represents a rotation

e This element is

therfore of 6th order. ; operation i repeated three
=t+

times, the result is I

w’tno If Lg, L6, and P are a

six-fold rotation, sixpfold rotation invor on and P a minor
plane perpeadicular to Lg, then L3 =Ly and 13=P.
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Theorem 6. If a translation is directed obliquely
to an axis resolve the translation into components per-
pendicular and parallel to the axis. The first trans-
fers the axis to the apex of a triangle with an apex
angle of 360°/n. The position of the apex is given by
the basic construction in the rotation plane. The
second component merges with the resultant axis.

Remarks: 1. The axis of odd order can only be
either uncolored or gray. 2. An axis of 3 or 6-fold
order combined with a non-parallel color translation
can only be gray.

Theorem 7. Two planes (mirror or glide) intersect-
ing in 309, 459, 60° or 90° produce a rotation or screw
axis of 6, 4, 3 or 2-fold order in the line of inter-
section or at a distance and parallel to it; the result-
ant axis is colored if both planes are of the same color
and different if they are of different color.

' Theorem 8. If two rotation axes of the second order
intersect in an angle of 30°, 45°, 60° or 90°, there
appear resultant axes of 6, 4, 3 or 2-fold order perpen-
dicular to the plane of the axes producing them and pass-
ing through the point of intersection of the axes pro-
ducing them. The resultant axis is uncolored if both
the axes producing it are of the same color and colored
if they are of different color. If one or both of the
original axes are screw axes, ;ho resultant axis is dis-

placed 1/4 of the translation along each glide direction.



~
c..-'r’L —
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Remarks: . Since one can consider the 6-fold axis as
the sum of a three and two-fold axis: 6= 3+2, we may
write for the colored 6-fold axis 6'-3+2'. Similarly:

'_ 1] ' _ 1]

- - ]
6?-31‘* 2 6,= 3,%2
63= 3 +2

Theorem 9. As a result of the intersection of three
mutually perpendicular planes of symmetry or the inter-
section of an axis and a perpendicular plane of symmetry,
there arises a center of symmetry. If there are an even
number of intersecting elements containing half-translation
components parallel to coordinate axes, the center is
not quite symmetrically located along these axes. The
center is colored if the number of colored generating
elements is not even and uncolored if the number is even.
Associated with the intersection of three planes (or an
axis and planes) not in a right angle there appears an
inversion axis colored or uncolored depending on the
number of colored generating elements.

Theorem 10. The combination of a center of symmetry
with a translation produces a resultant center halfway
between the translation related centers. The resultant
center of symmetry 1s uncolored if the initial center
and translation are both of the same color and colored

if one is of a different color.
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One-dimensional Space Groups

In order to illustrate the general method outlined above,
consider the problem in one dimension. There is only one
ordinary lattice in one dimension. It possesses just one
translational element of symmetry. The diagrin of this
lattice is shown below where the open circles represent un-
colored lattice points and t represents the ordinary opera-
tion of translational symmetry.
3% © ©

The only black-white lattice which can be found from
this lattice by the above procadure is shown below where

dark circles represent black lattice points.
O ., © o ¢

- —-»

Note that the definition of a colored translation implies
that for translations in the same direction

1T1=21%.
This is obviously true in two and three dimensions also.

The two translation lattices shown above may be denoted
by the symbols 1P and 1Ppe» where the subscript 1 denotes one
dimension, p primitive lattice type and b a colored trans-
lation in the b direction.

Consider now step two of the process outlined above.
The only uncolored symmetry operation which exists in one
dimension beaidea the identity and translation is the inver-
sion center i. Graphically this is denoted by a small
circle G, while i' shall be denoted by @ and a gray center
(i.e., an uncolored and colored center superimposed) by @ .
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Using the 10th theorem and the lattice 1Ps We find five
groups which are listed in Table 1.

Table 1. One-dimensional Space Groups based on
on Lattice 1P

Space Group Symmetry Operations
Symbol or Group Elements
1Pl E,E
1P1 E,%,1
lﬁif E,E,if
,p’ EE',t,t
LpI1 E,B',t,t01,1°

The groups in Table 1 are shown graphically in Fig. 1
where the triangles are used as objects in general position
to show the effect of the group operations.
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Fig. 1. Diagrams of the one-dimensional Space
Groups based on Lattice 1P

M

s oA kaOA o bpopa o >4

P .t —_—
1"-1-'

o p mpgdeompd mpL
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Consider next the black-white lattice ;p,. From this two
groups are found, ;ppl with elements E and t' and lpGT with
elements E,t',i and 1'. These groups are shown in Fig. 2.

Fig. 2. One-dimensional Space Groups based on

Lattice 1Py
1Pyt
P | - P | A
Ja—
1pb-i

& o ) o () - ¢ Csoa

In the symbol lpgi only the uncolored symbol for the inver-
sion, T, is given; the colored inversion ceﬁtors being im-
plied by the other elements of symmetry. This method of
group notation is used for the Shubnikov groups which have
black-white lattices, i.e., only the uncolored elements of
synmetry are shown to the right of the lattice symbol. The
colored elements in the group are implied by the lattice
symbol and the uncolored elements. This method of notation

will be used in two dimensions also.
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The point group of a crystal describes the directional
symmetry of the crystal. The translational part of the
symmetry operations contained in the space group do not -
change directions. Hence, the point group corresponding to
any space group may be obtained from the space group by re-
placing the translational part, if any, of oviry symaetry
operation by the identity operation. The translation t is
therefore replaced by E,'%f by E', a glide plane in the ¢
crystallographic direction ¢ .by m a mirror plane, cf by
n', ete. in obtaining the elements of the point group. The

five-point groups obtained in this way from the one-dimensional

space groups are listed in Table 2.

Table 2. Point Groups corresponding to the one-
dimensional Space Groups

Space Group Corresponding Point Symmetry Operations
Symbol Group Symbol or Group Elements
1P 1 E
lpi 1 E,1
4P 1 E,i'
lpl' 1’ E,E'
11’ ~ n' ~ E,1,E',1'
1Pyl 1! E,E'

1Pol | 11 E,E ,1,1'
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~dimenai , -

There are 17 ordinary, 17 gray and 46 black-white plane
groups. In the following description of these groups, we
shall continue to follow the methods and, unless otherwise
st;tod, the notation developed by Belov et al.

From the five ordinary lattices in two dimensions five
black-white lattices can be derived. These 10 lattices are
shown in Fig. 3. Consider, for example, the oblique p
lattice. A colored translation alomg an edge in the a
erystallographic direction gives the lattice Pge The only
other possibility is that of a lattice with colored trans-
lations along both edges. This gives the lattice shown below
(s0lid lines) which is seen to be identical with p, (broken
lines).

The notation for the ordinary lattices is the same as
that given in the "International Tables for X-Ray Crystall-
ography."l8 The black-white lattice notation is the same as
that used by Belov et al. except that small instead of capi-

tal pf’ and ¢'® are used in order to denote two dimensions.

18‘Intornn§;onalqtahlns.£or X-Ray Cryst., Vol. 1,
Kynoch Press, Birmingham (1952).
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Fig. 3. The five ordinary and five black-white
plane Lattices

[T L8 -
-

[ £ 1 []

l ® l square
N hexagonal
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The lattice symbols have the following meaning:

l. pg: primitive lattice with a colored translation

along the a direction.

2. Pyt primitive lattice with a colored translation

along the spacial diagonal of the cell.

3. Syt centered lattice with colored translatio;as

along two non-parallel edges.
This notation is also the same as that used for the Shubnikov
groups, except that in this case capital letters such as P
and C are used to indicate the lattice types.

The full and short international symbols for the 17
uncolored two-dimensional space groups are shown in Table 3
along with their corresponding point groups. The right-hand
column consists of the symbols used in reference 8 for these
groups except that in Table 3 the capital P'® and C'S have
been replaced by small letters as mentioned above.

From the original 17 groups 17 gray groups are found by
coloring the identity element. Then every element in the
group is simultaneously colored and uncolored. These groups
are written as pl', p21', pml', etc.

The 17 original groups also give rise to 26 black-white
groups based on ordinary lattices when the elements to the
right of the lattice symbol, excluding the identity, are
colored in all possible combinations. These groups are shown

in Table 4 along with their corresponding point groups.
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Table 3. The two-dimensional uncolored Space Groups
and their corresponding Point Groups
stem and Corresponding Space Group Symbols Belov et al.

ttice Point Group Space Group
Symbol Full Short Symbol
oblique 1 pl Pl Pl
P 2 p2ll p2 P2
rectangular m plml pm pm
P plgl Pg pg
and clml cm cm
c 2mm pum pmam paam
p2mg pag pmg
p2gg Pgg peg
c2mm cmm cnm
square L Pk pb P4
p kymm phum phm phum
phgm Phg Phgm
hexagonal 3 p3 p3 p3
P 3m p3ml p3ml p3m
p3lm p31lm p3lm
6 P pé p6
6um p6um pém p6mm



20

Table 4. The two-dimensional black-white Space Groupk
based on ordinary Lattices .and their cerresponding
Point Groups

System and COrreabonding Belov et al.
Lattice S_nbol Point Group Space Group Symbol
oblique 2' p2'
P
]
x~ectangular m pa'
'
P PE
?
cm
and ' e )
m m pm m
c - K
Pg &
| B |
pn g
*®
cm m
an' pm'
, pge'
e
pmg
com'
hexagonal 3m' p3m' .
P . p3lm
6 pb
6II' 4 e ®
mm nm
p6'mm’
square 5 ph'’
p ’mv ’ phﬁ'm'
P%‘m'
"’ P’ mm’
plo:m'm
Pb gm'
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The 20 black-white groups based on black-white lattices
are listed in Table 5 along with their corresponding point

Zxoups.

Table 5. The two-dimensional Space Groups based on black-
white Lattices and their corresponding Point Groups

System and Corresponding Belov et al. ‘
I.attice Symbol Point Group Space Group Symbol

oblique 1l P al

Py ragy ) A
xectangular ml Pyl
Py Poln
. Pak
I P,le
a P
P1E

cam

mml* Pgmm
Po&8
P g
Pagm
Py
Pr&8
Prme

c ‘m

square XY Prh
P o1 * P bam
prhgm
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In order to illustrate the meaning of the symbols for

the space groups, the groups pn'g and Pmg are shown in
There are as yet no standardized symbols for the

Fig. 4.
They will

Zxaphical representation of the antioperations.
here be represented by cross hatching the uncolored operations

&as far as is practicable. The uncolored operations will be

xrepresented as in "the International Tables for X-Ray
Cx-ystallography.® For convenience however, all symbols will

be defined as they are introduced.
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Fig. 4. Diagrams for the Space Groups pn'g and pgmg.

| 1__. b pa'g
. 6(> 0 Q:D _colored two-fold ixis
O_f_’___l_i_*_j‘___&._ﬁ uncolored glide plane
-O; : O,
0 0 é
:LT*‘.¢ # . —F —t 0-
i O : ‘ the spike indicates
0 0 é

mirror image.

—. colored mirror plane

.-uncolored two-fold axis
—--colored mirror n» and

uncolored glide plane g

superimposed.

uncolored mirror m.




24

Three-dimensional Space Groups

A reproduction of the li4 original and 22 black-white

lattices shown in reference 9 is shown in Fig. 5. The

lattice symbols are described below. The numbers to the
left refer to the lattice number in Fig. 5.

2.
4.
5.

lzb.

i3.
15,
16,.
17_.

19.
21.
29,
31.

P

v v o
”>H>ﬂ

t
(¢}

colored translation along one edge

" » ® an edge in the b direction
" ] " w L] " ®w g "
" " ® the diagonals of the C face
» " in the ¢ direction
» " along edges in the a and b
: directions
" " along an edge in the ¢ direction
" » ® the diagonals of the A face
" " ® ® gpacial diagonals
" " ® ® g direction
Tt s
" " " ;2:.diagonals of the C
" " ® the three edges
" " in the ¢ direction
" " along the c edge
" " " " gpacial diagonals
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The 14 original and 22 tlack-white

Fig. 5.

three~-dimensional Lattices

Triclnic

l'V!(C m

Monoclinic

system

Orthorhombic

system
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Orthorhombic system (continued)

Tetragonal system

Hexagolial
(Rhhombohedral) systemn

‘,'ch]

infe s

(o
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The Shubnikov groups of the triclinic and monoclinic
systems are shown in Table 6. Table 6 is a replica of the
Lf£irst part of the complete list in reference 9. Specific
examples of a few space groups will be illustrated later in
connection with the discussion of azurite.

To the ordinary 230 space groups there correspond 32
point groups. In addition, there are 32 gray and 58 black-
white point groups, or 122 Heesch groups in all. All Heesch
point groups which contain antioperations have the same
general structure. They contain a subgroup of index 2 of
unprimed elements, the remaining elements being primed. All
122 Heesch point groups are tabulated in the discussion of
the twin problem in the last section., Some examples will
also be used in the next section om azurite.

In amhary, the number of point and space groups in
various categories are listed in Table 7.



Table 6 .

Triclinie
Systea

21

1. P1
2. r1'
3. Pal
¢y
be P1
5, P11’
6. P1
7. P 1

Monoclinic
System

C2
1. P2
2. P21’
3. P2
he P2
5. P, 2
6. P 2
7. P2
8. P2;1'
9. P2,
10. P2,
11, Pp2,
12, P2

c1
13. C2

14 C21

The Trielinic and Monoclinie Shubnikov Groups

15.
16.
17.

c.
18,
19.
20.
21.
22,
23.
24.
25.
26,
27.
28.

29,

30.

31.
32,
33.
3h.

35.
36.

37.
38.
39.
40.

c2'
Co2
C,2

Pm
Pml’
Pnf
Pam
Pcll
Pe
Pel

Pe'
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4l. Cye
Can
42, P2/m
3. P2/m’
[N P2f/i
L5. Pz/hf
L6, sz/hf
47. Pg2/m
k8. Pp2/m.
L9. Pg2/m
50. P2;/m
51. P2, /ml’
52. Pzi/h
53. P2;/n’
54, P2,/m’
55. Pg2;/m
56. Pp2,/m
57. Pg2,/m
58. C2/m
59. c2/m’
60. ¢2'/m
61. C2/n'
62. c2'/m’
63. C,2/m
6ke Co2/m
65. P2/e
66. P2/c1’

67.
68.
69.
70.
71.
72.
73.
Thee
75.
76.
77.
78.
79.
80.
81.
82.
83.
8.
85.
86.
87.
88.
89.
90.
91.

p2'/e
p2/e’
p2' /e’
Pg2/c
Py2/c
P.2/c
P Az/ c
Pcz/c
P21/e
P2;/c1’
Pzi/c
]
Pz%/c'
le/b
Pg2,/c
P 2 /e
Pczl/ c
c2/e
c2/e1’
c2'/e
c2/c'
cz'/bf
Cy2/c
Cq2/ec
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Table 7. The Numbers of ordinary, black-white and
gray Space and Point Groups in one, two

and three Dimensions

Number of Number of Number of

Dimensions Point Groups Space Groups

ordinary 2 2
black-white 1 3
gray 2 2
total 5 7
ordinary 10 17
black-white 11 46
gray 10 17
total 31 80
ordinary 32 230
" black-white 58 1191
gray 32 230
total 122 1651



Section II

The Possible Antiferromagnetic Symmetry Groups of Asurite

Introduetion

Most of the material in this section has recently been
published by the present author and Professor R. D. Sponco.l9

Antiferromagnetic crystals have been shown by neutroa
diffraction techniques to be periodic structures where the
chemical eell which displays only the x-ray symmetry is re-
placed by the magnetic cell which displays the neutron dif-
fraction aynotry.zo The magnetic e¢ell represents the symmetry
of the magnetic moments, associated with certain ions, as well
as the atomic positions.

For any particular magnetie moment direction, there
exist two possible senses for the magnetic moment veetor.
Given a magnetic moment with a certain direction and sense
in a unit magnetic cell of an antiferromagmetie corystal,
there must also exist in the same cell another magnetic
moment with the same magnitude and direction but with oppo-
site sense. Hence, a magnetic moment is subject to both
ordinary symmetry and antisymmetry eperations where the change
- of sign operation whieh charasterises an operation of anti-
symmetry is here interpreted as an operator R which reverses

I9.E. P. Riedel and R. D. Spence, Physica 26, 117k (1960).

20.54e for example: C. G. Shull and E. O. Wollan, Selid
State Physics edited by F. Seits and D. Turnbull, (Academic
ress, New York, 1960), Vol. 2, p. 137.

30
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the sense of a magnetic moment vector. Thus, an antioporition
transforms a magnetic moment vector in the same way as an
ordinary erystallographic operation followed by a reversal

of the sense of the magnetic moment vector.

Two properties of the R operator are implied by the
above. R must commute with every symmetry operation and
R2:EK. |

The first published application of Shubnikov groups to
the description of an antiferromagnetic crystal appéarod in
a paper by Donnay et al.21 Here x-ray and neutron diffrac-
tion data were used together with the Shubnikov group theory
to find the magnetie structure of chalcopyrite, CuFeS,.

Proton resonance studies of the monoclinic erystal
asurite cu3(003)2(03)2 have shown it to be antiferromagnetic
below 1.86°K.%% In this section, the results of recent pro-
ton resonance” and x-ray studies will be combined with the
theory of Shubnikov groups in order to enumerate the various
possible arrangements of the magnetic moments in the anti-
ferromagnetic state.

The general method used to do this is new. Briefly, it
consists of the following. First, the point group symmetry
of the local magnetic field vectors at the proton positions

21’Donnay et al., op. cit.

22 p, D. Spence and R. D. Ewing, Physical Rev. 112,
1544 (1958).

* performed by Professor R. D. Spence
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is found in the antiferromagnetic state. The magnetic field
is an axial veetor. The operations of a point group however
must transform all axial vectors in exactly the same way.
Therefore, the point symmetry of the local field vectors must
also be the point symmetry of the magnetic moment vectors
(which are also axial vectors) associated with the magnetic
ions in the crystal. The Shubnikov space group which repre-
sents the symmetry of the magnetic cell must also transform
all axial vectors in the same way. It must therefore have
as a corresponding Heesch point group one which permits the
observed axial vector point symmetry. This space group must
also permit the same number of protons which are observed to
experience different local magnetic fields. The imposition
of these requirements on all Shubnikov groups which do not
violate the observed x-ray symmetry of the crystal leads in
the case of asurite to four possible antiferromagnetic sym-
metry groups.
Proton Resonance Data

Figs. 6a, 6b and 6¢c show the angular dependence of the
proton resonance lines in the antiferromagnetic state of
azurite in the af-c, b-¢, b-af (a' perpendicular to c) planes.
From the figures, it is clear that in the magnetic unit cell
there exist eight protons all with different local magnetic
fields. The local fields arising from the copper ions were

found by fitting the data to the relation
2 b °
Vo Ho HQ
where )), is the frequency of the free proton resonance in
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the dc magnetic field H, and ® is the angle between Ho and
the loecal field H;. A derivation of this equation is given
in the appendix. The data in Figs. 6a, 6b, and 6c were
taken with H = 3430 gauss and T=1.6°K. The magnitudes and
orientations of the local. fields are given in Table 8, where

© 1is measured from the ¢ axis and ¢ from the a'_-c plane.

Table 8. Local Magnetic Field Vectors at Proton

Positions

Z H (gauss) & %

1 580 23° 62°
2 580 23° 2980
3 580 157° 242°
b 580 157° 118°
5 545 27° - 56°
6 545 27° 304°
7 545 153° 236°
8 545 153° 124°

The angular relations between the directions of the
local field vectors in the crystal can be convon{ontly rep-

Tesented by a stereographic projection as shown in Fig. 7,
The usual crystallographic convention has been employed in

F ig. 7, i.e., vectors in the upper hemisphere are projected
Through the south pole and indicated by solid circles while
Vectors in the lower hemisphere are indicated by open circles.
In considering the symmetry of Fig. 7, Qne must bear in mind
that it represents angular relations between axial vectors
rather than polar vectors which are commonly shown in
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Fig. 7. Stereographic Projection of the Local
Field Vectors in Table 8.

/f
‘; 7‘0 0,8 \
{ 3.0 ¢ 9. 4 b
{ z—‘.o } o !
\ ] s
\ :
\\‘ |’
\ :
\ p /
~ ! .
b '
~ >
T f )«/

crystallographic applications of stereographic projections.
Since the magnetic moment vectors of the copper ions are
axial vectors, they must be transformed by the symmetry
operations of the crystal in exactly the same way as are
the local field vectors. Hence the point symmetry of any
particular magnetic moment vector in the antiferromagnetic
stagé of azurite may be represented as shown in Fig. 8.

Fig. 8. Point Symmetry of a Magnetic Moment Vector
in the Antiferromagnetic State of Asurite.

,':/ o (o) \\
( < 'b
el .
\\\\ %
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Point Group QOperations
Diagrams shoidng the effect of some ordinary and anti-
symmetry operations on magnetic moment vectors have been
constructed by Donnay et a1.23 Some of these are shown in
Fig. 9. (A few slight changes in the graphical symbols of

some of the operations have been made).
Fig. 9. The Bffect of some symmetry Operations on

Magnetic Moment Vectors

E 2 m i

9 o

£ 10

The effect of the symmetry operations of the Heesch
Point groups of the triclinic and monoclinic systems on a
Single arbitrarily oriented axial vector is shown in Figs. 10
andq 1l respectively.

)

‘Donnay et al., op. cit. p.1918
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Fig. 10. Symmetry of an Axial Vector under the
Triclinic Heesch Point Groups

/,, o . e . o
f . .ﬁ f : ‘ o - %
o ) ‘ . . )
\1' 1' - 1 \"i’v
o
G
o
un'

Fig. 11. Symmetry of an Axial Veetor under the
Monoclinic Heesch Point Groups

n+m

—g2+2" T, P o o
I Y‘" Ly
] . Q,// e ° ° 0,/>

| 2 2' 21’




The symmetry operations

point groups have been listed in Table 2.

monoclinic system are listed

Table 9.

Point Group
(in Belov notation)
2

2'

X <—Ray Structure

40

comprising each of the triclinic
Those for the
in Table 9.

Moneoclinic Heeach Point Groups

Symmetry operations
or group elements
2,k
2',E
2,2' K,E'
m,E
n',E
m,m' ,E,E'
2,m,i,E
* ]
2,m ,i ,E
' '
2 ,m,i,E
2',n',1,8
' v v e e
2,m,i,E,2 ,m ,i ,E

The chemical space group of azurite is P2 /b at room

1=<maperature. 2k The unit cell dimensions are: a = 5.00,

o= 5.85, c,= 10.351, B= 92°20 .

d-ivided in two sets. In the
Occupy the special position

0,0,030,%

The copper ions may be

first set are the ions which

o3e

<%+ G. Gattow und J. Zemann, Acta Cryst. 1l

, 866 (1958).
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The second. set occupy the general position

X,Y,8; X,¥,3; £+y, $-3; x, §-y, 3+3,
where x=0.252, y=0.495 and z = 0.085. There are also four

hydroxyl radicals in general position.

Point Group Selaction

There are two possibilities to consider at 1.6°K.
l. The symmetry of the atomic positions
remains P2,/c.
2. Statement number 1. is false.

If atomic positions are altered so that the x-ray sym-
metry is no longer le/e in a crystal with as complicated a
Structure as asurite, it is almost certain that the symmetry
change would result in a trieclinic crystal. If the x-ray
symmetry is triclinie at 1.6°K, then one of the triclinic
Shubnikov space groups must represent the symmetry of the
ma.énetic cell. Then this group must correspond to one of
the triclinic Heesch point groups in Fig. 10. However, none
Of the triclinic point groups of Fig. 10 have the observed
axial point group symmetry shown in Fig. 8. Therefore, we
S8hall assune in the future that the x-ray symmetry of asurite
at 1.6% is le/c. There exist however, four other possibil-
ities. Before proceeding further these will be discussed.

l. If the x-ray symmetry at 1.6°K is triclinic,
it uoiald still be possible to observe the local
field patteran shown in Fig. 7., as the point
groups l',r and Il' in Fig. 10 permit the
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observed symmetry provided that vectors 1 and
2 and 5 and 6 of Fig. 7 are unrelated to each
other by any symmetry operation. This would
imply that the observed symmetry of orienta-
tion which for example seems to relate vectors
l, 2, 3 and 4 is accidental. This possibility
is unlikely especially in view of the fact that
the magnitudes of the vectors 1, 2, 3 and 4 are
the same.

2. Suppose the x-ray symmetry at 1.6°K is a mono-

1sFc or P2, /c.

Again, this would require a considerable re-

clinic space group other than P2

arrangement of ions and therefore lead almost
certainly to triclinic symmetry.

3. If the x-ray symmetry at 1.6°K belongs to some
system other than triclinic or monocliniczs,
then the Heesch point group might also be one
of higher symmetry than those in the monoc¢liniec
system. An investigation of all of the point

- groups of these higher symmetry systems shows
none which prediet the observed axial vector
symmetry.

4, In the event that the x-ray symmetry is P21, or

" Pc at 1.6°K, none of the arguments to follow

need be altered. The only change would appear

25'The possibility, although unlikely, exists: see
L. D. Landau and E. M. Lifshits, Statistical Physies(Addison-
Wesley Publishing Company, Inc., Massachusetts, 1958)p.433.
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in the final conclusion. If, for example, tﬁo
x-ray symmetry at 1.6°K were P2,, then instead
of the four Shubnikov groups found in Table 10
as representing the possible magnetic space
group symmetries, Pazl could be immediately
selected as the only possible antiferromagnetic
symmetry group. That is, it would be the only
one of the four groups which would have the

correct x-ray symmetry.

In view of the previous remarks, the point group in

the antiferromagnetic state must satisfy the following

‘conditions:
l.

2.

The point group must transform an arbitrary
axial vector in the same way as is permitted

by the resonance pattern. (Fig. 8 for asurite).
The ordinary crystallographic point group ob-
tained by replacing all antioperations of the
point group by their correaponding ordinary
operations must be either a proper or improper
subgroup of the ordinary crystallographic point
group of the crystal. PFor azurite, this is 2/m.

From Fig. 11 it appears that the only point groups which
]
satisfy these requirements are 2 /m, 2/m', 2/m1’, 21’ and m1'.

Space-Group Requirements
If the crystal structure and resonance data (previously

described for asurite) are available, then one may proceed
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to select as possible antiferromagnetie. space groups those
groups in Table 6 which satisfy the following requirements.

1.

2.

3.

b

The operations of the Shubnikov space group
must leave unaltered the positions of the ions
as determined by the x-ray data. This implies
that if a symmetry operation of the Shubnikov
group transforms the ion position ¥ into R,
then the chemical space group must contain a
corresponding symmetry operation which will
transform T into R. The converse is not true
and therefore there may exist pairs of ions
whose positions are related by symmetry opera-
tions of the chemical space group but which
are not related by a symmetry operation of the
Shubnikov group.

The Shubnikov space group must have as its
point. group one of the possible point groups
predicted by the data. For asurite, this is
one of the five point groups found above.

The Shubnikov group must permit a magnetic unit
cell which contains the same number of protons
with different local magnetic fields as there
are resonance lines in the nuclear magnetic
resonance pattern. For asurite, this number
is eight. |

A magnetic ion may not occupy an anticenter.

An anti-inversion moves an axial vector through
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the anticenter and then reverses its sense.
Hence, the magnetic moment of an ion located

at an anticenter is zero.

Space-Group Selection
The left-hand column in Table 10 consists of all those

monoclinic groups in Table 6 which satisfy the previously
discussed requirement number l. An asterisk to the right
of a group under one of the columns indicates that that
particular requirement number which heads the column is not
satisfied by the group. In the last column at the right,
the corresponding point groups are listed.

Table 10. Space Group Selection

Shubnikov Requirement
Point Group
Space Group 2 3 L

P a21/<: * 2/m1'
P2 /c' * % 2'/m
P2, /c’ * % 2/m'
PZi/c * * 2'/m
P2, /e * | 2/m

]
Cye ml

| J
Pbc ml

]
Pac ml
pc’ *  x m'
Pc * * m

]
Pa2; 21

| J ?
™

P2, * 2

P2, * % 2
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Consider Fig. 17 page 53. Disregarding for the time
being the numbers in the circles, it may be seen from the
x-ray data that the circles represent the positions of the
copper ions in two chemical cells placed next to each other
along the x direction where the x,y and s axes of Fig. 17
coincide with the a,b and ¢ crystallographic axes in the
x-ray section. Let us now investigate the group Pazl/c in
Table 10. Fig. 12 is a diagram of the group where the
solid rectangle represents the outline of the projection of
the double chemical cell of Fig. 17 in the x,y plane. A
double chemical cell is needed for P,2,/c since the group
contains an antitranslation in the a direction. The unit
cell of Pazl/b is therefore just twice the volume of the
chemical cell. The unit cell of this group therefore con-

tains eight protons. However, as may be seen from the

Fig. 12. Diagram of Pazl/c.
Oi- O-

colored diagonal glide
plane n' superimposed
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following they do not possess different local fields. Suppose
the components of the local magnetic field at one proton
located at (x,y,3) is H ,Hy,H . The anticenter at (4,2,%)

in the magnetic cell implies that the proton at (%-x,y,s)

will experience a local field the components of which are
ﬁ;,ﬁ; and E; where the bar indicates a negative quantity.

The two protons as well as the local field vectors are trans-
lated to (x+ %,y,%) and (x,y,z) respectively by the antitrans-
lation in the a direction. The local field components at
these positions are then E;,E},E; and Hx,Hy,H,. Thus only

two of these fpur protons experience different local magnetic
fields. A similar argument applied to the remaining four
protons leads to a similar conclusion, indicating that there
are in all only four proton positions at which there are
different local fields in the unit cell of P,2,/c.

The group Pac, the diagram of which is shown in Fig. 13,
also contains an antitranslation in the a direction.* There-
fore, the magnetic unit cell of this group contains eight
protons. These may be divided into two sets of four each in
such a way as to make those in one set completely independent
of those in the other set as far as the operations of the
group Pac are concerned. Let the components of the local

field vector at the proton position (x,y,z) in one set

*In the diagrams of the space groups P,c, Pg2;, Pyc and
Cgc to follow, as well as the group Pazl/c, the a, b, and ¢
crystallographic axes coincide with the x,y and 3 cell axes
with one exception. In the diagram of the group P_c, the c
axis is direected.fram.cell coordinates (0,0,0)to (§,0,1).
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Fig. 13. Diagram of Pac.
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be Hx,By and H: and those of a proton in the other set at
(x',y',s') be Hy, ﬂf’ and H) where the positions (x,y,2) and
(x',y',z') are related by the operations of the space group
le/b but are unrelated by those of P c. The existence of
eight different local fields is predicted by the group opera-
tions as shown in Table 1l where c,n, and t, represent a
glide reflection (reflection followed by a translation of
half the length of the magnetic cell in the ¢ direction), a
diagonal glide reflection and a translation in the a d}rection
respectively.

Similar magnetic field transformation tables may be
constructed for the groups Pazl and Pyc. Their diagrams
are shown in Figs. 14 and 15.



49

Table 11. Magnetic Field Transformations under

m -
Hy By y i
Hg Hz H,
x' J'o" x' 3 - Yf.3'+ b3 xf + .k - y',z'+ 3 x% £,
th Hx' Hx' Hx'
HY' Hyl Hy' Hy;
Hgo Hye Hye H’o

Figo 14. Diagrm of Pazlo
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Fig. 15. Diagram of Pbc
L O+ Oy e &: O+
. > : B
i % o
: > : L
O+ O+ 1 @+i @y | O+

For brevity, only the local fields at the proton posi-
tions belonging to one of the two sets of protons are shown
in Tables 12 and 13. The other set is obvious as in the case

of Pac.
Table 12. Magnetic Field Transformations under Pazl
 J [
E 21 21 t’a
X,Y,2 t -x,y+ %, -z l-xy+3%,3-2 x+3,y,s

Hx Hx Ex Ex
: i " Ry
H, H, Hy H,

Table 13. Magnetic Field Transformations under Pbc

L

E c , c t;

X, Y52 Xeh - ¥,z 4 # x.% - Y,z + % X, ¥ + %,2
: : ' .
. ; : E:
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The antitranslation in both the a and b crystallographic
directions in the group C,c leads to a unit magnetic cell
four times the folume of the chemical cell. The diagram is
shown in Fig. 16.

Fig. 16. Diagram of C,c

[—.b O-}::'!' Oi--p ’T .*

|
] T

O+ O+ o+ O+ kO.+

The sixteen protons in this magnetic cell may be
divided into two sets of eight‘each, again in such a way as
to make those in one set unrelated by the operations of
cac to those in the other set. As above, only the local
fields at the proton positions in one set are shown in
Table 14.
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Table 14. Magnetic Field Transformations under Cae

E c c n
X,Y0% X,5-Y,2+% x’%-‘Yoz"‘ 3 X+ *o%‘yo’ + %
Hy Hy Hy Hy
iy Yy iy %y
H, H, H, H,
) * \ Tt 1
- W t
X+ h,4-y,243 X, y+%,2 X+3 7,2 x+3,y+%,2
Hy Hy Hy Hy
A, Ay Ay iy
Hz Hz H, H,

Possible Magnetic Structures

Two possible magnetic structures with the symmetry of
the groups Pyc and Pg2, are shown in Figs. 17 and 18 respec-
tively. Tables 15 and 16 accompany the figures. Magnetic
structures for the two remaining groupsz6 Pyc and Cge are
illustrated in Tables 17 and 18. The first number in the
symbols in the left-hand column of each of the tables 15, 16,
17, and 18 designates one of the four magnetic moments which
belong to that particular family of ions which are all con-
nected by the group operations. The second number in the
same symbol indicates to which one of the three families
(1,2, or 3) the ion belongs. The copper ions in special

‘ﬁ2°°The structure suggested by W. Van der Lugt and N. J.
goulis (Physica 25, 1313(1959)) is permitted by the group
aCe
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Table 15. Magnetic Structure: P.c symmetry
Numbers in symbol Ion position Magnetic Ion in
at copper ion (x,y,2) in Moment  set
position magnetic cell Components number*)
1,1 ' 0,0,0 UxeUiyelly 1
1,1 $,0,0 ) o)y ety 1
2,1 0,%,% U)o U1yl 1
2,1 £,4,% Upgolyystlyy 1
1,2 .126,.005,.585  Upy,lUzy,U2g 2
1,2 626,.005,.585 Uy, ,Uny,U2g 2
2,2 .126,.495,.085 Uy ,Upy,l2g 2
2,2 .626,.495,.085 Ty, ,Upy,lag 2
1.3 37444995, 415 “3:'“3,’“3: 2
1,3 874,995,415 TU3x,U3y,U3, 2
2,3 037k, 0505,.915  u3y,U3y,u3, 2
2,3 e874,.505,.915 Usx,U3y,U3g 2

*) See section on x-ray data

Position (set number 1 in the right-hand column of the above
four tables) are not connected by the operations of the group,
for which the particular table is constructed, to those in
general position (set number 2).

If every copper ion which is linked to another copper
ion through a common oxygen ion is coupled antiferromagneti-
¢ally by a super-exchange mechanism to the other copper ion,
the resulting magnetic structure forbids an anti-translation
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Table 16, Magnetic Structure: Pg2, symmetry
Numbers in symbol Ion position Magnetic Ion in
at copper ion (x,y,%) in Moment set

position magnetic cell Components number

1,1 0,0,0 ulx’uly,uii 1

1,1 $,0,0 U xolyystyg 1

2,1 0,%,3 “lx,aiy,“lg 1

21 bbb Gxuy,By 1

1,2 0126,.005,.585 upy,u2y U2g 2

1,2 «626,.005,.585 Uzx,lUpy,U2s 2

2,2 37hy.505,.915  Ux,u2y,u2s 2

2,2 «87h, 505,915  uzy,Upy,Upg 2

1,3 «37h,4995, 415 U3xsU3ysUsy 2

1,3 874,.995,.415 U3x,U3y,U3g 2

2,3 0126,.495,.085 U3 ,u3y,lU3g 2

2,3 .626,.495,.085  u3x,U3y,u3z 2

in the b direction.
Paz

In such a case, the groups P,c and
, are the only possibilities. .
It should be noted that except for the fact that they
are not zero no use has been made in the above analysis of
the magnitudes of the local field vectors listed in Table 8.
In principle it may be possible to obtain a complete des-
cription of the magnetic structure by combining the known
local fields in the antiferromagnetic state with the posi-

tions of the protons obtained from proton resonance in the
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Table 17. Magnetic Structure: Pbe symmetry
Numbers in symbol Ion position Magnetic Ion in

at copper ion (x,y,3) in Moment set
position magnetic cell Components number
1,1 0,0,0 U] xoU1y,U1g 1
1,1 0,4,0 . B1xe Uy, Ty 1
2,1 0,%,% ﬁix.uly,ﬁiz 1
5;1 0,%?§ “1x'aiy,“1z 1
1,2 «252,.0025,.585 Uoxs U2y s W2g 2
1,2 0252, .5025,.585 Upy,lny Upy 2
2,2 0252, 2475,.085 Upp,uyy,lng 2
2,2 0252, 7475, 4085 Uax,Uzy,lUzg 2
1,3 <748, .2525, .915 U3xsUsysUsy 2
1,3 «748,.7525,.915 Eéx'53yviéz 2
2,3 oTh8, 4975, 415 u;x,iﬁy,u3, 2
2,3 <Th8,.9975,.415 Ujzy,uzy,VUsg 2

paramagnetic phase and the known erystal structure., However,
the work of Poulis et al. on CuCf, * 2H,0 has clearly indicated
that this program is extremely difficult if not impossible.
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Section III

Twinning by Merohedry and Reticular Merohedry

In u
| Two identical crystals (or irdividuals) are said to be
in twin relation to each other if they are joinod together in
some way such that the pair possesses an element of macro-
scopic symmetry which is not a symmetry element of either
individual. This element of macrescopic symmetry is the same
as that dealt with in erystal morphology. A plame of sym-
metry which relates two twimmed individuals to each other
(twin plane) must be parallel to a lattiece plane in both
individuals. A twin axis must be parallel to a lattice row
eommon to both individuals.
With rare exeeptions, all known twins ean be deseribed
in ene of four ways (known as Friedel's rules of tuinling.)27
l. The individuwals of the fwin are related by a
twin symmetry element which is an element of
symmetry of the latsice of each individual but
which is not a symmetry element of the erystal
(1.e., either individual). This type of twin-
ning is called twinning By norohodryf

. 27‘80.\tho review by R. ¥. Cahn,_Advances in Phys. 3},
363 (1954). '

* The term merohedry, of Greek origin, implies that

each individual of the twin has fewer faces than it would
have if it had the full symmetry of its lattice.

59
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2. The individuals of the twin are related by a
twin sylloﬁry element which is an elemeat of
symmetry of what is called a coincidence lattice
but which is not a symmetry element of the
crystal. The coincidence lattice exteads from
one individual to the ether witheut medifica-
tion but eonsists of enly scme of the lassiee
points of eaech. This type of twinming is ealled
twinmning by reticular (or lattice) merchedry.

3. The individuals of the twin are related by a
twin symmetry element whieh is almest a sym-
metry element of the latstice (i.e., a pseudo-
symmetry element of the lattice). This method
of twinning is therefere just an extensien of
the first method and is called twinming by
pseudo-merehedry.

L. The individuals of the twin are related by a
twin symmetry element which is almpest an ele-
ment of symmetry of a eoineidence lattiece.

This extension ef the second method is ealled
twinning by pseudo-reticular merohedry.
The formalism of the Heesch greups has only recently
been employed by Curien and Le cogroza te deseribe all of
the possible merchedry and reticular merohedry twin relatiens
in crystals the symmetry ef which is ecompletely deseribed by |

28, y, Curien, and Y. Le Coerre, op. cit.
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the position of the iens. These relaticns are called twin
croupe. :

Although twinming in the antiferremagmetic crystal NiO
has been oboorvodf, se far as is knewm te the auther no ene
has yet deseribed the possible merohedry and retisular nero-A
hedry twin relatioens in antiferremagmnetic erystals. These
twin groups are sonstructed and listed in this seetion. A
total of 177 merehedry twin groups are deseribed; of these,
35 are the same as the 35 merehedry twia groups feund by
Curien and Le Cerq while the remaining 142 gronéo are mew.
In additien, 51 reticular merehedry twin groups are listed;
of these, 11 are the same as the 1l reticular merehedry twin
greups feund by Curien and Le Corre while the remaiming 40

Eroups are new.

Iwipning by Merehedry
a. Ordinary Lattices

If the symmetry of a corystal is lower than the symmetry
of its lattiee, twinning by merehedry is pessible. This is
because there are then varieus possible erieatations eof the
atems of the erystal relative te its lattice. A pessible
twin eperation 15 an operation which relates one of the pos-
sible orientations of the atoms to another. These operations
are the point group symmetry operations ef the lattice which
are not contained in the point group of the erystal. But

V?Di-eunsoq at the end of this section
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what are the point greup symmetry operations ef the lattice?
In ordinary crystallography, these operations cemprise the
highest point group symmetry possible for the partieular
symmetry system to whiech the lattice belongs (This is ealled
the holohedral point greup.). Fer example, for the meno-
clinie lattices, the holohedral point group is 2/m. PFor eur
purpeses, it is helpful te think ef the holehedral point
group as resulting from the faet that the symmetry ef the
meneclinic lattiees permit the simultaneeus existence of a
two-fold axis (er twe-fold serew axis) and a plame (er glide
plane). These twe eperatiens also imply a center of sym-
metry and hense the group 2/m eentains 4 elements. Consider
now a ocrystal which has peint symmetry 2. Aceording te the
above, it is therefore possible from the stamdpoint ef sym-
metry for She crystal to twin by merokedry by either a twin
plane or an inversien center (it will later be shown that
these two are equivalent in this ease). Curien and Le Corre
express this fact by using the Heeseh group 2/m' which they
eall a twin group. The twin group therefore expresses the
peint symmetry of the crystal (2) and alse identifies the
equivaleat twin eperatiens (n'. and 1'_) through t he use of a
prime (see Table 9). In the next twe paragraphs the netation
in Section II fer the Heesch groups will be used to express
twin groups. However, a prime will enly denete a colored
eperation which may er may net be a twin eperatiea. A twia
operatien will be these eperatieas not contained in the peint
group of the crystal but which are included in the "helehedral®
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point greup. In all werk whieh fellows the next two para-
graphs, an asterisk will be used to explieitly indisate twin
operatiens and the twin greup notation will be ehanged. Fer
example, Curiea and Le Cerre's twin group 2/m' abeve will be
deneted by 2;P;. ‘ |
Suppese that the peint greup ef a erystal under censidera-
tien is 2#. The lattice of this erystal is the same as the
previeus erystal, i.e., an ordinary uncelered lattiece. How-
ever, as the list ef Shubaikeov greups show, the uncolered
lattices of the menoceliniec aystem permit the simultaneeus
existence of eembinatiens ef celered axes with eolored amd
uncolored symmetry planes which result in twe "helehedral®
peint greups as far as the erystal with peint group 2' is
cencerned. These are 2'/m and 2'/m'. These twe greups imply
twe po-sible_twin groups and therefere twe pessible distimet
twins. The equivalent twin eperatiems implied by the first
greup (2'/m) are an uneolored mirrer plane and a colered im-
versien eenter, while these implied by the seeend greup are
a soelered mirrer plane and arn uneelered seanter.
Let us return te the example where the erystal has peint
symmetry 2. If the erystal is a type feor whieh its symmetry
is eompletely expressed by the pesitien ef its iens, then the
enly twin group which exists is that found by Curiem and
Le Corre, discussed adbeve. If the crystal pessesses some
other characteristie (such as magnetic moments) se that it
belengs te a general catagery of orystals (sueh as antiferre-
magnetie erystals) the symmetry of whieh can be deseribed by
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the 8hubnikev group theory, then there exists the pessibility
of eelored twin operations even though the peint group ef the
erystal is uncelered. Proceeding then, in the same way as
in the case of point symmetry zf(uhorn the possibility of
celored twin operations must obviously be eensidered) leads
to another "holohedral® point group 2/hf. This twin greup
implies that the eryatil can twin by a ceolored plane er
equivalently by a eclored inversion ceater.

It is therefore evident that the peint symmetry ef the
lattice must be medified as deseribed abeve in extending the
idea of twinning to types of erystals subjeet te the Shubnikev
theery whese space greups are based en ordinary lattices.

b. Blaek-White Lattices

For twinming in black-white lattices there is always
only one holohedral peint ;rohp. This greup is just the
gray Heesch group which may be eceamstructed frem the erdinary
(or uacelered) helehedral Heesch group by intreducing the
element l', For example, 2/-*2/::1'_.

Iwinaing by Retieular Merehedry
When twinaing by reticular merohedry takes place, the

lattices of the twe members of a twin are not parallel in
erientation. There exists, hewever, what is called a ceinei-
dence lattice which ecensists of seme of the lattice peints ef
both individuals and ceatinues frem ene individual te the
other witheut medification. The remarks made abeve eencern-
ing the "helohedral® peint greups of uncelored (or erdinary)
lattices and the holehedral peint greup ef black-white
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lattices are also true for uncolered and black-white coinei-
dense lattices.

a. Ordinamy Lattices. A coinecidence lattice may bde
defined feor rhembeohedral and cubic crystals. This coincidence
lattice c¢onsists of seme of the lattice points eof the rhembe-
hedral lattice for a rhembohedral crystal and some of the
lattice peints of the cubie lattice for a cubie corystal. Fer
rhembohedral crystals, the ceincidence lattice is enly those
points of the rhombehedral lattice which generate those
lattice peints deseribed by the symmetry of a hexagonal
prisu. The hexagonal prism and the rhembehedral lattiece R
is shown on page 20 in the "The International Tables for
I-Ray Crystallography® and redrawn for convenienee in Fig. 19.

Fig. 19. Hexagenal Prism and Rhembohedral Lattiece R.
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The hexagonal prism is just a multiple ef the C lattice of
the hexagonal system in Fig. 5. Hence, possible reticular
merehedry twin operatiens for rhombohedral crystals will be
peint group operatiens contained in the hexagonal system
which are not symmetry operations of the rhombohedral crystal.
For cubic crystals, the ceincidence lattice consists ef
only these points of the cubic lattice which generate the
lattice points described by the symmetry of a hexagonal
prism. This hexagonal prism is the same as the one generated
for rhombohedral crystals and arises in exactly the same
way, i.6., from a rhembohedral lattice. The origin ef the
rhombohedral lattice in cubic crystals is clear when it is
remembered that cubic lattices are just special cases of
rhombehedral lattices. As an example, cemsider the face-
centered cubic F lattice. It may alse be described by a
rhombehedral primitive cell showm in Pig. 20.

Fig. 20. The Rhombohedral Primitive Cell of the
the Face-Centered Cubic P Latsice
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The operations available for possible twinning by reti-
cular merohedry in c¢ubic crystals ére therefore those opera-
tions of the hexagonal system which are not symmetry opera-
tions of the cubic erystal.

Sinee« there are four space diagonals of a cube, the
rhembohedral primitive eell e¢an be eriented in four ways.
This implies four pessible orientations of sha hexagonal
lattice with respset to the cube. Then a possible retieular
merchedry twin operation ean bes oriented in feur pessible
directiens. - The six-fold ratation axis for sxample can
have the. directien of any ene of the four space diagemals of
the cube. '

b. Black-White Lattices. If the rhembohedral lattice
in Fig. 19 is body centered with a black lattice peint, it .
becomes the black-white rhombohedral lattice Ry in Fig. 5.
The hexagonal prisa then has a e¢elored translation in the
¢ direction and is just a multiple of the C, lattice of the
hexagonal system in Fig. 5. This implies that the ceincideace
lattice for rhombohedral crystala with laftico RI consists
of those points of the rhombohedral lattice Ry which gene-
rate the lattice points of a hexagonal prism with a eoclered
translation in the ¢ directien. The possible operations of
reticular merohedry twinning for crystals with lattice RI
are then those point group operatiens compatible with the
symmetry of the black-white hexagon whieh are not point
symmetry operations of the rhombeohedral crystal. The helo-
hedral point group of the black-white hexagon is 6/hn1f.
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As mentioned above, the lattice P of the cubic system
is a special case of the lattice R of the rhembohedral system.
Similarly, the lattice PI of the cubic system is a special
case of the lattice RI' "The only other black-white lattice
in the cubic system, F,, is also a special case of Ry. This
is shown in Fig. 21.

Fig. 21. The Rhombohedral Primitive Cell RI of the
Face-Centered Cubic Lattice r'

For cubic crystals with black-white lattices, the coin-
cidence lattice is therefore the same as the coincidence
lattice for rhombohedral crystals with lattice R;. The
possible reticular merchedry twin operations are thereforse
those peint group operations compatible with the symmetry of
the black-white hexagon which are not point symmetry operations
of the cubic crystal.
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Merebedsy Twin Notation

Let a twin operation be denoted by qf. This operagfon
may be thought of in the following way. The operation q is
kthe operation which transforms one individual of the twin
at position #1 to the other individual at positien #2. The *
then colors the individual at position #2 black while the |
other individual is left uncolored. If ¢t is this coloring
operation we may write qf: tq. If the coloring takes place
bofo:o the operatien q, tho;rosult is still the same, i.s.,
q*: qt, or t commutes with q. Since there are only two
colors, t2= E. Thus t has the same mathematical properties
as the reversal operater (see Section II).

A twin group ét is defined as a set of elements of the
| general type {pi,q;}. satisfying the greup properties with
the following structure: the set {pi} is a subgroup of index
two of g, and {pﬂEH where H is the Heesch group of each of
the two individuals of the twin. Simce H is an invariant
subgroup of L¢» the group gy may be written as

&= H,qfﬂ or
‘t= H,qu . :

where for example, the elements in the left coset qfn are
q*g,quz, eee o, and where q*pis q;. A group of the type &
is therefore constructed from H and ene element q not in H.
Since all of the p; belong to H, all the twin elements q;
in g, are equivalent. That is, they all imply two individuals
of a twin related to each othear in exactly the same way.
Therefore, the group g, so defined expresses the symmetry
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of each of the two-individuals ef .the. twin.and.enumerates a
possiblg twin operation as well as all pessible.twin eopera-
tions equivalent to this twin operation. In order to make

the notation as explicit as possible, the group g¢ will be
written in the general form H;qf'

_Except for a lli;ht modification for cubic crystals
which will be discussed later, the notatiea employed for
twinning by reticular merehedry is the same as that used
for twinming by merohedry.

Con of the Twin
The problem of finding all of the possible merohedry
and reticular merochedry twin groups may be breken into two
parts:
l. The construction of the set of point groups
{gp} from which a set of point groups {‘t}
may be selected where the set {‘t} are those
greups which describe all of the possible
point symmetry twin relations.
2. The selection of the set {gt} .
1. The Shubnikov space greups which are not gray may
be divided into three general types: 81,82, and 33. To
describe these, let Tj represent a pure translation operatien

of the symmetry. Let A, represent any one of the ether
operations of the space group symmetry.
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The three general types may then be written symbelically
in terms of the types of eperations they contain:
3= Ai,Ti
S5 :Ai,A3,11
8= Ai,As,ri,'r;
where the identity E may be theught of as ene ef the opera-
tions of the set {A,} .
The peint greup eperation a; cerrespeandiag te A; may be
feund by replacing the translational part, if any, ef ‘1'
with the identity E. The peint group eperatiens cerrespend-
ing te AB,T& and Ts are then ‘3"' and lf respectively.
Consider new the Heesch peint greups cerrespending te
greups ef type 3S,. These groeups are the well knewn 32 peint
greups any ene ef which may be written as {ai} o Therefere,
any peint greup belenging te the set {gp] whieh eould des-
cribe a twin in a crystal with space groeup type S1 can cen-
tain enly twe kinds of operatiens: a, and a; where a; is
a pessidble eperation which carries one individual ef a twin
edifice inte anether. This greup type may be written as
{ai,a;} . Greups of this type are isemerphic to the 58
black-white Heeseh peint groups. Greups ef the type {ai,a:}
are net censidered as pessible twin groups sinee they eentain
the eperatien Bf. These are isemerphic te the 32 gray Heeseh
greups.
A Heesch group cerrespending te a greup ef type 82 cen-
tains enly eperatiens ef the type a; and 83 and may be writtea

symbelically as {ai,aS'}. Therefere any peint greup in the
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set { gp} whieh could describe a twin in a crystal with space
group type 82 can have only opsrations of the type: ay ,as,a:
and a}_"_'. There are two general kinds ef these groups; one
centains a subgroup of index two of the type {a, ] with the
rest of the operators of the type 03‘_'. A group ef this kind
may be written as {ai,a.;"_‘} o There are 58 of these since
they are isomorphic to the 58 black-white Heeseh groups. The
second kind of group is that which -has as a subgreup of in-
dex two one of the black-white Heesch greups. This kind eon-
tains all fowr possible types of operations and may be writtea
as {ai,as,a;,a;'_‘ o There are 111 sueh greups. These greups
are constructed in the following way. Start with the Heeseh .
group {at,a:’} o Find all Heesch groups for which {a.,_,t:"}ia

a subgroup of order two. In these groups place an asterisk
ever those elements which are not contained in the original
Heesch group {ai,as} .

Finally, consider those Heesch groups corresponding teo
groups of type 5;. Any one of these may be written u{ai,aﬂ.
Therefore, any point group in the set {gp}vh.ich ceuld describe
a twin in a crystal with space group type 33 can contain only
operatiens of type ‘1"1 ,a; and ai""; that is, groups which
contain E' but not E*. The following argument shows that
the only possibls groups of this type may be written as

1]
81 'ai.a;pa;*y
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l. According te the abeve, every sonceivable group
must centain operatiens of the type &, and ai. Sgppoeo those
of type a:,'; are alse in the greup. Then B"a;: as*. Since ne
other types of operatiens satisfy the group requirements, the
eperatiens a;f abeve may be written as the special type ‘3*'

2. Suppese we start with enly the operatiens ‘1"; and
33*. Then :fas*: a; and again ne ether operatiens satisfy
the greup requirements.

The greups of type {ai,a;,a;,an} may be censtructed
by intreducing the element lf into the grewp {ai,a;'!. There
are therefere just 58 of the groups {ai,ai,a;,asfi .

The fellewing table summarizes the abeve”.

Shubaikev Space Cerresponding Heeseh Greup Types

Group Type Point Greup Type in the Set {‘p}
32 *.58
O {ag} 8 {25025}
S, AgAy,T, {ai,a'} {ai,as*}”:{ai,as,a:,ai‘}m
ts, Al fa 8,172 {ai.a’;.a;.a;*}sg ,

Specifie and general exnnplba of the multipliecatien
tables fer these groups in the right-hand column abeve, are
shewn en pge. 74«

Frem the above, the set {‘p} contains 285 greups. The
original 90 nen-gray Heesch groups are listed in Table 19 at

§§ }“;aonetes N groups of type { }.

T Included in §3 is the group P 1, even though it cen-
tains no elements '
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the end of Section III along with the group types {ai,agz .
{ai,asf}-and {ai,as;gz,a'*} derived from theam.

In Table 20, the groups of type {al,ag,a;,asf}aro
listed.

The notation used in writing the aynboil for greups in
the set {gp} (except for those in Table 24) is the follewing:
the Heesch subgroup H of index two is written followed by a
semi-colon after which is written a symbol ¥* or M'* which
represents respectively either an uncolored or colored twin
operation contained in the twin group.

2. The first step in the selection of the set of poi-
sible twin greups {;t) from the set {gp} may be accomplished
by choesing fer each Heesch group all these groups in {‘p‘
for which that Heesch group is a subgreup of order two. This
listing is shown in Table 21.

The merochedry twin groups corresponding to each Heesch
greup may be found from the above listing. They are those
groups to the right of the Heeach group which beleng to the
same symmetry system as thaﬁ particular Heesch group. The
merochedry twin groups are listed in Table 22,

There are twe kinds of merohedry twin groups for crystals
with Heesch groups of the type {ai} o One kind has the form
H;Mf where H is the uncelored Heesch group {ai} which repre-
sents the peint symmetry of any individual of the twin edi-
fice. These twin groups are the same as found by Curien and
Le Cerre. The other kind has the form H;M'* where every twin
operation is a colered operation. R
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The merchedry twin groups for crystals with Heesch
groups of the type { a, ,a;} are of only one kind but have
symbels of the form H;M* and H;M'* where H is the black-
white Heesch group {as,a;}. The ferm H;N'* has been used
rarely and only for the purpese of aveiding identical sym-
bols for two different groups.

The. merchedry twin groups for crystals with Heesch
groups of .the type {a;,a;}| arise from twinning possibilities
in black-white lattices. These twin greups have symbols of
the form H;Hf where H is the gray Heesch greup {ai,a;} .

It is interesting to note that in this case for every possible
twin operation l(' its colored companion M'* also exists in
the twin group.

The reticular merohedry t.\dn groups for rhombohedral
crystals are listed in Table 23. The classification of these
groups by the type of their Heesch subgroups of index two is
the same as above for merohedry twin groups. For example,
those groups of the form H;Lf where H is an uncolored Heesch
group are the same as found by Curien and Le Corre.

The possible reticular merohedry twin groups for cubic
crystals are the same as those for rhombohedral crystals.
Following Curien and Le Corre, the cubic case is distin-
guished from the rhombohedral case by writing in front of
the rhombehedral twin group that cubic group which contains
the rhombohedral Heesch group as a proper subgroup. These
groups are listed in Table 24.



77

Iwins in antiferromagnetdc NiG

The only antiferromagnetic twins which seem to have
been studied to date are those investigated by Roth?’ and
Slack’® in N10. This crystal is cubic abeve the Néel tempera-
ture of 523°K. Below this temperature the cubs contracts
slightly along one of its four-bedy diagonals. The symmetry
of the ions then becsmes rhombehedral with a rhomhohedral
angle x=90°,' for a multiple rhombohedral cell comtaining
LNiO. The magnetic moments associated withthe Ni ions form
ferromagnetic sheets which are perpendicular to the centrac-
tion axis. If the contraction axis is [lll}, the sheets ars
parallel to (111). The spin direction is then [110] and the
spins in adjacent sheets have opposite senses. This cell is
shown in Fig. 22 (Fig. 1 in Roth's paper) where the open

circles represent oxygen atoms.

Fig. 22. Antiferromagnetic Structure eof NiQ
{o01]

¥[100)

ZLW. L. Roth, J. of Appl. Phys. 31, 2000 (1960).
30.G, A. Slack, J. of Appl. Phys. 31, 1571 (1960).
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The *T domain walls® which are the observed twin planes
for the antiferromagnetic twins are restricted by the con-
ditions given on page 2002 in Roth's paper:

a. "The ferromagnetic sﬁoots in adjoining domains
intersect along a common magnetization direc-.
tion and

b. the domain wall contains this direction and is
parallel te a mirror plane in the original
cubic crystal.”

Two examples are shown in Fig. 23 (Fig. 5 in Roth's paper)

Fig. 23. T walls in NiO

In an attempt to apply the twin theory developed in this
section te these NiO twins, three general pessibilities must
be investigated:

1. Twinaing by merohedry
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2. Twinning by reticular merohedry

3. Twinaing by some ether method

1. IDwinpning by- Merehedry- The point group symmetry of
each member of the twin (in this ca;e each domain such as
that shown in Fig. 22) must first be found. This can be
dene in this case since the magnetic structure is knewn.

The space symmetry of the ions is rhombohedral, howaver, the
magnetic moments de net have the three-fold symmetry required
by the rhombohedral cell. This implies a triclinic Shubnikev
group symmetry. Thereforo,'tho Heesch point group symmetry
is also triclinic. Sinece no triclinic lattice contains a
symmetry plane, the twin planes in NiO are net merohedry

twin planes.

2. Iwinning by Reticular Merohedry This pessibility
is also ruled out since this type of twinning dees net take
place in triclinic crystals.

3. Twinning by Some Other Methed The twinning in Ni0O
can be described by twinring by pseude-merehedry. Pessible
pseude-merohedry twin planes are planes which are parallel
to planes which are almest planes of symmetry of the lattice.
The planes which are almest planes of symmetry of the anti-
ferremagnetic lattice of NiO are the planes of syﬁnotry of
the cubic lattice F . This lattice centains anti-translatiens
along all three edges. If the rhombohedral distortien is
neglected, there are only two planes compatible with the
lattice F, which are planes of symmetry of Fig. 22 and which
also satisfy the requirements a and b above. One of these
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is an antimirreor plane parallel te (00l) and the other is
an antiglide plane parallel to (110). These planes are just
those domain walls shown in rig; 23;f |

If the magnetic axis 1|Achanged to any ene of the ether
ebserved directiens shown in Table I, page 2002, eof Reth's
paper, there again exist just two planes similar to the twe
feund abeve which may be ehosoﬁ from F, and whieh satisfy
conditions a and b abeve. These planes are the demain walls
listed in Table I under that particular directien ef the
magnetic axis.

*#he peint greup equivalent of the glide plane will
also produce the ebserved twin.
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Table 19. The 90 non-gray Heesch Groupa
and the gerived *

Group Types {810 aJ} {as, aJ } and (a,, aJ, I 31 }

Group Elements
1 E The symbol definitions given
1 E,C below are the same as those in
l;C* E, c* ' reference 1Q
1 g ¢ Ly 13, 138, L, 170, Lg, LG
1;0'* E, Cc'* are rotations by 180, 120, -120,
2 E, L, 90, -90, 60 and -60 degrees res-
1313, E, L3, pectively. S;, S32, 5, S7%, Sg,
2’ E, L;z Sgl are respectively rotations by
13132 E, Ly, 120, -120, 90, -90, 60 and -60
m E, Py degrees together with reflection
1;9; E, P; in a plane at right angles to the
m' B, P; axis of rotation. The inversion
l;P;* E, P;* is C and P the reflection plane.
2/m E, Lays P yo The subscripts x, y, 2, Xy, XYV,
2;P; E, L?y’ Py’ cA on L; and Si indicate the direction
m;L;y E, Py, L;y, cf of the axis of rotation; the same
I;L;y E, C, Lﬁy, pX subscripts on P indicate the
2/n' E, Loy, P ' direction of the normal to the
2;P;* E, L.‘_,y P;*, c'* plane of reflection.
m';L;y E, P y' L2y c_ The subscript lorll indicates
I';Lgy E, c' L* p'*‘ that the axis of rotation through

2"
180° or the reflection plane is

perpendicular or parallel to the
main crystal axis of three-fold or

higher symmetry.
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1tk

-1
Log

3122]_. La‘. Lg}'o L;ZO 31‘;-1

3L2‘.0 Lé:’ I‘684 9 Lil’ 31’51

* (7

o L2g

Lég, Les', Lag, 3L31, 3L3%

-1 - -
Lyg, L2g, Sgg» 36%» S3ss 33%»

- * 1% _* *
83%’ Pz’ I‘6” L6i,312$o 362’

Lgss LE:, S&g» S

Sgx, C, Lés, Lt

-1
z9

*x

1%

-1 L E 3 -
83’. P” L6” ’ f 2

-1¢ *

Sgz » C s S350 S
- |

L6}'o L2g» 3;::

L35» Logs Sgqs 3

~1%
3 »

-]k
s31*,

-1¢
6s .»

2k

L2g»

* 1%
6z »533s S3

*
» L230 S;zo
P, Lz, LK%f. Lézo Séz,

™
Sz

* 1%
Pg» Léss

*

Pg,

L
33’, S

- 1+
L3£’ Logs S63s 36%'*’ 8;:,

-l?
sgt', ¢

=1
332.’

] E - *
Pza Léso L6%¥D LZI’ S

Sézs

-1t
33 o

» 1k % T
» Lggs L6} » L2gs S3g,

%
6z »
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6'/.' E, L},: L;io 36.) 33}. C, Léz. -}'.n L;’D 8539

..10 '
533 »
- - '
331‘6: E, L3g, L3i, Sgs» 8612" c, Lé: -1'*’ LZ:' 832’
-l'* %
S3z. » Pg -
x ] -1t o
3'336’ E, L}za go 3.33: 832 .» Pgs S6my. 36%’.;’ cfo Lé:o
Log s 3% |
* R - -1% *
6'386., E, L3g, I‘B%’ Lggs L 1’0 I‘;’o 865: 361. ’ e ;’o
g-1'* pr*
3g. * '8 1
6mm E, Lgg, Lg.. L33. Lzzo By
3 -
63h, E, Lygs i’ Lggs L6s’ L2s» 6P“
z - *
3-;1.;, B, Lygs Igio 3R » ngo Lgs'» L2gs 3P
&f.' E, x?,' " %j' Lg}’ LZS’ 6P‘:
6;P,',* E, Lyg, 19,. Logs Lgss L2ss ORI
1% %
3’ ’I‘6z E, Lyg» z’ 3R, I‘z:' 1‘6% » L2g, 3"
6'n'n E, Ly, .- 3By s Lggs Lgg » L2gs 3Ry
" -1'* "% ‘e
3‘31‘63 E, Lyg, 3. 3Ry, Lggs L6z » 1'23' 3Pll
~11%
wm'E B, Ly, 135, 3R, o Ls,. Lgs > L23
]
6" ;e E, Lyg» I'Bs’ Legs I‘t.'» » L2gs 3By » 3R

6/mm E, Léz’ L6:‘ Ligs L 3:’ Logs 6L21s Sggo 863’ 3:’

_ Bz' 6Pll’ z' ¢ 1+
6m2;Lg,y E, L}l' I’38' 3"21'1238' 833' 3Pl!' s’ I‘6s' Lgg o
- c*
,' 31‘21- s6v Ses v 3R, u ’

6/‘;1'51 E, I'3z’ L33' 1‘6;’ 1'63' L2:' 863’ 36:' 332, 338’
Py, O, 6lg,, 6B
3n; L65 E, I'3z’ l‘;:: 31’2.“ §6Za 2620 *BP“, C, Lgro LE%*,

125 31'2;: 339 83s : 3%, Pg 1%

62333;‘ E’lb’gp"%‘ Lﬁzi Lz;o Logs 61'2.\.0 8639 Sés » S;zo
". 8’

6-3335 E L3gs L 3?* L6gv L639 Lags OBy, 6%-1’ 862’ g}*o
8330 3383 - ¥
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E, Laza L;%: 3L21v 3330 S;i, 3ﬂ|o sz Lazo LG%'.
] \ -

ngo 3L210 saso s6%f9 35:0 c'

E, L3zf L;:o 3Lzlo 33’9 S;io 3R, Py, Lg:o Loz »

Log, 3l21, Sés» SE'*, 3%,

B, Lygs L33, 3Lays S4ss 55 s

* %
3R, P,

Lgs

%

c'*

) \] *
3&(: C f ] 8330
-] 0% * %k
& s Loy, 3L2)

~10%

-1%
33' R

Eo L3$’ L;t. 3ﬂ|v SagO 33%’. 3Léln Cf, 3L;Lo S;zo

-1%
g.»

P:o Lé:o Lé}’*, Lé:o 35;*

- - *
B, Lyy L3gs S30 833, Pas 3131, 3By, 3lpy, 3R
, 135, sb, sgh'*, o

‘% -] t%
Lggs L6z

- ' =11
E, Ly,, L33, 3Ly, Lggs Lz »

*x % (F) %k
Pg, S¢gs S6z. » 3B » 33:’ c

<1t

’

L2

E, L., L35, S350 S3is Pyy Logs

-1
365,’

E, L3z, L3i, 3Ry, Ly,

331 , P3,

16,

' » x "k 1%
', 313,, 8%, 3138, 38
' * *
L2s, 33:. 3L210 3320

TR % Y
5132, sil o', o

* -
Z9 3L5l’ S3s» 33}*’

-l?
Lai ’

]

ngb sézo

=1 -1 -1 -
E, L633 L@,a Lj?o LB:' ngn 8650 3630 3350 33%.

E, L3s, L33, Ls

Pz, C, 6L
3,05
E, Lgy 13
ng' sgll
E,

35%,1 Pl»

» 6Py

S

3 _Y6g2
-]l E

S33*, Pz

1,

S S
3z0 3
Sg3*, ¢

*
9

*
¢, 6Ly}

3122, 3B,

3L;,, 3R*

iBs’*Lsi' Lego Lgi' L2gs OF,

]
\ ?

*
S6l’ S

]
%n'izo 3%é1- 3Ry» Lzzo Lég »

=1%
6z »

- =1 -
75 L6%o Lags Segs S6zs S33, 33%-

53%.,2. 33&; 3Léln LZ,. LE%*,

-1%

*
S3gs

- -1 - *
E, L3go %o Lgg s L6}o Lags 6L510 szgo 36%*v 8330

=1% %
333,' P:’
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6/h'n'
62; 868
5"'°L6z
6'n'2;L,
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LI
6m n ’LZL

9%

E, L3, "w 310 Seas sa» 3By € Lggs LGz

L;z' 3L21' 338’ 35 " 331' s

E, L}, L;i» 3L210 S6gs 33:. 3500 c, Lé:’ -%ffo

L2z, 31215 338' 35%'*’ 3R %, P

E, *LBz' L;%’ 363’ 3650 c, 3h|’ 3L21’ BL;L’ 33: ’

Lgss Lga'*s L2s, 852. 53", P;f

E, LBS’ Lsz’ 3%!’ 33' 3- " 3L21' ;' 3L;&o szz’

Sgz s C%s Las s Légs Lzzo 3R, "

E, LB!: L3zo 3L2;, 33:: SBi ’ 35l- on Sézv 33
l’ c L6:o %'*a Lézn 3L21

E, LBz' Laz’ 3L21' L6zo L6: ’ Léz' 3L;L' 3280

gi*: 3!1’ 33:0 -%'*0 33; ’ ;*

E, L330-L§§0 s6ga sgio c, L63: L6g » Lézo 8;’,

353s Pgs 3134, 3R), 313}, 3R
E, L3gp LS}. 3ﬁ|. Lazo 6%'. Lézi 33:' 3L;19 szzo

- * i -
sga*s 7, 3151, 833, 8337, Pyt

-l -
E, 1L330 L339 L6z’ L6;a ngo 6L21: Sézo 35%7. 858:
'
832 ’ 6%!0 s C
<1t
E, LB:' fgz’ L@zt L6:0 Lzzo 6L, , 863' s61 *
333’ 35% 1 6&[ 4 8 ’ c
E L3g» L320 3L210 séza 86% ’ 3“"
LZs' 3L21'18320 333 » 33:*0 Ps 1%
3' L3zo szo 3L21a 333’ 3%5 ’ 3%.9 on L6z! ng ’
' 3z' LB ’ L6zv 18z, L2s, S6xs SB',
Pg’ c . 61'21’ 6P'* %
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E, L3gs LBz’ L6z’ L6z' Lag» 6ﬂl’ 6L21’ 3 ” sk
%
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Syze S33 s Pg s G

%
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g1

33:' 3z »



3?'2f=LZs

62" 7y

6/hf;Pﬁ

23;32

23

m 3

23;82*

23;P*

43m

13n'

23;p'*
o1 ¥
23;L;,

| 23:LL*

43

hf3

95

B, Lygs L35, Leus Lgks Logs 6F1s 6Ly, Sq
S3zs 533 » Py» C

E, Lyg, L33 Lggs Lgss Logs 6Py 6L3, 861,
S300 S3a 7 Pt €™

E, L3y, L3L, 3Ry, 8¢5 See s 3L20s €', Lég,
Loy, 3BY, 313%, si2, s3i'*, pi*

E, Ly, L33, 3R, 8}, 833, 3121, Py, L,
13,, 387, 3L3%, s¢y, sgi'*, c'*

E, L3, L35s Lggs L85, L2gs 6121, 6B, Sins

'k -]tk "k 3k
33:' g. Ps" c

E, 1sg, .%:_§6t: in. L22» Séz. 33%?: 3583
]
Pg, C', 6By, 6L51

E, 3Ly, 4l, AL3t
E, 31,p, u}v -19 L3¢, ‘*3310 3P, C

E, 3L, b3, bL3L, 48§, ksgl*, 3p*, c*

E, 3Lz, A3, 4L3Y, 4S¢, 4G ', 3¢', c'
%

- *
» 3Ly, kly, 4L3%, 4sg*, asgl'*, 3¢, ¢

» 3L2, "‘J'3a u;l. 6P, 38y, 331‘;1
» 3Ly, Wy, 4L3%, 6P*, 38}, 35"

E
E
E
E, 3Lp, bl3, kL3 , 6P', 38;, 331"
E
E

s SLgs Ay, LT, €2'%, 33, 3t

» 3Lz, kL3, ALY, 3L, 31, 6L
E, 3Ly, ALy, AL3°, 3L}, 3L, 6L
E, 3Ly, 413, AL, 31, 3131, 6L

E, 3Ly, ALy, 431, 313%, 311'%, 6p*

sgt’,
sgs'*,

Lgi*,



zbn:LL
nf3;sz

h'B;SZ

E, 3L2, WLy, 430, 3Ly, 3171, 6L, 3sy, 38,

4Sg, kg, 6P%, 3P%, C

1%

96

E, 3Ly, 4y, 4L3%, 31y, 3171, 6Ly, 33, 3SR,
434, 4G, 6P, 3P, C

E, 3Ly, ALy, 43,

613, 4Sg, S

3sb; 3s;t, ep, 3L,

’ 3P

-1%

) A

E, 3L,, 4L3, hL3 486, »sgt, 3¢, c, 3L4, 3Lzt

6L2, 33a' 3331*

6p*

E, 3Ly, bl, u-;‘. 3L,,. 3:.;1, 6L,, 38,, 3s;1',
, 3P',

43¢, Sgl',
E, 3L2, bLs, LLB , 3L4, 3L;1. 6L,, 334 . 3sh

usgT, 4sg , 6P"%, 3P', o'

6p'

1%

E, 3L,, aLB. LL§ , 4Sg, 4sgt', 3p', c'
Lgt*, 613, 38*, 33;1'* 6p'*
E, 3Ly, kL3, 4L3%, 6P, 35}, 38‘1'. 3Ly, 3L71%,
6L3, 436", 4331'*, 3p'*, c'*
E, 3Ly, 413, 4L3 » 38#’ 38# » 6P, BLk’ 3Lk »

6L20 h86’ hs-l'o 3P

. 3L,

1%

- - "E
E, 3L,, 4Ly, 4L3L, 38,,. 3s;t, 6p, 31, , 3Lp- T,

6L£*, 538* 4831'*, 3P'* '
AL;I 43;, 4Sgl', 3p',

E, 3L,, AL3

38

-1%
L

6P b 31‘# ’ 31“.‘

E, 3L20 “L3o hL3
6p”,

43g", WSE

1%

*, '

c'*

-1t% "3k
6L2

, 3Lh’ 3L;lv

'*

6Ly, 38;

c', 387,
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RN A, W3, 436, 433, 3, c, 3L, 311,
-l?®
v 61'2’ 381’, 381.'1 6P .
”;L[, E, 3L, ugn u'j L3¢, wg » 3P, C, BLLJ
", e1z*, 3s.%, 38;1 ¥, 6p'*
we'ssg B, 3Ly, ALy, ALY, 6F', 33, 33;1', 4Sg, 4Sgl*,
BP*’ c*’ 31.‘"*. 31';:1'* 6L2
4'3;8% E, 3Lz, Alg, 5%, 3L, 3L ', 6Ly, ASg, 4SZE*,
3p*, c*, 35;*, 3571, 6P'f'f



98

Table 20? Groups of Typs {ai . a;, a;, 33*}
Group Elements ‘ '
1';c* E, ¢* &
' % *
1 ;Lo E, Logs & *
' % * ‘
1 ;P) E, Py, &'
v % x* %
21,?{ E, Ly, iy, c*, &
ml' ;Lo E, Py, Laos C'p &
=1 x ok
11_;1.2,‘, E, C, Ly, Py, & °
' % * %
21 3Lay B, Logs Loxs L2y, & *
21" ;p* E P*, P, & 1
% x 1 Lzs. *x’ z' ” ‘
-1' ;L;z E’ Py’ Lz’. Px' & ' .
* * %
2221";PY  E, Ly, Lay, Ly, Py, Py, P3, C*, &
* * * *
-1'31'2: E, Lyg, Py, Pyo Loxs Lzyo P:,‘C &Y
' x %
2/ml ;Lgx E, Lyg, Pg, C, L;xo L;yo Px, Pyv & !
* 1%
21.3@: E, Logs Lygs L WA |
% - * % *
41'.31'21: E, Ligs Lk}' L2gs L2x, L2y, Lgxyo Laxys & '
' % - %k
2221 ;L,, B, Ly, Ly, Lpg, Lz, L}E, Logys Lizgs & °
] * - * - *
b1'384s B, Lyg, Liz, log, P, Sby, Sp3*, c*, &
. N - =1% '
2/ml 31"*3 E, Ly, on C, Lyzs Ll.%*o szgo sh% » &1
= v, % 1 L * *  x
1151y, E, Lygs Suge Sias Ligs L%, p,, % &
| J *x - *x * %
AR E, L, Li1, Lo, P%, Pys Pxys Pi5s & '
ml';L),  E Py, Py, LY, LEL*, P, PX, &
shlg » 1'233 x» “yo» “LWgs 4T » Xy xy?
*nlike Table the elements in Table 20 are not

written explicitly for each group.
elements in each 11n

half are

collectively indicated by the symbols & '.

Instead, only half the
group are explicitly written. The remaining
To write

these elements explicitly, write the elements.to the left of

& and then prime each of them.
of the first group (1';C*) are E, C*,

For ex?plg‘.t.he four elements
» [
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v % L= p*
L21';Py B, L,,,. Ll l-h, Lays L2gs Logys Losgs Pro Pys
7L Py P Ss S 6N 8

* -
4/ml ;L;x E, LW bl’ Lags P3s s[,go 3[,1" c, sz’ I'Zyo sz.
* x % _x
Lzﬁ’ PX’ Py, Pﬂ’ ny, & !
? % L-1 ‘
Laml 3102; E, I"uo L3’ 230 Pxo { xyo xy, sz' I‘zyo
-]¥

*
szy' L 2xy’ Pz’ 31.:' sbs ’ c o & ° 1
| -
meml LY, s Loxs Lzy, Lz., x» Pys P‘, C, Ligs Lig » Loxys

~1%
-1%

42ml 3‘-':‘ E Lz’, szyo LGo x? Pyo sl,.,;o Sb’, Lhz’ L[.,g ’
L2xs Lz,. P}, Pyys Pir C%, & 0

a'is, 5, L St i, e v

-, ' _%x *x * * %*

4l 3loxy E, shz’ skv Lags LZXY’ 1'23_7’ Px» PY' &*
2221';80; B, Lpg, Loxys Loxy, Shas s,:}*, P"‘ p,, &
"'1.33:: E, 1‘2:’ X' Py, Szl' SZ%*’ l'2!7’ 1'211
';uf B, Ly, ,. 33, & °

NE B, Igg, ,. 3Ry & 1

31'332: E, L3g s» stn 351'*0 c*, &

321';88, B, Ly, ,, 3L, , S&s 38L%, 3P.’,'. e
3‘1'3823 E, L3g» 38’ 3B szz’ -1*' 31‘21' e
3113,  E, Ly, 1.5}, 8¢gs SE%, C, 3By, 3L3,, & *
31'33;: E, l‘3:’ z' ;:’ ;1*' P:’ & '

21'31';.1. B, L3y 1‘32’ 32’ 3:’ Pgs 3121, 3B, & °
3ml'3s], B, Ly, L”, 38, , S}, S31%, 31.21, p,, &
321';8%s B, l3s, L35, 3lau, S, 5%*. 3By, Pgo &1
3151, B, Iy, Lg, L&es Lg%, L3, & ° |
61-31‘;* E, Lg.s L6’, Lygs L3z, Lzzi*&.zi. & ¢

320'slg, By Ly, L33 3lgys bgge Lig s Ligs J2u &
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L}‘
’

1%
Sgs s C%, &
B, L, 1
»
p* c: Lyys Lags Léss Lgl CH 6
e g* Y6s» 36}*o 3; 351*
s Y3z »

s71*
PY, & *

SO3g »

E, 1y,, L33,
s 133, Lggs Lgl
L x
E, L3g, L;i. 3P, . f{; Tuo !
: 2 1o Légs Lgs s 12 "
; L3l’*Lth 3Ly,, 8 3“1. = e L
Lags 3L2,, g* 3'1*?2. *3” e Fao Lz e’
E -1 6s® “63 ° 3R, c* & e
P’ L3l' LB:' Log» Lgl L, "
c, 6L . s a
sz’L ’ 6L2{' 6B, & ¢ e S SBar S S5
) 2 |
L¥ 38'*L3s’ 3L21s Sege sgl 6
280 3Ly, 3; g=1* ,o* g» R s G Lg L;1*
E, ly,, Lj; s> 933 » 3R, Pro & ° e
5 L 6
351* 6P* z'* 6z °* L l’ L2zs 6L2 6
19" P’. cf’ . 1o S6zs 83;'*, 8*
E Tow 133 L Loks Logs 6 .
3g? 33%*. P:. c*, & * g» SR » 6L2), Szz’ 331*
E, 3Ly, b3, 431, 4§ )
E, 3L, » w13, usg, astt, 3¢*, ¢
.“'3.101.'1 6p™ * e
: , 6%, 33 =1
» 3L, AL -1 S’ ko 33[. &
2 3 “3 » 31-* =1% .
i Te 3171%, 6Ly
.y w— “_1 L ° 29 &
hs*, 43-1* *3 » 3Ly, 3LZ1- 6L, p
E 6 6 »* 6P, 3P*, c* & » 35, 38‘:1*’
» 3Ly, 4Ly, 413, 35 ‘;s 1
b e e , 38,, 38;%, 6P "
LZ. ‘0860 hsﬁlf’ 3P* c* ‘e ’ BLL" BLZI*’
E’ 3L2. ALB. ‘L;l ‘i; , & ' '
6 . . ] 6°* ‘53-1'
i iheg &, 3¢, ¢, 31}, 333%,
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Table 21l. The Groups of the Set{gp}listed
according to their Heesch Subgroup of Order Two

Heesch

Group

Triclinic

Momoclinic
2

2/m

Groups 1n{gp}uh1ch contain the Heesch Group
as a subgroup of Order Two

LMD FT A ¥3 S A 3 P 0 B Wi 1)
1'5c” 1t 1'iR)
- % - %
iy G
1l; y 1l ;Py
4
11515,
*
2;Py 23Ry 2;L3. 25Lpy 23Ry 2PLY 2514,
° g o * M
2;L,s 25,5 2:S,3
tok Lt % 0 % R
2";p7 2'30% 2';3, 2'spp

»
21";15, 2"y 'Ly, 2';s;,

nf;c* nf;L;’ -';P;

z/i;L;x 2/i.L£; 2/!3L:; z/i:LlZ
2'/m;1L3,

2/u';L3, 2/n';L), 2/m';s;, 2/n';P)
J ? %k

2 /m Lo,

2/m’sLy, 2/m'iLy,



Orthorhombic
222

2'2'2

2221"'

102

222;Py 222;P,° 222;L), 222;L,3 222;S,q

222;S),5

2'2'2;p% 2"2"2;P} 2f272;Lz. 2'2'2;3],

]
2 2'2;8,,
2221";P; 2221°;Ly, 2221°;8),

x
-:LZ, m;Lé; mm;L, g n:Lz'.: MBSL masiz

LI

L
I'll'_ﬂa;x I_Ii;P: n'n';Lz. l'n':Szz Ly,

n'n':Li:
5L, wm'ict
LI ) [ R
mml ;Lpy mml';Ly, mml';Sje
*

* ]
m;L“ m;Lh

L R 2O *
mon ;L g
m':l.:’ ';Stz
l'n'n;L:,
mol ' ;L
WiL3x Aslpy APy APy h3P)
WLy, 43Py b'iSp, A':PY
'R vk gy V.p*
"1.':21 M ’skz b 3Py
"
s2'spy 42';P%
'2;Py 4'2;50s
!. x
k21";Pg
ING'T % Io/m;Lé;
' % v %



1+ &I

-

EVypee

103

- - L B - b -
Wilh, hilyg biPx biPx
- * - -
Wil b 3Py b
- 9 * -— '. &%
bl 3L,g u.'Lny
1 o * " [ ] '*
hzn';l.zz
z',z"'.?Lzz
Mol b 2m;L,
'“hz »H2x

w2ml' Ly,

o1 X 7Y.p*
.’Lny b ’Px



Rhombohedral
3

31
32

L

32

321

Hexagonal

104

3Ly, 3ilpY  3RY 3R* 3585, 3384y
® * [ '* [ * [ d

3933’ 3’83’ 301‘63 3.Lz:

311y s1'sEY 31'isg 31";sY; 3151,
Ll * ® ' [ * ® *

32:36, 32;84} 32,33.* 323837 323Lgy 32;LgY
¥ ', ', ' !

32'shf 32383, 3238y, 3258 32514,

32'.1‘* :
*24

s'isd, aa'isl, i,

3nisz, 3m;8gY 3m;s3, *3-;8;: 3m;Le, 3msLid

3m :I-;L 3n':Sz, 3!’:833 3-':852 3-';1-;,

3m 5By

3ml';sg, 3ml';sy; 3ml';Lg,

B;RT* LR 3iLg, 3ilgs

3ilg, 3B, 3';83; 3'ilé,

31'31p, 31'sLg,

3';1‘22 -3-"?1%:

3'n';83; 3'm";LE,

2! . * 2! ° %

3.?’813 i,""l‘6z

_3.' 31‘6: 3m ;L;.L

3-1'31-5,






31!'2'
&'n2'
-9 °

6m2

6/m'm'’
6/n'_n
6/mm1’

105

w2ty Wi,
6'm2';sy  6'm2';Lg,

g'n'z; Sz, 3fn'2;i.z'
Emzl';l-z, .
iz, et ety ey ey o
6'31';1 6"38;’ 6';82: 6"}
61';L7, 61';8g, 61';RY
62;82z 62;88:

62'3?!7 62',3823

6'2;83, 6'2;5;,

621';8¢,

6/m;L3, 6/miL'y)

6'/‘31‘;L

6/"'31‘;1 6/-'_;1’":‘

6'/n'sLy,

6/m1';L;J_

bun;Sg, Gmmily)

6n'n";82' 6n'.n'_;l.;_,_
6’-';;8;" 6'nflgsz‘
6"1'»3323

"
63F,
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Cubic
23 23;9¢ 23;55% 23;P* 23;p'* 23;17 23;L,°
231" 231';sf 231";8f 231';1,
° * [ '*
n'3 n'3;Ly w'3;s)
L ', *
oot
43m lo3n:Lz 1&3!31.;:'
W' ©m';L, Wm';sg
wm' e}
e * . "k
3 43;85 43;8)"
'3 43387 4"3;8%
w1 a3';s)
m3m -
nan' -
m3m’ -
"t
m 3m -
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Table 22. The Possible Merohedry Twin Groups

Heesch Possible Merohedry Twin Groups

Group
Triclinic
* 1=
1 1;¢* 1;¢’
®
1! 1';c
1 -
1' -
1n' -
Monoclinic
*
2 2;Py z;f;*
2' 2';P; 2';c*
21" 21';p*
* y %
n' n'; b m';c*
] L %
ml ml L3
2/m -
2./h -
2/m' _
2'/n' -



Orthorhombic

222
LN ]
2'2'2
2221'
na

r

108

b
222;P,  222;P.*

2'2'2;p} 2'2'2;p}

2221" ;P
313

| ]
maR
mal ;

bilox 4sL3x AiPy 4sPg*
s X LR * % t
b 3Ly 4 3Py 4 ;shz b3

Wiy w'ish

L2;P% 42;P"
EXES ST %

4 25P a'z;szz
421" ;P

b/milyy  A/msL®
b/m' ;L;x b/n'_ ;P;
#'/h:L;x

h',/l' sPY

’*/‘l'.31‘;x

L3P

"3



iy

ly/mum
l./n'n'nf
b/n'm'm

b/omm

l.nm;l.;x Lam; ';

*t v _% %*
ha ‘i;Lix hnfm:;P,
[] o ] *
""1-31‘2;:

*x -
S

Wil bPp WLy W)
n'sLy, Zi':L;xx

ZZ!SL:: zZn;l.;“

o',

I'Zn';l.zz

'Z"zlﬂ':z Z'z‘vx‘;x
h2ml';Ly,

3;L3, 3;Ly; 33RF 3R 33565 3393

31';18) 315y 31'5sE,
32;8%5, 32;34;

32';RF 32°;8g,
321';32z

311;32z 3!33;

3m'3ly, 3m';8g,




Hexagonal

6
‘6't
&'

6m2
6m'2"
6'm2'
Z'n"z
6m21'
6
6'

'
61

110

3“‘1'3322
3p* %R,
313, 3R
31513,

- .% k = _%
6;Ly, 3';1.:“,_L 6;Lgg

- -t - -
6.5nf § iy, 6'5Lg, 6 385,
z [ * '. *

f} sy, 6L3LY

6m2;Lg  6m2;LL*
6m'2";1}  6m'2';LE,

- -y 0k

6 m2';SE. 6'm2 ;Lgy
6'm',2;Sz g'm'z;l.za
6m21" ;LY

6;L8, 63lp) 638g; 63Lct 6:3¢n
6';1.;1 6';8;3 6'3822 6';1’:
61';1.;‘,_ 61';822 61'.;?‘,’,"

62;5¢, 62358
62" ;P 62';s%;
6'2;8}, 6'2;56,
621';5g,

6/n;L; . 6/m;Lp}

x 1%
6P 63F,




6t/m 6'/m;L3,
*x
6/n’ 6/n';Ly, 6/m 3B,
] [] ]  J x
6 /m 6 /m;
LS,
6/m'  6/ml'ily
*x 1%
Gum 6n;36’ 6-:;1.2# .
Ga'n'  6a'n'isp, fa'm iy
6'n'n 6'm.n;8;’ 6'_lfm;8z’
] '. x
Gaml 6mml' ;8%
6/mm -
6 /om -
6/u' -
6’/-‘- -
6/-'n' -
6/m'm -
6/mml’ -
Cubic
23 23;5f 23;85° 23;P* 23;P'* 23;1; 23;L°
231" 231';88 231°;p* 231';Lf
*
n3 w3;L, =3;L*
m'3 a'3;L; u'3;S)
w1 w's,
43m omiL? onsLl?
'] [' 9 b
L3m' ZBn':L: Ianzsg
- L - 3
Bal e'iL,
. * ° %
43 "3’810 103.Sk

W3 a'33s, 4"3;8%
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Table 23.

Heesch

Group

321

113

The Possible Reticular Merohedry Twin Groups
for Rhombohedral Crystals

Possible Reticular Merohedry Twin Groups

31-2; 33L0 3R 3R 3583, 35853
3516 33 L6z
31';03, 31"k 31583, 31'iLg,
32; 33, 323833 32;1.2, 32;Lgn
32’ 83, 32';8,1 5 32'50g, 32'513,
321';8%, 321";18;
3m;93; 3m;S3y 3-:L;, 3m;Lgy
3m';53; 3m';83% 3m';Lg; 3a';R)
3nl'°8;‘ 31’ ;Lg,
3 I D 51.2, 51.;:

'L21 E‘nﬂ: 3 333 3' 'L6:
3’ ,L-u 31'5Lg,
3n;1.6, 3m;LE

bt IR -t ¢ *

3‘. 3’ 3-,31'6’
*x



Table 24.
Heesch
Group

23
231
mn3
m3l
-I:Bn
IB-'

43m’
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The Possible Reticular Merohedry Twin Groups
for Cubic Crystals

Possible Reticular Merohedry Twin Groups

23,3;L3) 23,3:L3% 23,3:RF 23,3;R* 23,3;8%,
23,33533 23,3;Lgg 23,3;Lg}
231',31";13, 231°',31";pF 231°,31";si,
231',31';L8,
»3,3;P* m3,3;R, =3,3;Lg m3,3:Lgs
".35'31';1 "3-;..3?: '.3';'33;2 “'35'.31'25

T =% X% t =% x
w31 ,31 ;L3 w31',31 ;Lgg

13m,3m;8%, M3m,3m;S;5  13m,3m;Lgy - 43m,3m;Lgy

Be',3a';83,  a',m'isy  Wm',m LY,
ZB!,BI':P.’.'

wm’,m1';sy,  Bm',m'srg,

43,32;83, 43,32;833 43,32;L8; 43,32;Lgh

4'3,32':8), 4"3,32";837 4'3,32";15, 4'3,32";13)

31',321"383,  431°,321° 518,
n‘in,gngl.z, I3I,-3-I3L;:

n' an ,;'.-' ;S;' s O 3m',3'n' ;Lz’
wm',3 w38y, wm',3'm;L,

n'3n'_ ,; lf ,5&' ;I..zs n‘}-' ,-B-n'_ ;I.;_L

wiml' ,Jm1'sLf,

AN WA S E T W KT



Appendix

Let H be the tetal magnetic field at the' proton site.
Then the Hamiltonian /¥ fer the proten may be writtea as

K=-gpIl-H
where g is the gyromagnetic ratio.,p the nuclear magneton

ek /2Mc  and I the total nuclear angular mementum in units
of A . Then |

o £ o -y £ 0
I'Hz(—{ O/HX +(x—; O)H)' +(o 'f)HZ

- L(”z Hx'L.HY)
Z\HtiHy  -Hy /.

Let Hy= H + H, where H_  is the applied dc field and H, is
the s compenent of the lecal field H,. Then ¥/ =£(/ and

H, +7L/°' He-(H,

i
o

HK+iH7 -HZ y_p'

S E=Z %43 /(H,,+H,,)1+(Hf+ Hf) and

Ly = AE :W;/h’,fthoh‘,,+H,iL
Let AV, = jﬁ H, . Then sinee H, =H, Coc ®,

/I+ 2 He Coa@ -1/,
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